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a b s t r a c t

The metric dimension (MD) of a graph is a combinatorial notion capturing the minimum
number of landmark nodes needed to distinguish every pair of nodes in the graph based
on graph distance. We study how much the MD can increase if we add a single edge
to the graph. The extra edge can either be selected adversarially, in which case we are
interested in the largest possible value that the MD can take, or uniformly at random, in
which case we are interested in the distribution of the MD. The adversarial setting has
already been studied by Eroh et al., (2015) for general graphs, who found an example
where the MD doubles on adding a single edge. By constructing a different example,
we show that this increase can be as large as exponential. However, we believe that
such a large increase can occur only in specially constructed graphs, and that in most
interesting graph families, the MD at most doubles on adding a single edge. We prove
this for d-dimensional grid graphs, by showing that 2d appropriately chosen corners and
the endpoints of the extra edge can distinguish every pair of nodes, no matter where the
edge is added. For the special case of d = 2, we show that it suffices to choose the four
corners as landmarks. Finally, when the extra edge is sampled uniformly at random, we
conjecture that the MD of 2-dimensional grids converges in probability to 3+Ber(8/27),
and we give an almost complete proof.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The metric dimension (MD) of a finite, simple graph is a combinatorial notion first defined in 1975 by [40] and
ndependently by [22]. It can be interpreted as the minimum number of landmark nodes that can distinguish every pair
f nodes based on the graph distances from these landmark nodes. The MD of d-dimensional grid graphs with large side
engths is d, hence for these graphs the MD is consistent with our common-sense notions of dimension. On the theoretical
ide, the MD has deep connections to the automorphism group of the graph G [4,8,18], and hence the graph isomorphism
roblem [3]. In applications, the MD is used to compute the minimum number of landmark nodes required in robot
avigation [26,39], computational chemistry [11], and network discovery [5]. A recent application that is gaining more
nd more interest is the problem of finding patient zero of an epidemic. Finding patient zero can be especially useful in
he early stages of an epidemic, as it was in the case of COVID-19 in the beginning of 2020 in multiple countries including
hina [45], Italy [10] and the Netherlands [2]. There are multiple mathematical models of the patient zero problem. The
irst model was introduced by [38], who were interested in finding the source of a rumour in a network. In this paper, we
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focus on the model of [35], who introduced the problem of detecting the first node of an epidemic given the underlying
graph and the time of infection of small subset of sensor nodes. In the case of a deterministically spreading epidemic,
the minimum number of sensors required to detect patient zero has been connected to the MD by [43]. Indeed, in the
deterministic case, if the time of infection of patient zero is also known, the times of infection of the sensor nodes can be
converted to graph distances between the sensors and patient zero, and the number of sensors required to always detect
patient zero equals the MD. In reality, epidemics are not deterministic and the time of infection of patient zero is not
known, but the MD can still give information on the number of sensors required to detect patient zero [41].

Since the MD is NP-hard to compute [26] and is approximable only to a factor of log(N) [5,23], theoretical studies play
an essential role in understanding the MD of large graphs. The MD of a wide range of combinatorial graph families have
already been computed, we refer to [36,42] for a list of references. For applications on naturally forming networks like
the patient zero detection problem, random graph models are the most appropriate tool for theoretical study. There are
only a few results on the MD of random graphs, including Erdős–Rényi graphs [7], a large class of random trees [27,32],
and more recently random geometric graphs [28]. In the case of G(n, p) Erdős–Rényi random graphs, it has been shown
that the MD goes through a non-monotone, zig-zag behaviour as we vary the probability of connections p, and we let the
number of nodes n tend to infinity [7]. Not only is the behaviour non-monotone, it is also not smooth in the parameters.
For example for p = n−

1
2 we have MD ≈ log(n) but for p = n−

1
2 +ϵ we have MD ≈

√
n. For p = Θ(1) we have MD ≈ log(n)

gain. An almost identical zig-zag behaviour was found recently in the case of a sequential version of the MD, where the
ensors are selected adaptively [34]. These surprising results raise the main question of the current paper: how robust
s the notion of the MD to the addition or deletion of edges? This question has been already studied by [14], who found
hat the MD was robust to edge deletions but not to edge additions (see more on the related work in combinatorics in
ection 1.1). In this paper, we focus on more precise results on how large the increase of the MD can be if we add an edge
o a general graph or a grid graph. We are interested both in the adversarial setting, where we look for an upper bound
n the MD of the new graph no matter where the edge is added, and in the random setting, where we try determine
istribution of the MD of the new graph on the addition of a uniformly randomly chosen edge.
Understanding the robustness of the MD to a single edge addition or deletion has wide ranging practical implications.

or the graphs whose MD is non-robust, the MD might not be a very informative notion for application purposes. This is
specially true in the application settings where we only have a noisy estimate of the underlying network. For instance,
n most papers on patient zero detection, the contact network is assumed to be completely known; an assumption which
oes not hold in reality. Indeed, the contact network is usually estimated [21], which is a very challenging task [13]. With
he exception of [44], we are not aware of any theoretical work in the source detection community that addresses the
uestion of robustness in the estimation or the number of required sensors, when our knowledge of the contact network
s noisy. We note that robustness to node failures has been more extensively studied, see [24] and the several follow-up
rticles.
In different applications, where we know the underlying network exactly, non-robustness of the MD can hint at

pportunities for improvement or vulnerabilities to malicious attacks depending on our goal in the specific application.
or instance, in the source obfuscation problem, our goal is to spread some information in a network so that a few spy
odes are not able to detect the information source [16,17]. These source obfuscation models are used to anonymize
ransactions on the Bitcoin network [6]. Similarly to the source detection problem, in source obfuscation the MD could
erve as a proxy for how many spies are needed for the attacker to detect the source, and therefore the robustness of the
D translates to the robustness of privacy guarantees.
Our proofs rely on careful combinatorial analysis, and a detailed description of how the shortest paths change in a

raph after adding an edge. In particular, when adding edge to graph, we study the set of node pairs between which the
hortest paths are changed and unchanged. These sets depend on the extra edge, but otherwise they are highly structured.
e are not aware whether this structure (described in Section 2) has been previously studied in the literature, but we
elieve it could bring an insight into different problems where the addition of a single edge is studied (i.e. wormhole
ttacks [25] and the dynamic all pairs shortest paths problem in data structures [1,12]).

.1. Related work in combinatorics

The question of how much the MD of a graph can change on the addition of a single edge has been first studied
or trees, where [11] found that on the addition of an arbitrary edge, the MD cannot increase by more than one, and
annot decrease by more than two. The result has been proved later in [15]. The work that is most similar to ours is [14],
here the change of the MD on a single edge or vertex addition or deletion is studied in general graphs. The authors find
hat, similarly to trees, the decrease of the MD on edge additions cannot be more than two, however, the increase is not
ounded by any constant in general graphs. The latter statement is supported by an example graph, where the addition
f a single edge doubles the MD.
More distant but still relevant questions were studied by [33] and [44]. In [33], the authors define the notion of the

hreshold dimension of a graph G as the minimum MD we can achieve by adding an arbitrary number of edges to G.
bviously, adding too many edges will bring G close to the complete graph, which has a very large MD, but the authors
how that for some graphs G it is possible to add edges in a smart way to significantly reduce the MD. We note that
n a different paper, Geneson and Yi have constructed connected graphs H and G such that H ⊂ G and the ratio of the
2
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metric dimensions of H and G is arbitrarily large [20]. The authors of [33] also connect the threshold dimension with the
imension of the Euclidean space in which the graph can be embedded.
In [44], we are given k connected graphs and it is assumed that k − 1 edges are missing between them, which would

onnect all k components into a single one. The extended metric dimension is the number of landmarks we need to
istinguish any pair of nodes, no matter where the k − 1 edges are. Note that as opposed to our setup, in the setup
f [44] the landmarks are placed non-adaptively to the extra edges, in fact, the nodes must be distinguished without
nowing the location of the extra edges.

.2. Summary of results

Before summarizing the results we recall the rigorous definition of the metric dimension.

efinition 1 (MD). Let G = (V , E) be a simple connected graph, and let us denote by dG(A, B) ∈ N the length of the
hortest path (that is, the number of edges) between nodes A and B. A subset R ⊆ V is a resolving set in G if for every
pair of nodes A ̸= B ∈ V there is a distinguishing node X ∈ R for which dG(A, X) ̸= dG(B, X). The minimum cardinality of
a resolving set is the metric dimension of G, denoted by β(G).

The main contribution of our paper is a refined analysis on the increase of the MD on adding a single edge. In
Section 3.1, we show an example graph where adding a particular edge increases the MD from Θ(log(N)) to Θ(N), which
is a much larger increase than in the example of [14], where the MD only doubles. For a result in the opposite direction, in
Section 3.2 we provide an upper bound on the MD of the graph with the extra edge in terms of the MD of two subgraphs of
the original graph. We believe that this result can be used in several graph families to show that the exponential increase
in Section 3.1 only happens for very special (in a sense very heterogeneous) graphs, and that in most cases the MD at
most doubles. We prove this doubling upper bound for d-dimensional grid graphs in Section 4.1, and finally, we perform
an even more refined analysis for the case of d = 2 in Section 4.2.

For the case d = 2, we conjecture that the limiting distribution of the MD after a uniformly random edge is added is
3 + Ber(8/27), where Ber is the Bernoulli distribution. The only part missing in proving this conjecture is a lower bound
on the MD when the extra edge is in a specific configuration. Such lower bound proofs are especially tedious, since one
must show that no set of landmark nodes of a certain size can distinguish every pair of nodes, which often leads to a long
case-by-case analysis. Instead, we proved as much as we could reasonably write down in a paper, and state the rest of
our results as a conjecture at the end of the paper (Conjecture 1). A similar approach was used in [29] when determining
the MD of torus graphs.

2. Changes in the all-pairs shortest paths after adding an edge

In this section we will develop tools to understand how the shortest paths change in a graph after adding an extra
edge.

Let G = (V , EG) be a connected simple graph, with vertex set V (we use the word vertex, node and point
interchangeably) and edge set EG. We add an edge e between two non-adjacent vertices E and F to obtain a graph
G′

= (V , EG ∪ {e}). Let dH (A, B) denote the length of the shortest path between vertices A and B in graph H . For simplicity,
we will use the notation dG(A, B) = AB.

Remark 1. If we want to reach vertex B from vertex A, there are three options: Either we do not use e at all, or we use
e from E to F or we use e from F to E. Hence,

dG′ (A, B) = min(AB, AE + 1 + FB, AF + 1 + EB). (1)

Clearly, we cannot increase the distance between two vertices by adding an edge, or in other words either dG′ (A, B)
≤ AB. Next, we describe the pairs of vertices whose distance decreased after adding the edge.

Definition 2 (Special Region). For any vertex A, RA = {Z ∈ V | dG′ (Z, A) < ZA}. We will refer RA as the special region of A.

The special region contains the vertices which will ‘‘use’’ the extra edge e to reach A. Formally, we can write this as
Z ∈ RA is equivalent with dG′ (A, Z) = min(AE + 1 + FZ, AF + 1 + EZ) < ZA.

Definition 3 (Normal Region, Normal Vertex). NA = V \RA will be referred as the normal region of A. We call the intersection
of all normal regions as simply the normal region and we denote it by N . A vertex in the normal region is called a normal
vertex.

