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A B S T R A C T

When it comes to residential buildings, there are several stochastic parameters, such as renewable energy
production, outdoor air conditions, and occupants’ behavior, that are hard to model and predict accurately,
with some being unique in each specific building. This increases the complexity of developing a generalizable
optimal control method that can be transferred to different buildings. Rather than hard-programming human
knowledge into the controller (in terms of rules or models), a learning ability can be provided to the
controller such that over the time it can learn by itself how to maintain an optimal operation in each
specific building. This research proposes a model-free control framework based on Reinforcement Learning
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that takes into account the stochastic hot water use behavior of occupants, solar power generation, and
weather conditions, and learns how to make a balance between the energy use, occupant comfort and water
hygiene in a solar-assisted space heating and hot water production system. A stochastic-based offline training
procedure is proposed to give a prior experience to the agent in a safe simulation environment, and further
ensure occupants comfort and health when the algorithm starts online learning on the real house. To make
a realistic assessment without interrupting the occupants, weather conditions and hot water use behavior are
experimentally monitored in three case studies in different regions of Switzerland, and the collected data
are used in simulations to evaluate the proposed control framework against two rule-based methods. Results
indicate that the proposed framework could achieve an energy saving from 7% to 60%, mainly by adapting

to solar power generation, without violating comfort or compromising the health of occupants.
1. Introduction

Occupant behavior is a major driver of energy use in buildings [1].
Occupants influence the building energy use by their presence, acti-
vation, or dis-activation of energy devices and adjustment of desired
setpoints [2]. The role of occupant behavior is specifically important
for indoor conditioning, and hot water production systems [3]. Oc-
cupant behavior is considered as a major source of uncertainty for
optimal operation of building energy systems [4]. Modeling the occu-
pant behavior may, therefore, help to better understand and integrate
it into the control of energy systems in buildings [5,6]. However,
occupant behavior can be affected by many different parameters, in-
cluding environment-related, time-related, and random factors, which
makes it extremely stochastic and complex [7,8]. Even when an ad-
vanced modeling method is developed to predict occupant behavior,
it is challenging to quickly apply that model to a similar, but distinct
building [4]. Consequently, it is challenging to develop a holistic and
transferable model of occupant behavior to be used in the design
phase of buildings without any prior data of that specific occupants.
Current control of building energy systems are, therefore, detached
from occupant behavior and follow a conservative and energy-intensive
approach.

Besides occupant behavior, integration of renewable energy sources
to the buildings forms another source of uncertainty for their optimal
operation. The share of renewable energy sources in the building sector
is projected to be doubled by 2030 [9]. While this increasing share
would reduce CO2 emissions, the fluctuating and stochastic nature of
renewable energy sources increases the complexity of optimal control.
Due to the intermittent nature of renewable energy sources, injecting
the surplus power into the grid also complicates the grid operation and
can pose problems (e.g. voltage fluctuation) [10]. One way to cope with
the fluctuating supply is to make the local electricity demand flexible
and responsive to the supply, aiming to maximize the self-consumption
and to ensure the balance in the grid [11]. Demand flexibility can be
provided through several methods, such as flexible thermal generators,
electrical or thermal energy storage, demand-side measures, or even
grid-connected electric vehicles [12]. Among these options, storing the
surplus energy as heat (power-to-heat) is considered to be particularly
promising because both the cost of generating heat from electricity
and the cost of heat storage are relatively low [13]. Air-to-water heat
pumps emerge as a favorable power-to-heat option that can provide a
great opportunity for solar energy integration in the building sector.
This is because, first of all, the number of heat pumps as an energy-
efficient technology is steadily increasing in the building sector. For
example, the number of installed heat pumps in Germany has almost
doubled over the last 6 years [14]. Secondly, hot water storage of
a heat pump is cost-effective energy storage that can provide the
same level of self-consumption of electric storage, but at half of the
levelized electricity cost [15]. Furthermore, the thermal mass of the
building itself can serve as an additional heat storage for heat pumps,
making it possible to further increase the flexibility without additional
investments [11]. Buildings, therefore, can be seen as free batteries
for the grid. To incorporate the energy flexibility of residential heat
pumps, their operation should be responsive to the stochastic occupant
2

behavior, climate conditions that affect the heat pump efficiency, and
solar power production. The most conventional heat pump controllers
today are rule-based controllers, which follow a set of rules defined at
the design stage. These methods are computationally inexpensive and
can be easily programmed on a cheap hardware. However, rule-based
controllers totally neglect the stochasticity of the environment and
follow a static operational strategy which is usually far from optimal
strategy. A more advanced control method is Model Predictive Control
(MPC), which uses a model of the system to make predictions about
the future outputs. It solves an optimization problem at each time
step to determine the next actions that drive the predicted output as
close as possible to the desired reference. MPC has shown a promising
performance when applied to complex air conditioning systems [16–
19]. However, there are several limitations to the application of MPC
in practice. First of all, the performance of MPC and other model-based
control methods is highly dependent on the accuracy of the developed
model and prediction of the stochastic parameters. However, devel-
oping an accurate model of the system is extremely time-consuming
and, therefore, not practical in most cases [20]. Moreover, even if an
accurate model is developed, it can become fairly inaccurate over the
time due to, for example, aging or modification of the system. Being
dependent on an accurate model also makes the MPC building-specific,
limiting the transferability to the other buildings and widespread adop-
tion in the building sector [21]. To optimize the developed model
at each time-step, MPC requires a considerable computational power
which further limits its implementation in practice [22].

An alternative to hard-programming the expert knowledge as rule-
based or model-based control methods is to give the learning ability
to the controller, so it can learn by itself how to optimally control the
energy system when it is applied to each new building. With recent
advances in the Internet of Things (IoT) technology on the one hand,
and vast progress in Machine Learning methods, on the other hand,
the development of controllers which can learn by themselves is ever
more realistic [21]. Among Machine Learning methods, Reinforcement
Learning (RL) has recently gained popularity as a model-free control
method [23]. In RL, the learning controller, known as agent, interacts
with its environment and uses feedback from the environment to select
the best possible action given the current state [24]. RL is gaining
increasing attention for the built environment applications due to its
three main advantages. First of all, it can be model-free, which there-
fore does not require a complicated and costly model of the system.
It is a big advantage specifically when the system is complex [4].
Secondly, it is computationally efficient (after training), even when
the state-space has a high dimension [22]. Finally, an RL agent can
continuously adapt to the changes in the environment to maintain an
optimal control policy. It makes RL an ideal method for integrating
time-varying parameters such as solar energy potential, environmental
conditions, or even occupant behavior into the controller. The RL agent
treats occupant behavior as an unknown factor and learns and adapts
to it over the time [4].

In recent years, RL has been investigated for a diverse set of applica-
tions in buildings. Park et al. [25] proposed a device called Lightlearn,
which uses RL for occupant-centric control of lights in offices. The
device was installed in five different offices for eight weeks. The
performance of the proposed solution was compared with conventional
occupancy-based and schedule-based methods in case of energy use

and comfort of the people. Results showed that the occupant-centric
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control based on RL successfully made a balance between occupant
comfort and energy use and provided energy saving compared to both
conventional methods. RL is also studied for other applications such as
thermal storage inventory [26], natural ventilation [27] or integrated
lighting and blind control [28]. However, regarding the big share of
thermal conditioning energy use in buildings, most of the studies on
RL have been focused on air conditioning systems. Zou et al. [29]
developed an RL model for optimal control of air handling units to
minimize the energy use, while preserving the comfort of occupants.
The operational results indicate that the agent has learned how to adapt
to the occupancy schedule to save energy, for example, by pre-cooling
the spaces before the start of occupied hours. Schreiber et al. [22]
proposed the application of RL for load shifting of a cooling network
under the dynamic pricing. The cooling network included a chiller that
supplied cooling to 3 different sites. The RL agent in this system was
supposed to regulate the cooling supply to each site, to shift the power
consumption to periods with lower electricity prices or lower outdoor
air temperature while keeping the indoor air temperature violations in
an acceptable range. Brandi et al. [23] implemented double deep Q-
learning to control the operation of a water-based space heating system
in an office building. In this study, the static deployment, where the
agent is no longer trained over the deployment phase, is compared to
the dynamic deployment where the agent continues training even over
the deployment phase. It was shown that the RL agent with carefully
designed state-space is capable of providing the necessary adaptability
even in case of static deployment. Comparison with the rule-based
method showed that the RL-based controller could provide 5% to
12% energy saving with an enhanced comfort. Valladares et al. [30]
evaluated the potential of deep Q-learning for controlling the indoor
air temperature and air quality (CO2 concentration) while reducing
energy use. Two different case studies were evaluated, a laboratory
room having around 2–10 occupants and a classroom with up to 60
students. The trained agent was tested in experimental setup using IoT
sensors and actuators. The proposed method was then compared to
the conventional rule-based control. Results show that the proposed
framework could provide a better comfort (measured by Predicted
Mean Vote (PMV) index) and 10% lower CO2 levels than the current
control system while using about 4%–5% less energy.

