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Abstract
Understanding behavior from the neural activity is a fundamental goal in neuroscience. It has
practical applications in building robust brain-machine interfaces, human-computer interaction,
and assisting patients with neurological disabilities. Despite the ever-growing demand driven
by the applications, neural action decoding methods still require laborious manual annotations.
Furthermore, a different model must be trained for each new individual, requiring even more
annotation and overwhelming the resources of most applications. This thesis proposes a self-
supervised way to tackle the unsupervised domain adaptation for the neural action decoding
problem. Our method does not require manual annotations and can generalize across individuals.
To do that, we propose to use animal motion capture to guide the encoding of neural action
representations together with a set of neural and behavioral augmentations. We, therefore, divide
the thesis into two parts. For the first part, we propose multiple novel ways to learn robust
markerless motion capture systems for animals. In the second part, we then use motion capture
to learn an unsupervised neural action decoding algorithm.

To start, we present a novel unsupervised markerless 2D pose estimation system. Extracting
pose information from laboratory animals requires significant annotation labor. Our model
requires only unrealistic renderings of the target animal, without any manual pose labeling. While
deep learning models cannot be trained on unrealistic renderings of laboratory animals due to the
domain gap, we propose a deformation-based generative network transforming the renderings
into realistic images while at the same time keeping the pose information intact. Our model
enables us to train a pose estimation network on generated but realistic images without manual
annotations.

Second, we propose a markerless self-calibrating motion capture system on tethered animals.
Although extracting a 2D pose is enough for some applications, 2D pose information is incomplete
due to information loss from the camera projection. On the other hand, triangulating 3D poses
from multiple images requires camera calibration. This tedious process is not ideal for many
laboratory setups, for example, a small model organism Drosophila. We model a self-calibrating
system that uses the animal as the calibration pattern. To make the system even more reliable, we
use the shape and skeleton of the animal as the 3D prior, therefore fixing the inference mistakes
of the deep learning based methods.

Third, we propose a monocular 3D motion capture algorithm for laboratory animals. Al-
though 3D pose information provides all the necessary information about the movement, multi-
camera systems require expensive hardware and multi-view synchronization. We propose a
monocular system that can still recover 3D pose without requiring multiple views. We test our
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Abstract

model on numerous lab animals, including flies, mice, rats, and macaques. We show that our
monocular motion capture system performs reliably and on-par with multi-camera motion capture
systems.

Lastly, we propose a novel unsupervised domain adaptation method for neural decoding
of actions, which uses the previously mentioned animal markerless motion capture systems
for domain adaptation. We show that our neural action decoding algorithm can successfully
generalize across individuals. Furthermore, our method can provide better neural action decoding
performance on low data regimes when compared to supervised and self-supervised neural action
decoding algorithms.

Keywords: 3D human pose estimation, 3D animal pose estimation, 3D computer vision, deep
learning, action recognition, neural action decoding, brain-machine interface, self-supervised
learning, contrastive learning
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Résumé
Le décodage neuronal, c’est-à-dire relier l’activité cérébrale aux comportements, est un objectif
fondamental des neurosciences. Il y a de nombreuses applications pratiques incluant la construc-
tion d’interfaces cerveau-machine robustes, l’interaction homme-ordinateur et l’aide aux patients
souffrants de troubles neurologiques. Malgré la demande toujours croissante suscitée par ces
applications, les méthodes de décodage neuronal nécessitent encore de laborieuses annotations
manuelles. De plus, un modèle différent doit être entraîné pour chaque nouvel individu, ce qui
nécessite encore plus d’annotations et accapare les ressources de la plupart des applications.
Cette thèse propose une méthode auto-supervisée pour réaliser l’adaptation d’un domaine non
supervisédans le cadre du décodage neuronal. Notre méthode ne nécessite pas d’annotations
manuelles et peut être généralisée à tous les individus. Pour ce faire, nous proposons d’utiliser
l’enregistrement du mouvement animal pour guider l’encodage des représentations d’actions
neuronales avec un ensemble d’augmentations neuronales et comportementales. Nous divisons
donc la thèse en deux parties. Pour la première partie, nous proposons plusieurs nouvelles façons
d’apprentissage à partir de systèmes de capture de mouvement robustes et sans marqueur pour
les animaux. Nous utilisons ensuite les captures de mouvement pour entraîner un algorithme de
décodage neuronal non supervisé dans la deuxième partie.

Pour commencer, nous présentons un nouveau système d’estimation de poses 2D sans
marqueur et non supervisé. L’extraction d’informations de poses à partir d’animaux de laboratoire
nécessite normalement un travail d’annotation important. Notre modèle ne nécessite que des
représentations irréalistes de l’animal ciblé, sans aucun travail manuel. Alors que les modèles
de Deep Learning ne peuvent pas être entraînés sur des représentations irréalistes d’animaux
de laboratoire en raison de l’écart de domaine, nous proposons un réseau génératif basé sur la
déformation transformant les représentations irréalistes en images réalistes tout en gardant les
informations de poses intactes. Notre modèle nous permet d’entraîner un réseau d’estimation de
poses basé sur des images générées mais réalistes sans avoir besoin d’annotations manuelles.

Deuxièmement, nous proposons un système de capture de mouvement auto-calibrant sans
marqueur sur des animaux attachés. Bien que l’extraction d’une pose 2D soit suffisante pour
certaines applications, les informations de pose 2D sont incomplètes en raison de la projection de
la caméra. D’autre part, la triangulation de la pose 3D à partir de plusieurs images nécessite une
calibration. Cependant, cette configuration n’est pas idéale pour de nombreuses configurations
de laboratoire, par exemple, dans le cas d’un organisme modèle de 3 mm tel que la drosophile.
Par conséquent, nous modélisons un système auto-calibrant qui utilise l’animal comme motif
de calibration. Pour rendre le système encore plus fiable, nous utilisons la forme et le squelette
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Résumé

de l’animal comme base 3D, corrigeant ainsi les erreurs d’inférence des méthodes basées sur le
Deep Learning.

Troisièmement, nous proposons un algorithme monoculaire de capture de mouvement 3D
pour les animaux de laboratoire. Bien que les informations de pose 3D fournissent toutes les
informations nécessaires sur le mouvement, les systèmes multi-caméras nécessitent un matériel
coûteux et une synchronisation multi-vues. Nous proposons ainsi un système monoculaire qui
permet de toujours retrouver la pose 3D sans nécessiter plusieurs vues. Nous testons notre réseau
sur de nombreux animaux de laboratoire, notamment des mouches, des souris, des rats et des
macaques. Nous montrons que notre système de capture de mouvement monoculaire fonctionne
de manière fiable et comparable aux systèmes de capture de mouvement utilisant plusieurs
caméras.

