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Abstract—In this work, we introduce a setup where a moni-
toring entity attempts to distinguish a cheating player among a
group of regular players where all players behave in order to
maximize their reward. We assume that the cheating player has
an “information advantage” compared to the regular players.
However, greedily exploiting this advantage will lead to the
cheating player being easily distinguishable from its peers. Hence
there is a tension between exploitation of the said advantage and
the probability of being caught. We characterize this trade-off
showing that the cheating player can obtain a higher reward as
the number of regular players grows. We also show that, under
a certain regime, a monitoring strategy based on the empirical
divergence function attains the same normalized reward as the
minimax reward.

Index Terms—Monitoring Problem, Empirical Divergence,
Minimax Reward, Method of Type.

I. MONITORING PROBLEM

Consider a scenario where the state of an environment X
is observed by M + 1 players. Among these players, there
are M regular players and a cheating player. The index of
the cheating player will be denoted by H which is distributed
uniformly in {0, . . . ,M}.

Let us denote the players’ observations as Z[0], . . . , Z[M ].
For the i-th player, conditioned on X and H , the observation
Z[i] is independent of {Z[j]}j 6=i. These observations are
noisy. For the regular players, i.e., i 6= H , these observa-
tions are obtained through identical channels characterized by
VZ(r)|X . We assume that the cheating player benefits from
a certain “information advantage”, hence its observation is
obtained through a different channel VZ(c)|X . We denote the
distribution of X as VX . We use superscripts (c) and (r) to
differentiate the random variables of the cheating player and
the regular player.

Each player uses its observation Z[i] as a basis to take
an action Y [i]. In this model, the action of the i-th player
can only depend on Z[i]. This allows us to characterize the
players’ policies as (possibly probabilistic) mappings fi for
each player, so that Y [i] = fi(Z[i]).

A player obtains a reward from its action depending on the
state of the environment. The reward that the players obtain is
determined by a bounded reward function R(X,Y ). All play-
ers, regular and cheating, have the same reward function. We
assume that supf(r) E[R(X,Y (r))] ≤ supf(c) E[R(X,Y (c))],
i.e., the cheating player can obtain a greater expected reward
if it is allowed to act without any constraint.

The cheating player is constrained by a monitoring entity
who gets to observe X and noisy observations of the players’
actions. Let us denote the monitor’s observation of the i-th
player action as Ỹ [i]. We also assume that conditioned on Y [i],
the observation Ỹ [i] is independent of {Z[j]}Mj=0, {Y [j]}Mj 6=i
and {Ỹ [j]}Mj 6=i. Conditioned on the i-th player action Y [i],
the monitor’s observation is distributed according to VỸ [i]|Y [i].
Based on (X, {Ỹ [i]}Mi=0), the monitor gives a guess of the
cheating player’s index. Let us denote this guess as Ĥ .

We assume that the regular players disregard the possibility
of being falsely accused. Hence the reward of a regular player
is independent of Ĥ and is given by E[R(X,Y (r))]. For the
cheating player, it can only reap its reward if it is not detected.
So its reward is given by E[1{Ĥ 6= H}R(X,Y [H])]. The
cheating player wants to maximize its reward; this typically
requires a small probability of being caught. On the other
hand, the monitoring entity aims to minimize the reward of
the cheating player.

The probabilistic model can be illustrated as follows:

X

Z[0] Y [0] Ỹ [0]

Z[M ] Y [M ] Ỹ [M ]

Ĥ

Let us assume that all variables have finite alphabets.
Assuming that the monitor and the cheater are rational

and that they both know about the reward structure, then the
expected reward will be a minimax value.

Definition 1. We define the minimax reward of the cheating
player, R(c), as,

min
Ĥ∈Ĥ

max
f(c)

E
[
1{Ĥ 6= H}R

(
X,Y [H]

)]
. (1)

where Ĥ is a set of random variables which only depends on
{Y [i]}Mi=0.

At first glance, one would think that the formulation of
reward is specific to the case where the decision rule is taken



before the cheating player decides on its policy. But this is not
the case. This is a consequence of Von Neumann’s minimax
theorem (section 17.6 in [1]).

Proposition 1. We have

min
Ĥ∈Ĥ

max
f(c)

E
[
1{Ĥ 6= H}R

(
X,Y [H]

)]
= max

f(c)
min
Ĥ∈Ĥ

E[1{Ĥ 6= H}R(X,Y [H])] (2)

Proof. See appendix A. The fact that we allow the policy f (c)

to be probabilistic is essential to the proof of proposition 1.

This setup models cases where a monitoring entity wants to
ensure a level playing field for number of players which are
motivated to maximize their rewards. Several settings where
this might arise:
• In financial markets, where a regulator wants to prevent

players from benefiting from non-public information.
• In cyber security, where an intruder wants to blend in

with regular users.
The main contributions of this work are as follows:
• We introduce a new framework for a monitoring problem

based on a zero-sum game formulation.
• When the game is played in a parallel fashion (see section

IV), we characterize the trade-off between the cheating
player linear growth of reward and the exponential growth
of the number of regular players. This trade-off is ex-
pressed in a single-letter form in Theorem 1.

• The technical challenges en route to Theorem 1 are
mainly resolved in Propositions 6, 7, and 9. Proposition
6 reduces the space of strategies in the case of parallel
play, Proposition 7 shows a threshold phenomenon on the
detection probability, Proposition 9 identifies an asymp-
totically optimal detection rule.

