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SUMMARY
Neuronal morphologies provide the foundation for the electrical behavior of neurons, the connectomes they
form, and the dynamical properties of the brain. Comprehensive neuronmodels are essential for defining cell
types, discerning their functional roles, and investigating brain-disease-related dendritic alterations. Howev-
er, a lack of understanding of the principles underlying neuron morphologies has hindered attempts to
computationally synthesize morphologies for decades. We introduce a synthesis algorithm based on a topo-
logical descriptor of neurons, which enables the rapid digital reconstruction of entire brain regions from few
reference cells. This topology-guided synthesis generates dendrites that are statistically similar to biological
reconstructions in terms ofmorpho-electrical and connectivity properties and offers a significant opportunity
to investigate the links between neuronal morphology and brain function across different spatiotemporal
scales. Synthesized cortical networks based on structurally altered dendrites associated with diverse brain
pathologies revealed principles linking branching properties to the structure of large-scale networks.
INTRODUCTION

Neuronal morphologies play a crucial role in governing a

neuronal network’s dynamical properties, as they influence the

function of single neurons (Häusser et al., 2000; Smith et al.,

2013; Yi et al., 2017; Schaefer et al., 2003) and constrain the con-

nectivity between neurons (Chklovskii, 2004; Wen et al., 2009;

Cuntz et al., 2012). The importance of structural properties of

neurons has been shown in multiple fundamental studies that

revolutionized our understanding of brain function (y Cajal,

1998; Rall, 1959; Hodgkin and Huxley, 1952). The hand-drawn

neuronal morphologies of Ramon y Cajal set the foundations

for the first era of neuronal morphology models: neuronal shapes

represented on paper, initiating the journey to understand the

roles of neurons in the brain. A century later, the evidence that

the wide variety of neuronal shapes supports the composite

functional roles of different cell types is irrefutable, leading to a

plethora of projects dedicated to harvesting cellular morphol-

ogies from various brain regions and species (Peng et al.,

2015; Economo et al., 2016; Gouwens et al., 2019; Benavides-

Piccione et al., 2019). A burning challenge of our time is to untan-

gle the still largely unknown roles of distinct morphological cell

types.

Recent advances in manual (Economo et al., 2016; Gouwens

et al., 2019; Benavides-Piccione et al., 2019) and automatic

reconstruction techniques (Peng et al., 2015), as well as the sys-

tematic collection and registration of digital morphologies in
This is an open access article und
standardized databases (Ascoli et al., 2007; Akram et al., 2018;

Halavi et al., 2008), have accelerated the acquisition of neuronal

reconstructions. These efforts took the study of neuronal mor-

phologies to the next era of digital reconstructions (Winnubst

et al., 2019, Gouwens et al., 2019). Digital reconstructions of

physiologically realistic neuronal networks (Markram et al.,

2015; Egger et al., 2014) rely on distinct neuronal shapes of

different cell types to approximate biological diversity (Shillcock

et al., 2016; Landau et al., 2016; Ramaswamy et al., 2012). We

are still far, however, from having enough reconstructions of

unique morphologies to populate biologically realistic networks

of a whole brain region (1 M neurons for the mouse somatosen-

sory cortex, 10 M neurons for the mouse isocortex) (Ero et al.,

2018; Herculano-Houzel et al., 2006), due to the expensive and

tedious process of neuronal reconstructions (Farhoodi et al.,

2019). This limitation highlights the need to enter a new era for

neuronal morphologies, in which generative models for digital

cells that accurately reproduce the shapes of reconstructed

neuronal morphologies should play an essential role.

A crucial obstacle to the computational generation of neurons

(Hillman, 1979) is the difficulty in capturing and recreating corre-

lations between morphological features that arise from highly

complex intrinsic and environmental factors that influence the

propagation and branching of growth cones during neuronal

development. Several types of models have been developed in

attempts to synthesize cells that reproduce the biological prop-

erties of neuronal morphologies. Biophysically accurate models
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simulate detailed neural growth by integrating known molecular

mechanisms of neuronal development (Zubler and Douglas,

2009). These models focus on the microscopic scale of growth,

which is computationally intensive, thereby making difficult the

computational synthesis of large numbers of neurons. On the

other hand, phenomenological synthesis models are based on

either fundamental mathematical principles (Cuntz et al., 2010;

Luczak, 2006) or statistical sampling from morphological distri-

butions (Ascoli et al., 2001; Koene et al., 2009). Mathematical

models study the effect of different factors on neuronal growth,

such as spatial embedding (Luczak, 2006, 2010), minimization

of wiring cost (Cuntz et al., 2010), and self-referential forces

(Samsonovich and Ascoli, 2003; Memelli et al., 2013). These

models require few parameters and provide good intuition about

the mechanisms involved in neuronal growth but require manual

adjustments for different datasets thereby limiting their ability to

generalize to a large number of morphological types. Statistical

models (Ascoli et al., 2001; Koene et al., 2009; López-Cruz

et al., 2011) generate cells that reproduce distributions of

morphological properties from biological reconstructions. How-

ever, biologically relevant correlations between morphological

features need to be manually identified and implemented in the

algorithms (López-Cruz et al., 2011), which renders statistical

approaches harder to generalize to diverse datasets. Growth-

rule-based morphology models can implicitly account for these

correlations, illustrating the need for such rule-based models.

The complications of thesemodels demonstrate the necessity

to combine mathematical and statistical properties into a unified

synthesis model that circumvents the explicit selection of corre-

lated features while being computationally tractable. Based on

principles from algebraic topology and more specifically on the

topological morphology descriptor (TMD) (Kanari et al., 2018),

we developed a synthesis algorithm, topological neuron synthe-

sis (TNS). Each neuronal tree can be represented with a persis-

tence barcode, which encodes its topological and geometric

properties into a mathematical descriptor (see STAR Methods:

Topological morphology descriptor). The TMD encodes the start

and end of neuronal brancheswithin a tree and provides a simple

and elegant definition of branching and termination probabilities

that can be used for the generation of artificial neuronal trees

(see STAR Methods: Topological neuron synthesis). Comple-

mentary features that are not captured in the branching

structure, such as soma size, trunk orientation, and dendritic

thickness (see supplemental information: Synthesis input), are

statistically sampled from biological distributions. Using the

TNS algorithm, millions of unique neuronal morphologies were

efficiently synthesized (10 M cells in a few hours). A multi-stage

validation was then performed to ensure that three modalities

of reconstructed neurons are accurately reproduced: the

morphological characteristics, the electrical activity of single

cells, and the connectivity of the network they form.

The TNS algorithm is sufficiently versatile to be applied to a

large variety of cell types without cell-type-specific parameter

optimization. Due to the small number of manually chosen input

parameters (see STAR Methods: Algorithm inputs parameters;

Figure S2), the ranges of these parameters can be chosen

consistently across a large range of cell types so that the gener-

ated cells are biologically realistic (see Figure S2). We demon-
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strated that a small number of exemplar morphologies suffice

to capture the diversity of neuronal shapes within a recon-

structed population. The adaptability of TNS offers the opportu-

nity to extend the current models of brain regions and study sys-

tems that were not accessible so far. As a simple example, we

used TNS to generalize the available neuronal reconstructions

of the somatosensory cortex (morphological reconstructions

published in Markram et al. (2015)) to other regions of the

neocortex by varying cortical thicknesses. The synthesized mor-

phologies exhibit structural properties that are in agreement with

recent experimental findings (Fletcher and Williams, 2019).

Last but not least, TNS provides a tool to directly investigate

the link between local morphological properties and the connec-

tivity of the neuronal network they form. This approach is of

particular interest for medical applications, as it enables the

investigation of diseases in terms of the emergence of global

network pathology from local structural changes in neuron mor-

phologies. We reproduced the effects of dendritic alterations

associated to stress disorders (Curran et al., 2017; Dioli et al.,

2019; Tornese et al., 2019; Sandini et al., 2020) by implementing

two relevant structural changes: the shrinkage of dendritic pro-

cesses and the loss of dendritic branches, which can be

modeled by simple mathematical transformations of the

dendritic barcodes. These synthesized networks based on

structurally altered dendrites, which are associated with diverse

pathologies, revealed principles linking branching properties to

the structure of large-scale networks. The TNS algorithm intro-

duces a new era in the study of neuron morphologies, in which

millions of biologically accurate synthetic cells can easily be

generated and computational models of single cells and net-

works can be constructed in a principled manner.

RESULTS

The morphological development of neurons in the brain is a

complicated process that depends on both genetic and environ-

mental components and differs between species, brain regions,

and morphological types. In this study, we focus on the compu-

tational synthesis of dendrites and thus will not consider axon

path finding. While biological development is not simulated,

biological principles of morphological growth inform the design

of our computational algorithm, which synthesizes dendritic

morphologies.

The three main modalities that we aim to reproduce with syn-

thesized cells are morphology (Scorcioni et al., 2008), electro-

physiology (Van Geit et al., 2016), and connectivity (van Pelt

et al., 2010; van Pelt and van Ooyen, 2013). To ensure that the

synthesized cells recreate all three properties, the microcircuit

that was published by Markram et al. (2015) was used as refer-

ence. This microcircuit was built based on reconstructions of

juvenile rat neurons across all cortical layers for a variety of

morphological types. First, we ensure that the morphological

and electrical properties of the reconstructed cells are repro-

duced by neurons whose dendrites have been synthesized

with the TNS algorithm. Finally, a network is built from neurons

with synthesized dendrites, and compared with the connectivity

of the Markram et al. (2015) network (referred to as the recon-

structed network).



