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Abstract
The quantification of uncertainties can be particularly challenging for problems requiring
long-time integration as the structure of the random solution might considerably change
over time. In this respect, dynamical low-rank approximation (DLRA) is very appealing.
It can be seen as a reduced basis method, thus solvable at a relatively low computational
cost, in which the solution is expanded as a linear combination of a few deterministic
functions with random coefficients. The distinctive feature of the DLRA is that both
the deterministic functions and random coefficients are computed on the fly and are free
to evolve in time, thus adjusting at each time to the current structure of the random
solution. This is achieved by suitably projecting the dynamics onto the tangent space of
a manifold consisting of all random functions with a fixed rank. In this thesis, we aim at
further analyzing and applying the DLR methods to time-dependent problems.
Our first work considers the DLRA of random parabolic equations and proposes a class
of fully discrete numerical schemes. Similarly to the continuous DLRA, our schemes
are shown to satisfy a discrete variational formulation. By exploiting this property,
we establish the stability of our schemes: we show that our explicit and semi-implicit
versions are conditionally stable under a “parabolic” type CFL condition which does not
depend on the smallest singular value of the DLR solution; whereas our implicit scheme
is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit
scheme can be unconditionally stable if the randomness in the system is sufficiently small.
The analysis is supported by numerical results showing the sharpness of the obtained
stability conditions.
The discrete variational formulation is further applied in our second work, which derives
a-priori and a-posteriori error estimates for the discrete DLRA of a random parabolic
equation obtained by the three newly-proposed schemes. Under the assumption that the
right-hand side of the dynamical system lies in the tangent space up to a small remainder,
we show that the solution converges with standard convergence rates w.r.t. the time,
spatial, and stochastic discretization parameters, with constants independent of singular
values.
We follow by presenting a residual-based a-posteriori error estimation for a heat equation
with a random forcing term and a random diffusion coefficient which is assumed to depend
affinely on a finite number of independent random variables. The a-posteriori error
estimate consists of four parts: the finite element method error, the time discretization
error, the stochastic collocation error, and the rank truncation error. These estimators
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Abstract

are then used to drive an adaptive choice of FE mesh, collocation points, time steps, and
time-varying rank.
The last part of the thesis examines the idea of applying the DLR method in data
assimilation problems, in particular the filtering problem. We propose two new filtering
algorithms. They both rely on complementing the DLRA with a Gaussian component.
More precisely, the DLR portion captures the non-Gaussian features in an evolving
low-dimensional subspace through interacting particles, whereas each particle carries a
Gaussian distribution on the whole ambient space. We study the effectiveness of these
algorithms on a filtering problem for the Lorenz-96 system.

Keywords: Dynamical low rank, Dynamically orthogonal approximation, Uncertainty
quantification, Data assimilation, Filtering problem, Error estimates, Splitting method
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Résumé
La quantification des incertitudes peut être particulièrement difficile pour les problèmes
nécessitant une intégration à long terme, car la structure de la solution aléatoire peut
considérablement changer avec le temps. Pour répondre à cette problématique, l’approxi-
mation dynamique à faible rang (DLRA) est très attrayante. Elle peut être considérée
comme une méthode de base réduite, donc soluble à un coût de calcul relativement
faible, dans laquelle la solution est étendue comme une combinaison linéaire de fonctions
déterministes avec des coefficients aléatoires. La caractéristique distinctive de la DLRA
est que les fonctions déterministes et les coefficients aléatoires sont calculés à la volée et
peuvent évoluer dans le temps, s’adaptant ainsi à chaque instant à la structure actuelle
de la solution aléatoire. Ceci est réalisé en projetant de manière appropriée la dynamique
sur l’espace tangent d’une variété constitué de toutes les fonctions aléatoires avec un
rang fixe. Dans cette thèse, on cherche à analyser plus en profondeur et à appliquer les
méthodes DLR aux problèmes dépendant du temps.
Notre première tâche considère la DLRA des équations paraboliques aléatoires et propose
une classe de schémas numériques entièrement discrets. Comme pour la DLRA continue,
on montre que nos schémas satisfont une formulation variationnelle discrète. En exploitant
cette propriété, on établit la stabilité de nos schémas : on montre que nos versions
explicite et semi-implicite sont conditionnellement stables sous une condition CFL de
type "parabolique" qui ne dépend pas de la plus petite valeur singulière de la solution
DLR, tandis que notre schéma implicite est inconditionnellement stable. De plus, on
montre que, dans certains cas, le schéma semi-implicite peut être inconditionnellement
stable si le caractère aléatoire du système est suffisamment petit. L’analyse est soutenue
par des résultats numériques montrant la netteté des conditions de stabilité obtenues.
La formulation variationnelle discrète est appliquée dans la deuxième partie du travail,
qui dérive des estimations d’erreur a-priori et a-posteriori pour la DLRA discrète d’une
équation parabolique aléatoire obtenue par les trois schémas nouvellement proposés. En
supposant que le côté droit du système dynamique se trouve dans l’espace tangent à un
petit reste près, on montre que la solution converge avec des taux de convergence standard
en fonction des paramètres de discrétisation temporels, spatiaux et stochastiques, avec
des constantes indépendantes des valeurs singulières.
On présente ensuite une estimation de l’erreur a posteriori basée sur les résidus pour une
équation de chaleur avec un terme de forçage aléatoire et un coefficient de diffusion aléa-
toire qui est supposé dépendre de manière affine d’un nombre fini de variables aléatoires
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indépendantes. L’estimation de l’erreur a posteriori se compose de quatre parties : l’erreur
d’éléments finis, l’erreur de discrétisation temporelle, l’erreur de collocation stochastique
et l’erreur de troncature de rang. Ces estimateurs sont ensuite utilisés pour piloter un
choix adaptatif de maillage FE, de points de collocation, de pas de temps, et de rang
variable dans le temps.
La dernière partie de cette thèse examine l’idée d’appliquer la méthode DLR à des
problèmes d’assimilation de données, en particulier le problème du filtrage. On propose
deux nouveaux algorithmes de filtrage. Ils reposent tous deux sur le fait de compléter
la DLR par une composante gaussienne. Plus précisément, la partie DLR capture les
caractéristiques non gaussiennes dans un sous-espace évolutif de faible dimension par
le biais de particules en interaction, tandis que chaque particule porte une distribution
gaussienne sur l’ensemble de l’espace ambiant. On étudie l’efficacité de ces algorithmes
sur un problème de filtrage pour le système Lorenz-96.

Mots clés : Approximation dynamique à faible rang, Approximation orthogonale dy-
namique, Quantification d’incertitude, Assimilation de données, Problème de filtrage,
Estimations d’erreurs, Méthode de fractionnement
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Introduction
The development in technology and science within the last decades demonstrates a growing
importance of mathematical modeling and numerical simulations. The mathematical
model only gives an approximate description of reality. Physical processes are often
oversimplified, and the input data suffer from measurement errors or reduced availability.
Therefore, a reliable mathematical model needs to account for a modeling error and
uncertainty in the input data. Consider as an example the weather prediction. In order
to obtain a weather forecast, one needs to compute the solution of a large system of time-
dependent partial differential equations (PDEs), which only approximates the reality.
The model’s input data include physical parameters such as atmospheric emissions,
humidity, soil moisture (and many more), and initial and boundary conditions. The exact
quantification of most of these parameters is typically compromised by measurement
errors, reduced amount of data, or intrinsic variability of the parameter itself. The
uncertainty of the model and input parameters is naturally reflected in the uncertainty
of the solution. In the context of uncertainty quantification (UQ), we can distinguish
two main directions: the forward UQ, which quantifies the impact of uncertain inputs
on the model outputs, and the inverse UQ, which aims to reduce the uncertainty of the
model inputs using available experimental measurements of some model outputs. This
thesis focuses on the forward UQ in the first part and data assimilation (which combines
techniques of both forward and inverse UQ) in the second part.

0.1 Dynamical low rank approximation for forward UQ

In the present work, we consider a random evolutionary equation

u̇ = F(u) (1)

with random initial condition and random operator F .

One of the most popular techniques for quantifying the uncertainty of such a problem
is the Monte Carlo (MC) method (see, e.g., [Fis96; Caf98]). The solution statistics are
approximated by drawing a sample of N̂ independent realizations of the random data
and solving corresponding N̂ deterministic evolution equations. This leads to a set of N̂
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solutions {u(j)}N̂j=1 approximating the distribution of u at any time instant. The MC
methods suffer from a slow convergence rate with respect to the number of particles.
There have been many improvements built upon the classic MC method, as the Quasi
Monte Carlo ([WS07; YY18; Gra+11; Nie92]) and the Multilevel Monte Carlo ([BL12;
Cli+11]), among others.

An alternative approach to sampling methods of MC type is provided by spectral methods,
which try to reconstruct the functional dependence of the solution on the random data.
Suppose we can parametrize the randomness in terms of a finite-dimensional random
vector ω with known distribution. Motivated by the observation that the parameter-to-
solution map is smooth for many types of random equations, the method expands the
random solution over a suitable stochastic basis {Yi}Ri=1

ugPC(t, ω) =
R∑
i=1

Ui(t)Yi(ω), (2)

where {Ui}Ri=1 are deterministic coefficients and {Yi}Ri=1 are e.g. multivariate polynomial
functions orthogonal w.r.t. the density function of the random vector ω. This approach
is known as generalized Polynomial Chaos (gPC) expansion, see [XK02; XH05b; Wie38;
SG04; CM47]. The coefficients {Ui}Ri=1 can be obtained via Galerkin projection ([Bec+12;
BTZ04; GS91; MK05]) or by e.g. stochastic collocation on tensor or sparse grids ([XH05b;
MK10; BNT10]). Convergence rates are significantly higher compared to the standard
MC methods, provided that the parameter-to-solution map has high regularity and
the (effective) dimensionality of the stochastic space is not too large. This approach
remains challenging, however, if the two conditions mentioned above are not met and,
despite many improvements introduced via the sparse grid method or other sparsification
techniques, spectral methods still suffer from the so-called curse of dimensionality, i.e.,
an accuracy versus cost performance that is negatively affected by the high dimension of
the underlying stochastic space for many practical problems. An additional difficulty is
posed by long-time integration of the problem (1). As the dependence of the solution on
the random parameters may significantly vary in time, a set of fixed R stochastic basis
functions might be insufficient to provide a good accuracy for long times. Naturally this
can be overcome by increasing R – the number of terms in the expansion (2), however
with a consequent increase in computational cost (see [Ger+10; WK06] for more details
and examples).

A different strategy arises from the field of model order reduction (MOR). The underlying
idea relies on the observation that for many types of problems, the collection of all
realizations of the solution u of problem (1) for all possible input parameters at all times
can be well approximated by a linear subspace UR with a small dimension R. Assuming
that we are able to parametrize the subspace UR by a set of R deterministic functions
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0.1. Dynamical low rank approximation for forward UQ

{Ui}Ri=1, called reduced bases, the solution at each time can be expressed as

uRB(t) =
R∑
i=1

UiYi(t) (3)

where {Yi}Ri=1 are stochastic coefficients. The stochastic coefficients are then obtained by
projecting the equations (1) onto UR, resulting in an R-dimensional system of equations.
This technique is known as the reduced basis method (see e.g. [Boy+10; CQR14; CQR15;
CS15; EL13] for more details). The procedure consists of two stages: an offline stage which
computes the deterministic basis functions {Ui}Ri=1 and an online stage in which the UQ
problem (1) is reduced to a low-dimensional and consequently a low-cost problem, solving
for {Yi(t)}Ri=1. The difficulty of the method lies in a good choice of the deterministic basis
{Ui}Ri=1 characterizing the solution subspace UR. One of the most popular techniques is
the Proper Orthogonal Decomposition (POD) (see, e.g., [BGW07; CF11; MK10; WP02]),
which collects snapshots of solutions precomputed for certain input parameters at certain
time instants in a matrix and applies a singular value decomposition (SVD) to extract
the R most dominant singular vectors. A considerable computational cost is required for
this procedure in case of long time integration problems. Recently, greedy approaches
have been proposed and applied in [Bau+15; Buf+12; CQR13; EKP11; GP05; Haa13;
NRP09], trying to reduce the cost of the offline stage. However, applying any of these
methods becomes challenging when the collection of solutions for different parameters
considerably changes over time. For long time integration, this essentially leads to
increasing R dramatically, with, again, a consequent increase in the offline and online
computational cost.

We conclude that even if the solution of (1) allows a good low-rank approximation at
each time instant, fixing either the deterministic basis (3) or the stochastic basis (2) for
all times negatively influences the approximability properties of the expansion, leading
to excessively large R for long time integration problems. The most straightforward
approach to alleviate this issue is to allow both the deterministic functions {Ui}Ri=1 and
the stochastic functions {Yi(y)}Ri=1 to evolve in time

uDLR(t) =
R∑
i=1

Ui(t)Yi(t), (4)

so that they can best approximate the solution at a given time instant. This is achieved
by fixing the rank R in time and imposing the functions (also called modes) {Ui}Ri=1
and {Yi}Ri=1 to be linearly independent. The collection of all such random fields forms a
manifold, denoted byMR, and the evolution of the modes is derived from projecting the
governing equation (1) onto the tangent space of such manifold at the current solution
uDLR. This approach named dynamically orthogonal (DO) field expansion was first
proposed in the UQ context in [SL09] and applied to problems in ocean dynamics with
random data in [SL12; ULS13]. Similar ideas, using slightly different representation form
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for the solution, have been proposed in [CHZ13a; CHZ13b; CSK14] under the names
dynamically double orthogonal and bi-orthogonal expansions, respectively. In [MNZ15] it
was shown that these formulations are, in fact, equivalent. In [KKS06; MMC90; Zan+03;
Bec+99], a similar approach, known as multi-configuration time-dependent Hartree
(MCTDH) method, was used to approximate time-dependent Schrödinger equations.
The name Dynamical low rank approximation comes from [HLW04; KL07a], where
analogous ideas were applied in the context of matrix evolution equations (we will
use the acronym DLR for dynamical low rank and DLRA for dynamical low rank
approximation). This was further extended to deal with tensors in Tucker format in
[KL10; KL07b; CL10], in Hierarchical Tucker or Tensor train in [LOV15a; Lub+13] and
tree tensor networks in [CLW21]. In [FL18], the authors provide a thorough analysis of
the geometry corresponding to this method in the matrix setting. Applications of the
DLRA include stiff matrix differential equations ([Men+18; OPW19]), multi-scale linear
transport equation ([EHW21]), different types of Vlasov equations [EL18; EOP20; EJ21],
Navier-Stokes equations [EHY21; MN18] and wave equations [MNV17]. A dynamical
low-rank approximation with a different choice of time-dependent deterministic basis was
considered in [FN17].

The analysis and development of the dynamical low rank approximation method is the
central topic of this thesis. In the field of forward UQ, our main focus was the analysis
of efficient discretization schemes for the DLRA of random PDEs. We will follow now
with descriptions of our main contributions

0.1.1 Main contributions

New fully discrete schemes for DLRA

We propose a new class of fully discrete schemes used to approximate time-dependent
partial differential equations with random parameters, stemming from the evolution
equations for the modes {Ui}Ri=1, {Yi}Ri=1. This results in explicit, implicit and semi-
implicit schemes. Although not evident at first sight, we show that the explicit version of
our scheme can be reinterpreted as a projector-splitting scheme (whenever the discrete
solution is full-rank), which is a popular DLR integrator (see e.g. [LO14; LOV15b])
with highly advantageous properties in the presence of small singular values in the
solution ([KLW16]). In the rank-deficient case, our schemes may result in different
solutions. In Chapter 2, we show that the discrete DLR solution obtained by the newly-
proposed schemes satisfies a discrete variational formulation, analogous to the variational
formulation of the continuous DLR problem (see [MNZ15, Prop. 3.4]). Such formulation
is then key for analyzing the stability properties and deriving a-priori and a-posteriori
error estimates, which is the goal of Chapters 3, 4 and 5.
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0.1. Dynamical low rank approximation for forward UQ

Stability analysis

Chapter 3 is dedicated to analysing the stability properties of the proposed numerical
schemes applied to a parabolic PDE with random coefficients. We first show that in this
parabolic setting, the continuous DLR solution satisfies analogous stability properties as
the true solution of the considered problem, in the parabolic case. We then analyze the
stability of the fully discrete schemes from Chapter 2. Quite surprisingly, the stability
properties of both the discrete and the continuous DLR solutions do not depend on the
size of their singular values, even without any ε-approximability condition on F . The
implicit scheme is proven to be unconditionally stable. This improves the stability result
which could be drawn from the error estimates derived in [KLW16]. The explicit scheme
remains stable under a standard parabolic stability condition between time and space
discretization parameters for an explicit propagation of parabolic equations. The semi-
implicit scheme is generally only conditionally stable under again a parabolic stability
condition, and becomes unconditionally stable under some restrictions on the size of the
randomness of the operator. As an application of the general theory developed in this
work, we consider the case of a heat equation with a random diffusion coefficient. We
dedicate a section to particularize the numerical schemes and the corresponding stability
results to this problem. The semi-implicit scheme turns out to be always unconditionally
stable if the diffusion coefficient depends affinely on the random variables. To the best
of our knowledge, this is the first work providing a stability analysis for a fully discrete
DLR solution obtained by a projector-splitting scheme and the results are published in
[KNV21].

A-priori error estimation

Chapter 4 deals with an a-priori error estimation for the fully discrete DLR solution of a
random parabolic equation obtained by the newly-proposed schemes of Chapter 2. The
considered discrete DLR solution is obtained by i) applying the finite element method
with continuous piece-wise polynomials of degree ≤ r and elements of size h to treat the
spatial discretization; ii) the Monte Carlo method with N̂ samples to treat the stochastic
discretization; iii) the time-marching scheme proposed in Chapter 2 with time step 4t.
Applying the discrete variational formulation derived in Chapter 2, we are able to adapt
the standard techniques derived for deterministic parabolic problems to our setting and
prove an O(ε+4t+hr + 1/

√
N̂) error bound, under the assumptions that the projection

error of F(u) to the tangent space ofMR at u is of size ε, that the initial condition is of
rank R, that the true solution is sufficiently smooth and an additional ‘stability condition’
on the deterministic basis. An important property of our error analysis is that all involved
constants are independent of the smallest singular values of the solution. In the context
of matrix evolution equations, the work [KLW16] proves a similar error bound O(ε+4t)
with constants independent of the singular values. As pointed out by their authors, a
limitation of their theoretical result is that it is applicable to stiff differential equations
such as discretized PDEs only under a severe CFL condition 4tL� 1, where L is the
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Lipschitz constant for F . Such a restriction is not present in our analysis. Furthermore,
in our setting, the operator F does not need to be uniformly bounded. On the other
hand, as opposed to the work in [KLW16], our results only apply to parabolic problems.

A-posteriori error estimation

Chapter 5 is concerned with an a-posteriori error estimation for a discrete DLR solution
of a random parabolic equation obtained by the newly-proposed schemes. The spatial
discretization is obtained by applying the finite element method with continuous piece-
wise polynomials, while the stochastic discretization is performed by the stochastic
collocation (SC) method [XH05a; BNT10; NTW08a]. Before tackling the problem for a
DLR solution, we direct our attention to an a-posteriori error estimation for a random
heat equation, with no DLRA involved. In this case, the time discretization is performed
via the θ-scheme and the stochastic discretization using sparse grids. There is a vast
literature on a posteriori error estimation for deterministic parabolic problems (see e.g.
[EJ91; EJ95; Pic98; Ver03; LPP09; AMN06]). There is much less literature available for
the a posteriori error estimation for random PDEs. When uncertainties are treated by
the stochastic Galerkin method [GDS03; LMK10], a posteriori error estimations together
with an adaptive algorithm have been proposed in [Kha+20; KPB18] for a linear elasticity
equation and in [Eig+13; Eig+14; Eig+15; BPS14; CPB19; BX20] for an elliptic PDE.
Concerning parabolic equations, the only work we are aware of considers uncertainty
only in the Robin boundary condition, solved by the perturbation approach in [Gui18].
The work [GN18] derives a residual based a posteriori error estimation for an elliptic
problem discretized by a stochastic collocation finite element method. There, the authors
propose an algorithm that adaptively builds the sparse grid based on the a posteriori
estimation of the SC error. Recently, a proof of convergence for such adaptive algorithm
has been derived in [FS21; Eig+21].

Our work extends the results obtained in [GN18] to a heat equation with random right
hand side and random diffusion coefficient that depends affinely on a finite number
of random variables. We adopt the setting from [Ver03] to treat the spatial and time
discretization errors. Our estimator allows spatial meshes and stochastic sparse grids
to change in time. The estimator naturally splits into a spatial discretization estimator,
time discretization estimator and stochastic discretization estimator, which are then used
to drive the adaptivity with respect to all three types of discretizations. We then propose
an adaptive algorithm to build a suitable time discretization and a FE mesh and sparse
grid common to all time steps, so as to achieve a prescribed tolerance on a global norm
of the error. We then apply this to a problem with a deterministic right hand side and a
diffusion coefficient depending affinely on few random variables. These results have been
published in [NV19].

We follow by applying analogous techniques to derive an a-posteriori error bound for a
DLR solution of a random parabolic equation. In this case, the stochastic discretization

6



0.2. Dynamical low rank approximation for data assimilation

applies the tensor grid collocation method, spatial discretization the finite element method
and the time discretization follows the projector-splitting scheme proposed in Chapter 2.
Using the discrete variational formulation, we manage to split the estimator into a spatial
discretization estimator, time discretization estimator, stochastic discretization estimator
and a rank truncation estimator. For the case of a heat equation with diffusion coefficient
affine w.r.t. a few random variables, we derive fully computable error estimators for all
four error contributors. Similarly as before, we propose an adaptive algorithm to build a
suitable time discretization, an FE mesh and tensor grid common to all time steps, and
a rank for the DLRA which is allowed to change for different time steps, with the goal to
achieve a prescribed tolerance on a global norm of the error. The performance of the
algorithm is yet to be tested and is a part of our future research directions. We point the
reader to [CKL22] for a different algorithm that can be used to adapt the choice of the
DLR rank. To the best of our knowledge, both a-priori and a-posteriori error estimators
available in this work are the first results of this kind, derived for a fully discrete DLRA
of a solution to a PDE with random parameters.

0.2 Dynamical low rank approximation for data assimila-
tion

Alongside the development of mathematical models describing many real-world phenom-
ena, the last decades have witnessed a growing availability of data sets in almost all
engineering, science, and technology areas. When the underlying mathematical model is
a (possibly stochastic) dynamical system, and the data are ordered in time, the term
data assimilation refers to the effort of combining the data with the mathematical model.
The main application areas of data assimilation include atmospheric and oceanographic
sciences and other areas of geoscience. With the current environmental crisis, the
area of weather prediction and climate modeling offers high demands for efficient data
assimilation techniques.

There are two distinct areas in this field: the filtering problem, which tries to update the
knowledge of the state at time t (and possibly reduce its uncertainty) by taking into
account the data up to time t (i.e., data from the past and present); and the smoothing
problem, which allows updating the knowledge of the state at time t by data from the
past, present, and future. In this work, we will focus on the filtering problem.

More precisely, let us denote the state (signal) at time t by u(t). Suppose that the signal
is governed by the (possibly stochastic) dynamics

u̇ = F(u), (5)

that the initial state u(0) has probability distribution µ0 on V , and that observations
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become available at discrete times t1, t2, . . . , in the form

zn = H(u(tn)) + ηn, n ∈ N,

where H : V → Rl is an observation operator and ηn ∈ Rp, n = 1, 2, . . . are independent
noise terms following a probability density function pn : Rp → R+. The goal is then
to compute the probability distribution of un = u(tn) conditional on the observations
Zn = {z1, . . . , zn} collected up to time tn, denoted by P(un|Zn). Such calculation can
be split in two steps:

• prediction: given P(un|Zn) one computes first P(un+1|Zn), called the forecast-
ed/predicted distribution, by evolving P(un|Zn) through the system (5) up to time
tn+1;

• analysis: one then computes the new conditional measure P(un+1|Zn+1), called
the filtering distribution, by incorporating the newly observed data zn+1 using the
Bayes’ formula.

The literature on data assimilation is vast, and mostly driven by applications in oceanog-
raphy, atmospheric sciences, weather prediction or oil recovery [Kal02; Ben02; Eve09;
Aba13; MH12; RC15]. We point to the book [LSZ15] for an introduction to the topic
and its mathematical foundations. Various techniques have been developed over the
years to deal with the problem of filtering. For linear systems with additive Gaussian
noise, the Kalman filter (see [Kal60]) provides an exact algorithm to determine the
filtering distribution. Several extensions of Kalman filter have been proposed to enable
applications to nonlinear problems; we mention the extended Kalman filter [Jaz70] based
on linearized dynamics and the ensemble Kalman filter (EnKF) [Eve09; LE96b; LGMT09;
LX08], which samples the dynamics yet still relying on a Gaussian approximation in the
analysis step. Kalman-based filters are robust with respect to the noise in the system and
observations, however they do not reproduce the correct posterior filtering distribution
for general nonlinear problems, as they all rely on invoking some Gaussian ansatz in
the algorithm. This issue is alleviated in another class of filters that has been widely
employed, the particle filters (PF). These are purely sampling based filters, which propa-
gate an empirical distribution through the system and update it (still as an empirical
distribution) in the analysis step. As such, they provide a consistent approximation
of the true filtering distribution in the limit of an infinite number of particles (see e.g.
[LSZ15; CD02; RH15; Lee+19]). The main limitation of particle filters developed so far
is that their efficiency degrades with the dimensionality of the problem. This is a topic
of active research in the field.

The real-world applications of data assimilation often involve a very high-dimensional
problem in the forecast step. When running a full-order model is extremely expensive,
one needs to rely on reduced-order modeling techniques. These typically consist in

8
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looking for a solution in a low-dimensional subspace. Works that apply some reduced-
basis approaches include [SSN15] for combining POD and DEIM with 4DVAR, and
[Cas+20] for combining reduced order models and deep neural networks for more efficient
predictions.

Especially in the context of data assimilation, the ‘optimal’ subspace that approximates
well the whole solution (or a large ensemble of particles) can significantly vary in time.
In this respect, employing the dynamical low rank approximation (DLRA) in the forecast
step seems very advantageous. The dominant subspace evolves in time, adjusting to the
underlying dynamical system at every time instant as well as the incoming observations.
The idea of applying DLR to filtering problems was recently explored in a few works. In
[SL13a], the authors use a DLR approximation in the prediction step. The forecasted
measure is then approximated by a Gaussian mixture model (GMM) and updated by
Kalman formulas in the analysis step. This strategy was applied in [SL13b] to deal
with double well diffusion problem and sudden expansion flows. A different strategy
was proposed in [MQS14; SM13; MS13] to treat turbulent dynamical systems. The
prediction step involves propagating an accurate approximation of the DLR solution in
the low-dimensional subspace coupled with a second order Gaussian closure solution in
the full space. At the beginning of the analysis step, the two solutions are then blended
into a conditional Gaussian particle distribution and updated via Bayes’ formula.

0.2.1 Main contributions

In our work, we start by exploring the idea of applying simple DLRA in the forecast
step, combined with standard algorithms in the analysis step (namely EnKF and PF).
Applying this strategy to the 40-dimensional Lorenz-96 system of equations (a simplified
model for atmospheric processes), we will see that completely dismissing the ommited
modes in the DLRA leads to loss of accuracy which has significant consequences in the
performance of the filters, including loss of information provided by the data. To improve
upon the simple DLRA, we complement the DLR signal by a Gaussian component.
This approach resembles the work introduced in [MQS14; QJM15; SM13]. However, we
provide a consistent way of complementing the DLRA of the signal by enlarging the set
of test functions in the DLR variational formulation (more details on the comparison
of these two works is available at the end of Section 7.2.4). We propose two algorithms
that complement the DLR signal by a term linear w.r.t. normally distributed random
variables, which then constitutes the Gaussian component. The first algorithm imposes
the DLR and linear term to be independent, whilst the second algorithm does not. At
the beginning of the analysis step, we build a Gaussian mixture distribution and update
it via Bayes’ formula. The numerical examples offer multiple scenarios which compare
the behaviour of these two algorithms with the simple DLR in the forecast step. We
will see that in the case of long observation times and large observation error, imposing
independence of the DLR and linear term causes unsatisfactory performance.
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The outline of the work is the following. In Chapter 6, we detail the mathematical
formulation of the filtering problem, provide an overview of the standard techniques
and present numerical results that apply these techniques to a 40-dimensional Lorenz-96
system of equations. Afterwards, in Chapter 7 we start with exploring the behaviour of
simple DLR in the forecast step, follow by describing the two newly-proposed algorithms
that complement the DLR signal by a Gaussian component and provide numerical results
comparing the proposed methods.
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1 Introduction to dynamical low
rank approximation

The considered DLR approximation of the solution is of the form

u(t) = ū(t) +
R∑
j=1

Uj(t)Yj(t), t ∈ (0, T ], (1.1)

where R is the rank of the approximation, ū(t) = E[u(t)] is the mean value of the DLR
solution, {Uj(t)}Rj=1 is a time dependent set of deterministic basis functions, {Yj(t)}Rj=1
is a time dependent set of zero mean stochastic basis functions. By suitably projecting
the residual of the differential equation, one can derive evolution equations for the mean
value ū and the deterministic and stochastic modes {Uj}Rj=1, {Yj}Rj=1 (see [SL09; KL07a]).
In the derivation of the method, the rank R is fixed in time. This condition is however
alleviated in Chapter 5, where an adaptive algorithm for a time-dependent choice of rank
is proposed. In this chapter, we start with stating the underlying problem in Section 1.1.
We follow by defining the dynamical low-rank approximation in Section 1.2 and recall the
equations for the modes. Further, we show that the DLR solution can be equivalently
defined as a solution of a variational formulation, for which we set up a geometrical
framework in Section 1.3. We point out that the details provided in this chapter are not
new and serve only as a summary of well-known results.

1.1 Problem statement

We start by introducing some notation. Let (Ω,A, ρ) be a probability space, where Ω is
a set of outcomes, A a σ-algebra and ρ : A → [0, 1] a probability measure. Consider the
Hilbert space L2

ρ = L2
ρ(Ω) of real valued random variables on Ω with bounded second

moments
L2
ρ(Ω) = {v : Ω→ R s.t.

∫
Ω
|v|2 dρ <∞},

with associated scalar product 〈v, w〉L2
ρ

=
∫

Ω vw dρ and norm ‖v‖L2
ρ

=
√
〈v, v〉L2

ρ
.
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Chapter 1. Introduction to dynamical low rank approximation

Consider as well two separable Hilbert spaces H and V with scalar products 〈·, ·〉H ,
〈·, ·〉V , respectively. Suppose that H and V form a Gelfand triple (V,H, V ′), i.e. V is a
dense subspace of H and the embedding V ↪→ H is continuous with a continuity constant
CP > 0. Let L2

ρ(Ω;V ), L2
ρ(Ω;H) be the Bochner spaces of square integrable V (resp. H)

valued functions on Ω with scalar products

〈v, w〉H,L2
ρ

=
∫

Ω
〈v, w〉H dρ, v, w ∈ L2

ρ(Ω;H)

〈v, w〉V,L2
ρ

=
∫

Ω
〈v, w〉V dρ, v, w ∈ L2

ρ(Ω;V ),

respectively. Then, (L2
ρ(Ω;V ), L2

ρ(Ω;H), L2
ρ(Ω;V ′)) is a Gelfand triple as well (see e.g.

[Leo17, Th. 8.17]), and we have

‖v‖H,L2
ρ
≤ CP‖v‖V,L2

ρ
∀v ∈ L2

ρ(Ω;V ). (1.2)

We define the mean value of an integrable random variable v as E[v] =
∫

Ω v(ω) dρ(ω),
where the integral here denotes the Bochner integral in a suitable sense, depending on the
co-domain of the random variable considered. In what follows, we will use the notation
v̄ to denote the mean value of v and v∗ := v − v̄ to denote the derivation of v from its
mean value. Moreover, we let (·, ·)V ′V,L2

ρ
denote the duality pairing between L2

ρ(Ω;V ′)
and L2

ρ(Ω;V ):

for K ∈ L2
ρ(Ω;V ′), v ∈ L2

ρ(Ω;V ), (K, v)V ′V,L2
ρ

:=
∫

Ω

(
K(ω), v(ω)

)
V ′V

dρ(ω).

The problem considered in this work is the following random evolution equation. Given
a final time T > 0 and a random initial condition u0 ∈ L2

ρ(Ω;V ), the problem states:
Find a solution utrue ∈ L2(0, T ;L2

ρ(Ω;V )) with u̇true ∈ L2(0, T ;L2
ρ(Ω;V ′)) satisfying(

u̇true, v
)
V ′V,L2

ρ

=
(
F(utrue), v

)
V ′V,L2

ρ

, ∀v ∈ L2
ρ(Ω;V ), a.e. t ∈ (0, T ]

utrue(0) = u0,
(1.3)

where F is a random linear or nonlinear differential operator. We assume that equation
(1.3) admits a unique solution utrue ∈ L2(0, T ;L2

ρ(Ω;V )) for a.e. t ∈ [0, T ). The operator
F will be further specified in Chapter 3 to describe parabolic problems.

The DLR approximation is closely related to the Karhunen-Loève expansion, which we
detail in the following. Let u ∈ L2

ρ(Ω;H) be a random field. We define the covariance
operator Cu : H → H as

〈Cuv, w〉H = E[〈u− ū, v〉H〈u− ū, w〉H ] ∀v, w ∈ H,

which is self-adjoint and compact. Consider the sequence of non-negative decreasing
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eigenvalues of Cu, {µi}∞i=1, and the corresponding sequence of orthonormal eigenfunctions
{Zi}∞i=1 ⊂ H, satisfying

CuZi = µiZi, 〈Zi, Zj〉H = δij ∀i, j ∈ N+.

The random variables
γi(ω) = 1

√
µi
〈u∗, Zi〉H

are centered, mutually uncorrelated with unit variance, i.e.

E[γi] = 0, E[γiγj ] = δij , i, j ∈ N+.

The Karhunen-Loève expansion of the random function u ∈ L2
ρ(Ω;H) is given by

u(ω) = ū+
∞∑
j=1

√
µiγi(ω)Zi

(see e.g. [GS91; LPS14] for more details). A truncated Karhunen-Loève expansion with
rank R of the random function u is a truncation of the preceding expansion, i.e.

uR(ω) = ū+
R∑
j=1

√
µiγi(ω)Zi (1.4)

and results in the best R-rank approximation of u w.r.t. the ‖ · ‖H,L2
ρ
-norm. The decay

properties of eigenvalues have been investigated e.g. in the works [GS91; ST06].

1.2 Dynamical low rank approximation: equations

Dynamical low rank (DLR) approximation, or dynamically orthogonal (DO) approxi-
mation (see e.g. [KL07a; SL09; KL07b]) seeks an approximation of the solution utrue of
problem (1.3) in the form

u(t) = ū(t) +
R∑
j=1

Uj(t)Yj(t) = ū(t) + U(t)Y (t)ᵀ, t ∈ [0, T ] (1.5)

where ū(t) ∈ V , U(t) = (U1(t), . . . , UR(t)) ⊂ V is a time dependent set of linearly
independent deterministic basis functions, which we will call deterministic modes, Y =
(Y1(t), . . . , YR(t)) ⊂ L2

ρ is a time dependent set of linearly independent stochastic basis
functions, called stochastic modes. We call R the rank of a function u. Notice that U(t)
and Y (t) are interpreted here as row vectors.

There are three main formulations determining a unique representation for (1.5). The
DO formulation, proposed and applied in [SL09; SL12; ULS13], keeps the deterministic
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modes {Ur}Rr=1 orthonormal in H at all times and the uniqueness of the representation
is guaranteed by the following dynamically orthogonal (DO) conditions:

〈Ui(t), Uj(t)〉H = δij , 〈U̇i(t), Uj(t)〉H = 0, E[Yj(t)] = 0, ∀1 ≤ i, j ≤ R, ∀t ∈ [0, T ].

The dual DO formulation ([MN18]) keeps the stochastic modes orthonormal, the deter-
ministic modes linearly independent and is characterized by the following DO conditions:

〈Yi(t), Yj(t)〉L2
ρ

= δij , 〈Ẏi(t), Yj(t)〉L2
ρ

= 0 E[Yj(t)] = 0, ∀1 ≤ i, j ≤ R, ∀t ∈ [0, T ].
(1.6)

The last form is the so called double dynamically orthogonal (DDO) or bi-orthogonal
formulation, where the solution is sought in the form

u(t) = ū(t) +
R∑

i,j=1
Sij(t)Ui(t)Yj(t) = ū(t) + USY ᵀ, t ∈ [0, T ] (1.7)

with both deterministic and stochastic modes orthonormal in their respective Hilbert
spaces and the matrix S ∈ RR×R of full rank (see e.g. [CHZ13a; CHZ13b; KL07a]). The
corresponding DO conditions are

〈Ui(t), Uj(t)〉H = δij , 〈Yi(t), Yj(t)〉L2
ρ

= δij , E[Yj(t)] = 0,

〈Ẏi(t), Yj(t)〉L2
ρ

= 0, 〈U̇i(t), Uj(t)〉H = 0, ∀1 ≤ i, j ≤ R, ∀t ∈ [0, T ].

In [CSK14; MNZ15], it was shown that these formulations are equivalent. In our work,
we consider the dual DO formulation (1.6).

Plugging the DLR expansion (1.5) into the equation (1.3) and following analogous steps
as proposed in [SL09] leads to the DLR system of equations presented next.

Definition 1.2.1 (DLR solution). We define the DLR solution of problem (1.3) as

u(t) = ū(t) +
R∑
i=1

Ui(t)Yi(t) ∈ L2
ρ(Ω;V )

where ū, {Ui}Ri=1, {Yi}Ri=1 are solutions of the following system of equations:

( ˙̄u, v)V ′V = (E[F(u)], v)V ′V ∀v ∈ V (1.8)

(U̇j , v)V ′V = (E[F(u)Yj ], v)V ′V ∀v ∈ V, j = 1, . . . , R (1.9)

Ẏj −
R∑
i=1

(M−1)j,iP⊥Y
[
(F∗(u), Ui)V ′V

]
= 0 in L2

ρ, j = 1, . . . , R (1.10)

with the initial conditions ū(0), {Yj(0)}Rj=1, {Uj(0)}Rj=1 such that ū(0) ∈ V , {Yj(0)}Rj=1
satisfies the conditions (1.6), {Uj(0)}Rj=1 are linearly independent in V , and ū(0) +
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∑R
j=1 Yj(0)Uj(0) is a good approximation of u0. In (1.10), the matrix M ∈ RR×R is

defined as Mij := 〈Ui, Uj〉H , 1 ≤ i, j ≤ R and P⊥Y denotes the orthogonal projection
operator in the space L2

ρ(Ω) on the orthogonal complement of the R-dimensional subspace
Y = span{Y1, . . . , YR}, i.e.

P⊥Y [v] = v − PY [v] = v −
R∑
j=1
〈v, Yj〉L2

ρ
Yj , for v ∈ L2

ρ. (1.11)

For the initial condition one can use for instance the truncated Karhunen-Loève expansion
of u0 described in (1.4).

1.3 Geometrical interpretation and variational formulation

This subsection gives a geometrical interpretation of the DLR method and follows to
a large extent derivations from [MNZ15]. Such geometrical interpretation provides a
valuable insight into the method, which brings along various approaches to obtain ef-
fective discretization schemes, described in Chapter 2. We first introduce the notion of
a manifold of R-rank functions, characterize its tangent space in a point as well as the
orthogonal projection onto the tangent space.

The vector space consisting of all square integrable random variables with zero mean
value will be denoted by L2

ρ,0 = L2
ρ,0(Ω) ⊂ L2

ρ(Ω). The set of all random functions
v ∈ L2

ρ(Ω;V ) with a fixed rank R forms a manifold which we will denote byMR and
can be parametrized in the following way.

Definition 1.3.1 (Manifold of R-rank functions). ByMR ⊂ L2
ρ,0(Ω;V ) we denote the

manifold consisting of all rank R random functions with zero mean

MR =
{
v∗ ∈ L2

ρ,0(Ω;V ) | v∗ =
R∑
i=1

UiYi = UY ᵀ,

〈Yi, Yj〉L2
ρ

= δij , ∀1 ≤ i, j ≤ R, {Ui}Ri=1 linearly independent
}
.

(1.12)

It is well known thatMR admits an infinite dimensional Riemannian manifold structure
([FHN19]).

Proposition 1.3.1 (Tangent space at UY ᵀ). The tangent space TUY ᵀMR at a point
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UY ᵀ ∈MR can be characterized as

TUY ᵀMR =
{
δv ∈ L2

ρ,0(Ω;V ) | δv =
R∑
i=1

UiδYi + δUiYi,

δUi ∈ V, δYi ∈ L2
ρ,0, 〈δYi, Yj〉L2

ρ
= 0, ∀1 ≤ i, j ≤ R

}
. (1.13)

Further, we define an orthogonal projection onto the tangent space.

Proposition 1.3.2 (Orthogonal projection on TUY ᵀMR). The L2
ρ,0(Ω;H)-orthogonal

projection ΠUY ᵀ [v] of a function v ∈ L2
ρ(Ω, H) onto the tangent space TUY ᵀMR is given

by

ΠUY ᵀ [v] =
R∑
i=1
〈v, Yi〉L2

ρ
Yi + P⊥Y [

R∑
i=1
〈v, Ui〉H(M−1Uᵀ)i]

= PY [v] + P⊥Y
[
PU [v]

]
= PY [v] + PU [v]− PY

[
PU [v]

]
,

(1.14)

where U = span{U1, . . . , UR} and PU [·] is the H-orthogonal projection onto the subspace
U .

For more details, see e.g. [MNZ15]. Note that ΠUY ᵀ [·] can be equivalently written as
ΠUY ᵀ [·] = PU [·]+P⊥U

[
PY [·]

]
. In the following we will extend the domain of the projection

operator ΠUY ᵀ . Further, we will state two lemmas used to establish Theorem 1.3.5,
which presents the variational formulation of the DLR approximation.

The operator ΠUY ᵀ can be extended to an operator from L2
ρ(Ω;V ′) to L2

ρ(Ω;V ′) as

ΠUY ᵀ [K] := 〈K, Y 〉L2
ρ
Y ᵀ + P⊥Y

[
(K, U)V ′VM−1Uᵀ

]
∀K ∈ L2

ρ(Ω;V ′).

The extended operator satisfies the following properties.

Lemma 1.3.3. Let UY ᵀ ∈MR. Then it holds

(K,ΠUY ᵀ [v])V ′V,L2
ρ

= (ΠUY ᵀ [K], v)V ′V,L2
ρ
, ∀v ∈ L2

ρ(Ω;V ), K ∈ L2
ρ(Ω;V ′). (1.15)

Proof. First, we show that

(K, PY [v])V ′V,L2
ρ

= (PY [K], v)V ′V,L2
ρ
∀v ∈ L2

ρ(Ω;V ), K ∈ L2
ρ(Ω;V ′).
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Indeed,

(K, PY [v])V ′V,L2
ρ

=
∫

Ω

(
K,

R∑
i=1
〈v, Yi〉L2

ρ
Yi

)
V ′V

dρ =
R∑
i=1

∫
Ω

(
K, 〈v, Yi〉L2

ρ
Yi
)
V ′V

dρ

=
R∑
i=1

∫
Ω

(
K Yi, 〈v, Yi〉L2

ρ

)
V ′V

dρ =
R∑
i=1

(
〈K, Yi〉L2

ρ
, 〈v, Yi〉L2

ρ

)
V ′V

=
R∑
i=1

∫
Ω

(
〈K, Yi〉L2

ρ
Yi, v

)
V ′V

dρ = (PY [K], v)V ′V,L2
ρ
,

where in the forth step we applied Theorem 8.13 from [Leo17].

Now we proceed with proving (1.15)

(K, ΠUY ᵀ [v])V ′V,L2
ρ

= (K, PY [v] + P⊥Y [PU [v]])V ′V,L2
ρ

= (PY [K], v)V ′V,L2
ρ

+ (P⊥Y [K], PU [v])V ′V,L2
ρ

=
(
PY [K], v

)
V ′V,L2

ρ

+
(
P⊥Y [K], (v, U)HM−1Uᵀ

)
V ′V,L2

ρ

=
(
PY [K], v

)
V ′V,L2

ρ

+
∫

Ω

(
P⊥Y [K], UM−1

)
V ′V

(
Uᵀ, v

)
H

dρ

= (PY [K], v)V ′V,L2
ρ

+
(
(P⊥Y [K], U)V ′VM−1Uᵀ, v

)
V ′V,L2

ρ

= (ΠUY ᵀ [K], v)V ′V,L2
ρ
.

We are now in the position to state the first variational formulation of the DLR equations.

Lemma 1.3.4. Let U, Y be the solution of the system (1.9)–(1.10). Then the zero-mean
part of the DLR solution u∗ = UY ᵀ satisfies

(u̇∗ −Πu∗ [F∗(u)], v)V ′V,L2
ρ

= 0, ∀v ∈ L2
ρ(Ω;V ). (1.16)

Proof. First, we multiply equation (1.9) by Yj and take its weak formulation in L2
ρ.

Summing over j results in(
U̇Y ᵀ − E

[
F(u)Y

]
Y ᵀ, v w

)
V ′V,L2

ρ

= 0 ∀v ∈ V, w ∈ L2
ρ.

Notice that E
[
F∗(u)Y

]
= E

[
F(u)Y

]
since Y ⊂ L2

ρ,0. Analogously, we multiply (1.10) by
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UY T

F∗(UY ᵀ)

ΠUY T [F∗(UY ᵀ)]

MR

TUY TMR

Figure 1.1 – Illustration of the geometrical interpretation of dynamical low rank approxi-
mation.

Uj and take its weak formulation in V ′

(
Uj Ẏj −

R∑
i=1

Uj(M−1)j,iP⊥Y
[
(F∗(u), Ui)V ′V

]
, v w

)
V ′V,L2

ρ

= 0

∀v ∈ V, w ∈ L2
ρ.

Summing over j, this leads to(
UẎ ᵀ − P⊥Y

[
(F∗(u), U)V ′VM−1Uᵀ

]
, v w

)
V ′V,L2

ρ

= 0 ∀v ∈ V, w ∈ L2
ρ.

Summing the derived equations we obtain( d
dt(UY

ᵀ)−Πu∗ [F∗(u)], z
)
V ′V,L2

ρ

= 0 ∀z ∈ span{v w : v ∈ V, w ∈ L2
ρ}.

In particular, this holds for any z being a Bochner integrable simple function, the
collection of which is dense in L2

ρ(Ω;V ) (see [Leo17, Th. 8.15]).

A dynamical system (1.3) can be seen as a time-dependent vector field F that assigns the
velocity F(v(t)) at time t to each point v of the ambient space L2

ρ(Ω;H). Any rank R
approximation of the true solution forms a curve on the manifoldMR and consequently
its velocity vector field must be everywhere tangent to the manifold. Lemma 1.3.4
describes the geometrical idea behind the DLR method. Having a rank R solution
u∗ ∈MR, the DLRA projects the right-hand side F∗(u) onto the tangent space Tu∗MR

at u∗, which assures that the solution of the resulting system remains in the manifold
and is thus of rank R. See Figure 1.1 for an illustration.

We can finally state the variational formulation corresponding to the DLR equations
(1.8)–(1.10).
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1.3. Geometrical interpretation and variational formulation

Theorem 1.3.5 (DLR variational formulation). Let ū, U, Y be the solution of the system
(1.8)–(1.10). Then the DLR solution u = ū+ UY ᵀ satisfies(

u̇, v
)
V ′V,L2

ρ

=
(
F(u), v

)
V ′V,L2

ρ

, ∀v = v̄ + v∗, v̄ ∈ V, v∗ ∈ Tu∗MR. (1.17)

Proof. Based on Lemma 1.3.4 and Lemma 1.3.3 we can write
(
u̇∗, v

)
V ′V,L2

ρ

−
(
Πu∗ [F∗(u)], v

)
V ′V,L2

ρ

=
(
u̇∗, v

)
V ′V,L2

ρ

−
(
F∗(u), Πu∗ [v]

)
V ′V,L2

ρ

= 0, ∀v ∈ L2
ρ(Ω;V ).

Since Πu∗ [v] = v, ∀v ∈ Tu∗MR, this results in(
u̇∗ −F∗(u), v

)
V ′V,L2

ρ

= 0, ∀v ∈ Tu∗MR,

which can be equivalently written as

(u̇∗ −F∗(u), w + v
)
V ′V,L2

ρ

= 0, ∀w ∈ V, ∀v ∈ Tu∗MR, (1.18)

exploiting the fact that
(
u̇∗ − F∗(u), w

)
V ′V,L2

ρ

= 0, ∀w ∈ V . Likewise, equation (1.8)
can be equivalently written as(

˙̄u− E[F(u)], w + v
)
V ′V,L2

ρ

= 0, ∀w ∈ V, ∀v ∈ Tu∗MR, (1.19)

exploiting the fact that
(

˙̄u− E[F(u)], v
)
V ′V,L2

ρ

= 0 as E[v] = 0 ∀v ∈ Tu∗MR. Summing

(1.18) and (1.19) leads to the sought equation (1.17).

Recently, the existence and uniqueness of the dynamical low rank approximation for
a class of random semi-linear evolutionary equations was established in [KN21] and
for linear parabolic equations in two space dimensions with a symmetric operator in
[BKU21].
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2 Projector-splitting schemes and
their variational formulation

In the previous chapter we saw that the DLR method can be motivated from two fairly
distinct approaches: an algebraic approach, which considers a solution with a low-rank
format (1.5) and derives equations for the deterministic and stochastic modes; and a
geometric approach, which introduces the idea of projecting the operator on the tangent
space expressed via a variational formulation (see (1.16)). In Theorem 1.3.5, we showed
that these two approaches are in fact equivalent.

Similarly, to derive efficient discretization schemes, one can tackle the problem from two
distinct viewpoints. An algebraic one, which involves applying Runge-Kutta methods
of different orders (or other time-marching schemes) directly to the system of evolution
equations for the deterministic and stochastic basis functions (1.8) – (1.10) (see e.g.
[SL09; KL07a]), and a geometric one, proposed in [LO14; LOV15b], where starting from
the variational formulation (1.16), the authors applied a splitting method to the projected
right-hand side, resulting in a so-called projector-splitting integrator. A similar idea
with a different splitting was applied in [BFFN21]. A different geometric approach was
considered in [KV18], where the authors explored projected Runge-Kutta methods, where
following a Runge-Kutta integration, the solution first leaves the manifold of R-rank
functions by increasing its rank, and then is retracted back to the manifold.

In the presence of small singular values in the solution, the system of evolution equations
becomes stiff as an inversion of a singular or nearly-singular matrix is required to solve it
and applying standard explicit or implicit Runge-Kutta methods leads to instabilities
(see [KLW16]). In this respect, the projector-splitting integrators (proposed in [LO14;
LOV15b] and applied in e.g. [EL18; Ein19]) are very appealing. Extensions of the
projector-splitting integrator to deal with symmetric matrices and rank adaptation are
available in [CL19; CKL22; CL21]. In [KLW16], the authors showed that when applying
the projector-splitting method for matrix differential equations one can bound the error
independently of the size of the singular values, under the assumption that the projection
error of F(u) to the tangent space ofMR at u is of size ε. A limitation of their theoretical
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Chapter 2. Projector-splitting schemes and their variational formulation

result, as the authors point out, is that it requires a Lipschitz condition on F and is
applicable to discretized PDEs only under a severe condition 4tL� 1 where 4t is the
step size and L is the Lipschitz constant, even for implicit schemes. Such condition
is, however, not observed in numerical experiments. Analogous error bounds as in
[KLW16] are obtained for the projected Runge-Kutta methods in [KV18], also for higher
order schemes, under the same ε-approximability condition on F and under a restrictive
parabolic condition on the time step.

In this work, we first recall the projector-splitting integrators and summarize some of their
relevant properties. Then we propose a class of numerical schemes to approximate the
evolution equations for the mean, the deterministic basis and the stochastic basis, which
can be of explicit, semi-implicit or implicit type. Although not evident at first sight, we
show that the explicit version of our scheme can be reinterpreted as a projector-splitting
scheme, whenever the discrete solution is full-rank, and is thus equivalent to the scheme
from [LO14; LOV15b]. Our derivation allows for an easy construction of implicit or
semi-implicit versions. We show that the proposed discretization schemes can be written
in a discrete variational formulation analogous to the continuous one (1.17), which allows
for an easy geometric proof of the exactness property and becomes essential for stability
and error analysis available in Chapters 3, 4 and 5.

We start by describing the discretization of the stochastic and physical variables. After-
wards, we follow by recalling the projector-splitting integrator from [LO14; LOV15b] and
stating some of its beneficial properties in Section 2.1. In Section 2.2, we propose a new
time-marching scheme that discretizes the DLR equations and prove that the discrete
solution satisfies a discrete variational formulation. Finally, Section 2.3 is dedicated to
showing a link between the new-proposed scheme and the projector-splitting integrator.
The content provided in Sections 2.2–2.3 is original and taken essentially from [KNV21].
However, note that as opposed to [KNV21], where the authors considered only an elliptic
linear operator F , here the results are available for a general operator F .

Stochastic discretization

We consider a discrete measure given by {ωk, λk}N̂k=1, i.e. a set of sample points {ωk}N̂k=1 ⊂
Ω with R < N̂ <∞ and a set of positive weights {λk}N̂k=1, λk > 0,

∑N̂
k=1 λk = 1, which

approximates the probability measure ρ

ρ̂ :=
N̂∑
k=1

λkδωk ≈ ρ. (2.1)

The discrete probability space (Ω̂ = {ωk}N̂k=1, 2Ω̂, ρ̂) will replace the original one (Ω,F , ρ)
in the discretization of the DLR equations. Notice, in particular, that a random variable
Z : Ω̂ 7→ R measurable on (Ω̂, 2Ω̂, ρ̂) can be represented as a vector z ∈ RN̂ with
zk = Z(ωk), k = 1, . . . , N̂ . The sample points {ωk}N̂k=1 can be taken as iid samples from
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2.1. Projector-splitting integrator for DLRA

ρ (e.g. Monte Carlo samples) or chosen deterministically (e.g. deterministic quadrature
points with positive quadrature weights). The mean value of a random variable Z with
respect to the measure ρ̂ is computed as

Eρ̂[Z] =
N̂∑
k=1

Z(ωk)λk.

We introduce also the semi-discrete scalar products 〈·, ·〉?,L2
ρ̂
with ? = V,H and their

corresponding induced norms ‖ · ‖?,L2
ρ̂
.

Space discretization

We consider a general finite-dimensional subspace Vh ⊂ V whose dimension Nh is larger
than R and is determined by the discretization parameter h. Eventually, we will perform
a Galerkin projection of the DLR equations onto the subspace Vh. We further assume
that an inverse inequality of the type

‖v‖V,L2
ρ̂
≤ CI
hp
‖v‖H,L2

ρ̂
, ∀v ∈ Vh ⊗ L2

ρ̂ (2.2)

holds for some p ∈ N and CI > 0.