II. RELATED WORKS

The minimax characterization of hypothesis testing problem
has been studied since the time of Hoeffding [2]. There
has been several information theoretic studies of hypothesis
testing problem with an adversary [3]–[5]. The main difference
between the setting of our work and the literature on universal
hypothesis testing lies on our assumption that there is an
reward function which the cheating player wants to maximize.

There is also a recent interest on a related problem in the
context of adversarial classification, e.g., [6], [7], which shares
a similar concern of an adversary behaving strategically to
maximize a reward function. Our work is different in that
we are mainly interested in the asymptotic behaviour of the
sequences of decision strategies instead of characterizing the
equilibrium for a one-shot instance.

III. ONE SHOT CASE

Before we consider the asymptotic setting, it is useful to
examine the one-shot version of the problem and establish
several properties of the set of decision rules and the set of

cheating policies. It is easy to see that we can characterize the
behaviour of a regular player as follows.

Proposition 2. For the optimal f (r), we have, f (r)(z) ∈
arg maxy E

[
R(X, y) |Z(r) = z

]
. where the expectation is

taken with respect to the regular player probability model.

Furthermore, even if the set Ĥ is uncountable due to
randomization, one can characterize a subset which attains the
minimum in (1). We will refer to this subset as the metric-
based decision rules.

Definition 2. We say that Ĥ is a metric-based decision rule if
Ĥ is deterministic and there exists a g : (X ×Ỹ)→ R≥0 such
that Ĥ

(
(x, (ỹ[i])Mi=0)

)
∈ arg maxi g(x, ỹ[i]). In this case, we

say that Ĥ is induced by g. Let Ĥm be the set of all metric-
based decision rules.

Proposition 3. Given a deterministic policy f (c) , there exists
a Ĥ ∈ Ĥm which attains the minimum of optimization
problem, minĤ∈Ĥ E

[
1{Ĥ 6= H}R

(
X,Y [H]

)]
.

Proof. See appendix B.

Due to proposition 3, we can define an equivalence class on
the set of all possible mappings g from X , Ỹ to R≥0, where we
say that g1 and g2 are equivalent if they induce the same Ĥ .
We can also see that although the space of g is uncountable,
but the set of Hm is of finite size.

Proposition 4. Given a decision rule Ĥ , consider a determin-
istic policy, f (c) such that

f (c)(z) ∈ arg max
y

E[1{Ĥ 6= H}R(X, y)|Z(c) = z] (3)

where the expectation is taken under the cheater’s probabilis-
tic model. This policy attains the maximum of optimization
problem,

max
f(c)

E[1{Ĥ 6= H}R(X,Y [H])]. (4)

I.e., one can restrict the feasible set of cheating player’s
policies to a set of deterministic cheating policies.

As a consequence of the previous propositions, the class
of randomized metric-based decision rules and the class of
deterministic cheating policy is sufficient to characterize the
minimax value. We states this formally below by using P (Ĥm)
and Fd to denote the class of randomized metric-based deci-
sion rule and the set of deterministic mapping from Z to Y .

Proposition 5. We have

max
f(c)

min
Ĥ∈Ĥ

E[1{Ĥ 6= H}R(X,Y [H])]

= min
Ĥ∈P (Ĥm)

max
f(c)∈Fd

E[1{Ĥ 6= H}R(X,Y [H])]. (5)

Proof. See appendix C.

Remark: However, note that we cannot exchange the mini-
mum and the maximum after we constrain the admissible sets.



This is due to the fact that the set of all possible deterministic
policies is not a convex set. One must be careful to note that
constraining the inner maximization only on the deterministic
policy is merely a calculation device (à la theorem 17:A in [1]).
In general, the optimal cheater strategy will not correspond to
a deterministic policy, but it is the case that the reward of the
optimal (randomized) policy is equal to the reward of a certain
deterministic policy.

By only considering metric-based decision rules, we trans-
form the problem of optimizing a decision rule Ĥ over all
possible realizations of (X, {Ỹi}Mi=0) into an easier problem
of whether the cheating player metric is larger than the
maximum of regular players metric. We present a restatement
of proposition 4 which will be useful in the next section.

Corollary 1. Given a decision rule in P (Hm), which is
composed of (Ĥ1, . . . , Ĥk) with a probability distribution
(p1, . . . , pk), the deterministic policy for f (c) is given by,

f (c)(z) ∈ arg max
y∈Y

∑
x

VX|Z(c)(x|z)R(x, y)

k∑
i=1

pi Pr(g̃i(x) ≤ gi(x, Ỹ (c)) |Y (c) = y) (6)

where gi is a metric which induces Ĥi, and g̃i(x) is the
maximum value of the metric gi among the regular players
given the realization of X .

IV. MEMORYLESS CHANNELS AND PRODUCT
DISTRIBUTIONS

Consider a version of the monitoring problem where
(X,Z, Y, Ỹ ) are replaced by n-vectors X,Z, Y , Ỹ . We study
a special case where,
• (X,Z) is distributed according to V ⊗nZ|X and V ⊗nX .
• Probabilistic mapping between Y and Ỹ is given by

multiple uses of memoryless channel VỸ |Y , i.e., it is
described by V ⊗n

Ỹ |Y .
• Both the regular players and the cheating player get to

observe the whole realization of their respective Z before
forming their action.

Furthermore, we will take the number of regular players M to
scale as M = benKc. We also assume that the reward function
is additive, i.e., R(X,Y ) =

∑n
i=1R(Xi, Yi).

We are interested in studying the normalized reward of the
cheating player,

lim sup
n→∞

1

n
max
f(c)

min
Ĥ∈Ĥ

E
[
1{Ĥ 6= H}R

(
X,Y [H]

)]
. (7)

We need to emphasize that this setting only captures the
linear growth rate of an increasingly larger single-stage game
where the monitor is given more observation, as opposed to a
repeated game in the game theory setting.

