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A B S T R A C T   

Propelled by the rapid development of equipment, technology and computational power, the monitoring and 
simulation of the hydrodynamics in lakes have steadily advanced. In contrast, water quality simulations are more 
difficult to implement, due to the difficulty in obtaining large-scale, spatially resolved field observations for 
model validation and the number of interacting processes to be parameterized. Here we demonstrate that remote 
sensing data can be used to inform Lagrangian particle tracking in a large lake, and vice versa. We used total 
suspended matter (TSM) as a parameter that can be both estimated from the backscattering in satellite images 
and modelled in terms of particle abundance. Specifically, we compared TSM concentrations in Lake Geneva 
deduced from images taken by Sentinel-2 and Sentinel-3 satellites to those estimated from Delft3D hydrodynamic 
and particle tracking models. TSM concentrations obtained from both methods were compared over a time span 
of up to 5 days in several scenario studies, including instantaneous and continuous point sources and large-scale 
TSM simulations. The results demonstrate that remote sensing images can serve to calibrate and validate particle 
tracking models with independent observations. The model was able to capture both the position of a TSM cloud 
arising 5 days after an instantaneous point source release, and the direction of particle transport and TSM plume 
size resulting from a continuous source. Even when simulating the whole lake domain, model results closely 
approximated the satellite-derived TSM concentrations along lake transects within 9%. In return, the particle 
tracking model was able to complete partially impaired satellite images, and fill in a four-day image gaps be
tween satellite revisits. The synergy of remote sensing techniques and particle tracking modelling allows a rapid, 
continuous and more accurate analysis on solute transport in lakes.   

1. Introduction 

With ~ 3.3% of the earth’s land area (Verpoorter et al., 2014), lakes 
cover only a small part of the globe. Yet, they are essential and easily 
accessible sources of drinking water and home to a diverse flora and 
fauna. Lake management requires monitoring and assessing how phys
ical, chemical and biological processes interact (Bonnet et al., 2000). To 
understand and predict the functioning of lakes is a challenging task due 
to their high heterogeneity and the complex boundary conditions. 
However, technologies involving in-situ monitoring, hydrodynamic and 
water quality models and remote sensing observations can greatly 
facilitate this task (Kiefer et al., 2015). 

Field measurements of water quality parameters have been long 

employed as the only tool for lake monitoring. While field measure
ments can capture a wide variety of water quality parameters and 
remain an absolute reference for other methods, they are often limited in 
spatial and temporal resolution (Gholizadeh et al., 2016). In contrast, 
remote sensing images provide an extensive spatial coverage with 
minimum effort and in a timely manner, and various algorithms are 
available for estimating different water quality parameters from such 
imagery (Odermatt et al., 2012). Satellite images are therefore 
increasingly used for surface water monitoring of lakes (Kiefer et al., 
2015) and large reservoirs (Watanabe et al., 2018). But due to the op
tical complexity of lakes and rivers, and of the overlaying local atmo
sphere, remote sensing of inland water bodies is more challenging than 
for oceans (Dörnhöfer and Oppelt, 2016). Depending on spatial 
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resolution requirements, both ocean colour (SeaWiFS, MODIS, MERIS) 
and land colour satellite sensors (Landsat MSS/TM/OLI) can be used for 
lake monitoring. The former is advantageous for applications requiring 
high spectroradiometric resolution, e.g. using pigment absorption fea
tures, while the latter can resolve optically prominent features at smaller 
scales (Nouchi et al., 2019). Recently, the European Space Agency and 
the European Union launched the first generation of the Copernicus 
Earth observation constellation (formerly GMES; Aschbacher and 
Milagro-Pérez, 2012). It comprises, among others, of two Sentinel-2 
satellites with 10 to 60 m spatial resolution and 5-day joint revisit 
time (Drusch et al., 2012) and two Sentinel-3 satellites with 300 m 
spatial resolution and daily joint revisit (Donlon et al., 2012) for land 
and ocean monitoring, respectively. 

While remote sensing is particularly powerful in monitoring the 
surface layer of lakes (Lehmann et al., 2021), numerical modelling 
provides a convenient tool to evaluate the dynamics of the entire lake 
and to rationalize any remotely observed spatial variability (Bouffard 
et al., 2018; Curtarelli et al., 2014; Soulignac et al., 2018; Wynne et al., 
2013). It is thus sensible to couple remote sensing with numerical 
simulation to merge the advantages of each individual method. The 
most common coupled application consists in assimilating remotely 
sensed data to improve numerical models of hydrodynamics or water 
quality (Allan et al., 2016; Baracchini et al., 2020a; Chen et al., 2010; 
Stroud et al., 2009; Thomas et al., 2020). Most such models are based on 
the conventional Eulerian method, which is convenient for the incor
poration of boundary conditions and efficient in solving tracer dynamics 
(Platzek et al., 2014). This approach is interesting to study volume-based 
quantities such as concentration, but individual fluid particles are not 
identified. Alternatively, a combination of remote sensing and numeri
cal modelling may be applied using a Lagrangian approach. Lagrangian 
particle tracking methods have the advantage of strict conservation of 
mass, avoidance of numerical dispersion and easy incorporation of self- 
movement of simulated particles or flow-independent processes such as 
particle growth or decay. They are already widely employed in ocean 
and atmospheric research with, for instance, spectacular success in 
tracking oil spills in the Gulf of Mexico during the Deepwater catastro
phe (Liu et al., 2011) or emissions of banned ozone-depleting sub
stances (Park et al., 2021). While particle tracking methods are also 
established tools in limnology (Hoyer et al., 2015; Piccolroaz et al., 
2019; Razmi et al., 2014), the combination of particle tracking models 
with remote sensing products remains limited to a few applications (Xue 
et al., 2017) and requires further assessment. 

