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Abstract

This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means
of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique
for the evaluation of polynomial integrals over spline boundary representations that is exclusively based on analytical com-
putations. First, through a consistent polynomial approximation step, the finite element operators of the Galerkin method
are transformed into integrals involving only polynomial integrands. Then, by successive applications of the divergence
theorem, those integrals over B-Reps are transformed into the first surface and then line integrals with polynomials inte-
grands. Eventually, these line integrals are evaluated analytically with machine precision accuracy. The performance of
the proposed method is demonstrated by means of numerical experiments in the context of 2D and 3D elliptic problems,
retrieving optimal error convergence order in all cases. Finally, the methodology is illustrated for 3D CAD models with an

industrial level of complexity.
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1 Introduction

The integration of Computer-Aided Design (CAD) and
Computer-Aided Engineering has gained interest during
the last two decades with the introduction of new numerical
approaches as, for instance, the isogeometric paradigm [1, 2]
or meshfree strategies [3]. Particularly, spline-based geomet-
ric models have been found to present excellent performance
for numerical simulations [4—7]. This opens the door to the
formation of all-in-one design frameworks where a single
geometric model is simultaneously used for parameterizing
the shape of the object of interest and performing advanced
numerical analyses [8—11]. The combination into one single
model of both high-fidelity geometrical properties and effi-
cient analysis performances is, however, far from trivial in
general. Indeed, generating analysis-suitable geometric mod-
els for complex industrial designs requires advanced numeri-
cal tools. To achieve this goal, two different strategies can
be undertaken: The first one consists in generating a fully
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boundary-conforming and matching geometric model such
that standard analysis procedures can be directly applied.
Generating those spline meshes is however a quite challeng-
ing task for geometries with complex topologies, especially
when only tensor-product splines are considered [12-15].
For those cases, unstructured spline meshes [16-20] con-
stitute an appealing alternative. On the contrary, the second
approach aims to directly use standard CAD models which
may contain non-conforming and trimmed surfaces and
present geometric defects, such as water leaks or surface
overlaps, and require the use of high-end analysis procedures
[21-26]. Interested readers may refer to [27], and the many
references therein, for an extensive review in the context
of isogeometric methods. The present work falls into this
second category.

A major ingredient that is commonly required to perform
numerical analyses over CAD models is an efficient inte-
gration procedure which enables to evaluate integrals over
complex domains such as curved polyhedrons. This is, for
instance, the case when employing non-conformal analysis
methods, where the geometric representation is decoupled
from the discretization of the solution [28-34].

In this context of immersed and enriched FEM, there exist
several integration approaches. In 3D, among the most com-
mon ones is worth highlighting octree subdivision [35-38]
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which consists in adaptively subdividing the domain of
integration into sub-cells (voxels in 3D, or simple pixels
in 2D). The obtained piecewise constant approximation of
the underlying geometry can be improved by performing a
local boundary reparameterization at the finest level of this
recursion procedure via a (low-order) tessellation method
[39, 40]. Despite the beneficial simplicity and robustness of
this decomposition-based method, it may suffer from high
computational cost due to the large number of integration
sub-cells, especially in three-dimensional and high-order
methods.

For problems where the geometric representation of the
boundary is of major importance, alternative approaches are
considered. They consist in generating boundary-conform-
ing sub-meshes which are generally non-analysis-suitable
(due to the presence of hanging nodes, missing connectiv-
ity, singularities, etc.) but which are handy for integration
purposes. The high-fidelity representation of the geometry
boundaries, even for complex geometries, yields a high-
accuracy in the evaluation of integrals. Nonetheless, even if
the difficulty of generating such a high-order mesh is lower
than building fully analysis-suitable boundary-conforming
parameterizations, it still remains a challenging and time
consuming task for complex 3D geometries. On the other
hand, for two-dimensional geometries, the problem can be
usually solved in a more accurate way: We refer the inter-
ested reader to the extensive survey [27].

An appealing alternative to these two approaches is the
use of moment fitting techniques [41-44] in which coarse,
but accurate, quadrature rules are generated for complex
integration domains by tuning the positions and/or weights
of the quadrature points. Nevertheless, these methods come
at a price: The creation of tailored quadrature rules requires
the computation of polynomial integrals over complex
domains at a pre-processing stage, which calls for the use of
alternative integration techniques.

Finally, there exists a fourth group of strategies for com-
puting integrals over curved polyhedrons that lies in deriving
dedicated integration rules for specific classes of integrands,
as for instance polynomial functions. Indeed, it is known that
integrating polynomials and other homogeneous functions
over (curved) polyhedrons can be done more efficiently by
invoking the divergence theorem [45—49]. These results can
be exploited in several ways: One can perform a polyno-
mial approximation of the integrands of interest such that
the integration can be done straightforwardly [50-52]; those
specific rules can be applied at the pre-processing stage of
moment-fitting methods [42, 43, 53]; or can be used for
creating quadrature schemes on the edges or faces of the
polyhedrons for integrating the involved operators [54, 55].

Within this category, worth mentioning are the recent
works [49, 55], where the divergence theorem is used for
transforming volumetric integrals into either surface or
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line integrals. In [55], the authors reduced 3D integrals of
general functions to 1D integrals, that are finally evalu-
ated using fine quadrature rules. This extends the previ-
ous work [56] for the case of 2D geometries. Similarly,
in [49] the complexity of 3D integrals is reduced to just
vertices evaluations in the case of planar polyhedra. For
the case of B-reps composed of Bézier triangles or non-
trimmed B-splines patches, the authors in [49] applied the
divergence theorem just once, transforming 3D integrals
into 2D ones, which are approximated through standard
quadrature rules.