We will refer to the setting which fulfills these requirements
as the product-regime. Under this regime, the regular players’
random variables fulfill a permutation symmetry. Hence, it is

not very surprising that we can simplify the problem by only
considering a class of “permutation-invariant” Ĥ and f (c).

To simplify the notation, it is useful to introduce the notion
of type, see [8]. For a given n and a sequence x of length n,
the type Px(x) is defined as the empirical distribution of the
sequence x. We denote the set of possible types of sequences
of length n as Pn(X). Furthermore, for a given PX ∈ Pn(X).
We define the set of sequences with type P as TnP . Given a
joint type PX,Y we define TnPY |X (x) as the set of y such that
(x, y) ∈ TnPX,Y . We will omit the length if it is clear from the
context.

Definition 3. We say that Ĥ is a permutation-invariant metric
decision rule if there exists a metric g(X, Ỹ ) which induces
Ĥ and this metric depends on X, Ỹ only through its joint
type i.e., g(X, Ỹ ) = g(PX,Ỹ ) where PX,Ỹ is the empirical
probability of realization (X, Ỹ ). Let us denote the set of
permutation-invariant metric decision rules as ĤT .

Definition 4. For a given n, we say that f (c), is a permutation-
invariant policy if for every z and type PY,Z ∈ P(Y ×Z) we
have PrY |Z(.|z) is uniform on TPY |Z (z). Let us denote the set
of permutation-invariant policies as FT .

The analogue of proposition 5 for the product-regime is
given by the following proposition.

Proposition 6. Under the product-regime, we have

max
f(c)

min
Ĥ∈Ĥ

E
[
1{Ĥ 6= H}R

(
X,Y [H]

)]
= max
f(c)∈FT

min
Ĥ∈ĤT

E[1{Ĥ 6= H}R(X,Y [H])] (8)

Proof. See appendix D.

Given an x each permutation-invariant metric decision rule
essentially ranks each possible type PX,Ỹ ∈ P(X× Ỹ ) which
is compatible with Px. Therefore, the probability that the
monitor makes an error is equivalent to the probability that
one of the realizations of {Ỹ [i]}i 6=H is such that the joint type
of (X, Ỹ [i]) is ranked higher than the joint type of (X, Ỹ [H]).

For asymptotic analysis, there is a technical subtlety that the
decision metrics that the monitor chooses can depend on n. It
is reasonable to worry whether the ordering of types induced
by the metrics will be preserved across the values of n. Hence,
we need to introduce a formulation that take this concern into
account.

Consider a sequence of metrics g1, g2, . . . such that the
monitoring entity uses gn to form its decision rule for length
n.

Let us define the sets,

P∞(X) =

∞⋃
i=1

Pi(X) P∞(X×Ỹ ) =

∞⋃
i=1

Pi(X×Ỹ ). (9)

Given any joint type PX,Ỹ ∈ P∞(X × Ỹ ), we can define a
set

Un(PX,Ỹ ) = {P ′
X,Ỹ
∈ Pn(X × Ỹ ) |

PX = P ′X , gn(P ′
X,Ỹ

) > gn(PX,Ỹ )} (10)



if PX,Ỹ ∈ Pn(X × Ỹ ) , otherwise Un(PX , PX,Ỹ ) = ∅. Let
us define

U(PX,Ỹ ) = lim sup
n→∞

Un(PX,Ỹ ). (11)

An intuitive explanation of U(PX,Ỹ ) is that it corresponds
to “level sets” on the probability simplex in which infinitely
many gn’s agrees that the distribution on this set is ranked
higher than PX,Ỹ .

We also define

G(PX,Ỹ ) = inf
P ′
X,Ỹ
∈U(PX,Ỹ )

D(P ′
X,Ỹ
||VX,Ỹ (r)) (12)

i.e., G(PX,Ỹ ) is the distance between the regular player joint
distribution VX,Ỹ (r) and the set U(PX,Ỹ ) in KL divergence.

Proposition 7. For a sequence of metrics g1, g2, . . . and any
distribution PX,Ỹ ∈ P∞(X × Ỹ ),we have
• if K > G(PX,Ỹ ) then

lim sup
n→∞

Pr
(
Ĥ 6= H

∣∣ (X, Ỹ [H]) ∈ TP
X,Ỹ (c)

)
= 1,

• if K < G(PX,Ỹ ) then

lim sup
n→∞

− 1

n
log Pr

(
Ĥ 6= H

∣∣ (X, Ỹ [H]) ∈ TP
X,Ỹ (c)

)
> 0.

Proof. See appendix E.

Proposition 7 is the main technical result of this work. This
proposition asserts that there is a qualitative change depending
on whether G(PX,Ỹ ) is smaller or larger than K. Hence,
given K we can determine the set of joint types of cheater’s
realization for which the monitoring entity will make an error
with high probability. Let us define for PX ∈ P∞(X)

G−1
(gn)∞i=1

(PX ,K) = lim sup
i→∞

G−1
n (13)

where

G−1
n = {PX,Ỹ ∈ Pn(X, Ỹ ) : PX = P ′X

gn(P ′
X,Ỹ

) ≤ max
P ′
X,Ỹ

:

D(P ′
X,Ỹ
||V

X,Ỹ (r) )<K

gn(P ′
X,Ỹ

)}, (14)

and

G−1
(gn)∞n=1

(K) =
⋂
ε>0

⋃
PX∈T∞X
|VX−PX |≤ε

G−1
(gn)∞n=1

(PX ,K). (15)

Using proposition 7, we can give upper and lower bound
on the expected linear growth of cheating player’s reward.