In this study, we propose a Lagrangian particle tracking model that 
interplays with remote sensing techniques to yield synergistic informa
tion from simulations and observations. The particle tracking model can 
be supported and validated by remote sensing results and, in return, 
provides the possibility for data inference and interpolation between 
satellite images. The synergy of both methods can comprehensively 
facilitate the understanding of transport processes in lakes, as both 
methods benefit from each other. We use Lake Geneva, located on the 
border of Switzerland and France, as our study site. Lake Geneva is the 
largest freshwater lake in Western Europe. It has a surface area of 580 
km2 and 89 km3 of volume, with a maximum depth of ~ 310 m. The lake 
is used as a drinking water source by more than 800,000 people and 
appreciated as a recreational site. The complex nature and the important 
role of this lake make it an attractive site for research studies (Wüest 
et al., 2021). We first adapted a previously published and fully validated 
hydrodynamic model of the lake (Baracchini et al., 2020b), and coupled 
it with a particle tracking module. Then, the particle tracking module 
was validated using satellite remote sensing data products. Finally, we 
assessed the advantages and potential uses of the combined particle 
tracking-remote sensing approach. 

2. Material and methods 

2.1. Hydrodynamic flow and particle modelling 

Delft3D, an open source three-dimensional (3D) hydrodynamic and 
water quality simulation software, was employed to perform numerical 
simulations (https://oss.deltares.nl/web/delft3d). Both the hydrody
namic flow and the particle tracking modules were used. The flow model 
in Delft3D solves the shallow water equations as well as the transport 
equations in 3D (Deltares, 2015), while the particle tracking module 
computes particle motions under a Lagrangian framework. The numer
ical model was set up based on bathymetry samples of Lake Geneva, and 
the complete initial conditions of the flow and temperature fields were 
extracted from the existing online open access simulation platform for 
Lake Geneva (https://meteolakes.ch/; Baracchini et al., 2020). For our 
simulation, the horizontal z-layer gridding system was converted into a 
bottom following sigma-gridding system. This coordinate trans
formation was necessary to allow interfacing with the particle tracking 
module and to better capture the topography of the beach side of Lake 
Geneva with a high resolution in shallow regions of the lake. 

The hydrodynamic model was set up with 100 layers in the vertical 
direction, with an average horizontal grid size of 300 × 400 m and a 
time step of 1 min. The model was driven by various observations as 
boundary conditions. Major parameters influencing current flow and 
temperature were of primary interests in this study and were specified 
and incorporated into the hydrodynamic model. Meteorological inputs 
were adapted from the COSMO1 data (https://www.meteoswiss.admin. 
ch). Meteorological parameters included air temperature, air pressure, 
wind velocity, wind direction, solar radiation, cloudiness and relative 
humidity. River discharge data as well as turbidity measurements were 
obtained from the Swiss Federal Office of the Environment (https: 
//www.bafu.admin.ch). Flow time series data were incorporated as 
boundary conditions at five points: the inlet and outlet of Lake Geneva’s 
main tributary, the Rhône River, and the inlets of three minor tributaries 
(Dranse, Aubonne and Venoge). 

In particle tracking, particle motion is described in a Lagrangian 
framework (Wilson and Sawford, 1996). In a flow field with given 
Eulerian velocities, the velocity U consists of a spatially resolved part U 
and a sub-grid part Û. Total displacement of a particle is the integral of 
both parts: 

ΔX =

∫ t+Δt

t
Udt =

∫ t+Δt

t
Udt +

∫ t+Δt

t
Ûdt = ΔX +ΔX̂ (1) 

When the time step Δt is large enough for the particle to ‘’forget’’ its 
previous velocity, a zero-order model is sufficient in practical 
applications: 

ΔX̂ = R (2)  

R ∼
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2DΔt•

√
G(0, 1) (3)  

where R is the random displacement of a particle over Δt, D is the 
diffusion coefficient, and G(0,1) is the standard Gaussian distribution. 
The zero-order model and the numerical scheme constitutes the basis for 
the particle tracking module of the Delft3D software (D-WAQ PART) 
employed for the simulation of particle transport in our study. The 
horizontal dispersion coefficient DH is computed as: 

DH = atb (4)  

where a and b are dimensionless coefficients and t is time. Here t and DH 
have the dimensions of [T] and [L2/T], respectively. In the simulation 
process, the particle tracking module inherits hydrodynamics from the 
flow module described above. The velocity from the flow calculation 
determines the advective term of the particle transport. The diffusive 
term however, is superimposed on the advection based on the local 
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condition of the flow. 

