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“On me posait souvent la question: “Mais alors quand vous faites de la recherche, vous êtes où,

vous êtes à quel niveau, qu’est-ce-que vous faites, une thèse c’est quoi, etc.” et j’ai trouvé une

façon graphique de le représenter que j’ai piquée à quelqu’un. [...] C’est ça la recherche. La

recherche fondamentale, elle est là. C’est, soudain, je vais dans le précipice. Soudain, je vais là

où personne n’a été avant. Et ça, c’est quand même une aventure de la pensée absolument

incroyable. C’est une des grandes aventures humaines. C’est aller, soudain, mesurer un truc

que personne n’a mesuré avant vous; essayer de faire un modèle sur un truc que personne n’a

fait avant vous. Et parfois, vous n’allez rien trouver. Et parfois, vous allez trouver un petit truc.

Et parfois, si vous êtes Einstein, vous allez faire un énorme lobe comme ça. Le truc exaltant,

c’est pas ça, c’est pas seulement la découverte, c’est essayer. C’est être au bord du précipice;

vous n’avez plus de bouquin qui vous dise ce que vous allez trouver. [...] Et ça, il n’y a pas

tant de métiers que ça qui vous permettent d’aller aux frontières de la connaissance et de les

repousser un petit peu. Je vous invite à cette aventure de la pensée humaine.”

Julien Bobroff, Pourquoi fait-on de la recherche (Transcription d’un extrait de la conférence de

Julien Bobroff sur la supraconductivité au lycée Saint-Louis le 17 décembre 2011.)

Image: Matt Might, The Illustrated Guide to a PhD.
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Abstract
In spin systems, geometrical frustration describes the impossibility of minimizing simulta-

neously all the interactions in a Hamiltonian, often giving rise to macroscopic ground-state

degeneracies and emergent low-temperature physics. In this thesis, combining tensor net-

work (TN) methods to Monte Carlo (MC) methods and ground-state energy lower bound

approaches, we study two-dimensional frustrated classical Ising models. In particular, we

focus on the determination of the residual entropy in the presence of farther-neighbor interac-

tions in kagome lattice Ising antiferromagnets (KIAFM).

In general, using MC to determine the residual entropy is a significant challenge requiring

ad-hoc updates, a precise evaluation of the energy at all temperatures to allow for thermody-

namic integration, and a good control of the finite-size scaling behavior. As an alternative, we

turn to TNs; however, we argue that, in the presence of frustration and macroscopic ground-

state degeneracy, standard algorithms fail to converge at low temperatures on the usual TN

formulation of partition functions. Inspired by methods for constructing ground-state energy

lower bounds, we propose a systematic way to find the ground-state local rule using linear

programming. Characterizing the rules as tiles that can be tessellated to form ground states of

the model gives rise to a natural contractible TN formulation of the partition function. This

method provides a direct access to the ground-state properties of frustrated models and, in

particular, allows an extremely precise determination of their residual entropy.

We then study two models inspired by artificial spin systems on the kagome lattice with out-

of-plane (OOP) anisotropy. The first model is motivated by experiments on an array of chirally

coupled nanomagnets. We argue that the farther-neighbor to nearest-neighbor couplings

ratios in this system are much smaller than in the dipolar case, J2/J1 being of the order of

2%. A comparison of the experimental correlations with the results of extensive TN and MC

simulations shows that (1) the experimental second- and third-neighbor correlations are

inverted as compared to those of a pure nearest-neighbor model at equilibrium (even with a

magnetic field), and (2) second-neighbor couplings as small as 1% of the nearest-neighbor

couplings will affect the spin-spin correlations even at fairly high temperatures.

Motivated by dipolar coupled artificial spin systems, we turn to the progressive lifting of the

ground-state degeneracy of the KIAFM. We provide a detailed study of the ground-state phases

of this model with up to third neighbor interactions, for arbitrary J2, J3 such that J1 À|J2|, |J3|,
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Abstract

obtaining exact results for the ground-state energies. When all couplings are antiferromag-

netic, we exhibit three macroscopically degenerate ground-state phases and establish their

residual entropy using our TN approach. Furthermore, in the phase corresponding to the

dipolar KIAFM truncated to third neighbors, we use the ground-state tiles to establish the

existence of a mapping to the ground-state manifold of the triangular Ising antiferromagnet.

Keywords: condensed matter physics, Ising model, antiferromagnetism, kagome lattice, frus-

tration, residual entropy, tensor networks, VUMPS, Monte Carlo, ground-state energy lower

bounds
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Résumé
Dans les systèmes de spins, la frustration géométrique désigne l’impossibilité de minimiser si-

multanément tous les termes du Hamiltonien, ce qui donne souvent lieu à des fondamentaux

macroscopiquement dégénérés et à une physique émergente à basse température. Dans cette

thèse, en combinant des méthodes de réseaux de tenseurs (TN) à des méthodes de Monte

Carlo (MC) et à des approches permettant de déterminer des bornes inférieures de l’énergie

du fondamental, nous étudions des modèles d’Ising classiques frustrés à deux dimensions.

Nous nous intéressons particulièrement à la détermination de l’entropie résiduelle lorsque

des interactions à plus longue portée sont présentes dans des modèles d’Ising antiferroma-

gnétiques sur le réseau kagomé (KIAFM).

En général, l’utilisation de MC pour déterminer l’entropie résiduelle est un défi important

nécessitant des mises à jour ad-hoc, une évaluation précise de l’énergie à toutes les tem-

pératures pour permettre l’intégration thermodynamique, et un bon contrôle des effets de

taille finie. Nous explorons le potentiel des TNs comme alternative au MC. Dans un premier

temps, nous remarquons qu’en présence de frustration et de dégénerescence macroscopique

du fondamental, les algorithmes standards ne convergent pas lorsqu’ils sont appliqués à la

formulation usuelle de la fonction de partition en termes de réseaux de tenseurs. Inspirés par

des méthodes permettant de construire des bornes inférieures pour l’énergie du fondamental,

nous proposons une approche systématique pour trouver la règle qui caractérise le fonda-

mental en utilisant la programmation linéaire. Les fondamentaux du modèle peuvent être

construits en pavant le réseau à l’aide de motifs qui correspondent à cette règle. Cela donne

lieu à une formulation naturelle de la fonction de partition à l’aide d’un réseau de tenseurs qui

peut être contracté. Cette méthode donne un accès direct aux propriétés des fondamentaux de

modèles frustrés et, en particulier, permet de déterminer leur entropie résiduelle de manière

très précise.

Nous étudions ensuite deux modèles inspirés par des systèmes de spin artificiels sur le réseau

kagomé ayant une anisotropie hors du plan (OOP). Le premier modèle est motivé par des

expériences menées sur un réseau de nano-aimants couplés par une interaction chirale. Nous

fournissons des éléments suggérant que le rapport des couplages à longue portée au couplage

entre premiers voisins est bien plus faible que dans le cas dipolaire, J2/J1 étant de l’ordre de

2%. En comparant les corrélations expérimentales à des résultats détaillés issus de simula-

tions TN et MC, nous montrons (1) que les corrélations expérimentales aux deuxièmes et
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troisièmes voisins sont inversées par rapport à celles d’un modèle purement premiers voisins

à l’équilibre (même en prenant en compte un champ magnétique), et (2) que des interactions

aux deuxièmes voisins de l’ordre de 1% des interactions aux plus proches voisins affectent les

corrélations même à des températures relativement élevées.

Motivés par des systèmes de spins artificiels avec couplages dipolaires, nous nous intéressons

ensuite à la levée progressive de la dégénérescence du KIAFM. Nous effectuons une étude

détaillée des phases du fondamental de ce modèle avec des couplages jusqu’aux troisièmes

voisins, pour des valeurs arbitraires de J2, J3 satisfaisant J1 À |J2|, |J3|, et nous obtenons

des résultats exacts pour l’énergie des fondamentaux. Lorsque tous les couplages sont anti-

ferromagnétiques, nous décrivons trois phases macroscopiquement dégénérées dont nous

déterminons l’entropie résiduelle à l’aide de notre approche de TNs. De plus, dans la phase

correspondant au modèle dipolaire tronqué aux troisièmes voisins, nous utilisons les motifs

décrivant le fondamental pour démontrer rigoureusement qu’il existe une relation avec l’en-

semble des fondamentaux du modèle d’Ising triangulaire antiferromagnétique.

Mots-clés : matière condensée, modèle d’Ising, antiferromagnétisme, réseau kagomé, frustra-

tion, entropie résiduelle, réseaux de tenseurs, VUMPS, Monte Carlo, bornes inférieures pour

l’énergie du fondamental
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Introduction

In 1920, the statistical mechanics book of Gibbs is only twenty years old, and quantum

mechanics is in its infancy. Wilhelm Lenz, a physics theory professor at Hamburg University

and former student of Sommerfeld, proposes to explain the Curie-Weiss law using a model in

which magnetic moments are not able to rotate freely but are constrained to a certain axis, and

can only take values plus or minus one [1]. In the hope of explaining ferromagnetism starting

from microscopic interactions and motivated by this first success, Lenz and his student Ernst

Ising introduce the following model1:

H =−J
∑
〈i , j 〉

σiσ j , (1)

where the interactions J > 0 between the local magnetic moments σi =±1 are only of nearest-

neighbor range, 〈i , j 〉 describing nearest-neighbor pairs on the lattice. They hope that this

simple microscopic law can explain the macroscopic properties of magnets; but Ising solves

the linear chain exactly and shows that there is no spontaneous magnetization [3–5]. This is

the origin of the now celebrated Ising model.

Part of the importance of the Ising model comes from the fact that it can be seen as a semiclas-

sical approximation of Heisenberg’s model for quantum spins [6]

H =−J
∑
〈i , j 〉

Ŝi · Ŝ j , (2)

where the nearest-neighbor interaction arises from the overlap of the electronic wavefunctions

on neighboring atoms and the Pauli exclusion principle2. Moreover, it is exactly solvable in a

range of cases. Perhaps the most notable case is the development of Kramers and Wannier’s

transfer matrix formalism3 [9, 10] by Lars Onsager to solve the 2D square lattice Ising model.

As we will see, the transfer matrix approach can be seen as one of the origins of tensor

1This modern expression of the model is actually due to Pauli [2].
2It seems that Lenz asked Ising two questions for his thesis: justify using interactions of nearest-neighbor range,

and study analytically the three-dimensional Ising model [7]. With his model, Heisenberg answered the first
question in 1928, four years after Ising finished his PhD. Physicists are still developing tools to answer the second
question. (See also [8] for a history of the Ising model.)

3In the one dimensional case, they state “The task of finding the state sum can be reduced to finding the largest
eigenvalue of some matrix.”
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Introduction

networks [11]. A number of other planar Ising models have been solved exactly [12–18] in

the few years following Onsager’s and Kaufman’s solution to the model on the square lattice

[19, 20], but it was understood only later why all planar translation invariant Ising models

are exactly solvable [21]. The true importance of the Ising model comes from its behavior

at the critical temperature, where the free energy of the model has a non-analytic behavior

and the macroscopic behavior changes drastically from paramagnetism to ferromagnetism.

In many ways, it is the archetypal model for the study of collective phenomena and phase

transitions. Although the ideas of scale invariance, universality and renormalization group

originate elsewhere, thanks to its apparent simplicity, the Ising model is the textbook example

of these concepts. The three-dimensional version of the model still is of importance to this day,

for instance as a challenging application of the conformal bootstrap [22]. In its generalized

expression,

H = ∑
(i , j )

Ji , jσiσ j (3)

and due to its simplicity, the Ising model also has applications in countless fields in and

outside of physics. A non-exhaustive list includes the study of spin glasses[23, 24], of alloy

thermodynamics [25], of solid-on-solid phase transitions [26], but also in the modeling of

social dynamics [27] and economics [28].

In this thesis, we are interested in the properties of a particular family of Ising models, namely

frustrated Ising models. The archetypal example is that of the triangular lattice Ising antifer-

romagnet (TIAFM), first studied by Wannier [14]. In this case, the interactions are assumed

to be of nearest-neighbor range and antiferromagnetic (J > 0). As Wannier underlines in his

work, from the point of view of the partition function, ferromagnetism is not very different

from antiferromagnetism on bipartite lattices in the absence of a field, and the ground state

just has Néel long-range order (LRO). However, the triangular lattice is not bipartite, which

results in a singular property of the ground state. Because of the impossibility to minimize the

energy on each bond of a single triangle (Fig. 1a), the antiferromagnetic Ising Hamiltonian has

six different ground states on this triangle. It is easy to see from Fig. 1b that the ground state of

the model on a triangular lattice has a macroscopic ground-state degeneracy, characterized

by a non-zero residual entropy per site:

STIAFM = lim
N→∞

1

N
ln

(
W (N )

TIAFM

)
≥ 1

3
ln(2), (4)

where N is the number of triangular lattice sites, and W (N )
TIAFM is the number of ground states of

the model for a certain lattice size (growing exponentially with the size of the lattice). Using the

transfer matrix formalism, Wannier and independently Houtappel [14–16] computed exactly

the TIAFM residual entropy as

STIAFM = 0.323066... (5)

Another lattice on which the Ising antiferromagnet has a macroscopic ground-state degeneracy

2
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Figure 1 – Geometrical frustration. (a) The nearest-neighbor Ising antiferromagnet on a
triangle has geometrical frustration: all three spin pairs cannot be antiferromagnetically
aligned. This results in a macroscopic ground-state degeneracy of the model on (b) the
triangular lattice and (c) the kagome lattice. The black circles correspond to sites on which the
spin can be either up or down without changing the energy.

is the kagome lattice (Fig. 1c). It was first introduced in 1951 by Syozi [17], who found it as

the star-triangle transformation of a decorated honeycomb lattice with one additional spin in

the middle. It is of particular interest for the ferromagnetic Ising model because each site has

the same number of nearest neighbors as in the square lattice, and Syozi used it to disprove

the natural conjecture that the Curie point is solely determined by the coordination number

[17]. It is Husimi who suggested the name kagome, which describes a pattern for traditional

Japanese woven bamboo baskets. Syozi showed that there is no phase transition in the kagome

lattice Ising antiferromagnet (KIAFM), and Kano and Naya computed its residual entropy [18]:

SKIAFM = 0.501833... (6)

The antiferromagnets on non-bipartite lattices such as the triangular and kagome lattices are

often referred to as frustrated. More precisely, the term “frustration” was coined by Toulouse

(inspired by a lecture from Anderson) in the context of spin glasses to describe the impossibility

of satisfying simultaneously all exchange interactions in disordered systems [29]. He made

the remark that frustration can also occur on perfectly regular lattices, referring to the TIAFM.

The type of frustration arising in these systems is now described as geometrical frustration,

referring to the inability to propagate to the whole lattice the favored local order [31–33].

As we just saw, the frustration leads to an accidental (not symmetry-induced) and typically

macroscopic ground-state degeneracy. Interestingly, the presence of a macroscopic ground-

state degeneracy does not imply any results for the decay of the spin-spin correlations in the

ground state [34]. In fact, the TIAFM has algebraically decaying spin-spin correlations [35],

while the KIAFM has a very short correlation length [36, 37]. The ground state can even have

LRO, as is the case of the AF Potts model on the dice lattice [38].

The TIAFM and KIAFM are not the first historical instances of a macroscopic ground-state

degeneracy. Indeed, ice, the solid phase of water, also possesses a residual entropy correspond-

ing to a macroscopic ground-state degeneracy [39]. Pauling [40] very successfully explained

the phenomenon. His result relies on the fact that in ice, the water molecules essentially

keep their integrity and are arranged in such a way that each oxygen atom has four other
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Figure 2 – Water ice and spin ice. (a) The arrangement of water molecules in ice, with the
oxygen located at the center of the tetrahedron and the two hydrogen atoms in the direction
of the tetrahedra symmetry axes. This results in a "two-close, two-far" ice rule. (b) Spin ice :
the spins are aligned with the symmetry axis of the tetrahedra and are either pointing in or out
of each given tetrahedron. The stabilized states respect a “two-in two-out” rule, an “ice-rule”
by analogy with water ice.

nearest-neighbor oxygen atoms. Along a bond between two oxygen atoms there are two

equilibrium positions for the hydrogen atom. This results in the Bernal and Fowler “ice rules”

for the arrangements of the H+ ions in ice [41]: there should be only one proton per bond, and

for each oxygen, there should be two protons near it, and two protons away from it (Fig. 2a).

Pauling suggests a simple approximation: among the sixteen local configurations associated

with each oxygen, only six respect the ice rules. Neglecting constraints on these configurations,

the residual entropy of ice can be estimated as

SWater = 1

NO
kB ln

(
22NO

(
6

16

)NO
)

(7)

in very good agreement with the experimental result.

Water ice gave its name (by historical analogy) to a set of pyrochlore oxides which can be

effectively described by Ising degrees-of-freedom on a lattice of corner-sharing tetrahedra,

constrained to pointing along the direction connecting two tetrahedra centers, and coupled

effectively by ferromagnetic dipolar interactions [42–44]. In these spin ice systems (typical

instances being Dy2Ti2O7 and Ho2Ti2O7), the interactions lead to frustration and a two-in

two-out rule for the Ising spins, i.e., an ice rule (Fig. 2). A number of compounds exhibit

magnetic properties intrinsically related to an underlying kagome lattice structure, the most

notable examples being spin glasses in jarosites [45, 46], quantum spin liquids4 in pyrochlores

4In the rest of this work we often mention the notions of spin liquids, spin glasses and spin ice. It is important
to realize that, because these terms are of historical origin and have often been introduced by analogy with one or
the other feature of water, ice and glasses, they are not necessarily mutually exclusive. The term spin ice typically
is connected to the existence of a rule analogous to the Bernal and Fowler rules in water ice; the term spin liquid
often refers to the absence of symmetry breaking at zero temperature, and the spin glasses are often called so by
analogy between the magnetic disorder in the spin glass and the positional disorder of conventional glass. All
three notions require a more detailed definition than we can provide here and we refer the interested reader to
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[46], and more recently in herbertsmithite [46, 49, 50] and kapellasite [51]. The important

difference between these compounds and the spin ice is that the quantum fluctuations do not

play a significant role in the latter.

This semi-classical aspect does not prevent spin-ice compounds from exhibiting fascinating

emergent physics [52]. First, the long-range dipolar couplings stabilize an ice phase (a cooper-

ative paramagnet), which survives down to very low temperature ([53] and references therein).

Second, the spin ice materials are very sensitive to external magnetic fields [52], resulting in

various collective behaviors depending on the field orientation, of which we will only mention

the <111> magnetization plateau [43, 54]. In this second case, the result relates to the fact that

the pyrochlore lattice can be obtained by stacking kagome-lattice planes and decorating each

kagome lattice triangle with an additional spin placed in alternance on one or the other side

of the kagome plane. When the temperature and the field are low enough, the moments of

these external spins are aligned with the field, but the moments in the kagome planes can

keep respecting an ice rule of their own. Reducing the analysis to the kagome planes, in the

presence of the field the problem is analogous to the KIAFM in a longitudinal field, which

exhibits a magnetization plateau in the ground state. At values of the field corresponding to

this plateau, the ground state of the model can in turn be mapped onto a model of hardcore

dimers on the honeycomb lattice, yielding a residual entropy related to that of the TIAFM, and

algebraic spin-spin correlations [52, 54–56]. It is common to refer to classical spin systems

exhibiting a macroscopic ground-state degeneracy together with spin-spin correlations de-

caying to zero at long distances as classical spin liquids [48, 57, 58]. This term comes from

the quantum spin liquids introduced by Anderson [59] for describing alternatives to mag-

netic long-range order in frustrated quantum antiferromagnets. The ice phase of spin ice, or

the ground state of the TIAFM, despite their macroscopic degeneracy and being smoothly

connected to the behavior of the model at high temperature, exhibit an algebraic decay of

the spin-spin correlations; for the sake of precision one can then talk about algebraic spin

liquids. An alternative name for these phases is cooperative paramagnet, a term introduced by

Villain [60] to underline the distinction with a usual paramagnet where the correlations decay

exponentially. A number of cooperative paramagnetic phases are also known as Coulomb

phases, when the local constraint (for instance the ice rule) can be expressed as a conservation

law for a flux that can be coarse-grained to an analogue of a divergence-free magnetic field

[53, 61]. The notion of Coulomb phase or Coulomb gases is very general and such phases

can be realized in a number of systems, see Refs. [61, 62]. Although in most systems the term

Coulomb phase refers to the fact that defects on configurations that would otherwise belong

to the ground-state manifold (local breakings of the gauge constraint) have effective Coulomb

interactions of entropic origin [61], in the dipolar, pyrochlore spin ice, introducing charges

via a “dumbbell” description of the spins shows that the dipolar spin-spin interaction results

(approximately) in Coulomb interactions between the charges. In that case, the effective

Coulomb interactions are of energetic origin [53, 63]. We thus see that in spin ice compounds

the long-range interactions play a crucial role.

Refs. [47, 48] for in-depth discussions.
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This leads us to a different kind of spin ice: artificial spin ice. These artificial systems are

arrays of mesoscopic single-domain nanomagnets, with the great advantage that the local

magnetic moments can be probed individually using magnetic microscopy techniques, such

as magnetic force microscopy (MFM) or X-ray photoemission electron microscopy (XPEEM).

The nanomagnets interact either via their magnetostatic fields or, in the case of connected

nanomagnets, via exchange interactions. First introduced as an artificial analogue of spin ice in

two dimensions [64, 65], the versatility of the designs and the relative ease of observation have

made the study of artificial spin systems a field in its own right, with a domain of applications

now far exceeding spin ice and even statistical spin systems (see for instance the recent reviews

Refs. 57, 66).

The first artificial spin ice devices were athermal systems which required a demagnetization

protocol to reach low energy states [67–70]; they nonetheless enabled the direct observation

of an ice rule in kagome spin ice [71]. In the hope of studying at equilibrium statistical physics

problems, one direction of pursuit for artificial spin systems has been the development of

thermally active artificial spin systems [72–78], with developments still ongoing to allow one

to probe very low energy states, for instance the long-range ordered ground states of kagome

spin ice [79] 5. There is a wide range of artificial spin systems geometries, involving periodic

frustrated systems of elongated magnets with in-plane or out-of-plane anisotropy [80–82],

periodic systems of x-y magnets, quasicrystals and even 3D structures, as summarized in Box

2 of Ref. 66. The flexibility in the design of these arrays makes them extremely useful for the

study of frustration and emergent Coulomb phases in two dimensional systems [64, 69, 83].

If one is interested in studying at-equilibrium statistical mechanics of frustrated systems,

artificial spin systems might not seem at first as a promising approach. Indeed, if the goal is to

explore collective phenomena and exotic emergent models, it might seem that it will be a great

challenge for the single spin flip dynamics which is available either through demagnetization

protocols or thermalization procedure [57]. In fact, it was shown that in thermally active

systems, the single-spin-flip dynamics does give access to states that correspond locally to low-

temperature configurations but have clear signatures of out-of-equilibrium physics on a larger

scale (see e.g. [84]). Moreover, one could expect the modelization with Ising Hamiltonians

to be limited by structural disorder in the arrays or the large size of the nanomagnets in

regards to the lattice spacing. Yet, great success has been achieved with simple descriptions

ignoring the effect of disorder: in a great majority of the artificial spin systems, a modeling

with the interactions of dipolar nature and corrections to the nearest-neighbor interactions is

sufficient. It has even been suggested that the disorder in the switching fields of the arrays

actually helps athermal systems to explore a variety of low-energy states [85–87]. The presence

of the long-range couplings has been shown to play an essential role in the selection of the

spin-spin correlations, even at fairly large effective temperatures, for instance in the case

of the kagome ice (KSI) [71, 88] and the dipolar kagome Ising antiferromagnet (DKIAFM)

5Note that the question of whether these thermally active systems actually allow to reach better equilibrium
than athermal systems with a demagnetization protocol is subtle, since both techniques only give access to
single-spin-flip dynamics; see next paragraph.
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[80, 81].The in-plane kagome artificial spin ice is a particularly striking example of the essential

effect of the long-range, dipolar interactions: indeed, while the model truncated to second-

neighbor interactions and the full dipolar model have the same long-range ordered ground

states, the nature of the phases at finite temperature and the transitions to these phases are

fundamentally different due to the long-range interactions. This is well characterized again by

introducing charges based on a dumbbell picture of the spins: the spin ice II phase is a spin

liquid (it has a residual entropy) but there is an underlying charge order. Another manifestation

of the presence of long-range dipolar couplings is the example of square ice, where a charge

picture yields a background of charge zero vertices. Depending on the magnetic properties of

the background (ordered or disordered) and on whether the pairs of charge defects are free to

move, the defects can be identified to classical analogues of magnetic monopoles (as in spin

ice) [57, 89]. By contrast, in the in-plane kagome ice, the background is charged; again, when

one observes defects on this background they may be called “monopoles” when the charge

background is disordered, and one can study the interactions between the charge defects on

an ordered or disordered background [72, 89–92], yet, importantly, one should note that the

underlying phase is not a Coulomb phase [57].

The case of the KSI and the DKIAFM is particularly interesting, because at the nearest-neighbor

level the models are strongly related. Indeed, the nearest-neighbor version of the KSI is

described by Ising spins~si = σi~ei on the sites of the kagome lattice, with the unit vectors

{~ei }i=1,2,3 pointing in the directions connecting two triangle centers. By convention we can

take~ei to point always to the center of up triangles. Then

HNN - KSI =−J1
∑
〈i , j 〉

~si ·~s j = J1

2

∑
〈i , j 〉

σiσ j = 1

2
HKIAFM. (8)

The ferromagnetic nearest-neighbor KSI is therefore directly related to the antiferromagnetic

nearest-neighbor Ising model with out-of-plane anisotropy, and in the absence of farther-

neighbor interactions, they exhibit the same physics [80, 93, 94]. Yet, the farther-neighbor

interactions differ and create two very different behaviors. In the KSI, Monte Carlo simulations

predict a series of magnetic phase transitions and two very different spin ice phases [95–98]. In

contrast, in the DKIAFM [81, 82], a first-order phase transition to a long-range ordered ground

state has been established [82, 99, 100].

The fact that farther-neighbor interactions induce such a strong difference can be expected

already by looking at the model with next-nearest-neighbor interactions. Indeed,

HJ1−J2 : KSI =−J1
∑
〈i , j 〉

~si ·~s j − J2
∑

〈i , j 〉2

~si ·~s j = J1

2

∑
〈i , j 〉

σiσ j + J2

2

∑
〈i , j 〉2

σiσ j . (9)

The next-nearest-neighbor interactions in KSI are antiferromagnetic (J2 < 0), resulting in

effective ferromagnetic interactions in the corresponding Ising model, whereas the DKIAFM

has all pair interactions antiferromagnetic. As a result, in the case of KSI, the next-nearest-

neighbors interaction immediately lifts the macroscopic ground-state degeneracy to a long-
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Figure 3 – Definition of the couplings in Eq. 10. There are two types of third-neighbor couplings
based on the distance; we call them 3? if they cross the hexagon and 3|| if they correspond to
two nearest-neighbor bonds.

range ordered
p

3×p
3 order [94, 101–103]. However, it is easy to see that it is not the case in

the DKIAFM, where the ground-state degeneracy is only partially lifted, resulting in a finite

residual entropy [93, 99, 102]. Therefore, part of this thesis is motivated by the question of how

the macroscopic ground-state degeneracy of the nearest-neighbor model gets lifted in the

DKIAFM. We will study the model with third-nearest-neighbor interactions, and show that

even then the macroscopic ground-state degeneracy does not get completely lifted.

In artificial spin systems, the possibility of tuning the interactions has been explored since

the very first work [64]. The historical approach has been to simply change the lattice spacing

between nanomagnetic islands (a non-exhaustive list includes Refs. 64, 80, 104). In connected

spin ice, the effective interactions can be tuned by varying the thickness and width of the

nanomagnets, for instance in square ice [105, 106] or kagome ice [106], or yet by control-

ling the micromagnetic interactions via the creation of a hole at the interaction vertex [107].

Other approaches include the introduction of a soft ferromagnetic underlayer below the

moments [108], magnetic bridges between the nanomagnets [109], or separating two sub-

lattices of a square ice system (six-vertex model) by a small vertical distance [89, 110–112],

allowing for the observation of the macroscopic degeneracy of square ice and of magnetic

monopoles. Part of the work presented in this thesis is motivated by a particular approach

to reinforcing the nearest-neighbor interactions in artificial spin systems with out-of-plane

anisotropy: chirally coupled systems [113]. Conceptually, these systems rely on using interfa-

cial Dzyaloshinskii-Moriya interactions (DMI) to create regions with out-of-plane anisotropy

(OOP regions) connected by chiral domain walls to regions with in-plane anisotropy (IP re-

gions). A strong nearest-neighbor antiferromagnetic coupling between OOP regions can be

mediated by connecting them with IP regions. Motivated by these results, we will see that the

short-range farther-neighbor to nearest-neighbor interaction ratios are significantly reduced

in a kagome lattice chirally coupled system. However, we will show numerically that for

at-equilibrium Ising models, even very small short-range interaction still affect the spin-spin

correlations up to fairly high effective temperatures.
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In the context of both works, we will be interested in studying models of the form:

H(~σ) = J1
∑

〈i , j 〉1

σiσ j + J2
∑

〈i , j 〉2

σiσ j + J3||
∑

〈i , j 〉3||
σiσ j + J3?

∑
〈i , j 〉3?

σiσ j −h
∑

i
σi , (10)

on the kagome lattice, where 〈i , j 〉k stand for the kth nearest-neighbor couplings, as indicated

in Fig. 3. Such Ising models with farther-neighbor interactions are often studied efficiently

using Monte-Carlo simulations, and we will discuss a particular algorithm introduced in

Ref. 114 that we will apply to some special cases of Eq. 10. Determining the ground-state

phase diagram of classical frustrated spin systems with farther-neighbor interactions can

be challenging and typically requires constructing ground-state energy lower-bounds as a

complement to the Monte-Carlo results. In order to prove that the Monte Carlo simulations

reach the ground state, we will discuss techniques to obtain such lower bounds. Additionally,

another numerical technique has been established over the last twenty years as a tool for

the study of statistical mechanics of lattice models : tensor network renormalization group

techniques. Although tensor networks are perhaps best known as support for a modern

formulation of White’s Density Matrix Renormalization Group (DMRG)[115–118], producing

outstanding results in the study of 1D quantum systems ([119, 120] and references therein),

and, in the form of projected-entangled pair states (PEPS) as a natural support for quantum

spin liquid states in 2D quantum systems [121–124], their origin can in fact be traced back to

Kramer and Wannier’s transfer matrix, introduced for the study of the classical Ising models [9,

10, 125]. It is therefore not surprising that tensor networks have also had a lot of success in the

study of classical statistical mechanics in two-dimensional (2D) and three-dimensional (3D)

spin systems (selected examples are [126–133] for the 2D case and [134–140] for the 3D case).

As we will see, the essential idea relies on writing the partition function as a tensor network

that can then be contracted (approximately) using standard contraction algorithms (TRG [141–

143], TNR [144, 145], CTMRG [146, 147], VUMPS [148–151] or (i)TEBD [152–154]). However,

we will see that the stability of these algorithms can depend on the precise formulation of

the tensor network. We will discuss a challenge faced by the “standard” approach to the

tensor network formulation of the partition function of frustrated Ising models, and suggest a

solution that we will then apply to some of the models with farther-neighbor interactions that

we motivated above.

The rest of this thesis is organized as follows. Chapter 1 is dedicated to an introduction

to three existing methods for studying Ising models, including a Monte Carlo algorithm

designed for short-range geometrically frustrated Ising models [114], a description of the

VUMPS algorithm [148, 149, 151] and a discussion of methods to build ground-state energy

lower bounds [25, 155–158]. In Chapter 2, relying extensively on Ref. 159, we describe the

convergence issue associated with the contraction of the standard tensor network associated

with classical spin systems. We use well-known approaches for ground-state energy lower

bounds to propose an alternative formulation of the partition function of classical frustrated

Ising models as contractible tensor networks. We apply this method to the study of ground

state properties, and describe an extension to finite temperature.
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Part II of this thesis focuses on the effect of short-range farther-neighbor couplings in frustrated

Ising models on the kagome lattice, applying the methods of Part I. Chapter 3 is motivated

by experimental results obtained for the spin-spin correlations in a kagome lattice of chirally

coupled nanomagnets [113]. In this Chapter, following closely Ref. 160, we discuss how spin-

spin correlations of the kagome lattice nearest-neighbor antiferromagnetic Ising model in a

field are affected by the presence of extremely small farther-neighbor couplings. In Chapter 4,

we study the partial lifting of the macroscopic ground-state degeneracy induced by farther-

neighbor couplings on the nearest-neighbor Ising antiferromagnet on the kagome lattice,

making connections with the ground state of the TIAFM and the DKIAFM. Finally, in Chapter 5

we summarize the main results of this thesis and give an outlook.
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Part IMethods





1 Algorithms for classical Ising models

The purpose of this chapter is to introduce a common background relevant to all the other

chapters of this thesis. We start by introducing a very useful alternative description of the spin

configurations on the kagome lattice as dimer configurations on the dice lattice. Then, we

present a Monte Carlo algorithm designed specifically for short-range frustrated models on

the kagome and triangular lattices [114]. We proceed with an introduction to tensor networks

for classical spin systems and a presentation of the variational uniform matrix product state

algorithm (VUMPS) which will be used throughout this thesis [148, 149, 151]. Finally, we

discuss established methods for computing lower bounds for the ground-state energy of

classical spin systems [25, 155–158, 161].

1.1 Preliminary: dimer configurations

1.1.1 Dimer mapping

We first introduce a mapping from configurations of Ising spins on a planar lattice (e.g. the

kagome or triangular lattice) L to configurations of dimers on its dual lattice (e.g. the dice

lattice or the honeycomb lattice) L ?, which is obtained by associating a vertex to each face of

L and an edge to each edge of L . The dimer mapping is defined by

dbi , j =σiσ j =
1 if σi =σ j (→ “there is a dimer”)

−1 if σi =−σ j (→ “there is no dimer”)
(1.1)

where bi , j is the bond of the dual graph lying between the nearest-neighbor sites i and j of

the original graph, as shown in Fig. 1.1. If the bond variable dbi , j is positive, we say that there

“is” a dimer on the bond. On the triangular lattice, this mapping goes back to a remark by

Kasteleyn relating the behavior of dimers on the honeycomb lattice to the models of spins

on the triangular lattice [162] and the work of Nienhuis, Hilhorst and Blöte [26, 62]. It is a

two-to-one mapping, corresponding to a global spin flip which does not change the dimer

configuration. To be able to map back from dimer configurations to spin configurations,
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Figure 1.1 – Definition of the dimer configuration from the spin configuration. For a spin
configuration defined on the direct lattice (in grey), the dimer configuration on the dual
lattice (in black) is defined as in Eq. 1.1. We place an orange segment on the dual lattice
when the dimer variable is positive. (a) Spin configuration on the triangular lattice and
corresponding dimer configuration on the dual honeycomb lattice. (b) Spin configuration
on the kagome lattice and corresponding dimer configuration on the dual dice lattice. For
a dimer configuration to correspond to a spin configuration, it has to satisfy the constraints
that the number of dimers touching a dual-lattice vertex with odd-coordination has to be odd,
while for even-coordinated vertices, the number of dimers has to be even.

some constraints have to be added on the dimer configurations. These constraints come from

considering closed loops defined on the direct lattice. If we consider a vertex v of the dual

lattice, corresponding to a face of the original lattice, and we label with {b(v)} the dual bonds

connected to this site, we must have ∏
b∈{b(v)}

db = 1. (1.2)

to enforce that the spin configuration is consistent on an elementary loop on the direct lattice

circling around the (dual) vertex v . This imposes that odd-coordinated vertices of the dual

lattice (e.g. corresponding to triangles in the kagome lattice) have to be occupied by an odd

number of dimers while even-coordinated vertices (corresponding to hexagons in the kagome

lattice) have to be occupied by an even number of dimers. In the case of open boundary

conditions, this condition is sufficient to enforce the consistency of the spin configuration

on larger loops, since these can be seen as a combination of the elementary loops. If the

boundary conditions are periodic, additional non-local constraints must be enforced: since

an empty dual bond separates two spins of opposite signs, a loop defined on the direct lattice

and winding the torus must cross an even number of empty dual bonds.

This mapping is especially useful in the case of the TIAFM because, in that case, any spin

configuration belonging to the ground state maps to a hardcore dimer model on the hon-

eycomb lattice; that is, each site on the honeycomb lattice has to be occupied exactly once,

corresponding to the fact that in the ground state, no triangle can have all three spins pointing

in the same direction. From this, one can recover the residual entropy of the TIAFM by using

Kasteleyn’s theorem relating the number of hardcore dimer configurations to the determinant

of a matrix [162]. In the ground state of the KIAFM, this dimer mapping is not hardcore: the
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1.2. Monte Carlo simulations

Figure 1.2 – Definition of the couplings in Eq. 1.3. There are two types of third-neighbor
couplings based on the distance; we call them 3? if they cross the hexagon and 3|| if they
correspond to two nearest-neighbor bonds.

six-coordinated vertices can be shared among dimers.

1.2 Monte Carlo simulations

In this section, we describe in detail the dual worm algorithm of Rakala and Damle [114],

which will be used throughout this thesis.

As mentioned in the introduction, in most of this thesis we will be interested in studying

models of the form:

H(~σ) = J1
∑

〈i , j 〉1

σiσ j + J2
∑

〈i , j 〉2

σiσ j + J3||
∑

〈i , j 〉3||
σiσ j + J3?

∑
〈i , j 〉3?

σiσ j , (1.3)

on the kagome lattice, where 〈i , j 〉k stand for the kth nearest-neighbor couplings, as indicated

in Fig. 1.2.

In Ref. 114, two rejection-free dual worm algorithms are introduced. They are designed for

simulating frustrated two-dimensional Ising antiferromagnets. The focus is on the triangular

lattice Ising antiferromagnet with farther-neighbor, finite-range interactions; however, it is

mentioned that one of the two algorithm, the myopic dual worm algorithm is easily generaliz-

able to the kagome lattice Ising antiferromagnet with up to third-nearest-neighbor couplings

(J3|| in Fig. 1.2). This is the algorithm we present here, with a very slight generalization to

include both types of third-nearest-neighbor couplings on the kagome lattice (J3|| and J3? in

Fig. 1.2).

The dual worm algorithm of Ref. 114 is directly inspired from a similar algorithm [163, 164]

introduced as an alternative to the Wolff [165] and the Swendsen-Wang [166] algorithms for

non-frustrated Ising models.

The key point of the myopic dual worm algorithm is the result that two dimer configurations

C1 and C2 that differ only by the configurations of the dimers on a single, closed loop on the
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dual lattice correspond to two spin configurations S1 and S2 that differ by flipping the cluster

of spins encircled by the loop. Thus, if one can use the mapping from spin configurations

to dimer configurations to rewrite the Hamiltonian in Eq. 1.3 as a Hamiltonian for dimer

configurations, and then efficiently propose loop updates in the dimer configuration space,

then one effectively has a way of proposing cluster updates in the original spin problem on

kagome. What Ref. 164 proposes is to build loops as worm updates, i.e. growing a string

of flipped dimer variables constructed by respecting a local version of the detailed balance

condition such that when the head of the worm meets its tail, creating a loop, the update

can immediately be accepted. In a general importance sampling Monte Carlo algorithm we

can decompose the transition matrix P describing the Markov Chain update process into a

generation probability and an acceptance probability according to

P (~σ′|~σ) =
g (~σ′|~σ)A(~σ′|~σ) if~σ′ 6=~σ

1−∑
~σ′′ 6=~σP (~σ′′|~σ) if~σ′ =~σ

(1.4)

where g (~σ′|~σ) is the probability that the spin configuration~σ′ is generated from the configura-

tion~σ, and where A(~σ′|~σ) is the probability that~σ′ is accepted knowing that~σ is the previous

configuration of the Markov Chain. The dual worm algorithm relies on imposing the detailed

balance condition only through g (~σ′|~σ), such that A(~σ′|~σ) = 1 if g (~σ′|~σ) 6= 0.

The algorithm uses directed worm updates, in the sense that at each step, the probability that

the head of the worm comes back on its tracks and erases the last segment of the worm is

minimized (often referred to as the bounce probability)[164, 167–171]. In this sense, it is also

inspired from the directed loop updates in Quantum Monte Carlo (QMC)[172–174]1.

1.2.1 The algorithm

Let us start with describing the algorithm for the worm construction.

In order to satisfy detailed balance in a local way, the worm is constructed by alternating two

types of steps: the probabilistic step, where the direction in which the worm’s head is moved is

chosen with probabilities depending on the local dimer configuration, and the myopic step,

where the direction where the worm’s head is moved is chosen with uniform probabilities (only

forbidding backtracking). This makes use of the fact that both in the triangular and kagome

lattice cases, the dual lattice is bipartite. We can thus split each dual lattice into two subsets of

vertices, which we will name the entry/exit sites and the vertex sites. In the honeycomb lattice

case, the two subsets are equivalent and can be chosen arbitrarily, whereas in the dice lattice

case, we select the six-coordinated sites as entry/exit sites and the three-coordinated sites as

vertex sites, as illustrated in Fig. 1.3.

1In the earlier papers, worm updates in the spirit of the algorithm we present here are referred to as geometrical
worm updates [167], by contrast with the worm updates approach based on the high-temperature expansion of
the partition function [163] where worm updates are created on the original lattice.
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1.2. Monte Carlo simulations

Algorithm 1 Myopic dual worm algorithm.

1: function WORM UPDATE(~d)
2: Randomly select an entry site e(1) on the dual lattice.
3: n ← e(1)

4: Among the nd dual bonds sharing e(1), randomly select one with uniform probability
1/nd .

5: Name this dual bond b(1), and v (1) the other dual site it is connected to.
6: v (1) is now the head of the worm.
7: while head on a vertex site v (k) or head on an entry site e(k) 6= n do
8: if head on a vertex site then . probabilistic step
9: The head is on v (k) and it arrived there from e(k) through the dual bond b(k).

10: Considering the local dimer configuration, check the probability table T v (k)
.

11: b1,b2,b3 ← the three dual bonds connected to v (k)

12: With probability T v (k)

b(k),bi
:b(k+1) ← bi .

13: db(k) ←−db(k) . . Flip the dimer variable on b(k).
14: db(k+1) ←−db(k+1) . . Flip the dimer variable on b(k+1).
15: e(k+1) ← other site connected to b(k+1).
16: else . myopic step
17: The head is on e(k) and it arrived there from v (k−1).
18: e(k) is connected to nd −1 other vertices.
19: Randomly select one among the nd −1 other sites, it will be v (k). . uniform prob.
20: b(k) ← (e(k), v (k))

21: W1,W2 ← winding numbers of the worm update.
22: return ~d ,W1,W2

23: function MAIN(~σm)
24: ~d ← SPIN TO DIMER MAPPING(~σm)
25: (~d ,W1,W2) ← WORM UPDATE(~d)
26: if OBC then
27: ~σm+1 ← DIMER TO SPIN MAPPING(~d)
28: else
29: while mod (W1,2) 6= 0 || mod (W1,2) 6= 0 do
30: (~d ,W new

1 ,W new
2 ) ← WORM UPDATE(~d)

31: W1+=W new
1 , W2+=W new

2

32: ~σm+1 ← DIMER TO SPIN MAPPING(~d)
return~σm+1
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Chapter 1. Algorithms for classical Ising models

Figure 1.3 – The steps of the myopic dual worm algorithm on the dice lattice. (see also the
pseudocode in Alg. 1). (a) Randomly selecting an entry site and one of the neighboring vertex
sites. (b) Probabilistic step: the head of the worm is moved with weighted probabilities
contained in the probability table T v (k)

. (c) Myopic step : the head of the worm is moved
without taking into account the local configuration. (d) When the worm’s head arrives on the
starting site, the worm closes.

The steps of the myopic dual worm algorithm are described in Fig. 1.3, and the pseudocode is

given in Alg. 1. The probabilistic step of the algorithm occurs when the head of the worm is on

a vertex site, and the myopic step when the head is on an entry/exit site. In Fig. 1.3a, an entry

site is chosen randomly with uniform probabilities. It will be the worm’s tail. The worm’s head

is moved with uniform probability to one of the six neighboring vertex sites. In Fig. 1.3b, we

show the probabilistic step. At a vertex site, the head of the worm is moved to one of the three

neighboring exit sites with the weights given by the probability table T v (k)
, which depends on

the local configuration of the dimers. There is some freedom in selecting the probability table,

and it is constructed in such a way that the bounce probability (backtracking) is minimized.

The myopic step is shown in Fig. 1.3c: at an entry site, the head of the worm is moved to one

of the neighboring vertex sites with uniform probability but without backtracking. Finally,

when the worm closes (Fig. 1.3d), the update is accepted provided that the periodic boundary

conditions of the spin model are respected.
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1.2. Monte Carlo simulations

1.2.2 Energy of the generalized dimer configurations

During the process of the dual worm construction, the dimer configuration violates the

dimer rules (Eq. 1.2) at the tail of the worm as well as at the head of the worm. To build the

worm by respecting a local detailed balance condition, the energy of the dimer configuration

must be defined without mapping back to a spin configuration, and ignoring the “infinite

cost” of breaking the generalized dimer rules. Therefore, we want to define a Hamiltonian

for the generalized dimer model, which reduces to the spin model Hamiltonian when the

dimer configuration respects the dimer rules. Considering two (direct) lattice sites i0 and il

connected by a path of nearest-neighbor bonds

Γ= {(i0, i1), (i1, i2), . . . , (il−1, il )} (1.5)

on the direct lattice, it is trivial that

σi0σi1 =
l−1∏
k=0

dbik ,ik+1
= ∏
α∈Γ

dbα . (1.6)

This allows one to rewrite Eq. 1.3 as

H
(
~d
)
= J1

∑
Γ1

dbΓ1
+ J2

∑
Γ2

∏
α∈Γ2

dbα + J3||
∑
Γ3||

∏
α∈Γ3||

dbα +
J3?

2

∑
Γ3?

∏
α∈Γ3?

dbα , (1.7)

where the interaction paths Γ1 to Γ3? are defined in Fig. 1.4, where α goes through the (direct

lattice) site pairs of the path, and where dbα is the value of the dimer variable on the bond bα
of the dual lattice, as in Eq. 1.1. The nearest-neighbor interaction results in paths Γ1 that are

just one pair of nearest-neighbor sites, and therefore dbΓ1
is the value of the dimer variable

separating those two sites. Γ2 (Γ3||) are paths made of two pairs of sites and correspond to

nearest-neighbor (next-nearest-neighbor) dimer-dimer interactions, while the Γ3? interaction

paths correspond to three-dimer interactions. For this last term, the coupling is divided by

two, because, as shown in Fig. 1.4, we separate the interaction across the hexagons into two

paths passing on either side of the hexagon center. Formulated this way, it is transparent that

the definition of the Hamiltonian for the dimer model can be in principle generalized to Ising

models with finite-range pair interactions.

In general, the weight of a given dimer configuration ~d will be given by

W
(
~d
)
= 1

Z
e−βH(~d)

= 1

Z

∏
Γ1

(
e
−βJ1dbΓ1

)∏
Γ2

(
e−βJ2

(∏
α∈Γ2

dbα

))∏
Γ3||

(
e
−βJ3||

(∏
α∈Γ3|| dbα

))∏
Γ3?

(
e−β

J3?
2

(∏
α∈Γ3?

dbα

))
.

(1.8)

With this definition, all the necessary elements are in place for implementing the dual worm

algorithm. In Appendix A.2, we give more detail about the implementation of the probability

table to minimize the bounce probability. In Appendix A.3 we give a proof of detailed balance
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Chapter 1. Algorithms for classical Ising models

Figure 1.4 – Interaction paths in the dimer model, used in Eq. 1.7. Here, we illustrate some
of the nearest, next-nearest and 3rd nearest neighbor interaction paths playing a role when
computing the probability table at vertex v (k). The probability table for the propagation of the
worm from a vertex v (k) gives the probabilities to to proceed on the three bonds connected to
v (k) (denoted by γ(k))). As discussed in Appendix A.2, to build it, one has to take into account
the dimer configuration in the local environment l (v) (in bold black), corresponding to all the
dual bonds which share an interaction path with one of the bonds in γ(k)).

for Algorithm 1 and discuss how the periodic boundary conditions have to be managed. As

a final remark, one might wonder whether this algorithm applies to any Ising model on a

non-bipartite lattice whose dual lattice is bipartite; indeed, it clearly applies to an Ising model

on the triangular lattice, whose dual lattice is honeycomb [114]. One instance of such an

application is a recent work on the cubic lattice [175]. In general the required ingredients

in this method besides the dual lattice being bipartite is the possibility of doing a step with

minimal bounce on one of the two (dual) sublattices.

1.3 Tensor networks for classical Ising models

To introduce tensor networks for classical spin systems and the associated notation, one

natural path to follow starts with the 1D and 2D classical Ising models and their formulation

in terms of transfer matrices. This is also how tensor networks for classical spin systems have

arisen historically, with the first transfer matrix approaches introduced to study the Ising

model in the 1940s and 1950s [9, 10, 14, 15, 17–20] 2.

In the following we essentially follow the notes by Nishino [183, 185] as well as the recent

review on tensor networks by Okunishi, Nishino and Ueda [125] to introduce tensor networks

for statistical mechanics. The discussion of the tangent space and the VUMPS algorithm is

based on the lecture notes by Vanderstraeten, Haegeman and Verstraete [150]. More general

introductions to tensor networks can be found in Refs. 119, 186 for historical reviews of

2This was followed by the introduction of the corner transfer matrix (CTM) and the first steps towards tensor
network approaches in statistical mechanics, pioneered by Baxter in the 1970s-1980s ([11, 176, 177], [178] and
references therein); the famous AKLT result [179]; the development of DMRG by White [115, 116]; the notion of
matrix product state [180]; and finally the connection between CTM and DMRG made by Nishino and Okunishi
[146, 181, 182]. In the 2000s, the introduction of a wide variety of tensor product constructions and of contraction
algorithms gave rise to the field of tensor networks. See Refs. 125, 183, 184 for a detailed discussion of the history
of tensor networks.
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1.3. Tensor networks for classical Ising models

Figure 1.5 – Transfer matrix and tensor notation for the partition function of the 1D Ising model.
(a) A matrix (or rank-2 tensor) T (Eq. 1.10) is represented with two legs, each leg corresponding
to an index. Here, T corresponds to the Boltzmann weight of a nearest-neighbor bond in the
Ising model. (b) The product of two matrices along a shared index (Eq. 1.12) is represented
by connecting the legs which are summed over: the resulting object still has two open legs
and is therefore still a matrix. (c) The 1D Ising model partition function with open boundary
conditions. There are two free indices. (d) These indices can be contracted over to obtain the
partition function for periodic boundary conditions.

DMRG and Ref. 117 for a review of DMRG in the MPS formulation, Refs. 187 for a review on

diagonalization methods for transfer matrices and MPOs, and Refs. 120, 125, 184 for broader

reviews of the topic of tensor networks and of the mathematical foundations of the field.

1.3.1 Partition functions as tensor network contractions

Consider the partition function of the nearest-neighbor Ising model

Z =∑
~σ

e−βH =∑
~σ

eK
∑
〈i , j〉σiσ j (1.9)

where we defined K = βJ with β the inverse temperature, where 〈i , j 〉 stands for nearest-

neighbor bonds, and where the Hamiltonian is characterized by a nearest-neighbor coupling

J with J > 0 for ferromagnetic interactions.

In the 1D Ising model, it is a standard exercise to write it as the trace of a transfer matrix.