Aligned with these ideas, in this work we present a fully
quadrature-free method for integrating polynomials over
general B-rep models enclosed by trimmed spline surfaces.
The procedure is based on two successive applications of
the divergence theorem, reducing volumetric integrals to
the first surface and then line integrals, that are computed
analytically up to machine precision. Hence, this can be seen
as a generalization of those previous works, eliminating the
need of quadrature rules. Such an approach is particularly
well suited to B-Rep models as it only uses a description of
the boundaries. On the other hand, handling B-Rep models
with octree subdivision methods may be cumbersome as
they have to evaluate if a point in the Euclidean space lies
inside or outside the body for every single quadrature point,
what is not always trivial.

Furthermore, we show how this integration procedure,
combined with a consistent polynomial approximation step,
leads to a new analysis tool for immersed isogeometric
methods that skips the need of complex quadrature rules.
This new integration procedure is highly-accurate (up to
surface-surface intersection errors), and thus enables to
handle analysis over high-order discretizations. In compari-
son, it is known that low-order approaches, as for instance,
octree methods, require many quadrature points to keep the
consistency error below the discretization error such that
optimal convergence rates are retained in simulations. Con-
sequently, it leads to high computational costs in general,
which drastically reduces the benefits of employing high-
order discretizations.

The developed approach is presented as follows: We
firstly introduce in Sect. 2 the basics regarding immersed
isogeometric analysis to further detail the scope of applica-
tion of this work, and describe a consistent approximation
step required for transforming the involved integrands into
polynomials. Then, in Sect. 3, we discuss the geometric
modeling via splines, trimming, and boundary-representa-
tion, as commonly undertaken in CAD. In Sect. 4, the pro-
posed quadrature-free integration over B-Reps is presented.
Finally, in Sect. 5, we solve elliptic PDEs and perform sev-
eral numerical experiments to confirm the accuracy of the
approach. Lastly, concluding remarks are summarized in
Sect. 6.
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Fig. 1 Immersed methods
setting

Computational domain

Cartesian grid

2 Immersed isogeometric analysis

With the aim of introducing immersed methods, the used
notation, and the main ideas behind this work, let us first
introduce a classical Poisson’s problem as our driving
example. Even if the problem is presented in a 3D con-
text, the same ideas are directly applicable to 2D problems.

Let Q Cc R3 be the computational domain whose
boundary is partitioned as I'yul'p=0Q and
I'ynI', =@. We also define a functional space
H}(Q) = {ve H' Q) : v|; =0}, such that the Poisson’s
problem reads: find u € H;)(€2) solution of:

=V - (KVu)=f inQ,
Vu-n=g only, (D)

u=0 onl},

where K € L*(Q)> is the symmetric diffusivity operator;
f e L*Q) and g€ H™Y/ 2(1"1\,) are the source and Neumann
terms, respectively; and n € R3(0Q) is the outward point-
ing unit normal on the boundary. For the sake of clarity,
and without constituting any limitation, in the problem (1)
and hereinafter we assume homogeneous Dirichlet boundary
conditions on I'j,.

The associated weak problem can be written as: find

u € H}(Q) such that
a(u,v) = b(v), Vv e H(Q), 2

where

Cut elements

Inactive
elements

Active non-cut elements

a(u,v) = / Vu-KVvdQ,
Q

3)
b(v)=/fvd9+/ gvdr.
Q Ty

2.1 Immersed methods

The philosophy behind immersed methods is depicted
in Fig. 1. It consists in embedding the computational
domain Q into a grid 7,(€2,) of a larger domain €, such
that Q C Q, C R3. The solution of the weak problem (3)
is then discretized over a subset of the grid 7,,(€2,), which
allows a decoupling of the solution discretization from the
actual geometry. This simple and rather straightforward pro-
cedure is the one and only mesh generation task to under-
take within immersed-like approaches, making this class of
methods very appealing. Indeed, this can largely ease the
design-to-analysis workflow since the computational domain
can be directly prescribed as a geometric model with any
representation commonly used in CAD, as for instance the
Boundary-Representation (B-Rep), detailed in Sect. 3. In
return, the price to pay during the analysis lies in the intro-
duction of so-called cut or trimmed elements, as illustrated
in Fig. 1. This requires the integration of quantities over
cut elements (as discussed in the introduction, see Sect. 1).
This work focuses on this particular challenge one would
face when dealing with enriched or unfitted finite element
methods over B-Rep models.
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As the computational domain is € and not €, the parti-
tion 7,,(€2,) is restricted to a subset 7,,(L2) as:

T,Q) :={Q 0 €T, (Q) : OnQ # @}. )

Indeed, the grid 7,(£2,) naturally splits the domain Q into
three complementary partitions of elements:

T.(Q) :={Q|0€T(Q) : 0nQ # 0}, (52)
T)'Q) :={Q|0€T,Q : Q0nQ =0}, (5b)
THQy) 1 ={Q10€T(Q) : 0nQ =0}, (5¢)

such that T,(Q) =TMQUT,(Q) and
T,(Qy) = T,(Q) U T(Q). As depicted in Fig. 1, the ele-
ments belonging to these three subsets are denoted as cut,
non-cut, and inactive elements, respectively.

In this work, we limit our discussion to the case of 3D
immersed isogeometric methods, nevertheless, the presenta-
tion is kept rather general and can be easily adapted to generic
immersed methods [28] or particular cases as, for instance,
CutFEM [31] or Finite Cell Methods [57], among others.

To solve numerically the weak problem (3) we construct
a discrete spline space V,(€,) over the grid 7,(€,) as:

V,(Qy) = span{N", i € T}, (6)

where Nf’ denotes generic spline basis functions of degree
p > 0and arbitrary continuity (up to p — 1), and Z,, is the set
of indices of those basis functions. In this work we use ten-
sor-product B-splines, but the extensions to other cases as,
e.g., hierarchical splines [58] or T-splines [59], is straight-
forward. For the sake of simplicity, henceforward we drop
the superscript p from Nf and assume that the spline degree
p is constant along the three parametric directions.

