
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Abstractions for Type-Level Programming

Olivier Eric Paul BLANVILLAIN

Thèse n° 8260

2022

Présentée le 25 mai 2022

Prof. R. Guerraoui, président du jury
Prof. M. Odersky, directeur de thèse
Dr P. Giarrusso, rapporteur
Dr R. Eisenberg, rapporteur
Prof. V. Kuncak, rapporteur

Faculté informatique et communications
Laboratoire de méthodes de programmation 1
Programme doctoral en informatique et communications

Acknowledgements
I would like to thank my advisor, Martin Odersky, for his help and support throughout my

PhD studies, and for providing me with this unique opportunity to work on my favorite lan-

guage.

I would also like to thank the other members of my thesis committee, Paolo Giarrusso,

Richard Eisenberg, and Viktor Kuncak, for reviewing my dissertation and for providing valu-

able feedback.

I would like to thank all my colleagues from LAMP, LARA and Scala Center. You were

the source of so many interesting discussions, cheerful moments, and great memories, it was

really a pleasure to work along your side. Aggelos Biboudis, Aleksander Boruch-Gruszecki, Al-

lan Renucci, Anatolii Kmetiuk, Darja Jovanovic, Denys Shabalin, Dmitry Petrashko, Dragana

Milovancevic, Fabien Salvi, Felix Mulder, Fengyun Liu, Georg Schmid, Guillaume Masse, Guil-

laume Martres, Heather Miller, Jad Hamza, Jamie Thompson, Jonathan Brachthäuser, Jorge

Vicente, Julien Richard-Foy, Matthieu Bovel, Maxime Kjaer, Natascha Fontana, Nicolas Stucki,

Ólafur Geirsson, Paolo Giarrusso, Romain Edelmann, Sandro Stucki, Sébastien Doeraene,

Travis Lee—thank you! If it wasn’t for you, I would have not have gotten here.

A special thanks to Georg Schmid for being such an amazing friend, colleague and co-

author over the past five years. I will never forget what we went through together, the paper

deadlines, the bike rides, the hacking sessions... It’s crazy how much we did and learned

together. And of course, thank you Mia Primorac for being there for all the fun parts!

I would like to thank my parents, Soledad and Christian, and my little sister, Alicia, for

being there for me all these years. It was truly a bliss to have you close by throughout my PhD.

I must also thank the latest arrival in family, Leila, for being such an endless source of joy,

cuteness and distraction.

Last but not the least, I would like to thank Dragana for being always there by my side, for

being so kind and patient, and for her help in putting the ideas of this thesis into text. You are

the best.

Lausanne, April 22, 2022 Olivier Blanvillain

i

Abstract
Over the past decade, the Scala community has shown great interest in using type-level pro-

gramming to obtain additional type safety. Unfortunately, the lack of support from the Scala

compiler has been a barrier to the adoption of that technique, notably due to its negative

impact on compilation times. In this thesis, we present three techniques for type-level pro-

gramming in Scala. First, we explain the status quo, implicits, and show how we can divert

them from their intended use to write ad hoc type-level programs. Second, we propose a

generalization of Scala’s singleton types, which adds the ability to manipulate term-level pro-

grams at the type level. Third, we introduce match types, a type-level equivalent of pattern

matching, which we implemented in the Scala 3 compiler. Throughout this dissertation, we

demonstrate the practicality of our newly introduced techniques, by the means of case stud-

ies and examples. Our performance evaluation shows that our new techniques outperform

the status quo in terms of binary sizes and compilation times.

Keywords Programming Languages, Type Systems, Compilers, Scala.

iii

Résumé
Au cours de la dernière décennie, la communauté Scala a montré un grand intérêt pour l’uti-

lisation de la programmation au niveau du système de type afin d’améliorer la sûreté du ty-

page. Malheureusement, le manque de support dans le compilateur Scala a été un frein pour

l’adoption de cette technique, notamment en raison de son impact négatif sur les temps de

compilation. Dans cette thèse, nous présentons trois techniques de programmation au ni-

veau du système de type en Scala. Tout d’abord, nous expliquons le statu quo, les implicites,

et montrons comment nous pouvons les détourner de leur usage prévu pour écrire des pro-

grammes au niveau des types. Deuxièmement, nous proposons une généralisation des types

singleton de Scala, qui ajoute la possibilité de manipuler et d’exécuter des programmes au ni-

veau des types. Troisièmement, nous introduisons les match types, un équivalent du pattern

matching au niveau des types, que nous avons implémenté dans le compilateur Scala 3. Tout

au long de cette dissertation, nous démontrons le caractère pratique de nos nouvelles tech-

niques, au moyen d’études de cas et d’exemples. Notre évaluation des performances montre

que nos nouvelles techniques surpassent le statu quo en termes de tailles binaires et de temps

de compilation.

Mots clés Langages de Programmation, Systèmes de Types, Compilateurs, Scala.

v

Contents

Acknowledgements i

Abstract (English/Français) iii

List of Figures xi

1 Introduction 1

2 (Ab)Using Implicits 5

2.1 Implicit Parameters: Overview . 5

2.2 Recursive Implicit Resolution . 6

2.3 Ambiguities and Priorities . 9

2.3.1 Implicit Ambiguities . 9

2.3.2 Implicit Priorities . 10

2.4 Conclusion . 11

3 Generalizing Scala’s Singleton Types 13

3.1 Introduction . 13

3.2 Motivating Example . 15

3.3 Implementation . 16

3.3.1 Reflecting Terms in Types . 17

3.3.2 Type Evaluation . 18

3.3.3 Pattern Matching . 18

3.3.4 Two Modes of Type Inference . 19

3.3.5 Approximating Side Effects . 19

3.3.6 Virtual Dispatch . 20

3.3.7 Termination . 20

3.4 Case Study: A Type-Safe Database Interface . 21

3.4.1 Type-Safe Datasets . 21

3.4.2 Comparison to an Existing Technique . 23

3.5 Related Work . 24

vii

Contents

4 Match Types 27

4.1 Introduction . 27

4.2 Overview . 29

4.2.1 A Lightweight Form of Dependent Typing 29

4.2.2 Disjointness . 30

4.2.3 Comparison to Generalized Singleton Types 30

4.3 Formalization . 31

4.3.1 Classes . 31

4.3.2 Matches . 31

4.3.3 Type Safety . 36

4.3.4 Type Binding Extension . 40

4.4 Implementation . 42

4.4.1 Disjointness in Scala . 43

4.4.2 Empty Types . 44

4.4.3 Null Values . 45

4.4.4 Disjointness of Variant Types . 45

4.4.5 Match Type Variance . 45

4.4.6 Pattern Matching Exhaustivity . 46

4.4.7 Types at Runtime . 46

4.4.8 Non-Termination . 47

4.4.9 Inference . 47

4.4.10 Caching . 48

4.4.11 Size of the Implementation . 48

4.5 Case Study: Shape-Safe NumPy . 48

4.5.1 Shape Errors in Python . 49

4.5.2 Singleton Types . 49

4.5.3 Type-Level Array Shape . 50

4.5.4 Computation on Shapes with Match Types 50

4.5.5 Shape safety . 52

4.6 Related Work . 52

4.6.1 Dependently Typed Calculi with Subtyping 52

4.6.2 Intensional Type Analysis . 53

4.6.3 Type Families in Haskell . 53

4.6.4 Roles in Haskell . 54

4.6.5 Conditional Types in TypeScript . 55

4.7 Conclusion . 55

5 Type-Safe Regular Expressions 57

5.1 Introduction . 57

5.2 Background . 58

5.2.1 Match Types . 58

5.2.2 Generic Tuples . 59

viii

Contents

5.3 Architecture . 59

5.4 Type-Level . 61

5.4.1 Capturing Group Identification . 61

5.4.2 Out-Of-Bound Errors . 62

5.4.3 Non-Capturing Groups . 62

5.4.4 Nullability Analysis . 63

5.5 Term-Level . 64

5.5.1 We Don’t Need No Dependent Types! . 65

5.5.2 Implicit-Based Extractor Synthesis . 66

5.6 Evaluation . 67

5.7 Related Work . 68

5.8 Conclusion . 69

6 Performance Evaluation 71

6.1 Method . 71

6.2 Compilation time . 72

6.3 Binary size . 73

6.4 The Timing of Match Type Reductions . 74

7 Conclusion 77

A Type Soundness for System FM 79

Lemma 4.1: Permutation . 79

Lemma 4.2: Weakening . 81

Lemma 4.3: Strengthening . 84

Lemma 4.4: Substitution . 84

Lemma 4.5: Disjointness/subtyping exclusivity . 88

Lemma 4.6: Inversion of subtyping . 91

Lemma 4.7: Canonical forms . 101

Lemma 4.8: Inversion of typing . 102

Lemma 4.9: Minimum types . 103

Theorem 4.10: Progress . 104

Theorem 4.11: Preservation . 105

Bibliography 109

Curriculum Vitae 117

ix

List of Figures
3.1 Comparing the compilation times of two implementations of list concatenation

and join, logarithmic scale. 23

4.1 System FM syntax and evaluation rules for a given set of classes C with class

inheritance Ψ. The Ψ relation is a partial order on C that describes the inheri-

tance between classes. Highlights correspond to additions to System F<:, as per

[Pierce, 2002, Figure 26-1]. 32

4.2 System FM type system for a given set of classes C with class inheritance Ψ and

class disjointness Ξ. Ψ is a partial order on C that describes the inheritance

between classes. Ξ is symmetric relation over C that relates classes which share

no inhabitants. Highlights correspond to additions to System F<:, as per [Pierce,

2002, Figure 26-1]. 33

4.3 Structure of the type safety proof. Arrows represent implications between lem-

mas and theorems. 36

4.4 Definition of the auxiliary relation ⇌, used to state inversion of subtyping. . . . 38

4.5 System FMB syntax, evaluation and typing rules for a given set of ground classes

A, set of parametric classes B, class inheritance Ψ, and class disjointness Ξ.

Highlights correspond to changes made to System FM. 41

5.1 A comparison of the compilation time (left) and execution time (right) of Scala’s

standard regex library (Std) against our library with its code-duplicated runtime

(Dup) and with its implicit-based runtime (Impl). 67

6.1 A comparison of the compilation time of implicits, generalized singletons and

match types for our benchmark suite (lower is better). 72

6.2 A comparison of the compilation time of generalized singletons and match types

for our benchmark suite (lower is better). 73

6.3 A comparison of the compilation time of the match type Reduce benchmark

with two different match type reduction strategies. S1 is the reduction strategy

we implemented in the Scala 3 compiler. S2 is a variation of that strategy where

we disabled the reduction of match types after type parameter instantiation. . . 75

A.1 Definition of the auxiliary relation ⇌, used to state inversion of subtyping. . . . 91

xi

1 Introduction
In March 2017, our research group went on a ski retreat in the Swiss Alps. After a full day of ski-

ing on the Diablerets massif, we gathered for a lab dinner. Denys Shabalin, who was working

on Scala Native at the time [Shabalin, 2020], started a conversation about manual memory

management. The discussion revolved around the following question: could a Rust-like own-

ership system be viable for Scala? Denys’ answer was clear: ownership is fundamentally at

odds with the way Scala handles references, and without making deep changes to Scala’s type

system, the task was simply impossible.

The next day, I came up with a toy domain-specific language (DSL) that implements the

basis of a linear type system using type-level programming. Here is an example of a short

program written in this DSL:

def main(ctx: Context[HNil]): Context[HNil] =

ctx.malloc(32, "mem")

.malloc(1, "bool")

.call(f)

.deref("mem") { (m: Array[Byte]) =>

println(new String(m))

}

.free("mem")

.free("bool")

The type argument of Context is a type-level list of strings that corresponds to the memory

regions allocated at each program point. Methods of Context use type-level programming

techniques to enforce the following properties:

1. memory regions must be allocated (malloc) before they are deallocated (free),

2. all memory regions must be deallocated by the end of the program,

3. dereferencing (deref) is only allowed on previously allocated regions.

The implementation makes use of Scala’s implicits to enforce these properties. While this

small DSL is obviously too simplistic to be of any practical use, it demonstrates the power of

type-level programming.

I was delighted with my solution! Denys, however, was not impressed. I attribute this

apathy to his dislike of implicits. Despite their widespread usage, implicits are notorious for

1

Chapter 1. Introduction

their complexity [Kvrikava et al., 2019]. In particular, using implicits for type-level computa-

tions requires carefully crafted definitions following a specific pattern. To give the reader a

glimpse of this pattern, we show the definition of the free method on Context:

trait Context[Ps <: HList]:

def free[V <: Singleton, Out <: HList]

(v: V)

(implicit ev: Remove[V, Ps, Out])

: Context[Out]

This definition uses three parameter lists, one for type parameters (V and Out), one for a value

parameter (v), and one of an implicit value parameter (ev). Only the second parameter list

is intended to be specified at use site; the type and implicit parameters are meant to be in-

ferred. When a users write .free("mem") they only set the v parameter (v="mem"); the com-

piler takes care of finding valid assignments for V, Out and ev. The implicit parameter of type

Remove[V,Ps,Out] is the entry point to the world of type-level programming. It specifies how

V (constrained by to be v’s type), Ps (defined in the class), and Out (unconstrained) are inter-

related:

trait Remove[V, Ps <: HList, Out <: HList]

object Remove:

implicit def casehead[V, Ps <: HList]

: Remove[V, V :: Ps, Ps] = new Remove {}

implicit def casetail[V, Ph, Pt <: HList, Out <: HList]

(implicit ev: Remove[V, Pt, Out])

: Remove[V, Ph :: Pt, Ph :: Out] = new Remove {}

Implicit-prefixed definitions can be understood as facts and rules of a logic program. The

first definition, casehead, specifies a fact: the result of removing V from the list V::Ps is Ps,

which is expressed as an instance of Remove[V,V::Ps,Ps]. The second definition, casetail,

specifies a rule: if the result of removing V from the list Pt is Out, the results of removing V

from the list Ph::Pt is Ph::Out (Section 2.2 develops this example in more details). When

a user writes ctx.free("mem") on a ctx of type Context["bool"::"mem"::HNil], the compiler

uses casehead and casetail to compute a type Out such that Out is the results of removing

"mem" from "bool"::"mem"::HNil.

In retrospect, I have to agree with Denys’ judgment at the time: this style of programming

is convoluted, to say the least. Aesthetics and pragmatism aside, programming with implicits

requires a complete paradigm shift. Instead of using pattern matching and functions, implic-

its require algorithms to be expressed using relations and constraints, which makes the task

harder than it should be.

Can we do better? This is the question that motivates the work presented in this disserta-

tion.

Our contributions are as follows:

• In Chapter 2, we present techniques for programming at the type-level with implicits.

2

In particular, we develop the example presented in the introduction, and show how to

use Scala’s implicit resolution mechanism to compute types, in a style that resembles

logic programming.

• In Chapter 3, we propose a generalization of Scala’s singleton types, whose goal is to

enable type-level programming in an accessible style. Concretely, we extend Scala’s

type system with the ability to lift term-level programs to the type level and evaluate

those programs during type-checking. We implement our system as an extension of

the Scala 3 compiler, and show its practicality with a case study in which we develop a

strongly-typed interface for Spark datasets.

• In Chapter 4, we introduce match types, a type-level equivalent of pattern matching.

Match types integrate seamlessly into programming languages with subtyping and, de-

spite their simplicity, offer significant additional expressiveness. We formalize match

types in a self-contained calculus based on System F<: and prove its soundness. We

demonstrate the practical value of our system by implementing match types in the

Scala 3 compiler, thus making type-level programming readily available to a broad au-

dience of programmers.

• In Chapter 5, we propose a new design for type-safe regular expressions in Scala. Our

approach makes extensive use of match types to identify capturing groups during type

checking. We walk the reader through our design, step by step, providing detailed ex-

planations along the way. Our implementation is on par with Java’s regular expressions

and only has a marginal impact on compilation times.

• In Chapter 6, we evaluate the performance of the various type-level programming tech-

niques introduced in prior chapters, when confronted with large type-level programs.

We show that the techniques introduced in Chapter 3 and 4 systematically outperform

implicits in terms of compilation times and binary sizes.

3

2 (Ab)Using Implicits
Scala’s implicit parameters have outgrown their roots as a simple syntactic construct to the ex-

tent that they provide basic support for type-level programming. In this chapter, we present

techniques for implicit-based type-level programming in Scala. In particular, through ex-

tended examples, we show how to use Scala’s implicit resolution mechanism to compute

types, in a style that resembles logic programming.

Attribution

The first section of this chapter is based on the introduction to implicits from [Odersky et al.,

2018], which was written in collaboration with Martin Odersky, Fengyun Liu, Aggelos Bi-

boudis, Heather Miller and Sandro Stucki, and published in POPL’18.

Code samples for the remaining of this chapter are based on the implementation of het-

erogeneous lists from the Shapeless library [Sabin and Shapeless contributors, 2011–2022].

2.1 Implicit Parameters: Overview

Implicit parameters offer a convenient way to write code without the need to pass all argu-

ments explicitly. The ability to omit function arguments gives rise to many interesting coding

styles and patterns. On every call to functions with implicit parameters, the compiler looks

for an implicit definition in scope to satisfy the call. So, instead of passing a parameter explic-

itly:

val modulo: Int = 3

def addm(x: Int, y: Int)(m: Int) = (x + y) % m

addm(4, 5)(modulo)

we can mark a set of parameters as implicit (a single parameter in this example) and let the

compiler retrieve the missing argument for us. In the following example, addm is a method

with one implicit parameter and modulo is an implicit definition:

implicit val modulo: Int = 3

def addm(x: Int, y: Int)(implicit m: Int) = (x + y) % m

addm(4, 5)

The process of implicit parameter discovery performed by the compiler is called implicit

resolution. The resolution algorithm looks for implicits in the current scope and in the com-

panion objects of all classes associated with the query type. In the previous example, the

5

Chapter 2. (Ab)Using Implicits

implicit definition is declared in the current scope. Since that definition has type Int, the

compiler resolves the method call by passing modulo automatically.

The type class pattern

Implicits can be used to implement type classes [Wadler and Blott, 1989] as a design pat-

tern [Oliveira et al., 2010]. We give an example of an implementation of the Ordering type

class. This example consists of three parts:

1. Ordering[T], which is a regular trait with a single method, compare,

2. the generic function comp, which compares two arguments and accepts an implicit ar-

gument, providing an implicit evidence that these two values can be compared,

3. the implicit definition intOrdering, which provides an instance of the Ordering type

class for integers.

trait Ordering[T]:

def compare(a: T, b: T): Boolean

def comp[T](x: T, y: T)(implicit ev: Ordering[T]): Boolean =

ev.compare(x, y)

implicit def intOrdering: Ordering[Int] =

new Ordering[Int]:

def compare(a: Int, b: Int): Boolean = a < b

comp(1, 2)

We have briefly introduced implicit parameters and showed how they can be used to

avoid clutter in function applications. In the next section, we present recursive implicit reso-

lution.

2.2 Recursive Implicit Resolution

Implicit methods can themselves take implicit parameters. For example, we can define the

lexicographic list ordering as follows:

implicit def listOrdering[T](implicit ev: Ordering[T]): Ordering[List[T]] =

new Ordering[List[T]]:

def compare(a: List[T], b: List[T]): Boolean =

(a, b) match

case (a :: as, b :: bs) => ev.compare(a, b) && compare(as, bs)

case (_, Nil) => false

case (Nil, _) => true

This definition is parametrized by the list’s element type and by an ordering of that type,

passed as an implicit parameter. Since listOrdering is itself implicit, it defines a rule: it al-

6

2.2. Recursive Implicit Resolution

lows the compiler to materialize an implicit of type Ordering[List[T]] given an implicit type

Ordering[T], for any type T.

Parametrized implicit definitions can lead to recursive implicit resolution. For example,

the compiler will use listOrdering twice to synthesize an implicit Ordering[List[List[T]]].

This is where the (type-level) fun begins!

Heterogeneous lists

A heterogeneous list, or HList for short [Kiselyov et al., 2004], is a datatype capable of storing

data of different types. In Scala 3, we can define the HList datatype as follows:

enum HList:

case HNil()

case ::[+H, +T <: HList](head: H, tail: T)

The :: constructor offers an interesting symmetry between the term and type level, which

allows HList types to capture the same structure that their term-level counterparts. For ex-

ample, the term ::(1,::(2,HNil())) can be typed as ::[1,::[2,HNil]], which is a perfect

reification of that term (we use literal singleton types to represent constant literals at the type

level [Leontiev et al., 2014]).

HList’s remove

Scala’s implicits allow us to define type-level operations for heterogeneous lists. We develop

the example presented in Chapter 1 by looking into the remove operation on HLists. The

remove operation takes as argument an element and a list, and returns that list with the first

occurrence of the element removed. This operation should yield an error if the element is not

part of the list.

An implicit-based type-level operation typically takes the form of a trait, the operation’s

entry point, and several implicit definitions, one for each “case” of the operation’s algorithm.

Let us consider the implementation of the remove operation in more detail:

trait Remove[V, Ps <: HList, Out <: HList]

object Remove:

implicit def casehead[V, Ps <: HList]

: Remove[V, V :: Ps, Ps] = new Remove {}

implicit def casetail[V, Ph, Pt <: HList, Out <: HList]

(implicit ev: Remove[V, Pt, Out])

: Remove[V, Ph :: Pt, Ph :: Out] = new Remove {}

The Remove trait takes 3 type parameters: 2 inputs, V (the element to remove) and Ps (the

list), and one output, Out (the list, with the element removed). The two implicit definitions,

casehead and casetail, correspond to the base case and the recursive case of the list removal

operation, respectively. The right-hand side of those definitions is devoid of meaning, in-

stances of the Remove trait merely act as placeholders (the type parameters of those construc-

7

Chapter 2. (Ab)Using Implicits

tor calls are inferred from their expected type). The Remove trait is intended to be used as an

implicit parameter, with constrained input types, and an unconstrained output type.

When the given element is not part of the list, implicit resolution fails with an “implicit

not found” error, which indicates the incorrect use of Remove. More precisely, the implicit

search first iterates through the list by repeatedly using casetail until it reaches the end of

the list, at which point it fails to find an implicit value of type Remove[V,HNil,Out] (neither

casehead nor casetail produce an instantiation of Remove with Ps=HNil).

As an example usage of Remove, consider the following stringly-typed, JavaScript-inspired

method:

/** Attaches an event handler.

* @param event The event type, one of "mousedown", "mouseup",

* "mouseover", "mousewheel" and "contextmenu".

* @param listener The function to run when the event occurs.

*/
def addEventListener(event: String, listener: Event => Unit): Unit

This method’s documentation specifies 5 valid alternatives for the event argument, but that

constraint is not reflected in the method’s type signature. In JavaScript, calling this method

with an erroneous element event type is a no-op, which can make this kind of error particu-

larly hard to spot.

Instead of specifying that constraint in the documentation, we can represent the valid

event types in a HList, and use an implicit parameter of type Remove to statically enforce that

property:

type EventTypes =

"mousedown" :: "mouseup" :: "mouseover" :: "mousewheel" :: "contextmenu" :: HNil

def addEventListener[E <: String & Singleton]

(event: E, handler: Event => Unit)

(implicit ev: Remove[E, EventTypes, ?]): Unit

The Singleton type bound is a marker that instructs type inference to preserve union types

and literal singleton types (by default, the compiler widens those types). The “?” type is

Scala 3’s new syntax for wildcard types [Odersky and Dotty contributors, 2013–2022, Wild-

card Arguments in Types].

With this updated signature, the compiler is able to detect invalid event types at compile

time. When given a valid event type E, the compiler synthesizes an implicit evidence of type

Remove[E,EventTypes,?] which witnesses E’s validity. After implicit resolution, calls to the

addEventListener method are expanded to automatically insert an implicit parameter for the

second parameter list, such as in the following example:

addEventListener("mouseover", myHandler)(

// Evidence that "mouseover" is a valid event type, infered automatically.

Remove.casetail(Remove.casetail(Remove.casehead)))

This concludes our presentation of the implicit-based encoding of type-level computa-

tion. Despite its verbosity, this pattern generalizes to arbitrary recursive computations and

8

2.3. Ambiguities and Priorities

enables Scala programmers to write elaborate type-level programs solely based on implicits.

In the next section, we discuss ambiguities and priorities between implicit definitions.

2.3 Ambiguities and Priorities

Scala’s implicit resolution relies on an intricate priority system to establish the precedence of

implicit definitions. Implicit-based programs sometimes rely on ambiguities and priorities

of implicit definition, as we will see in this section through a series of examples.

2.3.1 Implicit Ambiguities

The Scala compiler rejects programs with ambiguous implicit definitions. For instance, if we

write two identically-typed implicit definitions in the same scope, the compiler will consider

them ambiguous and report an error:

implicit val number: Int = 1

implicit val modulo: Int = 3

def addm(x: Int, y: Int)(implicit m: Int) = (x + y) % m

addm(4, 5) // Error: ambiguous implicit arguments: both value number and

// value modulo match type Int of parameter m of method addm.

While ambiguities typically indicate programming errors, we can also use them purpose-

fully to implement error cases of a type-level program. As an example, consider the NotIn

operation on HList that is only defined if the given element is not part of the list. We define

NotIn using two ambiguous implicits; the implementation is lengthy, but straightforward:

trait NotIn[V, Ps <: HList]

object NotIn:

implicit def casenil[V]: NotIn[V, HNil] = new NotIn {}

implicit def casecons[V, Ph, Pt <: HList]

(implicit xs: NotIn[V, Pt]): NotIn[V, Ph :: Pt] = new NotIn {}

implicit def ambiguous1[V, Ph, Pt <: HList]

(implicit ev: V =:= Ph): NotIn[V, Ph :: Pt] = new NotIn {}

implicit def ambiguous2[V, Ph, Pt <: HList]

(implicit ev: V =:= Ph): NotIn[V, Ph :: Pt] = new NotIn {}

The casenil and casecons implicits simply iterate through the list. The ambiguous implicits are

two identical definitions that will cause the compiler to raise an error if V and Ph are equal, for

any element Ph of the list (“=:=” is a type from Scala’s standard library that witnesses mutual

subtyping).

As an example usage of NotIn, we revisit the DSL presented in Chapter 1. Programs in our

DSL consist of sequences of method calls on a Context, which tracks the memory regions that

are currently allocated in the program, using a HList of names. We use the NotIn operation

9

Chapter 2. (Ab)Using Implicits

to constrain the allocation method, malloc, to prevent allocating regions with already used

names:

trait Context[Ps <: HList]:

def malloc[V <: Singleton]

(size: Int, v: V)

(implicit ev: NotIn[V, Ps])

: Context[V :: Ps]

Scala 3 introduced an alternative to the ambiguous implicit pattern in the form of the

scala.util.NotGiven type [Odersky and Dotty contributors, 2013–2022, Given Instances]. The

compiler will synthesize an implicit parameter of type NotGiven[T] if and only if there is no

implicit value of type T in scope. We can use a “negative” implicit evidence to simplify the

definition of NotIn by removing the ambiguous implicits and changing casecons to the fol-

lowing:

implicit def casecons[V, Ph, Pt <: HList]

(implicit

no: NotGiven[V =:= Ph],

xs: NotIn[V, Pt]

): NotIn[V, Ph :: Pt] = new NotIn {}

2.3.2 Implicit Priorities

When looking for implicits, the Scala compiler visits scopes sequentially, in a precisely de-

fined order. At any point in the search, if the implicits defined in the subset of scopes con-

sidered so far can fulfill the implicit query, the search succeeds and immediately terminates.

This incremental process has two consequences. First, it allows the compiler to efficiently

look for implicits by naturally pruning the search space. Second, it provides an ad-hoc mech-

anism to disambiguate implicits. Scala programmer can artificially partition their implicit

definitions into multiple scopes to implement a priority system.

Let us consider an example of operation on HList whose implementation uses implicit

priorities. RemoveAll is a generalization of Remove that removes every occurrence of the given

element instead of the first occurrence. The implicit-based implementation takes the form

of a trait with 3 type parameters: 2 inputs, V (the element to remove) and Ps (the list), and one

output, Out (the list, with the elements removed):

trait RemoveAll[V, Ps <: HList, Out <: HList]

From an algorithmic standpoint, we can implement RemoveAll as a recursive function

with 3 cases, a base case for the empty list (casenil), a recursive case for when the head of

the list matches the element to remove (casematch), and another recursive case for when the

head doesn’t match (casedoesnt):

object RemoveAll:

implicit def casenil[V]

: RemoveAll[V, HNil, HNil] = new RemoveAll {}

10

2.4. Conclusion

implicit def casematch[V, Ps <: HList, Out <: HList]

(implicit ev: RemoveAll[V, Ps, Out])

: RemoveAll[V, V :: Ps, Out] = new RemoveAll {}

implicit def casedoesnt[V, Ph, Pt <: HList, Out <: HList]

(implicit ev: RemoveAll[V, Pt, Out])

: RemoveAll[V, Ph :: Pt, Ph :: Out] = new RemoveAll {}

This direct implementation of RemoveAll using implicit definitions is, unfortunately, in-

correct. The issue is that the casematch and casedoesnt definitions are ambiguous when the

head of the list matches the element to remove. To work around that ambiguity, we split

those definitions into two different scopes, so that the compiler always tries to apply the more

specialized case (casematch) before considering the less specialized case (casedoesnt). Con-

cretely, we define low priority implicits in a separate trait, and have RemoveAll’s companion

object extend that trait:

trait RemoveAllLowPrio:

implicit def casenil[V]

: RemoveAll[V, HNil, HNil] = new RemoveAll {}

implicit def casedoesnt[V, Ph, Pt <: HList, Out <: HList]

(implicit ev: RemoveAll[V, Pt, Out])

: RemoveAll[V, Ph :: Pt, Ph :: Out] = new RemoveAll {}

object RemoveAll extends RemoveAllLowPrio:

implicit def casematch[V, Ps <: HList, Out <: HList]

(implicit ev: RemoveAll[V, Ps, Out])

: RemoveAll[V, V :: Ps, Out] = new RemoveAll {}

In Scala 3, the rules for implicit ambiguities changed to take implicit parameters into

account, thus introducing another, more direct, disambiguation mechanism. All else being

equal, an implicit definition that takes implicit parameters is considered less specific than

an implicit definition does not take implicit parameters [Odersky and Dotty contributors,

2013–2022, Changes in Implicit Resolution]. As a result, implicit-based type-level programs

written in Scala 3 do not need to use the patterns of ambiguities and priorities presented in

this section (2.3.2 and 2.3.1).

2.4 Conclusion

In this chapter, we presented several techniques for type-level programming with implicits.

This style of programming is, unfortunately, quite cumbersome. In addition to the heavy

syntax, type-level programming with implicits also requires a deep understanding of the im-

plicit resolution algorithm. As we will see in Chapter 6, those techniques come at a high cost

in terms of compilation time, which hinders their usability on a large scale. Yet, despite those

shortcomings, Scala programmers have shown a persistent interest in this style of program-

ming, as demonstrated by its popularity in the open-source community [Sabin and Shape-

11

Chapter 2. (Ab)Using Implicits

less contributors, 2011–2022; Pilquist and Scodec contributors, 2013–2022; Blanvillain et al.,

2016–2022].

12

3 Generalizing Scala’s Singleton Types
Type-level programming is an increasingly popular way to obtain additional type safety. Un-

fortunately, it remains a second-class citizen in the majority of industrially-used program-

ming languages. We propose a new dependently-typed system with subtyping and singleton

types whose goal is enabling type-level programming in an accessible style. To this end, we

have prototyped our system as an extension of the Scala programming language. We demon-

strate the practicality of our system with a case study in which we develop a strongly-typed

interface for Spark datasets. Through our formalization and implementation in the context of

an industrial-strength compiler, we hope to provide valuable insights for language designers

interested in dependent types.

Attribution

This chapter is based on [Schmid et al., 2020], which was written in collaboration with Georg

Schmid, Jad Hamza, and Viktor Kuncak. Georg and I worked hand-in-hand on this project:

we collaborated through countless whiteboard discussions and pair programming sessions,

which resulted in shared first authorship of the implementation and most of the text. The

said report covers more material than what is included in this chapter, in particular, our for-

malization and the associated metatheory are out of the scope of this dissertation.

3.1 Introduction

Dependent types have been met with considerable interest from the research community in

recent years. Their primary application so far has been in proof assistants such as Coq [Bertot

and Castéran, 2004] and Agda [Norell, 2007], where they provide a sound and expressive foun-

dation for theorem proving. However, dependent types are still largely absent from general-

purpose programming languages, despite a long history of lightweight approaches [Xi and

Pfenning, 1998]. In the context of Haskell, much research has gone into extending the lan-

guage to support computations on types, for instance in the form of functional dependen-

cies [Jones, 2000], type families [Kiselyov et al., 2010] and promoted datatypes [Yorgey et al.,

2012]. These techniques have seen vivid adoption by Haskell programmers, showing that

there is a real demand for such mechanisms. Furthermore, recent research has explored

how dependent types could be added to the language for the same purpose [Eisenberg, 2016;

Weirich et al., 2017].