Defining the rank-2 tensor

Tσi ,σ j := exp
(
Kσiσ j

)
, (1.10)

one finds that

Z =∑
~σ

∏
〈i , j〉

exp
(
Kσiσ j

)=∑
~σ

Tσ1,σ2 Tσ2,σ3 · · ·TσN−1,σN = ∑
σ1σN

(T N−1)σ1,σN , (1.11)

where we use the fact that there are only two tensors involving σi (Tσi−1,σi and Tσiσi+1 ) and

therefore one can isolate the sum over σi of these two tensors. In tensor network notation, the

rank-2 tensor T is represented with two legs corresponding to each of the indices (Fig. 1.5a),
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Chapter 1. Algorithms for classical Ising models

the product ∑
σi

Tσi−1,σi Tσi ,σi+1 (1.12)

is represented with a connection between the two legs corresponding to the summed index

(Fig. 1.5b), and the partition function is represented as a string of tensors, a tensor network3

(Fig. 1.5c and d). We use the term contraction to describe the process of performing all

the multiplications to compute the tensor network result. In the case of periodic boundary

conditions (Fig. 1.5c) and a system of N sites this gives the well-known result that

ZPBC = Tr
(
T N )=λN

+

(
1+

[
λ−
λ+

]N
)

(1.13)

where λ+,λ− are the eigenvalues of the “site-to-site transfer matrix” T , i.e.(Fig. 1.5b)

λ+,− = eβJ ±
√

2cosh
(
2βJ

)
. (1.14)

This corresponds to the fact that we can write

T N =λN
+

∑
i=+,−

(
λi

λ+

)N

|ri 〉〈li | (1.15)

where |li 〉 and |ri 〉 correspond to the left- and right-eigenvectors of the transfer matrix, and

where
〈

li
∣∣r j

〉= δi , j . Provided that the leading eigenvalue is non-degenerate (which is the case

in the 1D Ising model that we are discussing here), we have

T N →λN
+ |r+〉〈l+| (1.16)

Fig. 1.5c illustrates the case with open boundary conditions (Eq. 1.11), which can be changed

to fixed boundary conditions by contracting with a one-legged tensor on each end selecting

the value of the spin.

There are several ways to extend the spirit of this construction to the square lattice Ising model.

The most straightforward way is to keep the idea of associating a Boltzmann weight to each

bond of the lattice:

Z =∑
~σ

∏
〈i , j〉

Tσi ,σ j . (1.17)

In this case, four tensors involve the spin at site i : Tσi−x ,σi , Tσi ,σi+x , Tσi−y ,σi and Tσi ,σi+y (where

±x and ±y indicate moves to nearest neighbors in the two directions of the square lattice).

Since we want to write tensor products and for that we need to sum on variables which only

belong to two tensors (and not four like here), we will add at each site i a dummy tensor

which will allow us to sum over four different instances of σi (σi ,1, σi ,2, σi ,3, σi ,4, numbered

clockwise from the top) and will make sure that all these instances actually map back to the

3Or “tensor train” in applied mathematics [188].
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1.3. Tensor networks for classical Ising models

Figure 1.6 – Transfer matrix and tensor notation for the partition function of the 2D Ising
model (see e.g. [147]). In this construction we associate a Boltzmann weight tensor T to each
bond in the lattice (Eq. 1.10). A δ-tensor (Eq. 1.18) is associated to each lattice site. We can take
the square root t =p

T (Eqs. 1.20, 1.21) and group the tensors on each site, resulting in a tensor
a (Eq. 1.22, shown in blue). The 1D row-to-row transfer matrix in this case is highlighted in
blue.

same spin4. This is achieved by defining a δ-tensor

δσi ,1,σi ,2,σi ,3,σi ,4 =
1 if σi ,1 =σi ,2 =σi ,3 =σi ,4

0 otherwise
. (1.18)

Thus, we can rewrite

Z = ∑
~σ1,~σ2,~σ3,~σ4

∏
i
δσi ,1,σi ,2,σi ,3,σi ,4 Tσi−x,3,σi ,1 Tσi ,2,σi+y,4 (1.19)

where i spans the square lattice sites. Indicating sites i by row index r and column index c, it

is natural to introduce the square-root t of the tensor T by writing:∑
vr,c

tσi ,vr,c tvr,c ,σi−y = Tσi ,σi−y , (1.20)

and ∑
hr,c

tσi ,hr,c thr,c ,σi+x = Tσi ,σi+x , (1.21)

where vr,c (hr,c ) stand for new variables taking two possible values and living on the vertical

(horizontal) bonds between sites i and site i − y (site i and site i +x). Contracting the t tensors

around one site with the δ tensor on this site (Fig. 1.6), we get a rank-4 a tensor

avr−1,c ,hr,c ,vr,c ,hr,c−1

:= ∑
σi ,1,σi ,2,σi ,3,σi ,4

δσi ,1,σi ,2,σi ,3,σi ,4 tvr−1,c ,σi ,1 tσi ,2,hr,c tσi ,3,vr,c thr,c−1,σi ,4 , (1.22)

4One can check easily that this would work as well in the 1D case, except there it is not required.
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Chapter 1. Algorithms for classical Ising models

where i is the site corresponding to row r and column c. Contracting the tensor network of

a tensors on the vertices of the square lattice sites (indexed by row and columns) gives the

partition function

Z = ∑
~v ,~h

N ,M∏
r,c

avr−1,c ,hr,c ,vr,c ,hr,c−1 , (1.23)

where for now we are not setting the boundary conditions and we have assumed a M ×N

lattice.

We can rewrite this partition function as a product

Z =∑
~v

N∏
r=1

(
T (r ))v(r−1,1),...,v(r−1,N )

v(r,1),...,v(r,N )
(1.24)

of row-to-row transfer matrices(
T (r ))v(r−1,1),...,v(r−1,M)

v(r,1),...,v(r,M)
= ∑

h(r,1),...,h(r,M)

∏
c

av(r−1,c),h(r,c),v(r,c),h(r,c−1) , (1.25)

highlighted in blue in Fig. 1.6. Just as in the 1D case, we can alternatively use open boundary

conditions, fixed boundary conditions (set by selecting the appropriate three-legged tensors

at the boundary) or periodic boundary conditions. For instance, if h(r,0) = h(r,M) for each row,

we obtain the Ising model on a cylinder, and if furthermore v(0,c) = h(N ,c) for each column,

then the partition function is given by the trace of T to the power of the number of rows.

Another natural way of constructing the 2D square lattice Ising partition function is to define

the Boltzmann weights W on the faces of the square lattice (‘interactions round a face” models,

see e.g. [176, 181]; see Fig. 1.7a):

Wσ(r,c),σ(r,c+1),σ(r+1,c),σ(r+1,c+1) = e
1
2βJ(σ(r,c)σ(r,c+1)+σ(r,c+1)σ(r+1,c+1)+σ(r+1,c+1)σ(r+1,c)+σ(r+1,c)σ(r,c)) (1.26)

where a one-half factor is introduced in the exponent to avoid double-counting. Again, the

partition function constructed from W is not directly a tensor network, but can easily be

formulated as one by introducing δ-tensors on each site (Fig. 1.7b). Writing each δ-tensor as a

product of four three-legged delta tensors gives rise to a tensor network of plaquette weights.

This is similar to what we will obtain in Chapter 2.

An alternative is to use the dimer variables that are already appearing naturally in Eq. 1.26 to

define a tensor network on the dual lattice (Fig. 1.7c):

Wd v
(r−1,c),d

h
(r,c),d

v
(r,c),d

h
(r,c−1)

= e
1
2βJ

(
d v

(r−1,c)+d h
(r,c)+d v

(r,c)+d h
(r,c−1)

)
, (1.27)

where we have indicated by h or v whether the dimer variable lives on a horizontal or vertical

dual bond. We will use such a “dual” approach in Chapter 3.To the best of our knowledge, in

the context of tensor networks, such a dual representation was first used on the triangular
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1.3. Tensor networks for classical Ising models

lattice in the original work by Levin and Nave on TRG [141]5.

Finally, splitting each bond interaction equally between the two neighboring plaquettes is not

necessarily the best option. We can also associate all the Boltzmann weight with one of the

two plaquettes. Defining the tensors

W̃σ(r,c),σ(r,c+1),σ(r+1,c),σ(r+1,c+1) = eβJ(σ(r,c)σ(r,c+1)+σ(r,c+1)σ(r+1,c+1)+σ(r+1,c+1)σ(r+1,c)+σ(r+1,c)σ(r,c)), (1.28)

we can obtain the 2D Ising model partition function by arranging these in a checkerboard

pattern (Fig. 1.7d, see also Ref. 125).

We therefore have a range of options to write partition functions of Ising models. We will see

in Chapter 2 that the precise choice of implementation of the partition function as a tensor

network can affect the convergence of standard approximate contraction algorithms in the

case of frustrated spin systems.

In all these cases, we obtain the partition function as a contraction of the appropriate tensor

network, as depicted in Figs. 1.6 and 1.7. One way to contract it is to follow Baxter’s work [11]

and to distinguish between the two spatial directions by considering the row-to-row transfer

matrix T which transfers the bond variable values vertically from one row to the next. Consider

the leading (largest in magnitude) eigenvalue Λ0 of the row-to-row transfer matrix T and

the corresponding leading eigenvector |L0〉 (from the top). Just as in the 1D case, if we put

periodic boundary conditions in the horizontal direction, we can write

T N =ΛN
0

∑
i

(
Λi

Λ0

)N

|Ri 〉〈Li | (1.29)

where |Li 〉 and |Ri 〉 correspond to the left- and right-eigenvectors of the transfer matrix, and

where
〈

Li
∣∣R j

〉= δi , j . If the leading eigenvector is non-degenerate, then in the limit of large

systems, we have

T N →ΛN
0 |R0〉〈L0| , (1.30)

where Λ0 is itself growing exponentially with the horizontal system size M . This type of

relations will be the backbone for evaluating partition functions using tensor networks. In the

thermodynamic limit we then have

Z →ΛN
0 . (1.31)

To evaluate partition functions of classical models, we are therefore interested in computing

the leading eigenvalue and eigenvectors of the row-to-row transfer matrix.

5See also [189] for a nice overview of the possible constructions, [21] for an overview of dimer models for planar
Ising models. In the triangular lattice, interesting alternatives in the transfer matrix formulation can be found in
Refs. 190, 191 and references therein.
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Figure 1.7 – Transfer matrix and tensor notation for the partition function of the 2D Ising
model. The square lattice is shown in light gray. The row-to-row transfer matrix is highlighted
in blue in each case. The “interactions round a face” construction (a) can give rise to three
tensor network formulations. The most direct (b) replaces each site with a δ-tensor. When
building the row-to-row transfer matrix this tensor is trivially split into two. Alternatively (not
shown here), we can use a diagonal row-to-row transfer matrix (similar to (d)). (c) Another
possibility is to associate dual (dimer) variables to each bond. (d) We can also avoid double
counting by defining a tensor on only half of the plaquettes in a checkerboard pattern.

26



1.3. Tensor networks for classical Ising models

1.3.2 Uniform matrix product states

Motivation

In the previous section, we have seen that the row-to-row transfer matrix for classical Ising

models can be obtained as a product of four-legged tensors determined by the appropriate

Boltzmann weight. In the field of tensor networks, such an object is known as a matrix product

operator (MPO). We should note that this is already a very efficient encoding of the transfer

matrix, since we describe a 2M ×2M operator using only a 2×2×2×2 tensor.

The row-to-row transfer matrix being efficiently encoded, we still face the challenge that the

leading eigenvector that we are looking for is in principle a very high-dimensional object, with

2M degrees of freedom. The question is therefore if we can approximate this eigenvector using

an Ansatz that is efficiently encoded. Having distinguished between the two spatial directions,

we essentially want to find the leading eigenvector of a 1D operator. RESPFacing this problem,

Baxter [11] justified an Ansatz which is in spirit very close to what is now used in the tensor

network methods that have been extremely successful in the context of 1D quantum systems.

These methods rely on the matrix product state (MPS) Ansatz to encode the eigenvectors. This

essentially corresponds to describing a d M dimensional object using a product of χ×d ×χ
tensors (d being 2 for Ising models). In the case of translation-invariant eigenvectors, the

translation-invariant version of this Ansatz, a uniform MPS, is particularly efficient because it

allows to encode the eigenvector using a single χ×d ×χ tensor. There are a few important

features of the MPS Ansatz. First, MPSs with a finite bond dimension χ can approximate the

ground state of gapped local 1D Hamiltonians with arbitrary accuracy [115]. Second, the MPS

Ansatz satisfies the area-law of entanglement, that is, partitioning the system between one

central section of size L and the rest of the 1D lattice, one observes that for L sufficiently large

the entanglement entropy becomes constant (in general dimension, it would grow propor-

tionally to the size of the boundary). This explains precisely why it is good at approximating

ground states of gapped local Hamiltonians in 1D, which are known to have this property.

Finally, MPSs are dense, in the sense that any state in the many-body Hilbert space can be

represented if χ is sufficiently large6 ([120] and references therein).

We now give a short practical introduction to the uniform MPSs, namely the MPSs where

translation invariance is assumed. A slightly more detailed introduction to uniform matrix

product states can be found in Appendix B. A large part of these ideas were lying under the

surface of Baxter’s work [11], but for a thorough introduction in a more standard framework,

we refer the reader to the 2019 lecture notes by Vanderstraeten et al. [150] and references

therein, and to the reviews mentioned at the beginning of this section.

6In the case of critical sates, the bond dimension would have to be taken to infinity in principle. We therefore
exchange the problem of finite-size scaling with the problem of finite-bond dimension scaling.
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Single site unit cell

In the following, we are thinking of finite-size systems of size M , and taking mentally the

thermodynamic limit where appropriate. Uniform MPSs provide an Ansatz to approximate

states
∣∣φ〉 ∈ ⊗M

j=1C
d , where j indexes the sites of the one-dimensional lattice, and d is the

dimension of the (Hilbert) space on each site. The Ansatz comes in the form of a state
∣∣ψ(A)

〉
defined as a uniform product of a single three-legged tensor A

s j
α j ,α j+1

repeated on every site in

the lattice (hence the name “uniform MPS”):∣∣ψ(A)
〉=∑

~s

· · · As j−1 As j As j+1 · · · ∣∣. . . , s j−1, s j , s j+1, . . .
〉

(1.32)

where ∣∣. . . , s j−1, s j , s j+1, . . .
〉=⊗ j∈Z

∣∣s j
〉

(1.33)

are the states in the local (one site) Hilbert space. Pictorially, we represent this Ansatz as

. (1.34)

In this construction, the tensor A
s j
α j ,α j+1

can be thought of as a map A :Cχ⊗Cχ→Cd from the

virtual space labeled by α j ,α j+1 to the physical space labeled by s j . The dimension χ of the

virtual space is called the bond dimension and will be the parameter for refining the Ansatz.

A defines
∣∣ψ(A)

〉
uniquely, but the converse is not true, since the transformation

, (1.35)

does not change the state in Eq. 1.34. In particular, we can make the practical choice of

selecting L such that:

. (1.36)

An MPS in this form is said to be left-orthonormal, or to be in the left gauge. Similarly, we can

construct the equivalent MPS in the right gauge. Importantly, when doing this we are always

assuming (unless otherwise stated) that the MPS is injective, namely the leading eigenvalue of

the transfer matrix Eq. 1.36 is non-degenerate (see also Appendix B). The left and right gauges

are most useful when they are combined appropriately to write an MPS in the mixed gauge:

, (1.37)

. (1.38)
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This allows us to define the center-site tensor AC and the gauge tensor C as

. (1.39)

C implements the map from the left-gauge tensor AL to the right-gauge tensor AR , and can be

brought into a diagonal form by an additional unitary transformation that can be absorbed

in AL and AR . C directly encodes the entanglement spectrum of the state and the Schmidt

decomposition of the state can immediately be read in Eq. 1.38 (see Appendix B).

Given a tensor A finding the associated mixed gauge (AL , AR , AC ,C ) is straightforward. How-

ever, we will also encounter the situation where we only have AC and C and we want to find

AL and AR defining a consistent mixed gauge MPS, i.e. satisfying

. (1.40)

It has been shown [148] that one way of solving for AL and AR is to perform the polar decom-

positions

, (1.41)

, (1.42)

where P l ,r ,Q l ,r are hermitian and positive matrices, and where U l ,r and V l ,r are unitary. When

AC , C ,AL and AR are all consistent, the unicity of the solution to the polar decomposition

ensures that P l ,r ∼Q l ,r and that

. (1.43)

Multi-site unit cell

Before moving on to the variational principle based on the uniform MPS Ansatz, we must

introduce the version of the uniform MPS Ansatz where the translation invariance is not on

one site as in the above, but on multiple sites. Indeed, the invariance of the row-to-row transfer

matrix under translations by one site does not necessarily imply the translation invariance

of its fixed point which might only be invariant under a translation of nx sites. Furthermore,

in some cases it makes sense to look for an eigenvector of the squared row-to-row transfer

matrix. A useful example to have in mind is the square lattice Ising antiferromagnet: the

leading eigenvector of the one-row transfer matrix corresponds to a superposition of an

antiferromagnetic chain with the same chain shifted by one site to the left. There are two

non-desirable effects of this. The first is numerical: such a superposition corresponds to a

non-injective MPS and therefore breaks the unicity of the leading left and right eigenvectors
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of the MPS overlap. The second is physical and corresponds to the fact that we typically are

interested in the physical behavior within symmetry-broken sectors (e.g., we want to compute

the magnetization of the 2D ferromagnetic Ising model and find a non-zero result). Therefore,

both from the numerical point of view and from the point of view of physics, it is often more

practical to allow for the spontaneous symmetry breaking and have access to the leading

eigenvector corresponding to one of the symmetry-broken states. One might also encounter

cases where the transfer matrix itself does not have one-site translation invariance. In all these

cases, we want an Ansatz with a unit cell involving multiple sites.

A simple approach is to group sites together to be able to use the one-site Ansatz and related

algorithms. However, it is more efficient to introduce a multi-site Ansatz and adjust the algo-

rithms appropriately. This Ansatz will be defined by nx tensors {A(1,c)}c=1,...,nx of dimensions

χ×d ×χ. In Ref. 151 these tensors are seen as elements of a single four-legged tensor A, with

the fourth leg labeling the site in the unit. Here we chose to keep this label explicit. The

corresponding Ansatz for a three-sites unit cell would be:

(1.44)

We can still write the left- and right-orthonormal forms, with

. (1.45)

The main difference is that the tensors AC and C now satisfy:

, (1.46)

where it is understood that c and c +1 are given modulo nx (with the appropriate shift).

Finally, when there is translation symmetry breaking also in the vertical direction, in the sense

that the row-to-row transfer matrix should be applied ny times to get back to the original state,

it is useful to take into account the state at the intermediate steps of the application of the

transfer matrix. In this case, the tensors for the Ansatz corresponding to the state at step r will

be labeled {A(r,c)}c=1,...,nx , with r = 1, . . . ,ny .

1.3.3 Tangent space and variational principle

In the following we introduce the main support for the VUMPS algorithm, which is used

throughout this thesis. This is far from being the only option to contract two-dimensional

tensor networks; in fact, in the context of PEPS, the most widely used technique is the CTMRG

of Nishino and Okunishi [146, 154, 192, 193]. Another method is the fixed-point corner method
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1.3. Tensor networks for classical Ising models

(FPCM) [149], which is a variation on CTMRG where the corner tensor equations are solved

using an eigenvalue solver. The VUMPS approach is perhaps closest in spirit to the less used

infinite time-evolving block decimation (iTEBD) approach, where the top (and bottom) MPS

are evaluated in the spirit of a power method [147]. 7

Variational principle

We want to use MPS as a variational Ansatz. In the quantum case, we have an operator H

describing the Hamiltonian and we want to optimize, for a given bond dimension χ,

min
A

〈
ψ(A∗)

∣∣H
∣∣ψ(A)

〉〈
ψ(A∗)

∣∣ψ(A)
〉 . (1.47)

In the classical case, which we will be focusing on from now on, we instead have a row-to-row

transfer matrix T (T ) in the form of an MPO:

, (1.48)

We are looking for the leading eigenvector of this transfer matrix in the form of a normalized

MPS, which will formally have to satisfy

. (1.49)

Λ= 〈
ψ(A∗)

∣∣T (T )
∣∣ψ(A)

〉
is actually ill-defined in the thermodynamic limit, since it should

grow exponentially with the longitudinal system size. Indeed, we can formally write this

overlap as

. (1.50)

7In most of this thesis, the results have been obtained with the VUMPS approach in order to contract two-
dimensional tensor networks. There is no deep reason behind this choice and in principle one could have used
CTMRG/FPCM. There are however two practical reasons: first, it does seems that CTMRG would struggle on some
of the gapless ground-state phases that we obtain, but in principle the speed of convergence could be improved by
using FPCM; second, multi-site unit cells are particularly easy to deal with in VUMPS, at least when one is only
interested in the leading eigenvalue. We did not investigate TRG/TNR, though they do show the same convergence
problems on frustrated systems as we observe in Chapter 2 [194]. Because of the step of splitting the tensors, it is
unclear whether the solution that we provide to this problem would also work with these contraction techniques.
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Introducing the left and right fixed points GL and GR satisfying the equations

, (1.51)

with λR and λL being the left and right eigenvalues of largest magnitude, we find that

. (1.52)

Note that in Eq. 1.51 the normalization corresponds to the general relation between left and

right (or top and bottom) eigenvectors that we need when we want to write equations of the

form of Eq. 1.30.

Therefore, Λ = limN→∞λN
R = limN→∞λN

L where N is the number of sites in the horizontal

direction. What we are really interested in is the partition function for one site λ=Λ1/N . We

want to maximize λ or, equivalently, we want to minimize the free energy per site β f =− ln(λ).

Tangent space

There are several ways of reaching the VUMPS equations that allow to optimize
∣∣ψ(A)

〉
. The

approach we present here (Ref. 150) is based on the fact that uniform MPS give a mapping

between χ×d ×χ tensors A and a set of states in the Hilbert space which forms a smooth

manifold ([195] and references therein). This approach also gives us a way of growing the bond

dimension of the Ansatz, providing a good initial state to run the fixed-point algorithm at a

larger bond dimension once the fixed-point has converged at a lower bond dimension [196].

It can be easily seen that the MPS manifold is not a linear subspace8, and it is therefore

tempting to do the following: to each A a point
∣∣ψ(A)

〉
in the MPS manifold is associated, and

we want to look at the tangent space to the MPS manifold at
∣∣ψ(A)

〉
. In Appendix B we follow

Ref. 150 in deriving the projector P A that projects a state in the Hilbert space on the part of

the tangent manifold which is orthogonal to
∣∣ψ(A)

〉
. In the mixed gauge, this projector is given

8
∣∣ψ(A+B)

〉 6= ∣∣ψ(A)
〉+ ∣∣ψ(B)

〉
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by:

. (1.53)

Example: truncating a uniform MPS

As a useful example, we consider the case of a uniform MPS
∣∣ψ(A′)

〉
with a certain bond

dimension χ′ that we want to approximate by another uniform MPS
∣∣ψ(A)

〉
with a bond

dimension χ, a procedure known as truncation. The standard approach is to use the Schmidt

decomposition Eq. B.16 and to truncate the singular values and accordingly the U and V

tensors in AL and AR (Eqs. B.13, B.14). Another possible approach is the maximization of the

logarithm of the fidelity [196]:

max
A

lim
N→∞

1

N
ln

(〈
ψ(A∗)

∣∣ψ(A′)
〉

N

〈
ψ(A′∗)

∣∣ψ(A)
〉

N〈
ψ(A∗)

∣∣ψ(A)
〉

N

)
(1.54)

where we denote by 〈.|.〉N the overlap two N -site MPSs (with PBC), such that the quantities

are well defined. Working with uniform MPS the zero gradient condition is

〈
∂A∗ψ(A∗)

∣∣(∣∣ψ(A′)
〉− 〈

ψ(A∗)
∣∣ψ(A′)

〉〈
ψ(A∗)

∣∣ψ(A)
〉 ∣∣ψ(A)

〉)= 0 (1.55)

which shows why we typically want to reduce the parametrization of the tangent space vectors∣∣∂Aψ(A)
〉

only to those which are orthogonal to
∣∣ψ(A)

〉
. Indeed, here,

∣∣ψ(A)
〉

is always a trivial

solution. We can use the tangent space projector that we just introduced to formulate the

condition for the optimum as

P A
∣∣ψ(A′)

〉= 0. (1.56)

In the mixed gauge this condition together with the translation invariance of
∣∣ψ(A)

〉
and∣∣ψ(A′)

〉
becomes

. (1.57)
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Introducing the left- and right fixed points GL and GR satisfying

, (1.58)

we can contract the top left and right channels in Eq. 1.57 yielding

.

(1.59)

We are thus looking for a solution to such self-consistent equations. The algorithm then goes

as follows: starting from a random tensor A(0) we evaluate the corresponding A(0)
L and A(0)

R .

We then evaluate A(1)
C and C (1) using Eq. 1.59, then evaluate the corresponding new A(1)

L and

A(1)
R based on the polar decomposition as in Eqs. 1.41, 1.42 and 1.43. We iterate this procedure

until convergence of the error measures

, (1.60)

which are essentially equal close to convergence (note that here k labels the iteration, and we

are working with a single unit cell). There is no fundamental guarantee that this procedure

should converge, but in practice this iterative way of solving the fixed point equations works

well.

1.3.4 The VUMPS and multi-site VUMPS algorithms for MPOs

VUMPS

With this, we have everything in hands to introduce the VUMPS algorithm for transfer matrices

(VUMPS stands for variational uniform matrix product states). The approach is very similar to

what we just described for the variational truncation of a uniform MPS. Inspired by that result

and the discussion leading up to Eq. 1.52, we note that the optimality condition corresponding

to Eq. 1.49 can be written as

P A
(
T

∣∣ψ(A)
〉−Λ ∣∣ψ(A)

〉)= 0. (1.61)
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Using the same approach as for the truncation of the MPS, we get the condition

, (1.62)

where GL and GR are the left- and right fixed point as in Eq. 1.51. We have fixed the gauge and

therefore the gauge tensor C transforming AL into AR is defined up to a factor. The fixed point

should therefore satisfy the Eq. 1.62 with the conditions

, (1.63)

. (1.64)

These eigenvalue equations can be solved using an Arnoldi method, yielding the VUMPS

algorithm (Algorithm 2).

Multi-site VUMPS

We now sketch the multi-site VUMPS algorithm. A thorough description can be found in

Refs. 149, 151, 197. Here, we only want to mention how Eqs. 1.62, 1.63 and 1.64 have to

be adjusted to allow for translation symmetry breaking in the horizontal and/or vertical

directions. In this case we use ny Ansätze
{∣∣ψ(A(r ))

〉}ny

r=1 where A(r ) = {A(r,c)}nx
c=1 is the set of

35



Chapter 1. Algorithms for classical Ising models

Algorithm 2 VUMPS algorithm: find the optimal MPS approximation of the fixed point of the
row-to-row transfer matrix T (T )

1: function VUMPS(T, A,δ) . A: initial guess; δ: tolerance.
2: (AL , AR , AC ,C ) ←MIXED CANONICAL FORM(A,δ)
3: Initialize ε> δ.
4: repeat
5: Compute the left fixed-point GL and λL . Eq. 1.51, Using T and AL

6: Compute the right fixed-point GR and λR . Eq. 1.51, Using T and AR

7: Check that λL
∼=λR =λ

8: Normalize GL by OVERLAP(GL ,GR ,C )
9: (λ, ÃC ) ← ARNOLDI(X →VG ,T (X ), tol. ε/10, initial guess AC ) . AC from Eq. 1.63

10: C̃ ← ARNOLDI(X →VG (X ), tol. ε/10, initial guess C ) .C from Eq. 1.64
11: (AL , AR , AC ,C ) ←OPTIMIZEALAR(ÃC ,C̃ ) . AL and AR from AC and C
12: ε← ∥∥VG ,T (AC )/λ− ALVG (C )

∥∥
2 . Error on Eq. 1.62

13: until ε< δ
return~σm+1

tensor describing the Ansatz at row r . The essential idea is that we want to solve

(1.65)

which we rewrite as a set of equations for each r = 1, . . .ny

, (1.66)
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where the λr are such that Λ=λ1 · · ·λny . The fixed-point equations become

, (1.67)

and

. (1.68)

The fixed point tensors G (r,c)
L and G (r,c)

R obey

, (1.69)

and

, (1.70)

respectively. In these equations, we only indicate the indices of AL and AR , the fact that

the tensor corresponds to AL or AR being understood from the shape of the tensor, and the

conjugation being taken appropriately for the tensors in the bottom row.

In the case of one- or two-row Hermitian transfer matrices, we can solve these equations either

in parallel or sequentially in the x and y direction, yielding the same results [151, 197]. As in

the original VUMPS algorithm, we can solve for {AC } and {C } using an Arnoldi solver, applied

to the vertical transfer matrix constituted of the appropriate strings of GL and GR tensors on

the left and on the right (and with T when solving for AC ). In that case we are looking directly

for λny = limN→∞Λ1/N similar to the single-site case.
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Note that occasionally we might encounter transfer matrices which are not Hermitian. In

this case and as suggested in Ref. 149 the top and bottom uniform MPSs can be computed

independently, just as in the iTEBD approach. To the best of our knowledge, the possibility of

optimizing simultaneously the top and bottom fixed point together using VUMPS, as is done

for instance in iDMRG, has not been explored yet. In the case of translation symmetry breaking

(or other symmetry breaking) one then has to make sure that the top and bottom fixed point

belong to the same symmetry-broken sectors. If the transfer matrix is not Hermitian or if

it has three or more rows, the algorithm is not justified by a variational principle anymore

but is still valid from the point of view of the tangent space projection. If one encounters

issues it can be modified and turned into a sequential optimization of the normalized fidelity

between T
∣∣ψ(A(r ))

〉
and

∣∣ψ(A(r+1))
〉

as we described for truncating a uniform MPS (see

Refs. 150, 196, 197).

Once the boundary MPSs are evaluated using the VUMPS algorithm, single-site observables

can be computed straightforwardly as

, (1.71)

where we used that GL ,GR are normalized such that λC = 1 with Tr
(
(C (r,c))†C (r,c)

)
) = 1, and

where λ is the approximation of the partition function for one site. Correlations between

single-site observables can (for instance) be obtained as

, (1.72)

It is easy to see that, at long-range, the connected correlations 〈O(r,c)O(r,c+n)〉−〈O(r,c)〉〈O(r,c+n)〉
will decay exponentially [120]. This is a feature of MPS and this is one of the reasons why

finite bond dimension scaling is needed when the states that we are trying to approximate

are critical. It implies that, when studying models such as the TIAFM whose ground state has
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critical correlations, very large bond dimensions will be required (see for instance the contrast

between the KIAFM and TIAFM residual entropy results in Ref. 140).

With this, we have everything in hands to study classical Ising models using tensor networks.

1.4 Ground-state energy lower bounds

When studying frustrated spin systems with Monte Carlo simulations, we generally encounter

the problem of proving rigorously that the Monte Carlo simulations reach the ground state

energy. Furthermore, as we will see in Chapter 2, for studying macroscopically degenerate

ground states of frustrated systems with tensor networks, we will find it useful to be able to

build lower bounds for the energy.

In this section we discuss two elegant approaches for computing ground-state energy lower

bounds for models of the type of Eq. 1.3. The first is a method introduced in 1966 by Kanamori,

and known as Kanamori’s method of inequalities, or the configurational polytope [25, 155–

157, 161] (see Appendix C.1 for a detailed list of references). The second is similar to the

Anderson bounds [198] but was developed systematically in the context of generalized classical

Ising models [158]. Both methods boil down to solving a linear program (LP), and the main

challenge in both cases is to limit the exponential number of inequalities that have to be

included to build the LP. In Appendix C.2, following Ref. 158, we show that both methods are

dual to one another in the LP sense. Since going into an introduction on linear programming

would take us too far out of our path, we refer the interested reader to the very useful book by

Grötschel et al. [199].

1.4.1 Kaburagi and Kanamori’s method of inequalities

The configurational polytope method was introduced in Ref. 155 and later re-explored by

several authors [25, 101, 156, 157, 161, 200–202]. (In Ref. 25pp.109-110, F. Ducastelle provides

a detailed list of applications to Ising models until 1990, which we reproduce in Appendix C.1).

We start by discussing the idea in a general setting, showing that finding the ground-state

energy lower bound can be formulated as a LP, and that the main difficulty lies with writing

the inequalities defining it. We then specialize to a simple example to illustrate one way of

constructing the inequalities.

Generic formulation

In general, we will be interested in solving Hamiltonians of the form:

H =
n∑

k=1

(
Jk

∑
(i , j )k

σiσ j

)
+ J0

∑
i
σi (1.73)
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where Jk can take any value, n is finite (and preferably small), and J0 acts as a magnetic field.

Introducing Nk as the number of pairs of range k, we can define the correlations:

ck := 1

Nk

∑
(i , j )k

σiσ j ∀ k = 1, . . . ,n (1.74)

and

c0 := m = 1

N

∑
i
σi , (1.75)

the energy per site can be rewritten

H

N
=

n∑
k=0

Jk zk ck , (1.76)

where zk = Nk /N , with N the number of sites. By construction, the correlations c0, . . . ,cn are

bounded between−1 and 1. Finding the ground state energy per site amounts to finding the set

of correlations minimizing H/N for fixed Jk , which seems trivial as we have a linear function

and a finite number of correlations. However, not every set of correlations in [−1,1]n+1 can

be realized in practice. Defining P ⊂ [−1,1]n+1 the set of possible correlations, two important

remarks have to be made:

1. P is convex (in the thermodynamic limit). This is the case because the components of

N~c for any point~c ∈ P are extensive quantities, and therefore for~c1,~c2 ∈ P , any point

on the line connecting~c1 to~c2 can be realized as the correlations of a mixture of two

configurations corresponding respectively to ~c1 and ~c2. The contribution from the

boundary between the two phases vanishes in the thermodynamic limit.

2. The linear function in Eq. 1.76 reaches its extremum on the boundary of P .

Therefore, if one has access to the set P of possible correlations and it is a polytope, the ground-

state problem can be solved as a LP. The main challenge then lies in finding P . Kaburagi and

Kanamori [155, 203, 204] suggest an algorithm to find constraints on the possible correlations

in the form of inequalities arising from geometrical constraints (i.e. constraints related to

the lattice topology). In general, these inequalities are valid for all ~c ∈ P but also for some

additional correlations. We call I ⊂ [−1,1]n+1 the polytope corresponding to the set of correla-

tions satisfying the inequalities of Kanamori. Because I ⊃ P , these inequalities directly imply a

lower bound on the ground state energy for any values of the Jk :

min
~c

n∑
k=0

Jk zk ck , under A~c ≥~b, (1.77)

where A~c ≥~b are the Kanamori inequalities. Given the corners of the polytope I , if one can

show that each corner is constructible, in the sense that there exists a configuration which

realizes the corresponding correlations, then this implies I = P .
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Phrased like this, the two challenges posed by this approach are

1. Find A and~b (or alternatively, find I ).

2. Show that P = I , which turns the lower bounds into exact results for the ground state

energy.

Below, on a simple example, we present the main ideas for constructing a set of inequalities

constraining the correlations, as suggested by Kaburagi and Kanamori [203]. We also sketch

an approach for constructing the set of inequalities slightly more systematically [101, 200].

J1 − J2 model on the kagome lattice

As a simple example, we consider a family of J1 − J2 models on the kagome lattice, with

Hamiltonians:

H = J1
∑

〈i , j 〉1

σiσ j + J2
∑

〈i , j 〉2

σiσ j (1.78)

⇒1

2

H

N
= J1c1 + J2c2 =~J ·~c, (1.79)

where the couplings J1 and J2 can take arbitrary real values, and where we have introduced

the (disconnected) correlations:

c1 := 1

2N

∑
〈i , j 〉

σiσ j c2 := 1

2N

∑
〈i ,〉2

σiσ j , (1.80)

with N the number of sites in the system. We used the fact that there are 2N nearest- and

next-nearest-neighbor bonds per site on the kagome lattice.

As illustrated in Fig. 1.8a, for a fixed energy per site and fixed values of J1 and J2, Eq. 1.79 defines

a line in the c1 - c2 space (correlation space). The idea behind Kaburagi and Kanamori’s method

is to build constraints on the possible values of c1 and c2, using clusters like the ones shown

in Fig. 1.8b. These constraints are a consequence of the type of on-site degrees of freedom

(here, Ising), the number of couplings involved in the Hamiltonian as well as the geometry

of the lattice, but do not depend on the values of the couplings. Once these constraints are

found, they define the set I J1−J2 of possible values for the spin-spin correlations, highlighted

in orange in Fig. 1.8c, and no correlation outside of this set can be realized. From this, it is

straightforward to obtain lower bounds for the ground-state energy. Indeed, changing the

energy per site just moves the line defined by Eq. 1.79 along ~J ; when the line reaches the

boundary of the set of allowed correlations, the energy cannot be lowered anymore.

The construction of the constraints on the correlations starts with simple inequalities such as
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Figure 1.8 – Kaburagi and Kanamori’s method on the J1 − J2 model. (a) A fixed energy and
a set of couplings correspond to a line in the correlation space. All the correlations cannot
be realized by a classical Ising model; they are constrained by the possible correlations that
can be reached on a three-site cluster (b). The constraints obtained from the clusters and the
inequalities in Eq. 1.82 are illustrated in (a), with labels indicating the signs and the clusters
used to build the inequalities. (c) The constraints finally define a polygon in the correlation
space. The energy is extremal at the boundary of the polygon. The corners (1)-(4) correspond
to ground state phases while the edges of the polygon correspond to first order ground state
phase transitions.

the fact that for any cluster of three spins:

(σ1 + s2σ2 + s3σ3)2 ≥ 1, (1.81)

which implies

s2σ1σ2 + s3σ1σ3 + s2s3σ2σ3 ≥−1, (1.82)

where s2, s3 are arbitrary signs. These inequalities are valid for any of the clusters in Fig. 1.8b.

Considering a cluster and one of the corresponding inequalities, the local constraint can be

turned into a global constraint on the correlations. Indeed, the cluster is selecting a few nearest-

and/or next-nearest-neighbor bonds. By applying all the lattice symmetries to the cluster, all

the nearest- and/or next-nearest-neighbor bonds of the lattice can be selected. Summing the

local inequality over all these copies of the cluster, one gets an inequality involving c1 and c2.

In our case, we get the following results (by selecting some specific inequalities in Eq. 1.82):

Cluster A :σ1σ2 +σ2σ3 +σ1σ3 ≥−1 ⇒ 3
∑

〈i , j 〉1

σiσ j ≥−2N ⇒ c1 ≥−1

3
, (1.83)

Cluster B :σ1σ2 ± (σ2σ3 +σ1σ3) ≥−1 ⇒ ∑
〈i , j 〉2

σiσ j ±2
∑

〈i , j 〉1

σiσ j ≥−N

⇒ c2 ±2c1 ≥−1,
(1.84)

Cluster C :σ1σ2 +σ2σ3 +σ1σ3 ≥−1 ⇒ 3
∑

〈i , j 〉2

σiσ j ≥−2N ⇒ c2 ≥−1

3
. (1.85)

42



1.4. Ground-state energy lower bounds

Figure 1.9 – Ground-state energies of the J1 − J2 model on the kagome lattice from Kaburagi
and Kanamori’s method. We note that while phases (2) and (3) correspond to long-range
ordered states, it is easy to see phases (1) and (4) have a macroscopic ground-state degeneracy.
The labels (1)-(4) correspond to the corners in Fig. 1.8.

Clearly, there could be other inequalities; here, we selected only the most restrictive ones. The

set of all possible inequalities defines the convex set I J1−J2 in the correlation space (indicated

in orange in Fig. 1.8c). The set P J1 − J2 of correlations that can be realized is contained in but

not necessarily equal to the inequalities set. To obtain exactly the ground state energy, one still

has to prove that P J1 − J2 = I J1 − J2 . When the inequalities set is a polygon (or a polytope when

generalized to a larger number of correlations), this can be done by finding an instance of a

configuration realizing the correlations for each of the corners of the polygon. The fact that

the correlations are known is often helpful. In the J1 − J2 model, this is easily done, and one

obtains the ground state phase diagram shown in Fig. 1.9, where for each ground-state phase

we have indicated an instance of a ground-state structure which produces the correlations

corresponding to the associated corner of the polytope.

Finding the inequalities

Extending on the simple example above, the brute-force approach to finding the inequalities

when we are only interested in pair interactions is essentially [101, 200]:

1. Find all possible clusters involving pairs of sites up to nth neighbors which appear in

the Hamiltonian.
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2. For each cluster, write all possible inequalities, i.e. for k sites:

mod(k,2) ≤
(

k∑
i=1

siσi

)2

≤ k2 (1.86)

3. For each couple (inequality, cluster), apply all lattice symmetries and extract the in-

equality for c0,c1, . . . ,cn

4. From the set of all inequalities, extract the inequalities polyhedron.

Notice that for a finite n, there is a finite number of inequalities generated that way. We also

note that this approach works very well in the case of the J1 − J2 − J3|| model on the kagome

lattice [101], as detailed in Appendix F.1.1.

When the corners of the polytope I defined by the inequalities are all constructible, then

P = I and we have that each corner of the polytope corresponds to a ground state phase of

the original model; additionally, as highlighted in Ref. 200, a k-dimensional region in the

boundary of the polytope corresponds to a n +1−k dimensional region in the (J0, J1, . . . , Jn)

ground state phase diagram. Indeed, a fixed~J together with an energy per site E corresponds

to a n-dimensional hyper-surface S E
~J

in the (n+1)-dimensional correlation space. The energy

per site reaches an extremum when S E
~J

intersects the polytope P only at its boundary, i.e.

S E
~J
∩P ⊂ ∂P, (1.87)

where we have denoted ∂P the boundary of the polytope. The corners of the polytope thus

correspond to the correlations in the ground state of the model for a family of values of the

couplings. Considering a corner~c of the polytope, it is easy to see that the family of models

admitting this corner as ground-state correlations corresponds to an n +1 dimensional region

in the ground-state phase diagram. Indeed, if ~J~c defines a hyper-surface that intersect the

polytope only at this corner, there are n +1 degrees of freedom in~J~c . Similarly, if~JB defines a

hyper-surface whose intersection with the polytope is exactly the k-dimensional boundary

region B, there are n +1−k degrees of freedom in~JB . Thus, one-dimensional edges of the

polytope correspond to phase boundaries in the ground state phase diagram, two-dimensional

faces correspond to a point at the intersection of multiple phases, and so on.

When the corners of the polytope I are not obviously constructible, the problem becomes

challenging. By an additional insight into the specific problem, or by computing upper bounds

on the energy using small-scale Monte Carlo simulations [201], one can often convince oneself

that there are missing inequalities (see e.g. Appendix F.1.2). One way to construct better

inequalities is to include weights in the initial inequalities [201, 202]. Perhaps the most general

approach to either deciding whether a given corner of the polytope is constructible or finding

an inequality that eliminate it can be found in Refs. 25 and 157.

Another very important challenge related to this method is that in some cases it can occur that
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1.4. Ground-state energy lower bounds

the number of corners of the inequalities polytope becomes infinite even for a finite range of

the couplings [205, 206].

1.4.2 MAX-MIN approach for ground state energy lower bounds

We now move on to a different method for computing ground-state energy lower bounds, akin

to Anderson bounds [198]. This method was discussed in 2016 by Huang et. al. [158]9,10. It is

the direct inspiration for the work presented in Chapter 2.

We are considering a generic system of Ising spins~σi on a lattice, with a translation invariant

Hamiltonian H containing only local interaction terms hk of strictly bounded range (e.g., finite

range further neighbor pair interactions):

H(~σ) = ∑
k∈C

∑
Γk

hΓk (~σ|Γk ) (1.88)

where C is a list of interaction clusters, Γk are the translations and rotations of the interaction

cluster k over the lattice, and where ~σ|Γk denotes the configuration of the few spins on the

translated cluster Γk . For instance, in the TIAFM Hamiltonian

H(~σ) = ∑
〈i , j 〉

Jσiσ j , (1.89)

there is only one interaction cluster which is the pair interaction, Γ1 would index the nearest-

neighbor bonds and hΓ1 (~σ|Γ1 ) would be the term Jσiσ j for Γ1 = 〈i , j 〉. The essential idea for

building a ground-state energy lower bound can be understood easily when thinking of this

archetypal example. Indeed, in that case, the Hamiltonian can be rewritten as a sum of local

Hamiltonians on the triangles tiling the lattice:

H(~σ) = ∑
Mi , j ,k

αM J (σiσ j +σ jσk +σkσi )+ ∑
Oi , j ,k

(1−αM)J (σiσ j +σ jσk +σkσi ), (1.90)

where the weight αM describe how each bond is split between up and down triangles.

The splitting of the Hamiltonian according to equation 1.89 directly provides a lower bound

for the ground-state energy per site:
H

N
≥−3J (1.91)

which is obtained by assuming that the energy of each nearest-neighbor bond is minimized.

Of course, frustration means this cannot be the case, and this lower bound is not in prac-

tice realized. A tighter lower bound is obtained by considering the different splitting of the

9They additionally propose a systematic way to compute upper bounds for the ground state energy which does
not resort to a Monte Carlo approach but rather to existing MAX-SAT solvers.

10Although at first read it might seem like Richards, Allen and Cahn [156, 161] are proposing this same method,
it can be seen that they are actually formulating the configurational polytope method in a way which is essentially
the dual formulation of Huang et al.’s MAX-MIN approach, see Eq. C.5.
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Chapter 1. Algorithms for classical Ising models

Figure 1.10 – Tiling on the kagome lattice. (a) The cluster u consists of twelve spins, and
it shares five spins with each of the translated clusters Tx (u) and Ty (u). (b) For a nearest-
neighbor interaction cluster Γ1 shared between three translations of u, we can associate three
weights that must sum to one and that state how much of the energy is accounted for in each
cluster.

Hamiltonian given by Eq. 1.90:
H

N
≥−J , (1.92)

which is obtained by assuming that the energy of each triangular Hamiltonian is minimized.

Because there exists a state which minimizes all the triangular Hamiltonians simultaneously,

this lower bound actually gives the ground-state energy of the nearest-neighbor antiferromag-

netic Ising model.

The method we now discuss is essentially a generalization of this idea [158]. We start with a

reference cluster of spins u (our triangles in the case of the TIAFM), selected such that we can

cover the lattice with the set Tu of overlapping translated u’s (see for instance Fig. 1.10). If

there are NTu such translated clusters, then the number of sites nu associated with one cluster

is nu = N /NTu . This reference cluster provides us with a way of splitting the Hamiltonian,

which can be rewritten as a sum of strictly local terms acting within a single cluster provided

that the range of the interactions is short enough : u must be such that for all the interaction

clusters k ∈ C, we can find Γk ⊂ u. We can associate to each Hamiltonian term hΓk some

weights ανΓk
describing how it is shared between various translations ν of the cluster u. This

results in a splitting of the Hamiltonian according to:

H(~σ) = ∑
ν∈Tu

∑
k∈C

∑
Γk⊆ν

ανΓk
hΓk (~σ|Γk ) = ∑

ν∈Tu

H~α
ν (~σ|ν) (1.93)∑

ν∈Tu |Γk⊆ν
ανΓk

= 1, ∀k ,∀Γk . (1.94)

Since, in this form, the Hamiltonian contains only terms that act within a cluster, the minimum

of H~α
u with respect to the spin configurations on u implies a lower bound on the global ground-
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1.4. Ground-state energy lower bounds

state energy per site. This bound can be optimized by maximizing over~α under the constraints

in Eq. 1.94:

ELB = 1

nu
max
~α

min
~σ|u

H~α
u (~σ|u). (1.95)

This optimization can be expressed as a LP [199]11 :

ELB ← max
~α

E , with

{
H~α

u (~σ|u) ≥ nuE ∀~σ|u∑
ν∈Tu |Γk⊆να

ν
Γk

= 1∀k ,∀Γk
, (1.98)

where the result of the maximization, ELB, is a lower bound for the ground state energy per site.

This lower bound corresponds to the actual ground state energy if and only if it is possible to

tile the plane with the local ground state configurations~σu s. t. H {α}
u (~σ|u) = nuE in a consistent

way.

1.4.3 Alternative approaches

Finding ground-states of short-range translation invariant Ising models has applications in

a wide variety of domains, and the approach we discussed here are only two of the many

approaches.

An important discussion is given in Ref. 33: by constructing lower bounds for the ground state

energy in a manner which is reminiscent of the two approaches discussed above, remarks can

be made on the definition of frustration. They are motivated by the fact that in the TIAFM,

for instance, the frustration seems to be relieved when considering triangular clusters, in the

sense that all the Hamiltonians on these triangles can be minimized simultaneously. This

makes it seem as though the notion of frustration is dependent on the form in which the

Hamiltonian is given, and suggests having two definitions of frustration: a “soft” frustration,

which can be relaxed by selecting large enough clusters, and a “strong” frustration, for which

no cluster would exist which would relax the frustration (see also Chapter 2).

Another direction that we did not explore in detail is the relation of the ground-state energy

lower bounds for classical Ising models to Bell inequalities [207–209]. In particular, Ref. 209

proposes a scheme which in our terms would allow one to find the configurational polytope

from the inside: if the correlations can be evaluated correctly (for instance via Monte Carlo

sampling), their algorithm either confirms that a candidate vertex belongs to the configura-

tional polytope or, if not, delivers an inequality that removes this corner.

11We can introduce a matrix A and a vector~b expressing the constraints in Eq. 1.98 as

A~α−nu E ≥~b, (1.96)

and, introducing~cT = (0,0, . . . ,1), we can easily formulate A′ such that the problem takes a more standard LP form:

max
[~α,E ]

~cT [~α,E ], A′[~α,E ] ≥~b. (1.97)

In this way, it is clear that any feasible solution of the LP is also an optimal solution.
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1.5 Summary

In this Chapter we have introduced three methods which will be used throughout the thesis: a

Monte Carlo myopic dual-worm algorithm specifically designed for frustrated Ising models

on the triangular and the kagome lattices, tensor networks and the VUMPS algorithm for the

study of classical spin systems, and finally some approaches for constructing ground-state

energy lower bounds for generalized Ising models.
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2 Contractible tensor networks for clas-
sical frustrated Ising models

In this Chapter, we discuss the expression of the partition function of classical frustrated spin

systems such that the associated tensor network can be contracted using standard techniques.

The initial motivation stems from the fact that tensor networks are extremely powerful for

solving counting problems [187, 210], while computing the residual entropy of a frustrated

spin system with Monte Carlo can prove challenging at times, if only because it typically calls

for the thermodynamic integration of the specific heat over the whole temperature range, often

requires ad-hoc Monte Carlo updates to fight critical slowing-down and/or frustration effects,

and implies a good control of the finite-size scaling behavior of the residual entropy [211, 212].

In the case of approximate tensor network contractions, the leading eigenvalue λ of the

transfer matrix is directly related to the partition function for one site (see Chapter 1). In

particular, when considering the partition function up to a factor related to the ground state

energy per site E0 and the number of sites N , the residual entropy can be obtained as

Z0 := eβE0N Z S = lim
β→∞

1

N
ln(Z0), (2.1)

which is related to the leading eigenvalue as

λ=Z 1/N
0 , (2.2)

if Z0 corresponds to the partition function that we are trying to compute.

As we discussed in the introduction to tensor networks for classical spin systems, this leading

eigenvalue can be obtained straightforwardly from the tensor network contraction algorithm.

In the case of VUMPS, it is actually the direct output of the code. In CTMRG, it can be evaluated

easily as depicted in Fig. 2.1.

Because of the above reasons, it seems that obtaining the residual entropy of arbitrary classical

frustrated spin systems with finite-range interactions should be an easy task, only requiring

to contract the appropriate tensor network. Indeed, tensor networks have been applied suc-
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Chapter 2. Contractible tensor networks for classical frustrated Ising models

Figure 2.1 – Computing the partition function for one site in CTMRG (see Refs. 125, 176).

cessfully to study phase transitions in 2D [129–132, 213] and 3D [139] frustrated classical spin

systems. Moreover, very precise results have been obtained with variational optimization for

two-dimensional and three-dimensional classical systems featuring a macroscopic degener-

acy [126, 140]. However, with the notable exception of Refs. 126, 140, and to the best of our

knowledge, a constant in these works is either the absence of macroscopic ground-state degen-

eracy, or, occasionally, an impossibility to converge or a convergence to a negative partition

function when such macroscopic degeneracy is expected [132, 213]. There is a reason for this

absence: in the case of TRG [141] and its improvements [143, 144], the problem of contracting

the tensor network associated with ground states of spin glasses in the low temperature (large

β) limit is a well-established issue [213–215], due to the imperfect cancellation of tensor ele-

ments which scale exponentially to zero or infinity at low temperatures [214]1. In Ref. 214, it

was shown that the problem can be solved by increasing drastically the numerical precision,

but because of the increase in computational resources, this is not in general a viable strategy.

We note that the numerical instability is also present in a TNR-based Metropolis-Hastings

algorithm study of Villain’s odd model [194, 216]. These issues seem thus mostly related to

the simultaneous presence of frustration and macroscopic ground-state degeneracy, and only

seem to arise at low temperatures.