Algorithm 1. Synthesizer

Input:

Dsoma = fDss;Dnn;Dpag 8 (see Biological distributions)

Ddiam = fDtips;Dtr ;Drr ;Dmdg 8 (see Biological distributions)

Param= fc; t; r; step�sizeg 8 (see Input parameters)

Barcodes 8 (see Biological barcodes)

function SAMPLE distr : = draws from input distribution

Generate a Soma and Neurites using (Alg 2, Dsoma, c) 8 (each neurite is initialized with a point on the soma surface, which also defines an initial

direction dir1)

for neurite in Neurites do

TMD = SAMPLE Barcodes

Sort bars in TMD from longest to shortest

Initialize first section sec1 with the longest bar1
Active) sec1
while Active sections do

for Section seck in Active do 8 (a section gets a target direction dirk and a bar bark )

Grow a section using (Alg 3, dirk , bark = ðbk ;dk ;akÞ)
Remove bark from TMD 8 (each bar can be used only once)

if status=Bifurcate then

Generate children using (Alg 4, TMD;bark ;dirk )

Add children to Active sections

else if status=Terminate then

Section growth terminates

Remove current section seck from Active

Generate diameters using (Ddiam)

Output:

A neuron: set of points, diameters and their connectivity.
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Dendritic synthesis algorithm
Advances in experiments and mathematical models have

converged on a set of commonly accepted stages ofmorpholog-

ical growth: the initiation of neurites, neurite elongation, axon

path finding, and neurite branching (Cuntz et al., 2007; Graham

and van Ooyen, 2006). The TNS algorithm (see Algorithms 1–4)

consists of three main components (Figure 1A): the initiation of

dendrites on the soma (see STAR Methods: I. Initiation of neu-

rites), dendritic branching (see STAR Methods: II. Branching/

termination), and dendritic elongation (see STAR Methods: III.

Elongation of neurites). The neuronal soma is generated based

on a radius sampled from a biological distribution. Then, the

number of dendrites (basal and apical), is sampled from the bio-

logical distribution of the corresponding cell type. Each neurite is
Algorithm 2. Generate soma - neurites initialization

Input:

c;Dsoma = fDss;Dnn;Dpag 8 (see Biological distributions)

function SAMPLE distr : = draws from input distribution

ds =SAMPLEDss 8 (soma size)

Soma is a sphere of diameter ds and center c: Sc
ds

nn=SAMPLEDnn 8 (number of neurites)

Sample random unit vector Vect1 of neurite N1 on Sc
ds

surface.

First point of N1 is x11 = c+Vect1
for Neurite (Ni j2%i%nn) do

Vecti = Vecti�1 +SAMPLE Dpa

First point of Ni is xi1 = c+Vecti
Output:

A contour of soma points on Sc
ds

Initial points xi1 for each neurite Ni
assigned an initial orientation and a barcode based on the data of

the respective morphological cell type.

Subsequent steps of the growth take place in a loop. Each

branch of the tree is elongated step by step, as a combination

of the following components: a random direction, r, the target

orientation, t, and a memory of the previous steps, m

(Figures 1A–1III; see STAR Methods: III. Elongation of neurites).

At each step, the growing tip is assigned probabilities to bifur-

cate, to terminate, or to continue, which depend on the path

distance from the soma and are defined by the bars of the

sampled barcode (Figures 1A–1II; see STAR Methods: II.

Branching/termination). A new branch is attached to a current

branch only if its bar is contained in the other, also known as

the Elder rule in topology (see Kanari et al., 2020). Each bar of

the barcode can only be used once. The growth terminates

when all the bars of the input barcode have been used. Finally,

as an independent step, the diameters of the tree are assigned

based on diameter distributions sampled from the reconstructed

cells (Figures 1A–1IV; see STAR Methods: IV. Generation of di-

ameters). The details of the algorithm are described in the

STAR Methods.
Single neuron synthesis
First, we focus on single-cell synthesis: starting from a single

input morphology we generated synthesized examples. Each

cell is validated in terms of morphological and electrical proper-

ties with an extensive number of features, examples of which are

presented in (Figure 2). The morphological and electrical proper-

ties of synthesized and reconstructed morphologies (Figures 2C

and 2H) are normalized according to Equation 5.
Cell Reports 39, 110586, April 5, 2022 3



Algorithm 3. Elongate section

Input:

t;r;dir, bark = ðbk ;dk ;akÞ, x0
m = 1� t� r 8(Normalization of weights to 1)

function PD point : = path distance of point from soma surface

n = 1

status = Continue

while status is Continue do

L: length, R: unit vector randomly sampled

M =
P5

i =1expð1 � iÞ � vðk�iÞ
vk = r � R+ t � T +m �M
xn+1 = xn + L � vk
rand˛½0; 1Þ randomly sampled

if rand%expðl �ðPDxn+1 �bkÞÞ then
status = Bifurcate

else if rand%expðl �ðPDxn+1 �dkÞÞ then
status = Terminate

else

status = Continue

Output:

Section points and status: Bifurcate or Terminate.

Article
ll

OPEN ACCESS
Morpho-electrical properties
A set of 100 synthesized cells was generated, based on the

morphological properties (persistence barcodes and morpho-

metrics) of a selected reconstruction of an L3_TPC (Figure 2A).

First, the topology of the synthesized cells was validated by

comparing the radial-persistence diagram of the reconstructed

to the synthesized cells (Figure 2B). Subsequently, the morpho-

metrics of the input reconstructed cell and a synthesized cell

were compared using the Fnorm (see STAR Methods: Single-

cell validation) against a reference population of L3_TPC cells

(Figure 2C). In addition, the electrical model optimized on a pop-

ulation of L2/3 pyramidal cells (Van Geit et al., 2016) was applied

to the reference reconstructed cell and a synthesized cell.

Similar to the morphological validation, the Fnorm was used to

quantify how well the resulting morpho-electrical combination

matches with the statistics of the original experimental data for

the 120% threshold current step amplitude (Figure 2F–2H). Their

electrical traces in response to the tested stimuli are presented in

Figures 2F and 2G and the Fnorm scores of electrical features in

Figure 2H.

Due to the stochastic component of the growth process, the

synthesized cells are not identical to the reconstructed cell

(Figures 2A and 2B), yielding the desiredmorphological diversity.
Algorithm 4. Bifurcate

Input:

TMD, dirk , bark = ðbk ;dk ;akÞ
function SPLIT vect, a : = returns two unit vectors dir1;dir2 according to

8 (see section Branching - Termination)

dir1;dir2 = SPLIT ðdirk ;akÞ
Find next available indices i in TMD for which minðbiÞ and di%dk

Generate child sec1: )xkn;dir1;bar1 = ðbi ;dk ;aiÞ
Generate child sec2: )xkn;dir2;bar2 = ðbi ;di;aiÞ

Output:

Two new sections, each initialized with x0, dir and bar:
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Nevertheless, the morphological and electrical properties of re-

constructed and synthesized cells are statistically close to

each other’s, as seen by the normalized differences in

Figures 2C and 2H.

Neuronal population synthesis
To reproduce the biological variability, it is essential to generalize

the results of the previous section by using as input a large num-

ber of biological reconstructions. The algorithm is generalized to

a neuronal population by randomly sampling a persistence bar-

code extracted from the reconstructed population until all den-

drites of a cell are grown. The growth of each dendrite is

assumed to be independent. We generated synthetic cells for

all the rodent cortical cell types reported in previous publications

(Markram et al., 2015; Kanari et al., 2019; Marx and Feldmeyer,

2013), using as input a set of reconstructions from the BBP

dataset.

Comparison of reconstructed and synthesized dendritic
shapes
Morphologies of the two major types of cortical neurons are

generated: excitatory and inhibitory cells. Excitation is mainly

mediated by pyramidal cells, with the exception of the spiny stel-

late cells (L4), and use glutamate as a neurotransmitter. Inhibition

is mediated by interneurons, which use GABA as a neurotrans-

mitter. Pyramidal cells (PCs) represent the majority of neurons

in the cortex z85% (Gonchar et al., 2007; Lefort et al., 2009).

The wide variety of apical dendrite shapes imparts unique func-

tional properties to PCs and forms the basis for integrating signal

inputs from different cortical layers (Larkum et al., 2007, 2009;

Spruston, 2008). Eighteen pyramidal cell types from layers 2 to

6 (identified in [Kanari et al., 2019]) were synthesized (Figure 3A,

in red) and compared with their biological counterparts (Fig-

ure 3A, in blue).

Interneurons represent about 15% (Gonchar et al., 2007; Le-

fort et al., 2009) of neuronal cells in the cortex. There are many

interneuron types, which are distinguishedmainly by their axonal

shapes, as they do not present large variability in their basal

dendrites. Interneurons from different layers were synthesized

(Figure 3A, in red) and compared with reconstructed interneu-

rons from the same layers (Figure 3A, in blue). The TNS algorithm

generates cells that reproduce the characteristic shapes of pyra-

midal cell types and the variability of interneuron dendrites.

A cortical column consists of a combination of interneurons

and PCs. By putting together the synthesized dendrites of
the input vect and a set of angles a
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Figure 1. Dendritic synthesis algorithm
(A) Overview of dendritic synthesis based on four stages of growth. (I) Soma generation and initiation of the dendrites on the soma surface. (II) Stochastic definition

of bifurcation, termination, and continuation based on topological descriptor (B). (III) Dendritic elongation: during continuation the branch grows based on a

segment length and direction. The direction is chosen as a combination of three parameters: randomness, memory (based on the previous directions within a

branch), and targeting (based on the initial direction of a branch). (IV) Diameter definition, as a final step, is based on the biological distributions and is subsequent

to the branching steps.

(B) Branching based on the topological morphology descriptor (TMD) of a neuronal tree: the probability to bifurcate, terminate, or continue depends on the path

distance from the soma and the joint probabilities derived from the TMD of a neuronal morphology. The bifurcation probability increases as the start of the bar in

the TMD, and the termination probability increases as the end of the bar is approached. Respective probabilities become one after the start, and end of the bars in

TMD. Note that each new bar has to be smaller than its parent, so the growth is performed from larger to smaller branches.
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different types with the reconstructed axons, respecting the cell

type composition (Figure 3C, only dendrites shown), we gener-

ated a rodent cortical column of synthesized neurons that ex-

hibits the basic qualitative features, such as layer structure,

that are observed in the reconstructed cortical column in Mark-

ram et al. (2015).