Dependently-typed languages often rely on a unified syntax to describe both terms and

13

Chapter 3. Generalizing Scala’s Singleton Types

types. The simplicity of this approach is unfortunately at odds with the design of most pro-

gramming languages, where types and terms are expressed using separate syntactic cate-

gories. Singleton types provide a simple solution to this problem by allowing terms to be

represented as types.

In this chapter, we report on our attempt to generalize Scala’s singleton types to support

type-level programming, as well as a lightweight form of dependently-typed programming.

Unlike proof assistants, we do not aim to use types as a general-purpose logic, which would

favor designs ensuring the totality of functions through termination checks. Instead, our

focus is on improving type safety by increasing the expressive power of the type system.

With these goals in mind, we extended Scala’s type system to lift programs to the type

level and partially evaluate them as part of type-checking. Users can manipulate those types

either directly, using new syntactic forms in Scala’s type language, or have them inferred au-

tomatically using a new language keyword. This effectively allows users to execute programs

involving functions and pattern matching at the type level.

The remaining of the chapter is organized as follows:

• We begin by motivating why type-level programming is desirable and how one might

use our Scala extension to improve type safety (Section 3.2). Our example demon-

strates how to design a strongly-typed API in a functional style accessible to program-

mers.

• We describe how we extended Scala with a generalization of singleton types (Section 3.3).

We prototyped our type system on top of Dotty, the reference Scala 3 compiler. This

practical introduction would be of interest to any Scala programmer willing to learn

how to use our system, as well as programming language designers interested in de-

pendent types.

• We show a concrete use-case of our system by implementing a strongly-typed wrapper

for Apache Spark [Zaharia et al., 2016] (Section 3.4). Thanks to our generalized single-

ton types, we can statically ensure the type safety of database operations such as join

and filter. We compare our implementation with an equivalent implicit-based one and

show remarkable compilation time savings.

Our original presentation of generalized singleton types contains a formalization [Schmid

et al., 2020, Section 3 and 4], which is out of the scope of this chapter.

A prototype of our Scala extension is available online, in a branch of the dotty-staging

repository1. Although the ideas presented in this chapter did not reach the production stage,

our prototype influenced the design of match types (Chapter 4) which are now part of the

Scala language.

1git clone git@github.com:dotty-staging/dotty.git --branch add-transparent-7

14

3.2. Motivating Example

3.2 Motivating Example

We begin by motivating why type-level programming is desirable in general purpose pro-

gramming. In our first example, we design an API that keeps track of database tables’ schemas

in the type, and uses that information to improve type safety. The examples in this section

are written in our Scala extension described in Section 3.3.

As a first step, we show how our system supports type-level programming in the style of

term-level programs. Consider the following definition of the list datatype, which is standard

Scala up the dependent keyword:

sealed trait Lst { … }

dependent case class Cons(head: Any, tail: Lst) extends Lst

dependent case class Nil() extends Lst

We can define list concatenation in the usual functional style of Scala, that is, using pattern

matching and recursion:

sealed trait Lst:

dependent def concat(that: Lst) <: Lst =

this match

case Cons(x, xs) => Cons(x, concat(xs, that))

case Nil() => that

By annotating a method as dependent, the user instructs our system that the result type of

concat should be as precise as its implementation. Effectively, this means that the body of

concat is lifted to the type level in a singleton type, and will be partially evaluated at every

call site to compute a precise result type which depends on the given inputs. For recursive

dependent methods such as concat, we infer types that include calls to concat itself. The <:

annotation lets us provide an upper bound on concat’s result type, which will be used while

type checking the method’s definition. Finally, by qualifying the definition of Cons and Nil

as dependent, we also allow their constructors and extractors to be lifted to the type level.

Using these definitions, we can now request the precise type whenever we manipulate lists

by annotating val bindings as dependent:

dependent val l1 = Cons("A", Nil())

dependent val l2 = Cons("B", Nil())

dependent val l3 = l1.concat(l2)

l3.size: { 2 }

l3: { Cons("A", Cons("B", Nil())) }

Enclosing a pure term in braces ({ . . . }) denotes the singleton type of that term. In the

last two lines of this example, we are therefore asking our system to prove that l3 has size 2

and is equivalent to Cons("A", Cons("B", Nil())). Similarly, we can define remove on Lst:

sealed trait Lst:

dependent def remove(e: String) <: Lst =

this match

case Cons(head, tail) =>

if (e == head) tail

15

Chapter 3. Generalizing Scala’s Singleton Types

else Cons(head, tail.remove(e))

case _ => throw new Error("element not found")

Removing "B" yields the expected result, while trying to remove "C" from l3 leads to a compi-

lation error, since the given program will provably fail at runtime.

l3.remove("B"): { Cons("A", Nil()) }

l3.remove("C") // Error: element not found

The lists we defined so far can be used to implement a type-safe interface for database

tables:

dependent case class Table(schema: Lst, data: spark.DataFrame):

dependent def join(right: Table, col: String) <: Table =

val s1 = this.schema.remove(col)

val s2 = right.schema.remove(col)

val newSchema = Cons(col, s1.concat(s2))

val newData = this.data.join(right.data, col)

new Table(newSchema, newData)

In this example, we wrap a Spark’s DataFrame in the dependent class Table. The first argument

of this class represents the schema of the table as a precisely-typed list. The second argument

is the underlying DataFrame. In the implementation of join, we execute the join operation on

the underlying tables (newData) and compute the resulting schema corresponding to that join

(newSchema). By annotating the join method as dependent, the resulting schema is reflected in

the type:

dependent val schema1 = Cons("age", Cons("name", Nil()))

dependent val schema2 = Cons("name", Cons("unit", Nil()))

dependent val table1 = Table(schema1, …)

dependent val table2 = Table(schema2, …)

dependent val joined = table1.join(table2, "name")

joined: { Table(Cons("name", Cons("age", Cons("unit", Nil()))), _: DataFrame) }

Reflecting table schemas in types increases type safety over the existing weakly-typed inter-

face. For instance, it becomes possible to raise compile-time errors when a user tries to use

non-existent columns. This is an improvement over the underlying Spark implementation

that would instead fail at runtime.

3.3 Implementation

In this section we give an overview of how we extended Scala with a generalized notion of

singleton types, and how we manipulate these types during type-checking. Our presentation

is divided into three parts.

First, we introduce new types that reflect a subset of Scala’s term language at the type level,

and give an informal description of our type evaluation algorithm. We then introduce the

dependent qualifier, which influences type inference to assign generalized singleton types to

the annotated definition. Finally, we discuss how our extension interacts with other aspects

of Scala, such as side effects, virtual dispatch, and recursion.

16

3.3. Implementation

This development was an experiment to explore the feasibility of adding a lightweight

form of dependent types to Scala. We implemented our prototype as an extension of Dotty,

the reference Scala 3 compiler.

3.3.1 Reflecting Terms in Types

The fundamental difference between our and Scala’s existing type system is that we take

Scala’s notion of singleton types, that is, precise types for variable bindings and literals, and

extend them to cover Scala’s core functional expressions. Concretely we add new types for

the following constructs:

• Variable bindings and member selections

• Primitive literals

• Method calls

• If-then-else expressions

• Pattern matching expressions

• Constructor calls

These new types can be expressed using the { e } type syntax, where e is an expression

in the core functional subset of Scala listed above. For instance, suppose foo stands for the

expression

if (x % 2 == 0) "even" else "odd"

then foo can be typed as { foo }. More precisely, { foo } is the singleton type of foo and

corresponds to the unique value of foo in a given context.

The first two constructs in this list have antecedents in Scala. Types for bindings are avail-

able since the early days of Scala with the x.type syntax [Odersky et al., 2006–2022, Section

3.2.1], which is equivalent to { x } in our system. Types for primitive literals have recently

been added to the language: literals for booleans, strings and the various numeric types are

made available in the type language [Leontiev et al., 2014].

In addition to base types and singleton types for every pure term, our system also sup-

ports types that lie in-between. We add a new form, _: T, which supplements expressions in

types of form { e } by allowing the user to intersperse terms and base types.

For instance, consider the following list and its singleton type:

• Cons(Nil, Nil): { Cons(Nil, Nil) }

In our system, this term may also be typed less precisely, such as:

• Cons(Nil, Nil): { Cons(_: Any, Nil) }

• Cons(Nil, Nil): { Cons(Nil, _: Lst) }

17

Chapter 3. Generalizing Scala’s Singleton Types

• Cons(Nil, Nil): { Cons(_: Any, _: Lst) }

all of which are subsumed by

• Cons(Nil, Nil): Lst.

3.3.2 Type Evaluation

Our system evaluates types using a call-by-value partial evaluator, which we embedded in the

type-checker. The evaluation rules for the term in generalized singleton types are completely

standard up to dynamic type tests.

We perform evaluation of types during subtyping. For instance, consider the following

definition of a parity function:

dependent def parity(x: Int) =

if (x % 2 == 0) "even" else "odd"

In order to prove the well-typedness of

val p: { "odd" } = parity(5)

the type-checker will ensure that { parity(5) } is a subtype of { "odd" }. In the process, the

left-hand side is evaluated as follows:

{ parity(5) } (1)

= { if (5 % 2 == 0) "even" else "odd" } (2)

= { if (false) "even" else "odd" } (3)

= { "odd" }

In (1), the method call to parity is replaced by its result type, where the method parameter

has been substituted by the singleton type of the argument, { 5 }. (2) evaluates the boolean

expression to false. (3) reduces the if expression to its else branch.

In general, our evaluator will execute operations on concrete primitive values of types

such as Boolean, Int and String, i.e., perform constant-folding.

3.3.3 Pattern Matching

Pattern matching in Scala supports a wide range of matching techniques [Emir et al., 2007].

For example, extractor patterns rely on user-defined methods to extract values from objects.

As a result, these custom extractors can contain arbitrary side effects. Our implementation

limits the kind of patterns available in types to the two simplest forms: decomposition of case

classes and the type-tests/type-casts patterns.

During type normalization, our system evaluates pattern matching expressions accord-

ing to Scala’s runtime semantics. Patterns are checked top-to-bottom, and type-tests are

evaluated using subtyping checks.

For example, consider the following pattern matching expression:

s match

case _: T1 => v1

case _: T2 => v2

18

3.3. Implementation

When used in a type, this expression reduces to v1 if the scrutinee’s type is a subtype of T1.

In order to reduce to v2, type normalization must make sure T1 and the scrutinee’s type are

disjoint, namely that the dynamic type of s cannot possibly be smaller than T1. Disjointness

proofs are built using static knowledge about the class hierarchy, such as the sealed and final

qualifiers, which are Scala’s way of declaring closed-type hierarchies.

3.3.4 Two Modes of Type Inference

In order to retain backwards-compatibility, our system supports two modes of type inference:

the precise inference mode which infers singleton types, and the default inference mode that

corresponds to Scala’s type-inference algorithm. Concretely, users opt into our new inference

mode using the dependent qualifier on methods, values, and classes.

When inferring the result type of a dependent method, our system lifts the method’s body

into a generalized singleton type. This lifting will be precise for the subset of expressions

that is representable in types, and approximative for the rest. When we encounter an unsup-

ported construct, we compute its type using the default mode, yielding a type T which we

then integrate in the lifted body as _: T2.

For example, given the following definition:

dependent def getName(personalized: Boolean) =

if (personalized) readString() else "Joe"

our system infers the following result type:

{ if (personalized) (_: String) else "Joe" }

We could have equivalently defined getName by omitting the dependent qualifier and writing

its result type explicitly. The difference between the two would only be matter of syntax.

Scala requires recursive methods to have an explicit result type, and this restriction also

applies to dependent methods. However, in the case of a dependent method, an explicit result

type only serves as an upper bound used to type-check the method’s body. At other call sites,

the (precise) inferred result type is used. Bounds of dependent methods are written using a

special syntax (<: T).

3.3.5 Approximating Side Effects

Scala’s type system permits uncontrolled side effects in programs. Given the absence of an

effect system, result types of methods do not convey any information about the potential

use of side effects in the method body. The situation is analogous for dependent methods.

Since we uniformly approximate all side effects, we avoid the situation where a type refers

to a value that may be modified during the program execution. For instance, if z is a mu-

table integer variable, we will never introduce z in a singleton type. However, we can still

assign singleton types to expressions containing z, for example, we can type Cons(z, Nil())

as { Cons(_: Int, Nil()) }. More generally, when a dependently-typed function calls into

2When a generalized singleton type contains a component of form (_: T), that type is not singleton: it might
contains more than one value.

19

Chapter 3. Generalizing Scala’s Singleton Types

a non-dependently-typed one, we approximate the type of that call to (_: T), where T is the

declared result type of the non-dependently-typed function.

Similarly to how we model other side effects, exceptions are approximated in types. Our

type-inference algorithm uses a new error type, Error(e), which we infer when raising an

exception with throw e. Exception handlers are typed imprecisely using the default mode of

type-inference. Exceptions thrown in statement positions are not reflected in singleton types,

since the type of { e1; e2 } is simply { e2 }. However, exceptions thrown in tail positions

(such as in remove from Section 3.2) can lead to types normalizing to Error(e). In these cases,

our type system can prove that the program execution will encounter exceptional behavior,

and report a compilation error. This approach is conservative in that it might reject programs

that recover from exceptions. Also note that this is a sanity check, rather than a guarantee

of no exceptions occurring at runtime. That is, depending on which rules are used during

subtyping, it is possible to succeed without entering type normalization, resulting in such

errors going undetected. Despite these shortcomings, our treatment of exceptions results in

a practical way to raise compile-time errors. It would be interesting to explore the addition

of an effect system to our Scala extension.

3.3.6 Virtual Dispatch

Our extension does not model virtual dispatch explicitly in singleton types. Instead, the result

type of a method call t.m(. . .) is always the result type of m in t’s static type. Consequently,

dependent methods effectively become final, given that only a provably-equivalent imple-

mentation could be used to override it, modulo side effects.

Special care must be taken when an imprecisely-typed method is overridden with a de-

pendent one. In this situation, the result type of a method invocation can lose precision

depending on type of the receiver. Calls to the equals methods are a common example of

this: equals is defined at the top of Scala’s type hierarchy as referential equality and can

be overridden arbitrarily. Given a class Foo with a dependent overrides of equals, calls to

Foo.equals(Any) and Any.equals(Foo) are not equivalent; the former precisely reflects the

equality defined in Foo whereas the latter merely returns a Boolean.

3.3.7 Termination

We distinguish two important aspects of termination: the termination of type-checked pro-

grams and the termination of our type checker.

Proving termination or totality of programs is a non-goal of our system. Unlike proof

assistants, Scala programs do not manipulate proof terms. Consequently, the lack of totality

checks does not affect Scala’s present notion of safety. Exceptions or infinite loops in the

evaluation of a dependent method would prevent the completion of type-checking.

The second question is termination of our type checker. Non-termination of type check-

ing implies that the type checker can give three possible answers, “type correct”, “type incor-

rect” or “do not know” (when type checking times out). Treating “do not know” as “type in-

correct” makes the non-termination unproblematic from a soundness perspective. A similar

20

3.4. Case Study: A Type-Safe Database Interface

argument is made for other dependently-typed languages with unbounded recursion, such

as Dependent Haskell [Eisenberg, 2016] or Cayenne [Augustsson, 1998]. In practice, our sys-

tem deals with infinite loops using a fuel mechanism. Every evaluation step consumes a unit

of fuel, and an error is reported when the compiler runs out of fuel. The default fuel limit can

be increased via a compiler flag to enable arbitrarily long compilation times.

3.4 Case Study: A Type-Safe Database Interface

In this section, we extend the motivating example presented in Section 3.2 by building a type-

safe interface for Spark datasets. We use our Scala extension to implement a simple domain-

specific type checker for the SQL-like expressions used in Spark.

3.4.1 Type-Safe Datasets

The type-safe interface presented in this section illustrates the expressive power of our sys-

tem and is implemented purely as a library. For brevity, our presentation only covers a small

part of Spark’s dataset interface, but the approach can be scaled to cover that interface in its

entirety. The type safety of database queries is a canonical example and has been studied in

many different settings [Leijen and Meijer, 1999; Kazerounian et al., 2019; Meijer et al., 2006;

Chlipala, 2010].

The example built in Section 3.2 uses lists of column names to represent schemas. A

straightforward improvement is to also track the type of columns as part of the schema. In-

stead of using column names directly, we introduce the following Column class with a phan-

tom type parameter T for the column type, and a field name for the column name:

dependent case class Column[T](name: String) { … }

Table schemas become lists of Column-s and thereby gain precision. The definition of join

given in Section 3.2 can be adapted to this new schema encoding to prevent joining two tables

that have columns with matching names but different types.

A large proportion of the weakly-typed Spark interface is dedicated to building expres-

sions on table columns. Such expressions can currently be built from strings, in a subset of

SQL, or using a Scala DSL which is essentially untyped.

The lack of type safety for column expressions can be particularly dangerous when mix-

ing columns of different types. The pitfall is caused by Spark’s inconsistency: depending on

types of columns and operations involved, programs will either crash at runtime, or, more

dangerously, data will be silently converted from one type to another.

By keeping track of column types it becomes possible to enforce the well-typedness of

column expressions. As an example, consider the following Spark program:

table.filter(table.col("a") + table.col("b") === table.col("c"))

We would like our interface to enforce the following safety properties:

• Columns a, b and c are part of the schema of table.

• Addition is well-defined on columns a and b.

21

Chapter 3. Generalizing Scala’s Singleton Types

• The result of adding columns a and b can be compared with column c.

• The overall column expression yields a Boolean, which conforms to filter’s argument

type.

Automatic conversions during equality checks can be prevented by restricting column

equality to expressions of the same type T:

dependent case class Column[T](k: String):

def ===(that: Column[T]): Column[Boolean] =

Column(s"(${this.k} === ${that.k})")

Addition in Spark is defined between numeric types and characters. The result type of

an addition depends on the operand types. For numeric types, Spark will pick the larger of

the operand types according to the following ordering: Double > Long > Int > Byte. The

situation is quite surprising with characters as any addition involving a Char will result in a

Double.

Dependent types can be used to precisely model these conversions. We define a type

function to compute the result type of additions:

dependent def addRes(a: Any, b: Any) =

(a, b) match

case (_: Char, _: Char | Byte | Int | Long | Double) => _: Double

case (_: Byte, _: Byte | Int | Long | Double) => b

case (_: Int, _: Int | Long | Double) => b

case (_: Long, _: Long | Double) => b

case (_: Double, _: Double) => _: Double

case (_: Byte | Int | Long | Double, _) => addRes(b, a)

case _ => throw new Error("incompatible types in addition")

type AddRes[A, B] = { addRes(_: A, _: B) }

Also note the use of recursion in the second-to-last case, to avoid duplicating symmetric

cases. The AddRes type can be used to define a Column addition that accurately models Spark’s

runtime:

dependent case class Column[T] private (k: String):

dependent def +[U](that: Column[U]) <: Column[_] =

Column[AddRes[T, U]](s"(${this.k} + ${that.k})")

Allowing programmers to construct Column-s from string literals would defeat the pur-

pose of a type-safe interface. Instead, programmers should extract columns from a Table’s

schema. For that purpose, we implement the col method on Table and annotate the Column

constructor as private.

dependent case class Table(schema: Lst, data: spark.DataFrame):

dependent def col(name: String) <: Column[_] =

dependent def find(key: String, list: Lst) <: Any =

list match

case Cons(head: Column[_], tail) =>

if (head.k == key) head else find(key, tail)

22

3.4. Case Study: A Type-Safe Database Interface

1/16

1/8

1/4

1/2

1
2
4
8

16
32
64

128
256

0 100 200 300 400

C
o

m
p

il
at

io
n

ti
m

e
(s

ec
o

n
d

s)

List size

implicit concat
dependent concat

1/16

1/8

1/4

1/2

1
2
4
8

16
32
64

128
256

0 100 200 300 400

Number of columns

implicit join
dependent join

Figure 3.1 – Comparing the compilation times of two implementations of list concatenation
and join, logarithmic scale.

case _ => throw new Error("column not found in schema")

find(name, schema)

dependent def filter(predicate: Column[Boolean]) <: Table =

new Table(this.schema, this.data.filter(predicate.k))

The col method is implemented using a nested dependent method to find the column

corresponding to the given name. Thanks to the dependent annotation, the type-checker is

able to statically evaluate calls to col. Assuming the table’s schema contains a column a of

type Int and columns b and c of type Long, the compiler will be able to infer types as follows:

val pred = table.col("a") + table.col("b") === table.col("c")

// Infers: { Column[Int]("a") } { Column[Long]("b") } { Column[Long]("c") }

Given our definitions of column addition and equality, the overall pred expression is typed

as Column[Boolean]. Thus, the dependently-typed interface presented in this section success-

fully enforces all the safety properties stated above.

3.4.2 Comparison to an Existing Technique

Programmers have managed to find clever encodings that circumvent the lack of first-class

support for type-level programming in many languages. These encodings can be very cum-

bersome, as they often entail poor error reporting and a negative impact on compilation

times [McBride, 2002], [Kiselyov et al., 2004]. In Scala, implicits are the primary mechanism

by which programmers implement type-level programming [Odersky et al., 2018].

Frameless [Blanvillain et al., 2016–2022] is a Scala library that implements a type-safe

interface for Spark by making heavy use of implicits. Most type-level computations in this

library are performed on the heterogeneous lists provided by Shapeless [Sabin and Shapeless

contributors, 2011–2022].

We compared the dependently-typed Spark interface presented in this section against

the implicit-based implementation of Frameless. To do so, we isolated the implicit-based

23

Chapter 3. Generalizing Scala’s Singleton Types

implementation of the join operation on table schemas, and compared its compilation time

against the dependently-typed version presented in this section. To evaluate the scalability

of both approaches we generated test cases with varying schema sizes and compiled each

test case in isolation. A similar comparison is done for list concatenation, which constitutes

a building block of join.

Figure 3.1 shows that, in both benchmarks, the dependently-typed implementation com-

piles faster than the version with implicits, and compilation time scales better with the size

of the input.

In the join benchmark, we see that the implicit-based implementation exceeds 30 sec-

onds of compilation time around the 200 columns mark, and continues to grow quadratically.

This can be explained by the nature of implicit resolution, which might backtrack during its

search. The compilation time of the dependently-typed implementation grows linearly and

stays below one second until the 350 columns mark. We were able to observe similar trends

in the concatenation benchmark. We obtained those measurements by averaging 120 inde-

pendent compilations on a warm compiler, which we executed on an i7-7700K Processor

running Oracle JVM 1.8.0 on Linux.

3.5 Related Work

As of today, Haskell is perhaps closest to becoming dependently-typed among the general-

purpose programming languages used in industry. Haskell’s type families [Kiselyov et al.,

2010] provide a direct way to express type-level computations. Other language extensions

such as functional dependencies [Jones, 2000] and promoted datatypes [Yorgey et al., 2012]

are also moving Haskell towards dependent types. Nevertheless, programming in Haskell

remains significantly different from using full-spectrum dependently-typed languages. A sig-

nificant difference is that Haskell imposes a strict separation between terms and types. As

a result, writing dependently-typed programs in Haskell often involves code duplication be-

tween types and terms. These redundancies can be somewhat avoided using the singletons

package [Eisenberg and Weirich, 2012], which uses meta-programming to automatically gen-

erate types from datatypes and function definitions.

In the context of Haskell, Eisenberg’s work on Dependent Haskell [Eisenberg, 2016] is clos-

est to ours, in that it adds first-class support for dependent types to an established language,

in a backwards-compatible way. Dependent Haskell supports general recursion without ter-

mination checks, which makes it less suitable for theorem proving. While we share similar

goals, our work is differentiated by the contrasting paradigms of Scala and Haskell. Like many

object-oriented languages, Scala is primarily built around subtyping and does not restrict the

use of side effects. Furthermore, Eisenberg’s system provides control over the relevance of val-

ues and type parameters. In contrast, our system does not support any erasure annotations

and simply follows Scala’s canonical erasure strategy: types are systematically erased to JVM

types, and terms are left untouched. Weirich et al. established a fully mechanized type safety

proof for the core of Dependent Haskell [Weirich et al., 2017].

Cayenne is a Haskell-like language with dependent types introduced in 1998 by Augusts-

24

3.5. Related Work

son [Augustsson, 1998]. Like Dependent Haskell, it resembles our system in its treatment of

termination, and differs by being a purely functional programming language. Cayenne’s treat-

ment of erasure is similar to Scala’s: types are systematically erased. Augustsson proves that

Cayenne’s erasure is semantics-preserving, but does not provide any other metatheoretical

results.

Adding dependent types to object-oriented languages is a remarkably under-explored

area of research. A notable exception is the recent work of Kazerounian et al. [2019] on adding

dependent types to Ruby. Their goals are very much aligned with ours: using type-level pro-

gramming to increase program safety. Given the extremely dynamic nature of Ruby, it is un-

surprising that their solution greatly differs from ours. In their work, type checking happens

entirely at runtime and has to be performed at every function invocation to account for possi-

ble changes in function definitions. Safety is obtained by inserting dynamic checks, similarly

to gradual typing.

Dependently-typed lambda calculi with subtyping were described at least as far back

as 1988 [Cardelli, 1988]. Cardelli’s type system is much more expressive than ours and al-

lows bounded quantification over both types and terms, using the notion of a Type type and

power types. Unlike our system, which is designed with the concrete evaluation of types in

mind, Cardelli does not provide a semantics for his system and leaves the equivalence rela-

tion among types unspecified.

In [Aspinall, 1994] Aspinall introduces a dependently-typed system with subtyping and

singleton types which resembles ours in its type language. His equivalence relation on types

is more powerful and is not syntax-directed, unlike our type evaluation relation. Further-

more, singleton types in his work are indexed by the type through which equality is “viewed”,

thereby enabling a form of polymorphism beyond ours. Aspinall’s system also has primitive

types and allows for atomic subtyping among them, but no congruence rules, so partially-

widened forms like (_: Any) :: Nil cannot be represented.

Pure subtype systems [Hutchins, 2010] are different in that they only contain a single

syntactic category for both terms and types, and a single relation, subtyping, that subsumes

typing, subtyping and type evaluation of our system. However, Hutchins’s system allows for

partially-widened types similar to ours and also enables computations with different levels

of precision. For instance, it is able to conclude that Int + 5 can be approximated as Int.

Dependent-object types [Amin and Rompf, 2017] model the core of Scala’s type system

and include type members and path-dependent types, which are not represented in our for-

malism. Though they introduce a form of dependency, path-dependent types were not de-

signed for type-level computations, rendering their goals largely orthogonal to ours.

25

4 Match Types
Type-level programming is becoming more and more popular in the realm of functional pro-

gramming. However, the combination of type-level programming and subtyping remains

largely unexplored in practical programming languages. This chapter presents match types,

a type-level equivalent of pattern matching. Match types integrate seamlessly into program-

ming languages with subtyping and, despite their simplicity, offer significant additional ex-

pressiveness. We formalize the feature of match types in a calculus based on System F<: and

prove its soundness. We demonstrate the practicality of our system by implementing match

types in the Scala 3 reference compiler, thus making type-level programming readily avail-

able to a broad audience of programmers.

Attribution

This chapter is based on [Blanvillain et al., 2022], which was written in collaboration with

Jonathan Brachthäuser, Maxime Kjaer, and Martin Odersky, and published in POPL’22. Sec-

tion 4.5 is based on Maxime’s semester project entitled “Shape-safe TensorFlow in Dotty”,

where he designed a strongly typed TensorFlow interface, which checks tensor shapes at

compile-time in order to prevent runtime errors in machine learning models. Maxime also

contributed to the Scala 3 compiler by adding support for arithmetic computations at the

type level. Jonathan mechanized the soundness proof for System FM, and provided invalu-

able help and guidance with redaction. Martin and I collaborated on the implementation of

match types in the Scala 3 compiler, which is now actively used by the Scala community.

4.1 Introduction

There is a growing interest in using type-level computation to increase the expressivity of type

systems, express additional constraints on the type level, and thereby improve the safety of

general-purpose software. What used to be an exclusive feature of dependently typed lan-

guages is slowly becoming accessible to everyday programmers. GHC Haskell has been at the

forefront of making this a reality and already provides several extensions to support type-level

programming. While Haskell is certainly not the only language moving towards dependent

types, the trend seems to be limited to pure functional programming languages.

We believe that type-level programming is not necessarily incompatible with other pro-

gramming paradigms and that the current division exists mainly due to a lack of attention

from the research community. Unfortunately, most of the existing research conducted in this

27

Chapter 4. Match Types

domain is not directly applicable to languages with subtyping. Although the combination of

subtyping and type-level programming has been studied extensively on the theoretical side,

through the means of dependently typed systems [Aspinall, 1994; Zwanenburg, 1999; Stone

and Harper, 2000; Courant, 2003; Hutchins, 2010; Yang and Oliveira, 2017], the practical side

remains largely unexplored.

One notable exception is the TypeScript language, which recently introduced a new fea-

ture called conditional type, a type-level ternary operator based on subtyping. A conditional

type, written S extends T ? Tt : Tf, reduces to Tt when S is a subtype of T, to Tf when S is

not a subtype of T, and is left unreduced when types variables do not allow to draw a con-

clusion. Unfortunately, the algorithm used to reduce such conditional types is both unsound

and incomplete. Despite the unsoundness (discussed in Subsection 4.6.5), the addition of

conditional types to TypeScript illustrates the practical need and timeliness of this feature.

This chapter presents an alternative construct for type-level programming based on sub-

typing, which we call match types. As the name suggests, match types allow programmers to

express types that perform pattern matching on types:

type Elem[X] = X match

case String => Char

case List[t] => Elem[t]

case Any => X

The example, which we explain in detail in Section 4.2, defines the type Elem by matching on

the type parameter X. We have implemented match types in the latest version of Scala. Match

types have received a great interest from the Scala community, and are already in active use.

In this chapter, we explore the theoretical foundations of match types through the lens

of a type system which extends System F<: with pattern matching at the term and type level.

Our formalization serves two purposes: first, it gives a clear view on how we integrated match

types in Scala’s type system and precisely describes the changes needed on the subtyping

relation to make this integration possible. Second, thanks to a type safety proof based on the

standard progress and preservation theorems, it gives confidence that the design of match

types is sensible and our implementation is sound.

Conditional types provide concrete evidence that our results are valuable beyond the con-

text of Scala. Our results are directly applicable to TypeScript’s type system and provide a

clear path to fixing the unsoundness introduced by conditional types. Furthermore, we hope

that match types can be useful as a reference for future designs of type-level programming

features for languages with subtyping.

In summary, this chapter makes the following contributions:

• We introduce programming with match types in Scala by means of an example and

highlight the interaction of type-level programming and subtyping (Section 4.2).

• We formalize match types in the self-contained calculus System FM and prove it sound,

providing a theoretical basis of our implementation (Section 4.3). The chapter is ac-

companied by a mechanization of System FM, including proofs of progress and preser-

vation.

28

4.2. Overview

• We describe our implementation of match types in the Scala compiler, discuss chal-

lenges, and relate the implementation to our formalization (Section 4.4).

• We evaluate match types in a case study, presenting a type-safe version of the NumPy

library (Section 4.5).

• We motivate the design of our formalization relative to prior work, we review the ex-

tensive related work on type families in Haskell, and discuss the unsoundness of con-

ditional types in TypeScript (Section 4.6).

4.2 Overview

In this section, we offer a brief introduction of match types in Scala by inspecting the example

from the previous section in more detail:

type Elem[X] = X match

case String => Char

case List[t] => Elem[t]

case Any => X

This example defines a type Elem parametrized by one type parameter X. The right-hand side

is defined in terms of a match on the type parameter – a match type. A match type reduces

to one of its right-hand sides, depending on the type of its scrutinee. For example, the above

type reduces as follows:

Elem[String] =:= Char

Elem[Int] =:= Int

Elem[List[Int]] =:= Int

Here we use S =:= T to denote type equality between the two types S and T, witnessed by mu-

tual subtyping. To reduce a match type, the scrutinee is compared to each pattern, one after

the other, using subtyping. For example, although String is a subtype of both String and Any

(the top of Scala’s subtyping lattice), Elem[String] reduces to Char because the corresponding

case appears first.

When the scrutinee type is a List, the match type Elem is defined recursively on the

element type of the list. Hence, in our example Elem[List[Int]] first reduces to the type

Elem[Int], and eventually to the type Int.

4.2.1 A Lightweight Form of Dependent Typing

Match types enable a lightweight form of dependent typing, since term-level pattern match-

ing expressions can be typed accordingly at the type level as a match types. Consider the

following function definition:

def elem[X <: Singleton](x: X): Elem[X] = x match

case x: String => x.charAt(0)

case x: List[t] => elem(x.head)

case x: Any => x

29

Chapter 4. Match Types

This definition is well-typed because the match expression in elem’s body has the exact same

scrutinee and pattern types as Elem[X] (the function’s return type).

Thanks to Scala’s type inference, a call to the elem function can have a result type that

depends on a term-level parameter. For instance, in the expression elem(1), the Scala com-

piler infers the singleton type X = 1 for elem’s type parameter. This expression thus has type

Elem[1], which reduces to Int (via Elem’s third case). Similarly, in elem(x), the compiler infers

the singleton type X = x.type and the expression has type Elem[x.type], which might reduce

further at the callsite depending on x’s type.