The support of some basis functions of the space V,(€,)
may not intersect the domain Q and, consequently, they do
not contribute to the solution of the problem (3). Therefore,
we trim the space V, () as:

V,(Q) = span{N; € V,(Q) : supp{N;} N Q # @}, (7

that, as already studied in [9], holds optimal approximation
properties. It is a well-known fact that the active support
of some basis functions in V,(2) (supp{N;} N Q) may be
small, which could yield ill-conditioned operators. This is
an active research topic [27, 60-62] that exceeds the scope
of this work.

Henceforward, we assume the Dirichlet boundary I'j, to
be such thatI';, C d€2, N 02, what grants the strong enforce-
ment of Dirichlet boundary conditions. The opposite case
(I'p ¢ 0€) entails the imposition of Dirichlet conditions in
a weak sense. We refer the interested reader to [63—65] for
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a dedicated discussion and to [62] for a study, in the case of
spline spaces, of the inherent stability issues.

Thus, by means of the assumption I';, C 90€, N 0Q, we
can define the space:

VP(Q) = {v, € V,(Q) : v, I, = 0}. ®)

that allows us to discretize the continuous weak problem (3)
as: find u, € VP(Q) solution of:

a(uy,v,) = b(vy,), Vv, € \/}?(Q), 9)

where the discrete versions of the bilinear form @ and the
linear form b are decomposed as:

a(u,,vy,) = Z

0€T}'(Q)

+ ) / Vu, - KVv, dQ,
0eT} (@) 7 9N
/th do
0

ZOSENDY
fydo+ Y

Q€T (Q)
Q€T (@)

/ Vu,, - KVv,dQ
Q

>

0eTh (@)’ 9N

+ ) / gv, dr.
0eT (@) 7 9Ny

/ gv,dl’
onry

(10)

The computation of the integrals over non-cut elements
Qe Tihm(Q) is straightforward and can be performed using
classical quadrature schemes. However, the evaluation of
integrals over cut elements Q € ’TZ(Q) is a challenging prob-
lem and one of the Achilles’ heels of isogeometric immersed
methods in 3D (see the related discussion in Sect. 1). The main
contribution of this article regards the computation of those
integrals through a quadrature-free approach for the case of cut
elements defined as B-Rep models. This procedure is presented
in Sect. 4. Nonetheless, this method is only applicable to the
case in which the integrands are polynomial functions. Thus,
before introducing it, in the next section the integrals in (10) are
transformed such as they only rely on polynomial integrands.

2.2 Polynomial approximation of finite element
operators

When considering spline discretizations over the grid 7,,(€2),
the terms Vu,,, Vv, and v, in the operators (10) take polyno-
mial forms VQ € 7,(Q). On the contrary, the datum quantities
involved (i.e., K, f, and g) may not be polynomials in general.

Hence, to work with integrals that only present polyno-
mial integrands, we seek to exploit a key result introduced
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in [66]: It is possible to perform a polynomial approxi-
mation of the integrands in (10) without deteriorating the
solution. More specifically, instead of solving the prob-
lem (9), we consider the following approximate problem:
find #, € VP(Q) solution of:

a(i, vy) = b(vy), Vv, € V@), (1)

where the discrete forms in (10) are replaced by:

aiy,, v,) = z

0T (Q)

+ ) / Vii, - KVv, dQ,
0eT (@ ¥ 9N

b=, / Fvpdo
0

Q0ET(Q)

+ Z /mevth

Q€T (@

+ Z / gv,dl’
geTi (@) 9Nl

+ z / gv,dr,
geth(@) 7 9Ny

/ Vﬁh * I_(Vvh dQ
Q

12)

that involves the following polynomial approximations:
f=1f,  g=I"sg (13)

In the approximations above, the projection spaces must
be chosen carefully, such that the introduced consistency
errors do not pollute the numerical solution. Thus, by recall-
ing [66, Theorem 13], we know that the projection of K, f,
and g into spline spaces of degree g > p — 1 yields a solu-
tion i;, that approximates optimally the true solution u,
presenting convergence order p for the error measured in
the H' semi-norm when the mesh size 7 — 0. In [66], the
authors also observed, through numerical experiments, that
a projection degree g > p — 1 yields optimal convergence
order also respect to the L2 norm of the error (rate p + 1).

K =1I'K,

Remark 1 The non-polynomial nature of the quantities K,
f, and g may derive from an additional mapping that fur-
ther deforms the domain €, (see, e.g., [67]). A numerical
example addressing this case is presented in Sect. 5.2.1 (the
multi-perforated quarter of annulus). On the contrary, these
quantities might be low-order polynomials (even zero-order
polynomials) by construction and it is therefore not neces-
sary to project them into polynomial spaces.

In [66], the projections (13) are performed patch-wise.
Nevertheless, the same error estimates hold in the case they

are carried out in an element-wise way, that is the case of
this work. This results in polynomial approximations that
are element-wise discontinuous. Thus, for each element
Q € T,(Q) we introduce a local L>-projector:

I 13(Q) - Q,, (0. V0 € T,(), (14)

where Q,
nomials with degrees (¢;, g,, ...
directions.