In this Chapter, we tackle this problem in the case of frustrated, translation invariant Hamilto-

nians with a finite-range of the couplings. The core idea relies on the fact that Ref. 140 uses

the knowledge of the ground-state local rules to build the tensor networks. To understand why

it matters, we first introduce the “standard” construction for tensor networks of classical spin

systems. We then argue empirically that the failure of the contraction for this construction is

at its core related to frustration, and can be managed by writing a different construction for

the tensor network, relieving the frustration. We make this argument based on very simple

examples, the TIAFM and the KIAFM, and suggest an approach to the solution inspired by the

construction of ground-state energy lower bounds [158], before moving on to a more subtle

example as an application. Further examples will be discussed in Chapter 4.

1Note that the result in Ref. 214 can be obtained with an exact contraction, and does not necessarily require
using TRG. It is actually a nice Mathematica exercise to implement the exact contraction and check how the validity
of the contraction depends on a set precision.
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2.1. “Standard” construction

Figure 2.2 – Standard tensor network construction for the partition function of (a) the KIAFM,
(b) the TIAFM, (c) the kagome lattice Ising antiferromagnet with next-nearest-neighbor inter-
actions. The matrices t and t2 carry the Boltzmann weights, while the δ tensors enforce that
neighboring t ’s (t2’ s) share the same spin.

2.1 “Standard” construction

Partition functions for classical spin systems can be expressed as contractions of tensor

networks in the spirit of the transfer matrix formalism, a representation which is not unique.

As we saw in Chapter 1, the standard construction consists in associating to each interaction

a matrix t accounting for its Boltzmann weight, and to each on-site variable a δ tensor,

i.e. a tensor whose rank corresponds to the number of interactions involving that site and

which is 1 only when all its indices take the same value. In the particular case of the kagome

and triangular lattice Ising (anti)ferromagnets, this standard formulation leads to the tensor

networks of Fig. 2.2, where the Boltzmann weights are given by

tσi ,σ j = e−βJσiσ j , (2.3)

so that the matrix t reads

t =
(

e−βJ e+βJ

e+βJ e−βJ

)
, (2.4)

with J > 0 for the antiferromagnet. Contracting the tensor network amounts to finding the

leading eigenvalue and leading eigenvector of the row-to-row transfer matrices (see Chapter 1).

When the algorithm converges, the logarithm of the leading eigenvalue, directly related to the

free energy per site at the given inverse temperature β, is obtained with an extremely high

accuracy.

2.1.1 Issue with the zero temperature limit

However, it is obvious that low temperature properties cannot be directly probed from the

standard construction since the zero temperature limit of Eq. (2.3) cannot be taken. Similarly,

the partition function is ill-defined in that limit. In simple cases, this problem can be solved

by considering the regularized partition function Z0 whose zero temperature limit is always
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KIAFM TIAFM

MPS 0.5018331646 (χ= 10) 0.3230659407 (χ= 250)
Exact 0.5018331646 [18] 0.3230659669 [15]

Table 2.1 – Tensor network results obtained using VUMPS on the row-to-row transfer matrix
(χ is the MPS bond dimension). Reproduced from Ref. 140.

well defined and is directly related to the residual entropy:

Z0 := eβE0N Z S = lim
β→∞

1

N
ln(Z0) (2.5)

where we have introduced the ground state energy per site E0 and the number of sites N .

Indeed, to compute Z0 instead of Z , one has to contract the tensor network based on

t
σi ,σ j

0 = eβ
E0
z tσi ,σ j where z is the number of bonds per site. In a non-frustrated system, all the

pair interactions are minimized simultaneously, removing all exponentially diverging matrix

elements, hence ensuring that the zero temperature limit can be taken both in t0 and Z0.

However, in a frustrated system, the pair interactions cannot be minimized simultaneously

and t0 still contains exponentially diverging factors. For instance, compare the tensors for the

ferromagnetic and antiferromagnetic Ising models on the kagome lattice 2:

t F
0 =

(
1 e−2β|J |

e−2β|J | 1

)
t AF

0 =
(

e−
4
3βJ e

2
3βJ

e
2
3βJ e−

4
3βJ

)
. (2.6)

2.2 Nearest-neighbor Ising antiferromagnet on the kagome lattice

2.2.1 Ground state

To build up to a generic construction, we start by re-exploring the simple frustrated models

where a solution is known. The simplest is the KIAFM. In this model, the ground-state config-

urations have to satisfy a “2-up 1-down, 2-down 1-up” rule (no ferromagnetic triangles). This

is easily seen by writing the Hamiltonian as a sum of triangular Hamiltonians

H = ∑
〈i , j 〉

Jσiσ j =
∑
Mi , j ,k
Oi , j ,k

J (σiσ j +σ jσk +σkσi ) (2.7)

:= ∑
Mi , j ,k

HMi , j ,k +
∑
Oi , j ,k

HOi , j ,k . (2.8)

One triangular Hamiltonian is minimized by non-ferromagnetic spin configurations on the

triangle. Since the triangular Hamiltonians can be simultaneously minimized, all the ground

2The tensors are the same for the TIAFM.
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Figure 2.3 – Two similar tensor network constructions for the ground state of the kagome
lattice Ising antiferromagnet. (a) The Hamiltonian can be split up into triangular terms. The
configurations which minimize the triangular Hamiltonian can be tiled to create ground states.
We can build a tensor network to count the tilings and study the ground state manifold by
associating a tensor to each triangle. (b) One way is to label each ground-state configuration
of the triangle (i = 1, . . . ,6) and to introduce bond matrices P enforcing that spins must match.
The bond dimension is significantly reduced by performing an SVD on P and re-grouping the
tensors around a triangular tensor. At finite temperature, the construction is the same, only
the tensors are promoted to consider more configurations and provide them with a Boltzmann
weight. (c) Another way is to let the tensor network bonds bear the spin degrees of freedom
and to set the triangular tensor values to one when the energy corresponds to the local ground
state energy (d). The fact that shared spins must match is automatically enforced. At finite
temperature, Boltzmann weights are readily included.

states of the model can be described as tilings of 2-up 1-down, 2-down 1-up triangles on

kagome, where the triangular tiles fit if the shared spin is the same (Fig. 2.3a).

This is easily translated into a tensor network (slightly different from the one in Ref. 140; see

also Ref. 126) on the (dual) honeycomb lattice. The prescription is as follows (Fig. 2.3b):

1. On each site of the dual lattice (center of the kagome triangles), place a δ tensor with rank

3 and bond dimension 6 describing the 6 ground state configurations of this triangle,

2. On each bond of the dual lattice (sites of the kagome lattice), place a bond matrix P with

bond dimension 6 which is 1 if the two connected tensor assign the same value to their

shared spin, and 0 otherwise,

3. Reduce the bond dimension of the tensor network to 2 by performing a singular value

decomposition (SVD) on the P tensors and grouping the resulting tensors with the δ

tensors on the triangles.

This tensor network is well defined and provides the ground state entropy of the kagome lattice

with a precision of 10−10 (Table 2.1). This example demonstrates that it can be very useful to
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use clusters (here triangles) to build a tensor network. However, the choice of clusters, which

is rather natural in the case of kagome, is in general a subtle issue, as we now show on the

example of the triangular lattice.

2.3 Nearest-neighbor Ising antiferromagnet on the triangular lat-

tice

2.3.1 Ground state

We proceed with the archetype of frustration: the triangular lattice Ising antiferromagnet.

Inspired by the kagome construction, we look for tiles that can be used to build all the ground

states. We want to find them as local ground state configurations of local Hamiltonians (the

equivalent of the triangular Hamiltonian in the previous section) which can be simultaneously

minimized. This last criterion is essential to ensure that each ground state can be described

using these tiles.

For this, we notice that the Hamiltonian can be written as a sum of terms acting only on one

type of triangles, for instance M triangles:

H = ∑
〈i , j 〉

Jσiσ j =
∑
Mi , j ,k

J (σiσ j +σ jσk +σkσi ). (2.9)

The triangular Hamiltonian is minimized by non-ferromagnetic triangles. Since there exists

a state which minimizes all the triangular Hamiltonians, the set of all ground states can be

obtained by tiling non-ferromagnetic down triangles, which fit if the spins in the overlap of

three triangles have the same orientation 3. The corresponding tensor network has δ tensors at

the centers of up triangles and rank-3 P tensors enforcing the consistency on the spin shared

by three δ tensors (Fig. 2.4a).

Another valid splitting of the Hamiltonian is to share bonds between up and down triangles:

H = ∑
〈i , j 〉

Jσiσ j =
∑
Mi , j ,k
Oi , j ,k

J

2
(σiσ j +σ jσk +σkσi ). (2.10)

This splitting amounts to tiling non-ferromagnetic up and down triangles with the condition

that on a shared bond, the two spins must match; the corresponding tensor network is defined

on the honeycomb lattice and has δ tensors on up and on down triangles, with bond matrices

P now taking care of two spins (Fig. 2.4b). Note that we have chosen to give the tensor network

minimal connectivity: not all triangles that share a spin are connected, some shared spins are

implicitly enforced to be the same via multiple bonds.

3Indeed, there cannot be a ground state containing a ferromagnetic down triangle: this would mean that one of
the triangular Hamiltonians is not minimized.
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Figure 2.4 – Tensor network constructions for the ground state of the TIAFM: the Hamiltonian
can be split up into triangular terms in various ways. The configurations which minimize the
triangular Hamiltonian can be tiled to create ground states. (a) Construction corresponding to
Eq. (2.9). (b) Construction corresponding to Eq. (2.10).

These two splittings are equally valid (in the thermodynamic limit or with periodic boundary

conditions), and both solve the regularization problem by working directly in the ground state.

However, standard contraction algorithms fail to converge for the first construction, while

they converge and lead to the correct answer for the second one (Fig. 2.5, Table 2.1).

The main difference between the two cases is that, while in the second construction the

constraint forbidding down triangles to be ferromagnetic is imposed at the level of the tensors,

in the first construction it is imposed non-locally. Indeed, since the Hamiltonians in Eqs. (2.9)

and (2.10) are the same, they must have the same energy for all global states, implying that if a

state contains a down triangle which is ferromagnetic, it must also contain a ferromagnetic

up triangle. The key point is that these two triangles can be arbitrarily far apart. Accordingly,

approximate algorithms, which are based on large but finite bond dimensions, fail to converge.

2.3.2 Hamiltonian tessellation

In general, we don’t have such an insight on the ground state of frustrated models. To generalize

tensor network constructions, the question thus boils down to being able to select a priori

among all possible splittings of the Hamiltonian of interest, the equivalent of Eq. (2.10) and

not Eq. (2.9).

On the triangular lattice, these two splittings can be seen as instances of the following Hamil-

tonian tessellation (we will use this term to describe a set of ways of splitting the Hamiltonian),

which is a light version of Eqs. 1.93 and 1.94 introduced in Chapter 1 to compute ground-state
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Figure 2.5 – (a) Failure of the VUMPS algorithm to converge [148–150] for the antiferromag-
netic triangular lattice Ising model at β= 2 using the standard tensor network from Fig. 2.2
and at β = ∞ using the construction based on Eq. (2.9). (b) VUMPS convergence for the
antiferromagnetic Kagome lattice Ising model at β= 2 and β=∞, and the same for the anti-
ferromagnetic triangular Ising model using the construction of Eq. (2.11). We use MPS with a
bond dimension of χ= 80 and a variational convergence measure, see Ref. 150. We observed
similar behavior using CTMRG [146, 154], and a similar issue was observed for real-space
renormalization techniques in Refs. 132, 213, 214.

energy lower bounds :

H = ∑
ν∈Tu

∑
n∈ν

ανn hn = ∑
ν∈Tu

H~α
ν (2.11)∑

ν∈Tu s.t. n∈ν
ανn = 1, ∀n (2.12)

where for later convenience we have considered a cluster u regrouping two triangles:

α1

α′
1

α2 α′
2

u

Tu is the set of clusters obtained from translating u on the lattice (with overlaps). Each

cluster is seen as a collection of bonds (indexed by n) and to each bond Hamiltonian hn

(h〈i , j 〉 = Jσiσ j ) we associate weights ανn specifying how much of it is accounted for in each

cluster (Eq. 2.12 imposes that terms appearing in a single cluster have weight 1). In the

following, to ensure translation invariance, we always choose the ανn to be the same for

each ν ∈Tu
4. In our triangular case, each cluster has five interaction terms, four of which are

4In programmatic terms, the Hamiltonian tessellation can be thought of as a class of Hamiltonian splittings
described by the choice of the cluster u, and where choosing the values for the weights {ανn } defines an instance of
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Figure 2.6 – Two tensor network constructions based on the Hamiltonian tessellation Eq. (2.11).
(a) Labeling the local ground-state configurations, associating a delta tensor with each pair of
triangles, and introducing P matrices enforcing that shared spins must match. The bond di-
mension is significantly reduced by performing an SVD on the bond matrices P .(C.f. Fig. 2.3a).
(b) Alternative construction: the bond variables are the spin degrees of freedom. The local
tensor selects configurations that are in the ground state. (C.f. Fig. 2.3b)

shared with neighboring clusters, and the associated weights must satisfy the constraints

α′
1,2 = 1−α1,2 (2.13)

by translation invariance and Eq. (2.12).

We find the tiles – which will allow us to build ground states – as local ground-state configu-

rations {~σ|~αu } on u minimizing the local Hamiltonian H~α
u . Depending on the weights, we get

different ground-state configurations {~σ|~αu }; only the weights for which all the local Hamiltoni-

ans can be simultaneously minimized provide tiles which can be used to describe the whole

ground-state manifold. In our case, this further restricts the weights to

α1 =α2 ∈ [0,1]. (2.14)

This is the (convex) set of weights which satisfy

H~α(~σ|u) ≥−J ∀~σ|u on u (2.15)

where −J is the ground state energy per cluster. The boundaries of the convex set are defined

by some of these inequalities becoming equalities.

In this formulation, we can see in a new light what happens on the triangular lattice. By

construction, for any weights in the convex set defined by Eqs. (2.13) and (2.14), all the ground

states can be constructed as tilings of the local ground-state configurations. On the one

hand, Eq. (2.10) corresponds to Eq. (2.11) with α1 = α2 = 1/2. There are 10 local ground

the class.
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Chapter 2. Contractible tensor networks for classical frustrated Ising models

Figure 2.7 – A tessellation of spins on the kagome lattice: the cluster u consists of twelve spins,
and it shares five spins with each of the translated clusters Tx (u) and Ty (u).

state configurations of the unit u, hence 10 tiles. These are the configurations containing no

ferromagnetic triangles. On the other hand, Eq. (2.9) corresponds to Eq. (2.11) withα1 =α2 = 0.

At this point (which lies on the boundary of the convex set), an additional accidental ground-

state degeneracy occurs: configurations for which the up triangle is ferromagnetic now have

the ground-state energy as well. These two additional tiles cannot play a role in the ground-

state manifold, since there are weights for which they are not ground-state tiles; so, they cannot

fit into any global ground state. We call such tiles spurious because they do not really belong

to the ensemble of ground-state tiles. Thus, according to our observation that contraction is

possible for the tessellation of Eq. (2.10) but not for that of Eq. (2.9), it sounds like a good idea

to get rid of such tiles to ensure the convergence of the tensor network.

2.4 Generic implementation

All of the above can be quite straightforwardly adapted for a generic system of d-level spins σi

on a lattice, with a translation invariant Hamiltonian containing only local interaction terms

hn of strictly bounded range (e.g., finite range farther neighbor pair interactions):

H(~σ) = ∑
n∈C

∑
Γn

hn(~σ|Γn ) (2.16)

where C is a list of interaction clusters, Γn are the translations and rotations of the interaction

cluster n over the lattice, and where ~σ|Γn denotes the configuration of the few spins on the

translated cluster Γn .

2.4.1 Maximal lower bound

The first part of the approach is exactly what we did in Chapter 1, Sec. 1.4.2 when we presented

the MAX-MIN approach to compute ground-state energy lower bounds. Given a reference

cluster of spins u, we cover the lattice with the set Tu of overlapping translated u’s such that
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2.4. Generic implementation

the Hamiltonian can be rewritten as a sum of strictly local terms acting within a single cluster

(see for instance Fig. 2.7).

Just like in the triangular case, we associate to each Hamiltonian term hn weightsανn describing

how they are shared between clusters, recovering exactly the expression that we gave for the

triangular lattice in Eqs. (2.11) and (2.12). Since, in this form, the Hamiltonian contains only

terms that act within a cluster, we retrieve our LP from Eq. Eq. 1.98 by maximizing over αu
n the

minimum of the local Hamiltonian:

Eu ← max
~α

E , with

{
H~α

u (~σ|u) ≥ E ∀~σ|u∑
ν∈Tu s.t. Γn⊆να

ν
Γn

= 1∀n ,∀Γn
, (2.17)

where the result of the maximization, Eu , is the candidate ground state energy per cluster, and

where~σ|u goes through the configurations of u.

2.4.2 Getting the most out of knowing the ground state energy

The point that we want to make is that if the maximal lower bound is saturated (i.e. if u is

such that there exists a global state which has Eu as energy per cluster, or equivalently when

this lower bound matches an upper bound), one gets more than just the ground-state energy.

Indeed, for the weights ~α which realize this maximal lower bound, by construction the local

cluster Hamiltonians H~α
u can be simultaneously minimized if and only if the maximal lower

bound is saturated. We will say that such a Hamiltonian has minimal frustration. In this

case, all the ground states are characterized as tilings of the configurations of the cluster u

belonging to the set

G~α :=
{
~σ|u s.t. H~α

u (~σ|u) = Eu

}
. (2.18)

In this sense, the set of tiles G~α is a local rule.

There are however many solutions of (2.17), namely all sets of weights ~α satisfying

H~α
u (~σ|u) ≥ Eu , for all configurations~σ|u of u. (2.19)

As we have seen in the triangular lattice case, not all such solutions ~α will do. In the space of

the weights, the set of ~α for which all these inequalities are satisfied takes the form of a convex

set, which we will refer to as Au , corresponding to the generalization of Eqs. (2.14). The set of

ground-state tiles G~α
u does not depend on the weights in the interior of Au . However, just like

in the triangular lattice case, the boundary is defined by some of the inequalities becoming

equalities, and accidental degeneracies will occur:

G~α∈Int(Au )
u ⊂G

~α∈Boundary(Au )
u . (2.20)

The associated additional configurations must be spurious tiles, which could spoil the con-

tractibility of the tensor network as well as hinder the understanding of the ground-state
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manifold.

Thus, for a generic problem, we need to

1. find a cluster u such that the maximal lower bound for the ground state energy, Eu , is

saturated,

2. find weights ~α in the interior of Au .

Note that the second step allows one to get rid of avoidable spurious tiles, but there could

as well be some tiles in G~α∈Int(Au )
u which do not belong to any ground state. Getting rid of

the avoidable tiles might help, but in general, because of the lack of insight into the problem,

several clusters might need to be tested. Additionally, to find a point in the interior of Au ,

splitting the weights evenly among clusters does not always work. The fact that the problem

can be phrased as a linear program is thus very helpful: first, it allows one to rapidly test for

various candidate clusters u; second, with a bit of additional work as mentioned below, it

allows one to enforce the selection of weights in the interior of Au , thus getting rid of avoidable

spurious tiles.

As a technical note, linear program solvers only output extreme points of the convex set, so

simply solving (2.17) will systematically give ~α corresponding to avoidable spurious tiles. We

show in Appendix D how to overcome this by finding boundary points that form a simplex of

the same effective dimension as Au , ensuring that any point in the interior of this simplex will

also lie in the interior of Au 5. Another technical challenge is that the number of constraints

scales exponentially in the number of spins per cluster. In Appendix D, we also show how to

work around this problem by systematically and progressively incorporating inequalities as we

build the corners of the interior simplex, such that only a very limited number of inequalities

is needed.

2.4.3 Generic tensor network

Finally, the procedure to write a contractible tensor network is easily generalized. For the

ground state, the tiles G~α∈Int(Au )
u are described by δ tensors, placed on each dual vertex, coin-

ciding with the clusters of Tu . The overlapping spins matching condition is enforced by bond

matrices P . Performing an SVD on the rank-deficient bond matrices keeps the tensor network

bond dimension reasonably small. This is the generalization of the construction in Fig. 2.6a6.

The generalization of the construction in Fig. 2.6b is obtained by labeling the tensors with the

surrounding spin variables, and setting the weight to one when the configuration belongs to

G~α∈Int(Au )
u

7.

5A simplex is the generalization to high dimension of triangles and tetrahedrons.
6In a sense, we have obtained a vertex model.
7This construction is somewhat reminiscent of Baxter’s “interactions round a face” models (IRF models), where

the local weight takes into account the spins around a face of the square lattice.
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2.4.4 Testing for the saturation of the maximal lower bound

Provided that the maximal ground-state lower bound is saturated, all of the above is given.

Rigorously proving that it is the case is equivalent to finding one ground state, or proving that

the tiles G~α
u corresponding to the maximal lower bound can tile the plane. In general, this is

an undecidable problem [208, 217–219].

However, in practice, there is a whole range of models where it remains manageable, for

instance by constructing an upper bound with linear programming [158]. Moreover, the

tensor network formulation typically helps to deal with this question. Indeed, if the tiles G~α
u

cannot tile the plane, then the associated partition function is zero in the thermodynamic

limit. Thus, reciprocally, if the (exact) leading eigenvalue associated with the transfer matrix

is larger than or equal to one, this implies that the plane can be tiled using G~α
u and that the

lower bound is saturated. In practice, we are using tensor network algorithms which compute

the contraction of the partition function and the leading eigenvalue approximately. The

convergence parameter is the bond dimension of the candidate leading eigenvector in the

form of a MPS. We deduce from the above that if, for increasing MPS bond dimensions, the

approximate contractions converge consistently to a leading eigenvalue which is larger than

or equal to one, we have numerical evidence that the maximal lower bound is saturated,

implying in turn that we found the ground-state manifold and its degeneracy. Conversely,

if the contraction does not converge, we cannot conclude: this could either mean that the

lower bound is not saturated, or that it is saturated but unavoidable spurious tiles spoil the

convergence. In this case, one should try a different cluster.

2.4.5 Convergence at finite temperature

We note additionally that the above construction can in principle readily be generalized to a

finite-temperature tensor network. Here, we just give the idea for the construction and show

that it converges at finite temperatures for the triangular lattice Ising antiferromagnet.

The ground-state tensor network that we built can be seen as the zero-temperature limit of

a slightly more general construction, where the δ tensor is promoted to a tensor D0 (with a

larger bond dimension) describing each configuration and its Boltzmann weight relative to the

ground state. In the triangular lattice case, the finite-temperature tensor network formulation

of the regularized partition function Z0 associated with a Hamiltonian tessellation using u and

weights α1 =α2 =:α ∈]0,1[ on the TIAFM is thus given by bond matrices P of bond dimension

16, and by D0 tensors of the same bond dimension defined on each couple of triangles as

D {σ},{σ′},{σ′′},{σ′′′}
0 (α,β)

= δ{σ},{σ′},{σ′′},{σ′′′}B({σ},α,β)
(2.21)
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where the Boltzmann weight is given by

B({σ},α,β) = e−βJ [α(σ1σ2+σ1σ4)+(1−α)(σ2σ3+σ3σ4)+2] (2.22)

and where, for short, we denoted by {σ} the configuration of the four spins. After SVD and

grouping, the bond dimension of the network is reduced to 4. Importantly, in the standard

construction, tensor network algorithms fail to converge even at modest inverse temperatures,

when β is still small enough that the values in t0 are well defined, and no “NaN” arise; the

criterion for convergence is simply never met. In contrast, our tensor network can be con-

tracted without issues at any inverse temperature (Fig. 2.5). The zero-temperature limit of D0

is well-defined by construction, and in that limit it reduces to a δ tensor corresponding to the

10 ground state tiles on u.

2.5 Using symmetries

Before moving on to the full example, let us describe how to take advantage of the cluster

symmetries, something we have not discussed in the above. Here, we give a few ideas to

simplify the search for optimal solutions by using the cluster symmetry group Gu , i.e. the

group of local transformations that leave u invariant. They are essentially an application of

existing approaches in semi-definite programming, see for instance Ref. 220, and are very

similar to the ideas used in exact diagonalization (see e.g. Ref. [221]).

2.5.1 Invariance under the cluster symmetry group

We want to show that the LP in Eq. 2.17 is invariant under the cluster symmetry group Gu ,

under the assumption that the original Hamiltonian is also invariant under this group. We

first motivate this by showing that if this linear program is invariant, then we can look for an

optimal solution in the subspace of weights which are invariant under Gu .

Invariance of a LP under a symmetry group. Just as in semi-definite programming, consid-

ering a LP

max
~y
~cT~y subject to A~y ≤~b,~y ≥~0, (2.23)

we say that it is invariant under the group G if for any feasible solution~y (that is,~y satisfies the

constraints, but is not necessarily optimal) and for any g ∈G

g~y is feasible (i.e., also satisfies the constraints) , (2.24)

and ~cT g~y =~cT~y . (2.25)

If the LP is G-invariant, we can look for an optimal solution in the set of symmetric~y .
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2.5. Using symmetries

It is easy to see that if the program in Eq. 2.23 is G-invariant, it implies that if~y? is an optimal

solution, its group average

~y?G := 1

|G|
∑

g∈G
g~y? (2.26)

is also an optimal solution. Indeed, by definition of the invariance of Eq. 2.23 under G , g~y? is

feasible, and thus
1

|G| A
∑

g∈G
g~y? ≤ 1

|G|
∑

g∈G

~b =~b (2.27)

which implies that~y?G is feasible. Furthermore,

~cT~y?G =~cT

(
1

|G|
∑

g∈G
g~y?

)
= 1

|G|
∑

g∈G

(
~cT g~y?

)
(2.28)

= 1

|G|
∑

g∈G

(
~cT~y?

)=~cT~y? ≥~cT~y ∀~y , (2.29)

which shows that~y?G is also optimal. This implies in turn that we can look for solutions in the

subspace of invariant~y ’s.

The LP from the MAX-MIN approach is invariant under the cluster symmetry group Gu .

As mentioned in Sec. 1.4.2, the LP in Eqs. 2.17 can be rewritten as

max
[~α,E ]

~cT [~α,E ], A′[~α,E ] ≥~b. (2.30)

where~cT = (0,0, . . . ,1) and where we have introduced A′ and~b such that

A′[~α,E ] ≥~b ⇐⇒ H~α
u (~σ|u) ≥ Eu , for all configurations~σ|u of u. (2.31)

We introduce D the representation of the cluster symmetry group on the space of weights

~α, and Γ the representation of this same group on the cluster configurations ~σ|u . Eq. 2.25

is trivially satisfied since ~cT = (0,0, . . . ,1). The fact that Eq. 2.24 is satisfied can be seen by

applying an element g of the group to a given cluster configuration:

H~α(~σ|u) ≥ E ∀~σ|u (2.32)

⇒ H~α
u (Γ(g )~σ|u) ≥ E ∀~σ|u ∀g ∈G (2.33)

⇒ HD(g )−1~α
u (~σ|u) ≥ E ∀~σ|u ∀g ∈G (2.34)

To go from the first to the second line, we used that if a configuration belongs to the local

ground state tiles, then its transformations under the cluster symmetry group must also

belong to the ground state tiles; and to go from the second to the third, we simply applied

the group element inverse to the weights instead of applying the group element to the tile.
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This might seem counter-intuitive when thinking of a Hamiltonian with a long-range-ordered

ground state that spontaneously breaks some or all of these symmetries. However, if a LRO

ground state breaks these symmetries, then there must be some finite ground-state degeneracy

relating the various symmetry-broken ground states. These must all be described by the same

set of tiles, and therefore if one tile belongs to the local ground state configurations, so do its

transformation under Gu . The spontaneous symmetry breaking does not happen at the level

of the tiles, but at the level of the tiling: in a symmetry broken ground state, tiles belonging to

one symmetry-broken sector can only be tessellated with tiles of the same sector, just as the

Type-I tiles above.

Reducing the number of configurations. This shows that we can look for the solutions ~α in

the subspace of weights that are invariant under the cluster symmetry group. Since we now

optimize in the set SGu defined as:

SGu := {
~α|∀g ∈Gu ,D(g )~α=~α}

(2.35)

we trivially have that for any configuration~σ|u ,

H~α
u

(
Γ(g )~σ|u

)= H D(g )−1~α
u (~σ|u) = H~α

u (~σ|u) . (2.36)

We can reduce the number of configurations to one per orbit, where we say that~σ|u and~σ|′u
are in the same orbit if and only if there exists g ∈Gu s.t. ~σ|u = Γ(g )~σ|′u

2.5.2 An example

As a simple example, we consider the J1-J2 model of Sec. 1.4.1, on the kagome lattice:

H = J1
∑
〈i , j 〉

σiσ j + J2
∑

〈i , j 〉2

σiσ j . (2.37)

We use the cluster shown in Fig. 2.8a. We assume cluster symmetries as well as translation

invariance. First, because they are not shared between neighboring clusters, the weights

associated with the J2 couplings have to be all set to one, and so do the weights of the two J1

interactions that are lying inside the cluster. Then, by applying the cluster symmetries, we can

reduce the space of weights to a single parameter α. Applying the cluster symmetries and the

Z2 symmetry, we only have to consider a smaller number of configurations.

For J1 = 1 and J2 = 0.2, the results are shown in Fig. 2.8b. This example is important for two

reasons: first, it shows that we cannot always select the weights to be evenly shared between

bonds, depending on the cluster that is used. Indeed, here, α= 1/2 would not produce the

correct ground-state tiles. Second, it shows that a solution that is invariant under the cluster

symmetry group is not necessarily in the interior of the convex set Au . Indeed, at α= 0 and

α= 0.4, there are accidental degeneracies.

64



2.6. Farther-neighbor Ising model on the kagome lattice

Figure 2.8 – (a) The cluster used to look for the ground-state energy of the J1-J2 model. The
thin lines correspond to J2 interactions. (b) The energies of the cluster configurations for the
J1-J2 Hamiltonian on kagome (Eq. 2.37), as a function of the free weight α. The ground state
energy is shown in blue.

Figure 2.9 – The two-body Ising interactions present in the test model 2.38.

2.6 Farther-neighbor Ising model on the kagome lattice

As a challenging test case and motivated by our interest in models with farther-neighbor

couplings on the kagome lattice, we consider a frustrated Ising model inspired by Refs. 82, 99,

101, 102, 222:

H = J1
∑
〈i j 〉

σiσ j + J2
∑

〈〈i j 〉〉
σiσ j + J3

∑
〈〈〈i j 〉〉〉

σiσ j , (2.38)

where the sums run over (distance-based) first, second, and third nearest neighbors respec-

tively, as is illustrated in Fig. 2.9. We take J1 =−1 (ferromagnetic), and J2 = J3 = 10 (antiferro-

magnetic).
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Figure 2.10 – The residual entropy per site of the minimally frustrated tensor network for the
model in Eq. (2.38), obtained with the VUMPS algorithm with different bond dimensions χ. In
the inset we show that the value converges to a third of the value for the Ising antiferromagnet
on the triangular lattice [15].

2.6.1 Results

As our reference cluster u for the tessellation, we use a full kagome star (12 spins, Fig. 2.7),

for which 18 weights need to be determined. From the linear program, we find a ground

state energy lower bound E = 2
3 J1 − 2

3 J2 − J3 and 132 candidate ground state tiles. The tensor

network we construct for the ground state ensemble, assuming those candidate tiles, has bond

dimension 18 (very small compared to the total number of tiles of the cluster, 212 = 4096). The

VUMPS algorithm [148–150] converges nicely for this MPO for all bond dimensions of the

MPS and finds a leading eigenvalue that is both real and larger than one. We thus obtain with

a good level of confidence that the ground-state tiles can tile the plane, which implies minimal

frustration. The contraction readily provides the ground-state entropy to a very high precision

(Fig. 2.10).

Note that this method did not rely on constructing a periodic ground state, or any insight from

the Monte Carlo results which are presented below; the mere existence of the state in Fig. 2.11

however proves this result.

For comparison, we calculated the residual entropy using Monte Carlo methods (the technical

details can be found in Appendix A.4.1). Though one can easily generate some ground-state

configurations of the model (Fig. 2.11), the evaluation of the residual entropy via thermody-

namic integration is a challenge which required a thousand CPU hours for a significantly less

accurate result (compare Fig. 2.12 to Fig. 2.10).
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Figure 2.11 – An example of a spin configuration in the ground state. The red lines separate up
and down spins, and the red lines that cross a hexagon in a straight line have been accentuated.
The tiles with a thick line separate symmetry-broken sectors where all up (resp. down) triangles
are ferromagnetic. This configuration was generated during our Monte Carlo sampling and
illustrates the results obtained from the tensor network.
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Figure 2.12 – Monte Carlo results for the residual entropy as a function of the inverse linear
system size (a) and of the inverse system size (b). For each size, the entropy is obtained by
integrating the heat capacity (c) over the temperature on the whole temperature range. The
heat capacity is measured on 216 temperatures thermalized with 16’384 Monte Carlo steps
(MCS, consisting of 2 full updates of the state with single spin flip, 2 with the dual worm and
one parallel tempering step) and measured over 1’048’576 MCS.
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Figure 2.13 – The two types of tiles in the ground state of the model with ferromagnetic J1 and
antiferromagnetic J2 and J3 interactions. There are 132 tiles in total. The blue, respectively
yellow dots correspond to up, respectively down spins. The red segments represent the lines
on the dual dice lattice separating up from down spins. The dotted segments stand for the fact
that the line can go in either directions (but not both).

2.6.2 Analysis of the ground-state tiles

The residual entropy obtained by contracting the tensor network is within 10−7 of one third of

the TIAFM entropy, suggesting some kind of correspondence between the dominant part of

the ground-state manifolds of both models. This correspondence can be partially understood

thanks to exact statements based on the tiles and the tensor network construction. The

132 tiles can be split up into two types: type-I tiles for which all up (respectively down)

triangles are ferromagnetic (Fig. 2.13a), and type-II tiles which have one up and one down

antiferromagnetic triangle (Fig. 2.13b, c, and d). We proceed to understand the ground-state

ensemble of this model by first characterizing the type-I ensemble, and then describing how

type-II tiles modify this picture.

Type-I ensemble

The type-I tiles are exactly all the configurations of u for which the three ferromagnetic

triangles are never all pointing in the same direction. Each ferromagnetic triangle can be seen

as an Ising degree of freedom; the type-I tiles are thus all the configurations for which these

three degrees of freedom are never aligned. The tiles can be separated into two sub-types by

reflection symmetry: the tiles where the new Ising degrees of freedom live on up triangles,

and those where they live on down triangles. A global state made of tiling uniquely type-I

tiles can only be made of one of these sub-types, because the tiles in one sub-type cannot

be overlapping with the tiles in the other sub-type. Therefore, the type I ensemble features

reflection symmetry breaking.

The up (down) triangles are arranged as triangular lattice, and we have seen that the type-I

tiles are all the configurations for which the three effective Ising degrees of freedom are not

all aligned. So, there are no other constraints for tiling these type-I tiles. It straightforwardly

follows that the effective Ising degrees of freedom must act like the spins of an Ising antiferro-

magnet on the triangular lattice, a model whose residual entropy is known exactly [15]. The

residual entropy of the type-I ensemble is thus given by S = 1
3 STLIAF.
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Figure 2.14 – The red arrows indicate which angles can not be made by the different types of
domain wall. These restrictions make it such that domain walls can not make U-turns.

Type-II ensemble

First, let us distinguish the type-II tiles from the type-I tiles. All the type-II tiles have a line

(indicating an interface between up and down spins) running straight across the hexagon.

Conversely, all the configurations of the kagome star satisfying this description are type-II tiles.

In type-I tiles on the other hand, the lines separating up from down spins must only live on

up, respectively down triangles. An immediate consequence of this is that type-II tiles can

connect type-I tiles in different reflection symmetry sectors – if there are states containing the

two types of tiles.

A key characteristic of a type-II tile is the orientation of the line crossing the hexagon. We use

this to identify three subtypes of type-II tiles, illustrated in Fig. 2.14.

Making exact statements about how the tiles of the various subtypes can be matched together

is not as easy as in the case of the type-I tiles. To see which subtypes can neighbor one another

and how, we are going to use a small tensor network construction, and exact contractions.

Imagine a patch of 5×5 clusters where we restrict the center tile to one subtype of the type-II

tiles, and ask what types the surrounding clusters may be, while satisfying the usual tiling rules.

The tensor network for this is shown in Fig. 2.15. To each tensor neighboring the central cluster,

we add a leg, allowing one to probe the local configuration. After contraction, the indices of

the resulting tensor thus correspond to labels of the tiles of the six nearest-neighbor clusters.

If the value of the tensor at a certain set of indices is zero, it means that this configuration of

neighboring clusters is not allowed. Some non-zero elements may become zero if we consider

a larger patch, or even only if we consider the entire infinite plane - namely, the configuration

might be allowed locally but create some tiling issues at larger scales or at infinity.

The first result that we obtain is that a type-II tile must have exactly two type-II tiles of the same

subtype as nearest neighbors. The type-II tiles must thus make unending strings that conserve

subtype, and these strings cannot cross or fuse. Additionally, we obtain from the forbidden

local cluster configurations that these strings must either go straight or make 120◦ angles, but

69



Chapter 2. Contractible tensor networks for classical frustrated Ising models

  
Figure 2.15 – The vertex tensors are δ tensors representing the cluster configurations that
make up the ground states, on the bonds are the usual P matrices enforcing tiling rules. Of
course, in practice, we perform an SVD and exact truncation of these rank-deficient matrices
to be able to perform computations more efficiently. The green vertex tensor in the middle is a
δ tensor that has been restricted to a single subtype of type-II tiles. The tensor network has a
square lattice shape, but in reality the clusters form a triangular lattice, the red dotted lines
have therefore been added to indicate nearest neighbors. To the six delta tensors describing
the nearest neighbors of the central cluster we give an extra open index, allowing one to probe
the local configuration.

cannot make sharp angles. Moreover, of those 120◦ angles, two of the six are forbidden (which

two angles depends on the subtype), making it impossible for a string of type-II tiles to close

in on itself (in open boundary conditions). The forbidden angles with corresponding subtype

are shown in Fig. 2.14

We thus find that the type-II tiles must form domain walls that extend the entire size of the

system, separating different reflection-symmetry broken sectors made up of type-I tiles. A

given domain wall can only have one specific symmetry broken sector on either side, so two

neighboring domain walls cannot be of the same type, but instead the types must alternate.

Finally, note that based on this analysis it is not clear whether the type-II tiles are actually

tessellable, and we only found an upper bound to their freedom. We do however have a

number of ground states from the Monte Carlo simulations, and so we can observe that this

picture of domain walls is indeed correct.

2.7 Summary and outlook

In this Chapter, we have introduced a general approach to build contractible tensor networks

for frustrated translation-invariant Ising models with finite-ranged interactions. It relies on

the identification of clusters on which the energy can be minimized independently, and on a

formulation of the partition function in terms of effective degrees of freedom that correspond
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to all the relevant ground states on each cluster. The construction is actually possible for

any model with a discrete degree of freedom, for instance Potts or clock models, and in any

dimension, the main limitation being the size of the linear program that has to be implemented

and solved.

To put this result in perspective, let us come back to the core of the problem faced by tensor

networks for frustrated systems, namely the difficulty in numerically contracting tensors

with simultaneously very large and very small elements at low temperature because of their

exponential dependence on the inverse temperature β with both positive and negative ener-

gies. This difficulty is somewhat reminiscent of the sign problem in Quantum Monte Carlo,

which excludes the investigation of the low-temperature properties of a quantum system if

the off-diagonal matrix elements of the Hamiltonian are not all non-positive, but which at

the same time is basis dependent and can in principle be eliminated by a change of basis.

What we have proposed here is a reformulation of the partition function in a basis where all

elements are of the from e−βE , E ≥ 0, leading to a tensor of relatively modest dimension with

only elements equal to 0 or 1 at zero-temperature, and to a contractible tensor with elements

only in the interval [0,1] at any positive temperature. As for the sign problem in Quantum

Monte Carlo, the identification of the basis does not have in general a polynomial solution.

Yet, we have shown that this is in practice possible.

There is another work with a very different approach to solving this problem in the case of

spin glasses, when the interactions are set randomly. In Ref. 223, Liu et al. tackle the problem

directly at its numerical root, by using the tropical algebra (corresponding to the logarithmic

number system) to avoid the numerical issue related to the exponentially large numbers. To

date, this approach is however limited to finite size systems (albeit large ones), because it relies

on an exact contraction of the tensor network; our approach, on the other hand, is limited to

translation invariant problems with finite interaction range.

Closer to our approach, the idea of encoding ground-state local rules was seen to be both

necessary and sufficient in a recent preprint on the fully-frustrated XY model [224]. We should

also note that although this approach seems to solve the problem when using CTMRG or

VUMPS, it is unclear whether additional care should be taken when applying it in the context

of TRG, where SVD of the local tensors are performed.

A natural question arising from the approach to find the ground-state local rule relates to the

existence and properties of the cluster relaxing the frustration. A first aspect of this question

is whether the cluster relaxing the frustration has to be as large as the long-range order unit

cell, in the case where such a unit cell exists. We show in Appendix F.2.2 that this needs not be

the case, and that the cluster can be smaller than the unit cell for the long-range order. More

interestingly, in the absence of long-range order, one can wonder whether there is always

a cluster relieving the frustration. Namely, does frustration always have a finite range if the

couplings are of finite range? This question has been articulated in Ref. 33, where a distinction

is made between systems which have a finite-range frustration (i.e. in our framework, systems

71



Chapter 2. Contractible tensor networks for classical frustrated Ising models

where there exists a cluster size at which frustration can be relaxed), and hypothetical systems

which would have an infinite-range geometrical frustration 8.

Statement of contribution

The majority of the work detailed in this Chapter has been published in B. Vanhecke, J. Colbois,

L. Vanderstraeten, F. Verstraete, and F. Mila, “Solving frustrated Ising models using tensor

networks”, Phys. Rev. Research 3, 013041 (2021) [159] and is reproduced with permission from

all co-authors.

For this paper, B.V. and J.C. have come up with the formulation of the problem and of its

solution in close collaboration, under the supervision of L.V., F. V. and F. M. . The VUMPS

simulations and the writing and execution of the linear program have been performed by

B.V. . The Monte Carlo code has been written and executed by J.C.. The original manuscript

has been written by B.V., J.C. and L.V. with contributions from all authors. The additional

considerations not published in that paper are the work of J. C., with acknowledgments to B.V.

for discussions.

8Although this exceeds the scope of this thesis by a wide margin, let us mention Ref. 225, where the notions
of finite range and long-range frustration are related to the notions of soft and hard frustration in the context of
self-assembly in biological systems. It seems that in this context, there might be examples of long-range frustration.

72



Part IIThe role of farther-neighbor
couplings





3 Effect of very small farther-neighbor
couplings in an artificial spin system

We gave a general introduction to artificial spin ice and more generically artificial spin systems

at the beginning of this thesis. In this chapter, we are interested in a particular kind of artificial

spin systems with out-of-plane Ising anisotropy: chirally coupled nanomagnets. Introduced in

Ref. 113, these system exhibit a very strong nearest-neighbor coupling interaction. The main

idea is to rely on interfacial Dzyaloshinskii-Moriya interactions (DMI) to create regions with

out-of-plane anisotropy (OOP regions) connected by chiral domain walls to regions with in-

plane anisotropy (IP regions). Arranging the OOP regions on a kagome lattice and separating

them with IP regions, one can then use the IP regions to create a very strong nearest-neighbor

antiferromagnetic coupling between OOP regions. At first sight one could expect the system

to behave simply as a nearest-neighbor Ising antiferromagnet on the kagome lattice.

However, as we mentioned in the general introduction, it has been seen in several artificial

spin systems that the long-range dipolar interactions play a role in selecting the correlations

[71, 81, 88], even in (modified) artificial square ice [226] which is known for reproducing the

extensive degeneracy of the ice manifold [89, 110–112]. In this context, three natural questions

arise. The first is to find an effective model for the OOP regions in chirally coupled systems.

Indeed, it is not clear how to integrate out the degrees-of-freedom associated with the IP

regions. The second, if the nearest-neighbor coupling is shown to be significantly stronger

than the farther-neighbor couplings, is to determine whether the latter are small enough to

be neglected at the effective temperatures reached by the demagnetization protocol in the

artificial spin system. The third is to determine whether this effective model fully accounts for

the experimental results.

In Sec. 3.1, we describe this experiment in detail, and report on micromagnetic simulations

aimed at finding an effective finite-range model for the OOP regions. The resulting antifer-

romagnetic Ising models has very strong nearest-neighbor couplings and, relatively, weak

next and next-next nearest-neighbor couplings - much smaller than in the dipolar case. In

the remainder of the Chapter, we progressively build towards this farther-neighbor model,

providing tensor network and Monte Carlo data for the spin-spin correlations of a series of

short range Ising models on the kagome lattice, and comparing these correlations to the
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Chapter 3. Effect of very small farther-neighbor couplings in an artificial spin system

experimental results. We start in Sec. 3.2 by a comparison with the nearest-neighbor Ising

antiferromagnet on the kagome lattice. We find that even when considering a magnetic field,

and despite the strong nearest-neighbor couplings in the experiment, this model does not

qualitatively explain the experimental observations. In Sec. 3.3, we show that even weak

second nearest-neighbor couplings can partially solve the issue, by changing the order of

magnitude of the next nearest-neighbor correlations as compared to the next-next nearest-

neighbor correlations. We consider the effective farther-neighbor model in a field in Sec. 3.4,

and finally give an overall discussion of the results in Sec. 3.5.

3.1 Experiment: a kagome lattice of chirally coupled nanomagnets

We begin with a discussion of the experiments. They rely on the interfacial DMI [227–230],

HDMI = Di , j ·
(
Si ×S j

)
, (3.1)

which is allowed in environments with a lack of inversion symmetry and is induced by spin-

orbit coupling. As discussed in Ref. 113, this interaction can be leveraged to induce an effective

antiferromagnetic coupling between two OOP regions with well-defined magnetic anisotropy,

which take on the role of Ising spins.

3.1.1 Experimental setup

In order to create these effective antiferromagnetic couplings, one deposits a magnetic trilayer

of Pt, Co and Al. These trilayers have a large DMI at the Pt/Co interface and their magnetic

anisotropy can be tuned by oxidation of the Co/Al interface. Through this oxidation, one can

thus create regions of in-plane (IP) anisotropy and regions of out-of-plane (OOP) anisotropy

and control the location of the domain walls between them with left-handed chirality. The

details of the sample fabrication and the demagnetization protocol are given in Appendix E.1.

Consider a simple system where two regions with OOP anisotropy, which we model as Ising

spins, are connected by a region with IP anisotropy. Because of the DMI, it is energetically

favorable to have the Ising spins in an antiferromagnetic arrangement. In Ref. 113, it was shown

that this antiferromagnetic alignment can be realized in Ising chains and on the square lattice

after applying an external magnetic field and provided that the IP regions are small enough.

A small kagome sample was also brought to a ground state of the antiferromagnetic nearest-

neighbor Ising model - namely, an ice-rule obeying state. Here, we apply this procedure to

larger kagome systems (Fig. 3.1).

Magnetic force microscopy

Magnetic force microscopy (MFM) measurements are performed after the demagnetization

protocol to extract the OOP spin configurations (see Appendix E.1 for details about the MFM
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3.1. Experiment: a kagome lattice of chirally coupled nanomagnets

Figure 3.1 – The samples are extended kagome lattices etched from
Pt(6 nm)/Co(1.6 nm)/Al(2 nm) films. (a) Top left: magnetic force microscopy (MFM)
image of a sample. The black/white contrast shows the up/down magnetization of the
regions with OOP anisotropy. Bottom right: AFM image of the sample structure. (b) Scanning
electron microscopy image. Local Al oxidation can be seen as a grey contrast difference.
A schematic of the out-of-plane (OOP) and in-plane (IP) regions is shown. The OOP (red)
and IP (blue) anisotropy regions are defined by an OOP edge length of 100 nm an IP
region width of 50 nm. The OOP center to center distance is then geometrically set and isp

3OOP edge length + IP width. An example op OOP and IP configuration is illustrated.

scan protocol). An example of the resulting phase contrast is given in Fig. 3.1. The contrast

gives information about the OOP magnetization, with white (black) for down (up) magnetized

OOP regions. The low thickness of magnetic material makes the highly sensitive MFM tip a

good candidate for imaging the stray fields of the samples.

3.1.2 Micromagnetic simulations and effective model

As we will discuss in Sections 3.2 and 3.3, the results of tensor networks and Monte Carlo

simulations strongly suggest that farther-neighbor couplings are relevant in this experiment.

We see two possible sources of such couplings: the simple magnetostatic (dipolar) inter-

action between the regions with out-of-plane (OOP) anisotropy, and a possible interaction

(of magnetostatic nature or some more subtle origin) between the regions with in-plane (IP)

anisotropy. Here, we determine the likelihood of these scenarios by performing micromagnetic

simulations [88, 231–234].

Our aim is to find an effective Hamiltonian for the OOP regions, which are modeled with

Ising variables. Indeed, it is a priori unclear how to combine the IP region and the DMI

interactions with the dipolar interactions to give an effective model for the Ising spins. We

therefore perform micromagnetic simulations for islands (OOP and IP regions) with three and

five sites to determine these effective interactions. For this, we consider the most generic spin

model for five sites, including three-, four- and five-site interactions, respecting the cluster

symmetries. In the micromagnetic computations, we did not find any evidence suggesting

Z2 symmetry breaking. The effective Hamiltonian thus reduces to the following expression,
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Chapter 3. Effect of very small farther-neighbor couplings in an artificial spin system

Figure 3.2 – The first row indicates the couplings for the generic model with five sites of Eq. 3.2
(the symmetries of the system and theZ2 symmetry being imposed). The orange lines indicate
the group of spins involved in the interaction corresponding to a given coupling. If the sym-
metries are imposed, some configurations will have the same energy; we can therefore group
configurations by their energy. The second row shows one configuration (blue triangles for up
spins, and red triangles for down spins) for each of these seven different groups. Each group is
indexed by a Roman number and the Arabic numbers indicate how many configurations are
in each group.

where this symmetry is explicitly imposed by removing terms with an odd number of spins:

H = E0 + J1,h

∑
〈i , j 〉1,h

σiσ j + J1,d

∑
〈i , j 〉1d

σiσ j

+ J2
∑

〈i , j 〉2

σiσ j + J3||
∑

〈i , j 〉3||
σiσ j

+Q1
∑

〈i , j ,k,l〉1

σiσ jσkσl +Q2
∑

〈i , j ,k,l〉2

σiσ jσkσl

, (3.2)

and where the groups of spins to which the couplings apply are defined in Fig. 3.2. The J

couplings correspond to the usual pair interactions while the Q couplings correspond to

four-site interactions.

We performed micromagnetic simulations using MuMax 3 (v3.10) [233, 234] to determine the

(relative) coupling constants of the chirally coupled nanomagnet geometry. The cell sizes are

chosen such that the angled edges are accurately simulated. Interfacial DMI is introduced

by setting Dind = 0.9±0.1 mJ/m2 [113]. The detail of the simulation parameters are given in

Appendix E.2.

We first simulate the system in the absence of regions with IP anisotropy, where the interactions

are of dipolar nature, similar to Ref. 82. The detail of the results for each configuration of
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3.1. Experiment: a kagome lattice of chirally coupled nanomagnets

Figure 3.3 – Configurations of the regions with OOP anisotropy and IP anisotropy on a triangle.
Black and white OOP regions correspond to up and down Ising spins, respectively. (a) and (b) In
the grey squares, the results of the micromagnetic simulations are given; these results are also
schematically represented for readability. The colors in the IP region refer to the orientation of
the local magnetization in the plane, as labeled by the colored disk. (a) Optimal configuration
of the IP regions when all the Ising spins are aligned: 1-in 2-out for all up spins, 2-in 1-out for
all down spins. These configurations have energy E =−7.5588 ·10−18 ±10−22 J. (b) Optimal
configurations of the IP regions when one or two spins are up: the IP region points towards the
up spins. These configurations have energy E =−8.209 ·10−18±5 ·10−21 J. (c) and (d) Examples
of IP configurations which give a higher energy for the OOP configurations corresponding to
(a) and (b). Here, the schematic representation shows how the IP region was initialized. (c) A
two-in one-out configuration for all up spins, or a one-in two-out configuration for all down
spin, is not energetically favorable. (d) If, initially, the IP magnetization does not point towards
the up spin(s), the system tries to relax to the IP configurations shown in (b).