2.2. Field measurements 

Temperature measurements were taken at three observation sites, 
namely the Buchillon field mast: WGS84 6.39935◦ E, 46.45840◦ N, the 
LéXPLORE platform: WGS84 6.65776◦ E, 46.50094◦ N and SHL2: 
WGS84 6.58872◦ E, 46.45270◦ N (Fig. 1). These observations were used 
as data to calibrate and validate the sigma-layer hydrodynamic model. 
The SHL2 site provides surface water temperatures and vertical tem
perature profiles 18 times per year, as well as turbidity profiles. For 
turbidity measurements the Seapoint Turbidity Meter CTM214 was 
employed and an averaging filter with a window size of 3 m was applied 
for outlier removal (Nouchi et al., 2018). Temperature sensors at the 
Buchillon mast are deployed in 1 and 35 m below the free water surface. 
The LéXPLORE platform allows vertical temperature profiling from the 
water surface down to the local bottom of the lake (~100 m depth). All 
temperature data were collected and errors during recording were 
excluded. Velocity data were obtained from continuous ADCP mea
surements at the Buchillon station and the LéXPLORE platform. The 
velocity time series at the Buchillon mast is measured at 1 m below the 
water surface while continuous vertical profiles are measured at the 
LéXPLORE platform. The data was used as reference for model calibra
tion and validation. 

2.3. Remote sensing 

Remote sensing image data was obtained from the polar-orbiting, 
sun-synchronous Sentinel-2A and 2B, and Sentinel-3A and 3B satel
lites. The Sentinel-2 satellites are equipped with the Multi- Spectral In
strument, aimed at monitoring land surfaces (Drusch et al., 2012). The 
sensor resolves the visible, short-wave infrared and near-infrared parts 
of the electromagnetic spectrum in 13 bands, with a spatial resolution 
from 10 to 60 m. Sentinel-3′s main mission goal is to measure sea surface 
topography, sea and land surface temperature, and ocean surface colour 
(Donlon et al., 2012). The two Sentinel-3 satellites carry, besides several 
other Earth Observation instruments, the Ocean and Land Colour In
strument for water quality estimation. 

Total suspended matter concentrations (TSM) and turbidity are 
approximately proportional to particle backscattering and consequently 
to variations in the magnitude of spectral water-leaving reflectance 
observed by satellite sensors (Wen et al., 2018; Zhou et al., 2019). TSM 
and turbidity are known to correspond quite well (Neukermans et al., 
2012), but their linear proportionality can vary, primarily with particle 

size (Foster et al., 1992). We acquired and processed Sentinel-2 level 1C 
and Sentinel-3 level 1 full resolution data using the Python package 
SenCast (https://gitlab.com/eawag-rs/sencast). All data available for 
Lake Geneva were downloaded from CreoDIAS (https://creodias.eu/) 
and the Copernicus Open Access Hub. Atmospheric correction and 
water-leaving reflectance retrieval was performed using Polymer v.4.13 
(Steinmetz et al., 2011; Steinmetz and Ramon, 2018) and the default 
vicarious recalibration for OLCI products. Several semi-analytical algo
rithms for TSM retrieval were applied to both types of input data. Re
trievals using the 665 nm band (Vantrepotte et al., 2011) were chosen 
for further analyses, because Polymer produced less negative reflectance 
and artefacts related to adjacency effects than for the longer wave
lengths used by other algorithms. A comparison of remotely sensed TSM 
from Sentinel-3 and in situ measured turbidity at SHL2 (0–10 m average) 
in the years 2017–2018, as well as more detailed information on the 
performance of the remote sensing TSM retrieval, is shown in the Sup
plemental Information (Fig. S1). 

2.4. Calibration and validation of the sigma-layer hydrodynamic model 

Processed temperature data at the three major monitoring stations in 
Lake Geneva (Fig. 1), along with velocity measurements at the Buchillon 
field station and the LéXPLORE platform from 2018 to March 2019, 
were used for model calibration. The parameters calibrated were the 
bottom roughness (Z0), the horizontal eddy viscosity (CHV), the hori
zontal eddy diffusivity (CHD) and the wind drag coefficients, using a trial 
and error method. The model set-up and parameterization were vali
dated against temperature and velocity measurements from three 
weekly measurements in April 2019, June 2019 and August 2019. 

2.5. Calibration and validation of the particle tracking model 

The particle tracking model was calibrated with satellite images 
acquired in March to mid-April and July to September 2019. Validation 
was done using scenario studies with satellite images acquired during 
periods in 2019 that were not included in the model calibration. Three 
validation scenarios were applied: 

Instantaneous TSM point source, tracking a high concentration patch 
in the middle part of the lake (June 24 to 29, 2019). 

Continuous TSM point source from the Rhône River, with two days of 
release of TSM according to the turbidity measurement at the Rhône 
River inlet (June 28 to 29, 2019). 

Simulation of TSM in the whole lake domain (April 15 to 20, 2019). 
For the first scenario, a high concentration patch of TSM was 

Fig. 1. Map of Lake Geneva and the observation platforms that delivered temperature and velocity data used in the calibration and validation of the hydrodynamic 
model. Also shown (red line) is the position of the virtual sampling transect used in this work. 
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identified in the open water of the lake (between 6.462◦ E and 6.853◦ E) 
using remote sensing imagery. We then compared its evolution in sub
sequent images with the modelled evolution. The pixels of the highest 
TSM concentration were identified and one particle was released at the 
centroid of each of the identified pixels. The position of each particle 
was computed in the particle tracking simulation and compared with the 
centroid of each pixel processed from remote sensing images for each 
time step. A tracer test simulation confirmed that the TSM patch was not 
influenced by TSM input from the Rhône River over the time period 
considered (see Supplemental Information, Fig. S2). As the Rhône River 
is the major source of allochthonous TSM, we therefor assume that 
allochthonous TSM does not influence the simulation results for our area 
of concern. Furthermore, resuspension in the lake was also neglected as 
the Reynolds numbers are typically low and do not generate significant 
shear (Gloor et al., 1994). 