There are only a few studies that have taken hot water production
into account, while it accounts for a big share of buildings’ energy
use, and is usually integrated into the space heating systems,. Kazmi
et al. [31] proposed a model-based RL control framework to balance
comfort and energy use in heat pump water heating systems. In par-
ticular, they used model-based heuristics that incorporate the state of
hot water tank and occupant behavior into the optimal control problem.
The models for heat pump, storage tank, and occupant behavior predic-
tion were probabilistic, data-driven models that learned from historical
data. Thirty two net-zero buildings in the Netherlands using heat pumps
and storage tanks were studied. It was shown that the proposed RL
control approach reduces energy use for hot water production by
roughly 20% with no loss of occupant comfort. Heidari et al. [32]
proposed an RL-based control framework to learn and adapt to the
occupants’ hot water use behavior, and make a balance between energy
use, comfort and water hygiene. The proposed framework was tested
over data collected in a Swiss residential house. While the monitoring
campaign was during COVID-19 pandemic with an abnormal occupant
behavior, the proposed framework could quickly learn the occupant
behavior and provide 24% of energy saving over the conventional
rule-based method.

Regarding the increasing interest in integrating solar energy into
buildings, a number of studies have also focused on solar-assisted space
heating and hot water production. Correa-Jullian et al. [33] proposed
a condition-based control approach based on tabular Q-learning for
the optimal control of a solar-assisted water heating system. The Re-
inforcement Learning agent in this system was supposed to determine
3

the operational schedules of the solar field and heat recovery chiller
according to the energy efficiency, comfort levels, and participation of
renewable energy sources. The results showed that the Reinforcement
Learning-based operation performed better than the nominal operation
schedule when solar radiation was low. On the other hand, nominal
operation yielded a higher performance when the solar radiation was
highly available. Ali and Kazmi [34] proposed an RL-based control
framework for Photovoltaic-assisted (PV-assisted) domestic hot water
production systems. The control approach tried to maximize the self-
consumption of PV production by shifting the consumption into the
periods of PV power production. However, temperatures above 50
◦C were awarded equally so preventing the over-consumption of PV
power for overheating the water. Comparison of the RL-based control
with the rule-based control over 6 different case studies showed that
the RL-based control successfully increased the self-consumption of PV
production. Lissa et al. [35] proposed a framework for optimal control
of PV-assisted space heating and hot water system. The proposed
framework aimed to reduce energy use by optimizing the operation of
the heat pump and maximizing the PV self-consumption while keeping
the comfort of occupants. To monitor the comfort aspect, higher and
lower temperature limits were considered for indoor air and hot water
temperatures. The limits of indoor air temperature were based on the
hourly average temperatures recorded in the case study building, and
the limits for hot water temperature are 40 ◦C and 55 ◦C. It was
indicated that as indoor heating is a slow process, the agent can better
follow the comfort limits, but the water heating is a faster process
and, therefore, there is a higher probability of surpassing the comfort
limits. The evolution of reward term showed that after the first month
of training, the agent learned to keep the occupant comfort and the
occupants no longer experienced high deviations from comfort limits.
The proposed framework could provide 8% to 16% energy saving
compared to the rule-based controller.

1.1. Objectives and contributions

This paper proposes an RL-based control framework for PV-assisted
space heating and hot water production, which can learn and adapt to
the stochastic parameters, namely hot water use behavior of occupants,
PV power production, and outdoor air temperature, and accordingly
make a balance between energy use, comfort, and water hygiene. Very
few studies have investigated RL for the entire system of solar energy,
space heating, and hot water production. This study intends to further
broaden the current knowledge by investigating the following aspects:

• Model-free: This framework does not use any model, such as a
data-driven or thermodynamic model of the system, and rather
learns the required knowledge from scratch. Experts usually as-
sume that by providing their prior knowledge to the agent, it will
learn easier and perform better. However, it is not always the
case. An example is AlphaZero, an RL model developed to play
the Go game, which by learning from zero and playing by itself
significantly performed better than its prior model AlphaGo [36].
Most importantly, being model free will facilitate the transfer-
ability of the control framework to the other residential buildings
with different system specifications;

• Integration of water hygiene: Legionella is a waterborne bac-
teria that grows in hot water between 25 ◦C and 57 ◦C and
pose health risks to the occupants. According to the literature
review, the hygiene aspect of water is never investigated in
previous studies on RL. This is while the hygiene aspect, mainly
Legionella, is the main barrier for reducing water temperature to
save energy [37]. This study integrates water hygiene into the
control framework by taking into account the Legionella growth
model. This will help the agent to properly adjust hot water
temperature for reducing energy use without endangering the

health of occupants;
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Fig. 1. Configuration of system to be controlled by RL.
• Stochastic-based offline training: To speed-up the convergence
and to minimize the risk of violating comfort or hygiene aspects
on the target house, a stochastic-based offline training phase is
designed to provide enough experience to the agent in the safe
simulation environment before being implemented on the target
house. The offline training phase integrates a stochastic hot water
use model and trains the agent over a variety of system sizes,
geographical locations, and hot water use behaviors to ensure
the agent has obtained a generalized experience and can quickly
adapt to different houses. Offline training is done in simulation,
which is a safe environment where the agent can learn from
scratch and even try random actions without any consequences
on the real occupants;

• Investigating the adaptation potential to different hot water
use behaviors: Hot water usage is the most stochastic parameter
that the agent needs to adapt to. To evaluate the adaptation
potential, real-world hot water use behavior is monitored in 3
Swiss residential houses. As the monitoring campaign was per-
formed over the COVID-19 pandemic, it will allow investigating
the adaptation potential from the normal behavior observed in
the offline training into the abnormal behavior during the COVID-
19 pandemic. Also, the behavior of 3 cases was found to be
very different, which allows to further investigate the adaptation
potential of the agent to different occupant behaviors;

• Investigating the generalization potential of the knowledge
gained in offline training: A well-designed training procedure
should provide a generalizable knowledge to the agent. If the
knowledge gained in offline training is generalizable, it can mini-
mize or at the best case eliminate the need for an online training
on the real house. Since the online training of the agent on the
cloud can be challenging and costly, in practice, it would be
much easier if an agent could be only trained on simulations
and directly deployed on the target environment. This paper
4

investigates two scenarios. The first scenario is the direct deploy-
ment of the agent, where the agent is directly deployed on the
target house after offline training, without any online training on
that specific house. The second scenario is long-time deployment,
where after a short-time online training, the agent is deployed for
a long time to see if there is a need for sequential trainings or one
initial training is enough. These scenarios can provide insight for
elimination or reduction of training phase on the target house by
a generalizable offline training, which will facilitate the practical
implementation of RL in residential buildings;

The remaining of this paper is organized into four sections. The first
section presents the methodology of the research. The second section
gives a brief overview of the case study houses and the monitoring
campaign. The results of the study are outlined in the third section.
Finally, the fourth section concludes the paper.