Proposition 8. Given a sequence of type-invariant metrics
(gn)∞n=1, we have,

lim sup
n→∞

1

n
max

f(c)∈FT
E
[
1{Ĥ 6= H}R

(
X,Y [H]

)]
≥ sup

P
Y (c)|Z(c) :

V
X,Ỹ (c)∈IntCl(G−1

(gn)∞n=1
(K))

E[R(X,Y (c))], (16)

where IntCl(G−1
(gn)∞n=1

(K)) is the interior of the closure of
G−1

(gn)∞n=1
(K) under the total variation metric. We also have,

lim sup
n→∞

1

n
max

f(c)∈FT
E
[
1{Ĥ 6= H}R

(
X,Y [H]

)]
≤ max

P
Y (c)|Z(c) :

V
X,Ỹ (c)∈Cl(G−1

(gn)∞n=1
(K))

E[R(X,Y (c))], (17)

where Cl(G−1
(gn)∞n=1

(K)) is the closure of G−1
(gn)∞n=1

(K) and
VX,Ỹ (c) is the induced distributed on the monitoring problem
given PY (c)|Z(c) .

Proof. See appendix F.

Remark: We have to split the proposition into two
cases to take into account the effect of isolated points in
Cl
(
G−1

(gn)∞n=1
(K)

)
. Our achievability method requires the ex-

istence of a non-empty neighborhood around the sequence
which approximates the optimal point. Note that this kind
of separation also exists in several large deviation principle
theorems given in [9], hence it might be non-trivial to remove
the influence of isolated points. However, as we discuss later
on, the sequence that induces the optimal strategy will not have
isolated points, hence obviating the need for this consideration.

The interpretation of U as level sets is useful when we
try to compare the asymptotic behaviour of two sequences
of decision rules. In fact this notion allows us to argue that
the empirical divergence decision rule is as good as any other
sequence of decision rules.

To formalize this claim, let us denote the normalized reward
of the cheating player under the sequence of decision rules
(gn)∞n=1 as R((gn)∞n=1). Let us also define the sequence of em-
pirical divergence metrics as, gedn (X, Ỹ ) = D(PX,Ỹ ||VX,Ỹ (r))

where PX,Ỹ is the type of the realization (X, Ỹ ).
The following proposition guarantees the asymptotic opti-

mality of the empirical divergence decision rule.

Proposition 9. For any sequence of metric (gn)∞i=1,

R((gedn )∞n=1) ≤ R((gn)∞n=1). (18)

Proof. See appendix G.

Corollary 2. We have

R((gedn )∞n=1) = max
V
Y (c)|Z(c) :

D(V
X,Ỹ (c) ||VX,Ỹ (r) )≤K

E[R(X,Y (c))]. (19)

Proof. Due to the continuity of divergence function
and D(.||VX,Ỹ (r)) is a convex function, the closure of
G−1

(gedn )∞n=1
(K) does not have isolated points. Hence the lower

bound and the upper bound in proposition 8 coincide. Finally,
one obtains the RHS by substituting the empirical divergence
metric to the definition of G−1

(gedn )∞n=1
(K).

Proposition 9 not only gives us the minimizing metric. It
also shows that this minimizing metric is independent of the



policy of the cheating player. For the purpose of summarizing
the results, we state the following theorem.

Theorem 1. For the product-regime, we have,

lim sup
n→∞

1

n
max
f(c)

min
Ĥ∈Ĥ

E[1{Ĥ 6= H}R(X,Y [H])]

= max
V
Y (c)|Z(c) :

D(V
X,Ỹ (c) ||VX,Ỹ (r) )≤K

E[R(X,Y (c))]. (20)

This result does not necessarily imply that the empirical
divergence metric induces the monitor decision strategy at
Nash equilibrium for every finite value of n. But one can
deduce that the difference between the normalized reward of
the Nash equilibrium strategy and the empirical divergence
strategy is sub-linear in n.

V. A COIN GUESSING GAME

As an illustration, let us consider a specific instance of the
problem. In this instance, X is a sequence of i.i.d. binary
Bernoulli(1/2) random variables. These are observed by
the cheating player and the regular players through different
memoryless channels. The regular player channel VZ(r)|X is
BSC(pr). The cheating player has a stochastically upgraded
channel BSC(pc) with pc < pr ≤ 1/2. The monitoring
channel is BSC(pm), pm ≤ 1/2. The goal of the players
is to guess the values of Xi’s, so we have R(X,Y ) =∑n
i=1 1{Xi = Yi}.
The optimization problem in Theorem 1 is a convex opti-

mization problem, as the objective function is a linear function
of PY (c)|Z(c) . The constraint is also convex as VỸ (c)|X is linear
w.r.t. to PY (c)|Z(c) , while D(.||VỸ (r)|X |VX) is also convex.

For the regular player, the optimal strategy is to assign
Y (r) = Z(r). This strategy leads to the expected reward of
E[R(X,Y (r))] = 1 − pr. We can see that this problem is
symmetric with respect to X , so the optimal PY (c)|Z(c) is also
BSC with certain flip probability. For this problem, we can
express the optimal reward of cheating player in Theorem 1
as

max
p∈[0,1]:

d2

(
pc∗p∗pm||pr∗pm

)
≤K

1− (p ∗ pc) (21)

where p ∗ p′ := p(1− p′) + p′(1− p) and d2(.||.) is the binary
KL divergence.