For the second scenario, the Rhône River was considered as the 
major source of TSM in Lake Geneva. TSM was continuously released at 
the Rhône River inlet from June 28 to 29, 2019, at concentrations 
positively correlated to the turbidity measurements at the Rhône River 
estuary (in Supplemental Information, Fig. S3). The plume simulated by 
the numerical model was then compared with the satellite image taken 
in the morning of June 29, 2019. In order to mimic the penetration 
depth of the satellite images, the simulation results included only the 
particles that were situated less than 10 m deep in the water column. 
Furthermore, a sensitivity analysis was performed on the dispersion 
coefficient. Three values of ‘a’ in equation (4) were chosen to verify the 
effect of change in magnitude for this dispersion coefficient, whereas the 
exponential term ‘b’ was kept as default since this exponential increase 
of the dispersion coefficient over time and length scale is not addressed 
in this study. 

For the third scenario, particles were released based on the TSM 
distribution observed across the whole lake. One hundred particles were 
released in the pixel with the maximum TSM concentration and the 
number of particles released was scaled down based on the relative 
concentration of TSM to the maximum TSM concentration. The simu
lation period lasted from April 15 to 20, 2019. The most distinctive 
pattern captured by Sentinel-3 images was located in the mid-east part 
of Lake Geneva during this period, while we masked the western side of 
the lake in order to avoid cloud buffer artefacts. As in scenario 2, the 
simulation results included only the particles that were less than 10 m 
deep in the water column. The features of the TSM patches were 
compared and a transect across the lake was chosen to validate the 
simulations’ and observations’ spatial consistence. 

2.6. Interpolation of satellite images from particle tracking simulations 

Under cloudy conditions, satellite images can only capture partial 
information of the area of interest. However, numerical models always 
provide uninterrupted information both in space and time. We use a 
simple gain-offset correction method to fill in missing information in 
images influenced by cloud coverage on particular days. In order to fill 
in the missing part of the satellite image, the information in the original 
image remains unchanged while the empty pixels in the satellite image 
obtain their new values Sn according to the corresponding pixel values in 
the numerical model P through a linear regression: 

Sn = Rt*P+Rb (5) 

The coefficients Rt and Rb are obtained from a least square fit from 
the valid data sets in processed satellite images and in the simulation 
results. In this manner, the pixels available in partly cloudy satellite 
images are kept, while cloud gaps are filled with values inferred from 
numerical simulations to obtain a complete TSM map. To validate thi
s interpolation approach, we manually created gaps in cloud-free im
ages. The inferred TSM in the gaps was then compared with the original 
TSM estimates from satellite imagery. 

3. Results 

3.1. Calibration of the sigma-layer hydrodynamic model 

The calibrated parameters of the sigma-layer hydrodynamic model, 
along with the original, validated z-layer model values, are shown in 
Table 1. The parameters Z0 was greater than the values from the z- layer 
model system while CHV and CHD remained close to their default values. 
Finally, the wind drag coefficients were set to a piecewise linear function 
instead of a linearly increasing relationship of wind speed (see Supple
mental Information, Fig. S4). 

3.2. Validation of the sigma-layer hydrodynamic model 

The calibrated sigma-layer hydrodynamic model was first validated 
against surface water temperatures (Fig. 2) and surface velocities 
(Fig. 3) measured at Buchillon station. Surface water temperature had 
an increasing trend from April 14 to 20 (Fig. 2a), while the mean surface 
water temperature remained relatively stable from June 9 to 15 
(Fig. 2b). During August 11 to 17, an upwelling event appeared near the 
lake shore, which caused the surface water temperature to drop 
continuously (Fig. 2c). Velocity measurements (Fig. 3) revealed that the 
mean surface velocity was around 0.05 m/s in April and June, whereas 
the velocity in August was higher, reaching ~ 0.1 m/s. Simulations 
yielded a good agreement in absolute values and in trends with the 
observed data for both surface temperature and velocity (Figs. 2 and 3). 

We then validated the performance of the sigma-layer hydrodynamic 
model based on three vertical temperature and velocity profiles 
measured at the LéXPLORE platform. Fig. 4 shows an example com
parison between the 3D simulation and field measurements in the ver
tical direction obtained in June 2019. The temperature profile reveals 
that stratification was still in the early developing stage and the velocity 
dropped rather rapidly from the water surface to a depth of ~ 20 m. The 
simulations were able to capture these features. 

The mean absolute error (MAE) and the root mean square error 
(RMSE) between the measurements and the simulations were computed 
for all three profiles, to evaluate the goodness of fit of the numerical 
model (Table 2). The MAEs of temperature were all below 0.8 ◦C and the 
MAEs of velocities were well contained within ~ 0.04 m/s while the 
temperature and velocity RMSEs were within 1 ◦C and 0.07 m/s 
respectively. 

3.3. Validation of the particle tracking model 

The simulation for an instantaneous point source was run for the 
period from June 24 to 29, 2019. Ten pixels of the highest TSM con
centration in the lake centre was taken as instantaneous release in the 
simulation. Fig. 5 shows the positions of the high concentration pixels in 
the centre of the lake obtained from the processed satellite images on 
June 24 and 29, 2019 (depicted as red dots in Fig. 5a and 5b), compared 
with the simulated particle tracks shown in close-up in Fig. 5c. The 
corresponding statistics of the centroids and the particles are given in 
Table 3. 