In both examples, singleton types create a dependency between a type parameter and

a term, which, by transitivity, results in a lightweight form of dependent typing, that is, a

dependency between a term parameter and a function’s result type.

4.2.2 Disjointness

Our design of match types induces an additional constraint on match type reduction: the

scrutinee type must be known to be disjoint with all type patterns preceding the matching

case. Informally, disjointness means that two types have no shared inhabitants.

The necessity for disjointness is best illustrated with an example. Consider Seq[Int], the

type of integer sequences. Elem[Seq[Int]] does not reduce:

1. Elem’s first case does not apply because Seq[Int] is not a subtype of String.

2. Elem’s second case does not apply because Seq[Int] is not a subtype of List[Int] (lists

are sequences, but not the other way around).

3. Elem’s third case is not considered because Seq[Int] and List[Int] are not disjoint.

Therefore, the reduction algorithm gets stuck on the second case and the overall type is ir-

reducible. Without disjointness, Elem[Seq[Int]] would reduce to Seq[Int] (via Elem’s third

case), which would be unsound. For example, the expression elem[Seq[Int]](List(1,2,3))

would have type Seq[Int], but evaluates to the integer 1.

Subsection 4.3.2 revisits this counterexample in a formal setting. Subsection 4.4.1 dis-

cusses our implementation of disjointness in the Scala compiler.

4.2.3 Comparison to Generalized Singleton Types

In Chapter 3, we presented a generalization of singleton types for type-level programing. Gen-

eralized singletons and match types share some similarities, such as the notion of disjoint-

ness, which plays an important role in both features. The two features relate on a deeper

level: we can explain match types in terms of generalized singletons. For example, we can

give an alternative definition of the Elem match type using a generalized singleton:

type Elem[X] = { (_: X) match

case _: String => (_: Char)

case _: List[t] => (_: Elem[t])

case _: Any => (_: X) }

30

This definition makes the term/type correspondence evident: the Elem[X] type reduces anal-

ogously to the corresponding match expression.

4.3 Formalization

In this section, we formally present System FM, an extension of System F<: [Cardelli et al.,

1994] with pattern matching, opaque classes, and match types. Figure 4.1 defines FM’s syntax

and evaluation relation. Figure 4.2 defines FM’s type system, composed of three relations:

typing, subtyping, and type disjointness. We discuss differences to System F<: in the following

subsections (Subsection 4.3.1 and 4.3.2). In Subsection 4.3.3, we outline a proof of type safety

for System FM. In Subsection 4.3.4, we present an extension of System FM with support for

binding pattern variables in type patterns.

4.3.1 Classes

System FM is parametrized by a set of classes C with class inheritance Ψ and class disjoint-

ness Ξ. The class inheritance forms a partial order on C, that is, it is reflexive, antisymmetric

and transitive. The class disjointness is symmetric relation over C.

The inheritance and disjointness parameters can be understood as a representation of a

hierarchy of Scala traits and classes. For example, trait C1; class C2 extends C1 is repre-

sented in FM as Ψ = {(C1,C2)}; Ξ = {}. This representation also models the fact that certain

types cannot possibly have common instances. For example, class C3; class C4 is repre-

sented as Ψ = {}; Ξ = {(C3,C4), (C4,C3)}, since Scala disallows multiple class inheritance. In-

heritance and disjointness must be consistent in the sense that (A,B)∈Ξ implies that there is

no class C such that (C,A)∈Ψ and (C,B)∈Ψ.

Each class in C gives rise to a constructor (written new C), a type (written C), and a con-

structor singleton type (written {new C}). The type C denotes all values that inherit C, while

the constructor singleton type {new C} denotes a single value: C’s constructor call. Subtyping

between classes is dictated by Ψ via the S-PSI rule.

This parametric approach allows us to model class inheritance as it is found in object-

oriented languages, without the need for dedicated syntax for classes and data type defini-

tions. Although our approach might appear simplistic, it can easily model advanced object-

oriented features such as multiple inheritance. We discuss the encoding of Scala’s types into

System FM in Subsection 4.4.1.

Our type system refers to classes by names and therefore mixes structural and nominal

types. Names are useful to give a direct correspondence between runtime tags and compile-

time types. As we will see, runtime tags are essential to runtime type testing and play a central

role in the evaluation of pattern matching.

4.3.2 Matches

System FM supports both pattern matching on the term level (match expressions) as well as

on the type-level (match types). Matches, both on terms and on types, are composed of a

Chapter 4. Match Types

Syntax

t ::=
x variable
λx:T. t abstraction
λX<:T. t type abstraction
t t application
t T type application
new C constructor call

t match{x :C⇒ t}or t match expr.

v ::=
λx:T. t abstraction
λX<:T. t type abstraction
new C constructor call

T ::=
X type variable
T → T type of functions
∀X<:T. T universal type
Top maximum type
C class
{new C} constructor singleton

T match{T⇒T}or T match type

Γ ::=
; empty context
Γ,x :T term binding
Γ,X<:T type binding

Evaluation

t1−→ t′1
t1 t2−→ t′1 t2

(E-APP1)
t2−→ t′2

v1 t2−→v1 t′2
(E-APP2)

t1−→ t′1
t1 T2−→ t′1 T2

(E-TAPP)

(λx:T11. t12) v2−→[x 7→v2]t12

(E-APPABS)
(λX<:T11. t12) T2−→[X 7→T2]t12

(E-TAPPTABS)

ts −→ t′s
ts match{xi :Ci ⇒ ti }or td −→
t′s match{xi :Ci ⇒ ti }or td

(E-MATCH1)

(C,Cn)∈Ψ ∀m < n. (C,Cm)∉Ψ
new C match{xi :Ci ⇒ ti }or td −→[xn 7→new C]tn

(E-MATCH2)

∀m. (C,Cm)∉Ψ
new C match{xi :Ci ⇒ ti }or td −→ td

(E-MATCH3)

(λx:T. t) match{xi :Ci ⇒ ti }or td −→ td (E-MATCH4)

(λX<:T. t) match{xi :Ci ⇒ ti }or td −→ td (E-MATCH5)

Figure 4.1 – System FM syntax and evaluation rules for a given set of classes C with class
inheritance Ψ. The Ψ relation is a partial order on C that describes the inheritance between
classes. Highlights correspond to additions to System F<:, as per [Pierce, 2002, Figure 26-1].

32

4.3. Formalization

Subtyping

Γ`S<:S (S-REFL) Γ`S<:Top (S-TOP)

Γ`{new C}<:C (S-SIN)
(C1,C2)∈Ψ
Γ`C1 <:C2

(S-PSI)

Γ`S<:U Γ`U<:T

Γ`S<:T
(S-TRANS)

Γ`T1 <:S1 Γ`S2 <:T2

Γ`S1→S2 <:T1→T2
(S-ARROW)

X<:T∈Γ
Γ`X<:T

(S-TVAR)
Γ,X<:U1`S2 <:T2

Γ`(∀X<:U1. S2)<:(∀X<:U1. T2)
(S-ALL)

Γ`Ts <:Sn ∀m < n. Γ`disj(Ts ,Sm)

Γ`Ts match{Si ⇒Ti }or Td =:=Tn
(S-MATCH1/2)

∀n. Γ`disj(Ts ,Sn)

Γ`Ts match{Si ⇒Ti }or Td =:=Td
(S-MATCH3/4)

Γ`Ss <:Ts Γ`Sd <:Td ∀n. Γ`Sn <:Tn

Γ`Ss match{Ui ⇒Si }or Sd <:
Ts match{Ui ⇒Ti }or Td

(S-MATCH5)

Typing

Γ,x :T1` t2 :T2

Γ`λx:T1. t2 :T1→T2
(T-ABS)

Γ` t1 :T11→T12 Γ` t2 :T11

Γ` t1 t2 :T12
(T-APP)

Γ,X<:U1` t2 :T2

Γ`λX<:U1. t2 :∀X<:U1. T2
(T-TABS)

Γ` t1 :∀X<:T11. T12 Γ`T2 <:T11

Γ` t1 T2 : [X 7→T2]T12
(T-TAPP)

x :T∈Γ
Γ`x:T

(T-VAR)
Γ` t :S Γ`S<:T

Γ` t :T
(T-SUB) Γ`new C:{new C} (T-CLASS)

Γ` ts :Ts Γ,xi :Ci ` ti :Ti Γ` td :Td

Γ` ts match{xi :Ci ⇒ ti }or td :Ts match{Ci ⇒Ti }or Td
(T-MATCH)

Disjointness

(C1,C2)∈Ξ
Γ`disj(C1,C2)

(D-XI)
(C1,C2)∉Ψ

Γ`disj({new C1},C2)
(D-PSI)

Γ`S<:U Γ`disj(U,T)

Γ`disj(S,T)
(D-SUB)

Γ`disj(T1→T2,C) (D-ARROW)

Γ`disj(∀X<:T1. T2,C) (D-ALL)

Figure 4.2 – System FM type system for a given set of classes C with class inheritance Ψ and
class disjointness Ξ. Ψ is a partial order on C that describes the inheritance between classes.
Ξ is symmetric relation over C that relates classes which share no inhabitants. Highlights
correspond to additions to System F<:, as per [Pierce, 2002, Figure 26-1]. 33

Chapter 4. Match Types

scrutinee, a list of cases and a default expression/type. Each case consists of a type test and a

corresponding expression/type. At the term level, a type test consists of an inheritance check

against a particular class (this is also known as a typecase [Abadi et al., 1991]). At the type

level, a type test corresponds to a subtyping test with a particular type. This disparity reflects

the difference between runtime, where type tests are implemented using class tables, and

compile time, where types are compared using the type system in its full extent. We discuss

the representation of Scala types at runtime in Subsection 4.4.7.

Throughout this chapter, we use the abbreviated syntax ts match{xi :Ci ⇒ ti }or td to de-

note an arbitrary number of cases, that is, ∃n∈N. ts match{x1 :C1⇒ t1; . . . ;xn :Cn ⇒ tn}or td .

Match expressions and match types are related by the T-MATCH typing rule. This rule op-

erates by typing each component of a match expression to then assemble the corresponding

match type.

Example A. For example, given two disjoint classes A and B, and an empty class inheri-

tance (Ψ= Id,Ξ= {(A,B), (B,A)}); the following function:

f =λX<:Top. λx:X. x match{a :A⇒ foo;b:B⇒bar}or buzz

can be typed precisely as

f : ∀X<:Top. X→X match{A⇒Foo;B⇒Bar}or Buzz

where foo, bar and buzz are expressions with types Foo, Bar and Buzz, respectively.

The cases of a match expression are evaluated sequentially: the scrutinee is checked using

the type test of each case, one after the other. The overall expression reduces to the expression

that corresponds to the first successful type test (E-MATCH2). When no type test succeeds,

the match evaluates to its default expression (E-MATCH3/4/5). For instance, given the func-

tion f defined in Example A, the expression (f A (new A)) evaluates to foo and (f B (new B)) to

bar.

Match Type Reduction

The subtyping relation contains 5 rules for match type reduction, S-MATCH1/2/3/4/5. These

rules are defined in pairs using the =:= shorthand notation, where S=:=T means that S and T

are in a mutual subtyping relation. More precisely, S-MATCH1/2 in Figure 4.2 corresponds to

two typing rules with identical premises and symmetrical conclusion, and the same goes for

S-MATCH3/4.

The typing rules for match type reduction are best explained as generalizations of the

evaluation relation. Given a match type M = Ts match{Ci ⇒Ti }or Td , M reduces to Ti if and

only if, for every value ts in Ts , the term level expression ts match{xi :Ci ⇒ ti }or td evaluates to

ti .

The S-MATCH1/2 rules correspond to the evaluation of a match expression to its nth case

(E-MATCH2):

Γ`Ts <:Sn ∀m < n. Γ`disj(Ts ,Sm)

Γ`Ts match{Si ⇒Ti }or Td =:=Tn

(S-MATCH1/2)

The first premise ensures that the nth case type test will succeed for every possible value

34

4.3. Formalization

in the scrutinee type Ts . Conversely, the second premise is a disjointness judgment, which

ensures that no value in the scrutinee type would result in a successful type test for cases

prior to the nth case. The S-MATCH3/4 rules correspond to an evaluation to the default case

(E-MATCH2), and require disjointness between the scrutinee type and each type test type:

∀n. Γ`disj(Ts ,Sn)

Γ`Ts match{Si ⇒Ti }or Td =:=Td

(S-MATCH3/4)

Disjointness between two classes can be concluded directly using the D-XI rule which

uses the class disjointness Ξ. Likewise, disjointness between a constructor singleton type

and a class can be concluded directly by inspecting the class inheritance Ψ (D-PSI). Function

types and universal types are disjoint from classes as they are inhabited by different values

(D-ARROW, D-ALL) and thus will never match. The last disjointness rule, D-SUB, states that

if U and T are disjoint, then all subtypes of U are also disjoint with T.

Example B. We continue developing Example A by showing how match type reduction

rules can be used to conclude that (f B (new B)) has type Bar. Using T-TAPP and T-APP, the

expression can be typed as follows:

f B (new B) : B match{A⇒Foo;B⇒Bar}or Buzz

Since our example assumes an empty class inheritance and (A,B)∈Ξ, the S-MATCH1 rule

gives:

;`B match{A⇒Foo;B⇒Bar}or Buzz<:Bar

Finally, using T-SUB we get (f B (new B)) :Bar.

Subtyping and Disjointness

One might wonder what happens if we simplify the match type reduction rules by replac-

ing premises of the form Γ`disj(T,C) by seemingly equivalent premises of the form (T,C)∉
Ψ. Unfortunately, the resulting system would be unsound, which can be demonstrated with

a counterexample. Let us assume the function f defined in Example A, adding a new class E

with Ψ = {(E,A), (E,B)} and Ξ = {}. Now, consider the term (f B (new E)). Since we have ;`
E<:B, this function application is well-typed and, given that (E,A)∈Ψ, evaluates to foo. The

term-level and type-level reductions are inconsistent! The unsoundness arises when using

(B,A)∉Ψ with the modified S-MATCH1 rule to wrongly conclude that (f B (new E)) has type

Bar. This would result in an inconsistency between types (e:Bar) and evaluation (e−→ foo),

and violate type soundness. In System FM, the match type obtained when typing (f B (new E))

does not reduce since the scrutinee type B is neither disjoint with, nor a subtype of the first

pattern type test A. In this case, unreduced match type is assigned “as is”. Unreduced types

can appear as the result of programming error, but can also be due to the local irreducibility

of a match type. For instance, the body of f is typed with an unreduced type, as shown in Ex-

ample A, but that type can later become reducible depending on type variable instantiations.

35

Chapter 4. Match Types

Disjointness/
subtyping

exclusivity (4.5)

Inversion of
subtyping (4.6)

Inversion of
typing (4.8)

Preservation (4.11)

Canonical
forms (4.7)

Progress (4.10)

Substitution (4.4)

Type safety

Strengthening (4.3)

Permutation (4.1)

Weakening (4.2)

Minimum
types (4.9)

Figure 4.3 – Structure of the type safety proof. Arrows represent implications between lem-
mas and theorems.

4.3.3 Type Safety

We show the type safety of System FM through the usual progress and preservation theorems.

This section provides an overview of the proof structure and states the involved lemmas and

theorems. Detailed proofs are available in the supplementary material of this thesis, in two

different versions. The first version, Blanvillain et al. [2021a], is a pen-and-paper proof where

System FM is exactly as presented in Figure 4.2. The second version, Blanvillain et al. [2021b],

is a mechanization of the proof in Coq, using the locally nameless representation by Aydemir

et al. [2008] to model variable bindings. Our mechanization uses a simplified representa-

tion of match types with exactly one case per match. Matches with multiple cases can be

expressed by nesting match types in default cases.

Figure 4.3 gives an overview of the proof structure by showing implications between the

various lemmas and theorems. The basic structure resembles that of System F<:’s standard

safety proof from [Pierce, 2002]. We continue our presentation by introducing the lemmas

and theorems used in our type safety proof.

Preliminary Lemmas

Our proof begins with preliminary technical lemmas:

Lemma 4.1 (Permutation).

If Γ and ∆ are well-formed and ∆ is a permutation of Γ, then:

1. If Γ`disj(S,T), then ∆`disj(S,T).

2. If Γ`S<:T, then ∆`S<:T.

3. If Γ` t :T, then ∆` t :T.

36

4.3. Formalization

Lemma 4.2 (Weakening).

1. If Γ`disj(S,T) and Γ,X<:U is well formed, then Γ,X<:U`disj(S,T).

2. If Γ`S<:T and Γ,X<:U is well formed, then Γ,X<:U`S<:T.

3. If Γ`S<:T and Γ,x :U is well formed, then Γ,x :U`S<:T.

4. If Γ` t :T and Γ,x :U is well formed, then Γ,x :U` t :T.

5. If Γ` t :T and Γ,X<:U is well formed, then Γ,X<:U` t :T.

Lemma 4.3 (Strengthening).

If Γ,x :T,∆`S<:T, then Γ,∆`S<:T.

Lemma 4.4 (Substitution).

1. If Γ,X<:Q,∆`disj(S,T) and Γ`P<:Q, then Γ, [X 7→P]∆`disj([X 7→P]S,[X 7→P]T).

2. If Γ,X<:Q,∆`S<:T and Γ`P<:Q, then Γ, [X 7→P]∆`[X 7→P]S<:[X 7→P]T.

3. If Γ,X<:Q,∆` t :T and Γ`P<:Q, then Γ, [X 7→P]∆`[X 7→P]t :[X 7→P]T.

4. If Γ,x :Q,∆` t :T and Γ`q:Q, then Γ,∆`[x 7→q]t :T.

These lemmas are entirely standard, and as usual, their proofs follow by mutual induc-

tions on derivations.

Disjointness / Subtyping Exclusivity

The following non-standard lemma is necessary to prevent overlap between the S-MATCH1/2

and S-MATCH3/4 rules.

Lemma 4.5 (Disjointness/subtyping exclusivity).

The type disjointness and subtyping relations are mutually exclusive. In other words,

∀Γ,S,T.¬(Γ`S<:T and Γ`disj(S,T))

If such overlap would be allowed, match types could reduce in several different ways,

resulting in an unsound system. We prove Lemma 4.5 by contradiction. Our proof uses a

mapping from System FM’s types into non-empty subsets of a newly defined set P = {Λ,V}∪
C, where Λ and V are equivalence class representatives for abstractions and type abstractions,

respectively. Elements of P can be understood as equivalence classes for FM’s types. We show

that the subtyping relation in FM corresponds to a subset relation in P, and that the type

disjointness relation in FM (disj) corresponds to set disjointness in P. This set-theoretical

view lets us conclude the desired result directly. In our Coq mechanization, we axiomatize

this lemma and delegate to the pen-and-paper proof.

37

Chapter 4. Match Types

...
Γ`S=:=T

(S-MATCH1/2)

Γ`S⇌T

...
Γ`S=:=T

(S-MATCH3/4)

Γ`S⇌T

Γ`S⇌U Γ`U⇌T

Γ`S⇌T

Figure 4.4 – Definition of the auxiliary relation ⇌, used to state inversion of subtyping.

Inversion of Subtyping

The following Lemma 4.6 allows us to perform inversion on the subtyping relation, which is

important to show canonical forms (Lemma 4.7) and inversion of typing (Lemma 4.8). Stating

the lemma requires the definition of a new relation denoted Γ`S⇌T, defined in Figure 4.4.

This relation represents evidence of the mutual subtyping between a match type S and a type

T, with the additional constraint that this evidence was exclusively constructed using pair-

wise applications of S-MATCH1/2, S-MATCH3/4, and S-TRANS in both directions. Intuitively,

Γ`S⇌T is handier than two independent derivations of Γ`S<:T and Γ`T<:S because it

allows simultaneous induction on both subtyping directions. Although Γ`S⇌T witnesses

mutual subtyping between S and T, that relation is asymmetric, since its left-hand side is

always a match type.

Lemma 4.6 (Inversion of subtyping).

1. If Γ`Ss match{Ui ⇒Si }or Sd ⇌T, then either:

(a) Γ`Ss <:Un , ∀m < n. Γ`disj(Ss ,Um) and Sn is a match type with Γ`Sn ⇌T,

(b) Γ`Ss <:Un , ∀m < n. Γ`disj(Ss ,Um) and Sn = T,

(c) ∀n. Γ`disj(Ss ,Un) and Sd is a match type with Γ`Sd ⇌T,

(d) ∀n. Γ`disj(Ss ,Un) and Sd = T.

2. If Γ`S<:X, or Γ`S<:T where T is a match type with Γ`T⇌X, then either

(a) S is a match type with Γ`S⇌Y, for some Y,

(b) S is a type variable.

3. If Γ`S<:T1→T2, or Γ`S<:T where T is a match type with Γ`T⇌T1→T2, then either

(a) S is a match type with Γ`S⇌S1→S2, for some S1, S2 such that Γ`T1 <:S1 and Γ`
S2 <:T2,

(b) S is a match type with Γ`S⇌X, for some X,

(c) S is a type variable,

(d) S has the form S1→S2 with Γ`T1 <:S1 and Γ`S2 <:T2.

4. If Γ`S<:∀X<:U1. T2, or Γ`S<:T where T is a match type with Γ`T⇌∀X<:U1. T2, then

either

(a) S is a match type with Γ`S⇌∀X<:U1. S2, for some S2 such that Γ,X<:U1`S2 <:T2,

38

4.3. Formalization

(b) S is a match type with Γ`S⇌X, for some X,

(c) S is a type variable,

(d) S has the form ∀X<:U1. S2 and Γ,X<:U1`S2 <:T2.

The first point of Lemma 4.6 uses the structure of the ⇌ to provide a form of inversion,

which we use to prove each of the subsequent points. In comparison with the corresponding

inversion lemma in F<:’s safety proof, the statement and the proof of Lemma 4.6 are longer

and more intricate. This difference is inevitable, given that match type reduction rules al-

low match expressions to be typed as the result of their reduction, which complexifies the

inversion.

Similarly to inversion of subtyping, our canonical forms lemma is non-standard in that it

uses a disjunction in its premise to account for match types.

Lemma 4.7 (Canonical forms).

1. If Γ` t :T, where either T is a type variable, or T is a match type with Γ`T⇌X, then t is

not a closed value.

2. If v is a closed value with Γ`v:T where either T = T1→T2, or T is a match type and Γ`
T⇌T1→T2, then v has the form λx:S1. t2.

3. If v is a closed value with Γ`v:T where either T =∀X<:U1. T2, or T is a match type and

Γ`T⇌∀X<:U1. T2, then v has the form λX<:U1. t2.

Proof of Soundness

The remaining proof of soundness is mostly standard. Lemma 4.8 and 4.9 are simple inver-

sions of typing rules. Lemma 4.9 is needed in the proof of preservation to recover subtyping

bounds from typing judgments. The proofs proceed by routine induction on derivations.

Lemma 4.8 (Inversion of typing).

1. If Γ`λx:S1. s2 :T and Γ`T<:U1→U2, then Γ`U1 <:S1 and there is some S2 such that

Γ,x :S1`s2 :S2 and Γ`S2 <:U2.

2. If Γ`λX<:S1. s2 :T and Γ`T<:(∀X<:U1. U2), then U1 = S1 and there is some S2 such that

Γ,X<:S1`s2 :S2 and Γ,X<:S1`S2 <:U2.

Lemma 4.9 (Minimum types).

1. If Γ`new C:T then Γ`{new C}<:T.

2. If Γ`λx:T1. t2 :T then there is some T2 such that Γ`T1→T2 <:T.

3. If Γ`λX<:U1. t2 :T then there is some T2 such that Γ`∀X<:U1. T2 <:T.

With these lemmas in hand, the proofs of progress and preservation are straightforward.

39

Chapter 4. Match Types

Theorem 4.10 (Progress).

If t is a closed, well-typed term, then either t is a value or there is some t′ such that t−→ t′.

Theorem 4.11 (Preservation).

If Γ` t :T and t−→ t′ then Γ` t′ :T.

4.3.4 Type Binding Extension

In this section, we present System FMB, an extension of System FM with support for binding

pattern variables in type patterns. FMB is parametrized by two sets of classes, A and B, rep-

resenting non-parametric and parametric classes, respectively. A parametric class, written

B T, takes exactly one type parameter1. We redefine C to be a syntactic object defined as C:

:= A|B T. The class inheritance Ψ and class disjointness Ξ remain as binary relations on C.

A generic instantiation in the class hierarchy is represented as an element of Ψ, for example,

A1 extends B2[A3] is represented as (A1,B2 A3)∈Ψ. Generic inheritance is represented using

multiple entries in Ψ, for example, B1[T] extends B2[T] is represented as ∀T.(B1 T,B2 T)∈Ψ.

This approach allows us to reuse most of FM’s definitions. Indeed, our formal development

treats C, Ψ, and Ξ as mathematical objects, and is compatible with FMB’s new definition of

classes.

In Figure 4.5, we define System FMB syntax and rules, where changes to System FM are

highlighted in gray. FMB’s new syntax for match expressions and match types adds a pattern

variable to each construct. In ts match[X]{xi :Ci ⇒ ti }or td , the pattern variable X is available

to bind type parameters in Ci patterns.

The definitions of S-MATCH3/4, S-MATCH5, and T-MATCH require minor adjustments

to account for the pattern variable in typing contexts. Note that pattern variables appear in

contexts unconditionally, regardless of whether or not those variables are used in the corre-

sponding patterns.

In the new subtyping rule for non-default match reduction, called BS-MATCH1/2, the

first premise instantiates the pattern variable X to some type U such that the scrutinee type

is a subtype of the nth pattern:

Γ, X<:U `Ts <:Sn ∀m < n. Γ, X<:Top `disj(Ts ,Sm)

Γ`Ts match [X] {Si ⇒Ti }or Td =:= [X 7→U] Tn

(BS-MATCH1/2)

Here U is completely unconstrained: any instantiation of X such that Ts <:Sn would be ad-

missible. The disjointness judgments use a weaker upper bound for X than the subtyping

judgment (X<:Top instead of X<:U). This is because the scrutinee type must be shown dis-

joint with non-matching pattern types for every possible instantiation of X. In an algorithmic

system, U would be computed during type inference by constraint solving.

1The restriction to a single type parameter is for presentation purposes. Both System FMB’s type system and
type-safety proof can easily be adapted to support a variable number of binding variables.

40

4.3. Formalization

Syntax

C ::=
A ground class
B T parametric class

t ::= . . .

t match [X] {x :C⇒ t}or t match expr.

T ::= . . .

T match [X] {T⇒T}or T match type

Evaluation

(C, [X 7→U] Cn)∈Ψ ∀m < n.∀T. (C, [X 7→T] Cm)∉Ψ
new C match [X] {xi :Ci ⇒ ti }or td −→ [X 7→U] [xn 7→new C]tn

(BE-MATCH2)

∀m.∀T. (C, [X 7→T] Cm)∉Ψ
new C match [X] {xi :Ci ⇒ ti }or td −→ td

(BE-MATCH3)

Subtyping

Γ, X<:U `Ts <:Sn ∀m < n. Γ, X<:Top `disj(Ts ,Sm)

Γ`Ts match [X] {Si ⇒Ti }or Td =:= [X 7→U] Tn
(BS-MATCH1/2)

∀n. Γ, X<:Top `disj(Ts ,Sn)

Γ`Ts match [X] {Si ⇒Ti }or Td =:=Td
(BS-MATCH3/4)

Γ`Ss <:Ts Γ`Sd <:Td ∀n. Γ, X<:Top `Sn <:Tn

Γ`Ss match [X] {Ui ⇒Si }or Sd <:
Ts match [X] {Ui ⇒Ti }or Td

(BS-MATCH5)

Typing

Γ` ts :Ts Γ, X<:Top ,xi :Ci ` ti :Ti Γ` td :Td

Γ` ts match [X] {xi :Ci ⇒ ti }or td :Ts match [X] {Ci ⇒Ti }or Td
(BT-MATCH)

Figure 4.5 – System FMB syntax, evaluation and typing rules for a given set of ground classes
A, set of parametric classes B, class inheritance Ψ, and class disjointness Ξ. Highlights corre-
spond to changes made to System FM.

41

Chapter 4. Match Types

The new evaluation rule for non-default match reduction uses a similar mechanism: it

looks for the first case where the pattern variable can be instantiated such that the scrutinee

inherits the corresponding pattern:

(C, [X 7→U] Cn)∈Ψ ∀m < n.∀T. (C, [X 7→T] Cm)∉Ψ
new C match [X] {xi :Ci ⇒ ti }or td −→ [X 7→U] [xn 7→new C]tn

(BE-MATCH2)

The second premise rules out non-matching cases with a universal quantifier ranging

over all types. A concrete implementation would certainly opt for a more efficient approach,

for instance by implementing Ψ as a lookup table.

Example C. Consider the following class hierarchy with two ground classes: Char and

String, and a single parametric class List, such that String extends List Char:

A = {Char,String} B = {List}

Ψ= {(String,List Char)}∪ Id Ξ= {}

f =λx:Top. x match[X]{xs :List X⇒ foo}or bar

The function f matches its arguments against the List X pattern, where X is a pattern variable.

We examine the evaluation of two applications of f:

1. f(new String) matches against List X with X = Char and evaluates to [X 7→Char][x 7→
new String]foo via BE-MATCH2 (since (String,List Char)∈Ψ).

2. f(new List Top) also matches List X, this time with X = Top, and evaluates to [X 7→
Top][x 7→new List Top]foo via BE-MATCH2. Here (List Top,List Top)∈Ψ follows from

Ψ’s reflexivity.

We established the type safety of System FMB by adapting System FM’s pen-and-paper

proof. The required changes are lengthy, but relatively uninteresting; it boils down to ad-

ditional bookkeeping of pattern variables in contexts. The main takeaway from FMB’s type

safety is that the proof does not require additional constraints on type U in BS-MATCH1/2.

As a result, algorithmic implementations are free to use any mechanism to come up with

instantiations of pattern variables.

4.4 Implementation

Match types are implemented in Dotty, the reference compiler for Scala 3. This section ex-

plains how our implementation relates to the formalization presented in Section 4.3.

In the compiler, match-type reduction happens during subtyping, just like in System FM.

In order for subtyping to remain algorithmic, match type reduction rules are never used to

introduce new match types, but only to simplify the ones present in the original program.

The reduction algorithm closely follows the typing rules of Section 4.3. The scrutinee type is

compared with each pattern sequentially. If the scrutinee is a subtype of the first pattern type,

42

4.4. Implementation

the match type reduces. Otherwise, if the scrutinee can be shown to be disjoint with the first

pattern type, the algorithm proceeds to the next pattern. If the algorithm reaches a pattern

where neither subtyping nor disjointness can be concluded, the reduction is aborted and the

match type remains unreduced.

4.4.1 Disjointness in Scala

Separate compilation is the biggest obstacle to concluding that two types are disjoint. Indeed,

in Scala, all traits and classes are extensible by default. Because Scala programs are compiled

with an open-world assumption, it is common for types to be effectively disjoint in the cur-

rent compilation unit, but due to potential extensions in future compilations, the compiler

must stay conservative.

Separate compilation is the reason why our formalization requires two different parame-

ters to describe its class hierarchy. One particular instantiation of System FM can be thought

of as a model of Scala’s type system for a particular compilation unit, where C represents the

set of classes declared so far. The class inheritance, Ψ, remains valid for all subsequent com-

pilation units: new class definitions do not alter the inheritance between previously defined

classes. However, the inheritance parameter (Ψ) is, on its own, not sufficient to conclude

that two classes are disjoint: new class definitions can introduce new overlaps between ex-

isting classes. For this reason, our formalization uses a separate parameter to describe class

disjointness (Ξ). To account for separate compilation, Ξ should only contain pairs of classes

which would remain disjoint despite potential additions to the current set of classes.

Thankfully, Scala provides several ways to restrict extensibility. The sealed and final anno-

tations on traits and classes directly restrict the extensibility of annotated types: sealed types

can only be extended in the same file as its declaration, thereby providing a way to enumer-

ate all the children of a type. Thus, disjointness of sealed traits and classes can be computed

recursively by iterating over all the possible subtypes of that type. The main distinction be-

tween traits and classes is that a class can extend at most one superclass. This property allows

the compiler to assert that classes are disjoint with a simple check: given two classes A and

B, if neither A<:B nor B<:A, then no class could possibly extend both A and B, and those two

types are disjoint.

As an example, consider the following Scala definitions (left-hand side), and the corre-

sponding instantiation of System FM (right-hand side):

sealed trait Part

final class Wheel extends Part

final class DiscBrake extends Part

trait Vehicle

class Bicycle extends Vehicle

class RoadBike extends Bicycle

class Helmet

C = {P,W,D,V,B,R,H}

Ψ= {(W,P), (D,P), (B,V), (R,B), (R,V)}

Ξ= {(P,V), (P,B), (P,R), (P,H),

(W,V), (W,B),(W,R),(W,H),

(D,V), (D,B), (D,R), (D,H),

(W,D),(B,H),(R,H)}

The classes and inheritance relation are practically isomorphic between the two representa-

43

Chapter 4. Match Types

tion: Scala classes have a one-to-one correspondence to their FM counterparts (abbreviated

with initials) and the inheritance only contains an additional entry for R and V, obtained by

transitivity (Ψ’s reflexivity and Ξ’s symmetry are omitted for brevity).