A numerical example of the trade-off for a specific value
of pc and pr is given in figure 1. We can observe several
properties,

• Even if pm = 0 (i.e., the monitor has perfect knowledge
of all players’ actions), the cheating player can still
improve its normalized reward by exploiting its informa-
tion advantage if the number of regular players is large
enough.

• There is a cut-off K∗, after which the cheating player
does not get any further advantage from larger K. This
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Fig. 1. Trade-off between the normalized reward and the growth rate K of
the number of players. The plots are for pc = 0.1 and pr = 0.2.

K∗ corresponds to the conditional KL divergence be-
tween the optimal distribution of cheating player and the
regular player.

VI. CONCLUSION

In this work, we introduce a model of monitoring problem
for several players, where a cheating player has an information
advantage compared to the regular players. We quantify the
trade-off between the linear growth rate of cheating player’s
reward and the exponential growth of the number of regular
players.

We show that there exists a detection strategy that the mon-
itor can utilize to minimize the cheating player’s normalized
reward, regardless of the sequence of randomized strategies
of the cheating player. It is surprising that this strategy only
depends on the knowledge of the probabilistic model of the
regular players.

There are several future directions that we have in mind.
Currently the model assumes that the cheating player has
access to very large amount of randomness and it is allowed to
observe the realization of its whole private information before
performing an action. An interesting extension is to study
what the cheating player can achieve under a more restrictive
model where it has limited amount of randomness and has
to use an online policy. Intuitively, this problem requires the
cheating player to simulate its chosen distribution under a
more restrictive model, hence a connection with resolvability
problems.

Another interesting extension is to study the optimal strategy
under the sub-exponential growth of the number of regular
players. This brings a connection with recent literature on
finite length information theory.
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APPENDIX

A. Proof of Proposition 1

This is a consequence of the Von Neumann’s minimax
theorem (see section 17.6 in [1]). Due to our assumption
that the alphabet of the random variables are finite, then the
set of deterministic policies of the cheater and the set of
deterministic decision rules of the monitor are finite. By the
linearity of expectation, one can express the reward function
as a bilinear form. Hence this problem fulfils the hypothesis
of Von Neumann’s minimax theorem.

B. Proof of Proposition 3

If for a certain i, (x, ỹ[i]) has 0 under the regular player
probabilistic model, then the monitor can choose that player
and incur no error probability. Hence, such (x, ỹ[i]) pairs do
not contribute to the reward calculation.

Hence, let us only consider the case where the probability
of all pairs (x, ỹ[i]) are non-zero under the regular player
probabilistic model. Note that we can write

E[1{Ĥ 6= H}R(X,Y [H])]

= E[R(X,Y [H])]− E[1{Ĥ = H}R(X,Y [H])]. (22)

The goal of the monitor decision rule is equivalent to maxi-
mizing the second term in the RHS.

E[1{Ĥ = H}R(X,Y [H])] (23)

=
∑

x,(ỹ[k])Mk=0

VX(x)

M + 1

M∏
j=0

VỸ (r)|X(ỹ[j]|x)

E

[
VỸ (c)|X(ỹ[Ĥ]|x)

VỸ (r)|X(ỹ[Ĥ]|x)
E[R(x, Y (c))|X = x, Ỹ (c) = ỹ[Ĥ]]

]
.

(24)

This quantity is maximized if Ĥ is chosen to maximize the
following metric,

g(x, ỹ) =
VỸ (c)|X(ỹ|x)

VỸ (r)|X(ỹ|x)
E[R(x, Y (c))|X = x, Ỹ (c) = ỹ]

(25)
for (x, ỹ) with non-zero probability in VỸ (r)|X , and ∞ other-
wise.

C. Proof of Proposition 5

Consider,

max
f(c)

min
Ĥ

E[1{Ĥ 6= H}R(X,Y [H])]

= max
f(c)

min
Ĥ∈Ĥm

E[1{Ĥ 6= H}R(X,Y [H])]

= max
f(c)

min
Ĥ∈P (Ĥm)

E[1{Ĥ 6= H}R(X,Y [H])]

= min
Ĥ∈P (Ĥm)

max
f(c)

E[1{Ĥ 6= H}R(X,Y [H])]

= min
Ĥ∈P (Ĥm)

max
f(c)∈Fd

E[1{Ĥ 6= H}R(X,Y [H])] (26)

where the extension to randomized strategies on the second
line is necessary so we can use the minimax theorem.

D. Proof of Proposition 6

First we show that,

max
f(c)

min
Ĥ

E[1{Ĥ 6= H}R(X,Y [H])]

= max
f(c)∈FT

min
Ĥ

E[1{Ĥ 6= H}R(X,Y [H])]. (27)

Given a f (c), let us consider the permutation-invariant ver-
sion which takes a permutation π from the set of permutation
Π uniformly at random, such that f̃ (c)(z) = π−1(f (c)(π(z))).
Let us denote the distribution induced by this permutation-
invariant version as P̃ .

We have

min
Ĥ

EP̃ [1{Ĥ 6= H}R(X,Y [H])]

= min
Ĥ

∑
π

1

|Π|
EP̃ [1{Ĥ 6= H}R(X,Y [H])|π]

≥
∑
π

1

|Π|
min
Ĥ

EP̃ [1{Ĥ 6= H}R(X,Y [H])|π]

(28)

(1)
=
∑
π

1

|Π|
min
Ĥ

E[1{Ĥ 6= H}R(π−1(X), π−1(Y [H]))]

(2)
= min

Ĥ
E[1{Ĥ 6= H}R(X,Y [H])]. (29)

We require the facts that the channel is memoryless in (1),
and that the reward is additive in (2). This inequality implies
that there exists f̃ (c) ∈ Ft which is as good as any f (c) /∈ Ft.