The visual comparison renders a good agreement between the pro
cessed satellite images and the particle tracking simulations. As depicted 
in Fig. 5, the cloud of patches moved from the centre towards the north 
shore of Lake Geneva over the course of five days. This transport of TSM 
was readily observed in the satellite images and was also well captured 

Table 1 
Original parameters of the z-layer model and calibrated values of the sigma- 
layer model.  

Parameter Z0 (m) CHV (m2/s) CHD (m2/s) Wind drag coefficients 

Z-layer  0.1 1 1 Linearly increasing 
Sigma-layer  1.1 1.2 1.2 Piecewise linear function  
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by the simulated particle movement. Results from the statistics in 
Table 3 indicated that deviations between the observations and the 
simulations were in the range of about one to two mesh grids, which is 
~ 200 to 400 m. On the fifth day, the observed and simulated centres of 
the clouds fell within ~ 400 m of each other, which is a short distance 
given the total path length of ~ 10 km travelled over the course of five 

days. 
In the second case, the particle tracking model was used to capture a 

continuous source of TSM release at the Rhône River inlet. In Fig. 6, the 
plume simulated by the particle tracking model is compared with the 
satellite image taken in the morning of June 29, 2019. The simulated 
plume agrees qualitatively with the observation from the satellite im
ages with respect to the direction of particle transport, plume size and 
concentration of TSM. As the simulation results demonstrate, the peak of 
the modelled plume was at a comparable distance to the mouth of the 
Rhône River inlet compared to the satellite observation. The main 
exception is how the simulated particle loads decrease towards zero, 
where the satellite observes about 3–4 g/m3 local background concen
tration. By design, a point source scenario can of course not reproduce 
such a background concentration. 

We used this example to evaluate the influence of the dispersion 
coefficient on simulation results. Fig. 7 depicts the results when 
dispersion coefficient constant ‘a’ (Eq.4) was modified from its Delft3D 
default value of a = 1, used in this study (Fig. 7a), to a = 0.1 (Fig. 7b) and 
to a = 10 (Fig. 7c). We conclude that the adjustment of this parameter is 
essential for conducting realistic Lagrangian studies. 

Fig. 2. Comparison between simulation (orange line) and observation (blue dots) of surface water temperatures at Buchillon station for three week-long periods in 
April (a), June (b) and August (c) 2019. 

Fig. 3. Comparison between simulation (orange line) and observation (blue dots) of surface velocities at Buchillon station for three week-long periods in April (a), 
June (b) and August (c) 2019. 

Fig. 4. Comparison of vertical profiles of simulated and observed temperature (a) and velocity (b) at LéXPLORE platform on June 14, 2019.  

Table 2 
Mean absolute error (MAE) and root mean square error (RMSE) between 
simulated and measured temperatures and velocity profiles at the LéXPLORE 
platform.  

Parameters April 
2019 

June 
2019 

August 
2019 

Vertical 
profile 

MAE Temperature 
(±◦C)  

0.77  0.67  0.48  0.30 

MAE Velocity (±m/s)  0.03  0.04  0.04  0.01 
RMSE Temperature 

(±◦C)  
0.82  0.71  0.57  0.42 

RMSE Velocity (±m/s)  0.04  0.06  0.07  0.02  
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The simulation for the entire lake domain lasted from April 15 to 20, 
2019. During this period, the transport pattern of the high concentration 
TSM patches were simulated daily by particle tracking. In contrast, the 
satellite images were hampered by cloud coverage, thus only data from 

April 17 to 20 were available. 
Fig. 8 illustrates the TSM concentrations obtained through satellite 

images and the particle tracking simulations. Again, there is a good 
qualitative match between the observed and simulated concentrations. 
A plume of high concentration patches of TSM moved from the east part 
of the lake towards the lake centre, while clinging to the northern shore 
of Lake Geneva. This pattern of transport was well captured by particle 
tracking. A splitting of the TSM patches in the open water of Lake 
Geneva was observed on April 20, and the model partly captured this 
dynamic behaviour. 

In Fig. 9, the observed and simulated TSM concentrations at the 
virtual sampling transect determined for April 17 to 20, 2019 is illus
trated. For both methods and at the entire transect, the TSM concen
tration fell within the range of 1–2.5 g/m3 throughout the period 
considered. The general trend observed at the transect was that the TSM 

Fig. 5. Comparison of centroids of high concentration pixels obtained from Sentinel-2 images (red dots) on June 24, 2019 (a) and June 29, 2019 (b) with positions of 
particles throughout particle tracking simulations (c). The burgundy dots in (c) are simulated particle positions on June 24, the red dots represent the simulated final 
particle positions on June 29 and the blue dots show the high concentration pixels from satellite images on June 29, 2019. 

Table 3 
Statistics of the centroids of high concentration pixels from the satellite image 
and the simulated particles.  

Date 
(June 29, 2019) 

Sentinel-2 
images 

Particle tracking Absolute 
difference 

Centre of X, Easting (m) 545,066 544,690 376 
Centre of Y, Northing (m) 148,834 148,760 74 
Half major principal axis (m) 1290 1460 170 
Half minor principal axis (m) 153 405 251 
Characteristic cloud size (m) 1887 3264 1377  

Fig. 6. Plume from the Rhône River processed from satellite images (a) and simulated by the particle tracking model (b) for June 29, 2019.  
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concentration increased on April 18, decreased on April 19 and under
went a small increase on April 20. This may be caused by the western 
movement of the TSM plume seen in Fig. 8, with high concentration 
parcels passing the transect on April 17, which led to an increase in the 
absolute TSM concentrations. After the patches passed through, the 
concentration dropped again. The increase in TSM on April 20 could 
result from the splitting of the plume (Fig. 8). Notably, the simulated 
temporal TSM concentration trends were often in good agreement with 
the processed remote sensing data for the middle of the transect, while 
near the boundaries the simulation deviated stronger from the obser
vation. The mean relative error between the TSM concentration ob
tained from satellite images and the particle tracking simulations along 

the transect was within ~ 9% while the root mean square error (RMSE) 
was 0.17 g/m3 averaged on all four days. 