Time discretization

Concerning the time discretization, we divide the time interval into N equally spaced
subintervals 0 = t0 < t1 < · · · < tN = T and denote the time step by 4t := tn+1 − tn.
We will consider various time discretization schemes specified in the rest of this chapter.

2.1 Projector-splitting integrator for DLRA

This section recalls some of the results presented in [LO14] while reformulating them
to adapt to our setting and notation. The method was originally proposed to deal with
time-dependent matrix evolution equations. To adhere to the finite-dimensional setting
of [LO14], we consider the problem (1.3) discretized in space and random variables(

u̇true,h,ρ̂, v
)
V ′V,L2

ρ

=
(
F(utrue,h,ρ̂), v

)
V ′V,L2

ρ

, ∀v ∈ Vh ⊗ L2
ρ̂, a.e. t ∈ (0, T ]

utrue,h,ρ̂(0) = u0
h,ρ̂,

(2.3)

with u0
h,ρ̂ ∈ Vh ⊗ L2

ρ̂ an approximation of u0 ∈ L2
ρ(Ω;V ).

The DLR format of choice is the so called DDO (double dynamically orthogonal) format,
i.e. both deterministic and stochastic modes are kept orthonormal. We will adapt the
algorithm from [LO14] to approximate the DLR solution in the DDO format with an
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Chapter 2. Projector-splitting schemes and their variational formulation

isolated mean, i.e.

u(t) = ū(t) + U(t)S(t)V (t)ᵀ ∈ Vh ⊗ L2
ρ̂. (2.4)

with U orthonormal w.r.t. 〈·, ·〉H , V orthonormal in L2
ρ̂ and S ∈ RR×R of full rank.

We start by describing a continuous-in-time splitting algorithm, discretized in physical
and stochastic space, and follow by proposing a fully discretized scheme.

In the following we focus on the evolution of the stochastic part of the DLR solution u∗.
Let un,∗h,ρ̂ ∈ Vh ⊗ L2

ρ̂ denote the stochastic part of the DLR solution at time tn. Stemming
from the variational formulation (1.16) for u∗ = USV ᵀ:

(u̇∗, v)V ′V,L2
ρ

= (Πu∗ [F∗(u)], v)V ′V,L2
ρ

= (PV [F∗(u)]− PV [PU [F∗(u)]] + PU [F∗(u)], v)V ′V,L2
ρ
, ∀v ∈ L2

ρ(Ω;V ),

which includes three terms in the right-hand side, the first-order projector-splitting
algorithm splits the evolution into three steps:

1. Solve the differential equation

(u̇∗I , vh)V ′V,L2
ρ̂

= (PVI [F
∗(uI)], vh)V ′V,L2

ρ̂
, ∀vh ∈ Vh ⊗ L2

ρ̂, t ∈ [tn, tn+1]

uI(tn) = un,∗h,ρ̂,

where u∗I = UISIVI .

2. Solve the differential equation

(u̇∗II , vh)V ′V,L2
ρ

= −(PVII [PUII [F
∗(uII)]], vh)V ′V,L2

ρ
, ∀vh ∈ Vh ⊗ L2

ρ̂, t ∈ [tn, tn+1]

uII(tn) = uI(tn+1),

where u∗II = UIISIIVII .

3. Solve the differential equation

(u̇∗III , vh)V ′V,L2
ρ

= (PUIII [F
∗(uIII)], vh)V ′V,L2

ρ
, ∀vh ∈ Vh ⊗ L2

ρ̂, t ∈ [tn, tn+1]

uIII(tn) = uII(tn+1),

where u∗III = UIIISIIIVIII .

As a final step, we take u∗III(tn+1) as an approximation of u∗true,h,ρ̂(tn+1), the stochastic
part of the solution of (2.3) at time tn+1. By standard theory (see e.g. [HWL06]), this
method is of first order accuracy w.r.t. 4t.
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2.1. Projector-splitting integrator for DLRA

It turns out that such splitting combines well with the factorization (2.4). In the first
substep, K := US is updated, in the second substep S is updated and in the third
substep V Sᵀ is updated. The equations 1. – 3. result in the following algorithm.

Algorithm 2.1.1 (Continuous-in-time projector-splitting scheme). Given the approxi-
mate solution un,∗h,ρ̂ = U0S0V

ᵀ
0 at time tn of the form (2.4) with

U0,j ∈ Vh, V0,j ∈ L2
ρ̂,0, 〈V0,i, V0,j〉L2

ρ̂
= δij , 〈U0,i, U0,j〉H = δij , i, j = 1, . . . , R :

1. Solve R deterministic PDEs

(K̇(t), vh)V ′V = (Eρ̂[F∗(K(t)V ᵀ
0 )V0], vh)V ′V , ∀vh ∈ Vh, t ∈ [tn, tn+1]

K(tn) = U0S0.

Compute U1 ∈ Vh, Ŝ1 ∈ RR×R such that U1Ŝ1 = K(tn+1) and U1 is orthonormal
in 〈·, ·〉H .

2. Solve the matrix differential equation (of size R×R)

Ṡ(t) = −
(
Eρ̂[F∗(U1S(t)V ᵀ

0 )V0], U1
)
V ′V

, t ∈ [tn, tn+1]

S(tn) = Ŝ1.

Set S̃0 = S(tn+1).

3. Solve R stochastic differential equations set in L2
ρ̂,0

L̇(t) = (F∗(U1L(t)ᵀ), U1)V ′V
L(tn) = V0S̃

ᵀ
0 .

Compute V1 ∈ L2
ρ̂,0, S1 ∈ RR×R such that V1S

ᵀ
1 = L(tn+1) in L2

ρ̂,0 and V1 is
orthonormal in 〈·, ·〉L2

ρ̂
.

The stochastic part of the new solution ûn+1,∗
h,ρ̂ is then defined as

ûn+1,∗
h,ρ̂ = U1S1V

ᵀ
1 .

The algorithm was first proposed to deal with a DLR approximation of time-dependent
matrices A(t) which are known a-priori, avoiding the need to compute an SVD at every
time step. In our setting, A(t) stands for utrue,h,ρ̂(t) represented as a matrix of size
Nh × N̂ , where the first index corresponds to the spatial degrees of freedom (dofs) and
the second index to the stochastic dofs. As an example, the algorithm can be applied in
a scenario in which the operator F does not depend on utrue,h,ρ̂, i.e. F(utrue,h,ρ̂) = F . In
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Chapter 2. Projector-splitting schemes and their variational formulation

this case the true solution utrue,h,ρ̂ is known a-priori and satisfies

utrue,h,ρ̂(t) = utrue,h,ρ̂(0) +
∫ t

0
F(s) ds.

By 4A let us denote the increment 4A = utrue,h,ρ̂(tn+1)− utrue,h,ρ̂(tn) =
∫ tn+1

tn F(s) ds.
Interestingly, each of the equations 1.–3. can be solved exactly in a trivial way and the
resulting fully discrete scheme is summarized in the following 6–step algorithm, including
the computation of the mean value.

Algorithm 2.1.2 (Discrete-in-time projector-splitting scheme). Given the approximated
solution unh,ρ̂ = ūn + U0S0V

ᵀ
0 at time tn of the form (2.4) with

ūn, U0,j ∈ Vh, V0,j ∈ L2
ρ̂,0, 〈V0,i, V0,j〉L2

ρ̂
= δij , 〈U0,i, U0,j〉H = δij , i, j = 1, . . . , R :

1. Compute the mean value ˆ̄un+1 such that

〈ˆ̄un+1, vh〉H = 〈ūn, vh〉H +
(
Eρ̂[4A], vh

)
V ′V

∀vh ∈ Vh.

2. Solve for K1 such that

〈K1, vh〉H = 〈U0S0, vh〉H +
(
Eρ̂[4AV0], vh

)
V ′V

∀vh ∈ Vh.

3. Compute U1 ∈ Vh, Ŝ1 ∈ RR×R such that

U1Ŝ1 = K1 and U1 is orthonormal in 〈·, ·〉H .

4. Set
S̃0 = Ŝ1 −

(
Eρ̂[4AV0], U1

)
V ′V

.

5. Compute L1 ∈ L2
ρ̂ such that

L1 = V0S̃
ᵀ
0 +

(
4A, U1

)
V ′V

.

6. Compute V1 ∈ L2
ρ̂,0, S1 ∈ RR×R such that

V1S
ᵀ
1 = L1 in L2

ρ̂,0 and V1 is orthonormal in 〈·, ·〉L2
ρ̂
.

The new solution ûn+1
h,ρ̂ is then defined as

ûn+1
h,ρ̂ = ˆ̄un+1 + U1S1V

ᵀ
1 .

Note that, since 4A = utrue,h,ρ̂(tn+1) − utrue,h,ρ̂(tn) ∈ H, the duality pairings (·, ·)V ′V
on the right hand side of the equations in Algorithm 2.1.2 are equal to 〈·, ·〉H .
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2.1. Projector-splitting integrator for DLRA

If the true solution utrue,h,ρ̂ in not known a-priori and is defined as a solution of (1.3),
the work [LO14] proposes to define the increment 4A as

4A = 4tF(unh,ρ̂),

which is a fully discretized scheme and resembles the explicit Euler method. All the scalar
products 〈·, ·〉H involving 4A are consequently replaced by the dual pairing (·, ·)V ′V .

The projector-splitting algorithm has many favourable properties. First to mention, it
reproduces R-rank solutions exactly.

Theorem 2.1.3 (Exactness property). Let utrue,h,ρ̂(t) ∈ Vh ⊗ L2
ρ̂, the solution of (2.3),

be of rank R for tn ≤ t ≤ tn+1, so that utrue,h,ρ̂(t) has a factorization (2.4), i.e.

utrue,h,ρ̂(t) = ū(t) + U(t)S(t)V (t)ᵀ.

Moreover, assume that the R × R matrix E[V (tn+1)ᵀV (tn)] is invertible. With unh,ρ̂ =
utrue,h,ρ̂(tn), the Algorithm 2.1.2 is exact: ûn+1

h,ρ̂ = utrue,h,ρ̂(tn+1).

Proof. There are multiple available proofs, see e.g. [LO14; Wal18]. In Section 2.3 we
provide a new simple geometric proof.

The second important property is the robustness of the algorithm to the presence of small
singular values of the solution or its approximation. The DLR equations (1.8) – (1.10)
involve an inversion of the matrixM , which for small singular values of the approximation
becomes nearly-singular. Applying standard explicit or implicit Runge-Kutta methods
leads to instabilities (see [KLW16]). Moreover, the local Lipschitz constant of the tangent
space projection Πu∗ in (1.16) is proportional to the inverse of the smallest non-zero
singular value of u (see [KL07a, Lemma 4.2]). Having small singular values cannot be
easily avoided in practical applications, since the smallest singular value retained in the
approximation is not expected to be much larger than the largest discarded singular
value of the solution, which needs to be small to obtain good accuracy. The following
theorem ensures us that under certain conditions on the operator F , the continuous-
in-time projector-splitting integrator provides an approximation whose error can be
bounded independently on the singular values. Again, to adhere to the finite-dimensional
setting of [KLW16], we consider the discrete problem (2.3). In addition, we assume that
F(u) ∈ L2

ρ̂(Ω̂;H), ∀u ∈ L2
ρ̂(Ω̂;H).

Theorem 2.1.4. Let utrue,h,ρ̂ be the solution of the problem (2.3). Assume that the
following conditions hold
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Chapter 2. Projector-splitting schemes and their variational formulation

1. F is Lipschitz-continuous and bounded

‖F(u)−F(v)‖H,L2
ρ̂
≤ L‖u− v‖H,L2

ρ̂
, (2.5)

‖F(u)‖H,L2
ρ̂
≤ B, ∀u, v ∈ L2

ρ̂(Ω;H), t ∈ [0, T ]. (2.6)

2. The non-tangential part of F(u) is ε-small

‖Π⊥u [F(u)]‖H,L2
ρ̂
≤ ε, ∀u ∈Mh,ρ̂

R in a neighbourhood of u∗true,h,ρ̂, t ∈ [0, T ].
(2.7)

3. The error in the initial value is δ-small

‖û0
h,ρ̂ − utrue,h,ρ̂(0)‖H,L2

ρ̂
≤ δ

Let ûnh,ρ̂ denote the rank-R approximation to utrue,h,ρ̂(tn) obtained after n steps of the
continuous projector-splitting Algorithm 2.1.1. Then, the error satisfies for all n with
(4t)n ≤ T

‖ûnh,ρ̂ − utrue,h,ρ̂(tn)‖H,L2
ρ̂
≤ c0δ + c1ε+ c24t,

where the constants c1, c2, c3 only depend on L,B and T . In particular, the constants are
independent of singular values of the exact or approximate solution.

It is further shown in [KLW16, Section 2.6.3] that an inexact solution of the matrix
differential equations in the projector-splitting integrator leads to an additional error that
is bounded in terms of the local errors in the inexact substeps, again with constants that
do not depend on small singular values. In Chapter 4, we derive an a-priori error estimate
for a DLR solution obtained by a scheme proposed in the following section. The governing
equation (1.3) is set in an infinite-dimensional setting, which means that the a-priori
estimate includes an error contribution w.r.t. the spatial and stochastic discretization as
well. Concerning the time discretization and rank truncation, the result is analogous to
Theorem 2.1.4, however, we manage to ease the conditions (2.5). In particular, we allow
for an operator F , which is not uniformly bounded and which satisfies only a one-sided
Lipschitz condition

〈F(u)−F(v), u− v〉H,L2
ρ̂
≤ l‖u− v‖2H,L2

ρ̂
.

As pointed out by authors in [KLW16, Sec. 2.6.2], the dependence on L could not have
been avoided in their result so our analysis presents an improvement.
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2.2. A staggered time-marching scheme for DLR equations

2.2 A staggered time-marching scheme for DLR equations

In this section, we define a new fully discrete DLR solution, which, on the contrary
to the previous section, is derived by discretizing the DLR equations (1.8)–(1.10). We
propose a staggered time-marching scheme that decouples the update of the deterministic
and stochastic modes. Afterwards, we state and prove a variational formulation of the
discretized problem. Finally, we will show that the proposed scheme can be formulated as
a projector-splitting scheme for the Dual DO formulation and comment on its connection
to the projector-splitting scheme from the previous section.

The DLR solution u = ū+UY ᵀ appears in the right hand side of the system of equations
(1.8)–(1.10), both in the operator F and in the projector operator onto the tangent
space to the manifold. We will treat these two terms differently. Concerning the
projection operator, we adopt a staggered strategy, where, given the approximate solution
un = ūn + UnY nᵀ , we first update the mean ūn+1, then we update the deterministic
basis Un+1 projecting on the subspace Yn = span{Y n}; finally, we update the stochastic
basis Y n+1 projecting on the orthogonal complement of Yn and on the updated subspace
Un+1 = span{Un+1}. Concerning the operator F , we will discuss hereafter different
discretization choices leading to explicit, semi-implicit or fully implicit algorithms.

2.2.1 Staggered time-marching scheme

We give in the next algorithm the general form of the discretization schemes that we
consider in this work.

Algorithm 2.2.1. Given the approximate solution unh,ρ̂ = ūn +
∑R
i=1 U

n
j Y

n
j at time tn

with

ūn, Unj ∈ Vh, Y n
j ∈ L2

ρ̂, j = 1, . . . , R,
〈Y n
i , Y

n
j 〉L2

ρ̂
= δij , Eρ̂[Y n

j ] = 0, ∀ 1 ≤ i, j ≤ R :

1. Compute the mean value ūn+1 such that〈
ūn+1 − ūn

4t
, vh

〉
H

=
(
Eρ̂[F(unh,ρ̂, un+1

h,ρ̂ )], vh
)
V ′V
∀vh ∈ Vh. (2.8)

2. Compute the deterministic basis Ũn+1
j for j = 1, . . . , R

〈
Ũn+1
j − Unj
4t

, vh

〉
H

=
(
Eρ̂[F(unh,ρ̂, un+1

h,ρ̂ )Y n
j ], vh

)
V ′V
∀vh ∈ Vh. (2.9)
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3. Compute the stochastic basis {Ỹ n+1
j }Rj=1 such that

Ỹ n+1 − Y n

4t
M̃n+1 = P⊥ρ̂,Yn

[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

]
. (2.10)

where M̃n+1 = 〈Ũn+1ᵀ , Ũn+1〉H , P⊥ρ̂,Yn [·] is the analog of the projector defined in
(1.11) but in the discrete space L2

ρ̂.

4. Reorthonormalize the stochastic basis: find (Un+1, Y n+1) s.t.

R∑
j=1

Y n+1
j Un+1

j =
R∑
j=1

Ỹ n+1
j Ũn+1

j , 〈Y n+1ᵀ , Y n+1〉L2
ρ̂

= Id. (2.11)

5. Form the approximate solution at time step tn+1 as

un+1
h,ρ̂ = ūn+1 +

R∑
i=1

Un+1
j Y n+1

j . (2.12)

The expression F(unh,ρ̂, u
n+1
h,ρ̂ ) stands for an unspecified time integration of the operator

F(u(t)), t ∈ [tn, tn+1] (three choices will be specified here after) and v∗ denotes the
0-mean part of a random variable v ∈ L2

ρ̂ with respect to the discrete measure ρ̂, i.e.
v∗ = v − Eρ̂[v].

The newly computed solution un+1
h,ρ̂ belongs to the tensor product space Vh ⊗ L2

ρ̂, since
we have ūn+1, Un+1

j ∈ Vh and Yj ∈ L2
ρ̂, 1 ≤ j ≤ R. Note that equation (2.10) is set in

L2
ρ̂. Since L2

ρ̂ is a finite dimensional vector space isomorphic to RN̂ , equation (2.10) can
be rewritten as a deterministic linear system of R× N̂ equations with R× N̂ unknowns.
This system can be decoupled into a linear system of size R × R for each collocation
point. If the deterministic modes Ũn+1 are linearly independent, the system matrix is
invertible. Otherwise we interpret (2.10) in a minimal-norm least squares sense, choosing
a solution Ỹ n+1, if it exists, that minimizes the norm ‖Ỹ n+1 − Y n‖L2

ρ̂
. This is discussed

in more details in Section 2.2.3.

The following lemma summarizes some properties satisfied by the proposed scheme
(2.8)–(2.10).

Lemma 2.2.2 (Discretization properties). Assuming that a solution (Ỹ n+1, Ũn+1, ūn+1)
of (2.8)–(2.10) exists, the following properties hold:

1. Discrete DO condition:

〈 Ỹ n+1
i − Y n

i

4t
, Y n

j

〉
L2
ρ̂

= 0, ∀1 ≤ i, j ≤ R (2.13)
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2. Eρ̂[Ỹ n+1] = 0

3. 〈Ỹ n+1ᵀ , Y n〉L2
ρ̂

= Id

Proof.

1. In the following proof we assume that the matrix M̃n+1 = 〈Ũn+1ᵀ , Ũn+1〉H is full
rank. For the rank-deficient case we refer the reader to the proof of Lemma 2.2.9.
Let us multiply equation (2.10) by Y nᵀ from the left and take the L2

ρ̂-scalar product.
Since the second term involves P⊥ρ̂,Yn , the scalar product of Y n with the second
term vanishes which, under the assumption that M̃n+1 is full rank, gives us the
discrete DO condition 〈

Y nᵀ
,
Ỹ n+1 − Y n

4t

〉
L2
ρ̂

= 0.

2. This is a consequence of the fact that we have Eρ̂[Y n] = 0 and
Eρ̂
[(
F∗(un, un+1), Ũn+1

)
V ′V

]
= 0.

3. This is immediate from the discrete DO property and 〈Y nᵀ
, Y n〉L2

ρ̂
= Id.

To complete the discretization scheme (2.8)–(2.10) we need to specify the term F(unh,ρ̂, u
n+1
h,ρ̂ ).

The DLR system stated in (1.8)–(1.10) is coupled. Therefore, an important feature we
would like to attain is to decouple the equations for the mean value, the deterministic
and the stochastic modes as much as possible. We describe hereafter 3 strategies for the
discretization of the operator evaluation term F(unh,ρ̂, u

n+1
h,ρ̂ ).

Explicit Euler scheme

The explicit Euler scheme performs the discretization

F(unh,ρ̂, un+1
h,ρ̂ ) = F(unh,ρ̂).

It decouples the system (2.8)–(2.10) since, for the computation of the new modes,
we require only the knowledge of the already-computed modes. The equations for
the stochastic modes {Ỹ n+1

j }Rj=1 are coupled together through the matrix M̃n+1 =
〈Ũn+1ᵀ , Ũn+1〉H ∈ RR×R but are otherwise decoupled between collocation points (i.e. N̂
linear systems of size R have to be solved).

Implicit Euler scheme
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The implicit Euler scheme performs the discretization

F(unh,ρ̂, un+1
h,ρ̂ ) = F(un+1

h,ρ̂ ).

This method couples the system (2.8)–(2.10) in a non-trivial way, which is why we do not
focus on this method in our numerical results. We mention it in the stability estimates
section (Section 3.3) for its interesting stability properties.

Semi-implicit scheme

The following technique is proposed for a more specified operator F that generalizes a
random parabolic equation. Assume that our operator F can be decomposed as

F(u) = f − (Ldet(u) + Lstoch(u)),

with both Ldet and Lstoch linear w.r.t u. The operator Ldet : V → V ′ is a deterministic
operator such that it induces a bounded and coercive bilinear form 〈·, ·〉Ldet on V

〈u, v〉Ldet := (Ldet(u), v)V ′V , u, v ∈ V (2.14)

and that its action on a function v = v1v2 with v1 ∈ V, v2 ∈ L2
ρ is defined as

Ldet(v) = Ldet(v1)v2.

Then, Ldet is also a linear operator Ldet : L2
ρ(Ω;V ) → L2

ρ(Ω;V ′) (as well as Ldet :
L2
ρ̂(Ω̂;V ) 7→ L2

ρ̂(Ω̂;V ′)) and induces a bounded coercive bilinear form on L2
ρ(Ω;V )

〈u, v〉Ldet,ρ =
∫

Ω
(Ldet(u), v)V ′V dρ.

We propose a semi-implicit time integration of the operator evaluation term

F(unh,ρ̂, un+1
h,ρ̂ ) = fn,n+1 − (Ldet(un+1

h,ρ̂ ) + Lstoch(unh,ρ̂)) (2.15)

where for fn,n+1 we can either take fn,n+1 = f(tn+1) or fn,n+1 = f(tn) or any convex
combination of both. The resulting scheme is detailed in the next lemma.

Lemma 2.2.3. The semi-implicit integration scheme (2.15) combined with the general
steps (2.8)–(2.10) is equivalent to the following set of equations

〈ūn+1, vh〉H +4t〈ūn+1, vh〉Ldet

= 〈ūn, vh〉H −4t(Eρ̂[Lstoch(unh,ρ̂)− fn,n+1], vh)V ′V ∀vh ∈ Vh (2.16)

〈Ũn+1
j , vh〉H +4t〈Ũn+1

j , vh〉Ldet

= 〈Ũnj , vh〉H −4t(Eρ̂[(Lstoch(unh,ρ̂)− fn,n+1)Y n
j ], vh)V ′V ∀vh ∈ Vh (2.17)
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(
Ỹ n+1 − Y n

)(
M̃n+1 +4t〈Ũn+1ᵀ , Ũn+1〉Ldet

)
= −4tP⊥ρ̂,Yn [(L∗stoch(unh,ρ̂)− fn,n+1∗ , Ũn+1)V ′V ] in L2

ρ̂. (2.18)

Proof. The equation for the mean (2.8) using the semi-implicit scheme (2.15) can be
written as〈

ūn+1 − ūn

4t
, vh

〉
H

+
(
Eρ̂[Ldet(ūn+1)], vh

)
V ′V︸ ︷︷ ︸

T1

+
(
Eρ̂[Ldet(Ũn+1Y n+1ᵀ)], vh

)
V ′V︸ ︷︷ ︸

T2

= −
(
Eρ̂[Lstoch(unh,ρ̂)− fn,n+1], vh

)
V ′V

.

Noticing that

T1 =
(
Ldet(ūn+1), vh

)
V ′V

= 〈ūn+1, vh〉Ldet

T2 =
(
Ldet(Ũn+1)Eρ̂[Y n+1ᵀ ], vh

)
V ′V

= 0

gives us equation (2.16). Concerning the equation for the deterministic modes we derive

〈
Ũn+1
j − Unj
4t

, vh

〉
H

+
(
Eρ̂[Ldet(ūn+1)Y n

j ], vh
)
V ′V︸ ︷︷ ︸

T3

+
(
Eρ̂[Ldet(Ũn+1Ỹ n+1ᵀ)Y n

j ], vh
)
V ′V︸ ︷︷ ︸

T4

= −
(
Eρ̂[(Lstoch(unh,ρ̂)− fn,n+1)Y n

j ], vh
)
V ′V

.

The term T3 vanishes since Eρ̂[Y n] = 0 and the term T4 can be further expressed as

T4 =
(
Ldet(Ũn+1)Eρ̂[Ỹ n+1ᵀY n

j ], vh
)
V ′V

=
(
Ldet(Ũn+1

j ), vh
)
V ′V

= 〈Ũn+1
j , vh〉Ldet ,

where we used the discrete DO condition (2.13). Finally, the stochastic equation (2.10)
can be written as
(
Ỹ n+1 − Y n

4t

)
(M̃n+1) + P⊥ρ̂,Yn

[(
L∗det(ūn+1), Ũn+1

)
V ′V

]
︸ ︷︷ ︸

T5

+P⊥ρ̂,Yn
[(
L∗det(Ũn+1Ỹ n+1ᵀ), Ũn+1

)
V ′V

]
︸ ︷︷ ︸

T6

= −P⊥ρ̂,Yn
[(
L∗stoch(unh,ρ̂)−fn,n+1∗ , Ũn+1

)
V ′V

]
.
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The term T5 vanishes since L∗det(ūn+1) = 0. As for T6, we derive

T6 =
(
Ldet(Ũn+1)Ỹ n+1ᵀ , Ũn+1

)
V ′V
−
(
Ldet(Ũn+1)Eρ̂[Ỹ n+1ᵀY n]︸ ︷︷ ︸

Id

Y nᵀ
, Ũn+1

)
V ′V

− P⊥ρ̂,Yn
[(
Ldet(Ũn+1)Eρ̂[Ỹ n+1ᵀ ]︸ ︷︷ ︸

=0

, Ũn+1
)
V ′V

]

= 〈Ũn+1, Ũn+1〉Ldet(Ỹ
n+1ᵀ − Y nᵀ)

which leads us to the sought equation (2.18).

We see from (2.16)–(2.18) that, similarly to the explicit Euler scheme, the equations
for the mean, deterministic modes and stochastic modes are decoupled. If the spatial
discretization of the PDEs (2.16) and (2.17) is performed by the Galerkin approximation,
the final linear system involves the inversion of the matrix

Aij = 〈ϕj , ϕi〉H +4t〈ϕj , ϕi〉Ldet ,

where {ϕi} is the basis of Vh in which the solution is represented. Both the mass matrix
〈ϕj , ϕi〉H and the stiffness matrix 〈ϕj , ϕi〉Ldet are positive definite and do not evolve with
time, so that an LU factorization can be computed once and for all at the beginning
of the simulation. Concerning the stochastic equation (2.18), we need to solve a linear
system with the matrix M̃n+1 +4t〈Ũn+1ᵀ , Ũn+1〉Ldet for each collocation point ωk, where
M̃n+1 = 〈Ũn+1ᵀ , Ũn+1〉H . This is in contrast to the explicit Euler method, where the
system involves only the matrix M̃n+1. The matrix M̃n+1 + 4t〈Ũn+1ᵀ , Ũn+1〉Ldet is
positive definite with the smallest singular value bigger than that of M̃n+1. Notice,
however, that if M̃n+1 is rank deficient, also the matrix M̃n+1 +4t〈Ũn+1ᵀ , Ũn+1〉Ldet

will be so. The computational complexity of the semi-implicit scheme w.r.t. the explicit
scheme depends on the operator Ldet.

Note that there exists a unique discrete DLR solution for the explicit and semi-implicit
version of Algorithm 2.2.1 also in the rank-deficient case (see Lemma 2.2.10 below). The
existence of solutions for the implicit version remains still an open question.

2.2.2 Discrete variational formulation for the full-rank case

This subsection will closely follow the structure of the Subsection 1.3. We will introduce
analogous geometrical concepts for the discrete setting, i.e. manifold of R-rank functions,
tangent space and orthogonal projection, and will show in Theorem 2.2.7 that the scheme
from Algorithm 2.2.1 can be written in a (discrete) variational formulation, assuming
that the matrix M̃n+1 stays full-rank.
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Definition 2.2.1 (Discrete manifold of R-rank functions). By Mh,ρ̂
R ⊂ Vh ⊗ L2

ρ̂,0 we
denote the manifold of all rank R functions with zero mean that belong to the (possibly
finite dimensional) space Vh ⊗ L2

ρ̂, namely

Mh,ρ̂
R =

{
v∗ ∈ Vh ⊗ L2

ρ̂,0 | v∗ =
R∑
i=1

UiYi, {Yi}Ri=1 ⊂ L2
ρ̂,0

〈Yi, Yj〉L2
ρ̂

= δij , ∀1 ≤ i, j ≤ R, {Ui}Ri=1 ⊂ Vh linearly independent
}
.

(2.19)

Proposition 2.2.4 (Discrete tangent space at UY ᵀ). The tangent space TUY ᵀMh,ρ̂
R at

a point UY ᵀ ∈Mh,ρ̂
R is formed as

TUY ᵀMh,ρ̂
R =

{
δv ∈ Vh ⊗ L2

ρ̂,0 | δv =
R∑
i=1

UiδYi + δUiYi,

δUj ∈ Vh, δYi ∈ L2
ρ̂,0, 〈δYi, Yj〉L2

ρ̂
= 0, ∀1 ≤ i, j ≤ R

}
.

(2.20)

The projection Πh,ρ̂
UY ᵀ is defined in the discrete space Vh⊗L2

ρ̂ analogously to its continuous
version (1.14). It holds

Πh,ρ̂
UY ᵀ : Vh ⊗ L2

ρ̂ → TUY ᵀMh,ρ̂
R ⊂ Vh ⊗ L2

ρ̂, ∀UY ᵀ ∈Mh,ρ̂
R .

A discrete analogue of Lemma 1.3.3 holds, i.e.

(K,Πh,ρ̂
UY ᵀ [v])V ′V,L2

ρ̂
= (Πh,ρ̂

UY ᵀ [K], v)V ′V,L2
ρ̂
, ∀v ∈ Vh ⊗ L2

ρ̂, K ∈ V ′h ⊗ L2
ρ̂. (2.21)

The solution of the proposed numerical scheme (2.8)–(2.11) satisfies a discrete variational
formulation analogous to the variational formulation (1.17). To show this, we first present
a technical lemma which will be important in deriving the variational formulation.

Lemma 2.2.5. Let unh,ρ̂, u
n+1
h,ρ̂ be the discrete DLR solution at tn, tn+1, respectively, from

the scheme in Algorithm 2.2.1. Then the zero-mean parts un,∗h,ρ̂, u
n+1,∗
h,ρ̂ satisfy

1. un∗h,ρ̂ ∈ TŨn+1Y nᵀM
h,ρ̂
R ,

2. un+1,∗
h,ρ̂ ∈ TŨn+1Y nᵀM

h,ρ̂
R .

Proof.

1. The solution un,∗h,ρ̂ can be written as

un,∗h,ρ̂ = Ũn+10ᵀ + UnY nᵀ
.
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Since 〈0ᵀ, Y n〉L2
ρ̂

= 0, using the definition (2.20) we have

un,∗h,ρ̂ ∈ TŨn+1Y nᵀM
h,ρ̂
R .

2. The newly computed solution un+1,∗
h,ρ̂ can be expressed as

un+1,∗
h,ρ̂ = Ũn+1(Ỹ n+1 − Y n)ᵀ + Ũn+1Y nᵀ

.

Based on Lemma 2.2.2(1.) we know that 〈Ỹ n+1ᵀ − Y nᵀ
, Y n〉L2

ρ̂
= 0, i.e. again using

the definition (2.20) we have un+1,∗
h,ρ̂ ∈ TŨn+1Y nᵀM

h,ρ̂
R .

Remark 1. Note that for any function of the form v = Ũn+1Kᵀ or v = JY nᵀ with
K ∈ (L2

ρ̂)R, J ∈ (Vh)R, it holds v ∈ TŨn+1Y nᵀM
h,ρ̂
R since we have

JY nᵀ = Ũn+10ᵀ + JY nᵀ
, Eρ̂[0ᵀY n] = 0

Ũn+1Kᵀ = Ũn+1(P⊥ρ̂,Y n [K])ᵀ + Ũn+1(Pρ̂,Y n [K])ᵀ, 〈(P⊥ρ̂,Y n [K])ᵀ, Y n〉L2
ρ̂

= 0.

Since TŨn+1Y nᵀM
h,ρ̂
R is a vector space, it includes any linear combination of un,∗h,ρ̂ and

un+1,∗
h,ρ̂ . The following lemma is an analogue of Lemma 1.3.4 and will become useful when

we derive the discrete variational formulation.

Lemma 2.2.6. Let unh,ρ̂, u
n+1
h,ρ̂ be the discrete DLR solutions at times tn, tn+1 as defined

in Algorithm 2.2.1. Then the zero-mean parts un+1∗
h,ρ̂ , un

∗
h,ρ̂ satisfy

((un+1
h,ρ̂ − unh,ρ̂)∗

4t
−Πh,ρ̂

Ũn+1Y nᵀ
[F∗(unh,ρ̂, un+1

h,ρ̂ )], vh
)
V ′V,L2

ρ̂

= 0, ∀vh ∈ Vh ⊗ L2
ρ̂. (2.22)

Proof. Multiplying (2.9) by Y n
j and summing over j, we obtain

〈 Ũn+1Y nᵀ − un,∗h,ρ̂
4t

, vh

〉
H
−
(
Eρ̂[F(unh,ρ̂, un+1

h,ρ̂ )Y n]Y nᵀ
, vh

)
V ′V

= 0, ∀vh ∈ Vh. (2.23)

Noticing that

Eρ̂[F(unh,ρ̂, un+1
h,ρ̂ )Y n]Y nᵀ = Eρ̂[F∗(unh,ρ̂, un+1

h,ρ̂ )Y n]Y nᵀ

= Pρ̂,Yn [F∗(unh,ρ̂, un+1
h,ρ̂ )],
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and taking the weak formulation of (2.23) in L2
ρ̂ results in

〈Ũn+1Y nᵀ
, vh〉H,L2

ρ̂
= 〈un,∗h,ρ̂, vh〉H,L2

ρ̂
+4t

(
Pρ̂,Yn [F∗(unh,ρ̂, un+1

h,ρ̂ )], vh
)
V ′V,L2

ρ̂

∀vh ∈ Vh ⊗ L2
ρ̂. (2.24)

Similarly, multiplying (2.10) by Ũn+1, and further writing (2.10) in a weak form in L2
ρ̂,

we obtain

〈un+1,∗
h,ρ̂ − Ũn+1Y nᵀ

4t
−P⊥ρ̂,Yn

[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

(M̃n+1)−1Ũn+1ᵀ
]
, w

〉
L2
ρ̂

= 0,

∀w ∈ L2
ρ̂. (2.25)

Since

P⊥ρ̂,Yn
[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

(M̃n+1)−1Ũn+1ᵀ
]

= P⊥ρ̂,Yn [PŨn+1 [F∗(unh,ρ̂, un+1
h,ρ̂ )]],

taking the weak formulation of (2.25) in Vh results in

〈un+1,∗
h,ρ̂ , vh〉H,L2

ρ̂
= 〈Ũn+1Y nᵀ

, vh〉H,L2
ρ̂

+4t
(
P⊥ρ̂,Yn

[
PŨn+1 [F∗(unh,ρ̂, un+1

h,ρ̂ )]
]
, vh
)
V ′V,L2

ρ̂

∀vh ∈ Vh ⊗ L2
ρ̂. (2.26)

Finally, summing equations (2.24) and (2.26) results in (2.22).

We now proceed with the discrete variational formulation.

Theorem 2.2.7 (Discrete variational formulation). Let unh,ρ̂ and un+1
h,ρ̂ be the discrete

DLR solution at times tn, tn+1, respectively, n = 0, . . . , N − 1, as defined in Algorithm
2.2.1. Then it holds

〈un+1
h,ρ̂ − unh,ρ̂
4t

, vh
〉
H,L2

ρ̂

=
(
F(unh,ρ̂, un+1

h,ρ̂ ), vh
)
V ′V,L2

ρ̂

,

∀vh = v̄h + v∗h with v̄h ∈ Vh and v∗h ∈ TŨn+1Y nᵀM
h,ρ̂
R . (2.27)

Proof. Thanks to Lemma 2.2.5 we have (un+1
h,ρ̂ − unh,ρ̂)∗ ∈ TŨn+1Y nM

h,ρ̂
R , and we can

derive 〈(un+1
h,ρ̂ − unh,ρ̂)∗

4t
, vh

〉
H,L2

ρ̂

=
〈

Πh,ρ̂

Ũn+1Y nᵀ

[(un+1
h,ρ̂ − unh,ρ̂)∗

4t

]
, vh

〉
H,L2

ρ̂

=
〈(un+1

h,ρ̂ − unh,ρ̂)∗

4t
,Πh,ρ̂

Ũn+1Y nᵀ

[
vh

]〉
H,L2

ρ̂

(2.28)
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and formula (2.21) gives us

(
Πh,ρ̂

Ũn+1Y nᵀ
[F∗(unh,ρ̂, un+1

h,ρ̂ )], vh
)
V ′V,L2

ρ̂

=
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Πh,ρ̂

Ũn+1Y nᵀ
[vh]

)
V ′V,L2

ρ̂

. (2.29)

Summing (2.28), (2.29) and applying Lemma 2.2.6 results in

〈(un+1
h,ρ̂ − unh,ρ̂)∗

4t
, vh

〉
H,L2

ρ̂

=
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), vh
)
V ′V,L2

ρ̂

∀vh ∈ TŨn+1Y nᵀM
h,ρ̂
R .

Now summing this to equation (2.8) we obtain

〈 ūn+1
h,ρ̂ − ūnh,ρ̂ + (un+1

h,ρ̂ − unh,ρ̂)∗

4t
, wh + vh

〉
H,L2

ρ̂

=
(
Eρ̂[F(unh,ρ̂, un+1

h,ρ̂ )] + F∗(unh,ρ̂, un+1
h,ρ̂ ), wh + vh

)
V ′V,L2

ρ̂

∀wh ∈ Vh, ∀vh ∈ TŨn+1Y nᵀM
h,ρ̂
R (2.30)

which is equivalent to the final result (2.27). In (2.30) we have employed

〈(un+1
h,ρ̂ − unh,ρ̂)∗

4t
, wh

〉
H,L2

ρ̂

−
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), wh
)
V ′V,L2

ρ̂

= 0, ∀wh ∈ Vh

〈 ūn+1
h,ρ̂ − ūnh,ρ̂
4t

, vh

〉
H,L2

ρ̂

−
(
Eρ̂[F(unh,ρ̂, un+1

h,ρ̂ )], vh
)
V ′V,L2

ρ̂

= 0, ∀vh ∈ TŨn+1Y nᵀM
h,ρ̂
R ,

which holds as E[vh] = 0, ∀vh ∈ TŨn+1Y nᵀM
h,ρ̂
R .

2.2.3 Discrete variational formulation for the rank-deficient case

The discrete variational formulation established in the previous section is valid only
in the case of the deterministic basis Ũn+1 being linearly independent, since the proof
of Theorem 2.2.7 implicitly involves the inverse of M̃n+1 = 〈Ũn+1ᵀ , Ũn+1〉H . In this
subsection, we show that a discrete variational formulation can be generalized for the
rank-deficient case.

When applying the discretization scheme proposed in step 3. of Algorithm 2.2.1 with a
rank-deficient matrix M̃n+1, we recall that the solution Ỹ n+1 is defined as the solution of
(2.10) minimizing ‖Ỹ n+1−Y n‖L2

ρ̂
. Note that minimizing ‖Ỹ n+1−Y n‖L2

ρ̂
is equivalent to
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minimizing the norm ‖Ỹ n+1(ωk)− Y n(ωk)‖RR for every sample point ωk, k = 1, . . . , N̂ ,
where ‖ · ‖2RR = 〈·, ·〉RR denotes the Euclidean scalar product in RR.

In what follows we will exploit the fact that the vector space L2
ρ̂ is isomorphic to RN̂ .

In particular, it holds that (Ỹ n+1 − Y n)ᵀ ∈ RR×N̂ , where each column of (Ỹ n+1 − Y n)ᵀ

is given by (Ỹ n+1 − Y n)(ωk), k = 1, . . . , N̂ . With a little abuse of notation, we use
Ũn+1 : RR → Vh to denote a linear operator which takes real coefficients and returns
the corresponding linear combination of the basis functions Ũn+1. By Ũn+1ᵀ : Vh → RR

we denote its dual.

Lemma 2.2.8. For any discrete solution Ỹ n+1 of equation (2.10) that minimizes the
norm ‖Ỹ n+1 − Y n‖L2

ρ̂
, it holds that every column of the increment (Ỹ n+1 − Y n)ᵀ lies in

the 〈·, ·〉RR-orthogonal complement of the kernel of M̃n+1, i.e.

(Ỹ n+1 − Y n)ᵀ ∈
(

ker(M̃n+1)⊥
)N̂

where ker(M̃n+1) = {v ∈ RR : M̃n+1v = 0}.

Proof. Seeking a contradiction, let us suppose that (Ỹ n+1 − Y n)ᵀ /∈
(

ker(M̃n+1)⊥
)N̂

.
Let

Zᵀ := Ỹ n+1ᵀ − Pker(M̃n+1)[Ỹ
n+1ᵀ − Y nᵀ ] 6= Ỹ n+1, (2.31)

where Pker(M̃n+1)[v] ∈ RR×N̂ for v ∈ RR×N̂ denotes the column-wise application of 〈·, ·〉RR-
orthogonal projection onto the kernel of M̃n+1. Then, such constructed Z satisfies

‖(Z − Y n)(ωk)‖RR = ‖
(
Ỹ n+1 − Y n − Pker(M̃n+1)[Ỹ

n+1 − Y n]
)
(ωk)‖RR

< ‖(Ỹ n+1 − Y n)(ωk)‖RR ,

and solves (2.10):

M̃n+1(Z − Y n)ᵀ = M̃n+1(Ỹ n+1 − Y n)ᵀ

= 4tP⊥ρ̂,Yn
[(
F∗(unh,ρ̂, ūn+1 + Ũn+1Ỹ n+1ᵀ), Ũn+1

)
V ′V

]
= 4tP⊥ρ̂,Yn

[(
F∗(unh,ρ̂, ūn+1 + Ũn+1Zᵀ), Ũn+1

)
V ′V

]
,

where in the last step we used that ker(M̃n+1) = ker(Ũn+1). This leads to a contradiction
that Ỹ n+1 was the solution minimizing ‖Ỹ n+1 − Y n‖L2

ρ̂
.

When showing the equivalence between the DLR variational formulation (1.17) and the
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DLR system of equations (1.8)–(1.10) in the continuous setting, the DO condition

〈Ẏi, Yj〉L2
ρ̂

= 0, ∀1 ≤ i, j ≤ R (2.32)

plays an important role. In an analogous way, the discrete DO condition (property
1. from Lemma 2.2.2 for the full-rank case) plays an important role when showing
the equivalence between the discrete DLR system of equations and the discrete DLR
variational formulation.

Lemma 2.2.9. Any discrete solution Ỹ n+1 of equation (2.10) which minimizes the norm
‖Ỹ n+1 − Y n‖L2

ρ̂
, satisfies the discrete DO condition

〈(
Ỹ n+1 − Y n

4t

)ᵀ

, Y n
〉
L2
ρ̂

= 0. (2.33)

Proof. Let Ỹ n+1 be a solution of (2.10) minimizing ‖Ỹ n+1−Y n‖L2
ρ̂
. Thanks to Lemma 2.2.8

we know that (
Ỹ n+1 − Y n

)ᵀ
∈
(

ker(M̃n+1)⊥
)N̂
.

Now, let M̃n+1+ denote the pseudoinverse of M̃n+1. Since

M̃n+1+
M̃n+1v = v

for any v ∈ ker(M̃n+1)⊥, the solution Ỹ n+1 of equation (2.10) satisfies

Ỹ n+1ᵀ = Y nᵀ +4tM̃n+1+P⊥ρ̂,Yn
[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)ᵀ
V ′V

]
. (2.34)

Thus, if we have

Eρ̂
[
Y nᵀ

(
P⊥ρ̂,Yn

[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

]
M̃n+1+

)]
= 0,

then the statement will follow. But for the column space of

P⊥ρ̂,Yn
[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

]
M̃n+1+ ∈ RN̂×R

it holds

span
{
P⊥ρ̂,Yn

[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

]
M̃n+1+

}
⊂ span

{
P⊥ρ̂,Yn

[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

]}
⊂ Yn⊥ρ̂

with Yn⊥ρ̂ ⊂ RN̂ being the orthogonal complement to Yn in the scalar product 〈·, ·〉L2
ρ̂
.

Now the proof is complete.
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In the following lemma we address the question of existence of a unique solution when
applying the explicit and semi-implicit scheme.

Lemma 2.2.10. For the explicit and semi-implicit scheme, as described in Section 2.2.1,
there exists a unique discrete solution Ỹ n+1 of equation (2.10) minimizing the norm
‖Ỹ n+1 − Y n‖L2

ρ̂
.

Proof. We will start with the semi-implicit scheme. By virtue of Lemma 2.2.3, under
the discrete DO condition (2.33), applying the semi-implicit scheme to equation (2.10) is
equivalent to solving equation (2.18). We will first focus our attention to equation (2.18)
and show that there exists a unique solution minimizing ‖Ỹ n+1 − Y n‖L2

ρ̂
. This solution

will satisfy the discrete DO and consequently is a unique minimizing solution of (2.10).
Equation (2.18) can be rewritten as

B (Ỹ n+1 − Y n)ᵀ = RHS in L2
ρ̂, (2.35)

where

B = M̃n+1 +4t〈Ũn+1ᵀ , Ũn+1〉Ldet

RHS = −4t
(
Ũn+1ᵀ ,P⊥ρ̂,Yn [L∗stoch(unh,ρ̂)− fn,n+1∗ ]

)
V V ′

.

Since RHS above lies in the range of Ũn+1ᵀ , which is the same as the range of B, a
solution of (2.35) exists. Moreover, since the matrix B is positive definite on the space

ker(B)⊥, any solution can be expressed as (Ỹ n+1 − Y n + W )ᵀ with W ᵀ ∈
(

ker(B)
)N̂

and a unique Ỹ n+1ᵀ ∈ RR×N̂ such that (Ỹ n+1 − Y n)ᵀ ∈
(

ker(B)⊥
)N̂

. The solution
Ỹ n+1 minimizes each column ‖(Ỹ n+1 − Y n)(ωk)‖RR , k = 1, . . . , N̂ and thus it is the
unique solution of (2.35) that minimizes norm ‖Ỹ n+1 − Y n‖L2

ρ̂
. We observe that the

established solution Ỹ n+1 of equation (2.35) satisfies the discrete DO condition (2.33).
The argument is analogous to the proof of Lemma 2.2.9, but instead of M̃n+1 here we
take B. Therefore, the statement for the semi-implicit scheme follows. The explicit case
can be shown by following analogous steps with

B = M̃n+1,

RHS = 4t
(
Ũn+1ᵀ ,P⊥ρ̂,Yn [F∗(unh,ρ̂)]

)
V V ′

.

Now we can proceed with showing the discrete variational formulation. It is not generally
easy to deal with the notion of a tangent space at a certain point on the manifold in the
rank-deficient case. In the following theorem we will, however, show that an analogous
discrete variational formulation holds. Given U ∈ (Vh)R and Y ∈ (L2

ρ̂,0)R, we define the
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vector space TUY ᵀ as

TUY ᵀ =
{
δv ∈ Vh ⊗ L2

ρ̂,0 | δv =
R∑
i=1

UiδYi + δUiYi

δUi ∈ Vh, δYi ∈ L2
ρ̂,0, 〈δYi, Yj〉L2

ρ̂
= 0 ∀i, j = 1, . . . , R

}
.

It is easy to verify that, analogously to Lemma 2.2.5, the (possibly rank-deficient) discrete
DLR solutions unh,ρ̂ and un+1

h,ρ̂ at times tn, tn+1, as defined in Algorithm 2.2.1 satisfy

unh,ρ̂ ∈ TŨn+1Y nᵀ , un+1
h,ρ̂ ∈ TŨn+1Y nᵀ . (2.36)

Theorem 2.2.11. Let unh,ρ̂ and un+1
h,ρ̂ be the (possibly rank-deficient) discrete DLR

solution at times tn, tn+1, respectively, n = 0, . . . , N − 1, as defined in Algorithm 2.2.1.
Then the following variational formulation holds

〈un+1
h,ρ̂ − unh,ρ̂
4t

, vh
〉
H,L2

ρ̂

=
(
F(unh,ρ̂, un+1

h,ρ̂ ), vh
)
V ′V,L2

ρ̂

,

∀vh = v̄h + v∗h with v̄h ∈ Vh and v∗h ∈ TŨn+1Y nᵀ .

(2.37)

Proof. First, consider equation (2.9) with vh = Ũn+1
j . Summing over j results in

(
Eρ̂[(F∗(unh,ρ̂, un+1

h,ρ̂ ))Y n], Ũn+1
)
V ′V

= 1
4t

(
M̃n+1 − 〈Unᵀ

, Ũn+1〉H
)
. (2.38)

Let us proceed with the equation (2.10):

0 = Ỹ n+1 − Y n

4t
M̃n+1 − P⊥ρ̂,Yn

[(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

]
= Ỹ n+1 − Y n

4t
M̃n+1 −

(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

+ Y n
(
Eρ̂[(F∗(unh,ρ̂, un+1

h,ρ̂ ))Y nᵀ ], Ũn+1
)
V ′V

= Ỹ n+1〈Ũn+1ᵀ , Ũn+1〉H − Y nM̃n+1 + Y nM̃n+1 − Y n〈Unᵀ
, Ũn+1〉H

4t
−
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

=
〈(un+1

h,ρ̂ − unh,ρ̂)∗

4t
, Ũn+1

〉
H
−
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), Ũn+1
)
V ′V

44
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Taking a weak formulation in L2
ρ̂,0 results in

〈(un+1
h,ρ̂ − unh,ρ̂)∗

4t
, wh

〉
H,L2

ρ̂

−
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), wh
)
V ′V,L2

ρ̂

= 0

∀wh = Ũn+1δY ᵀ, δY ∈ (L2
ρ̂,0)R. (2.39)

Concerning equation (2.9), we proceed as follows: ∀vh ∈ (Vh)R

0 =
〈
Ũn+1 − Un

4t
, vh

〉
H
−
(
Eρ̂[(F(unh,ρ̂, un+1

h,ρ̂ ))Y n], vh
)
V ′V

=
〈
Ũn+1Eρ̂[Ỹ n+1ᵀY n]− UnEρ̂[Y nᵀ

Y n]
4t

, vh

〉
H
−
(
Eρ̂[(F(unh,ρ̂, un+1

h,ρ̂ ))Y n], vh
)
V ′V

=
〈(un+1

h,ρ̂ − unh,ρ̂)∗

4t
, vhY

nᵀ
〉
H,L2

ρ̂

−
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), vhY nᵀ
)
V ′V,L2

ρ̂

∀vh ∈ (Vh)R, (2.40)

where in the second step we applied Eρ̂[Ỹ n+1ᵀY n] = Id which holds thanks to the discrete
DO condition from Lemma 2.2.9. Summing equation (2.39) and (2.40) we obtain

〈(un+1
h,ρ̂ − unh,ρ̂)∗

4t
, wh

〉
H,L2

ρ̂

−
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), wh
)
V ′V,L2

ρ̂

= 0

∀wh ∈ TŨn+1Y nᵀ .

The rest of the proof follows the same steps as in the proof of Theorem 2.2.7, i.e. summing
the mean value equation (2.8) and noting that some terms vanish.

2.2.4 Reinterpretation as a projector-splitting scheme

The proposed Algorithm 2.2.1 was derived from the DLR system of equations (1.8)–(1.10).
This subsection is dedicated to showing that this scheme can in fact be formulated as a
projector-splitting scheme for the time discretization of the Dual DO approximation of
(1.3). Afterwards, we will continue by showing its connection to the projector-splitting
scheme described in Section 2.1, which was proposed in [LO14; LOV15b] and further
analyzed in [KLW16].

In what follows, we will focus on the evolution of un,∗h,ρ̂, i.e. the 0-mean part of the discrete
DLR solution unh,ρ̂.

Lemma 2.2.12. The discretized system of equations (2.9)–(2.10) can be equivalently
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reformulated as

〈ũh,ρ̂, vh〉H,L2
ρ̂

= 〈un,∗h,ρ̂, vh〉H,L2
ρ̂

+4t
(
Pρ̂,Yn [F∗(unh,ρ̂, un+1

h,ρ̂ )], vh
)
V ′V,L2

ρ̂

(2.41)

〈un+1,∗
h,ρ̂ , vh〉H,L2

ρ̂
= 〈ũh,ρ̂, vh〉H,L2

ρ̂

+4t
(
P⊥ρ̂,Yn

[
PŨn+1 [F∗(unh,ρ̂, un+1

h,ρ̂ )]
]
, vh
)
V ′V,L2

ρ̂

, (2.42)

∀vh ∈ Vh ⊗ L2
ρ̂,

where ũh,ρ̂ = Ũn+1Y nᵀ.

Proof. These equations are essentially equations (2.24) and (2.26), which are shown to
hold in the proof of Lemma 2.2.6.

We recall that from Lemma 1.3.4, the zero-mean part of the continuous DLR approxima-
tion u∗ = UY ᵀ satisfies

(u̇∗ −Πu∗ [F∗(u)− f∗], v)V ′V,L2
ρ

= (u̇∗ − PY [F∗(u)]− P⊥Y [PU [F∗(u)]], v)V ′V,L2
ρ

= 0,

∀v ∈ L2
ρ(Ω;V ).

Lemma 2.2.12 therefore shows that the time integration scheme corresponds to a
projection-splitting scheme in which first the projection PY [F∗(u)] and then the projection
P⊥Y [PU [F∗(u)]] are applied.

2.3 Linking the projector-splitting integrator from Section
2.1 with the staggered scheme of Section 2.2

The projector-splitting scheme of Section 2.1 is a time integration scheme successfully
used for the integration of dynamical low rank approximation in the DDO formulation.
This section provides a detailed look into the comparison of the Algorithm 2.2.1 and the
Algorithm 2.1.2. We will see that, if the solution is full rank, these schemes are in fact
equivalent.