Morphological validation of synthesized dendrites
Detailed validations were performed to ensure that the TNS algo-

rithm reproduces the properties of a population of reconstructed

cells. As an example, the synthesized cells of type L5_TPC:A

were validated against the reconstructed cells using a large set

of morphometrics (Ascoli et al., 2008; Scorcioni et al., 2008), a

subset of which is presented in Figure 4B for the apical (top)

and basal dendrites (bottom). The statistical distributions of the

morphological features of the synthesized cells closely match

the distributions of the reconstructed cells for both the apical

and the basal dendrites.

Reconstructed cells are often not complete and contain arti-

facts due to the reconstruction techniques (Conde-Sousa

et al., 2016; Farhoodi et al., 2019). As a post-processing step,

several corrections have been applied before the morphologies

can be used by the TNS algorithm, such as unraveling of tortuous

branches and repair of out-of-plane cut branches (Markram

et al., 2015). Nevertheless, some dendritic treesmay still have ar-

tifacts not compatible with TNS, such as being too small (i.e.,

having only one bifurcation point), due to incomplete reconstruc-
tions that cannot be recovered. Dendrites that do not comply

with the quality control measurements (e.g., the number of

branches should be larger than 2) are not included in the set of

barcodes that are used as input for synthesis, resulting in small

discrepancies between reconstructed and synthesized cells.

As a result, some morphometrics (such as total number of bifur-

cations) differ between synthesized and reconstructed cells (see

Figure 4B, bottom). For apical dendrites the same morphomet-

rics are well reproduced (see Figure 4B, top), since no apical

trees were excluded.

To further assess the statistical agreement of morphological

features we perform a detailed validation between the popula-

tion of reconstructed and synthesized cells (see Figure S8A;

Tables S2, S3, and S4) using the DBM/OVS statistical score,

MVS for short (see STAR Methods: Population-to-population

validation). For each morphological feature, the MVS score pro-

vides an estimate of the difference between themedian values of

two distributions (of reconstructed and synthesized cells),

divided by an estimate of the overall spread of the distributions

(see Equation 6). For m-types with five or more available recon-

structions (see Figure S8A), the algorithm generated cells that

are statistically close to the input population. For cell types

with few available reconstructions (fewer than five), the small

number of input cells did not suffice to judge the quality of the

synthesized cells. The minimum requirement for the sample

size of the synthesis input population is further investigated in

‘‘Versatility of the synthesis algorithm.’’
Cell Reports 39, 110586, April 5, 2022 5
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Figure 2. Validation of single-cell morpho-electrical properties

(A) Reconstructed layer 3 tufted pyramidal cells (blue) is used as input for 100 synthesized L3_TPCs (red).

(B) Comparison of topological persistence diagrams of the reconstructed cell and 100 synthesized cells.

(legend continued on next page)
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Figure 3. Comparison of reconstructed and synthesized dendritic shapes

(A) Reconstructed (blue) and synthesized (red) pyramidal cell dendrites of all rodent cortical m-types from layers 2 to 6.

(B) Reconstructed (blue) and synthesized (red) dendrites of rodent cortical interneurons of layers 1 to 6. Not all interneuronmorphology types are reported, as they

differ mainly in their axonal branches and not significantly on the basal dendrites, as illustrated.

(C) A cortical column of synthesized dendrites of all layers, colors correspond to cortical layers from 1 to 6.
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Electrical validation of synthesized dendrites
In addition to reproducing the characteristic shapes of biological

reconstructions, the synthesized cells are expected to produce

similar electrophysiological responses to the reconstructed neu-

rons. This guarantees that electrical models optimizedwith a sin-

gle cell (Markram et al., 2015; Van Geit et al., 2016) generalize to

synthesized cells as well as generalizing to reconstructed cells of

the same m-type. To test the generalization of electrical models

on synthesized cells, we used the set of electrical models opti-

mized based on reconstructed cells, according to the principles

described in Markram et al. (2015) and Van Geit et al. (2016) for

ten different rat electrical types (e-type). The 100 synthesized
(C) Comparison of 19 dendritic morphometrics (normalized based on themeanmo

synthesized cell.

(D and E) The reconstructed (D) and synthesized cell (E) are electrically simulated

(F and G) The electrical response (120% threshold current step) of the reconstru

(H) Comparison of 15 electrical properties of dendrites (normalized based on the
cells per m-type that were generated and morphologically vali-

dated in the previous section, have been simulated based on

the optimized electrical models (Van Geit et al., 2016). The fea-

tures of the electrical traces produced by these simulations

were compared for all reconstructed and synthesized cells for

a combination of m-types and e-types (me-types).

The results of this analysis are presented in Figure 4. For layer

5 PCs (Figure 4D, reconstructed; Figure 4F, synthesized) the

cADpyr model was used. Two typical traces of layer 5 PCs, the

step current and the back-propagating action potentials are

shown in Figure 4E for ten randomly selected reconstructed

(blue) and synthesized (red) cells. The traces of the cell used to
rphological feature values for the L3_TPC population) for a reconstructed and a

according to a model optimized on the electrical properties of L3_TPC cells.

cted cell (F) is compared with the synthesized cell’s (G).

mean electrical feature values for the L3_TPC population.

Cell Reports 39, 110586, April 5, 2022 7
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Figure 4. Morphological and electrical validation of synthesized dendrites

(A–F) A set of L5_TPC:C reconstructions (A) (blue, 30 cells) is used as input to generate a population of synthesized cells of the same type (C) (red, 100 cells). The

violin plots of morphological properties (B) for apical (top) and basal (bottom) dendrites of the reconstructed cell (in blue) and the synthesized cells (in red) are

reported. Electrical traces (E) from simulation of ten reconstructed (D) (blue) and ten synthesized morphologies (F) (red) are compared with the reference trace for

the optimized model (black). Step current simulation at 200% of threshold current illustrates similar frequency in firing patterns of synthesized and reconstructed

cells. Back-propagation action potential illustrates similar spike shape between reconstructed and synthesized morphologies. (G) Validation of the electrical

features extracted from the traces of step current simulation (E) of the reconstructed (blue) and the synthesized (red) cells using Z scores with respect to

experimental features.
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optimize this electrical model are shown as a reference (in black).

Several electrical features are extracted from each trace and

compared against a distribution of features from experimental

recording using a Z score (Figure 4G). All the Z scores of a given

cell obtained under various protocols provide a robust indication

of the quality of the electrophysiological behavior of the cell

(Markram et al., 2015; Van Geit et al., 2016).

To assess the overall quality of the electrical simulations, the

MVS score, as defined for the morphological features (STAR

Methods: Population-to-population validation) is applied for

the comparison of the electrical feature distributions of recon-

structed and synthesized cells (Figure S8B). The synthesized

cells perform as well as the reconstructed cells in the electrical

simulations. However, some m-types with only few example re-

constructions result in several high-scoring features for a subset

of e-types (see also comment on morphological validation). The

statistical results of the electrical validations are presented in

detail in Table S5 and Figure S6A. In addition, we cross-validate

the electrical simulations by applying the same e-models on two

distinct populations of neurons (reconstructed and synthesized).

We demonstrate that the synthesized cells are sufficiently similar

to reconstructed cells to reproduce the variance and differences

for two e-models (L3 and L5 PC) applied on two distinct popula-

tions of L3 and L5 pyramidal cells (see Figure S6B).

Morphological feature correlations
Correlations between morphological features are reportedly

essential for any synthesis method (López-Cruz et al., 2011).

However, do the inputs to TMD-based synthesis suffice to ac-

count for feature correlations, or do we need to define them

explicitly? In previous studies, the explicit description of corre-

lated morphometrics was either obtained manually (Koene

et al., 2009; van Pelt and van Ooyen, 2013), with the lurking

danger that different neuronal datasets might require different

feature correlations, or optimized with complex algorithms (Ló-

pez-Cruz et al., 2011), which entails the risk of over-fitting

when only a few reconstructions are available. The risk is that,

instead of capturing the biological principles of neuronal mor-

phologies, the algorithm might overestimates local and noisy

properties.

The inputs for the TNS are defined by the topological barcodes

of neurons. Barcodes encode path distances in the neuronal

tree, but values such as radial distances, asymmetry, and the

precise connectivity of the tree are not encoded in the barcodes.

To ensure that the synthesis algorithm reproduces inter-depen-

dencies between features, it is necessary to validate the distribu-

tions of the features that have not been explicitly used as inputs

for the synthesis algorithm. However, as seen in the thorough

statistical validation of morphometrics, synthesized cells do

not differ from the biological reconstructions for an extensive

list of morphological features, most of which were not direct

input to the algorithm.

A necessary condition for this is the coupling between bifurca-

tion and termination probabilities that is encoded in the barcode

structure. If bifurcation and termination probabilities in recon-

structed cells were in fact independent, this algorithm would

suffice to reproduce the branching patterns of the neuronal mor-

phologies (Luczak, 2006; Cuntz et al., 2010). The TNS algorithm
was modified to sample independently bifurcation and termina-

tion probabilities and bifurcation angles, instead of the original

bars (see Figure S4). The TNS algorithm was modified to inves-

tigate the impact of using marginal branching probabilities

instead of joint branching probabilities through persistence barc-

odes. To do this, we use the information encoded in the persis-

tence barcode (bi, di, ai) as independent variables. Cells were

synthesized by decoupled start and end of barcodes (Fig-

ure S4III), by decoupling start distance and branching angles

(Figure S4IV). As shown in Figure S4, the synthesized cells

generated by these versions of modified TNS algorithm are

significantly different from the original reconstructions, indi-

cating that the coupling between bifurcation and termination

probabilities provides a necessary condition to reproduce corre-

lations between morphological features.