Enfin, nous proposons une nouvelle méthode d’adaptation de domaine non supervisée pour
le décodage neuronal, qui utilise les systèmes de capture de mouvement sans marqueur d’animaux
mentionnés précédemment pour l’adaptation de domaine. Nous montrons que notre algorithme
de décodage neuronal peut se généraliser avec succès à travers différents individus. De plus, notre
méthode peut fournir de meilleures performances de décodage neuronal sur des petits ensemble
de données par rapport aux algorithmes supervisés et fonctionne mieux que les algorithmes de
décodage neuronal non supervisés précédemment développés.

Mots Clés : estimation de pose humaine 3D, estimation de pose animale 3D, vision 3D par ordi-
nateur, Deep Learning, reconnaissance d’action, décodage neuronal, interface cerveau-machine,
méthode d’apprentissage auto-supervisée,
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1.1. Problem Definition

The accurate prediction of animal behavior from brain activity is a fundamental challenge in
neuroscience with essential applications in developing robust brain-machine interfaces. Neural
decoding of actions can increase patients’ mobility with disabilities or neuromuscular diseases
and improve our understanding of how the nervous system works [1, 2]. However, most neural
decoding methods require manual annotat ions that are both tedious to acquire and error-prone [3,
4]. We aim to use and develop more general self-supervised neural decoding in neuroscience [5,
6]. Self-supervised methods aim to use unlabeled data during training, in order to perform
downstream tasks with minimal manual annotations. This thesis proposes to use 3D animal
motion capture to learn self-supervised neural decoding algorithms.

While understanding the 3D positioning of an object is trivial for humans, it is a challenging
problem for a computer processing images. Through our stereo vision, we perceive the surround-
ing environment, humans, and objects in 3D. This lets us navigate and interact within the 3D
world. Much of the 3D perception has to do with understanding how the objects and people are
positioned in the environment. 3D pose estimation in the field of computer vision addresses this
problem [7, 8]. Its ultimate goal is to understand the 3D pose of people and animals from 2D
images and the human visual system.

Animal pose estimation, as depicted by Fig. 1, refers to predicting the joint locations of an
animal from a 2D image. Predicting the 2D or 3D pose from photos or videos is a long-
standing computer vision problem with multiple applications, including augmented reality,
human-computer interaction, security, and telepresence [9, 10]. However, it is a challenging and
ill-posed problem. Projection from 3D onto a 2D image results in the loss of depth information and
makes the problem of 3D pose estimation ambiguous [11]. A potential solution to resolve some
of the ambiguities is to use multiple camera systems [12]. However, this becomes impractical
due to the cost and effort of setting up various cameras’ calibrated and synchronous approaches.
Another solution to resolve the ambiguities of 3D pose estimation is to use depth sensors [13].
However, active RGB-D sensors are power-hungry and depth sensors cannot be used for small
animals such as Drosophila, due to scaling issues. This makes 3D pose estimation from RGB
sensors more attractive.

Despite many years of sustained effort, pose estimation remains a challenging problem due to the
variability in visual appearance, viewpoint variation, illumination changes, occlusions, and high
dimensionality of the pose representations. In the face of these challenges, existing approaches
are still fragile and error-prone in general unconstrained scenarios.

In the remainder of this chapter, we first define neural decoding of actions and 3D pose estimation
problems and then briefly discuss a few practical applications of both problems. We then present
several key challenges and summarize our main contributions. Finally, we give an outline of the
thesis.
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Figure 1 – 2D Animal Pose Estimation: 2D pose estimation on animals is a challenging problem
to solve. The challenges include the shape and texture difference across animals, variation in
illumination, occlusion and clutter, variation of viewpoint. (A, C) shows a macaque moving inside
open enclosure, taken from OpenMonkeyStudio Dataset [14]. (B) shows rats within a circular
arena taken is from CAPTURE dataset [15]. (D, E, I) are taken from Animal-Pose dataset [16].
(f) shows a tethered Drosophila 2D pose, example is taken from DeepFly3D dataset [11]. (G) an
example of horse 2D pose taken from Horse-10 dataset [17]. (H) Multi-animal mice example is
taken from [18].

1.1 Problem Definition

For neural decoding of actions, our goal is to learn an unsupervised signal encoder function
that maps a set of neural signal into a low-dimensional representation. We aim for our learned
representation to be representative of the underlying action label while being agnostic to animal
identity. We assume that we are not given action labels during unsupervised training. Also, note
that we do not know when the action starts and ends in the captured data. We have a series of
unknown actions performed by a different animal. This makes our problem harder. We assume
we are given multi-modal data, neural signals together with motion capture, and we assume the
data is captured such that the two modalities are always synchronized (paired) without human
intervention and therefore describe the same set of events.

We formulate 3D pose estimation as a regression problem. Given an image or an image sequence,
we aim to find a mapping function from robust image features to the 3D pose of an animal. The 3D
animal pose can be represented in various ways, including kinematic trees or a set of 3D animal
body joint locations. We adopt the latter one, in which we represent the 3D pose of an animal
in terms of a skeleton. The output pose is defined in the camera coordinate system and consists
of 3D joint locations relative to that of a root joint. We predict the relative configuration of the
3D joint locations with respect to a root joint location and do not consider the absolute 3D joint
locations in the camera coordinate system. Therefore, our pose predictions are animal-centric
and are not absolute.
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1.2. Motivation and Applications

1.2 Motivation and Applications

Neural decoding algorithms are necessary for creating robust brain-machine interfaces, human-
computer interaction, and assisting patients with neurological disabilities. The automatic and
reliable estimation of the 3D human pose has emerged as a pressing need for various sectors and
finds numerous applications ranging from augmented reality to surveillance. A few examples are
described below.

Disease Treatment: Neural decoding algorithms are essential for treating neurological disor-
ders. Neural decoding methods can be used for decoding speech from a paralyzed person with
anarthria [19]. These methods can also restore upper limb movement and sensation through
intracortical brain-computer interfaces [20]. Other brain-machine interfaces can be employed for
vision restoration with visual prosthetics [21]. On the other hand, 3D human pose estimation can
measure the changes in people’s physical activities with movement disorders, such as Parkinson’s
disease and Tourette syndrome.

Human-Computer Interaction: Commercial applications of neural decoding algorithms will
be an essential part of the human-computer interaction. The algorithms will allow users to
interact with computers using neural signals. Before this is possible, 3D pose information is still
a reliable cue to estimate the activity and gesture of a person and ultimately provides a natural
computer interface by which human gestures can control computers. This allows for more natural
and seamless interaction between humans and computers than the traditional means, including
keyboards and touchscreens [22].

Animation and Games. Character animation is essential for animated movies and online
games. Conventional approaches rely on motion capture with marker systems to recover the 3D
pose of an actor and transfer it to an avatar. 3D pose estimation offers a convenient way to replace
this approach.