The projector-splitting integrator was originally proposed to deal with R-rank approxi-
mation of time-dependent matrices. For the case of time-dependent differential equations,
the authors in [LO14] propose to apply 4A = 4tF(unh,ρ̂). In this work, we consider a
more general expression

4A = 4t
(
F(unh,ρ̂, un+1

h,ρ̂ )
)

where F(unh,ρ̂, u
n+1
h,ρ̂ ) can be any of the explicit, implicit or semi-implicit discretizations
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detailed in Section 2.2.1.

Now, let us compare the steps of Algorithm 2.1.2 to Algorithm 2.2.1. We can easily
observe that ˆ̄un+1 = ūn+1. Since Y n = V0, we can see that equation (2.9) is equivalent
to step 1 with Un = U0S0, i.e. K1 = Ũn+1. Further, we have

M̃n+1 = 〈Ũn+1ᵀ , Ũn+1〉H = Ŝᵀ
1 〈U

ᵀ
1 , U1〉H Ŝ1 = Ŝᵀ

1 Ŝ1.

Equation (2.10) can be reformulated as

Ỹ n+1Ŝᵀ
1 Ŝ1 = Y nŜᵀ

1 Ŝ1 −4tY n
(
Eρ̂
[
Y nᵀ(F∗(unh,ρ̂, un+1

h,ρ̂ ))
]
, U1

)
V ′V

Ŝ1

+4t
(
F∗(unh,ρ̂, un+1

h,ρ̂ ), U1
)
V ′V

Ŝ1,

which, provided Ŝ1 is invertible, is equivalent to

Ỹ n+1Ŝᵀ
1 = Y n

(
Ŝᵀ

1 −4t
(
Eρ̂
[
Y nᵀ(F∗(unh,ρ̂, un+1

h,ρ̂ ))
]
, U1

)
V ′V

)
+4t

(
F∗(unh,ρ̂, un+1

h,ρ̂ ), U1
)
V ′V

.

Note that the expression in brackets in the first term on the right hand side is exactly
the transpose of S̃0 from step 3:

Ŝᵀ
1 −4t

(
Eρ̂
[
Y nᵀ(F∗(unh,ρ̂, un+1

h,ρ̂ ))
]
, U1

)
V ′V

= S̃ᵀ
0 ,

from which we deduce
L1 = Ỹ n+1Ŝᵀ

1 .

Finally, we have

ûn+1,∗
h,ρ̂ = U1S1V

ᵀ
1 = U1L

ᵀ
1 = U1Ŝ1Ỹ

n+1ᵀ = Ũn+1Ỹ n+1ᵀ = un+1,∗
h,ρ̂ .

We conclude that the scheme in Algorithm 2.2.1 and the scheme in Algorithm 2.1.2
coincide in exact arithmetic, provided the matrix S1 is invertible. However, the numerical
behavior of the two schemes differs when S1 is singular or close to singular. For M̃n+1

close to singular, solving equation (2.10) might lead to numerical instabilities. This
problem seems to be avoided in the projector-splitting scheme from [LO14; LOV15b], as
no matrix inversion is involved. Such ill conditioning is however hidden in performing
step 3. of Algorithm 2.1.2, since the QR or SVD decomposition can become unstable
for ill-conditioned matrices (see [GVL96, chap. 5]). In the case of a rank deficient basis
{Ũn+1}, Algorithm 2.2.1 updates the stochastic basis by solving equation (2.10) in a
least square sense while minimizing the norm ‖Ỹ n+1 − Y n‖L2

ρ̂
. The previous subsection

showed that such solution satisfies the discrete variational formulation which plays a
crucial role in stability estimation (see Section 3.4). On the other hand, Algorithm 2.1.2

47



Chapter 2. Projector-splitting schemes and their variational formulation

relies on the somehow arbitrary completion of the basis {U1} in the step 3. In presence
of rank deficiency, the two algorithms can deliver different solutions (see section 3.6.3 for
a numerical comparison). In the following theorem we show, that the discrete solution
obtained by the projector-splitting integrator of Algorithm 2.1.2 satisfies a similar discrete
variational formulation.

Lemma 2.3.1. Let ûnh,ρ̂, û
n+1
h,ρ̂ be the discrete DLR solutions at times tn, tn+1 as defined

in Algorithm 2.1.2. Then the zero-mean parts ûn+1∗
h,ρ̂ , ûn

∗
h,ρ̂ satisfy

((ûn+1
h,ρ̂ − ûnh,ρ̂)∗

4t
−Πh,ρ̂

U1Y n
ᵀ [F∗(ûnh,ρ̂, ûn+1

h,ρ̂ )], vh
)
V ′V,L2

ρ̂

= 0, ∀vh ∈ Vh ⊗ L2
ρ̂. (2.43)

Proof. Simply following a reversed order of the steps of the Algorithm 2.1.2, we derive
for ∀vh ∈ Vh ⊗ L2

ρ̂

〈ûn+1∗
h,ρ̂ , vh〉H,L2

ρ̂
= 〈U1L

ᵀ
1, vh〉H,L2

ρ̂
=
〈
U1S̃0V

ᵀ
0 +4tU1(U1,F∗(ûnh,ρ̂, ûn+1

h,ρ̂ ))V V ′,L2
ρ̂
, vh
〉
H,L2

ρ̂

=
〈
U1Ŝ1V

ᵀ
0 −4t U1(Eρ̂[F∗(ûnh,ρ̂, ûn+1

h,ρ̂ )V0], U1)V ′V,L2
ρ̂
V ᵀ

0

+4t U1(U1,F∗(ûnh,ρ̂, ûn+1
h,ρ̂ ))V V ′,L2

ρ̂
, vh

〉
H,L2

ρ̂

=
〈
K1V

ᵀ
0 −4t U1(Eρ̂[F∗(ûnh,ρ̂, ûn+1

h,ρ̂ )V0], U1)V ′V,L2
ρ̂
V ᵀ

0

+4t U1(U1,F∗(ûnh,ρ̂, ûn+1
h,ρ̂ ))V V ′,L2

ρ̂
, vh

〉
H,L2

ρ̂

=
〈
U0S0V

ᵀ
0 + Eρ̂[F∗(ûnh,ρ̂, ûn+1

h,ρ̂ )V0]V ᵀ
0 −4t U1(Eρ̂[F∗(ûnh,ρ̂, ûn+1

h,ρ̂ )V0], U1)V ′V,L2
ρ̂
V ᵀ

0

+4t U1(U1,F∗(ûnh,ρ̂, ûn+1
h,ρ̂ ))V V ′,L2

ρ̂
, vh

〉
H,L2

ρ̂

=
〈
ûn
∗
h,ρ̂ +4tΠh,ρ̂

U1V
ᵀ

0
[F∗(ûnh,ρ̂, ûn+1

h,ρ̂ )], vh〉V ′V,L2
ρ̂
.

Since Y n = V0, we arrive at the sought statement.

Lemma 2.3.2. Let unh,ρ̂, u
n+1
h,ρ̂ be the discrete DLR solution at tn, tn+1, respectively, from

the scheme in Algorithm 2.1.2. Then the zero-mean parts un,∗h,ρ̂, u
n+1,∗
h,ρ̂ satisfy

1. un∗h,ρ̂ ∈ TU1Y n
ᵀMh,ρ̂

R ,

2. un+1,∗
h,ρ̂ ∈ TU1Y n

ᵀMh,ρ̂
R .

Proof. The proof follows analogous steps as the proof of Lemma 2.2.5.

Theorem 2.3.3. Let ûnh,ρ̂ and û
n+1
h,ρ̂ be the (possibly rank-deficient) discrete DLR solution

at times tn, tn+1, respectively, n = 0, . . . , N − 1, as defined in Algorithm 2.1.2. Then the
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following variational formulation holds

〈 ûn+1
h,ρ̂ − ûnh,ρ̂
4t

, vh
〉
H,L2

ρ̂

=
(
F(ûnh,ρ̂, ûn+1

h,ρ̂ ), vh
)
V ′V,L2

ρ̂

,

∀vh = v̄h + v∗h with v̄h ∈ Vh and v∗h ∈ TU1Y n
ᵀMh,ρ̂

R .

(2.44)

Proof. Applying the variational formulation (2.43) together with Lemma 2.3.2 and (2.21)
we derive

〈(ûn+1
h,ρ̂ − ûnh,ρ̂)∗

4t
, vh

〉
H,L2

ρ̂

=
(
F∗(ûnh,ρ̂, ûn+1

h,ρ̂ ), vh
)
V ′V,L2

ρ̂

, ∀vh ∈ TU1Y n
ᵀMh,ρ̂

R .

To incorporate the mean value in the variational formulation we follow analogous steps
as in the proof of Theorem 2.2.7.

The variational formulation (2.44) holds in the rank-deficient case as well.

Remark 2. Note that the ordering of the equations in Algorithm 2.2.1 is crucial. When
dealing with the DO formulation, i.e. orthonormal deterministic basis and linearly
independent stochastic basis, we shall first update the stochastic basis and then evolve
the deterministic basis. For a reversed ordering the Theorem 2.2.7 would not hold.

Note that in the full-rank case (when M̃n+1 is full rank), it holds

TU1Y n
ᵀMh,ρ̂

R = TŨn+1Y nᵀM
h,ρ̂
R .

However, in the rank deficient case,

TU1Y n
ᵀMh,ρ̂

R 6= TŨn+1Y nᵀ .

Comparing the variational formulations (2.27) and (2.44), it is clear, why the two discrete
DLR solutions are equal in the full-rank case but differ in the rank deficient case.

The discrete variational formulation provides a geometric insight into the projector-
splitting algorithm. It becomes useful when analysing stability, estimating the error
caused by discretization as well as providing a geometric proof for the exactness property,
available in the following.

Theorem 2.3.4 (Exactness property). Let utrue,h,ρ̂(t) ∈ Vh ⊗ L2
ρ̂ be of rank R for

tn ≤ t ≤ tn+1, so that utrue,h,ρ̂(t) has a factorization (2.4), i.e.

utrue,h,ρ̂(t) = ū(t) + U(t)S(t)V (t)ᵀ.

Moreover, assume that the R×R matrix Eρ̂[V (tn+1)ᵀV (tn)] is invertible. With unh,ρ̂ =

49



Chapter 2. Projector-splitting schemes and their variational formulation

utrue,h,ρ̂(tn), and 4A = utrue,h,ρ̂(tn+1)−utrue,h,ρ̂(tn), the Algorithm 2.1.2 is exact: ûn+1
h,ρ̂ =

utrue,h,ρ̂(tn+1).

Proof. By assumption, Eρ̂[V (tn+1)ᵀV (tn)] is invertible, therefore the range of utrue,h,ρ̂(tn+1)
lies in the range of the updated deterministic modes U1 given by the integrator. This
implies that

PU1 [utrue,h,ρ̂(tn+1)] = utrue,h,ρ̂(tn+1) which gives us utrue,h,ρ̂(tn+1) ∈ TU1Y n
ᵀMh,ρ̂

R .

Applying Lemma 2.3.2 and the variational formulation (2.43), we derive

ûn+1
h,ρ̂ = ûnh,ρ̂ + ūtrue,h,ρ̂(tn+1)− ūtrue,h,ρ̂(tn) + Πh,ρ̂

U1Y n
ᵀ [u∗true,h,ρ̂(t

n+1)− u∗true,h,ρ̂(t
n)]

= utrue,h,ρ̂(tn) + utrue,h,ρ̂(tn+1)− utrue,h,ρ̂(tn) = utrue,h,ρ̂(tn+1).

Note that the exactness property holds for the discrete DLR solution obtained by
Algorithm 2.2.1 as well.
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3 Stability properties

The main goal of this chapter is to prove the stability of the newly-proposed numerical
schemes from Section 2.2 applied to a parabolic problem with random coefficients. The
stability of the implicit and explicit Euler schemes applied to deterministic parabolic
problems (with no DLR approximation) is well analyzed (see e.g. [EG04b]). A natural
question is to what extent constraining the dynamics to the low rank manifold influences
the stability properties. We will start this chapter by specifying the operator F from
(1.3) to describe parabolic problems with random coefficients in Section 3.1. In Section
3.2, we will first recall some stability properties of the true solution utrue of problem (1.3).
Then, in Section 3.3 we will see that these properties hold for the continuous DLR
solution as well. It turns out that our discretization schemes satisfy analogous stability
properties, as we will see in Section 3.4, under some stability conditions for the explicit
and semi-implicit scheme. The sharpness of the obtained stability conditions on the
time step and spatial discretization is supported by the numerical results provided in
Section 3.6. In the rest of this chapter we will assume that a solution of problem (1.3),
continuous DLR solution and discrete DLR solution exist. The results presented in this
chapter are original and based on the paper [KNV21].

3.1 Problem specification

In this section we will introduce a random operator L particularizing the operator F
from (1.3) to comprise parabolic equations.

Let us consider a random operator L with values in the space of linear bounded operators
from V to V ′ that is uniformly bounded and coercive, i.e. a Borel measurable function

L : Ω → L(V, V ′)
ω 7→ L(ω)
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Chapter 3. Stability properties

such that there exist CL, CB > 0 satisfying(
L(ω)v, v

)
V ′V
≥ CL‖v‖2V ∀ω ∈ Ω, ∀v ∈ V, (3.1)(

L(ω)v, w
)
V ′V
≤ CB‖v‖V ‖w‖V ∀ω ∈ Ω, ∀v, w ∈ V. (3.2)

Associated to the random operator L, we introduce the operator L, defined as

L : L2
ρ(Ω;V ) → L2

ρ(Ω;V ′)
u 7→ L(u) : L(u)(ω) = L(ω)u(ω) ∈ V ′ ∀ω ∈ Ω.

Notice that for any strongly measurable u : Ω→ V , the map ω ∈ Ω 7→ L(ω)u(ω) ∈ V ′

is strongly measurable, V ′ being separable (see [KNV21, Proposition A]). From the
uniform boundedness of L it follows immediately that, if u is square integrable, then L(u)
is square integrable as well and ‖L(u)‖L2

ρ(Ω;V ′) ≤ CB‖u‖L2
ρ(Ω;V ), ∀u ∈ L2

ρ(Ω;V ). The
operator L induces a bilinear form on L2

ρ(Ω;V ) defined as

〈v, w〉L,ρ :=
∫

Ω

(
L(v)(ω), w(ω)

)
V ′V

dρ(ω), v, w ∈ L2
ρ(Ω;V ),

which is coercive and bounded with coercivity and continuity constant CL and CB,
respectively, i.e.

〈v, v〉L,ρ ≥ CL‖v‖2V,L2
ρ
,

〈u, v〉L,ρ ≤ CB‖u‖V,L2
ρ
‖v‖V,L2

ρ
.

Then, given a final time T > 0, a random forcing term f ∈ L2(0, T ;L2
ρ(Ω;H)) and a

random initial condition u0 ∈ L2
ρ(Ω;V ), we consider now the following parabolic problem:

Find a solution utrue ∈ L2(0, T ;L2
ρ(Ω;V )) with u̇true ∈ L2(0, T ;L2

ρ(Ω;V ′)) satisfying

(
u̇true, v

)
V ′V,L2

ρ

+
(
L(utrue), v

)
V ′V,L2

ρ

= 〈f, v〉H,L2
ρ
,

∀v ∈ L2
ρ(Ω;V ), a.e. t ∈ (0, T ]

utrue(0) = u0.

(3.3)

The general theory of parabolic equations (see e.g. [Wlo87]) can be applied to problem
(3.3), at least in the case of L2

ρ(Ω;V ), L2
ρ(Ω;H), L2

ρ(Ω;V ′) being separable, e.g. when
Ω is a Polish space and A is the corresponding Borel σ-algebra. We conclude then
that problem (3.3) has a unique solution utrue which depends continuously on f and
u0. We note that the theory of parabolic equations would allow for less regular data
f ∈ L2(0, T ;L2

ρ(Ω;V ′)) and u0 ∈ L2
ρ(Ω;H). However, in this work we restrict our

attention to the case f ∈ L2(0, T ;L2
ρ(Ω;H)), u0 ∈ L2

ρ(Ω;V ).
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Concerning the discretization proposed in Chapter 2, note that the semi-discrete bilinear
form 〈·, ·〉L,ρ̂ defined as

〈v, w〉L,ρ̂ =
N̂∑
k=1

L(ωk)v(ωk)w(ωk)λk

is coercive and bounded, with the same coercivity and continuity constants CL, CB,
defined in (3.1), (3.2), respectively.

We will state two types of estimates: the first one holds for an operator L as described
in this section and a second one additionally assuming the operator L to be symmetric.
Note that in the second case the bilinear coercive form 〈·, ·〉L,ρ is a scalar product on
L2
ρ(Ω;V ).

3.2 Stability of the continuous problem

We state here some standard stability estimates concerning the solution utrue of prob-
lem (3.3).

Proposition 3.2.1. Let utrue ∈ L2(0, T ;L2
ρ(Ω;V )) be the solution of problem (3.3).

Then, the following estimates hold:

1.

‖utrue(T )‖2H,L2
ρ

+ CL

∫ T

0
‖utrue(t)‖2V,L2

ρ
dt

≤ ‖utrue(0)‖2H,L2
ρ

+ C2
P

CL

∥∥∥f∥∥∥2

L2(0,T ;L2
ρ(Ω;H))

; (3.4)

2. if, in addition, L is symmetric and u̇true ∈ L2(0, T ;L2
ρ(Ω;H)), we have

‖utrue(T )‖2L,ρ +
∫ T

0
‖u̇true(t)‖2H,L2

ρ
dt

≤ ‖utrue(0)‖2L,ρ +
∥∥∥f∥∥∥2

L2(0,T ;L2
ρ(Ω;H))

, (3.5)

where CL > 0 is the coercivity constant defined in (3.1) and CP is the continuous embed-
ding constant defined in (1.2).

For f = 0 and t1, t2 ∈ [0, T ], t1 ≤ t2, we have:

3.
‖utrue(t2)‖H,L2

ρ
≤ ‖utrue(t1)‖H,L2

ρ
, (3.6)

53



Chapter 3. Stability properties

4. moreover, if L is symmetric and u̇true ∈ L2(0, T ;L2
ρ(Ω;H)), we have

‖utrue(t2)‖L,ρ ≤ ‖utrue(t1)‖L,ρ. (3.7)

Proof. As for part 1, choose utrue as a test function in the variational formulation (3.3).
Using [Zei90, Prop. 23.23] results in

1
2

d
dt‖utrue‖2H,L2

ρ
+ 〈utrue, utrue〉L,ρ = 〈f, utrue〉H,L2

ρ
≤ CP‖f‖H,L2

ρ
‖utrue‖V,L2

ρ

≤ C2
P

2CL
‖f‖2H,L2

ρ
+ CL

2 ‖utrue‖2V,L2
ρ

for a.e. t ∈ (0, T ].

Multiplying by 2 and integrating over [0, T ] gives the sought estimate. Part 2. is proved
in a similar way by considering u̇true as a test function. We can derive

‖u̇true‖2H,L2
ρ

+ 1
2

d
dt‖utrue‖2L,ρ = 〈f, u̇true〉H,L2

ρ
≤ ‖f‖H,L2

ρ
‖u̇true‖H,L2

ρ

≤
‖f‖2H,L2

ρ

2 +
‖u̇true‖2H,L2

ρ

2

and obtain the result by multiplying by 2 and integrating over [0, T ].

Part 3. and part 4. are consequences of part 1. and 2., where the final integration is
realized over [t1, t2] instead of [0, T ].

3.3 Stability of the continuous DLR solution

Constraining the dynamics to the R-rank manifold does not destroy the stability properties
from Proposition 3.2.1.

Theorem 3.3.1. Let u ∈ L2(0, T ;L2
ρ(Ω;V )) with u̇ ∈ L2(0, T ;L2

ρ(Ω;V )) be the contin-
uous DLR solution defined in Definition 1.2.1. Then u satisfies the same inequalities
(3.4), (3.5), (3.6), (3.7) as the true solution utrue.

Proof. Part 1: Let u = ū+UY ᵀ with UY ᵀ ∈MR. Then, we have u∗ = u− ū ∈ Tu∗MR.
Indeed, since

u∗ =
R∑
i=1

Ui0 + UiYi ∈ L2
ρ,0(Ω;V )

with 〈0, Yi〉L2
ρ

= 0, we can take u as a test function in the variational formulation (1.17).
The rest of the proof follows the same steps as in the proof of Proposition 3.2.1.
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Part 2: we express

u̇∗ =
R∑
j=1

U̇jYj + Uj Ẏj ∈ Tu∗MR

since 〈Yi, Ẏj〉L2
ρ

= δij and u̇∗ ∈ L2
ρ(Ω;V ). As ˙̄u ∈ V we can consider u̇ as a test function

in the variational formulation (1.17) and arrive at the sought result.

Part 3. and 4. is obtained analogously.

3.4 Stability of the discrete DLR solution

Now we proceed with showing stability properties of the fully discretized DLR system
from Algorithm 2.2.1 for the three different operator evaluation terms corresponding
to implicit Euler, explicit Euler and semi-implicit scheme. For each of them we will
establish boundedness of norms and a decrease of norms for the case of zero forcing term f .

The following simple lemma will be repeatedly used throughout.

Lemma 3.4.1. Let 〈·, ·〉 : (Vh ⊗ L2
ρ̂) × (Vh ⊗ L2

ρ̂) → R be a symmetric bilinear form.
Then it holds

〈v, w − v〉 = 1
2

(
〈w,w〉 − 〈v, v〉 − 〈w − v, w − v〉

)
〈w,w − v〉 = 1

2

(
〈w,w〉 − 〈v, v〉+ 〈w − v, w − v〉

)
〈v, w + v〉 = 1

2

(
〈v, v〉 − 〈w,w〉+ 〈w + v, w + v〉

)
for any v, w ∈ Vh ⊗ L2

ρ̂.

3.4.1 Implicit Euler scheme

Applying an implicit operator evaluation, i.e. L(unh,ρ̂, u
n+1
h,ρ̂ ) = L(un+1

h,ρ̂ ) results in a
discretization scheme with the following stability properties.

Theorem 3.4.2. Let {unh,ρ̂}Nn=0 be the discrete DLR solution as defined in Algorithm
2.2.1 with L(unh,ρ̂, u

n+1
h,ρ̂ ) = L(un+1

h,ρ̂ ). Then the following estimates hold:

1.

‖uNh,ρ̂‖2H,L2
ρ̂

+4tCL
N−1∑
n=0
‖un+1

h,ρ̂ ‖
2
V,L2

ρ̂
≤ ‖u0

h,ρ̂‖2H,L2
ρ̂

+4tC
2
P

CL

N−1∑
n=0
‖f(tn+1)‖2H,L2

ρ̂
,
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2. if L is a symmetric operator we have

‖uNh,ρ̂‖2L,ρ̂ +4t
N−1∑
n=0

∥∥∥∥un+1
h,ρ̂ − unh,ρ̂
4t

∥∥∥∥2

H,L2
ρ̂

≤ ‖u0
h,ρ̂‖2L,ρ̂ +4t

N−1∑
n=0
‖f(tn+1)‖2H,L2

ρ̂
,

for any time and space discretization parameters 4t, h > 0 with CL, CP > 0 the coercivity
and continuous embedding constant defined in (3.1), (1.2), respectively.

In particular, for f = 0 and n = 0, . . . , N − 1 it holds:

3. ‖un+1
h,ρ̂ ‖H,L2

ρ̂
≤ ‖unh,ρ̂‖H,L2

ρ̂
,

4. if L is a symmetric operator we have ‖un+1
h,ρ̂ ‖L,ρ̂ ≤ ‖unh,ρ̂‖L,ρ̂.

Proof. Thanks to Theorem 2.2.7, we know that the discretized DLR system of equations
with implicit operator evaluation can be written in a variational formulation as

〈un+1
h,ρ̂ − unh,ρ̂
4t

, vh
〉
H,L2

ρ̂

+
〈
un+1
h,ρ̂ , vh

〉
L,ρ̂

=
〈
f(tn+1), vh

〉
H,L2

ρ̂

,

∀vh = v̄h + v∗h with v̄h ∈ Vh and v∗h ∈ TŨn+1Y nM
h,ρ̂
R ,

(3.8)

n = 0, . . . , N − 1.

1. Based on Lemma 2.2.5 we take vh = un+1
h,ρ̂ as a test function in the variational

formulation (3.8). Using Lemma 3.4.1 results in

‖un+1
h,ρ̂ ‖

2
H,L2

ρ̂
− ‖unh,ρ̂‖2H,L2

ρ̂
+ ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
+ 24t〈un+1

h,ρ̂ , u
n+1
h,ρ̂ 〉L,ρ̂

= 24t(f(tn+1), un+1
h,ρ̂ )V ′V,L2

ρ̂
≤ 4tC

2
P

CL
‖f(tn+1)‖2H,L2

ρ̂
+4tCL‖un+1

h,ρ̂ ‖
2
V,L2

ρ̂
.

Using the coercivity condition (3.1) and summing over n = 0, . . . , N − 1 gives us
the sought result.

2. Now, consider vh = (un+1
h,ρ̂ − unh,ρ̂)/4t. Using Lemma 3.4.1, the variational formula-

tion results in

∥∥∥∥un+1
h,ρ̂ − unh,ρ̂
4t

∥∥∥∥2

H,L2
ρ̂

+ 1
24t

(
‖un+1

h,ρ̂ ‖
2
L,ρ̂ − ‖unh,ρ̂‖2L,ρ̂ + ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂

)

=
〈
f(tn+1),

un+1
h,ρ̂ − unh,ρ̂
4t

〉
H,L2

ρ̂

≤
‖f(tn+1)‖2

H,L2
ρ̂

2 + 1
2

∥∥∥∥un+1
h,ρ̂ − unh,ρ̂
4t

∥∥∥∥2

H,L2
ρ̂

.

Multiplying by 24t and summing over n = 0, . . . , N − 1 leads us to the result.
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Parts 3. and 4. follow from part 1. and 2. without summing over n = 0, . . . , N − 1.

3.4.2 Explicit Euler scheme

Concerning the explicit Euler scheme (see subsection 2.2.1), which applies the time
discretization L(unh,ρ̂, u

n+1
h,ρ̂ ) = L(unh,ρ̂), the following stability result holds.

Theorem 3.4.3. Let {unh,ρ̂}Nn=0 be the discrete DLR solution as defined in Algorithm
2.2.1 with L(unh,ρ̂, u

n+1
h,ρ̂ ) = L(unh,ρ̂). Then the following estimates hold:

1.

‖uNh,ρ̂‖2H,L2
ρ̂

+4tCL(1− κ)
N−1∑
n=0
‖un+1

h,ρ̂ ‖
2
V,L2

ρ̂
≤ ‖u0

h,ρ̂‖2H,L2
ρ̂
+

4tC2
P

CL

N−1∑
n=0
‖f(tn)‖2H,L2

ρ̂

for 0 < κ and 4t, h satisfying

4t
h2p ≤

κCL
C2

I C
2
B
. (3.9)

2. If L is a symmetric operator we have

‖uNh,ρ̂‖L,ρ̂ ≤ ‖u0
h,ρ̂‖L,ρ̂ + 4t

κ

N−1∑
n=0
‖f(tn)‖2H,L2

ρ̂
,

for 4t, h satisfying
4t
h2p ≤

2− κ
C2

I CB
with 0 < κ < 2. (3.10)

Here CL, CB, CP > 0 are the coercivity, continuity and continuous embedding constants
defined in (3.1), (3.2), (1.2), respectively and CI is the inverse inequality constant intro-
duced in (2.2).

For f = 0 and n = 0, . . . , N − 1 it holds:

3. ‖un+1
h,ρ̂ ‖H,L2

ρ̂
≤ ‖unh,ρ̂‖H,L2

ρ̂
,

under a weakened condition 4t
h2p ≤

2CL
C2

I C
2
B
.
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4. If L is a symmetric operator we have

‖un+1
h,ρ̂ ‖L,ρ̂ ≤ ‖u

n
h,ρ̂‖L,ρ̂,

‖un+1
h,ρ̂ ‖H,L2

ρ̂
≤ ‖unh,ρ̂‖H,L2

ρ̂
,

under a weakened condition
4t
h2p ≤

2
C2

I CB
.

Proof. Thanks to the Theorem 2.2.7 we can rewrite the system of equations in the
variational formulation

〈un+1
h,ρ̂ − unh,ρ̂
4t

, vh
〉
H,L2

ρ̂

+
〈
unh,ρ̂, vh

〉
L,ρ̂

=
〈
f(tn), vh

〉
H,L2

ρ̂

,

∀vh = v̄h + v∗h with v̄h ∈ Vh and v∗h ∈ TŨn+1Y nM
h,ρ̂
R .

(3.11)

1. Based on Lemma 2.2.5 we take vh = un+1
h,ρ̂ as a test function in the variational

formulation (3.11) and using Lemma 3.4.1 results in

‖un+1
h,ρ̂ ‖

2
H,L2

ρ̂
− ‖unh,ρ̂‖2H,L2

ρ̂
+ ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
+ 24t〈unh,ρ̂, un+1

h,ρ̂ 〉L,ρ̂

= 24t(f(tn), un+1
h,ρ̂ )V ′V,L2

ρ̂
≤ 4tC

2
P

CL
‖f(tn)‖2H,L2

ρ̂
+4tCL‖un+1

h,ρ̂ ‖V,L2
ρ̂
.

We further proceed by estimating

24t〈unh,ρ̂, un+1
h,ρ̂ 〉L,ρ̂ = 24t〈unh,ρ̂ − un+1

h,ρ̂ , u
n+1
h,ρ̂ 〉L,ρ̂ + 24t〈un+1

h,ρ̂ , u
n+1
h,ρ̂ 〉L,ρ̂

≥ −24tCB‖un+1
h,ρ̂ − u

n
h,ρ̂‖V,L2

ρ̂
‖un+1

h,ρ̂ ‖V,L2
ρ̂

+ 24tCL‖un+1
h,ρ̂ ‖

2
V,L2

ρ̂

≥ −κ4tCL‖un+1
h,ρ̂ ‖

2
V,L2

ρ̂
+ 24tCL‖un+1

h,ρ̂ ‖
2
V,L2

ρ̂
−4t C

2
I C

2
B

κh2pCL
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂

(3.12)

where, in the third step, we used the inequality

‖un+1
h,ρ̂ − u

n
h,ρ̂‖H,L2

ρ̂
≥ hp

CI
‖un+1

h,ρ̂ − u
n
h,ρ̂‖V,L2

ρ̂
,

which holds based on assumption (2.2). Combining the terms, using the condition
(3.9) and summing over n = 0, . . . , N − 1 finishes the proof.

2. Lemma 2.2.5 enables us to take un+1
h,ρ̂ −unh,ρ̂ as a test function in (3.11). This results
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in

1
4t
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
+ 〈unh,ρ̂, un+1

h,ρ̂ − u
n
h,ρ̂〉L,ρ̂ = 〈f(tn), un+1

h,ρ̂ − u
n
h,ρ̂〉H,L2

ρ̂

≤
4t‖f(tn)‖2

H,L2
ρ̂

2κ +
κ ‖un+1

h,ρ̂ − unh,ρ̂‖2H,L2
ρ̂

24t . (3.13)

Using Lemma 3.4.1 we obtain

‖un+1
h,ρ̂ ‖

2
L,ρ̂ ≤ ‖unh,ρ̂‖2L,ρ̂ + 4t

κ
‖f(tn)‖2H,L2

ρ̂
+ ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂

− 2− κ
4t
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂

≤ ‖unh,ρ̂‖2L,ρ̂ + 4t
κ
‖f(tn)‖2H,L2

ρ̂
+
(

1− (2− κ)h2p

C2
I CB4t

)
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂

≤ ‖unh,ρ̂‖2L,ρ̂ + 4t
κ
‖f(tn)‖2H,L2

ρ̂

where, in the second step, we used the assumption (2.2), (3.2) and the fact that(
1− (2−κ)h2p

C2
I CB4t

)
≤ 0, thanks to the stability condition (3.10).

3. The proof of part 3. follows the same steps as the proof of Part 1. We have

‖un+1
h,ρ̂ ‖

2
H,L2

ρ̂
− ‖unh,ρ̂‖2H,L2

ρ̂
+ ‖un+1

h,ρ̂ − unh,ρ̂‖2H,L2
ρ̂

+ 24t〈unh,ρ̂, un+1
h,ρ̂ 〉L,ρ̂ = 0.

In (3.12) we choose κ = 2 and conclude the result.

4. The proof of the forth property follows the same steps as the proof of Part 2. Since
there is no need to use the Young’s inequality in (3.13), the condition on 4t/h2p is
weakened:

‖un+1
h,ρ̂ ‖

2
L,ρ̂ = ‖unh,ρ̂‖2L,ρ̂ + ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂ −

2
4t
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂

≤ ‖unh,ρ̂‖2L,ρ̂ +
(

1− 2h2p

C2
I CB4t

)
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂.

As for the estimate in the ‖ · ‖H,L2
ρ̂
-norm we can derive

‖un+1
h,ρ̂ ‖

2
H,L2

ρ̂
= ‖unh,ρ̂‖2H,L2

ρ̂
− 4t2

(
‖unh,ρ̂‖2L,ρ̂ − ‖un+1

h,ρ̂ ‖
2
L,ρ̂

+ ‖un+1
h,ρ̂ + unh,ρ̂‖2L,ρ̂

)
≤ ‖unh,ρ̂‖2H,L2

ρ̂
,

where in the last inequality we applied ‖un+1
h,ρ̂ ‖L,ρ̂ ≤ ‖unh,ρ̂‖L,ρ̂ for 4t

h2p ≤ 2
C2

I CB
.
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3.4.3 Semi-implicit scheme

This subsection is dedicated to analyzing the semi-implicit scheme introduced in subsec-
tion 2.2.1 which applies the discretization L(unh,ρ̂, u

n+1
h,ρ̂ ) = Ldet(un+1

h,ρ̂ ) + Lstoch(unh,ρ̂).

Apart from the inverse inequality (2.2) we will be using two additional inequalities. Let
us assume there exists a constant Cdet > 0 such that

〈u, u〉Ldet,ρ̂ ≥ Cdet 〈u, u〉L,ρ̂, ∀u ∈ Vh ⊗ L2
ρ̂. (3.14)

This constant plays an important role in the stability estimation as it quantifies the
extent to which the operator is evaluated implicitly. Its significance is summarized in
Theorem 3.4.4. In addition we introduce a constant Cstoch that bounds the stochasticity
of the operator

|(Lstoch(u), v)V ′V,L2
ρ̂
| ≤ Cstoch‖u‖V,L2

ρ̂
‖v‖V,L2

ρ̂
(3.15)

Theorem 3.4.4. Let {unh,ρ̂}Nn=0 be the discrete DLR solution as defined in Algorithm
2.2.1 with L(unh,ρ̂, u

n+1
h,ρ̂ ) = Ldet(un+1

h,ρ̂ ) +Lstoch(unh,ρ̂) with Ldet and Lstoch satisfying (3.14)
and (3.15), respectively. Then it holds

1.

‖uNh,ρ̂‖2H,L2
ρ̂

+4tCL(1− κ)
N−1∑
n=0
‖un+1

h,ρ̂ ‖
2
V,L2

ρ̂
≤ ‖u0

h,ρ̂‖2H,L2
ρ̂
+

4tC2
P

CL

N−1∑
n=0
‖fn,n+1‖2H,L2

ρ̂

for κ > 0 and 4t, h satisfying

4t
h2p ≤

κCL
C2

I C
2
stoch

. (3.16)

2. If L is a symmetric operator we have

‖uNh,ρ̂‖L,ρ̂ ≤ ‖u0
h,ρ̂‖L,ρ̂ + 4t

κ

N−1∑
n=0
‖fn,n+1‖2H,L2

ρ̂
(3.17)

for 4t, h satisfying
4t
h2p ≤

{
+∞ if Cdet ≥ 1

2
2−κ

C2
I CB(1−2Cdet) if Cdet <

1
2
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3.4. Stability of the discrete DLR solution

Here CL, CB, CP, CI > 0 are the coercivity, continuity, continuous embedding and in-
verse inequality constants defined in (3.1), (3.2), (1.2), (2.2), respectively. The constants
Cdet, Cstoch were introduced in (3.14), (3.15).

For f = 0 and L symmetric we have

3.
‖un+1

h,ρ̂ ‖L,ρ̂ ≤ ‖u
n
h,ρ̂‖L,ρ̂, n = 0, . . . , N − 1 (3.18)

with 4t, h satisfying a weakened condition

4t
h2p ≤

{
+∞ if Cdet ≥ 1

2
2

C2
I CB(1−2Cdet) if Cdet <

1
2

(3.19)

Proof. The variational formulation of the discrete DLR problem from Algorithm 2.2.1
reads in this case

〈un+1
h,ρ̂ − unh,ρ̂
4t

, vh
〉
H,L2

ρ̂

+
〈
un+1
h,ρ̂ , vh

〉
Ldet,ρ̂

+
(
Lstoch(unh,ρ̂), vh

)
V ′V,L2

ρ̂

=
〈
fn,n+1, vh

〉
H,L2

ρ̂

∀vh = v̄h + v∗h with v̄h ∈ Vh and v∗h ∈ TŨn+1Y nM
h,ρ̂
R .

(3.20)

1. We will consider vh = un+1
h,ρ̂ as a test function in (3.20) and we derive

‖un+1
h,ρ̂ ‖

2
H,L2

ρ̂
+ 24t〈un+1

h,ρ̂ , u
n+1
h,ρ̂ 〉L,ρ̂

= ‖unh,ρ̂‖2H,L2
ρ̂
− ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
+ 24t〈fn,n+1, un+1

h,ρ̂ 〉H,L2
ρ̂

+ 24t(Lstoch(un+1
h,ρ̂ − u

n
h,ρ̂), un+1

h,ρ̂ )V ′V,L2
ρ̂

≤ ‖unh,ρ̂‖2H,L2
ρ̂
− ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
+4tC

2
P

CL
‖fn,n+1‖2H,L2

ρ̂
+4tCL‖un+1

h,ρ̂ ‖
2
V,L2

ρ̂

+ κ4tCL‖un+1
h,ρ̂ ‖

2
V,L2

ρ̂
+4tC

2
I C

2
stoch

κh2pCL
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
.

Combining the terms and summing over n = 0, . . . , N − 1 finishes the proof.

2. We will proceed by taking vh = un+1
h,ρ̂ − unh,ρ̂ in the variational formulation (3.20)

61



Chapter 3. Stability properties

since (un+1
h,ρ̂ − unh,ρ̂)∗ ∈ TŨn+1Y nM

h,ρ̂
R (Lemma 2.2.5). We obtain

1
4t
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
+ 〈un+1

h,ρ̂ , u
n+1
h,ρ̂ − u

n
h,ρ̂〉Ldet,ρ̂ (3.21)

+
(
Lstoch(unh,ρ̂), un+1

h,ρ̂ − u
n
h,ρ̂

)
V ′V,L2

ρ̂

±
(
Ldet(unh,ρ̂), un+1

h,ρ̂ − u
n
h,ρ̂

)
V ′V,L2

ρ̂

= 1
4t
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂
+ 〈un+1

h,ρ̂ − u
n
h,ρ̂, u

n+1
h,ρ̂ − u

n
h,ρ̂〉Ldet,ρ̂

+ 〈unh,ρ̂, un+1
h,ρ̂ − u

n
h,ρ̂〉L,ρ̂

= 〈fn,n+1, un+1
h,ρ̂ − u

n
h,ρ̂〉H,L2

ρ̂
≤ 4t2κ ‖f

n,n+1‖2H,L2
ρ̂

+ κ

24t‖u
n+1
h,ρ̂ − u

n
h,ρ̂‖2H,L2

ρ̂
.

(3.22)

Using Lemma 3.4.1 we further derive

‖un+1
h,ρ̂ ‖

2
L,ρ̂ ≤ ‖unh,ρ̂‖2L,ρ̂ + 4t

κ
‖fn,n+1‖2H,L2

ρ̂
+ ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂

− 2− κ
4t
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2H,L2

ρ̂

− 2〈un+1
h,ρ̂ − u

n
h,ρ̂, u

n+1
h,ρ̂ − u

n
h,ρ̂〉Ldet,ρ̂

≤ ‖unh,ρ̂‖2L,ρ̂ + 4t
κ
‖fn,n+1‖2H,L2

ρ̂
+ ‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂

− (2− κ)h2p

C2
I CB4t

‖un+1
h,ρ̂ − u

n
h,ρ̂‖2L,ρ̂ − 2Cdet‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂

= ‖unh,ρ̂‖2L,ρ̂ + 4t
κ
‖fn,n+1‖2H,L2

ρ̂

+
(
1− (2− κ)h2p

C2
I CB4t

− 2Cdet
)
‖un+1

h,ρ̂ − u
n
h,ρ̂‖2L,ρ̂,

where in the second step we used the inequalities (2.2), (3.2) and (3.14). From the
condition on 4t, h after summing over n = 0, . . . , N − 1 the equation (3.17) follows.

3. To treat the case of f = 0 we follow analogous steps as in Part 2. We consider
κ = 0 as there is no need for the Young inequality in (3.22).

Theorem 3.4.4 tells us that when L is a symmetric operator, using the semi-implicit
scheme leads to a conditionally stable solution if Cdet ∈ (0, 1

2) and an unconditionally
stable solution, if Cdet ≥ 1

2 (small randomness).

Remark 3. The discrete variational formulation (2.27) as well as the stability estimates
presented in this section hold for the full-rank solution of the projector-splitting scheme
from [LO14] with the ordering K,S,L, as presented in subsection 2.2.4. However, these
results do not hold with the ordering K,L, S, which was discussed in [LO14]. This might
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3.5. Example: random heat equation

be another reason why K,L, S performs poorly when compared to K,S,L (see [LO14,
sec.5.2]).

Remark 4. All of the derived estimates for the discrete DLR solution obtained by
Algorithm 2.2.1 hold also for the case of {unh,ρ̂}Nn=0 being rank-deficient for some n =
0, . . . , N as a consequence of Theorem 2.2.11 and the property (2.36). They hold as well
for the discrete DLR solution obtained by the Algorithm 2.1.2 thanks to the variational
formulation (2.44) and Lemma 2.3.2.

3.5 Example: random heat equation

In this section we will specifically address the case of a random heat equation. We will
analyze what the underlying assumptions require of this problem, present the explicit and
semi-implicit discretization schemes applied to a heat equation and state their stability
properties.

Let D ⊂ Rd, 1 ≤ d ≤ 3 be a polygonal domain. Let V = H1
0 (D) =: H1

0 , H = L2(D) =:
L2, V ′ = H−1(D) =: H−1 and L(x, ξ)(v) = −∇ · (a(x, ξ)∇v) with

0 < amin ≤ a(x, ξ) ≤ amax <∞, ∀x ∈ D, ∀ξ ∈ Ω. (3.23)

In this case, the scalar products 〈v, w〉H,L2
ρ
, 〈v, w〉V,L2

ρ
, 〈v, w〉L,ρ are defined as

〈v, w〉H,L2
ρ

=
∫

Ω

∫
D
v w dx dρ

〈v, w〉V,L2
ρ

=
∫

Ω

∫
D
∇v · ∇w dx dρ

〈v, w〉L,ρ =
∫

Ω

∫
D
a∇v · ∇w dx dρ.

For the coercivity constant CL, it holds CL ≥ amin; for the continuity constant CB,
we have CB ≤ amax; CP is the Poincaré constant and the problem states: Given
f ∈ L2(0, T ;L2

ρ(Ω;L2)) and u0 ∈ L2
ρ(Ω;L2), find utrue ∈ L2(0, T ;L2

ρ(Ω;H1
0 )) with u̇true ∈

L2(0, T ;L2
ρ(Ω;H−1)) such that

∫
Ω

∫
D
u̇truev dx dρ+

∫
Ω

∫
D
a∇utrue · ∇v dx dρ =

∫
Ω

∫
D
fv dx dρ,

∀v ∈ L2
ρ(Ω;H1

0 )
utrue = 0 a.e. on (0, T ]× ∂D × Ω

utrue(0, ·, ·) = u0 a.e. in D × Ω.

(3.24)
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The discretization is performed as described in Section 2.2. To address the condition
(2.2) we can consider a triangulation Th of the domain D specified by the discretization
parameter h and a corresponding finite element space Vh of continuous piece-wise
polynomials of degree ≤ r. Under the condition that the family of meshes {Th}h is
quasi-uniform (see [EG04a, Def. 1.140] for definition), we have the inverse inequality (see
[EG04a, Cor. 1.141])

‖∇v‖2H ≤
C2

I
h2 ‖v‖

2
H , ∀v ∈ Vh

for some CI > 0. Integrating over Ω results in

‖v‖2V,L2
ρ̂
≤ C2

I
h2 ‖v‖

2
H,L2

ρ̂
, ∀v ∈ Vh ⊗ L2

ρ̂, (3.25)

i.e. we have the condition (2.2) with p = 1.

3.5.1 Explicit Euler scheme

Applying the explicit Euler scheme in the operator evaluation for a random heat equation,
i.e.

L(unh,ρ̂, un+1
h,ρ̂ ) = −∇ · (a∇unh,ρ̂),

results in the following system of equations

〈ūn+1, vh〉H = 〈ūn, vh〉H −4t 〈Eρ̂[a∇unh,ρ̂],∇vh〉H +4t〈Eρ̂[f(tn)], vh〉H , ∀vh ∈ Vh

〈Ũn+1
j , vh〉H = 〈Unj , vh〉H −4t 〈Eρ̂[a∇unh,ρ̂Y n

j ],∇vh〉H +4t〈Eρ̂[f(tn)Y n
j ], vh〉H

∀j, ∀vh ∈ Vh

M̃n+1(Ỹ n+1 − Y n)ᵀ = −4tP⊥ρ̂,Yn
[
〈a∇unh,ρ̂,∇Ũn+1〉H − 〈f(tn), Ũn+1〉H

]ᵀ
in L2

ρ̂.

The stability properties stated in Theorem 3.4.3 part 2. and 4. hold under the condition

4t
h2 ≤

2− κ
C2

I CB
.

3.5.2 Semi-implicit scheme

Let us consider the decomposition

a = ā+ astoch, with ā = Eρ̂[a] and Eρ̂[astoch] = 0, (3.26)

i.e.
L(u) = −∇ · (ā∇u)︸ ︷︷ ︸

Ldet

−∇ · (astoch∇u)︸ ︷︷ ︸
Lstoch

.
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The condition (2.14) is satisfied, since ā is positive everywhere in D as assumed in (3.23).
Hence,

〈u, v〉Ldet =
∫
D
ā∇u · ∇v dx, u, v ∈ V

is a scalar product on V = H1
0 (D). The semi-implicit time integration is realized by

L(unh,ρ̂, un+1
h,ρ̂ ) = −∇ · (ā∇un+1

h,ρ̂ )−∇ · (astoch∇unh,ρ̂). (3.27)

Note that the condition (3.14) is automatically satisfied for a random heat equation,
since we have

‖u‖2Ldet,ρ =
∫

Ω

∫
D
ā∇u · ∇u dx dρ ≥ inf

x∈D,ξ∈Ω

ā

a

∫
Ω

∫
D
a∇u · ∇u dx dρ

= inf
x∈D,ξ∈Ω

ā

a
‖u‖2L,ρ ∀u ∈ L2

ρ(Ω;V ),

and infx∈D,ξ∈Ω
ā
a ≥

amin
amax

> 0.

The system of equations (2.16)–(2.18) can be rewritten as

〈ūn+1, vh〉H +4t〈ā∇ūn+1,∇vh〉H
= 〈ūn, vh〉H −4t〈Eρ̂[astoch∇unh,ρ̂],∇vh〉Hd +4t〈Eρ̂[fn,n+1], vh〉H

〈Ũn+1
j , vh〉H +4t〈ā∇Ũn+1

j ,∇vh〉H
= 〈Ũnj , vh〉H −4t〈Eρ̂[astoch∇unh,ρ̂Y n

j ],∇vh〉Hd +4t〈Eρ̂[fn,n+1Y n
j ], vh〉H(

Ỹ n+1 − Y n
)(
M̃n+1 +4t〈ā∇Ũn+1ᵀ ,∇Ũn+1〉H

)
= −4tP⊥ρ̂,Yn [〈astoch∇unh,ρ̂,∇Ũn+1〉Hd − 〈fn,n+1∗ , Ũn+1〉H ].

For a further specified diffusion coefficient we can state the following stability properties.

Proposition 3.5.1. For the case

ā(x) ≥ astoch(x, ξ), ∀x ∈ D, ξ ∈ Ω

which is satisfied in particular if

a(x, ξ) = ā(x) +
M∑
j=1

aj(x)ξj ,

Ω ⊂ RM and Ω is symmetric, i.e. ξ ∈ Ω =⇒ −ξ ∈ Ω,

(3.28)

we have the stability properties (3.17) and (3.18) for any 4t, h.
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Proof. The condition ā(x) ≥ astoch(x, ξ) for every x ∈ D, ξ ∈ Ω implies

ā(x)
a(x, ξ) ≥

1
2 ,

i.e. Cdet ≥ infx∈D,ξ∈Ω
ā
a ≥

1
2 . Together with Theorem 3.4.4 we conclude the result.

Proposition 3.5.1 tells us that applying a semi-implicit scheme to solve a heat equation
with diffusion coefficient as described in (3.28) results in an unconditionally stable scheme.
This result as well as some of the previous estimates will be numerically verified in the
following section.

3.6 Numerical results

This section is dedicated to numerically study the stability estimates derived for a discrete
DLR approximation in Section 3.4. In particular, we will be concerned with a random
heat equation, as introduced in (3.24), with zero forcing term and diffusion coefficient of
the form (3.28). We will look at the behavior of suitable norms of the solutions of the
discretization schemes introduced in Section 2.2.1. We will as well look at a discretization
scheme in which the projection is performed explicitly to see how important it is to project
on the new computed basis Ũn+1 in (2.10). As a last result we provide a comparison
with the projector-splitting scheme from [LO14].

Let us consider problem (3.24) set in a unit square D = [0, 1]2 and sample space
Ω = [−1, 1]M with M specified below, and an uncertain diffusion coefficient

a(x, ξ) = a0 +
M∑
m=1

cos(2πmx1) + cos(2πmx2)
m2π2 ξm, (3.29)

where x = (x1, x2) ∈ D, ξ = (ξ1, . . . , ξM ) ∈ Ω. We let a0 = 0.3, and equip ([−1, 1]M ,B([−1, 1]M ))
with the uniform measure ρ(dξ) =

⊗M
i=1

λ(dξi)
2 with λ the Lebesgue measure restricted to

the Borel σ-algebra B([−1, 1]). In this case the conditions (3.23), (2.14) and (3.14) are
satisfied with amin > 0.04, Cdet >

1
2 . The initial condition is chosen as

u0(x, ξ) = 10 sin(πx1) sin(πx2) + 2 sin(2πx1) sin(2πx2)ξ1

+ 2 sin(4πx1) sin(4πx2)ξ2 + 2 sin(6πx1) sin(6πx2)ξ2
1 .

= 10 sin(πx1) sin(πx2) + 4
3 sin(6πx1) sin(6πx2) + 2 sin(2πx1) sin(2πx2)ξ1

+ 2 sin(4πx1) sin(4πx2)ξ2 + 2 sin(6πx1) sin(6πx2)
(
ξ2

1 − E[ξ2
1 ]
)
.

(3.30)
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The spatial discretization is performed by the finite element (FE) method with P1
finite elements over a uniform mesh. The dimension of the corresponding FE space is
determined by h—the element size. For this type of spatial discretization we have the
inverse inequality (3.25):

‖v‖2V,ρ̂ ≤
C2

I
h2 ‖v‖

2
H,L2

ρ̂
, ∀v ∈ Vh ⊗ L2

ρ̂.

Concerning the stochastic discretization we will consider a tensor grid quadrature with
Gauss-Legendre points for the case of a low-dimensional stochastic space M = 2 and
a Monte-Carlo quadrature for the case M = 10. The time integration implements the
explicit scheme and the semi-implicit scheme described in subsection 2.2.1. We will
consider the forcing term f = 0, i.e. a dissipative problem and time T such that the
energy norm (‖ · ‖L,ρ̂) of the solution attains a value smaller than 10−10. Our simulations
were performed using the Fenics library [Aln+15a].

3.6.1 Explicit scheme

Since f = 0, the result in Theorem 3.4.3 predicts a decay of the norm of the solution

‖un+1
h,ρ̂ ‖L,ρ̂ ≤ ‖u

n
h,ρ̂‖L,ρ̂, ‖un+1

h,ρ̂ ‖H,L2
ρ̂
≤ ‖unh,ρ̂‖H,L2

ρ̂
∀n = 0, . . . , N − 1

under the stability condition
4t
h2 ≤

2
C2

I CB
=: K. (3.31)

We aim at verifying such result numerically. We set a rank R = 3 and consider a
sample space [−1, 1]M of dimension M = 2 or M = 10 with either Gauss-Legendre or
Monte-Carlo (MC) stochastic discretization.

M = 2

First we consider the sample space [−1, 1]M of dimension M = 2 and Gauss-Legendre
quadrature with 9×9 = 81 collocation points. From what we observed in our simulations,
for this test case we have K ≈ 0.085. Figure 3.1 shows the behavior of the energy norm
(‖ · ‖L,ρ̂) and the L2 norm (‖ · ‖H,L2

ρ̂
) in 3 different scenarios: in the first scenario we

set h1 = 0.142,4t1 = 0.0018, i.e. the condition 4t1/h2
1 ≤ K is satisfied and observe

that both the energy norm and the L2 norm of the solution decrease in time (see Figure
3.1(a)); in the second scenario, we halved the element size h2 = h1/2 and divided by
4 the time step 4t2 = 4t1/4 so that the condition (3.31) is still satisfied. The norms
again decreased in time (Figure 3.1(b)); in the third scenario we violated the condition
(3.31) by setting h3 = h1/2 and 4t3 = 4t1/3. After a certain time the norms exploded
(Figure 3.1(c)).
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Chapter 3. Stability properties

(a) h1 = 0.142
4t1 = 0.0017

(b) h1 = 0.142/2
4t1 = 0.0017/4

(c) h1 = 0.142/2
4t1 = 0.0017/3

Figure 3.1 – Behaviour of the energy norm (‖ · ‖L,ρ—blue) and the L2 norm (‖ · ‖H,L2
ρ
—

orange) when applying the explicit time integration scheme with M = 2 and 81 Gauss-
Legendre collocation points for three different pairs of the discretization parameters h,4t.
When the condition (3.31) is satisfied the solution is stable [(a)–(b)], whereas violating
the condition results in instability [(c)].

To numerically demonstrate the sharpness of the condition (3.31), we ran the simulation
with 72 different pairs of discretization parameters h,4t. The results are shown in Figure
3.2, where we depict whether the energy norm at time T is bellow 10−10, in which case
the norm was consistently decreasing; or more than 104, in which case the solution blew
up. We observe that a stable 4t has to be chosen to satisfy 4t ≤ Kh2, which confirms
the sharpness of our theoretical derivations.