2. Methodology

The methodology section presents the energy system to be con-
trolled, monitoring campaign in the case study houses, developed
model used for estimation of Legionella concentration, the proposed
RL control framework as well as baseline control scenarios.

2.1. Case study description

2.1.1. System configuration
The proposed framework is focused on a residential energy system

including space heating, hot water production and PV power genera-
tion. There are many alternative configurations for this system, such as
integrated or separated thermal storage for space heating and hot water
production. However, as the aim of this study is to prove the potential
of RL for optimal operation of these systems, one common configura-
tion of the system is examined as an example. The proposed framework
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Table 1
Area and number of occupants in case study houses.

Heated area (m2) Adults number Children number

House 1 160 2 3
House 2 120 2 2
House 3 150 2 1

can be easily adjusted to other configurations. The configuration used
in this study is shown in Fig. 1.

The heating system is air-to-water heat pump, a favorable power-to-
heat option with increasing number in building sector, that can provide
a great opportunity for solar energy integration. Heat pump has a
variable Coefficient of Performance (COP) depending on outdoor air
and hot water temperature. This dependency makes it more challenging
for the RL agent to schedule heating cycles. Secondly, hot water tank is
considered as an energy storage, because it is more cost-effective than
electric storage [15], provides both functionalities of energy storage
and hot water provision, and is available in many buildings. While the
space heating can be integrated or detached from energy storage, in
this configuration it is considered to be integrated to storage to provide
further energy flexibility. In this case, the surplus solar energy can be
either stored in the tank and be used for space heating later on. PV
panels are considered to be grid-connected, so the surplus power can
be also injected to the grid.

2.1.2. Monitoring campaign
Hot water demand is less predictable than space heating demand,

can be very different between similar buildings [38], can impose a fast
change in the hot water tank temperature which causes the violation
of user comfort [39]. Thus, for the proposed framework, the most
challenging task for the agent is to learn the hot water use behavior
of occupants in each building. This study intents to evaluate the per-
formance of framework over the actual hot water usage measurements.
In this research, a cost-effective, low-power and water-proof monitoring
system is implemented to monitor all the assets, and then the flow rate
of all end-uses are summed to obtain the main flow rate. Monitoring all
the end-uses is not needed for this framework, and a single sensor on
the tank outlet can provide the demand data. The detailed monitoring
in this research was to provide a high-resolution dataset for future
research.

Three residential houses in Switzerland are monitored for 20 weeks.
Geographical location of buildings is indicated in Fig. 7. Monitoring
period of houses 1 and 2 was entirely during cold season (28 August
2020 to 15 January 2021), while for house 3 it also includes the
hot season (23 March 2021 to 10 August 2021). The third house is
to analyze how the agent will adapt to a period where PV power
production is high but energy demand is low (as there is no space
heating demand in this period). The heated area and number of adults
and children in each building are shown in Table 1. As shown in this
table, the case study buildings are selected to include a variety of family
compositions, which allows to further evaluate the adaptation potential
of the agent to different houses.

The case studies were equipped with heat pump. But since they
were occupied residential buildings, in this phase of early evaluation it
was not desired to test the proposed framework directly on the actual
systems as it could result to discomfort and dissatisfaction of tenants
who were volunteer in this study. Rather, the real-life collected data
can provide a realistic evaluation in simulation environment, without
violating the comfort of occupants.

2.2. Legionella concentration model

Legionella is a water-born bacteria that grows in water between
25 ◦C and 47 ◦C and can be transferred to humans by breathing in
the contaminated water droplets. Infection with this bacteria results
5

in a respiratory illness, known as Legionnaires’ disease (LD) [37]. Hot
water systems are responsible for the most number of infection cases,
as they can provide the desirable temperature regime for the growth of
Legionella [40].

While there are several disinfection methods, such as chemical
methods, one of the most conventional methods is thermal disinfec-
tion [40]. With a temperature of 60 ◦C Legionella cells die in only

min [41]. Therefore, as a common practice the hot water tank
emperature is constantly kept above 60 ◦C to ensure Legionella cannot
row in the tank. The high temperature of hot water tank will reduce
he heat pump COP, increase the heat loss, and also increase the risk
f scalding at the point-of-use. This conservative operational approach
s because controller does not have any sense about the real-time risk
f Legionella in the tank. This framework aims to quantify the risk of
egionella for the agent in real-time, so it can overheat and disinfect
he tank only when it is needed. Legionella growth is a complicated
rocess that depends on many different factors such as temperature,
H, and existence of nutrients [42]. It is therefore complicated to
evelop a model for accurate calculation of Legionella concentration.
ew mathematical models are developed to estimate the Legionella
oncentration only based on water temperature variations [37,43,44].
ssuming that the hot water tank has not been initially contaminated
ith Legionella and biofilm, and also the network water is properly

reated, these models can be used to provide the real-time estimation
f Legionella concentration only based on temperature. Controlling the
ot water tank temperature by considering Legionella concentration
an make a shift from energy-intensive conservative control approaches
nto energy-efficient while safe methods. However, little attention has
een given to the integration of Legionella risk assessment into the
ontrol systems. Kenhove et al. [45] integrated a model of Legionella
oncentration into the rule-based controller, where the controller heats
he tank when the estimated concentration passes a threshold. Based on
he literature review, there is no study on the integration of Legionella
rowth into RL-based control frameworks. Different from the rule-based
ontrol which only overheats the tank when a threshold is passed, an
L agent can learn how to proactively plan overheating cycles while
inimizing energy use, for example, by overheating the tank when

here is a surplus of PV power, or heat pump COP is higher, or a demand
s expected to happen in near future.

Estimation of Legionella concentration in this study is based on
he model proposed by Amerongen et al. [44]. In this model, for
he temperature range of 25 ◦C and 47 ◦C, the doubling time (the
umber of hours required for Legionella concentration to get doubled)
s calculated as:

𝑂 = 0.5702 × 𝑇 2
𝑡𝑎𝑛𝑘 − 43.3 × 𝑇𝑡𝑎𝑛𝑘 + 829 (1)

here 𝑇𝑡𝑎𝑛𝑘 is the hot water tank temperature (◦C) and 𝐷𝑂 is doubling
ime (hours). Using the doubling time, and integrating the effect of inlet
nd outlet water streams, the following equation is used to calculate the
oncentration of Legionella in this temperature range:

=
(𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝐷𝑂 ) × 𝑉𝑡𝑎𝑛𝑘 + 𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ×𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ×𝐷𝑒𝑚𝑎𝑛𝑑

𝑉𝑡𝑎𝑛𝑘
(2)

where 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the concentration of Legionella at the beginning of
timestep (𝐶𝐹𝑈∕𝐿), the 𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘 is the concentration of Legionella in
network water (𝐶𝐹𝑈∕𝐿), 𝐷𝑒𝑚𝑎𝑛𝑑 is the hot water demand (𝐿), and
𝑉𝑡𝑎𝑛𝑘 is the tank volume (𝐿), and 𝐶 is the concentration of Legionella at
the end of that timestep. Regarding that in the hot water tanks the same
amount of consumed hot water is replaced by the cold network water,
the term 𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘×𝐷𝑒𝑚𝑎𝑛𝑑 is the amount of Legionella entering the tank
from network water, and 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ×𝐷𝑒𝑚𝑎𝑛𝑑 is the amount of Legionella
exiting the tank. For the temperature above 60 ◦C, the reduction in
concentration is calculated as:

𝐶 =
(𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 0.999 × 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ) × 𝑉𝑡𝑎𝑛𝑘 + 𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ×𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ×𝐷𝑒𝑚𝑎𝑛𝑑 (3)
𝑉𝑡𝑎𝑛𝑘
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Fig. 2. Visual representation of states and actions.
For the temperatures below 25 ◦C or between 47 ◦C and 60 ◦C,
the concentration of Legionella is assumed to be constant. It is a
conservative assumption to further ensure the health of occupants,
because for a temperature above 50 ◦C the disinfection still happens
but with a lower rate [41].
6