P is declared sealed, meaning that no additional parts can be defined outside of this com-

pilation unit. As a result, we can enumerate all parts to conclude that none are vehicles and

(P,V)∈Ξ. Note that this would not be the case if either W or D was declared non-final, since

extending those classes would indirectly create new parts. B and H are both classes that do

not inherit each other, which implies that (B,H)∈Ξ given that Scala classes can extend at

most one class. V and H, however, cannot be concluded disjoint in those definitions. If that

turns out to be a desirable property, disjointness could easily be obtained by sealing V or

finalizing H.

4.4.2 Empty Types

An important limitation of System FM compared to Scala’s type system is that it does not

support empty types. The bottom of Scala’s subtyping lattice, called Nothing, provides a di-

rect way to refer to empty sets of values. Intersection types also provide a way to construct

uninhabited types given that Scala does not forbid intersecting two disjoint types. Empty

types are problematic for the match type reduction algorithm as they break the fundamental

assumption that two types cannot be both disjoint and subtypes (Lemma 4.5). To account

for this, our implementation uses an additional inhabitance check on scrutinee types before

attempting to prove types disjoint. This updated definition of disjointness allows us to main-

tain the property of Lemma 4.5 (disjointness/subtyping exclusivity) in the presence of empty

types.

To show why empty types are problematic, we can construct an example where, in the

absence of an inhabitance check, the same match type could be reduced differently in two

different contexts:

type M[X] = X match

case Int => String

case String => Int

class C:

type X

def f(bad: M[X & String]): Int = bad

class D extends C:

type X = Int

In this example, the definition of f in C type-checks because X & String and Int are disjoint

(since String and Int are disjoint) and M[X & String] reduces to Int (M’s second case applies).

Class D refines the definition of C by giving concrete definition of X. The unsoundness mani-

fests itself in the body of class D, where X & String is a subtype of Int and M[X & String] reduces

to String (M’s first case applies). There, it is possible to call the function f with a string argu-

ment, which would result in a runtime error. Checking for scrutinee inhabitance prevents

this class of errors. In this example, it would prevent M[Int & String] from reducing given

that Int & String is not inhabited.

44

4.4. Implementation

4.4.3 Null Values

In Scala 3, null values no longer inhabit every type: nullable types require explicit annota-

tions of the form A | Null [Nieto et al., 2020]. Our implementation of subtyping and dis-

jointness handles union types and therefore needs no particular treatment of null values. To

allow easy migration from older versions, the strict treatment of nulls is still optional in Scala

3.0, enabled by the command line option −Yexplicit−nulls. The plan is to make strict null

checking the default in the future.

4.4.4 Disjointness of Variant Types

Scala supports variance annotations on type parameters of higher-kinded types. These anno-

tations allow programmers to specify how the subtyping of annotated parameters influences

the subtyping of the higher-kinded type. For instance, type F[+T] defines a type F that is

covariant in its first type parameter, meaning that T1 <: T2 implies F[T1] <: F[T2]. Contravari-

ance, written type G[−T], has the opposite meaning: T1 <: T2 implies G[T2] <: G[T1].

It would appear that co- and contravariant types are always overlapping, given that, for

all types X, F[Nothing] <: F[X] and G[Any] <: G[X] (where Nothing and Any are Scala’s bottom

and top types). However, in the case of covariant parameters, an exception can be made

when the said type parameter corresponds to a field or a constructor parameter: the Nothing

instantiation can be ruled out because no runtime program can produce a value of that type.

Scala tuples, for example, fall into this category. Tuple2, the class for pairs, is defined as

follows: case class Tuple2[+T1, +T2](_1: T1, _2: T2). Given two instantiations of this this

type, Tuple2[Int,X] and Tuple2[String,X], although Tuple2[Nothing,X] is a subtype of both,

there is no runtime value of type Tuple2[Nothing,X] (since Nothing is uninhabited), and, as

a result, those two types are disjoint. Our disjointness algorithm implements this kind of

reasoning to conclude disjointness in the presence of covariant type parameters. There is no

such reasoning available for contravariant types: our algorithm can never conclude that G[X]

and G[Y] are disjoint for a contravariant type G.

4.4.5 Match Type Variance

In Subsection 4.4.4 we discussed how our match type reduction algorithm handles variance

annotations of higher-kinded types. In this section, we discuss the orthogonal problem of

supporting variance annotations on match type definitions.

Consider the following definition of a match type M:

type M[X] = X match

case P1 => E1

case P2 => E2

case P3 => E3

In Section 4.3, we define the semantics of this type in terms of subtyping rules. Given this

particular definition of M, we can write a direct semantic definition of M using the following

equations:

45

Chapter 4. Match Types

• M[X] = E1 if X <: P1

• M[X] = E2 if disj(X, P1) and X <: P2

• M[X] = E3 if disj(X, P1) and disj(X, P2) and X <: P3

This equational definition is consistent under the assumptions of Lemma 4.5.

We show that M[X] is covariant if E1, E2, and E3 are covariant with respect to X. Given

T1 <: T2, we proceed by case analysis on M[T2]:

• If M[T2] = E1, then M[T1] = E1 by subtyping transitivity and the result follows from the

covariance of E1.

• If M[T2] = E2, then (disj(T2, P1) and T1 <: T2) implies disj(T1, P1) (using D-SUB),

and (T2 <: P2 and T1 <: T2) implies T1 <: P2, which yields M[T1] = E2. The result fol-

lows from the covariance of E2.

• M[T2] = E3 is analogous.

Similarly, we can show that M[X] is contravariant if E1, E2, and E3 are contravariant with re-

spect to X.

In practice, it would be hard to show that E1, E2, and E3 are co-/contravariant when type

bindings get into the picture. For non-binding cases, that analysis is straightforward and

analogous to the variance checks that are already in place in the compiler.

At the time of writing, our implementation does not support variance annotations on

match types (all match types are invariant). However, it would be conceivable to lift this

restriction in the future, as shown by the analysis presented in this section.

4.4.6 Pattern Matching Exhaustivity

The Scala compiler checks for pattern matching exhaustivity to prevent runtime exceptions

caused by missing cases. Exhaustivity checking uses static knowledge about the class hierar-

chy (such as the sealed and final annotations) to check that every value in the scrutinee type

is covered by the pattern clauses [Liu, 2016]. Non-exhaustive patterns are compiled with an

additional “catch-all” case which throws a runtime exception. System FM uses default cases

as a replacement for systematic exhaustivity checks or runtime exceptions.

4.4.7 Types at Runtime

Scala’s primary platform is the Java virtual machine (JVM). On the JVM, Scala is compiled us-

ing partial erasures [Schinz, 2005], a process which preserves some types by translating them

to the JVM’s type systems, and removes other types by erasing them to Object, the JVM’s top

type. Scala’s type erasure directly affects pattern matching because it prevents certain pat-

terns from being checked at runtime. For instance, both List[String] and List[Int] erase

to List[Object], which makes them indistinguishable from the JVM’s perspective. This lim-

itation is intrinsic to the JVM and affects Scala’s pattern matching in general. Match types

46

4.4. Implementation

reduce during type checking (before erasure) and are thus not affected by this limitation. Era-

sure hence creates an expressivity gap between pattern matching at the term and at the type

level.

In practice, the Scala compiler handles this limitation by emitting warnings for unchecked

patterns. For example, while case xs: List[Int] => is a syntactically valid pattern, it com-

piles with a warning that the Int type parameter is eliminated by erasure and cannot be

checked at runtime.

This restriction is reflected in our formalism by the difference between the evaluation

rules for match expressions and the reduction rules for match types: evaluation is limited to

inheritance checks on statically defined classes ((C,Cn)∈Ψ in E-MATCH2/3), as opposed to

the match type reduction rules which are defined using the subtyping and type disjointness

relations (Γ`Ts <:Sn and Γ`disj(Ts ,Sm) in S-MATCH1/2/3/4).

In System FMB (Subsection 4.3.4), match expressions support two sorts of parametric

patterns: they can be either instantiated (match{xs :List Int}, where Int∈A), or use a binding

pattern variable (match[X]{xs :List X}, where X is a pattern variable). In this sense, System FMB

is more expressive than Scala, where instantiated patterns are not available at the term level

due to type erasure.

In a language with full type erasure, match types would have no term-level counterparts

and the T-MATCH rule would thus be pointless.

4.4.8 Non-Termination

Unlike our calculus, the Scala implementation also allows match type definitions to be recur-

sive. Recursive match types can cause subtyping checks to loop indefinitely. Our implemen-

tation does not check match types for termination, as any such check would necessarily limit

expressiveness or convenience. Instead, we detect divergence during match type reduction

using a fuel mechanism. The compiler is given an initial amount of fuel, which is consumed

one unit at a time on every reduction step. If the compiler runs out of fuel, the reduction

is aborted with a “recursion limit exceeded” error. The current implementation uses a fixed

amount of initial fuel. Although this seems to be sufficient for most practical purposes, we

plan on making it configurable. This mechanism is completely standard and already used

in other programing languages with unbounded recursion at the type level [Eisenberg et al.,

2014; Sjoberg, 2015; Eisenberg, 2016].

4.4.9 Inference

System FM’s type rules enable any match expression to be typed as a match type, but the

situation is different in the full Scala language. Pattern matching in Scala supports many

sorts of patterns [Emir et al., 2007], most of which do not have a match type counterpart.

Furthermore, typing match expressions as match types is not enabled by default in order to

preserve backward compatibility. Instead, explicit type annotations must be provided.

For example, consider the following function definition:

47

Chapter 4. Match Types

def foo[X](x: X) = x match

case x: Int => x.toString

case x: String => x.toInt

In the absence of a result type annotation, Scala’s type inference will first assign String|Int

for the match expression, and then immediately widen that union to the least upper bound

of left- and right-hand-side, Any, which will then be used as foo’s (inferred) result type. To

obtain a precise result type for this method, users should annotate it explicitly:

type Foo[X] = X match

case Int => String

case String => Int

def foo[X](x: X): Foo[X] = x match

case x: Int => x.toString

case x: String => x.toInt

4.4.10 Caching

Scala’s type-checking algorithm makes heavy use of caching to improve its performance. Spe-

cial care must be taken when caching the result of match type reduction, given that the sub-

typing and disjointness checks are context-dependent. Our implementation uses a context-

aware cache for match types that automatically invalidates reduction results when match

types are reduced in new contexts. An example where naive caching would be incorrect can

be found in Subsection 4.6.4.

4.4.11 Size of the Implementation

In terms of lines of code, our match type implementation is a relatively modest addition to

the Scala compiler: the overall changes amount to around 1500 lines (excluding tests and

documentation).

4.5 Case Study: Shape-Safe NumPy

In this section, we present a case study to show how match types can be used to express

complex type constraints, which in turn can prevent certain programming errors at compile

time. To this end, we outline the type-level implementation of a library for multidimensional

arrays which mimics the NumPy API [Harris et al., 2020]. The goal of our library is to pro-

vide a shape-safe interface for manipulating n-dimensional arrays (abbreviated ndarrays),

where array shapes and indices are checked for errors at compile-time rather than at run-

time. Shape and indexing errors in ndarrays is a widely acknowledged problem [Barham and

Isard, 2019; Rush, 2019], and several solutions have already been proposed, notably in the

form of libraries that rely on type-level programming [Chen, 2017; Huang et al., 2017–2022].

Our library uses match types to provide a shape-safe NumPy-like interface.

Scala programmers have a long history of using ad-hoc solutions for type-level program-

48

4.5. Case Study: Shape-Safe NumPy

ming [Sabin and Shapeless contributors, 2011–2022; Pilquist and Scodec contributors, 2013–

2022; Blanvillain et al., 2016–2022]. These solutions have several downsides, such as being

slow to compile and cumbersome to use. Match types aim at simplifying type-level program-

ming by providing first-class language support. We believe that the approach presented in

this case study is an improvement over the status quo because it does not use metaprogram-

ming or any sort of convoluted encoding to express type-level operations.

4.5.1 Shape Errors in Python

In the example Python code below, the img_batchndarray is a batch of 25 randomly generated

RGB images of size 256×256. The code aims to compute a vector of length 25 containing the

average grayscale color of each image in the batch, and then create a square 5×5 image of the

average grayscale colors. However, this code contains a shape error and will throw an error

at runtime.

import numpy as np

img_batch = np.random.normal(size=(25, 256, 256, 3))

avg_colors = np.mean(img_batch, (0, 1, 2))

avg_color_square = np.reshape(avg_colors, (5, 5))

The error is in the call to np.mean, which takes as argument a list of axes to reduce along.

Unfortunately, the arguments to np.mean are off-by-one and result in a vector of length 3

(img_batch’s last dimension) instead of the intended length of 25 (img_batch’s first dimension);

avg_color thus contains the average RGB color of the batch instead of the average grayscale

color for each image. The reshape operation will then fail at runtime, as it cannot reshape

a 3-element vector into a 25-element matrix. This error can be difficult to spot, given that

NumPy’s interface for reducing along multiple axes is index-based. Runtime errors like this

one can be particularly frustrating when they occur late in a long-running computation.

In the remainder of this section, we show how match types can be used to prevent this

class of error. After a preliminary introduction of singleton types (Subsection 4.5.2), we in-

troduce ndarray shapes at the type level using HLists (Subsection 4.5.3). In Subsection 4.5.4,

we show type-level implementations of the np.mean and np.reshape operations using match

types. Finally, we show how this newly defined API can detect and report the error from our

original Python example.

4.5.2 Singleton Types

Scala supports singleton types, which are types inhabited by a single value [Leontiev et al.,

2014]. For instance, the singleton type 1 denotes the type containing the integer value 1. The

Scala standard library contains several predefined match types to perform arithmetic opera-

tions at the type level. For instance, type +[A <: Int, B <: Int] represents the addition of

integer singleton types. Internally, the compiler is special-cased to implement these arith-

metic operations using constant folding. Representing numbers with singleton types is de-

sirable for practical purposes, but not absolutely necessary for this case study (for instance,

Peano numerals could be used instead).

49

Chapter 4. Match Types

4.5.3 Type-Level Array Shape

The shape of an ndarray is a list of dimension lengths; we say that the shape (a1,a2, . . . ,an) has

n dimensions. For instance, a three-by-four matrix is a two-dimensional ndarray of shape

(3,4). We represent the shape of an ndarray at the type level using a heterogeneous type list,

or HList for short [Kiselyov et al., 2004]. We define an HList called Shape as an ADT with two

constructors2, #: and Ø.

enum Shape:

case #:[H <: Int, T <: Shape](head: H, tail: T)

case Ø

This data type definition allows us to write lists of dimension sizes, both at the term level as

#:(3, #:(4, Ø)), and at the type level as #:[3, #:[4, Ø]]. The HList type can equivalently

be written with #: in infix notation, as 3 #: 4 #: Ø.

To represent ndarrays, we define the NDArray type. This type is indexed by the ndarray

element type (T), and by the ndarray shape (S), represented as an HList:

trait NDArray[T, S <: Shape]

The goal of our presentation is to define type-safe operations on NDArrays. Since our focus

is on the type-level, we do not include value-level counterparts to T and S in the definition of

NDArray, but this would be necessary in a complete implementation.

To construct ndarrays, we define random_normal, which creates an ndarray of a given

shape, where all elements are random Floats:3

def random_normal[S <: Shape](shape: S): NDArray[Float, S] = ???

4.5.4 Computation on Shapes with Match Types

Encoding the types and shapes of ndarrays in the types allows us to readily provide type-

and shape-safety for simple ndarray operations. For instance, the element-wise Hadamard

product, written as np.multiply(x, y), requires the x and y ndarrays to have the same shape

and element types. This constraint does not require any match types, but can simply be

expressed as:

def multiply[T, S <: Shape](x: NDArray[T, S], y: NDArray[T, S]): NDArray[T, S] =

???

However, we will need the additional expressiveness of match types to implement more com-

plex constraints on array shapes, such as for reshapes (4.5.4) and reductions (4.5.4).

2In the interest of clarity, our presentation omits type bounds that are necessary to guide type inference, for
example in the definition of the Shape data type.

3This snippet uses the triple question mark operator, Scala’s standard notation for missing or omitted imple-
mentations.

50

4.5. Case Study: Shape-Safe NumPy

Reshape

An operation commonly used in NumPy is np.reshape, which changes the shape of an ndar-

ray, but does not change its values. A restriction imposed by the NumPy API is that the output

shape must have the same number of elements as the input shape. The number of elements

of a shape is the product of the sizes of its dimensions; an ndarray of shape 2 #: 3 #: 4 #: Ø

has 2×3×4 = 24 elements. Note that an ndarray of shape Ø is a scalar, and thus has a single

element. This can be naturally expressed with a match type:

type NumElements[X <: Shape] <: Int =

X match

case Ø => 1

case head #: tail => head * NumElements[tail]

To restrict reshaping to be applicable only on valid shapes, the type system must support

encoding type equality constraints. For this, we make use of Scala’s implicit parameters, and

of the =:= type equality constraint that is a part of Scala’s standard library.

def reshape[T, From <: Shape, To <: Shape](arr: NDArray[T, From], newshape: To)

(implicit ev: NumElements[From] =:= NumElements[To]): NDArray[T, To] = ???

With this definition of reshape, the compiler will only accept a usage of reshape if it is able to

prove that the number of elements in the old shape is the same as in the new shape. This ex-

ample illustrates how match types can be used in concert with existing features like singleton

types and implicit resolution to express powerful constraints.

Reduction

The NumPy API provides a variety of functions to reduce along a set of axes of an ndarray,

such as np.mean(ndarray, axes) or np.var(ndarray, axes). The axes parameter is a list of

indices of dimensions, listing exactly those dimensions that will no longer be present in the

output ndarray. The dimension indices can be unordered and repeated, and out-of-bounds

indices result in an error. In the Python API, passing the None value instead of a list of axes

reduces along all axes, meaning that the operation returns a scalar. Note that this is the op-

posite of passing Ø, which means that we reduce over no axes (effectively a no-op).

This behavior is more complex than the previous examples, but can still be described

accurately by a match type. We use a match type called ReduceAxes to compute the return

shape of the operation.

def mean[T, S <: Shape, A <: Shape](arr: NDArray[T, S], axes: A): NDArray[T,

ReduceAxes[S, A]] = ???

We implement reductions along a given list of indices with logic similar to two nested

loops. The outer loop, Loop, traverses the shape and counts the current index. The inner loops

are implemented using the standard Contains and Remove operations. When Loop reaches the

end of the list, if there are still axes to remove, these are out of bounds for the initial shape:

the match type intentionally gets stuck in such cases.

51

Chapter 4. Match Types

type ReduceAxes[S <: Shape, Axes <: None | Shape] <: Shape =

Axes match

case None => Ø

case Shape => Loop[S, Axes, 0]

type Loop[S <: Shape, Axes <: Shape, I <: Int] <: Shape =

S match

case head #: tail => Contains[Axes, I] match

case true => Loop[tail, Remove[Axes, I], I + 1]

case false => head #: Loop[tail, Axes, I + 1]

case Ø => Axes match

case Ø => Ø // otherwise, do not reduce further

4.5.5 Shape safety

Having defined random_normal, reshape and mean, we can rewrite our original Python example

in Scala:

val img_batch = random_normal(#:(25, #:(256, #:(256, #:(3, Ø)))))

val avg_colors = mean(img_batch, #:(0, #:(1, #:(2, Ø))))

val avg_color_square = reshape(avg_colors, #:(5, #:(5, Ø)))

As expected, the call to mean returns a tensor of shape 3 #: Ø. Therefore, the call to reshape

does not type-check since the input shape has 3 elements instead of 25. If we fix the off by one

error to reduce along the correct indices, 1 #: 2 #: 3 #: Ø, the call to reshape type-checks

and avg_color has shape 25 #: Ø, as expected.

4.6 Related Work

In this section, we provide a review of existing work and relate match types to dependently

typed calculi with subtyping, intensional type analysis, type families and roles in Haskell, and

conditional types in TypeScript.

4.6.1 Dependently Typed Calculi with Subtyping

There is a vast amount of literature on type systems combining subtyping with dependent

types, justifying a full survey to relate it appropriately. Instead, we offer a condensed sum-

mary of our reading journey and explain what led us to decide on using System F<: as a foun-

dation for our formalization.

Dependently typed calculi typically use the same language to describe terms and types.

This unification is also commonly used in the presence of subtyping [Zwanenburg, 1999;

Hutchins, 2010; Yang and Oliveira, 2017]. For systems with a complete term/type symme-

try, this is a natural design, as it is concise and simplifies the meta-theory. Unfortunately, the

lack of distinction between term and type level renders these systems impractical for our pur-

pose, given that our research takes place in the context of an existing language with a clear

term/type separation.

52

4.6. Related Work

Singleton types provide an interesting middle ground between unified and separate syn-

tax and have also been studied in conjunction with dependent types and subtyping [Aspinall,

1994; Stone and Harper, 2000; Courant, 2003]. Singleton types give a mechanism to refer to

terms in types, usually by means of a set-like syntax. This mechanism is appealing because

it allows type system designers to cherry-pick the term constructs that should be allowed in

types. When multiple constructs are shared between terms and types, singleton types pro-

vide a clear economy of concepts. In our study of match types, a minimal use of singleton

types would result in sharing a single constructor between the term and the type languages:

the constructor for matches. It is unclear if the benefits in doing so would outweigh the addi-

tional complexity.

Dependent Object Types (DOT) are, to this day, the most significant effort in formalizing

Scala’s type system [Amin and Rompf, 2017]. DOT does not directly support any form of

type-level computation. We considered using DOT as a starting point for our work, however,

despite the recent effort to simplify DOT’s soundness proof [Rapoport et al., 2017; Giarrusso

et al., 2020], extending DOT remains too big of a challenge to concisely describe language

extensions.

After several attempts at formalizing match types within existing systems, we decided to

pursue a simpler route of adding new constructs to a system without dependent types. After

all, the primary purpose of System FM is to serve as a medium to concisely explain our type-

checking algorithm for match types. For this reason, we built our work on top of System F<:,

which we believe should be the simplest, most familiar calculus among the systems cited in

this section.

4.6.2 Intensional Type Analysis

In their work on intensional type analysis [Harper and Morrisett, 1995], Harper and Mor-

risett introduce the λML
i calculus that supports structural analysis of types. In λML

i , types

are represented as expressions that can be inspected by case analysis using a “typecase” con-

struct, available both at the term and at the type level. Match types can be seen as an exten-

sion of intensional type analysis to work with object-oriented class hierarchies and subtyp-

ing. Whereas patterns in λML
i are limited to a fixed set of disjoint types, match types need

to deal with open class hierarchies, of which not all members are known at compile-time.

This means pattern types can overlap, and we need to perform an analysis of disjointness be-

tween the scrutinee type and each pattern type. Disjointness allows for sound reduction in

the presence of overlapping patterns and abstract scrutinee types, while retaining the natural

sequential evaluation order of pattern matching.

4.6.3 Type Families in Haskell

Haskell’s type families [Chakravarty et al., 2005; Schrijvers et al., 2008] allow programmers to

define type-level functions using pattern matching. By default, type families are open, which

means that a definition can spread across multiple files and compilations. This flexibility

induces a substantial restriction on type family definitions: patterns must not overlap. One

53

Chapter 4. Match Types

benefit of this restriction is that it prevents any ambiguity in the reduction of type families

(patterns are pairwise disjoint), which is required given the distributed nature of definitions.

Open type families are well-suited to be used in conjunction with type classes, since both

constructs have open-ended definitions with non-overlapping constraints.

Closed type families (CTFs), as introduced by Eisenberg et al. [2014], allow for overlapping

cases in type family definitions. Unlike the open variant, CTF reduction is performed sequen-

tially, based on unification and apartness checks. In this regard, CTFs are closely related to

match types. In fact, if we replace unification checks with subtyping and apartness checks

with disjointness, their reduction algorithm is practically identical to ours, from a high-level

perspective.

By default, Haskell checks for termination of recursive type families, but this check can

be disabled to increase type families’ expressiveness. Although the formalization presented

in [Eisenberg et al., 2014] does not cover non-terminating families, the paper discusses a

soundness problem caused by non-termination. The problem only occurs in the presence of

repeated type bindings in patterns. In Scala, match types (and pattern matching in general)

do not allow repeated bindings and are therefore not affected by this problem.

4.6.4 Roles in Haskell

Haskell’s roles were introduced by Weirich et al. [2011] to fix a long-standing unsoundness

caused by the interaction of open type families and the newtype construct. We understand

roles as type annotations which specify whether a given type can safely be nominally com-

pared to other types, or if representational equality (RE) should be used instead. The word

representation in RE refers to the runtime representation of a type. In particular, RE dealiases

newtype constructs.

In their introductory example, Weirich et al. show how type family reduction can lead

to unsoundness in the absence of role annotations. Their presentation also includes a hy-

pothetical translation of their example to Standard ML, which translates directly to Scala as

follows:

trait AgeClass:

type Age

def addAge(a: Age, i: Int): Int

object AgeObject extends AgeClass:

type Age = Int

def addAge(a: Age, i: Int): Int = a + i

In this example, type Age is abstract in AgeClass and concrete in AgeObject. In the pre-role

Haskell equivalent of this example, the unsoundness comes when the above definitions are

combined with a type family that discriminates Age and Int. Such type family would reduce

differently in AgeClass, where the types are different, and in AgeObject, where those two types

are synonyms, which can easily be exploited to obtain a runtime error.

Luckily, our design of match types is not affected by this issue. The reason comes from the

use of subtyping (and disjointness), which shields our implementation from incorrectly dis-

54

4.7. Conclusion

criminating Age from Int when Age is abstract. Consider the following match type definition

(directly translated from the Haskell example):

type M[X] = X match

case Age => Char

case Int => Bool

Our algorithm would not reduce M[Int] to Bool in AgeClass as this reduction would require ev-

idence that Age and Int are disjoint, which cannot be constructed when Age is an unbounded

abstract type.

4.6.5 Conditional Types in TypeScript

TypeScript’s conditional types, briefly mentioned in the introduction, are a type-level ternary

operator based on subtyping. Conditional types can be nested into a sequence of patterns

that evaluate in order, making them similar to match types.

The TypeScript language specification briefly describes the algorithm used to reduce con-

ditional types in the presence of type variables [The TypeScript development team, 2019–

2022]. Given a type S extends T ? Tt : Tf, the TypeScript compiler first replaces all the type

parameters in S and T by any (the top of TypeScript’s subtyping lattice). If the resulting types

(after substitution) are not subtypes, the overall condition is reduced to Tf. Unfortunately,

this algorithm is both unsound and incomplete.

The unsoundness is caused by the incorrect widening of type parameters in contravariant

position. Although TypeScript does not have syntax for variance annotations, function types

are covariant in their return type and contravariant in their arguments. The conditional type

unification algorithm wrongly approximates X => string to any => string and unifies the

former with latter, which can lead to a runtime errors.

The incompleteness comes from the fact that type parameter approximation does not

account for type parameter bounds. Consider the following example:

type M<X> = X extends string ? A : B

function f<X extends string>: M<X> = new A

Here, TypeScript’s reduction algorithm fails to recognize that new A can be typed as M<X>, even

though X is clearly a subtype of string in f’s body.

Although the situation is concerning, it might not be as bad as it seems given that sound-

ness is a non-goal of TypeScript’s type system [Bierman et al., 2014]. Nevertheless, we believe

that the results of this chapter are directly applicable to conditional types and could be used

to improve TypeScript’s type checker.

4.7 Conclusion

In this chapter, we introduced match types, a lightweight mechanism for type-level program-

ming that integrates seamlessly in subtyping-based programming languages. We formalized

match types in System FM, a calculus based on System F<:, and proved it sound. Further-

more, we implemented match types in the Scala 3 compiler, making them readily available

55

Chapter 4. Match Types

to a large audience of programmers. A key insight for sound match types is the notion of

disjointness, which complements subtyping in the match type reduction algorithm. In the

future, we plan to investigate inference of match types to avoid code duplication in programs

that operate both at the term and the type level.

56

5 Type-Safe Regular Expressions
Regular expressions can easily go wrong. Capturing groups, in particular, require meticulous

care to avoid running into off-by-one errors and null pointer exceptions. In this chapter, we

propose a new design for Scala’s regular expressions which completely eliminates this class

of errors. Our design makes extensive use of match types, Scala’s new feature for type-level

programming, to statically analyze regular expressions during type checking. We show that

our approach has a minor impact on compilation times, which makes it suitable for practical

use.

Attribution

This chapter is inspired by Andrea Veneziano’s semester project entitled “Strongly-typed reg-

ular expressions in Dotty”. In his project, Andrea implemented a regex library in two different

flavors, one based on match types and the other based on generalized singleton types, with

the objective to compare the two approaches in terms of expressivity and ease of use. The

present chapter is a reboot of the match-type side of that project. This work is under submis-

sion at the Scala Symposium (2022).

5.1 Introduction

Capturing groups allow programmers to extract substrings matched by parts of a regular ex-

pression. For example, the regex "A(B)?" matches both "A" and "AB". In the first case, the

capturing group is empty, and in the second case, the capturing group contains "B".

The Scala standard library contains a package to manipulate regular expressions. This

package is based on Java’s implementation, and thus benefits from the high performance of

the JVM’s regex engine. The Scala implementation innovates in its presentation: it improves

upon Java’s solution by providing an ergonomic API based on pattern matching that is both

elegant and concise. The package’s documentation starts with the following example:

val date = Regex("""(\d{4})−(\d{2})−(\d{2})""")
"2004−01−20" match

case date(y, m, d) =>

s"$y was a good year for PLs."

The extractor pattern, case date(y,m,d), replaces the need for manually indexing into the

regular expression’s capturing groups, and shields users from off-by-one error.

57

Chapter 5. Type-Safe Regular Expressions

While the syntax used in this example would undoubtedly make some non-Scala pro-

grammers envious, its type safety leaves much to be desired. First of all, the number of vari-

able bindings in the extractor is entirely opaque to Scala’s type system, and left to the discre-

tion of the programmer. Furthermore, the values that come out of capturing groups can be

null (when using optional captures) and thus require an additional layer of validation. Those

shortcomings might appear benign on small examples, but can easily turn into bugs when

dealing with a large-scale codebase.

In this chapter, we propose a new design for Scala’s regular expression library which pro-

vides a type-safe and null-safe mechanism for capturing group extraction. Our design makes

extensive use of match types to statically analyze regular expressions during type checking.

We build our interface to mimic Scala’s original regular expression API so that Scala program-

mers can use it as a drop-in replacement and enjoy the additional safety with minimal migra-

tion costs.

This chapteris structured as follows. In Section 5.2, we give an introduction to match

types and generic tuples, two recent additions to Scala’s type system which we rely on in

our implementation. In Section 5.3, 5.4 and 5.5, we present our library for type-safe regular

expressions. In Section 5.6, we evaluate the performance of our implementation in terms of

compilation times and execution times. In Section 5.7, we discuss related work. We conclude

the chapterin Section 5.8.

The source code of our implementation is available online1 under the MIT licence.

5.2 Background

In this section, we give a brief introduction to two recent additions to Scala’s type system:

match types and generic tuples. Our regular expression library makes extensive use of those

two features to enable type-safe and null-safe capturing group extraction.

5.2.1 Match Types

Match types provide first-class support for type-level computations in the form of pattern

matching on types:

type Elem[X] = X match

case String => Char

case Array[t] => Elem[t]

case Any => X

This example defines a type Elem parametrized by one type parameter X. The right-hand side

is defined in terms of a match on that type parameter – a match type. A match type reduces

to one of its right-hand sides, depending on the type of its scrutinee. For example, the above

type reduces as follows:

Elem[String] =:= Char

Elem[Int] =:= Int

1https://github.com/OlivierBlanvillain/regsafe

58

5.3. Architecture

Elem[Array[Int]] =:= Int

To reduce a match type, the scrutinee is compared to each pattern, one after the other, using

subtyping. For example, although String is a subtype of both String and Any, the Elem[String]

type reduces to Char because the corresponding case appears first.

5.2.2 Generic Tuples

Scala’s tuples were originally defined as plain old data types. In Scala 3, tuples got enhanced

with a generic representation [Bazzucchi, 2021], similar to heterogeneous lists [Kiselyov et al.,

2004]. This representation uses two types, EmptyTuple and *:, to describe tuples in a list-like

fashion. The compiler treats those new types and the traditional class-based representation

of tuples interchangeably. A 2-tuple of integers, for example, has two equivalent representa-

tions:

(Int, Int) =:= Int *: Int *: EmptyTuple

This new tuple representation is especially useful at the type level, where it allows program-

mers to manipulate tuples recursively. For example, the following match type reverses the

order of a tuple’s elements:

type Reverse[T <: Tuple] = Rev[T, EmptyTuple]

type Rev[T <: Tuple, Acc <: Tuple] <: Tuple =

T match

case x *: xs => Rev[xs, x *: Acc]

case EmptyTuple => Acc

5.3 Architecture

We present our library for type-safe regular expressions in terms of 3 components:

1. The type-level capturing group analysis, which uses match types to inspect the user-

provided regular expression and compute tuple representation of the expression’s cap-

turing groups. This component takes the form of a parametric type called Compile,

which we present in Section 5.4.