We have thus demonstrated that the persistence barcodes

encode the relevant information about the biological branching

structures required for the accurate generation of dendritic

shapes. In addition, the links between the bifurcation, the termi-

nation, and the respective bifurcation angles, are essential for

synthesizing biologically accurate cells. The persistence barco-

des are therefore a necessary constraint on the synthesis

inputs.

Morphological diversity
Another challenge in synthesis is the sparsity of input data for

many cell types, which makes it difficult to reproduce the

morphological diversity of neurons. If few biological reconstruc-

tions are available (fewer than five cells), it is impossible to repro-

duce the properties of this cell type in its in vivo conditions. Using

groups of cells with a large number of available reconstructions,

such as PCs of layers 3–5, we investigated how the number of

input cells influences the diversity of synthesized morphologies

in Figure S5.

In particular, we compared the synthesized distributions of

fundamental morphological features, such as path distance,

branch order, and radial distance for increasingly larger sub-

populations of 44 L4_TPC reconstructed cells. We identified

the minimum number of cells that is required as input for synthe-

sis to approximate well the morphological features of the original

reconstructed population. While a sample size of%10 cells was

not sufficient to approximate the diversity of the reconstructed

cells with respect to our choice of morphometrics, with R15

(one-third of the original dataset), both input and emergent mor-

phometrics were well reproduced (see Figures S9A, S9B, S9D,

and S9E). Note that, since morphological features are intrinsi-

cally related to each other, we cannot define purely emergent

properties, but rather properties that were not directly used as

input to the algorithm. In addition, we computed the average

KS distance between the distributions of reconstructed and syn-

thesized cells for all features (Figure S9C) to confirm that the KS

distance is minimized for both basal and apical features with

more that 10�15 input cells.

A generalization of this result to all m-types (see Table S4)

showed that PCs require about z10�15 samples, while inter-

neurons require z5�10 cells to approximate the distributions

of their dendritic morphometrics with synthesized cells. Note

that this is a generalization as for each specific cell type the
Cell Reports 39, 110586, April 5, 2022 9
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optimal number of reconstructions differs.We computed the sta-

tistical score of the difference between reconstructed and syn-

thesized cells for a large number of morphological features for

the cells types with more than 15 biological reconstructions by

varying the number of input cells: 2, 5, 10, 15, 20, and 30 (Fig-

ure S5). These statistical scores are compared against the refer-

ence statistical score of synthesized and reconstructed cells,

when all the available reconstructions were used as input. The

minimum number of cells that is required to approximate the

population of reconstructed cells with our synthesis algorithm

was identified. Note that, due to the computational complexity

of this experiment, we only synthesized a population of ten cells

per use case. This leads to the observed differences between the

scores reported here and in population validation scores. The

optimal number of required reconstructions to approximate a

biological population depends on the cell type but, in general,

cells with apical dendrites require larger numbers of reconstruc-

tions due to the complexity of the biological trees.

Finally, we compared the classification accuracy for three

layer 4 pyramidal cell types (L4_TPC, L4_UPC, and L4_SSC)

for reconstructed and synthesized cells (Figure S5F). The three

cell types were synthesized using the same input parameters,

and the persistence barcodes of the three respective groups

of PCs. The accuracy was computed by iteratively training a

decision tree classifier on all the data except one (leave-one-

out [LOO] method) and comparing the original label to the

one proposed by the trained classifier (the sk-learn Python

package was used [Pedregosa et al., 2011]). The same method

(LOO with decision tree classifier) was used for the classifica-

tion of synthesized cells (Figure S9F, bottom right). The

accuracy of the classification of synthesized cells (trained on

synthesized cells) was 81% and is therefore higher than the ac-

curacy of reconstructed cells (trained on reconstructed cells,

70%) (Figure S9F, top left). In addition, we performed cross-

classifications, the accuracy of synthesized cells (classifier

trained on reconstructed cells) was 70%, while the LOO accu-

racy of reconstructed cells (classifier trained on synthesized

cells) was 66%.

Versatility of the synthesis algorithm
As shown above, TMD-based synthesis reproduces the

morphological properties of reconstructed cells while preserving

the diversity within morphological classes. However, to synthe-

size large brain regions (Fletcher andWilliams, 2019) it is not suf-

ficient to generate cells that reproduce an input population. A

simple example to illustrate the limitations of this approach is

the generation of neurons within brain regions with varying

anatomical properties, such as cortical thickness, which is not

constant within the neocortex.

Statistical and biophysical models are often limited to repro-

ducing a specific input population, whereas mathematical

models are adaptable to a variety of different conditions. The

TNS algorithm, which combines both approaches, can be modi-

fied by appropriate mathematical transformations applied to the

persistence barcodes. In particular, operations such as scaling,

rotation, and sub-sampling of barcodes can be implemented to

generate a variety of different dendritic shapes from the original

reconstructed morphologies.
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To illustrate the versatility of the TNS algorithm, cells for vary-

ing cortical thicknesses were synthesized by scaling the persis-

tence barcodes according to different percentages, from 10% to

100% of the original size in Figure 5. The resulting synthesized

cells retain the topology of the input cells while respective mor-

phometrics, such as total lengths (Figures 5C–5E), are scaled

accordingly.

Connectivity of synthesized and reconstructed
networks
In the previous sections, we demonstrated that the topological

synthesis generates dendrites that match the morpho-electrical

properties of biological reconstructions. To synthesize morphol-

ogies for the simulation of realistic digital brain networks, it is

essential to validate the connections formed between the den-

drites and the axons. For this reason, we generated a synthe-

sized replica of the Markram et al. (2015) digital reconstruction

of the rat cortical microcircuit, from now on referred to as a ‘‘re-

constructed’’ microcircuit. This somewhat misappropriate term

is used for simplicity and consistency throughout the text and

is not meant to be confused with an actual reconstructed circuit

from biological data. Starting from the initial position and m-type

of each cell in the reconstructed microcircuit, the dendrites of all

neurons were computationally synthesized and the original

axons of the reconstructed microcircuit were used for the defini-

tion of appositions, or touch points between dendrites and

axons. The connectivity of the synthesized microcircuit was

then computed (methods described in Markram et al., 2015)

and compared with the connectivity of the reconstructed micro-

circuit in Figure 6.

The statistical properties of the reconstructed microcircuit

(Figure 6A) and the synthesized circuit (Figure 6B) are compared

in Figure 6C. For both microcircuits, the connectome of the

microcircuit grouped by m-type (1), the connection probabilities

(2), and the numbers of synapses per connection (3) are pre-

sented in Figure 6, which are in statistical agreement (see Fig-

ure S7). Indeed, the differences of these statistical properties

shown in Figure 6C are significantly lower than their standard de-

viations, thus ensuring that the synthesized dendrites do not

significantly alter the statistical properties of the network’s

connectivity.

Medical applications
As novel techniques (Watts et al., 2013; Sharifi, 2013) emerge for

the treatment and analysis of brain disorders (Meng et al., 2018;

Heuvel and Sporns, 2019), the need to find new ways to compu-

tationally describe these disorders becomes increasingly imper-

ative. As these techniques are frequently applied to animal

subjects (Meng et al., 2018), it is important to be able to estimate

the effects of these drugs on primates. But any prediction on the

effects of complex treatments on humans requires accurate and

detailed models of neuronal networks.

With the TNS algorithm we can propose a first step in this di-

rection, by generating unhealthy synthetic neuronal morphol-

ogies for which very few or no reconstructions are available. To

do so, an appropriate mathematical transformation of barcodes

should be defined based on the experimentally observed differ-

ences between control and unhealthy dendritic shapes, and
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Figure 5. Versatility of the synthesis algorithm

Generalization of topological synthesis for varying cortical thickness.

(A) Exemplar biological reconstructions of three layer 4 pyramidal cell types: L4_TPC (gray), L4_UPC (deep blue), L4_SSC (light blue), and the corresponding

persistence barcodes, used as synthesis input.

(B) Scaling of input persistence barcodes and resulting synthesized dendrites ([1.0, 0.8, 0.6, 0.5] of original barcodes). The scaled (from 1.0 to 0.2) barcodes of

synthesized L4_TPC apicals presented at the bottom.

(C–E) Total dendritic length of layer 4 cells, as a function of shrinkage factor for basal (bottom) and apical (top) dendrites compared with expected values of scaled

biological lengths (black dashed, computed as scaling factor multiplied by total length of reconstructed dendrites) and synthesized (gray continuous) dendrites of

L4_TPC (C), L4_UPC (D), and L4_SSC (E). Note that L4_SSC do not have apical dendrites even though they are excitatory cells, therefore only basal dendrite

statistics are shown.
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applied to the persistence barcodes that are used as synthesis

input. This process results in synthesized neuronal morphologies

that approximate a target reconstructed population of unhealthy

neurons.

As an example, we demonstrate how alterations of dendritic

shapes, such as shrinkage of dendritic processes and loss of den-

dritic branches, that have been associated to mental disorders,

such as stress and PTSD (Curran et al., 2017; Dioli et al., 2019;

Tornese et al., 2019; Sandini et al., 2020), affect the connectivity

of cortical circuits. In general, abnormal dendritic morphology

has been linked to brain disorders, such as mental retardation

(Kaufmann and Moser, 2000), schizophrenia (Glausier and Lewis,

2013), autism (Phillips and Pozzo-Miller, 2015), and stress disor-

ders (Dioli et al., 2019; Sandini et al., 2020; Shansky andMorrison,

2009). Even though our digital networks do not consist of multiple

brain regions, and therefore we cannot reproduce the exact med-

ical conditions reported in the literature,wemay still study local ef-
fects of dendritic alterations within a single cortical microcircuit.

Such analysis serves as a first step to link local morphological al-

terations towhole brain networks and study how ‘‘small’’ changes

can impact the whole brain functionality.