By employing a tensor-product Bernstein basis, the pro-
jected quantities K, f , and g restricted to element Q can be
expressed as:

., denotes the space of tensor-product poly-
,q,,) along the m parametric

(g+1)
Kig= Y, BIKC.
k=1
(g+1)
flo= D BIF@, (15)
k=1
(g+1)?
do= Y, B8
k=1

where I_(]EQ) € RS, fk(Q) € R, and g]iQ) € R are the projec-
tion coefficients, and Bg are tensor-product Bernstein poly-
nomials defined over Q and with degrees q = (g, ¢, g¢) such
that

Qq0.4(Q) = span{B} k=1,....(¢+ 1)’}. (16)

We refer the interested reader to the Sect. 1 of Appen-
dix A for a discussion about tensor-product Bernstein
polynomials.

2.3 Operators assembly through lookup tables

In what follows, we detail the assembly of the elemental
stiffness matrix and the right-hand-side vector associated
to the operators (12). Thus, plugging the projections (15)
into (12), a single entry of the elemental matrix and vector
can be computed as:

(q+1)°

AL = 3 KO / B}(VN; ® VN;) dQ.
k=1 onQ
(q+1? (q+17
b=y 7 / BIN,dQ+ ) g2 / BIN, dr,
k=1 onQ k=1 only
an

where N,-,Nj € V(Q) are test and trial basis functions,
respectively. In the expressions above it is easy to realize
that all the integrands restricted to a single element Q are
polynomials:
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BZ(VNi ® VNJ) lo € @2p+q,2p+q,2p+q(Q) > (18a)

BZNilQ € @P‘*‘%P‘*’%P"’Q(Q) ’ (18b)

Notice also that the functions N;, Nj, and BZ are naturally
defined over the full support of each element Q, and not only
over its active part Q N .

Finally, by exploiting their polynomial nature, the ele-
ment integrals in (17) can be computed as:

/ B}(VN; ® VN;) dQ
onQ

Qp+g+1)? (192)
_ (9] r
- Z Ki,j,k,a/ BadQ
a=1 onQ
(p+q+1)°
BIN,dQ = F / B3dO (19b)
/QnQ k Z{ B fona P
(p+q+1)
BIN,dQ = G / BsdI’ (19¢)
/QnFN ‘ Z{ “ Joar,

where B} and B; are tensor-product Bernstein polynomials

with degrees r=2p+gq,2p+q,2p+q) and
s=(p+q p+aq, p+q).|<§§;meR3x3andF§%ﬂ, G eR

are element dependent constant coefficients that can be cal-
culated by means of the Bézier extraction operators [68—70]
associated to the spline space V().

Then, the assembly of the operators (17) reduces to the
computation of the coefficients KEJQ.’La, Fgg?ﬂ, and GS’%, as well
as the integrals':

3D __ r 2D __ S
IQY& = /QﬁQ B dQ, IQ’ﬂ = /Qnr BﬂdF. (20)
N

Thus, the integrals I3QDa and IZQDﬂ can be precomputed for

every element Q and stored in lookup tables, that will be
accessed along the assembly process to create the elemental
operators, in a similar way as proposed in [66].
Nevertheless, as discussed in Sect. 1, the computation of
the integrals (20) is a challenging task. In the case of non-cut
elements, their evaluation is straightforward: It can be
precomputed analytically for a single unit cube and subse-
quently adapted to every non-cut element’s domain through
simple transformations (translations and scalings). But in the
case of cut elements the evaluation of the integrals ISQ’?Q and

! Due to the fact that Qpig prag.pra © Qopig 2p1q,2p4¢> the integrals
fQﬂQ B;dQ in (19b) can be computed as linear combinations of the
integrals I3QDa.
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Ié’?ﬂ is far from simple. For that purpose, in Sect. 4 we pro-
pose a quadrature-free approach for the common case in
which the active part of elements (Q N Q) can be defined
through a B-Rep, discussed in Sect. 3.

3 Geometric modeling via boundary
representation

In this section, we introduce the notation and some basic
concepts about splines and geometric modeling. Hence, we
provide a mathematical way of describing the active part of
the cut elements Q N Q, discussed in the previous section, by
means of B-Rep representations. This constitutes the basis
for the integration method presented in Sect. 4.

3.1 Spline representation

Splines are considered a de facto standard in Computer-
Aided Design and have been extensively studied in the lit-
erature, see for instance [71-73]. Among the different repre-
sentation techniques available, in this work we focus on the
use of polynomial mappings, and more specifically, B-spline
and Bézier curves and surfaces. A B-spline or Bézier curve
¢ can be expressed in the form:

¢:[0,1]1>RY %0 c® =) NEP, @1

i=1

where Nl.p are univariate basis functions, either B-splines or
Bernstein polynomials, of degree p, and P; € R? are their
associated control points, where d is the number of spatial
dimensions. In Appendix A we provide further details about
Bernstein polynomials (Appendix A.1 and A.2) and Bézier
geometries (Appendix A.3), that are extensively used in this
work. For an in-depth discussion about B-splines, we refer
the interested reader to the existing literature [71-73].
Using tensor-product combinations of those basis func-
tions, B-spline and Bézier surfaces S can be constructed as:

S: [0,17 > R,
non

G dy) oSG2 ) ) N EONP ()P,

i=1 j=1

(22)

where Nf "and Nf * are univariate B-spline or Bernstein basis
functions of degrees p; and p,, respectively, and P, ; € R4
are the associated control points. For the sake of simplicity,
we assumed the parametric domains of the mappings (21)
and (22), Dom(c) and Dom(S), to be [0, 1] and [0, 1]?,
respectively.
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Fig.2 Boundary representation
of a volumetric domain V

Vv

X3
,j_’xz

X

Fig.3 Description of the
involved geometrical entities
in the definition of trimmed

Parameter Space
(surface)

T
e

4

-

Euclidean Space

parametric surfaces

Img(S))

Parameter Space

3.2 Trimmed surfaces and boundary
representations

Simple spline mappings (21) and (22) cannot represent com-
plex real-world geometries. Instead, the multitude of these
geometric objects are usually combined for such a purpose.
More specifically, Boolean operations (namely, unions, dif-
ferences, and/or intersections) of several geometrical entities
are commonly adopted in Computer-Aided Design [71]. By
means of these operations, volumetric geometries are often
represented in an implicit way: the volume enclosed by a set
of, possibly trimmed, boundaries surfaces. This paradigm,
known as Boundary Representation (B-Rep) [74, 75] and
extensively used in industrial modeling tools, is considered
throughout this work.