Augmented Reality and Telepresence: Estimating the 3D human and animal pose and shape
is an initial step towards creating digital 3D avatars in the scene [23]. This allows people to
interact virtually in augmented reality even when they are far apart.

Security and Surveillance: Human pose and motion provide valuable information about the
action and intent of a person in a video-based intelligent surveillance system. Since manual
monitoring of the video footage in an extensive network of cameras is impractical and prone
to human errors, a markerless motion capture system can assist security personnel in detecting
unusual and abnormal activities [24].
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Figure 2 – Domain Gap in Neural Signals: Neural signals have different structures across
individuals. (A) MC2P dataset (introduced in the Chapter 6) measure different axons across
different individuals in tethered adult Drosophila. Images differ in terms of total brightness, the
location and number of visible neurons, and the shape and size of axons [25]. (B) ECoG (AJILE)
dataset has different electrode placements for each subject [26]. Each electrode records seperate
regions, therefore convey different information.

1.3 Challenges

Neural decoding is challenging due to the high signal-to-noise ratio and missing biological
understanding of the neural basis of behavior. Also, the domain gap across individuals makes
training general models non-trivial. 3D pose estimation of humans and animals is an ambiguous
task due to the loss of depth information resulting from projection from 3D to 2D. The problem
is complicated by other factors, such as variance in elimination, change in the viewpoint, and
challenging case of collecting ground-truth data.

Neural Dynamics: Relevant features for neural decoding often lack a clear baseline, are
non-stationary, and occur in a small percentage of the total recording electrodes or pixels [27].
Neural signals also include high noise due to the imaging techniques and electrode placement.
Neuroscientists use denoising algorithms such as spike inference to employ neural prior to
reducing noise in the neural data [28]. However, many machine learning algorithms still do not
perform well processing the neural signal due to the high signal-to-noise ratio.

Lack of Biological Priors: The neural basis of behavior is not very well understood. Therefore,
for many downstream tasks, the ground-truth information is not known. This makes it especially
hard to assess the quality of the model predictions. On the other hand, it makes supervised
learning algorithms not employable in many cases.

Illumination Variance. Illumination conditions play an essential role in the quality of the
3D animal and human pose estimation. Extracting reliable cues becomes challenging in dim
light conditions. Ultimately, pose estimation algorithms should generalize to objects captured in
arbitrary illumination conditions.
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1.4. Contributions

Viewpoint Variance: Images tend to vary significantly when the animals or humans are viewed
from different angles. This, in turn, negatively impacts the accuracy and robustness of pose
estimation algorithms. Therefore, it is essential to gain invariance against the changes in viewpoint
either by collecting a large dataset of images from different viewing angles or extracting viewpoint-
invariant features. This is especially important for animal pose estimation, wherein animals are
imaged only through a short range of angles in specific setups.

Collecting Ground-Truth Data: Collecting ground-truth 3D human or animal pose data re-
quires annotation effort or expensive marker-based optical motion capture systems [29]. The lack
of ground-truth annotations necessitates making the best of limited data. This is especially impor-
tant for multiple lab animals, where collecting human dataset size labels seems very expensive.
This would be possible by learning more unsupervised methods. Collecting ground-truth data for
neural decoding is also challenging since the data needs to be annotated by expert neuroscientists.

1.4 Contributions

The main goal of this thesis is to create an unsupervised neural decoding algorithm. For this, we
first develop efficient and accurate motion capture methods for animals without using markers.
We demonstrate the effectiveness and versatility of our approaches in a wide range of datasets
while addressing the challenges mentioned above of pose estimation and neural decoding. We
describe below the main contributions of this thesis.

Unsupervised 2D Pose Estimation: We propose the first work of unsupervised pose esti-
mation using unrealistic renderings of the target model. Although previous methods worked
on unsupervised pose estimation with human models, they were only successful with realistic
renderings. Our work is the first to make an unsupervised pose estimation possible without an
accurate model. To make this possible, we propose to use image-to-image translation methods.
During translation, we decompose the problem into shape and texture prediction stages. We
propose using explicit deformation and gradient to keep the pose information intact during shape
translation. For non-differentiable operations like thresholding, we use gradient estimators.

Multi-view uncalibrated 3D pose estimation: We are the first work to extract 3D pose of
model organism Drosophila. Before that, reliably estimating the 3D pose of the tiny animal
was not possible under the current imaging conditions. We propose a self-calibrating and self-
correcting motion capture method, which can train itself using active learning. Our self-correction
mechanism also significantly outperforms naive triangulation.

Single-view 3D pose estimation: State-of-the-art approaches to monocular 3D animal pose
estimation rely on deep learning. They typically involve regressing 2D joint locations from
multiple image coordinates from which 3D coordinates are inferred. However, these approaches
require expensive multi-view imaging setups. We propose a monocular method for 3D pose
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estimation on animals. We offer a new domain-adaptation method to make these models work
across imaging setup and individuals. We test our method on multiple lab animals, including
Drosophila, macaques, mice.

Learning Neural Action Representations: We develop a new unsupervised domain adaptive
neural decoding algorithm. Most existing approaches use supervised models, which do not
easily generalize across individuals. Instead, we propose a multi-modal self-supervised learning
algorithm. We specifically use motion capture to guide the neural representations across domains.
Our method yields improvements compared to previous approaches, especially compared to
supervised and self-supervised state-of-art neural decoding, when tested across individuals.

1.5 Outline

The remainder of this thesis is organized as follows. We begin Chapter 2 with an overview of
the relevant literature on 2D and 3D human and animal pose estimation. Chapter 3 presents
our unsupervised 2D animal pose estimation approach from unrealistic animal models. We
demonstrate using multiple laboratory animals, including Drosophila, zebrafish, and C. elegans.
Chapter 4 introduces our markerless 3D motion capture system for Drosophila, which self-
calibrates using the 2D pose estimation itself. In Chapter 5, we present a monocular motion
capture for laboratory animals. We show that our monocular motion capture system performs
similarly to the previous multi-view motion capture systems. Chapter 6 introduces our self-
supervised neural action representation learning algorithm for unsupervised neural decoding.
Finally, Chapter 7 concludes the thesis with a summary and brief discussion of future research
directions.
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2.1. Neural Decoding

We start this chapter by reviewing existing neural decoding and human and animal 3D pose
estimation, with numerous applications ranging from surveillance to augmented reality and
brain-machine interfaces. We then give a brief overview of state-of-the-art.