We implemented two structural changes: shrinkage of den-

dritic processes (by reducing the lengths of all bars within the

input barcodes) and loss of dendritic branches (by removing

bars from smaller to larger ones; Figures 7B and 7C). The modi-

fied input barcodes were used to synthesize dendrites that

populate networks representing different states. Surprisingly,

these two types of local dendritic alterations have distinct ef-

fects on the cortical networks they form. Neuronal networks

formed from dendrites that are gradually shortened lose con-

nections almost linearly (Figure 7D, red), thus higher-order con-

nections collapse rapidly (Figure 7E, red) as a function of the

total lost dendritic extent. The topological analysis suggests

that networks based on dendrites with lost branches are
Cell Reports 39, 110586, April 5, 2022 11



Figure 6. Connectivity of synthesized and reconstructed networks

(A) The connectivity properties of a reconstructed microcircuit (Markram et al., 2015).

(B) The connectivity properties of a microcircuit of fully synthesized dendrites, and reconstructed axons.

(C) Difference between reconstructed and synthesizedmicrocircuits. (1) The connectomes of themicrocircuits grouped bym-type. Colors groupm-types by layer

and correspond to axonal outputs. The thickness of ribbons is proportional to the total number of synapses. (2) Connection probability. A matrix of average

connection probability per pathway (350 mm, central micro-column, 10 K pairs). (3) Synapses per connection. A matrix of the average number of synapses per

connection for multi-synapse connections formed between the 55 m-types (10 K pairs).
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more resilient to connectivity loss. In fact, the effect of these

local dendritic changes on the resulting network is observable

only when larger branches (z200 mm) are lost (Figures 7D

and 7E, blue).
12 Cell Reports 39, 110586, April 5, 2022
This method enables the investigation of the impact of struc-

tural neuronal abnormalities and could lead to more advanced

diagnostic or treatment techniques. However, this analysis is

only a first step toward a more thorough investigation of the links
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Figure 7. Medical applications

(A–C) Connectivity of synthesized networks based on structural alterations of dendritic morphologies. Schematic representation and examples of layer 5 syn-

thesized pyramidal cells (A), in comparison with cut dendritic branches (B) (lengths above 10, 100, 200, and 400 mm), and shrunk dendrites (C) (98%, 90%, 60%,

and 30%). Connectome (presented in subpanel 1) of each synthesized microcircuit: (A) synthesized, (B) cut branches of lengths above 400 mm, (C) shrunk

dendrites 10% (connections above 150 K shown, line thickness corresponds to connection strength).

(D) Total number of connections for alterations of type B (red) and C (blue) compared with synthesized network A (black).

(E) Topological analysis of corresponding networks; distribution of directed simplices for alterations of type B (red, top) and C (blue, bottom).

(F) Morphological characteristics and connectivity with respect to alterations of type B (top) and C (bottom). The main branches form the majority of connections

(top) and larger dendritic extents (bottom) form more connections. Colormap corresponds to normalized number of connections: from maximum number of

connections (3.5 3 108 in red) to minimum (107 in blue).
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between structural dendritic alterations and the functionality of

the corresponding neuronal networks. For the simulation of brain

diseases it is essential to generalize these results to whole brain

regions and to study how different combinations of neuronal de-

formations can lead to disruptions of brain networks both struc-

turally and functionally.

DISCUSSION

Since the beginning of the study of the microscopic structure of

the brain in the late 19th century by anatomists, such as Deiters,

His, and Golgi, which led to the beautiful and detailed formal de-

scriptions of neuronal morphologies by Ramon y Cajal, there

have been numerous astounding breakthroughs in our under-

standing of the brain. Discoveries range through multiple spatial

scales from the dynamical properties of ion channels (Ranjan

et al., 2019) and single-cell morphologies, physiology, and tran-

scriptomics (Winnubst et al., 2019, Gouwens et al., 2019) to the

structural and functional connectivity of the whole brain (Wang

et al., 2015; Hahn et al., 2019). Due to rapid experimental prog-

ress, the burning challenge of our time is to assemble all the

gathered data into a realistic description of the brain. A funda-

mental step toward understanding brain function is to elucidate

the roles of its fundamental cellular components, primarily the

neurons. However, much remains unknown concerning the

structural properties of neurons and how their morphologies

may influence the structural and functional properties of brain

networks. A promising approach to discerning the roles of indi-

vidual neurons in the brain consists of computationally recreat-

ing them, i.e., synthesizing them, to study their behavior within

digital brain networks.

Due to the complex biological growth mechanisms of neurons

that result in intricate branching structures, the highly correlated

morphological features of neurons are difficult to reproduce. In

this study, the computational synthesis of neuronal morphol-

ogies was based on the TMD (Kanari et al., 2018), which retains

sufficient information about both the topology and the geometry

of a neuronal tree to reproduce the shapes of reconstructed neu-

rons. We demonstrated that this topology-based synthesis algo-

rithm preserves correlations between morphological features.

Another challenge for neuronal synthesis is the sparsity of data

for many cell types in the cortex, which makes it difficult to

approximate the expected biological diversity. As we demon-

strated, the minimum number of reconstructed neurons suffi-

cient to achieve biologically relevant diversity with TNS is around

15 to 20 cells. This is a relatively small number comparedwith the

thousands of morphologies that are expressed for each neuron

type within a brain region. Our algorithm thus overcomes major

limitations of previous synthesis techniques, enabling the

large-scale reconstructions of biophysically detailed neuronal

networks with unique neuronal morphologies.

Taking this work a step further, we generalized the TNS algo-

rithm to reproduce cells with altered structural properties by

applying appropriate transformations to the TMDof reconstructed

neurons to study brain pathologies. For example, by simulating

the effects of stress on single neurons, we demonstrated that

the degree and type of degeneration of dendrites influences the

nature of global defects exhibited by cortical microcircuits. The
14 Cell Reports 39, 110586, April 5, 2022
next step toward the simulation of brain diseases is to generalize

these results to whole brain regions, e.g., the neocortex, thal-

amus, and hippocampus, and to study how different combina-

tions of neuronal deformations can lead todisruptions of brain net-

works both structurally and functionally. Recent datasets that

record the transcriptomics, the electrical properties, andmorphol-

ogies of cells (Hodge et al., 2019; Gouwens et al., 2019) will be

essential for this effort, by enabling the reconstruction of whole

brain areas based on their genetic profiles.

Limitations of the study
The TNS is a data-driven synthesis approach. As such it is impor-

tant to emphasize that the computationally generated neuronal

shapes reflect the quality of the original reconstructions that

were used as input to the algorithm. Thus, an original set of re-

constructed neurons that are representative of the biological

population of a selected cell type is required to generate neurons

that reflect the biological diversity.

While the synthesis of dendrites is already an important step

toward the digital reconstruction of more realistic brain net-

works, the ability to synthesize axonal trees is the next challenge

that should be addressed. The current method does not address

the generation of axonal morphologies. Axonswill be challenging

to grow but necessary to allow the computational modeling of

brain networks (Wang et al., 2015) as their branching structure

is an essential determinant of the connectivity of the network

(van Pelt et al., 2010). In addition, few complete axonal recon-

structions are available because of their highly complex branch-

ing structures, because the experimental reconstruction of

axons requires considerably more effort than dendrites.

Another important limitation of the current synthesis tech-

nique is that it does not take into account environmental factors

during the growth process. Spatially embedded synthesis algo-

rithms will be crucial for the generation of more complex

branching patterns of interneurons, PCs, or long-range projec-

ting axons, such as nigrostriatal dopaminergic neurons (Mat-

suda et al., 2009) and densely connected claustrum cells (Tor-

gerson et al., 2015).
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nauskaite, A., Tapia-González, S., León-Espinosa, G., Rojo, C., Insausti, R.,

Segev, I., and DeFelipe, J. (2019). Differential structure of hippocampal ca1 py-

ramidal neurons in the human and mouse. Cereb. Cortex 30, 730–752.

Bird, A.D., and Cuntz, H. (2016). Optimal current transfer in dendrites. PLoS

Comput. Biol. 12, e1004897.

Burke, R., Marks, W.B., and Ulfhake, B. (1992). A parsimonious description of

motoneuron dendritic morphology using computer simulation. J. Neurosci. 12,

2403–2416.

Cajal, R.Y. (1998). Histologie du système nerveux de l’homme et des verté-
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d All original data aswell as code for individual experiments have been deposited at Zenodo andwill be publicly available as of the

date of publication. The DOI is listed in the Key resources table.

d The code for the computational generation of cells is available in GitHub, https://github.com/BlueBrain/NeuroTS, as well as the

code for the denition of denditic diameter generation, https://github.com/BlueBrain/diameter-synthesis. All original code has

been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the Key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Definition of morpho-electrical terms
As a guide to the reader, the main definitions of morphological terms that will be used through this paper are summarized in the

following table. Note that these terms might have different meanings elsewhere in the literature. Since morphological terminology

is often not consistent through the literature, we clarify the meaning of each term used in this paper.

Definition of morphological terms
d Soma: the cell body is described as a sphere Sc

ds
of diameter ds and center cs. The contour of a soma consists of a set of points

on the x-y plane around the soma surface.

d Neurite: A neuronal tree; a dendrite or an axon.

d Neurite point: (x, y, z, d), where (x, y, z) are the 3D coordinates and d is the dendritic diameter that represents the thickness of the

neurite at that point.
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d Branchpoint: a point in the tree with two (or more) children, also known as a bifurcation point (or mutltifucration if it has more

than two children).

d Neurite tip: a point in the tree without any children, also known as a termination point.

d Neurite section: a set of points of a neurite, either between two branch points or between a branchpoint and a termination point.

d Neurite trunk: the first section of a neurite, starting from the soma and ending at the first branch point.

d Vect: A unit vector in 3D space, which is equivalently represented by a pair of angles, and defines a direction, or orientation, in

3D space.

For the definition of morphological features, we use as guide the Petilla terminology paper (features 15, Ascoli et al. (2008)), as well

as some additional features (6–9).