M = 10

In our second example we will consider a higher-dimensional problem: M = 10 for which
we use a standard Monte-Carlo technique with 50 points. We observe a very similar
behaviour as in the small dimensional case. Figure 3.3 shows that satisfying the condition
4t1/h2

1 ≤ K with K = 0.085 results in a stable scheme while violating it makes the
solution blow up.

3.6.2 Semi-implicit scheme

We proceed with the same test-case with M = 10, same spatial and stochastic discretiza-
tion, i.e. Monte-Carlo method with 50 samples and employ a semi-implicit scheme in the
operator evaluation. Since the diffusion coefficient considered is of the form (3.28) and
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3.6. Numerical results

Figure 3.2 – This figure shows whether the energy norm ‖ · ‖L,ρ of the solution was
monotonously decreasing till 10−10 (blue) or has blown up (orange) for different choices
of time step 4t and discretization parameter h when applying the explicit scheme for
the operator evaluation. We observe a clear quadratic dependence of 4t on h. K was
set to 0.085.
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(a) h1 = 0.142
4t1 = 0.0017

(b) h1 = 0.142/2
4t1 = 0.0017/4

(c) h1 = 0.142/2
4t1 = 0.0017/3

Figure 3.3 – Behaviour of the energy norm (‖ · ‖L,ρ—blue) and the L2 norm
(‖ · ‖H,L2

ρ
—orange) when applying the explicit time integration scheme with M = 10 and

50 Monte Carlo points for three different pairs of the discretization parameters h,4t. We
see, again, that satisfying the condition (3.31) ((a) and (b)) results in stable behaviour
while when violating the condition (c) the solution blows up.

f = 0, Theorem 3.4.4 predicts

‖un+1
h,ρ̂ ‖L,ρ̂ ≤ ‖u

n
h,ρ̂‖L,ρ̂ ∀h, 4t, ∀n = 0, . . . , N − 1.

We set the spatial discretization h = 0.142 and vary the time step 4t. We observe a
stable behaviour no matter what 4t is used, which confirms the theoretical result (see
Figure 3.4).

We report that the results forM = 2 with 81 Gauss-Legendre collocation points exhibited
a similar unconditionally-stable behaviour.

Explicit projection

The following results give an insight into the importance of performing the projection in
a ‘Gauss-Seidel’ way, i.e. projection on the stochastic basis is done explicitly, Y n kept
from the previous time step, while the projection on the deterministic basis is done
implicitly, i.e. we use the new computed Ũn+1 (see Algorithm 2.2.1 for more details).
For comparison we consider a fully explicit projection, i.e. Y n as the stochastic basis
and Un as the deterministic basis. We use a semi-implicit scheme to treat the operator
evaluation term as described in subsection 2.2.1. As shown in Figure 3.5, in all 3 cases
the solution reaches the zero steady state, however, not in a monotonous way.
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3.6. Numerical results

(a) h = 0.142, 4t1 = 0.5 (b) h = 0.142, 4t2 = 10

Figure 3.4 – Behaviour of the energy norm (‖ · ‖L,ρ) for two different time steps when
applying the semi-implicit time integration scheme. We observe a decrease of norms for
arbitrarily large time step.

(a) h = 0.142, 4t1 = 5 (b) h = 0.142, 4t2 = 100 (c) h = 0.142, 4t3 = 200

Figure 3.5 – Behaviour of the energy norm (‖ · ‖L,ρ) for 3 different time steps when
treating the projection in an explicit way (orange) and in a semi-implicit way (blue).
We used the semi-implicit scheme for the operator evaluation term. We see that, as
opposed to a semi-implicit projection, with an explicit projection we do not obtain an
unconditional norm decrease.
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(a) R = 3, 4t1 = 100 (b) R = 20, 4t2 = 100

Figure 3.6 – Energy norm (‖ · ‖L,ρ) for 2 different ranks R = 3, 20 and 2 different time
discretization schemes: Algorithm 2.1.2 with (pivoted) QR decomposition (orange) and
Algorithm 2.2.1 with Cholesky factorization or least squares. Both methods in both cases
exhibit a monotonous decrease of the energy norm.

3.6.3 Comparison with the DDO projector-splitting scheme

We now compare the performance of the discretization scheme from Algorithm 2.2.1 with
the projector-splitting scheme from Algorithm 2.1.2.

We proceed with setting h = 0.142,M = 10,4t = 100, stochastic discretization is
performed again by Monte-Carlo method with 50 points and we implemented the semi-
implicit scheme in the operator evaluation for both the Algorithm 2.2.1 and the projector-
splitting Algorithm 2.1.2. We expect that the energy norm decreases on every step
independently of the time step size.

We fix R = 3. Throughout the whole simulation, the computed solution stays full rank,
in which case the two schemes have been shown to be equivalent (see subsection 2.2.4).
In Figure 3.6(a) this can be well observed. Steps 2. and 5. from Algorithm 2.1.2 are
performed by a QR decomposition, whereas the linear system in (2.10) is solved by the
Cholesky factorization (with a help of the SciPy library [JOP+01], version 0.19.1).

We now investigate the behavior of the two algorithms in presence of a rank deficient
solution. We fix R = 20. The initial condition (3.30) is of rank 3. For the first couple of
steps the discrete DLR solution therefore stays of rank lower than R = 20. The matrix
M̃n+1 from (2.10) is singular and the solution of the system (2.10) is obtained as a least
squares solution implemented via an SVD decomposition. The threshold to detect the
effective rank of M̃n+1 is set to ε σ1R where ε is the machine precision and σ1 is the
largest singular value of M̃n+1. Steps 2. and 5. from Algorithm 2.1.2 are performed by a
pivoted QR decomposition. The solution obtained by both algorithms are proved to be
stable in this scenario. The two proposed schemes exhibit minor differences, however
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both of them are stable (see Figure 3.6(b)).
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4 A-priori error estimation

This chapter witnesses another use of the variational formulation (2.37) for the DLR
scheme proposed in Chapter 2. We present an a-priori error estimation for a fully discrete
DLR solution of a random parabolic equation obtained by the scheme described in
Algorithm 2.2.1. The spatial discretization is assumed to be performed by the finite
element method and the stochastic discretization by the Monte Carlo method. The
algorithm was derived applying a first-order-in-time approximation of the DLR equations
(1.8)–(1.10). However, the usual error bounds break down when the DLR approximation
has small singular values. On the other hand, we showed that the scheme is exact when
the true solution is of rank ≤ R and we obtained stability estimates for the DLR solution
that do not depend on the smallest singular value. In this work, we derive an a-priori
error bound w.r.t. the spatial, time and stochastic discretization without dependence
on the smallest singular value. Such a result does not generally hold for a different
temporal discretization of (1.8)–(1.10). We point the reader to [KLW16], where the
authors considered a DLR approximation for time-dependent matrices or tensors applying
a continuous-in-time projector-splitting integrator (see Algorithm 2.1.1 in Section 2.1).
As recalled in Theorem 2.1.4, they proved a first-order convergence w.r.t. the time
step 4t which, as well, does not depend on the smallest singular value. More on the
comparison of these two results can be found at the end of Section 4.2. In this work, we
restrict ourselves to the case of L being a random elliptic differential operator. We point
the reader to [Con20] for an a-priori error analysis for a continuous DLR approximation
for parabolic problems. We start with specifying the problem and the discretization in
Section 4.1. In Section 4.2, we state and prove the error estimation without taking into
account the stochastic discretization by expressing the error in the discrete ‖ · ‖L2

ρ̂
-norm.

This allows us to reuse the well-established results for a-priori error estimations for a
deterministic parabolic equation. Finally, in Section 4.3 we derive an error estimation
that includes the stochastic discretization contribution.
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Chapter 4. A-priori error estimation

4.1 Problem specification

In this work, we consider the same problem setting as in Chapter 3. The considered
physical spaces are, however, further specified and described in the this section.

Let D ⊂ Rd, 1 ≤ d ≤ 3 be a polygonal domain with Lipschitz boundary, and let
V = H1

0 (D) =: H1
0 , H = L2(D) =: L2, V ′ = H−1(D) =: H−1 and Hp := Hp(D), p ∈

N, p ≥ 1. Given a final time T > 0, a random forcing term f ∈ L2(0, T ;L2
ρ(Ω;H))

and a random initial condition u0 ∈ L2
ρ(Ω;V ), we assume that there exists a solution

utrue ∈ L2(0, T ;L2
ρ(Ω;V )) with u̇true ∈ L2(0, T ;L2

ρ(Ω;V ′)) satisfying(
u̇true(ω), v

)
V ′V

+
(
L(utrue)(ω), v

)
V ′V,L2

ρ

= 〈f(ω), v〉H,L2
ρ
,

∀v ∈ V, ∀ω ∈ Ω, a.e. t ∈ (0, T ]
utrue(0, ω) = u0(ω), ∀ω ∈ Ω.

(4.1)

Note that such solution satisfies the weak formulation (3.3) as well. The considered
operator L is random and elliptic, as defined in Section 3.1. In addition, we assume that
L is a second order differential operator.

The spatial discretization is performed via the finite element method (see e.g. [QV08]).
We consider a triangulation Th of the domain D specified by the discretization parameter
h and a corresponding finite element space Vh of continuous piece-wise polynomials of
degree ≤ r, i.e.

Vh = {vh ∈ C0(D̄) : vh|K ∈ Pr, ∀K ∈ Th}.

Under the condition that the family of meshes {Th}h is quasi-uniform (see [EG04a, Def.
1.140] for definition), we have the inverse inequality (see [EG04a, Cor. 1.141])

‖∇v‖2H ≤
C2

I
h2 ‖v‖

2
H , ∀v ∈ Vh

for some CI > 0. We now follow by introducing an operator which will be later used
when deriving the a-priori estimates. Let us consider a (random) ‘projection’ operator
P r1,h(ω) : V → Vh for all ω ∈ Ω defined as

∀u ∈ V,
(
L(P r1,h(ω)u− u), vh

)
V ′V

= 0 ∀vh ∈ Vh,

where L is the operator introduced in Section 3.1. The existence of such operator for
∀ω ∈ Ω is ensured by the coercivity condition (3.1) and the Lax-Milgram lemma. If L is
symmetric, then P r1,h is simply an orthogonal projection operator onto Vh w.r.t. the scalar
product (L(ω)·, ·)V ′V . We further assume that Th is a regular family of triangulations
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and that for ∀ω ∈ Ω the solution φ(ω)(f) of the adjoint problem

φ(ω)(f) ∈ V : (L(v)(ω), φ(f))V ′V = 〈f, v〉H , ∀v ∈ V

satisfies φ(f) ∈ H2 when f ∈ H = L2. By proceeding as in [QV08, Sec. 3.5], we have for
∀ω ∈ Ω

‖P r1,h(ω)w−w‖V +h−1‖P r1,h(ω)w−w‖H ≤ CP rhp‖w‖Hp+1 , 0 ≤ p ≤ r, w ∈ V ∩Hr+1,

(4.2)
where CP r > 0 is independent of w and h. In this work, we assume that CP r is
independent of ω. In addition, we have

‖P r1,hw‖H,L2
ρ̂
≤ cr‖w‖H,L2

ρ̂
. (4.3)

The stochastic discretization applies the Monte Carlo method, where the sample points
{ωk}N̂k=1 are taken as iid samples from ρ and the weights satisfy λk = 1

N̂
, ∀k = 1, . . . , N̂ .

The empirical measure as well as the computation of the expectation value are detailed
in Chapter 2.

Note that the true solution utrue satisfies the following weak formulation w.r.t. the
empirical measure(
u̇true, vρ̂

)
V ′V,L2

ρ̂

+
(
L(utrue), vρ̂

)
V ′V,L2

ρ̂

= 〈f, vρ̂〉H,L2
ρ̂
, ∀vρ̂ ∈ L2

ρ̂(Ω;V ), a.e. t ∈ (0, T ].

(4.4)

We recall that the dicrete DLR solution satisfies

〈un+1
h,ρ̂ − unh,ρ̂
4t

, vh,ρ̂
〉
H,L2

ρ̂

+
(
L(unh,ρ̂, un+1

h,ρ̂ ), vh,ρ̂
)
V ′V,L2

ρ̂

=
〈
fn,n+1, vh,ρ̂

〉
H,L2

ρ̂

,

∀vh,ρ̂ = v̄h + v∗h,ρ̂ with v̄h ∈ Vh and v∗h,ρ̂ ∈ TŨn+1Y nᵀM
h,ρ̂
R .

(4.5)

Both of these variational formulations will play a crucial role when deriving the a-priori
estimates.

Let uRtrue(0) denote the truncated Karhunen-Loève expansion (1.4) of the initial condition
u0, for which we assume

||uRtrue(0)||Hr,L2
ρ̂
≤ c||utrue(0)||Hr,L2

ρ̂
. (4.6)

Then the initial condition is defined by taking independent samples from uRtrue(0) and
applying an operator P rh : V → Vh

u0
h,ρ̂ = {P rhuRtrue(0, ωj)}N̂j=1. (4.7)
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We assume that this operator satisfies

‖v − P rh [v]‖H,L2
ρ̂
≤ Chr‖v‖Hr,L2

ρ̂
.

The choices for P rh include projection on Vh w.r.t. the scalar product 〈·, ·〉V ; if the
triangulation is quasi-uniform, projection on Vh w.r.t. the scalar product 〈·, ·〉H ; or if the
initial condition u0(ωi) ∈ H2 for every sample point ωi, we can apply the finite element
interpolation operator (see [QV08, Sec. 3.4]).

In the error estimation for the semi-implicit scheme, we will use a constant Cdet,B that
bounds the operator Ldet

|(Ldet(u), v)V ′V,L2
ρ̂
| ≤ Cdet,B‖u‖V,L2

ρ̂
‖v‖V,L2

ρ̂
. (4.8)

To proceed with the a-priori error estimation, we need to state the following assumptions.

Assumptions 1.

We assume that the following inequalities hold for ∀n = 0, . . . , N − 1

1. ∥∥∥PŨn+1 [K]
∥∥∥
V
≤ CP‖K‖V , ∀K ∈ V (4.9)

2. ∥∥∥PŨn+1 [K]
∥∥∥
V
≤ CP‖K‖V ′ , ∀K ∈ V ′ (4.10)

3.
‖Π⊥

Ũn+1Y nᵀ
[fn+1∗ − L∗(Ũn+1Y nᵀ)]‖V ′,L2

ρ
≤ ε (4.11)

We recall that PŨn+1 denotes the H-orthogonal projection onto the subspace Ũn+1 and
was first introduced in (1.14). Concerning the first two inequalities, note that we can
bound

∥∥∥PŨn+1 [K]
∥∥∥
V

in the following way

∥∥∥PŨn+1 [K]
∥∥∥
V
≤ CI
hp

∥∥∥PŨn+1 [K]
∥∥∥
H
≤ CI
hp

∥∥∥K∥∥∥
H
≤ CICP

hp

∥∥∥K∥∥∥
V

(and analogously for
∥∥∥PŨn+1 [K]

∥∥∥
V ′
). This, however, yields the constant CP dependent on

h, which results in suboptimal bounds. Inequalities (4.10)–(4.9) assume the constant CP
to be independent of h for functions in a subspace Ũn+1. This assumption gets further
simplified for the DLR approximation in the DO form - with orthonormal determinic
modes {Uj}Rj=1 and linearly independent stochastic modes {Yj}Rj=1 (see Lemma 4.2.2 for
further details). The third condition assumes that the operator is in the tangent space up
to a small remainder. We need this condition in order to obtain a low-rank approximation
error of order O(ε). Note that this is analogous to the low-rank assumption (2.7) used
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4.2. Error estimates without stochastic error contribution

in the work [KLW16], where such condition is required to hold in a neighbourhood of
the trajectory of the approximate solution. In our case, we assume it to hold at all
‘intermediate’ solutions Ũn+1Y nᵀ . The following lemma highlights the significance of
assumptions (4.9) – (4.10).

Lemma 4.1.1. Assumptions (4.9) – (4.10) imply

1. ∥∥∥ΠŨn+1Y nᵀ [K]
∥∥∥
V ′,L2

ρ̂

≤ (1 + CP)‖K‖V ′,L2
ρ̂
, ∀K ∈ L2

ρ̂ ⊗ V ′h

2. ∥∥∥ΠŨn+1Y nᵀ [K]
∥∥∥
Vh,L

2
ρ̂

≤ (1 + CP)‖K‖V,L2
ρ̂
, ∀K ∈ L2

ρ̂ ⊗ Vh

Proof. We start with the first property.∥∥∥ΠŨn+1Y nᵀ [K]
∥∥∥
V ′,L2

ρ̂

≤
∥∥∥PYn [K]

∥∥∥
V ′,L2

ρ̂

+
∥∥∥P⊥Yn [PŨn+1 [K]]

∥∥∥
V ′,L2

ρ̂

≤
∥∥∥K∥∥∥

V ′,L2
ρ̂

+
∥∥∥PŨn+1 [K]

∥∥∥
V ′,L2

ρ̂

≤ (1 + CP)
∥∥∥K∥∥∥

V ′,L2
ρ̂

.

The second property can be proved in an analogous way.

4.2 Error estimates without stochastic error contribution

In this section we derive an a-priori error estimation for a fully discrete DLR solution
obtained by Algorithm 2.2.1. The error will be measured in a discrete stochastic norm
‖ · ‖L2

ρ̂
which allows us to reuse some of the well-established results concerning a-priori

error estimation for a deterministic parabolic equation. In particular, we followed the
work presented in [QV08; Qua09].

Theorem 4.2.1. Let us assume that utrue ∈ L∞(0, T ;L2
ρ̂(Ω̂;Hr+1)), u̇true ∈

L1(0, T ;L2
ρ̂(Ω̂;Hr)), u0(ωi) ∈ Hr, ∀i = 1, . . . , N̂ , f ∈ L∞(0, T ;L2

ρ̂(Ω̂;H)), and
∂2utrue
∂t2 ∈ L2(0, T ;L2

ρ̂(Ω̂;H)). Then, for the explicit scheme under the condition

4t
h2 ≤

CL
2C2

I C
2
B
, (4.12)

for the semi-implicit scheme under the condition

4t
h2 ≤

CL
2C2

I C
2
stoch

, (4.13)
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and for the implicit scheme without any condition, the following a-priori error estimate
holds

‖utrue(T )− uNh,ρ̂‖2H,L2
ρ̂

+4tCL
N∑
n=1
‖utrue(tn)− unh,ρ̂‖2V,L2

ρ̂

≤ c0‖uRtrue(0)− utrue(0)‖2H,L2
ρ̂

+ c1ε
2 + c24t2 + c3h

2r,

where uRtrue(0) is the truncated Karhunen-Loève expansion (1.4) of the initial condition
utrue(0). The constants c0, c1, c2, c3 do not depend on 4t, h, ε. Their dependence on the
choice of the stochastic discretization points {ωi}N̂i=1 is specified in Remark 5.

Proof. We will start with the proof for the implicit scheme obtained by considering
L(unh,ρ̂, u

n+1
h,ρ̂ ) = L(un+1

h,ρ̂ ) and fn,n+1 = fn+1. We split the error at time t = tn into two
terms:

‖utrue(tn)− unh,ρ̂‖H,L2
ρ̂
≤ ‖utrue(tn)− P r1,hutrue(tn)‖H,L2

ρ̂
+ ‖P r1,hutrue(tn)− unh,ρ̂‖H,L2

ρ̂
.

(4.14)
The first term can be estimated by referring to (4.2):

‖utrue(tn)− P r1,hutrue(tn)‖2H,L2
ρ̂

=
N̂∑
i=1

1
N̂
‖utrue(tn, ωi)− P r1,hutrue(tn, ωi)‖2H

≤ Ch2r
N̂∑
i=1

1
N̂
‖utrue(tn, ωi)‖2Hr ≤ Ch2r‖utrue‖L∞(0,T ;L2

ρ̂(Ω̂;Hr))

and analogously for the ‖ · ‖V,L2
ρ̂
-norm

‖utrue(tn)− P r1,hutrue(tn)‖2V,L2
ρ̂
≤ Ch2r‖utrue(tn)‖2Hr+1,L2

ρ̂

≤ Ch2r‖utrue‖L∞(0,T ;L2
ρ̂(Ω̂;Hr+1))

Now, let us focus on the second term. Setting enh,ρ̂ := unh,ρ̂ − P r1,hutrue(tn), we obtain

(en+1
h,ρ̂ − enh,ρ̂
4t

+ L(en+1
h,ρ̂ ), vh,ρ̂

)
V ′V,L2

ρ̂

=
(
δn+1, vh,ρ̂

)
V ′V,L2

ρ̂

∀vh,ρ̂ ∈ L2
ρ̂(Ω;Vh),

where for ∀vh,ρ̂ ∈ L2
ρ̂(Ω;Vh) it holds

(
δn+1, vh,ρ̂

)
V ′V,L2

ρ̂

=
(un+1

h,ρ̂ − unh,ρ̂
4t

+ L(un+1
h,ρ̂ ), vh,ρ̂

)
V ′V,L2

ρ̂

−
(P r1,h(utrue(tn+1)− utrue(tn))

4t
+ L(P r1,hutrue(tn+1)), vh,ρ̂

)
V ′V,L2

ρ̂
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=
(un+1

h,ρ̂ − unh,ρ̂
4t

+ EN̂ [L(un+1
h,ρ̂ )] + Πh,ρ̂

Ũn+1Y nᵀ
[L∗(un+1

h,ρ̂ )]

+ Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(un+1
h,ρ̂ )], vh,ρ̂

)
V ′V,L2

ρ̂

−
(P r1,h(utrue(tn+1)− utrue(tn))

4t
+ L(P r1,hutrue(tn+1)), vh,ρ̂

)
V ′V,L2

ρ̂

=
(
EN̂ [fn+1] + Πh,ρ̂

Ũn+1Y nᵀ
[fn+1∗ ] + Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(un+1
h,ρ̂ )], vh,ρ̂

)
V ′V,L2

ρ̂

−
(P r1,h(utrue(tn+1)− utrue(tn))

4t
+ L(utrue(tn+1)), vh,ρ̂

)
V ′V,L2

ρ̂

=
(
fn+1 − L(utrue(tn+1))−

P r1,h(utrue(tn+1)− utrue(utn))
4t

, vh,ρ̂
)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(un+1
h,ρ̂ )− fn+1∗ ], vh,ρ̂

)
V ′V,L2

ρ̂

=
(
u̇true(tn+1)− utrue(tn+1)− utrue(tn)

4t
, vh,ρ̂

)
V ′V,L2

ρ̂

+
(

(I − P r1,h)utrue(tn+1)− utrue(tn)
4t

, vh,ρ̂
)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(un+1
h,ρ̂ )− fn+1∗ ], vh,ρ̂

)
V ′V,L2

ρ̂

=
( 1
4t

∫ tn+1

tn
(s− tn)∂

2utrue
∂t2

(s) ds, vh,ρ̂
)
V ′V,L2

ρ̂

+
( 1
4t

∫ tn+1

tn
(I − P r1,h)(u̇true)(s) ds, vh,ρ̂

)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(un+1
h,ρ̂ )− fn+1∗ ], vh,ρ̂

)
V ′V,L2

ρ̂

.

Concerning the last term we split it into(
Πh,ρ̂

Ũn+1Y nᵀ
⊥

[fn+1∗ − L∗(un+1
h,ρ̂ )], vh,ρ̂

)
V ′V,L2

ρ̂

=
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[fn+1∗ − L∗(Ũn+1Y nᵀ)], vh,ρ̂
)
V ′V,L2

ρ̂︸ ︷︷ ︸
I

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(Ũn+1Y nᵀ − un+1
h,ρ̂ )], vh,ρ̂

)
V ′V,L2

ρ̂︸ ︷︷ ︸
II

,

where, for the estimation of the first term, we apply the low-rank assumption (4.11), i.e.

|I| ≤ ε‖vh,ρ̂‖L2
ρ̂,V
.
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Concerning the second term, we proceed as

|II| =
∣∣∣∣(L∗(Ũn+1Y nᵀ − un+1

h,ρ̂ ), Πh,ρ̂

Ũn+1Y nᵀ
⊥

[vh,ρ̂]
)
V ′V,L2

ρ̂

∣∣∣∣
≤ CB‖Ũn+1Y nᵀ − Ũn+1Ỹ n+1ᵀ‖V,L2

ρ̂
‖Πh,ρ̂

Ũn+1Y nᵀ
⊥

[vh,ρ̂]‖V,L2
ρ̂

≤ CB‖Ũn+1Y nᵀ − Ũn+1Ỹ n+1ᵀ‖V,L2
ρ̂
‖vh,ρ̂ −Πh,ρ̂

Ũn+1Y nᵀ
[vh,ρ̂]‖V,L2

ρ̂

≤ CB‖Ũn+1(Y n − Ỹ n+1)ᵀ‖V,L2
ρ̂

(2 + CP)‖vh,ρ̂‖V,L2
ρ̂

= 4t (2 + CP)CB
∥∥∥∥PŨn+1 [P⊥Ynᵀ [L∗(un+1

h,ρ̂ )− fn+1∗ ]]
∥∥∥∥
V,L2

ρ̂

‖vh,ρ̂‖V,L2
ρ̂

≤ 4t CP(2 + CP)CB
∥∥∥L∗(un+1

h,ρ̂ )− fn+1∗
∥∥∥
V ′,L2

ρ̂

‖vh,ρ̂‖V,L2
ρ̂

≤ 4t CP(2 + CP)CB
(∥∥∥L∗(un+1

h,ρ̂ )
∥∥∥
V ′,L2

ρ̂

+
∥∥∥fn+1∗

∥∥∥
L2
ρ̂,V
′

)
‖vh,ρ̂‖L2

ρ̂,V

≤ 4t CP(2 + CP)CB
(
CB‖un+1

h,ρ̂ ‖V,L2
ρ̂

+ CP‖f‖L∞(0,T ;L2
ρ̂(Ω;H))

)
‖vh,ρ̂‖L2

ρ̂,V

(4.15)

In the third and fifth step we applied Lemma 4.1.1.

We introduce the notations

K1 := CP(2 + CP)CB, (4.16)

K2(‖un+1
h,ρ̂ ‖V,L2

ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H))) :=
(
CB‖un+1

h,ρ̂ ‖V,L2
ρ̂

+ CP‖f‖L∞(0,T ;L2
ρ̂(Ω;H))

)
. (4.17)

Now, let us take vh,ρ̂ = en+1
h,ρ̂ ∈ L2

ρ̂(Ω;Vh) and proceed by

1
24t

(
‖en+1
h,ρ̂ ‖

2
H,L2

ρ̂
− ‖enh,ρ̂‖2H,L2

ρ̂

)
+ CL‖en+1

h,ρ̂ ‖
2
V,L2

ρ̂

≤ CP

∥∥∥∥ 1
4t

∫ tn+1

tn
(s− tn)∂

2utrue
∂t2

(s) ds
∥∥∥∥
H,L2

ρ̂

‖en+1
h,ρ̂ ‖V,L2

ρ̂

+ CP

∥∥∥∥ 1
4t

∫ tn+1

tn
(I − P r1,h)(u̇true)(s) ds

∥∥∥∥
H,L2

ρ̂

‖en+1
h,ρ̂ ‖V,L2

ρ̂
+ ε‖en+1

h,ρ̂ ‖L2
ρ̂,V

+4tK1K2(‖un+1
h,ρ̂ ‖V,L2

ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H)))‖en+1
h,ρ̂ ‖L2

ρ̂,V

≤ 2C2
P

CL

(∫ tn+1

tn
‖∂

2utrue
∂t2

(s)‖H,L2
ρ̂
ds
)2

+ CL
8 ‖e

n+1
h,ρ̂ ‖

2
V,L2

ρ̂

+ C2
P

CL

2
4t2

(∫ tn+1

tn
‖(I − P r1,h)(u̇true)(s)‖H,L2

ρ̂
ds
)2

+ CL
8 ‖e

n+1
h,ρ̂ ‖

2
V,L2

ρ̂

+ 2ε2

CL
+ CL

8 ‖e
n+1
h,ρ̂ ‖

2
V,L2

ρ̂

+ 24t2K2
1

CL
K2

2 (‖un+1
h,ρ̂ ‖V,L2

ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H))) + CL
8 ‖e

n+1
h,ρ̂ ‖

2
V,L2

ρ̂
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≤ 2C2
P

CL
4t
∫ tn+1

tn
‖∂

2utrue
∂t2

(s)‖2H,L2
ρ̂
ds+ C2

P
CL

2
4t

h2r
∫ tn+1

tn
|u̇true(s)|2Hr,L2

ρ̂
ds+ 2ε2

CL

+ 24t2K2
1

CL
K2

2 (‖un+1
h,ρ̂ ‖V,L2

ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H))) + CL
2 ‖e

n+1
h,ρ̂ ‖

2
V,L2

ρ̂
.

Rearranging the terms and summing over n = 0, . . . , N − 1 we obtain

‖eNh,ρ̂‖2H,L2
ρ̂

+ CL

N∑
n=1
4t‖enh,ρ̂‖2V,L2

ρ̂
≤ ‖e0

h,ρ̂‖2H,L2
ρ̂

+ 4C2
P

CL
4t2

∫ T

0
‖∂

2utrue
∂t2

(s)‖2H,L2
ρ̂
ds

+ 4C2
P

CL
h2r

∫ T

0
|u̇true(s)|2Hr,L2

ρ̂
ds+ 4T

CL
ε2

+4t2 4K2
1

CL

N−1∑
n=0
4tK2

2 (‖un+1
h,ρ̂ ‖V,L2

ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H)))

≤ ‖e0
h,ρ̂‖2H,L2

ρ̂
+ 4C2

P
CL
4t2

∫ T

0
‖∂

2utrue
∂t2

(s)‖2H,L2
ρ̂
ds+ 4C2

P
CL

h2r
∫ T

0
|u̇true(s)|2Hr,L2

ρ̂
ds

+ 4T
CL

ε2 +4t2 4K2
1

CL

(
2C2
B4t

N−1∑
n=0
‖un+1

h,ρ̂ ‖
2
V,L2

ρ̂
+ 2C2

PT‖f‖2L∞(0,T ;L2
ρ̂(Ω;H))

)
≤ ‖e0

h,ρ̂‖2H,L2
ρ̂

+ h2r 4C2
P

CL
|u̇true|2L2(0,T ;L2

ρ̂(Ω;Hr)) + ε2 4T
CL

+4t2
(4C2

P
CL
‖∂

2utrue
∂t2

‖2L2(0,T ;L2
ρ̂(Ω;H)) + 4K2

1
C2
L

(
C2
B‖u0

h,ρ̂‖2H,L2
ρ̂

+ C2
BC

2
P

CL
T‖f‖2L∞(0,T ;L2

ρ̂(Ω;H)) + C2
PT‖f‖2L∞(0,T ;L2

ρ̂(Ω;H))

))
≤ ‖e0

h,ρ̂‖2H,L2
ρ̂

+ h2r 4C2
P

CL
|u̇true|2L2(0,T ;L2

ρ̂(Ω;Hr)) + ε2 4T
CL

+4t2
(4C2

P
CL
‖∂

2utrue
∂t2

‖2L2(0,T ;L2
ρ̂(Ω;H)) + 4K2

1
C2
L

(
C2
Bc

2
r‖utrue(0)‖2H,L2

ρ̂

+ C2
BC

2
P

CL
T‖f‖2L∞(0,T ;L2

ρ̂(Ω;H)) + C2
PT‖f‖2L∞(0,T ;L2

ρ̂(Ω;H))

))

In the second step we applied our stability estimate stated in Theorem 3.4.2 to bound the
term 4t

∑N
n=1 ‖unh,ρ̂‖2V,L2

ρ̂
. In the last step we applied (4.3) to bound the norm ‖u0

h,ρ̂‖2H,L2
ρ̂

by c2
r‖utrue(0)‖2

H,L2
ρ̂
.

We follow by bounding the initial error ‖e0
h,ρ̂‖2H,L2

ρ̂
. The initial condition is taken as

explained in (4.7), i.e. u0
h,ρ̂ = {P rhuRtrue(0, ωj)}N̂j=1. We can then split the error as

‖e0
h,ρ̂‖H,L2

ρ̂
= ‖u0

h,ρ̂ − P r1,hutrue(0)‖H,L2
ρ̂

= ‖P rhuRtrue(0)− uRtrue(0)‖H,L2
ρ̂

+ ‖uRtrue(0)− utrue(0)‖H,L2
ρ̂
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+ ‖utrue(0)− P r1,hutrue(0)‖H,L2
ρ̂

≤ Chr||utrue(0)||Hr,L2
ρ̂

+ ‖uRtrue(0)− utrue(0)‖H,L2
ρ̂
,

where we used the assumption (4.6). The statement then follows from (4.2) and (4.14).

As for the explicit scheme, we proceed as follows:

Setting as before enh,ρ̂ := unh,ρ̂ − P r1,hutrue(tn), we obtain

(en+1
h,ρ̂ − enh,ρ̂
4t

+ L(enh,ρ̂), vh,ρ̂
)
V ′V,L2

ρ̂

=
(
δn, vh,ρ̂

)
V ′V,L2

ρ̂

∀vh,ρ̂ ∈ L2
ρ̂(Ω;Vh),

where, following analogous steps as in the derivation for the implicit scheme, for any
vh,ρ̂ ∈ L2

ρ̂(Ω;Vh) it holds

(
δn, vh,ρ̂

)
V ′V,L2

ρ̂

=
(un+1

h,ρ̂ − unh,ρ̂
4t

+ L(unh,ρ̂), vh,ρ̂
)
V ′V,L2

ρ̂

−
(P r1,h(utrue(tn+1)− utrue(tn))

4t
+ L(P r1,hutrue(tn)), vh,ρ̂

)
V ′V,L2

ρ̂

=
(
u̇true(tn)− utrue(tn+1)− utrue(tn)

4t
, vh,ρ̂

)
V ′V,L2

ρ̂

+
(

(I − P r1,h)utrue(tn+1)− utrue(tn)
4t

, vh,ρ̂
)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(unh,ρ̂)− fn
∗ ], vh,ρ̂

)
V ′V,L2

ρ̂

=
( 1
4t

∫ tn+1

tn
(tn+1 − s)∂

2utrue
∂t2

(s) ds, vh,ρ̂
)
V ′V,L2

ρ̂

+
( 1
4t

∫ tn+1

tn
(I − P r1,h)(u̇true)(s) ds, vh,ρ̂

)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(unh,ρ̂)− fn
∗ ], vh,ρ̂

)
V ′V,L2

ρ̂

.

Concerning the last term, we split it as before into(
Πh,ρ̂

Ũn+1Y nᵀ
⊥

[fn∗ − L∗(unh,ρ̂)], vh,ρ̂
)
V ′V,L2

ρ̂

=
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[fn∗ − L∗(Ũn+1Y nᵀ)], vh,ρ̂
)
V ′V,L2

ρ̂︸ ︷︷ ︸
I

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗(Ũn+1Y nᵀ − unh,ρ̂)], vh,ρ̂
)
V ′V,L2

ρ̂︸ ︷︷ ︸
II

,
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where, for the estimation of the first term, we apply the low-rank assumption (4.11), i.e.

|I| ≤ ε‖vh,ρ̂‖L2
ρ̂,V
. (4.18)

Concerning the second term, we proceed analogously to the implicit case and derive

|II| =
∣∣∣∣(L∗(Ũn+1Y nᵀ − unh,ρ̂), Πh,ρ̂

Ũn+1Y nᵀ
⊥

[vh,ρ̂]
)
V ′V,L2

ρ̂

∣∣∣∣
≤ CB‖Ũn+1Y nᵀ − UnY nᵀ‖V,L2

ρ̂
‖vh,ρ̂ −Πh,ρ̂

Ũn+1Y nᵀ
[vh,ρ̂]‖V,L2

ρ̂

≤ CB‖(Ũn+1 − Un)Y n)ᵀ‖V,L2
ρ̂

(2 + CP)‖vh,ρ̂‖V,L2
ρ̂

= 4t (2 + CP)CB
∥∥∥∥PYn [L∗(unh,ρ̂)− fn

∗ ]
∥∥∥∥
V ′,L2

ρ̂

‖vh,ρ̂‖V,L2
ρ̂

≤ 4t (2 + CP)CB
∥∥∥L∗(unh,ρ̂)− fn∗∥∥∥

V ′,L2
ρ̂

‖vh,ρ̂‖V,L2
ρ̂

≤ 4t (2 + CP)CB
(∥∥∥L∗(unh,ρ̂)∥∥∥

V ′,L2
ρ̂

+
∥∥∥fn∗∥∥∥

L2
ρ̂,V
′

)
‖vh,ρ̂‖L2

ρ̂,V

≤ 4t (2 + CP)CB
(
CB‖unh,ρ̂‖V,L2

ρ̂
+ CP‖f‖L∞(0,T ;L2

ρ̂(Ω;H))

)
‖vh,ρ̂‖L2

ρ̂,V
.

(4.19)

In the following computation, we employ K3 := (2 + CP)CB

Now, let us take vh,ρ̂ = en+1
h,ρ̂ ∈ L2

ρ̂(Ω;Vh) and proceed by

1
24t

(
‖en+1
h,ρ̂ ‖

2
H,L2

ρ̂
− ‖enh,ρ̂‖2H,L2

ρ̂
+ ||en+1

h,ρ̂ − e
n
h,ρ̂||2H,L2

ρ̂

)
+ 〈enh,ρ̂, en+1

h,ρ̂ 〉L,ρ̂

≤ CP

∥∥∥∥ 1
4t

∫ tn+1

tn
(tn+1 − s)∂

2utrue
∂t2

(s) ds
∥∥∥∥
H,L2

ρ̂

‖en+1
h,ρ̂ ‖V,L2

ρ̂

+ CP

∥∥∥∥ 1
4t

∫ tn+1

tn
(I − P r1,h)(u̇true)(s) ds

∥∥∥∥
H,L2

ρ̂

‖en+1
h,ρ̂ ‖V,L2

ρ̂
+ ε‖en+1

h,ρ̂ ‖L2
ρ̂,V

+4tK3K2(‖unh,ρ̂‖V,L2
ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H)))‖en+1
h,ρ̂ ‖L2

ρ̂,V

≤ 4C2
P

CL
4t
∫ tn+1

tn
‖∂

2utrue
∂t2

(s)‖2H,L2
ρ̂
ds+ C2

P
CL

4
4t

h2r
∫ tn+1

tn
|u̇true(s)|2Hr,L2

ρ̂
ds+ 4ε2

CL

+ 44t2K2
3

CL
K2

2 (‖unh,ρ̂‖V,L2
ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H))) + CL
4 ‖e

n+1
h,ρ̂ ‖

2
V,L2

ρ̂

Applying the same calculations as in (3.12) with κ = 1/2, we derive

1
24t ||e

n+1
h,ρ̂ − e

n
h,ρ̂||2H,L2

ρ̂
+ 〈enh,ρ̂, en+1

h,ρ̂ 〉L,ρ̂ ≥ CL
3
4‖e

n+1
h,ρ̂ ‖

2
V,L2

ρ̂
,

which holds true thanks to the condition on the time step (4.12). The rest of the proof
is the analogous to the implicit case, employing the stability estimate for the explicit
scheme proved in Theorem 3.4.3.
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The last scheme to analyze is the semi-implicit scheme with L(unh,ρ̂, u
n+1
h,ρ̂ ) = Ldet(un+1

h,ρ̂ ) +
Lstoch(unh,ρ̂) and fn,n+1 = fn+1. The error term enh,ρ̂ satisfies

(en+1
h,ρ̂ − enh,ρ̂
4t

+L(en+1
h,ρ̂ )−Lstoch(en+1

h,ρ̂ −e
n
h,ρ̂), vh,ρ̂

)
V ′V,L2

ρ̂

=
(
δn+1, vh,ρ̂

)
V ′V,L2

ρ̂

∀vh,ρ̂ ∈ L2
ρ̂(Ω;Vh),

(4.20)
where for any vh,ρ̂ ∈ L2

ρ̂(Ω;Vh) it holds

(
δn+1, vh,ρ̂

)
V ′V,L2

ρ̂

=
(un+1

h,ρ̂ − unh,ρ̂
4t

+ Ldet(un+1
h,ρ̂ ) + Lstoch(unh,ρ̂), vh,ρ̂

)
V ′V,L2

ρ̂

−
(P r1,h(utrue(tn+1)− utrue(tn))

4t
+ L(P r1,hutrue(tn+1))

+ Lstoch(P r1,h(utrue(tn+1)− utrue(tn))), vh,ρ̂
)
V ′V,L2

ρ̂

=
(
EN̂ [fn+1] + Πh,ρ̂

Ũn+1Y nᵀ
[fn+1∗ ]

+ Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗det(un+1
h,ρ̂ ) + L∗stoch(unh,ρ̂)], vh,ρ̂

)
V ′V,L2

ρ̂

−
(P r1,h(utrue(tn+1)− utrue(tn))

4t
+ L(utrue(tn))

+ Lstoch(P r1,h(utrue(tn+1)− utrue(tn))), vh,ρ̂
)
V ′V,L2

ρ̂

=
(
fn+1 − L(utrue(tn))−

P r1,h(utrue(tn+1)− utrue(utn))
4t

, vh,ρ̂
)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗det(un+1
h,ρ̂ ) + L∗stoch(unh,ρ̂)− fn+1∗ ], vh,ρ̂

)
V ′V,L2

ρ̂

−
(
Lstoch(P r1,h(utrue(tn+1)− utrue(tn))), vh,ρ̂

)
V ′V,L2

ρ̂

=
(
u̇true(tn)− utrue(tn+1)− utrue(tn)

4t
, vh,ρ̂

)
V ′V,L2

ρ̂

+
(

(I − P r1,h)utrue(tn+1)− utrue(tn)
4t

, vh,ρ̂
)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗det(un+1
h,ρ̂ ) + L∗stoch(unh,ρ̂)− fn+1∗ ], vh,ρ̂

)
V ′V,L2

ρ̂

−
(
Lstoch(P r1,h(utrue(tn+1)− utrue(tn))), vh,ρ̂

)
V ′V,L2

ρ̂

=
( 1
4t

∫ tn+1

tn
(tn+1 − s)∂

2utrue
∂t2

(s) ds, vh,ρ̂
)
V ′V,L2

ρ̂

+
( 1
4t

∫ tn+1

tn
(I − P r1,h)(u̇true)(s) ds, vh,ρ̂

)
V ′V,L2

ρ̂

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗det(un+1
h,ρ̂ ) + L∗stoch(unh,ρ̂)− fn+1∗ ], vh,ρ̂

)
V ′V,L2

ρ̂
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−
(
Lstoch

( ∫ tn+1

tn
P r1,h(u̇true)(s) ds

)
, vh,ρ̂

)
V ′V,L2

ρ̂

Concerning the second to last term, we split it into(
Πh,ρ̂

Ũn+1Y nᵀ
⊥

[fn+1∗ − L∗det(un+1
h,ρ̂ )− L∗stoch(unh,ρ̂)], vh,ρ̂

)
V ′V,L2

ρ̂

=
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[fn+1∗ − L∗(Ũn+1Y nᵀ)], vh,ρ̂
)
V ′V,L2

ρ̂︸ ︷︷ ︸
I

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗det(Ũn+1Y nᵀ − un+1
h,ρ̂ )], vh,ρ̂

)
V ′V,L2

ρ̂︸ ︷︷ ︸
II

+
(

Πh,ρ̂

Ũn+1Y nᵀ
⊥

[L∗stoch(Ũn+1Y nᵀ − unh,ρ̂))], vh,ρ̂
)
V ′V,L2

ρ̂︸ ︷︷ ︸
III

.

In the estimation of I, we proceed in the same way as in (4.18). The estimation of II is
performed equivalently to (4.15), where instead of CB we use the constant Cdet,B. Lastly,
the term III can be bound equivalently to (4.19), using Cstoch instead of CB.

Now, let us consider vh,ρ̂ = en+1
h,ρ̂ ∈ L2

ρ̂(Ω;Vh). Applying the same computations as in the
proof of Theorem 3.4.4 and using the time-step condition (4.13), we see that the left
hand side of (4.20) can be bounded from below by

1
24t

(
‖en+1
h,ρ̂ ‖

2
H,L2

ρ̂
− ‖enh,ρ̂‖2H,L2

ρ̂

)
+ 3

4CL‖e
n+1
h,ρ̂ ‖

2
V,L2

ρ̂

≤
(en+1

h,ρ̂ − enh,ρ̂
4t

+ L(en+1
h,ρ̂ )− Lstoch(en+1

h,ρ̂ − e
n
h,ρ̂), en+1

h,ρ̂

)
V ′V,L2

ρ̂

Concerning the right-hand side, we then proceed as(
δn+1, en+1

h,ρ̂

)
V ′V,L2

ρ̂

≤ CP

∥∥∥∥ 1
4t

∫ tn+1

tn
(tn+1 − s)∂

2utrue
∂t2

(s) ds
∥∥∥∥
H,L2

ρ̂

‖en+1
h,ρ̂ ‖V,L2

ρ̂

+ CP

∥∥∥∥ 1
4t

∫ tn+1

tn
(I − P r1,h)(u̇true)(s) ds

∥∥∥∥
H,L2

ρ̂

‖en+1
h,ρ̂ ‖V,L2

ρ̂
+ ε‖en+1

h,ρ̂ ‖L2
ρ̂,V

+ 24tK̃1K̃2(‖unh,ρ̂‖V,L2
ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H)))‖en+1
h,ρ̂ ‖L2

ρ̂,V

+ CstochcrCP

∥∥∥∥ ∫ tn+1

tn
(P r1,h)(u̇true)(s) ds

∥∥∥∥
H,L2

ρ̂

‖en+1
h,ρ̂ ‖V,L2

ρ̂
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≤ 8C2
P

CL
4t
∫ tn+1

tn
‖∂

2utrue
∂t2

(s)‖2H,L2
ρ̂
ds+ C2

P
CL

8
4t

h2r
∫ tn+1

tn
|u̇true(s)|2Hr,L2

ρ̂
ds+ 8ε2

CL

+ 164t2K2
1

CL
K2

2 (‖unh,ρ̂‖V,L2
ρ̂
, ‖f‖L∞(0,T ;L2

ρ̂(Ω;H))) + 8C2
stochc

2
rC

2
P

CL
4t
∫ tn+1

tn
‖u̇true(s)‖2V,L2

ρ̂
ds

+ CL
4 ‖e

n+1
h,ρ̂ ‖

2
V,L2

ρ̂
,

where K̃1, K̃2 are defined analogously to (4.16), stemming from the estimation of II and
III. The rest of the proof is analogous to the implicit or explicit case, employing the
stability estimate for the semi-implicit scheme proved in Theorem 3.4.4.

Remark 5. In this remark we detail how the final constants c0, c1, c2, c3 appearing in
Theorem 4.2.1 depend on the choice and number of the samples {ωj}N̂j=1. As a matter
of fact, they all depend on some discrete norm || · ||H,L2

ρ̂
, || · ||V,L2

ρ̂
of the true solution or

forcing term. In particular,

c2 = C1‖
∂2utrue
∂t2

‖2L2(0,T ;L2
ρ̂(Ω;H)) + C2‖utrue(0)‖2H,L2

ρ̂
+ C3‖f‖2L∞(0,T ;L2

ρ̂(Ω;H))

+ C4‖u̇true‖2L2(0,T ;L2
ρ̂(Ω;V ))

c3 = C5‖u̇true‖2L2(0,T ;L2
ρ̂(Ω;Hr)) + C6‖utrue(0)‖Hr,L2

ρ̂
.

The constants c0, c1 and the new introduced constants Ci, i = 1, . . . , 6 do not depend on
the choice of the sampling points.

Let us comment on the comparison of Theorem 4.2.1 and Theorem 2.1.4, published in
[KLW16]. Both of these results show that the approximation error is of O(ε+4t) with
constants independent of the smallest singular value. As pointed out by their authors, a
limitation of their theoretical result is that it requires a (local) Lipschitz condition on
F , and is applicable to stiff differential equations such as discretized PDEs only under
a severe CFL condition 4tL � 1, where L is the Lipschitz constant for F . Such a
restriction is not present in our analysis. Furthermore, in our setting, the operator F
does not need to be uniformly bounded. On the other hand, we assume our operator to
be elliptic. By restricting ourselves to a parabolic problem, we have managed to bound
the error in a stronger norm. We have considered a problem set in an infinite-dimensional
setting, and provided convergence w.r.t. the spatial discretization parameter h (and the
number of collocation points N̂ in the next section).

Let us consider now an approximation of the solution in a DO format (as opposed to the
Dual DO format used so far), i.e.

u(t) = ū(t) +
R∑
j=1

Uj(t)Yj(t)

with the deterministic basis orthonormal in H, 〈Ui, Uj〉H = Id, Yi with zero mean and
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4.2. Error estimates without stochastic error contribution

the covariance matrix 〈Y ᵀ, Y 〉L2
ρ
full rank. In this case, we should use a variant of

the projector-splitting scheme summarized in Algorithm 2.2.1, which updates first the
stochastic basis and then the deterministic basis. The discrete DLR approximation in
the DO format satisfies then a variational formulation analogous to (2.27)

〈un+1
h,ρ̂ − unh,ρ̂
4t

, vh,ρ̂
〉
H,L2

ρ̂

+
(
L(unh,ρ̂, un+1

h,ρ̂ ), vh,ρ̂
)
V ′V,L2

ρ̂

=
〈
fn,n+1, vh,ρ̂

〉
H,L2

ρ̂

,

∀vh,ρ̂ = v̄h + vh,ρ̂
∗ with v̄h ∈ Vh and vh,ρ̂∗ ∈ TUnỸ n+1ᵀMh,ρ̂

R .

The only change w.r.t. (2.27) is in the definition of the ‘intermediate’ point UnỸ n+1ᵀ

characterising the tangent space. Employing the DO format instead of the dual DO
format allows us to simplify assumptions (4.9) – (4.10), as they follow from the simpler
assumption that the deterministic basis remains bounded in the V -norm at all times.

Lemma 4.2.2. Let us assume

‖Un‖V ≤ CP , ∀n = 0, . . . , N. (4.21)

Then the following holds∥∥∥ΠUnỸ n+1ᵀ [K]
∥∥∥
V ′,L2

ρ̂

≤ k1‖K‖V ′,L2
ρ̂
, ∀K ∈ V ′h ⊗ L2

ρ̂∥∥∥ΠUnỸ n+1ᵀ [K]
∥∥∥
V,L2

ρ̂

≤ k2‖K‖V,L2
ρ̂
, ∀K ∈ Vh ⊗ L2

ρ̂

for some k1, k2 independent of n.

Proof. ∥∥∥ΠUnỸ n+1ᵀ [K]
∥∥∥
V ′,L2

ρ̂

≤
∥∥∥PỸn+1 [K] + P⊥Ỹn+1 [PUn [K]]

∥∥∥
V ′,L2

ρ̂

≤ ‖PỸn+1 [K]‖V ′,L2
ρ̂

+ ‖P⊥Ỹn+1 [PUn [K]]‖V ′,L2
ρ̂

≤ ‖K‖V ′,L2
ρ̂

+ ‖PUn [K]‖V ′,L2
ρ̂

= ‖K‖V ′,L2
ρ̂

+
∥∥∥ R∑
i=1
〈K, Un〉V ′,V Un

∥∥∥
V ′,L2

ρ̂

≤ ‖K‖V ′,L2
ρ̂

+
R∑
i=1
‖K‖V ′,L2

ρ̂
‖Un‖V︸ ︷︷ ︸
≤CP

c ‖Un‖H︸ ︷︷ ︸
=1

≤ k1‖K‖V ′,L2
ρ̂
,

where the constant c is the constant from the continuous embedding of H ↪→ V ′.
Analogous result holds for the second inequality, using the fact that V ↪→ H.
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We see that, for the DLR solution in the DO format, we can bound the projection on
the tangent space by bounding the V - norm of the deterministic modes. Note that the
constant CP in (4.21) can be again bounded using the inverse inequality (2.2)

‖Un‖V ≤
c

hp
‖Un‖H ≤

c

hp
,

which, however, leads to a suboptimal result.

4.3 Error estimate with stochastic error contribution

This subsection is dedicated to studying the error contribution caused by the stochastic
discretization which applies the Monte-Carlo method. The points {ωj}N̂j=1 ⊂ Ω are chosen
as i.i.d. samples from ρ. The fully discrete DLR solution obtained by Algorithm 2.2.1 is
a collection of N̂ functions

unh,ρ̂ =
(
(unh,ρ̂)(1), . . . , (u

n
h,ρ̂)(N̂)

)
∈ Vh × Vh × · · · × Vh, ∀n ∈ N.

By utrue,ρ̂ = ((utrue,ρ̂)(1), . . . , (utrue,ρ̂)(N̂)) let us denote the N̂ -tuple of paths

((utrue,ρ̂)(1), . . . , (utrue,ρ̂)(N̂)) = (utrue(·, ω1), . . . , utrue(·, ωN̂ ))

∈ L2(0, T ;V )× . . . ,×L2(0, T ;V ).

We express the stochastic discretization error w.r.t. a Lipschitz functional Φ : H → R

|Φ(u)− Φ(v)| ≤ Clip,1‖u− v‖H . (4.22)

Note that consequently Φ satisfies

|Φ(u)| ≤ Clip,2(1 + ‖u‖H).

As functions of the sampling points {ωi}N̂i=1, both utrue,ρ̂ and {unh,ρ̂}Nn=1 are random
variables with an underlying probability space

(Ω× · · · × Ω,F ⊗ · · · ⊗ F , ρ⊗ · · · ⊗ ρ).

By E⊗ρ we denote the expectation with respect to ρ⊗ · · · ⊗ ρ on Ω× · · · × Ω.

Theorem 4.3.1. Consider a Lipschitz functional Φ : H → R satisfying (4.22). Let
mn
h,ρ̂ := Eρ̂[Φ(unh,ρ̂)] denote the sample mean of Φ evaluated in the discrete DLR solution

at time t = tn obtained by Algorithm 2.2.1, and mn := Eρ[Φ(utrue(tn))] the mean value
of Φ evaluated at the true solution utrue at time t = tn. Then for the quantities mn

h,ρ̂ and
mn, the following mean-square error estimate holds
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4.3. Error estimate with stochastic error contribution

√
E⊗ρ

[∣∣∣∣mn −mn
h,ρ̂

∣∣∣∣2] ≤ Clip,2√
N̂

√
2(1 + ‖utrue(0)‖2H,L2

ρ
+ 1
CL
‖f‖2L2(0,tn;L2

ρ(Ω;H))

+ Clip,1

(
c0 ‖uRtrue(0)− utrue(0)‖2H,L2

ρ
+ c1ε

2 + c̃24t2 + c̃3h
2r
)1/2

,

where ‖uRtrue(0)− utrue(0)‖2H,L2
ρ
is the error of the Karhunen-Loève expansion truncation

on the initial datum. The constants c0, c1, c̃2, c̃3 do not depend on any of the discretization
parameters 4t, h, {ωi}N̂i=1.