3.4. Interpolation of satellite images from particle tracking simulations 

To assess the utility of particle tracking as a method to interpolate 
between satellite images, we manually impaired the satellite image of 
April 18, 2019, and subsequently replenished the image using particle 
tracking simulations. In a first step, we compared the simulation results 
against the results obtained from the satellite image on April 18 
(Fig. 10). Several remotely sensed TSM estimates scatter towards 0 g/ 
m3, which is neither confirmed by the modelled TSM, nor plausible 

Fig. 7. Sensitivity analysis on the dispersion coefficient constant ’a’ (Eq. (4)) with a value of 1 (a), 0.1 (b) and 10 (c).  

Fig. 8. Concentration of TSM obtained from Sentinel-3 satellite images (top) and the particle tracking model (bottom) from April 17 to 20, 2019, between 10.00 and 
11.00 h. On April 19, the satellite image was partly obstructed by clouds. 

Fig. 9. Concentration of TSM along the virtual sampling transect (Fig. 1) from April 17 to 20, 2019 obtained from both processed satellite images and the particle 
tracking simulations. 
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given that the corresponding pixels are distributed along the lake shore. 
Land proximity is known to impair remote sensing retrievals (Melet 
et al., 2020), we therefore remove all pixels with TSMMod greater than 2* 
TSMSat from further analysis. After exclusion of the invalid data points, a 
linear regression of simulation results versus the remote sensing data 
yielded a Pearson correlation coefficient of 0.64. The linear regression 
was then used to fill in missing information on the image where gaps 
were created manually (Fig. 11). The interpolation yielded a relative 
abundance of TSM and a position of the TSM plume in the impaired 
section that corresponded well to the original satellite image. However, 
the pattern of the TSM patches varied between the original image and 
the interpolation. 

4. Discussion 

4.1. The hydrodynamic model captures measurements of water 
temperature and velocity 

The surface temperature and velocity measurements are important in 
revealing the surface dynamics of the lake. The comparison of the 
measured surface temperature with those derived from the hydrody
namic model (Fig. 2) indicates that the model captured the trends of the 
surface temperature changes in the simulation periods and the temper
ature differences between model and observations were small. The 
continuous drop of surface temperature in August, shown in Fig. 2c, was 
likely caused by an upwelling event near the north shore of Lake Geneva, 
which counteracted the warming effect of the warmer summer air. This 
specific feature was correctly simulated by the numerical model, which 

is essential to determine the local temperature conditions. While tem
perature is important to many lacustrine processes, current velocity is 
crucial to determine the transport of any substance in lakes. The ve
locity, illustrated in Fig. 3, shows that the simulation rendered similar 
results as the ADCP measurements in magnitude and in the tendency of 
velocity change, for all three simulation periods. The vertical velocity 
profile shown in Fig. 4 suggests that velocity decreased drastically from 
the surface to a depth of ~ 20 m and stayed relatively stable at greater 
depths. This feature, along with the absolute velocities, were also 
satisfactorily captured by the numerical simulation. The validation by 
the temperature and velocity data thus confirmed that the hydrody
namic model is sufficiently accurate in simulating the dynamics of Lake 
Geneva and could serve as a basis for subsequent water quality 
simulations. 

4.2. Particle tracking simulations up to the whole lake domain are 
confirmed by satellite imagery 

The use of a Lagrangian approach is well-suited to predict particle 
transport in the lake. We here demonstrate that transport predictions by 
the Lagrangian particle model corresponded well to satellite imagery of 
TSM for different scenarios. The model accurately predicted the trajec
tories of particles released instantaneously in the centre of the lake 
(Fig. 5). It also reproduced the size and the shape of the plume arising 
from a continuous particle release at the Rhône River (Fig. 6). And 
finally, the model was also able to quantitatively capture particle 
transport in the whole lake domain (Fig. 8). Overall, our findings thus 
indicate that the particle tracking model is competent in simulating the 
dynamics of passive tracers in Lake Geneva and can serve as a tool for 3D 
water quality simulation for this deep lake. However, we note that 
successful simulation is contingent on appropriate calibration of the 
dispersion coefficient. Specifically, a sensitivity analysis of the disper
sion coefficient a (Fig. 7) suggested that the particle tracking simulation 
with a default value of a = 1 was suitable, though this value has a typical 
uncertainty of half a magnitude (Peeters et al., 1996). 

Further improvements in both particle tracking and TSM measure
ments by satellite may enhance the agreement between measurement 
and simulation. For example, an increase in TSM in the lake was 
observed on April 20 (Figs. 8 and 9). While such a feature may arise from 
plume movement and splitting as hypothesized herein, other possibil
ities include vertical redistribution or growth of phytoplankton. Such 
TSM production processes, however, are currently not included in the 
model. Furthermore, deviations were observed between measurement 
and simulation near the lake shore (Fig. 9). These deviations may be due 
to adjacency effects on the remote sensing retrieval method. It is further 
worth noting that the increased spatial variability in the remotely sensed 
data is likely due to noise in the observation system, a limitation that can 
possibly be mitigated by means of spatial aggregation, such as the 3x3 
pixel median applied in Fig. S1. 