2.1 Neural Decoding

Recent technological advances have enabled large-scale simultaneous recordings of neural activity
and behavior in animals, including rodents, macaques, humans, and the vinegar fly, Drosophila
melanogaster [30–36]. These advances helped studies of the sensory perception [37, 38], motor
control [39], learning and memory [40] and innate behaviors [41]. For preprocessing of two-
photon neural data, studies extract neural signals through using ROI detection and constrained
nonnegative matrix factorization (CNMFe) [42, 43]. Second, various algorithms have been
proposed to solve the deconvolution problem [44, 45]. After pre-preprocessing, to derive a
representation for these neural signals, models such as recurrent models [46–48], variational
autoencoders [33, 49], and dynamical systems [50, 51] can be used.

Advances in neural recording and neural decoding algorithms also have driven recent progress
in BMI approaches. Neural decoders can be used to increase the mobility of patients with
disabilities [20, 52], or neuromuscular diseases [2], and can expand our understanding of how the
nervous system works [1]. However, these algorithms typically rely on supervised learning [3]
and require manual annotations of training data that are both tedious to acquire and error
prone [53]. Labeling behavioral-neural datasets requires expensive and arduous manual labor
by trained scientists, thus often leaving the vast majority of data unlabeled. Furthermore,
decoding algorithms that are useful in the real world must adapt to changing neural signals
[54, 55]. Therefore, the ability to infer information from challenging neural data or neural
decoding is essential for the development of effective brain-machine interfaces and closed-loop
experimentation [56, 57].

There have been previous approaches developed to extract behavioral information from neural
data [3, 58, 59]. Training algorithms have decoded neural activity on controlled experimental data
with repeated trials. Common implementations include Bayesian decoders [60, 61], and machine-
learning models such as support vector machines, k-nearest neighbors, multilayer perceptron,
recurrent neural network have been implemented in various studies [3, 62]. Other methods have
focused on identifying these two modalities using simple methods, such as correlation analysis,
generalized linear models [63–65], or regressive methods [58]. As an application of neural decod-
ing, recent examples include interpreting arm trajectories, and finger movements [66]. Decoded
neural signals have been used to control robotic arms and construct BCIs [67]. Neural decoding
can be done on different modalities, including neural oscillations scalp electroencephalography
(EEG) intracranial electrocorticography (ECoG) [68, 69] or two-photon microscopy [58, 70].

Contrastive learning has been extensively used on human motion sequences to perform action
recognition using 3D pose data [71–73] and video-based action understanding [74, 75]. However,
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a barrier to using these tools in neuroscience is that the statistics of neural data—the locations
and sizes of cells for microscopy data, or electrode locations for the signal data—and behavioral
data—body part lengths and limb ranges of motion—can be very different from animal to
animal, creating a large domain gap. Unlike mammal recordings with limited subject variability,
the number of individuals for Drosophila recordings are not limited due to practical concerns,
therefore making it ideal for testing domain adaptation and representation learning research.
Also, Drosophila recordings have complete behavior information since we recorded a much more
significant percentage of the nervous system.

Existing self-supervised neural decoding methods [26, 68, 76, 77] cannot be used on unlabeled
subjects without action labels. A potential solution would be to use domain adaptation techniques
to treat each new subject as a new domain. However, existing domain adaptation studies of neural
decoding [78, 79] have focused on gradual domain shifts associated with slow changes in sensor
measurements rather than the challenge of generalizing across individual subjects. In contrast to
these methods, our approach is self-supervised and can generalize to unlabeled subjects at test
time without requiring action labels for new individuals. Similarly, it is non-trivial to generalize
few-shot domain adaptation methods to multimodal tasks [80, 81]. Thus, the field of neuroscience
needs new computational approaches that can extract information from ever-increasing amounts
of unlabeled multimodal datasets that also suffer from extensive domain gaps across subjects.

In theory, there are multimodal domain adaptation methods for action recognition that could deal
with this gap [82–84]. However, they assume supervision in the form of labeled source data. This
is an impractical solution in most laboratory settings, where large amounts of data are collected
and limited resources.

This thesis presents the first joint modeling of motion capture and neural modalities to fully
extract behavioral information from neural data using a self-supervised learning technique.

2.2 Human and Animal 3D Pose Estimation

Deep learning based human pose estimation methods has recently made significant progress.
This is especially true for capturing human movements for which there is enough annotated data
to train deep networks [29, 85–89]. A large corpus of the literature focuses on the prediction
of 2D key points from images directly [9, 90–94]. There is also a vast literature on capturing
3D pose directly from images or as a function of 2D keypoints instead [95–101]. Weakly [102]
and semi-supervised algorithms [103] can further improve the performance of motion capture
systems, for example, by using multi-view constraints [104, 105].

To utilize the advances in human motion capture into animal pose estimation, recent efforts have
made it possible to perform markerless predictions of 2D poses [14, 18, 106–109]. 2D poses can
be converted into 3D animal poses using multi-view stereo systems or lifting methods [110–113].
[114] uses a model-based algorithm, trains on synthetic renderings, and refines on real zebra
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2.2. Human and Animal 3D Pose Estimation

photographs. However, their quadruped body model does not translate to animals with a different
number of legs.

At the same time, realistic animals models have been built for downstream applications such
as extracting 3D shape and texture from images for animals such as mice, zebra, and elephant
[115–118]. Video and pose data have been used to segment and cluster temporally related
behavioral information [119–123].

For pose estimation in Drosophila, DeepLabCut provides a user-friendly interface to Deeper-
Cut [18], LEAP [124] tracks limb and appendage landmarks, and DeepFly3D leverages multiple
views to capture 3D pose [111]. Nevertheless, all these methods require large amounts of manual
labels, which are not available for many animals and cannot be reused when recording the same
species in different environments and illumination conditions.

For unsupervised 2D pose estimation methods, image-to-image translation networks can be used.
Supervised image-to-image translation methods aim to translate images across domains (e.g.,
day-to-night, summer-to-winter, photo-to-painting), often using adversarial methods [125] to
learn a mapping from input to output images. More recent studies have aimed to translate edges
to images [126] and cascaded networks are used to condition on semantic label maps [127]. Style
transfer is an image-to-image translation method that works on unpaired examples, aiming to
transfer the input image style while preserving the geometry of the target image [128–131]. Initial
deep learning approaches optimized an image with respect to the Gram matrix statistics of deep
features of the target image [128, 132]. More recent studies have tested different architectures
and loss functions [133] and used a contextual loss to transfer the style at the semantic level [134,
135].

Another line of work trains neural networks on unpaired examples for domain translation,
including sim2real mappings. Early approaches used weight-sharing [136, 137] and sharing
of specific content features [138, 139]. The cycle consistency in Cycle-GAN, which assumes
bijective mapping between two domains, can map from zebra to horse [137, 140, 141], but
bridging large deformations across domains, such as for going from cat to dog (see Fig. 4) requires
alternative network architectures [142], or intermediate keypoint representations [143]; However,
none of the methods discussed above establish a fine-grained, dense spatial correspondence
between source and target, preventing the accurate transfer of desired keypoint locations.