Proof. The mean-square error of mn
h,ρ̂ can be split into

√
E⊗ρ

[∣∣∣∣mn −mn
h,ρ̂

∣∣∣∣2] ≤
√
E⊗ρ

[∣∣∣∣Eρ[Φ(utrue(tn))]− Eρ̂[Φ(utrue(tn))]
∣∣∣∣2]

+

√
E⊗ρ

[∣∣∣∣Eρ̂[Φ(utrue(tn))]− Eρ̂[Φ(unh,ρ̂)]
∣∣∣∣2]

The first term
√
E⊗ρ

[∣∣∣∣Eρ[Φ(utrue(tn))]− Eρ̂[Φ(utrue(tn))]
∣∣∣∣2] expresses the standard error

caused by approximating the mean value mn with the sample mean. It can be bounded
by√

E⊗ρ
[∣∣∣∣Eρ[Φ(utrue(tn))]− Eρ̂[Φ(utrue(tn))]

∣∣∣∣2] =

√
Eρ[Φ(utrue(tn))2]− Eρ[Φ(utrue(tn))]2

N̂

≤

√
Eρ[Φ(utrue(tn))2]

N̂

≤

√
Eρ[C2

lip,2(‖utrue(tn)‖H + 1)2]
N̂

≤

√
2C2

lip,2 + 2C2
lip,2Eρ[‖utrue(tn)‖2H ]
N̂

≤

√√√√2C2
lip,2 + 2C2

lip,2Eρ[‖utrue(0)‖2H + 1
CL
‖f‖2L2(0,tn;H)]

N̂

≤ Clip,2√
N̂

√
2(1 + ‖utrue(0)‖2H,L2

ρ
+ 1
CL
‖f‖2L2(0,tn;L2

ρ(Ω;H)),

where in the fifth step we applied a stability result

‖utrue(tn)‖2H ≤ ‖utrue(0)‖2H + 1
CL
‖f‖2L2(0,tn;H) ∀ω ∈ Ω,
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which holds for the true solution. The second term can be bounded as√
E⊗ρ

[∣∣∣∣Eρ̂[Φ(utrue(tn))]− Eρ̂[Φ(unh,ρ̂)]
∣∣∣∣2]

=

√√√√√E⊗ρ
[( N̂∑

j=1

1
N̂

(
Φ(utrue(tn, ωj))− Φ(unh,ρ̂(ωj))

))2]

≤

√√√√√E⊗ρ
[ N̂∑
j=1

1
N̂
|Φ(utrue(tn, ωj))− Φ(unh,ρ̂(ωj))|2

]

≤

√√√√√E⊗ρ
[ N̂∑
j=1

1
N̂
C2
lip,1‖utrue(tn, ωj)− unh,ρ̂(ωj)‖2H

]

≤
√
C2
lip,1E⊗ρ

[
‖utrue(tn)− unh,ρ̂‖2H,L2

ρ̂

]

≤
√
C2
lip,1E⊗ρ

[
c0‖uRtrue(0)− utrue(0)‖2

H,L2
ρ̂

+ c1ε2 + c24t2 + c3h2r
]

≤ Clip,1
(
c0 E⊗ρ[‖uRtrue(0)− utrue(0)‖2H,L2

ρ̂
] + c1ε

2 + E⊗ρ[c2]4t2 + E⊗ρ[c3]h2r
)1/2

= Clip,1

(
c0 E⊗ρ[‖uRtrue(0)− utrue(0)‖2H,L2

ρ̂
] + c1ε

2 + c̃24t2 + c̃3h
2r
)1/2

,

where in the forth step we applied Theorem 4.2.1 and in the fifth step we applied the
observation that c0 and c1 do not depend on the choice of the sampling points. In the
last step we defined new constants c̃2, c̃3, which can be expressed as

c̃2 = E⊗ρ[c2] = C1E⊗ρ
[
‖∂

2utrue
∂t2

‖2L2(0,T ;L2
ρ̂(Ω;H))

]
+ C2E⊗ρ

[
‖utrue(0)‖2H,L2

ρ̂

]
+ C3E⊗ρ

[
‖f‖2L∞(0,T ;L2

ρ̂(Ω;H))

]
+ C4E⊗ρ

[
‖u̇true‖2L2(0,T ;L2

ρ̂(Ω;V ))

]
= C1‖

∂2utrue
∂t2

‖2L2(0,T ;L2
ρ(Ω;H)) + C2‖utrue(0)‖2H,L2

ρ
+ C3‖f‖2L∞(0,T ;L2

ρ̂(Ω;H))

+ C4‖u̇true‖2L2(0,T ;L2
ρ(Ω;V ))

c̃3 = E⊗ρ[c3] = C5E⊗ρ
[
‖u̇true‖2L2(0,T ;L2

ρ̂(Ω;Hr))

]
+ C6E⊗ρ

[
‖utrue(0)‖Hr,L2

ρ̂

]
= C5‖u̇true‖2L2(0,T ;L2

ρ(Ω;Hr)) + C6‖utrue(0)‖Hr,L2
ρ
.

As for the initial error, we proceed analogously

E⊗ρ[‖uRtrue(0)− utrue(0)‖2H,L2
ρ̂
] = ‖uRtrue(0)− utrue(0)‖2H,L2

ρ
.
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5 A-posteriori error estimation

The goal of this work is to derive a residual based a-posteriori error estimation for a
DLR approximation of a random parabolic equation, with a special focus on a random
heat equation with diffusion coefficient affine w.r.t. the random variables. The problem
is discretized by the finite element method (FEM) in physical space and a stochastic
collocation (SC) method in the random variables. Before tackling this problem, we direct
our attention to an a-posteriori error estimation of a random heat equation, without
any DLR error contribution. The results of this work are available in Section 5.1, which
follows very closely the publication [NV19]. Section 5.2 is then dedicated to deriving an
error estimation including a DLRA error contribution.

5.1 A posteriori error estimation for a random heat equa-
tion

In this section, we present a residual based a posteriori error estimation for a random
heat equation. The problem is discretized by a stochastic collocation finite element
method and advanced in time by the θ-scheme. Concerning a reliable estimation of the
discretization error, the work [GN18] derives a residual based a posteriori error estimation
for an elliptic problem discretized by the stochastic collocation finite element method.
There, the authors propose an algorithm that adaptively builds the sparse grid based on
the a posteriori estimation of the SC error.

This work extends the results obtained in [GN18] to a heat equation with random right
hand side and random diffusion coefficient that depends affinely on a finite number
of random variables. The provided estimates bound the norm of the error in L2 in
stochastic space, L2 in time and H1 in physical space. The estimator naturally splits
into a spatial discretization estimator, time discretization estimator and stochastic
discretization estimator, which are then used to drive the adaptivity with respect to all
three types of discretizations. We then propose an adaptive algorithm to build a suitable
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time discretization, as well as an FE mesh and a sparse grid common to all time steps,
so as to achieve a prescribed tolerance on a global norm of the error.

We start with introducing the problem, namely a heat equation with a random diffusion
coefficient and right hand side. We follow with defining the spatial, time and stochastic
discretization. We derive two residual based a posteriori error estimations. The first one
concerns the general case of sparse grids and spatial meshes that change in time. The
second one is simpler and concerns the case of spatial mesh and sparse grid kept fixed
over the time iterations. After, we propose an adaptive algorithm to build nonuniform
time discretizations, as well as nonuniform meshes and anisotropic sparse grids that are
fixed in time for the case of a deterministic right hand side. In the last part, we first
study on a specific example the behaviour and sharpness of all three components of the
estimator (spatial, temporal and stochastic) and then apply our adaptive algorithm and
assess its performance. The results presented in this section are summed up in the paper
[NV19].

5.1.1 Problem statement

Let D ⊂ Rd be an open polygonal domain with Lipschitz boundary ∂D and (Ω,F , P ) be a
complete probability space. Given a final time T , random forcing term f : D×Ω×(0, T )→
R, initial condition u0 : D × Ω → R and a diffusion coefficient a : D × Ω → R, the
problem states: find a solution u : D × Ω× (0, T ]→ R satisfying P−almost everywhere
in Ω

∂u

∂t
−∇ · (a∇u) = f in D × Ω× (0, T ],

u = 0 on ∂D × Ω× (0, T ], (5.1)
u(·, ·, 0) = u0 in D × Ω.

Suppose that f ∈ L2(0, T ;L2(Ω, H−1(D))), u0 ∈ L2(Ω, H1
0 (D)) and a is a random

variable on (Ω,F , P ) taking values in W 1,∞(D) (random field) satisfying

∃ amin, amax : P (ω ∈ Ω : 0 < amin ≤ a(x, ω) ≤ amax <∞ ∀x ∈ D) = 1. (5.2)

In addition we require that the diffusion coefficient as well as the forcing term and the
initial condition can be parametrized by a finite number of independent, real-valued
random variables {Ym}Mm=1 defined on Ω, i.e. f(x, ω, t) = f(x, Y1(ω), . . . , YM (ω), t),
u0(x, ω) = u0(x, Y1(ω), . . . , YM (ω)) and the dependence of a on {Ym}Mm=1 is affine, i.e.

a(x, ω) = a0(x) +
M∑
m=1

am(x)Ym(ω). (5.3)
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The solution u then depends on the same random variables as well, i.e.
u(x, ω, t) = u(x, Y1(ω), . . . , YM (ω), t), and we can recast the probability space
(Ω,F , P ) into (Γ, B(Γ), ρ(y)dy) by introducing Γ = Γ1 × · · · × ΓM with Γm = Ym(Ω)
for m = 1, . . . ,M . The expression B(Γ) denotes the Borel σ−algebra defined over
Γ. The joint probability density function of the random vector Y = (Y1, . . . , YM ) is
denoted by ρ : Γ→ R+ and factorizes as ρ(y) = ΠM

m=1ρm(ym) for all y = (y1, . . . , yM ) ∈ Γ.

In what follows we consider the following two Bochner spaces: for a given Banach space
(V, ‖ · ‖V ) and for any t1, t2 ∈ [0, T ], t1 < t2 we define

L2(t1, t2;V ) = {v : (t1, t2)→ V |v is strongly measurable and ‖v‖L2(t1,t2;V ) <∞}

where ‖v‖2L2(t1,t2;V ) =
∫ t2
t1
‖v(t)‖2V dt and

L2
ρ(Γ;L2(t1, t2;V )) = {v : Γ→ L2(t1, t2;V )| v is strongly measurable and

‖v‖L2
ρ(Γ;L2(t1,t2;V )) <∞}

with ‖v‖2L2
ρ(Γ,L2(t1,t2;V )) =

∫
Γ ‖v(y)‖2L2(t1,t2;V )ρ(y)dy. It holds

L2
ρ(Γ;L2(t1, t2;V )) ∼= L2(t1, t2;L2

ρ(Γ;V )),

i.e. this Bochner space is isometrically isomorphic to the Bochner space L2(t1, t2;L2
ρ(Γ;V ))

[Nee08, p. 12].

The (pointwise in Γ) weak formulation of problem (5.1) then reads: Find u ∈W where

W =
{
w ∈ L2

ρ

(
Γ;L2

(
0, T ;H1

0 (D)
))

and ∂w

∂t
∈ L2

ρ

(
Γ;L2

(
0, T,H−1(D)

))}
s.t.

∫
D

∂u(x, y, t)
∂t

v(x) dx+
∫
D
a(x, y)∇u(x, y, t) · ∇v(x) dx =

∫
D
f(x, y, t)v(x) dx

∀v ∈ H1
0 (D), ρ− a.e. y ∈ Γ, and a.e. t ∈ (0, T ] (5.4)

with initial and boundary conditions:

u(x, y, 0) = u0(x, y) ρ-a.e. y ∈ Γ
u(x, y, t) = 0 x ∈ ∂D, ρ-a.e. y ∈ Γ, a.e. t ∈ (0, T ).

We endow the Sobolev space H1
0 (D) with the gradient norm ‖v‖H1

0
= ‖∇v‖L2(D). Based
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on the existence result of the deterministic problem [Dau+99, p.513], the assumption
(5.2) ensures the well-posedness of problem (5.4), i.e. there exists a unique solution
u ∈W which moreover satisfies

‖u‖L2
ρ(Γ;L2(0,T ;H1

0 (D))) ≤
C

√
amin

[
‖u0‖2L2

ρ(Γ;H1
0 (D)) + 1

amin
‖f‖2L2

ρ(Γ;L2(0,T ;L2(D)))

]1/2
.

5.1.2 Discretization aspects

In the following sub-sections we describe the techniques used for the discretization
of problem (5.4) and corresponding assumptions necessary for a rigorous a posteriori
estimation. We will closely follow the techniques used in [Ver13; Ver03] for the time
and space discretization and [GN18; NTW08a; NTW08b; BNT10] for the stochastic
discretization by the stochastic collocation method.

Time discretization

For the time discretization we divide the time interval into N subintervals 0 = t0 <

t1 < · · · < tN = T . By τ we will denote the discretization τ = {tn}Nn=1 and τn+1 will
denote the length of the (n+ 1)-th interval τn+1 = tn+1 − tn. We will also assume that f
is continuous w.r.t. time. We will use the abbreviations

gn(x, y) = g(x, y, tn), gnθ = (1− θ)gn + θgn+1.

The numerical scheme considered here for the time discretization is the θ−scheme with
θ ∈ [0, 1].

Space discretization

The spatial discretization will be performed by the finite element method. To each
time instant tn, 0 ≤ n ≤ N, we associate a triangulation Thn of D which satisfies⋃
K∈Thn K = D and a corresponding conforming finite element space Vhn . For a rigorous

estimation we require the following conditions to be satisfied, which are taken from
[Ver03].

1. Affine equivalence: there is an invertible affine mapping for every element K ∈ Thn
onto the standard reference d-simplex or the standard unit cube in Rd.

2. Admissibility: any two elements either share a vertex or a complete edge (d = 2) or
a complete face (d = 3) or are disjoint.

3. Shape regularity: the ratio of the diameter of any element to the diameter of its
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largest inscribed ball is bounded uniformly with respect to all partitions Thn and
to N .

4. Transition condition: for every n = 1, . . . , N there is a refinement of both Thn and
Thn−1 , denoted by T̃hn , which is an affinely equivalent, admissable and shape-regular
triangulation and such that

sup
1≤n≤N

sup
K∈T̃hn

sup
K′∈Thn ;K′⊃K

hK′

hK
<∞. (5.5)

5. For every n = 1, . . . , N , Vhn consists of continuous functions which are piecewise
polynomials of degree ≤ pn, pn ≥ 1 where pn is uniformly bounded with respect to
N .

Stochastic discretization

The stochastic discretization is performed by a sparse grid collocation method, first
introduced in [Smo63]. We will briefly recall this method and refer the reader to
[NTW08a; NTW08b; BNT10] for more details.

Let us define a sequence of univariate polynomial interpolant operators

Um(ij)
j : C0(Γj)→ Pm(ij)−1(Γj), j = 1, . . . ,M,

where m(ij), called a level function, denotes the number of collocation points for level ij
and Pq(Γj) is the space of polynomials over Γj with degree at most q. The function
m is a strictly increasing function satisfying m(0) = 0, m(1) = 1. For a multi-index
q = (q1, . . . , qM ) ∈ NM , we denote by Pq(Γ) the tensor product polynomial space
Pq(Γ) =

⊗M
j=1 Pqj (Γj).

A sparse grid is built over a multi-index set I ⊂ NM+ with the only assumption being that
I is downward-closed (called also admissibility condition), i.e.

∀i ∈ I, i− ej ∈ I ∀j ∈ {1, 2, . . . ,M} s.t. ij > 1,

where ej is the j−th canonical unit vector.

By setting U0
j = 0 for j = {1, . . . ,M} we can define the sparse grid interpolant SI :
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L2
ρ(Γ) ∩ C0(Γ)→ PI :=

⊕
i∈I Pm(i)−1(Γ) of a continuous function f : Γ→ R by

SI [f ](y) =
∑
i∈I
4m(i)[f ](y), (5.6)

where

4m(i) =
M⊗
j=1

(
Um(ij)
j − Um(ij−1)

j

)
.

The operator SI can be equivalently expressed as a linear combination of tensor grid
interpolations (see [NTW08b])

SI [f ](y) =
∑
i∈I

ci

M⊗
j=1
Um(ij)
j (f)(y), ci =

∑
k∈{0,1}M

(i+k)∈I

(−1)|k| (5.7)

with |k| =
∑M
j=1 kj . We then call a sparse grid the collection of Nc(I) points X (I) =

{y1, . . . , yNc(I)} that are used in (5.7) to build the interpolant SI [f ]. The collocation
points are called nested if we have X (I) ⊂ X (J) whenever I ⊂ J . Since SI [f ] is linear in
the point evaluations {f(yk), yk ∈ X (I)}, it can be written in the form

SI [f ](y) =
Nc(I)∑
k=1

f(yk)Lk(y) (5.8)

for suitable functions Lk. Finally, we introduce the notion of margin MI of the index set
I defined by

MI = {i ∈ NM+ \ I : i− ej ∈ I for some j ∈ {1, . . . ,M}}. (5.9)

Equation (5.4) will be collocated on the grid X (In) = {y1, . . . , yNc(In)} defined by an
index set In that is allowed to change between the time steps. In particular, we allow for
both refinement and coarsening of the index set. The collocation points are assumed to
be nested. This condition implies, in particular, that SIn is interpolatory, i.e.

SIn [f ](yk) = f(yk), k = 1, . . . , Nc(In), n = 0, . . . , N, (5.10)

see [BNR00, p. 277]. By Ĩn+1 we will denote the index set

Ĩn+1 = In ∪ In+1. (5.11)

The following proposition will be useful for the derivation of the error estimates.

Proposition 5.1.1. Let SI be an interpolatory sparse grid interpolant, as defined in
(5.6). Then
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1. ∀f, g ∈ C0(Γ) : SI [f g] = SI [f SI [g]],

2. ∀f ∈ C0(Γ) : SI [f ] ∈ PI ,

3. ∀p ∈ PI(Γ) : SI [p] = p.

A proof can be found in [GN18, p.3126] for part 1 and in [Bäc+11, p.52] for part 2 and
part 3.

If SI is interpolatory, then the functions Lk in (5.8) are Lagrangian, i.e. Lk(yj) = δjk
and form a basis of PI .

5.1.3 Fully discrete problem

We allow the spatial and the stochastic grid to change over time and we define the
discrete solution for each n = 0, . . . , N as a function belonging to Vhn ⊗ PIn :

unhn,In =
Nc(In)∑
k=1

unhn,In,k Lk(y),

where unhn,In,k = unhn,In(yk) ∈ Vhn and un+1
hn+1,In+1

satisfies for all vhn+1 ∈ Vhn+1 and for
all k = 1, . . . , Nc(In+1) the equation

∫
D

un+1
hn+1,In+1,k

(x)− unhn,In(x, yk)
τn+1

vhn+1(x)dx

+
∫
D
a(x, yk)

(
θ∇un+1

hn+1,In+1,k
(x) + (1− θ)∇unhn,In(x, yk)

)
∇vhn+1(x)dx (5.12)

=
∫
D
fnθ(x, yk) vhn+1(x)dx

with initial condition

u0
h0,I0(x, y) =

Nc(I0)∑
k=1

Πh0u0(x, yk)Lk(y) (5.13)

where Πh0 is a Lagrange interpolation operator into Vh0 . The Lax Milgram lemma implies
the existence of a unique sequence of solutions {unhn,In}

N
n=0. Based on this sequence we

build a piecewise affine function ũ on [0, T ] which equals unhn,In at times tn, n = 0, . . . , N ,
i.e.

ũ(t) = tn+1 − t
τn+1

unhn,In + t− tn
τn+1

un+1
hn+1,In+1

, t ∈ [tn, tn+1]. (5.14)
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Note that
∂ũ

∂t
= 1
τn+1

(
un+1
hn+1,In+1

− unhn,In
)

on (tn, tn+1].

With this construction, for every n = 0, . . . , N − 1, the discretized solution belongs to
the space

ũ ∈ L2(tn, tn+1;PĨn+1
⊗ Ṽhn+1) ⊂ L2(tn, tn+1;L2

ρ(Γ;H1
0 (D)))

where Ṽhn+1 is the FE space corresponding to the refined triangulation T̃hn+1 , see (5.5),
and Ĩn+1 is the union of the index sets defined in (5.11).

5.1.4 Residual based a posteriori error estimation

In this section we will derive an a posteriori error estimate for u− ũ which consists of
three error contributors: space, time and stochastic. First we shall start by stating the
equation satisfied by ũ.

From (5.12) it is easy see that the discretized solution ũ satisfies the following equation
in (tn, tn+1] and for each n = 0, . . . , N − 1∫

D
SIn+1

[
∂ũ

∂t

]
vhn+1 +

∫
D
SIn+1

[
a∇ũ

]
∇vhn+1 =

∫
D
SIn+1

[
f
]
vhn+1

+
∫
D
SIn+1

[
a∇ũ− a∇ũnθ

]
∇vhn+1 +

∫
D
SIn+1

[
fnθ − f

]
vhn+1 (5.15)

∀vhn+1 ∈ Vhn+1 , everywhere in Γ.

For any element, face or edge S, hS denotes its diameter. With every edge (d = 2) or
face (d = 3) E, we identify a unit vector ηE orthogonal to it and denote the jump across
E in direction ηE by [·]E . The assumption (5.2) ensures that the energy norm and the
H1

0 norm are equivalent for every y ∈ Γ, i.e. there exists 0 < cmin ≤ cmax s.t.

cmin‖∇v‖L2(D) ≤ ‖a1/2(y)∇v‖L2(D) ≤ cmax‖∇v‖L2(D), ρ− a.e. in Γ

for any v ∈ H1
0 (D). The constants cmin, cmax can be bounded by cmin ≥ 1√

amin
and

cmax ≤
√
amax.

Now we can proceed to state the a posteriori error estimate.

Theorem 5.1.2. Let u be the solution of (5.4) and ũ be defined as in (5.14). Then there
exists a constant C > 0 independent of the time step, mesh size, the sparse grid index set
such that

‖(u− ũ)(T )‖2L2
ρ(Γ;L2(D)) + c2

min ‖u− ũ‖
2
L2(0,T ;L2

ρ(Γ;H1
0 (D)))

≤ ‖(u− ũ)(0)‖2L2
ρ(Γ;L2(D)) + ε2spa + ε2tem + ε2sto,
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where

ε2spa = C

c2
min

N−1∑
n=0

ΛIn+1

Nc(In+1)∑
k=1( ∑

K∈T̃hn+1

h2
K

∥∥∥∥f(yk)−
∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)∥∥∥∥2

L2(tn,tn+1;L2(K))

+
∑

E⊂∂K
hE

∥∥∥∥1
2[a(yk)∇ũ(yk) · ηE ]E

∥∥∥∥2

L2(tn,tn+1;L2(E))

)
‖Lk‖L1

ρ(Γ)

(5.16)

and

ε2tem = C

c2
min

N−1∑
n=0

ΛIn+1

Nc(In+1)∑
k=1

2
(
‖f(yk)− fnθ(yk)‖2L2(tn,tn+1;L2(D))

+ τn+1
θ3 + (1− θ)3

3 ‖a(yk)∇(un+1
hn+1,In+1

− unhn,In)‖2L2(D)

)
‖Lk‖L1

ρ(Γ)

(5.17)

and

ε2sto = C

c2
min

N−1∑
n=0

τn+1

( ∑
i∈ICn+1∩(In∪MIn )

∥∥∥4m(i)(a∇unhn,In)
∥∥∥2

L2
ρ(Γ;L2(D))

+
∑

i∈MIn+1

∥∥∥4m(i)(a∇un+1
hn+1,In+1

)
∥∥∥2

L2
ρ(Γ;L2(D))

)

+
∑

i∈ICn+1

∥∥∥4m(i)(f)
∥∥∥2

L2(tn,tn+1;L2
ρ(Γ,L2(D)))

+ 1
τn+1

∑
i∈Ĩn+1\In+1

∥∥∥4m(i)(unhn,In)
∥∥∥2

L2
ρ(Γ;L2(D))

.

(5.18)

where ΛIn+1 denotes the Lebesgue constant corresponding to the index set In+1.

Proof. In what follows all equations hold a.e. in (tn, tn+1), n = 0, . . . , N − 1 and ρ-a.e.
in Γ and we will omit the dependence on the variables x, y, t. We will start by dividing
the estimate into a stochastic and a deterministic part. For every v ∈ H1

0 (D) we have∫
D

(∂u
∂t
− ∂ũ

∂t

)
v +

∫
D
a∇
(
u− ũ

)
∇v =

∫
D
fv −

∫
D

∂ũ

∂t
v −

∫
D
a∇ũ∇v =

= SIn+1

[ ∫
D
fv −

∫
D

∂ũ

∂t
v −

∫
D
a∇ũ∇v

]}
︸ ︷︷ ︸

=:Adet

+ SIn+1

[ ∫
D
a∇ũ∇v +

∫
D

∂ũ

∂t
−
∫
D
fv

]
−
(∫

D
a∇ũ∇v +

∫
D

∂ũ

∂t
−
∫
D
fv

)
︸ ︷︷ ︸

=:Asto

.
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We analyze Adet and Asto separately. The term Adet accounts for both spatial and
temporal error contribution and we can use standard techniques for a posteriori error
estimation of deterministic heat equations, see [Ver13; Ver03]. For any vhn+1 ∈ Vhn+1 we
have

Adet = SIn+1

[ ∫
D
f(v − vhn+1)−

∫
D

∂ũ

∂t
(v − vhn+1)−

∫
D
a∇ũ∇(v − vhn+1)

]
+ SIn+1

[ ∫
D
fvhn+1 −

∫
D

∂ũ

∂t
vhn+1 −

∫
D
a∇ũ∇vhn+1

]
= SIn+1

[ ∫
D
f(v − vhn+1)−

∫
D

∂ũ

∂t
(v − vhn+1)−

∫
D
a∇ũ∇(v − vhn+1)

]
︸ ︷︷ ︸

=:Aspa

+ SIn+1

[ ∫
D

(
a∇ũnθ − a∇ũ

)
∇vhn+1

]
+ SIn+1

[ ∫
D

(
f − fnθ)

)
vhn+1

]
︸ ︷︷ ︸

=:Atem

(5.19)

where in the second equality we employed the equation (5.15) for ũ. Now we have
divided Adet into a spatial Aspa and a temporal Atem error contributor.

For the spatial part we will follow the estimation provided in [Ver03]. We denote by Jhn
any of the quasi interpolation operators of [Ver99a] defined on H1

0 (D) and with values in
the space of continuous, piecewise linear finite element functions corresponding to Thn .
Then, combining the interpolation error estimates of [Ver99a], a standard trace theorem
[Ver99a, Lemma 3.2] and the condition 4. stated in (5.5), the following estimates hold
for every v ∈ H1

0 and for any element K ∈ T̃hn and interior edge/face E ∈ Ẽhn

‖∇(v − Jhnv)‖L2(K) ≤ ‖∇(v − Jhnv)‖L2(K′) ≤ c0 ‖∇v‖L2(ω̃K) ,

‖v − Jhnv‖L2(K) ≤ ‖v − Jhnv‖L2(K′) ≤ c1hK′ ‖∇v‖L2(ω̃K) ≤ c̃1hK ‖∇v‖L2(ω̃K) ,

‖v − Jhnv‖L2(E) ≤ c2
{
h
−1/2
E ‖v − Jhnv‖L2(K) + h

1/2
E ‖∇(v − Jhnv)‖L2(K)

}
≤ c̃2h

1/2
E ‖∇v‖L2(ω̃K) ,

(5.20)

where K ′ denotes the element of Thn that contains K and ω̃K denotes the subset that
consists of all elements of T̃hn sharing at least a vertex with K ′. The constants c0, c1, c2
only depend on the maximal ratio of the diameter of any element to the diameter of its
largest inscribed ball. The constants c̃1, c̃2 in addition depend on the maximal ratio
hK′/hK .
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With ηK denoting a unit outward pointing normal we further derive

Aspa(y, t) =
Nc(In+1)∑
k=1

[ ∫
D
f(yk)(v − vhn+1)−

∫
D

∂ũ

∂t
(yk)

(
v − vhn+1

)
−
∫
D
a(yk)∇ũ(yk)∇(v − vhn+1)

]
Lk(y)

=
Nc(In+1)∑
k=1

[ ∑
K∈T̃hn+1

∫
K

[
f(yk)−

∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)]
(v − vhn+1)

]

−
[ ∑
E∈Ẽhn+1

∫
E

[a(yk)∇ũ(yk) · ηE ]E(v − vhn+1)
]
Lk(y).

Considering vhn+1 = Jhn+1(v) leads us to

Aspa(y, t) ≤
Nc(In+1)∑
k=1

[ ∑
K∈T̃hn+1

c̃1hK

∥∥∥∥f(yk)−
∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)∥∥∥∥
L2(K)

‖∇v‖L2(ω̃K)

+
∑

E∈Ẽhn+1

c̃2h
1/2
E ‖[a(yk)∇ũ(yk) · ηE ]E‖L2(E) ‖∇v‖L2(ω̃K)

] ∣∣∣Lk(y)
∣∣∣.

Now, using the discrete Cauchy–Schwarz inequality and the fact that the domains ω̃K
only consist of a finite number of elements, this number being bounded by the maximal
ratio of the diameter of any element to the diameter of its largest inscribed ball and on
the ratios hK′/hK , we derive

Aspa(y, t) ≤ C1

Nc(In+1)∑
k=1

[( ∑
K∈T̃hn+1

h2
K

∥∥∥∥f(yk)−
∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)∥∥∥∥2

L2(K)

)1/2

+
( ∑
E∈Ẽhn+1

hE ‖[a(yk)∇ũ(yk) · ηE ]E‖2L2(E)

)1/2] ∣∣∣Lk(y)
∣∣∣ ‖∇v‖L2(D)

= C1

Nc(In+1)∑
k=1

En+1
spa,k(t)

∣∣∣Lk(y)
∣∣∣ ‖∇v‖L2(D) .

As for the temporal part Atem, we proceed in a similar manner
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Atem(y, t) =
Nc(In+1)∑
k=1

[ ∫
D
a(yk)

(
∇ũnθ(yk)−∇ũ(yk)

)
∇vhn+1

+
∫
D

(
f(yk)− fnθ(yk)

)
vhn+1

]
Lk(y)

≤ C2

Nc(In+1)∑
k=1

[ ∥∥∥a(yk)∇
(
ũnθ(yk)− ũ(yk)

)∥∥∥
L2(D)

+
∥∥∥(f(yk)− fnθ(yk)

)∥∥∥
L2(D)

] ∣∣∣Lk(y)
∣∣∣ ‖∇v‖L2(D)

= C2

Nc(In+1)∑
k=1

En+1
tem,k(t)

∣∣∣Lk(y)
∣∣∣ ‖∇v‖L2(D) ,

(5.21)

where C2 depends on the Jhn+1 interpolation operator norm and the Poincaré constant.

Now we focus on the term Asto describing the stochastic part of the error. We will use
the fact that SIn+1 [a∇uhn+1 ] = SIn+1 [a∇SIn+1 [uhn+1 ]] given by Proposition 5.1.1. We
derive

Asto(y, t) = SIn+1

[ ∫
D
a∇ũ∇v +

∫
D

∂ũ

∂t
−
∫
D
fv

]
−
(∫

D
a∇ũ∇v +

∫
D

∂ũ

∂t
−
∫
D
fv

)

=
∫
D

(
SIn+1 [a∇ũ]− a∇ũ

)
∇v +

∫
D

(
f − SIn+1 [f ]

)
v

+
∫
D

(SIn+1 [un+1
hn+1,In+1

− unhn,In ]− (un+1
hn+1,In+1

− unhn,In)
τn+1

)
v

=
∫
D

(
SIn+1 [a∇ũ]− a∇ũ

)
∇v +

∫
D

(
f − SIn+1 [f ]

)
v

+
∫
D

SĨn+1
[unhn,In ]− SIn+1 [unhn,In ]

τn+1
v

≤

∥∥∥∥∥∥∥
∑

i∈ICn+1

4m(i)(a∇ũ)

∥∥∥∥∥∥∥
L2(D)

‖∇v‖L2(D) +

∥∥∥∥∥∥∥
∑

i∈ICn+1

4m(i)(f)

∥∥∥∥∥∥∥
L2(D)

‖v‖L2(D)

+ 1
τn+1

∥∥∥∥∥∥
∑

i∈Ĩn+1\In+1

4m(i)(unhn,In)

∥∥∥∥∥∥
L2(D)

‖v‖L2(D)
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≤ C3

(∥∥∥∥∥∥∥
∑

i∈(In\In+1)∪MĨn+1

4m(i)(a∇ũ)

∥∥∥∥∥∥∥
L2(D)

+

∥∥∥∥∥∥∥
∑

i∈ICn+1

4m(i)(f)

∥∥∥∥∥∥∥
L2(D)

+ 1
τn+1

∥∥∥∥∥∥
∑

i∈Ĩn+1\In+1

4m(i)(unhn,In)

∥∥∥∥∥∥
L2(D)

)
‖∇v‖L2(D)

= C3 En+1
sto ‖∇v‖L2(D).

In the last inequality we used the affine dependence of a on the random variables,
stated in the assumption (5.3), which allows us to restrict the sum over ICn+1 to the
index set MĨn+1

∪ (In \ In+1) = ICn+1 ∩ (Ĩn+1 ∪MĨn+1
). This comes from the fact that

ũ ∈ PĨn+1
which implies a∇ũ ∈ PĨn+1∪MĨn+1

. Since SĨn+1∪MĨn+1
is exact on PĨn+1∪MĨn+1

(Proposition 5.1.1.3), we obtain

4m(i)(a∇ũ) = 0, ∀i 6∈ Ĩn+1 ∪MĨn+1
.

Altogether we obtained for every n = 0, . . . , N − 1∫
D

∂(u− ũ)
∂t

v +
∫
D
a∇(u− ũ) · ∇v

≤ C4

(
En+1
sto +

Nc(In+1)∑
k=1

(En+1
tem,k + En+1

spa,k)
∣∣∣Lk(y)

∣∣∣)‖∇v‖L2(D).

Taking v = u− ũ ∈ H1
0 and using the Young inequality we have

1
2

d
dt‖u− ũ‖

2
L2(D)(y, t) + c2

min‖∇(u− ũ)‖2L2(D)(y, t)

≤ 1
2 c2

min

C2
4

(
En+1
sto (y, t) +

Nc(In+1)∑
k=1

(
En+1
tem,k(t) + En+1

spa,k(t)
) ∣∣∣Lk(y)

∣∣∣)2

+ c2
min

2 ‖∇(u− ũ)‖2L2(D)(y, t)

which holds for a.e. t ∈ (tn, tn+1]. The last step is to integrate the last inequality w.r.t t
over (0, T ) and w.r.t y over Γ. Using the discrete Cauchy-Schwarz inequality we derive

N−1∑
n=0

∫ tn+1

tn

∫
Γ

(Nc(In+1)∑
k=1

En+1
tem,k(t)

∣∣∣Lk(y)
∣∣∣)2
ρ(y) dy dt

≤
N−1∑
n=0

∫ tn+1

tn

∫
Γ

Nc(In+1)∑
k=1

En+1
tem,k(t)

2|Lk(y)|
Nc(In+1)∑
k=1

∣∣∣Lk(y)
∣∣∣ρ(y) dy dt
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≤
N−1∑
n=0

(Nc(In+1)∑
k=1

∫ tn+1

tn
En+1
tem,k(t)

2 dt
∫

Γ

∣∣∣Lk(y)
∣∣∣ρ(y) dy

)(
sup
y∈Γ

Nc(In+1)∑
k=1

|Lk(y)|
)

≤
N−1∑
n=0

ΛIn+1

(Nc(In+1)∑
k=1

2
(
‖f(yk)− fnθ(yk)‖2L2(tn,tn+1;L2(D))

+ τn+1
θ3 + (1− θ)3

3 ‖a(yk)∇(un+1
hn+1,In+1

− unhn,In)‖2L2(D)

)
‖Lk‖L1

ρ(Γ)

)
,

where in the last inequality we employed the observation

ũnθ − ũ =
(
θ − t− tn

τn+1

)
(un+1 − un).

Analogously for the spatial part

N−1∑
n=0

∫ tn+1

tn

∫
Γ

(Nc(In+1)∑
k=1

En+1
spa,k(t)

∣∣∣Lk(y)
∣∣∣)2
ρ(y) dy dt

≤
N−1∑
n=0

∫ tn+1

tn

∫
Γ

Nc(In+1)∑
k=1

En+1
spa,k(t)

2
∣∣∣Lk(y)

∣∣∣Nc(In+1)∑
k=1

∣∣∣Lk(y)
∣∣∣ρ(y) dy dt

≤
N−1∑
n=0

ΛIn+1

(Nc(In+1)∑
k=1

( ∑
K∈T̃hn+1

h2
K

∥∥∥∥f(yk)−
∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)∥∥∥∥2

L2(tn,tn+1;L2(K))

+
∑

E⊂∂K
hE

∥∥∥∥1
2[a(yk)∇ũ(yk) · ηE ]E

∥∥∥∥2

L2(tn,tn+1;L2(E))

)
‖Lk‖L1

ρ(Γ)

)

As for the stochastic part we derive

N−1∑
n=0

∫ tn+1

tn

∫
Γ
En+1
sto (y, t)2ρ(y) dy dt

≤ 3
N−1∑
n=0

∫ tn+1

tn

∫
Γ

∑
i∈(In\In+1)∪MĨn+1

∥∥∥4m(i)(a∇ũ)
∥∥∥2

L2(D)

+
∑

i∈ICn+1

∥∥∥4m(i)(f)
∥∥∥2

L2(D)
+

∑
i∈Ĩn+1\In+1

1
τ2
n+1

∥∥∥4m(i)(unhn,In)
∥∥∥2

L2(D)
ρ(y) dy dt

≤ C5

N−1∑
n=0

[ ∫ tn+1

tn

(
t− tn
τn+1

)2
dt

∑
i∈ICn+1∩(In∪MIn )

∥∥∥4m(i)(a∇unhn,In)
∥∥∥2

L2
ρ(Γ;L2(D))

+
∫ tn+1

tn

(
tn+1 − t
τn+1

)2
dt

∑
i∈MIn+1

∥∥∥4m(i)(a∇un+1
hn+1,In+1

)
∥∥∥2

L2
ρ(Γ;L2(D))

+
∑

i∈ICn+1

∥∥∥4m(i)(f)
∥∥∥2

L2(tn,tn+1;L2
ρ(Γ,L2(D)))
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+ τn+1
τ2
n+1

∑
i∈Ĩn+1\In+1

∥∥∥4m(i)(unhn,In)
∥∥∥2

L2
ρ(Γ;L2(D))

]

= C5

N−1∑
n=0

[
τn+1

3

( ∑
i∈ICn+1∩(In∪MIn )

∥∥∥4m(i)(a∇unhn,In)
∥∥∥2

L2
ρ(Γ;L2(D))

+
∑

i∈MIn+1

∥∥∥4m(i)(a∇un+1
hn+1,In+1

)
∥∥∥2

L2
ρ(Γ;L2(D))

)

+
∑

i∈ICn+1

∥∥∥4m(i)(f)
∥∥∥2

L2(tn,tn+1;L2
ρ(Γ,L2(D)))

+ 1
τn+1

∑
i∈Ĩn+1\In+1

∥∥∥4m(i)(unhn,In)
∥∥∥2

L2
ρ(Γ;L2(D))

]

The spatial and time estimators in (5.16), (5.17) depend on the Lebesgue constant Λn+1.
The growth of the Lebesgue constant depends on the choice of the level function m and
the type of the collocation points, which for the nested Clenshaw-Curtis points yields an
estimate ΛI ∼ |I|2 and for the projected Leja points an estimate ΛI ∼ |I|3+ε for any ε > 0
(see [CCS14]). Such estimation can cause the estimator to be too conservative. This issue
was addressed in [GN18, Rem 4.4]. The following theorem provides an alternative way of
estimating the spatial and time estimator without involving the Lebesgue constant and
is an extension of the results from [GN18, Rem 4.4].

Theorem 5.1.3. The spatial estimator εspa from (5.16) and the time estimator εtem
from (5.17) can be alternatively expressed as

ε2tem = C

c2
min

N−1∑
n=0

[ ∥∥∥∥∥∥
Nc(In+1)∑
k=1

[(
f(yk)− fnθ(yk)

)]
Lk(y)

∥∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ(Γ;L2(D)))

+ τn+1

∥∥∥∥∥∥
Nc(In+1)∑
k=1

[
a(yk)∇

(
un+1
hn+1,In+1

(yk)− unhn,In(yk)
)]
Lk(y)

∥∥∥∥∥∥
2

L2
ρ(Γ;L2(D))

]
(5.22)

and

ε2spa =
N−1∑
n=0

∑
K∈T̃hn+1

(εnspa,K)2 (5.23)

with

(εnspa,K)2 = C

c2
min

h2
K

∥∥∥∥∥∥
Nc(In+1)∑
k=1

[
f(yk)−

∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ(Γ;L2(K)))
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+
∑

E⊂∂K
hE

∥∥∥∥∥∥
Nc(In+1)∑
k=1

(1
2[a(yk)∇ũ(yk) · ηE ]E

)
Lk(y)

∥∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ(Γ;L2(E)))

.

Proof. We follow by estimating the term Atem from (5.21) by

Atem(y, t) =
∫
D

Nc(In+1)∑
k=1

a(yk)
(
∇ũnθ(yk)−∇ũ(yk)

)
Lk(y)∇vhn+1

+
∫
D

Nc(In+1)∑
k=1

(
f(yk)− fnθ(yk)

)
Lk(y) vhn+1

≤ C
(∥∥∥∥∥∥

Nc(In+1)∑
k=1

a(yk)
(
∇ũnθ(yk)−∇ũ(yk)

)
Lk(y)

∥∥∥∥∥∥
L2(D)

+

∥∥∥∥∥∥
Nc(In+1)∑
k=1

(
f(yk)− fnθ(yk)

)
Lk(y)

∥∥∥∥∥∥
L2(D)

)
‖∇v‖L2(D)

= CEn+1
tem ‖∇v‖L2(D)

where we applied the same interpolation results as proposed in (5.20). Analogously for
the spatial estimation we derive

Aspa(y, t) =
∑

K∈T̃hn+1

[ ∫
K

Nc(In+1)∑
k=1

[
f(yk)−

∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)]
Lk(y)

(v − vhn+1)
]

−
∑

E∈Ẽhn+1

∫
E

Nc(In+1)∑
k=1

[a(yk)∇ũ(yk) · ηE ]E Lk(y)(v − vhn+1)

≤
∑

K∈T̃hn+1

∥∥∥∥∥∥
Nc(In+1)∑
k=1

[
f(yk)−

∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥∥
L2(K)

∥∥v − vhn+1

∥∥
L2(K)

+
∑

E∈Ẽhn+1

∥∥∥∥∥∥
Nc(In+1)∑
k=1

[a(yk)∇ũ(yk) · ηE ]E Lk(y)

∥∥∥∥∥∥
L2(E)

∥∥v − vhn+1

∥∥
L2(E) .

Using again the interpolation results (5.20) and the discrete Cauchy-Schwarz inequality
we obtain

Aspa(y, t) ≤ C
[( ∑

K∈T̃hn+1

h2
K

∥∥∥∥∥∥
Nc(In+1)∑
k=1

[
f(yk)−

∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥∥
2

L2(K)

)1/2
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+
( ∑
E∈Ẽhn+1

hE

∥∥∥∥∥∥
Nc(In+1)∑
k=1

[a(yk)∇ũ(yk) · ηE ]E Lk(y)

∥∥∥∥∥∥
L2(E)

)1/2]
‖∇v‖L2(D)

= CEn+1
spa ‖∇v‖L2(D)

The rest of the proof follows the same steps as in the proof of Theorem 5.1.2.

Remark 6. Note that the spatial estimator from Theorem 5.1.2 allows for different FE
meshes for different collocation points. This property is sacrificed in the spatial estimator
from Theorem 5.1.3. We shall also note that the error estimator derived in this work
is of suboptimal order in the case θ = 1/2, which corresponds to the Crank-Nicolson
scheme. In order to restore the second order convergence one shall work with a piecewise
quadratic polynomial function in time instead of the linear one defined in (5.14). We
refer an interested reader to [LPP09; AMN06].

5.1.5 Adaptive algorithm

The estimators from the preceding section provide us with an upper bound of the error
that is naturally localized in all variables - time, space and stochastics. There are many
possible choices of adaptive algorithms that can be constructed starting from these
estimators. One could drive the adaptive choice of time-varying finite element and
stochastic grids by a local in time error estimator, as was proposed in [Pic98; BR03] for
time varying FE or DG meshes in the case of a deterministic heat equation. Also, the
spatial estimator εspa in Theorem 5.1.2 is naturally localized over the collocation points
so it allows for different adapted FE meshes in different collocation points. This idea has
been explored e.g. in [Eig+14] in the context of a stochastic Galerkin polynomial chaos
approximation of an elliptic problem with random coefficients. There are, however, many
problems whose behaviour does not require FE meshes and sparse grids that dramatically
change in time. Considering fixed in time FE meshes and sparse grids simplifies the
estimators and the adaptive process. In this work we will restrict to adapted FE meshes
and sparse grids which are fixed in time with the goal to obtain the overall error

ε = ‖(u− ũ)(T )‖2L2
ρ(Γ;L2(D)) + c2

min ‖u− ũ‖
2
L2(0,T ;L2

ρ(Γ;H1
0 (D)))

under a prescribed tolerance TOL. We will apply the global spatial and time estimators
from Theorem 5.1.3, i.e. (5.22), (5.23) by localizing the spatial estimator into elements,
the time estimator into time steps and the stochastic estimator (5.18) into indices. For a
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deterministic right hand side the corresponding error estimators become

ε2spa,K = c1
c2
min

h2
K

∥∥∥∥∥∥
Nc(I)∑
k=1

[
f(yk)−

∂ũ

∂t
(yk) +∇ ·

(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥∥
2

L2(0,T ;L2
ρ(Γ;L2(K)))

+ c2
c2
min

∑
E⊂∂K

hE

∥∥∥∥∥∥
Nc(I)∑
k=1

(1
2[a(yk)∇ũ(yk) · ηE ]E

)
Lk(y)

∥∥∥∥∥∥
2

L2(0,T ;L2
ρ(Γ;L2(E)))

(5.24)

for every element K ∈ Th,

ε2tem,n = c3
c2
min

∥∥∥∥∥∥
Nc(I)∑
k=1

[(
f(yk)− fnθ(yk)

)]
Lk(y)

∥∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ(Γ;L2(D)))

+ c4
c2
min

τn+1

∥∥∥∥∥∥
Nc(I)∑
k=1

[
a(yk)∇

(
un+1
h,I (yk)− unh,I(yk)

)]
Lk(y)

∥∥∥∥∥∥
2

L2
ρ(Γ;L2(D))

(5.25)

for every subinterval [tn, tn+1], n = 0, . . . , N − 1, and

ε2sto,i = 1
c2
min

N−1∑
n=0

τn+1

(∥∥∥4m(i)(a∇unh,I)
∥∥∥2

L2
ρ(Γ;L2(D))

+
∥∥∥4m(i)(a∇un+1

h,I )
∥∥∥2

L2
ρ(Γ;L2(D))

)
(5.26)

for every multi index i ∈MI .

Then the overall error ε can be bounded by

ε2 ≤
∑
K∈Th

ε2spa,K +
N−1∑
n=0

ε2tem,n +
∑
i∈MI

ε2sto,i.

The algorithm will start with fairly coarse grids and index set Th, τ, I, compute the
numerical solution ũ and compute the estimators (5.24), (5.25), (5.26) for every cell, time
subinterval and index from the margin. Let N = |Th|+N + |MI | denote the total number
of elements in {Th, τ, MI}, i.e. number of cells + number of subintervals (N) + number
of indices in the marginMI . Then we will refine a cell K whenever ε2spa,K > (αTOL/N )2,
divide a time interval [tn, tn+1] into 2 equal subintervals whenever ε2tem,n > (αTOL/N )2

and add an index i ∈ MI into the index set I whenever ε2sto,i > (αTOL/N )2, where
α > 1. Note that adding an index i might result in adding more indices since we need to
keep the index set I downward closed. With the new refined mesh, time grid and sparse
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grid we need to compute a new solution ũ and continue until the stopping criterion

ε2
Th,τ,I :=

∑
K∈Th

ε2spa,K +
N−1∑
n=0

ε2tem,n +
∑
i∈MI

ε2sto,i < TOL2

is satisfied. This procedure is described in Algorithm 1. We shall note that a proof of
convergence for this algorithm is not available yet.

Algorithm 1: Adaptive algorithm
Data: TOL > 0
Result: τ, I, Th and ũ s.t. εTh,τ,I < TOL
Initialize τ, I, Th;
compute ũ on τ, I, Th;
compute εspa,K , εtem,n, εsto,i;
while εTh,τ,I ≥ TOL do

set N = |Th|+N + |MI |;
for K ∈ Th do

if εspa,K > α TOL
N then

refine K
for n ∈ {0, . . . , N − 1} do

if εtem,n > α TOL
N then

refine [tn, tn+1]

for i ∈MI do
if εsto,i > α TOL

N then
I = I ∪ i;
add indices s.t. I is downward closed

update τ, I, Th;
compute ũ on new τ, I, Th;
compute εspa,K , εtem,n, εsto,i;

5.1.6 Numerical results

This section is dedicated to study the effectiveness of the estimators in (5.24), (5.25),
(5.26) and the performance of the adaptive algorithm introduced in Section 5.1.5. The
practical computation of these estimators requires some estimation of the constants
c1, . . . , c4, cmin as well as an approximate computation of the L2

ρ(Γ) norm. This is
discussed hereafter.

Let us consider problem (5.1.1) set in a unit square D = [0, 1]2 with time domain [0, 1]
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and an uncertain diffusion coefficient

a(x, y) = a0 +
2∑

m=1

cos(2πmx1) + cos(2πmx2)
(πm)2 ym (5.27)

with x = (x1, x2), y = (y1, y2) and a0 > 0 set to satisfy

inf
x∈D, y∈Γ

a(x, y) = 0.01.

The random variables are independent and uniformly distributed ym ∼ U([−1, 1]) and
the forcing term is deterministic and time-independent

f(x) = 201F (x)

with F = [0.4, 0.6]× [0.4, 0.6] a square in the middle of the domain.

In all of our simulations we used the spatial and time estimators provided in Theorem
5.1.3 which do not require an explicit estimation of the Lebesgue constant. The norm
‖g‖L2

ρ(Γ) for g ∈ C0(Γ) is approximated using a set Θ ⊂ Γ of finite cardinality by

‖g‖L2
ρ(Γ) ≈

( 1
|Θ|

∑
y∈Θ

g(y)2
)1/2

.

We set Θ to consist of 500 randomly sampled points in Γ = [−1, 1]2 according to the
distribution ρ, uniform on Γ. As suggested in [GN18], instead of setting cmin = √amin,
which may be too conservative, we will rather approximate it by

cmin := min
v∈U⊂L2

ρ(Γ;H1
0 (D))

min
y∈Ξ

‖a1/2(y)∇v(y)‖L2(D)
‖∇v(y)‖L2(D)

,

where we take U = {unh,I , n = 0, . . . , N} and Ξ is a set of random samples of small
cardinality (different from Θ). For the specific diffusion coefficient in (5.27) we estimated
cmin ≈ 0.41. The norm ‖g‖L2(0,T ) is computed using the trapezoidal rule as suggested
in [Pic98]. We have considered P1 finite elements without fitting the FE mesh to the
subdomain F and θ = 1, namely the implicit Euler method. The sparse grid consists of
Leja points built as symmetric Leja sequences within [−1, 1] (see e.g. [CCS14]) with level
function m(i) = i. This combination satisfies the interpolatory condition (5.10). All our
simulations were performed using the FEniCS library [Aln+15b].

For a sharp behaviour of the estimators and an efficient performance of the adaptive
algorithm one needs a good estimation of the constants c1, c2, c3, c4 in (5.24), (5.25),
(5.26). This requires a good estimation of the interpolation constants from (5.20) which is
not an easy task and we refer the reader to [Ver99a] for ways to bound the interpolation

112



5.1. A posteriori error estimation for a random heat equation

constants. In our case, we adopted the strategy proposed in [Pic98], i.e. estimated the
constants by observing the behaviour of the estimators vs. the behaviour of the error
with respect to a reference solution when refining individually uniform spatial grids,
uniform time grids and isotropic sparse grids for different solutions u. This is done on
relatively coarse FE meshes, sparse grids and time discretizations so that the overall
cost of estimating the constants is much smaller than the cost of the adaptive process.
We obtained the estimates c1 = 0.016, c2 = 0.023, c4 = 0.078. The term including the
constant c3 is in our case equal to 0. Note that a correct estimation of the constants is
rather important. Poor estimation directly influences the stopping criterion. Moreover,
it may alter the balance between the three sources of discretization error which may lead
to over-refining in one variable while insufficiently refining in another one.

Numerical study of the performance of the estimators

This part is dedicated to study the effectiveness of the error estimator considering different
non uniform FE meshes, time discretizations and index sets. We proceed by studying
first a “marginalized” error and estimator, where by “marginalized” spatial error we
mean an error caused by only spatial discretization, i.e. the numerical solution and the
“true” solution are computed using the same (“overkilling”) discretization for time and
random variables. Analogously, for the marginalized time and stochastic errors.
In Figure 5.1 we show the convergence results for the marginalized time estimator. The
numerical and reference solution were computed on a uniform spatial grid consisting of
6400 triangles, with diameter 0.025 and a sparse grid having 113 collocation points. We
considered both uniform and non uniform time discretizations for the numerical solution
specified in Figure 5.1 (left). The reference solution was computed on a much finer time
grid. Figure 5.1 (right) shows the “true" error as well as the error estimator over the
sequence of time grids obtained by refinement of the three grids shown in the left plot.
We observe that the estimator provides a good control of the “true" error for all three
cases. In the same figure we have also plotted the reference function 2/N where N is the
number of time steps. We clearly see that the order of convergence is 1 in all cases, which
is expected as we used the implicit Euler method for the time discretization. We can as
well observe that the smallest error is attained for the non-uniform discretization that is
denser at the beginning of the interval. This is related to the fact that the considered
problem has a dissipative behavior.

The convergence study of the stochastic estimator was performed on a triangulation with
6400 triangles with diameter 0.025 and with 200 uniform time steps. The results are
shown in Figure 5.2. We considered sequences of anisotropic sparse grids with the index
sets defined as

I(w) = {i ∈ NM+ :
∑
n

βn(in − 1) ≤ w}
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(a) Time discretization 1

(b) Time discretization 2

(c) Time discretization 3

Figure 5.1 – Time error and estimator with respect to the number of time steps (right)
for solutions computed on refinements of 3 time grids (left).

with w = 1, . . . , 8 and β = (β1, . . . , βM ), βm ≥ 1. The weights β were fixed to
(1, 2), (1, 1), (2, 1). Examples of such sparse grids with w = 5 can be seen in Figure 5.2
(left). The reference solution was computed with w = 15. Figure 5.2 (right) shows the
error and the estimator for the 3 considered choices of sparse grids. We observe again
that in all three cases we obtain a good estimation of the “true" error. Moreover, in
all cases we observe a subexponential convergence which is consistent with sparse grid
approximation results [NTW08b; NTT16].