2.3. Reinforcement learning control framework

A variety of RL algorithms have been developed so far. These
algorithms can be divided into two main categories of policy-based and
value based methods. Policy-based methods are suitable for problems
with a continuous action space (such as robotic applications), while
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Fig. 3. Temperature ranges for comfort limits of indoor air and Legionella multiplication and comfort limit for hot water tank.
alue-based methods are suitable for environments with a discrete
ction space, where the agent implicitly finds a policy by learning the
ptimal value function [46]. It is shown that value-based methods learn
aster, as they include a limited number of possible actions, and are less
ensitive to hyper-parameter tuning [47]. One of the most widely used
alue-based RL algorithms is deep Q-learning. Deep Q-learning tries to
stimate the value of each action, known as Q values, and select the
ction with the highest estimated value. These values are calculated
ased on the following formula:
𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼.(𝑟𝑡 + 𝛾.𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡, 𝑎𝑡)) (4)

where 𝑄(𝑠𝑡, 𝑎𝑡) is the old estimated value, 𝛼[0, 1] is the learning rate, 𝑟𝑡 is
the immediate reward, 𝛾 is the discount factor, and 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) is the
estimated future reward. As the original deep Q-learning use the same
network for the estimation of future values, it can lead to the overesti-
mation of value for some specific actions and therefore a non-optimal
action can be selected. To solve this issue, a modified technique called
double deep Q-learning is recently developed. The main characteristic
of this technique is the presence of two networks to counteract the
overestimation of the Q-values. The second network is an exact copy of
the first one, but is only updated every 𝜏 steps, and is used to calculate
the target Q-values for expectation [48]. Therefore, this research use
double deep Q-learning algorithm to develop the control framework.
Tensorforce library [49] is used to program this framework in Python.
In spite of other RL libraries that are mainly developed for computer
games, Tensorforce is developed with a Modular design, making it easy
to adjust the agent and the environment for other domains.

2.3.1. State, actions and reward design
The RL agent observes the state of the environment, then selects an

action based on the observed states, and tries to maximize a reward.
The proper setup of states, actions and rewards is an important aspect
to design a robust RL framework. State parameters should provide all
necessary information for the agent to predict future immediate reward,
and also should be possible to be collected by sensors in practice [23].
The following parameters are included in the state vector:

• History of hot water demand: As one of the most important
aspects of this framework, the agent is supposed to learn and
predict future hot water use behavior of occupants. Studies have
shown that there are some routines in hot water use behavior
of occupants in residential buildings, and therefore future hot
water use is correlated with the historical demand [32,50–52].
Therefore, a look-back vector of previous hot water demands is
included in the state vector to enable the agent to forecast future
demands. The length of this vector (the number of previous hours
7

to be included) for this parameter and also other parameters of
state will be determined based on the sensitivity analysis.

• Demand ratio: It would be useful to the agent to estimate how
much hot water would be used in total up to the end of day. As the
number of people and their daily behavior is almost persistent, the
total hot water demand of today can be close to yesterday. The
remaining hot water demand at each hour up to the end of day,
can be close to the remaining demand of the same hour up to the
end of the day for the previous day. The following percentage
quantifies the ratio of consumption up to the current time of
today, over the total consumption of previous day.

𝐷𝑅 =
∑𝐻

ℎ=0 𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝑎𝑦=𝐷
∑24

ℎ=0 𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝑎𝑦=𝐷−1

(5)

where 𝐻 is the current time of day, 𝐷 is the day number, 𝐷𝑒𝑚𝑎𝑛𝑑
is the volumetric demand (L), and 𝐷𝑅 is Demand Ratio.

• Outdoor air temperature: The outdoor air temperature affects
the space heating demand and also heat pump COP. A look-back
vector of outdoor air temperature lets the agent to learn the future
variations of outdoor air temperature and heat pump COP.

• Indoor air temperature: Indoor air temperature is important for
the agent from two aspects. First of all, it affects the occupants
comfort and should be carefully adjusted. Secondly, as the build-
ing thermal mass is also a potential energy storage, it is indicating
the current level of stored energy in the building thermal mass.

• PV power production: Another important functionality of this
framework is to learn and predict PV power production and
optimally schedule the future actions. The look-back vector of PV
power production enables the agent to learn the future PV power
production.

• Heat pump outlet water temperature: The heat pump outlet
water temperature determines the maximum possible tempera-
ture in tank, and also affects the rate of energy delivery to the
tank and subsequently indoor air.

• Legionella concentration: For optimal adjustment of the hot
water tank temperature, the agent should know the current es-
timated concentration of Legionella in hot water tank (𝐶𝐹𝑈∕𝐿).
This lets the agent to prevent unnecessary thermal disinfection
of tank, and only overheat the tank when it is needed or when
surplus of PV power production needs to be stored in the tank.

• Hot water tank temperature: The hot water tank temperature
indicates the level of stored energy in the tank, which also should
be kept above the comfort temperature.

• Hour of the day: Many of the stochastic parameters, such as
occupants hot water use behavior, solar energy and outdoor air
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Fig. 4. Possible actions for the agent.

temperature are strongly correlated with the hour of the day. To
further assist the agent to learn and predict these parameters,
hour of the day for the upcoming hour is also provided to the
agent. Different from other parameters, this is not a look-back
vector but is associated to the upcoming timestep.

• Day of the week: There is a significant difference between the
hot water use profile of working days and weekends. Also, the
hot water use profile of each day is found to be highly correlated
with the profile of the same day over the last week [32,50–52].
Accordingly, to learn and predict the future hot water demands
it would be helpful for the agent to know what is the current day
of week. The day number for the upcoming timestep is therefore
provided to the agent.

A visual representation of state parameters at each time step is
hown in 2. The length of look-back vector indicated for each parameter
s symbolic in this figure as it will be determined over the sensitivity
nalysis.

Possible actions should also provide enough flexibility for the agent
o maintain an optimal operation. The possible actions in this study
re selected according to the comfort limits and hygiene aspects. As
hown in Fig. 3 the comfort limits for indoor air temperature in winter
re between 20 ◦C and 24 ◦C based on ISO7730 [53]. Regarding that

this range is quite narrow, to ensure the comfort of occupants while
providing enough flexibility for the agent, it is assumed that the agent
only selects a setpoint to overwrite the existing thermostat. The possible
setpoints are 21 ◦C and 23 ◦C, with a dead-band of 2 ◦C, which
herefore covers all the comfort region. The option of 21 ◦C is an energy
aving choice, while the option of 23 ◦C provides the opportunity of
toring surplus PV power in building thermal mass. In case of hot water
ank, the multiplication of Legionella at each temperature range, as
ell as the comfort limit for hot water are shown in Fig. 3. While the

equired temperature of mixed water at each point-of-use is different,
0 ◦C is assumed as the minimum required supply temperature [38].
n this research, 40 ◦C is considered as the minimum comfort level for
he average hot water tank temperature. This will further ensure the
omfort of occupants as the hot water is supplied from the top of the
ank which has a higher temperature due to the stratification of tank.
ince the range of possible temperatures for hot water is quite wide,
nd discretization of setpoints would result in many different actions,
ossible actions for hot water temperature adjustment is considered as
urning ON and OFF the heat pump. This would give the possibility
o the agent to adjust any temperature with only two actions. On the
ther hand, the agent should properly learn the relationship between
he hot water tank temperature and all the affecting factors, such as
uture hot water demands, and schedule the ON/OFF actions properly
o avoid any comfort violations.
8

The possible actions are presented in Fig. 4. Actions related to the
ot water tank are separated from the ones related to the space heating,
eaning that the agent cannot simultaneously change the indoor air

etpoint and heat pump status, and should prioritize between them.
hile it is possible to combine the tank and space heating actions, for

xample one action representing turning ON the heat pump and also
ndoor setpoint of 21 ◦C, primary tests indicated that such combined
ctions make it more complicated for the agent to learn the relationship
etween performing each action and the associated impact on the
nvironment.