The normal region can be succinctly expressed as N = {Z ∈ V | RZ = ∅}. For a normal vertex Z ∈ N we have
dG′ (A, Z) = AZ for every vertex A, that is distances from or to these vertices Z are unchanged after adding edge e, which
makes normal vertices the simplest type of vertices from the point of view of our analysis. The following claim helps us

to characterize the normal region for any graph.

3
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Fig. 1. Graph G′ partitioned into three regions: RE , N and RF .

laim 1. The set of vertices V can be partitioned to the following three sets,

RE = {A ∈ V | AE − AF > 1}
N = {A ∈ V | |AE − AF | ≤ 1}
RF = {A ∈ V | AE − AF < −1}.

The intuition for Claim 1 is that if we are trying to reach A from some other node, we may want to use e in the EF
irection if F is closer to A, we may want to use e in the FE direction if E is closer to A, and there is no gain in using e if
and F are almost equidistant to A. The three regions are illustrated in Fig. 1.

roof. First assume that |AE − AF | ≤ 1. For an arbitrary vertex B in the graph, using triangular inequality,

AB ≤ AE + EB ≤ AF + 1 + EB.

Similarly,

AB ≤ AE + 1 + FB.

ence, by Remark 1, we have that dG′ (A, B) = AB. As this is true for any vertex B ∈ V , we must have A ∈ N .
Next assume AE − AF > 1. Then, by Remark 1,

dG′ (A, E) = min(AE, AE + 1 + AF , AF + 1) = AF + 1,

hich implies that A ∈ RE . The AE − AF < −1 case follows analogously. □

The usefulness of partitioning the vertices into RE,N and RF goes beyond just characterizing the normal region. Note
hat RE collects the vertices that use the edge in the FE direction (because F is closer to them), and RF collects the vertices
hat use the edge in the EF direction. There are no nodes that use the extra edge in both directions. Hence, if the two
odes are in the same special region RE or RF , they are using the extra edge in the same direction, and they cannot use
he extra edge to reduce the distance between themselves. We formalize this intuition in the next claim.

laim 2. If two vertices A and B lie in the same special region RE or RF , then dG′ (A, B) = dG(A, B), or equivalently B ̸∈ RA and
̸∈ RB.

roof. Without loss of generality, let A, B ∈ RE . Then, we have AE − AF > 1 and BE − BF > 1 by Claim 1. Therefore,

dG′ (A, B) = min(AB, AE + 1 + FB, AF + 1 + EB) = AB,

ecause

AE + 1 + FB > AF + 2 + FB ≥ AB + 2,

nd

AF + 1 + EB > AF + 2 + FB ≥ AB + 2

by the triangle inequality. □

Remark 2. Containment in special regions defines an anti-reflexive, symmetric and anti-transitive (never transitive)
relation between pairs of vertices. Containment in normal regions defines a reflexive, symmetric and intransitive (not

necessarily transitive) relation between pairs of vertices.

4
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Proof. For both special and normal regions (anti-)reflexivity follows from the definition and symmetry follows from the
symmetry of distances in both G and G′. The anti-transitivity of special regions follows from Claim 2. Indeed, if A ∈ RB
and B ∈ RC , then the pairs (A, B) and (B, C) are in different special regions RE or RF , which implies that A and C must be
oth in RE or RF and we cannot have A ∈ RC . □

We are now ready to justify the illustration in Fig. 1.

emark 3. For a vertex A ∈ RF we have

F ∈ RA ⊆ RE,

nd similarly, for a vertex B ∈ RE we have

E ∈ RB ⊆ RF .

roof. For a vertex A ∈ RF , the statement F ∈ RA follows by the symmetric nature of special regions (Remark 2). The
A ⊆ RE is a simple consequence of anti-transitivity. Indeed, RA ∩ N is empty by definition, and RA ∩ RF is empty because
e cannot have Z ∈ RF , Z ∈ RA and A ∈ RF all hold at the same time. □

Next, we use the anti-transitivity property to make Eq. (1) more explicit.

laim 3. For any A, B ∈ V , we have

dG′ (A, B) =

⎧⎨⎩
AE + 1 + FB if A ∈ RB and A ∈ RF

AF + 1 + EB if A ∈ RB and A ∈ RE

AB otherwise, i.e., A ∈ V \ RB = NB.

(2)

roof. We consider only the case A ∈ RB and A ∈ RF ; the second case is symmetric, and the third holds by definition. By
he definition of special regions, A ∈ RF is equivalent with

dG′ (A, F ) = min(AF + 1 + EF , AE + 1 + FF ) < AF ,

which further implies AE + 1 < AF .
By the anti-transitivity of special regions, A ∈ RB and A ∈ RF together imply B ∈ RE , which is equivalent with

dG′ (B, E) = min(BE + 1 + FE, BF + 1 + EE) < BE,

which further implies BF + 1 < BE.
Finally, A ∈ RB is equivalent with

dG′ (A, B) = min(AE + 1 + FB, AF + 1 + EB),

which reduces to dG′ (A, B) = AE + 1 + FB since AE < AF and BF < BE. □

We already used the intuition that vertices in special regions ‘‘gain’’ from the addition of the extra edge. We formalize
this intuition in the next definition.

Definition 4 (Gain, Gainmax). Let the decrease in the distance between two vertices due to edge e be denoted as

Gain(A, B) = AB − dG′ (A, B).

Let the maximum gain associated to a node A be denoted as

Gainmax(A) = max
X

(Gain(A, X)).

Remark 4. For vertex A ∈ RE , vertex E gets the maximum benefit of the extra edge to reach A, that is, Gainmax(A) =

Gain(A, E) = AE − (1 + AF ). More generally, for any A ∈ V , we have

Gainmax(A) = max(0, |AF − AE| − 1).

We can also observe that, by Claim 1, A ∈ N if and only if Gainmax(A) = 0. A similar statement hold for vertex F instead
of E.

Proof. Suppose for contradiction that there is a node B ∈ V for which Gain(A, B) > Gain(A, E). Since A ∈ RE , this node B
must be in RF , otherwise by Claim 2 we have Gain(A, B) = 0. Then, the following inequalities must hold:

Gain(A, B) > Gain(A, E)
′ ′
AB − dG (A, B) > AE − dG (A, E)

5
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Fig. 2. Example where MD increases by a large amount (for n = 8).

AB − (BE + 1 + AF ) > AE − (1 + AF )
AB > AE + BE.

The last inequality above contradicts the triangle inequality, and the proof is completed. □

3. General graphs

3.1. An example with an exponential increase in the metric dimension

In this section, we give a construction for a graph G⋆ on 3n+⌈log2(n)⌉−1 nodes with β(G⋆) ≤ ⌈log2(n)⌉+1, in which
the increase in the metric dimension is at least n − ⌈log2(n)⌉ − 3 on adding a single (specific) edge. The idea is that in

⋆, the vertices of RF can be efficiently distinguished only by some vertices in RE (but not by vertices in RF ). Then, after
dding edge e, the vertices in RE can reach RF on new shortest paths, and they will not distinguish vertices in RF anymore.
ence RF will have to be distinguished by vertices in RF , which will require significantly more nodes. The construction is
hown in Fig. 2 for n = 8.
Graph G⋆ has 6 levels indexed by l ∈ {−1, . . . , 4}. Levels 1–3 each contain n − 1 vertices, which are indexed by i

or each level. Level 0 contains ⌈log2(n)⌉ vertices indexed by j. Levels −1 and 4 contain the single vertices F = v
(−1)
1

nd E = v
(4)
1 . We connect all of the vertices of level 0 and 3 to F and E, respectively. We connect the vertices of level

(respectively, level 2) to the vertices of level 2 (resp., level 3) if and only if the vertices of both levels 1–2 (resp., 2–3)
ave the same index. Finally, we connect a vertex labelled i in level 1 to a vertex labelled j in level 0 if and only if the jth
it in the binary representation of i is one. For example, v(1)

1 is connected only to v
(0)
⌈log2(n)⌉

because binary representation
f 1 is 0 . . . 01. This construction leads therefore to the following definition.

efinition 5 (G⋆). For n > 1, let G⋆
= (V ⋆, EG⋆ ), with

V ⋆
=

{
v
(0)
j | j ∈ {1, . . . , ⌈log2(n)⌉}

}
∪

{
v
(l)
i | l ∈ {1, 2, 3}, i ∈ {1, . . . , n − 1}

}
∪ {E, F},

EG⋆ =

{
(F , v

(0)
j )

}
∪

{
(v(0)

j , v
(1)
i ) | bin(i)j = 1

}
∪

{
(v(l)

i , v
(l+1)
i ) | l ∈ {1, 2}

}
∪

{
(v(3)

i , E)
}

,

where bin(i)j denotes the jth bit of the binary representation of the number i.

Claim 4. The set S⋆
=

{
v
(0)
j

}
∪ F resolves G⋆. Consequently, β(G⋆) ≤ ⌈log2(n)⌉ + 1.

Proof. We need to show that any pair of vertices in V ⋆
\ S⋆ are distinguished. There are two possibilities for any pair

of distinct vertices: either they are in different levels or in the same level. If they are on different levels, vertex F will
distinguish them, because for any v

(l) with l ∈ {1, 2, 3, 4} we have d ⋆ (v(l)
, F ) = l + 1. If they are on the same level, the
i G i

6
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binary representations of their index iwill differ at least one position. Let the jth bit of both labels be different. Then, vertex
v
(0)
j will distinguish them, because its distance to the vertex whose label has the jth bit equal to 1 is two hops shorter

than its distance to the vertex whose label has the jth bit equal to 0. Therefore all pairs of points are distinguished, which
completes the proof. □

Now we add an edge e between vertices E and F . The resulting graph G⋆′ is shown in Fig. 2(b).

Claim 5. The metric dimension of graph G⋆′ is at least n − 2.

Proof. Notice that the set of nodes that can distinguish v
(3)
j and v

(3)
k is{

v
(l)
i | l ∈ {1, 2, 3}, i ∈ {j, k}

}
.

This is because all other nodes can reach both v
(3)
j and v

(3)
k through E on their shortest path and E cannot distinguish any

pair of nodes on level 3. Hence, distinguishing nodes on level 3 is equivalent to resolving a star graph, and the metric
dimension of G⋆′ is at least n − 2. □

Combining Claims 4 and 5, we observe that the increase in the metric dimension of G⋆ on adding e is at least
n − ⌈log2(n)⌉ − 3.

3.2. Bounds on the change of the metric dimension

It has been shown in [14] that if G′ is obtained from G by adding an extra edge, then β(G′) ≥ β(G) − 2, and if there
are no even cycles in G′, then β(G′) ≤ β(G) + 1. However, in the previous section we saw an example where β(G′) was
exponentially larger than β(G). In this section we provide an upper bound on β(G′) in terms of the MD of the subgraphs
of G, which holds for all graphs G′.

Lemma 1. Let G = (V , E) be a connected graph, and let G′ be the graph obtained by adding edge e between vertices E and F
as before. Let V1 = {U ∈ V | dG(U, E) ≤ dG(U, F )} and V2 = {U ∈ V | dG(U, E) ≥ dG(U, F )}. Let G1 and G2 be subgraphs of G
induced on vertex sets V1 and V2, respectively. Then,

β(G′) ≤ β(G1) + β(G2) + 2.