Fig. 3.2 can be found in Appendix E.2. We find that

J dip
1 = (1.87±0.01) ·10−20J

J dip
2

J dip
1

= 0.1188±0.0006

J dip
3||

J dip
1

= 0.0769±0.0003

(3.3)

where the errors are dominated by the error on J1 – we find two slightly different values for

J1,d and J1,h
1. Q1 and Q2 are zero within the error bars. In this case, we indeed recover

the dipolar couplings, with a factor of 1.6 correction to the nearest-neighbor coupling as

compared to the point-dipole approximation, coming from the finite size of the elements and

their proximity [81, 82].

1 J1,h = 1.868 ·10−20J while J1,d = 1.884 ·10−20J. We use the average of these values for J1, and the difference of
these values to the average as an estimate of the error on J1.
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We then consider the effect of the IP regions. A small subtlety has to be addressed in this case:

a priori, for a given OOP configuration (labeled by roman numbers in Fig. 3.2), there can be

several IP configurations. We proceed in two steps

1. For each configuration of three Ising spins on a triangle, we find the IP configuration

that minimizes the energy (see Fig. 3.3). From this, we can already extract the nearest-

neighbor coupling

J1 = (1.63±0.01) ·10−19J, (3.4)

(for an IP width of 50 nm) that is almost one order of magnitude larger than in Eq. 3.3.

The main source of the error is that the micromagnetic results are not completely

rotation-invariant, a difficulty probably related to the use of a square grid for discretiza-

tion in MuMax3.

2. For each configuration of five Ising spins on a pair of triangles, we look for the combined

configuration of the two IP regions minimizing the energy. The optimal configurations

and their respective energies can be found in Appendix E.2. The effective model for the

OOP region (Ising spins) is based on these energies.

It is important to note that we assume here that the IP region will take the configuration that

locally minimizes the energy. Because of the limited MFM resolution and the small width of

the IP regions, we have not been able to determine from the experimental scans whether this

is actually the case.

We give the results for various IP widths and for various values of the DMI in Fig. 3.4. In

particular, for an IP width of 50 nm and for D = 0.9 mJ/m2, corresponding to our experiment,

we find for the full J1 coupling involving dipolar and IP-mediated interactions:

J1 = (1.6±0.03) ·10−19J. (3.5)

This result, computed by minimizing the energy of pairs of triangles, is in agreement (within

the error bars) with the result of the equality in Eq. 3.4 which was obtained by minimizing the

energy of single triangles. For the farther-neighbor couplings, we find:

J2

J1

∼= 0.0235±0.0004 (3.6)

and
J3||
J1

∼= 0.0103±0.0001. (3.7)

We see that, as compared to the pure OOP model, when the IP region of width 50 nm is taken

into account, the nearest-neighbor coupling is increased by almost a factor of 10, but that the
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Figure 3.4 – The value of the couplings from Fig. 3.2, relative to J1, as obtained from the
micromagnetic configurations. Error bars for J2/J1 and J3||/J1 are computed from the error
bars on J1 and from the change in the value of J2 and J3|| when Q1 and Q2 are taken into
account versus when they are not. a) Variation of the couplings as a function of the width of
the IP domain, with D = 0.9 mJ/m2. b) Variation of the couplings as a function of the DMI,
with an IP width of 50 nm.

farther-neighbor couplings are affected as well by a factor

J2

J dip
2

∼= 1.67±0.01 (3.8)

and
J3||
J dip

3||

∼= 1.12±0.01, (3.9)

respectively.

If the IP region had only contributed to the nearest-neighbor coupling (and not to farther-

neighbor couplings), the J dip
2 and J dip

3|| couplings would have had to be compared not to J dip
1

but to the full J1. In this case, instead of the couplings in Fig. 3.4, for an IP width of 50 nm, we
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Figure 3.5 – Short range spin-spin correlations of the 20 kagome samples. The considered
spin pairs are defined in the inset. c1 and c2 correspond to nearest and next nearest-neighbor
correlations, c3|| and c3? to 3rd neighbors. The dashed lines show the mean value and the
highlighted areas correspond to one standard deviation around the average.

would have found that

J dip
2

J1
= 0.0139±0.0002

J dip
3||
J1

= 0.0090±0.0001.

(3.10)

Thus, when the DMI and dipolar interactions are considered for a cluster of five sites, we find

that the nearest-neighbor couplings are increased by a much larger factor than the second

and third neighbor couplings, resulting in an effective model with very small farther-neighbor

interactions as compared to the nearest-neighbor couplings. These results vary only slightly

with the change in IP width or in DMI, as shown in Fig. 3.4.

Sources of a magnetic field

On top of the effective model discussed above, we have to consider the possible effect of a

magnetic field. Indeed, there are two possible sources of a longitudinal field (i.e., a magnetic

field parallel to the Ising spin axis) in the experiment: the offset of the demagnetization field,

and the stray field of the MFM measurement tip2. The saturation field of the samples (of the

order of 4J1) is estimated to be of the order of 2 kOe. The offset in the demagnetization field is

of the order of 10 Oe, and the stray fields from the MFM tip are of order 500 Oe. This means

that if there is a field, we expect it to be of the order of h ∼ J2 to h ∼ J1.

2A careful look at the MFM results showed some islands changing contrast during the tip scanning process,
which suggest a tip-sample interaction
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c1 c2 c3|| c3?

−0.218±0.02 0.022±0.02 0.063±0.02 −0.003±0.02

Table 3.1 – Experimental values for the first spin-spin correlations (See Fig. 3.5).

rm∆=+3 rm∆=+1 rm∆=−1 rm∆=−3

0.10±0.024 0.60±0.03 0.28±0.04 0.015±0.008

Table 3.2 – Experimental values for the proportion of triangles with a given net magnetization.

3.1.3 Experimental results

To characterize the experimental results, we proceed as in Ref. 81 and we extract the experimen-

tal spin-spin correlations in order to compare them against the models under consideration.

More precisely, for the four types of spin pairs illustrated in Fig. 3.5, we estimate the connected

correlation functions

〈σiσ j 〉−〈σi 〉〈σ j 〉 (3.11)

using, for spin pairs of type k, the unbiased estimator

ck = M
M−1

(
1

M

∑
(i , j )k

σiσ j − 1

M 2

∑
i :(i , j )k

σi
∑

j :(i , j )k

σ j

)
(3.12)

where M is the number of spin pairs of type k in the lattice and where
∑

(i , j )k
denotes the

sum over all spin pairs of type k. Note that we use the statistical field theory expressions:

“connected” correlations means 〈σiσ j 〉− 〈σi 〉〈σ j 〉 and “disconnected” correlations means

〈σiσ j 〉. The results for each sample are shown in Fig. 3.5. In this figure, the shaded areas

correspond to the values of the respective correlations that are within one standard deviation

of the mean over the samples. These means are given in Table 3.1. As shown in Fig. 3.5, the

results vary significantly from one sample to the next. Yet, we note that the descending order

of the correlations is almost systematically |c1| > c3|| > c2, often with c2 & c3?. This qualitative

result will drive our analysis.

Additionally, we consider two other observables which are characteristic of the experimental

results. First, for the net magnetization of the samples, we get a result significantly different

from zero: m = 0.19±0.05; all the samples are magnetized in the same direction. Second, in

each sample there are 10% to 20% of ferromagnetic triangles (“frustrated” triangles, which

do not respect the two-up one-down, two-down one-up ice rules); we therefore compute

the proportion of triangles with a given magnetization (analogous to the often used charge

definition, but without introducing a sign). The results are given in Table 3.2; overall, the

proportion of ice-rule-breaking triangles is r f r = rm∆=+3 + rm∆=−3 = 0.12±0.03.
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3.2 Nearest-neighbor model

Given the very strong nearest-neighbor couplings predicted by the micromagnetic simulations,

we start by checking whether the experimental results from Sec. 3.1 can be understood using a

purely nearest-neighbor model,

HNN = J1
∑
〈i , j 〉

σiσ j −h
∑

i
σi . (3.13)

3.2.1 Nearest-neighbor Ising antiferromagnet in zero field

As we discussed in the general introduction, the kagome lattice is a natural playground for

frustrated models. In particular, the nearest-neighbor Ising antiferromagnet on this lattice is

known to have no order at any temperature, and it was shown by A. Sütö that the spin-spin

correlations decay exponentially [36], with∣∣〈Si S j 〉
∣∣≤ 4×0.74|i− j | (3.14)

which implies an upper bound for the correlation length 3:

ξ≤ ξSütö −1/ln0.74 = 3.32109. (3.15)

An exact result was obtained more recently for the correlation length between “middle spins”

from transfer matrix computations using Toeplitz determinants [37]:

ξ=− 2

ln
(
10−p

96
) ∼= 1.250559... (3.16)

It is well known that the correlation length can be computed from the two leading eigenvalues

of the transfer matrix λ1,λ2 (see for instance [178]) as

1

ξ
=− ln

λ2

λ1
. (3.17)

We write the partition function of the nearest-neighbor model on the kagome lattice as a

tensor network as depicted in Fig. 3.6. We contract these networks using the VUMPS algo-

rithm [148, 149], which finds the leading eigenvector of the (infinite) 1D transfer matrix using

as a variational Ansatz a translation invariant MPS (see Chapter 1).

3Note that the magnetization is zero in the ground state of the model, hence the connected or disconnected
correlations have the same value
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Figure 3.6 – Tensor network formulations for the partition function of the nearest-neighbor
model on the kagome lattice. In highlight, we indicate the regions that can be grouped in
a single tensor such that the tensor network on the honeycomb or dice lattice is reduced
to a square lattice tensor network which can then be contracted using VUMPS. (a) “Direct”
construction on the honeycomb lattice, with the tensor on the triangle given by Eq. 3.18, and
which is easily extended to the nearest-neighbor model in a field. (b) “Dual” construction on
the dice lattice, with the tensors given in Eqs. 3.20, 3.21. This construction is easily extended
to the next nearest-neighbor model in zero field.

In the “direct” construction, the tensor

Tσi ,σ j ,σk = e−βJ1(σiσ j+σ jσk+σkσi+1) (3.18)

describes all the Boltzmann weights on a triangle, with a shift corresponding to the ground

state energy on a triangle. In the “dual” construction, we use a classical dimer variable defined

on each nearest-neighbor bond 〈i , j 〉

di , j :=σiσ j . (3.19)

The tensor on each triangle is

Tdi , j ,d j ,k ,dk,i =
e−βJ1(di , j+d j ,k+dk,i+1) di , j d j ,k dk,i = 1

0 otherwise
, (3.20)

and the tensor on each hexagon Hd1,d2,d3,d4,d5,d6 only imposes that the number of dimers is

even, such that the dimer configuration maps to a spin configuration (see Chapter 1):

Hd1,d2,d3,d4,d5,d6 =
1 if d1d2d3d4d5d6 = 1

0 otherwise
. (3.21)
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c1 c2 c3|| c3?

Exact [235] −1/3 0.1234... 0.1014 ... -0.0743...
Direct TN −1/3 0.12343725 0.10144577 -0.07480837

Dual TN −1/3 0.12343725 0.10144577 -0.07480837

Table 3.3 – First spin-spin correlations in the ground state of the nearest-neighbor model (See
Fig. 3.8).

In both constructions, we recover the exact ground state entropy of the kagome Ising antifer-

romagnet [18] to the 14th decimal place. For the first few correlations in the ground state, the

two tensor constructions agree to the 3rd decimal place with the exact results [235, 236](Table

3.3).

To extract the correlation length from the direct tensor network, we follow Ref. 237 and

compute the first eigenvalues of the transfer matrix

λ j = e−(ε j+iφ j )P (3.22)

with |λ1| > |λ2| > |λ3| ≥ |λ4| ≥ ..., where ε j and φ j correspond respectively to the log of the

absolute value and to the phase, and where P stands for the periodicity of the MPS in units of

the number of lattice sites. The correlation length is thus given by

1

ξ
= ε2 −ε1. (3.23)

To extract the correlation length in the dual tensor network formulation, one can use the fact

that the product of two spins is given by the product along a path of all the dimer variables

separating them. We thus define a correlation tensor C as the contraction along dc of the two

tensors

T c
dtop,2,dr ,dc

= dtop,2Tdtop,2,dr ,dc , (3.24)

H c
dtop,1,dc ,d3,d4,d5,d6

= dtop,1Hdtop,1,dc ,d3,d4,d5,d6 . (3.25)

The correlation length is then given by

1

ξ
= ε−ε1 (3.26)

with λ= e−(ε+iφ)P corresponding to the leading eigenvalue of the transfer matrix based on C

(note that here, the periodicity of the MPS compared to the lattice is P = 2). In both the direct

and the dual cases, we define

δi , j = ε j −εi (3.27)
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3.2. Nearest-neighbor model

Figure 3.7 – For two slightly different tensor network constructions, we plot one over the
correlation length (Eq. 3.23) as a function of the logarithm of another “gap” in the transfer
matrix spectrum (Eq. 3.27). The legend indicates, for each set of points, to which unit cell it is
associated and which gap δ in the transfer matrix spectrum is selected. The correlation length
corresponds to the correlations along a line of kagome lattice nearest neighbors. For each set
of points we do two fits, one with all the points and one without the largest δ. The inset shows
the crossing of each of these fit with the axis δ= 0, giving an estimate for the actual correlation
length in the limit of an infinite bond dimension.

the other gaps in the transfer matrix spectrum, which must go to zero in the limit of infinite

bond dimensions to produce algebraic corrections to the form of the correlations [237]. In

Fig. 3.7, the value of the correlation length as a function of such gaps for different bond

dimensions is illustrated; in the direct construction this is shown for two different orientations

for the contractions displayed in Fig. 3.6. We are limited to a maximal bond dimension of

χ= 14, after which the Schmidt values fall below numerical precision. From using the various

constructions, selecting various gaps, and making the fits with all the points and all the points

but one, we can finally extract the correlation length along the nearest-neighbor chains and

the errors on its estimation as

ξ= 1.2507±0.0003 (3.28)

in units of the lattice spacing. This is extremely short, consistent with the upper bond from A.

Sütö’s computation, and matches within the error bars the exact solution given in Eq. 3.16.

As a function of the temperature, the comparison between the tensor networks and the exact

solution for the first few correlations is given in Fig. 3.8. We also use it as a benchmark for the
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Figure 3.8 – First few correlations in the nearest-neighbor Ising antiferromagnet: comparison
between the exact results (Ref. 235, extracted from Ref. 236), and the experimental results. We
also show the results of the two numerical methods (TN: tensor networks, with (final) MPS
bond dimension χ= 13, MC: Monte Carlo with number of sites N = 576) as a benchmark. The
dashed lines correspond to the four experimental correlations results from Fig. 3.5. The results
for the nearest-neighbor correlations are compatible with the experiment at relatively large
effective temperatures (T ∼ 3J1), but the order of c2 and c3|| in the experiment is inverted as
compared to the theoretical values in the nearest-neighbor model.

Monte Carlo simulations, performed with a dual worm algorithm [114] (Chapter 1).

In Fig. 3.8, we also compare the experimental results for the correlations to the nearest-

neighbor Ising antiferromagnet at all temperatures. At this stage, we should recall that the

samples are not at all expected to be thermally active. Here, the temperature is introduced as

a Lagrange parameter for the energy, in an attempt to account for the non-zero percentage of

ice-rule-breaking triangles in a non-biased way 4. Accordingly, corresponding to the non-zero

proportion of frustrated triangles, one can see that the experimental value for the nearest-

neighbor correlations correspond to a finite effective temperature.

The description with the nearest-neighbor model fails in two ways. First, because there is no

Z2 symmetry breaking, the proportions of triangles of given magnetization (Table 3.2) and

the finite magnetization cannot be recovered. Second, the relative order of c2 and c3|| in the

experiment is inverted as compared to the nearest-neighbor model: despite the strong value of

the nearest-neighbor couplings as compared to the farther-neighbor couplings from Fig. 3.4,

considering only nearest-neighbor couplings does not allow for a valid qualitative description

of the experiment from the point of view of the descending order of the spin-spin correlations.

4As discussed in Ref. 57, the notion of effective temperature mostly describes whether a given snapshot of
a configuration of the nanomagnets is characteristic of some state at equilibrium, or conversely, whether an
out-of-equilibrium description is required. In the same spirit, it is now quite standard in artificial spin ices to
consider an energy-based effective temperature corresponding to the canonical distribution describing effectively
the vertex population [70]. This is the approach that we followed here.
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3.2. Nearest-neighbor model

c1 c2 c3|| c3?

Ref. 54 −4/9 0.36756 0.07688 -0.30396
Direct TN (χ= 80) −4/9 0.36755 0.07689 -0.30396

Table 3.4 – First spin-spin correlations in the critical ground state of the KIAFM in a field.

3.2.2 Nearest-neighbor Ising antiferromagnet in a field

The experiments exhibit a finite magnetization and an imbalance of the number of triangles

with a given magnetization. A simple way to account for this in the model is to introduce the

corresponding Lagrange parameter, that is, the magnetic field. It is thus natural, as a next step,

to test whether a longitudinal magnetic field lifting (partially) the ground-state degeneracy of

the nearest-neighbor ground state could be enough to explain not only the magnetization and

the proportion of triangles with a given magnetization but also the result that c3|| & 2c2.

We use a tensor network contraction to compute the correlations systematically as a function

of field and temperature. Before doing so, we take advantage of this construction to study the

ground state phase diagram of this kagome Ising antiferromagnet in a field.

Ground-state phase diagram

The ground state of the nearest-neighbor model in a field (Eq. 3.13) is known to exhibit a

magnetization plateau m = 1
3 for fields 0 < h

J1
< 4, where each triangle bears two spins up

and one spin down. Therefore, this magnetization plateau corresponds to a long-range

order of the underlying charges, as can be seen in the Monte-Carlo snapshot illustration in

Fig. 3.9. The configurations in this plateau can be exactly mapped to a hardcore dimer model

on the honeycomb lattice (placing a dimer on each down spin), leading to a macroscopic

ground-state degeneracy with a residual entropy corresponding to one third of that of the

TIAFM [14, 15, 54, 55, 238, 239]. The connected correlations are critical, decaying as 1/r 2

([54, 239] and references therein). In the ground state, the correlations have been tabulated

(Fig. 3 of Ref. 54).

The model can be studied using the tensor network expression for the partition function from

Fig. 3.6(a), with the slight modification that

Tσ1,σ2,σ3 =
e−βJ1(

∑
〈i , j 〉σiσ j+1)+βh(

∑
i σi−1)/2 h ≤ 4J1

e−βJ1(
∑

〈i , j 〉σiσ j−3)+βh(
∑

i σi−3)/2 h ≥ 4J1

(3.29)

(see as well Ref. 126 for a similar construction and a contraction with TRG). In the magnetiza-

tion plateau, with bond dimension χ= 80, we find indeed

Sh<4J1 = 0.1076886±10−7 (3.30)
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Chapter 3. Effect of very small farther-neighbor couplings in an artificial spin system

Figure 3.9 – Example of two ground-state configurations in the nearest-neighbor model in a
magnetic field 0 < h < 4J1 (leftmost and rightmost panels), and the difference between the two
configurations (central panel). The orange lines delimit the regions where spins are flipped.
They correspond to updates in the classical dimer configuration on the (dual) dice lattice. The
green dots correspond to spins that are flipped from up to down, and the dark red dots to
spins that a flipped from down to up. Comparing the two ground states, it can be seen that the
underlying charge configuration is long-range ordered, while the spin configuration is not.

which corresponds to one third of the triangular Ising antiferromagnet entropy. We compare

the correlations to the result of Ref. 54 in Table 3.4.

Similar to what happens on the square and triangular lattices [240, 241], at the critical field

h/J1 = 4, a number of additional configurations contribute to the ground state. It has been

noted before that at low temperature, this leads to a special value of the magnetization m ∼=
3/5 [242]. We find a slightly different value which is consistent between our tensor network

computations in the ground state and our MC simulations at T /J1 = 7 ·10−3:

mTN
h=4J1

= 0.599660907836±10−12 (3.31)

mMC
h=4J1

= 0.59968±8 ·10−5 (3.32)

c1 c2 c3|| c3?

Direct
TN

-0.1602714 0.04322263 0.0382691 -0.019949696

MC -0.16025(6) 0.04322(8) 0.03819(8) -0.0198(3)

Table 3.5 – First spin-spin correlations in the ground state in the nearest-neighbor model in a
longitudinal field h = 4J1. For the tensor network, the Schmidt values decay extremely fast
and fall below numerical precision for χ> 10. For the Monte Carlo, we show results with a
number of sites N = 2304, at temperature T /J = 7 ·10−3.
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3.2. Nearest-neighbor model

Figure 3.10 – Determining the correlation length Eq. 3.34 (for the connected correlations) at
h = 4J1. See the caption of Fig. 3.7 for the detail.

For the residual entropy, we find

Sh=4J1 = 0.387800244253±10−12. (3.33)

The value of the residual entropy is consistent with Ref. 242, although with a significant

improvement in the precision owing to the small bond dimension required in the MPS Ansatz 5.

The values of the first few correlations at small but non-zero temperature for h/J1 = 4 are

given in Table 3.5, where it can be seen that the Monte Carlo and tensor network computations

agree. A similar analysis as the one performed in zero field (Fig. 3.10) yields a finite correlation

length

ξh=4J1 = 0.8627±0.0001 (3.34)

in units of the lattice spacing. This small correlation length is the reason why the tensor net-

work results are obtained with such high precision even with extremely small bond dimension

(here, the largest bond dimension is χ= 10 as for larger bond dimensions, the Schmidt values

decay below numerical precision). For h
J1
> 4, the ground state is the fully ferromagnetic state.
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Chapter 3. Effect of very small farther-neighbor couplings in an artificial spin system

Figure 3.11 – Tensor network results for the magnetization as a function of the field and the
temperature for the nearest neighbor Ising antiferromagnet in a magnetic field.

Temperature

In Fig. 3.11, we give an overview of the magnetization as a function of the field and the

temperature for the KIAFM. For each field and temperature we computed as well the first

spin-spin correlations and found that c2 ≥ c3|| everywhere. The behavior of the magnetization

at intermediate temperatures can be understood on an intuitive level by the comparison of

the temperature, the J1 coupling and the magnetic field h or its difference with the critical

field h = 4J1. At small but non-zero h, the effect of the field can only occur at temperatures of

order of h. Having a look at the first few correlations and comparing them to the values in zero

field and at the critical field (Fig. 3.12), we can see that this is indeed what happens. On the

other hand, at large fields but small 4J1 −h, the combined effect of the field and J1 means that

the system first behaves as if the field was critical, with the magnetization increasing to almost

m = 0.55 (see also the panel for h = 3.8 in Fig. 3.12), before going back to the ground-state

correlations of the critical m = 1/3 plateau.

Comparison to the experiments

We first check that by introducing a field, we can account for the number of triangles with

a given magnetization. For this, we compute the proportions rm∆=+3, rm∆=+1, rm∆=−1 and

rm∆=−3 for regularly spaced fields (every 0.2J1). As shown in Fig. 3.13, we find that we obtain

the best fit at h = (1.6±0.2)J1 for a temperature T = (2.8±0.2)J1. As a direct consequence, in

this region, the magnetization and the nearest-neighbor correlations match the experimental

5We also confirmed our results by using a slightly different tensor network formulation based on ground state
local rules in the spirit of Chapter 2.
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Figure 3.12 – Tensor network results for the correlations as a function of the field and the
temperature for the nearest neighbor Ising antiferromagnet in a magnetic field.

results.

From the systematic computation of the spin-spin correlations, we find that at all fields the c2

correlations remain larger or equal to the c3|| correlations, as suggested by Figs. 3.12 and 3.14.

In particular, at large temperatures, c3|| is essentially equal to c2. Thus, even though combining

the magnetic field and the temperature allows us to account for the proportion of triangles of

given magnetization, and therefore account for both the magnetization and the percentages

of frustrated triangles, the nearest-neighbor model is not sufficient to fully account for the

experimental results. This is possible because the proportion of each type of triangles is mostly

related to the nearest-neighbor correlations as well as the magnetization, which are controlled

respectively by J1/T and h/T , but the farther-neighbor spin-spin correlations are related to

correlations between the triangles.

3.3 Next-nearest-neighbor Ising antiferromagnet

Since the nearest-neighbor model does not fully describe the experimental correlations,

and since the micromagnetic simulations predict a small but non-zero value for the next-

nearest-neighbor couplings, we now consider whether such small couplings are sufficient

to explain the inversion of the relative order of the c2 and c3|| correlations. Farther-neighbor

couplings in the J1 − J2 model are known to lift the degeneracy either partially [94, 102, 222] or
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Figure 3.13 – Tensor network results (maximal bond dimension χ= 80) for the proportion of
triangles of given magnetization at a field of h = 1.6J1. For different fields spaced regularly
every 0.2J1, this is the one at which the prediction from the tensor networks simulations are
closest to the experimental results. The optimal temperature is T = (2.8±0.2)J1. The data for
the proportion of triangles of each type at regularly spaced fields can be found at [243].

Figure 3.14 – Tensor networks (maximal bond dimension χ= 80) and Monte Carlo (N = 2304
sites) results for the first few correlations at specific magnetic fields. Note the difference in
the vertical axis for subplots (a) h = 0 and (b) h = 2J1 versus (c) critical field h = 4J1 and (d)
h = 4.2J1. See as well Tables 3.4 and 3.5 for the values in the ground state. Notice that in the
second row, we have zoomed in on the values of the correlations. The data for the correlations
at regularly spaced fields can be found at [243].
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c1 c2 c3|| c3?

Dual TN -1/3 -1/3 0.5726 0.5933
MC -1/3 -1/3 0.567±0.005 0.586±0.005

Table 3.6 – First spin-spin correlations in the ground state of the next-nearest-neighbor model.
The tensor network results are for χ= 144. For the Monte Carlo simulations, we show results
with the number of sites N = 1296 and at a temperature T /J = 7 ·10−3.

completely [101, 102] (depending on whether they are ferro- or antiferromagnetic)6.

For now, we ignore the problem of the magnetization and consider the Hamiltonian [102]7

HN N N = J1
∑
〈i , j 〉

σiσ j + J2
∑

〈i , j 〉2

σiσ j (3.35)

where 〈i , j 〉2 stands for next nearest-neighbor spin pairs as illustrated by c2 in the inset of

Fig. 3.5. The key question is then how large the next-nearest-neighbor coupling has to be to

change the descending order of the farther-neighbor correlations and explain the experimental

observation that c3|| & 2c2.

Here, we focus on the case with antiferromagnetic next-nearest-neighbor couplings for the

Ising model. It should be noted that, upon changing the sign of the couplings and multiplying

them by 2, the model maps onto the in-plane “spin-ice” model on the kagome lattice with

ferromagnetic next-nearest-neighbor couplings (unlike [93, 94]). We study the model with an

ad-hoc Monte Carlo algorithm [114] and our dual tensor network construction from Fig. 3.6(b).

The expression of the tensor on the triangle Eq. 3.20 remains unchanged, while Eq. 3.21

becomes

Hd1,d2,d3,d4,d5,d6 =
e−βJ2(

∑6
i=1 di di+1+2) ∏

i di = 1

0 otherwise
(3.36)

where d7 = d1.

The J2 couplings form a set of three interpenetrating kagome sublattices. The “two-up one-

down, two-down one-up” ice rule can be satisfied simultaneously on each triangle on the initial

kagome lattice as well as on each triangle on these three kagome lattices. The ground-state

energy per site is thus [99, 102]

EG.S. =−2

3
J1 − 2

3
J2. (3.37)

Imposing these rules only leads to a partial lifting of the ground-state degeneracy, and from

Pauling estimates one gets a residual entropy per site [99] S J1,J2
∼= ln

(
2
(3

4

)(4N /3)
)
= 0.3096.

6Remember the ground-state phase diagram in Fig. 1.9.
7Notice the opposite sign convention and factor two between our convention and that of Ref. 102.
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Figure 3.15 – Overview of the behavior of the specific heat and entropy as a function of the
temperature for various values of J2, with Monte Carlo simulations for two system sizes
(N = 576,1296). The smaller system size is shown with a line while the larger system size is
shown with symbols.

From the contraction of the tensor network, we get

S J1,J2 = 0.285299±1.4 ·10−6, (3.38)

where the error is estimated from the difference between the value at maximal MPS bond

dimension (χ= 144) and the result of the fit in the infinite bond dimension limit. The result

matches what we obtain with the method of Ref. 159, and our Monte Carlo thermodynamic

integration result S J1,J2
∼= 0.285±0.001 (see also Chapter 4). In Table 3.6, we also give the first

spin-spin correlations in the ground state, as obtained with both methods.

Takagi and Mekata [102] predicted a KT transition to this critical ground-state phase at tem-

peratures of order of J2. Correspondingly, for small values of J2, the specific heat exhibits two

broad peaks corresponding to the two stages of the loss of entropy (first for imposing the ice

rule on nearest-neighbor triangles and then for imposing it on farther-neighbor triangles),

while for larger values of J2, the two features merge into one [93, 102] (Fig. 3.15).

The behavior of the spin-spin correlations corresponds to this picture (Fig. 3.16), since we find

that for small values of J2 the correlations take their nearest-neighbor model value for a range

of temperatures before going to their ground-state values, while for larger values of J2 the

competition between J2 and J1 significantly affects the correlations even at large temperatures.

Note that Fig. 3.16 shows the values of the correlations with the Monte Carlo simulations for

those ratios of J2 to J1 corresponding to the three scenarios discussed in Sec. 3.1.2 (J dip
2 /J1,

J2/J1, J dip
2 /J dip

1 ).

Simulating the model systematically for a range of values of J2, we can map out the values of the
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Figure 3.16 – Overview of the behavior of the first spin-spin correlations as a function of
the temperature for various values of J2, with Monte Carlo simulations for two system sizes
(N = 576 and 1296); the smaller system size is shown with a line while the larger one is shown
with symbols. The dashed lines show the experimental values for comparison. (a) For small
J2, we recover the nearest-neighbor model correlations at intermediate temperatures. (b)
and (c) Upon increasing J2, the region of temperature where c2 > c3|| is pushed towards high
temperatures, and (d) eventually disappears. When J2 is large, the c2 correlations remain
negative at any temperature. An overview is shown in Fig. 3.17.

next-nearest-neighbor coupling and of the temperature where the spin-spin correlations are

in a certain descending order. This is shown in Fig. 3.17, where one can see that – in agreement

with the above discussion – for very small J2/J1 . 0.01, there is a range of temperatures where

the descending order of the correlations is compatible with the nearest-neighbor model. For

J2/J1 & 0.01, one can see a broad region of temperatures and couplings where the spin-spin

correlations are in the same relative order as in the experiment (|c1| > c3|| > c2 & c3?), and

within this region, a non-negligible region where c3|| > 2c2. In particular, for the micromagnetic

value J2 = 0.023J1, the temperature range where c3|| > 2c2 is 0.3 . T /J1 . 0.6. If J2 & 0.06J1,

the region where c3|| > 2c2 extends all the way to T = 5J1.

Although this model does not involve a magnetic field, it provides evidence that, in order

to recover qualitatively the descending order of the spin-spin correlations, farther-neighbor

couplings have to play a role. Additionally, it provides an idea of how sensitive the correlations

are to these farther-neighbor couplings.

3.4 Results in the J1 − J2 − J3|| model

The micromagnetic simulations predict third-neighbor couplings that are almost half of the

second neighbor couplings. Since there is a competition between these couplings, we have

to check that, in their presence, the predicted descending order of the correlations is still
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Figure 3.17 – Map of the descending order of the correlations as a function of the temperature
T /J1 and the next nearest-neighbor coupling J2/J1 (obtained with MC simulations with N =
576 sites). In the experiment, the correlations satisfy c3|| > c2 > c3?, with c3|| & 2c2 (light
green region). For small enough J2, there is a temperature region with c2 > c3|| (orange
region), compatible with the nearest-neighbor physics in terms of the descending order of
the correlations. Importantly, the smallest value of J2/J1 in this graph is J2/J1 = 0.001: for
arbitrarily small J2 the crossing c2 = c3|| happens at arbitrarily small temperatures (Fig. 3.16).
Note as well that at large temperatures, all the correlations are close to zero.
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c3|| > c2 > c3?. Additionally, we have seen in Sec. 3.2 that the proportion of triangles with a

given magnetization can be accounted for by introducing a longitudinal magnetic field.

Therefore, we want to consider the following Hamiltonian:

H = J1
∑

〈i , j 〉1

σiσ j + J2
∑

〈i , j 〉2

σiσ j + J3||
∑

〈i , j 〉3||
σiσ j −h

∑
i
σi . (3.39)

Because of the combination of farther-neighbor frustration and the presence of the field, this

model is challenging to study using Monte Carlo simulations. At the same time, writing a

converging tensor network formulation for such frustrated systems is non-trivial, because of

the challenge of finding the appropriate ground-state local rule in some of the phases. Here,

we present a study based on an understanding of the ground state using both methods, and

results for the correlations as a function of the temperature using Monte Carlo simulations for

small system sizes.

3.4.1 Ground state of the J1 − J2 − J3|| model with and without a field

In zero field, the location of the phase boundaries and the value of the ground-state energy

for the ground-state phase diagram has already been established [101], using exact ground-

state lower bounds computed with Kanamori’s method of inequalities (see Chapter 1 and

Appendix F.1.1). For antiferromagnetic couplings J2, J3|| > 0, there are four different ground-

state phases. Our micromagnetic values for the couplings lie well within one of these phases,

where

EG.S. =−2

3
J1 − 2

3
J2 + 2

3
J3||. (3.40)

As we will show, this phase exhibits a macroscopic ground-state degeneracy.

In this farther-neighbor model, there is a special line for J := J2 = J3|| where the problem can

be elegantly studied using a charge representation [222]. For positive J , this line coincides

with two successive phase boundaries in the ground state of the J1 − J2 − J3|| model (see

Appendix F.2.1). For 0 < J < J1/3, a classical spin liquid with an unusual residual entropy

S ∼= 0.32 (the “hexamer” classical spin liquid) was found in Ref. 222. The effect of a longitudinal

magnetic field on this phase has been recently studied in a follow-up work and was shown

to give rise, in the ground state, to a number of magnetization plateaus with finite residual

entropy [244]. We use these phases to check our tensor network construction in the presence

of a magnetic field, and find that the entropies we obtain for the various ground-state phases

are in agreement with the existing results (Table 3.7).

As a first step in the tensor network construction, linear programming is used to build ground-

state energy lower bounds based on splitting the Hamiltonian into terms defined on clus-

ters [158, 159]. We can thus determine the ground-state energy in the various phases by

comparing the lower bound from this method and the upper bound from the Monte Carlo

simulations; if they match we have a proof for the value of the ground-state energy, and we
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TN (χmax = 120) Refs. 222, 244

h = 0 0.322273784±10−9 0.32
m = 1/9 0.125616±10−6 0.12(6)
h = 6J3|| 0.313746908±10−9 -
m = 1/3 0.107688±10−6 STIAFM/3

h = 4(J1+ J2)−6J3|| 0.26718206±10−8 -

Table 3.7 – Residual entropy in the ground state for J2 = J3|| . 0.2 for the various ground state
phases. When indicated by the value of the field, we are looking at a phase boundary, and
when indicated by the value of the magnetization plateau, we are looking at the phase between
these boundaries.

know that the tensor network will describe the complete ground-state manifold.

Our results for the ground-state phase diagram for J3|| < J2 are summarized in Fig. 3.18. In zero

field, we recover the ground-state energy of Eq. 3.40, and from the tensor network construction,

we find a residual entropy

S J1−J2−J3|| = 0.143949±6 ·10−6 (3.41)

which shows that some sort of classical spin liquid is available even when J3|| 6= J2.

When introducing a finite magnetic field, the system enters an m = 1/9 plateau which survives

as long as h < 6J3||. In this plateau, the ground-state energy is given by

E1/9 =−2

3
J1 − 2

3
J2 + 2

3
J3||− 1

9
h. (3.42)

We find a zero residual entropy in the thermodynamic limit by contracting the tensor network,

but from the Monte Carlo simulations, we find that the ground states differ by non-local up-

dates. In simulations with periodic boundary conditions, these updates correspond to strings

of spins that cross the sample and close in on themselves through the periodic boundary

conditions (Fig. 3.19.). If one looks at periodic boundary conditions by placing the lattice on

a torus, then these updates are winding around the torus. Together with the tensor network

result, this suggests that the ground-state degeneracy is macroscopic, but with a sub-extensive

residual entropy, growing with the linear system size.

The m = 1/3 plateau corresponds to long-ranged ordered strings of nearest-neighbor up spins

separated by down spins, with a ground-state energy

E1/3 =−2

3
J1 − 2

3
J2 +2J3||− 1

3
h. (3.43)

The phase boundary between the m = 1/9 and m = 1/3 plateau is thus found at h = 6J3||. At this

boundary, the ground states can have various magnetizations, corresponding to mixtures of

states of both plateaus. Different sizes in the Monte Carlo simulations select different average

magnetizations (Appendix E.4); we therefore refrain from stating a value for the magnetization
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3.4. Results in the J1 − J2 − J3|| model

Figure 3.18 – Candidate ground-state phase diagram for the farther-neighbor model in a
magnetic field, at a fixed value of J2 < 1

3 J1. The two hatched regions could only be studied
with Monte Carlo computations, whereas the rest of the phase diagram was determined both
with Monte Carlo simulations and with tensor networks. When the values are indicated next
to arrows, they correspond to a specific point (for instance, we give the result for J3|| = J2 and
h = 0) and when they are indicated next to brackets they correspond to a specific line (for
instance, we give the results for J3|| = J2 and various ranges of the field, which are different
from the results for J3|| < J2). The ground-state entropies are computed from tensor networks
contractions, except for the two inequalities on the J2 = J3|| line, studied in Ref. 244, and the
lower bound in the m = 17/27 plateau, estimated from the Monte Carlo results. The bottom
left corner corresponds to the J1 − J2 model. A magnetic field in this model immediately lifts
the degeneracy to the long range ordered stripe phase. For finite J3||, there is a macroscopic
ground-state degeneracy in zero field. With increasing field, there is first a magnetization
plateau at m = 1/9. Then, the long range ordered stripe phase is selected, followed by a
plateau at m = 5/9 and another one at m = 17/27 before saturation. For each phase we give
the ground-state energy, which is rigorously proved everywhere except in the two hatched
regions.
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Chapter 3. Effect of very small farther-neighbor couplings in an artificial spin system

Figure 3.19 – Two examples of ground-state configurations for the J1 − J2 − J3|| model, in-
cluding the corresponding charge configuration, for a magnetic field 0 < h < 6J3|| (m = 1/9).
The central panel shows the difference between the two configurations, with the following
convention: the orange lines delimit the regions where spins are flipped, the green (dark red)
dots correspond to spins that are flipped from up to down (down to up), and the red (green)
triangles correspond to charges that are changed by +2 (-2).
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here.

The m = 1/3 plateau extends until h = 4(J1+ J2)−6J3|| where we find a phase boundary. Above

this field, the largest clusters that we used to split the Hamiltonian give an energy lower bound

which does not match the exact ground-state energy 8. However, we have evidence from

Monte Carlo simulations (Fig. 3.20) that suggests the presence of m = 5/9 and m = 17/27

plateaus corresponding to the ones found at J2 = J3|| in Ref. 244. The corresponding phase

boundaries are at h = 4(J1 + J2)−2J3|| and h = 4(J1 + J2 + J3||), which means that this region is

extremely reduced for our micromagnetic values of J1, J2 and J3||. In the m = 5/9 plateau, with

periodic boundary conditions in the Monte Carlo, we find again that ground states differ by

strings of spins winding the torus, suggesting a sub-extensive residual entropy, whereas some

local moves can be seen in the m = 17/27 plateau, providing a lower bound for the residual

entropy S ≥ 1
27 ln(2) (Appendix E.4).

3.4.2 Effect of the temperature and spin-spin correlations

We finally give a qualitative discussion of the effects of temperature on the spin-spin correlation

in this farther-neighbor model in a field, and compare our predictions to the experimental

results. In the rest of this section we consider J2 = 0.023J1 and J3|| = 0.0103J1, corresponding

to the micromagnetic simulations results.

Fig. 3.20 gives a qualitative picture of the magnetization as a function of field and temperature.

Because the problem is a challenge for our Monte Carlo simulations (where we use the single-

spin-flip algorithm combined with replicas in magnetic field and temperature), we only focus

on small system sizes where needed. In Fig. 3.20, the selection of the various magnetization

plateaus of the ground state with increasing fields is shown. With increasing temperatures, we

find around the m = 1/3 and m = 1/9 plateau a behavior similar to the one in the J1 −h model

around the m = 1/3 plateau (Sec. 3.2.2): if the field is large, intermediate temperatures will

give a larger average magnetization than the plateau value, whereas if the field is small, the

magnetization immediately decreases with increasing temperatures.

In analyzing the spin-spin correlations, we first consider Fig. 3.21, presenting the results

in zero field. Although, in the ground state, the results are quite different from the J1 − J2

model (Fig. 3.16), the qualitative result that there is a temperature range where c3|| & 2c2

remains correct. This has to be contrasted to the nearest-neighbor model results, and shows

that the experimental results can only be understood by taking into account farther-neighbor

couplings, and that J2 plays the important role, while J3|| is simply not large enough to suppress

the effect of J2. It can also be seen in this figure that these results would be valid for a wide

range of values of the couplings, including the dipolar case truncated to 3|| neighbors.

8Meaning the corresponding ground-state tiles fail to tile the lattice, and the tensor network contraction fail.
Larger clusters would be required, probably made of 6 to 12 stars from what we see of the Monte Carlo simulations;
this requires some adaptation of the code to implement symmetries systematically along the lines of Sec. 2.5,
which we did not yet tackle.
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Chapter 3. Effect of very small farther-neighbor couplings in an artificial spin system

Figure 3.20 – Qualitative behavior of the magnetization as a function of the field and tem-
perature in the J1 − J2 − J3||−h model. The points come from Monte Carlo simulations with
N = 900 in the m = 1/3 plateau, with N = 144 in the m = 5/9 plateau and with N = 376 in
the other regions. The dotted lines are also from Monte Carlo simulations but correspond to
the magnetization at the transition between plateaus; they are only given as a guide to the
eye as the results strongly depend on the system size (Appendix E.4). The highlighted region
corresponds to the region within one standard deviation of the experimental magnetization.
The annotations indicate the value of the magnetic field for various curves.

Figure 3.21 – Overview of the behavior of the first few correlations as a function of the temper-
ature for the values of J2 and J3|| from micromagnetic simulations ((a): dipolar corrections to
the nearest-neighbor model, (b) actual couplings with IP part, (c) purely dipolar model (no IP
regions)), with Monte Carlo simulations for 2 system sizes (N = 576,1296). The smaller system
size is shown with a line while the larger one is shown with symbols.
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3.4. Results in the J1 − J2 − J3|| model

Figure 3.22 – Specific heat and residual entropy in the m = 1/3 plateau for N = 36 to N = 1296
(markers). (a) At small fields there is an intermediate temperature region where the entropy
corresponds to that of the nearest-neighbor model in zero field, whereas (c) at large fields there
is an intermediate temperature region where the entropy corresponds to the nearest-neighbor
model in a field at h = 4J1. (b) We note that at intermediate fields there are strong finite
size effects and the loss of residual entropy at the transition is not captured correctly by our
simulations - the residual entropy in the ground state should be zero.

Figure 3.23 – Spin-spin correlations in the m = 1/3 plateau for N = 900 (dotted lines) and N =
1296 (markers). The dashed lines indicate the experimental correlations, for comparison. (a)
For small magnetic fields (Region A in Fig. 3.24) there is an intermediate range of temperatures
where the correlations correspond to the model in zero field (Fig. 3.21). (b) At intermediate
field, the c2 correlations again become larger than the c3|| correlations. (c) At large fields, there
is an intermediate temperature region where the correlations are similar to those in the J1 −h
model at h = 4J1, but with an effect of the farther-neighbor couplings which inverts the c2 and
c3|| correlations.
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Figure 3.24 – Monte Carlo simulation results for the J1 − J2 − J3||−h model as a function of
the temperature. (A), (B) and (C) : the letters are placed just above three regions of interest,
discussed in the main text. The various colored areas correspond to the values of temperature
and fields where the correlations are in a certain descending order according to the Monte
Carlo simulations. The “pixels” correspond to the 22 field points and 214 temperatures. With
increasing temperature: in light blue, the region where the system is in the m = 1/3 plateau
ground state, with c3|| = c3? = 8/9; in light red, the region outside this plateau where c3|| < c3?;
in green, the region where the c2 correlations are larger than c1 but still smaller than c3?; with
the color map, the region where the descending order of the correlations is the same as in the
experiment: c3|| ≥ c2 > c3?; in orange, the region where c2 > c3|| > c3? . The hatched regions
indicate the values of the temperature and field where the Monte Carlo simulations results for
the magnetization m and the proportion of ferromagnetic (“frustrated”) triangles r f r. agree
within the errors with the experimental values. The color map indicates the ratio of c3|| to c2 in
the region where the descending order of the correlations is the same as in the experiment;
experimentally, this ratio is of the order of 2 to 3 in most samples (but c2 can be negative in
some samples, Fig. 3.5).
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Besides the descending order of the correlations, a qualitative characteristic of the experi-

mental results is the presence of a non-zero magnetization, which we try to account for by

introducing a magnetic field. We have seen that if there is a field in the experiment, we expect

it to be very roughly of the order of J2 . h . J1; in addition, when considering the percentages

of triangles with a given magnetization, the nearest-neighbor model predicts h ∼ 1.6J1. It thus

seems sufficient to focus mainly on the two first magnetization plateaus. This is confirmed by

the comparison between the experimental magnetization and the Monte Carlo simulations

prediction for the magnetization in Fig. 3.20. This result shows that it is sufficient to study the

behavior in temperature for fields 6J3|| < h < 4(J1 + J2)−6J3|| corresponding to the m = 1/3

plateau. Figs. 3.20, 3.22, and 3.23 give a consistent picture of the behavior of the model as a

finite temperature is applied on the m = 1/3 plateau ground state. At small fields, there is an

intermediate temperature region where the system essentially behaves as the farther-neighbor

model in zero field: the residual entropy of the nearest-neighbor model is recovered (Fig. 3.22)

but the c2 and c3|| correlations are already inverted as compared to the nearest-neighbor

model (Fig. 3.23). With increasing fields, the transition to the long range ordered ground state

(stripe phase) happens at higher temperatures, with stronger and stronger finite size effects,

reaches a maximum, then decreases again (Figs. 3.20 and 3.24). For h = 4J1, at intermediate

temperatures, we find approximately the residual entropy of the nearest-neighbor model

(Fig. 3.22), with again an effect of the farther-neighbor couplings on the c2 and c3|| correlations

(Fig. 3.20).

We want to verify that the zero field c3|| > c2 region is preserved in the presence of a magnetic

field. In order to compare to the experimental results, we show a map of the descending

order of the first four spin-spin correlations in Fig. 3.24, for J2 = 0.023J1 and J3|| = 0.0103J1,

as a function of the field and temperature. The region where the descending order of the

correlations in the experiment (c3|| > c2 > c3?) is reproduced by the Monte Carlo simulations

is shown by a color map, which gives the c3||/c2 ratio. For small fields 0 ≤ h/J1 . 0.5 and

temperatures 0.1. T /J1 . 1, the c3|| > c2 region indeed survives (with a reasonably large ratio

of c3||/c2). At fields ranging from 0.8J1 to 3.2J1, c2 becomes larger than c3|| for 0.15 ≤ T /J1 ≤ 1.5,

which is consistent with the results of the nearest-neighbor model in a field, for which in this

region the c2 correlations are much larger than the c3|| correlations. At large fields, c2 decreases

again such that c3|| > c2 is valid for fields 3.5 . h/J1 . 4. Thus, even in the presence of an

external magnetic field in the farther-neighbor model, there are still regions that account for

the order of spin-spin correlations in the experiment, with a reasonable ratio of c3|| to c2.

In Fig. 3.24, the hatched regions correspond to the values of field and temperature where the

theoretical magnetization and the proportion of ferromagnetic triangles agree within the error

bars with the experimental values. Although it demonstrates that it is not possible to account

for all the experimental results at once, this graph highlights three regions of interest:

• region A at low field h/J1 ∼ 0.2 to 0.5 and temperatures 0.2 . T /J1 . 0.4 where the

Monte Carlo results for the magnetization match the experimental results and where

the ratio of c3|| to c2 is similar to the experimental value, but where the Monte Carlo
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Chapter 3. Effect of very small farther-neighbor couplings in an artificial spin system

Figure 3.25 – (Region B in Fig. 3.24) Behavior of the first few (disconnected) correlations at
large magnetic field, in the window where c3||/c2 is of the same order of magnitude as in the
experiment. The proportion of frustrated triangles is directly related to 〈σiσ j 〉1; in this region,
both are in agreement with the experimental value. Since the magnetization is very different
from the experimental value, we plot the disconnected correlations (i.e. the correlations
without removal of the squared magnetization) for a valid comparison.

Figure 3.26 – (Region C in Fig. 3.24) Monte Carlo results for two sizes (N = 900,1296). (a)
Expectation value for the proportion of triangles with magnetization m =−3,−1,+1,+3 as a
function of the temperature for an intermediate field. We recover the result of the nearest-
neighbor model in a field (Fig. 3.13. (b) Behavior of the first few correlations at the same
field. At intermediate temperatures, c2 > c3||, and at large temperatures, c2 . c3|| (the two are
essentially equal).
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simulations predict zero ice-rule-breaking triangles. The corresponding correlation

results are illustrated in the panel (a) (h = 0.2J1) of Fig. 3.23; it can be seen that they are

quite different from the experimental results.

• region B at large field 3.4 . h/J1 . 3.8 and intermediate temperatures 0.15 . T /J1 .
0.5, where the combined effect of the temperature and magnetic field reproduces the

experimental proportion of ice-rule-breaking triangles, and where the ratio of c3|| to

c2 is again similar to the experimental value. However, in this region, the Monte Carlo

simulations predict 〈rm∆=−1〉 = 〈rm∆〉=−3 = 0 (all triangles are aligned with the field).

Correspondingly, the magnetization predicted by the Monte Carlo simulations is around

twice the experimental results (0.35 . m . 0.5 instead of m ∼ 0.2). The disconnected

correlations for this region are shown in Fig. 3.25; the farther-neighbor correlations are

larger than their experimental counterpart.

• region C at intermediate field 1. h/J1 . 2 and high temperatures 2. T /J1 . 4 where

the number of triangles and the magnetization are both compatible with the experiment.

Just as in the nearest-neighbor model in a field, requiring that all the percentages of tri-

angles with given magnetization match with the experiment gives h ∼= 1.6J1 (Fig. 3.26a).

However, Figs. 3.24 and 3.26b both show that, despite taking into account the farther-

neighbor couplings, the correlations c3|| and c2 remain essentially equal in this region.

3.5 Discussion

From the analysis of the experimental data, we extract the main observation that |c1| > c3|| >
c2 & c3?. There are two additional qualitative observations: the systematic presence of a non-

negligible proportion of ice-rule-breaking triangles and of a finite magnetization for all the

samples, the magnetization of all the samples having the same sign. These two observations

correspond to having precise proportions of triangles with magnetization −3,−1,+1 and +3,

given in Table 3.2.

From the micromagnetic simulations, we obtain that the effect of the IP regions in the samples

is first and foremost to increase the nearest-neighbor couplings significantly (approximately

by a factor of 10), and second to slightly increase the second and third neighbor couplings,

resulting in a system where the next nearest-neighbor coupling J2 is of the order of 2% of the

nearest-neighbor coupling J1, and the third nearest-neighbor coupling J3|| is of the order of

1% of J1.

Basing our analysis on the Monte Carlo and tensor networks simulations, we have asked the

following questions:

1. Considering an equilibrium distribution characterized by two Lagrange parameters -

temperature and field - and corresponding to a model involving only nearest-neighbor

couplings, can we reproduce the experimental proportions of triangles having a given
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magnetization?

2. Considering this equilibrium distribution, is it possible to describe the descending order

of the first spin-spin correlations in the experiment, or does one have to consider a

model involving farther-neighbor couplings? If so, is there a limit on how small these

couplings have to be to become negligible?

3. Finally, does the resulting equilibrium fully describe the experimental results, includ-

ing the percentages of triangles with m = +3,+1,−1,−3 and the actual values of the

correlations?

The data in Fig. 3.13 allows us to easily determine that a simple model, the nearest-neighbor

Ising antiferromagnet in a field, admits a region of field and temperature matching the ex-

perimental results for the number of triangles with a given magnetization. However, the

corresponding temperature is quite large (T ∼ 2.8J1).