Finally, we show that,

max
f(c)∈FT

min
Ĥ

E[1{Ĥ 6= H}R(X,Y [H])]

= max
f(c)∈FT

min
Ĥ∈ĤT

E[1{Ĥ 6= H}R(X,Y [H])]. (30)

We can show this by showing that the optimal metric that we
established in eq. (25) is a permutation invariant decision rule
under the assumption that f (c) is permutation-invariant. More
formally, consider two tuples (x, ỹ) and (x′, ỹ′) both of the
same joint type. This implies that there exists a permutation π
such that (x′, ỹ′) = (π(x), π(ỹ)). Notice that for any π ∈ Π,
then Π = ∪π′∈Π{π ◦ π′}. We have,

V
Ỹ

(c)|X(ỹ′, x′)

=
∑
y′

V
Y ,Ỹ

(c)|X(y, ỹ′, x′)

=
∑
y′

V
Ỹ

(c)|Y (c)(ỹ
′, y′)VY (c)|X(y′, x′)

(1)
=
∑
y′

V
Ỹ

(c)|Y (c)(ỹ
′, y′)

∑
π′

VY (c)|X(π′(y′), π′(x′))

|Π|

(2)
=
∑
y′

V
Ỹ

(c)|Y (c)(π(ỹ), π(y))
∑
π′

VY (c)|X(π′ ◦ π(y), π′ ◦ π(x))

|Π|

=
∑
y′

V
Ỹ

(c)|Y (c)(ỹ, y)
∑
π′

VY (c)|X(π′(y), π′(x))

|Π|

= V
Ỹ

(c)|X(ỹ, x)

We used the fact that f (c) is permutation-invariant in (1), and
the fact that we are on the product-regime in (2). We can use
the same argument to show that E[R(x, Y (c))|X = x, Ỹ

(c)
=

ỹ] also has the same property. As every term of the optimal
metric only depends on the joint type, the optimal metric also
only depends only on the joint-type.

E. Proof of Proposition 7
For P ′

Ỹ ,X
such that P ′X 6= PX , the conditioning event is a

null event, hence we can ignore this event as we are working
with discrete variables. So we will only focus on n such that
P ′X = PX . We have,

Pr
(
Ĥ = H

∣∣ (X, Ỹ [H]) ∈ TP
X,Ỹ

)
= (1− Pr(gn(X, Ỹ

(r)) > gn(PX,Ỹ )|(X, Ỹ [H]) ∈ TP
X,Ỹ

)e
nK

(a)

≤ (1− e
−nminP ′

X,Ỹ
∈Un(P

X,Ỹ
) D(P ′

X,Ỹ
||V
X,Ỹ (r) )+o(n)

)e
nK

(b)

≤ exp

(
−e

n(K−minP ′
X,Ỹ

∈Un(P
X,Ỹ

) D(P ′
X,Ỹ
||V
X,Ỹ (r) )+o(n)

)
(c)

≤ exp
(
−en(K−D(P ′

X,Ỹ
||V
X,Ỹ (r) )+o(n)

)
(31)

where the last inequality holds for any P ′
X,Ỹ

∈ Un(PX,Ỹ ).
For inequality (a), we use the method of type estimate of the
probability. For inequality (b), we use (1 − x) ≤ exp(−x).
For inequality (c), we possibly choose a non-minimizer of the
upper bound. Note that if a type P ′

X,Ỹ
is included in U(PX,Ỹ ),

it is included in Un(PX,Ỹ ) for infinitely many n. Hence, for
any K and P ′

X,Ỹ
∈ U(PX,Ỹ ), we have

lim inf
n→∞

Pr
(
Ĥ = H

∣∣ (X, Ỹ [H]) ∈ TP
X,Ỹ (c)

)
≤ lim inf

n→∞
exp

(
−en(K−D(P ′

X,Ỹ
||V

X,Ỹ (r) )+o(n)
)
, (32)

and thus,

lim inf
n→∞

Pr
(
Ĥ = H

∣∣ (X, Ỹ [H]) ∈ TP
X,Ỹ (c)

)
≤ lim inf

n→∞
exp

(
−en(K−G(P

X,Ỹ (c) ))+o(n)
)
, (33)

by the definition of G(PX,Ỹ (c)). Where K > G(PX,Ỹ ), eq.
(33) proves the first part of the proposition.

For the second part, it is sufficient to use the union bound.
We have,

Pr
(
Ĥ 6= H

∣∣ (X, Ỹ [H]) ∈ TPX,Ỹ
)

≤ enK Pr(gn(X, Ỹ
(r)

) > gn(PX,Ỹ )|(X, Ỹ [H]) ∈ TPX,Ỹ )

≤ e
n(K−minP ′

X,Ỹ
∈Un(P

X,Ỹ
)D(P ′

X,Ỹ
||V

X,Ỹ (r) )+o(n)
(34)

≤ e
n(K−minP ′

X,Ỹ
∈∪i≥nUi(PX,Ỹ )D(P ′

X,Ỹ
||V

X,Ỹ (r) )+o(n)
(35)

This upper bound is valid for all n. Since ∪i≥nUi(PX,Ỹ ) is a
decreasing sequence of sets in n with limit U(PX,Ỹ ), for all
ε > 0 there exists n∗ such that for all n > n∗

min
P ′
X,Ỹ
∈∪i≥nUi(PX,Ỹ )

D(P ′
X,Ỹ
||VX,Ỹ ) ≥ G(PX,Ỹ )− ε (36)

due to the definition of G(PX,Ỹ ) and the continuity of the KL
divergence. Hence,

lim sup
n→∞

− 1

n
log Pr

(
Ĥ 6= H

∣∣ (X, Ỹ [H]) ∈ TP
X,Ỹ (c)

)
> 0

(37)
if K < G(PX,Ỹ ).