Morphometrics glossary
1. Thickness: the dendritic thickness in micrometers.

2. Taper: percentage of thickness narrowing per unit distance.

3. Bifurcation angle: angle between two daughter branches at a branch point (bifurcation).

4. Tortuosity: the straight-line distance between two consecutive branch points divided by the length of the neuronal path be-

tween those points.

5. Partition asymmetry: Ratio of the absolute value of the difference and the sumof the number of bifurcations in the two daughter

subtrees at a branch point.

6. Radial distance: the end-to-end straight-line distance between the branchpoint of a section and the soma surface.

7. Path distance: the distance along the neuronal path, between the branch point of a section and the soma surface.

8. Branch order: the number of bifurcations between current position and the root.

9. Section length: total length of a section.

For more details about the electrical features, we refer to Van Geit et al., 2016. Basic definitions are summarized in the table below.

Electrical features glossary
1. AP: action potential.

2. RMP: resting membrane potential.

3. IV: a step protocol used for studying the current-voltage relationship. The currents are kept low to avoid action potential gen-

eration.

4. APWaveform: Short step protocol used for studying the action potential shape.

5. Step (120%): a longer (2 seconds) step stimulus, the current amplitude is 120% of the current amplitude that is necessary to

trigger one action potential.

6. AHP: after-hyperpolorization after an action potential.

7. ISI: inter-spike interval.

Synthesis input
Neuronal reconstructions of a large number of cortical morphological classes were used as input to the synthesis algorithm. Biological

reconstructions from the BBP dataset of all rodent cortical cell types reported in previous publications (Markram et al., 2015; Kanari

et al., 2019; Ramaswamy and Courcol, 2015) were used as synthesis input. The BBP dataset was chosen as input because of the con-

sistency of the quality of the input morphologies, as they were all generated using the same reconstruction protocol. In addition, the

electricalmodels that have been generated for all cell types (Markram et al., 2015; VanGeit et al., 2016)make the comparison ofmultiple

properties (morphological, electrical) feasible.

The input consists of morphology files (in one of the following formats: neurolucida ASC, SWC, or H5), which contain the three

dimensional positions (x, y, z) and the thickness (d) of the neuronal nodes and their adjacency relations, to form a tree. A few modifi-

cations were performed on the original reconstructions to compensate for reconstruction artifacts. The slicing of the brain tissue and

the filling of the cells with biocytin (Horikawa and Armstrong, 1988) result in their shrinkage. This effect modifies the tortuosity of the

reconstructions (as cells appearmore tortuous than they originally were), and the extent of their processes decreases. To compensate

for these artifacts, the cells that are used as input for synthesis are initially ‘‘unraveled’’, as described inMarkram et al. (2015). Another

important artifact is the lossof arborization, due to slicingof the tissueduring the reconstruction process. This error is compensated for

with a ‘‘repair’’ process described in Markram et al. (2015). To compensate for the loss of arborizations, trees that contain fewer than

three sections are considered cut and thus discarded from the synthesis input during preprocessing of the input data.

Biological barcodes
The algorithm that extracts a persistence barcode Kanari et al., 2018 from a neuronal tree is described in the previous section. The

barcodes that are used as input for synthesis are enhanced with the bifurcation angles of their corresponding components, i.e., at

each bifurcation point, where a new branch emerges, the bifurcation angle a from its parent is recorded. The ith bar in TMD (tree),
Cell Reports 39, 110586, April 5, 2022 e2
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denoted bari, corresponds to the ith branch of the tree and is encoded as a triplet (bi, di, ai), where bi is the initial radial distance of the

branch, di is the terminal radial distance, and ai is the bifurcation angle at which the component emerges from its parent. Note that bi

and di are real numbers, while ai is a set of four real numbers, which represent the following angles.

d a1i : angle between child and parent in x-y plane

d a2i : angle between child and parent in x-z plane

d a3i : angle between two children in x-y plane

d a4i : angle between two children in x-z plane

In order to recreate a population of biological reconstructions, we need to generate the persistence barcodes for each tree of the

reconstructed morphologies, a process that we refer to as barcode extraction. The complete set of barcodes that will be used as

input to the synthesis algorithm is denoted as

Barcodes =
�
TMDj

��1% j% nt

�
;

where nt = # of neuronal trees in the biological population, where for the jth tree

TMDj =
�
bari = ðbi;di; aiÞ

��1% i%nj

�
;

where nj = # of components (bars) of TMDj.

Barcodes are randomly and independently sampled during the computational growth of a neuron from the set of input barcodes.

Each synthesized neurite (dendrite) is generated by a single barcode TMD, which corresponds to a unique biological tree.

Biological distributions
In addition to the persistence barcodes, which encode the topology of the neurites, a number of independent morphometrics are

measured. The first is the size of the cell body; the soma is considered to be a sphere and therefore a center and a diameter are suf-

ficient to describe it. The center, or origin of the cell, is a user-defined parameter, while the diameter is sampled from the correspond-

ing biological distributionDss. The number of dendritesDnn and their relative pairwise anglesDpa are also sampled from the biological

distributions, and define the number of dendrites that will be generated as well as their initial outward directions. Finally, a set of dis-

tributions that describe the thickness of the dendrites is also extracted, sampled from the biological reconstructions. All the morpho-

logical features that are used as input to synthesis are summarized in the following table.

Soma parameters
d Dss: Soma diameter.

d Dnn: Number of neurites of a specific type within a neuron; basal or apical dendrite.

d Dpa: Pairwise angles between neurites, as they emerge from the soma.

Diameter parameters
d Dtips: Diameters of the tips, or terminations of the neurite.

d Dtr: Taper rates, define the tapering, i.e., the difference between the diameters at the beginning and end of a section, normalized

by the length: ðDfinal �DinitialÞ=length: The distribution of taper rates is computed for each neuronal section.

d Drr: Rall ratio, which describes the relation between the diameter of a parent and those of its children at a branchpoint. The value

of the Rall ratio is the exponent n such thatDn =dn
1 +dn

2 +/ at a branchpoint, where di is the diameter of the ith child andD is the

parent diameter. The distribution of Rall ratios is computed for each bifurcation.

d Dmd: Maximum diameter of each neurite, per type. Under the assumption that dendritic diameter decreases with distance from

the soma, this value corresponds to the diameter of the trunk.

Input parameters
d t: targeting weight that defines how ‘‘straight’’ the generated section will be.

d r: randomness weight that defines how ‘‘tortuous’’ the generated section will be.

d m: memory weight that defines the independence from previous steps. It is defined by m = 1�t�r.

d c: defines the center of the soma, and the starting point for the growth of the neuron.

d step-size: defines the length of each step during the growth. We represent the step size as a normal distribution withmean 1 mm

and standard deviation 0.2 mm.

Note that both the input distributions and the persistence barcodes are automatically computed from the population of recon-

structed cells. The growth process is also controlled by a set of parameters that are defined by the user. The first two parameters,

t and r, characterize the elongation of a branch. The origin of themorphology, i.e., the center c of the soma, is an input parameter that

allows the user to control the initial position of the cell. This is important for the generation of cells in place within a brain region, in

which case this parameter is chosen by complex placement algorithms. Last, the step size is selected by the user and defines the
e3 Cell Reports 39, 110586, April 5, 2022
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frequency of points on the morphology. For neurons this parameter is set to 1 mmwhich is a reasonable frequency of points that cor-

responds to the mean frequency of points on the biological reconstructions.

METHOD DETAILS

Topological morphology descriptor
The Topological Morphology Descriptor (Kanari et al., 2018) encodes the topological and geometric properties of a neuronal tree into

a single mathematical object: the persistence barcode. The persistence barcode of a neuronal tree represents the start and end dis-

tances (i.e., radial or path distance from the soma) of all branches within the tree as pairs of real numbers, or bars. Note that a branch

can consist of multiple bifurcations along the tree path until a terminal point is reached. The barcodes are used to define the bifur-

cation and termination probabilities during synthesis; the coupling between bifurcation and termination probabilities is necessary to

reproduce correlations between morphological features (see Figure S7). TMD has been successfully used for the classification (Ka-

nari et al., 2018, 2019) and the clustering (Deitcher et al., 2017) of neuronal morphologies due to its ability to capture a combination of

morphological characteristics that are important for the grouping of cortical morphologies.

We define a tree as an embedding in 3D-space of a connected, acyclic, directed graph, with a defined root, i.e. the neuronal soma.

The details of the algorithm are given in Kanari et al., 2018. The TMD algorithm (Figure S1) takes as input a set of branch points, or

bifurcations, i.e., nodes with more than one child, and leaves, or termination points, i.e., nodes with no children, of the tree and pro-

duces a persistence barcode TMD (tree), which is a multi-set of intervals, called bars, on the real line Figure S1B. Each bar encodes

the lifetime of a component in the underlying structure, identifying the distance at which a branch is first detected, emerging from a

larger subtree (birth,bi) and the distance atwhich the branch terminates (death,di). Equivalently, the persistence diagram (Figure S1C,

Carlsson, 2009) represents the pair of birth-death times of each component as a point in the 2D plane. Note that all distances are

computed in mm and for clarity the projection of radial distances is presented in figure Figure S1.

Topological neuron synthesis
The morphological development of neurons in the brain is a complicated process that depends on both genetic and environmental

components (Ledda and Paratcha, 2017). The processes that contribute to neuronal growth differ between species, brain regions,

and morphological types. Advances in experiments and mathematical models have converged on a set of commonly accepted

stages of morphological growth: the initiation of neurites, neurite elongation, axon path-finding and neurite branching (Graham

and vanOoyen, 2006).While biological development is not simulated, biological principles ofmorphological growth inform the design

of our computational algorithm to synthesize dendritic morphologies. In this study, we focus on the computational synthesis of den-

drites and thus axon path-finding will not be considered.

Dendritic synthesis algorithm
The TNS algorithm consists of three main components (Figure 1A): the initiation (section I. Initiation of neurites), branching (section II.