Concerning the spatial estimator, we fixed the number of collocation points to 113 built
as an isotropic sparse grid, the number of uniform time steps to 200 and computed the
numerical solution on non uniform triangulations specified in Figure 5.3 (left). The
convergence in Figure 5.3 was achieved by uniformly refining every cell, i.e. halving
the diameter of every cell at each iteration of the convergence study with the use of
refinement by longest edge bisection [BR14]. The Figure 5.3 shows that the estimators
provide a good control of the “true" error in all three cases. We also plot the function
C/
√
NFE where NFE is the number of finite element cells. We see that in all three cases

the error dacays as O( 1√
NFE

) which corresponds to the theoretical order of convergence
1 with respect to the mesh size when using P1 finite elements on quasi-uniform meshes.

We now focus on the total error and consider several combinations of uniform refinements
in the different components (spatial, temporal, stochastic). We report in Table 5.1 the
behaviour of the estimator in all cases. From these results we conclude that the three
components of the estimator behave in a fairly independent way. The only dependency
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(a) β = (1, 2), w = 5

(b) β = (1, 1), w = 5

(c) β = (2, 1), w = 5

Figure 5.2 – Stochastic error and estimator with respect to the number of collocation points
(right) for solutions computed on anisotropic sparse grids (left) of levels w = 1, . . . , 8.
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(a) Triangulation 1

(b) Triangulation 2

(c) Triangulation 3

Figure 5.3 – Spatial error and estimator with respect to the number of cells (right) for
solutions computed on refinements of 3 triangulations (left).
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Table 5.1 – Error and error estimation when using different combinations of uniform
triangulations, uniform time steps and isotropic sparse grids

h τ coll. pts εspa εtem εsto εTh,τ,I ε

0.2 0.025 13 0.73 0.13 0.017 0.74 0.66
0.1 0.025 13 0.38 0.13 0.1 0.42 0.39
0.04 0.025 13 0.16 0.13 0.18 0.27 0.2
0.02 0.025 13 0.08 0.13 0.2 0.25 0.16
0.01 0.025 13 0.04 0.13 0.2 0.24 0.157

0.02 0.05 13 0.08 0.26 0.2 0.33 0.22
0.02 0.025 13 0.08 0.13 0.2 0.25 0.16
0.02 0.0125 13 0.081 0.068 0.2 0.22 0.15

0.02 0.025 5 0.08 0.13 0.34 0.37 0.18
0.02 0.025 13 0.08 0.13 0.2 0.25 0.16
0.02 0.025 25 0.08 0.13 0.07 0.15 0.11

we can observe is the stochastic estimator being dependent on the spatial discretization.
If the stochastic error is negligible compared to the spatial error, the stochastic estimator
grows as the spatial estimator decreases while refining the spatial grid. When they
reach a similar magnitude, decreasing the spatial error does not influence the stochastic
estimator anymore. All the numerical solutions were computed on uniform triangulations,
uniform time grids and isotropic sparse grids.

Numerical study of the performance of the adaptive algorithm

In this part we study the performance of the Algorithm 1 applied to problem (5.27).
We set the tolerance to TOL = 0.1, α = 1.5 and initialize the spatial grid as a uniform
triangulation having 25 points and 100 triangles. The initial time discretization was set
to have 25 equally spaced subintervals and the initial sparse grid was isotropic with 13
collocation points built over the index set I = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.
The initial discretizations are depicted in Figure 5.4 (left) with their corresponding error
estimator (right). In Figure 5.5 (left) we show the final grids, the spatial triangulation
having 7490 triangles, the time grid consisting of 155 steps and the stochastic sparse
grid having 57 collocation points. As we can see, the algorithm was able to detect the
location and discontinuity of the forcing term. The final time discretization is clearly
consistent with the dissipative behaviour of this problem and the algorithm is also able
to identify the dominant random variable Y1. In Figure 5.5 (right) we can as well observe
that the estimator provides a good control over the error throughout the whole process.
As a last result we report in Table 5.2 the number of cells, time steps and collocation
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(a) Initial triangulation (b) Error estimator for every triangle

(c) Initial time discretization (d) Error estimator for every time step

(e) Initial sparse grid

1 2 3 4

4

3

2

1

1.7e− 13

5.7e− 7

2.4e− 4

3.45e− 5

index in the set I
index in the margin MI

(f) Error estimator for every index in
the margin

Figure 5.4 – Initial discretizations (left) when running the Algorithm 1 applied to
problem (5.27) and corresponding error estimators (right) for elements, time intervals
and multi-indices.
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(a) Final triangulation

(b) Final time discretization

(c) Final sparse grid

Figure 5.5 – Final discretizations (left) resulting from the Algorithm 1 applied to problem
(5.27) and the evolution of the overall error and error estimation (right).
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Table 5.2 – Number of cells, time steps and collocation points when using the Algorithm
1 with different tolerances.

TOL no. of cells no. of time steps no. of coll. points εTh,τ,I

0.4 492 36 17 0.3676
0.2 1808 70 33 0.1927
0.1 7490 155 57 0.0947
0.05 29106 357 89 0.0487

points in the final discretizations for different tolerances. We can see that halving the
tolerance results in approximately twice more time steps and four times more cells which
agrees with the expected order of convergence.

5.2 A posteriori error estimation for a DLRA of a random
parabolic equation

In this work we present a residual based a-posteriori error estimation for a DLR approxi-
mation of a random parabolic equation. The precise definition of the fully discrete DLR
solution is available in Section 2.2.1. The derivation of the error applies the variational
formulation (2.27), which requires the weights of the stochastic quadrature to be positive.
Therefore, as opposed to the previous section, we consider here a stochastic discretization
provided by tensor grids. The a-posteriori error estimate consists of four parts controlling
the space discretization error, the time discretization error, the stochastic collocation
error and the DLR error. These estimators can be used to drive an adaptive choice of
spatial, stochastic, time discretization parameters and rank in the DLR approximation.
This section starts with describing the governing problem and discretization techniques
in Section 5.2.1. We follow by deriving a heuristic a-posteriori error estimation for a
general random parabolic equation in Section 5.2.3. In Section 5.3 we derive a rigorous
a-posteriori error estimation for the same random heat equation discussed in the pre-
vious section, with a diffusion coefficient affine w.r.t. the random variables. Finally, in
Section 5.3.1 we propose an adaptive algorithm, where the derived estimators are used
to drive an adaptive choice of time, spatial, stochastic discretization and rank R for the
DLR approximation.

5.2.1 Discretization aspects

In this work we consider a DLR approximation of random parabolic equation, as described
in Section 3.1. Furthermore, let D ⊂ Rd, 1 ≤ d ≤ 3 be a polygonal domain with Lipschitz
boundary. We assume that V = H1

0 (D) =: H1
0 , H = L2(D) =: L2, V ′ = H−1(D) =: H−1
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and the scalar products 〈v, w〉H,L2
ρ
, 〈v, w〉V,L2

ρ
are defined as

〈v, w〉H,L2
ρ

=
∫

Ω

∫
D
v w dx dρ

〈v, w〉V,L2
ρ

=
∫

Ω

∫
D
∇v · ∇w dx dρ.

The discretization scheme is specified in Chapter 2. In particular, we apply the finite
element method for the spatial discretization. We consider a triangulation Th of D which
satisfies

⋃
K∈Th K = D and a corresponding conforming finite element space Vh, which

consists of continuous functions that are piecewise polynomials of degree ≤ r, r ≥ 1. For
a rigorous estimation, we require the affine equivalence, admissibility and shape regularity
conditions from Section 5.1.2 to be satisfied. Note that for the sake of simplicity, we
assume that the spatial and stochastic discretizations, as well as the rank of the DLR
approximation, do not change in time.

The stochastic discretization is performed by the stochastic collocation method ([XH05a;
BNT10]), in particular the tensor grid method with Gaussian quadrature points. Let
us assume that Ω ⊂ RM is a product of intervals Ωm and that ρ factorizes as ρ(ω) =
ΠM
m=1ρm(ωm), ∀ω ∈ Ω. For each dimension m = 1, . . . ,M , let ωm,km , km = 1, . . . , pm + 1

be the pm + 1 roots of the polynomial qpm+1 of degree pm that is orthogonal w.r.t. the
weight ρm, i.e. ∫

Ωm
qpm+1(ω)v(ω)ρm(ω) dω = 0 ∀v ∈ Ppm(Ωm),

where Ppm(Ωm) = span(ωjm, j = 1, . . . , pm) consists of univariate polynomials of order at
most pm. By Pp(Ω) we denote the span of tensor product polynomials with degree at
most p = (p1, . . . , pm), i.e.

Pp(Ω) =
M⊗
m=1

Ppm(Ωm).

To any vector of indices [k1, . . . , kM ], we associate the global index k = k1 + p1(k2 − 1) +
p1p2(k3 − 1) + . . . and we denote by ωk the point ωk = [ω1,k1 , ω2,k2 , . . . , ωM,kM ] ∈ Ω. We
also introduce, for each m = 1, 2, . . . ,M , the Lagrangian basis {lm,j}pm+1

j=1 of the space
Ppm ,

lm,j ∈ Ppm(Ωm), lm,j(ωm,k) = δj,k, j, k = 1, . . . , pm + 1

and we set lk(ω) = ΠM
m=1lm,km(ωm). The weights are obtained as

λkm =
∫

Ωm
l2km(ω)ρm(ω) dω, λk = ΠM

m=1λkm > 0.

The expectation Eρ[g] of a function g : Ω → V will be approximated by the Gauss
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quadrature formula

Eρ̂[g] =
N̂∑
k=1

λkg(ωk). (5.28)

Note that N̂ = ΠM
m=1(pm + 1). We introduce the Lagrange interpolant operator Ip :

C0(Ω;V )→ Pp(Ω) defined as

Ipg(ω) =
N̂∑
k=1

g(ωk)lk(ω) ∀g ∈ C0(Ω;V ).

5.2.2 Fully discrete problem

As described in Chapter 2, the fully discrete DLR solution unh,ρ̂ = ((unh,ρ̂)(1), . . . , (unh,ρ̂)(N̂))
satisfies the following equation, weakly in Vh

(un+1
h,ρ̂ )(k) − (unh,ρ̂)(k)

4tn
+
(

Πh,ρ̂

Ũn+1Y nᵀ
[L(unh,ρ̂, un+1

h,ρ̂ )]
)

(ωk) =
(

Πh,ρ̂

Ũn+1Y nᵀ
[fn,n+1]

)
(ωk),
(5.29)

where

Πh,ρ̂

Ũn+1Y nᵀ
[g] = Eρ̂[gY n]Y n+

(
(g, Ũn+1)V ′V −Eρ̂

[
(g, Ũn+1)V ′V Y n]Y n

)
(M̃n+1)−1Ũn+1,

g ∈ L2
ρ(Ω;V ′).

Note that in this work we allow for different time steps at different times, noting
4tn = tn+1 − tn. We proceed by redefining the DLR solution unh,ρ̂ and consider its
interpolated version defined as

unh,ρ̂(ω) =
N̂∑
k=1

(unh,ρ̂)(k)lk(ω), ∀ω ∈ Ω.

Note that unh,ρ̂ ∈ Vh ⊗ Pp(Ω), ∀n = 0, . . . , N . The projection on the tangent space
Πh,ρ̂

Ũn+1Y nᵀ
involves computing the mean value Eρ[L(unh,ρ̂, u

n+1
h,ρ̂ )Y n], which is obtained as

Eρ[L(unh,ρ̂, un+1
h,ρ̂ )Y n] ≈ Eρ̂[L(unh,ρ̂, un+1

h,ρ̂ )Y n] =
N̂∑
k=1

λkL(unh,ρ̂, un+1
h,ρ̂ )(ωk)Y n(ωk)

= Eρ̂[Ip[L(unh,ρ̂, un+1
h,ρ̂ )]Y n] = Eρ[Ip[L(unh,ρ̂, un+1

h,ρ̂ )]Y n],

where in the last inequality we used the fact that the Gauss quadrature is exact for
polynomials up to degree 2pm + 1. The integrand Ip[L(unh,ρ̂, u

n+1
h,ρ̂ )]Y n is, in each variable,

a univariate polynomial of degree 2pm, m = 1, . . . ,M . The equation (5.29) can be
therefore rewritten as

122



5.2. A posteriori error estimation for a DLRA of a random parabolic
equation

un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

4t
+ Πh

Ũn+1Y nᵀ

[
Ip[L(unh,ρ̂, un+1

h,ρ̂ )]
]
(ωk) = Πh

Ũn+1Y nᵀ

[
Ip[fn,n+1]

]
(ωk),

∀k = 1, . . . , N̂ , (5.30)

with the projection Πh
Ũn+1Y nᵀ

involving computing the expectations exactly, i.e.

Πh
Ũn+1Y nᵀ

[g] = Eρ[gY n]Y n +
(
(g, Ũn+1)V ′V −Eρ[(g, Ũn+1)V ′V Y n]Y n

)
(M̃n+1)−1Ũn+1,

g ∈ L2
ρ(Ω;V ′).

Multiplying (5.30) by lk(ω) and summing over k = 1, . . . , N̂ , we see that the fully discrete
DLR solution satisfies the following variational formulation, for any vh ∈ L2

ρ(Ω;Vh)

〈un+1
h,ρ̂ − unh,ρ̂
4tn

, vh
〉
H,L2

ρ

+
(
Πh
Ũn+1Y nᵀ

IpL(unh,ρ̂, un+1
h,ρ̂ ), vh

)
V ′V,L2

ρ

=
〈

Πh
Ũn+1Y nᵀ

Ipfn,n+1, vh
〉
H,L2

ρ

, ∀vh ∈ L2
ρ(Ω;Vh). (5.31)

Based on the sequence of solutions {unh,ρ̂}Nn=0 ⊂ L2
ρ(Ω;Vh), we build a piecewise affine

function ũ ∈ L2(0, T ;L2
ρ(Ω;Vh)) on [0, T ], which equals unh,ρ̂ at times tn, n = 0, . . . , N ,

i.e.
ũ(t) = tn+1 − t

4tn
unh,ρ̂ + t− tn

4tn
un+1
h,ρ̂ , t ∈ [tn, tn+1]. (5.32)

Note that
˙̃u =

un+1
h,ρ̂ − unh,ρ̂
4tn

a.e. on (tn, tn+1].

5.2.3 Residual based a-posteriori error estimation for a general ran-
dom parabolic equation

The objective of our work is to derive a residual based a-posteriori error estimation for
a DLR approximation of a random parabolic equation. First, we will start by deriving
an error estimation for a general elliptic operator L and a discretization L(unh,ρ̂, u

n+1
h,ρ̂ ),

which covers all explicit, implicit and semi-implicit scheme. Later, we will follow by
specifying all error estimates for all three schemes, for the case of a random heat equation
in Theorem 5.3.1.

In what follows, all equations hold a.e. in (tn, tn+1). For any v ∈ L2
ρ(Ω;V ) we have〈

u̇true − ˙̃u, v
〉
H,L2

ρ

+
(
L(utrue − ũ), v

)
V ′V,L2

ρ

=
〈
f, v

〉
H,L2

ρ

−
〈

˙̃u, v
〉
H,L2

ρ

−
(
L(ũ), v

)
V ′V,L2

ρ
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=
〈
f − Ipf, v

〉
H,L2

ρ

−
(
L(ũ)− IpL(ũ), v

)
V ′V,L2

ρ︸ ︷︷ ︸
=:Asto

+
〈
Ipf, v

〉
H,L2

ρ

−
〈

˙̃u, v
〉
H,L2

ρ

−
(
IpL(ũ), v

)
V ′V,L2

ρ

= Asto +
〈
Ipf, v − vh

〉
H,L2

ρ

−
〈

˙̃u, v − vh
〉
H,L2

ρ

−
(
IpL(ũ), v − vh

)
V ′V,L2

ρ̂︸ ︷︷ ︸
=:Aspa

+
〈
Ipf, vh

〉
H,L2

ρ̂

−
〈

˙̃u, vh
〉
H,L2

ρ

−
(
IpL(ũ), vh

)
V ′V,L2

ρ

= Asto +Aspa +
〈
Ipf, vh

〉
H,L2

ρ

−
〈

˙̃u, vh
〉
H,L2

ρ

−
(
IpL(ũ), vh

)
V ′V,L2

ρ

= Asto +Aspa +
〈
Ipf − Ipfn,n+1, vh

〉
H,L2

ρ

−
(
IpL(ũ)− IpL(unh,ρ̂, un+1

h,ρ̂ ), vh
)
V ′V,L2

ρ︸ ︷︷ ︸
=:Atem,1

+
〈
Ipfn,n+1, vh

〉
H,L2

ρ

−
〈un+1

h,ρ̂ − unh,ρ̂
4tn

, vh
〉
H,L2

ρ

−
(
IpL(unh,ρ̂, un+1

h,ρ̂ ), vh
)
V ′V,L2

ρ

=
〈

Πh
Ũn+1Y nᵀ

[Ipfn,n+1], vh
〉
H,L2

ρ

−
〈un+1

h,ρ̂ − unh,ρ̂
4tn

, vh
〉
H,L2

ρ

(5.33)

−
(
Πh
Ũn+1Y nᵀ

[IpL(unh,ρ̂, un+1
h,ρ̂ )], vh

)
V ′V,L2

ρ

+Asto +Aspa +Atem,1 +
(
Πh
Ũn+1Y nᵀ

⊥[Ipfn,n+1∗ − IpL∗(unh,ρ̂, un+1
h,ρ̂ )], vh

)
V ′V,L2

ρ

= Asto +Aspa +Atem,1 +
(
Πh
Ũn+1Y nᵀ

⊥[Ipfn,n+1∗ − IpL∗(Ũn+1Y nᵀ), vh
)
V ′V,L2

ρ︸ ︷︷ ︸
=:Arank

+
(
Πh
Ũn+1Y nᵀ

⊥[IpL∗(Ũn+1Y nᵀ)− IpL∗(unh,ρ̂, un+1
h,ρ̂ )], vh

)
V ′V,L2

ρ︸ ︷︷ ︸
=:Atem,2

.

In the last step, we applied equation (5.31) and split the remaining term into 2 terms, of
which Arank contributes to the rank-truncation error and Atem,2 contributes to the time
discretization error.

Concerning the term Asto(t), we can bound it as

|Asto(t)| ≤ ‖f − Ipf‖H,L2
ρ
‖v‖H,L2

ρ
+ ‖L(ũ)− IpL(ũ)‖V ′,L2

ρ
‖v‖V,L2

ρ

≤ CP‖f − Ipf‖H,L2
ρ
‖v‖V,L2

ρ
+ ‖L(ũ)− IpL(ũ)‖V ′,L2

ρ
‖v‖V,L2

ρ

≤ 4C2
P

CL
‖f − Ipf‖2H,L2

ρ
+ 4
CL
‖L(ũ)− IpL(ũ)‖2V ′,L2

ρ︸ ︷︷ ︸
Esto(t)

+CL
8 ‖v‖

2
V,L2

ρ
.

As for the temporal terms Atem,1(t), Atem,2(t), we can bound them as
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|Atem,1(t)| ≤ CP‖Ipf−Ipfn,n+1‖H,L2
ρ
‖vh‖V,L2

ρ
+‖IpL(ũ)−IpL(unh,ρ̂, un+1

h,ρ̂ )‖V ′,L2
ρ
‖vh‖V,L2

ρ

≤ 4C2
PC

2
1

CL
‖Ipf − Ipfn,n+1‖2H,L2

ρ
+ 4C2

1
CL
‖IpL(ũ)− IpL(unh,ρ̂, un+1

h,ρ̂ )‖2V ′,L2
ρ︸ ︷︷ ︸

Etem,1(t)

+CL
8 ‖v‖

2
V,L2

ρ
.

|Atem,2(t)| ≤ ‖Πh,ρ̂

Ũn+1Y nᵀ
⊥

[IpL(Ũn+1Y nᵀ)− IpL(unh,ρ̂, un+1
h,ρ̂ )]‖V ′,L2

ρ
‖vh‖V,L2

ρ

≤ 2C2
1

CL
‖Πh,ρ̂

Ũn+1Y nᵀ
⊥

[IpL(Ũn+1Y nᵀ)− IpL(unh,ρ̂, un+1
h,ρ̂ )]‖2V ′,L2

ρ︸ ︷︷ ︸
Etem,2(t)

+CL
8 ‖v‖

2
V,L2

ρ

The spatial contribution will be further specified for the random heat equation example.
For now, let us just assume that we can bound Aspa as

|Aspa(t)| =
∣∣∣∣〈Ipf − ˙̃u− IpL(ũ), v − vh

)
V ′V,L2

ρ

∣∣∣∣ ≤ Espa(t) + CL
8 ‖v‖

2
V,L2

ρ
.

And lastly, the rank-truncation contribution will be bounded by

|Arank(t)| =
∣∣∣∣(Πh,ρ̂

Ũn+1Y nᵀ
⊥

[Ipfn,n+1∗ − IpL∗(Ũn+1Y nᵀ), vh
)
V ′V,L2

ρ

∣∣∣∣
≤
∥∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[Ipfn,n+1∗ − IpL∗(Ũn+1Y nᵀ)
∥∥∥∥
V ′,L2

ρ

C1‖v‖V,L2
ρ

≤ 2C2
1

CL

∥∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[Ipfn,n+1∗ − IpL∗(Ũn+1Y nᵀ)
∥∥∥∥2

V ′,L2
ρ︸ ︷︷ ︸

Erank(t)

+CL
8 ‖v‖

2
V,L2

ρ
,

where

Erank(t) = 2C2
1

CL

∥∥∥∥P⊥Yn[P⊥Ũn+1

[
Ipfn,n+1∗ − IpL∗(Ũn+1Y nᵀ)

]]∥∥∥∥2

V ′,L2
ρ

.

Based on our previous computations, we obtain
〈
u̇true − ˙̃u, v

〉
H,L2

ρ

+
(
L(utrue − ũ), v

)
V ′V,L2

ρ

≤ Esto + Espa + Etem,1 + Etem,2 + Erank + 5CL
8 ‖v‖

2
V,L2

ρ
.

Now, taking v = utrue − ũ ∈ L2
ρ(Ω;V ) we derive

1
2

d
dt‖utrue − ũ‖2H,L2

ρ
(t) + CL‖utrue − ũ‖2V,L2

ρ
(t)

≤ Esto(t) + Espa(t) + Etem,1(t) + Etem,2(t) + Erank(t) + 5CL
8 ‖utrue − ũ‖2V,L2

ρ
(t)
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which results in

d
dt‖utrue − ũ‖2H,L2

ρ
(t) + 3CL

4 ‖utrue − ũ‖2V,L2
ρ
(t)

≤ 2(Esto(t) + Espa(t) + Etem,1(t) + Etem,2(t) + Erank(t)).

The last step is to integrate this inequality w.r.t. t over (0, T ). In conclusion, we obtain

‖utrue(T )− ũ(T )‖2H,L2
ρ

+ 3CL
4 ‖utrue − ũ‖2L2(0,T ;L2

ρ(Ω;V )) ≤ ‖utrue(0)− ũ(0)‖2H,L2
ρ

+ 2
∫ T

0

(
Esto(t) + Espa(t) + Etem,1(t) + Etem,2(t) + Erank(t)

)
dt. (5.34)

5.3 A posteriori error estimation for a DLRA of a random
heat equation

In this section, we detail all error estimators for the case of a random heat equation,
described in Section 3.5. In addition, let us assume that the diffusion coefficient a is
affine w.r.t. ω = (ω1, . . . , ωM ) ∈ Ω, i.e.

a(x, ω) = ā(x) +
M∑
m=1

am(x)ωm, ∀x ∈ D,ω ∈ Ω, (5.35)

and that there exist amin, amax ∈ R s.t.

ρ(ω ∈ Ω : 0 < amin ≤ a(x, ω) ≤ amax <∞ ∀x ∈ D) = 1. (5.36)

By astoch(x, ω) we will denote the stochastic part of the diffusion coefficient, i.e.
astoch(x, ω) :=

∑M
m=1 am(x)ωm.

For any element, face or edge S, hS denotes its diameter. With every edge (d = 2) or
face (d = 3) E, we identify a unit vector ηE orthogonal to it and denote the jump across
E in direction ηE by [·]E .

Theorem 5.3.1. Consider a random heat equation with a diffusion coefficient affine
w.r.t. random variables satisfying (5.36). Let utrue be a solution of (5.4) and ũ be defined
as in (5.32). Then there exists a constant C > 0, independent of the time step, mesh
size, tensor grid choice and DLR rank, such that

‖utrue(T )− ũ(T )‖2H,L2
ρ

+ 3
4amin‖utrue − ũ‖2L2(0,T ;L2

ρ(Ω̂;V )) ≤ ‖utrue(0)− ũ(0)‖2H,L2
ρ

+ εsto + εspa + εtem + εrank, (5.37)

where
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εsto = C‖f − Ipf‖2L2(0,T ;L2
ρ(Ω;H))

+ C
N−1∑
n=0
4tn

(∥∥∥a∇un+1
h,ρ̂ − Ip[a∇u

n+1
h,ρ̂ ]

∥∥∥2

H,L2
ρ

+
∥∥∥a∇unh,ρ̂ − Ip[a∇unh,ρ̂]∥∥∥2

H,L2
ρ

)
, (5.38)

εspa = C
N̂∑
k=1

λk
( ∑
K∈Th

h2
K

∥∥∥f(ωk)− ˙̃u(ωk) +∇ · (a(ωk)∇ũ(ωk))
∥∥∥2

L2(0,T ;L2(K))

+
∑
E∈Eh

hE
∥∥∥[a(ωk)∇ũ(ωk) · ηE ]E

∥∥∥2

L2(0,T ;L2(E))

)
, (5.39)

εrank = C
N−1∑
n=0
4tn

N̂∑
k=1

λk

∥∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[fn+1∗ ](ωk)
∥∥∥∥2

H

+ C
N−1∑
n=0
4tn

N̂∑
k=1

λk

( ∑
K∈Th

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[(−∇ · (a∇Ũn+1)Y nᵀ)∗](ωk)
∥∥∥2

L2(K)

+
∑
E∈Eh

∥∥∥P ρ̂⊥Yn[([a∇Ũn+1 · ηE ]EY nᵀ
)∗]

(ωk)
∥∥∥2

L2(E)

+ ‖Ũn+1M̃n+1−1‖2H
∥∥∥Ũn+1ᵀP ρ̂

⊥

Yn
[(

[a∇Ũn+1 · ηE ]EY nᵀ(ωk)
)∗]∥∥∥2

L2(E)
, (5.40)

εtem =


εim
tem for implicit scheme
εex
tem for explicit scheme
εsemi
tem for semi-implicit scheme,

(5.41)

where

εim
tem = C

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+ C
N−1∑
n=0

N̂∑
k=1

λk
4tn

3 ‖a(ωk)∇
(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H

+ C
N−1∑
n=0
4tn

N̂∑
k=1

λk

(
‖a(ωk)∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H

+ ‖a(ωk)M̃n+1−1∇Ũn+1ᵀ∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H‖Ũn+1‖2H
)

(5.42)
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εex
tem = C

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn(ωk)‖2L2(tn,tn+1;H)

+ C
N−1∑
n=0

N̂∑
k=1

λk
4tn

3 ‖a(ωk)∇
(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H

+ C
N−1∑
n=0
4tn

N̂∑
k=1

λk

(
‖a(ωk)∇(Ũn+1 − Un)Y nᵀ(ωk)‖2H

+ ‖a(ωk)M̃n+1−1∇(Ũn+1 − Un)ᵀ∇Ũn+1Y nᵀ(ωk)‖2H‖Ũn+1‖2H
)

(5.43)

εsemi
tem = C

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+ C
N−1∑
n=0

N̂∑
k=1

λk
4tn

3
(
‖ā∇

(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H

+ ‖astoch(ωk)∇
(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H
)

+ C
N−1∑
n=0
4tn

N̂∑
k=1

λk

(
‖ā∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H

+ ‖āM̃n+1−1∇Ũn+1ᵀ∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H‖Ũn+1‖2H
+ ‖astoch(ωk)∇(Ũn+1 − Un)Y nᵀ(ωk)‖2H

+ ‖astoch(ωk)M̃n+1−1∇(Ũn+1 − Un)ᵀ∇Ũn+1Y nᵀ(ωk)‖2H‖Ũn+1‖2H
)
, (5.44)

where λk denotes the weight corresponding to the collocation point ωk, k = 1, . . . , N̂ .

Proof. The proof comprises detailing the estimators provided in the previous section. As
for the time contribution, we have

∫ T

0
Etem,1(t) dt = 4C2

PC
2
1

CL

N−1∑
n=0

∫ tn+1

tn
‖Ipf − Ipfn,n+1‖2H,L2

ρ
dt

+ 4C2
1

CL

N−1∑
n=0

∫ tn+1

tn
‖IpL(ũ)− IpL(unh,ρ̂, un+1

h,ρ̂ )‖2V ′,L2
ρ
dt.

We follow by further bounding this term for implicit, explicit and semi-implicit scheme.
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For the implicit scheme, we derive

∫ T

0
E im
tem,1(t) dt = 4C2

PC
2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn
‖a(ωk)∇

(
un+1
h,ρ̂ (ωk)− ũ(t, ωk)

)
‖2Hdt

= 4C2
PC

2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn

(
1− t− tn

4tn
)2
‖a(ωk)∇

(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2Hdt

= 4C2
PC

2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk
4tn

3 ‖a(ωk)∇
(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H ,

where we used the fact that un+1
h,ρ̂ −ũ =

(
1− t−tn
4tn

)
(un+1
h,ρ̂ −unh,ρ̂), t ∈ (tn, tn+1). Analogously,

for the explicit scheme we have

∫ T

0
E ex
tem,1(t) dt = 4C2

PC
2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn
‖a(ωk)∇

(
unh,ρ̂(ωk)− ũ(t, ωk)

)
‖2Hdt

= 4C2
PC

2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn

( tn − t
4tn

)2
‖a(ωk)∇

(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2Hdt

= 4C2
PC

2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk
4tn

3 ‖a(ωk)∇
(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H ,

where we used the fact that unh,ρ̂ − ũ =
(
tn−t
4tn

)
(un+1
h,ρ̂ − unh,ρ̂). Lastly we deal with the

semi-implicit scheme, for which we obtain

∫ T

0
E semi
tem,1(t) dt ≤ 4C2

PC
2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)
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+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn
‖ā∇

(
un+1
h,ρ̂ (ωk)− ũ(t, ωk)

)
‖2Hdt

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn
‖astoch(ωk)∇

(
unh,ρ̂(ωk)− ũ(t, ωk)

)
‖2Hdt

= 4C2
PC

2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn

(
1− t− tn

4tn
)2
‖ā∇

(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2Hdt

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk

∫ tn+1

tn

( tn − t
4tn

)2
‖astoch(ωk)∇

(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2Hdt

= 4C2
PC

2
1

CL

N−1∑
n=0

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+ 4C2
1

CL

N−1∑
n=0

N̂∑
k=1

λk
4tn

3
(
‖ā∇

(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H

+ ‖astoch(ωk)∇
(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H
)

The second part of the time contribution will be again distinguished for the implicit,
explicit and semi-implicit scheme. For the implicit case, we have

∣∣∣∣ ∫ T

0
E im
tem,2(t) dt

∣∣∣∣ = 2C2
1

CL

N−1∑
n=0
4tn

∥∥∥∥P⊥Yn[P⊥Ũn+1 [IpL
(
Ũn+1(Ỹ n+1 − Y n)ᵀ

)
]
]∥∥∥∥2

V ′,L2
ρ

≤ 2C2
1

CL

N−1∑
n=0
4tn

∥∥∥∥P⊥Ũn+1 [IpL
(
Ũn+1(Ỹ n+1 − Y n)ᵀ

)
]
∥∥∥∥2

V ′,L2
ρ

≤ 2C2
1

CL

N−1∑
n=0
4tn

N̂∑
k=1

λk

(
‖a(ωk)∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H

+ ‖a(ωk)M̃n+1−1∇Ũn+1ᵀ∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H‖Ũn+1‖2H
)
.

For the explicit case, we analogously derive

∣∣∣∣ ∫ T

0
E ex
tem,2(t) dt

∣∣∣∣ = 2C2
1

CL

N−1∑
n=0
4tn

∥∥∥∥P⊥Yn[P⊥Ũn+1 [IpL
(
(Ũn+1 − Un)Y nᵀ

)
]
]∥∥∥∥2

V ′,L2
ρ

≤ 2C2
1

CL

N−1∑
n=0
4tn

N̂∑
k=1

λk

(
‖a(ωk)∇(Ũn+1 − Un)Y nᵀ(ωk)‖2H

+ ‖a(ωk)M̃n+1−1∇(Ũn+1 − Un)ᵀ∇Ũn+1Y nᵀ(ωk)‖2H‖Ũn+1‖2H
)
.
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The last scheme to analyze, is the semi-implicit scheme, which satisfies

∣∣∣∣ ∫ T

0
E semi
tem,2(t) dt

∣∣∣∣ = 2C2
1

CL

N−1∑
n=0
4tn

∥∥∥∥P⊥Yn[P⊥Ũn+1

[
Ip[L(Ũn+1Y nᵀ)− L(unh,ρ̂, un+1

h,ρ̂ )]
]]∥∥∥∥2

V ′,L2
ρ

≤ 2C2
1

CL

N−1∑
n=0
4tn

N̂∑
k=1

λk

(
‖ā∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H

+ ‖āM̃n+1−1∇Ũn+1ᵀ∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H‖Ũn+1‖2H
+ ‖astoch(ωk)∇(Ũn+1 − Un)Y nᵀ(ωk)‖2H

+ ‖astoch(ωk)M̃n+1−1∇(Ũn+1 − Un)ᵀ∇Ũn+1Y nᵀ(ωk)‖2H‖Ũn+1‖2H
)
.

For the spatial part, we will follow the estimation provided in [Ver03]. We denote by
Jh any of the quasi interpolation operators of [Ver99b] defined on V and with values in
the space of continuous, piecewise linear finite element functions corresponding to Th.
Then, combining the interpolation error estimates of [Ver99b], a standard trace theorem
[Ver99b, Lemma 3.2], the following estimates hold for every v ∈ V and for any element
K ∈ Th and interior edge/face E ∈ Eh

‖∇(v − Jhv)‖L2(K) ≤ c0‖∇v‖L2(γ̃K),

‖v − Jhv‖L2(K) ≤ c̃1hK‖∇v‖L2(γ̃K),

‖v − Jhv‖L2(E) ≤ c2
{
h
−1/2
E ‖v − Jhv‖L2(K) + h

1/2
E ‖∇(v − Jhv)‖L2(K)

}
≤ c̃2h

1/2
E ‖∇v‖L2(γ̃K),

(5.45)

where γ̃K denotes the subset that consists of all elements of Th sharing at least a vertex
with K. The constants c0, c̃1, c2, c̃2 only depend on the maximal ratio of the diameter of
any element to the diameter of its largest inscribed ball. Note that these estimates are
equivalent to the estimates in (5.20).

With ηK denoting a unit outward pointing normal we further derive

|Aspa| =
∣∣∣∣〈Ipf − ˙̃u− IpL(ũ), v − vh

)
V ′V,L2

ρ

∣∣∣∣
=
∫

Ω

(∫
D
Ipf(ω)

(
v − vh

)
(ω)−

∫
D

˙̃u(ω)
(
v − vh

)
(ω)

−
∫
D
Ip[a(ω)∇ũ(ω)]∇

(
v − vh

)
(ω)
)

dρ

=
∫

Ω

( ∑
K∈Th

∫
K

(
Ipf(ω)− ˙̃u(ω) + Ip[∇ · (a(ω)∇ũ(ω))]

)(
v − vh

)
(ω)
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−
∑
E∈Eh

∫
E
Ip
[
[a(ω)∇ũ(ω) · ηE ]E

](
v − vh

)
(ω)
)

dρ

Considering vh(ω) = Jhv(ω) and applying (5.45) leads to

|Aspa| ≤
∫

Ω

[ ∑
K∈Th

c̃1hK
∥∥∥Ipf(ω)− ˙̃u(ω) + Ip[∇ · (a(ω)∇ũ(ω))]

∥∥∥
L2(K)

∥∥∥∇v(ω)
∥∥∥
L2(γ̃K)

+
∑
E∈Eh

c̃2h
1/2
E

∥∥∥Ip[[a(ω)∇ũ(ω) · ηE ]E
]∥∥∥
L2(E)

∥∥∥∇v(ω)
∥∥∥
L2(γ̃K)

]
dρ

≤ C2

∥∥∥∥( ∑
K∈Th

h2
K

∥∥∥Ipf − ˙̃u+ Ip[∇ · (a∇ũ)]
∥∥∥2

L2(K)

)1/2∥∥∥∥
L2
ρ

∥∥∥∇v∥∥∥
H,L2

ρ

+
∥∥∥∥( ∑

E∈Eh

hE
∥∥∥Ip[[a∇ũ · ηE ]E

]∥∥∥2

L2(E)

)1/2∥∥∥∥
L2
ρ

∥∥∥∇v∥∥∥
H,L2

ρ̂

= C2

( N̂∑
k=1

λk
( ∑
K∈Th

h2
K

∥∥∥f(ωk)− ˙̃u(ωk) +∇ · (a(ωk)∇ũ(ωk))
∥∥∥2

L2(K)

+
∑
E∈Eh

hE
∥∥∥[a(ωk)∇ũ(ωk) · ηE ]E

∥∥∥2

L2(E)

))1/2
‖v‖V,L2

ρ

≤ 2C2
2

CL

( N̂∑
k=1

λk
( ∑
K∈Th

h2
K

∥∥∥f(ωk)− ˙̃u(ωk) +∇ · (a(ωk)∇ũ(ωk))
∥∥∥2

L2(K)

+
∑
E∈Eh

hE
∥∥∥[a(ωk)∇ũ(ωk) · ηE ]E

∥∥∥2

L2(E)

))
+ CL

8 ‖v‖
2
V,L2

ρ

i.e.

E spa = 2C2
2

CL

( N̂∑
k=1

λk
( ∑
K∈Th

h2
K

∥∥∥f(ωk)− ˙̃u(ωk) +∇ · (a(ωk)∇ũ(ωk))
∥∥∥2

L2(K)

+
∑
E∈Eh

hE
∥∥∥[a(ωk)∇ũ(ωk) · ηE ]E

∥∥∥2

L2(E)

))
.

Concerning the rank error estimation, we proceed as follows

E rank = 2C2
1

CL

∥∥∥∥P⊥Yn[P⊥Ũn+1

[
Ipfn+1∗ − IpL∗(Ũn+1Y nᵀ)

]]∥∥∥∥2

V ′,L2
ρ

≤ 4C2
1

CL

(∥∥∥∥P⊥Yn[P⊥Ũn+1

[
Ipfn+1∗

]]∥∥∥∥2

H,L2
ρ

+
∥∥∥∥P⊥Yn[P⊥Ũn+1

[
IpL∗(Ũn+1Y nᵀ)

]]∥∥∥∥2

V ′,L2
ρ

)
.
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For the second term, we perform the following computation. For v ∈ L2
ρ(Ω;V ), it holds(

P⊥Ũn+1

[
P⊥Yn

[
IpL∗(Ũn+1Y nᵀ)

]]
, v

)
V ′V,L2

ρ

=
∫

Ω

∫
D
P⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
v dx dρ

−
∫

Ω

∫
D
Ũn+1M̃n+1−1

∫
D
Ũn+1ᵀP⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
dx̂ v dx dρ

=
∫

Ω

∑
K

∫
K
P⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
v dx

+
∑
E

∫
E
P⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
v dx dρ

−
∫

Ω

∫
D
Ũn+1M̃n+1−1

(∑
K

∫
K
Ũn+1ᵀP⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
dx̂

+
∑
E

∫
E
Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
dx̂
)
v dx dρ

=
∫

Ω

∑
K

∫
K
P⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
v dx

+
∑
E

∫
E
P⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
v dx dρ

−
∫

Ω

∑
K

∫
K
Ũn+1M̃n+1−1

(∑
K

∫
K
Ũn+1ᵀP⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
dx̂
)
v dx dρ

−
∫

Ω

∫
D
Ũn+1M̃n+1−1

(∑
E

∫
E
Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
dx̂
)
v dx dρ

=
∫

Ω

∑
K

∫
K

(
P⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
− Ũn+1M̃n+1−1

(∑
K

∫
K
Ũn+1ᵀP⊥Yn

[
Ip[−∇ · (a∇Ũn+1)Y nᵀ ]∗

]
dx̂
)
v dx dρ

+
∫

Ω

∑
E

∫
E
P⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
v dx dρ

−
∫

Ω

∫
D
Ũn+1M̃n+1−1

(∑
E

∫
E
Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
dx̂
)
v dx dρ

=
∫

Ω

∑
K

∫
K

Πh
Ũn+1Y nᵀ

⊥[Ip[(−∇ · (a∇Ũn+1)Y nᵀ
)∗]]

v dx dρ

+
∫

Ω

∑
E

∫
E
P⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
v dx dρ

−
∫

Ω

∫
D
Ũn+1M̃n+1−1

(∑
E

∫
E
Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
dx̂
)
v dx dρ

where the expression Πh
Ũn+1Y nᵀ

⊥[Ip[(−∇· (a∇Ũn+1)Y nᵀ
)∗]]

is considered as a function
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defined only inside of the elements K. We can further proceed as∣∣∣(P⊥Yn[P⊥Ũn+1

[
IpL(Ũn+1Y nᵀ)

]]
, v

)
V ′V,L2

ρ

∣∣∣
≤
∑
K

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[(−∇ · (a∇Ũn+1)Y nᵀ)∗]
∥∥∥
L2(K),L2

ρ

‖v‖L2(K),L2
ρ

+
∑
E

∥∥∥P ρ̂⊥Yn[([a∇Ũn+1 · ηE ]EY nᵀ
)∗]∥∥∥

L2(E),L2
ρ

‖v‖L2(E),L2
ρ

+
∑
E

‖Ũn+1M̃n+1−1‖H,L2
ρ
‖Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
‖L2(E),L2

ρ
‖v‖H,L2

ρ

≤ C3

(∑
K

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[(−∇ · (a∇Ũn+1)Y nᵀ)∗]
∥∥∥
L2(K),L2

ρ

+
∑
E

∥∥∥P ρ̂⊥Yn[([a∇Ũn+1 · ηE ]EY nᵀ
)∗]∥∥∥

L2(E),L2
ρ

+
∑
E

‖Ũn+1M̃n+1−1‖H,L2
ρ
‖Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
‖L2(E),L2

ρ

)
‖v‖V,L2

ρ

= C3

( N̂∑
k=1

λk

(∑
K

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[(−∇ · (a∇Ũn+1)Y nᵀ)∗](ωk)
∥∥∥2

L2(K)

+
∑
E

∥∥∥P ρ̂⊥Yn[([a∇Ũn+1 · ηE ]EY nᵀ
)∗]

(ωk)
∥∥∥2

L2(E)

+
∑
E

‖Ũn+1M̃n+1−1‖2H,L2
ρ

∥∥∥Ũn+1ᵀP⊥Yn
[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ(ωk)]∗

]∥∥∥2

L2(E),L2
ρ

))1/2
‖v‖V,L2

ρ
.

Plugging this in the definition of E rank, we derive that

E rank = 4C2
1

CL

(∥∥∥∥P⊥Yn[P⊥Ũn+1

[
Ip[fn+1∗ ]

]]∥∥∥∥2

H,L2
ρ

+ C3

N̂∑
k=1

λk

(∑
K

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥

[(−∇ · (a∇Ũn+1)Y nᵀ)∗](ωk)
∥∥∥2

L2(K)

+
∑
E

(∥∥∥P ρ̂⊥Yn[([a∇Ũn+1 · ηE ]EY nᵀ
)∗]

(ωk)
∥∥∥2

L2(E)

+ ‖Ũn+1M̃n+1−1‖H
∥∥∥Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ(ωk)]∗

]∥∥∥2

L2(E)

))
.

The last error contribution to analyze is the stochastic error contribution. We recall that∫ T

0
Esto(t)dt =

∫ T

0

4C2
P

CL
‖f − Ipf‖2H,L2

ρ
+ 4
CL
‖L(ũ)− IpL(ũ)‖2V ′,L2

ρ
dt.
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For the second term, we proceed by∫ T

0
‖L(ũ)− IpL(ũ)‖2V ′,L2

ρ
dt ≤

∫ T

0

∥∥∥∥a∇ũ− Ip[a∇ũ]
∥∥∥∥2

H,L2
ρ

dt

=
∫

Ω

∫
D

N−1∑
n=0

∫ tn+1

tn

(( t− tn
4tn

)(
a∇un+1

h,ρ̂ − Ipa∇u
n+1
h,ρ̂

)
+
( tn+1 − t
4tn

)(
a∇unh,ρ̂ − Ipa∇unh,ρ̂

))2
dt dx dρ

≤ 2
∫

Ω

∫
D

N−1∑
n=0

∫ tn+1

tn

(( t− tn
4tn

)(
a∇un+1

h,ρ̂ − Ipa∇u
n+1
h,ρ̂

))2

+
(( tn+1 − t

4tn
)(
a∇unh,ρ̂ − Ipa∇unh,ρ̂

))2
dt dx dρ

= 2
34t

n
N−1∑
n=0

(∥∥∥a∇un+1
h,ρ̂ − Ipa∇u

n+1
h,ρ̂

∥∥∥2

H,L2
ρ

+
∥∥∥a∇unh,ρ̂ − Ipa∇unh,ρ̂∥∥∥2

H,L2
ρ

)
.

5.3.1 Adaptive algorithm

The estimators from the preceding section provide us with a fully computable upper
bound of the error caused by the spatial, time, stochastic discretization as well as the
rank truncation. In this section, we will see how these estimators can be naturally
localized in all variables – time, space, stochastics and rank. Up to this point, we only
considered DLR approximation with a rank R fixed in time. However, in what follows
we will allow different ranks Rn for different time intervals [tn, tn+1], n = 0, . . . , N − 1.
At time t = tn+1, the new obtained solution un+1

h,ρ̂ is of rank Rn. When Rn 6= Rn+1, we
need to update the solution un+1

h,ρ̂ to be of rank Rn+1 so that the method can proceed
with the new time step. This is performed in the following way. If Rn > Rn+1, we lose
(Rn −Rn+1) terms in (un+1

h,ρ̂ )∗ =
∑Rn

r=1 U
n+1
r Y n+1

r corresponding to the smallest singular
values of (un+1

h,ρ̂ )∗. This results in (un+1
h,ρ̂ )∗ =

∑Rn+1
r=1 Un+1

r Y n+1
r of rank Rn+1. If, on the

other hand, Rn+1 > Rn, we define a new solution (un+1
h,ρ̂ )∗ =

∑Rn+1
r=1 Un+1

r Y n+1
r , where

Un+1
r = 0, for r = Rn + 1, . . . , Rn+1 and Y n+1

r , r = Rn + 1, . . . , Rn+1 has to be chosen
in a way that {Y n+1

r }Rn+1
r=1 forms an orthonormal basis. Different possible choices of

{Y n+1
r }Rn+1

r=1 will be discussed here after.

We here propose an adaptive algorithm for the FE meshes, time discretization, tensor
grids and rank, with the goal to obtain the overall error

‖utrue(T )− ũ(T )‖2H,L2
ρ

+ 3
4amin‖utrue − ũ‖2L2(0,T ;L2

ρ(Ω̂;V ))

under a prescribed tolerance TOL. For a deterministic right hand side, the corresponding
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error estimators are summarized in the following theorem.

Theorem 5.3.2. Let us assume that the term f is deterministic. Then the stochastic
error estimator εsto from (5.38), the spatial error estimator εspa from (5.39), the time
error estimator εtem from (5.41) and the rank truncation error estimator εrank from
(5.40) can be alternatively expressed as

εspa =
∑
K∈Th

εspa,K

εspa,K = Ch2
K

( N̂∑
k=1

λk
(∥∥∥f(ωk)− ˙̃u(ωk) +∇ · (a(ωk)∇ũ(ωk))

∥∥∥2

L2(0,T ;L2(K))

)

+
∑

E⊂∂K
hE
( N̂∑
k=1

λk
(∥∥∥[a(ωk)∇ũ(ωk) · ηE ]E

∥∥∥2

L2(0,T ;L2(E))

)
, (5.46)

and

εstoch =
M∑
m=1

εstoch,m

εstoch,m = C
N−1∑
n=0
4tnM

(∥∥∥amωm∇un+1
h,ρ̂ − Ip[amω

m∇un+1
h,ρ̂ ]

∥∥∥2

H,L2
ρ

+
∥∥∥amωm∇unh,ρ̂ − Ip[amωm∇unh,ρ̂]∥∥∥2

H,L2
ρ

)
(5.47)

and

εim
tem =

N−1∑
n=0

εim
tem,n

εim
tem,n = C

N̂∑
k=1

λk‖f(ωk)− fn+1(ωk)‖2L2(tn,tn+1;H)

+
N−1∑
n=0

N̂∑
k=1

λk
4tn

3 ‖a(ωk)∇
(
un+1
h,ρ̂ (ωk)− unh,ρ̂(ωk)

)
‖2H

+
N−1∑
n=0
4tn

N̂∑
k=1

λk

(
‖a(ωk)∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H

+ ‖a(ωk)M̃n+1−1∇Ũn+1ᵀ∇Ũn+1(Ỹ n+1 − Y n)ᵀ(ωk)‖2H‖Ũn+1‖2H
)

(5.48)
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and analogously for εex
tem, εsemi

tem . The rank estimator can be localized in time

εrank =
N−1∑
n=0

εrank,n,

where

εrank,n = C4tn
N̂∑
k=1

λk

( ∑
K∈Th

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥[
−∇ · (astoch∇Ũn+1)Y nᵀ

+ EN̂ [∇ · (astoch∇Ũn+1)Y nᵀ ]
]
(ωk)

∥∥∥2

L2(K)

+
∑
E∈Eh

∥∥∥P ρ̂⊥Yn[[astoch∇Ũn+1 · ηE ]EY nᵀ − EN̂ [[astoch∇Ũn+1 · ηE ]EY nᵀ ]
]
(ωk)

∥∥∥2

L2(E)

+ ‖Ũn+1M̃n+1−1‖2H
∥∥∥Ũn+1ᵀP ρ̂

⊥

Yn
[
[astoch∇Ũn+1 · ηE ]EY nᵀ

− EN̂ [[astoch∇Ũn+1 · ηE ]EY nᵀ ]
]
(ωk)

∥∥∥2

L2(E)

)
.

In addition, εrank,n can be further localized in new random directions for every n =
0, . . . , N − 1 as

εrank,n =
M∑
m=1

Rn∑
r=1

εrank,n,m,r, (5.49)

where

εrank,n,m,r = C4tn
N̂∑
k=1

λk

( ∑
K∈Th

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥[
−∇ · (am∇Ũn+1

r )

(ωmY n
r − EN̂ [ωmY n

r ])
]
(ωk)

∥∥∥2

L2(K)

+
∑
E∈Eh

∥∥∥P ρ̂⊥Yn[[am∇Ũn+1
r · ηE ]E(ωmY n

r − EN̂ [ωmY n
r ])
]
(ωk)

∥∥∥2

L2(E)

+ ‖Ũn+1M̃n+1−1‖2H
∥∥∥Ũn+1ᵀP ρ̂

⊥

Yn
[
[am∇Ũn+1

r · ηE ]E(ωmY n
r − EN̂ [ωmY n

r ])
]
(ωk)

∥∥∥2

L2(E)

)
.

(5.50)

Proof. The localization of the spatial error estimator into every element and time
estimator into every time step stems from a natural rearrangement of terms in the spatial
and time error estimates (5.39), (5.42). For a deterministic forcing term f , the stochastic
error estimate can be bounded as

εsto =
N−1∑
n=0
4tn

(∥∥∥a∇un+1
h,ρ̂ − Ip[a∇u

n+1
h,ρ̂ ]

∥∥∥2

H,L2
ρ

+
∥∥∥a∇unh,ρ̂ − Ip[a∇unh,ρ̂]∥∥∥2

H,L2
ρ

)
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=
N−1∑
n=0
4tn

(∥∥∥asto∇un+1
h,ρ̂ − Ip[asto∇u

n+1
h,ρ̂ ]

∥∥∥2

H,L2
ρ

+
∥∥∥asto∇unh,ρ̂ − Ip[asto∇unh,ρ̂]∥∥∥2

H,L2
ρ

)

≤
N−1∑
n=0
4tn

(∥∥∥ M∑
m=1

amω
m∇un+1

h,ρ̂ − Ip[amω
m∇un+1

h,ρ̂ ]
∥∥∥2

H,L2
ρ

+
∥∥∥ M∑
m=1

amω
m∇unh,ρ̂ − Ip[amωm∇unh,ρ̂]

∥∥∥2

H,L2
ρ

)

≤
N−1∑
n=0
4tn

M∑
m=1

M

(∥∥∥amωm∇un+1
h,ρ̂ − Ip[amω

m∇un+1
h,ρ̂ ]

∥∥∥2

H,L2
ρ

+
∥∥∥amωm∇unh,ρ̂ − Ip[amωm∇unh,ρ̂]∥∥∥2

H,L2
ρ

)

=
M∑
m=1

M
N−1∑
n=0
4tn

(∥∥∥amωm∇un+1
h,ρ̂ − Ip[amω

m∇un+1
h,ρ̂ ]

∥∥∥2

H,L2
ρ

+
∥∥∥amωm∇unh,ρ̂ − Ip[amωm∇unh,ρ̂]∥∥∥2

H,L2
ρ

)
.

