
LenslessPiCam: A Hardware and Software

Platform for Lensless Computational Imaging with

a Raspberry Pi

Eric Bezzam* Sepand Kashani Martin Vetterli
Matthieu Simeoni

Summary

Lensless imaging seeks to replace/remove the lens in a conventional imaging
system. The earliest cameras were in fact lensless, relying on long exposure times
to form images on the other end of a small aperture in a darkened room/container
(camera obscura). The introduction of a lens allowed for more light throughput
and therefore shorter exposure times, while retaining sharp focus. The incor-
poration of digital sensors readily enabled the use of computational imaging
techniques to post-process and enhance raw images (e.g. via deblurring, inpaint-
ing, denoising, sharpening). Recently, imaging scientists have started leveraging
computational imaging as an integral part of lensless imaging systems, allowing
them to form viewable images from the highly multiplexed raw measurements of
lensless cameras (see [5] and references therein for a comprehensive treatment of
lensless imaging). This represents a real paradigm shift in camera system design
as there is more flexibility to cater the hardware to the application at hand (e.g.
lightweight or flat designs). This increased flexibility comes however at the price
of a more demanding post-processing of the raw digital recordings and a tighter
integration of sensing and computation, often difficult to achieve in practice
due to inefficient interactions between the various communities of scientists
involved. With LenslessPiCam, we provide an easily accessible hardware and
software framework to enable researchers, hobbyists, and students to implement
and explore practical and computational aspects of lensless imaging. We also
provide detailed guides and exercises so that LenslessPiCam can be used as
an educational resource, and point to results from our graduate-level signal
processing course.

GitHub repo: https://github.com/LCAV/LenslessPiCam

*Corresponding author: eric.bezzam@epfl.ch

1

https://github.com/LCAV/LenslessPiCam

(a) (b)

Figure 1: ADMM reconstruction of thumbs-up on a phone 40 cm away.

Statement of need

Being at the interface of hardware, software, and algorithm design, the field
of lensless imaging necessitates a broad array of competences that might deter
newcomers to the field. The purpose of LenslessPiCam is to provide a complete
toolkit with cheap, accessible hardware designs and open-source software, that
also achieves satisfactory results in order to explore novel ideas for hardware,
software, and algorithm design.

The DiffuserCam tutorial [4] served as a great starting point to the present
toolkit as it demonstrates that a working lensless camera can be built with
cheap hardware: a Raspberry Pi, the Camera Module 2,1 and a piece of tape.
The authors also provide Python implementations of two image reconstruction
algorithms:

1. Variants of gradient descent (GD) with a non-negativity constraint,
2. The alternating direction method of multipliers (ADMM) [6] with an

additional total variation (TV) prior.

Moreover, detailed guides explain how to build their camera and give intuition
behind the reconstruction algorithms.

Unfortunately, the resolution of the reconstructed images is poor (see Fig-
ure 1a) and the processing pipeline is limited to grayscale reconstruction. With
LenslessPiCam, we improve the resolution by using the newer HQ camera2 as
well as a more versatile and generic RGB computational imaging pipeline. The
latter is built upon the Python library Pycsou [9], a universal and reusable soft-
ware environment providing key computational imaging functionalities and tools
with great modularity and interoperability. This results in a more flexible and
accurate reconstruction workflow, allowing for the quick prototyping of advanced

1www.raspberrypi.com/products/camera-module-v2
2www.raspberrypi.com/products/raspberry-pi-high-quality-camera/

2

www.raspberrypi.com/products/camera-module-v2
www.raspberrypi.com/products/raspberry-pi-high-quality-camera/

(a) (b) (c)

Figure 2: (a) LenslessPiCam, (b) point source generator (inside) and (c) (outside).

post-processing schemes with more sophisticated image priors. See Figure 1b for
an example image obtained with our lensless imaging framework.

LenslessPiCam is designed to be used by researchers, hobbyists, and students.
In the past, we have found such open-source hardware and software platforms to
be a valuable resource for researchers [3] and students alike [2].

Contributions

With respect to the DiffuserCam tutorial [4], we have made the following contri-
butions. In terms of hardware, as shown in Figure 2, we:

� make use of the HQ camera sensor ($50): 4056×3040 pixels (12.3 MP)
and 7.9 mm sensor diagonal, compared to 3280×2464 pixels (8.1 MP) and
4.6 mm sensor diagonal for the Camera Module 2 ($30),

� provide the design and firmware for a cheap point source generator (needed
for calibration), which consists of an Arduino, a white LED, and a card-
board box.