Branching/termination), and elongation (section III. Elongation of neurites) of neurites. The first part of a neuron to be generated is the

cell body, i.e., the soma, which is modeled as a sphere (Figures 1A–1I), whose radius is sampled from a biological distribution (see

SI:Topological neuron synthesis algorithms, Algorithm 2). The number of neurites is then sampled from the biological distribution of

the corresponding cell type. Each neurite is initialized with a ‘‘trunk’’, the initial branch of the tree (Figure 1A) and a barcode, which is

randomly selected from the set of barcodes derived from the reconstructed dendrites of the corresponding m-type.

Subsequent steps of the growth take place in a loop. Each branch of the tree is elongated as a directed random walk (Aslangul

et al., 1993) with memory (see SI:Topological neuron synthesis algorithms, Algorithm 3, Figures 1A–1III). At each step, a growing

tip is assigned probabilities to bifurcate, terminate, or continue that depend on the path distance from the soma and are defined

by the bars of the selected barcode (Figures 1A–1II, see SI:Topological neuron synthesis algorithms, Algorithm 3). Once a bar is

used, it is removed from the barcode and the growth terminates when all the bars of the input barcode have been used. As an inde-

pendent step, the diameters of the tree are assigned based on diameter distributions sampled from the biological reconstructions

(Figures 1A–1IV, section IV. Generation of diameters).

Initiation of neurites

The direction of neurite protrusion is particularly important for the generation of dendrites that present an orientation preference Gra-

ham and van Ooyen (2006). For some neurites, such as cortical apical dendrites, the initial direction is trivially defined as apicals typi-

cally grow toward the pia. By contrast, the outgrowth direction of basal dendrites superficially appears random and is frequently

assumed to be so. An in-depth analysis reveals, however, that this assumption is inaccurate, since the orientations of a neuron’s pro-

cesses are correlated. This correlation is captured in the pairwise trunk-angle distribution, which depends on themorphological type,

and is used for the initiation of neurites on the soma surface (see Topological neuron synthesis algorithms, Algorithm 3). The basal

dendrites’ positions on the soma are sampled randomly so that the pairwise angles between them are respected. Each neurite trunk

consists of a point on the soma surface and an initial direction that is normal to the soma surface.

Branching/termination

The neuronal branching process in the TNS algorithm is based on the concept of a Galton-Watson tree (Galton and Watson, 1875),

which is a discrete random tree generated by the following process. At each step, a number of offspring is independently sampled
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from a distribution. A neuronal tree consists only of bifurcations, terminations, and continuations, so the accepted values for the num-

ber of offspring are: zero (termination), one (continuation), or two (bifurcation). Since the Galton-Watson tree is combinatorial, i.e., is

not embedded in space, we introduced a dependency of the neuronal growth on the embedding by choosing the bifurcation/termi-

nation probabilities to depend on the path distance of the growing tip from the soma.

These probabilities are defined by the barcode assigned to the neurite, depending on its type and the respective population of re-

constructed cells. Barcodes are sampled independently -with replacement-from the input population. Each growing tip of the neurite

is assigned a bar bari from the barcode, that includes a start path distance bi, an end path distance di and a bifurcation angle ai (see

SI:Topological neuron synthesis algorithms). The start (respectively end) path distance defines the probability to bifurcate (terminate)

as an exponential distribution e�lx with a free parameter l.

PBðbifurcation
�� dtipÞ = expðlðdtip �biÞÞ (Equation 1)
PT ðtermination
�� dtipÞ = expðlðdtip �diÞÞ: (Equation 2)

To check if the branch bifurcates (or terminates), a number, r is randomly sampled in the uniform distributionUð0;1Þ and compared

to the probability of Equations 1 and 2. If the random number r is smaller than this probability, i.e.,

r%expðlðdtip �biÞÞ; (Equation 3)

then a bifurcation occurs and similarly for the termination probability. If a branch does not bifurcate or terminate it continues to elon-

gate (see III. Elongation of neurites).

If dtip < bi, the probability to bifurcate PB is less than 1 and increases as the target value bi is approached. Once dtip = bi, PB = 1 and

therefore the branch will necessarily bifurcate. The same process holds for the termination of a branch. If dtip is much smaller than bi,

the probability to bifurcate is very low, as PB is close to 0. Quantitatively, this property depends on the selection of the parameter l of

the exponential probability function. The parameter l controls the slope of the probability distribution for bifurcation and termination

(see Figure S2B).

The exponential probability of the branching and termination events implicates that they will occur before or marginaly at the target

positions of bi and di. As a result, dendrites will bifurcate and terminate before or at the target positions, a property that introduces a

small bias toward the center. This bias is very small or insignificant for the appropriate choice of randomness and targeting parameters

(as indeed seen in Figure S2A). The choice of the probability function as an exponential is influenced by the need to confine dendrites

within a target brain region while growing within a spatial context. If we have chosen a gaussian probability around the target start, end

distances we could end up with neurons that are larger than the original and they would expand beyond the selected brain region.

The l parameter needs to bewisely chosen in order to generate cells that are neither identical to the original barcode (high l value) nor

random and completely independent from the input (low l value). A very steep exponential distribution (high value of l) generates cells

that are very close to the biological input and thus the variability of the synthesized cells is reduced (right panel Figure S2B). On the other

hand, a very low value for l generates cells that are almost random, since the probabilities to bifurcate and terminate are high longbefore

the target values are approached (left panel Figure S2B). In practice, we found that if l is chosen to be at the order of the step

sizez1 mm, the bifurcation and termination points are stochastically chosen but are still strongly correlated with the input persistence

barcodes. As a result, the generated shapes will not be identical to the input tree, thereby increasing the variability of synthesized cells,

but will preserve the overall shape of the input tree, generating biologically acceptable branching structures.

Practically, even though the synthesized barcodes are statistically similar to the biological reconstructions’ barcodes, the barcode

loses information from the original structure. Connectivity between branches is a loss that we cannot avoid, however for a given bar-

code only a subset of possible connectivities can be realised (see Connectivity between branches for more information) which are

consistent with biological structures. In addition, barcodes do not retain information about diameters and angles, properties that

we also include in the distributions we extract from the biological reconstructions to account for this information loss.

Other synthesis algorithms (Burke et al., 1992; Koene et al., 2009) sample the branching and termination probabilities from inde-

pendent distributions. In TNS, the correlation of these probabilities is captured in the structure of the barcode. Because each bar

encodes the start and the end path distances, the bifurcation and the termination probabilities are linked accordingly. In addition,

when the growing tip bifurcates (respectively terminates), the corresponding bar is removed from the input TMD to exclude re-sam-

pling of the same conditional probability. This keeps a record of the neuronal growth history and is essential for reproducing the

branching structure of biological reconstructions.

At each bifurcation, two new branches are initiated (see Topological neuron synthesis algorithms, Algorithm 4) with initial directions

depending on the bifurcation angle ai. Depending on the neurite type, the bifurcation angles are used differently.

For basal dendrites, the optimal rule for bifurcation is to use the corresponding bifurcation angle ai as encoded in the barcode. On

the other hand, the apical tree is separated into two parts: the apical tuft, which is the densely branched subtree close to the cortical

surface, and the obliques, which are the shorter branches near the soma. The apical tuft is separated from the obliques by the ‘‘apical

point‘‘. This point can be accurately identified based on the persistence barcode of the apical tree, as the distance that maximizes the

separation between the two modes of the bars distribution, which is bimodal if the apical tree has a tuft. The apical point distance is
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computed from the persistence barcode, as the point at which a tuft is first encountered. This is a parameter that is not controlled by

the user. This distance is used to modify the angles of the bifurcations during the growth of an apical dendrite. For the apical den-

drites, different branching behaviors need to be adopted for the tuft and the obliques. Before the apical point, one of the branches, the

major branch, which corresponds to the branch of the longest bar, follows the targeting direction (usually the orientation toward

the pia). The other branch follows the angle defined by ai. Once the apical point is reached, the apical tufts bifurcate according to

the bifurcation angle ai just like the basal dendrite.

Connectivity between branches
The decomposition of a tree into a barcode results in loss of connectivity between the branches that correspond to the bars within the

barcode. In a recent publication Kanari et al. (2020) we explain in depth the mathematics of this process. Here we mention the basic

rules of the process that defines the connectivity rules.

To recreate a tree that is close to TMD-equivalent to the original, the branch corresponding to a particular bar (bj, dj) in the barcode

can be attached only to branches corresponding to bars (bi, di), 0 < i < j such that:

dj<di

and

bj>bi

This rule ensures that at each bifurcation branches can only be attached to larger branches. In topology this refers to the Elder rule

(see (Kanari et al., 2020)) that holds in the tmd transformation. As a result, only a subset of trees with n branches can be generated by

the TNS from a given barcode with n bars.

This rule is described in Algorithm 4, in which an active branch, i.e. a branch that has not yet terminated, bifurcates into two smaller

branches. One of the new branches inherits the termination distance from the bar of the active bar k (sec1) while the second branch

takes a new bar from all the available branches i that have not been used yet during the growth. The new bar i is chosen so that the

bifurcation distance bi is minimum among the available branches and in addition di <= dk.

Elongation of neurites

A segment is a pair of consecutive points that is determined by a vector of length l and unit vector direction Dsegment. Each branch

grows segment by segment and independently of all other branches. The direction of the segment is a weighted sum of three unit

vector terms: the cumulative memory of the directions of previous segments within a branchM, a target vector T, and a random vec-

tor R (Koene et al., 2009).