As illustrated in Fig. 2, we consider a domain V C R3, non-
simply connected in general, whose boundary 0V is defined by
a set of connected faces F;, i = 1, ..., np, such as:

oV =U7’ F,. (23)

The domain V may correspond to the active part of the cut
elements Q N Q discussed in Sect. 2.1.

(curve)

Vig

},}l
Vi6 /»\‘ i3
N

=

Vi1

Fig.4 Boundary representation of trimmed faces. External bounda-
ries follow a counter-clockwise orientation while the internal ones are
clockwise oriented

We consider the faces F; to be defined as trimmed
B-spline or Bézier surfaces that are piecewise smooth.
Every trimmed face F; is composed of two elements: an
underlying spline surface mapping §; of the form (22),
and a group of connected curvilinear segments
f/,.J c Dom(S;), j=1,... e s that delimit the active region
of Dom($;) (see Figs. 3 and 4). We denote this active
region as F; C Dom(S)).
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Fig.5 Split of a trimmed
B-spline surface into trimmed
Bézier surfaces

Each segment 7, is the image of a spline curve map-
ping ¢;; : [0, 1] — 7,; of the form (21). Thus, the boundary
of the active region F, is:

n

i f

oF; = VU1V

A A . o 24)
yi,j = {x eR |x€ [0,1] X :c[J(x)}’

therefore, we can define F; as:

F={xeR}|zeF x=8,%)). 25)

We again refer to Fig. 3 where all the introduced quantities
are depicted for an illustrative example.

Remark 2 To work exclusively with pure polynomial repre-
sentations, instead of (rational) piecewise polynomials, in this
work we only consider non-rational Bézier curves and sur-
faces. Using only Béziers does not constitute any limitation:
By refining at its internal knots, any face F;, defined by means
of B-spline curves and surfaces, can be easily split into a set of
trimmed Bézier faces, whose underlying curves and surfaces
are Béziers (see Fig. 5). On the other hand, the exclusive use
of non-rational polynomials may be a limiting factor as it turns
impossible the creation of exact conic curves and surfaces.

This limitation can be circumvented in the case of the resolu-
tion of elliptic PDEs using immersed IGA. As discussed in [67],
in those cases it is possible to approximate the geometry of the
cut elements Q N Q VO € TZ(Q) by means of Bézier curves
and surfaces of degree p, the same as the solution’s discretiza-
tion, and still preserve optimal approximation properties.

4 Quadrature-free integration
of polynomials over B-Reps

In this section, we deal with the integration of polynomi-

als over a domain V whose bounding faces F; are repre-
sented as trimmed Bézier surfaces, as described in the
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Non-trimmed Face

previous section. More specifically, we seek to compute
the integral:

I3D=///adv, (26)
14

where a : V — R is a polynomial function. This addresses
the computation of the integrals I3Ql’)a over cut elements Q N Q
as described in (20).

The approach presented in this section consists in the
successive application of the divergence theorem, as simi-
larly done, for instance, in [45, 51, 54, 76]. Let us first
recall here the classical divergence theorem, also known
as Gauss-Ostrogradsky’s theorem.

Theorem 1 Let V be a subset of R3 which is compact and has
a piecewise smooth boundary dV. Let A be a three-dimen-
sional vector field, suchthat A . V — R3and A € [C'(V)]?,
then:

///VAdV:/ A-ndS, 27
\%4 aV

where V- is the divergence operator andn : 0V — R3 is the
outward pointing unit normal on the boundary oV .

By applying the divergence theorem, the three-dimen-
sional integral (26) is transformed into, first, surface, and
then line integrals that can be evaluated analytically with
machine precision accuracy. This is possible in the present
context due to the polynomial nature of the successive
integrands which ease the formation of the antiderivatives
involved in the integration process.

4.1 From volume integral to surface integrals

To apply the divergence theorem, let us first rewrite the ini-
tial integral (26) in the same form as the one in (27):
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13D=///V-Adv. (28)
\%4

The vector field A : V — R3can be expressed as:

Ax) =A,(x)e; + A (x)e; + Az(x)es, (29)
with e; as the Cartesian unit vectors and Q; : V — R as the
antiderivatives of a, computed by:
X
A (X1, X0, x3) = / a(o,xy,x3)do + f,
0
X2
Ay(xp,X,Xx3) = a2/ a(x;,0,x3)do + f,, (30)
0

X3
As(xp, X, x3) = a3/ a(xy,x,, o)do + fs.
0

Here ay, a,, a3, f;, p,, and f are real constants, such that
@, + a, + a3 = 1. Since a is a polynomial function, the com-
putation of the antiderivatives in (30) is straightforward [see
Appendix A, Eq. (5§9)]. Furthermore, due to this polynomial
nature, the continuity requirements of the divergence theo-
rem are granted for the vector field A.