With respect to reconstruction algorithms, we:

� provide significantly faster implementations of GD and ADMM, i.e. around
3× reduction in computation time,

� extend the above reconstructions to RGB,
� provide an object-oriented structure that is easy to extend for exploring

new algorithms,
� provide an object-oriented interface to Pycsou for solving lensless imaging

inverse problems. Pycsou is a Python package for solving inverse problems
of the form

min
α∈RN

F (y,Gα) + λR(α), (1)

where F is a data-fidelity term between the observed and predicted mea-
surements y and Gα respectively, R is a regularization component (could
consist of more than one prior), and λ > 0 controls the amount of regular-
ization.

3

We also provide functionality to:

� remotely capture Bayer data with the proposed camera,
� convert Bayer data to RGB or grayscale,
� quantitatively evaluate the point spread function (PSF) of the lensless

camera,
� remotely display data on an external monitor, which can be used to

automate raw data measurements to, e.g., gather a dataset,
� collect MNIST remotely or from the Raspberry Pi,
� evaluate reconstructions on a variety of metrics: MSE, PSNR, SSIM,

LPIPS [10].

Finally, we have written a set of Medium articles to guide users through the
process of building, using and/or teaching with the proposed lensless camera.3

The articles include a set of solved exercises and problems for teaching purposes
(solutions available to instructors on request).

In the following sections, we describe some of these contributions, and quantify
them (where appropriate).

High-level functionality

The core algorithmic component of LenslessPiCam is the abstract class
lensless.ReconstructionAlgorithm. The three reconstruction strategies avail-
able in LenslessPiCam derive from this class:

� lensless.GradientDescient: projected GD with a non-negativity con-
straint. Two accelerated approaches are also available:

– lensless.NesterovGradientDescent [8]
– lensless.FISTA [1]

� lensless.ADMM: ADMM with a non-negativity constraint and a TV regu-
larizer,

� lensless.APGD: accelerated proximal GD with Pycsou as a backend. Any
differentiable or proximal operator can be used as long as it is compatible
with Pycsou, namely derives from one of DifferentiableFunctional or
ProximableFunctional.

One advantage of deriving from lensless.ReconstructionAlgorithm is that
functionality for iterating, saving, and visualization is already implemented.
Consequently, using a reconstruction algorithm that derives from it boils down
to three steps:

1. Creating an instance of the reconstruction algorithm.
2. Setting the data.
3. Applying the algorithm.

3An overview of these articles can be found here: https://medium.com/@bezzam/

a-complete-lensless-imaging-tutorial-hardware-software-and-algorithms-8873fa81a660

4

https://medium.com/@bezzam/a-complete-lensless-imaging-tutorial-hardware-software-and-algorithms-8873fa81a660
https://medium.com/@bezzam/a-complete-lensless-imaging-tutorial-hardware-software-and-algorithms-8873fa81a660

GD ADMM
DiffuserCam 215 s 7.24 s

LenslessPiCam 67.9 s 2.76 s

Table 1: Benchmark grayscale reconstruction. 300 iterations for gradient descent
(GD) and 5 iterations for alternating direction method of multipliers (ADMM).

For example, for ADMM (full example in scripts/recon/admm.py):

recon = ADMM(psf)

recon.set_data(data)

res = recon.apply(n_iter=n_iter)

A template for applying a reconstruction algorithm (including loading the data)
can be found in scripts/recon/template.py.

Efficient reconstruction

In Table 1, we compare the processing time of DiffuserCam’s and LenslessPiCam’s
implementations for grayscale reconstruction of:

1. GD using FISTA and a non-negativity constraint,
2. ADMM with a non-negativity constraint and a TV regularizer.

The DiffuserCam implementations can be found here: https://github.com/

Waller-Lab/DiffuserCam-Tutorial, while lensless.APGD and lensless.ADMM

are used for LenslessPiCam. The comparison is done on a Lenovo Thinkpad
P15 with 16 GB RAM and a 2.70 GHz processor (6 cores, 12 threads), running
Ubuntu 21.04.