As for the rank truncation error estimator, we proceed by

εrank =
N−1∑
n=0
4tn

N̂∑
k=1

λk

( ∑
K∈Th

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥[
−∇ · (astoch∇Ũn+1)Y nᵀ

+ EN̂ [∇ · (astoch∇Ũn+1)Y nᵀ ]
]
(ωk)

∥∥∥2

L2(K)

+
∑
E∈Eh

∥∥∥P ρ̂⊥Yn[[astoch∇Ũn+1 · ηE ]EY nᵀ − EN̂ [[astoch∇Ũn+1 · ηE ]EY nᵀ ]
]
(ωk)

∥∥∥2

L2(E)

+ ‖Ũn+1M̃n+1−1‖2H
∥∥∥Ũn+1ᵀP ρ̂

⊥

Yn
[
[astoch∇Ũn+1 · ηE ]EY nᵀ

− EN̂ [[astoch∇Ũn+1 · ηE ]EY nᵀ ]
]
(ωk)

∥∥∥2

L2(E)

)

=
N−1∑
n=0
4tn

N̂∑
k=1

λk

( ∑
K∈Th

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥[ M∑

m=1

(
−∇ · (am∇Ũn+1)

(ωmY nᵀ − EN̂ [ωmY nᵀ ])
)]

(ωk)
∥∥∥2

L2(K)

+
∑
E∈Eh

∥∥∥P ρ̂⊥Yn[ M∑
m=1

[am∇Ũn+1 · ηE ]E (ωmY nᵀ − EN̂ [ωmY nᵀ ])
]
(ωk)

∥∥∥2

L2(E)

+ ‖Ũn+1M̃n+1−1‖2H
∥∥∥Ũn+1ᵀP ρ̂

⊥

Yn
[
[
M∑
m=1

am∇Ũn+1 · ηE ]E(ωmY nᵀ − EN̂ [ωmY nᵀ ])
]
(ωk)

∥∥∥2

L2(E)

)

=
N−1∑
n=0
4tn

N̂∑
k=1

λk

( ∑
K∈Th

∥∥∥Πh,ρ̂

Ũn+1Y nᵀ
⊥[ M∑

m=1

Rn∑
r=1
−∇ · (am∇Ũn+1

r )

(ωmY n
r − EN̂ [ωmY n

r ])
]
(ωk)

∥∥∥2

L2(K)
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+
∑
E∈Eh

∥∥∥P ρ̂⊥Yn[ M∑
m=1

Rn∑
r=1

[am∇Ũn+1
r · ηE ]E (ωmY n

r − EN̂ [ωmY n
r ])
]
(ωk)

∥∥∥2

L2(E)

+ ‖Ũn+1M̃n+1−1‖2H
∥∥∥Ũn+1ᵀP ρ̂

⊥

Yn
[
[
M∑
m=1

Rn∑
r=1

am∇Ũn+1
r · ηE ]E

(ωmY n
r − EN̂ [ωmY n

r ])
]
(ωk)

∥∥∥2

L2(E)

)

The overall error ε can be bounded by

ε2 ≤
∑
K∈Th

εspa,K +
M∑
m=1

εstoch,m +
N∑
n=1

εtem,n +
N∑
n=1

εrank,n. (5.51)

Let τ = {tn}Nn=1 denote the time discretization, P = {pm}Mm=1 the set of stochastic
polynomial degrees determining the tensor grid, and R = {Rn}N−1

n=0 the sequence of DLR
ranks for every time interval. The algorithm will start with fairly coarse grids Th, τ , low
rank R = Rn, ∀n and low polynomial orders p = (p1, . . . , pM ) determining the tensor
grid. We compute the numerical solution ũ and compute the estimators (5.46), (5.48),
(5.47), and (5.49) for every cell, time subinterval, dimension of the stochastic space and
time interval. Let N = |Th|+ 2N +M denote the total number of elements in the error
estimate (5.51), i.e. number of cells + number of subintervals (N) for time discretization
+ number of dimensions in the stochastic space (M) + number of time intervals (N) for
the rank adaptivity. Then we will refine a cell K whenever εspa,K ≥ αTOL/N , divide a
time interval [tn, tn+1] into 2 equal subintervals whenever εtem,n ≥ αTOL/N , increase a
polynomial order pm by 1 whenever εstoch,m ≥ αTOL/N and increase the DLR rank
Rn by 1 whenever εrank,n ≥ αTOL/N , where α > 1. With the new refined mesh, time
grid, tensor grid and DLR ranks we compute a new solution ũ and continue until the
stopping criterion

εTh,τ,P,R :=
∑
K∈Th

εspa,K +
M∑
m=1

εstoch,m +
N−1∑
n=0

εtem,n +
N−1∑
n=0

εrank,n < TOL

is satisfied. This procedure is described in Algorithm 2. We note that there is no proof
of convergence for this algorithm.

As mentioned before, when increasing the rank of un+1
h,ρ̂ , to proceed with the compu-

tation of un+2
h,ρ̂ of rank Rn+1 > Rn, we need to choose the basis {Y n+1

r }Rn+1
r=Rn+1, so

that {Y n+1
r }Rn+1

r=1 forms an orthonormal basis in L2
ρ̂ and that it leads to an improved

approximate solution. There are several options for this choice. We propose to perform
a Karhunen-Loève expansion of Πh,ρ̂

Ũn+1Y nᵀ
⊥[
Ip[L∗(Ũn+1Y nᵀ)]

]
, which, as derived in the
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Algorithm 2: Adaptive algorithm for DLRA
Data: TOL > 0
Result: Th, τ,P,R and ũ s.t. εTh,τ,P,R < TOL
Initialize Th, τ,P,R;
compute ũ on Th, τ,P,R;
compute εspa,K , εtem,n, εstoch,m, εrank,n;
while εTh,τ,P,R ≥ TOL do

set N = |Th|+ 2N +M ;
for K ∈ Th do

if εspa,K > α TOL
N then

refine K
for n ∈ {0, . . . , N − 1} do

if εtem,n > α TOL
N then

refine [tn, tn+1]

for m ∈ {1, . . . ,M} do
if εsto,m > α TOL

N then
pm = pm + 1

for n ∈ {0, . . . , N − 1} do
if εrank,n > α TOL

N then
Rn = Rn + 1

update Th, τ,P,R;
compute ũ on new Th, τ,P,R;
compute εspa,K , εtem,n, εstoch,m, εrank,n;
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proof of Theorem 5.3.1, for a random heat equation with an affine diffusion coefficient
and a deterministic forcing term takes the form

(
Πh,ρ̂

Ũn+1Y nᵀ
⊥[
Ip[L∗(Ũn+1Y nᵀ)]

]
, v
)
V ′V,L2

ρ

=
∫

Ω

∑
K

∫
K

Πh
Ũn+1Y nᵀ

⊥[Ip[(−∇ · (a∇Ũn+1)Y nᵀ
)∗]]

v dx

+
∑
E

∫
E
P⊥Yn

[
Ip
[(

[a∇Ũn+1 · ηE ]EY nᵀ
)∗]]

v dx

−
∫
D
Ũn+1M̃n+1−1

(∑
E

∫
E
Ũn+1ᵀP⊥Yn

[
Ip[[a∇Ũn+1 · ηE ]EY nᵀ ]∗

]
dx̂
)
v dx dρ.

We then set {Y n+1
r }Rn+1

r=Rn+1 to be the Rn+1 −Rn random eigenvectors corresponding to
the Rn+1 − Rn most dominant singular values of Πh,ρ̂

Ũn+1Y nᵀ
⊥[
Ip[L∗(Ũn+1Y nᵀ)]

]
. Note

that Πh,ρ̂

Ũn+1Y nᵀ
⊥[
Ip[L∗(Ũn+1Y nᵀ)]

]
is at most of rank Rn ·M . A different approach is

to compute εrank,n,m,r from (5.50) for all the Rn ·M new directions, choose directions
with the highest error contribution εrank,n,m,r and orthonormalize them. Implementation
of this algorithm together with possible further improvements is a part of an ongoing
project.
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6 Discrete filtering problem:
overview

This chapter provides a mathematical formulation of the filtering problem as well as a
brief overview of the commonly used approaches to tackle it. We start by introducing
the problem in Section 6.1. In Section 6.2, we continue by describing some standard
algorithms used to deal with both linear and nonlinear filtering problems. The last section
provides a numerical comparison of the presented methods applied to a 40-dimensional
Lorenz-96 chaotic system of equations. We shall highlight that, apart from the numerical
experiments, none of the results stated in this chapter are new and we follow to a large
extent the book [LSZ15].

6.1 Problem statement

The problem introduced in Section 1.1 was set in an abstract Hilbert spaceH. Discretizing
the system in the physical variable leads to a finite-dimensional system, on which we
focus in this part of the thesis.

Let us consider a sequence of Nh-dimensional states u = {un}n∈N ⊂ RNh , also called a
signal, defined by the random recursion

un+1 = Ψ(un) + ξn, n ∈ N0

u0 ∼ N(m0, C0),
(6.1)

where ξ = {ξn}n∈N0 is an i.i.d. sequence with ξ0 ∼ N(0,Σ), Σ > 0, Σ ∈ RNh×Nh
and accounts for the model error. The operator Ψ ∈ C(RNh ,RNh) is assumed to be
deterministic. Further, we assume that u0 and ξ are independent. In what follows, we
denote the joint probability density function of a multivariate Gaussian variable with
mean µ and covariance matrix Σ by RNh 3 ξ → N(ξ;µ,Σ) ∈ R+. We will use the
notation N(µ,Σ) if there is no need to highlight the variable ξ.

At certain time instants {tn}n∈N, we are provided with (complete or incomplete) obser-
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vations {zn}n∈N of the signal

zn+1 = Hun+1 + ηn+1, n ∈ N0 (6.2)

where H ∈ Rl×Nh , l ≤ Nh is a linear operator called an observation operator and
η = {ηn}n∈N ⊂ Rl is an i.i.d. sequence, independent of (u0, ξ), with η1 ∼ N(0,Γ), Γ > 0
and accounts for the observation error.

In this work, we assume the initial condition, model error and observation error to
be normally distributed. This assumption is not necessarily satisfied in all real-world
problems, however many of the techniques considered in this work do rely on this
assumption.

In our setting, the function Ψ is the solution operator for a dynamical system of the form

u̇ = F(u), t ∈ (tn, tn+1)
u(tn) = un,

(6.3)

meaning that Ψ(un) in (6.1) gives the solution of (6.3) at time tn+1, assuming that the
solution exists uniquely.

Let Zn = {zk}nk=1 ⊂ Rl denote the accumulated data up to time n. The discrete filtering
problem refers to a sequential update of the probability distribution of the signal, given
the data (observations). The objective is to determine P(un|Zn), the probability density
function w.r.t. the Lebesgue measure , associated with the probability measure of the
random variable un|Zn (see e.g. [Bau11; LSZ15] for definition of conditional probability
distributions). This is done by applying two steps: forecast (or prediction) and analysis.
The forecast step takes in the filtering distribution at time tn, P(un|Zn), and through
the forward model (6.1) results in the so called forecasted distribution P(un+1|Zn). The
analysis step takes in the forecasted distribution P(un+1|Zn) and incorporates the newly
observed data zn+1 via the Bayes’ formula resulting in the posterior filtering distribution
P(un+1|Zn+1). The following formulas form a basis for numerous algorithms used to
approximate the sequence of filtering distributions P(un|Zn), n ∈ N.

Concerning the forecast step, it holds

P(un+1|Zn) =
∫
RNh

P(un+1|un)P(un|Zn) dun. (6.4)

Since the probability distribution P(un+1|un) is determined by the forward model (6.1),
the forecast step provides a mapping P(un|Zn) 7→ P(un+1|Zn). As for the analysis step,
thanks to the Bayes’ formula we have that

P(un+1|Zn+1) = P(un+1|Zn, zn+1) = P(zn+1|un+1)P(un+1|Zn)
P(zn+1|Zn) . (6.5)
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Figure 6.1 – Evolution of an empirical measure of the first two components of a 40-
dimensional Lorenz-96 system, computed at the beginning of a forecast step (µn), at the
end of the forecast step (µ̂n+1) and at the end of the analysis step (µn+1).

The probability distribution P(zn+1|un+1) is determined by the observation model (6.2).
Therefore, the analysis step provides a mapping P(un+1|Zn) 7→ P(un+1|Zn+1). By µn

we denote the probability measure on RNh corresponding to the distribution P(un|Zn),
and µ̂n+1, the probability measure on RNh corresponding to P(un+1|Zn). The Figure
6.1 gives an illustration of the measure updates, for a 40-dimensional Lorenz-96 system
of equations with full observations (see section 6.3 for more details on Lorenz-96). The
continuous measures are here approximated by empirical measures. The illustration
depicts the evolution of the first two components of the 40-dimensional state. The filtering
measure at time tn, µn (light blue), evolves into a forecasted measure at time tn+1, µ̂n+1

(green), which is then updated by the observations zn+1 into a filtering distribution at
time tn+1, µn+1 (dark blue). We see that in this particular case, the analysis step reduces
the variance by assimilating the observations and moves the measure closer to them.

6.2 Standard algorithms

This section is dedicated to describing various methods used to deal with the discrete
filtering problem. We start in subsection 6.2.1 with a linear problem with additive
Gaussian noise, for which the Kalman filter provides an exact algorithm. In subsection
6.2.2 we describe how the Kalman filter technique can be extended to efficiently treat
nonlinear problems. Lastly, we introduce the particle filter in subsection 6.2.3.
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6.2.1 The Kalman filter

Let us consider the scenario where Ψ is an affine operator, i.e. there exists a matrix
M ∈ RNh×Nh and a vector a ∈ RNh which satisfy

Ψ(v) = Mv + a ∀v ∈ RNh .

In this case, both the forecasted distribution P(un+1|Zn) and the filtering distribution
P(un|Zn), ∀n ∈ N are Gaussian (see e.g. [LSZ15, Lemma 1.5, 1.6] for a proof) and
therefore can be entirely characterized through its mean and covariance.

Let (mn, Cn) denote the mean and the covariance matrix of un|Zn and (m̂n+1, Ĉn+1)
denote the mean and the covariance of un+1|Zn. The forecasted mean and covariance
matrix satisfy

m̂n+1 = Mmn + a, Ĉn+1 = MCnMᵀ + Σ. (6.6)

The Kalman filter then calculates the exact posterior filtering distribution P(un+1|Zn+1),
characterized by mn+1, Cn+1, which are obtained via the formulas from the following
lemma.

Lemma 6.2.1. Assume that C0,Σ,Γ > 0. Then Cn > 0, ∀n ∈ N, and

mn+1 = m̂n+1 +Kn+1dn+1,

Cn+1 = (I −Kn+1H)Ĉn+1,
(6.7)

where

dn+1 = zn+1 −Hm̂n+1,

Sn+1 = HĈn+1Hᵀ + Γ,
Kn+1 = Ĉn+1Hᵀ(Sn+1)−1. (6.8)

For the proof we refer the reader to [LSZ15, p. 80-81]. The quantity dn+1 measures the
difference between the observations of the predicted mean and the data and is referred
to as the innovation at time step n + 1. The matrix Kn+1 is called the Kalman gain.
Note that the matrix inversion in (6.8) takes place in the data space, whose dimension l
is, in many applications, much smaller than the state space dimension Nh.

Remark 7. In the linear setting, the Kalman filter update formulas (6.7)–(6.8) can be
reinterpreted as solutions to a minimization problem. The update equation for the mean
mn+1 (6.7) can be rewritten as

mn+1 = arg min
v

J(v) (6.9)

J(v) := 1
2
(
‖zn+1 −Hv‖2Γ + ‖v − m̂n+1‖Ĉn+1

)
(6.10)
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with m̂n+1, Ĉn+1 given by (6.6) and ‖v‖2K defined as ‖v‖2K = 〈v,K−1v〉 for K being a
symmetric and positive-definite matrix.

6.2.2 Approximate Gaussian filters

Dealing with nonlinear operators Ψ is more challenging. The Kalman filter can be
extended to treat nonlinear problems by invoking a Gaussian ansatz in the analysis step
of the filter. These approaches are proved to not approximate the filtering distribution
correctly in a general setting. We will mention three algorithms, namely 3DVAR, extended
Kalman filter and ensemble Kalman filter. All of these three algorithms approximate the
generally non-Gaussian forecasted distribution by a Gaussian distribution P(un+1|Zn) ≈
N(m̂n+1, Ĉn+1) and the subsequent analysis step applies the standard Kalman formulas
from Lemma 6.2.1.

3DVAR

The 3DVAR algorithm simply fixes the model covariance matrix for all time steps Ĉn = Ĉ

using some prior knowledge and evolves the mean as m̂n+1 = Ψ(mn+1). Note that the
role of constant Ĉ can be interpreted as fixing the regularization term in (6.9)–(6.10) for
all n.

We remark that the 3DVAR is a rather computationally inexpensive method, as it only
requires to evolve the mean value through the forward model.

Extended Kalman filter

The extended Kalman filter (ExKF) computes the model mean m̂n+1 in the same way
as 3DVAR, but the model covariance Ĉn+1 is obtained through a linearization of (6.1).
The resulting formulas for the prediction step are

m̂n+1 = Ψ(mn+1), Ĉn+1 =
(
∂Ψ
∂u

∣∣∣∣
mn

)
Cn
(
∂Ψ
∂u

∣∣∣∣
mn

)ᵀ

+ Σ. (6.11)

The analysis step then applies standard Kalman formulas.

The ExKF relies on a linearization of the forward operator Ψ so that the resulting
distribution is at all times Gaussian. For a highly nonlinear Ψ this strategy introduces a
large error in the forecast step.

Ensemble Kalman filter

The idea of the ensemble Kalman filter (EnKF) is to propagate a set of particles (called an
ensemble of particles), {un(j)}

N̂
j=1, through the forecast model (6.1). The model mean and

covariance (m̂n+1, Ĉn+1) are then approximated by sample mean and sample covariance
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estimators using this ensemble

ûn+1
(j) = Ψ(un(j)) + ξn(j), j = 1, . . . , N̂ ,

m̂n+1 = 1
N̂

N̂∑
j=1

ûn+1
(j) ,

Ĉn+1 = 1
N̂ − 1

N̂∑
j=1

(ûn+1
(j) − m̂

n+1)(ûn+1
(j) − m̂

n+1)ᵀ,

where ξn(j)
iid∼ ξn and at time t = 0, u0

(j)
iid∼ u0. The analysis step then applies standard

Kalman formulas (6.7)–(6.8) to update the mean and covariance (see [Eve09] for an
overview of the methodology, written by one of its founders, and [LE96a] for an early
example of the power of the method). To restart the process, one needs to generate a
new ensemble of particles. There are many ways of achieving this (see e.g. [BEM01;
And01; WH02]). One of the most commonly used is the perturbed observation EnKF,
which applies

un+1
(j) = (I −Kn+1H)ûn+1

(j) +Kn+1zn+1
(j) , j = 1, . . . , N̂ ,

zn+1
(j) = zn+1 + ηn+1

(j) , j = 1, . . . , N̂ ,
(6.12)

for the analysis step. Here, ηn+1
(j) denote i.i.d. samples from N(0,Γ). The matrices Sn+1

and Kn+1 are obtained as in (6.8). The algorithm provides update rules of the form

{un(j)}
N̂
j=1 7→ {ûn+1

(j) }
N̂
j=1 7→ {un+1

(j) }
N̂
j=1,

resulting in approximations to the forecasted and filtering measures by empirical measures

µ̂n+1 ≈ 1
N̂

N̂∑
j=1

δûn+1
(j)

, µn+1 ≈ 1
N̂

N̂∑
j=1

δun+1
(j)

.

Note, that, except for linear problems, the approximations do not converge to the true
distribution µn for N̂ →∞. This limitation is overcome by the particle filter introduced
in the following subsection. Despite this limitation, the EnKF is still widely used in
practice as it often performs well in high-dimensional nonlinear problems.

6.2.3 The particle filter

Similarly to EnKF, the particle filter provides an approximation of the sought (filtering
and forecasted) measures by a convex combination of Dirac probability measures (also
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called empirical measure):

µn ≈
N̂∑
j=1

λn(j)δun(j)
, µ̂n+1 ≈

N̂∑
j=1

λ̂n+1
(j) δûn+1

(j)
,

N̂∑
j=1

λ̂n+1
(j) =

N̂∑
j=1

λn(j) = 1,

which require the knowledge of the locations and weights {un(j), λ
n
(j)}

N̂
j=1, {ûn+1

(j) , λ̂
n+1
(j) }

N̂
j=1

of the associated particles. Note that in this case the weights are not assumed to be
uniform. Thus the objective of particle filter algorithms is to propose the update rules

{un(j), λ
n
(j)}

N̂
j=1 7→ {ûn+1

(j) , λ̂
n+1
(j) }

N̂
j=1 7→ {un+1

(j) , λ
n+1
(j) }

N̂
j=1,

for the forecast and the analysis step, respectively.

Unlike the approximate Gaussian filters, the particle filter provides an approximation
which converges to the true posterior filtering distribution as N̂ → ∞ ([LSZ15, Th.
4.5]). However, particle filters do not perform well in real-world applications and further
improvements are necessary.

We will describe the algorithm in its basic form: the bootstrap filter.

Forecast
In the forecast step, we keep the weights unchanged λ̂n+1

(j) = λn(j) and we let the particle
locations evolve through the system (6.1), i.e. ûn+1

(j) = Ψ(un(j)) + ξn(j), j = 1, . . . , N̂ , where
{ξn(j)}

N̂
j=1 is a set of i.i.d. samples from the distribution of ξn. We thus obtain a particle

approximation of the forecasted measure

µ̂n+1 ≈
N̂∑
j=1

λn(j)δûn+1
(j)

.

Analysis
The analysis step is performed via the Bayes’ formula (6.5) resulting in

µn+1 ≈
N̂∑
j=1

λn+1
(j) δûn+1

(j)
, (6.13)

where the particle locations stay unchanged whereas the weights are updated as

λn+1
(j) =

λ̂n+1
(j)(∑N̂

j=1 λ̂
n+1
(j)

) , λ̂n+1
(j) = gn(ûn+1

(j) )λn(j). (6.14)

Here, gn(u) is given by
gn(un+1) ∝ P(zn+1|un+1), (6.15)
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where the constant of proportionality is irrelevant as the weights {λ̂n+1
(j) }

N̂
j=1 are re-

normalized afterwards. The weights update (6.14) could lead to troublesome scenarios
when one of the particle weights approaches 1 and consequently all others approach 0.
This phenomenon is often referred to as the degeneracy of the particle filter. It can be
partially overcome by resampling, i.e. drawing N̂ samples from the measure (6.13) and
assigning the weight 1

N̂
to each of them.

6.2.4 Optimal proposal particle filter

The optimal proposal particle filter (OP-PF) addresses the degeneracy issue in particle
filters with the goal of ensuring that all posterior particles have similar weights. The
OP-PF does not strictly follow the prediction and analysis paradigm of the ‘standard’
particle filter. The update of particle locations in the forecast step of the particle
filter can be reinterpreted as drawing samples ûn+1

(j) ∼ p(un(j), ·) from a Markov kernel
p(un, un+1) = P(un+1|un) (see [LSZ15, Sec. 4.3.2.] for more details and e.g. [LSZ15, Sec.
1.4.1.] for more details on Markov kernels and Markov chains) and updating the weights
in the analysis step by incorporating the data via the Bayes’s law. The optimal proposal
aims to improve the proposal distirbution w.r.t. which the new particle locations are
drawn by including the data.

The so-called optimal proposal particle filter is found by choosing the Markov kernel

p(un, un+1) = P(un+1|un, zn+1)

thus, the final update position of the j-th particle is drawn from the posteriori distribution
un+1

(j) ∼ P(·|un(j), z
n+1). Applying Bayes’ law twice (see e.g. [Sny12] for more details),

one can show that the weight update for the j-th particle drawn from P(un+1
(j) |u

n
(j), z

n+1)
satisfies

λn+1
(j) ∝ P(zn+1|un(j))λ

n
(j).

For general stochastic forward models, obtaining samples from P(un+1
(j) |u

n
(j), z

n+1) is not
always possible. However, for the case of the forward model considered in this work (6.1),
i.e. a deterministic forward operator Ψ with additive Gaussian noise ξ, the distribution
and the weights are given in a closed form. The optimal proposal update of each particle
is Gaussian with P(un+1

(j) |u
n
(j), z

n+1) = N(mn+1
(j) , Q), where

Q−1 = Σ−1 +HᵀΓ−1H,

mn+1
(j) = Ψ(un(j)) +QHᵀΓ−1

(
zn+1 −HΨ(un(j))

)
.

(6.16)
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The update of the weights satisfies

λ̂n+1
(j) = P(zn+1|un(j))λ

n
(j), λn+1

(j) =
λ̂n+1

(j)∑N̂
j=1 λ̂

n+1
(j)

with

P(zn+1|un(j)) ∝ exp
(
− 1

2
(
zn+1 −HΨ(un(j))

)ᵀ(
Σ +HΓHᵀ

)−1(
zn+1 −HΨ(un(j))

))
.

Applying the Woodbury matrix identity [LSZ15, Lemma 4.4], the formulas (6.16) can be
rewritten as Kalman formulas

Q = (I −KH)Σ, K = ΣHᵀ
(
HΣHᵀ + Γ

)−1
(6.17)

mn+1
(j) = Ψ(un(j)) +Kd(j), d(j) =

(
zn+1 −HΨ(un(j))

)
. (6.18)

6.2.5 The Gaussian mixture filter

As mentioned above, generally, the OP-PF does not follow the prediction and analysis
steps typical of most filtering algorithms. However, when applied to systems of the form
(6.1), it can be reinterpreted as a 2-step algorithm, solving for the forecast and analysis
steps. To show this, we first introduce Gaussian mixture models.

Gaussian mixture models (GMMs) provide an attractive framework to approximate
unknown distributions based on a set of ensemble realizations. We say that a random
vector u ∈ RNh is distributed according to a GMM if

P(u) =
M∑
m=1

πm ×N(u;mm, Cm),
M∑
m=1

πm = 1. (6.19)

Here M ∈ N is referred to as the mixture complexity; πm ∈ [0, 1] are called the mixture
weights; mm ∈ RNh are the mixture mean values and Cm ∈ RNh×Nh are the mixture
covariance matrices. An important property of a GMM is that their Bayesian update
remains a GMM, if the observation operator is linear and the observation error is Gaussian.
This is in fact the scenario of the analysis step in our work, since observations are obtained
as (6.2).

Lemma 6.2.2. Let the forecasted disribution P(un+1|Zn) be a GMM, i.e.

P(un+1|Zn) =
M∑
m=1

π̂n+1
m ×N(un+1; m̂n+1

m , Ĉn+1
m ).
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Then the filtering distribution P(un+1|Zn+1) is a GMM

P(un+1|Zn+1) =
M∑
m=1

πn+1
m ×N(un+1;mn+1

m , Cn+1
m ),

where the updated weights, mean values and covariances are given by

mn+1
m = m̂n+1

m +Km(zn+1 −Hm̂n+1
m ),

Cn+1
m = (I −KmH)Ĉn+1

m ,

πn+1
m = π̂n+1

m · gm(zn+1)∑M
i=1 π̂

n+1
i · gi(zn+1)

,

(6.20)

with Km and gm(z) defined as

Km = Ĉn+1
m Hᵀ(HĈn+1

m Hᵀ + Γ)−1,

gm(z) ∝ exp
(
− 1

2(z −Hm̂n+1
m )ᵀ(HĈn+1

m Hᵀ + Γ)−1(z −Hm̂n+1
m )

)
.

Proof. For the details of the proof we refer the reader to [CB01].

Note that the matrix Km in (6.20) is the Kalman gain matrix corresponding to the m-th
mixture component. The individual mixture mean values and mixture covariances are
updated in accordance with familiar Kalman update formulas (6.8). The coupling occurs
only through the weights, which are updated as in the particle filter (6.14).

Now, let us describe the Gaussian mixture filter (GMF) algorithm. Let the filtering
measure at time tn be approximated by an empirical measure

µn =
N̂∑
j=1

λn(j)δun(j)
.

The GMF is realized through a forecast and an analysis step.

Forecast. In the forecast step we first keep the weights unchanged and we let the
particle locations evolve through the deterministic forward operator Ψ from (6.1), i.e.
ûn+1

(j) = Ψ(un(j)), j = 1, . . . , N̂ . Incorporating the model error results in a forecasted
distribution which is a Gaussian mixture where the mixture covariance matrix is constant
across all the mixture components

P(un+1|Zn) =
N̂∑
j=1

λn(j) ×N(un+1; ûn+1
(j) ,Σ). (6.21)

Analysis. Applying Lemma 6.2.2 we see that the analysis step results as well in a Gaussian
mixture with the mixture covariance matrices constant across all the mixture components:
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P(un+1|Zn+1) =
N̂∑
j=1

λn+1
(j) ×N(un+1;mn+1

j , Cn+1), (6.22)

where

Cn+1 = (I −KH)Σ, K = ΣHᵀ(HΣHᵀ + Γ)−1,

mn+1
j = ûn+1

(j) +K(zn+1 −Hûn+1
(j) ),

λn+1
(j) =

λn(j) · gj(z
n+1)∑N̂

m=1 λ
n
(m) · gm(zn+1)

,

(6.23)

with gj(z) ∝ exp(−1
2(z −Hûn+1

(j) )ᵀ(HΣHᵀ + Γ)−1(z −Hûn+1
(j) )). To restart the process,

one needs to generate a new ensemble of particles. There are many ways of achieving
this. Here we propose the following

un+1
(j) = mn+1

j + γn+1
(j) , (6.24)

where {γn+1
(j) }

N̂
j=1 are i.i.d. samples from N(0, Cn+1). The resulting empirical filtering

distribution {λn+1
(j) , u

n+1
(j) }

N̂
j=1 is, in fact, equivalent to the distribution resulting from the

optimal proposal particle filter (6.16), which means that the proposed GMF is the OP-PF.
This is true specifically for the case of deterministic operator Ψ, normally distributed
additive model and observation error and linear observation operator.

6.3 Numerical example: Lorenz-96

The preceding section lead us through some of the most standard methods applied to deal
with the discrete filtering problem. In this section, we introduce a numerical example
which will be used throughout the whole work as a test case for comparison of different
filtering algorithms.

The performance of the aforementioned algorithms, as well as the performance of the
new-proposed techniques provided in the next chapter, will be tested on a guiding
numerical example, the 40-dimensional Lorenz-96 dynamical system ([Lor96]). This
system of equations is a simplified model of the chaotic nature of atmospheric processes,
and therefore a popular test case to assess the performance of filtering procedures in
turbulent dynamics. The equations take the form

u̇i = ui−1(ui+1 − ui−2)− ui + F, i = 1, . . . , 40
u0 = u40, u41 = u1, u−1 = u39.

(6.25)
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This is a specific case of a more general quadratic system formulation

u̇ = (L+D)u+B(u, u) + F, (6.26)

where L is a skew-symmetric linear operator, i.e. Lᵀ = −L, D is a negative definite
symmetric operator Dᵀ = D. The quadratic term B conserves energy which means
〈B(u, u), u〉 = 0 and F is a forcing term. Many turbulent dynamical systems in geosciences
and engineering have such structure [Sal98; MX06].

To asses the performance of the various algorithms, we show the behavior of the RMSE
(root mean square error) of the signal un over time, defined as

RMSE(tn) =

√√√√√ 1
NhN̂

N̂∑
j=1
‖un(j) − utrue(tn)‖2.

For the numerical experiment in this section, we set the following parameters: final
time T = 30, time between observations 4t = 0.05, the model error covariance matrix
Σ = 10−4 · Id, the observation error covariance matrix Γ = 10−2 · Id and the observation
operator H = Id. The data {zn}n∈N is obtained synthetically, i.e. there is a true signal
utrue satisfying (6.1), for which zn = Hutrue(tn) + η, with η being a sample of ηn.

We focus on the 3DVAR, extended Kalman filter (ExKF) and the ensemble Kalman
filter (EnKF) as examples of the approximate Gaussian filters from Section 6.2.2, and the
bootstrap filter (PF) and the Gaussian mixture filter (GMF) as examples of the particle
filters (in our setting GMF is equivalent to the optimal proposal particle filter and so
we consider it to be an example of a particle filter). The behaviour of their RMSEs is
depicted in Figure 6.2 and Figure 6.3. Since full observations are available, an algorithm
performs reliably if the RMSE is below the observation noise (otherwise one can consider
a trivial filtering with un+1 = zn+1 resulting in RMSE being equal to the observation
noise).

We see from the figure that the performance of the 3DVAR depends on the choice of the
constant covariance matrix Ĉ. Choosing Ĉ = 10−4 · Id expresses a rather high confidence
on the capability of the mean value to represent well the predicted measure µ̂. For a
highly non-linear system, like the Lorenz-96, this is not justified and the algorithm looses
track of the signal very quickly. Choosing Ĉ = 1. · Id, on the contrary, expresses a high
uncertainty in the predicted measure. The updated filtering distribution relies mostly
on the information from the data and consequently the RMSE does not improve upon
the observation noise. Finally, setting Ĉ = 10−2 · Id provides satisfactory results. We
conclude that in this test case, 3DVAR does manage to track the signal, but an a-priori
insight into the choice of the constant covariance matrix is necessary. As for the extended
Kalman filter, the method manages to track the signal at the very beginning of the
experiment but then eventually loses track.
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Figure 6.2 – Comparison of RMSEs when applying approximate Gaussian filters, namely
3DVAR with different covariance matrices, ExKF and EnKF with different number of
particles.

It comes as no surprise that the ensemble Kalman filter deals with the problem much
more efficiently, as it involves evolving a set of particles through a full non-linear system.
Its performance depends on the number of considered particles. In Figure 6.2 we see a
clear improvement when increasing N̂ , where in fact N̂ = 100 is sufficient to track the
signal. Although the EnKF is not consistent with the true filtering distribution, as long
as the signal is tracked, the filtering distribution remains well concentrated around the
‘true value’ and a Gaussian approximation turns out to perform well.

The particle filters are proven to provide an approximation which converges to the true
filtering distribution in the large-particle limit. However, in Figure 6.3 we see that to
avoid degeneracy, the most basic form, the bootstrap filter, requires evolving a high
number of particles N̂ = 1000. This demand is weakened by the optimal-proposal particle
filter (or the Gaussian mixture filter), for which N̂ = 100 is sufficient.

As a last test case, we provide a comparison of all algorithms: 3DVAR, ExKF, EnKF,
PF, GMF to a problem with partial observations. We set the following parameters: final
time T = 30, time between observations 4t = 0.05, the model error covariance matrix
Σ = 10−2 · Id, the observation error covariance matrix Γ = 10−2 · Id. The observation
operator observes every second value of the 40-dimensional signal, i.e. l = 20. We
note that in the case of partial observations, we do not expect the RMSE of any of
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Figure 6.3 – Comparison of RMSEs when applying particle filters, namely bootstrap
filter (PF) and optimal proposal particle filter (GMF), with different number of particles.

the algorithms to be necessarily below the observation noise. In Figure 6.4 we see that
indeed, none of the filters managed to keep the error below the observation noise. The
best results were achieved by the EnKF and GMF.
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Figure 6.4 – Comparison of RMSEs when applying approximate Gaussian filters and
particle filters to a problem with partial observations (l = 20).
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7 Dynamical low rank approxima-
tion for filtering problems

A concern with nonlinear data assimilation schemes as those presented in the previous
chapter is their difficulty in handling the dimensionality of the state space Nh, which
can be very high in many atmospheric and geophysical applications. When running
a full-order model is extremely expensive and only a very few runs (particles) can be
performed in the forecast step, one needs to rely on reduced-order modeling techniques.
These typically consist in looking for a solution in a low-dimensional subspace. However,
especially in the context of data assimilation, the “optimal” subspace that approximates
well the whole solution (or a large ensemble of particles) can significantly vary in time.
In this respect, employing the dynamical low rank approximation (DLRA) in the forecast
step seems very advantageous. The dominant subspace evolves in time, adjusting to the
underlying dynamical system at every time instant as well as the incoming observations.
In this chapter, we will first explore the idea of applying simple DLRA in the forecast
step, combined with standard algorithms (introduced in Section 6.2) in the analysis step.
In Section 7.1, we will see that keeping the signal in a simple DLR form and completely
dismissing the omitted modes in the DLRA can result in unsatisfactory scenarios, as
shown in the numerical experiments presented in Section 7.1.3. In Section 7.2 we will
propose two new algorithms, which complement the signal in the DLR form by a Gaussian
component. In Section 7.2.5, their performance will be tested on a Lorenz-96 system of
equations (see Section 6.3 for the definition of the test case). We would like to point out
that all the work presented in this chapter is original.

7.1 Simple dynamical low rank approximation in the fore-
cast step

We will start our exploration of applying DLRA in filtering problems with the most
straightforward idea: replacing the full-order model in the forecast step by a signal in
the DLR form and performing the analysis step using some of the standard algorithms
introduced in Section 6.2.
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First, we recall the DLR formulation applied to our setting. Let us consider an abstract
probability triple (Ω,S, µ), where Ω is the sample space characterizing all uncertainty in
the model, i.e. model error, observation error and initial condition.

We will denote by ω ∈ Ω an elementary event and the space of all square integrable
random functions taking values in Rm, m ∈ N, will be denoted by L2(Ω;Rm)

L2(Ω;Rm) = {f : Ω→ Rm, S-measurable |
∫

Ω
‖f(ω)‖2 dµ(ω) <∞},

where ‖ · ‖ = 〈·, ·〉 is the standard Euclidean norm in Rm. By L2
0(Ω;Rm) ⊂ L2(Ω;Rm)

we denote its subspace of all functions with zero mean.

7.1.1 Forecast step

We are looking for a signal uDLR ∈ L2(Ω;RNh), approximating the solution of (6.3) for
t ∈ (tn, tn+1) in the form

utrue(t) ≈ uDLR(t) = ūDLR(t) +
R∑
r=1

Ur(t)Yr(t), (7.1)

where ūDLR is the mean value of uDLR, U = (U1, . . . , UR) denotes a deterministic basis
orthonormal w.r.t. the Euclidean inner product 〈·, ·〉 and Y = (Y1, . . . , YR) are zero mean
random coefficients with bounded second moments, for which the covariance matrix
CY := E[Y ᵀY ] is full rank. The rank R is kept constant in time. Note that in this
work we consider the DLR form where the deterministic basis U is kept orthonormal, as
opposed to Chapter 2, in which the stochastic basis Y was kept orthonormal.

Initial condition

As the first step, we describe how to obtain the initial condition at time tn in the form
(7.1) starting from an arbitrary signal un ∈ L2(Ω;RNh). Throughout the rest of the work,
we use the notation f∗ = f − E[f ]. To start with, the Karhunen–Loève expansion of un∗

results in

un∗ =
Nh∑
k=1

ξkek,

where {ek}Nhk=1 ⊂ RNh are pairwise orthonormal vectors in RNh and ξ = {ξ1, . . . , ξNh}
are zero mean, pairwise uncorrelated random variables ordered by decreasing variance.
We can then set

uDLR,n = ūDLR,n +
R∑
r=1

Unr Y
n
r with

ūDLR,n = E[uDLR,n], Unr = er, Y
n
r = ξr, ∀1 ≤ r ≤ R.

(7.2)
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In the rest of the work we will apply to following vector notation U = (U1, . . . , UR) ∈
RNh×R, Y = (Y1, . . . , YR) ∈ L2(Ω;RR). By PU [v] we denote the projection

PU [v] :=
R∑
i=1

Ui〈Ui, v〉, v ∈ RNh .

Definition 7.1.1. We define the DLR solution of the problem (6.3) as

uDLR(t, ω) = ūDLR(t) +
R∑
r=1

Ur(t)Yr(t, ω) = ūDLR(t) + U(t)Y ᵀ(t, ω),

where ūDLR is the solution of

˙̄uDLR = E[F(uDLR)], t ∈ (tn, tn+1), (7.3)

and {Ur}Rr=1, {Yr}Rr=1 are solutions of the following variational formulation for t ∈
(tn, tn+1)

E
[〈
U̇Y ᵀ + UẎ ᵀ, v

〉]
= E

[〈
F∗
(
uDLR

)
, v

〉]
∀v ∈ {w = δUY ᵀ + UδY ᵀ with δU ∈ RNh×R, 〈δUᵀ, U〉 = 0

δY ∈ L2
0(Ω;RR)}, (7.4)

with the initial conditions ūDLR(tn), {Ur(tn)}Rr=1 and {Yr(tn)}Rr=1 obtained as described
in (7.2).

For completeness, we specify the detailed evolution equations for the DLR modes in the
following theorem.

Theorem 7.1.1. The variational formulation (7.4) results in the following system of
equations for the mean value ˙̄uDLR and the DLR modes {Ur, Yr}Rr=1:

˙̄uDLR = E[F(uDLR)],

Ẏr =
〈
Ur,F∗(uDLR)

〉
, r = 1, . . . , R,

R∑
l=1

(CY )lrU̇l =
(
E
[
F∗(uDLR)Yr]− U〈U,E

[
F∗(uDLR)Yr

]
〉
)
, r = 1, . . . , R,

with CY = E[Y ᵀY ].

(7.5)

Proof. The proof can be found in [SL09].
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The evolving measure is approximated by an empirical measure {uDLR
(j) , λ(j)}N̂j=1 with

uDLR
(j) = ūDLR +

R∑
r=1

UrYr,(j). (7.6)

The weights do not evolve in time. In the computation of (7.5), we replace all expectations
E[·] by the sample averages EN̂ [·], that is

EN̂ [F(uDLR)] =
N̂∑
j=1

λ(j)F(uDLR
(j) ) and EN̂ [F∗(uDLR)Yr] =

N̂∑
j=1

λ(j)F∗(uDLR
(j) )Yr,(j).

The resulting system of equations discretized in the random variable is

˙̄uDLR = EN̂ [F(uDLR)],

Ẏr,(j) =
〈
Ur,F∗(uDLR

(j) )
〉
, r = 1, . . . , R,

R∑
l=1

(CY )lrU̇l =
(
EN̂
[
F∗(uDLR)Yr]− U〈U,EN̂

[
F∗(uDLR)Yr

]
〉
)
, r = 1, . . . , R,

with CY = EN̂ [Y ᵀY ].

(7.7)

By ΨDLR we will denote the DLR approximation of the forward operator Ψ from (6.1),
i.e. an operator that takes in a set of N̂ particles and weights characterizing the filtering
distribution at time tn: uDLR,n = {uDLR,n

(j) , λn(j)}
N̂
j=1, and applies the DLR method to

approximate the evolution of the system (6.3) on (tn, tn+1), returning a set of forecasted
particles and weights ũDLR,n+1 = {uDLR

(j) (tn+1), λn+1
(j) )}N̂j=1, ũDLR,n+1 = ΨDLR(uDLR,n).

7.1.2 Model error and analysis step: ensemble Kalman filter and par-
ticle filter

By ˆ̄uDLR,n+1, Ûn+1 let us denote the mean value and deterministic basis, respectively,
resulting from (7.5) at time tn+1. The last part of the forecast step involves incorporating
the model error. The standard particle or ensemble Kalman filter adds N̂ independent
samples {ξn(j)}

N̂
j=1 of the model error to the particle locations obtained from evolving

the system. Since generally {ξn(j)}
N̂
j=1 ⊂ RNh are not restricted to any subspace, this

process would result in losing the low-rank structure (7.6) of the signal. Instead, we add
samples from the model error projected on the subspace spanned by Ûn+1. The resulting
forecasted distribution is characterized by the set of particles ûDLR,n+1 = {ûDLR,n+1

(j) }N̂j=1,
which satisfy

ûDLR,n+1
(j) =

(
ΨDLR(uDLR,n)

)
(j)

+ PÛn+1 [ξn(j)], j = 1, . . . , N̂ ,
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where PÛn+1 [ξn(j)] = Ûn+1〈Ûn+1, ξn(j)〉. Note that the projected model error samples can
be alternatively obtained as ξn(j) = Ûn+1χn(j) with χn(j) ∼ N(0,ΣÛn+1) with ΣÛn+1 =
Ûn+1ᵀΣÛn+1 ∈ RR×R.

It is worth keeping in mind that, as opposed to EnKF or particle filter, where the
particles are evolved independently of each other and can be computed in parallel, the
operator ΨDLR requires the knowledge of all particle locations and consequently creates
correlations among them.

To incorporate the observation, we apply standard algorithms presented in Section 6.2
that deal with empirical measures, namely ensemble Kalman filter (EnKF) and particle
filter. The EnKF computes the sample mean and sample covariance using the forecasted
set of particles and updates the position of every particle via the Kalman formulas
(6.12). The particle filter updates the weights by formulas derived directly from the
Bayes’ formula (see (6.13)), which is often followed by a resampling step. Both of these
algorithms lead to an updated empirical filtering distribution P(un+1|Zn+1) given by
{λn+1

(j) , u
DLR,n+1
(j) }N̂j=1. We will present two lemmas that highlight the advantages and

disadvantages of the analysis step performed in the aforementioned way.

The forecasted particles are of the form

ûDLR,n+1
(j) = ˆ̄uDLR,n+1 +

R∑
r=1

Ûn+1
r Ŷ n+1

r,(j) , (7.8)

where Ŷ n+1
r , r = 1, . . . , R are the stochastic coefficients Yr resulting from (7.5) at time

tn+1 summed with the projected model error samples (ξn)Ûn+1
r

:= 〈Ûn+1
r , ξn〉.

Lemma 7.1.2. Performing the ensemble Kalman filter update with perturbed observations
in the full state space with the forecasted distribution given by (7.8) and observations
zn+1 is equivalent to applying

uDLR,n+1
(j) = ˆ̄uDLR,n+1 +

R∑
r=1

Ûn+1
r Y n+1ᵀ

r,(j) (7.9)

where Y n+1ᵀ
r,(j) are obtained by ensemble Kalman filter update formulas in an R-dimensional

stochastic subspace via

H̃ := HÛn+1, CN̂,Ŷ n+1 = EN̂ [Ŷ n+1ᵀ Ŷ n+1]

S̃n+1 = H̃CN̂,Ŷ n+1H̃
ᵀ + Γ,

K̃n+1 = CN̂,Ŷ n+1H̃
ᵀ(S̃n+1)−1

Y n+1ᵀ
r,(j) = (I − K̃n+1H̃)Ŷ n+1ᵀ

r,(j) + K̃n+1zn+1
(j) , j = 1, . . . , N̂ ; r = 1, . . . , R,

zn+1
(j) = zn+1 −H ˆ̄uDLR,n+1 + ηn+1

(j) , j = 1, . . . , N̂ .

(7.10)
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Proof. We start by noticing the following relations. The forecasted covariance matrix
satisfies

Ĉn+1 = Ûn+1CN̂,Ŷ n+1Û
n+1ᵀ ,

and for the Kalman gain it holds Kn+1 = Ûn+1K̃n+1, which from the orthonormality of
Ûn+1 gives

K̃n+1 = Ûn+1ᵀKn+1.

We follow by deriving

uDLR,n+1
(j) = ˆ̄uDLR,n+1 + Ûn+1Y n+1ᵀ

(j)

= ˆ̄uDLR,n+1 + Ûn+1
(
(I − K̃n+1H̃)Ŷ n+1ᵀ

(j) + K̃n+1zn+1
(j)

)
= ˆ̄uDLR,n+1 + Ûn+1Ŷ n+1ᵀ

(j) + Ûn+1K̃n+1
(
zn+1

(j) − H̃Ŷ
n+1ᵀ

(j)

)
= ˆ̄uDLR,n+1 + Ûn+1Ŷ n+1ᵀ

(j) +Kn+1
(
zn+1 + ηn+1

(j) −H ˆ̄uDLR,n+1 − H̃Ŷ n+1ᵀ
(j)

)
= ûDLR,n+1

(j) +Kn+1
(
zn+1 + ηn+1

(j) −H ˆ̄uDLR,n+1 −HÛn+1Ŷ n+1ᵀ
(j)

)
= ûDLR,n+1

(j) +Kn+1
(
zn+1 + ηn+1

(j) −Hû
DLR,n+1
(j)

)
,

i.e. we recovered exactly the formulas for the ensemble Kalman filter analysis step
introduced in (6.12).

We stress that being able to carry out the analysis step within the subspace is very
favourable. The EnKF analysis step in the full state space requires computing the
covariance matrix Ĉn+1 ∈ RNh×Nh , which for a high Nh is unfeasible. We shall note that
for all the quantities in (7.10) it holds

H̃ ∈ Rl×R, CN̂,Ŷ n+1 ∈ RR×R, S̃n+1 ∈ Rl×l, K̃n+1 ∈ RR×l,

i.e. the update formulas do not see the squared full-state dimension Nh ×Nh, if l� Nh.

Corollary 1. The particles {uDLR,n+1
(j) }n+1

j=1 approximating the filtering distribution
P(un+1|Zn+1) obtained by either EnKF or particle filter formulas satisfy

uDLR,n+1
(j) ∈ ˆ̄uDLR,n+1 ⊕ span(Ûn+1

1 , . . . , Ûn+1
R ), ∀j = 1, . . . , N̂ ,

i.e. the mean value as well as the R-dimensional DLR subspace spanning the particle
locations is not updated in the analysis step

ūDLR,n+1 = ˆ̄uDLR,n+1, Un+1
r = Ûn+1

r , ∀r = 1, . . . , R.

Proof. For the EnKF the statement is a simple consequence of Lemma 7.1.2. For particle
filter it comes from the fact that the locations of the particles are not updated in the
analysis step and the resampling step does not enlarge the subspace spanning the particle
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7.1. Simple dynamical low rank approximation in the forecast step

Figure 7.1 – Evolution of an empirical measure of the first two components of a Lorenz-96
system, computed at the beginning of a forecast step (µn), at the end of the forecast step
(µ̂n+1) and at the end of the analysis step (µn+1). The forecast step was computed via
DLRA with R = 1.

locations.

This behavior is clearly illustrated in Figure 7.1, which shows the evolution of the
empirical measure of the first two components of a signal, using DLR with R = 1. All
measures concentrate along lines (1-dimensional subspaces), since the particle locations
are spanned by a 1-dimensional DLR subspace. We see that the measure at the beginning
of the forecast step µn (lightblue) evolves into µ̂n+1 (green). This update changes the
subspace U which is depicted as a change in the corresponding line. The analysis step
then updates the forecasted measure µ̂n+1 into µn+1 (dark blue) without updating the
DLR subspace, nor the mean value, i.e. the line along which the two measures are spread
remains unchanged.

We conclude that not having to update the R-dimensional subspace is advantageous in
terms of computational complexity. However, in the following lemma we can see the
drawback of not updating the subspace, at least in the case of full observations and an
observation error with a specified distribution.

Lemma 7.1.3. Consider a case with full observations H = Id. Let us assume that there
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is a state utrue, such that

zn+1 = H utrue(tn+1) = utrue(tn+1).

By PΓ
Ûn+1 [utrue(tn+1)] we denote the orthogonal projection of utrue(tn+1) on

span(Ûn+1
1 , . . . , Ûn+1

R ) w.r.t. the inner product 〈u, v〉Γ := 〈u,Γ−1v〉 induced by the covari-
ance matrix Γ. In addition, by zn+1

R we denote the observation associated to the projected
state

zn+1
R = H PΓ

Ûn+1 [utrue(tn+1)] = PΓ
Ûn+1 [utrue(tn+1)].

Then, for the filtering distribution P(un+1|Zn, zn+1), obtained by either EnKF or particle
filter analysis step, it holds

P(un+1|Zn, zn+1) = P(un+1|Zn, zn+1
R ).

Proof. We start with the analysis step performed via the particle filter. As described in
Section 6.2.3, in the analysis step, the locations remain unchanged and the weights get
updated via the formula (6.13). Since the observations are obtained through (6.2), the
computation of gn(ûDLR,n+1

(j) ) from (6.15) involves

gn(ûDLR,n+1
(j) ) ∝ exp

(
− 1

2‖û
n+1
(j) − z

n+1‖2Γ
)

= exp
(
− 1

2‖
ˆ̄uDLR,n+1 + Ûn+1Ŷ n+1

(j) − z
n+1‖2Γ

)
= exp

(
− 1

2

∥∥∥ˆ̄uDLR,n+1 + Ûn+1Ŷ n+1
(j) − P

Γ
Ûn+1 [zn+1]− PΓ

Ûn+1
⊥[zn+1]

∥∥∥2

Γ

)
= exp

(
− 1

2
(∥∥∥ˆ̄uDLR,n+1 + Ûn+1Ŷ n+1

(j) − P
Γ
Ûn+1 [zn+1]

∥∥∥2

Γ

− 2
〈

ˆ̄uDLR,n+1,PΓ⊥
Ûn+1 [zn+1]

〉
Γ

+
∥∥∥PΓ⊥

Ûn+1 [zn+1]
∥∥∥2

Γ

))
= exp

(
− 1

2

∥∥∥ˆ̄uDLR,n+1 + Ûn+1Ŷ n+1
(j) − P

Γ
Ûn+1 [zn+1]

∥∥∥2

Γ

)
exp

(〈
ˆ̄uDLR,n+1,PΓ⊥

Ûn+1 [zn+1]
〉

Γ

)
exp

(
− 1

2

∥∥∥PΓ⊥
Ûn+1 [zn+1]

∥∥∥2

Γ

)
As the last two terms are constant across particles, they can be included in the propor-
tionality constant and we conclude

gn(ûDLR,n+1
(j) ) ∝ exp

(
− 1

2

∥∥∥ˆ̄uDLR,n+1 + Ûn+1Ŷ n+1
(j) − P

Γ
Ûn+1 [zn+1]

∥∥∥2

Γ

)
= exp

(
− 1

2

∥∥∥ûDLR,n+1
(j) − zn+1

R

∥∥∥2

Γ

)
.

As for the EnKF analysis step, we proceed in the following way. From the update
formulas (7.10) we can see the data gets incorporated through the term

K̃n+1zn+1
(j) = K̃n+1(zn+1 −H ˆ̄uDLR,n+1 + ηn+1

(j) )

= K̃n+1(PΓ
Ûn+1 [zn+1] + PΓ⊥

Ûn+1 [zn+1]−H ˆ̄uDLR,n+1 + ηn+1
(j) ).
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Using the Woodbury Matrix Identity ([LSZ15, Lemma 4.4]), we further derive

K̃n+1PΓ⊥
Ûn+1 [zn+1] = CN̂,Ŷ n+1H̃

ᵀ(S̃n+1)−1PΓ⊥
Ûn+1 [zn+1]

= CN̂,Ŷ n+1H̃
ᵀ
(
Id− Γ−1H̃(C−1

N̂,Ŷ n+1 + H̃ᵀΓ−1H̃)−1H̃ᵀ
)
Γ−1PΓ⊥

Ûn+1 [zn+1]

= 0,

which proves the statement in the Lemma.

In other words, if the forecasted particles belong to a certain subspace, in the analysis
step, they only learn from the part of the observations laying in the subspace and omit
completely its orthogonal complement. Depending on the scenario, a major portion of
the information might get lost. In the following section, we will see that these conclusions
play an important role when applying the proposed algorithms to the Lorenz-96 system.

7.1.3 Numerical examples: ensemble Kalman filter and particle filter

To assess the quality of these filtering algorithms, we consider the same test case as
described in Section 6.3. We set the following parameters: final time T = 100, time
between observations 4t = 0.05, the model error covariance matrix Σ = 10−4 · Id, the
observation error covariance matrix Γ = 10−2 · Id and the observation operator H = Id.
We set the number of particles N̂ = 1000 sufficiently high, to see a clear impact of the
DLR approximation on the results.

Figure 7.2 depicts the RMS errors obtained by applying the DLR+EnKF with R =
5, 10, 15. Increasing the rank, we see a clear improvement in the performance of the filter.
However, a rather high rank R = 15 is barely enough to keep track of the signal with a
sufficient accuracy.

From Figure 7.3 we can observe again the strong dependence of the reliability of the
PF on the number of particles. With N̂ = 1000, the DLR-PF approach is able to track
correctly the state only when the rank is R = 30. For smaller rank, the filter procedure
at some point looses track of the state. Increasing the number of particles to N̂ = 10000,
we manage to get satisfactory results with R = 20.