Applying the divergence theorem to (28) we obtain:

13D=// A-nds, (31)
A%

where we recall that n : 0V — R3 is the outward pointing
unit normal on the boundary 0V. Recalling the definition of
the boundary 0V in (23), the integral (31) can be split as:

PP IZD Z // A-n,dS;, (32)

where n; are the outward pointing unit normals of the sur-
faces S;,i = 1, ..., np. Exploiting the parametric representa-
tion of the surfaces §;, these unit normal vector fields can
be expressed as:

N,
n; : Img(S;) » R, x — (—'

oS! s
AR )m (33)

where the normal vectors N; are computed as:

N, : Dom(S,) —» R?, & — (asi 95 >( ). (34)
! ! ’ 0%, = 0%,

In (34) we assumed that the surface parameterization is ori-

ented such that the cross-product N; points out of V. Plug-

ging (33) into the expression of the surface integrals 1??

in (32), they become:

// < A _1> 33

fori=1,...,np. And pulling back these integrals to the
parametric domain of S;, we obtain:

= // F; dx, (36)
F;

where the integrands 7; are defined as:

7; » Dom(S;) = R,

2o @) = G7

(A0S,)@) - N,().
Interestingly, the normalization and the inversion involved in
the definition of the unit normal vectors (33) vanish after the
pull-back, as observed in [46], for instance. Furthermore, as
the surface S, is assumed to be polynomial, then the compo-
sition AoS, is also a polynomial bivariate, but with a higher
degree. Additionally, the non-normalized normal vector
field N, is also a polynomial since it is computed as the
product of polynomial terms (the partial derivatives of S,
are polynomials). Finally, the scalar product of two polyno-
mial vector fields, AoS; and N,, is a polynomial scalar field.
Consequently, 7; is a polynomial. In the case of Bernstein
polynomials we refer the interested reader to Appendix A:
see Eq. (75) for the details of the composition AoS; between
a trivariate and a surface; and Eq. (71) for the multiplications
of multivariate polynomials involved in the cross and scalar
products of Egs. (34) and (37), respectively.

Remark 3 The integrals 12D in (36) are equivalent to the
boundary integrals IZD deplcted in (20) and required for the

assembly of boundary condltlons in immersed methods (see
Sect. 2).

Remark 4 In the case of non-trimmed Bézier surfaces, like
the one depicted in Fig. 5, the integrals (36) can be easily
evaluated analytically using Eq. (69).

Remark 5 In some situations the normal fields n; of the
surfaces S; may be aligned with one of three the Carte-
sian axes. This occurs quite often in the case of immersed
methods for solving PDEs, presented in Sect. 2, in which
the integration domains V correspond to the cut elements
0N QVQO e T,(Q) of the grid embedded in a B-Rep geom-
etry. In that particular situation many faces F; will be planar
trimmed surfaces parallel to the Cartesian axes. For those
cases, a wise choice of the coefficients a;, a,, and @ in the
antiderivatives (30) will make the scalar product A - n; van-
ish, minimizing the number of two-dimensional integrals
to be computed. For instance, in the case of a face F; that
is perpendicular to the z Cartesian axis, choosing a; =0
will make the term A - n; vanish. Nevertheless, for a given
domain V the coefficients a;, a,, and a; must be set once and
for all, and cannot be independently chosen for every face

@ Springer
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F; of V. Thus, an optimal strategy may be to set a;, a,, and
a; independently for every V such that the largest number of
surface integrals vanish for that specific domain.

4.2 Evaluating the surface boundary integrals
Applying again the divergence theorem (27), we can trans-

form the two-dimensional integrals 12D in (36) into line
integrals as:

rv= / R, -in;d7,, (38)
oF,

where 7, : 0F; — R? is the outward pointing unit normal
on the boundary dF;. The vector field ﬁi : Dom(S,) —» R?
is defined such that #, = ¥ - R,, as for instance:

A 2]
R;(%,%) = <51/ f’i(o,icz)da+el>e1
0
%
+ (52/ f’i(fcl,a)d6+€2>e2,
0

and 6, 6, €, and ¢, are real constants, such that o, + 6, = 1.
Splitting the boundary oF ; according to (24) we obtain:

IiZD IlD / (40)

i

(39)

where m;; @ Img(; ;) — R? are the outward pointing unit
normals of the curves &;;,i = 1,. ;- Exploiting the para-
metric representation of the curves cl o these unit normal
vector fields can be expressed as,

¢ >( ), (41)

m;; : Img; ) — R, & — <
J i
IIM,,II

where the normal vectors M, ; are computed as:

~

¢ A , . dey;
M;; : Dom(¢;;) - R", ¥~ E(x) X e5. (42)

In the previous expression, we assume that the curves ¢;;
are oriented such as the external boundaries of F; present a
counter-clockwise orientation, while the internal ones are
clockwise oriented (see Fig. 4).

Plugging (41) into the expression of the line inte-
grals I'? involved in (40), they become:

7 =/ R, - ( Y oéi_Jl>dfiJ. (43)
Pij ||Mi,,‘||

ij

Finally, pulling back these integrals to the parametric

domain of the underlying curves ¢, ;, we obtain:

@ Springer

1
L= A (Rjot;;) - M %, (44)

where, as for the two-dimensional case, the normalization
and the inversion involved in the definition of the unit nor-
mal vectors (41) vanish after the pull-back. We gather all the
integrand terms together as:

1
1D - /0 7, dx, 45)

where
?,J :Dom(;;) =[0,1] = R,

Y 46
1)@ - M (). (46)

XX = (IA?loé
As the curve ¢;; is a Bézier, the composition R o¢;; is a
higher degree umvarlate polynomlal Additionally, the non-
normalized normal vector field M is also a polynomial
since it is computed from Bézier derlvatlves. Finally, the
s?alar product of two polynomial vector fields, fliOéi jand
M, ;, is a polynomial scalar field. Consequently, 7, ; is a poly-
nomial. Therefore, the integrals (45) can be easily evaluated
in an analytic way, with machine precision accuracy, without
the need for quadrature schemes.