One way to make sure image-to-image networks do not lose the keypoint correspondence is to
handle the deformation explicitly. Explicit deformation has been used in diverse contexts. The
spatial transformer network (STN) made affine and non-parametric spatial deformations popular
as a differentiable network layer [144]. These approaches have been used to zoom in on salient
objects [145], disentangle shape and appearance variations in an image collection [146], and
register (brain scan) images to a standard, learned template image [147–150]. [151] introduced
global transformation into the Cycle-GAN framework. While similar in spirit, additional advances
beyond these approaches are still required to model deformations faithfully on our unpaired
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translation task.
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3.1. Introduction

Siyuan Li, Semih Günel, Mirela Ostrek, Pavan Ramdya, Pascal Fua, Helge Rhodin; Deformation-
aware Unpaired Image Translation for Pose Estimation on Laboratory Animals. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

I worked on conceptualization, methodology (such as decoupling shape and texture information
and explicit deformation of the shape), formal analysis, data curation, writing of original draft,
writing of review, and editing.

3.1 Introduction

Deep learning-based pose estimation on images has evolved into a practical tool for a wide range
of applications, as long as sufficiently large training databases are available. However, in very
specialized domains there are rarely large annotation databases. For example, neuroscientists
need to accurately capture the poses of all the appendages of fruit flies, as pose dynamics are
crucial for drawing inferences about how neural populations coordinate animal behavior. Publicly
available databases for such studies are rare and current annotation techniques available to create
such a database are tedious and time consuming, even when semi-automated. Given the existence
of motion simulators, an apparently simple workaround would be to synthesize images of flies in
various poses and use these synthetic images for training purposes. Although image generation
algorithms can now generate very convincing deepfakes, existing image translation algorithms
do not preserve pose geometrically when the gap between a synthetic source and a real target is
large. This is critical to our application, as creating matching high-fidelity images would be time
consuming.

In this chapter, we introduce a novel approach to generate realistic images of different kinds
of laboratory animals—flies, fish, and worms–from synthetic renderings for which labels such
as keypoint annotations are readily available. The generated realistic images can then be used
to train a deep network that operates on real images, as shown in Fig. 3. The challenge is to
condition the generated images in such a way that the keypoints (e.g. skeleton joint positions) in
the simulated source transfer to the realistic target; despite large differences in shape and pose as
well as for small training sets that are practical, see Fig. 4.

We model the change of 2D pose and shape in terms of a deformation field. This field is then
paired with an image-to-image translator that synthesizes appearance while preserving geometry,
as shown in Fig. 5. Our approach is inspired by earlier approaches modeling human faces [146]
and brain scans [147]. We go beyond these studies in two important ways. First, we introduce
silhouettes as an intermediate representation that facilitates independent constraints (loss terms)
on shape and appearance. It stabilizes training to succeed without reference images and helps
to separate explicit geometric deformation from appearance changes. Furthermore, end-to-end
training on unpaired examples is enabled with two discriminators and a straight-through estimator
for non-differentiable thresholding operation and patch-wise processing. Second, to cope with
large-scale as well as small-scale shape discrepancies, we introduce a hierarchical deformation
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c) Pose estimation
on real images

b) Training a 
pose detector

a) Unpaired
image and pose

transfer

Source domain A
(simulation with annotation)

Target domain B
(real recording w/o annotation)

Synthetic image

Synthetic annotation

Neuroscience
applications

Real animal poseReal image

Figure 3 – Approach. Our most morphologically complex example is the six-legged Drosophila:
a) We transfer synthetic images and their keypoint annotations to realistically looking images
using only unpaired examples of the two domains. b) Our method enables training of a pose
detector that c) can be applied to real images for neuroscientific studies.

model to separate global scaling, translation, and rotation from local deformation.

We test our method on flies (Drosophila melanogaster), worms (Caenorhabditis elegans) and
larval zebrafish (Danio rerio), see Fig. 4, and compare it against state-of-the-art approaches that
rely either on circularity constraint or hand-defined factorizations of style and content. Not only
does our method generate more realistic images, but more importantly, when we use the images
it generates to train pose estimators we get more accurate results. Nothing in our approach is
specific to the animals we worked with and that could also be applied just as well to limbed
vertebrates, including rodents and primates.

3.2 Method

Our goal is to translate pose annotations and images from a synthetic domain A to a target domain
B for which only unpaired images {IA

i }N
i=1 and {IB

i }K
i=1 exist. In our application scenario, the target

examples are frames of video recordings of a living animal and the source domain are simple
drawings or computer graphics renderings of a character animated with random deformations
of the limbs. Both domains depict images of the same species, but in different pose, shape, and
appearance.

Fig. 5 summarizes our approach. To tackle the problem of translating between domains while
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ecruoS
A

.

tegraT
B

D. rerio D. melanogaster 

Figure 4 – Domain examples with large discrepancy in appearance, shape and pose. Trans-
lating from rendering to real images requires bridging the domain gap without having pixel
nor pose correspondences. It is particularly challenging in our setting, as even the realistic fly
character shows significant differences in shape (body and limb width) as well as pose (legs
stretched).

preserving pose correspondence, we separately transfer spatially varying shape changes via
explicit deformation of the source images via an intermediate silhouette representation ŜB

(Section 3.2.1). Subsequently, we locally map from silhouette to real appearance (Section 3.2.2).
The final goal is to train a pose estimator on realistic images from synthetic examples (Section
3.2.3). Our challenge then becomes to train neural networks for each, without requiring any
paired examples or keypoint annotation on the target domain. To this end, we set up adversarial
networks that discriminate differences with respect to the target domain statistics. Learning of
the image translation is performed jointly on the objective

L =LI +LS +RD , (1)

where LI and LS are the adversarial losses on generated segmentation and image, and RD is
a regularizer on the deformation grid. Besides images I, our method operates on segmentation
masks S of the same resolution. The domain origin is denoted with superscripts—IA, and the
domain target (real images) is denoted IB . We use several generator and discriminator networks,
which we denote G and D , respectively, with subscripts differentiating the type—G I . We explain
each step in the following section.

3.2.1 Spatial Deformation

Our experiments showed that using a single, large discriminator, as done by existing techniques,
leads to overfitting and forces the generator to hallucinate, due to the limited and unrealistic
pose variability of the simulated source. We model shape explicitly through the intermediate
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Figure 5 – Overview of our deformation-based image translation method. Our model has
two steps. In the first step, the deformation from source domain A to target domain B is estimated
for input image IA and it’s silhouette SA via two networks GD and STN (Spatial Transformer
Network). Their output is an explicit deformation field parameterized by the global, affine
transformation θ and a local, non-linear warping φ. Then, the deformed silhouette is transformed
into the full output image ÎB with image generator G I . Discriminators DS and D I enable unpaired
training. DS uses the Straight Through Estimator (STE) to backpropagate gradients through
thresholding operations.

silhouette representation and its changes with a per-pixel deformation field, as shown in Fig. 6.
The silhouette lets us setup independent discriminators with varying receptive field; large for
capturing global shape and small to fill-in texture. Moreover, the deformation field enables the
desired pose transfer while bridging large shape discrepancies.