Proof. Let S1 and S2 be the resolving sets of minimum size of graphs G1 and G2, respectively. We prove that S =

S1 ∪ S2 ∪ {E, F} is a resolving set of G′. Let N1 = {U ∈ V | 0 ≤ dG(U, F ) − dG(U, E) ≤ 1} and N2 = {U ∈ V | 0 ≤

dG(U, E)− dG(U, F ) ≤ 1}. By Claim 1, N1,N2 ⊆ N , where N is the normal region. Consider two vertices X and Y . There are
two cases:

Case 1: X, Y ∈ V1 or X, Y ∈ V2.
Without loss of generality, let X, Y ∈ V1. Let A ∈ S1 be the vertex which resolves X and Y in G1. Since V1 = RF ∪ N1

and V2 = RE ∪ N2, by Claim 2, dG(X, A) = dG′ (X, A) and dG(Y , A) = dG′ (Y , A), hence X and Y are resolved by A in G′, too.

Case 2: X ∈ V1 \ V2 and Y ∈ V2 \ V1 or vice and versa.
Without loss of generality, let X ∈ V1 \ V2 and Y ∈ V2 \ V1. Note that by definition, V1 \ V2 and V2 \ V1 contain the

nodes that are closer to E and F , respectively. Hence, we can always go through e when going from V1 \ V2 to F or V2 \ V1
to E on a shortest path, that is

dG′ (X, F ) = 1 + dG′ (X, E) (3)

dG′ (Y , E) = 1 + dG′ (Y , F ). (4)

Assume for contradiction that none of E and F distinguish X and Y . This implies that dG′ (X, E) = dG′ (Y , E) and dG′ (X, F ) =

dG′ (Y , F ). Adding both equations gives

dG′ (Y , E) + dG′ (X, F ) = dG′ (Y , F ) + dG′ (X, E).

Substituting values from (3) and (4) gives a contradiction. Hence, either E or F will distinguish these two vertices.
For every possible pair of vertices we showed a distinguishing vertex in S. Finally,

β(G′) ≤ |S| = |S1| + |S2| + 2 = β(G1) + β(G2) + 2. □

Next we present a graph G⋆⋆ for which the upper bound of Lemma 1 is achieved. The graph has 74 vertices and it is
drawn in Fig. 3. The four solid black nodes labelled as E in the figure represent a single vertex E in the graph G⋆⋆. Similarly,
the four solid black nodes labelled F represent vertex F . All other nodes shown in the figure represent distinct nodes. The
graph G⋆⋆′ is obtained by adding an edge between vertices E and F . In this setting, G⋆⋆

1 , defined in Lemma 1, will be the
sub-graph induced by nodes having green and yellow outlines and G⋆⋆

2 will be the sub-graph induced by nodes having
orange and red outlines.
7
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Fig. 3. Graph G⋆⋆ and points E, F for which upper bound is achieved. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

laim 6. β(G⋆⋆
1 ) = β(G⋆⋆

2 ) = 8 and β(G⋆⋆′) = 18.

Proof. Notice that G⋆⋆
1 and G⋆⋆

2 are isomorphic, hence their metric dimensions must be equal as well. First we show
β(G⋆⋆

1 ) ≤ 8. Indeed we have 8 triangles in G⋆⋆
1 , and selecting one degree 2 vertex in each triangle is enough to distinguish

any two vertices. To show β(G⋆⋆
1 ) ≥ 8, observe that we need to select one vertex from each of the triangles. The equality

β(G⋆⋆
1 ) = β(G⋆⋆

2 ) = 8 together with Lemma 1 proves β(G⋆⋆′) ≤ 18.
Next, we show that β(G⋆⋆′) ≥ 18. Again, notice that G⋆⋆′ contains 16 triangles, and we must select a vertex in each of

them. Notice that even after we selected these 16 nodes, the solid coloured pairs in Fig. 3 are not distinguished. Moreover,
it is not possible to distinguish all 4 of these solid coloured pairs by adding a single vertex to the set. Indeed, if any of the
green stroked nodes are selected, the green solid pair is not distinguished. A similar argument holds for all other colours.
This shows that we must add at least two nodes to the initial 16, and the metric dimension of G⋆⋆′ is at least 18, which
ompletes the proof. □

. Grid graph

The main technical result of this paper is on the metric dimension of the grid graph augmented with one edge.

efinition 6. Let the d-dimensional grid graph with side lengths (n1, n2, . . . , nd) be the Cartesian product of d paths
ndexed by i with length ni.

Let us represent each vertex A of the grid in a d-dimensional space as (x(1)A , x(2)A , . . . , x(d)A ) where 1 ≤ x(i)A ≤ ni for
∈ {1, . . . , d}. For grid G and vertices A and B, we denote the distance

dG(A, B) = AB =

d∑
i=1

|x(i)A − x(i)B |.

We state and prove the general result for d-dimensional grid graphs in Section 4.1, and we focus on the case of the
-dimensional grid for more precise results in Section 4.2.

.1. The d-dimensional grid

We start by understanding the MD of the d-dimensional grid without any extra edges. The paper [26] claims that the
D of a d-dimensional grid is d, however, [9] shows by computer search that this statement is false for hypercubes of
8
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dimensions 5 ≤ d ≤ 8. It is not difficult to show that d is an upper bound, but it is believed asymptotically not to be tight
hen the side lengths are small. The paper [37] claims without proof that if all side lengths are ni = n, then

lim sup
d→∞

β(G) logn(d)
d

≤ 2, (5)

nd they also prove

lim inf
d→∞

β(G) logn(d)
d

≥ 1. (6)

However, when the side length n is large, then the MD of d-dimensional grid is exactly d, which was shown in [19].
Before stating this lower bound on n for the MD to be exactly d, we include a non-asymptotic lower bound on the MD
for grids with general side lengths.

Lemma 2. Let G be a grid of dimension d with side lengths (n1, n2, . . . , nd), and let us denote NΣ =
∑

i ni and NΠ =
∏

i ni.
hen

β(G) ≥
log(NΠ )

log(NΣ − d + 1)
. (7)

roof. The distances in G range from 0 to
∑

i(ni − 1), which implies a total number of (NΣ − d + 1)β(G) possible distinct
distance vectors. Since the distance vectors must be unique, the number of possible distinct vectors must be at least as
large as the total number of vertices in G, or formally (NΣ − d + 1)β(G) ≥ NΠ . Taking the logarithm of both sides and
rearranging the terms gives the desired result. □

The lower bound on n for the MD to be exactly d can be found as a corollary of Lemma 2.

Corollary 1 (Theorem 5.1 [19]). Let G be a grid of dimension d with equal side lengths (n, n, . . . , n). If n ≥ dd−1, then β(G) = d.

Proof. The assumption n ≥ dd−1 is equivalent to n
d

d−1 ≥ nd, which, by taking the logarithm of both sides, gives
d

d − 1
log(n) ≥ log(nd). (8)

Combining inequalities (7) and (8) gives

β(G)
(7)
≥

log(NΠ )
log(NΣ − d + 1)

>
log(NΠ )
log(NΣ )

=
d log(n)
log(nd)

(8)
≥ d − 1. (9)

Since it is well established that the MD of the d-dimensional grid is upper bounded by d, the proof is completed. □

We need a slightly more technical lemma before stating our main results on the MD of the grid with an extra edge.

emma 3. Let G = (V , EG) be a grid graph of dimension d with side lengths (n1, n2, . . . , nd). Let E and F be the endpoints
f the extra edge e. As defined in Lemma 1, let V1 = {U ∈ V | UE ≤ UF}. Let G1 be the subgraph of G induced on V1. Then
(G1) ≤ d.

We defer the proof to the end of the section, and we state and prove our main theorem for d-dimensional grid graphs.

heorem 1. Let G = (V , EG) be a grid graph of dimension d. For an edge e between any two vertices E and F in V , let
′
= (V , EG ∪ {e}). Then, β(G′) ≤ 2d + 2. Moreover, the lower bound (7) in Lemma 2 holds for G′ as well.

roof of Theorem 1. Let V1 = {U ∈ V | UE ≤ UF} and V2 = {U ∈ V | UE ≥ UF}. Let G1 and G2 be the subgraphs of G
nduced on V1 and V2, respectively. Lemma 3 implies that β(G1) ≤ d, and β(G2) ≤ d holds by symmetry. Finally, we apply
emma 1 to arrive to

β(G′) ≤ β(G1) + β(G2) + 2 ≤ 2d + 2.

or the lower bound, since adding an edge only decreases the distances in the graph, the same proof as in Lemma 2
pplies. □

It is an interesting question, whether the upper bound in Theorem 1 can be improved to 2d by simply not including the
wo endpoints of the extra edge into the resolving set when applying Lemma 1. We saw in Claim 6, that the two endpoints
re needed for general graphs, but we will see in the next section, that they are not needed for the 2-dimensional grid. We
elieve that the upper bound can be improved to 2d, but the proof is not straightforward. In the proof of the 2-dimensional
ase, we rely heavily on the observation that the normal region has a specific shape no matter where the extra edge is
dded. We show in Fig. 4 that this is not true anymore even for d = 3. Indeed, the shape of the normal regions (and thus
9
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Fig. 4. The 3D surfaces show the normal region in the 3-dimensional grid for two different configurations of the extra edge. The extra edges are
arked with a black vector in the middle of the cube.

f sets V1 and V2) can be quite different for different configurations of the extra edge, which suggests that the number of
ases can explode.
We conclude the section by providing a proof for Lemma 3.

roof of Lemma 3. The proof will consist of three parts. In the first part of the proof, we define our coordinate system
o that the extra edge is oriented in a specific way. This part essentially breaks the symmetries of the grid, which will
educe the number of cases we need to inspect later in the proof. In the second part, we show that a set of d corners in
1, which we denote by O, resolves the grid G. Finally, in the third part of the proof, we show that the distance between
ny vertex X ∈ V1 and any corner in O is the same in both G and G1. Hence, O will be a resolving set of G1 as well, which
roves that the MD of G1 is upper bounded by d and completes the proof of the lemma.

art 1: Without loss of generality, we can label the dimensions such that |x(1)E − x(1)F | = maxi(|x
(i)
E − x(i)F |), i.e., the distance

etween E and F along the first dimension is the maximum among distances along all the dimensions. Now, again without
oss of generality, we also assume that x(i)E ≤ x(i)F for all i. We can assume that because if x(j)E > x(j)F for any dimension j, we
can reflect the grid along that dimension so that x(j)E becomes less than x(j)F . Basically, this reflection will map coordinates
x(j)X to nj−x(j)X , keeping all other coordinates unchanged. We summarize these assumptions, taken without loss of generality,
below.

Assumption 1 (Symmetry Breaking). Without loss of generality, we assume that E and F satisfy

x(i)E ≤ x(i)F for all i ∈ {1, . . . , d}, (10)

and

x(1)F − x(1)E ≥ x(i)F − x(i)E for all i ∈ {2, . . . , d}. (11)

The d-dimensional grid has 2dd! symmetries for choosing a coordinate system (which form the hyperoctahedral group).
Note that even after Assumption 1, we still have (d−1)! ways of choosing the coordinates (each equation in (10) removes a
factor of two, and Eqs. (11) remove a factor of d). This is because we only require that |x(i)F − x(i)E | takes (one of) its maximum
value(s) for i = 1, and we have no constraint on the order of the values for the other indices. Thus, Assumption 1 does
not break all symmetries of the grid, only the ones necessary for the proof. This also means that although we exhibit only
a single resolving set O, there are multiple sets of d corners in V1 that resolve G.