2. The runtime capturing group processing component, which extracts and sanitizes the

output of the regex engine, in accordance with the previously computed type-level rep-

resentation. This component takes the form of a function called transform, which we

present in Section 5.5.

3. The user interface, which ties everything together to compile, execute, and extract the

results of a regular expression, while providing a type-safe and null-safe experience.

We begin our presentation with the user interface, which takes the form of a relatively

simple Scala class and companion object:

59

Chapter 5. Type-Safe Regular Expressions

object Regex:

def apply[R <: String & Singleton](regex: R) =

new Regex[Compile[R]](regex)

class Regex[P] private (val regex: String):

val pattern = Pattern.compile(regex)

def unapply(s: String): Option[P] =

val m = pattern.matcher(s)

if (m.matches())

val a = Array.tabulate(m.groupCount)(

i => m.group(i + 1))

Some(transform[P](regex, a))

else

None

The apply method is the entry point of our library. It takes a regular expression and re-

turns an instance of Regex. Instead of directly accepting a String argument, that method

takes a type parameter, R, which will be inferred by the compiler, and allows us to get our

hands on a type-level instance of the regular expression’s string (the Singleton bound is nec-

essary to guide Scala’s type inference). We use that type-level string to instantiate the Compile

type, which is our type-level analysis component.

The implementation of the Regex class is straightforward. Similar to its standard library

counterpart, that class uses an instance of java.util.regex.Pattern to match the given input

against the given regular expression, and to extract the content of the capturing groups when

the matching succeeds. These operations happen within the unapply method, which is the

way to define custom pattern matching extractors in Scala [Emir et al., 2007].

The main difference between Scala’s original Regex implementation and ours lies in the

signature of unapply, which determines the nature of pattern matching extraction performed

by that method. In our implementation, we instantiate the type P to a tuple and use that

type in the result type of unapply to tell the compiler that a successful matching consists of

exactly n capturing groups, where n is the tuple’s arity. Furthermore, the type of those groups

corresponds to the type of the tuple elements. This allows us to enrich the results of Java’s

regex engine by wrapping nullable values into options. Our implementation performs this

wrapping via the transform method, which is our runtime processing component. As a result,

our implementation never returns null values and removes the null-checking burden from

the user.

For instance, in the following example usage of our library, we use a regular expression

with an optional capturing group to extract the integral and fractional parts of a rational num-

ber:

val rational = Regex("""(\d+)(?:\.(\d+))?""")

"3.1415" match

case rational(i, Some(f)) =>

val n = i.size + f.size

s"This number is $n digits long"

60

5.4. Type-Level

Here, we instantiate Regex’s type parameter to P = (String, Option[String]), which we then

use in unapply’s result type to obtain a precise representation of the regex’s capturing groups.

The resulting code is type-safe: if we change the pattern to omit the option unpacking (replac-

ing Some(f) by f), the compiler would raise a type error on the call to .size (size is defined on

strings but not options).

In the following section, we explain our technique to analyze regular expressions and stat-

ically compute a type-level representation of the regex’s capturing groups (P in the example

above).

5.4 Type-Level

The purpose of our type-level component is two-fold:

1. Identify the capturing groups of a regular expression.

2. Determine which of those capturing groups are optional, that is, whether or not the

regex engine could possibly assign null values for each of those groups.

The result of that type-level computation takes the form of a Scala tuple with String and

Option[String] elements, depending on the nullability analysis.

We present our implementation incrementally, starting from a simple but incomplete

solution, and progressively building up towards our final solution.

5.4.1 Capturing Group Identification

The first version of our type-level program is limited to capturing group identification. The

implementation is straightforward, it iterates through the regex’s characters and accumulates

a String type for every opening parenthesis:

import compiletime.ops.string._

import compiletime.ops.int.+

type Compile[R <: String] =

Reverse[Loop[R, 0, Length[R], EmptyTuple]]

type Loop[R, Lo, Hi, Acc <: Tuple] =

Lo match

case Hi => Acc

case _ => CharAt[R, Lo] match

case '(' => Loop[R, Lo + 1, Hi, String *: Acc]

case '\\' => Loop[R, Lo + 2, Hi, Acc]

case _ => Loop[R, Lo + 1, Hi, Acc]

The Length and CharAt types (from ops.string) are special-cased by the compiler: when their

first argument is a known string literal, the compiler evaluates those types via their corre-

sponding term-level implementation. Similarly, the + type (from ops.int) allows us to manip-

61

Chapter 5. Type-Safe Regular Expressions

ulate integers just like we would at the term level. The EmptyTuple and *: types are Scala 3’s

new generic representation of tuples, presented in Subsection 5.2.2.

5.4.2 Out-Of-Bound Errors

Attentive readers might have noticed that our handling of backslash, regex’s escape charac-

ter, might result in off-by-one errors. Indeed, the Loop type terminates when Lo = Hi, but

increases Lo by 2 to skip over escaped characters.

Rest assured, this is not an oversight! Regular expressions with trailing backslashes are in-

valid and result in runtime crashes (reported as an “unexpected internal error”). Even though

detecting these types of errors at compile time is out of the scope of our library, doing so is

still desirable. If we invoke Compile on a regular expression with a trailing backslash, the com-

piler will run into a call to charAt with an out of bounds argument, catch the corresponding

exception and report it as a compilation error, which is certainly better reporting that same

error at run-time.

5.4.3 Non-Capturing Groups

Our first implementation of Compile treats every opening parenthesis as the start of a cap-

turing group, which does not honor the syntax of Java’s regular expression. Indeed, Java also

supports several other special constructs that start with an opening parenthesis, for instance:

• non-capturing groups, (?:X),

• lookaheads, (?=X) and (?!X),

• lookbehinds, (?<=X) and (?<!X).

To correctly identify capturing groups (which can be either named, (?<name>X), or unnamed,

(X)), we must differentiate them from other special constructs. Our second implementation

(omitted) uses the following IsCapturing predicate type to rule out non-capturing groups:

type IsCapturing[R <: String, At <: Int] =

CharAt[R, At] match

case "?" => CharAt[R, At + 1] match

case "<" => CharAt[R, At + 2] match

case "=" | "!" => false // lookbehinds

case _ => true // named−capturing group

case _ => false // other special constructs

case _ => true // unnamed−capturing group

Similar to our handling of backslash characters, this implementation intentionally does not

prevent out-of-bounds errors, since these errors correspond to ill-formed regular expres-

sions.

62

5.4. Type-Level

5.4.4 Nullability Analysis

Establishing the nullability of capturing groups is more complicated than it sounds. At first

glance, it seems that this is simply a matter of looking for regex quantifiers in suffix posi-

tion2. For instance, in the following naive implementation of IsNullable, we look for the first

closing parenthesis and inspect the following characters to determine if a capturing group is

nullable:

type IsNullable[R <: String, At, Hi] =

CharAt[R, At] match

case ')' => IsMarked[R, At + 1, Hi]

case '\\' => IsNullable[R, At + 2, Hi]

case _ => IsNullable[R, At + 1, Hi]

type IsMarked[R <: String, At, Hi] =

At match

case Hi => false

case _ => CharAt[R, At] match

case '?' | '*' => true

case _ => false

Unfortunately, this naive solution does not handle regular expressions with nested capturing

groups. For example, in "(A(B)?)", that solution incorrectly labels the first group as optional.

To overcome this problem, we update our solution to keep track of the number of opening

and closing parentheses (Lvl), which allows us to differentiate closing parentheses of inner

and outer groups3:

type IsNullable[R <: String, At, Hi, Lvl <: Int] =

CharAt[R, At] match

case ')' => Lvl match

case 0 => IsMarked[R, At + 1, Hi]

case _ => IsNullable[R, At + 1, Hi, Lvl − 1]

case '(' => IsNullable[R, At + 1, Hi, Lvl + 1]

case '\\' => IsNullable[R, At + 2, Hi, Lvl]

case _ => IsNullable[R, At + 1, Hi, Lvl]

Nested capturing groups bring another complication to the nullability analysis, which is

caused by the interaction between inner and outer groups. When an outer group is deemed

optional, this overrides the nullability of all its inner groups, which also become optional. For

instance, in "(A(B))?", both the first (A(B)) and the second (B) capturing group are optional.

We handle nested groups by updating our algorithm to operate in two different modes

while iterating through the regex’s characters. Our algorithm can either be outside of an op-

2For brevity, our presentation does not account for the regex alternative operator, which also influences the
nullability of capturing groups and can appear in both prefix and suffix positions. Similarly, we omit handling
the “at least n times” quantifiers which can lead to nullable capturing groups (when n = 0). Our implementation
accounts for both operators.

3For simplicity, our presentation treats all non-escaped parentheses as capturing group delimiters. Our imple-
mentation also takes \Q...\E quotations into account and ignores parentheses that appear in character classes.

63

Chapter 5. Type-Safe Regular Expressions

tional group (Opt=0), in which case it computes nullability of newly encountered groups via

IsNullable, or inside an optional group (Opt>0), in which case it treats every group as nul-

lable.

With this latest improvement, we advance our implementation to its final iteration (we

omit usages of IsCapturing, from Subsection 5.4.3, for brevity):

type Loop[R, Lo, Hi, Opt <: Int, Acc <: Tuple] =

Lo match

case Hi => Acc

case _ => CharAt[R, Lo] match

case ')' =>

Loop[R, Lo+1, Hi, Acc, Max[0, Opt−1]]
case '(' => Opt match

case 0 => IsNullable[R, Lo+1, Hi, 0] match

case true =>

Loop[R, Lo+1, Hi, Option[String]*:Acc, 1]

case false =>

Loop[R, Lo+1, Hi, String*:Acc, 0]

case _ => Loop[R, Lo+1, Hi,

Option[String]*:Acc, Opt+1]

case '\\' => Loop[R, Lo+2, Hi, Opt, Acc]

case _ => Loop[R, Lo+1, Hi, Opt, Acc]

This concludes the development of our nullability analysis and completes our presen-

tation of the type-level component of our library. Despite the scarcity of Scala’s standard

library at the type level, we managed to achieve our ends while keeping our implementation

relatively concise and, hopefully, understandable. In its final iteration, our capturing group

analysis is, to the best of our knowledge, on par with Java’s implementation of regular expres-

sion.

5.5 Term-Level

The runtime component of our library is in charge of sanitizing and packaging the results of

regular expression matchings. Concretely, this component’s job consists of transforming the

string array that comes out of the regex engine into an appropriately sized tuple and wrap-

ping the nullable elements in options. That transformation must conform to the representa-

tion computed at the type level.

In Scala, all type parameters are erased, which leads to some friction when wanting to

write programs whose execution depends on types, such as in the problem at hand. In this

section, we propose two different solutions to that problem.

1. In Subsection 5.5.1, we proceed by sheer force of code duplication: we translate the

entirety of our type-level algorithm into term-level functions and use a cast to correlate

the two.

2. In Subsection 5.5.2, we show how to use implicits to perform type-directed code syn-

64

5.5. Term-Level

thesis: we use the output of our type-level analysis as an input of implicit search to

generate a type-specialized capturing group sanitizer.

5.5.1 We Don’t Need No Dependent Types!

The first implementation of our runtime component duplicates the type-level definitions

presented in the previous section to compute a list of sanitizing functions that correspond

to the given regex’s capturing groups. In a nutshell, instead of accumulating String and

Option[String] in a type, we accumulate identity functions and eta-expansions of the option

constructor in a list:

val id: String => Any = { x => assert(x != null); x }

val nu: String => Any = { x => Option(x) }

def loop(r: String, lo: Int, hi: Int, acc: List[String => Any], opt: Int): List[

String => Any] =

lo match

case `hi` => acc

case _ => r.charAt(lo) match

case ')' =>

loop(r, lo+1, hi, acc, 0.max(opt−1))
case '(' => opt match

case 0 => isNullable(r, lo+1, hi, 0) match

case true =>

loop(r, lo+1, hi, nu::acc, 1)

case false =>

loop(r, lo+1, hi, id::acc, 0)

case _ => loop(r, lo+1, hi, nu::acc, opt+1)

case '\\' => loop(r, lo+2, hi, acc, opt)

case _ => loop(r, lo+1, hi, acc, opt)

After having computed those functions, we do a pointwise application with the raw output of

the regex engine, package the result into a tuple, et voilà!

def transform[P](r: String, arr: Array[String]): P =

val fs = loop(r, 0, r.length, Nil, 0).reverse

val wrapped = arr.zip(fs).map { (x, f) => f(x) }

val tuple = Tuple.fromArray(wrapped)

assert(arr.size == fs.size)

tuple.asInstanceOf[P]

This solution has the benefit of being conceptually simple. We needed to write an im-

plementation that conforms to our type-level program, and this is literally what we did, by

duplicating that program and using an unsafe cast to convince the compiler of our good in-

tentions.

The first alternative that comes to mind is perhaps to turn ourselves to a dependently

typed language with support for type- and term-level polymorphism. Using a language with

shared term and type syntax would allow us to write our analysis generically, and derive two

65

Chapter 5. Type-Safe Regular Expressions

programs from it, one for each level.

In principle, Scala 3’s type inference should be able to solve half of that problem with

its ability to correlate match types and match expressions. In Subsection 4.2.1, we show an

example of that ability, where the compiler type checks a small program using a match type.

In our case, this mechanism should allow us to get rid of the unsafe cast but does not address

the problem of code duplication. In practice, at the time of writing, this solution does not

play well with predefined types from the standard library: the compiler lacks the knowledge

necessary to correlate predefined types with their term-level counterpart. For instance, the

compiler does not recognize CharAt["hello", 0] as a valid type for the "hello".charAt(0).

In the long run, it would be interesting to investigate extending Scala with a “precise”

mode of type inference, that would automatically infer match types and singleton types,

whenever possible. In Chapter 3, we demonstrated the feasibility of this approach by gener-

alizing Scala’s singleton types. A promising avenue would be to revisit that line of work with

the less ambitious goal of improving Scala’s type inference.

5.5.2 Implicit-Based Extractor Synthesis

The second version of our runtime component takes a completely different approach. In-

stead of analyzing regular expressions at run-time, we use implicit resolution to synthesize

a type-specialized runtime, based on the results of our type-level analysis. That synthesis is

type-directed: it generates a single-purpose program that sanitizes the output of the regex

engine by following the shape of the tuple type computed at the type level.

Our implementation consists of one type class, Sanitizer, and three implicit definitions,

which will guide the compiler into generating the correct Sanitizer[T], for any tuple T with

String and Option[String] elements (here, T is the result of our type-level analysis). The

Sanitizer type class defines a single method that mutates an array in place to put nullable

elements in options:

abstract class Sanitizer[T](val i: Int):

def mutate(arr: Array[Any]): Unit

object Sanitizer:

implicit val basecase =

new Sanitizer[EmptyTuple](0):

def mutate(arr: Array[Any]): Unit = ()

implicit def stringcase[T <: Tuple](implicit ev: Sanitizer[T]) =

new Sanitizer[String *: T](ev.i+1):

def mutate(arr: Array[Any]): Unit =

assert(arr(arr.size−i) != null)

ev.mutate(arr)

implicit def optioncase[T <: Tuple](implicit ev: Sanitizer[T]) =

new Sanitizer[Option[String] *: T](ev.i+1):

def mutate(arr: Array[Any]): Unit =

arr(arr.size−i) = Option(arr(arr.size−i))
ev.mutate(arr)

66

5.6. Evaluation

0

50

100

150

200

250

300

350

400

Std Dup Impl

C
o

m
p

il
at

io
n

ti
m

e
(m

s)

232

285
306

0

50

100

150

200

250

300

350

400

Std Dup Impl

E
xe

cu
ti

o
n

ti
m

e
(µ

s)

204

255

200

Figure 5.1 – A comparison of the compilation time (left) and execution time (right) of Scala’s
standard regex library (Std) against our library with its code-duplicated runtime (Dup) and
with its implicit-based runtime (Impl).

From a design standpoint, this solution is appealing as it leads to no duplicated code or

computation: we perform our capturing group analysis at the type-level, once and for all,

and synthesize code accordingly. This combination of type-level programming and implicit-

based code synthesis is reminiscent of multi-stage metaprogramming, in its com-pile-time

variant [Stucki et al., 2018]. In those terms, our approach corresponds to a multi-staged pro-

gram whose stage 0 happens entirely within Scala’s type checker.

In the following section, we evaluate the performance of our library and discuss the trade-

offs between the first and second implementation of our runtime component.

5.6 Evaluation

To assess the correctness of our library, we run our implementation against the QT3TS test

suite [W3C, 1994–2013], which consists of about 1700 test cases for regular expressions [W3C,

2021]. We select the subset of those tests that are positive and exercise capturing groups,

totaling 183 test cases, which we then collated to form our benchmark suite. We use these

benchmarks to evaluate the performance of our library in terms of compilation times and

execution times.

In Figure 5.1, we show the results of our experiments, which compare Scala’s standard

regular expression library (Std) against two flavors of our library, one using our code-dupli-

cated runtime (Dup), presented in Subsection 5.5.1, and the other using our implicit-based

runtime (Impl), presented in Subsection 5.5.2.

We obtained these results by averaging the measurements obtained over 2-hour runs, for

each data point, which we executed on an i7-7700K Processor running Oracle JVM 1.8.0 and

Linux. With these settings, we obtain margins of errors below ±1%, with 99.9% confidence

(omitted in Figure 5.1). We run our benchmarks on the latest version of Scala 3 at the time of

writing (3.1.2).

67

Chapter 5. Type-Safe Regular Expressions

Compilation Times Our library in its code-duplicated variant adds a total of 53 ms over the

baseline’s total compilation time (an average of +0.3 ms per regex). This corresponds to the

cost of match type reduction. The implicit-based variant adds another 21 ms (+0.1 ms per

regex), which corresponds to the cost of implicit resolution. Both variants are thus relatively

cheap, which validates their utility for practical uses. When it comes to compilation times, it

would be misleading to compare increments relative to the overall time, given that the com-

piler spends a large portion of its time outside of type checking [Petrashko, 2017, ğ 2.11.3].

Execution Times At runtime, our code-duplicated variant adds 51 µs over the baseline. Al-

though this difference is three orders of magnitude smaller than at compile-time, it corre-

sponds to a 25% increase, which is a rather substantial price to pay for redoing an already-

performed analysis (transform redoes the analysis performed by Compile). The implicit-based

variant gets rid of this cost by synthesizing a type-specialized runtime (at the cost of in-

creased compilation time). To our surprise, our implicit-based runtime outperforms Scala’s

standard library implementation. We suspect that this difference is due to the poor inter-

action between the JVM’s just-in-time compiler and the code generated for variadic extrac-

tors (unapplySeq, used by the Std implementation). Our implicit-based implementation ap-

pears to be more prone to inlining and partial evaluation since it does not involve generic

sequences, which could explain the slight gain in performance.

In view of these results, we decided to use our implicit-based runtime in the published

version of our library.

5.7 Related Work

We found surprisingly little literature concerned with the safety of regular expression captur-

ing groups. In a recent survey paper on regular expression correctness, Zheng et al. [2021]

classified the publications in this area into several categories, ranging from empirical stud-

ies to regular expression synthesis and repair. However, they only listed a single paper about

static checking: the type system developed by Spishak et al. [2012] to validate regular ex-

pression syntax and capturing group usage in Java programs. Their tool takes the form of a

compiler plugin that enhances Java’s type system to track the number of capturing groups

using type annotations. Unlike our system, their solution is not concerned with null safety

and does not detect optional capturing groups. In practice, their tool operates similarly to a

linter: it reports false positives and sometimes requires manual annotations.

The Haskell ecosystem contains several packages for regular expressions, with various lev-

els of static safety. The regex-applicative package stands on the safe side of that spectrum: it

allows programmers to write regular expressions using a parser combinator library, which en-

tirely removes the need to reference capturing groups [Roman, 2011–2021]. The main draw-

back of this solution lies in the library’s learning curve: programmers already familiar with

POSIX regular expressions [IEEE, 2018] are forced to learn a new syntax, which is arguably

more complicated.

Stephanie Weirich presented on several occasions a regular expression library as an ex-

68

5.8. Conclusion

ample of a dependently-typed program written in Haskell [Weirich, 2014–2020]. The library

provides safety guarantees similar to ours, but from the slightly different angle of named-

capturing groups. An important conceptual difference between the two approaches is that

ours only focuses on type checking (we rely on Java’s regular expressions at run-time), whereas

hers also includes a fully-fledged regular expression engine.

The typed-regex [Nair, 2021] Typescript library provides a type-safe API for extracting

named capturing groups of regular expressions. The implementation uses conditional types

[The TypeScript development team, 2019–2022], Typescript’s type-level ternary operator, to

statically analyze regular expressions. Their approach, like ours, identifies optional captur-

ing groups and marks them as such (using Typescript’s optional properties). At the time of

writing, the library is still in the early stages of development and only supports a subset of

the regular expression syntax, and notably lacks support for nested optional capturing group

detection.

The safe-regex [Leonhard, 2021–2022] Rust library takes a different approach towards the

same goal: it uses Rust macros to statically compile regular expressions and generate arity-

specific extractors. Performance-wise, macros improve over the status quo since they remove

the need to compile regular expressions at runtime. Safety-wise, code generation provides a

straightforward solution to safe capturing group extraction.

5.8 Conclusion

In this chapter, we introduce a new design for type-safe regular expressions in Scala. We

presented our type-level analysis, which identifies capturing groups and computes their nul-

lability. We built our library following the design of the original Scala regular expression API,

in order to provide a frictionless migration path for programmers interested in the additional

type safety. We evaluated our implementation by running it against the QT3TS test suite and

showed that, on those benchmarks, our type-level analysis only has a marginal impact on

compilation times.

Future Work We propose to extend our approach with a dedicated data type for the regex al-

ternative operator. In our current design, we map every capturing group to an Option[String],

which does not always accurately reflect the structure of regular expressions. For instance,

when confronted with "(A)(B)|(C)", our system represents this expression’s capturing groups

as a 3-tuple, (Option[String], Option[String], Option[String]). This representation fails to

account for the fact that the first two groups have identical nullability status, and that this

status is opposite to the nullability of the third group. Instead, we could represent those cap-

turing groups as Either[(String, String), String], which is isomorphic to the structure of

the regular expression.

69

6 Performance Evaluation
In this chapter, we evaluate the performance of the various type-level programming tech-

niques presented in prior chapters. Specifically, we are interested in the scalability of each

technique when confronted with large type-level programs, in terms of compilation times

(Section 6.2) and binary sizes (Section 6.3). In Section 6.4, we discuss how the timing of match

type reduction impacts compilation times.

6.1 Method

We evaluate the performance of the three type-level programming techniques presented in

this thesis by comparing them on a set of four benchmarks. Each benchmark consists of a

simple type-level operation, which we implemented once with implicits (Chapter 2), once

with generalized singletons (Chapter 3), and once with match types (Chapter 4).

These benchmarks are inspired by code examples used throughout this dissertation. They

all follow a similar pattern of a single function call whose result type is computed at the type

level. We code generated variations of each benchmark with increasing input size, from 1 to

256, in increments of 8. The source code of our benchmarks is available in the supplementary

material of this dissertation1, alongside instructions on how to reproduce our experiments.

Here is a brief description of our benchmark suite:

1. Concat Concatenates a heterogeneous list with itself.

2. Remove Removes the last element of a heterogeneous list (inspired by the example

presented in Section 2.2).

3. Join Computes the resulting schema after performing a self-join along the last col-

umn of a database table (inspired by the example presented in Section 3.2).

4. Reduce Computes the dimension of a multidimensional array after dimensional re-

duction along all axes (inspired by the example presented in Subsection 4.5.4).

We obtained the measurements presented in this chapter by averaging independent com-

pilations on warm compilers, which we executed on an i7-7700K processor running Oracle

JVM 1.8.0_212 and Linux. For the implicit and match type benchmarks, we used the latest

1https://olivierblanvillain.github.io/thesis/benchmarks.zip

71

Chapter 6. Performance Evaluation

0
2
4
6
8

10
12
14
16
18
20

0 50 100 150 200 250

C
o

m
p

il
at

io
n

ti
m

e
(s

ec
)

Input size

Implicits concat
Singletons concat

Match types concat

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

Input size

Implicits remove
Singletons remove

Match types remove

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250

C
o

m
p

il
at

io
n

ti
m

e
(s

ec
)

Input size

Implicits join
Singletons join

Match types join

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250

Input size

Implicits reduce
Singletons reduce

Match types reduce

Figure 6.1 – A comparison of the compilation time of implicits, generalized singletons and
match types for our benchmark suite (lower is better).

version of Scala at the time of writing (3.1.2). For the generalized singleton benchmarks, we

used our prototype, which is available in a branch of the dotty-staging repository2.

6.2 Compilation time

Figure 6.1 compares the compilation time of implicits, generalized singletons and match

types on our benchmark suite. The compilation time of implicit-based benchmarks domi-

nates the graphs on each figure, and suggests a quadratic complexity. These results imply

that implicits are ill-suited for large scale type-level computations: spending tens of seconds

on a single operation is clearly out of the question for practical applications.

The same measurements are shown in Figure 6.2 with millisecond y-axes, to focus on the

comparison of non-implicit curves. Each graph follows a similar trend, with singleton-based

implementations outperforming their match-type-based counterparts by about a factor of

two. We speculate that this difference is due to the overhead of subtyping, which in inherent

to the design of match type. Our prototype for generalized singletons uses a dedicated type

2git clone git@github.com:dotty-staging/dotty.git --branch add-transparent-7

72

6.3. Binary size

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250

C
o

m
p

il
at

io
n

ti
m

e
(m

s)

Input size

Match types concat
Singletons concat

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Input size

Match types remove
Singletons remove

20
40
60
80

100
120
140
160
180
200

0 50 100 150 200 250

C
o

m
p

ila
ti

o
n

ti
m

e
(m

s)

Input size

Match types join
Singletons join

20

40

60

80

100

120

140

160

0 50 100 150 200 250

Input size

Match types reduce
Singletons reduce

Figure 6.2 – A comparison of the compilation time of generalized singletons and match types
for our benchmark suite (lower is better).

evaluation procedure that is specialized for the task and therefore faster.

We obtained the data points of Figure 6.1 and 6.2 using the Java Microbenchmark Harness

library with 60 seconds of warmup, 60 seconds of measurement and a single JVM. As a result,

the resulting measurements are precise (99.9% confidence intervals vary between ± 0.5 and

± 2 milliseconds), but subject to variations caused by the unpredictability of the JVM’s just-

in-time compiler, which explains the bumps visible in Figure 6.2.

6.3 Binary size

In Table 6.1, we show the amount of additional JVM Bytecode generated per benchmark size

increment. The binary sizes of singleton- and match-type-based implementations are sta-

ble with respect to the benchmark input size, which is expected given that our benchmarks

consist of type-level-only operations.

The binary sizes of implicit-based implementations grow linearly with the input size, by

6 bytes per increment for smaller benchmarks (Concat and Remove), and by 12 and 18 bytes

for the larger benchmarks (Reduce and Join, respectively). To put those numbers in perspec-

73

Chapter 6. Performance Evaluation

Table 6.1 – Additional JVM Bytecode generated per input size increment (in bytes).

Implicits Singletons Match Types

Concat 6 0 0

Remove 6 0 0

Reduce 12 0 0

Join 18 0 0

tive, they represent an overall binary size increase of 9%, 9%, 12%, and 20%, when comparing

the size-1 instantiation to the size-256 instantiation of our Concat, Remove, Reduce, and Join

benchmarks, respectively. These binary size increases are caused by the implicit evidences

synthesized by the compiler after implicit resolution. In our benchmarks, those evidences

have no runtime purpose and are simply artifacts of the mechanism in play. Other appli-

cations, such as those supported by the Shapeless library [Sabin and Shapeless contributors,

2011–2022], take advantage of implicit evidence synthesis to provide additional runtime func-

tionalities.

6.4 The Timing of Match Type Reductions

In Chapter 4, we described the match type reduction algorithm by adding new subtyping

rules to System F<: (Subsection 4.3.2). The resulting system is entirely declarative: it doesn’t

specify when to apply those rules. In this section, we discuss how the timing of match type

reduction impacts compilation times.

A correct type system implementation must attempt to reduce match types as late as

possible, that is, during subtyping. Indeed, failing to do so could lead to incorrect results,

for instance, if a match type is reducible in the context of the subtyping query, but is not

reducible in any prior context.

In addition to reducing match types during subtyping, the compiler can attempt to re-

duce match types earlier in the pipeline, essentially at any point in time. Doing so is always

correct: the types before and after reduction are mutually subtypes. Each early attempt of

match type reduction can be viewed as a performance trade-off: it can either introduce a

small overhead, if the reduction fails, be a no-op, if the reduction succeeds but the result is

used exactly once, or be an optimization, if the reduction succeeds and the result is used

more than once.

Let us consider an example that illustrates the benefits of early reduction attempts:

// GEQ[A, B] compiles if A is greater than B

type GEQ[A <: Int, B <: Int] = A match {

case B => true

case _ => GEQ[A, B + 1]

}

Without any early reductions, this definition results in a quadratic number of additions. For

74

6.4. The Timing of Match Type Reductions

0

1

2

3

4

5

6

7

0 50 100 150 200 250
C

o
m

p
il

at
io

n
ti

m
e

(s
ec

)

Input size

Match types reduce S2
Match types reduce S1

Figure 6.3 – A comparison of the compilation time of the match type Reduce benchmark with
two different match type reduction strategies. S1 is the reduction strategy we implemented
in the Scala 3 compiler. S2 is a variation of that strategy where we disabled the reduction of
match types after type parameter instantiation.

example, here is the sequence of subtyping queries that would be issued while compiling

GEQ[5,1]:

5 <: 1? no

5 <: 1+1? no

5 <: 1+1+1? no

5 <: 1+1+1+1? no

5 <: 1+1+1+1+1? yes

The first instance of 1+1 comes from the right-hand-side of the first GEQ call (with B=1), but

that type is used in all the subsequent subtyping queries. As a result, reducing 1+1 to 2 once

and for all leads to a speed-up in compilation.

Our implementation reduces match types at multiple points during compilation, includ-

ing directly after creating types, during subtyping, and after instantiating parameters of type

applications. This last point is essential to avoid the quadratic behavior of the GEQ example.

In Figure 6.3, we show the impact of this optimization on our Reduce benchmark. In this fig-

ure, we compare the compilation times of the match type Reduce benchmark with (S1) and

without (S2) the reduction of match types after type parameter instantiation.

75

7 Conclusion
In this thesis, we presented three techniques for type-level programming in Scala: implicits,

generalized singleton types, and match types. We showed that programming with implicits

can be relatively cumbersome, both for programmers and compilers, which led us to the fol-

lowing question: can we do better? Our main contribution, match types, certainly answers

that question positively. They do provide a simple, first-class solution to type-level program-

ming which is both easy to use and fast to compile. We formalized match types in a calculus

based on System F<: and proved its soundness, which gives us confidence that our approach

is correct and sensible. Our implementation of match types in the Scala 3 compiler is already

in active use and makes type-level programming accessible to a large audience of program-

mers. Beyond the scope of Scala, it will be interesting to see if our design can inspire other

general-purpose languages interested in moving their type system towards dependent types.

77

A Type Soundness for System FM
Lemma 4.1 (Permutation).

If Γ and ∆ are well-formed and ∆ is a permutation of Γ, then:

1. If Γ`disj(S,T), then ∆`disj(S,T).

2. If Γ`S<:T, then ∆`S<:T.

3. If Γ` t :T, then ∆` t :T.

Proof: We prove 1. and 2. simultaneously by induction on two derivations ofΓ`disj(V,W)

and Γ`S<:T. More precisely, the induction is done on the cumulative depth of both deriva-

tion tree.

1. Γ`disj(V,W)

• Case D-XI: V = C1 W = C2 (C1,C2)∈Ξ
Using D-XI with context ∆ directly leads to the desired result.

• Case D-PSI: V = {new C1} W = C2 (C1,C2)∉Ψ
Using D-PSI with context ∆ directly leads to the desired result.

• Case D-SUB: Γ`V<:U Γ`disj(U,W)

By the IH we get ∆`disj(U,W). Using the 2nd part of the lemma we obtain ∆`V

<:U. The result follows from D-SUB.

• Case D-ARROW: V = V1→V2 W = C

Using D-ARROW with context ∆ directly leads to the desired result.

• Case D-ALL: V =∀X<:V1. V2 W = C

Using D-ALL with context ∆ directly leads to the desired result.

2. Γ`S<:T.

• Case S-REFL: T = S

Using S-REFL with context ∆ directly leads to the desired result.

• Case S-TRANS: Γ`S<:U Γ`U<:T

The result follows directly from the IH and S-TRANS.

79

Appendix A. Type Soundness for System FM

• Case S-TOP: T = Top

Using S-TOP with context ∆ directly leads to the desired result.

• Case S-SIN: S = {new C} T = C

Using S-SIN with context ∆ directly leads to the desired result.