The reward function should be well designed to clearly reflect
he aims and priorities as simple as possible. This control framework
ntends to minimize the energy usage of heat pump, and maximize
he self-consumption of PV power, while maintaining the occupants
omfort and water hygiene. The reward function is composed of four
ifferent terms as follow:

• Energy term: The energy term penalizes the agent for (1) any
energy usage of heat pump and (2) the surplus of PV power not
used by the heat pump. This term is defined as

𝑅𝑒𝑛𝑒𝑟𝑔𝑦 = −𝑎× ∣ 𝐻𝑃𝑝𝑜𝑤𝑒𝑟 − 𝑃𝑉𝑝𝑜𝑤𝑒𝑟 ∣ (6)

where 𝐻𝑃𝑝𝑜𝑤𝑒𝑟 and 𝑃𝑉𝑝𝑜𝑤𝑒𝑟 are the power usage of heat pump
(kW) and power production of PV panels (kW), accordingly. 𝑎
is the weighting factor, used to make the same scale between
different terms and also put more emphasize on higher priority
terms.

• Hot water comfort term: This term penalizes the agent if the
temperature of hot water tank falls below the comfort level of 40
◦C.

𝑖𝑓 𝑇𝑡𝑎𝑛𝑘 ≥ 40, 𝑅𝐷𝐻𝑊 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 0 𝑒𝑙𝑠𝑒 − 𝑏 (7)

where 𝑇𝑡𝑎𝑛𝑘 is the hot water tank temperature and 𝑏 is the weight-
ing factor. It is also possible to penalize the agent proportional
to the temperature deviation, but here the comfort and hygiene
penalizations are done with constant numbers to speed up the
learning process.

• indoor air temperature comfort term: This term penalizes the
agent if the indoor air temperature is out of comfort limits. While
the possible setpoints are inside of comfort region, still a comfort
violation can happen if the hot water tank temperature is not high
enough to provide required heat for radiators. This term is defined
as

𝑖𝑓 20 ≤ 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 ≤ 24, 𝑅𝐼𝑛𝑑𝑜𝑜𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 0 𝑒𝑙𝑠𝑒 − 𝑐 (8)

where 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 is the indoor air temperature and 𝑐 is the weighting
factor.

• Hygiene term: This term penalizes the agent if the estimated con-
centration of Legionella in hot water tank exceeds the maximum
acceptable level. This term is defined as

𝑖𝑓 𝐶 ≤ 𝐶𝑚𝑎𝑥, 𝑅𝐻𝑦𝑔𝑖𝑒𝑛𝑒 = 0 𝑒𝑙𝑠𝑒 − 𝑑 (9)

if 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 is the current concentration of Legionella
(CFU/L), and 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥 is the maximum acceptable con-
centration (CFU/L).

The total reward, which is going to be maximized by the agent, is
then the summation of these rewards as

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑅𝐷𝐻𝑊 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 + 𝑅𝐼𝑛𝑑𝑜𝑜𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 + 𝑅𝐻𝑦𝑔𝑖𝑒𝑛𝑒 (10)

2.3.2. Training procedure
To train the RL agent, it is required to establish an interaction

between the agent and environment, which lets the agent to perform

actions on the environment, receive back the next state and calculate
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Fig. 5. Procedure of interactions between the agent developed in Python and system model developed in TRNSYS.
the subsequent reward. The interactive procedure in this research is es-
tablished by coupling the agent developed in Python with the dynamic
model of system developed in TRNSYS. Fig. 5 presents how the agent
and environment interact with each other. At each timestep, the agent
writes the selected action to the input file of TRNSYS, runs the TRNSYS
model for one hour, and then reads the subsequent parameters of state
from TRNSYS output file. If the episode is not ended, the state is again
used by the agent to select the next action. And if it is the last timestep
of episode, the state is reset and sent to the agent. As the agent tries
to maximize the reward over the period of each episode, the reset is to
set the timestep counter as zero and inform the agent that the episode
is ended. The length of episode is considered as one week.

This study propose a multi-step training procedure in which the
agent is first trained offline on a safe virtual environment, then trained
online on the target house and finally is deployed on that house. The
overall procedure is presented in Fig. 6. During the offline training
phase, the agent is interacting with the virtual model of the system
for 10 years. An important consideration in the offline training phase
is to provide a generalizable knowledge to the agent, so it can be
transferred to different houses with different system sizes, located in
different weather conditions of Switzerland, and with different occu-
pant behavior. To provide a generalizable knowledge of the occupants
hot water use behavior, an stochastic hot water use model driven by
actual data from other buildings [54] is used to simulate the hourly
demand data. Actual weather data from multiple weather stations in
Switzerland are also collected, and for each year of the offline training
phase, the solar and weather data of a different city is used as indicated
on Fig. 7. In addition, a different set of system sizes (e.g. heat pump
capacity, hot water tank volume, radiators and PV panels area, etc.) are
used in each year. Including these variations in the long-time offline
training phase also reduces the possibility of overfitting to a specific
case. The pre-trained agent is then saved to be used for online training
on each of the target houses. It should be noted that the simulation
model is only used to provide an initial experience for the agent, so it is
not part of the framework and does not need to be an exact model of the
9

target system. Therefore, the proposed framework fits in the category
of model-free RL.

On the online training phase, the pre-trained agent is again trained
with the actual hot water demand and weather data of the target house.
While the offline training phase might be enough for the agent, the
online training on the target house can help the agent to further adapt
the agent to the specific house. In this phase, the actual hot water
demand data that are measured experimentally in each house is used
to represent the real behavior of occupants. Detailed description of
monitoring campaign is provided in the next sections. Once the agent
is trained for several weeks on the target house, it is then deployed
on this house. It means that the agent is no longer learning but only
controlling the system. This phase is computationally efficient and can
be done offline on a low-price hardware such as a Raspberry Pi.

While TRNSYS models are used in all phases, it should be noted
that the model in offline training phase is a virtual model to be used
in a laboratory, while the model used in online train and deployment
phases is to represent an actual building.

2.3.3. Different training scenarios
To get the full potential of RL it should be continuously trained,

enabling it to adapt to all changes during the life-time of the system,
which is however costly and computationally expensive. This research
aims to gain a good level of adaptation, without being continuously
trained online, by incorporating the intensive stochastic-based offline
training procedure. Online training of the agent is challenging, costly,
and less robust as it would depend on the continuous interaction
between sensors and agent on the server. It would be therefore easier
in practice if the duration of online training phase would be reduced
as much as possible, or it would be even totally eliminated. One of the
aims of this study is to assess if the stochastic-based intensive offline
training can (1) eliminate the need for continuous or sequential online
training phases on the target house, and (2) totally eliminate the need
for online training on the target house. To this aim, three different

scenarios for training phase are evaluated. These scenarios include:
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Fig. 6. Training procedure.
Fig. 7. Location of cities used in offline training phase as well as case study houses on the Swiss map.
• Online training and Short-time Deployment (RL-OSD): After
offline training, the agent is trained online on the target house,
and then deployed for a short period of 1 month;
10
• Online training and Long-time Deployment (RL-OLD): After
offline training, the agent is trained online on the target house,
and then deployed for a long period of 8 month;
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• Direct Deployment (RL-DD): After offline training, without any
online training, the agent is directly deployed on the target house
for a short period of 1 month;

For a better understanding, these three scenarios are visually pre-
sented in Fig. 8.