The first stage is a generator GS that takes a synthetic image IA and mask SA as input, and outputs
a deformed segmentation mask ŜB that is similar to the shapes in B . To model global deformation,
we use a spatial transformer network (STN) [144] that takes the synthetic image IA ∈ RC ,H ,W

as input, and outputs an affine matrix θ ∈ R3,4, which models global scaling, translation and
rotation differences between the source and target domains. It is trained jointly with a fully-
convolutional generator network, GD , which takes the globally transformed image as input
and outputs φ ∈ R2,H ,W , a per-pixel vector field that models fine-grained differences in pose
and shape. The vector at pixel location x in φ points to the pixel in the source domain that
corresponds to x. Overlaying the source pixels of selected rows and columns of φ leads to the
deformed grid visualized in Fig. 6. This hierarchical representation allows us to cope with varying
degrees of discrepancies between the two domains. We refer to the combined application of
these two networks and their output as generator GS(IA ,SA) = φ⊗θ⊗SA, where θ = ST N (IA),
φ=GD (θ⊗ IA), and ⊗ denotes the transformation by global and local deformation.

Training GS requires silhouettes in A and B . Silhouettes SA in the source domain are trivially
obtainable from synthetic characters by rendering them on a black background. It is relatively
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c)

a) b)

Deformation �eld
on source keypoints

Deformed 
keypoint locations

Deformed
segmentation mask

Annotated 
target image

Generated 
target image

Deformation �eld
on source image

Figure 6 – Explicit deformation ensures transfer of keypoints. The deformation field is
inferred as part of a) source image segmentation to target image segmentation transfer (including
global, affine transformation) and b) segmentation to target image translation. c) The same
deformation field is applied to transfer known keypoints from source to target.

easy to estimate SB on a static background for the target domain as datasets are obtained in
controlled lab environments. We will later demonstrate that our model is robust to remaining
errors in segmentation.

The difficulty of our task is that all domain examples are unpaired, hence, a constraint can only
be set up in the distributional sense. Thus, we train a shape discriminator DS alongside GS and
train them alternately to minimize and maximize the adversarial loss

LS =LG AN (GS,DS,SA ,SB ) (2)

= ESB [logDS(SB )]+ESA [log(1−DS(GS(SA)))],

where the expectation is built across the training set of A and B . The adversarial loss is paired
with the regularizer

RD =α(
∥∥5φx (A)

∥∥2 +∥∥5φy (A))
∥∥2)+β∥∥φ(A)

∥∥ , (3)

to encourage smoothness by penalizing deformation magnitude and the gradients of the deforma-
tion field, as in [146].
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The inputs of the discriminator are binary masks from source domain A and target domain B .
However, the deformed masks are no longer binary on the boundary because of the interpolation
required for differentiation. Thus, it would be trivial for DS to discriminate against the real and
synthesized masks based on non-binary values. To overcome this issue, we threshold to get a
binary mask. Although the threshold operation is not differentiable, we can still estimate the
gradients with respect to GS using a straight through estimator (STE) [152], which treats the
threshold as the identity function during backpropagation, and therefore passes the gradients on
to the previous layer.

Implementation details.Directly outputting a vector field leads to foldovers that make the train-
ing unstable. Instead, we parameterize it as the gradient of the deformation field φ, and enforce
positivity to prevent foldovers as in [146]. φ can be recovered by summing the gradients across
the image. The deformation from A to B is implemented with a spatial transformer layer (STL)
that infers the value of deformed pixel locations by bilinear interpolation [144] and is differen-
tiable. In contrast to [146], we use a fully convolutional network to learn the local deformation
field. The GD network consists of 3 Resnet blocks between downsampling/upsampling layers.
The receptive field of the network is 64 pixels, 1/2 of the image, which is sufficient for our
experiments.

The STN network consists of 5 convolutional layers and a fully connected stub to output θ that is
preceded by max-pooling and SELU units (this yielded better results in preliminary experiments,
compared to ReLU activations).

3.2.2 Appearance Transfer

Once the shape discrepancies between the two domains have been estimated and corrected by GS ,
we then generate the appearance of the target domain on the deformed silhouettes ŜB =GS(IA ,SA).
We deploy a generator G I that is configured to preserve the source shape, only filling in texture
details. The input is ŜB and the output is a realistic image ÎB that matches the appearance of the
target domain. We use a discriminator D I for training, as synthetic and real images are unpaired.
In addition, our choice of using the silhouette as an intermediate representation allows us to
introduce a supervised loss on S(IB ) computed from real images IB . The training objective is

LI =LG AN (G I ,D I ,IA ,IB )+∥∥G I (S(IB ))− IB
∥∥ , (4)

where the GAN loss is defined as before and the second part is the supervised loss which stabilizes
training.

Training the supervised loss in isolation without end-to-end training with the adversarial losses
leads to artifacts since neither the synthesized nor silhouettes from real images are perfect, see
Fig. 7.

The pose distribution of the simulated character can differ even after local and global deformation
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w/o adversarialInput segmentation Ours (with )

Figure 7 – Texture discriminator influence. Without the adversarial discriminator, the image
generator is disturbed by an irregular silhouette boundary. In our model, the adversarial D I

creates a link to the deformed silhouettes ŜB enabling end-to-end training.

as some pose differences cannot be explained by an image deformation. For instance, the
occlusion effects of crossing legs on Drosophila cannot be undone as a 2D image transformation.
A discriminator with a large receptive field could detect these differences and re-position legs at
locations without correspondence in the source. To counteract this issue, we make sure D I has a
small receptive field. This is possible without suffering from texture artifacts since the global
shape deformation is already compensated by GS and the texture can be filled in locally.

Implementation details.We use a 7-layer U-Net generator as our backbone network for image
translation with G I . The skip connections in the U-Net help the network preserve the spatial
information. For D I , we use a patch-wise discriminator, consisting of three 4x4 convolutional
layers; the first one with stride two and the second one with instance normalization. All activation
functions are leaky ReLU. The small receptive field of the patch discriminator additionally helps
to maintain the spatial structure of the object and was sufficient in our experiment to reproduce
the real appearances faithfully.