F. Proof of Proposition 8

To show the first part namely eq. (16), fix ε > 0 and
consider a PY (c)|Z(c) such that VX,Ỹ (c) ∈ IntCl(G−1

(gn)∞n=1
(K))

and EP
X,Y (c)

[R(X,Y (c))] is ε-close to the supremum on the
RHS of eq. (16).

Now fix n. Let us construct our f (c) by sampling from
the distribution PY (c)|Z given the realization of Z. From
standard results in method of types we know that for every
δ > 0, PX(X ∈ T[PX ]δ) ≥ 1 − Ae−nδ

2

and VỸ |X(Ỹ ∈
T[VỸ |X ]2δ(X)|X ∈ T[PX ]δ) ≥ 1 − A′e−nδ

2

(A and A′

only depend on the sizes of the alphabets of X and Ỹ ),
where T[V

X,Ỹ (c) ]δ is the set of all types with total variation
distance at most δ from VX,Ỹ (c) . As the VX,Ỹ (c) is in the
IntCl(G−1

(gn)∞n=1
(K)), then for small enough δ we have,

T[V
X,Ỹ (c) ]2δ ⊆ IntCl(G−1

(gn)∞n=1
(K)) (38)



Let us define the event Qn as {X ∈ T[PX ]δ , Ỹ [H] ∈
T[V

Ỹ (c)|X ]2δ(X)}. We note that limn→∞ Pr(Qn) = 1. So we
have under VX,Ỹ (c) ,

E[R(X,Y [H])|Qn] Pr(Qn)

= E[R(X,Y [H])]− E[R(X,Y [H])|QCn ](1− Pr(Qn))

≥ E[R(X,Y [H])]−O(ne−nδ
2

). (39)

We also have,
1

n
E[1{Ĥ 6= H}R(X,Y [H])]

≥ 1

n
E[1{Ĥ 6= H}R(X,Y [H])|Qn] Pr(Qn)

(40)

Conditioned on Qn, we have,

1

n
R(X,Y [H]) ≥ EV [R(X,Y (c))](1−O(δ)). (41)

Therefore
1

n
E[1{Ĥ 6= H}R(X,Y [H])]

≥ EV [R(X,Y (c))](1−O(δ)) Pr(Ĥ 6= H|Qn) Pr(Qn).
(42)

Note that

Pr(Ĥ 6= H|Qn) ≥ bn (43)

where

bn = min
P ′
Ỹ |X
∈T[V

Ỹ |X ]2δ

Pr(Ĥ 6= H|X ∈ T[PX ]δ , Ỹ ∈ TP ′Ỹ |X (X)).

Combining these terms give us,

lim sup
n→∞

1

n
E[1{Ĥ 6= H}R(X,Y [H])]

≥ (EV [R(X,Y (c))](1−O(δ)) lim sup
n→∞

Pr(Qn)bn

=(EV [R(X,Y (c))](1−O(δ)) lim sup
n→∞

bn

(∗)
= EV [R(X,Y (c))](1−O(δ)) (44)

for equality (∗) we used the fact that T[V
Ỹ (c)|X ]2δ ⊆

IntCl(G−1
(gn)∞n=1

(K)), therefore lim supn→∞ bn = 1 due to the

first part of proposition 7. Since EV [R(X,Y (c))] is ε-close to
the supremum and δ is arbitrary, eq. (16) follows.

Now we will show eq. (17). As in the previous part, for
any δ > 0, let us define, Qn = {(X,Z) ∈ T[V

X,Z(c) ]δ}. So we
have
1

n
E[1{Ĥ 6= H}R(X,Y [H])]

≤ 1

n
E[1{Ĥ 6= H}R(X,Y [H])|Qn] Pr(Qn) +O(exp(−nδ2))

(45)

where we used the fact that Pr
(

(X,Z) /∈ T[V
X,Z(c) ]δ

)
≤

exp(−nδ2). Note that f (c) ∈ FT can be parametrized by set

of tuples {(PZ , PY |Z) : PZ ∈ P(Z)} i.e., the policy chooses
a single conditional type PY |Z for each PZ that it observes.
One can use this parametrization to further upper bound the
non-vanishing part of eq. (45) as

1

n
E[1{Ĥ 6= H}R(X,Y [H])|Qn] Pr(Qn)

≤
∑

PX,Z∈T[V
X,Z(c) ]δ

max
PY |Z

1

n
E[1{Ĥ 6= H}R(X,Y [H])|(X,Z) ∈ TPX,Z ]

Pr((X,Z) ∈ TPX,Z ). (46)

We will use the fact that PX,Z ∈ T[V
X,Z(c) ]δ to note that

(X,Z, Y ) ∈ T[V
X,Z(c)◦PY |Z ]2δ with probability of 1, as

given Z the policy takes Y ∈ TPY |Z (Z). Finally, Ỹ ful-
fils (X,Z, Y , Ỹ ) ∈ T[V

X,Z(c)◦PY |Z◦VỸ |Y ]Aδ (A is a constant
that depends on the size of the alphabet of Y ) with high
probability since the channel VỸ |Y is memoryless. Note that
VX,Z(c) ◦ PY |Z ◦ VỸ |Y is the definition of VX,Ỹ (c) , i.e., the
distribution of X, Ỹ (c) under the cheating player probabilistic
model. Hence we have,

1

n
E[1{Ĥ 6= H}R(X,Y [H])|Qn] Pr(Qn)

≤ max
PY |Z

(1 +O(δ))EV [R(X,Y (c))]cn,δ(VX,Ỹ (c))

+O(−nA2δ2) (47)

where,

cn,δ(VX,Ỹ (c)) =
∑

PX,Ỹ ∈T[V
X,Ỹ (c) ]A′δ

Pr(Ĥ 6= H, (X, Ỹ ) ∈ TPX,Ỹ )

(48)
with A′ is a constant which only depends on the size of the
alphabets.