From Table 1, we observe a 3.1× reduction in computation time for GD and a
2.6× reduction for ADMM. This comes from:

� our object-oriented implementation of the algorithms, which allocates all
the necessary memory beforehand and pre-computes data-independent
terms, such as forward operators from the point spread function (PSF),

� our use of the real-valued FFT, which is possible since we are working with
image intensities.

Figure 3 shows the corresponding grayscale reconstruction for FISTA and ADMM,
which are equivalent for both DiffuserCam and LenslessPiCam implementa-
tions.

Quantifying performance

In order to methodically compare different reconstruction approaches, it is
necessary to quantify the performance. To this end, LenslessPiCam provides

5

https://github.com/Waller-Lab/DiffuserCam-Tutorial
https://github.com/Waller-Lab/DiffuserCam-Tutorial

(a) (b)

Figure 3: Grayscale reconstruction using FISTA (a) and ADMM (b).

functionality to extract regions of interest from the reconstruction and compare
them with the original image via multiple metrics:

� Mean-squared error (MSE),
� Peak signal-to-noise ratio (PSNR),
� Mean structural similarity (SSIM) index,
� Learned perceptual image patch similarity (LPIPS).

Figure 4 and Table 2 is an example of how a reconstruction can be evaluated
against an original image, e.g. using scripts/compute metrics original.py

Figure 4: Extracting region from Figure 1b to quantify performance.

MSE PSNR SSIM LPIPS
0.164 7.85 0.405 0.645

Table 2: Metrics for Figure 4.

6

MSE PSNR SSIM LPIPS
0.0797 12.7 0.535 0.585

Table 3: Average metrics for 100 iterations of ADMM on a subset (200 files) of
the DiffuserCam Lensless Mirflickr Dataset.

Figure 5: Visualizing performance of ADMM (100 iterations) on a single file of
the DiffuserCam Lensless Mirflickr Dataset.

Sometimes it may be of interest to perform an exhaustive evaluation on a large
dataset. While LenslessPiCam could be used for collecting such a dataset with
the proposed camera,4 the authors of [7] have already collected a dataset of
25’000 parallel measurements, namely 25’000 pairs of DiffuserCam and lensed
camera images.5 LenslessPiCam offers functionality to evaluate a reconstruction
algorithm on this dataset, or a subset of it that we have prepared.6 Note that
this dataset is collected with a different lensless camera, but is nonetheless useful
for exploring reconstruction techniques.

Table 3 shows the average metric results after applying 100 iterations of ADMM
to the subset we have prepared.7

4Using the remote display and capture scripts, i.e. scripts/remote display.py and
scripts/remote capture.py respectively.

5https://waller-lab.github.io/LenslessLearning/dataset.html
6Subset of DiffuserCam Lensless Mirflickr Dataset [7] consists of 200 files (725 MB) as

opposed to 25’000 files (100 GB) of the original dataset. The subset can be downloaded here:
https://drive.switch.ch/index.php/s/vmAZzryGI8U8rcE.

7Using scripts/evaluate mirflickr admm.py

7

https://waller-lab.github.io/LenslessLearning/dataset.html
https://drive.switch.ch/index.php/s/vmAZzryGI8U8rcE

MSE PSNR SSIM LPIPS
0.0682 11.7 0.486 0.504

Table 4: Metrics for Figure 5.

One can also visualize the performance on a single file of the dataset, namely
how the reconstruction changes as the number of iterations increase.8 The final
reconstruction and outputed metrics are shown in Figure 5 and Table 4.

As an educational resource

As mentioned earlier, LenslessPiCam can serve as an educational resource.
We have used it in our graduate-level signal processing course for providing
experience in applying fundamental signal processing concepts and solving linear
inverse problems. The work of our students can be found here.

As exercises in implementing key signal processing components, we have left
some incomplete functions in LenslessPiCam:

� lensless.autocorr.autocorr2d: to compute a 2D autocorrelation in the
frequency domain,

� lensless.realfftconv.RealFFTConvolve2D: to pre-compute the PSF’s
Fourier transform, perform a convolution in the frequency domain with
the real-valued FFT, and vectorize operations for RGB.

We have also proposed a few reconstruction approaches to implement in this
Medium article.

For the solutions to the above implementations, please request access to this
folder detailing the intended use.