Part 2: In this part proof, we show there exists a set of d corners in V1 that resolves the grid G. Let us define

O =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O1 = (1, 1, 1, . . . , 1),
O2 = (1, n2, 1, . . . , 1),
O3 = (1, 1, n3, . . . , 1),
. . . ,

Od = (1, 1, 1, . . . , nd)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where O1 is the all-ones vector of dimension d, and for j > 1 we get Oj from O1 by changing its jth entry to nj. Khuller
t al. show that the set of the d corners of O form a resolving set of G, and we only need to show that all d corners of O
10
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belong to V1, that is OjE ≤ OjF holds for all j. Because of Eqs. (10),

O1E =

d∑
i=1

(x(i)E − 1) ≤

d∑
i=1

(x(i)F − 1) = O1F .

Next, we consider the corners Oj for j > 1. Because of Assumption 1, we have

x(j)F − x(j)E
(11)
≤ x(1)F − x(1)E

(10)
≤

d∑
i=1,i̸=j

(x(i)F − x(i)E ).

Reorganizing the terms and then adding nj − d + 1 to both sides of the inequality yields

−x(j)E +

d∑
i=1,i̸=j

x(i)E ≤ −x(j)F +

d∑
i=1,i̸=j

x(i)F

(nj − x(j)E ) +

d∑
i=1,i̸=j

(x(i)E − 1) ≤ (nj − x(j)F ) +

d∑
i=1,i̸=j

(x(i)F − 1)

OjE ≤ OjF .

Thus, all the corners in O lie inside V1.

Part 3: In this part of the proof, we show that dG(X,Oj) = dG1 (X,Oj) for all X ∈ V1 and Oj ∈ O. We show this by
exhibiting a shortest path between X and Oj in G such that all vertices on that path belong to V1. This will show that
dG(X,Oj) ≥ dG1 (X,Oj). The inequality in the opposite direction is trivial because G1 is a subgraph of G, which means that
we must have dG(X,Oj) = dG1 (X,Oj).

For j > 1, the shortest path between X and Oj that we exhibit will have the following two parts:

1. decrease all the co-ordinates (in any order), except j, to 1 to reach X1 = (1, . . . , x(j)X , . . . , 1).
2. increase the jth coordinate from x(j)X to nj in order to reach Oj.

For j = 1, we simply decrease all the coordinates (in any order) to 1 to reach O1. Clearly, these define valid shortest paths
in a grid graph, and next, we prove that we stay inside V1 both throughout the first part (from X to X1) and the second
part (from X1 to Oj) of the path.

First, we show that if X = (x(1)X , x(2)X , . . . , x(d)X ) ∈ V1 with x(1)X > 1, then X0 = (x(1)X − 1, x(2)X , . . . , x(d)X ) ∈ V1 as well. We
distinguish two cases based on the ordering of x(1)E , x(1)F and x(1)X . On the one hand, if x(1)X > x(1)F ≥ x(1)E or x(1)X ≤ x(1)E ≤ x(1)F ,
then

X0F − X0E = |x(1)X − 1 − x(1)F | − |x(1)X − 1 − x(1)E | = |x(1)X − x(1)F | − |x(1)X − x(1)E | = XF − XE ≥ 0,

since the terms inside the absolute values have the same sign. On the other hand, if x(1)E < x(1)X ≤ x(1)F , then

X0F − X0E = (x(1)F − x(1)X + 1) − (x(1)X − 1 − x(1)E ) = (x(1)F − x(1)X ) − (x(1)X − x(1)E ) + 2 = XF − XE + 2 ≥ 2.

Since there are no other cases by Assumption 1, the inequality X0F −X0E ≥ 0 must always hold, which implies X0 ∈ V1.
Therefore, we showed that decrementing the first coordinate does not lead outside of V1, and the same argument works
for any of the d coordinates.

Next, we show for the second part of the shortest path, that each vertex in the path from X1 to Oj with j > 1 belongs
to V1. Let Xy = (1, . . . , y, . . . , 1) be a vertex with x(i)Xy = 1 for i ̸= j, and x(j)X ≤ y = x(j)Xy ≤ nj. Clearly, Xy describes all
intermediate vertices on the path between X1 to Oj. Then, since j > 1,

XyF − XyE = |y − x(j)F | +

d∑
i=1,i̸=j

(x(i)F − 1) − |y − x(j)E | −

d∑
i=1,i̸=j

(x(i)E − 1)

= |y − x(j)F | − |y − x(j)E | +

d∑
i=1,i̸=j

(x(i)F − x(i)E )

(11)
≥ |y − x(j)F | − |y − x(j)E | + (x(j)F − x(j)E ). (12)

Finally, by applying the triangle inequality to the right hand side of Eq. (12), we arrive to

XyF − XyE ≥ 0,

which implies that all the vertices Xy in the path from X1 from Oj with j > 1 belong to V1. This concludes the proof of the
lemma. □
11
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Fig. 5. The sets RP , RQ , RR , RS , RW are coloured grey, blue, pink, green and white, respectively. Vertices on the boundary of coloured regions are
ncluded in the respective coloured region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

.2. The 2-dimensional grid

For the sake of simplicity, we slightly adjust our notation to the d = 2 case. Let G = (V , EG) be a two-dimensional
rectangle grid graph with m rows and n columns. Let the tuple (i, j) denote the vertex in ith column and jth row. The
pper left, upper right, bottom right, bottom left corners are labelled as

P = (1, 1), Q = (n, 1), R = (n,m), S = (m, 1),

respectively (see Fig. 5). Let e be the edge between vertices E = (xE, yE) and F = (xF , yF ) with xE, xF ∈ {1, . . . , n},
E, yF ∈ {1, . . . ,m}, with the assumption that EF ≥ 2. Let G′

= (V , EG ∪ {e}) be the 2-dimensional grid augmented with
ne edge.

ssumption 2 (Symmetry Breaking for d = 2). We assume that

1. xF ≤ xE
2. yE ≤ yF
3. xE − xF ≤ yF − yE .

Assumption 2 is just a special case of Assumption 1 for d = 2. Geometrically, it means that the edge is tilted right, F
s below and to the left of E, and the angle between the edge and the horizontal axis is between 45 and 90 degrees (see
ig. 5). As argued in the proof of Lemma 3, if the edge is in any other orientation, we can flip or rotate the grid horizontally
nd/or vertically to bring the edge in this orientation, hence Assumption 2 can be made without loss of generality.

.2.1. Adversarial setting

heorem 2. Let G = (V , E) be a rectangle grid graph with m rows and n columns. For an edge e between any two nodes in
, let G′

= (V , E ∪ {e}). Then, the set of all 4 corners of the original grid is a resolving set for G′, and consequently β(G′) ≤ 4.

roof. We start by making observations about which special regions the four corners P,Q , R, S belong to. First, notice
that

QF − QE = (n − xF ) + (yF − 1) − (n − xE) − (yE − 1) = EF ≥ 2,

Hence by Claim 1, Q ∈ RF . Similarly, S ∈ RE .
Then, notice that

PF − PE = (xF − 1) + (yF − 1) − (xE − 1) − (yE − 1) = (yF − yE) − (xE − xF ) ≥ 0

here the last inequality holds by Assumption 2. Claim 1 implies therefore that P belongs to either RF or N . Similarly, R
elongs to either RE or N . In any case, by Claim 2, it can be deduced that

(R ∪ R ) ∩ (R ∪ R ) = ∅ (13)
P Q S R

12
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Table 1
The assignment of corners to the pair A, B, when A ∈ R1 and B ∈ R2 .
R1 R2 Distinguishing corners Claim used

RW RW ∪ RP ∪ RQ R, S 8
RW RR ∪ RS P,Q 8
RQ \ RP RW ∪ RQ ∪ RP R, S 8
RQ \ RP RS Q , S 7
RQ \ RP RR \ RS Q , R 8
RQ ∩ RP RW ∪ RQ ∪ RP R, S 8
RQ ∩ RP RS Q , S 7
RQ ∩ RP RR P, R 7

In fact, it turns out that RP ∪RQ = RE and RR ∪RS = RF , but we are not showing this because it is not needed in this proof.
Instead, let RW = V \ {RP ∪ RQ ∪ RR ∪ RS} (the white region in Fig. 5), and we note that the sets RP ∪ RQ , RS ∪ RR and RW
artition the set of nodes V .
To prove the theorem, for any pair of nodes A, B, we are going to assign two of the corners {P,Q , R, S} in the resolving

set, and we are going to show that one of the two must distinguish A and B. The assignment will depend on whether A
and B belong to RS ∪ RR, RP ∪ RQ or RW . Moreover, we further divide the region RS ∪ RR to RR \ RS, RR ∩ RS and RS \ RS , and
he region RP ∪ RQ to RQ \ RP , RQ ∩ RP and RP \ RQ , and we treat each subregion separately.

This would mean treating 7 ·7 = 49 cases, but we make some simplifications. Let us suppose that the first point A is in
W or in RQ . The cases when A falls in RP , RR or RS are very similar. We make no assumptions on where B falls, but combine
imilar cases. Finally, we arrive to 8 cases, which are presented in Table 1. The table shows the various possibilities of
egions where A and B can belong to (denoted by R1 and R2), the corresponding pair of corners which distinguish A and
, and the claim which proves this.
We conclude the proof by stating and proving Claims 7 and 8. □

laim 7. If A ∈ RQ and B ∈ RS then dG′ (A,Q ) ̸= dG′ (B,Q ) or dG′ (A, S) ̸= dG′ (B, S), i.e., A and B are distinguished by the
pposite corners Q and S. Similarly, if A ∈ RP and B ∈ RR, then they are distinguished by P and R.

Proof. Suppose for contradiction that dG′ (A,Q ) = dG′ (B,Q ) and dG′ (A, S) = dG′ (B, S).
Since A ∈ RQ , A ̸∈ RS , B ∈ RS and B ̸∈ RQ , we have

BQ = dG′ (B,Q ) = dG′ (A,Q ) = AF + 1 + EQ
AS = dG′ (A, S) = dG′ (B, S) = BE + 1 + FS.

Adding these equations gives

BQ + AS = AF + EQ + BE + FS + 2. (14)

Applying the triangle inequality to points B, E,Q and A, F , S and adding both the inequalities, we get

BQ + AS ≤ BE + EQ + AF + FS,

which contradicts (14). A similar proof holds for A ∈ RP and B ∈ RR with corners P and R. □

Claim 8. If two vertices A, B are outside of the union of the special regions of two adjacent corners, then they are distinguished
by those two corners. For example, if A, B ∈ V \ {RP ∪ RQ } then P and Q distinguish A and B.

Proof. The distances from A, B to P , Q in G′ are same as that in G, and we know [31] that the set of two adjacent corners
is a resolving set of a rectangle grid. □

4.2.2. Random setting
Theorem 2 tells us that the MD of a grid and one extra edge must take a value from the set {2, 3, 4}, and in fact, all

three values can occur. In Conjecture 1, we present a set of conditions, which we believe completely characterize the
MD of a grid and one extra edge, but proving this conjecture seems tedious. Instead, we are interested in a probabilistic
approach: what is the distribution of the MD when a uniformly randomly selected edge is added?