Dsegment = rR+ tT+mM;

where r+ t +m = 1:

The cumulativememoryM is a weighted sum of the previous directions of the branch, with theweights decreasingwith distance from

the tip. If the current segment of the growing branch is the kth segment, then the five previous steps contribute to thememory as follows:

M =
X5

i = 1

expð1� iÞvðk�iÞ: (Equation 4)

Different weight functions were tested, but as long as the memory function decreases- faster than linearly - with the distance from

the growing tip, its exact form is not relevant. The target vector T is defined at the beginning of each branch, for example the main

apical trunk grows towards the pia (see Topological neuron synthesis algorithms, Algorithm 3). The random vector R component is

sampled uniformly from three-dimensional space.

The tortuosity of the path is defined by these three parameters. A large randomness weight r results in a highly tortuous branch,

approaching the limit of a simple randomwalk when r = 1 (Pearson, 1905). On the contrary, if the targeting weight t = 1, the branchwill

be a straight line in the target direction. Different combinations of the three parameters (t, r, m) can generate more or less meandering

branches and can reproduce the large diversity of dendritic sections (see Figure S2A).

For a dendrite, the effects of randomness and targeting are more complex. Synthesized cells for a set of varying combinations of

randomness and targeting are presented in Figure S2C. For smaller targeting (tz 0.1�0.2) and larger randomness (rz 0.4) the syn-

thesized dendrites are too short to reach the original dendritic extent, as demonstrated in the corresponding persistence diagrams of

radial distances (Figure S2C). For a broad range of parameters (r % 0.3 and 0.1 % t), the radial distances of synthesized trees

(Figure S2C, red) approximate accurately the reconstructed cells (Figure S2C, blue).

The segment length is drawn from a normal distribution with parameters Lmean = 1 mm, Lstd = 0.2 mm. Theweights are normalized so

that t + r + m = 1. Therefore, only two of the input parameters need to be chosen by the user. The different shapes that can be gener-

ated by combinations of the weights are presented in Figure S2C.

Generation of diameters

In addition to the topology of a neuron, the thickness of neuronal branches must be assigned accurately to ensure a valid functional

role of the cell (Cuntz et al., 2007; Koene et al., 2009; van Elburg and van Ooyen, 2010; Bird and Cuntz, 2016). Despite recent

progresses in imaging techniques enabling the generation of a large number of reconstructions (Peng, 2008; Haberl et al., 2014;
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Economo et al., 2016), their resolution is still too limited to allow for precise measurement of diameters that are typically on the order

of a few microns. As a result, we observe a large variability in thickness profiles, even among reconstructions of cells from the same

m-type. In addition, swelling of diameters may occur that is usually considered as a staining artifact (Conde-Sousa et al., 2016).

To faithfully reproduce diameters while filtering out any experimental artifacts, we first extract relevant properties from a population

of cells for each m-type, and use these distributions to generate new diameters. We extract distributions for the trunk and the tip

diameters, the taper rates, the Rall and sibling ratios at each bifurcation (see Morphometrics glossary). These distributions are trun-

cated to the 5% and 95% percentiles to remove outliers. For the taper rate, which is particularly noisy, we allowed larger truncation.

Indeed taper rates are very sensitive to artefacts such as swelling, and present a very broad distribution of values that is not compat-

ible with dendritic thickness without artefacts.

The process of diameter synthesis starts from the root and proceeds towards the tips of each neurite. First, a trunk diameter is

sampled from the biological distribution. Then, within a section, the diameters are assigned according to a sampled taper rate. At

each bifurcation, the two daughter diameters are assigned according to sampled Rall and sibling ratios. If the diameters become

smaller than a sampled tip diameter, the diameter is set to the tip diameter. Once all the diameters have been assigned a check

is performed and if any of the obtained tip diameters is larger than the biological tip diameters, the process restarts by reducing

the trunk diameter, until the tip diameters are small enough to be consistent with the biological distribution. This restart is rare in prac-

tice but ensures that the diameters of a neurite will be proportional to its size, as smaller neurites need to have smaller trunk diameters

to achieve an appropriate distribution of tip diameters. In the future this could be achieved by introducing a relevant feature

correlation.

This algorithm results in dendritic thickness of synthesized cells that is statistically similar to the reconstructed cells, minimizes

experimental artifacts, and creates thicknesses that monotonically decrease with distance from the soma, a property ensuring

that biophysical principles of dendrites (Cuntz et al., 2007) are reproduced.

Topological neuron synthesis algorithms

The TNS algorithm consists of three main components: the initiation (Algorithm 2), the elongation (see Algorithm 3) and the branching

(Algorithm 4) of neurites.

The first part of a neuron to be generated is the cell body, i.e., the soma (see Soma generation: initiation of neurites), whose

radius is sampled from a biological distribution. The number and the orientation of the neurites are sampled from the biological

distributions.

A segment is defined by a length L and a direction vk , specified by a unit vector. The direction of the segment is a weighted sum of

three unit vector terms: the cumulative memory of the directions of previous segments within a branch M, a target vector T, and a

random vector R.

Each growing tip is assigned a bar bari, sampled from the barcode, that includes a starting path distance bi, an ending path dis-

tance di and a bifurcation angle ai.

At a bifurcation, two new branches are generated, and the directions of the daughter branches depend on the bifurcation

angle ai.

Quantification and Statistical Analysis
Single-cell validation

In order to validate the quality of single cells and identify individuals of poor quality within the synthesized population, the distributions

of key features F of each cell are compared against a set of reconstructed cells. Tomeasure a cell’s difference from the reconstructed

cells, we compute a statistical score that corresponds to a normalized distance, which is the difference between the median value of

the test cell T and the median value of the reconstructed population Pr, divided by the standard deviation of the reconstructed pop-

ulation Pr:

Fnorm =
~FPr � ~FT

sðFPr Þ
: (Equations 5)
Identifying outliers of synthesized cells
As an additional validation of synthesized cells, we developed a method to identify outliers in the population of synthesized neurons,

by comparing each synthesized cell to the population of reconstructed cells. The percentage of detected outliers in the synthesized

population gives a measure of accuracy of the synthesis process (see Table S1).

To identify outliers, we compare the distributions of key features of each neuron, such as section lengths, bifurcation angles etc, to

the reconstructed population. We quantify the distance between the distributions with the ratio of the absolute value of the Difference

Between the Medians divided the Overall Visible Spread (DBM/OVS, (see Figure S3A).

The MVS score is defined as follows:

MVSðFÞ = j ~FPr � ~FPs j
OVS

�
FPs ;FPb

� (Equation 6)
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This is an intuitive measure of the difference between the medians of the two distributions with respect to their joint dispersion. The

Overall Visible Spread is usually defined as the range between theminimum 25th percentile of the two distributions and themaximum

75th percentile of the distributions. Its minimum is 0 when themedians of the distributions coincide, and the two distributions are very

close to each other. Its maximal value is 1 in the special case where the smaller median coincides with the smaller 25th percentile and

the larger median with the largest 75th percentile. The closer the DBM/OVS gets to 1, the larger is the difference of medians with

respect to the overall spread of the distributions, making it likely to reject the neuron in question. We modify this definition due to

the large variance of features within the set of reconstructed cells, and use the OVS defined as the range between the 10th to

90th percentile of the population.

The DBM/OVSmeasure works better than other measures of standardized difference of means, such as Hedges (1981)’g, for non-

symmetric distributions (see two last references). A cell is considered an outlier when at least one of the key features mentioned

above is outside of certain feature-specific thresholds. We choose the thresholds so that the reconstructed biological cells are

not rejected as outliers, since they represent the gold standard. One can imagine the thresholds as defining a hypercube in the space

of features. If the feature vector of a synthesized cell falls out of this cube, it is rejected as an outlier (see Figure S3B).

As an example, we provide the results for a zero-outlier m-type (L5_UPC) and for one with outliers (L5_CHC) in Figure S3B. The

large number (28) of examples for layer 5 UPC cells results in the DBM/OVS of synthesized cells to be within the limits. On the con-

trary, layer 5CHC consists of only three reconstructed cells, and thus the number of outliers for thism-type ismuch larger. The spread

of DBM/OVS for the L5_UPC is much smaller than the L5_CHC. A large number of available reconstructions is clearly essential for the

accurate definition of the synthesis input. Detailed results are given in Table S1.

Population-to-population validation

Synthesis is validated at a population level by comparing the distributions of a large number of morphological features (see Table S2)

to those of the reconstructed cells per morphological type. Essential features F, such as the degree of the dendritic tree (number of

terminations), the branch orders, the number of sections, the total length per neurite, the radial and path distances from the soma

shown in Figure 4. Each of the distributions of morphological features F is compared between a population of synthesized cells

Pc and of reconstructed cells Pr with the MVS score 6. The MVS score score can be used as a validation score between two pop-

ulations for each morphological feature F.

Electrical simulation of synthesized cells

A biophysically detailed electrical model (e-model) for a L3_TPCwas applied in the synthesizedmorphologies to assess howwell the

electrical behavior generated by the synthesized morphologies compares with their reconstructed counterparts. The original

e-model was obtained by applying a multi-objective optimization of the electrical parameters as described in Markram et al.,

2015 to a reconstructed morphology. The e-model has 31 parameters that are used to control the maximal conductance of the

ion channels in four morphological areas (somatic, axonal, basal, and apical) and the calcium dynamics and the decay constant

of Na channels along the dendrite. Note that in the case of synthesized cells, only dendrites are computationally generated; the

axonal morphology is copied from a reconstructed cell. The e-model consists of Hodgkin-Huxley-based channel models for persis-

tent and transient Na/K, high- and low-voltage activated Ca, Kv3.1, Ih and SK calcium-activated potassium channels. When the

e-model is instantiated, the axon is replaced by a shorter axon initial segment with diameters based on the original morphology.

The constraints consist of electrical features extracted (eFEL) from somatic whole-cell current clamp recordings and dendritic

back-propagating action potential features obtained from literature. The stimulation currents used in the experiments and models

are scaled by the spiking threshold currents of the cells. The e-model was applied to the synthesized morphologies and, as in the

morphological validation, the Fnorm was used to quantify how well the resulting morpho-electrical combination matches with the

statistics of the original experimental data.
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