Conclusion

In summary, LenslessPiCam provides all the necessary hardware designs and
software to build, use, and evaluate a lensless camera with cheap and accessible
components. As we continue to use it as a research and educational platform,
we hope to investigate and incorporate:

� computational refocusing,
� video reconstruction,
� on-device reconstruction,
� programmable masks,
� data-driven, machine learning reconstruction techniques.

8Using scripts/apply admm single mirflickr.py.

8

https://infoscience.epfl.ch/search?ln=en&rm=&ln=en&sf=&so=d&rg=10&c=Infoscience%2FArticle&c=Infoscience%2FBook&c=Infoscience%2FChapter&c=Infoscience%2FConference&c=Infoscience%2FDataset&c=Infoscience%2FLectures&c=Infoscience%2FPatent&c=Infoscience%2FPhysical%20objects&c=Infoscience%2FPoster&c=Infoscience%2FPresentation&c=Infoscience%2FProceedings&c=Infoscience%2FReport&c=Infoscience%2FReview&c=Infoscience%2FStandard&c=Infoscience%2FStudent&c=Infoscience%2FThesis&c=Infoscience%2FWorking%20papers&c=Media&c=Other%20doctypes&c=Work%20done%20outside%20EPFL&c=&of=hb&fct__2=LCAV&p=diffusercam
https://medium.com/@bezzam/lensless-imaging-with-the-raspberry-pi-and-python-diffusercam-473e47662857
https://medium.com/@bezzam/lensless-imaging-with-the-raspberry-pi-and-python-diffusercam-473e47662857
https://drive.google.com/drive/folders/1Y1scM8wVfjVAo5-8Nr2VfE4b6VHeDSia?usp=sharing
https://drive.google.com/drive/folders/1Y1scM8wVfjVAo5-8Nr2VfE4b6VHeDSia?usp=sharing

Acknowledgements

We acknowledge feedback from Julien Fageot and the students during the first
iteration of this project in our graduate course.

This work was in part funded by the Swiss National Science Foundation (SNSF)
under grants CRSII5 193826 “AstroSignals - A New Window on the Universe,
with the New Generation of Large Radio-Astronomy Facilities” (M. Simeoni),
200 021 181 978/1 “SESAM - Sensing and Sampling: Theory and Algorithms” (E.
Bezzam) and CRSII5 180232 “FemtoLippmann - Digital twin for multispectral
imaging” (S. Kashani).

References

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging Sciences,
2(1):183–202, 2009.

[2] Eric Bezzam, Adrien Hoffet, and Paolo Prandoni. Teaching practical dsp
with off-the-shelf hardware and free software. In ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7660–7664, 2019.

[3] Eric Bezzam, Robin Scheibler, Juan Azcarreta, Hanjie Pan, Matthieu
Simeoni, Rene Beuchat, Paul Hurley, Basile Bruneau, Corentin Ferry, and
Sepand Kashani. Hardware and software for reproducible research in audio
array signal processing. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6591–6592, 2017.

[4] C. Biscarrat, S. Parthasarathy, G. Kuo, and N. Antipa. Build your own
diffusercam: Tutorial. https://waller-lab.github.io/DiffuserCam/

tutorial.html, 2018.

[5] Vivek Boominathan, Jacob T. Robinson, Laura Waller, and Ashok Veer-
araghavan. Recent advances in lensless imaging. Optica, 9(1):1–16, Jan
2022.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, jan 2011.

[7] Kristina Monakhova, Joshua Yurtsever, Grace Kuo, Nick Antipa, Kyrollos
Yanny, and Laura Waller. Learned reconstructions for practical mask-based
lensless imaging. Optics Express, 27(20):28075, September 2019.

[8] Yurii E. Nesterov. A method for solving the convex programming problem
with convergence rate o(1/k2). In Dokl. Akad. Nauk SSSR, volume 269,
pages 543–547, 1983.

[9] M. Simeoni. Pycsou. https://github.com/matthieumeo/pycsou, 2021.

9

https://waller-lab.github.io/DiffuserCam/tutorial.html
https://waller-lab.github.io/DiffuserCam/tutorial.html
https://github.com/matthieumeo/pycsou

[10] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver
Wang. The unreasonable effectiveness of deep features as a perceptual
metric. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 586–595, 2018.

10