Further details for the case of Bernstein polynomials are
provided in Appendix A: the composition RiOéi j between a
bivariate and a curve is detailed in Eq. (75); the derivative
involved in (42) is easily determined by computing the
derivatives of the Bernstein basis functions as described
in (58); the scalar product in (46) can be evaluated by com-
puting the product of the individual components (Eq. (66))
and then summing the resulting expressions (Eq. (65));
finally, the 1D integrals (45) can be analytically deter-
mined using the expression (63).

Remark 6 The Remark 5 is extensible to the line integrals
detailed above. In some situations (see for instance Fig. 4),
some boundaries 7;; may be aligned with the Cartesian axes.
In those cases, the constants 6, and 6, arising in the anti-
derivatives (39) can be chosen such as the product ﬁi My
vanishes in some of those boundaries. These constants can
be chosen independently for every face integral IiZD such as

the number of 1D integrals to be evaluated is minimized.
4.3 Polynomial degree

The reader may have noticed that due to the involved com-
positions, AoS; and R. ;0C; j» s well as the products of Bézier
curves and surfaces, the resulting polynomial term 7, ; can
potentially present a very high degree. In this sectlon we
detail the computation of this degree, as well as the order of
other terms involved in the intermediate steps.
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For the sake of simplicity, hereinafter we assume that the
polynomial a to integrate, as well as the Bézier mappings
S, and ¢, ;, have constant degrees along all their parametric
directions and for all their components:

ae @r,r,r; Si € Qs,s X @s,s X @s,s; éiJ € @c X @c’ (47)

with » > 0, s > 0, and ¢ > 0, and where the polynomial
spaces Q follow the notation introduced in Sect. 2.2. Accord-
ing to the definitions (34) and (42) it is straightforward to
obtain the degrees of the fields N, and Mi,i as:

N; € Qpy 951 X Qo g1 X Qo 21

M;€Q,_ xQ.,, “48)
and using (30), the order of A is computed as:
A€Qu,  XQ 1y, XQ, 4. (49)
Thus, the degrees of AoS; and 7; [recall Eq. (37)] are:
A0S, €Q, xQ,,xQ,,, t=20Cr+1),

(50)

P € Qsp1)=1, 3504+1)1-

Analogously to the case of A, the degree of ﬁi (Eq. 39),
and its composition R;o¢; ;, are simply computed as:

R; € Qs5041),350+1)-1 X Qagi1)=1,350+1)0 1)
RioéiJ € @6sc(r+1)—c X @6sc(r+1)—c'

Finally, the polynomial term 7, ; presents a degree:
Tij € Qpge(rin)-1- (52)

The degree of 7;; can be potentially very high what may
induce numerical instabilities. Nevertheless, in the examples
of Sect. 5.2.2 very high order polynomials were involved
(in the order of hundreds) but no instabilities were noticed.
This is due to the fact that we use Bézier curves and sur-
faces that are expressed in terms of Bernstein polynomials,
known to be numerically more stable than other choices, as,
for instance, monomial or Lagrange bases. Along with this
work, we compute derivatives, integrals, additions, and mul-
tiplications of Bernstein polynomials, that are stable opera-
tions, but we never evaluate polynomials. See Appendix A
for further details.

5 Numerical experiments

In this section, we show the performance of the presented
quadrature-free approach by means of numerical experi-
ments. In a first set of examples, in Sect. 5.1, we apply the
method to the computation of simple integrals in 2D and 3D

domains and compare them with standard methods based
on the use of boundary-conforming quadrature schemes.
Afterwards, in Sect. 5.2 we apply it to the solution of ellip-
tic PDEs using the immersed isogeometric framework pre-
sented in Sect. 2.

5.1 Computation of integrals over B-reps

Figures 6 and 7 present two numerical studies used to vali-
date the presented integration strategy. The two-dimensional
case, described in Fig. 6, consists of a quadratic Bézier sur-
face which is trimmed by three holes and a vertical curved
slice. The three-dimensional case, described in Fig. 7,
involves a trimmed domain defined by the intersection of
a cube and a free-form cubic trivariate. We compute the
mass M and the center of gravity C,, of these two geom-
etries, defined by:

M= / p(x)dx,
|4

1
Cy= M/pr(x)dx,

where the density is considered to be constant p = 1.

Reference values of (53) are obtained through boundary-
conformal quadrature schemes created by reparameter-
izing the interior of V with a technique similar to the one
presented in [14]. This approach subdivides the domain of
integration and leads to integration sub-cells. Standard quad-
rature rules can then be used to integrate numerically. For
the sake of comparison, an overkill number of quadrature
points (64 X 64 x 64) were used within each integration cell
for both examples.

The obtained results are presented in Table 1. For the
2D-geometry (Fig. 6), the computed relative differences,
compared with the reparameterization approach, are below
10713, i.e., close to machine precision. Nevertheless, for the
3D-geometry (Fig. 7), relative differences of the order of
1077 were noticed.

(53a)

(53b)

Remark7 We associate the larger differences in the 3D case
to the intrinsic tolerances involved in some geometric opera-
tions. In this work we employ algorithms provided by Open
CASCADE Technology [77] which is an open source C++
library designed for geometric modeling applications. For
instance, in the specific case of surface-surface intersections
between B-spline or Bézier surfaces, Open CASCADE lim-
its the lowest tolerance to 10~7, which truncates the achiev-
able accuracy and agrees with the results reported in Table 1.
Similar tolerances apply to other non-linear operations.
These limitations are not exclusive of Open CASCADE, as
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quintic Bezier
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|
I
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hole 1: x,=1/6, y,=1/.
hole 2: x,=1/2, y,=1/.
hole 3: x,=1/12, y,=1/t
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3,
6,
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(only used for validation)

(2.3)
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1
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S;
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/\