• Case S-TVAR: S = X X<:T∈Γ Since ∆ is a permutation of Γ, X<:T∈∆, and the

result follows from S-TVAR.

• Case S-ARROW: S = S1→S2 T = T1→T2

Γ`T1 <:S1 Γ`S2 <:T2

The result follows directly from the IH and S-ARROW.

• Case S-ALL: S =∀X<:U1. S2 T =∀X<:U1. T2 Γ,X<:U1`S2 <:T2

If ∆ is a permutation of Γ, then ∆,X<:U1 is a permutation of Γ,X<:U1. Therefore,

we can use the IH to get ∆,X<:U1`S2 <:T2. The result follows from S-ALL.

• Case S-PSI: S = C1 T = C2 (C1,C2)∈Ψ
Using S-PSI with context ∆ directly leads to the desired result.

• Case S-MATCH1/2: T1 = Tn T2 = Ts match{Si ⇒Ti }or Td

Γ`Ts <:Sn ∀m < n. Γ`disj(Ts ,Sm)

By the 1st part of the lemma we get ∀m < n. ∆`disj(Ts ,Sm). From the IH we

obtain ∆`Ts <:Sn . The result follows from S-MATCH1/2.

• Case S-MATCH3/4: S = Td T = Ts match{Si ⇒Ti }or Td ∀n. Γ`disj(Ts ,Sn)

The result follows from the 1st part of the lemma and S-MATCH3/4.

• Case S-MATCH5: S = Ss match{Ui ⇒Si }or Sd T = Ts match{Ui ⇒Ti }or Td

Γ`Ss <:Ts ∀n. Γ`Sn <:Tn Γ`Sd <:Td

The result follows directly from the IH and S-MATCH5.

3. By induction on a derivation of Γ` t :T

• Case T-VAR: t = x x:T∈Γ
Since ∆ is a permutation of Γ, x :T∈∆, and the result follows from T-VAR.

• Case T-ABS: t =λx:T1t2 T = T1→T2 Γ,x :T1` t2 :T2

If ∆ is a permutation of Γ, then ∆,x :T1 is a permutation of Γ,x :T1. Therefore, we

can use the IH to get ∆,x :T1` t2 :T2. The result follows from T-ABS.

• Case T-APP: t = t1t2 T = T12 Γ` t1 :T11→T12 Γ` t2 :T11

The result follows directly from the IH and T-APP.

• Case T-TABS: t =λX<:U1. t2 T =∀X<:U1. T2 Γ,X<:U1` t2 :T2

If ∆ is a permutation of Γ, then ∆,X<:U1 is a permutation of Γ,X<:U1. Therefore,

we can use the IH to get ∆,X<:U1` t2 :T2. The result follows from T-TABS.

• Case T-TAPP: t = t1T2 T = [X 7→T2]T12

Γ` t1 :(∀X<:U1. T12) Γ`T2 <:U1

By the IH we get ∆` t1 :(∀X<:U1. T12). Using the 2nd part of the lemma we obtain

∆`T2 <:U1. The result follows from T-TAPP.

80

• Case T-SUB: Γ` t :S Γ`S<:T

By the IH we get ∆` t :S. Using the 2nd part of the lemma we obtain ∆`S<:T. The

result follows from T-SUB.

• Case T-CLASS: t = new C T = {new C}

Using T-CLASS with context ∆ directly leads to the desired result.

• Case T-MATCH: t = ts match{xi :Ci ⇒ ti }or td T = Ts match{Ci ⇒Ti }or Td

Γ` ts :Ts Γ,xi :Ci ` ti :Ti Γ` td :Td

If ∆ is a permutation of Γ, then ∆,xi :Ci is a permutation of Γ,xi :Ci . Therefore the

result follows directly from the IH and T-MATCH.

Lemma 4.2 (Weakening).

1. If Γ`disj(S,T) and Γ,X<:U is well formed, then Γ,X<:U`disj(S,T).

2. If Γ`S<:T and Γ,X<:U is well formed, then Γ,X<:U`S<:T.

3. If Γ`S<:T and Γ,x :U is well formed, then Γ,x :U`S<:T.

4. If Γ` t :T and Γ,x :U is well formed, then Γ,x :U` t :T.

5. If Γ` t :T and Γ,X<:U is well formed, then Γ,X<:U` t :T.

Proof: We prove 1. and 2. simultaneously by induction on two derivations ofΓ`disj(V,W)

and Γ`S<:T. More precisely, the induction is done on the cumulative depth of both deriva-

tion tree.

1. Γ`disj(V,W)

• Case D-XI: V = C1 W = C2 (C1,C2)∈Ξ
Using D-XI with context Γ,X<:U directly leads to the desired result.

• Case D-PSI: V = {new C1} W = C2 (C1,C2)∉Ψ
Using D-PSI with context Γ,X<:U directly leads to the desired result.

• Case D-SUB: Γ`V<:U Γ`disj(U,W)

By the IH we get Γ`disj(U,W). Using the 2nd part of the lemma we obtain Γ,X<:

U`V<:U. The result follows from D-SUB.

• Case D-ARROW: V = V1→V2 W = C

Using D-ARROW with context Γ,X<:U directly leads to the desired result.

• Case D-ALL: V =∀X<:V1. V2 W = C

Using D-ALL with context Γ,X<:U directly leads to the desired result.

2. Γ`S<:T.

81

Appendix A. Type Soundness for System FM

• Case S-REFL: T = S

Using S-REFL with context Γ,X<:U directly leads to the desired result.

• Case S-TRANS: Γ`S<:U Γ`U<:T

The result follows from the IH and S-TRANS.

• Case S-TOP: T = Top

Using S-TOP with context Γ,X<:U directly leads to the desired result.

• Case S-SIN: S = {new C} T = C

Using S-SIN with context Γ,X<:U directly leads to the desired result.

• Case S-TVAR: S = Y Y<:T∈Γ
If Y<:T∈Γ, then Y<:T∈Γ,X<:U and the result follows from S-TVAR.

• Case S-ARROW: S = S1→S2 T = T1→T2

Γ`T1 <:S1 Γ`S2 <:T2

The result follows from the IH and S-ARROW.

• Case S-ALL: S =∀Y<:U1. S2 T =∀Y<:U1. T2 Γ,Y<:U1`S2 <:T2

Using the IH with context ΓI H = Γ,Y<:U1, we get Γ,Y<:U1,X<:U`S2 <:T2. From

Lemma 4.1, Γ,X<:U,Y<:U1`S2 <:T2 The result follows from S-ALL.

• Case S-PSI: S = C1 T = C2 (C1,C2)∈Ψ
Using S-PSI with context Γ,X<:U directly leads to the desired result.

• Case S-MATCH1/2: T1 = Tn T2 = Ts match{Si ⇒Ti }or Td

Γ`Ts <:Sn ∀m < n. Γ`disj(Ts ,Sm)

From the IH we get Γ,X<:U`Ts <:Sn . Using the 1st part of the lemma we obtain

∀m < n. Γ,X<:U`disj(Ts ,Sm). The result follows from S-MATCH1/2.

• Case S-MATCH3/4: T1 = Td T2 = Ts match{Si ⇒Ti }or Td ∀n. Γ`disj(Ts ,Sn)

Using the 1st part of the lemma we get ∀n. Γ,X<:U`disj(Ts ,Sn). The result fol-

lows from S-MATCH3/4.

• Case S-MATCH5: S = Ss match{Si ⇒Ti }or Td T = Ts match{Si ⇒Ui }or Ud

Γ`Ss <:Ts ∀n. Γ`Tn <:Un Γ`Td <:Ud

We use the IH on each premise and the result follows directly from S-MATCH5.

3. By inspection of the subtyping rules, it is clear that typing assumbtions play no role in

subtyping derivations.

4. By induction on a derivation of Γ` t :T.

• Case T-VAR: t = y y:T∈Γ
If y :T∈Γ then y:T∈Γ,x :U and the result follows from T-VAR.

• Case T-ABS: t =λy:T1t2 T = T1→T2 Γ,y :T1` t2 :T2

Using the IH with ΓI H = Γ,y :T1 we get Γ,y :T1,x :U` t2 :T2. From Lemma 4.1, Γ,x :

U,y:T1` t2 :T2. The result follows from T-ABS.

82

• Case T-APP: t = t1t2 T = T12 Γ` t1 :T11→T12 Γ` t2 :T12

We use the IH on each premise and the result follows from T-APP.

• Case T-TABS: t =λX<:T1. t2 T =∀X<:T1. T2 Γ,X<:T1` t2 :T2

Using the IH with ΓI H = Γ,X<:T1 we get Γ,X<:T1,x :U` t2 :T2. From Lemma 4.1,

Γ,x :U,X<:T1` t2 :T2 The result follows from T-TABS.

• Case T-TAPP: t = t1T2 T = [X 7→T2]T12

Γ` t1 :(∀X<:T11. T12) Γ`T2 <:T11

Using the IH on the left premise we get Γ,x :U` t1 :(∀X<:T11. T12). Using the 3rd

part of the lemma on the right premise we obtain Γ,x :U`T2 <:T11. The result

follows from T-TAPP.

• Case T-SUB: Γ` t :S Γ`S<:T

Using the IH on the left premise we get Γ,x :U` t :S. Using the 3rd part of the

lemma on the right premise we obtain Γ,x :U`S<:T. The result follows from T-

SUB.

• Case T-CLASS: t = new C T = {new C}

Using T-CLASS with context Γ,x :U directly leads to the desired result.

• Case T-MATCH: t = ts match{xi :Ci ⇒ ti }or td T = Ts match{Ci ⇒Ti }or Td

Γ` ts :Ts Γ,xi :Ci ` ti :Ti Γ` td :Td

We use the IH on each premise and the result follows directly from Lemma 4.1 and

T-MATCH.

5. By induction on a derivation of Γ` t :T.

• Case T-VAR: t = x x:T∈Γ
If y :T∈Γ then y:T∈Γ,X<:U and the result follows from T-VAR.

• Case T-ABS: t =λx:T1t2 T = T1→T2 Γ,x :T1` t2 :T2

Using the IH with ΓI H = Γ,x :T1 we get Γ,x :T1,X<:U` t2 :T2. From Lemma 4.1, Γ,X

<:U,x:T1` t2 :T2. The result follows from T-ABS.

• Case T-APP: t = t1t2 T = T12 Γ` t1 :T11→T12 Γ` t2 :T12

We use the IH on each premise and the result follows from T-APP.

• Case T-TABS: t =λY<:T1. t2 T =∀Y<:T1. T2 Γ,Y<:T1` t2 :T2

Using the IH with ΓI H = Γ,Y<:T1 we get Γ,Y<:T1,X<:U` t2 :T2. From Lemma 4.1,

Γ,X<:U,Y<:T1,` t2 :T2. The result follows from T-TABS.

• Case T-TAPP: t = t1T2 T = [Y 7→T2]T12

Γ` t1 :(∀Y<:T11. T12) Γ`T2 <:T11

Using the IH on the left premise we get Γ,X<:U` t1 :(∀X<:T11. T12). Using the 2nd

part of the lemma on the right premise we obtain Γ,X<:U`T2 <:T11. The result

follows from T-TAPP.

83

Appendix A. Type Soundness for System FM

• Case T-SUB: Γ` t :S Γ`S<:T

Using the IH on the left premise we get Γ,S<:U` t :S. Using the 2nd part of the

lemma on the right premise we obtain Γ,X<:U`S<:T. The result follows from

T-SUB.

• Case T-CLASS: t = new C T = {new C}

Using T-CLASS with context Γ,X<:U directly leads to the desired result.

• Case T-MATCH: t = ts match{xi :Ci ⇒ ti }or td T = Ts match{Ci ⇒Ti }or Td

Γ` ts :Ts Γ,xi :Ci ` ti :Ti Γ` td :Td

We use the IH on each premise and the result follows directly from Lemma 4.1 and

T-MATCH.

Lemma 4.3 (Strengthening).

If Γ,x :T,∆`S<:T, then Γ,∆`S<:T.

Proof: By inspection of the subtyping rules, it is clear that typing assumbtions play no

role in subtyping derivations.

Lemma 4.4 (Substitution).

1. If Γ,X<:Q,∆`disj(S,T) and Γ`P<:Q, then Γ, [X 7→P]∆`disj([X 7→P]S,[X 7→P]T).

2. If Γ,X<:Q,∆`S<:T and Γ`P<:Q, then Γ, [X 7→P]∆`[X 7→P]S<:[X 7→P]T.

3. If Γ,X<:Q,∆` t :T and Γ`P<:Q, then Γ, [X 7→P]∆`[X 7→P]t :[X 7→P]T.

4. If Γ,x :Q,∆` t :T and Γ`q:Q, then Γ,∆`[x 7→q]t :T.

Proof: We prove 1. and 2. simultaneously by induction on two derivations of Γ,X<:Q,∆

`disj(V,W) and Γ,X<:Q,∆`S<:T. More precisely, the induction is done on the cumulative

depth of both derivation tree.

1. Γ,X<:Q,∆`disj(V,W)

• Case D-XI: V = C1 W = C2 (C1,C2)∈Ξ
Since [X 7→P]C1 = C1 and [X 7→P]C2 = C2, we can use D-XI with context Γ, [X 7→P]∆

to obtain the desired result.

• Case D-PSI: V = {new C1} W = C2 (C1,C2)∉Ψ
Since [X 7→P]{new C1} = {new C1} and [X 7→P]C2 = C2, we can use D-PSI with con-

text Γ, [X 7→P]∆ to obtain the desired result.

• Case D-SUB: Γ,X<:Q,∆`V<:U Γ,X<:Q,∆`disj(U,W)

By the IH we get Γ, [X 7→P]∆`disj([X 7→P]U,[X 7→P]W). Using the 2nd part of the

lemma we obtain Γ, [X 7→P]∆`[X 7→P]V<:[X 7→P]U. The result follows from D-SUB.

84

• Case D-ARROW: V = V1→V2 W = C

Since [X 7→P](V1→V2) = [X 7→P]V1→[X 7→P]V2 and [X 7→P]C = C, we can use D-

ARROW with context Γ, [X 7→P]∆ to obtain the desired result.

• Case D-ALL: V =∀Y<:V1. V2 W = C

Since [X 7→P](∀Y<:V1. V2) = ∀Y<:[X 7→P]V1. [X 7→P]V2 and [X 7→P]C = C, we can

use D-ALL with context Γ, [X 7→P]∆ to obtain the desired result.

2. Γ,X<:Q,∆`S<:T.

• Case S-REFL: T = S

The result follows directly from S-REFL.

• Case S-TRANS: Γ,X<:Q,∆`S<:U Γ,X<:Q,∆`U<:T

The result follows directly from the IH and S-TRANS.

• Case S-TOP: T = Top

[X 7→P]Top = Top and the result follows from S-TOP.

• Case S-SIN: S = {new C} T = C

[X 7→P]{new C} = {new C}, [X 7→P]C = C, and the result follows from S-SIN.

• Case S-TVAR: S = Y Y<:T∈(Γ,X<:Q,∆)

By context well-formedness, Y<:T∈(Γ,X<:Q,∆) can be decomposed into 3 sub-

cases:

– Subcase Y<:T∈Γ:

By context well-formedness X does not appear in Γ consequently is also ab-

sent from Y and T. Hence Y = [X 7→P]Y, T = [X 7→P]T and [X 7→P]Y<:[X 7→P]T∈
(Γ, [X 7→P]∆). The result follows from S-TVAR.

– Subcase Y<:T∈∆:

We have [X 7→P]Y<:[X 7→P]T∈[X 7→P]∆ and [X 7→P]Y<:[X 7→P]T∈(Γ, [X 7→P]∆),

and the result follows from S-TVAR.

– Subcase Y<:T = X<:Q (i.e. Y = X and T = Q):

By context well-formedness, X doesn’t appear in Q, and [X 7→P]T = [X 7→P]Q =
Q. Also [X 7→P]S = [X 7→P]X = P and [X 7→P]T = Q. As a result, Γ`P<:Q implies

Γ`[X 7→P]S<:[X 7→P]T. Using Lemma 4.2 we get Γ, [X 7→P]∆`[X 7→P]S<:[X 7→
P]T, as required.

• Case S-ARROW: S = S1→S2 T = T1→T2

Γ,X<:Q,∆`T1 <:S1 Γ,X<:Q,∆`S2 <:T2

[X 7→P](S1→S2) = [X 7→P]S1→[X 7→P]S2, [X 7→P](T1→T2) = [X 7→P]T1→[X 7→P]T2.

The result follows from the IH and S-ARROW.

• Case S-ALL: S =∀Y<:U1. S2 T =∀Y<:U1. T2 Γ,X<:Q,∆,Y<:U1`S2 <:T2

We instantiate the IH with ∆I H = (∆,Y<:U1) to obtain Γ, [X 7→P]∆,Y<:[X 7→P]U1`
[X 7→P]S2 <:[X 7→P]T2. Using S-ALL, we get Γ, [X 7→P]∆`(∀Y<:[X 7→P]U1. [X 7→P]S2)

<:(∀Y<:[X 7→P]U1. [X 7→P]T2), that is, Γ, [X 7→P]∆`[X 7→P](∀Y<:U1. S2)<:[X 7→P](∀Y

<:U1. T2), as required.

85

Appendix A. Type Soundness for System FM

• Case S-PSI: S = C1 T = C2 (C1,C2)∈Ψ
[X 7→P]C1 = C1 and [X 7→P]C2 = C2. The result follows from S-PSI.

• Case S-MATCH1/2: T1 = Tn T2 = Ts match{Si ⇒Ti }or Td

Γ,X<:Q,∆`Ts <:Sn ∀m < n. Γ,X<:Q,∆`disj(Ts ,Sm)

Using the 1st part of the lemma we get ∀m < n. Γ, [X 7→P]∆`disj([X 7→P]Ts , [X 7→
P]Sm). By the IH we get Γ, [X 7→P]∆`[X 7→P]Ts <:Sn . [X 7→P]T = [X 7→P]Ts match{

[X 7→P]Si ⇒[X 7→P]Ti }or [X 7→P]Td , and the result follows from S-MATCH1/2.

• Case S-MATCH3/4: S = Td T = Ts match{Si ⇒Ti }or Td

∀n. Γ,X<:Q,∆`disj(Ts ,Sn)

By the 1st part of the lemma we get ∀n. Γ, [X 7→P]∆`disj([X 7→P]Ts , [X 7→P]Sn) and

the result follows from S-MATCH3/4.

• Case S-MATCH5: S = Ss match{Ui ⇒Si }or Sd T = Ts match{Ui ⇒Ti }or Td

Γ,X<:Q,∆`Ss <:Ts ∀n. Γ,X<:Q,∆`Sn <:Tn

Γ,X<:Q,∆`Sd <:Td

The result follows directly from the IH.

3. By induction on a derivation of Γ,X<:Q,∆` t :T.

• Case T-VAR: t = x x:T∈Γ,X<:Q,∆

[X 7→P]x = x. T-VAR’s premise can be divided in two subcases:

– Subcase x:T∈Γ:

Context well-formedness impiles that there is no occurence of X in T and [X 7→
P]T = T. Also, x :T∈Γ, [X 7→P]∆ and the result follows from T-VAR.

– Subcase x:T∈∆:

Context well-formedness impiles that there is a unique occurence of x:T in

∆, that is, there exists ∆1, ∆2 such that ∆=∆1,x :T,∆2, x 6∈∆1 and x 6∈∆2. As a

result, [X 7→P]∆ = [X 7→P]∆1,x :[X 7→P]T,[X 7→P]∆2 and x:[X 7→P]T∈Γ, [X 7→P]∆.

The result follows from T-VAR.

• Case T-ABS: t =λx:T1t2 T = T1→T2 Γ,X<:Q,∆,x :T1` t2 :T2

[X 7→P](λx:T1t2) = λx:[X 7→P]T1[X 7→P]t2 and [X 7→P](T1→T2) = [X 7→P]T1→[X 7→
P]T2. We instantiate the IH with ∆I H = (∆,x :T1) to obtain

Γ, [X 7→P]∆,x :[X 7→P]T1`[X 7→P]t2 :[X 7→P]T2. The result follows from T-ABS.

• Case T-APP: t = t1t2 T = T12 Γ,X<:Q,∆` t1 :T11→T12 Γ,X<:Q,∆` t2 :T11

[X 7→P](t1t2) = [X 7→P]t1[X 7→P]t2, [X 7→P]T11→T12 = [X 7→P]T11→[X 7→P]T12. The

result follows directly from the IH and T-APP.

• Case T-TABS: t =λY<:T1. t2 T =∀Y<:T1. T2 Γ,X<:Q,∆,Y<:T1` t2 :T2

[X 7→P](λY<:T1. t2) =λY<:[X 7→P]T1. [X 7→P]t2 and [X 7→P](∀Y<:T1. T2) =∀Y<:[X 7→
P]T1. [X 7→P]T2. We instantiate the IH with ∆I H = (∆,Y<:T1) to obtain Γ, [X 7→
P]∆,Y<:[X 7→P]T1`[X 7→P]t2 :[X 7→P]T2. The result follows from T-TABS.

86

• Case T-TAPP: t = t1T2 T = [Y 7→T2]T12

Γ,X<:Q,∆` t1 :(∀Y<:T11. T12) Γ,X<:Q,∆`T2 <:T11

By the IH, Γ, [X 7→P]∆`[X 7→P]t1 :[X 7→P](∀Y<:T11. T12), that is, Γ, [X 7→P]∆`[X 7→
P]t1 :∀Y<:[X 7→P]T11. [X 7→P]T12. Using the second part of the lemma, Γ, [X 7→P]∆

`[X 7→P]T2 <:[X 7→P]T11. By T-TAPP we get, Γ, [X 7→P]∆`[X 7→P]t1[X 7→P]T2 :[Y 7→
[X 7→P]T2][X 7→P]T12, that is, Γ, [X 7→P]∆`[X 7→P](t1T2) :[X 7→P]([Y 7→T2]T12), as re-

quired.

• Case T-SUB: Γ,X<:Q,∆` t :S Γ,X<:Q,∆`S<:T

By the IH, Γ, [X 7→P]∆`[X 7→P]t :[X 7→P]S. Using the second part of the lemma we

get, Γ, [X 7→P]∆`[X 7→P]S<:[X 7→P]T. The result follows from T-SUB.

• Case T-CLASS: t = new C T = {new C}

[X 7→P]new C = new C and using T-CLASS with context Γ, [X 7→P]∆ directly leads to

the desired result.

• Case T-MATCH: t = ts match{xi :Ci ⇒ ti }or td T = Ts match{Ci ⇒Ti }or Td

Γ,X<:Q,∆` ts :Ts Γ,X<:Q,∆,xi :Ci ` ti :Ti

Γ,X<:Q,∆` td :Td

[X 7→P](ts match{xi :Ci ⇒ ti }or td) = [X 7→P]ts match{xi :Ci ⇒[X 7→P]ti }or [X 7→P]td .

[X 7→P](Ts match{Ci ⇒Ti }or Td) = [X 7→P]Ts match{Ci ⇒[X 7→P]Ti }or [X 7→P]Td .

The result follows directly from the IH and T-APP.

4. By induction on a derivation of Γ,x :Q,∆` t :T.

• Case T-VAR: t = y y:T∈Γ,x :Q,∆

By context well-formedness, the premise can be decomposed into 3 subcases:

– Subcase y:T∈Γ:

[x 7→q]y = y and y:T∈Γ,∆. The result follows from T-VAR.

– Subcase y:T∈∆:

Ditto.

– Subcase y:T = x:Q (i.e. y = x and T = Q):

Using Γ`q:Q and Lemma 4.2 we get Γ,∆`q:Q. Since [x 7→q]y = q and T = Q,

Γ,∆`[x 7→q]y:T, as required.

• Case T-ABS: t =λy:T1t2 T = T1→T2 Γ,x :Q,∆,y :T1` t2 :T2

We instantiate the IH with ∆I H = (∆,y :T1) to get Γ,∆,y :T1`[x 7→q]t2 :T2. [x 7→
q](λy:T1t2) =λy:T1[x 7→q]t2 and the result follows from T-ABS.

• Case T-APP: t = t1t2 T = T12 Γ,x :Q,∆` t1 :T11→T12 Γ,x :Q,∆` t2 :T11

[x 7→q](t1t2) = ([x 7→q]t1)([x 7→q]t2) and the result follows from the IH and T-APP.

• Case T-TABS: t =λX<:U1. t2 T =∀X<:U1. T2 Γ,x :Q,∆,X<:U1` t2 :T2

We instantiate the IH with ∆I H = (∆,X<:U1) to get Γ,∆,X<:U1`[x 7→q]t2 :T2. [x 7→
q](λX<:U1. t2) =λX<:U1. [x 7→q]t2 and the result follows from T-TABS.

87

Appendix A. Type Soundness for System FM

• Case T-TAPP: t = t1T2 T = [X 7→T2]T12

Γ,x :Q,∆` t1 :(∀X<:U1. T12) Γ,x :Q,∆`T2 <:U1

By Lemma 4.3, Γ,∆`T2 <:U1. From the IH we get Γ,∆`[x 7→q]t1 :(∀X<:U1. T12).

[x 7→q](t1T2) = [x 7→q]t1T2 and the result follows from T-TAPP.

• Case T-SUB: Γ,x :Q,∆` t :S Γ,x :Q,∆`S<:T

By Lemma 4.3, Γ,∆`S<:T. The result follows from the IH and T-SUB.

• Case T-CLASS: t = new C T = {new C}

Since [x 7→q]new C = new C, using T-CLASS with context Γ,∆ directly leads to the

desired result.

• Case T-MATCH: t = ts match{xi :Ci ⇒ ti }or td T = Ts match{Ci ⇒Ti }or Td

Γ,x :Q,∆` ts :Ts Γ,x :Q,∆,xi :Ci ` ti :Ti Γ,x :Q,∆` td :Td

[x 7→q](ts match{xi :Ci ⇒ ti }or td) = [x 7→q]ts match{xi :Ci ⇒[x 7→q]ti }or [x 7→q]td ,

and the result follows from the IH and T-MATCH.

Lemma 4.5 (Disjointness/subtyping exclusivity).

The type disjointness and subtyping relations are mutually exclusive. In other words,

∀Γ,S,T.¬(Γ`S<:T and Γ`disj(S,T))

Proof: We prove mutual exclusivity of type disjointness and subtyping by first defining

�·�Γ, a mapping from System FM types (in a given context Γ) into non-empty subsets of a

newly defined set P. We then show that the subtyping relation in FM corresponds to a subset

relation in P, and that the type disjointness relation in FM (disj) corresponds to set disjoint-

ness relation in P.

This set-theoretical view of subtyping and disjointness renders the proof trivial. Indeed,

suppose there exist two types S and T with Γ`S<:T and Γ`disj(S,T). �S�Γ and �T�Γ are two

non-empty sets which are both intersecting and disjoint, a contradiction.

We first define P as P = {Λ,V}∪C. Elements of P can be understood as equivalence classes

for System FM values: Λ corresponds to all abstraction values, V corresponds to type abstrac-

tion value, and elements of C correspond to their respective constructors. The definition of

�·�Γ makes this correspondence apparent.

We define �·�Γ, a mapping of System FM types into subsets of P in a given context Γ:

�Top�Γ = P

�X�Γ = �T�Γ where X<:T∈Γ
�T1→T2�Γ = {Λ}

�∀X<:U1. T2�Γ = {V}

�{new C1}�Γ = {C1}

88

�C1�Γ = {c∈C | (c,C1)∈Ψ}

�Ts match{Si ⇒Ti }or Td �Γ =

�Tn�Γ if �Ts�Γ⊂�Sn�Γ
and ∀m < n. �Ts�Γ∩�Sm�Γ = {}

�Td �Γ if ∀m. �Ts�Γ∩�Sm�Γ = {}

P otherwise

We show that the subtyping relation in FM corresponds to a subset relation in P, and that

the type disjointness relation in FM (disj) corresponds to set disjointness in P. In other words,

we prove the follows statements:

1. Γ`S<:T implies �S�Γ⊂�T�Γ,

2. Γ`disj(S,T) implies �S�Γ∩�T�Γ = {},

Both statements are proved simultaneously by induction on derivations of Γ`disj(V,W)

and Γ`S<:T. More precisely, the induction is done on the cumulative depth of both deriva-

tion tree.

1. (Γ`S<:T implies �S�Γ⊂�T�Γ)

• Case S-REFL: T = S

�S�Γ = �T�Γ and the result is immediate.

• Case S-TRANS: Γ`S<:U Γ`U<:T

By the IH, �S�Γ⊂�U�Γ and �U�Γ⊂�T�Γ. From subset transitivity, �S�Γ⊂�T�Γ, as re-

quired.

• Case S-TOP: T = Top

�Top�Γ = P coincides with the codomain of �·�Γ. Therefore, for any type T, �T�Γ⊂
�Top�Γ, as required.

• Case S-SIN: S = {new C1} T = C1

�{new C1}�Γ = {C1} and �C1�Γ = {c∈C | (c,C1)∈Ψ}. The result follows by reflexivity

of Ψ.

• Case S-TVAR: S = X X<:T∈Γ
By definition �X�Γ = �T�Γ, and the result is immediate.

• Case S-ARROW: S = S1→S2 T = T1→T2

Γ`T1 <:S1 Γ`S2 <:T2

�S1→S2�Γ = �T1→T2�Γ = {Λ} and the result is immediate.

• Case S-ALL: S =∀X<:U1. S2 T =∀X<:U1. T2 Γ,X<:U1`S2 <:T2

�∀X<:U1. S2�Γ = �∀X<:U1. T2�Γ = {V} and the result is immediate.

• Case S-PSI: S = C1 T = C2 (C1,C2)∈Ψ
�C1�Γ = {c∈C | (c,C1)∈Ψ} and �C2�Γ = {c∈C | (c,C2)∈Ψ}. By transitivity of Ψ,

�C1�Γ⊂�C2�Γ, as required.

89

Appendix A. Type Soundness for System FM

• Case S-MATCH1/2: T1 = Tn T2 = Ts match{Si ⇒Ti }or Td

Γ`Ts <:Sn ∀m < n. Γ`disj(Ts ,Sm)

Using the IH we get �Ts�Γ⊂�Sn�Γ, ∀m < n. �Ts�Γ∩�Sm�Γ = {} and �Ts match{Si ⇒
Ti }or Td �Γ = �Tn�Γ. This last equality implies both �T1�Γ⊂�T2�Γ and �T2�Γ⊂�T1�Γ,

as required.

• Case S-MATCH3/4: T1 = Td T2 = Ts match{Si ⇒Ti }or Td

∀n. Γ`disj(Ts ,Sn)

By the IH ∀n. �Ts�Γ∩�Sn�Γ = {}. By definition, �Ts match{Si ⇒Ti }or Td �Γ = �Td �Γ.

This equality implies both �T1�Γ⊂�T2�Γ and �T2�Γ⊂�T1�Γ, the desired result for

S-MATCH3 and S-MATCH4 respectively.

• Case S-MATCH5: S = Ss match{Ui ⇒Si }or Sd T = Ts match{Ui ⇒Ti }or Td

Γ`Ss <:Ts ∀n. Γ`Sn <:Tn Γ`Sd <:Td

By case analysis on �T�Γ:

(a) �T�Γ = �Tn�Γ and �Ts�Γ⊂�Un�Γ and ∀m < n. �Ts�Γ∩�Um�Γ = {}:

The IH gives �Ss�Γ⊂�Ts�Γ. Using ∀m < n. �Ts�Γ∩�Um�Γ = {}, we get ∀m <
n. �Ss�Γ∩�Um�Γ = {}. Using �Ts�Γ⊂�Un�Γ, we get �Ss�Γ⊂�Un�Γ (by subset tran-

sitivity). Therefore, �S�Γ = �Sn�Γ, and the result follows from the IH.

(b) �T�Γ = �Td �Γ and ∀n. �Ts�Γ∩�Un�Γ = {}:

The IH gives �Ss�Γ⊂�Ts�Γ. Using ∀n. �Ts�Γ∩�Un�Γ = {} we get ∀n. �Ss�Γ∩
�Un�Γ = {}. Therefore, �S�Γ = �Sd �Γ, and the result follows from the IH.

(c) �T�Γ = P:

P is the codomain of �·�Γ, therefore �S�Γ⊂�T�Γ, as required.

2. (Γ`disj(S,T) implies �S�Γ∩�T�Γ = {})

• Case D-XI: S = C1 T = C2 (C1,C2)∈Ξ
�C1�Γ = {c∈C | (c,C1)∈Ψ} and �C2�Γ = {c∈C | (c,C2)∈Ψ}. By definition of Ξ, there

is no class c such that both (c,C1)∈Ψ and (c,C2)∈Ψ, and �C1�Γ∩�C2�Γ = {}.

• Case D-PSI: S = {new C1} T = C2 (C1,C2)∉Ψ
�{new C1}�Γ = C1 and �C2�Γ = {c∈C | (c,C2)∈Ψ}. Since (C1,C2)∉Ψ, C1∉�C2�Γ and

�C1�Γ∩�C2�Γ = {}.