7.1.4 Model error and analysis step: Gaussian mixture filter

Another technique to investigate consists in applying the DLR approximation within the
forecast step of the GMF introduced in Subsection 6.2.5. This approach addresses the
conjecture that projecting the model error on a DLR subspace and consequently not
updating the subspace in the analysis step causes a significant loss of accuracy.
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Figure 7.2 – Comparison of RMSEs when applying DLR with rank 5, 10, 15 vs. full-order
with 1000 particles in the prediction step and EnKF in the analysis step.

Figure 7.3 – Comparison of RMSEs when applying DLR with rank 10, 20, 30 vs. full
order with 1000 or 10000 particles in the prediction step and particle filter in the analysis
step.
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7.1. Simple dynamical low rank approximation in the forecast step

The forecast step consists of two parts: evolving the system through the forward operator
Ψ and incorporating the model error. The first part is executed in the same way as
the DLR-EnKF or the DLR-PF of the previous section — the forward operator Ψ is
approximated by the DLR method described in Section 7.1.1, resulting in a set of N̂

particle locations and weights
{(

ΨDLR(uDLR,n)
)

(j)
, λ̂n+1

(j)

}N̂
j=1

. The second part of the
forecast step and the analysis step are performed analogously to the GMF algorithm
described in Section 6.2.5. The particles provide the mixture means while the model
error is used to build the mixture covariance of the forecasted distribution

P(un+1|Zn) =
N̂∑
j=1

λ̂n+1
(j) ×N

(
un+1;

(
ΨDLR(uDLR,n)

)
(j)
,Σ
)
. (7.11)

We recall that the mixture means are of the form

(
ΨDLR(uDLR,n)

)
(j)

= ˆ̄uDLR,n+1 +
R∑
r=1

Ûn+1
r Ŷ n+1

r,(j)

where ˆ̄uDLR,n+1, Ûn+1
r , Ŷ n+1

r , r = 1, . . . , R are the mean, deterministic basis functions
and stochastic coefficients, respectively, resulting from (7.7) at time tn+1. Applying
Lemma 6.2.2 we see that the analysis step results in a Gaussian mixture

P(un+1|Zn+1) ∼
N̂∑
j=1

λn+1
(j) ×N(un+1;mn+1

j , Cn+1) (7.12)

with λn+1
(j) ,m

n+1
j , Cn+1 computed with formulas (6.23).

Note that this algorithm does not project the model error on the DLR subspace. Real-
izations from the forecasted distribution (7.11), as well as from the filtering distribution
(7.12), are generally not restricted to a low-dimensional subspace. To restart the forecast
step for the new time step, we need obtain N̂ new particles. This is performed analogously
to (6.24). In addition, we need to recover a low-rank format (7.1). This is realized via
an SVD decomposition which results in an updated DLR subspace that provides the
best R-rank approximation (in the EN̂ [‖ · ‖]-norm) to the samples of the filtered signal
at time tn+1

uDLR,n
(j) = ūDLR,n+1 +

R∑
r=1

Un+1
r Y n+1

r,(j) . (7.13)

Thanks to projecting the model error when applying the DLR-EnKF or DLR-PF, the
filtering algorithms of Sections 7.1.1, 7.1.2 never see the squared full-state dimension
Nh × Nh nor Nh × N̂ (assuming l � Nh). However, the GMF algorithm builds a
covariance matrix of size Nh ×Nh at the end of the forecast step and updates it in the
analysis step. This could be avoided by an approximation of the model error covariance
matrix by a matrix with a lower rank RC � Nh, which consequently leads to an updated
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Figure 7.4 – Comparison of RMSEs when applying DLRA with rank 5, 10, 15 vs. full-order
model with 1000 particles in the prediction step and GMF in the analysis step.

mixture covariance matrix of rank ≤ 2RC (can be deduced from (6.20)).

7.1.5 Numerical examples: Gaussian mixture filter

Similarly to the previous numerical experiments, we test the performance of the proposed
combination of DLRA with GMF by setting the following parameters: final time T = 100,
time between observations 4t = 0.05, the model error covariance matrix Σ = 10−4 · Id,
the observation error covariance matrix Γ = 10−2 · Id,the observation operator H = Id
and the number of particles N̂ = 1000.

In Figure 7.4 we see that applying the GMF vastly improves the performance of the
particle filter in its simple form with numerical results provided in Figure 7.3. Rank
R = 15 is sufficient to track the signal. Comparing GMF and EnKF with results provided
in Figure 7.2, we observe that both filters require R = 15 but GMF attains lower mean
square error for such rank.

Having tested multiple techniques in combination with a simple DLRA in the prediction
step, we can conclude that the algorithms are capable of tracking the signal in a sufficient
way (at least w.r.t. the RMSE) but still a rather high rank (R = 15 for EnKF and
GMF, R = 20 for PF) is required. In the following section, we propose two methods that
manage to alleviate this demand by complementing the DLRA with a Gaussian term.
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7.2. Complemented dynamical low rank approximation

7.2 Complemented dynamical low rank approximation

The preceding section examined the idea of applying simple DLR approximation in
the forecast step combined with various filtering techniques for the analysis step. We
observed that completely omitting the portion of the signal not captured in the DLR
subspace causes an accuracy loss, which for small ranks R becomes rather significant.
The techniques presented in this section stem from the idea of approximating the omitted
modes by a Gaussian approximation. In the probabilistic description of these methods
we will focus on the evolution of the measures from time tn to tn+1. The signal at the
beginning of each forecast step will be distributed as a Gaussian mixture

P(un|Zn) =
N̂∑
j=1

λn(j) ×N(un;mn
j , C

n). (7.14)

As the operator Ψ is deterministic, all the uncertainty in the system (6.3) arises from the
initial condition un. The underlying abstract probability space (Ω,S, µ) can therefore be
parametrized as

Ω = RNh × {mn
1 , . . . ,m

n
N̂
}, S = B(RNh)× 2{m

n
1 ,...,m

n
N̂
}

µ = N(0, IdNh×Nh)⊗ λ,

where λ = {λn1 , . . . , λnN̂} is a probability mass function over the (discrete) space
{mn

1 , . . . ,m
n
N̂
} and the signal at the beginning of the forecast step satisfies

un(ω) = m+ (Cn)1/2γᵀ, with ω = (γ,m) ∈ Ω. (7.15)

In particular,m is a discrete random variable taking values {mn
1 , . . . ,m

n
N̂
} with probability

λ and γ is a standard normal vector independent of m. Throughout the evolution within
the forecast step, the signal can be split into two parts: uDLR and the remaining portion
which we will denote as urest. Evolving urest exactly is computationally as expensive as
evolving the full state utrue. To make the problem tractable we will enforce that urest

follows a zero mean Gaussian distribution at all times. As such, it can be represented as
a linear combination of the Gaussian random vector γ

utrue(t, ω) = ū(t) + uDLR∗(t, ω) + urest(t, ω)

≈ ū(t) + uDLR∗(t,m, γ) +A(t)γᵀ,
(7.16)

where A(t) ∈ RNh×Nh is unknown (as well as uDLR) and has to be determined through
the dynamics (6.3). The last term in (7.16) is then distributed as urest ∼ N(0, T ) with
T = AAᵀ. The difficult part is to derive evolution equations for uDLR∗ and T which
would avoid redundancy, i.e. a situation in which a portion of the signal is captured
in both terms. In Section 7.2.1 and 7.2.2, we propose two methods to propagate an
approximate solution in the form (7.16) for the system (6.3). Then, in Section 7.2.3
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we detail how to include the model error at the end of the forecast step and in Section
7.2.4, we detail the analysis step. Finally, Section 7.2.5 is dedicated to numerical results
comparing the proposed methods.

7.2.1 Forecast step: DLRA with an independent Gaussian component

We are looking for a signal u ∈ L2(Ω;RNh) approximating the solution of (6.3) for
t ∈ (tn, tn+1) in the form

u(t, ω) = ū(t) + uDLR∗(t, ω) + urest(t, ω) = ū(t) +
R∑
r=1

Ur(t)Y (t,m, γ) +A(t)γᵀ.

As mentioned above, the challenge is to derive evolution equations for
ū, {Ur}Rr=1, {Yr}Rr=1, A, so that no portion of the signal is captured in both uDLR∗ and
urest. This scenario is clearly avoided if uDLR∗ and urest are kept independent. In our
first algorithm we therefore impose these terms to be independent at the initial time tn

and to remain independent over time. We denote this approximation by uDLR+i

uDLR+i(t, ω) := ū(t) +
R∑
r=1

Ur(t)Yr(t,m, γ) +A(t)γᵀ,

with Y (t,m, γ), A(t)γᵀ independent. (7.17)

Note that tracking the signal in this form with Y approximated by particles {Y(j), λ(j)}N̂j=1
means tracking the signal as a Gaussian mixture at every time t

uDLR+i(t) ∼
N̂∑
j=1

λ(j) ×N(ū(t) + U(t)Y(j)(t), T (t))

with T = AAᵀ.

Initial condition

The initial condition at time t = tn resulting from the analysis step of the previous
time step is of the form (7.15). To proceed with our new-proposed method, we need
to construct an approximation of it in the form (7.17). Notice that (7.15) is not in
the form (7.17) because the mixture means mn

1 , . . . ,m
n
N̂

do not live, in general, in an
R-dimensional subspace. Even if they were, we would like to split the Gaussian part
(Cn)1/2γᵀ into a component in the R-dimensional subspace (so that to have a GMM
in the DLR subspace) and an independent one in the orthogonal complement, which
is not always possible. We need therefore to make some approximation steps to recast
(7.15) into the form (7.17). The most natural idea is to assign uDLR∗(tn, ω) to be the
R-truncation of the Karhunen–Loève expansion of m from (7.15) and A(tn) = (Cn)1/2.
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As a consequence, the uDLR∗ depends only on the projected discrete variable m, which is
by construction independent of γ. This approach, however, does not lead to satisfactory
results. With time, the DLR part uDLR∗, which follows the nonlinear dynamics of the
problem, might not capture the dominant part of the solution and the independence
condition causes loss in accuracy. To mitigate this, we allow the DLR part uDLR∗(tn) to
depend on ω = (γ,m), capturing the most dominant part of un from (7.15) (not only m).

From the Karhunen–Loève expansion of un∗

un∗ =
Nh∑
k=1

ξkek,

with ξk ordered with decreasing variance, it holds that ξ = {ξ1, . . . , ξNh} are uncorrelated
random variables and {ek}Nhk=1 are pairwise orthonormal w.r.t. the Euclidean inner
product 〈·, ·〉. In particular, {ek}Nhk=1 are the eigenvectors of the covariance matrix
C̃n =

∑N̂
j=1 λ

n
(j)(m

n
j − m̄)(mn

j − m̄)ᵀ + Cn, with m̄ =
∑N̂
j=1 λ

n
(j)m

n
j and

ξk = 〈un∗ , ek〉 = 〈m− m̄+ (Cn)1/2γᵀ, ek〉, k = 1, . . . , Nh.

We denote the corresponding eigenvalues by {ϑk}Nhk=1 so that E[ξkξl] = δklϑk. We then
set

ūn = E[un] = m̄, Unr = er, Y
n
r (ω) = ξr, ∀1 ≤ r ≤ R. (7.18)

Notice that, by proceeding this way, the DLR part of the signal uDLR,n = ūn+
∑R
r=1 U

n
r Y

n
r

has a GMM distribution concentrated on the R-dimensional subspace spanning U =
(Un1 , . . . , UnR)

uDLR,n ∼
N̂∑
j=1

λnj ×N(m̄+ UUᵀmn∗
j , UU

ᵀCnUUᵀ),

where mn∗
j = mn

j − m̄. As such, it can be re-parametrized by a discrete random variable
m̃ taking values {m̄+ UUᵀmn∗

1 , . . . , m̄+ UUᵀmn∗

N̂
} with probability λ = {λn1 , . . . , λnN̂},

and an R-dimensional standard normal vector γ̃1:R = (γ̃1, . . . , γ̃R) ∼ N(0, IdR×R) as

uDLR,n = m̃+ U(UᵀCnU)1/2γ̃ᵀ1:R.

Concerning the urest part,

urest = un − uDLR,n =
Nh∑

k=R+1
ξkek

we proceed by simply replacing ξk by
√
ϑkγ̃k with γ̃R+1:Nh = (γ̃R+1, . . . , γ̃Nh) ∼

N(0, IdNh−R×Nh−R) and independent of γ̃1:R. This choice preserves the mean and

175



Chapter 7. Dynamical low rank approximation for filtering problems

covariance of urest. In conclusion, our final approximation of the initial condition reads

uDLR+i,n = m̃+ U(UᵀCnU)1/2γ̃ᵀ1:R + U⊥
(
(U⊥)ᵀCnU⊥

)1/2
γ̃ᵀR+1:Nh , (7.19)

where U⊥ = (eR+1, . . . , eNh). We set

An = U⊥
(
(U⊥)ᵀCnU⊥

)1/2
.

We work then in the probability space Ω parametrized by the discrete random variable m̃
and the Gaussian vector γ̃ = (γ̃1:R, γ̃R+1:Nh). In what follows, we rename m̃ as m and γ̃
as γ. In Theorem 7.2.1 we will see, that when propagating the signal uDLR+i, there is no
need to track explicitly the dependence on γ̃R+1:Nh and we will work only with T = AAᵀ.

Note that the initial condition (6.1) at time t = 0 is distributed normally u0 ∼ N(m0, C0)
and thus is a special case of (7.15) with λn(1) = 1, λn(j) = 0, j = 2, . . . , N̂ . In this case, the
initial condition for the urest is simplified. Indeed, the vectors {ek}Nhk=1 are eigenvectors
of C0 and the matrix (U⊥)ᵀC0U is diagonal. Such initial condition is in fact exact. It is
clear that in this case, the urest term is independent of the uDLR∗ term.

We follow by defining the complemented DLR solution for t ∈ (tn, tn+1).

Definition 7.2.1. We define the DLR solution complemented by an independent Gaus-
sian term of the problem (6.3) as

uDLR+i(t, ω) = ū(t) +
R∑
r=1

Ur(t)Yr(t,m, γ1:R) +A(t)γᵀR+1:Nh ,

where ū is the solution of

˙̄u = E[F(uDLR+i)], t ∈ (tn, tn+1) (7.20)

and {Ur}Rr=1, {Yr}Rr=1, A are solutions of the following variational formulation for t ∈
(tn, tn+1)

E
[〈
U̇Y ᵀ + UẎ ᵀ + ȦγR+1:Nh

ᵀ, v

〉]
= E

[〈
F∗
(
uDLR+i

)
, v

〉]
∀v ∈ {f = δUY ᵀ + UδY ᵀ + δAγᵀR+1:Nh with δU ∈ RNh×R, 〈δU, U〉 = 0,

δA ∈ RNh×(Nh−R), δY ∈ L2
0(Ω;RR), δY independent of γR+1:Nh}. (7.21)

We see that the independence of the two terms is enforced in the variational formulation
by constraining the set of test functions. We only allow the variations in Y which are
independent of the random variables γR+1:Nh . The detailed evolution equations for the
DLR modes and the matrix A will be specified in the following theorem for the case of
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the operator F of the form (6.26).

Theorem 7.2.1. Consider the problem (6.26), i.e. the operator F is of the form

F(u) = (L+D)u+B(u, u) + F.

The variational formulation (7.21) results in the following system of equations for the
mean value ˙̄u and the matrix T = AAᵀ:

˙̄u = (L+D)ū+ F +B(ū, ū) +
Nh∑
j,k=1

SjkB(vj , vk)

Ṫ = LuT + TLu
ᵀ

with (Lu)ij = (Lij +Dij) + 〈B(ū, vj), vi〉+ 〈B(vj , ū), vi〉,

(7.22)

where {vk}Nhk=1 is the canonical basis spanning RNh and S ∈ RNh×Nh is a matrix approxi-
mating the covariance matrix of the full signal uDLR+i obtained as

S = E[(uDLR+i − ū)(uDLR+i − ū)ᵀ] = UE[Y ᵀY ]Uᵀ + T.

The DLR modes {Ur, Yr}Rr=1 satisfy

Ẏr =
R∑
k=1
〈(L+D)Uk, Ur〉Yk +

R∑
k=1
〈B(ū, Uk), Ur〉Yk + 〈B(Uk, ū), Ur〉Yk

+
R∑

j,k=1
〈B(Uj , Uk), Ur〉

(
YjYk − E[YjYk]

)
= 〈F∗(uDLR), Ur〉, r = 1, . . . , R,

R∑
j=1

U̇j(CY )jr =
(
E[F∗(uDLR)Yr]− PU

[
E[F∗(uDLR)Yr]

])
, r = 1, . . . , R

where CY = E[Y ᵀY ].

(7.23)

Proof. For the sake of simplicity, we denote by uDLR = ū(t) +
∑R
r=1 Ur(t)Yr(t, γ1:R) the

DLR portion of the signal, by uDLR∗ =
∑R
r=1 Ur(t)Yr(t, γ1:R) the stochastic part of the

DLR portion of the signal and by urest = AγᵀR+1:Nh the complementary independent
term.

The mean value can be obtained as a solution of the following equation

˙̄u = E[(L+D)(ū+ uDLR∗ + urest)] + F

+ E[B(ū, ū)] + E[B(ū, uDLR∗)] + E[B(ū, urest)]

+ E[B(uDLR∗, ū)] + E[B(uDLR∗, uDLR∗)] + E[B(uDLR∗, urest)]
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+ E[B(urest, ū)] + E[B(urest, uDLR∗)] + E[B(urest, urest)]

= (L+D)ū+ F +B(ū, ū) + E[B(uDLR∗, uDLR∗)]
+ E[B(urest, urest)]

= (L+D)ū+ F +B(ū, ū) +
R∑

j,k=1
E[YjYk]B(Uj , Uk)

+
Nh∑

j,k=R+1
E[γjγk]B(Aj , Ak)

= (L+D)ū+ F +B(ū, ū) +
Nh∑
j,k=1

SjkB(vj , vk),

where {vk}Nhk=1 is the canonical basis spanning RNh and S ∈ RNh×Nh is a matrix approxi-
mating the covariance matrix of the full signal uDLR+i obtained as

S = E[(uDLR+i − ū)(uDLR+i − ū)ᵀ] = UE[Y ᵀY ]Uᵀ +AAᵀ.

We now proceed with deriving evolution equations for the stochastic DLR modes {Yr}Rr=1.
Consider a test function of the form v = UrδYr. Stemming from the variational formula-
tion (7.21), we derive

E[ẎrδYr] =
R∑
k=1
〈U̇k, Ur〉E[YkδYr] + 〈Uk, Ur〉E[ẎkδYr] +

Nh∑
k=R+1

〈Ȧk, Ur〉E[γk, δYr]

= E
[〈
F∗
(
uDLR + urest

)
, UrδYr

〉]
= E

[〈
(L+D)uDLR, Ur

〉
δYr

]
+ E

[〈
B(uDLR, uDLR), Ur

〉
δYr

]
+ E

[〈
(L+D)urest, Ur

〉
δYr

]
+ E

[〈
B(uDLR, urest), Ur

〉
δYr

]
(7.24)

+ E
[〈
B(urest, uDLR), Ur

〉
δYr

]
+ E

[〈
B(urest, urest), Ur

〉
δYr

]
(7.25)

=
R∑
k=1
〈(L+D)Uk, Ur〉E[YkδYr] +

R∑
k=1
〈B(ū, Uk), Ur〉E[YkδYr]

+ 〈B(Uk, ū), Ur〉E[YkδYr] (7.26)

+
R∑

j,k=1
〈B(Uj , Uk), Ur〉

(
E
[
(YjYk − E[YjYk])δYr

])
.

All four terms in (7.24), (7.25) vanished since the considered δYr is a random function
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independent of urest. The resulting differential equation for the stochastic modes is

Ẏr =
R∑
k=1
〈(L+D)Uk, Ur〉Yk +

R∑
k=1
〈B(ū, Uk), Ur〉Yk + 〈B(Uk, ū), Ur〉Yk

+
R∑

j,k=1
〈B(Uj , Uk), Ur〉

(
YjYk − E[YjYk]

)
= 〈F∗(uDLR), Ur〉, r = 1, . . . , R,

which are the standard DLR equations for the stochastic modes when evaluating the
operator only in the DLR portion of the signal uDLR.

To derive the evolution equations for the deterministic modes, we consider the test
function v = P⊥U [δUr]Yr with δUr ∈ RNh arbitrary. We follow by

R∑
k=1

E[ẎkYr]〈Uk,P⊥U [δUr]〉+
R∑
k=1

E[YkYr]〈U̇k,P⊥U [δUr]〉

=
R∑
k=1

E[ẎkYr]〈Uk,P⊥U [δUr]〉+
R∑
k=1

E[YkYr]〈U̇k,P⊥U [δUr]〉+ 〈E[urestYr]P⊥U [δUr]〉

= E
[〈
F∗
(
uDLR + urest

)
, P⊥U [δUr]Yr

〉]
= E

[〈
(L+D)uDLR,P⊥U [δUr]

〉
Yr

]
+ E

[〈
B(uDLR, uDLR),P⊥U [δUr]

〉
Yr

]
+ E

[〈
(L+D)urest,P⊥U [δUr]

〉
Yr

]
+ E

[〈
B(uDLR, urest),P⊥U [δUr]

〉
Yr

]
(7.27)

+ E
[〈
B(urest, uDLR),P⊥U [δUr]

〉
Yr

]
+ E

[〈
B(urest, urest),P⊥U [δUr]

〉
Yr

]
(7.28)

=
R∑
k=1

E[YkYr]〈(L+D)Uk,P⊥U [δUr]〉+
R∑
k=1
〈B(ū, Uk),P⊥U [δUr]〉E[YkYr]

+ 〈B(Uk, ū),P⊥U [δUr]〉E[YkYr] +
R∑

j,k=1
〈B(Uj , Uk),P⊥U [δUr]〉E[YjYkYr].

Analogously, the four terms in (7.27) and (7.28) vanished since Yr are independent of
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urest. The evolution equation for the deterministic modes becomes

R∑
k=1

E[YkYr]〈U̇k,P⊥U [δUr]〉 =
〈 R∑
k=1

E[YkYr](L+D)Uk +
R∑
k=1

B(ū, Uk)E[YkYr]

+B(Uk, ū)E[YkYr] +
R∑

j,k=1
B(Uj , Uk)E[YjYkYr], P⊥U [δUr]

〉
=
〈
E
[
F∗(uDLR)Yr

]
, P⊥U [δUr]

〉
, ∀r = 1, . . . , R.

(7.29)

Using the symmetry of the projection operator P⊥U w.r.t. the inner product 〈·, ·〉, we
obtain

R∑
k=1

E[YkYr]〈P⊥U [U̇k], δUr〉 =
R∑
k=1

E[YkYr]〈U̇k, δUr〉 =
〈
P⊥U
[
E[F∗(uDLR)Yr]

]
, δUr

〉
,

∀r = 1, . . . , R.

Set in the physical space, this is equivalent to

R∑
k=1

E[YkYr]U̇r = E
[(
F∗(uDLR)−

R∑
k=1
〈F∗(uDLR), Uk〉Uk

)
Yr
]
, ∀r = 1, . . . , R,

which is the standard DLR system of deterministic equations to obtain the basis {Ur}Rr=1,
evaluated only in the DLR portion of the signal uDLR.

As the last step, we develop equations for the matrix A tracking the linear dependence on
γR+1:Nh . Let us consider the test function v = δAγl for some l ∈ {R+ 1, . . . , Nh}, δA ∈
RNh in the variational formulation (7.21). We derive

〈Ȧl, δA〉 = E
[
〈

Nh∑
k=R+1

Ȧkγk, δAγl〉] + E[〈u̇DLR, δA〉γl] = E
[
〈F∗(uDLR+i), δA〉γl

]
= E

[
〈(L+D)urest, δA〉γl

]
+ E

[
〈B(ū, urest), δA〉γl

]
+ E

[
〈B(urest, urest), δA〉γl

]
+ E

[
〈B(urest, ū), δA〉γl

]
=
〈

(L+D)Al, δA
〉

+
〈 Nh∑
k=R+1

B(ū, Ak), δA
〉
E[γkγl]

+
〈 Nh∑
k=R+1

B(Ak, ū), δA
〉
E[γkγl] +

〈 Nh∑
j,k=R+1

B(Ak, Aj), δA
〉
E[γjγkγl]︸ ︷︷ ︸

=0

=
〈

(L+D)Al, δA
〉

+
〈
B(ū, Al), δA

〉
+
〈
B(Al, ū), δA

〉
.

In the third equality, we used the fact the uDLR and urest are independent. In the fourth
inequality, we applied the fact that the third moments of Gaussian random variables are
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equal to zero. The resulting equation for each of the columns of the sought matrix A set
in the physical space becomes

Ȧl = (L+D)Al +B(ū, Al) +B(Al, ū). (7.30)

The evolution equation for the covariance matrix of the independent term urest can be
obtained as

Ṫ = ȦAᵀ +AȦᵀ = LuT + TLu
ᵀ

with (Lu)ij = (Lij +Dij) + 〈B(ū, vj), vi〉+ 〈B(vj , ū), vi〉.

We see that the DLR modes {Ur, Yr}Rr=1 follow exactly the standard DLR evolution
equations (7.5), where the operator F is evaluated only in the DLR portion of the signal
uDLR (not in the full signal uDLR+i). This results in the stochastic modes dependent
only on the random variables γ1:R. For their evolution we apply a particle approximation
{Y(j), λ(j)}N̂j=1. The evolution of the complement is traced only through its covariance
matrix T . The two terms uDLR∗ and urest communicate only through the mean value
ū whose evolution involves the full covariance matrix S. There is therefore no need to
track the matrix A.

For high-dimensional problems, keeping track of the matrix T ∈ RNh×Nh is not feasible
and one needs to rely on some further low-rank or a particle approximation. This
approach is not analysed further in this work and remains a possible future research
direction. For completeness, we recall the dimension of all terms which determine the
distribution of uDLR+i:

ū ∈ RNh , U ∈ RNh×R, Y ∈ N̂ ×R, T ∈ RNh×Nh .

7.2.2 Forecast step: DLRA with a linear complement

Similarly as before, in our second method we are looking for a signal u ∈ L2(Ω;RNh)
approximating the solution of (6.3) for t ∈ (tn, tn+1) in the form

u(t, ω) = ū(t) + uDLR∗(t,m, γ) +A(t)γᵀ.

However, in this case we do not require independence between uDLR and urest = Aγᵀ.
First, let us introduce some new notation.
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We define the space of random functions linear w.r.t. γ = (γ1, . . . , γNh) ∈ RNh

W lin
γ = {f ∈ L2

0(Ω;R)| f = Bγᵀ, B ∈ R1×Nh}.

In addition, we define the projection on W lin
γ

PW lin
γ

: L2
0(Ω;R)→W lin

γ

PW lin
γ

[f ] =
Nh∑
k=1

E[fγk] γk.

Note that the space L2
0(Ω;R) can be split into

L2
0(Ω;R) =W lin

γ ⊕W lin
γ
⊥
. (7.31)

Based on this decomposition, we split the signal u∗true ∈ (L2
0(Ω;R))Nh in two parts, the

linear component evolving only in (W lin
γ )Nh and the DLR component evolving in its

orthogonal complement uDLR∗ ∈
(
(W lin

γ )Nh
)⊥

and we denote this approximate solution
by uDLR+`

uDLR+`(t, ω) := ū(t) +
R∑
r=1

Ur(t)Yr(t, ω) +
Nh∑
k=1

Ak(t)γk,

with {Yr}Rr=1 ⊂
(
(W lin

γ )R
)⊥
. (7.32)

The linear part Aγᵀ =
∑Nh
k=1Ak(t)γk ∈ (W lin

γ )Nh captures the linear dependence on γ
of the full signal uDLR+`, not only of the remaining part urest. On the other hand, the
DLR term remains well separated from Aγᵀ by enforcing uDLR∗ ∈

(
(W lin

γ )Nh
)⊥

.

Initial condition

Again, as a first step we describe how to obtain the initial condition in the form (7.32).
The initial condition at time tn is distributed as a GM (7.14), which can be parametrized
as

un = m+ (Cn)1/2γᵀ

with m a discrete random variable taking values in {mn
1 , . . . ,m

n
Nh
} with probability

λ = {λn1 , . . . , λnNh} and γ ∼ N(0, IdNh×Nh) independent of m. In general, un is not in the
form (7.32), so an approximation step is necessary. Differently from Section 7.2.1, this
time we perform a Karhunen–Loève expansion only of the variable m (instead of un):

m = E[m] +
Nh∑
k=1

ξkek
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with {ek}Nhk=1 eigenvectors of the covariance matrix
∑N̂
j=1 λ

n
jm

n
jm

nᵀ

j and ξk = 〈m −
E[m], ek〉.

We then set

ūn = E[un], Unr = er, Y
n
r = ξr, r = 1, . . . , R

An = (Cn)1/2,

i.e. the means {mn
j }N̂j=1 are used to obtain the DLR portion of the signal and the GM

covariance Cn is used to compute the new matrix An, so that AnAnᵀ = Cn.

For the time t = 0, the initial condition is distributed as u0 ∼ N(m0, C0). It is therefore
natural to set the following initial conditions for the terms in (7.32)

ū0 = m0, A0 = (C0)1/2,

U0 - arbitrary orthonormal set of R vectors in RNh , Y 0 = 0.
(7.33)

We follow by defining the complemented DLR solution for t ∈ (tn, tn+1).

Definition 7.2.2. We define the DLR solution complemented by a linear term of the
problem (6.3) as

uDLR+`(t, ω) = ū(t) +
R∑
r=1

Ur(t)Yr(t,m, γ) +A(t)γᵀ

where ū is the solution of

˙̄u = E[F(uDLR+`)], t ∈ (tn, tn+1) (7.34)

and {Ur}Rr=1, {Yr}Rr=1, A are solutions of the following variational formulation for t ∈
(tn, tn+1)

E
[〈
U̇Y ᵀ + UẎ ᵀ + Ȧγᵀ, v

〉]
= E

[〈
F∗
(
uDLR+`

)
, v

〉]
∀v ∈ {w = δUY ᵀ + UδY ᵀ + δAγᵀ with δU ∈ RNh×R, 〈δUᵀ, U〉 = 0

δA ∈ RNh×Nh , δY ∈
(
(W lin

γ )R
)⊥
}. (7.35)

The detailed evolution equations for the DLR modes and the matrix A will be specified
in the following theorem.

Theorem 7.2.2. The variational formulation (7.35) results in the following system of
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equations for the mean value ˙̄u, the DLR modes {Ur, Yr}Rr=1 and the matrix A:

˙̄u = E[F(uDLR+`)]

Ȧk = E[F∗(uDLR+`)γk], k = 1, . . . , Nh

Ẏr =
〈
Ur,P⊥W lin

γ
[F∗(uDLR+`)]

〉
, r = 1, . . . , R

R∑
j=1

(CY )jrU̇j =
(
E[F∗(uDLR+`)Yr]− PU

[
E[F∗(uDLR+`)Yr]

])
, r = 1, . . . , R

with CY = E[Y ᵀY ].

(7.36)

Proof. The equation for the matrix A follows from (7.35) by considering v = δAγk for
some δA ∈ RNh , k ∈ {1, . . . , Nh}. We derive

〈Ȧk, δA〉 = 〈U̇ , δA〉E[Y ᵀγk] + 〈U, δA〉E[Ẏ ᵀγk] +
Nh∑
l=1
〈Ȧl, δA〉E[γlγk]

=
〈
E[F∗(uDLR+`)γk], δA

〉
,

from which the equation for Ak follows.

As the next step, we derive equations for the deterministic modes U . Consider a test
function v = P⊥U [δUr]Yr for an arbitrary δUr ∈ RNh . From the variational formulation,
we obtain

R∑
j=1
〈U̇j ,P⊥U [δUr]〉E[YjYr] + 〈Uj ,P⊥U [δUr]〉E[ẎjYr] +

Nh∑
k=1
〈Ȧk,P⊥U [δUr]〉E[γkYr]

= 〈E[F∗(uDLR+`)],P⊥U [δUr]〉. (7.37)

As Y ∈
(
(W lin

γ )R
)⊥

, we have that E[γkYr] = 0. Using the symmetry of P⊥U w.r.t. the
inner product 〈·, ·〉 and the DO condition 〈U̇l, Uk〉 = 0, ∀l, k, we obtain

R∑
j=1
〈U̇j , δUr〉E[YjYr] =

R∑
j=1
〈P⊥U [U̇j ], δUr〉E[YjYr] = 〈P⊥U [E[F∗(uDLR+`)]], δUr〉,

which is equivalent to the equation in the theorem. Lastly, we focus on the equation for
the stochastic DLR modes {Yr}Rr=1. We start by the following observation

E[f PW lin
γ

[v]] = E[f
Nh∑
k=1

E[vγk]γk] = E[
Nh∑
k=1

E[fγk]γk v] = E[PW lin
γ

[f ] v], ∀f, v ∈ L2(Ω;R),

which consequently implies E[f P⊥W lin
γ

[v]] = E[P⊥W lin
γ

[f ] v].
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Now, consider v = UrδYr with δYr s.t. δYr = P⊥W lin
γ

[δZ] for arbitrary δZ ∈ L2(Ω;RR).
We derive from the variational formulation

R∑
j=1
〈U̇j , Ur〉E[YjP⊥W lin

γ
[δZ]] + 〈Uj , Ur〉E[Ẏj P⊥W lin

γ
[δZ]] +

Nh∑
k=1
〈Ȧk, Ur〉E[γk P⊥W lin

γ
[δZ]]

= 〈E[F∗(uDLR+`)P⊥W lin
γ

[δZ]], Ur〉.

Applying the following relations

〈U̇ , U〉 = 0, 〈Uj , Ur〉 = δjr, E[γk P⊥W lin
γ

[δZ]] = 0, E[Ẏj P⊥W lin
γ

[δZ]] = E[Ẏj δZ]

E[F∗(uDLR+`)P⊥W lin
γ

[δZ]] = E[P⊥W lin
γ

[F∗(uDLR+`)]δZ]

we obtain

E[Ẏr δZ] = E[〈P⊥W lin
γ

[F∗(uDLR+`)], Ur〉δZ], ∀j = 1, . . . , R, ∀δZ ∈ L2(Ω;RR),

which is equivalent to the equation stated in the theorem.

An important difference between DLR with independent and linear term is the function
in which the operator F is evaluated. In the first method, in order to compute the
DLR modes, the operator is evaluated only in the DLR component uDLR∗ (see equations
(7.22)–(7.23)). This clearly ensures the independence condition but brings along a further
approximation which might result in an accuracy loss during the time evolution. The
second algorithm does not impose any restrictive condition during the evolution, apart
from the standard DO condition 〈U̇i, Uj〉 = 0, ∀i, j = 1, . . . , R. The linear dependence
on γ is tracked exactly. The operator F is, however, evaluated in the full signal uDLR+`.
In order to deal with the quadratic term B(uDLR+`, uDLR+`), we need to compute the
third moments of uDLR+`, which is avoided in the first algorithm.

Computational aspects

The evolution of uDLR+` involves computing the third moments of the signal, including
the mixed terms between uDLR∗ and Aγᵀ. To make these accessible, we apply particle
approximation for both terms, i.e. tracking {Y(j), γ(j)}N̂j=1, and replace all expectations
E[·] needed for (7.36) by EN̂ [·].

For high dimensional problems, tracking the full matrix A ∈ RNh×Nh becomes unfeasible.
In what follows, we address this issue by a low-rank approximation technique. Instead
of tracking the linear dependence on γ, we only keep track of a linear dependence on
V V ᵀγ, formed by an orthonormal basis V ∈ RNh×M , with M << Nh.
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Denoting B̃ = BV ∈ RNh×M , γ̃ᵀ = V ᵀγᵀ = (γ̃1, . . . , γ̃M )ᵀ ∈ RM , we define the space of
all random functions linear w.r.t. γ̃

W lin
γ̃ = {f ∈ L2

0(RNh ;R)| f = Bγ̃ᵀ, B ∈ RM},

and analogously the projectors PW lin
γ̃
, P⊥W lin

γ̃
. The complemented DLR solution uDLR+`

will be of the form

uDLR+`(t, ω) = ū(t) + U(t)Y (t, ω) + Ã(t)γ̃,

with Ã ∈ RNh×M , {Yr}Rr=1 ⊂
(
(W lin

γ̃ )R
)⊥
. (7.38)

As a consequence, the complexity of tracking the linear term is decreased to O(Nh ×M).
This is achieved by sacrificing the accuracy of the linear component of the signal.
Disregarding the particle approximation error, the linear dependence of the signal on γ
in the former definition was tracked exactly. In the new definition, linear dependence of
the signal on γ̃ only is tracked exactly, the rest is approximated by DLR method. For
completeness, we recall the dimension of all terms in {uDLR+`

(j) }N̂j=1

ū ∈ RNh , U ∈ RNh×R, Y ∈ N̂ ×R, Ã ∈ RNh×M , γ̃ ∈ RM×N̂ .

Note that by setting M = Nh, we recover the former definition, and by setting M = 0,
we recover the simple DLR approximation uDLR of Section 7.1.4.

There are many options for the choice of the basis V . We propose M eigenvectors of
matrix Cn corresponding to theM most dominant eigenvalues, where Cn is the covariance
matrix from the GM at the start of the forecast step. With this choice we prescribe the
initial condition of matrix Ã in the following way

Ãn = V
√

Λ,

where
√

Λ ∈ RM×M is a diagonal matrix with the square roots of the M most dominant
eigenvalues of Cn on its diagonal and each column of V constitutes a corresponding
eigenvector. This results in the best M -rank approximation of An.

7.2.3 Including the model error

In the previous subsection we described two approximate methods that evolve the signal
through (6.3). The first method, that keeps the uDLR term and the linear term Aγᵀ

independent, naturally constitutes a GMM

P(un+1|Zn) =
N̂∑
j=1

λ̂n+1
(j) ×N(ûDLR,n+1

(j) , T̂n+1),
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ûDLR,n+1
(j) = ˆ̄un+1 + Ûn+1Ŷ n+1ᵀ

(j) ,

where ˆ̄un+1, Ûn+1, {Ŷ n+1
(j) }

N̂
j=1, T̂

n+1 are solutions of the equations (7.22)–(7.23) at time
t = tn+1.

The second method applies a particle approximation for both DLR and linear term and
results in

{ûn+1
(j) , λ̂

n+1
(j) }

N̂
j=1 with ûn+1

(j) = ˆ̄un+1 + Ûn+1Ŷ n+1
(j) + Ân+1γ(j),

where ˆ̄un+1, Ûn+1, {Ŷ n+1
(j) }

N̂
j=1, Â

n+1 are solutions of the equations (7.36) at time t = tn+1.
Similarly to the first method, we build a GM at the end of the forecast step as

P(un+1|Zn) ≈
N̂∑
j=1

λ̂n+1
(j) ×N(ûDLR,n+1

(j) , Ân+1Ân+1ᵀ),

ûDLR,n+1
(j) = ˆ̄un+1 + Ûn+1Ŷ n+1ᵀ

(j) .

However, note that this step is only approximate, since we treat the uDLR term and the
linear term Aγᵀ as if they were independent at the end of the evolution.

For both algorithms, the model error is then incorporated into the mixture covariance
and the forecast step results in the Gaussian mixture

P(un+1|Zn) ≈
N̂∑
j=1

λ̂n+1
(j) ×N(ûDLR,n+1

(j) , Ĉn+1), (7.39)

where

ûDLR,n+1
(j) = ˆ̄un+1 + Ûn+1Ŷ n+1ᵀ

(j)

Ĉn+1 = Ân+1Ân+1ᵀ + Σ.

7.2.4 Analysis step

The analysis step takes in a Gaussian mixture of the form (7.39). Applying Lemma 6.2.2,
we obtain the filtering distribution at time tn+1 which is again a Gaussian mixture

P(un+1|Zn+1) ≈
N̂∑
j=1

λn+1
(j) ×N(mn+1

j , Cn+1), (7.40)

with λn+1
(j) ,m

n+1
j , Cn+1 computed with formulas (6.23).

Remark 8. The first method - the DLRA complemented by an independent term strongly
resembles a method introduced in [MQS14; QJM15; SM13], called the QG-DO method.
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The authors proposed a method for the forecast step of the filtering problem, where they
run evolution equations for the mean and covariance matrix of the full signal u, alongside
with evolution equations for the DLR modes {Ur, Yr}Rr=1, which are used to approximate
the third moments required in the evolution of the full covariance matrix. There is a
natural question arising, whether these two methods are not, in fact, equivalent. The
evolution equations for the mean value ū as well as the evolution equations for the DLR
modes in QG-DO are equivalent to the equations stated in Theorem 7.2.1. In this remark,
we compare the evolution equation for the full covariance matrix of QG-DO, denoted by
S̃ = E[(u− ū)(u−E[u])ᵀ], with the full covariance matrix for the signal uDLR+i, denoted
by S. We will see that for the quadratic problem considered here, these matrices differ.

The evolution of S̃ is given by

˙̃S = LũS̃ + S̃Lᵀ
ũ +QF with (Lũ)ij = (Lij +Dij) + 〈B(ū, vj), vi〉+ 〈B(vj , ū), vi〉

and

(QF )ij =
∑
r,j,l

〈vi, B(Uj , Ul)〉E[YjYlYr]〈Ur, vj〉+ 〈vj , B(Uj , Ul)〉E[YjYlYr]〈Ur, vi〉

=
(
E[B(uDLR∗, uDLR∗)uDLR∗ᵀ ]

)
ij

+
(
E[uDLR∗B(uDLR∗, uDLR∗)ᵀ]

)
ij
.

Now, let us denote by ΠUY ᵀ : L2(Ω;RNh)→ L2(Ω;RNh) the operator

ΠUY ᵀ [v] = PU [v] + P⊥U [PY [v]],

where PU [v] =
R∑
r=1
〈Ur, v〉Ur, PY [v] =

R∑
k,r=1

E[Ykv](CY )−1
kr Yr.

More details on the geometrical interpretation of the operator ΠUY ᵀ can be found
in Chapter 1. It is easy to see from Theorem 7.2.1, that the evolution equation for
uDLR∗ = UY ᵀ satisfies

˙(UY ᵀ) = ΠUY ᵀ [F∗(uDLR)].

Now we follow with the evolution equation of the full covariance matrix S of the signal
uDLR+i:

Ṡ = E[ ˙(UY ᵀ)(UY ᵀ)ᵀ] + E[(UY ᵀ)( ˙UY ᵀ)ᵀ] + LuT + TLᵀ
u

= E
[
ΠUY ᵀ [F∗(uDLR)](UY ᵀ)ᵀ

]
+ E

[
(UY ᵀ)ΠUY ᵀ [F∗(uDLR)]ᵀ

]
+ LuT + TLᵀ

u

= E
[(

(L+D)UY ᵀ +B(ū, UY ᵀ) +B(UY ᵀ, ū) + ΠUY ᵀ [B(UY ᵀ, UY ᵀ)]
)
(UY ᵀ)ᵀ

]
+ E

[
(UY ᵀ)

(
(L+D)UY ᵀ +B(ū, UY ᵀ) +B(UY ᵀ, ū) + ΠUY ᵀ [B(UY ᵀ, UY ᵀ)]

)ᵀ]
+ LuT + TLᵀ

u

= LuUE[Y ᵀY ]Uᵀ + UE[Y ᵀY ]UᵀLᵀ
u + LuT + TLᵀ

u
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+ E
[
ΠUY ᵀ [B(UY ᵀ, UY ᵀ)](UY ᵀ)ᵀ

]
+ E

[
(UY ᵀ)ΠUY ᵀ [B(UY ᵀ, UY ᵀ)]ᵀ

]
= LuS + SLᵀ

u +Q,

where

(Q)ij =
(
E
[
ΠUY ᵀ [B(uDLR∗, uDLR∗)]uDLR∗ᵀ

])
ij

+
(
E
[
uDLR∗ΠUY ᵀ [B(uDLR∗, uDLR∗)]ᵀ

])
ij
.

Comparing the equation for S̃ and S we see, that the third order terms are approximated
differently. Both methods use the knowledge of the DLR modes but in our method,
the quadratic operator gets projected, whilst in the QG-DO method, it does not. On
the other hand, our approach allows for a variational formulation which brings along a
geometrical insight. Furthermore, interpreting the evolved signal as a DLR approximation
complemented by an independent term results in a natural characterization via GM with
a mixture covariance constant across the mixtures. In fact, to proceed with the analysis
step, the authors of QG-DO in [MQS14] propose to build a conditional Gaussian particle
distribution, with a constant covariance matrix across particles. The build-up is, however,
much less straightforward. The analysis step then applies the Bayes’ formula.

7.2.5 Numerical results

To asses the quality of the proposed algorithms, we provide two test cases with different
sets of parameters.

Test case I: frequent observations, small observation error

In the first experiment, we examine the proposed algorithms on the test case from Sections
7.1.3 and 7.1.5, i.e. setting the final time T = 100, time between observations 4t = 0.05,
the model error covariance matrix Σ = 10−4 · Id, the observation error covariance matrix
Γ = 10−2 · Id, the observation operator H = Id and number of particles N̂ = 1000.

In Figure 7.5 we show the obtained RMS errors. We see that applying DLR with R = 10
complemented by an independent Gaussian approximation (orange) helps to correct
the signal obtained by a simple DLR (blue) and achieves a sufficient accuracy. In fact,
reducing the DLR approximation to R = 5 still maintains the desired accuracy. Applying
the DLR complemented by a full-rank linear term (red) does not further improve the
performance of the filter. In conclusion, tracking the third moments of the signal is
not necessary for this test case and DLR complemented by an independent Gaussian
approximation provides results with a satisfactory accuracy.

In Figure 7.6 we focus on the second approach and quantify the effect of different low-rank
approximations of the linear term. We see that providing a good approximation for
the linear part (M ≥ 10) of the signal seems to be more important than an accurate
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Figure 7.5 – Comparison of RMSEs for filtering algorithms with prediction step realized
by simple DLR with R = 10 vs DLR with R = 5, 10 complemented by independent
(DLR+i) or full-rank linear (DLR+l) term. The analysis step applies GMF in all cases.

approximation of the higher-order terms. Since the observations are full, with a small
observation error and very frequent in time, they provide highly informative data. With
the time step being very small (4t = 0.05), the nonlinear interactions in the dynamics do
not play a significant role and consequently the signal is sufficiently well approximated
by a Gaussian approximation and a DLR term with small R.

Test case II: rare observations, high observation error

Our second test case tries to examine the performance of both algorithms in a very
different scenario. We have less frequent full observations with a high observation error.
More specifically, we set the final time T = 100, time between observations 4t = 0.5, the
model error covariance matrix Σ = 0, the observation error covariance matrix Γ = 3. · Id,
the observation operator H = Id and number of particles N̂ = 1000. This setting provides
not very informative data and the filtering of such problem is difficult. With Σ = 0 the
optimal proposal particle filter becomes the bootstrap particle filter, whose behaviour
is highly dependent on the number of particles (see Fig. 6.3). Observing a significant
difference between the DLR with R = 10 complemented by independent term (orange)
and by full-rank liner term (brown) in Figure 7.7, we conclude that in this scenario
tracking the third moments has a notable impact on the resulting approximation. The
signal can be comparably well approximated by R = 10 and M = 15.
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Figure 7.6 – Comparison of RMSEs for filtering algorithms with prediction step realized
by simple DLR with R = 10 vs DLR with R = 5, 10 complemented by low-rank
approximation of the linear term (DLR+l). The analysis step applies GMF in all cases.

Figure 7.7 – Comparison of RMS errors for filtering algorithms with prediction step
realized by DLR with R = 5, 10 complemented by independent (DLR+i) or both full-rank
and low-rank linear (DLR+l) term. The analysis step applies GMF in all cases.
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Figure 7.8 – Comparison of RMS errors for filtering algorithms with prediction step
realized by DLR with R = 5, 10, 15 complemented by low-rank linear term (DLR+l) with
M = 15. The dimension of the observations is 17. The analysis step applies GMF in all
cases.

In Figure 7.8 we report numerical results obtained by running the same test case with
partial observations. The operator H observes every third value of the 40-dimensional
signal u, resulting in the dimension of observations l = 17. The signal can be tracked by
15-rank DLR approximation and 15-rank approximation of the linear term. Note that for
a test case with partial observations, there is no expectation for the RMSE to be under
the observation noise.
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8 Conclusions and perspectives

This thesis covers most of the research work that the author has carried out during her
Ph.D. studies at EPFL. The work is divided into two parts; the first one concerns an
analysis of discretization schemes for dynamical low-rank approximation (DLRA), the
second one deals with applying DLRA in data assimilation.

In the first work, we proposed and analyzed three discretization schemes, namely explicit,
implicit and semi-implicit, to obtain a numerical solution of the DLR system of evolution
equations for the deterministic and stochastic modes. Such discrete DLR solution
was obtained by projecting the discretized dynamics on the tangent space of the low-
rank manifold at an intermediate point. This point was built using the new-computed
deterministic modes and old stochastic modes. We found this projection property to
be useful when investigating the stability of the DLR solution. The solution obtained
by the implicit scheme remains unconditionally bounded by the data in suitable norms.
Concerning the explicit and semi-implicit schemes, we derived stability conditions on the
time step, independent of the smallest singular value, under which the solution remains
bounded. Remarkably, applying the proposed semi-implicit scheme to a random heat
equation with diffusion coefficient affine with respect to random variables results in a
scheme unconditionally stable, with the same computational complexity as the explicit
scheme. Our theoretical derivations are supported by numerical tests applied to a random
heat equation with a zero-forcing term. In the semi-implicit case, we observed that the
norm of the solution consistently decreases for every time step considered. In the explicit
case, our numerical results suggest that our theoretical stability condition on the time
step is, in fact, sharp. Our future work includes investigating if the proposed approach
can be extended to higher-order projector-splitting integrators or used to show stability
properties for other types of equations.

Our second work involved deriving a-priori and a-posteriori error estimates for the fully
discrete DLR solution obtained by the discretization schemes proposed in the first project.
The projection property turns out to be the key element in both estimations. Concerning
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the a-priori error estimation, the problem is discretized by FEM in space, with piece-wise
polynomials of degree ≤ r, Monte Carlo (MC) method in stochastic space and follows the
staggered time-marching scheme (described in Section 2.2). Under the approximability
assumption, that the operator F(u) maps onto the tangent space of MR at u up to
a small reminder of size ε, we proved the first-order convergence in time, r-th order
convergence in space and the standard (−1

2)-order of convergence w.r.t. the number of
MC samples. All the considered constants are independent of the smallest singular value
of the solution. The future directions include proving higher-order convergence rates for
higher-order projector-splitting integrators. Another open question is the possibility of
alleviating the ε-approximability assumption.

Concerning the a-posteriori error estimation, we started with a residual-based a posteriori
error estimation for a heat equation with a random forcing term and a random diffusion
coefficient dependent on a finite number of independent random variables, with no DLR
approximation involved. Moreover, the dependency of the diffusion coefficient is assumed
to be affine. This problem was discretized by a θ-scheme in time, FEM in physical space,
and sparse grid collocation method in stochastic space, which required the use of nested
collocation points. The estimate consisted of three parts accounting for the FEM error,
time discretization error, and stochastic error, respectively. The derivation is valid for
the case of time-varying FE meshes and time-varying sparse grids, allowing for both
refinement and coarsening. We proposed an adaptive algorithm for the choice of time
discretization, FE mesh, and sparse grid, where the mesh and sparse grid are fixed in
time which simplifies the computation of the estimators. The estimators are localized on
each element of the FE mesh, each time step, and each index from the margin of the
sparse grid index set, and we perform a refinement whenever the localized estimate is
higher than a prescribed condition (see Algorithm 1). We studied the effectiveness of the
estimators over non-uniform time discretizations, non-uniform meshes, and anisotropic
sparse grids, fixed in time and applied the adaptive algorithm to a problem with a
deterministic time independent forcing term. This algorithm is one possible strategy.
Several other versions could be considered as well, for instance, to allow for coarsening in
the adaptive process for a more uniform distribution of the error. We believe that the
derived error estimates could provide a reliable basis for error estimation and adaptation
strategies that include time-varying FE meshes and sparse grids. One could, for example,
drive an adaptive choice of time-varying meshes and sparse girds by localizing the spatial
and stochastic estimator for a specific time step, as was proposed in [Pic98; BR03] for
time-varying FE or DG meshes in the case of a deterministic heat equation.

This work was then extended to treat the a-posteriori error estimation for a DLRA of a
random heat equation, again with the diffusion coefficient affine w.r.t. a finite number
of random variables. This problem is discretized by a FEM in physical space, tensor
grid collocation method in stochastic space, and the staggered time-marching scheme
(described in Section 2.2) for time integration. The estimate consists of parts accounting
for the FEM error, time discretization error, stochastic discretization error, and rank
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truncation error. The derivation only holds for fixed-in-time FE meshes and tensor
grids but could be extended to time-varying FE meshes and tensor grids. The rank
is allowed to change between the time intervals. The estimators are further localized
on each element of the FE mesh for the space estimator, each time step for the time
estimator, each dimension of the stochastic space for the stochastic error estimator, and
each time step for the rank truncation estimator. These localized error estimates can be
used to drive an adaptive algorithm for the choice of time discretization, FE mesh, tensor
grid, and time-varying rank. We proposed an algorithm that performs a refinement
whenever the localized estimate is higher than a prescribed condition (see Algorithm 2)
and discussed various ways of updating the rank. The implementation of this algorithm
is a part of an ongoing project, which includes a comparison of the different approaches
when the rank gets increased.

The last project corresponds to the second part of the thesis and is concerned with
applying DLR to data assimilation, particularly the filtering problem. The filtering
problem can be split into two steps: the forecast and the analysis. The forecast step
involves solving an often high-dimensional dynamical system of (stochastic) equations;
the analysis step incorporates data into the solution (also called the signal). In real-world
applications, computing the full system is unfeasible, and one needs to rely on some
model-order reduction technique. In our work, we examined the idea of applying the
DLRA in the forecast step. We started with the simple DLRA in the forecast step,
combined with ensemble Kalman filter or particle filter in the analysis step. We observed
that completely disregarding the omitted modes in the DLR approximation leads to
unsatisfactory results. To alleviate this issue, we proposed two new algorithms that
complement the DLRA with a Gaussian component, expressed as a part of the signal,
which is linear w.r.t. normally distributed random variables. The first algorithm assumed
the Gaussian component to be independent of the DLR part, the second one did not. We
applied both algorithms to deal with the filtering problem for a 40-dimensional Loren-96
system of equations (a simplified mathematical model of atmospheric processes) and
compared their performance in different scenarios. The first algorithm involves evolving
a full covariance matrix. The future directions comprise a low-rank approximation
or a particle approximation of the full covariance matrix. Furthermore, it would be
very interesting to see numerical results applying the proposed algorithm to a very
high-dimensional problem arising from real-world applications.
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