Fig.6 The two-dimensional trimmed geometry for the validation of the quadrature-free integration procedure

Fig.7 The three-dimensional

trimmed geometry for the

validation of the quadrature-free

integration procedure

Table 1 Comparison of the
quadrature-free integration
for the 2D and 3D trimmed

geometries depicted in Figs. 6

and 7, respectively

@ Springer

Unit cube

Tri-cubic Bezier

Trimmed domain

Intersection
é
Reference Quad-free Relative diff.
2D geo: M 2.100230243261870 2.100230243261870 <1071
Cy e 0.914136125211735 0.914136125211735 <1075
Cy-e 0.859802811586580 0.859802811586580 <107
3D geo: M 0.444790448933688 0.444790378608127 1.58 x 1077
Cy e 0.469169723257000 0.469169674580198 1.03 x 1077
Cy-e 0.400642146493445 0.400642138814180 1.91 x 1078
Cy e 0.457115007608867 0.457114990479802 3.74x 1078

The mass and the center of mass are evaluated and compared to reference values obtained with an alterna-
tive approach based on reparameterization
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similar issues can be found in other commercial and non-
commercial geometric kernels available: Tolerances of the
order of 107 are more than enough for most of the applica-
tions these tools are designed for. On the other hand, we use
Irit [78], an open-source geometric modeler, for other 2D
operations, as it is the case of the computation of intersec-
tions between planar spline curves. The involved tolerances
in Irit can be tuned according to our needs, which allows
us to reach a higher accuracy for the 2D problem. In addi-
tion, it is important to remark that these limitations pollute
the geometrical approximation not just for the presented
quadrature-free method, but as well for other approaches,
as for instance, for surface and volumetric untrimming, as
previously discussed in [67]. Nevertheless, we believe that
the obtained results confirm the viability of the quadrature-
free integration strategy for 3D geometries.

Remark 8 For computing the quantities (53) in the case of
the 2D-geometry (Fig. 6), the integration procedure can
be directly started from Eq. (36), by replacing 7,() with
(pOSi)(fc) and (pOSi)(fc) S,(X) - e, k=1,2,3, respectively.

5.2 Immersed isogeometric analysis

In this section, we demonstrate the effectiveness of the
quadrature-free approach for solving PDEs in the context of
the immersed isogeometric framework presented in Sect. 2.
In particular, we perform a series convergence analyses
for Poisson’s problem in different 2D (Sect. 5.2.1) and 3D
(Sect. 5.2.2) immersed domains. Optimal error convergence
rates are retrieved in all the cases. Finally, in Sect. 5.2.3,
the flexibility and robustness of the proposed approach is
demonstrated in the case of geometries that present a level
complexity analogous to the ones found in real industrial
applications.

For all the studied cases, we consider the approximated
Poisson’s problem (11), previously discussed in Sect. 2. We
adopt manufactured solutions:

in 2D,
in 3D,

Ug, (x,y) = sin(zrx) sin(xry)
(54)

Ue, (x,y, 27) = sin(zx) sin(xy) sin(zz)
except for the complex geometries in Sect. 5.2.3. Accord-
ingly, the source and Neumann terms, fand g, are defined as:

f=—Au,, (55a)

g=Vuy, -n. (55b)

The Dirichlet boundary I';, will be defined for each particu-
lar case, and, consequently, Neumann boundary conditions
will be applied on 'y, = 0Q \ I'},.

The choice of such regular functions as target solutions
(Eq. 54) is motivated by the aim of focusing our study on the

consistency error, mainly controlled by numerical integra-
tion and geometric representation errors, while keeping the
discretization error small. The approximation properties of
trimmed spline spaces for the solution of elliptic PDEs have
been previously studied in [67].

5.2.1 Poisson’s problem for 2D trimmed-geometries

Let us first tackle the Poisson’s problem for several two-
dimensional problems:

— asquare with a circular hole (Fig. 8),
— asquare with a free-form hole (Fig. 9),
a multi-perforated quarter annulus (Fig. 10).

Several solution degrees are considered: i.e., from p =1
for the trimmed squares, and p =2 for the annulus, to
p = 4. Importantly, the presence of conic sections require
to perform some geometric approximations such that the
integrals in the finite element operators involve only non-
rational polynomials. As already discussed in Remark 2, to
do so we rely on the results proven in [67] which reveal that
approximating the elements’ geometry using degree p leads
to optimal numerical results. Therefore, Béziers of degree p
are used to approximate the rational geometrical quantities
at the element level.

In addition, it is important to remark the presence of a
non-identity mapping in the problem depicted in Fig. 10.
This leads to the introduction of an extra non-polynomial
term in the bilinear form (see Remark 1) that is approxi-
mated through a local polynomial projection, as discussed
in Sect. 2.2.

The H' and L? relative norms of the solution errors are
evaluated along with the analyses. Optimal convergence
rates, p and p + 1, respectively, are retrieved for the three
cases, see Figs. 8, 9, and 10.

In the case of the plate with a hole case (Fig. 8), the L*®
norm was also studied observing an optimal convergence
behavior?.

In addition, for that particular test case, the results of
the proposed immersed approach were compared against
the ones obtained using a boundary-fitted method. As it
can be seen in Fig. 8, for a fixed element size &, both
results are comparable in terms of accuracy for all the
computed norms.

In Figs. 8, 9, and 10, the H' and L? norms were computed
using tensor-product Gauss-Legendre quadrature rules with
p + 6 points per direction for the active non-cut elements,
including the elements of the boundary-fitted method. For
the cut-elements, the norms were evaluated by means of

2 The L™ norm of a quantity f & L®(Q) is known to be lower
bounded by the L? norm as | |f| |22(Q) <C| [f||2w(g), where C is a con-
stant equal to the volume of the domain Q.
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