When taking into consideration the experimental spin-spin correlations and comparing them

to the nearest-neighbor Ising antiferromagnet (Figs. 3.8 and 3.14), it is quite clear that the

system is not accurately modeled by an equilibrium distribution if one simply neglects the

farther-neighbor couplings altogether. Instead, the simulations of the J1 − J2 model confirm

that even a small next nearest-neighbor coupling plays an essential role, affecting the correla-

tions in a significant way (Figs. 3.16, 3.17 and 3.21). In the ground state, this is obviously the

case because farther-neighbor couplings lift partially the macroscopic ground-state degener-

acy of the nearest-neighbor model. What our results show is that, in addition, the correlations

are also affected up to large temperatures, even for small values of J2. For intermediate temper-

atures (0.1J1 . T . 0.5J1), this modification can be sufficient to explain the descending order

of the experimental correlations with respect to one another for J2 & 0.02 (Fig. 3.16); for large

temperatures (T ∼ 3J1), the next nearest-neighbor couplings need to be larger (J2 & 0.06) to

obtain the same result. The micromagnetic simulations predict a third neighbor (J3||) coupling

of the order of J2/2 (Fig. 3.4). This coupling naturally competes with the J2 coupling; in the

ground state, it further lifts the degeneracy, leading to a reduced residual entropy (Eq. 3.41),

and it affects the correlations (Fig. 3.18). At finite temperature, this third-neighbor coupling

modifies the correlations as compared to the J1 − J2 model, and therefore has to be taken into

account. Despite this competition, a region with c3|| & 2c2 is still present (Fig. 3.21).

In the farther-neighbor model, the magnetic field plays a similar role as in the nearest-neighbor

model: combined with the temperature, it selects the proportion of triangles with a certain

magnetization, setting the overall magnetization (Fig. 3.20) and the number of frustrated

triangles (Fig. 3.24). Additionally, it affects the correlations both in the ground state and at

finite temperature. In the ground state, depending on the value of the field, the degeneracy

gets either partially or completely lifted (Fig. 3.18) and, at experimentally relevant fields, the

third neighbor correlations can vary from c3|| = 26/81 (m = 1/9 plateau) to c3|| = 8/9 (m = 1/3

plateau). At finite temperature, the region where c3|| is larger than 2c2 is preserved for two

ranges of magnetic fields, illustrated by regions A and B in Fig. 3.24.
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While the data in Fig. 3.24 demonstrates that the descending order of the correlations in

the experiment can be recovered provided that farther-neighbor couplings are considered,

this data also illustrates the impossibility of explaining simultaneously the entirety of the

results based on these equilibrium distributions: the ratio of c3|| to c2 in most of the samples

cannot be explained at the same time as the value of the magnetization and the proportion

of ice-rule-breaking triangles. Based on the available information about the experiment, it is

difficult to know in which further direction to push the models. Nevertheless, three interesting

regions can be observed, at intermediate temperatures for small field (region A) and large field

(region B), and at large temperatures for intermediate fields (region C).

In region A, the magnetization matches the experimental results, but there is no ice-rule-

breaking triangle, and correspondingly the nearest-neighbor correlations take their ground-

state value, which is qualitatively very different from the experiment. To fully account for the

experimental results, an additional mechanism would thus have to be invoked. Starting from

a region with a smaller magnetic field than region A, a possibility could be a source of disorder

that would not be described by the temperature, such as a disorder in the coupling strengths

generated by the IP regions or the presence of sites whose magnetization is not well defined,

pinning ice-rule-breaking triangles at “domain walls” between low-energy states grown on the

lattice, thus reducing the spin-spin correlations and fixing the magnetization.

Region B is different, in that the percentage of ferromagnetic triangles, and correspondingly the

expectation value 〈σiσ j 〉1, correspond to the experimental results, but that the magnetization

and the expectation values 〈σiσ j 〉k for the farther neighbors are larger than the experimental

result. Again, in absence of additional insight regarding the experiment, we can only suggest

hypotheses involving another effect. In this case, it could perhaps be that, by switching

domains of a certain size, the demagnetization protocol would preserve the number of ice-rule-

breaking triangles, while reducing the farther-neighbor correlations and the magnetization.

Finally, region C is interesting because the experimental proportion of triangles with a given

magnetization is well reproduced by the magnetic field and the temperature: no additional

mechanism would be needed to describe the magnetization or the number of ice-rule-

breaking triangles. However, the second and third neighbor correlations c2 and c3|| are essen-

tially equal (when J2 and J3|| take the values predicted by the micromagnetic simulations),

which does not seem to be in full agreement with the experiments. Looking at Fig. 3.17, one

can see that in the J1− J2 model and for temperatures T /J1 ∼ 3, the next nearest-neighbor cou-

plings should be of order J2 ∼ 0.06J1 to J2 ∼ 0.11J1 to reproduce the experimental correlations.

This would correspond to at least a factor of 3 for J2/J1 as compared to the micromagnetic

simulations. This seems unlikely, but we have to note that the micromagnetic simulations are

performed for an idealized nanomagnet, and that the use of a square grid in the simulation did

create a small difference between the nearest-neighbor couplings in two different directions

(J1,h = 1.868 ·10−20J while J1,d = 1.884 ·10−20J). However, the insight on the value of J2 based on

Fig. 3.17 needs to be taken into account very carefully as it would be affected by the presence

of third neighbor couplings and a magnetic field. We have not performed a systematic scan
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for a range of values of J3|| vs J2; we can therefore not conclude what range of couplings would

provide a complete match with the experimental results in this region. Another difficulty with

this region is conceptual: the corresponding effective temperature seems large and could

be interpreted as an attempt to model disorder in the coupling strengths; in this context, it

is difficult to decide how far a precise comparison between the predicted and experimental

correlations in this region can be pushed to draw meaningful conclusions.

3.6 Summary and outlook

In this Chapter, we have presented Monte Carlo and tensor network results for a series of short

range antiferromagnetic Ising models on the kagome lattice, in the presence of a longitudinal

field, computing the first few spin-spin correlations systematically. These models are com-

bined to give the J1 − J2 − J3||−h model, for which we established a candidate ground-state

phase diagram as well as the temperature dependence of the magnetization and first corre-

lations. In light of these simulations together with micromagnetic computations, we have

studied the experimental results obtained from an array of chirally coupled nanomagnets on

the kagome lattice.

The micromagnetic simulations show that arrays of chirally coupled nanomagnet using

Dzyaloshinskii-Moriya interactions are a good basis for investigating models with extremely

strong nearest-neighbor antiferromagnetic couplings. Indeed, even though short range farther-

neighbor couplings are strengthened as well, the micromagnetic simulations suggest that

they increase by a much smaller factor, resulting in an effective model which is significantly

different from the dipolar Ising case.

Our Monte Carlo and tensor network simulations show that even very small farther-neighbor

couplings significantly affect the first few spin-spin correlations, and that the next nearest-

neighbor coupling J2 cannot be neglected even if it is as small as 2% of the nearest-neighbor

coupling J1. Additionally, our results show how the correlations are affected by the introduc-

tion of a third neighbor coupling J3|| and a magnetic field h. Their effect on the spin-spin

correlations is summarized in Figs. 3.18 (for the ground state) and 3.24 (for the descending

order of the correlations as a function of the temperature).

Although Fig. 3.24 shows that it is not possible to obtain a complete quantitative description of

all the results of the experiment, it allows one to spot two regions of interest (A and B) at small

and at large fields which seem to contain the essence of the experimental results (namely the

descending order of the correlations) and might serve as a support to explain the observations

modulo the introduction of an additional ingredient (a source of defects at weak field and a

mechanism of reduction of the magnetization at large field ). A third region (C) shows that

a combination of an intermediate field and a surprisingly large temperature (suggesting the

presence of disorder in the coupling strength due to local changes in the DMI or in the IP

width, or disorder corresponding to the presence of nanomagnets whose local magnetization

is not well determined from our measurements) can reproduce the experimental proportions
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of triangles with a given magnetization, but not the difference between the second and third

neighbor correlations.

We hope that our results can motivate and support further research both on the experimental

and theoretical side. Experimentally, our contribution is to make a step in a new direction for

tuning the ratios of the couplings in artificial spin systems emulating frustrated Ising models

on the kagome lattice. Realizing a similar system but where the in-plane part separating three

nearest-neighbor sites on the kagome lattice would have a triangular hole might change the

effective model. A priori, one could expect that the nearest-neighbor couplings would remain

large but that the effective second and third neighbor couplings would be smaller 9. This is,

however, a technical challenge because of the small size of the triangle that needs to be created.

It is also not clear whether this could help to recover the nearest-neighbor correlations, since

J2 should still be of the order of 1% of J1; as Figs. 3.16 and 3.21 show, the results will also

depend on the ratio of J3|| to J2. Another possible direction of improvement would be to have

measurements allowing the determination of the configuration of the IP regions as well as the

OOP regions, to confirm the micromagnetic simulations predictions and check that the IP

regions do not get stuck in configurations which do not minimize the energy.

On the theoretical side, we have uncovered the phase diagram of the J1 > J2 > J3|| model

in a field, exhibiting an interesting range of macroscopically degenerate phases, some with

sub-extensive residual entropy, hopefully motivating further investigation. Besides the Hamil-

tonian considered here, we see two main directions for more involved models. The first is to

determine whether the observed effects could be due to disorder in the switching fields, the

coupling strengths or the presence of vacant sites, by modelling the effect that such disorder

would have on the spin-spin correlations. In artificial spin systems in general, the role of struc-

tural disorder is a subtle problem. For instance, Budrikis et al. [85–87]showed that the intrinsic

disorder in switching fields affects the dynamics of athermal artificial square ice and plays

a role in reaching the ground state in experiments. In chirally coupled arrays, both because

the nearest-neighbor exchange interactions are dominant and because of the macroscopic

degeneracy of some of the ground state phases for truncated Hamiltonians, structural disorder

might have a very different effect than that observed in in-plane square and kagome ice. From

the numerical point of view, the loss of translation invariance could make this problem an

interesting application of the tropical tensor networks [223].

The second direction for improving the model, assuming absence of disorder in coupling

strength, would be to perform micromagnetic simulations on larger structures to determine

the impact that the IP regions have on effective long range couplings in this system, and, in

particular, to see if these long range couplings are different from the well-studied dipolar

model. Comparing the values of these longer range couplings to the predicted short range

four site couplings (Fig. 3.2) seems to be an essential step to build a more accurate model

including the next order of interactions.

9This would perhaps give results similar to Eqs. 3.10.
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Statement of contribution

The work detailed in this Chapter has been published in J. Colbois, K. Hofhuis, Z. Luo, X.

Wang, A. Hrabec, L. J. Heyderman, and F. Mila, Artificial out-of-plane Ising antiferromagnet

on the kagome lattice with very small farther-neighbor couplings, Phys. Rev. B 104, 024418

(2021) [160], and is reproduced with permission from all co-authors.

The chirally coupled samples were fabricated by Z.L., and the MFM measurements were

performed by X.W. with a magnetization protocol designed together with A.H. The MFM

measurements analysis was performed in part by K.H. and in part by J.C. The micromagnetic

simulations were performed by K.H. and analyzed in close collaboration with J. C.. The

numerical analysis was performed by J.C., who implemented the Monte Carlo code and used

the Ghent Quantum Group implementation of VUMPS for the tensor network simulations

(Refs. 148–151). The linear program to compute the ground-state energy lower bounds was

slightly adapted by J.C. from the code of Bram Vanhecke for Ref. 159. The manuscript was

written by J.C. with inputs from K.H. for the experimental part, and with corrections and

suggestions from all authors. The work was performed under the supervision of A.H., L. H.

and F. M.
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4 Progressive lifting of the KIAFM
ground-state degeneracy

The motivation for the following project initially stems from the design and study of artificial

spin systems on the kagome lattice with out-of-plane anisotropy [80, 81]. In these systems,

the magnetostatic interactions are well-modeled by a dipolar approximation giving rise to

an Ising Hamiltonian with long-range, antiferromagnetic couplings; the finite size of the

nanomagnets as well as proximity effect have been shown to create corrections mostly in

the nearest-neighbor couplings [81, 88], yielding a Hamiltonian of the following form for the

dipolar kagome Ising antiferromagnet (DKIAFM):

HDKIAFM = J0
∑
〈i , j 〉

σiσ j +D
∑

(i , j )

σiσ j

|ri , j |3
. (4.1)

These systems were originally investigated in Ref. 80; the development of the nearest-neighbor

correlations in the out-of-plane kagome system have been compared to those of the then more

well-studied in-plane kagome ice, and it was suggested that the similar development of the

nearest-neighbor correlations corresponded to a universality in the artificial spin systems. As

discussed in the general introduction, this can be understood from the equivalence between

the nearest-neighbor Ising antiferromagnet on the kagome lattice and the ferromagnetic

kagome spin ice model [93, 94].

However, Ref. 81 later found signatures of the dipolar couplings in the development of the

spin-spin correlations, and even more clearly in the correlations between charges, defined

up to a sign as the sum of the spins on each kagome triangle1. This occurs even in relatively

high-temperature regimes accessible from demagnetization. This sparked an interest for the

dipolar Ising antiferromagnet on the kagome lattice (DKIAFM). The model is particularly

challenging to study using Monte Carlo simulations [82, 99]; despite this, Chioar et al. [82]

managed to propose a ground-state candidate corresponding to a long-range order with a

1These are similar charges as those mentioned in the introduction for in-plane kagome ice. Although one has to
be careful with the validity of the approximations when using the dumbbell picture in the case of out-of-plane
anisotropy, the charges introduced as the sum of spins on a triangle still yield an interesting picture of the ground
states.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

12-sites unit cell (Fig. 4.2). Later, single-spin-flip Monte Carlo simulations of small systems

using a modified Monte Carlo sweep compensating for the low acceptance ratio confirmed the

proposed ground state and provided evidence that the transition to the long-range ordered

ground state is first order [99]. Furthermore, the study of the autocorrelation function and

the relaxation time showed that they are characteristic of fragile glasses. Finally, a treatment

of the model at a mean-field level [100] showed a remarkable agreement with the Monte

Carlo results, with a weakly first-order phase transition from the paramagnetic phase to the

long-range ordered ground state, and a spin-glass transition occurring at the mean-field level

which provides an interpretation for the dynamical slowing-down observed in Ref. 99.

When considering, on the one hand, the macroscopic ground-state degeneracy of the nearest-

neighbor model, and on the other hand, the long-range ordered ground state of the dipolar

model, it is natural to wonder how the ground-state degeneracy gets lifted. In particular, is

this ground state already selected when the model is truncated to second- or third-neighbor

interactions? This question is especially relevant given the recent development of new pos-

sibilities for tuning the couplings in artificial spin systems [108, 113, 160], which could give

access to such short-range frustrated models.

In the Appendix of Ref. 99, the dipolar model truncated to second- and to third-nearest

neighbors is also discussed. The J1-J2 model still exhibits a finite residual entropy, as discussed

also in Ref. 102 (see [245] for a related model). For the model including third neighbors, the

Monte Carlo simulations of Ref. 99 fall out of equilibrium, but a Pauling estimate suggests

that the residual entropy should be zero and the system should order. Motivated by these

results, we consider the model truncated to third-neighbor couplings, and investigate the

ground-state phase diagram as a function of the second- and third-neighbor couplings.

We consider the following Hamiltonian:

H = J1
∑
〈i , j 〉

σiσ j + J2
∑

〈i , j 〉2

σiσ j + J3||
∑

〈i , j 〉3||
σiσ j + J3?

∑
〈i , j 〉3?

σiσ j . (4.2)

Since the dipolar interactions only depend on the distance, we consider J3|| = J3? =: J3 in most

of the Chapter. The type of pairs are indicated in Fig. 4.1. In that Figure, it can be seen that

the 2nd nearest-neighbor couplings form kagome sublattices, and the 3rd nearest-neighbor

couplings form triangular sublattices (when J3|| = J3?). For each of these couplings, there are

three different sublattices.

In the remainder of this Chapter we start by discussing already known results in related models

and for special points of this model that we will use to benchmark our code of the ground-state

phase diagram. We also discuss predictions for the dipolar model that will be of interest

to put our results in perspective. We then discuss the application of Kanamori’s method to

the case of the J1 − J2 − J3 model. Combining these lower bounds to upper bounds that we

establish using a dual worm Monte Carlo algorithm, we give exact ground-state energies for

the model in the region where J1 is antiferromagnetic and J1 À J2, J3. After and overview of
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(a) (b)

Figure 4.1 – The couplings for the Hamiltonian in Eq. 4.2, with (a) the distinction between the
two types of third neighbor couplings J3|| and J3? and (b) the triangular sublattices associated
with J3 := J3|| = J3? which is the case that we are interested in.

the ground-state phase diagram, we focus the discussion on a detailed understanding of the

ground-state phases, using tensor networks and the ground-state tiles construction [140, 159]

to obtain very precise numerical results. We show that even with third-neighbor couplings,

most of the ground-state phases still exhibit a finite residual entropy. In particular, we show

that the dipolar ground state (Fig. 4.2) is one of the ground states for the model with J3 < J2/2,

while the dipolar model truncated to third neighbor couplings (J3 > J2/2) has a different set of

ground states with a residual entropy corresponding to a twelfth of that of the TIAFM, a result

that we are able to prove rigorously.

4.1 Known results and special points

We now discuss some known results at special points of the ground-state phase diagram of the

J1 − J2 − J3 model and the related J1 − J2 − J3|| model. An overview of these results is given in

Table 4.1, and the ground-state phase diagram of the J1− J2− J3|| model is given in Appendix F.

4.1.1 J1 − J2 model

The most well-studied model that we are interested in is the special case when J3 = 0, namely

the J1 − J2 model. As as we saw on the example in Chapter 1, Sec. 1.4.1, this model has

four different ground-state phases depending on the signs of J1 and J2. Considering the

antiferromagnetic nearest-neighbor coupling (J1 > 0) in which we are interested, the model

has two different ground-state phases depending on the sign of J2 [93, 94, 101–103]: when J2

is ferromagnetic, there is a
p

3×p
3 LRO (see Fig. 4.4c) with ground-state energy

Ep
3×p3 =−2

3
J1 +2J2, (4.3)

whereas when J2 is antiferromagnetic, the ground-state energy is [93, 102]

E J1−J2 =−2

3
J1 − 2

3
J2. (4.4)

117



Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.2 – To views of the ground state of the dipolar Ising antiferromagnet on the kagome
lattice [82, 99]. (a) The charge picture allows one to recognize an alternance of ferromagnetic
stripes of charges[82, 99]. (b)The dimer picture will be useful for the comparison with the
ground-state phases of the short-range model. The 12-sites magnetic unit cell is illustrated:
in purple the 7-shaped unit cell which gives its name to the ground state in Ref. 82 and
in blue the magnetic unit cell chosen by Hamp et al. [99]. In (c) we show the trapezoids
construction [82] and the corresponding pair of dimers forming a chevron. The 7-shaped unit
cell is a tessellation of four such trapezoids.

Model Parameters LRO? EG.S + 2
3 J1

S

Pauling Exact MC

J1 − J2
(a) J2 > 0 No −2

3 J2
∼= 0.31.. - ∼= 0.297(3)(b)

J2 < 0
p

3×p
3 2J2 0 0 -

J1 − J2 − J3||
Ferro. J2,

|J2| > |J3|||(c)

p
3×p

3 2J2 − 2
3 J3|| 0 0 -

Ferro. J3||,
|J3||| > |J2|(c) Stripes −2

3 J2 +2J3|| 0 0 -

J1 − J2 − J3||,
J := J3|| = J2

Ferro. J ,
J1 > |J |(c) No 4

3 J -
1
3 STIAFM∼= 0.108(c) -

Antiferro. J ,
J1 > 3J (d)

No (Hexamer
CSL)

0
1
6 ln

(27
4

)
∼= 0.32

- ∼ 0.32

J1 − J2 − J3
Dipolar
point(b) LRO dipolar? ≥−2

3 J2 − J3 < 0 ? - 0?

Table 4.1 – Summary of known results in the J1 − J2 − J3 models. We only consider cases where
the nearest-neighbor coupling J1 is strong and antiferromagnetic. The letters give the main
references: (a) See Refs. 93, 94, 99, 101, 102, (b) See Ref. 99, (c) See Ref. 101, (d) See Ref. 222.
The dipolar point corresponds to the dipolar model truncated to third-neighbor interactions;
the value of the couplings for this point are given in Eq. 4.9.
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4.1. Known results and special points

It has been long known that the J1-J2 model exhibits a finite residual entropy for J2 > 0. In

fact, the exactly solvable model of Ref. 245, with J2 couplings only in one direction, has a set of

ground states with a residual entropy per site of

SAzaria = 1

3
ln2 ∼= 0.23105... (4.5)

It is easy to see that this ground-state degeneracy would not get lifted by the next-nearest-

neighbor couplings in the other directions, which gives a lower bound for the residual entropy

per site for the J1− J2 model. A better estimate can be obtained from Pauling estimates [40, 93].

For the nearest-neighbor kagome model, a Pauling estimate can be performed by noting that

on each triangle with one fixed spin, there are four states of which only three satisfy the ice

rule. If all the 2N /3 triangles of the kagome lattice were free, we would thus get an entropy [93]

SNN
P = ln(2)+ 2

3
ln

(
3

4

)
= 1

3
ln

(
9

2

)
∼= 0.50136... (4.6)

which is actually fairly close to the exact result [18]. Taking into account second-nearest

neighbors, the residual entropy per site can be estimated roughly by including constraints on

the three kagome superlattices, which gives [93, 99]

S2nd N
P = ln(2)+ 2

3
ln

(
3

4

)
+3 · 2

9
ln

(
3

4

)
∼= 0.3096... (4.7)

A very similar estimate is obtained using the known result for the residual entropy of the

nearest-neighbor model:

S2nd N
P = 2 ·SNN − ln(2) ∼= 0.3105... (4.8)

In Ref. 99, the J1 − J2 model was studied for antiferromagnetic couplings using Monte Carlo

simulations and it was seen on small systems (L = 3, N = 108 sites) that the residual entropy

is slightly below the Pauling estimate with S ∼= 0.297±0.0032.This model was also previously

studied in Ref. 102 where it was suggested that there was a KT transition to a partially disor-

dered state at low temperature. We computed the residual entropy in Chapter 3 (Ref. 160) with

tensor networks, using a dual construction, and found S ∼= 0.285299±1.4 ·10−6 (Eq. 3.38).

4.1.2 Dipolar point in the J1 − J2 − J3 model

In Appendix A of Ref. 99, a brief study of the J1 − J2 − J3 model is presented, for the values of

the couplings corresponding to the truncated version of the DKIAFM Hamiltonian (Eq. 4.1).

2This value is not given in the reference but we extracted it from their graph
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Truncating the dipolar Hamiltonian (Eq. 4.1) to third neighbors gives3:

J2/J1 = 2

9
p

3
∼= 0.1283... , J3/J1 = 1

12
∼= 0.0833... , J3/J2 = 3

p
3

8
∼= 0.64952.... (4.9)

In particular, the authors of Ref. 99 include the third-neighbor couplings in the Pauling es-

timate, either by assuming that these couplings impose an ice rule on the J3 triangles or by

estimating a reduction factor from the known residual entropy of the TIAFM. In both cases, the

residual entropy is negative. Let us note that this way of introducing J3 couplings assumes that

both first-, second- and third-neighbor ice rules are imposed at the same time, corresponding

to the following lower bound for the ground-state energy:

E J1−J2−J3:DKIAFM ≥−2

3
J1 − 2

3
J2 − J3. (4.10)

They note that small-scale Monte Carlo simulations (L = 3, N = 108) fall out of equilibrium at

low temperatures but give evidence of a finite value of the order parameter associated with the

long-range dipolar ground state; however they do not conclude decisively on the kind of order

expected in the ground state of this truncated model. One of the main results of our Chapter

will be to establish that the dipolar point lies within a phase with a macroscopic ground-state

degeneracy (albeit a small one).

4.1.3 J1 − J2 − J3|| model

In Chapter 3 we discussed a close cousin of the model that we are interested in here: the

J1 − J2 − J3|| model, where J3? = 0. The full ground-state phase diagram of this model in terms

of ground-state energies has already been established [101] using Kanamori’s method, and

we reproduce it in Fig. F.3 for completeness (see also Appendix F.1.1 for the list of Kanamori

inequalities for this model). The residual entropies of the various ground-state phases have

not all been studied. Wolf and Schotte [101] focused on the residual entropy for J1 antiferro-

magnetic, J2 = J3|| ferromagnetic, and showed that it was exactly

SWolf And Schotte
J1,J2=J3|| = 1

3
STIAFM. (4.11)

Since this model is quite close to the one that we are interested in, we will use this region

where J2 = J3|| < 0 to benchmark the tensor network results for the residual entropy. Actually,

this is the same kagome ice ground-state manifold that is obtained as the ground-state of the

3This corresponds to J1 = 1.5, J2 = 1/23/2 ∼= 0.192 and J3 = 1/8 = 0.125, namely setting J0 = 0.5 and D = 1 in
Eq. 4.1. In Appendix A of Ref. 99, it seems that the the couplings are J1 = 1.5, J ′2 ∼= 0.692 and J ′3 = 0.625, which
corresponds to adding a 0.5 term also for the J2 and the J3 couplings. Although this does not affect the ratio
between J2 and J3, both couplings are too large compared to J1 and correspond to a different ground-state phase
of the J1-J2-J3 model. However, comparing the behavior of the specific heat in the J1-J2 model (Fig. 9b in Ref 99)
to known results (Fig. 8a in 102 and Fig. 26d in 160), it seems that the couplings announced in Ref. 99 result from a
typo; the results of the simulation seem more compatible with the couplings of Eq. 4.9.
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〈111〉 magnetization plateau in pyrochlores, and of the KIAFM in a field (except for the fact

that in the J1 − J2 − J3|| model there is spontaneous Z2 symmetry breaking).

This macroscopic ground-state degeneracy occurs at the boundary between two ordered

phases: when J2 is ferromagnetic and dominates, they find the same
p

3×p
3 long-range

ordered state as in the J1− J2 model with ferromagnetic J2, whereas when J3|| dominates, there

is a stripe-ordered ground state with six-fold degeneracy. We will show that these two ordered

phases also appear in the full J1− J2− J3 model, but that in that case, due to the J3? interaction,

there is no macroscopic degeneracy at the boundary between the two phases.

For completeness, let us mention that Mizoguchi et al. [222] also focused on the J2 = J3|| line

of this model but additionally studied the case of antiferromagnetic J := J2 = J3||. It can be

seen in Fig. F.3 that this line is again at the boundary between two other phases. They showed

that when J1 ≥ 3J there is a residual entropy

Shexamer CSL
∼= 0.32... (4.12)

corresponding to a classical spin liquid that they name the hexamer classical spin liquid.

Importantly this residual entropy is not that of the TIAFM, as we saw in Chapter 3 when

studying this model. In that Chapter, we also showed that the phase for 0 < J3|| < J2 has also a

finite residual entropy, S = 0.1439....

Since J3? is competing with J3|| and creates a triangular lattice, it can be expected that the

ground-state phase diagram for the J1 − J2 − J3 model will be quite different from the results

of Wolf and Schotte; we discuss the comparison of the full ground-state phase diagram in

Appendix F. We should note that in their paper, Wolf and Schotte acknowledge J. Kanamori

for “showing [them] his unpublished analysis of the ground states for a Kagome-Ising model,

which also includes a fourth coupling constant J4”. Unfortunately, we were unable to find a

trace of this unpublished work.

4.1.4 Dipolar ground state and low energy configurations

Since the original motivation for studying the J1 − J2 − J3 model is to explore the lifting of

the ground-state degeneracy from the nearest-neighbor model ground-state manifold to the

dipolar ground state, let us review some features of the dipolar model’s long-range ordered

ground state and some low energy states.

As noted by Chioar et al. [82], the dipolar ground state corresponds to a long-range order of

“charges” defined on the triangles:

QM = ∑
i∈M

σi QO =− ∑
i∈O

σi (4.13)

This picture of the ground state is shown in Fig. 4.2a. In Fig. 4.2b we illustrate the corresponding

dimer configuration. In terms of dimers, the first remark is that on all the hexagons, the pair
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

of dimers touching the center of the hexagon form a chevron. The dipolar ground state can

be seen as a tiling of a unit cell with four chevrons. The connection with the trapezoids and

the 7-shape of Ref. 82 can be done as follows (Fig. 4.2c): the trapezoids are constructed by

associating with each kagome lattice bond either an arrow connecting the up spin to the down

spin, or a dashed bond if the two spins are the same. Therefore, the trapezoids are essentially

dual to the chevrons formed by the dimers. The unit cell of four trapezoids, or four chevrons,

corresponds to the 7-shaped unit cell of Ref. 82, shown in purple in Fig. 4.2b. For convenience

we can also chose a slightly different unit cell shown in blue in the same Figure. In this ground

state there is three-fold sublattice rotation symmetry breaking and two-fold time-reversal

symmetry breaking (as well as a four-fold translation symmetry breaking corresponding to the

12-site magnetic unit cell).

In Ref. 99 the charge picture is used to identify low-lying states in the dipolar model. The

approach is inspired by the role of the charges in the in-plane kagome spin ice where, by

approximating spins as charge dumbbells, the dipolar Hamiltonian can be rewritten (up to a

constant and small corrections vanishing with distance at least as fast as 1/r 5) as [53, 95, 96, 99]

HKSI = 1

2

∑
α

v0Q2
α+

µ0

8π

∑
α6=β

QαQβ

rα,β
. (4.14)

In this equation, v0 can be expressed in terms of the nearest neighbor coupling J , the dipolar

coupling D, the magnetic moment µ and the distance between charges ah . Hamp et. al.

propose to push this approach as follows: to go from the in-plane case to the DKIAFM, the

spins are tilted progressively while the limit ah →∞ and at the same time q → 0 is taken such

that the charges at the ends of the dumbbells keep overlapping at the center of the triangles.

Eventually, the dumbbell picture will break down, but since the charges Qα are proportional to

the charges introduced in Eq. 4.13 and the 7-shaped ground state corresponds to an ordering

of those charges, one is tempted to push this picture beyond its scope of application and see if

it provides an intuitive understanding of the low-lying states of the DKIAFM.

In this approximation, the charges are eventually separated in two triangular layers, namely

charges living on up triangles and charges living on down triangles. In the first approximation,

these layers are not interacting. At the same time, charges within a triangular layer have

Coulomb interactions favoring charge-stripe patterns defined by an “antiferromagnetic” alter-

nance of aligned directed strings of charges. Considering strings that span the lattice vertically,

one can see that there is a subextensive degeneracy corresponding to all the strings going

simultaneously left or right at each row.

To first order, one could ignore the interactions between the two triangular layers. But, having

observed that the (spin-spin) dipolar interactions seem to favor a proximity between charges

of the same sign from one layer to the other, a reasonable description for a family of low-lying

state is to adjust the stripe pattern in one of the layers such as to maximize this proximity. That

way, there is a subextensive degeneracy for the configurations in one layer, and the charge

configuration in the second layer is fixed to be consistent with that of the first layer. This family
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of states contains the 7-shaped ground state, has an entropy scaling with the linear size of the

system, and according to Ref. 99 many of these states lie close in energy to the dipolar ground

state, with an energy difference of order 1.3% .

4.2 Ground-state phase diagram

In this section, we give an overview of the ground-state phase diagram. We start by describing

the application of the Kanamori approach to the J1 − J2 − J3 model. Having obtained the

inequalities polytope for the J1 − J2 − J3 model, we simplify the problem by focusing on the

phases for J1 À J2, J3 with J1 antiferromagnetic. With this, we establish the exact ground-state

energies for these phases, and give an overview of the residual entropies that we will obtain in

the remainder of the Chapter.

4.2.1 Applying Kanamori’s method

To study the model

H = J1
∑

〈i , j 〉1

σiσ j + J2
∑

〈i , j 〉2

σiσ j + J3
∑

〈i , j 〉3||
σiσ j + J3

∑
〈i , j 〉3?

σiσ j , (4.15)

the inequalities must be written separating the two type of third-neighbor (disconnected)

correlations:

c3|| := 1

2N

∑
〈i , j 〉3||

σiσ j , c̃3? := 1

2N

∑
〈i , j 〉3?

σiσ j , (4.16)

where we have denoted −1/2 ≤ c̃3? ≤ 1/2 to emphasize the fact that we divide by twice the

number of type 3? bonds. The energy per site is given by

H

N
= 2J1c1 +2J2c2 +2J3||c3||+2J3?c̃3? (4.17)

We find a list of inequalities for c1, c2, c3|| and c̃3? by applying the procedure presented in

Chapter 1, Sec. 1.4.1. These inequalities can be written in the form:

a1c1 +a2c2 +a3||c3||+a3?c3? ≥−1. (4.18)

and in Appendix F.1.2, Table F.3 we give a list of the 17 strongest inequalities we found using

a systematic enumeration; we also illustrate the corresponding clusters. Some of these in-

equalities, that do not include c̃3?, are also present in the treatment of the J1 − J2 − J3|| model.

Conversely, some inequalities constraining the correlations of the J1 − J2 − J3|| model are not

sufficiently restrictive for the J1 − J2 − J3 model and are eliminated. The 17 inequalities are

valid for any values of J1, J2, J3|| and J3?, and give rise to a four-dimensional polytope in the

correlation space with 21 vertices

{~c(i )}i=1,...,21 =
{

(c(i )
1 ,c(i )

2 ,c(i )
3|| , c̃(i )

3?)
}

i=1,...,21
, (4.19)
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Figure 4.3 – Polytope from Kanamori’s method of inequalities reduced for J3|| = J3?. In this
Chapter we focus on the corners highlighted with large color points (for c1 =−1

3 ).

listed in Appendix F.1.2, Table F.4. We do not immediately seek to find a state corresponding

to each of these 21 vertices, which would be needed to establish the full ground-state phase

diagram for J1 − J2 − J3|| − J3? models4; instead we start by specializing to the case where

J3|| = J3?:
H

N
= 2J1c1 +2J2c2 +2J3(c3||+ c̃3?). (4.20)

The polytope in the (c1,c2,c3||+ c̃3?) space is found as the convex hull of the set{
(c(i )

1 ,c(i )
2 ,c(i )

3|| , c̃(i )
3?) · (0,0,1,1)

}
i=1,...,21

, (4.21)

where some of the 21 original corners might be “projected” onto the same point or end up in

the interior of this new polytope. Computing this convex hull, we find a polytope illustrated

in Fig. 4.3, whose 11 vertices are listed in Appendix F.1.2, Table F.5. With these corners, one

obtains a candidate ground-state phase diagram which has to be checked by finding for each

corner of the polytope a configuration that realizes it. Since we are mainly interested in the

ground-state phase diagram for J1 À J2, J3, we focus on this case in the remainder of this

Chapter, and we we relegate the discussion of the full candidate ground-state phase diagram

to Appendix F.2.2. In that Appendix, we show that some of the corners of this polytope, not

relevant to the current discussion, are not realized. Although we are not able to elucidate the

ground-state phase diagram fully, we get an extensive insight into it.

4We give indications in Appendix F.2.2 that this would be a challenging process requiring the construction of
even stronger lower bounds.
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4.2. Ground-state phase diagram

4.2.2 Overview of the ground-state phase diagram for J1 À J2, J3

Since we are mainly interested in the ground-state phase diagram for J1 À J2, J3, we can still

operate one more simplification on the Kanamori polytope: by taking J1 to be large5, we can

focus on the corners of the Kanamori polytope in Fig. 4.3 for which c1 is minimal; i.e. we can

focus on the section of this polytope that lies in the c1 =−1
3 plane. This gives us the polygon in

Fig. 4.4a. Given the correlations of the various corners, one still has to check that each corner

can be realized by a spin configuration on the lattice. For this, we perform small-scale Monte

Carlo simulations with periodic boundary conditions, using the worm algorithm discussed in

Sec. 1.2, which corresponds to building an upper bound for the ground-state energy that will

match the lower bound from the Kanamori approach. Note that each corner where we find

a configuration then corresponds to a ground-state phase, as it corresponds to the extremal

energy for a range of values of J2, J3. While the associated ground-state energy can be read

directly on the graph (given Eq. 4.17), the Kanamori method tells nothing about the nature of

the ground-state phase and whether it has a residual entropy.

For each corner in Fig. 4.4a we find a configuration, represented by a snapshot of the Monte

Carlo simulations, which rigorously proves the energies of all these phases. The appearance of

the configurations either in spin or in dimers gives the name to the corresponding phase, as

detailed below.

We complement the exact results for the ground-state energies with tensor network computa-

tions for the residual entropies, using the method described in Chapter 2 to write the partition

function. First, the Hamiltonian is split as a sum of local Hamiltonians on small clusters,

with weights describing how each bond is shared between the cluster Hamiltonians. For any

weights, the ground-state energy on the cluster is a lower bound on the global ground-state

energy. We optimize for the weights which maximize this lower bound; if it matches the known

global ground-state energy (from Kanamori’s method) then it means that the frustration is

relieved and that the total Hamiltonian can be minimized by minimizing each weighted cluster

Hamiltonian simultaneously. All the ground states are then described as a tiling of the local

ground-state configurations on the cluster, and one can build a tensor network to count them.

In all the depicted ground-state phases, a star cluster is sufficient to support the ground-state

tiles. We will discuss in more detail the results for each phase in the rest of the Chapter, but

the overall results are summarized in Fig. 4.5 and in Table 4.2 for the residual entropies and

ground-state energies.

Let us have a look at these results. Corresponding to the fact that we selected J1 À J2, J3 and

that Fig. 4.4a corresponds to the c1 =−1/3 plane of the 3D inequalities polytope in Fig. 4.3,

in all this ground-state phase diagram, the nearest-neighbor energy is always minimized in

the sense that all the nearest-neighbor triangles always respect an ice rule. The diversity of

the phases thus arises from a competition between the second- and third-nearest-neighbor

5According to the results of Appendix F.2.2, J1 is large enough if

√(
J2
J1

)2 +
(

J3
J1

)2 < 1/2.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.4 – (a) Polytope from Kanamori’s method of inequalities reduced for J1 À J2, J3,
J1 > 0. For reference, the dashed lines give the inequalities corresponding to minimizing the
energy on all the J2 or all the J3 triangles respectively. For each corner we show one Monte
Carlo snapshot which has these correlations. In all cases c1 =−1

3 (Fig. 4.3). The correlations
correspond to states as follows. (b) (c2,c3) = (−1/3,3/2): long-range ordered Stripe states; (c)
(c2,c3) = (1,−1/2): long-range ordered

p
3×p

3 states; (d) (c2,c3) = (−1/3,1/2) : a phase where
pair of dimers form chevrons; (e) (c2,c3) = (0,−1/6): a phase where dimers rotate clockwise or
anti-clockwise around empty hexagons as pinwheels (highlighted); (f) (c2,c3) = (1/3,−1/2) : a
phase characterized by strings of crosses spanning the system.

couplings, which either partially or completely lift the ground-state degeneracy of the nearest-

neighbor model.

There are two long-range ordered phases corresponding to either J2 or J3 being ferromagnetic

(Fig. 4.4b and c). In these phases, the ground state is such that the sub-lattices corresponding

to the dominant coupling are ferromagnetically ordered, yielding a
p

3×p
3 order when J2

dominates (named this way because of the size of the unit cell as compared to the triangular

sublattice spacing), and a long-range order with ferromagnetic stripes of spins when J3 domi-

nates (stripes phase). As we mentioned earlier, these phases are also present in the J1− J2− J3||
model (i.e. when J3? = 0).

More surprisingly, when both J2 ≥ 0 and J3 ≥ 0, there is a number of phases with reduced but

non-zero residual entropy. In Fig. 4.4, we indicated by dashed lines the inequalities c2 ≥−1/3

and c3 ≥−1/2 that correspond to satisfying the ice rule on each J2 triangle and each J3 triangle,

respectively. The fact that we find more restrictive inequalities that cut the corner formed

by these two inequalities shows that there is no state satisfying simultaneously the ice rule

on all nearest, second-nearest and third-nearest neighbor triangles at once. Instead, we find

stronger inequalities forming three corners and correspondingly three phases (Fig. 4.4d, e and

f). The additional inequalities correspond to more involved rules on the lattice, which we can

find in the form of tiles using the approach described in Chapter 2.
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4.2. Ground-state phase diagram

Figure 4.5 – The ground-state phase diagram of the J1-J2-J3 model for J1 antiferromagnetic
and for farther-neighbor couplings in a radius of J1/2. Positive couplings correspond to
antiferromagnetic interactions. The residual entropies are obtained from contractions of
tensor networks based on a star cluster.

Start from the J1 − J2 model : its ground state is located on the leftmost phase boundary in

Fig. 4.4a, at c2 = −1/3 corresponding to all next-nearest-neighbor triangles respecting the

ice rule. This ground-state manifold is known to be macroscopically degenerate (Table 4.1,

Chapter 3). Upon introducing a small J3 coupling, the corner corresponding to Fig. 4.4d is

selected. With Monte Carlo, we validate this corner by finding a state which respects the ice

rule for all 2nd-neighbor triangles but also has some constraint on the third-neighbor triangles

giving rise to c3 = 1/2. Illustrated in Fig. 4.4d, this state is characterized by all the dimers

appearing in pairs forming chevrons (two dimers at a 120◦ angle), and we name this phase the

“chevrons phase”.

Upon increasing J3 there is a transition to another ground-state phase (Fig. 4.4e) which

we name the “pinwheels phase” because it is characterized by a lattice of empty hexagons

surrounded by dimers with a well-defined chirality, turning either clockwise or counter-

clockwise with respect to the hexagon center. In these ground states, some of the J2 triangles

as well as some of the J3 triangles are ferromagnetic. When J3 becomes larger than J2 there is

yet another phase, in which all the J3 triangles respect the ice rule. The Monte Carlo snapshots

in this phase (Fig. 4.4e) are characterized by strings of crosses winding the systems; since we

will show that these strings of crosses can be used to understand the finite residual entropy,

we name this phase the strings phase. We will see that all three phases as well as their phase

boundaries have a finite residual entropy (Fig. 4.5, Table 4.2).
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

SPhase or
boundary

Name EG.S + 2
3 J1

Pauling /
Lower bound

Exact TN

J2 > 0, J3 = 0 J1 − J2 −2
3 J2

(a) ∼= 0.31..(b) - 0.285299±2 ·10−6(c)

J2 > 2J3 > 0 Chevrons −2
3 J2 + J3 - - 0.01920±3 ·10−5

J3 = J2/2 > 0 - −1
6 J2 - - 0.0926±2 ·10−4

J2 > J3 > J2/2 > 0 Pinwheels −1
3 J3 -

STIAFM/12
∼= 0.02692..

0.026922±3 ·10−6

J3 = J2 > 0 - −1
3 J3 - - 0.16825±5 ·10−5

J3 > J2 > 0 Strings 2
3 J2 − J3

≥ 1
9 ln2

∼= 0.077
STIAFM/3

∼= 0.10769...
0.107689±2 ·10−6

J2 = 0 J1 − J3 −J3
≥ 1

27 ln559
∼= 0.2348

- 0.26413±2 ·10−5

J2 < 0, J3 > 2/3J2
p

3×p
3 2J2 − J3 0(d) 0(d) 0

J3 = 2/3J2 < 0 - 4
3 J2 - 0 0

J3 < 0, J2 > 3/2J3 Stripes −2
3 J2 +3J3 0(d) 0(d) 0

Table 4.2 – Overview of the results discussed in this Chapter. We indicate the following
references for known results (see also Table 4.1 and the discussion in Appendix F): (a) See
Refs. 93, 94, 99, 101, 102 (b) See Ref. 93, 99, (c) See Chapter 3 of the present thesis (Ref. 160),
(d) See Ref. 101 (J1 − J2 − J3|| model) where these two ordered phases are also present. To the
best of our knowledge, the rest of the results are new. We present them starting from the J1− J2

model and enumerating the phases in Fig. 4.5 counter-clockwise.
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4.3. Ferromagnetic farther-neighbor couplings and benchmark

In the following, we present these results in detail. We start by describing the two ordered

phases, which is the occasion to give a short reminder of the idea behind the tensor net-

work construction once the ground-state tiles are obtained. We also make a remark about

the boundary between the two ordered phases and contrast this result to that of Wolf and

Schotte [101], which we use as a benchmark. Then, we move on to the chevrons phase; we

show that the ground state of the long-range, dipolar model is a ground state in this phase, de-

spite the fact that the dipolar Hamiltonian truncated to third neighbors would have couplings

which would fit the pinwheels phase. Next, we study the pinwheels phase and show that it

still exhibits a finite residual entropy which is a twelfth of the residual entropy of that of the

TIAFM. Finally, we have a look at the strings phase and notice that the residual entropy there

is a third of that of the TIAFM; we see how this result can be at least partially understood in

terms of strings living on an effective honeycomb lattice.

4.3 Ferromagnetic farther-neighbor couplings and benchmark

Two ordered phases occur when J2 and/or J3 are ferromagnetic : the
p

3×p
3 phase where J2 is

ferromagnetic and J3 > 2
3 J2, and the stripes phase when J3 is ferromagnetic and J2 > 3

2 J3. These

phases correspond to ferromagnetically ordered next-nearest- and third-nearest neighbor

sublattices, respectively.

The ground-state tiles corresponding to the
p

3×p
3 phase (ferromagnetic J2) and the stripes

phase (ferromagnetic J3) are illustrated in Fig. 4.6. Here and in the following, we will always

show one instance of each type of tile; it is implicit that all the tiles corresponding to rotations

and global spin flips are also ground-state tiles. In Fig. 4.7, we recall the idea behind the tensor

network construction: once the ground-state tiles are obtained, one wishes to count all the

valid ways of tiling them. Two ground-state tiles can be tessellated if they have the same spin

configuration on their shared sites. Thus, in spirit, one can build a tensor network to count the

tiles by building a ∆-tensor G associated to each cluster and whose bond dimension equals

the number of ground-state tiles, and contracting these tensors with bond tensors Ph and Pv

which impose that two neighboring ground-state tiles must have the same spin configuration

on the sites that they share. The bond dimension can be reduced to at most 2ns , where ns is

the number of shared sites, by performing an SVD on the sparse bond tensors.

In these two phases, contracting the tensor network with the VUMPS algorithm yields a leading

eigenvalue of one, corresponding to a zero residual entropy and the expected long-range order.

In the stripes phase, this occurs even with a bond dimension of one for the boundary MPS.

In the
p

3×p
3 phase, a bond dimension of four is sufficient to converge and get a zero

residual entropy, even without allowing for the three-by-three translation symmetry breaking

expected in this phase; if this symmetry-breaking is allowed for by using a multi-site VUMPS

implementation [151], then the correct result is obtained for bond dimension one.

In the work of Wolf and Schotte [101], where they studied the case where J3 = 0 across the
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

(a)
p

3×p
3 phase.

(b) Stripe phase.

Figure 4.6 – The ground-state tiles in the two long-range ordered ground-state phases. The
yellow dots correspond to down spins, the blue dots correspond to up spins, and the orange
segments correspond to the dimer configuration on the dual, diced lattice. A dimer is put
whenever two nearest-neighbor spins have the same signs.

Figure 4.7 – A reminder of the idea behind the tensor network construction, illustrated
with the ground-state tiles of the

p
3×p

3 phase. In (a), it is shown that two tiles match
horizontally if the five spins on the sites that they share have the same values. In the most
straightforward construction, the tensor network in (b) is thus built with a four-legs ∆-tensor
G which associates a number to each ground-state configuration, and bond tensors Ph and Pv

which enforce that neighboring tiles must match by taking value one if the neighboring tiles
have the same values of the shared spins, and zero otherwise. The contraction of the tensor
network thus counts the number of valid tilings of the ground-state tiles.

Figure 4.8 – Additional ground-state tiles at the phase boundary between the ordered phases
when J3? is zero, i.e. in the model of Wolf and Schotte [101]. These tiles cannot belong to the
ground state when J3? is non-zero and ferromagnetic.
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4.3. Ferromagnetic farther-neighbor couplings and benchmark

Figure 4.9 – Benchmark: residual entropy when J3 = 0 across the hexagon. The exact result is
STIAFM/3 [101]. The tensor network contraction is performed for bond dimensions ranging
from χ= 8 to χ= 116. The errorbars come from computing the variance. The fit is performed
on the 15 largest bond dimensions and gives an estimate for the entropy, while another
estimate is given by the largest residual entropy obtained over all considered bond dimensions.
The inset is a simple zoom on the largest bond dimensions.

hexagons, the phase boundary between the stripe and the
p

3×p
3 phases is found at J2 = J3

and exhibits a finite residual entropy:

SWolf And Schotte
J1,J2=J3|| = 1

3
STIAFM

∼= 0.1077... (4.22)

The J3? coupling (the coupling across the hexagons) pushes this phase boundary to J2 = 3
2 J3,

and completely lifts the macroscopic degeneracy at the boundary between the two phases.

This is easily seen in terms of the ground-state tiles: while in our case there is no new tile at the

boundary between the two ordered phases, if J3? = 0 there is a number of new tiles illustrated

in Fig. 4.8. Clearly, these tiles cannot be present when J3? is non-zero and ferromagnetic. In

the case of Wolf and Schotte, these are the tiles which allow cost-free boundaries between thep
3×p

3 ground state and the stripe ground state.

Since the residual entropy at the phase boundary when J3? = 0 is an exact result, we use it as a

benchmark for the code. The results are presented in Fig. 4.9, where it can be seen that the

tensor network contraction agrees perfectly with the predicted result. In this Figure and other

similar Figures in the chapter, we fix the y-scale to the third decimal in the residual entropy.

Since this is the order of magnitude of the error that one can typically hope to obtain with

Monte Carlo simulations, it gives an idea of the precision of the tensor network results as

compared to Monte Carlo thermodynamic integration. We use the insets to show the limit of

the precision that we obtain.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.10 – The 150 ground-state tiles of the J1-J2 model. The dashed lines stand for a
freedom in setting the dimer: when two dashed lines touch the center of a triangle, a dimer
can be set on either of the dashed lines at the exclusion of the other. For instance, in (a), the
bottom spin shown in white can be either down or up, which puts the dimer either to the right
or to the left.

4.4 Chevrons phase

We now move on to the other ground-state phases of the model, with both J2 and J3 antiferro-

magnetic. We start with the J1-J2 model, and the chevrons phase which arises when a small

non-zero J3 is introduced.

4.4.1 J1 − J2 model

When J3 = 0 the ground-state energy is [102]

E J1−J2 =−2

3
J1 − 2

3
J2. (4.23)

and we saw that there is a finite residual entropy (Table 4.1).

The construction of the tensor network associated with the J1-J2 model first requires obtaining

the ground-state tiles, illustrated in Fig. 4.10. In this Figure and in the rest of this Chapter, we

take a convention to describe the situation where there is some freedom in setting a spin: the

spin is shown in white, and the dual bonds on which a dimer can be put are dashed. This

means that the spin can be either up or down, and correspondingly we must put a dimer on

one of the dual bonds at the exclusion of the other. The tiles of Type I exactly correspond to

the chevrons that we identified to the trapezoids of Ref. 82 (see Fig. 4.2). One can check that

the ground state of the DKIAFM corresponds to a tiling of these Type-I tiles, and therefore it

immediately follows that the ground state of the DKIAFM is one of the ground states of the

J1-J2 model (despite the fact that it was not explicitly reported in studies of the short-range

models on the kagome lattice that preceded the work of Chioar et al.). We also show an

example of a ground state obtained from Monte Carlo simulations in Fig. 4.12. Being aware

that the J1 − J2 model corresponds to a phase boundary between the stripes and the chevrons

phase, one can notice that dimer configurations associated with both phases can be seen in
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4.4. Chevrons phase

Figure 4.11 – Definition of the flux associated with the dimer configurations in the J1 − J2

ground-state manifold.

that ground state.

Interestingly, in this ground-state manifold we can find an equivalent of a U (1) Gauss’ law

by defining fluxes associated with the dimers. For this, one has to notice that in this phase,

corresponding to the constraints due to the nearest-neighbor coupling, there is exactly one

dimer touching each three-coordinated vertex of the dice lattice (A sites). Additionally, cor-

responding to the constraints on the next-nearest-neighbor triangles, there is exactly two

dimers touching each six-coordinated vertex of the dice lattice (B sites). We can therefore

associate a flux with dimers on the dice lattice in this ground-state manifold with the following

conventions (Fig. 4.11a):

with a dimer we associate a flux of 2 going from A-sites to B-sites (4.24)

with the absence of dimer we associate a flux of 1 going from B-sites to A-sites, (4.25)

such that the flux is conserved at each vertex. Importantly, these constraints describe a set of

dimer configurations wider than just the J1-J2 ground-state manifold, since for instance the

Type III tiles of the strings phase (Fig. 4.24e) also satisfy these constraints.