3.2.3 Pose Estimation

We use the stacked hourglass network architecture for pose estimation [9]. Stacked hourglass
is a fully-convolutional network with several bottlenecks that takes an image I and outputs a
heatmap H of the same aspect ratio but at four times lower resolution due to pooling at the initial
layers. The heatmaps H are a stack of 2D probability maps with Gaussian distribution, where the
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maximum value of each channel in the stack indicates one specific joint location. Because our
source images are synthesized from 3D character models, we can use the virtual camera matrix
to project 3D keypoints, such as the knee joint, onto the image.

To obtain annotations in the target domain, we conveniently use the image deformation operation
Hd = (φ,θ)⊗H to compute the deformed heatmap Hd that matches to the synthesized target
domain image Id =G I (GS(IA ,SA) =G I ((φ,θ)⊗ IA), with φ coming from GD and θ from the STN
in GS . Note, that this is only possible due to the explicit handling of deformations.

Having synthesized realistic examples of the target domain and transferred ground truth heatmaps,
it remains to train the pose estimation network in a supervised manner. We use the L2 loss
between the predicted and ground truth heatmaps. At test time, we estimate the corresponding
joint location as the argmax of the predicted heatmap, as usual in the pose estimation literature.
Because the worm is tail-head symmetric, we compute errors for front-to-back and back-to-front
ordering of joints and return the minimum at training and test time. We call this a permutation
invariant (PI) training and testing. In the same vein, we regard the correct assignment of the six
Drosophila legs as an independent task that is extremely hard to solve in the 2D domain. To
separate and sidestep this problem, we compute the test error for all possible permutations and
return the minimum.

Implementation details.Input images are augmented by random rotations, drawn uniformly
from [−30◦,30◦]. Additional details are given in the supplemental document.

3.2.4 Implementation details

Deformation representation.Directly modeling the deformation as vector field will make the
transformation unstable and easily lose the semantic correspondence. For example, a vector
field permits coordinate crossing and disconnected areas, which leads to unstable training and
divergence. In order to preserve a connected grid topology, we model our deformation close to the
difformorphic transformation, which generates the deformation field as the integral of a velocity
field. This leads to useful properties such as invertibility and none crossing intersections [153].
However, it is in general expensive to compute the integral over an axis, thus making it difficult to
incorporate into deep networks. Instead of modeling a continuous velocity function, we directly
model our deformation field φ as the integral of the spatial gradient of vector field, as proposed
by Shu et al. [146]. We write,

5φx = ∂φ

∂x
5φy = ∂φ

∂y
(5)

where x, y define the gradient directions along the image axes. The φx and φy measure the
difference of consecutive pixels. By enforcing the difference to be positive (e.g., by using
ReLU activation functions; we use HardTanh with range (0, 0.1)), we avoid self-crossing and
unwanted disconnected areas. For example, when φx and φy equals to 1, the distance between
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3.2. Method

the consecutive pixels is the the same. If φx ,φy > 1 , the distance will increase, otherwise, when
φx ,φy < 1, it will decrease.

The second module is the spatial integral layer, also the last layer of deformation spatial gradient
generator. This layer sums the spatial gradients along the x and y directions and produces the
final deformation field,

φi , j = (
i∑

m=0
5φxm ,

j∑
n=0

5φyn ), (6)

where i , j is the pixel location. Since the u, v in general position do not correspond to one exact
pixel location in the source image, we compute the output image using a differentiable bilinear
interpolation operation, as for spatial transformers [144].

Shape DiscriminatorWe utilize the 70× 70 patchGAN discriminator as our backbone struc-
ture [125] . The patch-wise design makes the network focus on the local area of the shape.
Furthermore, if the shape between two domains is extremely different, the patch-wise design
prevents the discriminator from converging too quickly. However, the design also limits the
network’s awareness of global shape changes [142]. Thus, we add dilation to the second and
the third convolution layers of patchGAN. Those dilated layers enlarge the receptive field of our
shape discriminator, making it aware of bigger shape variation, giving a better guidance to the
generator.

Image Generator.We build our generator on the U-Net architecture, which is proved to be
effective in tasks such as pixel-wise image translation and segmentation [154]. The generator
contains several fully convolutional down-sampling and up-sampling layers. The skip connections
in the generator help to propagate information directly from input features to the output, which
guarantee the preservation of spatial information in the output image.

Pose Estimator.We adopt the stacked hourglass human pose estimation network to perform pose
estimation on animals [9]. The stacked hourglass network contains several repeated bottom-up,
top-down processing modules with intermediate supervision between them. A single stack
hourglass module consists of several residual bottleneck layers with max-pooling, following by
the up-sampling layers and skip connections. We used 2 hourglass modules in our experiments.
The pose estimation network is trained purely on the animal data we generated; without pre-
training and manually annotated labels. The ground-truth poses come from the annotations of
synthetic animal models. The pose invariant (PI) training is performed in all experiments labeled
with PI training.

Pose annotation.Drosophila has six limbs, each limb has five joints, giving 30 2D keypoints
that we aim to detect. By using our image translation model, we generated 1500 images with
annotation from the synthetic data. Each image is in size 128×128 pixels. The first hourglass
network is preceded with convolutional layers that reduce the input image size from 128×128

to 32×32. The second hourglass does not change the dimension. Thus, the network will output
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a 30× 32× 32 tensor, which represents the probability maps of 30 different joints locations.
For training, we create the ground truth label using a 2D Gaussian with mean at the annotated
keypoint and 0.5 on the diagonal of the covariance matrix. The training loss is the MSE between
the generated probability map and the ground truth label.

We annotated three keypoints on D. rerio and seven keypoints on C. elegans. We use the same
network as for Drosophila, but the output tensor adapted to the number of keypoints, 3×32×32

and 7×32×32, respectively.

Training The Unpaired Image Translation Network.We use the Adam optimizer with different
initial learning rates for different modules. For G I , D I , we set the learning rate to 2e−3. For GS ,
we set the learning rate to 2e−5 since a slight update will have a big impact on the deformation
field due to the integrating the spatial gradient in the last layer of GS . We set the learning rate
of DS to 1/10 the one of GS , which balanced the influence of GS and DS in our experiments. In
case of Drosophila training, we apply linear decay to our learning rates. We start the decay of
GS , DS at epoch 50 and reduce it to 0 till epoch 100. For fish and worm, we set the learning rate
of GD to 1e −4 and DS to 1e −5, to account for the simpler setting of deforming from a single
template image. Moreover, we linearly decay from epoch 100 to epoch 200.

The batch size of the image translation training is set to 4. An other important detail is the
initialization of GS to generate the identity mapping. We achieved that by initially training GS

solely on the regularization term, which pushes it towards this state.

Training Pose Estimation Network.We use Adam optimizer with initial learning rate of 2e−3.
We train the pose estimation network for 200 epochs and the learning rate starts to linear decay
after epoch 100, till epoch 200.