• Case D-SUB: Γ`S<:U Γ`disj(U,T)

By the IH, �S�Γ⊂�U�Γ and �U�Γ∩�T�Γ = {}. �S�Γ∩�T�Γ = {} follows directly.

• Case D-ARROW: S = S1→S2 T = C1

�C1�Γ = {c∈C | (c,C1)∈Ψ}, �S1→S2�Γ = {Λ} and �C1�Γ∩�S1→S2�Γ = {}, as required.

• Case D-ALL: S =∀X<:S1. S2 T = C1

�C1�Γ = {c∈C | (c,C1)∈Ψ}, �∀X<:S1. S2�Γ = {S} and �C1�Γ∩�∀X<:S1. S2�Γ = {}, as

required.

90

...
Γ`S=:=T

(S-MATCH1/2)

Γ`S⇌T

...
Γ`S=:=T

(S-MATCH3/4)

Γ`S⇌T

Γ`S⇌U Γ`U⇌T

Γ`S⇌T

Figure A.1 – Definition of the auxiliary relation ⇌, used to state inversion of subtyping.

Definition. Γ`S⇌T (defined in Figure A.1) represents evidence of the mutual subtyping be-

tween a match type S and a type T with the additional constraint that this evidence was exclu-

sively constructed using pairwise applications of S-MATCH1/2, S-MATCH3/4, and S-TRANS

in both directions.

Lemma 4.6 (Inversion of subtyping).

1. If Γ`Ss match{Ui ⇒Si }or Sd ⇌T, then either:

(a) Γ`Ss <:Un , ∀m < n. Γ`disj(Ss ,Um) and Sn is a match type with Γ`Sn ⇌T,

(b) Γ`Ss <:Un , ∀m < n. Γ`disj(Ss ,Um) and Sn = T,

(c) ∀n. Γ`disj(Ss ,Un) and Sd is a match type with Γ`Sd ⇌T,

(d) ∀n. Γ`disj(Ss ,Un) and Sd = T.

2. If Γ`S<:X, or Γ`S<:T where T is a match type with Γ`T⇌X, then either

(a) S is a match type with Γ`S⇌Y, for some Y,

(b) S is a type variable.

3. If Γ`S<:T1→T2, or Γ`S<:T where T is a match type with Γ`T⇌T1→T2, then either

(a) S is a match type with Γ`S⇌S1→S2, for some S1, S2 such that Γ`T1 <:S1 and Γ`
S2 <:T2,

(b) S is a match type with Γ`S⇌X, for some X,

(c) S is a type variable,

(d) S has the form S1→S2 with Γ`T1 <:S1 and Γ`S2 <:T2.

4. If Γ`S<:∀X<:U1. T2, or Γ`S<:T where T is a match type with Γ`T⇌∀X<:U1. T2, then

either

(a) S is a match type with Γ`S⇌∀X<:U1. S2, for some S2 such that Γ,X<:U1`S2 <:T2,

(b) S is a match type with Γ`S⇌X, for some X,

(c) S is a type variable,

(d) S has the form ∀X<:U1. S2 and Γ,X<:U1`S2 <:T2.

Proof:

1. By induction on a derivation on Γ`S⇌T.

91

Appendix A. Type Soundness for System FM

• Case S-MATCH1/2: S = Ss match{Ui ⇒Si }or Sd T = Sn

Γ`Ss <:Un ∀m < n. Γ`disj(Ss ,Um)

Sn = T and the result follows directly from the premises.

• Case S-MATCH3/4: S = Ss match{Ui ⇒Si }or Sd T = Sd ∀n. Γ`disj(Ss ,Un)

Sd = T and the result follows directly from the premises.

• Case S-TRANS: Γ`S⇌U Γ`U⇌T

By definition of the ⇌ relation, Γ`U⇌T implies that U is a match type. Using

the IH on the left premise we get 4 subcases:

(a) Γ`Ss <:Un , ∀m < n. Γ`disj(Ss ,Um) and Sn is a match type with Γ`Sn ⇌U:

Using S-TRANS we get Γ`Sn ⇌T, as requiered.

(b) Γ`Ss <:Un , ∀m < n. Γ`disj(Ss ,Um) and Sn = U:

The result is immediate.

(c) ∀n. Γ`disj(Ss ,Un) and Sd is a match type with Γ`Sd ⇌U:

Using S-TRANS we get Γ`Sd ⇌T, as requiered.

(d) ∀n. Γ`disj(Ss ,Un) and Sd = U:

The result is immediate.

2. By induction on a derivation of Γ`S<:T.

• Case S-REFL: S = T

If T is a type variable then so is S and the result is immediate. If T is a match type

with Γ`T⇌X, S is a match type and Γ`S⇌Y, as required.

• Case S-TRANS: Γ`S<:U Γ`U<:T

If T is a type variable we use the IH on the right premise to get that U is either

a match type with Γ`U⇌X or a type variable. In either case, the result follows

from using the IH on the left premise.

If T is a match type with Γ`T⇌X we can also use the the IH on the right premise

to get to the same result.

• Case S-TVAR: S = Y Y<:X∈Γ
S is a type variable and the result is immediate.

• Case S-MATCH1: S = Ts match{Ui ⇒Ti }or Td T = Tn

Γ`Ts <:Un ∀m < n. Γ`disj(Ts ,Um)

If T = X, we use S-MATCH2 to obtain Γ`S⇌X, as required. If T is a match type

with Γ`T⇌X, we use S-MATCH2 to get Γ`S⇌T, and S-TRANS to obtain Γ`S⇌
X, as required.

• Case S-MATCH2: S = Tn T = Ts match{Ui ⇒Ti }or Td

Γ`Ts <:Un ∀m < n. Γ`disj(Ts ,Um)

In this case the first premise of the statement (Γ`S<:X) does not apply since T is

a match type. Using the 1st part of the lemma on Γ`T⇌X, we get 4 subcases:

92

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌X:

S = Tn is a match type and Γ`S⇌X, as required.

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn = X:

S = Tn = X is a type variable and the result is immediate.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌X:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(d) ∀m. Γ`disj(Ts ,Um) and Td = X:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

• Case S-MATCH3: S = Ts match{Ui ⇒Ti }or Td T = Td

∀n. Γ`disj(Ts ,Un)

If T = X, we use S-MATCH4 to obtain Γ`S⇌X, as required. If T is a match type

with Γ`T⇌X, we use S-MATCH4 to get Γ`S⇌T, and S-TRANS to obtain Γ`S⇌
X, as required.

• Case S-MATCH4: S = Td T = Ts match{Ui ⇒Ti }or Td

∀n. Γ`disj(Ts ,Un)

In this case the first premise of the statement (Γ`S<:X) does not apply since T is

a match type. Using the 1st part of the lemma on Γ`T⇌X, we get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌X:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn = X:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌X:

S is a match type and Γ`S⇌X, as required.

(d) ∀m. Γ`disj(Ts ,Um) and Td = X:

S = Td = X is a type variable and the result is immediate.

• Case S-MATCH5: S = Ss match{Ui ⇒Si }or Sd T = Ts match{Ui ⇒Ti }or Td

Γ`Ss <:Ts ∀m. Γ`Sm <:Tm Γ`Sd <:Td

In this case the first premise of the statement (Γ`S<:X) does not apply since T is

a match type. Using the 1st part of the lemma on Γ`T⇌X, we get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌X:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m < n. Γ`disj(Ts ,Um) we get ∀m <
n. Γ`disj(Ss ,Um). From S-TRANS we obtain Γ`Ss <:Un . Using S-MATCH1/2

we get Γ`S⇌Sn . Since Γ`Sn <:Tn and Γ`Tn ⇌X, we use the IH to get that

either Sn is a match type with Γ`Sn ⇌Y, or Sn is a type variable. If Sn is a type

variable, we already proved Γ`S⇌Sn , as required. If Γ`Sn ⇌Y, then using

S-TRANS with Γ`S⇌Sn gives Γ`S⇌Y, as required.

93

Appendix A. Type Soundness for System FM

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn = X:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m < n. Γ`disj(Ts ,Um) we get ∀m <
n. Γ`disj(Ss ,Um). From S-TRANS we obtain Γ`Ss <:Un . Using S-MATCH1/2

we get Γ`S⇌Sn . Since Γ`Sn <:X, we use the IH to get that either Sn is a

match type with Γ`Sn ⇌Y, or Sn is a type variable. If Sn is a type variable,

we already proved Γ`S⇌Sn , as required. If Γ`Sn ⇌Y, then using S-TRANS

with Γ`S⇌Sn gives Γ`S⇌Y, as required.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌X:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m. Γ`disj(Ts ,Um) we obtain ∀m. Γ`
disj(Ss ,Um). Using S-MATCH3/4 we obtain Γ`S⇌Sd . Since Γ`Sd <:Td and

Γ`Td ⇌X, we use the IH to get that either Sd is a match type with Γ`Sd ⇌Y,

or Sd is a type variable. If Sd is a type variable, we already proved Γ`S⇌Sd ,

as required. If Γ`Sd ⇌Y, then using S-TRANS with Γ`S⇌Sd gives Γ`S⇌Y,

as required.

(d) ∀m. Γ`disj(Ts ,Um) and Td = X:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m. Γ`disj(Ts ,Um) we obtain ∀m. Γ

`disj(Ss ,Um). Using S-MATCH3/4 we obtain Γ`S<:Sd . Since Γ`Sd <:Td and

Γ`Td ⇌X, we use the IH to get that either Sd is a match type with Γ`Sd ⇌Y,

or Sd is a type variable. If Sd is a type variable, we already proved Γ`S⇌Sd ,

as required. If Γ`Sd ⇌Y, then using S-TRANS with Γ`S⇌Sd gives Γ`S⇌Y,

as required.

• Case S-TOP, S-SIN, S-ARROW, S-ALL, S-PSI:

In those cases, T is neither a type variable nor a match type and the result is im-

mediate.

3. By induction on a derivation of Γ`S<:T.

• Case S-REFL: T = S

If T is a match type with Γ`T⇌T1→T2 and the result follows directly from S-

REFL. If T = T1→T2, the result also follows directly from S-REFL.

• Case S-TRANS: Γ`S<:U Γ`U<:T

Using the IH on the right premise we get 4 subcases:

(a) U is a match type with Γ`U⇌U1→U2, for some U1, U2 such that Γ`T1 <:

U1 and Γ`U2 <:T2:

The result follows directly from using the IH on the left premise (Γ`T1 <:S1

is obtained using S-TRANS with Γ`T1 <:U1 and Γ`U1 <:S1, Γ`S2 <:T2 is ob-

tained analogously).

(b) U is a match type with Γ`U⇌X, for some X:

Using the 2nd part of the lemma on the left premise leads to the desired re-

sult.

(c) U is a type variable:

The result follows from using the 2nd part of the lemma on the left premise.

94

(d) U has the form U1→U2 with Γ`T1 <:U1 and Γ`U2 <:T2:

The result follows directly from using the IH on the left premise (Γ`T1 <:S1

is obtained using S-TRANS with Γ`T1 <:U1 and Γ`U1 <:S1, Γ`S2 <:T2 is ob-

tained analogously).

• Case S-MATCH1: S = Ts match{Ui ⇒Ti }or Td T = Tn

Γ`Ts <:Un ∀m < n. Γ`disj(Ts ,Um)

If T = T1→T2, we use S-MATCH2 to obtain Γ`S⇌T1→T2, as required. If T is a

match type with Γ`T⇌T1→T2, we use S-MATCH2 to get Γ`S⇌T, and S-TRANS

to obtain Γ`S⇌T1→T2, and the result follows from S-REFL.

• Case S-MATCH2: S = Tn T = Ts match{Ui ⇒Ti }or Td

Γ`Ts <:Un ∀m < n. Γ`disj(Ts ,Um)

In this case the first premise of the statement (Γ`S<:T1→T2) does not apply

since T is a match type. Using the 1st part of the lemma on Γ`T⇌T1→T2, we

get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌
T1→T2:

S = Tn is a match type and Γ`S⇌T1→T2, and the result follows from S-

REFL.

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn = T1→T2:

S = T1→T2, S1 = T1, S2 = T2, and the result follows from S-REFL.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌T1→T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(d) ∀m. Γ`disj(Ts ,Um) and Td = T1→T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

• Case S-MATCH3: S = Ts match{Ui ⇒Ti }or Td T = Td

∀n. Γ`disj(Ts ,Un)

If T = T1→T2, we use S-MATCH2 to obtain Γ`S⇌T1→T2, and the result follows

from S-REFL. If T is a match type with Γ`T⇌T1→T2, we use S-MATCH2 to get

Γ`S⇌T, and S-TRANS to obtain Γ`S⇌T1→T2, and the result follows from S-

REFL.

• Case S-MATCH4: S = Td T = Ts match{Ui ⇒Ti }or Td

∀n. Γ`disj(Ts ,Un)

In this case the first premise of the statement (Γ`S<:T1→T2) does not apply

since T is a match type. Using the 1st part of the lemma on Γ`T⇌T1→T2, we

get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌
T1→T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

95

Appendix A. Type Soundness for System FM

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn = T1→T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌T1→T2:

S = Td is a match type and Γ`S⇌T1→T2, and the result follows from S-

REFL.

(d) ∀m. Γ`disj(Ts ,Um) and Td = T1→T2:

S = T1→T2, S1 = T1, S2 = T2, and the result follows from S-REFL.

• Case S-MATCH5: S = Ss match{Ui ⇒Si }or Sd T = Ts match{Ui ⇒Ti }or Td

Γ`Ss <:Ts ∀n. Γ`Sn <:Tn Γ`Sd <:Td

In this case the first premise of the statement (Γ`S<:T1→T2) does not apply

since T is a match type. Using the 1st part of the lemma on Γ`T⇌T1→T2, we

get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌
T1→T2:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m < n. Γ`disj(Ts ,Um) we obtain

∀m < n. Γ`disj(Ss ,Um). From S-TRANS, Γ`Ss <:Un . Using S-MATCH1/2 we

get Γ`S⇌Sn . Since Γ`Sn <:Tn and Γ`Tn ⇌T1→T2, the IH gives 4 subsub-

cases:

i. Sn is a match type with Γ`Sn ⇌S1→S2 for some S1, S2 such that Γ`T1 <:

S1 and Γ`S2 <:T2:

The result follows directly from S-TRANS.

ii. Sn is a match type with Γ`Sn ⇌X:

The result follows directly from S-TRANS.

iii. Sn is a type variable:

We already proved Γ`S⇌Sn , as required.

iv. Sn has the form S1→S2 with Γ`T1 <:S1 and Γ`S2 <:T2:

We already proved Γ`S⇌Sn , as required.

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn = T1→T2:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m < n. Γ`disj(Ts ,Um) we obtain

∀m < n. Γ`disj(Ss ,Um). From S-TRANS, Γ`Ss <:Un . Using S-MATCH1/2 we

get Γ`S⇌Sn . Since Γ`Sn <:Tn , the IH gives 4 subsubcases:

i. Sn is a match type with Γ`Sn ⇌S1→S2 for some S1, S2 such that Γ`T1 <:

S1 and Γ`S2 <:T2:

The result follows directly from S-TRANS.

ii. Sn is a match type with Γ`Sn ⇌X:

The result follows directly from S-TRANS.

iii. Sn is a type variable:

We already proved Γ`S⇌Sn , as required.

iv. Sn has the form S1→S2 with Γ`T1 <:S1 and Γ`S2 <:T2:

We already proved Γ`S⇌Sn , as required.

96

(c) ∀n. Γ`disj(Ts ,Un) and Td is a match type with Γ`Td ⇌T1→T2:

Using D-SUB on ∀n. Γ`Sn <:Tn and ∀n. Γ`disj(Ts ,Un) we obtain ∀n. Γ`
disj(Ss ,Un). From S-TRANS we get Γ`Ss <:Cd . Using S-MATCH3/4 we ob-

tain Γ`S⇌Sd . Since Γ`Sd <:Td and Γ`Td ⇌T1→T2, the IH gives 4 subsub-

cases:

i. Sd is a match type with Γ`Sd ⇌S1→S2 for some S1, S2 such that Γ`T1 <:

S1 and Γ`S2 <:T2:

The result follows directly from S-TRANS.

ii. Sd is a match type with Γ`Sd ⇌X:

The result follows directly from S-TRANS.

iii. Sd is a type variable:

We already proved Γ`S⇌Sd , as required.

iv. Sd has the form S1→S2 with Γ`T1 <:S1 and Γ`S2 <:T2:

We already proved Γ`S⇌Sd , as required.

(d) ∀n. Γ`disj(Ts ,Un) and Td = T1→T2:

Using D-SUB on ∀n. Γ`Sn <:Tn and ∀n. Γ`disj(Ts ,Un) we obtain ∀n. Γ`
disj(Ss ,Un). From S-TRANS we get Γ`Ss <:Cd . Using S-MATCH3/4 we obtain

Γ`S⇌Sd . Since Γ`Sd <:Td , the IH gives 4 subsubcases:

i. Sd is a match type with Γ`Sd ⇌S1→S2 for some S1, S2 such that Γ`T1 <:

S1 and Γ`S2 <:T2:

The result follows directly from S-TRANS.

ii. Sd is a match type with Γ`Sd ⇌X:

The result follows directly from S-TRANS.

iii. Sd is a type variable:

We already proved Γ`S⇌Sd , as required.

iv. Sd has the form S1→S2 with Γ`T1 <:S1 and Γ`S2 <:T2:

We already proved Γ`S⇌Sd , as required.

• Case S-TVAR: S = Y Y<:T∈Γ
S is a type variable and the result is immediate.

• Case S-ARROW: S = S1→S2 T = T1→T2

Γ`T1 <:S1 Γ`S2 <:T2

S has the form S1→S2, with Γ`T1 <:S1 and Γ`S2 <:T2, as required.

• Case S-TOP, S-SIN, S-ALL, S-PSI:

In those cases, T is neither a type variable nor a function type and the result is

immediate.

4. By induction on a derivation of Γ`S<:T.

• Case S-REFL: T = S

If T is a match type with Γ`T⇌∀X<:U1. T2 the result follows directly from S-

REFL. If T =∀X<:U1. T2, S2 = T1, and the result also follows from S-REFL.

97

Appendix A. Type Soundness for System FM

• Case S-TRANS: Γ`S<:U Γ`U<:T

Using the IH on the right premise we get 4 subcases:

(a) U is a match type with Γ`U⇌U1→U2 for some U2 such that Γ,X<:U1`U2

<:T2:

The result follows directly from using the IH on the left premise (Γ,X<:U1`
S2 <:T2 is obtained using S-TRANS with Γ,X<:U1`S2 <:U2 and Γ,X<:U1`U2

<:T2).

(b) U is a match type with Γ`U⇌X:

Using the 2nd part of the lemma on the left premise leads to the desired re-

sult.

(c) U is a type variable:

The result follows from using the 2nd part of the lemma on the left premise.

(d) U has the form ∀X<:U1. U2 with Γ,X<:U1`U2 <:T2:

The result follows directly from using the IH on the left premise (Γ,X<:U1`
S2 <:T2 is obtained using S-TRANS with Γ,X<:U1`S2 <:U2 and Γ,X<:U1`U2

<:T2).

• Case S-MATCH1: S = Ts match{Ui ⇒Ti }or Td T = Tn

Γ`Ts <:Un ∀m < n. Γ`disj(Ts ,Um)

If T = ∀X<:U1. T2, we use S-MATCH2 to obtain Γ`S⇌∀X<:U1. T2, as required,

and the result follows from S-REFL. If T is a match type with Γ`T⇌∀X<:U1. T2,

we use S-MATCH2 to get Γ`S⇌T, and S-TRANS to obtain Γ`S⇌∀X<:U1. T2,

and the result follows from S-REFL.

• Case S-MATCH2: S = Tn T = Ts match{Ui ⇒Ti }or Td

Γ`Ts <:Un ∀m < n. Γ`disj(Ts ,Um)

In this case the first premise of the statement (Γ`S<:(∀X<:U1. T2)) does not apply

since T is a match type. Using the 1st part of the lemma on Γ`T⇌∀X<:U1. T2,

we get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌∀X

<:U1. T2:

S = Tn is a match type and Γ`S⇌∀X<:U1. T2, and the result follows from

S-REFL.

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn =∀X<:U1. T2:

S =∀X<:U1. T2, S2 = T2, and the result follows from S-REFL.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌∀X<:U1. T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(d) ∀m. Γ`disj(Ts ,Um) and Td =∀X<:U1. T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

98

• Case S-MATCH3: S = Ts match{Ui ⇒Ti }or Td T = Td

∀n. Γ`disj(Ts ,Un)

If T = ∀X<:U1. T2, we use S-MATCH2 to obtain Γ`S⇌∀X<:U1. T2, and the re-

sult follows from S-REFL. If T is a match type with Γ`T⇌∀X<:U1. T2, we use

S-MATCH2 to get Γ`S⇌T, and S-TRANS to obtain Γ`S⇌∀X<:U1. T2, and the

result follows from S-REFL.

• Case S-MATCH4: S = Td T = Ts match{Ui ⇒Ti }or Td

∀n. Γ`disj(Ts ,Un)

In this case the first premise of the statement (Γ`S<:(∀X<:U1. T2)) does not apply

since T is a match type. Using the 1st part of the lemma on Γ`T⇌∀X<:U1. T2,

we get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌∀X

<:U1. T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn =∀X<:U1. T2:

This case cannot occur since Γ`disj(Ts ,Un) would contradict Γ`Ts <:Un , by

Lemma 4.5.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌∀X<:U1. T2:

S = Td is a match type and Γ`S⇌∀X<:U1. T2, and the result follows from

S-REFL.

(d) ∀m. Γ`disj(Ts ,Um) and Td =∀X<:U1. T2:

S =∀X<:U1. T2, S2 = T2, and the result follows from S-REFL.

• Case S-MATCH5: S = Ss match{Ui ⇒Si }or Sd T = Ts match{Ui ⇒Ti }or Td

Γ`Ss <:Ts ∀n. Γ`Sn <:Tn Γ`Sd <:Td

In this case the first premise of the statement (Γ`S<:(∀X<:U1. T2)) does not apply

since T is a match type. Using the 1st part of the lemma on Γ`T⇌∀X<:U1. T2,

we get 4 subcases:

(a) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn is a match type with Γ`Tn ⇌∀X

<:U1. T2:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m < n. Γ`disj(Ts ,Um) we get ∀m <
n. Γ`disj(Ss ,Um). From S-TRANS we get Γ`Ss <:Un . Using S-MATCH1/2 we

get Γ`S⇌Sn . Since Γ`Sn <:Tn and Γ`Tn ⇌∀X<:U1. T2, the IH gives 4 sub-

subcases:

i. Sn is a match type with Γ`Sn ⇌∀X<:U1. S2 for some S2 such that Γ,X<:

U1`S2 <:T2:

The result follows directly from S-TRANS.

ii. Sn is a match type with Γ`Sn ⇌X:

The result follows directly from S-TRANS.

iii. Sn is a type variable:

We already proved Γ`S⇌Sn , as required.

99

Appendix A. Type Soundness for System FM

iv. Sn has the form ∀X<:U1. S2 with Γ,X<:U1`S2 <:T2:

We already proved Γ`S⇌Sn , as required.

(b) Γ`Ts <:Un , ∀m < n. Γ`disj(Ts ,Um) and Tn =∀X<:U1. T2:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m < n. Γ`disj(Ts ,Um) we get ∀m <
n. Γ`disj(Ss ,Um). From S-TRANS we get Γ`Ss <:Un . Using S-MATCH1/2 we

get Γ`S⇌Sn . Since Γ`Sn <:Tn , the IH, the IH gives 4 subsubcases:

i. Sn is a match type with Γ`Sn ⇌∀X<:U1. S2 for some S2 such that Γ,X<:

U1`S2 <:T2:

The result follows directly from S-TRANS.

ii. Sn is a match type with Γ`Sn ⇌X:

The result follows directly from S-TRANS.

iii. Sn is a type variable:

We already proved Γ`S⇌Sn , as required.

iv. Sn has the form ∀X<:U1. S2 with Γ,X<:U1`S2 <:T2:

We already proved Γ`S⇌Sn , as required.

(c) ∀m. Γ`disj(Ts ,Um) and Td is a match type with Γ`Td ⇌∀X<:U1. T2:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m. Γ`disj(Ts ,Um) we obtain ∀m. Γ`
disj(Ss ,Um). From S-TRANS we get Γ`Ss <:Cd . Using S-MATCH3/4 we obtain

Γ`S⇌Sd . Since Γ`Sd <:Td and Γ`Td ⇌∀X<:U1. T2, the IH gives 4 subsub-

cases:

i. Sd is a match type with Γ`Sd ⇌∀X<:U1. S2 for some S2 such that Γ,X<:

U1`S2 <:T2::

The result follows directly from S-TRANS.

ii. Sd is a match type with Γ`Sd ⇌X:

The result follows directly from S-TRANS.

iii. Sd is a type variable:

We already proved Γ`S⇌Sd , as required.

iv. Sd has the form ∀X<:U1. S2 with Γ,X<:U1`S2 <:T2:

We already proved Γ`S⇌Sd , as required.

(d) ∀m. Γ`disj(Ts ,Um) and Td =∀X<:U1. T2:

Using D-SUB on ∀m. Γ`Sm <:Tm and ∀m. Γ`disj(Ts ,Um) we obtain ∀m. Γ`
disj(Ss ,Um). From S-TRANS we get Γ`Ss <:Cd . Using S-MATCH3/4 we obtain

Γ`S⇌Sd . Since Γ`Sd <:Td , the IH gives 4 subsubcases:

i. Sd is a match type with Γ`Sd ⇌∀X<:U1. S2 for some S2 such that Γ,X<:

U1`S2 <:T2::

The result follows directly from S-TRANS.

ii. Sd is a match type with Γ`Sd ⇌X:

The result follows directly from S-TRANS.

iii. Sd is a type variable:

We already proved Γ`S⇌Sd , as required.

100

iv. Sd has the form ∀X<:U1. S2 with Γ,X<:U1`S2 <:T2:

We already proved Γ`S⇌Sd , as required.

• Case S-TVAR: S = Y Y<:T∈Γ
S is a type variable and the result is immediate.

• Case S-ALL: S =∀X<:U1. S2 T =∀X<:U1. T2

Γ,X<:U1`S2 <:T2

S has the form ∀X<:U1. S2, with Γ,X<:U1`S2 <:T2, as required.

• Case S-TOP, S-SIN, S-ARROW, S-PSI:

In those cases, T is neither a type variable nor a universal type and the result is

immediate.

Lemma 4.7 (Canonical forms).

1. If Γ` t :T, where either T is a type variable, or T is a match type with Γ`T⇌X, then t is

not a closed value.

2. If v is a closed value with Γ`v:T where either T = T1→T2, or T is a match type and Γ`
T⇌T1→T2, then v has the form λx:S1. t2.

3. If v is a closed value with Γ`v:T where either T =∀X<:U1. T2, or T is a match type and

Γ`T⇌∀X<:U1. T2, then v has the form λX<:U1. t2.

Proof:

1. By induction on a derivation of Γ` t :T

• Case T-VAR, T-TAPP, T-APP, T-MATCH:

In those cases, t is not a value and the result is immediate.

• Case T-ABS, T-TABS, T-CLASS:

In those cases, T is neither a match type nor a type variable and the result is im-

mediate.

• Case T-SUB: Γ` t :S Γ`S<:T

By Lemma 4.6, either S is a match type with Γ`S⇌Y, or S is a type variable. In

both cases, we use the IH to show that t is not a closed value, as required.

2. By induction on a derivation of Γ` t :T.

• Case T-VAR, T-TAPP, T-APP, T-MATCH:

In those cases, t is not a value and the result is immediate.

• Case T-ABS: t =λx:T1t2 T = T1→T2 Γ,x :T1` t2 :T2

t =λx:T1t2 and the result is immediate.

101

Appendix A. Type Soundness for System FM

• Case T-TABS, T-CLASS:

T is neither a function type nor a match type and the result is immediate.

• Case T-SUB: Γ` t :S Γ`S<:T

Using Lemma 4.6 we get 4 subcases:

(a) S is a match type with Γ`S⇌S1→S2:

The result follows from the IH.

(b) S is a match type with Γ`S⇌X:

This case cannot occure since the 1th part of the lemma would lead to a con-

tradiction on the fact that v is a closed value.

(c) S is a type variable:

Similarly, this case cannot occure since the 1st part of the lemma would lead

to a contradiction.

(d) S has the form S1→S2 with Γ`T1 <:S1 and Γ`S2 <:T2:

The result follows from the IH.

3. By induction on a derivation of Γ` t :T.

• Case T-VAR, T-TAPP, T-APP, T-MATCH:

In those cases, t is not a value and the result is immediate.

• Case T-ABS, T-CLASS:

T is neither a universal type nor a match type and the result is immediate.

• Case T-TABS: t =λY<:T1. t2 T =∀Y<:T1. T2 Γ,Y<:T1` t2 :T2

t =λY<:T1. t2 and the result is immediate.

• Case T-SUB: Γ` t :S Γ`S<:T

Using Lemma 4.6 we get 4 subcases:

(a) S is a match type with Γ`S⇌∀X<:U1. S2, The result follows from the IH.

(b) S is a match type with Γ`S⇌X, This case cannot occure since the 1th part of

the lemma would lead to a contradiction on the fact that v is a closed value.

(c) S is a type variable, Similarly, this case cannot occure since the 1st part of the

lemma would lead to a contradiction.

(d) S has the form ∀X<:U1. S2 and Γ,X<:U1`S2 <:T2. The result follows from the

IH.

Lemma 4.8 (Inversion of typing).

1. If Γ`λx:S1. s2 :T and Γ`T<:U1→U2, then Γ`U1 <:S1 and there is some S2 such that

Γ,x :S1`s2 :S2 and Γ`S2 <:U2.

2. If Γ`λX<:S1. s2 :T and Γ`T<:(∀X<:U1. U2), then U1 = S1 and there is some S2 such that

Γ,X<:S1`s2 :S2 and Γ,X<:S1`S2 <:U2.

102

Proof:

1. By induction on a derivation of Γ` t :T.

• Case T-ABS: t =λx:S1s2 T = S1→T2 Γx:S1`s2 :T2

Given Γ`S1→T2 <:U1→U2, we use Lemma 4.6 to obtain Γ`U1 <:S1 and Γ`T2 <:

U2. We pick S2 to be T2 to obtain the desired result.

• Case T-SUB: Γ` t :S Γ`S<:T

Using S-TRANS with Γ`S<:T and Γ`T<:U1→U2 we get Γ`S<:U1→U2. The re-

sults follows directly from the IH.

• Case T-VAR, T-APP, T-TABS, T-TAPP, T-CLASS, T-MATCH:

In those cases, t is not of the form λx:S1. s2 and the result is immediate.

2. By induction on a derivation of Γ` t :T.

• Case T-TABS: t =λX<:S1. s2 T =∀X<:S1. T2 Γ,X<:S1`s2 :T2

Given Γ`(∀X<:S1. T2)<:(∀X<:U1. U2), we use Lemma 4.6 to obtain U1 = S1 and

Γ,X<:S1`T2 <:U2. We pick S2 to be T2 to obtain the desired result.

• Case T-SUB: Γ` t :S Γ`S<:T

Using S-TRANS withΓ`S<:T andΓ`T<:(∀X<:U1. U2) we getΓ`S<:(∀X<:U1. U2).

The results follows directly from the IH.

• Case T-VAR, T-ABS, T-APP, T-TAPP, T-CLASS, T-MATCH:

In those cases, t is not of the form λX<:S1. s2 :T and the result is immediate.

Lemma 4.9 (Minimum types).

1. If Γ`new C:T then Γ`{new C}<:T.

2. If Γ`λx:T1. t2 :T then there is some T2 such that Γ`T1→T2 <:T.

3. If Γ`λX<:U1. t2 :T then there is some T2 such that Γ`∀X<:U1. T2 <:T.

Proof:

1. By induction on a derivation of Γ` t :T.

• Case T-VAR, T-ABS, T-APP, T-TABS, T-TAPP, T-MATCH:

In those cases, t is not a constructor call and the result is immediate.

• Case T-CLASS: t = new C T = {new C}

The result follows directly from S-REFL.

• Case T-SUB: Γ` t :S Γ`S<:T

By the IH, Γ`{new C}<:S. The result follows from S-TRANS.

103

Appendix A. Type Soundness for System FM

2. By induction on a derivation of Γ` t :T.

• Case T-VAR, T-APP, T-TABS, T-TAPP, T-CLASS, T-MATCH:

In those cases, t is not an abstraction and the result is immediate

• Case T-ABS: T = T1→S2 Γ,x :T1` t2 :S2

T2 = S2 and the result is immediate using S-REFL.

• Case T-SUB: Γ` t :S Γ`S<:T

Using the IH, there is some T2 such that Γ`T1→T2 <:S. The result follows from

S-TRANS.

3. By induction on a derivation of Γ` t :T.

• Case T-VAR, T-ABS, T-APP, T-TAPP, T-CLASS, T-MATCH:

In those cases, t is not a type abstraction and the result is immediate

• Case T-TABS: T =∀X<:U1. S2 Γ,X<:U1` t2 :S2

T2 = S2 and the result is immediate using S-REFL.