First we define some quantities which will be useful for the remaining section.

Definition 7 (Gain′). Let

Gain = Gain(E, F ) = |yF − yE | + |xE − xF | − 1

as in Definition 4, and let
′
Gain = max(0, ∥yF − yE | − |xE − xF∥ − 1) = Gain(F , (xF , yE)).

13
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The notion of Gain captures the maximum gain for any pair of nodes. The pair of vertices (E, F ) obviously have
maximum gain, however, there can be other pairs which have the same gain. For two vertices X, Y , let us denote by
Rec(X, Y ) the rectangle that has opposite corners X and Y , and sides parallel to the sides of the grid. Then, the pairs (A, B),
with A ∈ Rec(E,Q ), and B ∈ Rec(F , S) also have Gain(A, B) = Gain, since there is a shortest path between A and B in G that
passes through both E and F . The notion of Gain′ has a very similar interpretation as Gain. We defined Gain′ as the gain
between vertices F and (xF , yE). Notice that (xF , yE) is also a corner of Rec(E, F ). Therefore, while Gain is about the gain
between the opposite corners, Gain′ is about the gain between the adjacent corners of the same rectangle (by symmetry
the gain between E and (xE, yF ) is also Gain′). Similarly to Gain, there are many other pairs of vertex pairs (A, B) with
Gain(A, B) = Gain′. These are the pairs (A, B) with A ∈ Rec(P, (xF , yE)) and B ∈ Rec(F , R), and symmetrically the pairs with
A ∈ Rec(R, (xE, yF )) and B ∈ Rec(E, P). Roughly speaking, we could thus say that Gain is useful if we want to measure the
distance between vertex pairs with one vertex close to S and the other close to Q , while Gain′ is useful if we want to
measure the distance between vertex pairs with one vertex close to P and the other close to R.

One of the key steps of the main proof in this section will be about treating the case when Gain′ is very small. This
is the case when the extra edge has (or is close to having) a 45 degree angle with the sides of the grid, and Rec(E, F ) is
(or is close to being) a square. In the extreme case, when Gain′

= 0, no vertex pairs close to P and R use the extra edge,
and the structure of the special and normal regions are different from the case when Gain′

≥ 1. When Gain′
= 1, there

are still some subtle but inconvenient structural differences compared to the Gain′
≥ 2 case. Fortunately, since we are

adopting a probabilistic framework, in the proof we will be able to ignore the cases with Gain′
≤ 1, as these cases have

a vanishing probability of occurring.

Definition 8. Let Pn be the probability distribution over potential extra edges en = ((xE, yE), (xF , yF )) that we can add to
Gn, where (xE, yE) and (xF , yF ) are two uniformly random vertices of Gn.

Theorem 3. Let Gn be the n× n grid and let G′
n = Gn ∪ {en} with en sampled from distribution Pn. Then, the following results

hold:

lim
n→∞

Pn(β(G′

n) ∈ {3, 4}) = 1 (15)

lim
n→∞

Pn

(
β(G′

n) = 3
⏐⏐⏐⏐ Gain′ is odd or min(|xE − xF |, |yE − yF |) <

Gain′

2
+ 2

)
= 1 (16)

lim
n→∞

Pn

(
Gain′ is odd or min(|xE − xF |, |yE − yF |) <

Gain′

2
+ 2

)
=

19
27

. (17)

According to Theorem 3, the asymptotic probability that the MD of the square grid with an extra edge is three is at least
19/27. We believe that it is also true that the MD is at least four when Gain′ is even and xE −xF ≥ Gain′/2+2. If we could
prove this, we could state that the asymptotic probability of β(G′) being three is exactly 19/27, and β(G′) → Ber(8/27)+3
in probability, where Ber(q) is a Bernoulli random variable with parameter q. We believe that a brute-force approach
similar to the proof of Theorem 2 can work, but it requires a tedious case-by-case analysis that is out of scope of this
paper.

The probabilistic formulation of Theorem 3 allows us to ignore the edge-cases that would be too tedious to check
individually, but it introduces new challenges as well. In rest of this section, we explore these new challenges and we
reduce Eqs. (15)–(17) to technical Lemmas 4–6, which are of deterministic nature. We give the proof of Theorem 3 at the
end of this section, but we defer the proof of the technical lemmas to Section 4.2.4.

The specific edge-cases that we ignore using the probabilistic formulation are given in Assumption 3.

Assumption 3 (Edge-case Removal). We assume that

1. xF ̸= xE
2. Gain′

≥ 2
3. none of E and F lie on the boundary of the grid.

In addition to Assumption 3, we are also going to make use of Assumption 2 as we did in the proof of Theorem 2.
Assumptions 2 and 3 applied together have some additional implications.

Remark 5. Assumptions 2 and 3 together imply that

1. xF < xE
2. yE < yF .
3. xE − xF < yF − yE

Using Assumption 2 in the probabilistic formulation is not as straightforward anymore, as symmetry breaking can also
break the uniformity of the sampling of the extra edge. Indeed, sampling a random edge that satisfies Assumption 2 is
not the same as sampling an edge from P and rotating and reflecting it so that Assumption 2 is satisfied. In Claims 9 and
n

14
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11, we are going to show that after removing only O(n3) edges from V × V , and thus slightly changing the distribution
n, the symmetry breaking will not violate the uniformity of the sampling anymore.

efinition 9 (P , Q, P̃n,Qn). Let P be the set of extra edges ((xE, yE), (xF , yF )) that satisfy Assumption 3, and let Q the set
f extra edges that satisfy both Assumptions 2 and 3. Let P̃n and Qn be the uniform probability distribution over P and
, respectively.

In Claim, 9 we show that Pn is close to P̃n, and in Claim 11 we show that P̃n is close to Qn. These two claims allow us
o use Qn instead of Pn in the proof of Theorem 3.

laim 9. For Pn and P̃n given in Definitions 8 and 9,

lim
n→∞

∥Pn − P̃n∥TV = 0.

roof of Claim 9. The support of Pn is V ×V , and |V × V | = n4 because each of the four coordinates xE, yE, xF and yF can
ake four values. Recall, that P ⊂ (V × V ), and the set (V × V ) \P consists of the edges that do not satisfy Assumption 3.
herefore, to upper bound the cardinality of (V ×V )\P , it is enough to upper bound the number of edges violating each of
he conditions in Assumption 3. It is clear that the number of edges that violate the first condition is n3; the coordinates
E, yE, yF can be chose arbitrarily n3 different ways, and then setting xF = xE gives exactly one unique edge that violates
he first condition. For a more insightful but less precise explanation, notice that the original set V × V had four degrees
f freedom, and we lost one to violating the condition, hence we are left with three degrees of freedom and O(n3) edges.
t is not hard to see that we lose one degree of freedom to violate the second and third conditions as well, and therefore
he number of edges violating these conditions are also O(n3). We conclude that the number of edges in (V × V ) \ P are
lso of order O(n3).
Then,

2∥Pn − P̃n∥TV =

∑
e∈P

|Pn(e) − P̃n(e)| +

∑
e∈V×V\P

Pn(e)

= |P|

⏐⏐⏐⏐ 1
|V × V |

−
1

|P|

⏐⏐⏐⏐ +
|(V × V ) \ P|

|V × V |

= (n4
+ O(n3))

⏐⏐⏐⏐ 1
n4 −

1
n4 + O(n3)

⏐⏐⏐⏐ +
O(n3)
n4

= O
(
1
n

)
. □

efinition 10 (H). Let us consider the following actions on the extra edges of the grid:

1. by h1 the reflection along the vertical line through the midpoints of sides PQ and SR,
2. by h2 the reflection along the horizontal line through the midpoints of sides PS and QR,
3. and by h3 switching the two endpoints of the edge.

Let H be the group generated by h1, h2 and h3 acting on the edges.

Notice that group H acting on the edges is isomorphic to the Z3
2 group. Indeed, all three actions have order two and

commute with each other. Thus, H can be described as {hi
1h

j
2h

k
3 | i, j, k ∈ {0, 1}}. Also, notice that for e ∈ Q, applying h1, h2

and h3 flips the inequality labelled with the same index in Remark 5, and keeps the other two inequalities unchanged.

Definition 11. Let h be a map, which for each edge e ∈ Q returns the set of edges that we get by applying the elements
of H to e.

The sets h(e) can be seen as orbits of the edges under the action of H .

laim 10. With P,Q and h given in Definitions 9 and 11, the following three statements must hold:

1. |h(e)| = 8 for every e ∈ Q
2. the orbits of the edges in Q are disjoint, i.e., h(e1) ∩ h(e2) = ∅ for e1 ̸= e2 ∈ Q
3. for every e ∈ P , there is an e2 ∈ Q with e ∈ h(e2).

Proof of Claim 10. Statement 1 follows from the observation that every non-trivial group action in H flips a different
subset of the inequalities in Remark 5, and two edges cannot coincide if they satisfy different sets of inequalities. For
statement 2, since H is a group, if two orbits h(e1), h(e2) have a non-empty intersection, we must have e1 ∈ h(e2). However,
every non-trivial group action in H flips at least one of the inequalities of Remark 5, which implies that if we apply a
15
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non-trivial group action, the image of e2 ∈ Q cannot be in Q. For statement 3, for edge e ∈ P , let v(e) ∈ {0, 1}3 be a
binary vector, whose ith entry indicates that e violates inequality i in Remark 5. Then hv(e)1

1 hv(e)2
2 hv(e)3

3 is a group action
hat flips exactly the inequalities that are violated by e, and thus maps e into Q. Let the image of e under this action be
e2, and then indeed, e ∈ h(e2). □

Claim 11. Let An be a sequence of events defined on graph G′
n that are closed under the action of H. Then,

lim
n→∞

|Pn(An) − Qn(An)| = 0.

Proof of Claim 11. The three statements of Claim 10 together imply that the orbits h(e) of e ∈ Q partition P into sets of
cardinality 8. A simple corollary is that |P| = 8|Q|.

Let us suppose that event An is closed under the action of H , or formally as e ∈ An implies h(e) ⊂ An. This closedness
roperty, combined with Claim 10 implies that the edges in An can also be counted as 8 times the number of edges in
n ∩ Q. Then,

P̃n(An) =
|An|

|P|
=

8|An ∩ Q|

8|Q|
= Qn(An). (18)

inally, we combine Eq. (18) with Claim 9 as

lim
n→∞

|Pn(An) − Qn(An)| = lim
n→∞

|Pn(An) − P̃n(An)| ≤ lim
n→∞

∥Pn(An) − P̃n(An)∥TV = 0,

nd the proof is completed. □

Now we have all the ingredients to prove Theorem 3.

roof of Theorem 3. Since all events in the statement of Theorem 3 are closed under the action of H on the square grid,
laim 11 shows that it is enough to prove Eqs. (15)–(17) for distribution Qn. Note that because of statements 1 and 3
f Remark 5, min(|xE − xF |, |yE − yF |) = xE − xF for edges in Q. Hence, the second condition in (16) and (17) reduces to
E − xF < Gain′/2 + 2 for distribution Qn.
The rest of the proof relies on Lemmas 4–6 given in Section 4.2.4, which have purely deterministic nature. Lemma 4

hows that for extra edges in Q (that is edges satisfying Assumptions 2 and 3), the metric dimension of G′ will be at least
hree deterministically, which, combined with Theorem 2, gives Eq. (15). Lemma 5 shows that there exists a resolving
et of cardinality three for every extra edge in Q with an odd Gain′. For the extra edges in Q with an even Gain′ and
ith xE − xF < Gain′/2 + 2, there exist different resolving sets of cardinality three, which is proved in Lemma 6. Thus,
emmas 4–6 combined imply Eq. (16).
Finally, we show Eq. (17). Let us denote by C the subset of vertex pairs in Q that satisfy the condition in Eq. (17), i.e.,

C =

{
(E, F ) ∈ Q

⏐⏐⏐⏐ Gain′ is odd or xE − xF <
Gain′

2
+ 2

}
.

et the complement of C be

C̄ = (V × V ) \ C =

{
(E, F ) ∈ Q

⏐⏐⏐⏐ Gain′ is even and xE − xF ≥
Gain′

2
+ 2

}
.