2.4. Baseline control methods

In order to better highlight the advantage of a learning controller,
it can be compared to the conventional rule-based controllers that
only follow static programmed rules while ignoring the variations of
occupant behavior, solar energy or weather conditions. Two following
rule-based controllers are also modeled in this study:

• Rule-based controller with Conventional setpoints (RC): A
rule-based method which uses the setpoints of common practice.
In this method, setpoint air temperature is considered as 21
◦C with a deadband of 2 𝐾, which is a recommended setpoint
for healthy and comfortable air temperature, [55,56], and 60
◦C with a deadband of 10 𝐾 for hot water tank, which is a
commonly used setpoint to follow hygiene requirements in storing
hot water [57,58];

• Rule-based controller with Energy saving setpoints (RE): A
rule-based method with similar setpoint air temperature to the
RC method, but with the setpoint tank temperature of 50 ◦C for
energy saving;

hile due to the hygiene aspects, the RE scenario is not common in
ractice, in this study it is considered to illustrate that the energy
aving of proposed control framework is not only achieved by lowering
he setpoint temperatures, but rather by learning how to optimally
chedule the heating cycles. There are many other alternative control
ethods, such as using a heat curve, that are today applied in the

uildings. These methods are similar in the sense that they follow
tatic rules, which are detached from occupant behavior or renewable
nergy. Similar results are expected if a comparison is made between
he learning agent and other rule-based controllers.

.5. System sizes

Table 2 shows the specifications of modeled systems used in the
ffline training and target houses. The agent is supposed to be able
o adapt to a new building, with different area and different system
izes than what it has observed during the offline training phase. The
eated area and heat pump capacity in case study buildings are bigger
House 1), smaller (House 2), and almost similar (House 3) to the
11

ffline training phase. Area of PV panels is equal to the available area
or tilted roofs calculated based on [59]. Heat pump rated heating is
lso proportional to the heated area, and is sized based on the capacity
er area of a real-word similar installation presented in detail in [15].
he same tank size is considered in all houses for simplicity.

. Results

In summary, the results of this study are presented in 5 sections as
elow:

• Dataset overview: Provides an overview of collected datasets
during monitoring campaign;

• Hyper-parameters: Describes the hyper-parameters selected for
the proposed framework;

• Reward evolution: Evaluates the convergence of proposed
framework;

• Visual assessment: Some operational parameters (e.g. air tem-
perature, water temperature, hygiene, etc.) are visualized to pro-
vide a detailed and hourly presentation of the agent performance;

• Quantified assessment: Quantification metrics are used to sum-
marize and compare the agent performance (such as total energy
use) with respect to the conventional methods;

3.1. Overview of datasets of different houses

Fig. 9 shows the hourly variations of hot water demand, PV power
production and outdoor air temperature in three different case studies.
It can be seen that there is a good diversity in hot water use behavior
of case study houses, as the Houses 1, 2 and 3 can be categorized
as high volume (up to 250 L∕h), low volume (mostly below 50 L∕h),
and middle volume (up to 150 L∕min) consumers. There is a good
variation also in the trend of PV power production in case study houses.
Hourly variations of PV power on the first and second case studies
show a decreasing trend, with higher values during the training phase
compared to the deployment phase. On the third house, the date of
monitoring campaign has been different from the first and second
case studies, with the training phase starting from cold weeks and the
deployment phase during the warmer weeks. Therefore, the trend of
PV power production is increasing in this house, with higher hourly
production during the deployment phase compared to the training
phase. Variations of hourly outdoor air temperature also show a similar
trend, with a decreasing trend on the first and second case studies
and an increasing trend on the third case studies. The deployment
phase of the first and second case studies is during the cold weeks,
when both space heating and hot water production is required, while

the deployment phase of the third house is during the warm weeks,
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Table 2
System sizes used in offline training and different case studies.

Offline training House 1 House 2 House 3

Total heated area (m2) 140 160 120 150
Heat pump rated heating (kW) 6 7 5 6
Heat pump compressor power (kW) 0.95 1.1 0.8 0.95
Tank size (L) 500 500 500 500
PV panels type Monocrystalline Monocrystalline Monocrystalline Monocrystalline
PV panels total area (m2) 10 11 8 12
Panels slope 45 45 45 45
Fig. 9. Hourly hot water demand, PV power production and outdoor air temperature on the case study houses.
Table 3
Selected parameters for the agent.

Hyper-parameter Value

Agent type Double deep-Q network
Learning rate 0.003
Batch size 24
Update frequency 4
Memory 48 × 168
Discount factor 0.9

when only hot water production is required. The agent is supposed to
learn that during the warm weeks there is less energy demand, and
the variations of the hot water tank temperature only depends on the
hot water demand. The overview of datasets show that there is a good
diversity between the case studies, and between train and deployment
phases. These variations provide a great opportunity to examine how
12
the agent can generalize its knowledge and adapt itself to different
situations, such as different hot water use behaviors.

To better explore the diversity in hot water use behavior between
the case study houses, boxplots of their hourly hot water use data are
also presented in Fig. 10. Datasets from other residential buildings [50]
show that hot water use pattern usually has two major peaks, one in the
morning and the other in the evening. Regarding that the monitoring
campaign in this study has been during COVID-19 pandemic, the
monitored data over these three houses show some differences with
the normal pattern of residential buildings. For example, the peak of
average demand for the Houses 2 and 3 is located at the middle of
the day, while in the normal situation occupants are at work on this
time and no peak is expected. Also the hot water use pattern in House
2 shows a quite uniform demand between 7 A.M. and 9 P.M., which
indicates that the occupants have been spending most of their time at
home. These differences indicate that the hot water use behavior over
the case studies is more stochastic and less predictable than the normal
behavior that the agent has observed during the offline training. This
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Fig. 10. Boxplots of hourly hot water demand in case study buildings.

abnormal occupant behavior on case study houses allows to assess the
adaptation potential of the agent to a behavior that has never observed
before.

3.2. Hyper-parameters

The RL framework include a number of hyper-parameters that
should be selected based on the specific problem and desired ob-
jectives [60]. The main hyper-parameters in this framework include
specifications of agent (e.g. Learning rate, Batch size, Update frequency,
Memory), weights of the reward function, and also the length of look-
back vector for some specific states that are expected to have a higher
importance for the target system to be controlled. The look-back vectors
that are of specific interest in this study are the number of previous
hours of hot water demand, PV power production and indoor air
temperature to be included in the state vector. Regarding that for each
set of hyper-parameters all the phases of offline training, online training
and deployment should be repeated, only a few of hyper-parameters
could be evaluated. Therefore, the hyper-parameters of the agent are
selected based on the experience from our primary study [50], as
presented in Table 3.

One of the important aspects of RL is the trade-off between ex-
ploration and exploitation [23]. To maximize the reward, the agent
tries to select actions that has previously experienced and are expected
to return a higher reward, which is called exploitation. On the other
hand, it is still possible that the action with expected highest reward
would not be the best action, so it is required that sometimes the agent
randomly selects an action during the training phase to better explore
the environment, which is called exploration. One of the commonly-
used methods to make a balance between exploration and exploitation
is the 𝜖-greedy method, in which a small probability of 𝜖 is specified
and the agent performs exploration when a random value between 0 to
13
Table 4
Selected weights for reward function.

Weight Associated term Value

𝑎 Energy 1
𝑏 Hot water use comfort 20
𝑐 indoor air temperature comfort 10
𝑑 Hygiene 10

1 would be higher than specified value for 𝜖. In this study, it is desired
that during the training phase the agent performs higher exploration
(more random actions) at the beginning and then gradually reduces
the exploration to near zero. Therefore, a linear decay is established
for exploration, where the 𝜖 linearly decays from 0.9 to 0.0001 at each
time step over the first 12 weeks.

Weights of the reward function are selected based on the relative
importance of each term in the reward. The selected weights are
indicated in Table 4. A weight of 1 is selected for energy term, because
it is multiplied by the net energy usage, which is in the range of 0–4
kW. The agent is supposed to reduce energy usage, without violating
the comfort and hygiene aspects. Higher weights are selected for these
terms to highly penalize the agent if any of these aspects are violated.
The weight of hot water comfort is a bit higher that of space heating,
because the hot water use behavior is more stochastic and therefore the
agent should be more conservative towards the hot water use comfort.