From the tensor network contraction, we obtain a precise estimate of the residual entropy per

site (see Appendix G.1), which matches the result obtained in Chapter 3 with the construction

using dimers:

S J1−J2 = 0.285299±2 ·10−6. (4.26)

4.4.2 Introducing a small J3 coupling

Introducing a small third-neighbor coupling only adds one term to Eq. 4.4, corresponding to

the fact that among all the ground states of the J1-J2 model, some states can be selected that
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

spin up

spin down

+1

+1

-1

-1

Figure 4.12 – To views of a ground state of the J1-J2 Ising antiferromagnet on the kagome
lattice. The tiles belonging to the stripe phase and the tiles belonging to the chevrons phase
can be identified, together with additional ground-state tiles which only appear because
J3 = 0.

minimize the cost of the J3 interaction:

EChevrons =−2

3
J1 − 2

3
J2 + J3. (4.27)

The corresponding ground-state tiles are illustrated in Fig. 4.13; they all correspond to the

trapezoids described in Ref. 82, and give their name to this phase. Clearly, the DKIAFM

ground state belongs to this ground-state manifold, despite the fact that truncating the dipolar

Hamiltonian (Eq. 4.1) to third neighbors would not correspond to this phase. Indeed, the

couplings in Eq. 4.9 would correspond to the pinwheels phase. We note that the ground-state

manifold of the chevrons phase does not include all possible chevron tilings: the tiles in

Fig. 4.13 enforce rules on how the chevrons must tile together. In Appendix G.2 we give an

example of a chevron configuration that does not respect these tiling rules and therefore does

not belong to the ground-state phase.

On large system sizes, our Monte Carlo simulations struggle to equilibrate or even reach the

ground state. On a small system size (144 sites), though, we manage to find a set of ground

states, two of which are depicted in Fig. 4.14. Interestingly, we only find non-local moves

(i.e. torus-winding updates) between the various ground states. With only this information,

it would seem as if the residual entropy of the model would be sub-extensive, with a zero

residual entropy per site. This phase is also a challenge for the tensor network contraction.

However, as can be seen in Fig. 4.15, when 2-stars translation symmetry breaking is allowed

for in the Ansatz, the results consistently converge to a finite residual entropy per site which is
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4.4. Chevrons phase

Figure 4.13 – The 48 ground-state tiles of the chevrons phase. The dashed lines and white
site describe the fact that one can set the spin to be either up or down on the white site, and
correspondingly put a dimer on one of the two dashed bonds at the exclusion of the other.
Note that these tiles restrict how neighboring chevrons can be arranged.

spin up

spin down

+1

+1

-1

-1

Figure 4.14 – Two ground states of the chevrons phase. The trapezoids of Ref. 82 can be
identified. On the right panel, a charge ordering different from that in the DKIAFM ground
state can be seen.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.15 – Residual entropy per site of the chevrons phase from tensor network contractions.
The tensor network contraction is performed for bond dimensions ranging from χ = 17 to
χ= 116. The errorbars come from computing the variance. The inset shows a zoom on the
largest bond dimensions. We allow for two-site symmetry breaking in the Ansatz.

approximately

SChevrons = 0.01920±3 ·10−5. (4.28)

This entropy is smaller than ln2/36, which suggests that, in the Monte Carlo simulations, if we

were to find updates between ground states corresponding to flipping a cluster of spins, they

might correspond to 36-sites unit cell (unless the scenario explaining the residual entropy per

site is similar to what we observe in the pinwheels and strings phases); this might explain why

we were unable to identify updates as being local in our 144-sites Monte Carlo simulations.

4.5 Pinwheels phase : a mapping to the triangular lattice Ising anti-

ferromagnet

The pinwheels phase is located at

1/2 < J3/J2 < 1, (4.29)

with the additional requirement that J2 and J3 should not be too big compared to J1 (see

Appendix F for neighboring phases):

J3 +3/2J2 < J1. (4.30)
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Figure 4.16 – Two views of the same snapshot of a ground state in the pinwheels phase. The
blue and yellow dots correspond to up and down spins. On the left, the orange segments stand
for the dimers living on the dice lattice (dual to kagome). A periodic structure of hexagons with
no dimers can be seen (highlighted in blue or yellow). The dimers around the empty hexagons
arrange as the wings of a pinwheel, which gives its name to this phase. The color in which
the hexagon is highlighted corresponds to the direction in which the dimers turn around that
hexagon: clockwise or counter-clockwise. On the right, the up and down purple and blue
triangles correspond to +1 and -1 charges, respectively, with the convention of Ref. 99. The
periodic structure of empty hexagons on the left corresponds here to a periodic structure of
hexagons surrounded by a single type of charge, all +1 or all -1. They seem to respect a “charge
ice rule”: three nearest-neighbor empty hexagons cannot all have the same charge.

Note that these equations are satisfied by the DKIAFM model truncated to third-neighbor

couplings (Eq. 4.9). The ground-state energy per site is (Table 4.2)

EPinwheels =−2

3
J1 − 1

3
J3. (4.31)

In this section, we are going to argue that the pinwheels phase not only exhibits a finite residual

entropy, albeit a small one, but also that the ground-state manifold admits a mapping to the

ground state of the TIAFM, with 12-sites clusters behaving as effective Ising degrees of freedom

(pinwheels with either clockwise or counter-clockwise chirality). In the following, we first give

an intuition of this result based on a snapshot of the Monte Carlo simulations and the residual

entropy obtained from the tensor network computations. Then, based on the ground-state

tiles we give a rigorous characterization of the ground-state manifold of the pinwheels phase.

4.5.1 Numerical results

In Fig. 4.16, we show a snapshot of a ground state obtained in the Monte Carlo simulations.

With this, one can notice that the configuration in the ground state of the pinwheels phase has

three possible hexagon configurations: either the hexagon is empty, or it hosts a chevron (two
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

(a) Tensor networks result (b) Monte Carlo result.

Figure 4.17 – Residual entropy in the pinwheels phase. (a) Tensor networks result for bond
dimensions ranging from χ= 18 toχ= 78. As we already suggested (Chapter 2), removing the
spurious tiles (Type IV tiles in Fig. 4.18), makes it much easier to get a convergence at any
bond dimension; the results with the spurious tiles are however also consistent with a residual
entropy of S = 1

12 STIAFM. The insets show a zoom on the data and the difference to STIAFM/12
in logarithmic scale. In the latter, the error bars are omitted for readability. (b) Monte Carlo
results for sizes ranging from 144 up to 1764 sites, for two sets of couplings in the pinwheels
phase.

dimers at a 120◦ angle), or a cross. Furthermore, the empty hexagons form a triangular lattice.

As one can see, the dimers around empty hexagons all go in the same direction, effectively

turning either clockwise or counter-clockwise; correspondingly, the charges around an empty

hexagon all have the same value. Finally, this snapshot gives an intuition of what we are going

to prove: the empty hexagons form a triangular lattice, and the clockwise/counter-clockwise

(or hexagonal charge) degrees of freedom behave as effective Ising spins. These spins seem

to respect an ice rule on the larger triangular lattice, hinting that the pinwheels phase might

have as residual entropy one twelfth of that of the TIAFM.

From the tensor network computations, we indeed obtain (Fig. 4.17a)

SPinwheels = 0.026922±3 ·10−6 ∼= STIAFM

12
. (4.32)

To obtain this result, we need to allow for two-by-two site translation symmetry breaking

(using a multi-site VUMPS implementation [151]). This is not surprising given the expected

translation symmetry breaking corresponding to the triangular lattice of empty hexagons.

Although the Monte Carlo simulations have large errors, the resulting residual entropies are

compatible with the tensor networks result, and our prediction (Fig. 4.17b).
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Figure 4.18 – The four types of ground-state tiles in the pinwheels phase. There are 76 tiles
in total; if a tile belongs to the ground state, so do its counterparts corresponding to a global
spin flip and/or lattice symmetries. The blue, respectively yellow dots correspond to up,
respectively down spins. The orange segments represent the dimer configuration on the dual
dice lattice. The dotted orange segment stands for the fact that the dimer can either be on the
left or on the right. We will show that the 12 tiles of Type IV are spurious tiles.

4.5.2 Mapping to the ground state of the TIAFM

The fact that the residual entropy of the pinwheels phase is related to that of the TIAFM

does not imply that there is a direct mapping between the two families of ground states.

For instance, there could be additional configurations in the former corresponding to sub-

extensive corrections in the entropy. However, we will show that such a mapping exists. First,

in the spirit of Chapter 2, we will see what are the tiles available in the ground state; second,

we will prove that the only states one can build with these tiles are states with a triangular

lattice of empty hexagons, respecting a clockwise/counter-clockwise ice rule; third, we will

show that the hexagons bearing crosses play the same role as dimers in the TIAFM ground

state; and fourth, we will see that this implies that there is an eight-to-one mapping from the

pinwheels phase ground states to the TIAFM ground states.

Ground-state tiles

The 76 ground-state tiles are summarized in Fig. 4.18. There are four tiles corresponding to

our tentative effective Ising d.o.f.; the other tiles either bear a cross or a chevron, confirming

what was observed in the Monte Carlo snapshot. What all these tiles have in common is that

the only allowed spin configurations around a hexagon are those with three spins up and

three spins down. The empty hexagons (Fig. 4.18a) correspond to ferromagnetic J2 triangles
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

while the chevrons (Fig. 4.18b) and the crosses (Fig. 4.18b and c) correspond to J2 triangles

respecting an ice rule. It is important to remember that when constructing a state with the

tiles in Fig. 4.18, each tile shares two nearest-neighbor triangles with each of its neighbors

(Fig. 4.7).

Proof that the ground-state configurations bear a triangular lattice of empty hexagons re-

specting an ice rule

From the ground-state energy of the pinwheels phase (Eq. 4.31) we can deduce that 3/4 of the

J2 triangles (kagome superlattices) are in their ground state and 1/4 are ferromagnetic. This in

turn implies that over all, 1/4 of all hexagons in a given ground state must be empty, and 3/4

must bear either a cross or a chevron.

Fig. 4.18a shows that around an empty hexagon, the dimers must either turn clockwise or

counterclockwise. This implies that a hexagon containing a cross cannot have an empty

hexagon as a nearest neighbor in the cross’s acute angles directions. At the same time, the

cross cannot have another cross as a nearest neighbor in the direction of its acute angles

(it would violate the ice rule on the J1 triangles); it must therefore have chevrons as nearest

neighbors in these two directions. Furthermore, it is easy to see that two crosses cannot share

their acute angle chevron without creating a defect in a nearest-neighbor triangle. Therefore,

there must be at least two chevrons for each cross, which implies an upper bound on the

overall ratio of hexagons bearing a cross (and a lower bound on the overall ratio of hexagons

bearing a chevron):

rcross ≤ 1/4, rchevron ≥ 1/2, (4.33)

where we used that fact that the overall ratio of empty hexagons is fixed.

The tiles of Type II show that a chevron must always be nearest neighbor to at least one cross

in the direction of the cross’s acute angle. But this implies an upper bound on the ratio of

crosses, since there must be at least one cross for two chevrons:

rcross ≥ 1

4
, rchevron ≤ 1/2, (4.34)

Therefore, the overall ratio of crosses in the pinwheels phase ground state also has to be 1/4;

the ratio of chevrons is 1/2.

We now want to show that these ratios are not only satisfied globally but also locally. For

this, we first notice that two empty hexagons cannot be nearest neighbors (Type I tiles in

Fig. 4.18); they must at least be next-nearest neighbors. It is easy to verify that this implies

that an occupied hexagon - tiles of Type II, III and IV in Fig. 4.18 - can have at most two empty

hexagons among its six nearest neighbors. Thus, at most, for each M occupied hexagons there

are M/3 empty hexagons (since an empty hexagon always has six occupied nearest neighbors).

Since this corresponds to the overall ratio of empty hexagons being 1/4, the bound has to

be saturated, and an occupied hexagon has to have exactly two empty hexagons as nearest
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4.5. Pinwheels phase : a mapping to the triangular lattice Ising antiferromagnet

Figure 4.19 – Two illustrations to help understand the proof. (a) Graphical proof that two
empty hexagons cannot be next-nearest neighbors in the pinwheels phase: we start with the
configuration of the orange dimers (two next-nearest neighbor empty hexagons must have
the same chirality). From the Type II tiles, the green dimers must be added. The hexagon A is
thus occupied and has already three occupied nearest-neighbor hexagons. It has to have two
nearest-neighbors which are empty, and these empty hexagons cannot be nearest-neighbors,
which fixed their positions (highlighted in gray). The green triangle must be occupied by one
dimer. However no tile on B can occupy it; similarly, no tile on A can occupy it, because the
empty hexagon forbids putting a cross on A. Thus the plane cannot be tiled starting from two
next-nearest-neighbor empty hexagons. (b) Three empty hexagons which are third neighbors
cannot all have the same chirality.

neighbors.

Now, one can convince oneself that is not possible to tile starting from two empty hexagons

which are next-nearest neighbors: fairly early on, one encounters a contradiction. We refer

to Fig. 4.19a to show this explicitly. First, one can check that the two empty hexagons need

to have the same chirality; this in turn implies that they are separated by two chevrons. This

enforces the existence of an occupied hexagon (highlighted in red, labeled A) whose three

neighbors on one side are already occupied. As we have seen, this occupied hexagon must

have two empty hexagons as nearest-neighbors, whose position is thus fixed. With these two

hexagons fixed, one can easily check that there is no way to find tiles that fit on hexagons A

and B in Fig. 4.19a.

Therefore, all empty hexagons have to be third-nearest neighbors; the only way to have a ratio

of empty hexagons of 1/4 in that case is that they form a triangular lattice. At the same time, it

is easy to see that on each triangle on this larger lattice, the three empty hexagons cannot all

have the same chirality: there is an ice rule for the rotation of the dimers around these empty

hexagons (Fig. 4.19).

One should note that once the location of the empty hexagons is fixed, the spin configuration

is fully determined by the Type I tiles placed there. This proves the result that all the ground

states in the pinwheels phase can be seen as a triangular lattice of Type-I tiles respecting a

“chiral” or “charge” ice rule.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.20 – The two rhombi to be considered in the pinwheels phase (two dimer configu-
rations, four spin configurations). The black lines indicate the rhombi corresponding to the
original TIAFM model. In the TIAFM, a rhombus corresponds to two triangles sharing a bond
with aligned spins. Here, it corresponds to two triangles of pinwheels sharing a bond with
aligned pinwheel chirality.

Finally, there are eight ground states of the pinwheels phase mapping to the same TIAFM

ground state. Indeed, there is a four-fold degeneracy corresponding to the translation sym-

metry breaking (selecting which hexagons are going to bear the effective Ising degrees of

freedom), and a two-fold degeneracy corresponding to a global spin flip in the pinwheels

phase ground state (for a given chirality, there are two Type I tiles).

Any configuration of the TIAFM ground state is represented

To conclude the proof, we still have to show that any spin configuration in the TIAFM ground

state maps to eight ground states of the pinwheels phase. For this, we will make use of the

rhombus tiling of the triangular lattice and its connection to the hardcore dimer model on

honeycomb and the TIAFM ground states (introduced in the context of solid-on-solid models,

see e.g. Refs. 26, 62). To each dimer on honeycomb, one can associate a pair of triangles

forming a rhombus; thus, a configuration of dimers on honeycomb respecting the hardcore

constraints corresponds to a tiling of the plane with rhombi. Given this, we want to show that

any rhombi tiling can be mapped to a pinwheels phase ground state. A rhombus corresponds

to two triangles sharing a bond with aligned spins in the original TIAFM model; there are

thus only two types of rhombi to consider. For each type, the corresponding pinwheels phase

tiling is uniquely defined (up to a global spin flip). We show the corresponding configurations

in Fig. 4.20. From there, one can easily check that the pinwheels phase tiles do not create

additional constraints for the rhombi to fit, which immediately implies that any rhombi

tiling can be mapped to a pinwheels phase ground state. Therefore, the dimer configuration

in the pinwheels phase is fully fixed by the TIAFM configuration up to translations of the

pinwheel center location (four-fold degeneracy). For a given dimer configuration, there are

only two possible spin configurations, corresponding to a global spin flip. Therefore the spin
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4.5. Pinwheels phase : a mapping to the triangular lattice Ising antiferromagnet

Figure 4.21 – Two conventions for labeling the sites of kagome. Either we label the hexagon
centers (~R = R1~a1 +R2~a2 with R1 and R2 integers) and the three sites in the unit cell (~u1 to ~u3),
or we label the pinwheel centers (~X = 2n~a1 +2m~a2 with n,m integers) and the twelve sites in
the unit cell (~x1 to~x12).

configuration in the pinwheels phase is fixed up to an eight-fold degeneracy by the TIAFM

ground-state configuration. This concludes our proof.

4.5.3 Consequences for the ground-state correlations in the pinwheels phase

The mapping from the pinwheels phase ground states to the TIAFM teaches us about the

correlations in the ground-state manifold. Below, we discuss the various types of spin-spin

correlations. The essential argument is first that there is algebraic decay of the correlations

between the pinwheel orientations, second that the long-range order associated with the

pinwheel centers translates into a partial long-range order for the spins on a certain sublattice,

and finally that the pinwheel orientations being fixed, the spin configuration is also fixed (up

to a global spin flip).

The approach amounts to describing the spin configuration based on David stars centered

on empty hexagons: there is long-range order for the spins on the hexagon at the center of

the stars, and algebraic decay for the spins on the branches of the star. In the following, we

label by~ri the positions of the spins, by ~Rα the positions of the hexagon centers, and by ~uk

(k = 1,2,3) the positions of the spins in the unit cell, such that~rk,α = ~Rα+~uk . We take the

original kagome lattice spacing to be 1, so the basis vectors of the triangular lattice supporting

the kagome lattice are ~a1 = (2,0) and ~a2 = (1,
p

3) (Fig. 4.21).

Pinwheel center

The location of the pinwheels is characterized by the presence of an empty hexagon, which

corresponds to having two ferromagnetic next-nearest-neighbor triangles instead of two

ice-rule-respecting next-nearest-neighbor triangles. We can introduce an operator on the
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hexagons

P7 = 1

4

( ∑
42∈7

(σiσ j +σ jσk +σkσi )−2

)
=

1 if the hexagon is a pinwheel center

−1 otherwise
,

(4.35)

or equivalently, in terms of dimers,

P7 = 1

4

(
5∑

i=0
(di di+1)−2

)
=

1 if the hexagon is a pinwheel center

−1 otherwise
, (4.36)

where i goes through the dimers bonds touching the hexagon center and where d6 = d0. This

operator has clearly long-range order in any of the four translation-symmetry-broken sectors

of the pinwheel phase, since 6:

〈PαPβ〉 =
1 if (~Rα−~Rβ) = 2n~a1 +2m~a2

−1 otherwise
(4.37)

The order parameter associated with the selection of the translation-symmetry-broken sectors

can be built on the triangular sublattice of hexagon centers (labeled by α) as

M = 3

N

∑
α

Pαei 1
2
~Q·~Rα (4.38)

where ~Q = (π,0). In the ground state, this parameter can take four values, with M = |M |e iφ

where |M | = 1/2 and the phase φ= nπ/2 with n an integer.

This being established we can adjust the notation to work directly in a translation-symmetry-

broken sector. Instead of labeling the sites based on ~ui taking three possible values, we label

the sites based on an empty star center ~Xα = 2n~a1 +2m~a2 and a 12-sites motif describing the

star~xi i = 1, . . . ,12. We take the convention that i = 1, . . . ,6 describes the hexagon sites, and

i = 7, . . . ,12 describes the branches of the star (Fig. 4.21).

Pinwheel correlations

Only looking at pinwheels, we could compute the chirality by averaging the number of dimers

turning in one direction or the other. If we are only looking at the ground-state manifold,

since around an empty hexagon the chirality is fixed once we know a single dimer position,

the simplest version is

Cα = δPα,1σ~Rα+~u1
σ~Rα+~a1+~u2

= δPα,1d~Rα+~u1,~Rα+~a1+~u2
=

1 if clockwise

−1 otherwise
. (4.39)

6Note that the correlations averaged over the four translation-symmetry-broken sectors give zero if (~Rα−~Rβ) 6=
2n~a1 +2m~a2.
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or, in the new notation,

Cα =σ~Xα+~x1
σ~Xα+~x8

=
1 if clockwise

−1 otherwise
. (4.40)

In the ground-state manifold of the TIAFM, the spin-spin correlations decay asymptotically as

[35, 246]

〈si s j 〉 = ε0
cos

(
~q ·~r )√
|~r |

, ~r =~r j −~ri , (4.41)

where we denoted by si the Ising spins, and where the structure factor is characterized by

~q = (±2π
3 , 2πp

3
). It has been argued using numerical evidence [35] that along a row of the

triangular lattice, the proportionality factor ε0 related to the decay amplitude E T
0 of the pair

correlations at the critical point of the triangular ferromagnet as

ε0 =
p

2(E T
0 )2 ∼= 0.632226080... (4.42)

which can be checked directly using the tensor network construction (Appendix G.3).

This implies that in the pinwheels ground-state manifold, in a given symmetry-broken sector,

the pinwheel chirality correlations decay as

〈CαCβ〉 = ε0δPα,1δPβ,1

cos
(
~q·~X

4

)
√

|~X |/4
, ~X = ~Xβ−~Xα, (4.43)

where we used ~Xβ−~Xα = 2n~a1 +2m~a2.

Partial long-range order and critical correlations

The pinwheels correlations imply spin-spin correlations which we now explore, and sum-

marize in Fig. 4.22. An empty hexagon corresponding to a pinwheel center has two possible

associated spin configurations for a given chirality: either the one depicted in Fig. 4.18a (spin

up on ~u1) or the one depicted in the Monte Carlo snapshot in Fig. 4.16 (spin down on ~u1). We

now argue that, together with the long-range order in the pinwheel center locations, there

comes a long-range order in the spins living on the empty hexagons. First, fixing the spin

on ~u1 in a given empty hexagon fixes all the other spins on that hexagon. Second, it is easy

to see (Fig. 4.20) that a spin σ1 in ~r1 = ~Xα+~ui , and another ~σ2 in ~r2 = ~Xα+~ai +~ui , where

i = 1,2,3 and ~a3 =−~a1 +~a2, must have opposite values σ2 =−σ1. Indeed, they are separated

by a hexagon bearing either a cross or a chevron, and the path connecting them must cross

either the two branches of the cross or chevron, or no branches. Thus we must have σ3 =σ1 if

~r3 = ~Xα+2~ai +~ui .

This implies that two nearest-neighbor empty hexagons have the same spin configuration.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.22 – Prediction for the horizontal spin-spin correlations in the pinwheels phase, in a
translation symmetry-broken sector. We show in blue the correlations between sites in the
center of the David stars centered on empty hexagons, in green the correlations between sites
in the branches of the David stars, and in orange the mixed correlations. The correlations de-
pend on the specific site chosen as the origin and we show the four possible set of correlations,
with the red dot in the insets signaling the site selected as the origin. In the insets the stars
with empty hexagons are highlighted in grey.
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Therefore, by simple extension,

σ~Xβ+~x j
σ~Xα+~xi

=
1 if mod(i ,2) = mod( j ,2)

−1 otherwise
, i , j = 1, . . . ,6 (4.44)

where ~Xβ = ~Xα+2n~a1 +2m~a2, and the long-range order in the pinwheel centers translates

into a long-range order in the spins living on the empty hexagons (Figs. 4.22a and 4.22c).

For the product of spins belonging to the branches of a pinwheel we have

σ~Xβ+~x j
σ~Xα+~xi

=
CαCβ if mod(i ,2) = mod( j ,2)

−CαCβ otherwise
, i , j = 7, . . . ,12 (4.45)

where ~Xβ = ~Xα+2n~a1 +2m~a2. Therefore, the algebraic decay of the spin-spin correlations in

the TIAFM must translate into an algebraic decay of the spin-spin correlations for spins on the

branches of the pinwheels in the pinwheels phase (Figs. 4.22b and 4.22d).

Finally,

σ~Xβ+~x j
σ~Xα+~xi

=
−Cβ if mod(i ,2) = mod( j ,2)

Cβ otherwise
, i = 1, ...,6 j = 7, . . . ,12. (4.46)

Since 〈Cβ〉 = 0, these correlations are identically zero in the ground-state (Figs. 4.22a and 4.22b).

4.6 Strings phase and relation to the triangular lattice Ising antifer-

romagnet

4.6.1 J2 = 0

We now look at the last missing part of the ground-state phase diagram, where J3 is antiferro-

magnetic and large compared to J2. At J2 = 0, the ground-state energy per site is

E J1−J3 =−2

3
J1 − J3, (4.47)

corresponding to the fact that every nearest-neighbor triangle and every third-nearest-neighbor

triangle are in their ground state. A lower bound on the residual entropy can be obtained

by recognizing the following set of ground states of the J1-J3 model: fixing one J2 kagome

sublattice to be up and another to be down, the spins on the third sublattice can be set at

random without changing the energy. This gives a lower bound

S J1−J3 ≥
1

3
ln2 ∼= 0.231... (4.48)
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.23 – Together with the 200 ground-state tiles of the strings phase (Fig. 4.24), these 14
ground-state tiles belong to the ground state of the J1-J3 model. The Type V tiles also belong to
the

p
3×p

3 ordered phase, while the Type VI tiles are new tiles only existing at the boundary.

In fact, we can push this lower bound up by noticing that in some of the configurations

taken by the spins set on the third sublattice, one of the central spins is freed. Counting the

corresponding configurations, one gets

S J1−J3 ≥
1

27
ln559 ∼= 0.234... (4.49)

Finally, another possible estimate can be made in the same spirit as what Hamp et. al. at-

tempted for the dipolar point: since the residual entropy of the KIAFM and the TIAFM is

known, we can use them to determine reduction factors for the number of ground states as

fKIAFM := eSKIAFM /2 ∼= 0.8259... fTIAFM := eSTIAFM /2 ∼= 0.6907..., (4.50)

yielding

S J1−J3 ∼ ln
(
2 · fKIAFM · f 2/3

TIAFM

)∼= 0.255... (4.51)

where we have assumed that if two of the three third-neighbor triangular sublattices are fixed

together with the nearest-neighbor model, the third sublattice is implicitly fixed. Although

this is a hand-waving argument, it goes to show how the lower residual entropy of the TIAFM

should make the residual entropy that we obtain at J2 = 0 smaller than the one at J3 = 0. This

is indeed what we find with the tensor network contraction (Fig. 4.5, see also Appendix G.1):

S J1−J3 = 0.26413±10−5. (4.52)

In this ground state phase, there are 214 ground-state tiles; some of them are illustrated in

Fig. 4.23, but 200 of these tiles also belong to the ground-state when a small antiferromagnetic

J2 coupling is introduced, and are shown in Fig. 4.24.
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Figure 4.24 – The various types of ground-state tiles in the phase at small J2 values (strings
phase). There are 200 tiles in total. See the caption of Fig. 4.18 for a detailed legend. We
suspect that the Type I tiles (a and b) are spurious, while the tiles of Type II (a and b) , III and
IV are not. Notice that tiles of Types I and II correspond to two ferromagnetic next-nearest-
neighbor triangles, Type III tiles correspond to one ferromagnetic and one ice-rule-respecting
next-nearest-neighbor triangle, and Type IV tiles correspond to two next-nearest-neighbor
triangles in their ground state.

4.6.2 Overview of the strings phase

When a small J2 coupling is introduced, the ground-state energy of the J1-J3 model gets

modified as:

EStrings =−2

3
J1 + 2

3
J2 − J3. (4.53)

This corresponds to a selection of states for which the contribution due to the second-neighbor

coupling is minimized. The ground-state tiles in Fig. 4.24 give rise to a macroscopic number

of ground states where there are as many ice-rule-respecting second-neighbor triangles as

ferromagnetic second-neighbor triangles. It is easy to put a lower bound on this number by

considering Fig. 4.25: each spin on a green site can be flipped without changing the ground-

state energy, which gives a lower bound of

SStrings ≥ 1

9
ln(2) ∼= 0.077... (4.54)

The tensor network contraction results in a larger residual entropy (Fig. 4.27), corresponding

to one third of that of the TIAFM:

SStrings = 0.107689±2 ·10−6 ∼= 1

3
STIAFM. (4.55)
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Figure 4.25 – A set of ground states of the strings phase providing a lower bound for the residual
entropy. Without any change in the energy, the green spins can be flipped independently. The
light-orange dimers illustrate the dimer configuration when all the green spins are down (light
yellow). Flipping the spin on a green site flips the light-orange dimer arrow horizontally. In all
cases there are strings of crosses that wind through the sample.

This of course makes one wonder whether it is possible to find a mapping from the ground

states of the strings phase to the TIAFM ground states. There are two obvious directions to

pursue. The first is to find effective Ising d.o.f. corresponding to grouping three spins. Looking

at the ground states obtained from Monte Carlo simulations, it does indeed seem like the

charges defined on either all the up or all the down triangles of the kagome lattice respect some

kind of ice rule (Fig. 4.26). However, this is challenging since for a given charge configuration

there could be many spin configurations. Another obvious direction is to notice by looking at

the ground-state tiles in Fig. 4.24 that all the dimers in the strings phase ground-states must

belong to an arrow-like pair of dimers (forming an acute angle, either on its own, such as in

the middle of tiles of Type III, or belonging to a cross, such as in the middle of Type IV tiles).

This means one could define hardcore dimers living on a honeycomb lattice by associating to

each acute angle a new dimer variable, connecting two kagome triangles. However, we find

that the maximally flippable state is not realized, which eliminates this direction of study.

A third possibility is to notice, in the ground states obtained from Monte Carlo simulations,

that crosses form strings that seem to be directed. This points to a different connection to the

TIAFM, relying on configurations of directed strings on the honeycomb lattice. In the rest of

this section, we will first discuss the relation between the TIAFM and directed, non-crossing

strings on the honeycomb lattice. Then, we will show how to associate to any such string

configuration at least one of the ground states of the strings phase. We will see that some

string configurations are associated to a macroscopic number of ground states of the strings

phase, and we will argue that this number is subextensive. Finally, we use the tiles to prove the

result that crosses have to form strings, and that any ground state of the strings phase maps

to a well-defined configuration of directed, non-crossing strings on the honeycomb lattice.
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Figure 4.26 – A ground state of the strings phase. On the left panel, we show the full charge
and dimer configuration, while on the right panel, we only show the configuration of charges
on up triangles. In the dimer configuration, one should notice the strings of crosses winding
the system. In the charge configuration, one should notice it does seem to behave as a ground
state of the TIAFM.

Although this is not an exact mapping, it gives an interesting insight into the strings phase and

its residual entropy.

4.6.3 TIAFM and strings on the honeycomb lattice

The core of the understanding of the residual entropy of the strings phase relies on an existing

mapping between the ground-state configurations of the TIAFM and configurations of strings

on the honeycomb lattice. This well-known mapping is described in detail in References 246–

248, but we reproduce the argument here as it will be useful for understanding the strings

phase.

As we discussed in Sec. 1.1, the TIAFM ground state maps to classical dimers on the honeycomb

lattice with hardcore constraints. It is easy to see that two different dimer configurations C

and C ′ on honeycomb must be related by the rotation of dimers around loops of even length,

with the dimers around the loop belonging alternatively to C and to C ′. Thus, choosing a

reference configuration, one can associate to any dimer configuration a configuration of loops

on honeycomb. If the reference configuration corresponds to stripes of spins (Fig. 4.28a), then

there are further restrictions on these loops: they must consist in directed strings (i.e. strings

which cannot turn back on themselves), which span the system and do not cross. Furthermore,

if periodic boundary conditions are imposed on the spin configuration, there strings must

come in pairs. In Fig. 4.28b and in the rest of this section, we show pairs of string with one

green and one red string.

Since for each dimer configuration there is a single corresponding string configuration, the
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Figure 4.27 – Residual entropy per site in the strings phase for bond dimensions ranging from
χ= 8 to χ= 98, and comparison to the residual entropy of the TIAFM.

number of ground states of the TIAFM can also be obtained as the number of configurations

of any even number of directed strings on the honeycomb lattice which do not cross.

In the following, we will see how the residual entropy of the strings phase can be understood

in terms of strings on the honeycomb lattice, up to sub-extensive contributions.

4.6.4 Any string configuration on the honeycomb lattice maps to at least one ground
state of the strings phase

An ordered ground state of the strings phase

As shown in Fig. 4.24, there are 200 tiles that can a priori be used to construct ground states in

the strings phase. In particular, these tiles can be differentiated based on their contribution

to the next-nearest-neighbor correlations. Indeed, the tiles of Types I and II (Fig. 4.24a to d)

correspond to two ferromagnetic 2nd-neighbor triangles; the tiles of Type III to one ferro-

magnetic and one ice-rule-respecting 2nd-neighbor triangle; and the tiles of Type IV to two

ice-rule-respecting 2nd-neighbor triangles.

At the same time, because there are two next-nearest-neighbor triangles for three sites, the

factor 2
3 in front of J2 in the ground-state energy of this phase (Eq. 4.53) implies that half of

the 2nd-neighbor triangles must be ferromagnetic and half must be in their ground state. An

easy way to satisfy this constraint together with the tiling constraints is to make a long-range

ordered configuration as shown in Fig. 4.29a. It is easy to check that all the nearest-neighbor
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4.6. Strings phase and relation to the triangular lattice Ising antiferromagnet

(a) Reference configuration (b) Creating a pair of strings

Figure 4.28 – Mapping between Ising configurations in the ground state of the TIAFM and string
configurations on the honeycomb lattice. (a) The stripe configuration is used as a reference
(b) The difference between the dimer configurations associated with the new configuration
and the reference one corresponds to directed strings on honeycomb.

triangles as well as all the 3rd-nearest-neighbor triangles are in their ground state in this state,

which proves that it is a ground state of the strings phase. This ground state will be of crucial

importance in our discussion because we are going to use it as a reference configuration.

Creating and moving pairs of strings

To prove that any string configuration on the honeycomb lattice maps to at least one ground

state of the strings phase, we are going to explicitly show how to construct ground states

associated with given string configurations.

First, we notice that flipping a column of arrows compared to the reference configuration does

not change the energy, since all the tiles in the resulting configuration belong to the ground-

state tiles7. This allows one to create a pair of strings: as depicted in Fig. 4.29b, we adopt the

convention that a red string runs along the right ends of crosses, and that the corresponding

green string runs along the left end of crosses or of the leftmost right-pointing arrows from

a column of crosses. This means that the green string can be moved to the left by flipping

a left-pointing arrow which stands to its left, as in Fig. 4.29c, without changing the energy.

Similarly, the red string can be moved to the right by flipping a left-pointing arrow which

stands to its left (destroying a cross and creating a new one), as in Fig. 4.29d. This implies that

any valid configuration of two pairs of strings on honeycomb maps to at least one ground state

of the Small J2 phase.

For completeness we now want to show that without changing the reference configuration we

can have a green string to the right of a red string. The same prescription as in Fig. 4.29b allows

one to create a new pair of strings next to the already existing one, as shown in Fig. 4.29e. The

7Notice also that the total number of ferromagnetic J2 triangles is conserved by this move.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

(a) Reference configuration (b) Creating a pair of strings

(c) Moving the left string to the left (d) Moving the right string to the right

(e) A second pair of strings can be intro-
duced

(f) The new red string can be moved to
the right

(g) How a green string can be moved to
the right

(h) Several configurations map on the
same string configuration

Figure 4.29 – Creating and moving strings in the strings phase. The dark orange dimers are the
ones which are modified with respect to the preceding panel, while the light-orange dimers
are left untouched. In panel (h) the flipped spins are depicted differently to highlight the need
of creating two strings of rotated arrows.
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4.6. Strings phase and relation to the triangular lattice Ising antiferromagnet

red string in this new pair can be moved all the way to the right (Fig. 4.29f), leaving behind a

trail of right-pointing arrows. The green string can also be moved to the right by flipping these

arrows again (Fig. 4.29g).

Finally, we show in Fig. 4.29h how trying to rotate an arrow creates a string of arrows spanning

the whole system and following the neighboring string of crosses. It also imposes a global

spin flip to the left that can only be “absorbed” by another string of rotated arrows. This

suggests that there is a sub-extensive number of configurations that map onto the same string

configuration. To convince ourselves that this number is growing exponentially only with

the linear system size, we compute the residual entropy per site associated with the set of

ground-state tiles without the tiles containing crosses. In that case, VUMPS tends to struggle

to converge but systematically eventually gives an eigenvalue of one, and thus a zero residual

entropy8. Although this is not a rigorous proof, we consider it sufficient numerical evidence.

Notice also that it is because of the initial choice of reference configuration that such global

updates can be made between a red string on the left and a green string on the right, but

not between a red string on the left and a green string on the right. There is no fundamental

asymmetry there, only a matter of convention.

4.6.5 Any ground-state configuration of the strings phase maps to a string config-
uration on the honeycomb lattice

We have thus shown that any valid string configuration on the honeycomb lattice maps to

a ground state of the strings phase. The converse still has to be proven, however. First, we

consider ground-state configurations which do not have any crosses or empty hexagons. With

periodic boundary conditions, there are 12 such ground states, all rotations or global spin flip

with respect to our reference configuration in Fig. 4.29a. These ground state all map to the

configuration with no strings. We now must take care of showing that all the other ground

states - which have crosses and empty hexagons - map to a valid string configuration.

Crosses have to form strings

We start by showing that crosses have to form strings. For this, we consider the Tiles in Fig. 4.24,

and in particular the tiles of Type IV. These are the only tiles which bear crosses. Given such

a tile, with the cross oriented horizontally, it has two lower nearest-neighbor tiles, of which

at least one has to bear a dimer. From looking at the tiles of Types III and IV, it is obvious

that this dimer has to belong to a cross, since no tile of Type III can fit there. Thus, one of the

nearest-neighbor tiles below a cross has to be another cross. It is obvious that only one of

these two tiles can be a cross, and thus crosses have to form strings on a triangular lattice of

hexagons. It is also immediately clear that, given the orientation of the first cross, these strings

can then only progress in one direction. According to the mapping we introduced in Sec. 4.6.4,

8Note that this corresponds to working with open boundary conditions and thus the absence of crosses in the
bulk does not remove the possibility of non-local moves due to the presence of empty hexagons on the boundary.
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

a string of crosses immediately defines a string on the honeycomb lattice: one only needs to

connect the right ends of the crosses. Thus, we have shown how to find the configuration of

“red strings” associated with a ground state of the strings phase. But this is only half of the

description of the associated string configuration.

Finding the second string

As we have seen above, in the case of periodic boundary conditions, strings have to come in

pairs; and we still have to show how to associate a “green strings” configuration to a given

ground state of the strings phase. For this, it is sufficient to show how to build the green string

that runs to the left of a string of crosses.

In spirit, the prescription to find the location of the green string to the left of a string of crosses

is simple: start from the string of crosses, and push the green string to the left until it meets a

hexagon which is not a right-pointing arrow. We only have to prove that this way, the green

string is always well-constructed; more precisely, that a situation like in figure 4.30a, where

the green string has a “jump” and does not live on the honeycomb lattice, is prevented.

This is easily seen from the following procedure: at any point in the process of pushing the

green string to the left, one finds the situation depicted in Fig. 4.30b (or its vertical mirror),

where one has to see if the green string can be pushed past the hexagon in blue. There are two

possibilities. One is that the blue hexagon contains a right-pointing arrow, and the process

has to be repeated with a new hexagon (highlighted in yellow in Fig. 4.30b).The other is that

it corresponds to a tile which leaves empty the triangle highlighted in red. In this case the

green string cannot be pushed further to the left. As illustrated in Fig. 4.30d, the green string

is then well constructed: indeed, the red triangle can be occupied only in two ways (dotted

line) which both forbid a right-pointing arrow in the triangle highlighted in yellow. Thus,

iterating the procedure, one gets a well-defined green string. This shows that any ground state

of the strings phase corresponds to a well-defined configuration of directed strings on the

honeycomb lattice, and explain the residual entropy that we obtain.

4.7 Discussion and outlook

In this Chapter we studied the J1 − J2 − J3 Ising model on the kagome lattice with antiferro-

magnetic nearest-neighbor and small antiferromagnetic and/or ferromagnetic second- and

third-nearest-neighbor interactions. Applying the inequalities method originally proposed

by Kanamori [155], we established the ground-state phase diagram exactly. Furthermore,

using the tensor network approach we introduced in Chapter 2, we were able to determine the

residual entropy with a very high numerical precision.

For antiferromagnetic values of J2 and J3 we find three macroscopically degenerate phases

with varying residual entropies, the smallest in chevrons phase. This result is surprising when
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Figure 4.30 – Proving that the strings to the left of strings of crosses are well constructed. We
want to show that the situation in (a), where the red hexagon does not contain a right-pointing
arrow, never occurs. The orange segments stand for dimers, the dashed orange segments stand
for two dimer possibilities. The initial position of the green string, connecting the left edges of
crosses, is well-defined. Pushing the green string to the left creates situation like (b), where
one has to decide whether to stop or to bring the green string across the hexagon highlighted
in blue. There are two possible cases depending on whether a right-pointing arrow is in that
hexagon. If there is, as in (c), the green string can be brought across the blue hexagon, and we
are back in a situation like in (b), and we can iterate. If there is not, then we are in situation (d)
and cannot bring the green string further to the left. We have to show that (a) does not occur.
However, since we are not in situation (c), the red triangle has to be occupied by some other
dimer, which forbids putting a right-pointing arrow in the yellow triangle. Thus, the green
string cannot be pushed further to the left, and the process stops.

compared with the TIAFM, for instance, whose residual entropy gets immediately lifted by

second-neighbor interactions. Although there are some examples in the literature showing that

on the kagome lattice, interactions up to third neighbor do not necessarily lift the degeneracy

(see for instance [101, 102, 222, 244, 245, 249]), is was mostly known in the case of fine-tuned

regions of the phase diagram, for instance J3|| = J2. Our results show that this also the case

when interactions are solely based on distance and without a fine-tuning of the second- to

third-nearest-neighbor interactions, giving a wide range of parameters for the exploration of

classical spin liquids.

In the pinwheels phase we were able to understand the residual entropy, which is a twelfth of

that of the TIAFM, as the emergence of effective Ising spins on the level of a star unit, and to

prove the mapping exactly using the ground-state tiles, which gives us exact results for the

decay of the spin-spin correlations. This result shows the power of combining the Kanamori

approach of inequalities with its dual, that gives the the knowledge of the ground-state tiles

and allows for tensor network computations, and with small-scale Monte Carlo simulations

that provide an intuition of the ground-state manifold.

It is intriguing that the DKIAFM truncated to third-neighbors has the pinwheel ground-state

manifold, an not the chevrons one. This points to a strong competition between the various

states when farther-neighbor are taken into account, and asks the question of the range of
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Chapter 4. Progressive lifting of the KIAFM ground-state degeneracy

Figure 4.31 – (a) Energy competition between four different states as a function of the range of
neighbors taken into account with dipolar couplings (as in Eq. 4.1, with J0 = 1/2,D = 1). The
12-site DKIAFM ground state is only the lowest in energy when the range is of nine neighbors
or more. The energies of the four following states are compared (b) 12-site DKIAFM ground
state (c) A ground-state in the chevrons phase (different from (b)) (d) A state in the pinwheels
ground-state manifold (e) A low energy state when truncating to 4-neighbors (possibly not the
ground state).

neighbors couplings that has to be taken into account to find the 12-site long-range-ordered

ground state of the DKIAFM. As a simple look into this question, we compute the energy of

four different low-energy states as a function of the range of farther-neighbor interactions

included. The results are shown in Fig. 4.31. A range of nine neighbors is required to reach the

point where the 12-site DKIAFM ground-state systematically has the lowest energy. It is also

occasionally degenerate with the specific chevron state that we selected in even further ranges.

This strong competition suggests that a large range of neighbors have to be taken into account

to fully understand the progressive lifting of the ground-state degeneracy and the selection of

the 12-site long-range order in the DKIAFM.

In the chevrons phase, which among other ground states contains the long-range-ordered

ground state of the DKIAFM, we find numerical evidence of a macroscopic ground-state

degeneracy from the tensor network contraction, although with such a low residual entropy

per site that we are unable to detect it in small Monte Carlo simulations, where we only find a

sub-extensive entropy. Interestingly, Hamp et al. [99] have discussed a possibly sub-extensive

set of states with low energy in the DKIAFM based on the dumbbell picture, and it is tempting

to wonder about a possible connection with our chevrons phase. However, one can easily

check that the state in Fig. 4.31c does not match the description in terms of strings of charges

given in Sec. 4.1.4, yet it is a low energy state. One can also construct states based on strings of

charges which do not respect the chevrons tilings.
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Despite being a bit further from the initial motivation which was to study the truncated

DKIAFM, we find that the results of the strings phase are particularly interesting: indeed, if

one would obtain such strings in an experimental setting, the first intuition might be that one

is looking at excitations and that the system has not reached the ground state. Yet, here, the

strings of crosses are a fundamental feature of the ground state phase. One should therefore

be careful and not immediately interpret the presence of such apparent domain walls as a

failure of the system to reach its ground-state manifold.

Let us note that in this chapter we have not discussed detailed tensor network evidence for the

existence of algebraic correlations in the various ground-state phases. The essential challenge

lies in that the top and bottom leading eigenvectors of the horizontal transfer matrix are not

necessarily hermitian conjugates in all of these models (see e.g. [140]), which means that we a

priori lack a good argument for selecting the correct bottom environment when computing

observables in the presence of symmetry breaking. In particular, this is ongoing work for the

case of the J1 − J2 model. We have checked that the approach works well for the TIAFM and

an exactly solvable J1 − J2 model [245], and are studying the case of the J1 − J2 model with

ferromagnetic J2 interactions which is known to have a long-range-ordered ground state and

shows two Kosterlitz-Thouless transitions in accordance with its mapping to the six-state

clock model [94, 102, 103, 129]. The case with J2 antiferromagnetic is expected to have a

finite-temperature Kosterlitz-Thouless transition [102]. The main remaining effort in this

project is therefore the evaluation of the spin-spin correlations. By computing the stiffness

from the spin-spin correlations using the Monte Carlo simulations or the tensor networks, we

could probably argue much more strongly for an infinite correlation length.

More generally, if the ground-state manifold is critical, there is the question that one cannot a

priori distinguish between various scenarios: the existence of a finite-temperature Kosterlitz-

Thouless transition, a zero-temperature critical point in the Villain-Stephenson universality

class, as in the TIAFM, or even a second-order transition as in the dipolar spin ice where

the transition between the two ice regimes is in the Ising universality class [94, 95]. For

instance, in the pinwheel phase the existence of a spontaneous translation symmetry breaking

could translate in a second-order phase transition at finite-temperature, which would also be

interesting to explore.

Statement of contribution

This chapter corresponds to a work under preparation, resulting from a collaboration between

Jeanne Colbois, Bram Vanhecke, Laurens Vanderstraeten, Andrew Smerald, Frank Verstraete

and Frédéric Mila.

The Monte Carlo simulations have been implemented and performed by J. C. The tensor

network simulations are performed by J. C. using the Ghent Quantum Group implementation

of the VUMPS algorithm [148–151]. The ground-state energy lower bounds are studied by

J. C. using her own code for the Kanamori approach and the code developed by B. V. for
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Chapter 2 for the Huang approach. Overall the work was performed by J. C. and B. V. in close

collaboration, supervised by A. S., L. V. , F. V. and F. M. . The chapter is written by J. C. . The

chapter has not yet been shared in extenso with all collaborators and any flaw or mistake is

due to J. C. .
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5 Summary and outlook

Although transfer matrices and more recently tensor networks have always been a method of

choice for studying two dimensional classical spin systems, in the last few years there seems to

have been a regained interest in the topic. This is evidenced by a number of recent examples

of application of the tensor network framework to (sometimes long-standing) statistical

mechanics problems (selected examples : [125, 127, 129–133, 140, 224, 250–254]). In this sense,

the present work is a contribution in a more long-term tendency to establish tensor network

methods as extremely useful complementary methods or even stand-alone alternatives to

Monte Carlo.

In this thesis, we have introduced a systematic approach to compute the ground-state local

rule of frustrated Ising models, which naturally gives rise to contractible tensor networks,

providing a direct access to the ground-state properties of finite-range frustrated Ising models.

The second part of this thesis has shown how rich the short-range antiferromagnetic Ising

models on the kagome lattice are; in multiple occasions we have encountered models where

a whole range of values of the first- to third-neighbor couplings (and not just fine-tuned

points) correspond to a macroscopically degenerate ground-state phase. In Appendix F we

also give an overview of the J1− J2− J3|| and J1− J2− J3 models, where most of the ground-state

energies can be established exactly, and where we encounter some additional macroscopically

degenerate phases. Our Monte Carlo results in Chapters 2 and 4 as well as the results of Refs. 99,

211, 212, 222 illustrate the challenge of determining the residual entropy via thermodynamic

integration: even when the Monte-Carlo update is well-designed and the energy is measured

accurately over the whole range of temperatures, it is a considerable investment of resources

to evaluate the entropy to the third decimal. To push to higher precision, the model has to be

studied extensively to predict the finite-size scaling behavior correctly. By contrast, the tensor

network approach gives a direct access to the ground-state properties independently of the

finite-temperature behavior, and provides an accurate evaluation of the residual entropy even

with somewhat modest bond dimensions. In most phases the results can be obtained down

to the fifth decimal without an excessive investment of computational resources: instead of

requiring a deep understanding of the model, the evaluation of the residual entropy becomes
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a first step that can tell us what properties to look for.

Our approach to the contraction problem of tensor networks for frustrated spin systems

seems complementary to the tropical tensor networks approach introduced in Ref. 223, in

that our ground-state tiles technique can be applied for the approximate contraction of the

TN partition function related to translation-invariant problems while their method is, for now,

applicable to exact contraction of finite-size tensor networks related to spin glass models,

with random interactions. In the case of very small residual entropies, as we encountered in

Chapter 4, one could expect the finite size (order of 32×32 for the square lattice Ising model)

to play a significant role, just as it does in Monte Carlo. It would be interesting to see if their

approach could be adapted to make the most out of the translation invariance.

The first step to build the tensor network is to obtain a ground-state energy lower bound and

the corresponding ground-state tiles. This means that we can now make the most of what the

tensor network and Monte Carlo algorithms are best at: tensor networks are very powerful to

evaluate the leading eigenvalue of the transfer matrix, and Monte Carlo is a great generator

of examples. Having access to the ground-state energy lower bound (from the MIN-MAX

or the Kanamori approach) means that even a single Monte Carlo sample allows us to get a

proof of the ground-state energy. Having access to the ground-state tiles in conjunction with

a precise evaluation of the residual entropy means that we can look for exact results such as

mappings to the ground-state manifold of the TIAFM; the intuition can be guided by Monte

Carlo snapshots even if the simulations fail to equilibrate properly.

We discussed future prospects in the conclusions of the respective Chapters, but there is one

more point that we would like to raise. In Chapter 2, we have argued that spurious tiles should

be avoided as much as possible. We have seen an example of this in Chapter 4, where in the

pinwheels phase the convergence of the VUMPS algorithm is much better when some tiles -

which are proven to be spurious - are removed. Interestingly, we have also seen the case of

the J1 − J2 model where the convergence with the dual construction in Chapter 3 is as good as

with the tiles construction in Chapter 4, even though in the former spurious tiles are actually

included. This is an observation that we have yet to understand.

In a broader picture, the ground-state rule approach holds a lot of potential. As described

in Chapter 2, it gives access to finite-temperature regimes that would not be available using

tensor networks in the standard formulation. In the absence of frustration, it is well known that

tensor networks can significantly improve results in two-dimensional systems as compared

to Monte-Carlo, and we can hope that this will also be the case for frustrated systems. We

have an ongoing project to apply the finite-temperature approach on the J1 − J2 model on

kagome. More generally, it would be interesting to study the nature of the transitions to

the J1 − J2 − J3 ground-state phases. We also note that, in the MIN-MAX approach to build

ground-state tiles, we do not rely on the fact that the degrees of freedom are Ising in nature,

and our method could be applied to frustrated models with higher local degree-of-freedom.