Next, we calculate |C̄ |/|Q|. Let xE − xF = a and yF − yE = b, which together with Assumption 3 gives

b − a − 1 = Gain′.

hen, the conditions on a, b that need to be satisfied for an edge to be in C̄ can be reformulated as :

1. b − a is odd (equivalent to Gain′ is even)
2. b − a ≥ 3 (equivalent to Gain′

≥ 2)
3. a ≥

b
3 + 1 (equivalent to xE − xF ≥

Gain′

2 + 2)
4. 1 ≤ a, b ≤ n − 2, as the extra edge is not horizontal nor vertical, and does not touch the boundary of the grid.

Let b − a = 2i + 1 with i ≥ 1. With this parameterization, the first two conditions are already obviously satisfied.
ubstituting a = b − 2i − 1 into a ≥ b/3 + 1 gives b ≥ 3(i + 1). Hence, for a fixed i, b can have values from 3(i + 1) to
− 2, and consequently, the maximum value that i can take is ⌊(n − 5)/2⌋. Note that for a given pair (a, b), there are

n − a − 1)(n − b − 1) possible edges in Gn which do not touch the boundary. Therefore,

|C̄ | =

⌊
n−5
3 ⌋∑ n−2∑

(n − b + 2i)(n − b − 1),

i=1 b=3(i+1)

16
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which reduces asymptotically to

|C̄ | =
1
27

n4
+ O(n3).

Therefore,

Qn(C̄) =
|C̄ |

|Q|
=

1
27n

4
+ O(n3)

1
8n

4 + O(n3)
=

8
27

+ O
(
1
n

)
, (19)

ence, Qn(C) = 1 − Qn(C̄) → 19/27, which shows Eq. (17) and completes proof of the theorem. □

In the rest of this section we state and prove Lemmas 4–6, which we will do in Section 4.2.4. Before introducing these
lemmas, we prove some claims that will be useful later. We start by simple claims in this subsection, then in Section 4.2.3
we prove more involved results that characterize the normal and special regions of G′.

The following claim shows that resolving sets must have nodes on the boundaries of the grid, which helps us reduce
the number of subsets that we must prove are non-resolving.

Claim 12. If R is any resolving set of G′ (the grid with extra edge EF) satisfying Assumptions 2 and 3, there must be two
ertices X and Y in R which satisfy following two properties:

1. They are on opposite boundaries of G′

2. If one of them is a corner, the other one must be an adjacent corner.

roof. Consider vertices A = (1, 2) and B = (2, 1). It is easy to see that only vertices on boundaries PQ and PS except
orner P will be able to distinguish A and B as none of E and F is on the boundaries. So we need at least one vertex on the
nion of the boundaries PQ and PS, excluding P , in the resolving set. A similar argument holds for the other 4 corners,
ence we can deduce the two required conditions. □

laim 13. For all A, B ∈ V if Gain(A, B) is positive, it will have same parity as Gain and Gain′ as defined in Definition 7.

roof. Note that Gain(A, B) > 0 indicates that A uses e to reach B. For this to happen, we must have A ∈ RF and B ∈ RE
or the other way around), in which case dG′ (A, B) = AE + 1 + FB. This gives

Gain(A, B) = AB − (AE + 1 + FB)
= |xA − xB| + |yA − yB| − (|xA − xE | + |yA − yE | + 1 + |xF − xB| + |yF − yB|),

which has same parity as

(xA − xB) + (yA − yB) − ((xA − xE) + (yA − yE) + 1 + (xF − xB) + (yF − yB)) = (yE − yF ) − (xE − xF ) − 1,

hich has the same parity as Gain = (yF − yE) + (xE − xF ) − 1 and Gain′
= (yF − yE) − (xE − xF ) − 1. □

emark 6. Consider a vertex X and its 4 neighbouring vertices X1, X2, X3, X4. A single vertex in the graph cannot
istinguish all of these 4 vertices.

roof. Suppose that vertex A distinguishes all 4 vertices. By triangular inequality, AXi can only take 3 distinct values,
amely AX − 1, AX and AX + 1. Hence, by pigeon hole principle, at least 2 vertices will have same distance to A. □

.2.3. Exact characterization of normal and special regions
We prove that in two dimensions, under Assumptions 2 and 3, the normal region takes a fairly regular shape. As shown

n Fig. 6, we only have two cases based on the parity of Gain′. This is in sharp contrast with higher dimensions, where
he normal region can take very different shapes (see Fig. 4).

The following quantities will be useful to describe the shape of the normal region.

efinition 12 (α, β). Let

α =
1 + yF + yE + xF − xE

2
and

β =
1 + yF + yE + xE − xF

2
.

emark 7. We make the following observations about α and β under Assumptions 2 and 3.
17
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Fig. 6. Illustration for Claims 14 and 15. Brown region (including the boundary), which is just a set of line segments in the case when Gain′ is
dd, is the normal region of the grid. Pink region (including the boundary) indicates the special region of a point A belonging to RE which lies on
oundary PS of G′ .

1. Note that β − α = xE − xF . Assumptions 2 and 3 imply xE > xF , and since xE, xF are both integers, we know that
β − α ≥ 1. Consequently, ⌊β⌋ > ⌊α⌋ holds.

2. Using Assumptions 2 and 3, we find the following useful equalities and inequalities:

α = yF −
Gain
2

= yE +
Gain′

+ 2
2

≥ yE + 2, (20)

and

β = yE +
Gain + 2

2
= yF −

Gain′

2
≤ yF + 1. (21)

Next, we express precisely the normal region of the grid.

Claim 14. Under Assumptions 2 and 3,

N ={(x, y) | x < xF , α − 1 ≤ y ≤ α}∪

{(x, y) | xF ≤ x ≤ xE, xF − α ≤ x − y ≤ xF − α + 1}∪
{(x, y) | x > xE, β − 1 ≤ y ≤ β}

(22)

Geometrically, the normal region will be the union of three strips of ‘‘height’’ 1 or 2: two horizontal strips with y-
coordinates around α and β respectively, and a third strip at 45 degree angle joining the two horizontal strips (see Fig. 6).
By ‘‘height’’ here we mean the number of vertices corresponding to each x coordinate. The height of the strips depends
on whether α and β are integers or not (and thus on the parity of Gain′): when Gain′ is even, α and β are integers and
the height of the strip is 2; when Gain′ is odd, α and β are odd integers divided by two, and the height of the strip is 1.

The union of the three strips forms a single continuous strip, which separates the grid into two connected components
along the y-axis. The y-coordinates of the strip lie completely between the y-coordinates of nodes E and F , which means
hat for every x-coordinate, the normal vertices are sandwiched between non-normal vertices along the y-axis. Here we
ely heavily on the inequality Gain′

≥ 2 in Assumption 3; for Gain′
= 0 the normal region can touch the PQ and RS

oundaries of the grid.

roof of Claim 14. Let A = (xA, yA) be a vertex in N . By Claim 1, being a normal vertex is equivalent to

|AE − AF | = ∥xA − xF | + |yA − yF | − |xA − xE | − |yA − yE∥ ≤ 1. (23)

irst we show that we cannot have yA < yE . If yA < yE , Eq. (23) reduces to

− 1 ≤ (yF − yE) + |xA − xF | − |xA − xE | ≤ 1. (24)

Next, by the triangular inequality we have

−(x − x ) ≤ |x − x | − |x − x | ≤ (x − x ),
E F A F A E E F

18
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and therefore by Definition 7,

Gain′
+ 1 ≤ (yF − yE) + |xA − xF | − |xA − xE | (25)

Due to the assumption Gain′
≥ 2, Eqs. (24) and (25) contradict each other. Hence, we cannot have yA < yE . Similarly

t can be shown that we cannot have yA > yF . In short, for A to be a normal point, we must have yE ≤ yA ≤ yF (i.e., the
A coordinate must be between E and F ). This reduces Eq. (23) to

− 1 ≤ |xA − xF | + yF − yA − |xA − xE | − yA + yE ≤ 1 (26)

Now we are going to have three cases depending on whether xA < xF , xA > xE or xF ≤ xA ≤ xE . When xA < xF < xE ,
Eq. (26) reduces to

α − 1 =
1 + yF + yE + xF − xE

2
− 1 ≤ yA ≤

1 + yF + yE + xF − xE
2

= α,

where α is given in Definition 12. This gives the first line of Eq. (22). Similarly, it can be verified that for the other two
possibilities xF ≤ xA ≤ xE and xE < xA, we get the remaining two lines. □

Now that N is explicitly written in terms of the coordinates of the nodes, we can leverage the partitioning in Claim 1
to do the same for RE and RF . However, we find it more instructive to express RE and RF implicitly using N , instead of
explicit equations similar to Eq. (22).

Remark 8. Under Assumptions 2 and 3,

RF = {(x, y) ̸∈ N | ∃k ∈ N with (x, y + k) ∈ N}, (27)

and

RE = {(x, y) ̸∈ N | ∃k ∈ N with (x, y − k) ∈ N}. (28)

Proof. By Claim 14, the normal region splits V into two connected components, one containing E, which we denote by
VF , and one containing F , which we denote by VE . Now we show that VE = RE and VF = RF . By Claim 1 it is clear that we
cannot have two neighbouring vertices A, B with A ∈ RE and B ∈ RF . Indeed the equations AE − AF > 1, BE − BF < −1,
|AE − BE| ≤ 1 and |AF − BF | ≤ 1 cannot hold at the same time. By Claim 1, the vertices V \N are partitioned into RE and
RF , and since we cannot have two neighbouring vertices split between RE and RF , each connected component VE and VF
must be contained entirely in RE or RF . We also know that E ∈ RF and F ∈ RE , which implies that the only way to assign
the vertices of V \ N into RE and RF is to have RE = VE and RF = VF . □

In the next claim, we characterize the special regions of the nodes on the boundary PS of the grid. This will be useful
in the subsequent results as we will be mainly dealing with nodes on the boundaries.