Fig. 10. Comparison of the simulation results against the remote sensing data 
on April 18, 2019. Linear regression parameters (Eq. (5)) correspond to: Rt =

0.83 and Rb = 0.30. 

Fig. 11. Original satellite image (a), manually impaired image (b) and the interpolated image (c) on April 18, 2019.  
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4.3. Particle tracking can complement remote sensing data 

When remote sensing techniques and particle tracking are coupled, 
the two methods can complement one another for greater information 
gain. A particular strength of the particle tracking is that it provides 
uninterrupted results in space and time. Once the numerical model is 
validated, the results can fill in gaps in remote sensing data or serve as a 
means for interpolation between satellite images. The invalid data 
points identified in Fig. 10 demonstrate that the numerical model can 
mitigate potential errors from remote sensing techniques, whereas the 
valid data points validate the performance of the particle tracking 
model. As illustrated in Fig. 11, the missing information in the impaired 
satellite image could be inferred by the particle tracking model to yield a 
complete picture that is comparable to the original satellite image. In 
addition, while satellite imagery provides accurate information on the 
spatial distribution of concerned variables at specific times, it is not 
feasible to predict future scenarios only based on imaging. However, 
when coupling satellite imagery with particle tracking, the information 
from satellite images can be readily translated into particle distributions 
as initial conditions for the model, to allow estimations of future de
velopments of the movement dynamics. 

4.4. Limitations and outlook 

The proposed particle tracking model was based on a hydrodynamic 
model for Lake Geneva. While the hydrodynamic model functions to 
simulate large scale motions of the lake, it does not solve small scale 
motions such as mixing processes near the Rhône River inlet. In this 
study, given the grid size in this model, we assume that the riverine 
water has lost his momentum in the first grid point and the currents then 
evolve as a function of the lake dynamic only. A model with finer grid 
size as well as a flexible horizontal mesh system can help solving small 
scale dynamics and may elevate the simulation accuracy. 

Particle tracking is particularly suitable for near- to mid-field simu
lations and possesses advantage for the simulation of microorganisms. 
One successful example is the use of particle tracking to study the fate of 
infectious hematopoietic necrosis virus among salmon farms on the 
Discovery Islands region of British Columbia (Foreman et al., 2015). 
However, microbial water quality simulations rely on the availability of 
data to parameterize the effect of different environmental processes (e. 
g., sunlight) on microorganisms. To fully exploit the use of particle 
tracking to simulate microbial water quality, future work should thus 
include lab of field experiments to expand the current data set and 
include a greater variety of targets of interest to the aquatic system. 

When combined with remote sensing techniques, (Atwood et al., 
2019) demonstrated that satellite-derived images can be combined with 
particle tracking modelling to track microplastics in the Po River, Italy. 
In our study, examples investigated highlight the potential of particle 
tracking to interpolate between two cloud-free satellite overpasses. For 
instance, the revisit time of Sentinel-2 satellites for Lake Geneva region 
is around 5 days. Our method allows the 4-day gap of two consecutive 
sentinel-2 images to be filled with results from numerical simulations. In 
future work, the algorithm to complete the image filling process with 
numerical simulations could be further refined by implementing more 
complex interpolation methods than the simple linear regression 
method applied in this study. 

Despite the remaining shortcomings, all these studies indicate that 
particle tracking and remote sensing techniques are important and 
powerful tools in resolving environmental processes occurring in the 
aquatic systems. Improvement in the accuracy of numerical simulations, 
a more universal parameter retrieval method for satellite images and 
polished algorithms to connect simulation results and satellite image 
derived quantities are desired to further exploit the synergy between 
particle tracking simulations and remote sensing techniques. 

5. Conclusions 

Remote sensing has broad and diverse applications in monitoring 
lake hydrology, hydrodynamics and water quality, with the advantage 
of large spatial coverage and accurate mapping of parameters of interest. 
Yet the nature of satellite sensing fails to provide three-dimensional data 
output of real-time observations for deep lakes. On the other hand, 
numerical models can provide uninterrupted three-dimensional evolu
tion for hydrodynamic and water quality parameters. However, such 
models are usually complex and difficult to apply due to the lack of data 
for model calibration and validation. 

In this study, we set up a hydrodynamic and a subsequent particle 
tracking model for Lake Geneva and examined the validation of such a 
model by remote sensing techniques. We demonstrated that using sat
ellite images as observational data for validation of such particle 
tracking models is applicable and robust. The model, in return, provided 
the possibility for data interpolation and inference for remote sensing 
techniques to fill gaps between two snapshots, or to remedy data gaps 
due to cloud coverage in satellite images. The combination of remote 
sensing and particle tracking simulations thus provides a greater infor
mation depth than the sum of its part, and can markedly improve the 
understanding and the prediction of processes occurring in lakes. Given 
its Lagrangian basis, the particle tracking model can be readily adapted 
to simulate concentrations of microorganisms with self-dependent 
movement and die-off processes. It is thus a powerful tool for future 
microbial water quality modelling. The combination of remote sensing 
techniques and particle tracking water quality modelling promises a 
future with more accurate, real-time and flexible lake monitoring and 
modelling practices and thus facilitate decision making on water re
sources and environmental management. 
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N., 2021. LéXPLORE – a floating laboratory on Lake Geneva offering unique lake 
research opportunities. WIREs Water 8. https://doi:10.1002/wat2.1544. 

Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., Fahnenstiel, G.L., Dyble, J., Schwab, D.J., 
Joshi, S.J., 2013. Evolution of a cyanobacterial bloom forecast system in western 
Lake Erie: Development and initial evaluation. J. Great Lakes Res. 39, 90–99. 
https://doi.org/10.1016/j.jglr.2012.10.003. 

Xue, P., Schwab, D.J., Sawtell, R.W., Sayers, M.J., Shuchman, R.A., Fahnenstiel, G.L., 
2017. A particle-tracking technique for spatial and temporal interpolation of satellite 
images applied to Lake Superior chlorophyll measurements. J. Great Lakes Res. 43 
(3), 1–13. https://doi.org/10.1016/j.jglr.2017.03.012. 

Zhou, Q., Wang, W., Huang, L., Zhang, Y., Qin, J., Li, K., Chen, L., 2019. Spatial and 
temporal variability in water transparency in Yunnan Plateau lakes. China. Aquat. 
Sci. 81, 1–14. https://doi.org/10.1007/s00027-019-0632-5. 

C. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.jag.2022.102809
https://doi.org/10.1016/j.jag.2016.03.006
https://doi.org/10.1016/j.jag.2016.03.006
https://doi.org/10.1016/j.rse.2011.08.028
https://doi.org/10.1016/j.rse.2011.08.028
https://doi.org/10.1016/j.marpolbul.2018.11.045
https://doi.org/10.5194/gmd-13-1267-2020
https://doi.org/10.5194/gmd-13-1267-2020
https://doi.org/10.1016/j.watres.2020.115529
https://doi.org/10.1007/s000270050001
https://doi.org/10.1007/s000270050001
https://doi.org/10.1016/j.rse.2018.02.056
https://doi.org/10.1016/j.jag.2009.10.002
https://doi.org/10.1016/j.jag.2009.10.002
https://doi.org/10.5194/hess-18-3079-2014
https://doi.org/10.5194/hess-18-3079-2014
https://doi.org/10.1016/j.rse.2011.07.024
https://doi.org/10.1016/j.rse.2011.07.024
https://doi.org/10.1016/j.ecolind.2015.12.009
https://doi.org/10.1016/j.ecolind.2015.12.009
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2011.11.026
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0075
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0075
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0075
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0075
https://doi.org/10.3390/s16081298
https://doi.org/10.1007/BF00005731
https://doi.org/10.1007/BF00005731
https://doi.org/10.1016/j.watres.2015.06.014
https://doi.org/10.1016/j.watres.2015.06.014
https://doi.org/10.1016/j.scitotenv.2015.05.011
https://doi.org/10.1016/j.jag.2021.102547
https://doi.org/10.1007/s10712-020-09594-5
https://doi.org/10.4319/lom.2012.10.1011
https://doi.org/10.4319/lom.2012.10.1011
https://doi.org/10.1007/s00027-019-0626-3
https://doi.org/10.1080/22797254.2018.1493360
https://doi.org/10.1080/22797254.2018.1493360
https://doi.org/10.1016/j.rse.2011.11.013
https://doi.org/10.1038/s41586-021-03277-w
https://doi.org/10.1029/96JC01145
https://doi.org/10.1029/96JC01145
https://doi.org/10.1038/s41598-019-44730-1
https://doi.org/10.1002/2013WR014411
https://doi.org/10.1007/s00027-013-0321-8
https://doi.org/10.1016/j.jglr.2018.05.008
https://doi.org/10.1364/OE.19.009783
https://doi.org/10.1364/OE.19.009783
https://doi.org/10.1117/12.2500232
https://doi.org/10.1117/12.2500232
https://doi.org/10.1029/2007WR006747
https://doi.org/10.1029/2019WR026138
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0185
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0185
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0185
http://refhub.elsevier.com/S1569-8432(22)00011-5/h0185
https://doi.org/10.1002/2014GL060641
https://doi.org/10.1016/j.rsase.2017.12.004
https://doi.org/10.1016/j.rsase.2017.12.004
https://doi.org/10.1007/s00027-018-0572-5
https://doi.org/10.1007/s00027-018-0572-5
https://doi.org/10.1007/BF00122492
https://doi.org/10.1016/j.jglr.2012.10.003
https://doi.org/10.1016/j.jglr.2017.03.012
https://doi.org/10.1007/s00027-019-0632-5

	Coupling remote sensing and particle tracking to estimate trajectories in large water bodies
	1 Introduction
	2 Material and methods
	2.1 Hydrodynamic flow and particle modelling
	2.2 Field measurements
	2.3 Remote sensing
	2.4 Calibration and validation of the sigma-layer hydrodynamic model
	2.5 Calibration and validation of the particle tracking model
	2.6 Interpolation of satellite images from particle tracking simulations

	3 Results
	3.1 Calibration of the sigma-layer hydrodynamic model
	3.2 Validation of the sigma-layer hydrodynamic model
	3.3 Validation of the particle tracking model
	3.4 Interpolation of satellite images from particle tracking simulations

	4 Discussion
	4.1 The hydrodynamic model captures measurements of water temperature and velocity
	4.2 Particle tracking simulations up to the whole lake domain are confirmed by satellite imagery
	4.3 Particle tracking can complement remote sensing data
	4.4 Limitations and outlook

	5 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgements
	Funding
	Appendix A Supplementary data
	References