In this regard, we also note that the principle of building the tensor such that the ground-state
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rule is correctly encoded was recently extended to solve a frustrated model with continuous

degrees-of-freedom, also at finite temperature [224]. Finally, we note that in principle, the

ground-state tiles approach is not restricted to two-dimensional problems. In fact, in three-

dimensional models where the ground-state local rule was already known, it has been shown

in Ref. 140 that tensor networks do provide a very good evaluation of the residual entropy.

There is therefore some potential to apply our method to three-dimensional frustrated models,

although it would be a technical challenge from the point of view of the bond dimension.

There is a quote from Alan Turing (concluding his paper about the development of artificial

intelligence) which, to me, summarizes perfectly what research feels like: “We can only see

a short distance ahead, but we can see plenty there that needs to be done” [255]. We have

discussed at the end of each Chapter the work that lies ahead – the further development of

tensor networks for classical frustrated systems, a more systematic study of chirally coupled

artificial spin systems on kagome, the exploration of the phase transitions of farther-neighbor

Ising models on the kagome lattice – and, although our plans are of course not as ambitious as

those of Alan Turing, hopefully we have convinced the reader that these directions are worth

exploring.
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A Complement: Monte Carlo

A.1 A short introduction to Monte Carlo

In this appendix, we review the basics of the Metropolis-Hastings algorithm. In terms of

reference, we especially recommend the lecture notes by M. Troyer [256] for the introduction

to importance sampling and error estimations (binning and jackknife analysis). The lecture

notes by A. W. Sandvik [221] are also a great introduction to the topic; so is the book of Landau

and Binder [257]. For a more mathematical background, we suggest the book by M. Benaïm

and N. El Karoui [258] (in French).

A.1.1 Markov Chain Monte Carlo methods

The Metropolis-Hastings algorithm is an example of a Markov Chain Monte Carlo (or MCMC)

method. Therefore, we start by giving some definitions and properties related to Markov chains.

There can be some variation in the precise definition depending on the type of stochastic

processes that are considered, but for this thesis we will consider the following. First, we are

interested in discrete time and discrete space stochastic processes: a set of random variables

X t defined over the discrete probability space E and that are indexed by the discrete time t . A

Markov chain is a particular kind of stochastic process that satisfies the “Markov property”,

namely, it is memoryless. This property states that the conditional probability distribution of

the future states of the process, instead of depending on all the history of the process, is only

dependent on the current state:

P (X t+1 = j |X t = it , ..., X0 = i0) =P (X t+1 = j |X t = it ) (A.1)

To describe Markov chains it is useful to introduce the transition probability from state i to

state j :

p t
i j :=P (X t+1 = j |X t = i ) (A.2)

which describes the probability of going from a state i to a state j and in principle can

depend on time. If this transition probability does not depend on time, namely, for any initial
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distribution µ:

P (Xn+1 = j |Xn = i ) =P (Xn = j |Xn−1 = i ), (A.3)

then the Markov chain is said to be time homogeneous. For the rest of this discussion we

only consider time homogeneous Markov chains. We can gather the transition probabilities

of the Markov chain in a transition matrix P = (pi j )(i , j )∈E 2 which, together with the initial

distribution P (X0 = i0), characterizes the Markov chain. Indeed:

P (X0 = i0, X1 = i1, ..., Xn = in) =P (X0 = i0)pi0i1 pi1i2 ...pin−1in . (A.4)

Stationary distribution. We consider a subspace E of states, and a transition matrix P defining

a Markov chain on E . A measure π = {pii }i∈E is a stationary measure of the Markov chain

defined by P over E if it is an eigenfunction of P with eigenvalue one. If π is a distribution,

namely πi ≥ 0 ∀i ∈ E and
∑

i∈E πi = 1, then π we call it a stationary distribution of the Markov

chain.

The purpose of Monte Carlo Markov chain algorithms is to design a transition matrix P for

a homogeneous Markov chain such that the distribution π that we want to sample is the

stationary distribution of P , namely

P kµ −→
k→∞

π. (A.5)

The ergodic theorem states that if the transition matrix P is irreducible aperiodic and posi-

tive recurrent, the unicity of the limiting distribution π and the independence of π on µ is

guaranteed. It is in spirit a Perron-Frobenius theorem for stochastic matrices.

A.1.2 Metropolis-Hastings algorithm

One way of generating a Markov chain with stationary distribution π when this distribution

is known up to a multiplicative constant is to implement the Metropolis-Hastings algorithm.

The basis of this approach is the detailed balance principle, which is a sufficient but not

necessary way to ensure the convergence of the Markov chain and the unicity of its stationary

distribution1. The detailed balance equation describes the fact that the probability of being

in state x and going to state x ′ should be the same as the probability of being in state x ′ and

going to state x in one step:

π(x)P (x ′|x) =π(x ′)P (x|x ′). (A.6)

The key idea behind the algorithm is the splitting of the process of going from state x to state

x ′ into two steps: first, the selection of a candidate x ′ with a selection probability g (x ′|x)2 and

1More precisely, the transition matrix P that we give below is reversible for π, is irreducible if the selection
matrix is irreducible, and if the acceptance probability A < 1, it is aperiodic.

2corresponding to the selection matrix Q.
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second, the acceptance or rejection of this candidate with an acceptance probability A(x ′|x):

P (x ′|x) =
g (x ′|x)A(x ′|x) if x ′ 6= x

1−∑
y 6=x P (y |x) if x ′ = x

. (A.7)

In practice, this means that the algorithm unfolds as:

1. If n = 0 : Initialize the state x0

2. At step n : Generate yn+1 with law g (yn+1|xn)

3. Select a number a in [0,1] randomly with uniform probability

4. If a < A(yn+1|xn) : accept the selected value and set xn+1 = yn+1. Else, reject the value :

xn+1 = xn . Go to 2.

The key point is therefore to find A and g such that P satisfies Eq. A.6. We must have g (x|y) >
0 ⇒ g (y |x) > 0, and therefore we can rewrite the detailed balance equation as:

A(x ′|x)

A(x|x ′)
= π(x ′)
π(x)

g (x|x ′)
g (x ′|x)

(A.8)

Given π and g , the general way of building A to satisfy the detailed balance is to build a

function F : ]0,∞[ → ]0,1] which is such that

F (u) = uF

(
1

u

)
. (A.9)

For instance: F (u) = min(1,u). Constructing

A(x ′|x) =
F

(
π(x ′)
π(x)

g (x|x ′)
g (x ′|x)

)
if g (x ′|x) 6= 0

0 otherwise
(A.10)

ensures that the detailed balance equation is satisfied.

A.1.3 Applications of the Metropolis-Hastings algorithm

Here, we give two examples of algorithms based on the Metropolis-Hastings algorithms, which

are relevant in this thesis.

The single-spin-flip algorithm

This is the most well-known algorithm for the study of at-equilibrium thermodynamics of spin

systems. The states are sampled based on their Boltzmann weights π(~σ) = 1
Z e−βE(~σ) where Z

is the partition function (we work with kB = 1 and therefore β= 1
T ). Considering a system of N
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spins on a lattice, the selection distribution is:

g (~σ′|~σ) =
1/N if~σ and~σ′ differ by a single spin flip,

0 otherwise
(A.11)

Notice that g (~σ′|~σ) = g (~σ|~σ′) in this case. The acceptance probability is then chosen as

A(~σ′|~σ) = min

(
1,
π(~σ′)
π(~σ)

)
= min

(
1,e−β(E(~σ′)−E(~σ))

)
. (A.12)

Parallel tempering

An easy way to avoid thermalization issues at low temperature that can arise in the single-

spin-flip algorithm is the parallel tempering approach. It relies on simulating simultaneously

(in parallel) a number of systems in a range of temperatures, and periodically propose to swap

two states at neighboring temperatures. This respects the detailed balance of the ensemble of

walkers (see e.g. [259] and references therein)

At a given step:

g (~σ′|~σ) =
1 if~σ and~σ′ are states in neighboring temperature threads,

0 otherwise.
(A.13)

In this case, we have to consider the joint distributions of the states in the two different

temperature threads βa ,βb to compute the acceptance probability:

A(x ′ = (~σ2,~σ1)|x = (~σ1,~σ2)) = min
{

1,e(βa−βb )(E(~σ1)−E(~σ2))
}

. (A.14)

A.1.4 Computing the residual entropy via thermodynamic integration

The specific heat per site c is computed using the variance of the energy as described above,

and the residual entropy per site is obtained from thermodynamic integration as:

S = ln2−
∫ ∞

0

c

T
dT. (A.15)

Alternatively, the residual entropy is computed from a thermodynamic integration of the

energy [211]. At inverse temperature β, one has:

S(β) = ln(2)+βE(β)−
∫ β

0
E(β′)dβ′, (A.16)

where here E stands for the energy per site. We typically compute both estimates to ensure

that they agree.
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Note that in practice, we integrate numerically up to some maximal temperature Tmax. For the

temperatures from Tmax to infinity, one can compute the behavior of the specific heat from a

high-temperature expansion. It is fairly easy to show that the first relevant term is

cHigh T =β2
∑
k

zk J 2
k (A.17)

where zk is the number of couplings of type k per site, allowing an easy evaluation of the

integral from Tmax to infinity.

A.2 Probability table, zero-bounce and one-bounce solutions

In this section we describe the construction of the probability table T v (k)

b(k),b(k+1) that plays an

essential role for imposing the detailed balance condition in the construction of the worm.

It describes the probability for the worm to exit on bond b(k+1) when it arrives to v (k) from

b(k) (Fig. 1.3b, Alg. 1 line 12) . Defining the Boltzmann weight of the dimer configuration

before flipping the dimer variable on bonds b(k) and b(k+1) as W v (k)

b(k) , and that of the dimer

configuration after flipping as W v (k)

b(k+1) , at the probabilistic step k of the worm construction, the

local detailed balance equation has to take the form:

W v (k)

b(k) T v (k)

b(k),b(k+1) =W v (k)

b(k+1) T
v (k)

b(k+1),b(k) , (A.18)

imposing that the probability to be in a configuration and flip both dimers must be the same

as the probability to be in the resulting configuration and flip back both dimers. Clearly, the

weights W in Eq. A.18 only differ by a few factors depending on the configuration of dimers in

a small neighborhood around the vertex v (k). The local detailed balance can be rewritten

w v (k)

b(k) T v (k)

b(k),b(k+1) = w v (k)

b(k+1) T
v (k)

b(k+1),b(k) , (A.19)

with the renormalized weights w v (k)

b(k) only containing the relevant factors: denoting γ(k) the

set of three nearest-neighbor bonds of the direct lattice surrounding v (k) and d (k) (d (k+1)) the

dimer configuration before (after) flipping, we can write

w v (k)

b(k) =
∏
Γ1s.t.

Γ1∩γ(k) 6=∅

(
e
−βJ1d (k)

bΓ1

) ∏
Γ2s.t.

Γ2∩γ(k) 6=∅

(
e
−βJ2

(∏
α∈Γ2

d (k)
bα

))

· ∏
Γ3||s.t.

Γ3||∩γ(k) 6=∅

(
e
−βJ3||

(∏
α∈Γ3|| d (k)

bα

)) ∏
Γ3?s.t.

Γ3?∩γ(k) 6=∅

(
e
−β J3?

2

(∏
α∈Γ3?

d (k)
bα

)) (A.20)

(and similarly for w v (k)

b(k+1) , with d (k) → d (k+1)). The set of dual bonds playing a role in this local

weight is denoted as l (v) and illustrated in Fig. 1.4 for our case. The probability table therefore

only depends on this local configuration of dimers on the dual bonds around vertex v (k). We

can take some convention clarifying that the probability table does not depend on the actual
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vertex but only on the local configuration ~dl (v) and the entry and exit bonds. One can rewrite

the weights and the probability table

W l (v)
i := w v (k)

b(k) , W l (v)
j := w v (k)

b(k+1) and Tasl (v)
i , j = T v (k)

b(k),b(k+1) (A.21)

if b(k) (b(k+1)) is the i th ( j th) neighbor3 of v (k). Taking the usual approach [172, 173] and

defining

Al (v)
i , j :=W l (v)

i M l (v)
i , j (A.22)

a three-by-three matrix (no Einstein summation), the local detailed balance Eq. A.19 and the

constraint
∑2

j=0 T v (k)

b(k),b j
= 1 become

Al (v)
i , j = Al (v)

j ,i with the constraints
∑

j
Al (v)

i , j =W l (v)
i . (A.23)

These equations, together with the fact that we want to minimize the bounce weights M l (v)
i ,i

can be rewritten as a linear program (for readability, the index l (v) is omitted)

min A0,0 + A1,1 + A2,2 with


Ai , j = A j ,i∑

j Ai , j =Wi

Ai , j ≥ 0∀ i , j

(A.24)

There are two types of solutions, depending on the value of the maximum of the three weights

W0,W1,W2. The zero-bounce solution reads:

Ai ,i = 0 ∀i and Ai , j =
Wi +W j −|εi j kWk |

2
∀i 6= j (A.25)

(with εi j k is the Levi-Civita symbol). Such a solution only exists as long as

WΛ ≤Wλ1 +Wλ2 (A.26)

where WΛ is the maximum of the weights and Wλ1 ,Wλ2 are the two other weights4.

If

WΛ >Wλ1 +Wλ2 , (A.27)

it is easy to check that there is no solution such that AΛ,Λ = 0. However, this bounce probability

can be minimized by the one-bounce solution

Aλi ,Λ =Wλi , Aλ1,λ2 = Aλi ,λi = 0 (i ∈ {1,2}), and AΛ,Λ =WΛ−Wλ1 −Wλ2 . (A.28)

3There are various possible conventions for the selection of i and j : for creating a lookup table, it is practical to
number the bonds around a vertex v in a systematic way, while for computing the table during the execution of
the algorithm, it is more practical to select i = 0 as the entry bond and i = 1,2 as the two exit bonds.

4If WΛ >Wλ1
+Wλ2

, Eq. A.25 implies Aλ1,λ2
< 0, and is therefore not a solution.
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All possible cases for the weights can be dealt with using the zero and the one-bounce solutions.

We finally obtain the probability table as T l (v)
i , j = Al (v)

i , j /W l (v)
i .

A.3 Proof of detailed balance for Alg. 1 and dealing with periodic

boundary conditions

We give the proof of detailed balance for Alg. 1 following Refs. 114, 164, 260, 261, and discuss

the treatment of periodic boundary conditions.

The probability of creating a particular worm bringing an initial dimer configuration ~d i to a

final dimer configuration ~d f is

gw

(
~d f |~d i

)
= 1

6
T v (1)

b(1),b(2)

1

5
T v (2)

b(2),b(3) · · ·
1

5
T v (n)

b(n−1),b(n) , (A.29)

with n the length of the worm. The probability of generating the reverse worm to bring ~d f to
~d i is

gw

(
~d i |~d f

)
= 1

6
T v (n)

b(n),b(n−1)

1

5
T v (n−1)

b(n−1),b(n−2) · · ·
1

5
T v (1)

b(2),b(1) . (A.30)

Using the initial and final weights

W v (1)

b(1) =W
(
~d i

)
and W v (n)

b(n) =W
(
~d f

)
, (A.31)

the relation

W v (k)

b(k+1) =W v (k+1)

b(k+1) , (A.32)

and the local detailed balance Eq. A.18, we obtain

W
(
~d i

)
gw

(
~d f |~d i

)
=W v (1)

b(1)

1

6
T v (1)

b(1),b(2)

1

5
T v (2)

b(2),b(3) · · ·
1

5
T v (n)

b(n−1),b(n)

= 1

6
T v (1)

b(2),b(1)W
v (1)

b(2)

1

5
T v (2)

b(2),b(3) · · ·
1

5
T v (n)

b(n−1),b(n)

= 1

6
T v (1)

b(2),b(1)

1

5
W v (2)

b(2) T v (2)

b(2),b(3) · · ·
1

5
T v (n)

b(n−1),b(n)

. . .

= 1

6
T v (1)

b(2),b(1)

1

5
T v (2)

b(2),b(3) · · ·
1

5
T v (n−1)

b(n−1),b(n−2)

1

5
T v (n)

b(n),b(n−1)W
v (n)

b(n)

= 1

6
T v (n)

b(n),b(n−1)

1

5
T v (n−1)

b(n−1),b(n−2) · · ·
1

5
T v (1)

b(2),b(1)W
(
~d f

)
= gw

(
~d i |~d f

)
W

(
~d f

)
.

(A.33)

This proves the detailed balance for one particular worm construction. The probability of

going from ~d i to ~d f in a single worm update reads

P
(
~d f |~d i

)
=∑

w
gw

(
~d f |~d i

)
, (A.34)
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Figure A.1 – Periodic boundary conditions and reference lines for the winding numbers. (a)
An instance of a spin configuration is plotted. The lines of the same color (blue, red, green)
correspond to the periodic boundary conditions; the highlighted hexagons help to visualize
the periodic boundary conditions. In practice, we only plot the configuration of spins on the
hexagons in the area surrounded by the black dashed line. (b) The same periodic boundary
conditions shown on the dice lattice. The lines W1 and W2 wind the torus in opposite directions
and are used as reference lines for counting the winding numbers of the worm updates.

where the sum is over all possible worms bringing ~d i to ~d f (remember that the acceptance

probability is set to one). This gives

W
(
~d i

)
P

(
~d f |~d i

)
=∑

w
W

(
~d i

)
gw

(
~d f |~d i

)
=∑

w
gw

(
~d i |~d f

)
W

(
~d f

)
= P

(
~d i |~d f

)
W

(
~d f

)
,

(A.35)

which proves detailed balance for the dimer model updates.

As we discussed in Sec. 1.1, having periodic boundary conditions in the spin model (Fig. A.1)

creates an additional constraint, and the only valid dimer configurations are those for which

any torus-winding loop in the spin model crosses an even number of empty dual bonds. The

initial configuration ~d i , which is obtained from an initial spin configuration, satisfies those

constraints automatically, but after a worm update, the final configuration ~d f might not satisfy

them anymore. Since the parity of the number of empty dual bonds in a given direction on

the torus only depends on the number of times the worm update winds the torus in the other

direction, it is sufficient to know the parity of the winding number of the worm update in

each direction to decide whether the final configuration ~d f is valid. In Fig. A.1a, we illustrate

our choice of periodic boundary conditions, and in Fig. A.1b, we illustrate the two winding

directions taken into account when checking the winding number of the worm updates.
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A first possibility would be to simply reject worm updates which have an odd winding number,

and repeat the previous configuration in the Monte Carlo chain [114, 164]. An alternative

approach [260, 261] is to keep the illegal worm updates and build additional updates until the

total winding number parity is even in both directions. That this creates an ergodic Markov

Chain is proven in Ref. 261 and rests upon the following result (see Refs. 261, 262 for a rigorous

formulation and a proof):

Let P be an irreducible transition matrix on a finite state space S with stationary

distribution π. Define a new Markov chain by only observing the original chain

corresponding to P when it visits a state in S ∈S . The new chain is an irreducible

Markov chain on S with stationary distribution

π̄s = πs∑
s′∈S πs′

, s ∈ S. (A.36)

Here, the state space S is the space of generalized dimer configurations having either odd

or even parity of the winding numbers in each direction, while S is the “quadrant” with even

parity in both direction, corresponding to periodic boundary conditions. Since the Boltzmann

weight of the dimer configurations in this quadrant match those of the corresponding spin

configurations, the distribution obtained by never rejecting updates and only observing the

Markov Chain when the dimer configuration respects the winding number constraints does

correspond to the target distribution.

A.4 Monte Carlo parameters

A.4.1 Monte Carlo simulations parameters and remarks for Chapter 2

For the Monte Carlo simulations, as a complement to the standard single spin flip update

which is rapidly failing, we use a dual worm algorithm based on Ref. 114 as detailed in Chap-

ter 1, Sec. 1.2, as well as parallel tempering (also known as temperature replica method). For

this, we use 216 walkers with a temperature associated to each walker. In a given Monte Carlo

step, we first update each state with twice as many single spin flip attempts as there are sites in

the system; then we perform worm updates until the total length of the worms corresponds to

twice the number of dual sites of the system (see below); finally, we make a parallel tempering

step. At each step, detailed balance is respected.

These features of the Monte Carlo simulations allow one to reach the ground states. This

is verified by computing the expectation value of the energy at the lowest temperature and

checking that it is systematically within 10−9 of the exact ground state energies.

For each size, 16 independent runs are performed (for each run, 16’384 thermalization steps

are followed by 1’048’576 measurement steps).
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Figure A.2 – Comparison of the specific heat near the maximal temperature, and the high
temperature expansion. The constant offset r ∼= 18 corresponds to a correction of order β4 in
the high temperature expansion, whose contribution to the entropy is negligible.
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Figure A.3 – Specific heat for independent runs. In the lower heap, the various runs do not
agree (simulations for L = 12).
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Figure A.4 – Performing a bootstrap analysis, the various averages of the runs agree within
errorbars (zooming in on the heap at lower temperature for L = 12).

The specific heat in the lowest heap shows a dependence on the run for large sizes (Fig. A.3).

This is compensated for by taking the average over the 16 simulations. By a bootstrap analysis,

we show that the errorbars obtained from merging the 16 independent simulations are rea-

sonable (Fig. A.4). The errorbars on the specific heat (2 standard deviations) are used to give

errorbars on the residual entropy by integrating the smallest, respectively the largest possible

value of the specific heat over T at any temperature.

In practice, we simulate the system only until Tmax/|J2| = 40. Plotting 1/c as a function of T 2,

we can check that at T ∼= Tmax the first order term in Eq. A.17 already captures the behavior

very well, Fig. A.2). The integral for the specific heat contribution is obtained as∫ ∞

Tmax

c

T
dT ∼= 1.568 ·10−4. (A.37)

The specific heat in the lowest heap shows a dependence on the run for large sizes (Fig. A.3).

This is compensated for by taking the average over the 16 simulations. By a bootstrap analy-

sis, we show that the errorbars obtained from merging the 16 independent simulations are

reasonable (Fig. A.4). The errorbars on the specific heat (2 standard deviations) are used

to give errorbars on the residual entropy by integrating the smallest, respectively the largest

possible value of the specific heat over T at any temperature. Finally, we note that the residual

entropy can alternatively be computed by integrating over the energy (see e.g. Ref. 263 and ref-

erences therein). We did this and kept only those sizes for which the simulations had been ran

long enough that the two ways of computing the residual entropy would agree within errorbars.

This model seems to have extremely strong, hard to characterize finite-size effects. We show

the residual entropy as a function of the inverse of N , the number of spins, and of L, the linear
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system size, in Fig. 2.12. Justifying finite-size corrections is a challenge, that often requires

a prior understanding of the ground state phase, and here we only show these two graphs

as a guide to the eye. The extrapolation as a function of 1/N would seem to work best, at

least compared to the tensor network result. However, the slope of S(N ) would indicate a

huge prefactor to the number of ground states that we cannot explain. The extrapolation in

1/L would seem most plausible based on the observation that the type-II tiles form domain

walls, especially since they are irrelevant to the extensive entropy. But the extrapolation in

1/L doesn’t look too convincing and would dramatically underestimate the lower bound of

S = 1
3 STLIAF. To solve this problem, one would need to study even larger system sizes, which

turns out to be very difficult with MC, at least with our algorithm.

A.4.2 Monte Carlo simulations parameters for Chapter 3

The Monte Carlo simulations algorithms depend on the problems we are studying. In zero

field, we use the algorithm of Rakala and Damle [114], which consists in mapping spin con-

figurations to dimer configurations on the dual (dice) lattice, and building loop updates in

this dual space which respect local detailed balance and can thus be accepted once they close.

In the presence of a field, the dual updates are typically rejected, and we resort to a simpler

single-spin-flip update. This is, however, not sufficient, as those updates are typically rejected

at low temperature. To alleviate the problem, we use replicas in field and in temperature

(known as parallel tempering in the case of the replicas in temperature) [239, 264, 265]. When

we cannot compare to the tensor networks results, the simulations are always completed

for a number of sizes until convergence, and for at least two independent runs for each size.

The correlations are always computed as an average over the sample, and then an ensemble

average over the set of measurements. The errors are estimated from a binning analysis [266].

Each Monte Carlo step (MCS) consists of (Nspin, Nworm, Nrep) single spin flip, worm and replica

updates. The parameters for the various Figures are as follows:

1. Fig. 3.8 : (8Nsites,8Nsites,1); thermalization - 1024 MCS, measurements - 16384 spaced

by 3 MCS;

2. Fig. 3.14 : (8Nsites,8Nsites,1); thermalization - 1024 MCS, measurements - 16384 spaced

by 3 MCS;

3. Figs. 3.16 and 3.15 : (4Nsites,4Nsites,1); thermalization - 4096 MCS, measurements -

32768 spaced by 8 MCS;

4. Fig. 3.17 : (4Nsites,4Nsites,1); thermalization - 4096 MCS, measurements - 8192 spaced

by 8 MCS;

5. Fig. 3.20 (4Nsites,0,1) : thermalization - 262144 MCS, measurements - 16384 spaced by

16 MCS (except for the 1/3 plateau, see parameters for Figs. 3.23 and 3.22).

178



A.4. Monte Carlo parameters

6. Figs. 3.21 and E.3 : (4Nsites,4Nsites,1); thermalization - 16384 MCS, measurements -

32768 spaced by 8 MCS;

7. Figs. 3.22, 3.23 and 3.25: (4Nsites,0,1): thermalization - 65536 MCS, measurements -

8192 spaced by 8 MCS;

8. Fig. 3.26 : (4Nsites,0,1): thermalization - 65536 MCS, measurements - 8192 spaced by 8

MCS
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B.1 Introduction to uniform MPSs

In the most general case, we describe a vector (or, in the quantum case, a state)
∣∣φ〉 ∈⊗ jC

d ,

where j indexes the sites of the one-dimensional lattice, and d is the dimension of the (Hilbert)

space on each site: ∣∣φ〉= ∑
{s j }

φ...,s j−1,s j ,s j+1,...
∣∣. . . , s j−1, s j , s j+1, . . .

〉
(B.1)

as a tensor:

(B.2)

Single site unit cell

We introduce the uniform matrix product state (MPS) Ansatz as an approximation of such

a tensor. For a thorough introduction, we refer the reader to the 2019 lecture notes by Van-

derstraeten et al. [150] and references therein. Since we want to be able to work in the

thermodynamic limit, we need an Ansatz that is translation invariant. One way to build such

an Ansatz is to approximate
∣∣φ〉

by a state
∣∣ψ(A)

〉
defined as a uniform product of a single

three-legged tensor A
s j
α j ,α j+1

repeated on every site in the lattice:

, (B.3)

hence the name “uniform MPS”. Here we slightly misusing the notation since the tensor

product represents the matrix of coefficients as in Eq. B.1 and not the state directly. In this

construction, the tensor A
s j
α j ,α j+1

can be thought of as a map A :Cχ⊗Cχ→Cd from the virtual

space labeled by α j ,α j+1 to the physical space labeled by s j . The dimension χ of the virtual

space is called the bond dimension and will be the parameter for refining the Ansatz.

When one studies quantum problems, or classical problems with symmetric row-to-row
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transfer matrices, an extremely useful object to consider is the transfer matrix

, (B.4)

which corresponds to the contraction of A with its conjugate on the physical index, resulting

in an operator on the space of χ×χ matrices. This transfer matrix is not necessarily hermitian;

yet, in the generic case1, it has a non-degenerate leading eigenvalue λ0. Considering MPSs

for which the leading eigenvalue is non-degenerate is essentially equivalent to requiring

that the MPS be injective, namely that there must exist an L such that the set of matrices

{As1 · · · AsL |1 ≤ s1, . . . , sL ≤ d} spans the space of χ×χ matrices 2. In the following we assume

that this condition is satisfied, in which case the leading eigenvalue λ0 of this transfer matrix

is also positive3. Let us consider the associated left and right eigenvectors:

. (B.6)

They are not necessarily equal to each other. When viewing l and r as χ×χ matrices, they are

Hermitian by construction, and furthermore are positive semi-definite [184]. In the quantum

case we typically normalize A → A/
√
λ0.

A defines
∣∣ψ(A)

〉
uniquely, but the converse is not true, since the transformation

, (B.7)

does not change the state in Eq. B.3. In particular, we can make the practical choice of selecting

L such that l = L†L which implies (remember that we have normalized A such that the leading

eigenvalue is one):

. (B.8)

An MPS in this form is said to be left-orthonormal, or to be in the left gauge. Similarly, we can

1By generic, we mean that the set of MPSs for which this eigenvalue is degenerate is of measure zero, c.f. [267,
268] and references therein

2This is equivalent to requiring the injectivity of the map [267]

Γ : X →
d∑

s1,...,sL

Tr
(
X As1 · · · AsL

) |s1, . . . sL〉 . (B.5)

Non-injective MPSs give rise to macroscopic superpositions of states.
3The positiveness can be proven using the quantum Perron-Frobenius theorem, see [184] and references therein
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construct the equivalent MPS in the right gauge:

. (B.9)

The left and right gauges are most useful when they are combined appropriately to write an

MPS in the mixed gauge:

, (B.10)

. (B.11)

This allows us to define the center-site tensor AC and the gauge tensor C as

. (B.12)

C implements the map from the left-gauge tensor AL to the right-gauge tensor AR . We now

notice that there is still an additional gauge that is not fixed by selecting the right- or left-

orthonormal form: a unitary transformation on AL or AR does not affect the left or right fixed

point, respectively. Furthermore, since the right fixed point of the transfer matrix based on

AL still corresponds to a hermitian matrix, it can be brought into a diagonal form by this

unitary transformation (and vice versa for the right gauge tensor). Using a singular value

decomposition on C

, (B.13)

we can rename (the left-hand tensor is the new tensor):

, (B.14)

where we indicate with tilted squares tensors corresponding to diagonal matrices. There are

several nice properties with this construction. First, writing the state as

(B.15)

it is clear that C directly encodes the entanglement spectrum of the state and that the Schmidt
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decomposition of the state is given by

∣∣ψ(A)
〉= χ∑

α
Cα

∣∣ψα
L (AL)

〉⊗ ∣∣ψα
R (AR )

〉
(B.16)

since by construction

, (B.17)

and . (B.18)

Furthermore, in the quantum case, the value of any single site observable is efficiently evalu-

ated in the mixed gauge (we use the fact that
∣∣ψ(A)

〉
is normalized:

(B.19)

. (B.20)

B.2 Derivation of the tangent space projector

In the following we will denote by

∣∣φ(B ; A)
〉

:= Bν ∂

∂Aν

∣∣ψ(A)
〉

(B.21)

the tangent vector to the manifold at point
∣∣ψ(A)

〉
defined by the tensor B . The index ν stands

for all three indices of the tensors A and B . In the uniform gauge this tangent vector is given

by

, (B.22)

and in the mixed gauge it is given by

, (B.23)

where it is understood that BC is B with absorbed left and right gauge tensors L and R.
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B.2. Derivation of the tangent space projector

It can be shown that there is a gauge freedom in B . We refer the interested reader to Ref. 150

and simply note that this gauge freedom can be fixed in the case of the MPS in the uniform

gauge using the following parametrization, which enforces that we only look at vectors in the

tangent space that are orthogonal to
∣∣ψ(A)

〉
4 (l and r being the left- and right-eigenvectors of

the MPS transfer matrix):

, (B.24)

where the parameter X is of dimensionχ(d−1)×χ, and where VL is of dimensionsχ×d×χ(d−1)

and satisfies

. (B.25)

This choice of gauge has the advantage that the overlap between two tangent vectors is given

by (independently of the gauge)

(B.26)

. (B.27)

This result allows us to derive the orthogonal projection of a vector |v〉 in the Hilbert space

onto the linear subspace which is the tangent space associated with
∣∣ψ(A)

〉
. Indeed, we can

find X such that
∣∣φ(B(X ); A)

〉
corresponds to the orthogonal projection by minimizing the

norm of the difference:

min
X

∥∥|v〉− ∣∣φ(B(X ); A)
〉∥∥2, (B.28)

which amounts to minimizing

min
X

(∑
n

Tr
(

X †X
)
−〈

v
∣∣φ(B(X ); A)

〉−〈
φ(B∗(X ); A∗)

∣∣v〉)
. (B.29)

The solution is given by ∑
n

X = ∂

∂X ∗
〈
φ(B∗(X ); A∗)

∣∣v〉
. (B.30)

Considering (one-site) translation invariant |v〉 we have that its projection on the tangent

4See Ref. 196 for an example of why this is useful.
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space is given by

(B.31)

in the uniform gauge, or by

(B.32)

in the mixed gauge. With this, we can define the tangent space projector P A in the uniform

gauge (it can directly be read in Eq. B.31), and most importantly we can find it in the mixed

gauge as

. (B.33)

To eliminate the expression of VL in Eq. B.32 we used that the identity can be rewritten

. (B.34)
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C Complement: the Kanamori method
of inequalities

C.1 List of references

Table C.1 is a reproduction of the very useful table of Ref. [25], listing the applications of

Kanamori’s method of inequalities and of similar methods to determine the ground states of

(generalized) Ising models and related problems. In italics we added some related works that

came out after the book by Ducastelle; we hope this is helpful but by no means do we warrant

the exhaustiveness of this list.

Structure References Interactions taken into account

Linear chain Ducastelle Sec. 3.3.3, 3.4. 4, 5.3 [25]

Morita 1974 [269, 270], Finel

1987 [271]

general results for interactions of

finite range; specific results for 4th

and 5th neighbours

Kaburagi and Kanamori 1975 [203] 3rd neighbors

Ducastelle Sec. 3.3.3, Garbulsky et

al. 1992 [272]

2nd neighbors

Hubbard 1978 [273], Pokrovsky

and Uimin 1978 [274], Ducastelle

Sec. 3.4.3

positive and convex pair

interactions

Fisher and Selke 1981 [275],

Pokrovsky and Uimin 1982 [276]

3D ANNNI model at low

temperatures

Tonegawa et al. 1985 [277, 278] 1st and 2nd neighbors in ternary

alloys (Potts model)

Square lattice Ducastelle Sec. 5.2.1

Kaburagi 1978a [279], Kanamori

and Kaburagi 1983 [280]

3rd neighbors

Takasaki et al. 1988 [281] 1st and 2nd neighbors in ternary

alloys (Potts model)

Centered Kanamori 1966 [155] 2nd
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rectangular lattice Kaburagi 1978b [282] 4th

Kaburagi and Kanamori 1977 [283] 7th

Triangular lattice Ducastelle Sec. 3.3.1 and 5.2.2

Tanaka and Uryu 1975 [284] 2nd

Kaburagi and Kanamori 1978 [204] 3rd

Dublenych 2009 [285] 19th

Dublenych 2011 [286, 287] 2nd + triplet

Kanamori 1984, 1985,

1986 [288–290], Kanamori and

Okamoto 1985 [291]

7th and triplets (semiconductor

surfaces)

Huang 2016 [158] up to quadruplets

Honeycomb lattice Ducastelle Sec. 3.4.2

Kudo and Katsura 1976 [200],

Kanamori 1984 [205]

3rd

Dublenych 2009 [285] 3rd

Kagome lattice Wolf and Schotte 1988 [101] 3rd ||
Colbois et al. 2021 [160] 3rd|| and field (to be completed)

This thesis 3rd|| and 3rd? (to be completed)

Shastry-

Sutherland

Dublenych 2012 [292] 2nd

Simple cubic Kanamori 1966 [155] 2nd

Kaburagi and Kanamori 1975 [203] 3rd

Lipkin 1988 [293] 1-, 2- and 3-body

Cubic lattices Mouritsen et al. 1983 [294] 4-spin interactions

Seko et al. 2014 [295] 4th

BCC Ducastelle Sec. 3.5.3

Kanamori 1966 [155], Richards and

Cahn 1971 [161], Allen and Cahn

1972 [156]

2nd

Kanamori and Kakehashi

1977 [296]

4th

Finel and Ducastelle 1984 [297],

Finel 1987 [271]

5th

Body centered Kanamori 1966 [155] 2nd

tetragonal Narita and Katsura 1974 [298, 299] 3rd

Moriya and Ino 1979 [300] 6th

Seko et al. 2014 [295] 4th

FCC Ducastelle Sec. 3.5.1
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Kanamori 1966 [155], Richards and

Cahn 1971 [161], Allen and Cahn

1972 , 1973 [156, 301],Cenedese and

Cahn 1994 [302]

2nd

Kanamori and Kakehashi

1977 [296]

4th

Kanamori 1979 [303] 5th

Cahn and Kikuchi 1979 [304],

Sanchez and de Fontaine

1981 [305]

multiatom interactions

Wolverton et al. 1993 [306], Seko et

al. 2014 [295]

4th

De Meulenaere et al.1994 [307] 1st and 4th

hcp Ducastelle Sec. 3.5.2

Kudo and Kastura 1976 [200] 2nd

Singh and Lele

1991-1992 [308–312]

3rd

Seko et al. 2014 [295] 4th

McCormack et al.

1992-1993 [313, 313], Sarma et al.

1994 [314]

up to 4-body

Spinel Ono and Oguchi 1968 [315] 1st

Seko et al. 2014 [295] 5th

Simple hexagonal

lattice

Kaburagi et al. 1984 [316] ANNI

Table C.1 – Compilation of ground-state determinations (Reproduced from Ref. [25] and
completed). Note that these works often consist in improvements of the Kanamori method
of inequalities, and in some of the most recent works the methods are actually somewhat
different (MAX-MIN approach, basic rays methods, convex hull from the interior polytope, ...).
Another useful reference for an overview is D. de Fontaine [317].

C.2 Relation between the MAX-MIN approach and Kanamori’s poly-

tope

The two LPs obtained from the configurational polytope method and the MAX-MIN approach

are actually very closely related, as discussed in Ref. 158. To see this, we first need to rewrite

Eq. 1.73 in a slightly more general way, easier to relate to our notation for the MAX-MIN
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approach:

H

N
= 1

N

∑
k∈C

Jk

∑
Γk

∏
i∈Γk

σi (C.1)

= ∑
k∈C

Jk
Nk

N

1

Nk

∑
Γk

∏
i∈Γk

σi (C.2)

= ∑
k∈C

Jk
Nk

N
ck , (C.3)

which defines the generalization of the correlations ck for arbitrary cluster interactions.

We can now start from the LP for the MAX-MIN approach (Eq. 1.98, and explicitly write the

inequalities H~α
u (~σ|u) ≥ nuE using

H~α
u (~σ|u) = ∑

k∈C

∑
Γk⊆u

Jkα
u
Γk

∏
i∈Γk

σi . (C.4)

Given a LP there is a systematic procedure to write its dual LP [199]. Applying the procedure

to Eq. 1.98 with Eq. C.4, we have to define for each constraint a corresponding dual variable.

The constraints on the energy define dual variables ρ~σ|u , while the constraints on the weights

αu
Γk

define dual variables ρk , and we get the dual LP [156]:

min
~ρ

∑
k∈C

ρk Jk , , with


ρk = 1

nu

∑
~σ|u ρ~σ|u

∏
i∈Γk

σi ∀k ∈ C ∀Γk ⊆ u∑
~σ|u ρ~σ|u = 1

ρ~σ|u ≥ 0

. (C.5)

The variables ρ~σ|u can be interpreted as the frequency at which a certain configuration~σ|u
appears on the cluster u. Clearly these must be larger than zero and sum to one. With this, we

get (for Γk ⊆ u)

ρk = 1

nu

∑
~σ|u

ρ~σ|u
∏

i∈Γk

σi = 1

N

∑
Γk

∏
i∈Γk

σi = Nk

N
ck , (C.6)

where we used that N = nu ·NTu . Eq. C.6 essentially states that computing the correlations by

translating and rotating an interacting cluster through all the bonds is the same as computing

them by selecting a specific interacting cluster Γk in the reference cluster u and summing the

correlations on this cluster by weighting all the possible configurations~σ|u obtained in a cer-

tain configuration. The configurational polytope of Kanamori is thus hidden in the constraints

on ρ~σ|u and their relation to the correlations ck . The minimization C.5 is therefore equivalent

to the minimization 1.76 under the configurational polytope constraints. Thus, Kanamori’s

method is essentially the dual LP to the MAX-MIN approach1.

The dual transformation does not change the complexity of the problem. However, both

1This is especially clear from the formulation of Kanamori’s method in the work of Allen and Cahn, Ref. 156
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methods have some advantages depending on the problem that one wants to tackle. In

particular, for finding the ground-state energy of a specific Ising Hamiltonian, the MAX-MIN

approach has the advantage that the exponential number of constraints can be incorporated

in an efficient manner (most of the constraints are not relevant to determine the ground-

state energy of a specific Hamiltonian). Additionally, it yields results that are particularly

appropriate for tensor network construction (Chapter 2). At the same time, for getting a

first look at a ground-state phase diagram, Kanamori’s configurational polytope method is

particularly useful, especially when the problem is such that a high number of corners can be

easily constructed.
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D Pseudocode for the linear program to
find ground state tiles

The statement of contribution for Chapter 2 also applies to this Appendix.

Alg. 3 describes a method to find a simplex of maximal dimension that fits inside a convex

set A. The idea is to take a small simplex inside A and try to make it bigger until it has the

dimension of A. For this, the origin is first moved to the interior of the small simplex, and a

vector orthogonal to the current simplex is constructed. One then looks for a vector in A of

maximal overlap (in absolute value) with this vector. If the maximal overlap is 0 the simplex is

of maximal dimension inside A, if not, one adds the result to the simplex and starts over.

Alg. 3 finds the interior simplex once the set A that solves the problem

Eu ← max
~α

E , with

{
H {α}

u (C ) ≥ E ∀C∑
c∈Tu |n∈c α

c
n = 1

}
, (D.1)

has been found. For large clusters, where there is a large number of configurations, even

finding this cluster can pose memory issues. Alg. 4 offers a solution to this problem which

automatically finds an interior simplex of D.1 using as few configurations C as possible. The

algorithm turns the memory load into a time load.

The idea is to take a restricted set of configurations {ci } and solve Eq. D.1 just for them, to

estimate the full solution. This amounts to finding a convex set that contains A. We then

look for an interior simplex of the solution-set of this problem. Solving equation D.1, we get a

temporary estimate for the ground state energy. In each corner of the simplex, the ~α define

a Hamiltonian associating an energy to all the configurations of the clusters. The estimate

is compared to the energy of each configuration in each corner. If we find a configuration

which has an energy below the estimate, the associated inequality is useful; the configuration

is added to the set {ci } and we restart. On the other hand, if in each corner, the energy of each

configuration is greater than or equal to the estimate, we are sure to have a solution of Eq. D.1

with all configurations considered, and the problem is solved. This way, we work around most

of the redundancy in the set of inequalities associated with all the configurations, and only

inequalities that bring insight are used to build the convex set A.
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Appendix D. Pseudocode for the linear program to find ground state tiles

Note that Alg. 3 can just about handle the example from the paper, but larger clusters, say two

or three kagome stars could only be considered using Alg. 4.

Algorithm 3 Build interior simplex of convex set A

1: ~R ← random vector

2: ~α1 ← max ~R ·~α with α ∈ A

3: while do

4: ~β← a point in simplex[{~αi }]

5: Translate ~α-space by −~β
6: {~wi } ← a basis of orthogonal vectors to all {~αi }

7: for ~v ∈ {~wi ,−~wi } do

8: ~α← max~v ·~α with α ∈ A

9: if ~v ·~α 6= 0 then

10: Add ~α to the set {~αi }

11: Return to the top of the while loop

12: Stop the while loop

13: return {~αi }

Algorithm 4 Build interior simplex of Au

1: {ci } ← choose some random configurations

2:

3: Add random configurations to {ci } until there

4: is a finite E and a finite interior simplex

5:

6: while do

7: for ~α ∈ {~αi } do

8: for c : H~α
u (c) < Etemp do

9: if c 6∈ {ci } then

10: Add c to {ci }

11: Etemp ← solve Eq. D.1 for configurations {ci }

12: {~αi } ← Update interior simplex for {ci }

13: Return to the top of the while loop

14: Stop the while loop

15: return Etemp , {~αi }
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E Details related to the chirally coupled
artificial spin systems

The statement of contribution for Chapter 3 also applies to this Appendix.

E.1 Experiments

The fabrication of the samples is performed using electron beam lithography. First, films

of Pt(6 nm)/Co(1.6 nm)/Al(2 nm) are deposited on a 200 nm-thick SiNx layer on a silicon

substrate by DC magnetron sputtering at a base pressure of 2 ·10−8 mbar and at a deposition

pressure of 3 ·10−3 mbar. After patterning a polymethyl methacrylate (PMMA) mask with

an electron beam writer, the trilayers are milled with Ar ions. The anisotropy of the various

regions is determined by whether the Al layer is covered by the mask: the future IP regions are

protected by 2 nm Ta, while the future OOP regions are exposed to oxygen plasma at a power

of 30 W and an oxygen pressure of 0.013 mbar. For statistics, 20 samples of size 20 × 20 µm2

are patterned on the same substrate. With an IP length of 50 nm and an OOP edge length of

100 nm, this amounts to approximately 2300 sites per sample.

All 20 samples have been AC demagnetized by a field-based protocol of sinusoidal OOP fields

with decreasing amplitudes. The sinusoidal amplitude decreased from 900 Oe to 30 Oe linearly

in 4000 steps over a period of two hours. At each step, a single sinusoidal period is applied with

a frequency of 2 Hz. Several demagnetization protocols with different parameters were tested

using the net magnetization of a specific array on a sample as a measure of success. However,

the spread in the net magnetization for different samples was larger than any improvement in

the magnetization achieved with the protocols when going from a 1 hour protocol to 4 hours

(Fig. E.1), and a zero net magnetization was not reached. This is different from results for

dipolar coupled nanomagnets, where it has been found advantageous to use longer protocols

[67], as is demonstrated for instance by Ref. 318. While we did not observe such a clear

trend in our demagnetization protocols, we should note that our samples and protocols are

significantly different from the usual dipolar coupled nanomagnets as our samples have

chirally interacting IP and OOP regions. In addition, we do not rotate the sample in the

demagnetizing field. In our chirally coupled systems, rotating the sample would induce strong
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1 Hz, 4000 steps

Figure E.1 – MFM optimization of the demagnetization protocol, displaying various 1, 2, and
4 hours protocols. Different colors at each protocol time indicate different protocols, and
each point represents an individual array whose net magnetization is computed. The net
magnetization cannot be driven closer to zero than -0.09. The more extended protocols do
not show a clear trend towards reducing the net magnetization. The larger spread at 2 hours is
due to more samples being tested. In order to be efficient in measuring our 20 arrays, the 2
hours protocol was chosen.

interactions between external fields and the IP regions.

Magnetic force microscopy (MFM) measurements are performed after the demagnetization

protocol to extract the OOP spin configurations. A protective layer of PMMA is spin coated

on each sample for the MFM measurements. The MFM tips, coated by CoCr, are sensitive

to magnetic stray fields. The tip is scanned over the sample at a frequency of 1 Hz and

512 pixels/line.

E.2 Micromagnetic simulations

We performed micromagnetic simulations using MuMax 3 (v3.10) [233, 234] to determine the

(relative) coupling constants of the chirally coupled nanomagnet geometry. The simulations

are carried out with a cell size of 0.866 by 0.866 by 1.6 nm3 (1.6 nm being smaller than the

exchange length of the system) and with 2048 by 2048 by 1 simulation world size. The cell

sizes are chosen such that the angled edges are accurately simulated.

Typical material parameters for cobalt (Co) are used: a saturation magnetization Ms = 600 kA/m,

an exchange stiffness A = 16×10−12 J/m, and a magnetocrystalline anisotropy Ku = 570 kJ/m3

in the OOP region and Ku = 0 in the IP region. Interfacial DMI is introduced by setting

Dind = 0.9±0.1 mJ/m2 [113]. The Gilbert damping α is set to 1.0 to allow the simulation to

relax quickly to the state we are interested in, i.e. the state after energy minimization. The

various coupling constants follow from simulating different OOP and IP configurations.

The aim is to estimate the values of the various coupling constants relative to the full nearest-

neighbor coupling, to determine if they are large enough to explain the inversion of the c2
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E.2. Micromagnetic simulations

Figure E.2 – First row: micromagnetic simulations results (after relaxation) for each OOP
configuration from Fig. 3.2. For each OOP configuration, we show the IP configuration that
minimizes the energy. The colored disk at the top gives the legend for the IP magnetization.
For the OOP regions, black means up Ising spin, white means down Ising spin. Second row: IP
configurations that minimize the energy when all the spins are flipped. Here, we do not show
the micromagnetic results for applying rotations and/or mirror symmetries, but they have
been used in determining the average energy and the error bars for the results in Table E.1.
Third and fourth rows: sketch illustrating the OOP and IP configurations from the first and
second rows, for readability.

Expression of the Energy
Energy (pure
OOP) [10−17J]

Energy (OOP +
IP) [10−17J]

I E0+4J1,d+2J1,h+2J2+2J3||+Q1+4Q2 −1.645897±6 ·10−7 −1.2408601±5 ·10−7

II E0−4J1,d+2J1,h+2J2+2J3||+Q1−4Q2 −1.6609718±2 ·10−7 −1.367404±1 ·10−6

III E0 +2J1,d −Q1 −2Q2 −1.65413964±8 ·10−7 −1.3064207±4 ·10−7

IV E0 +2J1,h −2J2 −2J3||+Q1 −1.6549028±2 ·10−7 −1.3062638±4 ·10−7

V E0 −2J1,d −Q1 +2Q2 −1.6616731±7 ·10−7 −1.3693708±5 ·10−7

VI E0 −2J1,h +2J2 −2J3||+Q1 −1.661483±2 ·10−7 −1.3699101±6 ·10−7

VII E0 −2J1,h −2J2 +2J3||+Q1 −1.661797±9 ·10−7 −1.3707522±5 ·10−7

Table E.1 – Results of the micromagnetic simulations for the energies of the various configura-
tions from Fig. 3.2, for an IP width of 50 nm.
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Figure E.3 – Overview of the behavior of the specific heat and entropy as a function of the
temperature for the values of J2 and J3|| from Sec. 3.1.2, with Monte Carlo simulations for 3
system sizes (N = 576,1296). The smaller system size is shown with a line while the larger is
shown with symbols.

and c3|| correlations observed in Fig. 3.5 as compared to the nearest-neighbor models in

Figs. 3.8, 3.14. To do this, we simulate the various configurations of Fig. 3.2 for the Ising spins,

and let the system relax. We then compare their respective energies to extract the effective

couplings. For the configurations of Fig. 3.2, indexed by roman numbers, we obtain the

micromagnetic results shown in Fig. E.2. In Table E.1, we summaries the expression of the

energy (based on Fig. 3.2), and the value of the energy in the micromagnetic simulations, first

in the pure out-of-plane case (dipolar couplings, no IP region), and second in the complete

case shown in Fig. E.2. The errors in the energies are estimated from the differences in the

energies of configurations that belong to the same group.

E.3 More about the J1 − J2 − J3|| model in zero field

In Fig. E.3, we show the specific heat and the entropy per site as a function of the temperature

for two different system sizes in the J1 − J2 − J3|| model in zero field. The selected values of J2

and J3|| correspond to the panels of Fig. 3.21, i.e. to the values that have been discussed in

the micromagnetic simulations section. Again, we find two peaks in the specific heat. Exactly

as in the J1 − J2 case, the feature at larger temperatures corresponds to the nearest-neighbor

model. The second feature is actually a combined effect of the J2 and J3|| couplings. The J2 ice

rule is imposed, but additionally, the c3|| correlations are restricted to the minimum that they

can reach in the J1 − J2 set of ground states. An example ground state is shown in Fig. E.4.
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spin up

spin down

+1

+1

-1

-1

Figure E.4 – An example of a ground-state configuration for the J1 − J2 − J3|| model, including
the corresponding charge configuration.

E.4 Detail of the J1 − J2 − J3||−h ground states

As discussed in the main text, the phase diagram of the farther-neighbor model in a field

arises from a selection of a different set of states depending on the value of the magnetic

field. In zero field, tensor network results, as well as Monte Carlo results, show that there is a

residual entropy even for 0 < J3|| < J2. Upon introducing the magnetic field, this macroscopic

ground-state degeneracy is immediately partially lifted. Two examples of such ground states

are shown in Fig. 3.19. The difference between the two configurations illustrates the type of

torus-winding updates that can be found (i.e., non-local updates that cross the sample and

close in on themselves through the periodic boundary conditions). Each such update can be

performed independently. Together with the fact that the tensor network contraction gives

zero residual entropy, this provides evidence that the ground-state degeneracy is macroscopic

but grows exponentially with the linear system size.