• Case T-SUB: Γ` t :S Γ`S<:T

Using the IH, there is some T2 such that Γ`∀X<:U1. T2 <:S. The result follows

from S-TRANS.

Theorem 4.10 (Progress).

If t is a closed, well-typed term, then either t is a value or there is some t′ such that t−→ t′.

Proof: By induction on a derivation of Γ` t :T.

• Case T-VAR: t = x x:T∈Γ
This case cannot occure because t is closed.

• Case T-ABS, T-TABS, T-CLASS:

In those cases, t is a value and the result is immediate.

• Case T-APP: t = t1t2 T = T12 Γ` t1 :T11→T12 Γ` t2 :T11

By the IH, either t1 is a value or t1 can take a step (there is some t′1 such that t1−→ t′1).

If t1 can take a step, then E-APP1 applies to t. If t1 is a value, we use Lemma 4.7 to get

that t1 has the form λx:S1. t2. Therefore, E-APPABS applies to t, as required.

• Case T-TAPP: t = t1T2 T = [X 7→T2]T12

Γ` t1 :(∀X<:U1. T12) Γ`T2 <:U1

The proof for case T-TAPP is analogous to the one for T-APP.

By the IH, either t1 is a value or t1 can take a step. If t1 can take a step, then E-TAPP

applies to t. If t1 is a value, we use Lemma 4.7 to get that t1 has the form λX<:T1. t2.

Therefore, E-TAPPTABS applies to t, as required.

104

• Case T-SUB: Γ` t :S Γ`S<:T

The result follows directly from the IH.

• Case T-MATCH: t = ts match{xi :Ci ⇒ ti }or td T = Ts match{Ci ⇒Ti }or Td

Γ` ts :Ts Γ,xi :Ci ` ti :Ti Γ` td :Td

By the IH, either ts is a value or ts can take a step. If ts can take a step, then E-MATCH1

applies to t, as required. If ts is a value, ts can take 3 different forms:

– Subcase ts is of the form new C:

If ∀m. (C,Cm)∉Ψ, then E-MATCH3 applies to t. Otherwise, let Ck be the first class

such that (C,Ck)∈Ψ. By construction we know that ∀m < k. (C,Ck)∉Ψ. Therefore

E-MATCH2 applies to t, as required.

– Subcase ts is of the form λx:T1t2:

E-MATCH4 applies to t and the result is immediate.

– Subcase ts is of the form ∀X<:U1. T2:

E-MATCH5 applies to t and the result is immediate.

Theorem 4.11 (Preservation).

If Γ` t :T and t−→ t′ then Γ` t′ :T.

Proof: By induction on a derivation of Γ` t :T.

• Case T-VAR, T-ABS, T-TABS, T-CLASS:

These cases cannot arise since we assume t−→ t′ but there are no evaluation rules for

variables, abstractions, type abstractions and class instantiations.

• Case T-APP: t = t1t2 T = T12 Γ` t1 :T11→T12 Γ` t2 :T11

By definition of the evaluation relation, there are 3 subcases:

– Subcase E-APP1: t1−→ t′1 t′ = t′1t2

By the IH and the 1st premise we get Γ` t′1 :T11→T12. We use T-APP with that

result and the 2nd premise to obtain Γ` t′1t2 :T12, as required.

– Subcase E-APP2: t2−→ t′2 t1 = v1 t′ = v1t′2
Analogously, the IH gives Γ` t′2 :T12 and the result follows from T-APP.

– Subcase E-APPABS: t1 =λx:U11. u12 t′ = [x 7→ t2]u12

By Lemma 4.8 (with S1 = U11, s2 = u12, U1 = T11 and U2 = T12), there is some S2

such that Γ,x :U11`u12 :S2, Γ`S2 <:T12 and Γ`T11 <:U11. Using T-SUB with Γ` t2 :

T11 and Γ`T11 <:U11 we obtain Γ` t2 :U11. By Lemma 4.4 we get Γ`[x 7→ t2]u12 :S2.

Using T-SUB we obtain Γ`[x 7→ t2]u12 :T12, as required.

105

Appendix A. Type Soundness for System FM

• Case T-TAPP: t = t1T2 T = [X 7→T2]T12

Γ` t1 :(∀X<:U1. T12) Γ`T2 <:U1

The proof for case T-TAPP is analogous to the one for T-APP. By definition of the evalu-

ation relation, there are 2 subcases:

– Subcase E-TAPP: t1−→ t′1 t′ = t′1T2

By the IH and the 1st premise we get Γ` t′1 :(∀X<:U1. T12). We use T-TAPP with

that result and the 2nd premise to obtain Γ` t′1T2 :[X 7→T2]T12, as required.

– Subcase E-TAPPTABS: t1 =λX<:U11. u12 t′ = [X 7→T2]u12

By Lemma 4.8 (with S1 = U11, s2 = u12 and U2 = T12), there is some S2 such that

Γ,X<:U11`u12 :S2, U1 = U11, and Γ,X<:U11`S2 <:T12. Since Γ`T2 <:U11, we use

Lemma 4.4 twice to get Γ`[X 7→T2]u12 :[X 7→T2]S2 and Γ`[X 7→T2]S2 <:[X 7→T2]T12.

By T-SUB Γ`[X 7→T2]u12 :[X 7→T2]T12, as required.

• Case T-SUB: Γ` t :S Γ`S<:T

By the IH, Γ` t′ :S. The result follows directly from T-SUB.

• Case T-MATCH: t = ts match{xi :Ci ⇒ ti }or td T = Ts match{Ci ⇒Ti }or Td

Γ` ts :Ts Γ,xi :Ci ` ti :Ti Γ` td :Td

By definition of the evaluation relation, there are 5 subcases:

– Subcase E-MATCH1: ts −→ t′s t′ = t′s match{xi :Ci ⇒ ti }or td

By the IH Γ` t′s :Ts . The result follows directly from T-MATCH.

– Subcase E-MATCH2: ts = new C (C,Cn)∈Ψ
∀m < n. (C,Cm)∉Ψ t′ = [xn 7→new C]tn

By S-PSI, S-SIN and S-TRANS, Γ`{new C}<:Cn . From D-PSI, we obtain ∀m < n. Γ

`disj({new C},Cm). By Lemma 4.9, Γ`{new C}<:Ts . Let T1 be {new C} match{Ci ⇒
Ti }or Td . From S-MATCH1, Γ`Tn <:T1. Using S-MATCH5, Γ`T1 <:T. By S-TRANS,

Γ`Tn <:T.

Using T-CLASS, T-SUB, S-SIN and S-PSI (with (C,Cn)∈Ψ) we get Γ`new C:Cn .

From the case premises, we have Γ,xn :Cn ` tn :Tn . By Lemma 4.4, we get Γ`[xn 7→
new C]tn :Tn . Finally, using T-SUB we get , Γ`[xn 7→new C]tn :T, as required.

– Subcase E-MATCH3: ts = new C ∀n. (C,Cn)∉Ψ t′ = td

The proof for subcase E-MATCH3 is analogous to the one for E-MATCH2. From

D-PSI, ∀n. Γ`disj({new C},Cn). By Lemma 4.9 we get Γ`{new C}<:Ts . Let T1 be

{new C} match{Ci ⇒Ti }or Td . From S-MATCH2, Γ`Td <:T1. Using S-MATCH5, Γ

`T1 <:T. By S-TRANS Γ`Td <:T. Using T-SUB, Γ` td :T, as required.

– Subcase E-MATCH4: ts =λx:U. u t′ = td

By Lemma 4.9, there exists a V such that Γ`U→V<:Ts . Using D-ARROW, ∀n. Γ`
disj(U→V,Cn). Let T1 be U→V match{Ci ⇒Ti }or Td . From S-MATCH2, Γ`Td <:

T1. Using S-MATCH5, Γ`T1 <:T. By S-TRANS Γ`Td <:T. Using T-SUB, Γ` td :T, as

required.

106

– Subcase E-MATCH5: ts =∀X<:U. u t′ = td

The proof for subcase E-MATCH5 is analogous to the one for E-MATCH4. By

Lemma 4.9, there exists a V such that Γ`(∀X<:U. V)<:Ts . Using D-ARROW, we

get ∀n. Γ`disj(∀X<:U. V,Cn). Let T1 be (∀X<:U. V) match{Ci ⇒Ti }or Td . From S-

MATCH2, Γ`Td <:T1. Using S-MATCH5, Γ`T1 <:T. By S-TRANS Γ`Td <:T. Using

T-SUB, Γ` td :T, as required.

107

Bibliography
Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G. (1991). Dynamic typing in a statically typed

language. ACM Trans. Program. Lang. Syst., 13(2). https://doi.org/10.1145/103135.103138.

Amin, N. and Rompf, T. (2017). Type soundness proofs with definitional interpreters. In Pro-

ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL’17, New York, NY, USA. ACM. https://doi.org/10.1145/3009837.3009866.

Aspinall, D. (1994). Subtyping with singleton types. In International Workshop on Computer

Science Logic, Berlin, Heidelberg. Springer, Springer Berlin Heidelberg. https://doi.org/10.

1007/BFb0022243.

Augustsson, L. (1998). Cayenne — a language with dependent types. In Proceedings of the

ACM SIGPLAN International Conference on Functional Programming, ICFP’98, New York,

NY, USA. ACM. https://doi.org/10.1145/291251.289451.

Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R., and Weirich, S. (2008). Engineering for-

mal metatheory. In Proceedings of the ACM SIGPLAN Symposium on Principles of Program-

ming Languages, POPL’08, New York, NY, USA. ACM. https://doi.org/10.1145/1328438.

1328443.

Barham, P. and Isard, M. (2019). Machine learning systems are stuck in a rut. In Proceedings

of the Workshop on Hot Topics in Operating Systems, HotOS’19, New York, NY, USA. ACM.

https://doi.org/10.1145/3317550.3321441.

Bazzucchi, V. (2021). Tuples bring generic programming to scala 3. https://www.scala-lang.

org/2021/02/26/tuples-bring-generic-programming-to-scala-3.html.

Bertot, Y. and Castéran, P. (2004). Interactive theorem proving and program development:

Coq’Art: the calculus of inductive constructions. Springer. https://doi.org/10.1007/978-3-

662-07964-5.

Bierman, G., Abadi, M., and Torgersen, M. (2014). Understanding typescript. In Proceedings

of the European Conference on Object-Oriented Programming, ECOOP’14, Berlin, Heidel-

berg. Springer-Verlag. https://doi.org/10.1007/978-3-662-44202-9_11.

Blanvillain, O., Brachthäuser, J., Kjaer, M., and Odersky, M. (2021a). Type-level programming

with match types. page 70. https://infoscience.epfl.ch/record/290019.

109

https://doi.org/10.1145/103135.103138
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1007/BFb0022243
https://doi.org/10.1007/BFb0022243
https://doi.org/10.1145/291251.289451
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/3317550.3321441
https://www.scala-lang.org/2021/02/26/tuples-bring-generic-programming-to-scala-3.html
https://www.scala-lang.org/2021/02/26/tuples-bring-generic-programming-to-scala-3.html
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-44202-9_11
https://infoscience.epfl.ch/record/290019

Bibliography

Blanvillain, O., Brachthäuser, J., Kjaer, M., and Odersky, M. (2021b). Type-level programming

with match types artifact. https://doi.org/10.5281/zenodo.5568850.

Blanvillain, O., Brachthäuser, J. I., Kjaer, M., and Odersky, M. (2022). Type-level programming

with match types. In Proc. ACM Program. Lang., POPL’22. ACM. https://doi.org/10.1145/

3498698.

Blanvillain, O., Iliofotou, M., Chang, A., Kanterov, G., and Frameless contributors (2016–2022).

Frameless. https://github.com/typelevel/frameless.

Cardelli, L. (1988). Structural subtyping and the notion of power type. In Proceedings of

the ACM SIGPLAN-SIGACT Symposium on Principles of programming languages, POPL’88,

New York, NY, USA. ACM.

Cardelli, L., Martini, S., Mitchell, J. C., and Scedrov, A. (1994). An extension of system f with

subtyping. Information and computation, 109(1-2). https://doi.org/10.1006/inco.1994.

1013.

Chakravarty, M. M. T., Keller, G., and Jones, S. P. (2005). Associated type synonyms. SIGPLAN

Not., 40(9). https://doi.org/10.1145/1090189.1086397.

Chen, T. (2017). Typesafe abstractions for tensor operations (short paper). In Proceedings of

the ACM SIGPLAN International Symposium on Scala, SCALA’17, New York, NY, USA. ACM.

https://doi.org/10.1145/3136000.3136001.

Chlipala, A. (2010). Ur: Statically-typed metaprogramming with type-level record computa-

tion. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI’10, New York, NY, USA. ACM. https://doi.org/10.1145/1809028.

1806612.

Courant, J. (2003). Strong normalization with singleton types. Electronic Notes in Theoretical

Computer Science, 70(1). https://doi.org/10.1016/S1571-0661(04)80490-0.

Eisenberg, R. A. (2016). Dependent types in Haskell: Theory and practice. PhD dissertation,

University of Pennsylvania. https://arxiv.org/abs/1610.07978.

Eisenberg, R. A., Vytiniotis, D., Peyton Jones, S., and Weirich, S. (2014). Closed type fami-

lies with overlapping equations. In Proceedings of the ACM Symposium on Principles of

Programming Languages, POPL’14, New York, NY, USA. AMC. https://doi.org/10.1007/

BFb0022243.

Eisenberg, R. A. and Weirich, S. (2012). Dependently typed programming with singletons.

In Proceedings of the ACM SIGPLAN International Symposium on Haskell, Haskell’12, New

York, NY, USA. ACM. https://doi.org/10.1145/2430532.2364522.

Emir, B., Odersky, M., and Williams, J. (2007). Matching objects with patterns. In Proceedings

of the European Conference on Object-Oriented Programming, ECOOP’07, Berlin, Heidel-

berg. Springer-Verlag. https://doi.org/10.1007/978-3-540-73589-2_14.

110

https://doi.org/10.5281/zenodo.5568850
https://doi.org/10.1145/3498698
https://doi.org/10.1145/3498698
https://github.com/typelevel/frameless
https://doi.org/10.1006/inco.1994.1013
https://doi.org/10.1006/inco.1994.1013
https://doi.org/10.1145/1090189.1086397
https://doi.org/10.1145/3136000.3136001
https://doi.org/10.1145/1809028.1806612
https://doi.org/10.1145/1809028.1806612
https://doi.org/10.1016/S1571-0661(04)80490-0
https://arxiv.org/abs/1610.07978
https://doi.org/10.1007/BFb0022243
https://doi.org/10.1007/BFb0022243
https://doi.org/10.1145/2430532.2364522
https://doi.org/10.1007/978-3-540-73589-2_14

Bibliography

Giarrusso, P. G., Stefanesco, L., Timany, A., Birkedal, L., and Krebbers, R. (2020). Scala step-

by-step: Soundness for dot with step-indexed logical relations in iris. In Proceedings of the

ACM SIGPLAN International Conference on Functional Programming, ICFP’20, New York,

NY, USA. ACM. https://doi.org/10.1145/3408996.

Harper, R. and Morrisett, G. (1995). Compiling polymorphism using intensional type analysis.

In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL’95, New York, NY, USA. ACM. https://doi.org/10.1145/199448.199475.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H.,

Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,

K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array pro-

gramming with NumPy. Nature, 585(7825). https://doi.org/10.1038/s41586-020-2649-2.

Huang, A., Stites, S., and Scholak, T. (2017–2022). HaskTorch. https://github.com/hasktorch/

hasktorch.

Hutchins, D. S. (2010). Pure subtype systems. In Proceedings of the ACM SIGPLAN Symposium

on Principles of Programming Languages, POPL’10, New York, NY, USA. ACM. https://doi.

org/10.1145/1706299.1706334.

IEEE (2018). The Open Group Base Specifications Issue 7, 2018 edition. https://pubs.

opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html.

Jones, M. P. (2000). Type classes with functional dependencies. In Proceedings of the 9th

European Symposium on Programming Languages and Systems, ESOP’00, London, UK, UK.

Springer-Verlag. https://doi.org/10.1007/3-540-46425-5_15.

Kazerounian, M., Guria, S. N., Vazou, N., Foster, J. S., and Van Horn, D. (2019). Type-

level computations for ruby libraries. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI’19, New York, NY, USA. ACM.

https://doi.org/10.1145/3314221.3314630.

Kiselyov, O., Jones, S. P., and Shan, C.-c. (2010). Fun with type functions. In Reflections on the

Work of CAR Hoare. Springer. https://doi.org/10.1007/978-1-84882-912-1_14.

Kiselyov, O., Lämmel, R., and Schupke, K. (2004). Strongly typed heterogeneous collections.

In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell’04, New York, NY, USA.

ACM. https://doi.org/10.1145/1017472.1017488.

Kvrikava, F., Miller, H., and Vitek, J. (2019). Scala implicits are everywhere: A large-scale study

of the use of scala implicits in the wild. In Proceedings of the ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages and Applications, OOP-

SLA’19, New York, NY, USA. ACM. https://doi.org/10.1145/3360589.

111

https://doi.org/10.1145/3408996
https://doi.org/10.1145/199448.199475
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/hasktorch/hasktorch
https://github.com/hasktorch/hasktorch
https://doi.org/10.1145/1706299.1706334
https://doi.org/10.1145/1706299.1706334
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1145/3314221.3314630
https://doi.org/10.1007/978-1-84882-912-1_14
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/3360589

Bibliography

Leijen, D. and Meijer, E. (1999). Domain specific embedded compilers. In Proceedings of

the Second Conference on Domain-Specific Languages, DSL’99, New York, NY, USA. ACM.

https://doi.org/10.1145/331960.331977.

Leonhard, M. (2021–2022). safe-regex GitLab repository. https://gitlab.com/leonhard-llc/

safe-regex-rs.

Leontiev, G., Burmako, E., Zaugg, J., Moors, A., Phillips, P., Port, O., and Sabin, M. (2014). SIP-

23 - Literal-Based Singleton Types. Scala Center. https://docs.scala-lang.org/sips/42.type.

html.

Liu, F. (2016). A generic algorithm for checking exhaustivity of pattern matching (short paper).

In Proceedings of the ACM SIGPLAN Symposium on Scala, SCALA’16, New York, NY, USA.

ACM. https://doi.org/10.1145/2998392.2998401.

McBride, C. (2002). Faking it: Simulating dependent types in Haskell. Journal of functional

programming, 12(4-5). https://doi.org/10.1017/S0956796802004355.

Meijer, E., Beckman, B., and Bierman, G. (2006). Linq: reconciling object, relations and xml in

the .net framework. In Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, New York, NY, USA. ACM. https://doi.org/10.1145/1142473.1142552.

Nair, A. (2021). typed-regex GitHub repository. https://github.com/phenax/typed-regex.

Nieto, A., Zhao, Y., Lhoták, O., Chang, A., and Pu, J. (2020). Scala with Explicit Nulls. In

Hirschfeld, R. and Pape, T., editors, 34th European Conference on Object-Oriented Pro-

gramming (ECOOP’20), LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https:

//10.4230/LIPIcs.ECOOP.2020.25.

Norell, U. (2007). Towards a practical programming language based on dependent type theory.

PhD dissertation, Chalmers University of Technology. https://www.cse.chalmers.se/~ulfn/

papers/thesis.pdf.

Odersky, M., Altherr, P., Cremet, V., Dubochet, G., Emir, B., Haller, P., Micheloud, S., Mihaylov,

N., Moors, A., Rytz, L., Schinz, M., Stenman, E., and Zenger, M. (2006–2022). Scala Lan-

guage Specification. EPFL and Lightbend, Inc. https://scala-lang.org/files/archive/spec/2.

13/.

Odersky, M., Blanvillain, O., Liu, F., Biboudis, A., Miller, H., and Stucki, S. (2018). Simplic-

itly: Foundations and applications of implicit function types. In Proceedings of the ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL’18. ACM. https:

//doi.org/10.1145/3158130.

Odersky, M. and Dotty contributors (2013–2022). Scala 3 Language Reference. LAMP/EPFL.

https://docs.scala-lang.org/scala3/reference/overview.html.

112

https://doi.org/10.1145/331960.331977
https://gitlab.com/leonhard-llc/safe-regex-rs
https://gitlab.com/leonhard-llc/safe-regex-rs
https://docs.scala-lang.org/sips/42.type.html
https://docs.scala-lang.org/sips/42.type.html
https://doi.org/10.1145/2998392.2998401
https://doi.org/10.1017/S0956796802004355
https://doi.org/10.1145/1142473.1142552
https://github.com/phenax/typed-regex
https://10.4230/LIPIcs.ECOOP.2020.25
https://10.4230/LIPIcs.ECOOP.2020.25
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://scala-lang.org/files/archive/spec/2.13/
https://scala-lang.org/files/archive/spec/2.13/
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3158130
https://docs.scala-lang.org/scala3/reference/overview.html

Bibliography

Oliveira, B. C., Moors, A., and Odersky, M. (2010). Type classes as objects and implic-

its. In Proceedings of the ACM SIGPLAN International Conference on Object Oriented Pro-

gramming Systems Languages and Applications, OOPSLA’10, New York, NY, USA. ACM.

https://doi/10.1145/1932682.1869489.

Petrashko, D. (2017). Design and implementation of an optimizing type-centric compiler for

a high-level language. PhD dissertation, EPFL, Lausanne. https://doi.org/10.5075/epfl-

thesis-7979.

Pierce, B. C. (2002). Types and programming languages. MIT press. https://dl.acm.org/doi/

10.5555/509043.

Pilquist, M. and Scodec contributors (2013–2022). Scodec. https://github.com/scodec/

scodec.

Rapoport, M., Kabir, I., He, P., and Lhoták, O. (2017). A simple soundness proof for dependent

object types. In Proceedings of the ACM SIGPLAN International Conference on Object Ori-

ented Programming Systems Languages and Applications, OOPSLA’17, New York, NY, USA.

ACM. https://doi.org/10.1145/3133870.

Roman, C. (2011–2021). regex-applicative.

https://github.com/UnkindPartition/regex-applicative.

Rush, A. (2019). Tensor considered harmful. https://nlp.seas.harvard.edu/NamedTensor.

Sabin, M. and Shapeless contributors (2011–2022). Shapeless.

https://github.com/milessabin/shapeless.

Schinz, M. (2005). Compiling Scala for the Java virtual machine. PhD dissertation, EPFL,

Lausanne. https://doi.org/10.5075/epfl-thesis-3302.

Schmid, G. S., Blanvillain, O., Hamza, J., and Kuncak, V. (2020). Coming to terms with your

choices: An existential take on dependent types. CoRR, abs/2011.07653. https://arxiv.org/

abs/2011.07653.

Schrijvers, T., Peyton Jones, S., Chakravarty, M., and Sulzmann, M. (2008). Type checking

with open type functions. In Proceedings of the ACM SIGPLAN International Conference

on Functional Programming, ICFP’08, New York, NY, USA. ACM. https://doi.org/10.1145/

1411204.1411215.

Shabalin, D. (2020). Just-in-time performance without warm-up. PhD dissertation, EPFL,

Lausanne. https://doi.org/10.5075/epfl-thesis-9768.

Sjoberg, V. (2015). A Dependently Typed Language with Nontermination. PhD thesis, Univer-

sity of Pennsylvania. https://repository.upenn.edu/dissertations/AAI3709556.

113

https://doi/10.1145/1932682.1869489
https://doi.org/10.5075/epfl-thesis-7979
https://doi.org/10.5075/epfl-thesis-7979
https://dl.acm.org/doi/10.5555/509043
https://dl.acm.org/doi/10.5555/509043
https://github.com/scodec/scodec
https://github.com/scodec/scodec
https://doi.org/10.1145/3133870
https://github.com/UnkindPartition/regex-applicative
https://nlp.seas.harvard.edu/NamedTensor
https://github.com/milessabin/shapeless
https://doi.org/10.5075/epfl-thesis-3302
https://arxiv.org/abs/2011.07653
https://arxiv.org/abs/2011.07653
https://doi.org/10.1145/1411204.1411215
https://doi.org/10.1145/1411204.1411215
https://doi.org/10.5075/epfl-thesis-9768
https://repository.upenn.edu/dissertations/AAI3709556

Bibliography

Spishak, E., Dietl, W., and Ernst, M. D. (2012). A type system for regular expressions. In

Proceedings of the 14th Workshop on Formal Techniques for Java-like Programs, FTfJP’12,

New York, NY, USA. ACM. https://doi.org/10.1145/2318202.2318207.

Stone, C. A. and Harper, R. (2000). Deciding type equivalence in a language with single-

ton kinds. In Proceedings of the ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, POPL’00, New York, NY, USA. ACM. https://doi.org/10.1145/325694.

325724.

Stucki, N., Biboudis, A., and Odersky, M. (2018). A practical unification of multi-stage pro-

gramming and macros. In Proceedings of the ACM SIGPLAN International Conference on

Generative Programming: Concepts and Experiences, GPCE’18, New York, NY, USA. ACM.

https://doi.org/10.1145/3278122.3278139.

The TypeScript development team (2019–2022). The TypeScript Handbook. Microsoft Corpo-

ration. https://www.typescriptlang.org/docs/handbook/intro.html.

W3C (1994–2013). XQuery/XPath/XSLT 3.* Test Suite (QT3TS). https://dev.w3.org/2011/QT3-

test-suite/.

W3C (2021). QT3TS GitHub Repository. https://github.com/w3c/qt3tests.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymorphism less ad hoc. In Proceedings

of the ACM SIGPLAN Symposium on Principles of Programming Languages, POPL’89, New

York, NY, USA. ACM. https://doi.org/10.1145/75277.75283.

Weirich, S. (2014–2020). Examples of dependently-typed programs in Haskell. https://github.

com/sweirich/dth.

Weirich, S., Voizard, A., de Amorim, P. H. A., and Eisenberg, R. A. (2017). A specification for

dependent types in haskell. In Proceedings of the ACM SIGPLAN International Conference

on Functional Programming, ICFP’17, New York, NY, USA. ACM. https://doi.org/10.1145/

3110275.

Weirich, S., Vytiniotis, D., Peyton Jones, S., and Zdancewic, S. (2011). Generative type ab-

straction and type-level computation. In Proceedings of the ACM SIGPLAN Symposium

on Principles of Programming Languages, POPL’11, New York, NY, USA. ACM. https:

//doi.org/10.1145/1926385.1926411.

Xi, H. and Pfenning, F. (1998). Eliminating array bound checking through dependent types.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI’98, New York, NY, USA. ACM. https://doi.org/10.1145/277650.277732.

Yang, Y. and Oliveira, B. C. d. S. (2017). Unifying typing and subtyping. In Proceedings of

the ACM SIGPLAN International Conference on Object Oriented Programming Systems Lan-

guages and Applications, OOPSLA’17, New York, NY, USA. ACM. https://doi.org/10.1145/

3133871.

114

https://doi.org/10.1145/2318202.2318207
https://doi.org/10.1145/325694.325724
https://doi.org/10.1145/325694.325724
https://doi.org/10.1145/3278122.3278139
https://www.typescriptlang.org/docs/handbook/intro.html
https://dev.w3.org/2011/QT3-test-suite/
https://dev.w3.org/2011/QT3-test-suite/
https://github.com/w3c/qt3tests
https://doi.org/10.1145/75277.75283
https://github.com/sweirich/dth
https://github.com/sweirich/dth
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275
https://doi.org/10.1145/1926385.1926411
https://doi.org/10.1145/1926385.1926411
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/3133871
https://doi.org/10.1145/3133871

Bibliography

Yorgey, B. A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., and Magalhães, J. P. (2012).

Giving Haskell a promotion. In Proceedings of the ACM SIGPLAN Workshop on Types in

Language Design and Implementation, TLDI’12. ACM. https://doi.org/10.1145/2103786.

2103795.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,

Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., and Stoica, I.

(2016). Apache Spark: A unified engine for big data processing. Commun. ACM, 59(11).

https://doi.org/10.1145/2934664.

Zheng, L.-X., Ma, S., Chen, Z.-X., and Luo, X.-Y. (2021). Ensuring the correctness of regular

expressions: A review. International Journal of Automation and Computing, 18(4). https:

//doi.org/10.1007/s11633-021-1301-4.

Zwanenburg, J. (1999). Pure type systems with subtyping. In International Conference on

Typed Lambda Calculi and Applications. Springer. https://doi.org/10.1007/3-540-48959-

2_27.

115

https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2934664
https://doi.org/10.1007/s11633-021-1301-4
https://doi.org/10.1007/s11633-021-1301-4
https://doi.org/10.1007/3-540-48959-2_27
https://doi.org/10.1007/3-540-48959-2_27

Olivier Blanvillain
Avenue Floréal 5

1006 Lausanne, Switzerland
+417 86 85 77 85

olivier.blanvillain@gmail.com

Education 2022: PhD in Computer Science at EPFL (expected)

2015: EPFL Master’s degree in Computer Science

2012: EPFL Bachelor’s degree in Computer Science

2008: French Baccalaureate

Experience 2016-2022: Doctoral Assistant at EPFL in the Programming Methods Laboratory
under the supervision of Prof. Martin Odersky.
• Co-designed, implemented and formalized match types, a new Scala feature for
type-level computations.

• Co-designed and prototyped a dependently typed extension of Scala based on sin-
gleton types.

• Supervised several master student projects and worked as a teaching assistant for
undergraduate courses (CS-210 and CS-206).

2015-2016: Software Engineer at MFG Labs (14 months).
• Lead a team of 6 engineers working on an AdTech project.
• Worked with Scala, Play, PostgreSQL, Spark, Elasticsearch, AWS.

2013: Software Engineer Intern at CERN (6 months).

Publications O. Blanvillain, J. Brachthäuser, M. Kjaer, M. Odersky. Type-Level Programming with
Match Types. In Symposium on Principles of Programming Languages, 2022 (POPL’22).

M. Odersky, O. Blanvillain, F. Liu, A. Biboudis, H. Miller, S. Stucki. Simplicitly:
Foundations and Applications of Implicit Function Types. In Symposium on Principles
of Programming Languages, 2018 (POPL’18).

O. Blanvillain, N. Kasioumis, V. Banos. BlogForever Crawler: Techniques and Algo-
rithms to Harvest Modern Weblogs. In Proceedings of the 4th International Conference
on Web Intelligence, Mining and Semantics, 2014 (WIMS’14).

Personal Born on July 9, 1990 in Geneva, dual citizenship French-Swiss.

Languages: French (mother tongue), English (C1/C2), Spanish (B2).

Hobbies: Music (piano, drums and lots of listening), board games, cycling.

	Acknowledgements
	Abstract (English/Français)
	List of Figures
	Introduction
	(Ab)Using Implicits
	Implicit Parameters: Overview
	Recursive Implicit Resolution
	Ambiguities and Priorities
	Implicit Ambiguities
	Implicit Priorities

	Conclusion

	Generalizing Scala's Singleton Types
	Introduction
	Motivating Example
	Implementation
	Reflecting Terms in Types
	Type Evaluation
	Pattern Matching
	Two Modes of Type Inference
	Approximating Side Effects
	Virtual Dispatch
	Termination

	Case Study: A Type-Safe Database Interface
	Type-Safe Datasets
	Comparison to an Existing Technique

	Related Work

	Match Types
	Introduction
	Overview
	A Lightweight Form of Dependent Typing
	Disjointness
	Comparison to Generalized Singleton Types

	Formalization
	Classes
	Matches
	Type Safety
	Type Binding Extension

	Implementation
	Disjointness in Scala
	Empty Types
	Null Values
	Disjointness of Variant Types
	Match Type Variance
	Pattern Matching Exhaustivity
	Types at Runtime
	Non-Termination
	Inference
	Caching
	Size of the Implementation

	Case Study: Shape-Safe NumPy
	Shape Errors in Python
	Singleton Types
	Type-Level Array Shape
	Computation on Shapes with Match Types
	Shape safety

	Related Work
	Dependently Typed Calculi with Subtyping
	Intensional Type Analysis
	Type Families in Haskell
	Roles in Haskell
	Conditional Types in TypeScript

	Conclusion

	Type-Safe Regular Expressions
	Introduction
	Background
	Match Types
	Generic Tuples

	Architecture
	Type-Level
	Capturing Group Identification
	Out-Of-Bound Errors
	Non-Capturing Groups
	Nullability Analysis

	Term-Level
	We Don't Need No Dependent Types!
	Implicit-Based Extractor Synthesis

	Evaluation
	Related Work
	Conclusion

	Performance Evaluation
	Method
	Compilation time
	Binary size
	The Timing of Match Type Reductions

	Conclusion
	Type Soundness for System FM
	*lem:permutation: Permutation
	*lem:weakening: Weakening
	*lem:strengthening: Strengthening
	*lem:substitution: Substitution
	*lem:disjointness-subtyping-exclusivity: Disjointness/subtyping exclusivity
	*lem:inversion-of-subtyping: Inversion of subtyping
	*lem:canonical-forms: Canonical forms
	*lem:inversion-of-typing: Inversion of typing
	*lem:minimum-types: Minimum types
	*thm:progress: Progress
	*thm:preservation: Preservation

	Bibliography
	Curriculum Vitae