3.3. Reward evolution

The evolution of reward over the training phase should be mon-
itored to evaluate if the agent has found an optimal control policy to
minimize reward function. Fig. 11 presents the weekly-averaged reward
over the offline training, as well as online training on each of the
houses. It should be noted that energy reward in this framework is
not avoidable, and therefore, depending on the heat pump capacity,
variations of reward function up to −5 are due to the power use of heat
pump. Considering the weights presented in Table 4, reward values
lower than −10 (more negative values) indicate that the comfort or
hygiene terms are also violated. As can be seen from the first diagram,
there are 5 periods during the offline training phase, where the value
of reward reaches to −10 or below. In these periods, the agent has
been trying to minimize the energy reward by turning OFF the heat
pump, but however due to a low hot water tank temperature it has
violated comfort or hygiene terms. After each violation and receiving
a high penalty, it has learned that it should increase energy usage
to avoid the violation of other terms. After the last violation around
week 377, reward value is almost stable. The value of reward function
during the online training on the target houses is always above -10,
and shows a good stability. This indicates that the agent has gained
enough experience during the intensive offline training phase, which
has guaranteed an optimal policy since the first week of training phase
on each target house. The fast convergence on the target houses, in spite
of abnormal hot water use behavior, shows that the variations included
in the offline training phase (variations of the system sizes, hot water
use pattern, weather conditions, etc.) have provided a generalizable
knowledge for the agent, and ensured the transferability to the other
houses.

3.4. Visual assessment of the proposed framework

3.4.1. Performance of the agent during the offline training
As shown in Figs. 6 and 7, offline training phase was performed

for 10 years, each year on a different city, and with different sizes of
system. It is interesting to have a closer look at the offline training
phase to see if the agent could preserve the occupant comfort with such
variations. Fig. 12 presents the boxplots of hot water tank and indoor
air temperatures during the offline training phase. It can be seen that
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Table 5
Comparison of performance between RL-OSD and rule-based control methods in three case studies during the deployment
phase.

House 1 House 2 House 3

RL-OSD RC RE RL-OSD RC RE RL-OSD RC RE

Energy use (MWh) 1.14 1.6 1.23 0.73 1.22 0.8 0.06 0.24 0.15

Violation of DHW comfort
(%)

8.1 0 0 5 0 0 1.7 0 0

Average temperature of
DHW comfort violations
(◦C)

38.9 – – 39 – – 38 – –

Number of space heating
comfort violations (h)

153 0 0 84 0 0 29 0 0

Average temperature of
space heating comfort
violations (◦C)

24.3 – – 22.2 – – 23.5 – –

Average heat pump COP 2.71 2.3 2.68 2.7 2.3 2.75 3.6 3.1 4
F
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able 6
ummary of performance of Long-time deployment scenario (RL-OLD) with other
ontrol methods.

RL-OLD RC RE

Energy use (MWh) 5.17 7.6 5.4
Violation of DHW comfort (%) 5.3 0 9.2
Average temperature of DHW comfort violations (◦C) 38.7 0 38.5
Number of space heating comfort violations (h) 1015 548 532
Average temperature of space heating comfort violations (◦C) 23.8 19.8 19.9

ig. 11. Evolution of reward over the offline training stage and online training stages
n each house.

here is a higher variance in hot water and indoor air temperatures
ver the first year, which is due to the lack of experience by the
14
ig. 12. Boxplots of yearly hot water and indoor air temperature versus comfort limits.

gent, as well as performing random actions during the exploration
hase. From the second year, the hot water and indoor air temperatures
how a lower variance, close to the comfort limits, which indicates
hat in only few hours the occupant comfort is slightly violated. Also
he average hot water and indoor air temperatures are higher over the
irst year. It shows that at the beginning the agent has been trying to
reserve occupants comfort by spending more energy, but from the
econd year it has learned to further reduce temperatures and save
ore energy while respecting occupant comfort. Overall, from this

igure it can be seen that although several parameters (weather, solar
adiation, occupant behavior and system sizes) vary from year to year
n the environment, the agent performance is stable since the second
ear. This indicates the adaptation potential of RL to the potential
ariations that can happen from building to building in a wide-spread
mplementation.
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Fig. 13. Adaptation of control signal to the PV power production and hot water demand in RL-OSD scenario.
3.4.2. Performance of the RL-OSD
A major capability of the RL agent is adaptation to stochastic

parameters, which in this problem are mainly PV power production and
hot water demand. To visualize the adaptation potential of the agent,
Fig. 13 presents the control signal versus PV power production and hot
water demand. As can be seen in this Figure, the agent mostly turns ON
the heat pump when PV power is available. This is more clear in case
of House 3. In this house, the deployment phase has been during the
summer, with a higher PV power production and lower energy demand,
which enables the agent to harvest most of the required energy from
PV panels. Hot water tank temperature is also visualized to assess how
15
the agent has adapted to the hot water use behavior to preserve the
comfort aspect. It can be seen that the agent has successfully learned
the hot water use behavior, because even in case of high volume
demands, e.g. in House 1, the agent has always kept the hot water tank
temperature above the comfort limit.

Previous studies have usually used the self-consumption of PV
power as an evaluation metric for their proposed control approach [61].
However, it should be noted that in this study a higher self-consumption
can be caused by the higher energy use of heat pump, e.g. by operating
with a lower COP, which is not desired. Rather, in this study the share
of PV power production in total power consumption of heat pump is
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Table 7
Comparison of performance between RL-OSD and RL-DD in three houses during the deployment phase.

House 1 House 2 House 3

RL-OSD RL-DD RL-OSD RL-DD RL-OSD RL-DD

Energy use (MWh) 1.14 1.05 0.73 0.59 0.06 0.14

Violation of DHW comfort
(%)

8.14 17.1 5 3.9 1.7 0

Average temperature of
DHW comfort violations
(◦C)

38.9 37.9 38.9 30.8 38 –

Number of space heating
comfort violations (h)

153 142 84 126 29 136

Average temperature of
space heating comfort
violations (◦C)

24.3 24.2 22.2 24.2 23.5 24.9
Fig. 14. Contribution of PV power production in heat pump power consumption in
RL-OSD scenario.

used for comparison. As shown in Fig. 14, in all Houses, RL-OSD has
obtained a higher share of energy consumption from PV panels. This
share is much higher in case of House 3, as the deployment phase in
this house has been during the summer, with much higher PV power
production and lower energy demand. These results indicate that the
proposed framework would provide a higher energy saving in regions
with a high solar radiation.

To evaluate the comfort aspect during the deployment phase, box-
plots of indoor air and hot water tank temperatures by different control
methods are shown for House 1 in Fig. 15. Due to the high number of
plots only one house is presented, and the other houses show a similar
performance. Regarding that the range of comfort in case of indoor
air temperature is quite narrow, it can be easily violated. Therefore,
all of the methods show some violations of comfort. RL-OSD shows
more violations than the rule-based methods, but the violations are less
than 2 ◦C and happen in few hours, which therefore can be ignored. In
case of the hot water tank temperature, similarly, RL-OSD shows very
slight violations that can be ignored. Interestingly, violations by RL-
OSD are even less than RE, which is due to the fact that RL-OSD tries
to save energy by adapting to the occupant behavior, while RE tries to
16
do so only by lowering the hot water tank temperature, regardless of
occupant behavior.

Boxplots of Legionella concentration over the deployment phase are
shown in Fig. 16. As expected, both of rule-based methods maintain a
lower concentration than the RL-OSD method, because they are over-
conservative. While RL-OSD method is less conservative, it has always
respected the hygiene aspect as the maximum concentration is less than
4500 CFU/L, which is much less than the risky limit of 500,000 CFU/L,
placed for single-family residential houses [44]. It shows that RL-OSD
has learned to maintain hygiene aspect while avoiding over-necessary
heating of the tank.