Upon increasing the magnetic field, there is a first-order phase transition in the ground state

between the m = 1/9 and m = 1/3 plateaus. There, the states are a mixture of the m = 1/9

ground states and the stripe state of the 1/3 plateau, and the average magnetization shows a

strong dependence in system size (only sizes with a linear size of a multiple of 3 match), Fig.

E.5.

In the m = 1/3 plateau, the charge state is the same as in the corresponding plateau of the

nearest neighbor model, but the farther-neighbor couplings select a long-range ordered stripe

state (as long as J3|| < J2; for J3|| > J2 another long-range ordered state is selected).

At the transition to the m = 5/9 plateau, we again find a strong size dependence of the mag-

netization (Fig. E.6). The m = 5/9 plateau seems again characterized by a sub-extensive
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Figure E.5 – Magnetization as a function of the temperature for the J1 − J2 − J3|| model at
h = 6J3||, for various small system sizes. The number of sites is N = 9L2. The shaded region
corresponds to the experimental value.
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Figure E.6 – Magnetization as a function of the temperature for the J1 − J2 − J3|| model at
h = 4(J1 + J2)−6J3||, for various small system sizes. The shaded region corresponds to the
experimental value.

Figure E.7 – Two examples of ground-state configurations for the J1− J2− J3|| model, including
the corresponding charge configuration, for a magnetic field 4(J1 + J2)−6J3|| < h < 4(J1 + J2)−
2J3|| (m = 5/9). The central panel shows the difference between the two configurations (see
the caption Fig. 3.19 for the convention regarding the updates).
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E.4. Detail of the J1 − J2 − J3||−h ground states

Figure E.8 – Two examples of ground-state configurations for the J1− J2− J3|| model, including
the corresponding charge configuration, for a magnetic field 4(J1+J2)−2J3|| < h < 4(J1+J2+J3||)
(m = 17/27). Local updates shown in the central panel bring the system from one configuration
to the other (see the caption of Fig. 3.19 for detail).

ground-state degeneracy, with non-local updates winding the torus (Fig. E.7); however we do

not have tensor networks results in this phase. Finally, in the m = 17/27 plateau, we find that

there are local updates, shown in Fig. E.8, yielding a lower bound for the residual entropy in

that phase S ≥ 1
27 ln(2).

The present discussion is a preliminary study of this ground-state phase diagram, and much is

left to be clarified. Nevertheless, it shows that on the kagome lattice, the residual entropy gets

lifted only very progressively - in contrast to the triangular lattice Ising antiferromagnet, for

instance. In particular, we want to underline that unlike Refs. 222, 244, the case where J3|| < J2

is not at a phase boundary between two ground-state phases of the J1 − J2 − J3|| model. It is all

the more surprising that a finite residual entropy is preserved at some values of the magnetic

field.
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F Ground-state phase diagrams

In this Appendix we discuss more broadly the results for the J1 − J2 − J3|| models and the

J1 − J2 − J3 models. We start by presenting the Kanamori inequalities. We then proceed to

plotting the ground-state phase diagram in the the J1 − J2 − J3|| models as obtained by Wolf

and Schotte [101], which we complement with further results from Refs. 160, 222 and some of

our own additional tensor network computations. Then, we show the candidate ground-state

phase diagram for the J1− J2− J3 models with arbitrary values of the couplings (instead of only

focusing on the cases when J1 À J2, J3 as in the main text in Chapter 4), and discuss additional

required work to fully understand this ground-state phase diagram. We also compare the two

ground-state phase diagrams.

F.1 Kanamori inequalities

In this section, we discuss the results obtained by applying the method of inequalities (Sec. 1.4.1)

to two models : the J1− J2− J3|| model studied by Wolf and Schotte [101], and the J1− J2− J3||−
J3? model. Unless otherwise specified, the inequalities are obtained following the approach of

Kudo and Katsura [200] which we presented in Chapter 1.

F.1.1 J1 - J2 - J3|| models

The model

H = J1
∑

〈i , j 〉1

σiσ j + J2
∑

〈i , j 〉2

σiσ j + J3||
∑

〈i , j 〉3||
σiσ j (F.1)

is studied in Ref. 101 using Kaburagi and Kanamori’s method, as we described in Sec. 1.4.1.

The inequalities for the correlations can be put in the form

a1c1 +a2c2 +a3||c3|| ≥−1. (F.2)
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Appendix F. Ground-state phase diagrams

Inequality a1 a2 a3|| Cluster

W1 3 0 0

W2 0 3 0

W3 −2 1 0

W4 −2 0 1

W5 2 0 1

W6 3 1 1

W7 −1 1 1

W8 1 −1 −1

W9 −1 1 −1

W10 −1 −1 1

Table F.1 – Coefficient of the 10 relevant inequalities (Eq. F.2) for J1 - J2 - J3|| models on the
kagome lattice [101]. The clusters together with the signs taken into account to establish the
inequalities are given. When only some of the signs are given, one should assume that they
are placed in a way that respects the cluster’s symmetries.

Corner c1 c2 c3|| Instance

1 1 1 1 Ferromagnetic state

2 −1
3 1 −1

3

p
3×p

3 (Fig. 4.4c)

3 −1
3 −1

3 1 Stripes (Fig. 4.4b)

4 0 0 −1 Ferro. hexagons (Fig. F.1a)

5 0 −1
3 −2

3 Zigzags (Fig. F.1b)

(?)6 −1
3 −1

3
1
3 Chevrons and dimers (Fig. F.1c)

(?)7 −1
3

1
3 −1

3 Arrows and dimers (Fig. F.1d)

8 1
3 −1

3
1
3 Stripes II (Fig. F.1e)

(?)9 1
3 −1

3 −1
3 Triangle-based TIAFM (Fig. F.1f)

Table F.2 – The 9 corners describing the Kanamori polytope for J1− J2− J3|| models as obtained
by Wolf and Schotte. The names of the phases are given by us on the basis of the states
configurations. The corners marked with a star correspond to ground-state phases which we
determined have a finite residual entropy.
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F.1. Kanamori inequalities

Figure F.1 – Configurations appearing in the ground-state phase diagram of the J1 − J2 − J3||
models.

The values of a1, a2 and a3|| are tabulated in Table F.1, which is a reproduction of Table 1 in

[101], where we additionally included the clusters and signs generating the corresponding

inequalities. These 10 inequalities generate the 9 corners found by Wolf and Schotte and given

in Table F.2. We note that in this case, the set of 10 inequalities is sufficient, as each corner in

this table is realized. Not all the corners correspond to long-range ordered ground states, as

we have seen in Chapter 3 for the phase corresponding to corner number 6, and as we will

discuss in more detail when presenting the phase diagram. In that table, we also give the name

of an instance of a configuration realizing each corner. These are shown in Fig. F.1 unless they

have been discussed in the main body of the thesis.

F.1.2 J1 - J2 - J3|| - J3? models

To study the model

H = J1
∑

〈i , j 〉1

σiσ j + J2
∑

〈i , j 〉2

σiσ j + J3
∑

〈i , j 〉3||
σiσ j + J3

∑
〈i , j 〉3?

σiσ j , (F.3)

the inequalities must be written separating the two type of third neighbor correlations:

c3|| := 1

2N

∑
〈i , j 〉3||

σiσ j , c̃3? := 1

2N

∑
〈i , j 〉3?

σiσ j . (F.4)
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Appendix F. Ground-state phase diagrams

Figure F.2 – Configurations appearing in the ground-state phase diagram of the J1−J2−J3||−J3?

models.

Note that with this definition −1/2 ≤ c̃3? ≤ 1/2, and the energy per site is given by

H

N
= 2J1c1 +2J2c2 +2J3||c3||+2J3?c̃3?. (F.5)

The inequalities for the correlations can be put in the form

a1c1 +a2c2 +a3||c3||+a3?c̃3? ≥−1, (F.6)

and the coefficients are given in Table F.3. The corresponding 21 corners are given in Table F.4.

Importantly, we note that not all these corners are realized, and that additional inequalities

would certainly be needed. A number of the corners can be related to the phases of the

J1 − J2 − J3|| model. Some other corners will remain present when J3|| = J3? and can be related

to states found there.

F.2 Ground-state phase diagrams

F.2.1 J1 − J2 − J3||

In Sec. F.1.1 we enumerated the inequalities and corners found by Wolf and Schotte [101] for

the J1−J2−J3|| ground-state phase diagram. In Fig. F.3 we plot this ground-state phase diagram,

206



F.2. Ground-state phase diagrams

Inequality a1 a2 a3|| a3? Cluster

(W1) 1 3 0 0 0

(W2) 2 0 3 0 0

(W3) 3 −2 1 0 0

(W4) 4 −2 0 1 0

(W5) 5 2 0 1 0

(W6) 6 3 1 1 0

(W8) 7 1 −1 −1 0

(W10) 8 −1 −1 1 0

9 0 0 2 2

10 0 0 −2 2

11 1 −1 0 −2

12 −1 −1 0 2

13 2 2 0 2

14 −2 2 0 −2

15 5
2 1 0 1

16 1
2 −1 −1 1

17 −3
2 −1 1 1

Table F.3 – The 17 inequalities for J1 - J2 - J3|| - J3|| models on the kagome lattice as obtained
from the procedure described in Sec. 1.4.1, and the corresponding clusters. These inequalities
give rise to 21 corners given in Table F.4.
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Appendix F. Ground-state phase diagrams

Corner c1 c2 c3|| c̃3? Instance

(∗)1 −1
3 −1

3
1
3

1
6 Chevrons phase(Fig. 4.4d)

2 −1
3 −1

3 1 1
2 Stripes (Fig. 4.4b)

(∗)3 −1
3 0 0 −1

6 Pinwheels phase (Fig. 4.4e)

4 −1
3

1
3 −1

3 −1
6

Strings phase reference state
(Fig. 4.29a)

5 −1
3

1
3 0 −1

2
Strings phase with maximal
density of strings (Fig. F.2a)

6 −1
3 1 −1

3 −1
6

p
3×p

3 (Fig. 4.4c)

7 −1
9 −1

3 −1
3 − 1

18 -

8 − 1
15 −1

3 − 7
15 − 1

30 -

9 − 1
15 −1

3 −2
5 − 1

10 -

10 1
3 −1

3 0 −1
2

Maximal domain wall density
in the extended triangle-based

TIAFM (Fig. F.2b)
(∗)11 1

3 −1
3 −1

3 −1
6 Triangle-based TIAFM(Fig. F.1f)

12 1
3 −1

3
1
3 −1

6 Stripes II (Fig. F.1e)

13 3
7 −1

7 −1
7 − 5

14 -

14 1 1 1 1
2 Ferromagnetic state

15 −1
3

1
3 −1

3
1
6 -

16 −1
3

1
3

1
3 −1

6 Zigzag II (Fig. F.2e)

17 −1
3 −1

3
2
3

1
6 Strings of chevrons (Fig. F.2d)

18 −1
3 −1

3
1
3

1
2 Herringbones (Fig. F.2c).

19 1
5

1
5 −3

5
1

10 -

20 0 0 −1 1
2

Ferromagnetic hexagons
(Fig. F.1a)

21 0 −1
3 −2

3
1
6 Zigzag (Fig. F.1b)

Table F.4 – The 21 corners obtained from the inequalities in Table F.3. Some of the states
found in studying the related J1 − J2 − J3 models and J1 − J2 − J3|| models can be directly
identified to some of these corners; when it is the case or when the corner is easily realized the
corresponding states are mentioned. Otherwise, one would have to look for configurations
corresponding to these corners or find more restrictive lower bounds. The corners marked with
a star correspond to macroscopically degenerate ground-state phases. Some other corners
might have either subextensive entropy or extensive entropy, but what is important here
is that there are at least two phases which still have a macroscopic degeneracy even when
0 6= J3|| 6= J3? 6= 0.
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F.2. Ground-state phase diagrams

Figure F.3 – Ground-state phase diagram for J1 − J2 − J3|| models. The numbers correspond to
the labels of the corners in Table F.2. Left panel: ferromagnetic nearest-neighbor couplings.
Right panel: antiferromagnetic nearest-neighbor couplings. This ground-state phase diagram
was first obtained in Ref. 101 for the ground-state energies. The Kagome Ice phase boundary
was also studied in that work, while the Hexamer spin liquid was first studied in Ref. 222. In
Ref. 160 we studied the phase for J1 À J2 À J3|| > 0. The residual entropy for the phase number
7 is a new result and was evaluated based on tensor network contractions up to χ= 128. The
phase number 9 can be related to the work we discussed in Chapter 2 (Ref. 159), so the result
there is only partially new.

which is for J1 − J2 − J3|| models. Note that in that reference in Fig. 3, the labels for phases 2

and 3 were swapped in the plot (which can be checked intuitively since for ferromagnetic J2

there must be a
p

3×p
3 ground state, or numerically by computing the locations of the phase

boundaries).

On top of the results of Wolf and Schotte, we also include the residual entropies in the phases

that have a macroscopic ground-state degeneracy. We note that the Kagome Ice phase bound-

ary was already studied by Wolf and Schotte, while the Hexamer spin liquid was first studied

in Ref. 222. In Ref. 160 we studied the phase for J1 À J2 À J3|| > 0. The residual entropy for

the phase number 7 is a new result (to the best of our knowledge) and was evaluated based

on tensor network contractions up to χ = 128. Interestingly, we find that phase number 9

is closely related to the phase that we studied in Chapter 2, as we will discuss below when

comparing Fig. F.3 to the ground-state phase diagram for J3? = J3||.

Interestingly, we find that the triangle-based TIAFM phase in this case is only generated by the

Type-I tiles of Chapter 2 and Ref. 159 (namely, there are no domain walls between reflection

symmetry broken sectors).
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Appendix F. Ground-state phase diagrams

Figure F.4 – Candidate ground-state phase diagram based on the Kanamori polytope estab-
lished in Chapter 4. The hatched regions correspond to corners for which no state was found,
and are explored in further detail in Fig. F.10. The phases where no residual entropy is indi-
cated are long-range ordered. The numbers refer to the number of the corresponding corner
in Table F.5. The phase number 8 was studied in Chapter 2, and phases 1 to 5 in Chapter 4.
The dashed boundaries are not fully established but can only potentially move towards the
interior of the hatched regions.

F.2.2 J1 − J2 − J3

In Appendix F.1.2 we discussed the Kanamori inequalities for the J1 − J2 − J3||− J3? model and

listed 21 corners corresponding to the inequalities. Here, we want to discuss the specialization

to the case where J3|| = J3? = J3 which is of main interest for Chapter 4.

Candidate ground-state phase diagram

We construct the polytope in the three-dimensional (c1,c2,c3|| + c̃3?) space as detailed in

Chapter 4, Sec. 4.2.1. The corners corresponding to the polytope in Fig. 4.3 are summarized

in Table F.5. They give the candidate ground-state phase diagram pictured in Fig. F.4. In that

Figure, the regions related to corners of the polytope for which we did not find a corresponding

spin configuration are hatched. These are the regions which we focus on in detail below.

Among the phases already fixed in Fig. F.4, those with a finite residual entropy are the chevrons,

the pinwheels and the strings phase when J1 is antiferromagnetic, as discussed in Chapter 4,

and, when J1 is ferromagnetic, the phase number 8 which is characterized by Ising degrees of

freedom living on the triangles as discussed in Chapter 2. The Stripes II phase is long-range

ordered.
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F.2. Ground-state phase diagrams

Corner c1 c2 c3 Instance

(?)1 −1
3 −1

3
1
2 Chevrons phase(Fig. 4.4d)

(?)2 −1
3 −1

3
3
2 Stripes (Fig. 4.4b)

(?)3 −1
3 0 −1

6 Pinwheels phase (Fig. 4.4e)

(?)4 −1
3

1
3 −1

2 Strings phase (Fig. 4.4f)

5 −1
3 1 −1

2

p
3×p

3 (Fig. 4.4c)

6 −1
9 −1

3 − 7
18 -

7 − 1
15 −1

3 −1
2 -

(?)8 1
3 −1

3 −1
2

Extended Triangle-based
TIAFM (Fig. 2.11)

9 1
3 −1

3
1
6 Stripes II (Fig. F.1e)

10 3
7 −1

7 −1
2 -

11 1 1 3
2 Ferromagnetic state

Table F.5 – The 11 corners describing the polytope in Fig. 4.3. The first five corners correspond
to the five phases studied in the main text. The phase 8 was studied in Chapter 2. The corners
6, 7 and 10 are not realized. The corners marked with a star correspond to ground-state phases
where we established that the residual entropy is finite.

Missing phases

In Table F.5, there are still three corners for which we did not find a configuration. We are now

going to find the ground state in some of these phases and we will show that the energy lower

bounds are higher than those obtained by the application of the method of Kudo and Katsura.

Unfortunately, we won’t be able to exhibit inequalities, but we will discuss how one should

proceed from the current state of the phase diagram.

The first remark is that corners which are not (yet) realized correspond to candidate ground-

state phases, shown with a hatching in Fig. F.4. Importantly, the dashed lines that stand for

phase boundaries between a known phase and a candidate ground-state phase can only be

left invariant or move further into the unknown phases. Indeed, let us remember that phases

correspond to corners of the polytope, phase boundaries to 1-dimensional edges, and so on.

Now, consider two candidate phases sharing a phase boundary (i.e. two corners sharing an

edge), of which one (phase/corner A) corresponds to a proven corner while the other does not

(phase/corner B). Consider the additional inequalities needed to remove corner B . There are

two possibilities for each such inequality: either the corresponding plane goes through corner

A, or it does not. If if does not, the faces of the polytope in a close neighborhood of A are left

invariant and the location of the phase boundaries of phase A are not affected.

If the plane does go through corner A, by convexity and because it corresponds to an inequality
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Appendix F. Ground-state phase diagrams

Figure F.5 – Long-range ordered ground state corresponding to the energy in Eq. F.8 (Phase 6A,
see Fig. F.10).

that removes corner B , it has to correspond to an inequality that eliminates the AB edge. The

question is then whether the vectors~J ⊥ AB that (from corner A) point to the interior of the

polytope, and which in the phase diagram are on the phase boundary between phases A and

B , then fall into phase A or not when that inequality is included. For each such vector, its

orthogonal plane contains the AB segment, which is excluded of the polytope by the new

inequalities. Therefore, the corner A now corresponds to the most extremal point in the

polytope for this set of vectors. Hence, the former phase boundary falls into phase A when

additional inequalities are included that eliminate the AB edge.

Now, let us see if we can find stricter lower bounds for phases 6, 7 and 10 in Fig. F.4, correspond-

ing to corners 6, 7 and 10 in Table F.5. There are several ways to proceed. One possibility would

be to follow the approach suggested by A. de Walle in his thesis [157]. Another option, since

the phase diagram is now somewhat reduced, is to target the specific phases using the lower

bounds from the Huang approach together with upper bounds from Monte-Carlo. This has

the advantage that we can directly test candidate ground-state lower bounds by constructing

the tensor network and trying to contract it, which allows to eliminate some options before

running the challenging Monte Carlo simulations. Furthermore, the ground-state tiles typ-

ically give a good indication of the type of configuration that is to be expected. The cost of

applying this method is that one does not obtain planes of the inequality polytope but rather

corners.

Let us start with phase number 6. The energy lower bound from the Kanamori polytope is

E Polytope
6 ≥−2

9
J1 − 2

3
J2 − 7

9
J3. (F.7)
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F.2. Ground-state phase diagrams

Figure F.6 – An example ground-state for phase 7A (see Fig. F.10).

However, we are not able to find states with the Monte-Carlo simulations that correspond

to such correlations. Furthermore, when trying to compute this energy lower bound for

points well within the phase ((J1, J2, J3) = {(1,1,0.3), (1,0.8,0.3), (1,1,0.35)}) with the method of

Chapter 2, we find that the lower bound constructed that way corresponds to

E Tiles
6 ≥−1

3
J1 − 2

3
J2 − 1

3
J3. (F.8)

Additionally, the tensor network contraction converges with eigenvalue 1. Importantly, we

have

E Tiles
6 ≥ E Polytope

6 ⇐⇒ 4J3 ≥ J1 = E6A (F.9)

which means that this lower bound is larger than that obtained from the Kanamori method

everywhere above the J3/J1 = 1/4 line which denotes the transition with the Chevrons phase.

This implies that there must be stronger inequalities removing corner number 6 in Table F.5

and instead giving rise to a corner corresponding to Eq. F.8. Furthermore, we find that this

new corner must be realized, since the configuration in Fig. F.5 has correlations corresponding

to Eq. F.8. Therefore, even though we are not using the Kanamori approach here, we just

found a new phase whose ground-state energy is proven rigorously, and we found evidence

that this phase has long range order. Interestingly, in this ground-state phase we find 96

ground-state tiles based on a single star, while the unit cell in Fig. F.5 requires 9 hexagons,

which illustrates the power of the tessellation approach where weights are optimized to find

the ground-state tiles (note that we had to allow for two-site symmetry breaking for the tensor

network contraction to converge). Below, we will refer to this phase as phase number 6A.
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Appendix F. Ground-state phase diagrams

Figure F.7 – Polytope of inequalities before and after taking into account the new ground-state
phases. The corners marked with a cross need to be verified while the ones marked with a
point have at least one associated configuration.

Let us now have a look at phase number 7 in Fig. F.4 and Table F.4. From the polytope we have

E Polytope
7 ≥− 2

15
J1 − 2

3
J2 − J3. (F.10)

First, note that this energy becomes lower than that of phase number 6 at some point, so we

still have to consider that corner. We start by considering the region where J2, J3 are both

bigger than J1, which is well into that phase. Now, using the same approach as for phase 6, we

find a very interesting result: not only does the tiling construction give a ground-state energy

lower bound which is slightly higher than that obtained by the Kanamori method:

E Tiles
7 ≥−2

3
J2 − J3, (F.11)

but the tensor network contraction of the 150 ground-state tiles converges to a finite value of

the residual entropy. We only tried small bond dimensions as of the writing of this thesis, but

for χ= 18 we obtain S ∼= 0.1075 which is strongly suggestive of another phase with the TIAFM

residual entropy. Interestingly, this corner was already present in the J1 − J2 − J3|| ground-state

phase diagram, and also in the J1 − J2 − J3||− J3? list of corners, where it corresponds to the

Zigzag phase. But in the process of selecting the J3|| = J3? case, it has been screened by another,

spurious corner of the polytope. We show an instance of ground state for this phase in Fig. F.6,

where we can see a modification of the simple zigzag pattern. Below, we will refer to this phase

as phase number 7A.

Again, the ground-state energy in Eq. F.11 is larger than the polytope lower bound everywhere

where J1 > 0 so the former phase 7 is completely eliminated.
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F.2. Ground-state phase diagrams

It looks like we have found the ground-state energies for phases number 6 and 7. However, a

very important point to recognize is that the lower bounds obtained from the tiles, unlike the

Kanamori lower bounds, are not computed for a full range of couplings, and therefore require

a more thorough look at the phase diagram to check for additional phases. Let us go back

to the Kanamori polytope and include these new corners (Fig. F.7). The corner 6A is on the

1−6 edge and the corner 7A is on the 1−8 edge. From their position, we can immediately tell

that there must be at least one additional phase. Indeed, consider whether one can add one

or more inequalities to remove corners 6 and 7 and corresponding to planes going through

corners 6A and/or 7A but without creating another corner. This can only be done by having

an inequality corresponding to a plane that goes through both corners 6A and 7A. But this

inequality will create a new corner unless it is also saturated at corners 3 and 4. However, one

can easily check that corners 6A, 7A, 3 and 4 do not all belong to the same plane, so there must

be at least one additional corner.

We will not find these new corners exactly but we can give an outline of the phase diagram

with stronger ground-state energy lower bounds. Let us note that a more systematic study

should probably involve going back to the original approach of Kanamori (see e.g [205]) as

reformulated by Ducastelle [25] and van De Walle [157] to eliminate corners of the Kanamori

polytope. Here, we simply see how far the approach we applied so far can take us.

First, we note that at large J2, exactly at the phase boundary between the phases 6A and 7A,

we find a ground-state energy lower bound which matches the energy of phases 6A and 7A.

Therefore, there must be a phase boundary there and correspondingly an edge in the Kanamori

polytope between these two corners. Doing the same at the phase boundary between phase 7A

and phase 4, we find instead that the ground-state energy lower bound is lower than the energy

expected at the phase boundary, indicative of an additional phase, with 66 tiles. Similarly,

exploring the phase boundary between phases 6A and 3, we also find another ground-state

energy lower bound with 76 tiles. We find a direct boundary between the two phases, however

in this whole region the tensor network contractions do not converge, indicating that these

two ground-state energy lower bounds are probably not saturated.

Therefore, we now stand with two new ground-state phases with energies

E6A =−1

3
J1 − 2

3
J2 − 1

3
J3, E7A =−2

3
J2 − J3, (F.12)

and two new candidate ground-state phases with energies

E6B ≥−2

5
J1 − 2

5
J2 − 3

5
J3, E7B ≥−2

7
J1 − 2

7
J2 − J3. (F.13)

These are shown in Figs. F.7 and F.10.

We now move to phase number 10. Again, we find that the lower bound

E Polytope
10 ≥ 6

7
J1 − 2

7
J2 − J3 (F.14)
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Figure F.8 – Ground states suggesting a sub-extensive degeneracy in phase 10A (“Stripes III
phase” see Fig. F.10).

Figure F.9 – State giving a ground-state energy upper bound for phase 10B (see Fig. F.10,
Eq. F.16)
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Figure F.10 – Updated candidate ground-state phase diagram as compared to Fig. F.4. The
numbers refer to the number of the corresponding corner in Table F.5 or to the equations
discussed in the main text. Phase 6A is long-range ordered, phase 7A has a finite residual
entropy per site of the order of STIAFM/3, and phase 10A has probably a sub-extensive residual
entropy. The hatched regions correspond to corners for which no state was found. In regions
6B and 7B we found a ground-state energy lower bound stronger than the one from the original
polytope, but still probably not saturated. The region 10B with a question mark requires
additional work, and for now we only have a ground-state energy lower bound stronger than
the Kanamori one at J2 > 0.

is probably too low, as we do obtain it with the one-star lower bound construction but the

related tensor network contraction does not converge. Using a two-stars unit cell instead, we

find

E10A = 2

3
J1 − J3 (F.15)

with 44 ground-state tiles. The tensor network based on these tiles converges to a zero residual

entropy per site. Interestingly, the corresponding Monte-Carlo simulations show the possibility

of “topological” updates, as illustrated in Fig. F.8, which, together with the tensor network

result, gives extremely strong evidence of a sub-extensive residual entropy in that phase.

We find that this new phase has direct transitions to the triangle-based TIAFM (phase 8) and

the
p

3×p
3 phase (phase 5). However, both the Monte-Carlo simulations and the one-star

and two-star lower bound computations show that it does not have a direct transition to

the ferromagnetic ground state. Instead, there, for positive J2 we find another phase with

ground-state energy

E10B ≥ J1 − 1

2
J3, E10B ≤ 10

9
J1 + 2

9
J2 − 1

9
J3 (F.16)

where the upper bound is obtained from the Monte-Carlo snapshot in Fig. F.9 and the lower

bound is found using the linear program with one and/or two stars. However the contraction
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of the tensor network does not converge, and in fact with two stars we obtain that all the tiles

are spurious. This suggests that one ought to look for larger clusters. What’s more, when J2 is

negative, we find, with one star, the same lower bound as with the Kanamori approach, and

with two stars, results suggesting that another phase must be also present. However, for the

points that we sampled, the results are not consistent enough to provided a new lower bound

equation, and a further investigation is required in this region of the phase diagram.

The results are summarized on the Kanamori polytope in Fig. F.7 and on the phase diagram in

Fig. F.10. Overall, we found a number of complex phases with either extensive residual entropy,

sub-extensive residual entropy (phase 10A), or long-range order. In Fig. F.10, the ground-

state energy is proven exactly in all the non-hatched regions. A more systematic approach

is required for the hatched regions, and our next step will be to dive into the approaches

suggested in Refs. 25, 157, 205, 286, 287. The ground-state energy upper bound for phase 10B

also suggests that the approach for the energy-lower bounds based on tilings would gain from

being able to look at larger clusters: to allow this, a first step is to systematically implement

the use of cluster symmetries, as hinted to in Chapter 2.

F.2.3 Comparison of the phase diagrams

With this in hands we can now discuss and contrast the ground-state phase diagrams of the

J1− J2− J3|| (Fig. F.3) and J1− J2− J3 models (Figs. F.4 and F.10). Clearly, the difference between

these two ground-state phase diagrams mostly comes from the fact that the J3|| interactions

form three independent square sublattices in the model of Wolf and Schotte, while the J3

interactions form three triangular sublattices in the J1 − J2 − J3 model.

For a ferromagnetic J3 coupling, this change of sublattices has only a limited effect on the

ground-state phases:

1. It changes slightly the location of the phase boundaries,

2. It lifts the degeneracy of the Kagome ice phase boundary between the stripes andp
3×p

3 phases.

In contrast, for an antiferromagnetic J3 coupling, the change from square sublattices to

triangular sublattices introduces some additional frustration in the system, and this in turn

affects the very nature of the ground-state phases.

Let us start this discussion with the ferromagnetic nearest-neighbor couplings case. When

J2 is also ferromagnetic and large, both models select the ferromagnetic or the
p

3 ×p
3

configurations as ground states depending on the value of the third-neighbor couplings. When

J2 is antiferromagnetic and large, we obtain two related ground-state phases in the two models:

when J3? = 0, the selected ground-state phase has a direct mapping to the TIAFM ground-state

phase with degrees of freedom living on either up or down triangles (corresponding to the
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Type-I tiles ensemble of Chapter 2; setting J3? = J3|| adds a number of tiles to the ground state,

however without changing the entropy, as we established in Chapter 2. Interestingly, looking

back at table F.4 we can notice that corners 10 and 11 correspond to a long-range ordered state

(Fig. F.2b) and to the triangle-based TIAFM, respectively. We can therefore interpret the results

from Chapter 2 and Fig. F.4 regarding the extended triangle-based TIAFM as the fact that the

edge between these two corners is in the plane perpendicular to J3? = J3|| in this region of the

phase diagram, and that the tiles from both corners are allowed to tile without an energy cost.

Now, when J2 is small in absolute value and J3 dominates, we find two completely different be-

haviors depending on whether J3? = 0 or not. This can be understood partially by noticing that

the ferromagnetic hexagons long-range ordered state (Fig. F.1a), which is favored when J3? = 0,

and although it does correspond to an ice-rule respecting configuration for the J3 triangles,

does not optimize the nearest-neighbor energy. At the same time, the Stripes III phase (10A

Fig. F.8), which has a sub-extensive degeneracy, is only optimal when considering triangular

sublattices and does not optimize the third-neighbor energy on the square sublattices. The

fact that the Zigzag phase at large J2, J3|| is eliminated by J3? = J3|| can be understood in a

similar fashion.

We turn to the antiferromagnetic nearest-neighbor couplings case. There, we find that the

changes essentially occur in the antiferromagnetic second- and third-neighbor couplings

quadrant. In particular, while only a small region of the phase diagram has macroscopic

ground-state degeneracy in the J1 − J2 − J3|| model (phases 6 and 7), which can be understood

as mainly a partial lifting of the nearest-neighbor ground-state degeneracy, almost all the

phases that we were able to identify in the J1 − J2 − J3 model have a macroscopic ground-state

degeneracy and the competition between these phases gives rise to a complex phase diagram

that we did not elucidate completely.

We discuss the main results for J1 À J2, J3 in Chapter 4, but let us make two more remarks.

First, that in phase 7A we identify yet another phase with the TIAFM ground-state entropy.

And second, that the difference in the partial lifting of the J1 − J2 ground-state degeneracy

depending on the value of J3? can be mostly understood from the fact that J3? will tend to

eliminate ground-state tiles containing straight dimers.

Finally, it should be noted that by working on these two reduced models, we can actually

conclude that there are some macroscopically degenerate ground-state phases in the complete

J1 − J2 − J3||− J3? model (not only for not fine-tuned points), and we are able to identify most

of the corners for this more general ground-state phase diagram.

219





G Complementary plots for the
J1 À J2, J3 model

G.1 Residual entropy and phase boundaries

The J1 − J2 model was discussed in Chapter 3 and 4. In the first case we obtained the residual

entropy using a dual tensor network construction; here, we show the results based on the

ground-state tiles construction (Fig. G.1), which gives us the same result.

What is interesting is that based on the discussion in Sec. 2.5, one can note that the dual tensor

network construction in Chapter 3 is actually not optimal, in that it will include spurious tiles

in the ground state manifold. Yet, the tensor network contraction converges and the results are

independent of the presence of these spurious tiles. A the same time, in other models we have

seen that the spurious tiles can really spoil the convergence. It would therefore be interesting

to explore deeper the heuristic argument of Chapter 2, using these seemingly contradictory

examples as a basis.

At the phase boundary between the chevrons and the pinwheels phases, there are no new

tiles. Additionally, it is easy to see from Figs. 4.13 and 4.18 that there are no tiles belonging

to both phases. One can wonder whether the two phases can coexist; this simply relates to

whether tiles belonging to both phases can tile together. If such phase mixing is possible, then

the residual entropy can be larger than in both neighboring phases (otherwise, it will be the

maximum of the two). A Monte Carlo snapshot on a small system size, in Fig. G.2, shows that

the tiles from both phases can tile together. This is in agreement with the tensor network

result, shown in Fig. G.3:

S = 0.0926±2 ·10−4 (G.1)

The phase boundary between the pinwheels and the strings phase has a residual entropy

which is approximately

S J2=J3 = 0.16825±5 ·10−5. (G.2)
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Estimate (max): S = 0.2852991

Figure G.1 – Residual entropy per site of the J1-J2 model.

Finally, when J2 = 0 and J3 is antiferromagnetic, we also find a finite residual entropy:

S J1−J3 = 0.24613±2 ·10−5. (G.3)

G.2 State not belonging to the chevrons phase

In Fig. G.6 we show a configuration that has chevrons but is not made by the tiles shown in

Fig. 4.13.

G.3 TIAFM spin-spin correlations

In Fig. G.7 we plot the spin-spin correlations in the ground-state phase of the TIAFM based on

the tensor network construction, which we compare to the results by Stephenson, showing an

excellent agreement.
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G.3. TIAFM spin-spin correlations

Figure G.2 – Monte Carlo snapshot - phase mixing at the boundary between the chevrons and
the pinwheels phases. The tiles can be associated with either the trapezoidal phase (in blue,
see Fig. 4.13) or the pinwheel phase (in yellow, see Fig. 4.18)

Figure G.3 – Residual entropy of the model at the J3 = J2/2 point (boundary between the
chevrons and pinwheels phases), from tensor networks, for bond dimensions ranging from
χ= 34 to χ= 108
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Figure G.4 – Residual entropy of the model at the J3 = J2 point, from tensor networks, for
bond dimensions ranging from χ= 34 to χ= 98

Figure G.5 – Residual entropy per site of the J1-J3 model (boundary between the strings phase
and the

p
3×p

3 phase), from tensor networks, for bond dimensions ranging from χ= 36 to
χ= 110.
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G.3. TIAFM spin-spin correlations

Figure G.6 – Example of configuration that does not belong to the chevrons phase.

Figure G.7 – Spin-spin correlations in the TIAFM ground-state manifold from tensor network
computations as compared to the result by Stephenson [35]
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[129] H. Ueda, K. Okunishi, K. Harada, R. Krčmár, A. Gendiar, S. Yunoki, and T. Nishino,

Finite-m scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and en-

tanglement spectrum for the six-state clock model, Phys. Rev. E 101, 062111 (2020).

[130] S. Nyckees, J. Colbois, and F. Mila, Identifying the Huse-Fisher universality class of the

three-state chiral Potts model, Nucl. Phys. B 965, 115365 (2021).

[131] S. Nyckees and F. Mila, Commensurate-incommensurate transition in the chiral Ashkin-

Teller model (2021), arXiv:2109.01415 [cond-mat.stat-mech] .

[132] H. Li and L.-P. Yang, Tensor network simulation for the frustrated J1−J2 Ising model on

the square lattice, Phys. Rev. E 104, 024118 (2021).

[133] P. Schmoll, A. Kshetrimayum, J. Eisert, R. Orús, and M. Rizzi, The classical two-

dimensional Heisenberg model revisited: An SU (2)-symmetric tensor network study,

SciPost Phys. 11, 98 (2021).

[134] T. Nishino and K. Okunishi, A density matrix algorithm for 3d classical models, J. Phys.

Soc. Jpn. 67, 3066–3072 (1998).

[135] T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, and Y. Akutsu, Self-consistent tensor

product variational approximation for 3d classical models, Nucl. Phys. B 575, 504–512

(2000).

[136] T. Nishino, Y. Hieida, K. Okunishi, N. Maeshima, Y. Akutsu, and A. Gendiar, Two-

Dimensional Tensor Product Variational Formulation, Prog. Theor. Phys. 105, 409–417

(2001).

[137] A. Gendiar and T. Nishino, Latent heat calculation of the three-dimensional q = 3, 4,

and 5 Potts models by the tensor product variational approach, Phys. Rev. E 65, 046702

(2002).

[138] A. Gendiar, N. Maeshima, and T. Nishino, Stable Optimization of a Tensor Product

Variational State, Prog. Theor. Phys. 110, 691–699 (2003).

[139] A. Gendiar and T. Nishino, Phase diagram of the three-dimensional axial next-nearest-

neighbor Ising model, Phys. Rev. B 71, 024404 (2005).

[140] L. Vanderstraeten, B. Vanhecke, and F. Verstraete, Residual entropies for three-

dimensional frustrated spin systems with tensor networks, Phys. Rev. E 98, 042145

(2018).

[141] M. Levin and C. P. Nave, Tensor renormalization group approach to two-dimensional

classical lattice models, Phys. Rev. Lett. 99, 120601 (2007).

[142] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T. Xiang, Second renormalization of

tensor-network states, Phys. Rev. Lett. 103, 160601 (2009).

236

https://doi.org/10.1103/PhysRevE.101.062111
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2021.115365
https://arxiv.org/abs/2109.01415
https://doi.org/10.1103/PhysRevE.104.024118
https://doi.org/10.21468/SciPostPhys.11.5.098
https://doi.org/10.1143/JPSJ.67.3066
https://doi.org/10.1143/JPSJ.67.3066
https://doi.org/https://doi.org/10.1016/S0550-3213(00)00133-4
https://doi.org/https://doi.org/10.1016/S0550-3213(00)00133-4
https://doi.org/10.1143/PTP.105.409
https://doi.org/10.1143/PTP.105.409
https://doi.org/10.1103/PhysRevE.65.046702
https://doi.org/10.1103/PhysRevE.65.046702
https://doi.org/10.1143/PTP.110.691
https://doi.org/10.1103/PhysRevB.71.024404
https://doi.org/10.1103/PhysRevE.98.042145
https://doi.org/10.1103/PhysRevE.98.042145
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevLett.103.160601


Bibliography

[143] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, Coarse-graining renormal-

ization by higher-order singular value decomposition, Phys. Rev. B 86, 045139 (2012).

[144] G. Evenbly and G. Vidal, Tensor network renormalization, Phys. Rev. Lett. 115, 180405

(2015).

[145] G. Evenbly, Algorithms for tensor network renormalization, Phys. Rev. B 95, 045117

(2017).

[146] T. Nishino and K. Okunishi, Corner Transfer Matrix Renormalization Group Method, J.

Phys. Soc. Jpn. 65, 891–894 (1996).

[147] R. Orús and G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary

evolution, Phys. Rev. B 78, 155117 (2008).

[148] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and J. Haegeman,

Variational optimization algorithms for uniform matrix product states, Phys. Rev. B 97,

045145 (2018).

[149] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F. Verstraete,

Faster methods for contracting infinite two-dimensional tensor networks, Phys. Rev. B

98, 235148 (2018).

[150] L. Vanderstraeten, J. Haegeman, and F. Verstraete, Tangent-space methods for uniform

matrix product states, SciPost Phys. Lect. Notes , 7 (2019).

[151] A. Nietner, B. Vanhecke, F. Verstraete, J. Eisert, and L. Vanderstraeten, Efficient variational

contraction of two-dimensional tensor networks with a non-trivial unit cell, Quantum

4, 328 (2020).

[152] G. Vidal, Efficient classical simulation of slightly entangled quantum computations,

Phys. Rev. Lett. 91, 147902 (2003).

[153] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial

dimension, Phys. Rev. Lett. 98, 070201 (2007).

[154] R. Orús and G. Vidal, Simulation of two-dimensional quantum systems on an infinite

lattice revisited: Corner transfer matrix for tensor contraction, Phys. Rev. B 80, 094403

(2009).

[155] J. Kanamori, Magnetization Process in an Ising Spin System, Prog. Theor. Phys. 35, 16–35

(1966).

[156] S. M. Allen and J. W. Cahn, Ground state structures in ordered binary alloys with second

neighbor interactions, Acta Metallurgica 20, 423–433 (1972).

[157] A. van de Walle, The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics,

Ph.D. thesis, Massachusetts Institute of Technology (2000).

237

https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevB.95.045117
https://doi.org/10.1103/PhysRevB.95.045117
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevB.97.045145
https://doi.org/10.1103/PhysRevB.97.045145
https://doi.org/10.1103/PhysRevB.98.235148
https://doi.org/10.1103/PhysRevB.98.235148
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://doi.org/10.22331/q-2020-09-21-328
https://doi.org/10.22331/q-2020-09-21-328
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevB.80.094403
https://doi.org/10.1103/PhysRevB.80.094403
https://doi.org/10.1143/PTP.35.16
https://doi.org/10.1143/PTP.35.16
https://doi.org/10.1016/0001-6160(72)90037-5
https://ceder.berkeley.edu/theses/2000_Axel_Van_De_Walle_Thesis.pdf


Bibliography

[158] W. Huang, D. A. Kitchaev, S. T. Dacek, Z. Rong, A. Urban, S. Cao, C. Luo, and G. Ceder,

Finding and proving the exact ground state of a generalized Ising model by convex

optimization and MAX-SAT, Phys. Rev. B 94, 134424 (2016).

[159] B. Vanhecke, J. Colbois, L. Vanderstraeten, F. Verstraete, and F. Mila, Solving frustrated

Ising models using tensor networks, Phys. Rev. Research 3, 013041 (2021).

[160] J. Colbois, K. Hofhuis, Z. Luo, X. Wang, A. Hrabec, L. J. Heyderman, and F. Mila, Artifi-

cial out-of-plane Ising antiferromagnet on the kagome lattice with very small farther-

neighbor couplings, Phys. Rev. B 104, 024418 (2021).

[161] M. J. Richards and J. W. Cahn, Pairwise interactions and the ground state of ordered

binary alloys, Acta Metall. 19, 1263–1277 (1971).

[162] P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4, 287–293 (1963).

[163] N. Prokof’ev and B. Svistunov, Worm algorithms for classical statistical models, Phys.

Rev. Lett. 87, 160601 (2001).

[164] P. Hitchcock, E. S. Sørensen, and F. Alet, Dual geometric worm algorithm for two-

dimensional discrete classical lattice models, Phys. Rev. E 70, 016702 (2004).

[165] U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62, 361–364

(1989).

[166] R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simula-

tions, Phys. Rev. Lett. 58, 86–88 (1987).

[167] F. Alet and E. S. Sørensen, Cluster Monte Carlo algorithm for the quantum rotor model,

Phys. Rev. E 67, 015701 (2003).

[168] F. Alet and E. S. Sørensen, Directed geometrical worm algorithm applied to the quantum

rotor model, Phys. Rev. E 68, 026702 (2003).

[169] A. W. Sandvik and R. Moessner, Correlations and confinement in nonplanar two-

dimensional dimer models, Phys. Rev. B 73, 144504 (2006).

[170] A. Sen, F. Wang, K. Damle, and R. Moessner, Triangular and kagome antiferromagnets

with a strong easy-axis anisotropy, Phys. Rev. Lett. 102, 227001 (2009).

[171] F. Alet, J. L. Jacobsen, G. Misguich, V. Pasquier, F. Mila, and M. Troyer, Interacting classical

dimers on the square lattice, Phys. Rev. Lett. 94, 235702 (2005).

[172] O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo with directed loops, Phys. Rev.

E 66, 046701 (2002).

[173] O. F. Syljuåsen, Directed loop updates for quantum lattice models, Phys. Rev. E 67,

046701 (2003).

238

https://doi.org/10.1103/PhysRevB.94.134424
https://doi.org/10.1103/PhysRevResearch.3.013041
https://doi.org/10.1103/PhysRevB.104.024418
https://doi.org/https://doi.org/10.1016/0001-6160(71)90060-5
https://doi.org/10.1063/1.1703953
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevE.70.016702
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevE.67.015701
https://doi.org/10.1103/PhysRevE.68.026702
https://doi.org/10.1103/PhysRevB.73.144504
https://doi.org/10.1103/PhysRevLett.102.227001
https://doi.org/10.1103/PhysRevLett.94.235702
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevE.67.046701
https://doi.org/10.1103/PhysRevE.67.046701


Bibliography

[174] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, “Worm” algorithm in quantum Monte

Carlo simulations, Phys. Lett. A 238, 253–257 (1998).

[175] H. Suwa, Geometric allocation approach to accelerating directed worm algorithm, Phys.

Rev. E 103, 013308 (2021).

[176] R. J. Baxter, Variational approximations for square lattice models in statistical mechanics,

J. Stat. Phys. 19, 461–478 (1978).

[177] S. K. Tsang, Square lattice variational approximations applied to the Ising model, J. Stat.

Phys. 20, 95–114 (1979).

[178] R. J. Baxter, Exactly solved models in statistical mechanics (Academic Press, New York,

1982).

[179] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous results on valence-bond ground

states in antiferromagnets, Phys. Rev. Lett. 59, 799–802 (1987).

[180] S. Östlund and S. Rommer, Thermodynamic limit of density matrix renormalization,

Phys. Rev. Lett. 75, 3537–3540 (1995).

[181] T. Nishino, Density matrix renormalization group method for 2d classical models, J.

Phys. Soc. Jpn. 64, 3598–3601 (1995).

[182] T. Nishino and K. Okunishi, Corner transfer matrix algorithm for classical renormaliza-

tion group, J. Phys. Soc. Jpn. 66, 3040–3047 (1997).

[183] T. Nishino, Dmrg webpage (2022), Last visited on 20.01.2022.

[184] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete, Matrix product states and

projected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93,

045003 (2021).

[185] T. Nishino, Tensor networks for classical statistical mechanics (2021), Conference: “En-

tanglement in strongly correlated systems”, Benasque.

[186] T. Nishino, T. Hikihara, K. Okunishi, and Y. Hieida, Density matrix renormalization

group: introduction from a variational point of view, Int. J. Mod. Phys. B 13, 1–24 (1999).

[187] J. Haegeman and F. Verstraete, Diagonalizing Transfer Matrices and Matrix Product

Operators: A Medley of Exact and Computational Methods, Annu. Rev. Condens. Matter

Phys. 8, 355–406 (2017).

[188] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33, 2295–2317 (2011).

[189] H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and T. Xiang, Renormalization of

tensor-network states, Phys. Rev. B 81, 174411 (2010).

239

https://doi.org/10.1016/S0375-9601(97)00957-2
https://doi.org/10.1103/PhysRevE.103.013308
https://doi.org/10.1103/PhysRevE.103.013308
https://doi.org/10.1007/BF01011693
https://doi.org/10.1007/BF01013748
https://doi.org/10.1007/BF01013748
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1143/JPSJ.66.3040
http://quattro.phys.sci.kobe-u.ac.jp/dmrg/condmat91.html
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/RevModPhys.93.045003
http://benasque.org/2021scs/talks_contr/222_Tomotoshi.pdf
https://doi.org/10.1142/S0217979299000023
https://doi.org/10.1146/annurev-conmatphys-031016-025507
https://doi.org/10.1146/annurev-conmatphys-031016-025507
https://doi.org/10.1137/090752286
https://doi.org/10.1103/PhysRevB.81.174411


Bibliography

[190] H. W. J. Blöte and M. P. Nightingale, Antiferromagnetic triangular Ising model: Critical

behavior of the ground state, Phys. Rev. B 47, 15046–15059 (1993).

[191] X. Qian, M. Wegewijs, and H. W. J. Blöte, Critical frontier of the triangular Ising antiferro-

magnet in a field, Phys. Rev. E 69, 036127 (2004).

[192] P. Corboz, J. Jordan, and G. Vidal, Simulation of fermionic lattice models in two dimen-

sions with projected entangled-pair states: Next-nearest neighbor Hamiltonians, Phys.

Rev. B 82, 245119 (2010).

[193] P. Corboz, Variational optimization with infinite projected entangled-pair states, Phys.

Rev. B 94, 035133 (2016).

[194] M. Frías-Pérez, M. Mariën, D. P. García, M. C. Bañuls, and S. Iblisdir, Collective Monte

Carlo updates through tensor network renormalization (2021), arXiv:2104.13264 [cond-

mat.stat-mech] .

[195] J. Haegeman, M. Mariën, T. J. Osborne, and F. Verstraete, Geometry of matrix product

states: Metric, parallel transport, and curvature, J. Math. Phys. 55, 021902 (2014).

[196] B. Vanhecke, M. V. Damme, J. Haegeman, L. Vanderstraeten, and F. Verstraete, Tangent-

space methods for truncating uniform MPS, SciPost Phys. Core 4, 4 (2021).

[197] L. Vanderstraeten, L. Burgelman, B. Ponsioen, M. V. Damme, B. Vanhecke, P. Corboz,

J. Haegeman, and F. Verstraete, Variational contractions of projected entangled-pair

states (2021), arXiv:2110.12726 [cond-mat.str-el] .

[198] P. W. Anderson, Limits on the energy of the antiferromagnetic ground state, Phys. Rev.

83, 1260–1260 (1951).

[199] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial

optimization (Springer-Verlag Berlin Heidelberg, 1993).
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[242] M. Semjan and M. Žukovič, Magnetocaloric Properties of an Ising Antiferromagnet on a

Kagome Lattice, Acta Physica Polonica A 137, 622–624 (2020).

[243] J. Colbois and K. Hofhuis, Data related to the present work (2021), doi: 10.5281/zen-

odo.4620851.

[244] K. Tokushuku, T. Mizoguchi, and M. Udagawa, Field-selective classical spin liquid and

magnetization plateaus on kagome lattice, J. Phys. Soc. Jpn. 89, 053708 (2020).

[245] P. Azaria, H. T. Diep, and H. Giacomini, Coexistence of order and disorder and reentrance

in an exactly solvable model, Phys. Rev. Lett. 59, 1629–1632 (1987).

[246] A. Smerald and F. Mila, Spin-liquid behaviour and the interplay between Pokrovsky-

Talapov and Ising criticality in the distorted, triangular-lattice, dipolar Ising antiferro-

magnet, SciPost Phys. 5, 30 (2018).

[247] Y. Jiang and T. Emig, Ordering of geometrically frustrated classical and quantum trian-

gular Ising magnets, Phys. Rev. B 73, 104452 (2006).

[248] C. S. O. Yokoi, J. F. Nagle, and S. R. Salinas, Dimer pair correlations on the brick lattice, J.

Stat. Phys. 44, 729–747 (1986).

243

https://doi.org/10.1142/S0217979297000113
https://doi.org/10.1103/PhysRevB.96.184411
https://doi.org/10.1103/PhysRevB.96.184411
https://doi.org/10.1103/PhysRevX.8.041033
https://doi.org/10.1143/JPSJ.71.2365
https://doi.org/10.1143/JPSJ.71.2365
https://doi.org/10.1103/PhysRevB.77.134402
https://doi.org/10.1103/PhysRevB.77.134402
https://doi.org/10.1103/PhysRevB.18.2304
https://doi.org/10.1088/1742-5468/2007/05/L05001
https://doi.org/10.12693/APhysPolA.137.622
https://doi.org/10.5281/zenodo.4620851
https://doi.org/10.7566/JPSJ.89.053708
https://doi.org/10.1103/PhysRevLett.59.1629
https://doi.org/10.21468/SciPostPhys.5.3.030
https://doi.org/10.1103/PhysRevB.73.104452
https://doi.org/10.1007/BF01011905
https://doi.org/10.1007/BF01011905


Bibliography

[249] M. Hering, H. Yan, and J. Reuther, Fracton excitations in classical frustrated kagome

spin models, Phys. Rev. B (2021).

[250] V. Zauner, D. Draxler, L. Vanderstraeten, J. Haegeman, and F. Verstraete, Symmetry

breaking and the geometry of reduced density matrices, New J. Phys. 18, 113033 (2016).
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