This allows us to give an upper bound,

lim sup
n→∞

1

n
max

f(c)∈FT
E[1{Ĥ 6= H}R(X,Y [H])]

≤ lim sup
n→∞

max
PY |Z

(1 +O(δ))EV [R(X,Y (c))]cn,δ(VX,Ỹ (c)).

We can decompose the region of the maximization such that,

lim sup
n→∞

1

n
max

f(c)∈FT
E[1{Ĥ 6= H}R(X,Y [H])]

≤ lim sup
n→∞

max{un, vn}

= max{lim sup
n→∞

un, lim sup
n→∞

vn} (49)

with,

un = max
PY |Z :

V
X,Y (c)∈Dδ

(1 +O(δ))EV [R(X,Y (c))]cn,δ(VX,Ỹ (c))

vn = max
PY |Z :

V
X,Y (c) /∈Dδ

(1 +O(δ))EV [R(X,Y (c))]cn,δ(VX,Ỹ (c))

(50)

where

Dδ = {VX,Y (c) : |VX,Y (c) −G−1
(gn)∞n=1

(K)| ≤ 2A′δ}, (51)



i.e., Dδ is the 2A′δ neighborhood of G−1
(gn)∞n=1

(K) in total
variation distance.

By the second part of preposition 7, we have that

lim
n→∞

cn,δ(VX,Ỹ (c)) = 0 (52)

if VX,Ỹ (c) /∈ Int(Dδ). Hence, vn vanishes as n→∞. For the
un, we can upper bound cn,δ(.) by 1. This gives us,

lim sup
n→∞

1

n
max

f(c)∈FT
E[1{Ĥ 6= H}R(X,Y [H])]

≤ max
PY |Z :

V
X,Y (c)∈Dδ

(1 +O(δ))EV [R(X,Y (c))]. (53)

Finally, note that this upper bound holds for arbitrary δ and
we have

Cl(G−1
(gn)∞n=1

(K)) =
⋂
δ>0

Dδ. (54)

Combined with the fact that expectation is continuous under
total variation distance, this upper bound establishes the sec-
ond part of proposition 8.

G. Proof of Preposition 9

From proposition 8, one way to prove the statement is to
show that,

Cl(G−1
(gedn )∞n=1

(K)) ⊆ ClInCl(G−1
(gn)∞n=1

(K)). (55)

The ClInCl(A) is the closure of the interior of closure of set A.
If the inclusion holds, then the upper bound part of proposition
8 applied on R((gedn )∞n=1) is smaller than the lower bound part
of proposition 8 applied on R((gn)∞n=1). This is the approach
that we will take.

First, observe that for every n and PX we have,

{P ′X,Ỹ : P ′X = PX , g
ed
n (P ′X,Ỹ ) ≤ sup

P∗
X,Ỹ

:

D(P∗
X,Ỹ
||V
X,Ỹ (r) )<K

gedn (P ∗X,Ỹ )}

(∗)
= {P ′X,Ỹ : P ′X = PX , D(P ′X,Ỹ ||VX,Ỹ (r)) < K}
⊆ {P ′X,Ỹ : P ′X = PX , gn(P

′
X,Ỹ ) ≤ sup

P∗
X,Ỹ

:

D(P∗
X,Ỹ
||V
X,Ỹ (r) )<K

gn(P
∗
X,Ỹ )}.

(56)

Which imply that for every PX ,

G−1
(gedn )∞n=1

(PX ,K) ⊆ G−1
(gn)∞n=1

(PX ,K) (57)

and taking the appropriate lim gives us,

G−1
(gedn )∞n=1

(K)

= lim
ε→0

⋃
PX :

|VX−PX |<ε

G−1
(gedn )∞n=1

(PX ,K)

⊆ lim
ε→0

⋃
PX :

|VX−PX |<ε

G−1
(gn)∞n=1

(PX ,K) = G−1
(gn)∞n=1

(K) (58)

Furthermore, taking the ClIntCl in both sides gives us,

ClIntCl(G−1
(gedn )∞n=1

(K)) ⊆ ClIntCl(G−1
(gn)∞n=1

(K)). (59)

So we only need to show that,

ClIntCl(G−1
(gedn )∞n=1

(K)) = Cl(G−1
(gedn )∞n=1

(K)) (60)

which is equivalent to showing that Cl(G−1
(gedn )∞n=1

(K)) does
not contain any isolated points. Let

A = {P ′
X,Ỹ

: D(P ′
X,Ỹ
||VX,Ỹ (r)) < K}.

So we have G−1
(gedn )∞n=1

(K) = P∞
⋂
A. As P∞ is dense, then

Cl(G−1
(gedn )∞n=1

(K)) = Cl(A) = {P ′
X,Ỹ

: D(P ′
X,Ỹ
||VX,Ỹ (r)) ≤

K} which is a closed convex set with no isolated points.