3.4.3. Performance of RL-OLD
Fig. 17 presents the performance of the agent over the long-time

deployment (RL-OLD scenario). As can be seen, there are a lot of
variations in hot water use behavior of occupants over this period,
including a sudden decrease for one month, and an absence period.
Also this period includes a good diversity in outdoor air temperature,
as it includes cold months at the beginning and hot months at the
end. These diversities are valuable to assess how the agent will adapt
to the possible changes in environment over a longtime deployment.
As shown in this Figure, Although there are significant variations in
hot water use behavior, the agent has always kept the hot water tank
temperature above comfort temperature of 40 ◦C. There is an increase
in the temperature of pressurized hot water tank from the middle of
May (2021–05). This is because in this period there is a higher PV
power production, a lower demand for space heating, and at the same
time a sudden decrease in hot water demand. Therefore, hot water
tank temperature is increased as the agent is trying to get the best
use of PV power production by storing the surplus energy in the hot
water tank. Indoor air temperature is also within the comfort limit,
with slight violations of less than 2 ◦C. Legionella concentration is also
always below the risky limit, while it is higher during the cold season
and lower during the warm season, when extra energy is stored by
over-heating the tank.

3.4.4. Performance of RL-DD
Fig. 18 compares the performance of the agent which is also trained

on the target house (RL-OSD), versus the agent which is only trained
offline and has never observed the behavior of that specific house (RL-
DD). The training phase of RL includes some randomness, mainly due
to the exploration phase. Therefore, even if two agents are trained
with exactly same specifications, they can have slightly different per-
formances. So the slight differences between these two agents should
not be considered as the consequence of the lack of an online training
phase in RL-DD. The two agents, thus, show very similar performance
on Houses 1 and 2. The only significant difference is on House 3, where
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Fig. 15. Boxplots of indoor air and hot water tank temperatures by three control methods in House 1 in RL-OSD scenario.
Fig. 16. Boxplots of Legionella concentration in tank by three control methods over three case studies.
the RL-DD agent has kept a higher hot water tank temperature than the
RL-OSD agent. This is because the RL-OSD has observed and learned
the specific behavior of occupants on House 3, and is better adapted
to their behavior than the offline trained agent whci has only observed
the stochastic-based hot water use behavior. These diagrams show that
while the RL-DD agent has never seen the specific parameters of the
target house (weather conditions, occupant’ behavior, etc.), it can still
maintain the comfort and hygiene aspects.
17
3.5. Quantified assessment of the proposed framework

3.5.1. RL-OSD versus baseline methods
Table 5 presents the performance metrics of RL-OSD versus RC and

RE methods during the deployment phase. RL-OSD consumes least en-
ergy in all of the Houses, with the lowest energy use on House 3 where
a higher PV power was available. In this house, RL-OSD has provided an
energy saving of 60% compared to the RE method, indicating the great
potential of RL-OSD for seasons with a high solar energy potential. To
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Fig. 17. Performance of the RL-OLD agent during long-time deployment on House 1.
quantify the comfort aspect of the RL-OSD method, the percentage of
total hot water demand which was met with a temperature less than
comfort level is also indicated in this table. At the worst case, which
has happened in House 1, 8% of total demand is violated. The average
temperature of these violations is 38.9 ◦C, which is very close to the
comfort limit of 40 ◦C. In case of space heating, although RL-OSD has
violated the comfort limits during a few hours, the average of violations
is very close to the comfort limits. In Houses 2 and 3, this average is
in comfort limits because some of the violations has been less than 20
◦C and some other more than 24 ◦C. It can be therefore considered
that in all of the houses RL-OSD has properly maintained the occupant
comfort. The average COP of heat pump by RL-OSD is always equal
or lower than by RE. It proves that the energy saving by RL-OSD is
18
not only achieved by lowering the hot water tank temperature (and
therefore increasing the COP), but by properly scheduling of heating
cycles to profit more from PV power production.

3.5.2. RL-OLD versus baseline methods
Table 6 presents the metrics of RL-OLD scenario. These metrics show

that over the long-time, even without any other online training, the
agent has provided an energy saving while maintaining the occupant
comfort and water hygiene. This scenario was presented to prove the
performance of the trained agent over a long time deployment without
any further online training. But if it is technically possible in practice,
sequential or continuous training of the agent will probably provide a
higher energy saving.
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Fig. 18. Performance of RL-DD agent during direct deployment.
3.5.3. RL-OSD versus RL-DD
Table 7 represents the energy use and comfort metrics between RL-

OSD versus RL-DD. The performance of two scenarios are quite similar
in Houses 1 and 2, while RL-OSD performs better in House 3. This
shows that the conditions (occupant behavior, weather conditions, etc.)
of Houses 1 and 2 are more similar to what the agent has observed
during the offline training phase, while House 3 has quite different
conditions from offline training. Therefore, in this house an online
training has further improved the agent performance in RL-OSD.

3.6. Conclusion

There are several stochastic parameters such as occupant behavior,
renewable energy potential, and weather condition, that increase the
complexity of developing an optimal control method for residential en-
ergy systems. Among them, occupant behavior is of significant concern,
as it is highly stochastic, specific to each building, varies in time, and
therefore very challenging to model and predict. This study proposes
a data-driven and model-free control method based on Reinforcement
Learning, that can learn these stochastic parameters by itself, and
maintain an optimal operation. The agent in this framework also takes
into account the hygiene aspect of hot water and learns how to save
energy saving while maintaining the water hygiene. The goal of the
learning agent is to save energy while maintaining the health and
19
comfort of occupants. The energy system evaluated in this study was
a PV-assisted air-source heat pump for space heating and hot water
production, though this framework is easily adjustable to other systems.
A two-step training method is proposed, including an offline phase
integrating stochastic hot water use behavior to provide an initial
experience for the learning agent, and an online phase to learn and
adapt to the behavior of the target house. The framework was evaluated
for three houses in different regions of Switzerland. For these case study
houses, weather and solar radiation data were collected from nearby
weather stations, and hot water use data was experimentally monitored
to evaluate the framework on the real-world behavior of occupants. The
following main conclusions can be drawn from this study:

• The proposed framework (RL-OSD scenario) achieved 7% to 60%
energy-saving compared to an energy saving rule-based method
(RE), and 28% to 75% compared to the common practice rule-
based method (RC), without violating the occupant comfort and
water hygiene.

• The agent properly learned the variations of PV power production
in each building and adapted the heating cycles to the PV power
production to get the best use of free solar energy (As can be seen
in Fig. 13). The proposed framework could therefore provide a
substantial energy saving in House 3, where a higher PV power
production was available.
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• Evaluation of direct deployment scenario (RL-DD) indicated that
the stochastic-based intensive offline training provides a gener-
alizable knowledge for the agent, and therefore it could still
outperform rule-based methods even without any online training
on the target houses. As expected, the agent that was also trained
on the target houses (RL-OSD scenario) indicated slightly better
performance. It shows that, if enough computational power is
available, the stochastic-based offline training can be further ex-
tended by including many possible conditions that can happen in
reality (e.g., a sudden change in occupant behavior and weather
conditions, change of system components, etc.), which makes it
possible to directly implement the trained agent on several houses
without any need for online training. It will significantly facilitate
the transferability of the proposed framework to other buildings.

• Evaluation of long-time deployment scenario (RL-OLD) indicated
that the agent could provide a satisfactory performance over
a long time, and further sequential or continuous training is
not necessary, which would further facilitate the experimental
implementations.

With the increasing complexity of residential energy systems, rather
han hard-programming the expert knowledge as a rule-based or model-
ased control method, it is possible to let the agent to learn the
ptimal control method by itself in each specific building . In this study,
xperimentally measured data was used in simulations to provide a
ealistic while safe environment to perform a primary test of the agent
erformance. Considering the promising results of this step, in next step
f this research project, a Reinforcement Learning control framework
ill be experimentally implemented to observe the agent performance

n practice, and address the technical challenges in the wide-spread
mplementation of Reinforcement Learning-based control methods in
ractice.
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