Claim 15. Let A = (1, k) be a point on boundary PS, and Gainmax(A) given in Remark 4. Then, under Assumptions 2 and 3,

1. if A belongs to RE , i.e., k > α, with α given in Definition 12,

RA ={(x, y) | xE ≤ x, y ≤ yE}∪{
(x, y)

⏐⏐⏐⏐ xE ≤ x, 0 ≤ y − yE <
Gainmax(A)

2

}
∪{

(x, y)
⏐⏐⏐⏐ y ≤ yE, 0 ≤ xE − x <

Gainmax(A)
2

}
∪{

(x, y)
⏐⏐⏐⏐ x ≤ xE, yE ≤ y, (xE − x) + (y − yE) <

Gainmax(A)
2

}
,

(29)

and

Gainmax(A) =

{
Gain for k ≥ yF
Gain − 2(yF − k) for α < k < yF

(30)

2. if A belongs to RF i.e. k < α − 1 and Gain′
≥ 2,

RA ={(x, y) | xF ≤ x, yF ≤ y}∪{
(x, y)

⏐⏐⏐⏐ xF ≤ x, 0 ≤ yF − y <
Gainmax(A)

2

}
∪{

(x, y)
⏐⏐⏐⏐ yF ≤ y, 0 ≤ xF − x <

Gainmax(A)
2

}
∪{

(x, y)
⏐⏐⏐⏐ x ≤ xF , y ≤ yF , (xF − x) + (yF − y) <

Gainmax(A)
}

,

(31)
2
19
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and

Gainmax(A) =

{
Gain′ for k ≤ yE
Gain′

− 2(k − yE) for yE < k < α − 1.
(32)

By symmetry, the vertices A = (n, k) on boundary QR have a similar expression for their special region, however, we
do not include this in the paper in the interest of space.

We will only cover the A ∈ RF case; the other case is analogous. We are interested in the nodes T ∈ RA, i.e., nodes
hat use edge e to reach A. By Remark 4, vertex E gets the maximum benefit from the extra edge, hence we expect RA to
e a neighbourhood ‘‘centred’’ at E. However, RA cannot be a ball centred at E, because the directions are not equivalent.

For instance, if T is in the rectangle formed by E and Q , then we can go to node E for ‘‘free’’, without sacrificing any of
the gain we get by using the extra edge. This is because the shortest path from T to A in G passed through E anyways, so
ain(A, T ) = Gainmax(A) (i.e., T also gets maximum benefit). Hence, all nodes in this rectangle will be in RA. For a different
xample, if T is in the rectangle formed by E and P , then going along the y axis towards E is ‘‘free’’, but going along the x
xis towards is a ‘‘detour’’, hence there may be a threshold for xT below which the shortest path does not use the extra
dge. We will make this intuition rigorous below.

roof. First, we check that Eq. (30) agrees with the definition of Gainmax. By Remark 4, we have

Gainmax(A) = AE − (1 + AF ), (33)

hich for k ≥ yF implies

Gainmax(A) = (xE − 1) + (k − yE) − (1 + (xF − 1) + (k − yF )) = yF − yE + xE − xF − 1 = Gain

ecause of Definition 4, and for α < k < yF implies

Gainmax(A) = (xE − 1) + (k − yE) − (1 + (xF − 1) + (yF − k)) = Gain − 2(yF − k).

Next, we need to find nodes T such that

TE + 1 + FA < AT . (34)

Combining Eqs. (33) and (34) we get that

TE + AE − Gainmax(A) < AT

TEx + TEy + AEx + AEy − Gainmax(A) < ATx + ATy, (35)

here TEx and TEy denote the distance along the x and y axes, respectively (e.g., TEx = |xT − xE |).
There are five cases depending on where T could be:

ase 1: T is in the rectangle formed by nodes E and Q
In this case there exists a shortest path in grid from T to A which passes through E, and T will certainly use the edge

to reach A. Hence, this rectangle belongs to RA, which accounts for the first line of in Eq. (29).

ase 2: T is in the rectangle formed by E and P
In this case AEx = ATx + TEx and AEy = ATy − TEy, which reduces Eq. (35) to

TEx <
Gainmax(A)

2
.

This accounts for the second set in Eq. (29).

Case 3: T is in the rectangle formed by E and R, and has y-coordinate less than k
In this case AEx = ATx − TEx and AEy = TEy + ATy, which reduces Eq. (35) to

TEy <
Gainmax(A)

2
.

This accounts for the third set in the (29).

Case 4: T is in the rectangle formed by E and S, and has y-coordinate less than k
In this case AEx = ATx + TEx and AEy = TEy + ATy, which reduces Eq. (35) to

TEx + TEy <
Gainmax(A)

2
.

This accounts for the fourth set in the (29).

Case 5: T has y-coordinate greater than or equal to k
In this case TEy = AEy + ATy, which reduces Eq. (35) to

2AE − Gain (A) < AT − (AE + TE ) ≤ 0, (36)
y max x x x

20
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where the last inequality follows from the triangle inequality. However, using Eq. (30), for k ≥ yF we have

2AEy − Gainmax(A) = 2(k − yE) − Gain
≥ (yF − yE) − (xE − xF ) + 1
= Gain′

+ 2 > 0,
(37)

nd for k < yF we have

2AEy − Gainmax(A) = 2(k − yE) − Gain + 2(yF − k)
= (yF − yE) − (xE − xF ) + 1
= Gain′

+ 2 > 0,
(38)

hich contradicts Eq. (36). Therefore Case 5 is impossible.
Since the five cases cover the entire node set, the necessary and sufficient conditions for T ∈ RA are characterized, and

his completes the proof. □

.2.4. Technical lemmas for the proof of Theorem 3

emma 4. Under Assumptions 2 and 3, the metric dimension of G′ is at least 3.

roof. Suppose that there exist two points X and Y that distinguish all points in the grid. By Claim 12, they have to be on
pposite boundaries. Next, their maximum gains cannot exceed 1. Indeed, suppose for contradiction that Gainmax(X) > 1,
nd that X ∈ RF . Then, by Remark 4 we have XF − (1+XE) > 1, and thus the four neighbouring vertices of F will all have
istance min(XF ±1, XE+2) = XE+2 to X . By Remark 6, the four neighbouring vertices of F cannot be distinguished by a
ingle vertex Y , which contradicts our assumption that {X, Y } is a resolving set, and hence we must have Gainmax(X) ≤ 1.
y a symmetric argument, we also have Gainmax(Y ) ≤ 1
We have two cases depending on the parity of Gain′.

ase 1: Gain′ is even.
By Claim 13, we know that Gainmax(X) is also even, and since Gainmax(X) ≤ 1, it must equal to 0, which in turn implies

hat X is a normal vertex. By a symmetric argument, Y must be normal vertex too. Moreover, recall that X and Y must lie
n opposite boundaries. Therefore, because of Claim 14, X is either (1, α − 1) or (1, α) and Y is either (n, β − 1) or (n, β),
s these are the only normal vertices on the boundaries of G′. As X and Y are normal vertices, edge e has no effect on
he distances from any vertex of G′ to X and Y , which therefore remain the same as in the original grid G. But we know
hat the only resolving sets of the grid G that have cardinality 2 are two adjacent corners of G, which disqualifies X and
from being a resolving set of G and thus G′.

ase 2: Gain′ is odd.
Recall, that Gainmax(X) ≤ 1, Gainmax(Y ) ≤ 1, and both X and Y must lie on the boundary of G′. Let us first rule out

he possibility of X or Y being on the top/bottom boundaries PQ and RS. More specifically, we will show that there is no
oint X = (k, 1) with Gainmax(X) ≤ 1. If X = (k, 1), then X ∈ RF and

Gainmax(X) = XF − XE − 1
= |k − xF | + yF − 1 − |k − xE | − (yE − 1)
= (|k − xF | − |k − xE |) + yF − yE − 1
≥ −(xE − xF ) + yF − yE − 1
= Gain′,

(39)

here the inequality follows from the triangle inequality. Now, Assumption 3 states that Gain′
≥ 2, and thus no point

= (k, 1) can have Gainmax(X) ≤ 1.
Now we consider the case when X and Y lie on PS and QR, respectively. We will check which vertices X = (1, k) and

= (n, k) have Gainmax ≤ 1. The Gainmax of vertices X = (1, k) is expressed in Eq. (30). Since Gain > Gain′
≥ 2, only the

ain−2(yF −k) term can equal 1. The term Gain−2(yF −k) is an increasing linear function of k that takes the value 1 for
nly a single value of k, namely k = α+1/2 = ⌊α⌋+1. Similarly, in (32), the only value that satisfies Gain′

−2(k−yE) = 1
s k = ⌊α⌋−1. Consequently, the only vertices on PS that have Gainmax(X) = 1 are X1 = (1, ⌊α⌋−1) and X3 = (1, ⌊α⌋+1).
imilarly, the only vertices on QR that have Gainmax(X) = 1 are Y1 = (n, ⌊β⌋− 1) and Y3 = (n, ⌊β⌋+ 1). The only vertices
n PS and QR that have Gainmax(X) = 0 are the normal vertices X2 = (1, ⌊α⌋) and Y2 = (n, ⌊β⌋). Hence, we have

X ∈ {X1 = (1, ⌊α⌋ − 1), X2 = (1, ⌊α⌋), X3 = (1, ⌊α⌋ + 1)},

nd,

Y ∈ {Y = (n, ⌊β⌋ − 1), Y = (n, ⌊β⌋), Y = (n, ⌊β⌋ + 1)}.
1 2 3
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Fig. 7. Figure for the proof of Lemma 4 for the case when Gain′ is odd. Note that sub-grid H does not intersect with any RYi or any RXi for i = 1, 3.

To finish the proof, we are going to rule out the remaining nine resolving sets that can be formed by X1, X2, X3 and
Y1, Y2, Y3. Since Gainmax(X1) = Gainmax(X3) = 1, the expression for the special regions of X1 and X3 in Claim 15 simplifies
to

RX1 = {(x, y) | xF ≤ x, yF ≤ y} (40)

and

RX3 = {(x, y) | xE ≤ x, y ≤ yE}. (41)

By a symmetric argument,

RY1 = {(x, y) | x ≤ xF , yF ≤ y} (42)

and

RY3 = {(x, y) | x ≤ xE, y ≤ yE}. (43)

Consider the rectangular sub-grid H formed by points X1, (n, ⌊α⌋ − 1), Y3, (1, ⌊β⌋ + 1) (see Fig. 7). The sub-grid H
cannot intersect the special regions of X1, X3, Y1 and Y3 because (i) by Eqs. (40) and (42), the special regions of X1 and
Y1 have y-coordinate at least yF , (ii) by Eqs. (41) and (43), the special regions of X3 and Y3 have y-coordinate at most yE ,
and (iii) the sub-grid H has y-coordinates more than yE and less than yF . The statement (iii) follows by Eq. (20) and the
inequality Gain′

≥ 2 from Assumption 3, since the lowest y-coordinate value of a vertex in H is

⌊α⌋ − 1 =

⌊
yE +

Gain′
+ 2

2

⌋
− 1 ≥ yE +

Gain′
+ 1

2
− 1 > yE,

nd by Eq. (21) and the inequality Gain′
≥ 3 (which follows from the assumption that Gain′ is odd in addition to

Assumption 3), since the highest y-coordinate value of a vertex in H is

⌊β⌋ + 1 =

⌊
yF −

Gain′

2

⌋
− 1 ≤ yF −

Gain′

2
− 1 < yF . (44)

onsequently, the distances in graph G′ between any point in H and X or Y are same as in G. By Remark 7, we also have
α⌋ < ⌊β⌋, which implies that X and Y cannot be adjacent corners of H , and they cannot resolve the sub-grid H .
Since we ruled out every pair of vertices X, Y for being a resolving set, the proof is concluded. □

emma 5. Under Assumptions 2 and 3, if Gain′ is odd, the set {X = (1, ⌊β⌋), Y = (n, ⌊β⌋),Q = (n, 1)} is a resolving set in
′.

roof. By Claim 14, Y is a normal vertex. The only normal vertex on boundary PS is vertex (1, ⌊α⌋), and since by Remark 7
e have ⌊β⌋ > ⌊α⌋, X cannot be a normal vertex. By Remark 8 we have X ∈ RE , and by Remark 3, vertex X has non-empty
pecial region R ⊆ R (see the pink region in Fig. 8). Suppose for contradiction that there exist two distinct points A and
X F
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Fig. 8. This is the illustration for the proof of Lemma 5. Points X , Y , Q marked with red cross form a resolving set. Y is a normal point. Blue and
ink regions (boundaries included) are special regions of Q and X , respectively. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

, which are not distinguished by the three points X, Y ,Q in G′. We separate three cases depending on the position of A
and B:

Case 1: One of A and B is in RX , and the other is in NX
Without loss of generality, we assume A ∈ RX and B ∈ NX .
Since Y is a normal point and it does not distinguish A = (xA, yA) and B = (xB, yB), we have AY = BY , which can be

xpanded as

n − xA + |yA − ⌊β⌋| = n − xB + |yB − ⌊β⌋|,

hence

|yA − ⌊β⌋| − |yB − ⌊β⌋| = xA − xB. (45)

By the assumption that A and B are not distinguished by X , we have that dG′ (A, X) = dG′ (B, X). Since A ∈ RX and B ∈ NX ,
his yields that

AX − Gain(A, X) = BX . (46)

herefore,

Gain(A, X) = AX − BX
= (xA − 1) + |yA − ⌊β⌋| − (xB − 1) − |yB − ⌊β⌋|

= 2(xA − xB), (47)

here the last line follows from Eq. (45). Eq. (47) implies that Gain(A, X) must be even. By Claim 13, if Gain(A, X) is even
then Gain′ must be even too, which contradicts our assumption that Gain′ is odd.

Case 2: A, B ∈ NX
In this case, the distances between X, Y and A, B are the same in graph G′ as in G, which implies that A, B are not

distinguished by X nor Y in G. The only pairs of vertices that are not distinguished by X, Y in the grid G are vertices that
are symmetric to the horizontal line passing through X and Y . Therefore A, B must be such a pair. By a similar parity
based argument as in Case 1, if one of A and B is in RQ and the other is not, then they are distinguished by either Y or Q .
Indeed, substituting Q instead of X into Eqs. (45) and (46), we get

Gain(A,Q )
(46)
= AQ − BQ
= n − x + y − 1 − (n − x ) − (y − 1)
A A B B
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Fig. 9. Illustration for the proof of Lemma 6. Points X , Y , Z marked with red crosses form a resolving set. Y and Z are normal points, the pink
egion (including the boundary) is RX .

(45)
= |yB − ⌊β⌋| − |yA − ⌊β⌋| + yA − yB
≡ 0 (mod 2). (48)

hen, Gain′ should also be even by Claim 13, contradicting our assumption that Gain′ is odd.
We are left with the cases A, B ∈ NQ and A, B ∈ RQ . Notice that since we showed ⌊β⌋+1 < yF for odd Gain′ in Eq. (44),

nd since by Eq. (21) we have ⌊β⌋ = ⌊yE + (Gain + 2)/2⌋ > 1, neither F nor Q are on the horizontal line through X and
. Hence, any pair of nodes A, B that are symmetric to the XY line are distinguished by both Q and F in graph G. We
mmediately see that if A, B ∈ NQ , the pair A, B is also by Q in G′. If A, B ∈ RQ , by Claim 3 together with Q ∈ RF , and since
F distinguishes A, B in G, we have

dG′ (Q , A) = QE + 1 + FA ̸= QE + 1 + FB = dG′ (Q , B).

ence, in every sub-case of Case 2 we showed that A, B must be distinguished by at least one of Q , X and Y in G′.

Case 3: A, B ∈ RX :
By Claim 15, we have Q ∈ RX . The anti-transitivity property of special regions (Remark 2) implies that if A ∈ RX and
∈ RX , then A ̸∈ RQ and therefore A ∈ NQ . Similarly, we have B ∈ NQ , and we can deduce that the distances between Q

nd A, B are the same in graph G′ as in graph G. Moreover, since Y is a normal vertex, the distances between Y and A, B
re the same in G′ as in G too.
Remark 3 together with X ∈ RE implies that we have RX ⊆ RF , and Remark 8 and Claim 14 together imply that every

vertex in RF has y-coordinate at most β − 1 < ⌊β⌋. Hence, both A and B are contained in the rectangular sub-grid with
corners QYXP . Since Q and Y are adjacent corners of the sub-grid QYXP , they must resolve the entire sub-grid QYXP in
graph G, including vertices A and B. Since distances from Y and Q to A, B are the same in graph G′ as in G, vertices Q and
Y must distinguish A and B in G′ as well.

Thus, every vertex pair A, B is distinguished by some vertex in the set {X, Y ,Q }, and the proof is concluded. □

Lemma 6. Under Assumptions 2 and 3, if Gain′ is even and xE − xF < Gain′

2 + 2, the set {X = (1, β − 1), Y = (n, β − 1), Z =

1, α − 1)} is a resolving set in G′.

roof of Lemma 6. See Fig. 9 for an illustration. Note that Y and Z are normal points, and that X ∈ RE . First we calculate
ainmax(X). By Eq. (30), since β − 1 ≤ yF because of Eq. (21),

Gainmax(X) = Gain − 2(yF − β + 1)
(49)
= 2(xE − xF ) − 2.
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Now we show that RX completely lies inside the rectangle PQTZ . Indeed, according to Claim 15, the largest y-coordinate
f a point in special region of X will be

ymax = yE +
Gainmax(X)

2
− 1

(49)
= yE +

2(xE − xF ) − 2
2

− 1

=
1 + yF + yE + xF − xE

2
− 1 −

(yF − yE) − (xE − xF ) − 1
2

+ (xE − xF ) − 2

= α − 1 −
Gain′

2
+ (xE − xF ) − 2

< α − 1, (50)

where the inequality follows by the assumption xE − xF < Gain′/2+ 2. Hence, since we also have α < β by Remark 7, all
points in the special region of X will have y-coordinate less than that of Z . Alternatively, denoting vertex (n, α − 1) by T ,
we have that RX is contained in the rectangle PQTZ .

Let us suppose for contradiction that there exist two distinct points A = (xA, yA) and B = (xB, yB) which are not
istinguished by X , Y , Z . We distinguish three cases based on the positions of A and B:

ase 1: A, B ∈ NX
In this case all distances between X, Y , Z and A, B are the same in graph G′ as in graph G. It is easy to see that to be

quidistant from X and Y , vertices A and B must be symmetric to the horizontal line through X and Y , in which case Z
an distinguish A and B.

ase 2: A, B ∈ RX
In this case, we show that A and B cannot be equidistant from both Y and Z . Both A and B lie inside of RX , and thus

he region PQTZ . Now we show that Y and Z resolve PQTZ in G, which implies that they resolve PQYZ in G′ because they
re normal vertices. Our argument will be similar to the standard argument that shows that two adjacent corners resolve
he grid. To be equidistant from Z , both of them should lie on a diagonal line parallel to PR, or equivalently,

xA − yA = xB − yB. (51)

o be equidistant from Y , they should lie on a diagonal line parallel to QS, or equivalently,

xA + yA = xB + yB. (52)

owever, Eqs. (51) and (52) cannot hold simultaneously for A ̸= B.

ase 3: One of A and B is in RX , and the other is in NX
Without loss of generality, we assume that A ∈ RX and B ∈ NX . Since RX lies inside of PQTZ , we know that the

-coordinate of A is less than that of Z and Y , i.e., yA < α − 1 < β − 1. Since we have shown in Case 2 that Y and Z
esolve PQTZ in G′, B cannot lie in the region PQTZ . There are two other possibilities for where B could lie:

1. Let us assume that B lies in the region ZTYX . Since Y does not distinguish A and B, we have AY = BY , which implies
that xA + yA = xB + yB as in Eq. (52). Similarly, since Z does not distinguish A and B, we have AZ = BZ , which
implies that xA + (α − 1− yA) = xB + yB − (α − 1). Subtracting the second equation from the first gives yA = α − 1
which contradicts Eq. (50).

2. Let us assume that B lies in the region XYRS, or equivalently, yB ≥ β − 1. Since we have assumed A and B to be
equidistant from X and Z , we have AZ = BZ and BX = dG′ (A, X) = AX − Gain(A, X). Writing these equations in
terms of the variables xA, yA, xB and yB gives

xA − 1 + (α − 1 − yA) = xB − 1 + yB − (α − 1), (53)

and

xA − 1 + (β − 1 − yA) − Gain(A, X) = xB − 1 + yB − (β − 1). (54)

Subtracting Eq. (54) from Eq. (53) yields

Gain(A, X) = 2(β − α) = 2(xE − xF ). (55)

Eqs. (55) and (49) together contradict the fact that Gain(A, X) ≤ Gainmax(X).

We considered all cases and the proof is concluded. □

4.2.5. Precise conjecture
Finally, we present our precise conjecture which completely characterizes metric dimension for any 2-dimensional

grid graph augmented with one edge. We believe this can be proved by rigorous case-wise analysis but it is out of the
25



S. Mashkaria, G. Ódor and P. Thiran Discrete Applied Mathematics 316 (2022) 1–27

a
t

C
a

A

2

R

scope of this paper. We have verified this conjecture for square grids with sizes up to 15 × 15 using simple C++ programs
vailable at [30]. Note that the conjecture is stated not only for square grids but also for m × n rectangular grids, but for
hese graphs we only verified the conjecture for a few parameter values due to the increased number of cases.

onjecture 1. Let G be a 2-dimensional grid graph with m rows and n columns. Let e be the edge between vertices F = (xF , yF )
nd E = (xE, yE) with xF , xE ∈ {1, . . . , n}, yF , yE ∈ {1, . . . ,m}, with the assumption that EF ≥ 2. Let G′

= (V , EG ∪ {e}) be the
grid augmented with one edge. Let Gain = |yE − yF | + |xF − xE | − 1 and Gain′

= ∥yF − yE | − |xF − xE∥ − 1.

• β(G′) = 4 if all of the following conditions are satisfied:

– None of the endpoints of e is a corner of the grid. i.e.,

(xE, yE), (xF , yF ) /∈ {(1, 1), (n, 1), (1,m), (n,m)}

– Gain′ is positive and even.
– min(|xF − xE |, |yF − yE |) ≥

Gain′

2 + 2

• β(G′) = 2 if any of the following conditions is satisfied:

– Gain = 1
– Gain′

≤ 1, Gain is odd and one of the endpoints is a corner of the grid.
– Gain′

≥ 3, Gain is odd, Gain − Gain′
≤ 2 and one of the endpoints is a corner of the grid.

– Gain is odd and both endpoints are corners of the grid.

• β(G′) = 3 for all other cases.
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