3.3 Evaluation

In this section, we qualitatively compare our results to canonical baselines and variants of
our algorithm, in order to highlight advantages and remaining shortcomings both visually and
quantitatively. This includes the task of 2D keypoint localization on the target domain. We
test our approach on different neuroscience model organisms in order to demonstrate varying
complexity levels of deformation and generality to different conditions. Additional qualitative
results and comparisons are given in the supplemental document.

All input and output images are of dimension (128,128). We operate on gray-scale images,
i.e. channel dimension C = 1, obtained from infrared cameras, which are commonly used in
neuroscience experiments in order to avoid inadvertent visual stimulation. Nevertheless, our
method extends naturally to color images.
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3.3. Evaluation

Datasets.We test on available zebrafish and worm image datasets, by [123] and [155, 156], using
500 and 100 real images for unpaired training. To quantify pose estimation accuracy, we manually
annotate a test set of 200 frames with three keypoints (tail and eyes) for the zebrafish and two
points (head and tail) for the worm. In these datasets, the background is monochrome and is
removed by color keying to obtain the foreground masks. Because of the simplicity of these
models, we use a simple, static stick figure as a source image that is augmented by uniformly
random rotation and translation. Fig. 8 gives example images.

Our most challenging test case is the Drosophila fly. We use the subset of the dataset published
alongside [111], which contains transitions between different speeds of walking, grooming and
standing captured from a side view and includes annotations for five keypoints for each of the
fully-visible legs (four joints and tarsus tip). In this dataset, the fly is tethered to a metal stage
of a microscope and the body remains stationary, yet the fly can walk on a freely rotating ball
(spherical treadmill), see Fig. 8. To get the target domain segmentation masks, we first crop out
the ball and background clutter with a single coarse segmentation mask. This mask is applied
to all images due to the static camera setup. The body, including the legs, is then segmented
by color keying on the remaining black background. Please note, that at test time, no manual
segmentation is used.

We use 815 real images for unpaired training and 200 manually annotated images for testing.
On the source side, we render 1500 synthetic images using an off-the-shelf Maya model from
turbosquid.com. The source motion is a single robotic walk cycle from [157] which we augment
by adding random Gaussian noise to the character control handles. This increases diversity but
may lead to unrealistic poses that our deformation network helps to correct.

Metrics.The pose estimation accuracy is estimated as the root mean squared error (RSME) of
predicted and ground truth 2D location and percentage of correct keypoints (PCK), the ratio of
predicted keypoints below a set threshold. We report results for thresholds ranging from 2 to 45
pixels. We also provide accumulated error histograms and the average PCK difference as the area
under the curve (AUC) of the error histogram, to analyze the consistency of the improvements.

In many cases, it is impossible, even for a human, to uniquely identify the leg identity for
Drosophila. As in [111], we therefore only evaluate the three entirely visible legs. Moreover,
we find the optimal leg assignment across the three legs at test time as PI-RSME, PI-PCK, and
PI-AUC, using the permutation invariant metric introduced in Section 3.2.3. Because the images
of the worm are front-back symmetric, we train and test by permuting keypoints front-to-back and
back-to-front. The pose estimation task lets us quantify the made improvements, both due to more
realistically generated images (image quality), as well as the preservation of correspondences
(geometric accuracy) since the lack of one would already lead to poor pose estimation.

To independently quantify the image quality, we use the structural similarity (SSIM) index
[158]. We measure the similarity between all generated images ÎB (for every IA in A) with a
pseudo-randomly sampled reference image IB .
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Figure 8 – Qualitative comparison. Existing unpaired image translation methods can generate
realistic images on worm and fish, but exhibit artifacts for the thin legs of the Drosophila and
zebrafish examples. Ours succeeds on all three classes.

Baselines.We compare to Fast-Style-Transfer [159], which combines [129, 131, 132], Cycle-
GAN [137] and Gc-GAN [151]. With the latter being a state-of-the-art method for image to
image translation and the former used to validate that simpler solutions do not succeed. We
compare pose estimation with the same architecture, trained directly on the synthetic images,
images generated by the above mentioned methods, and on manual annotations of real training
images (185 for Drosophila, 100 for worm, and 100 for fish).

3.3.1 Quality of Unpaired Image Translation

The quality of Cycle and Gc-GAN is comparable to ours on the simple worm and fish domains,
as reflected visually in Fig. 8 and quantitatively in terms of SSIM in Table 1. For Drosophila,
our method improves image quality (0.66 vs. 0.39, 0.63 and 0.65). Albeit the core of explicit
deformation was to transfer pose annotations across domains, this analysis shows that an explicit
mapping and incorporation of silhouettes regularizes and leads to improved results. For instance,
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3.3. Evaluation

Task D.M. C.E. D.E.
Fast-Style-Transfer 0.3932 0.0539 0.6385
Cycle-GAN 0.6543 0.9034 0.8504
Gc-GAN 0.6392 0.8915 0.8586
Ours 0.6619 0.9143 0.8847

Table 1 – Structured similarity (SSIM) comparison. The explicit modeling of deformation
outperforms baselines, particularly on the complex Drosophila images showing complex poses.

it ensures that thin legs of the fly are completely reconstructed and that exactly six legs are
synthesized, while Cycle-GAN and Gc-GAN hallucinate additional partial limbs.

3.3.2 Pose Domain Transformation

Fig. 9 shows that our method faithfully transfers 2D keypoints, obtained for free on synthetic
characters, to the target domain. The transferred head and tail keypoints on the worm and fish
correspond precisely to the respective locations in the synthesized images, despite having a
different position and constellation in the source. This transfer works equally well for the more
complex Drosophila case. Only occasional failures happen, such as when a leg is behind or in
front of the torso, rendering it invisible in the silhouette. Moreover, the eyes of the fish are not
well represented in the silhouette and therefore sometimes missed by our silhouette deformation
approach.

By contrast, existing solutions capture the shape shift between the two domains, but only
implicitly, thereby loosing the correspondence. Poses that are transferred one-to-one from the
source do no longer match with the keypoint location in the image. Keypoints are shifted outside
of the body, see last column of Fig. 9. The style transfer maintains the pose of the source, however,
an appearance domain mismatch remains. We show in the next section that all of the above
artifacts lead to reduced accuracy on the downstream task of pose estimation.

3.3.3 2D Pose estimation

The primary objective of this study is to demonstrate accurate keypoint detection on a target
domain for which only annotations on synthetic images with different shape and pose exist.
Fig. 11 shows qualitative results. We compare the performance of the same keypoint detector
trained on images and keypoints generated by ours and the baseline methods. The absolute errors
(tables 2 and 3) and accumulated error histograms (Fig. 10) show significant (PCK 15: 83.2 vs.
72.9 Cycle-GAN) and persistent (AUC 85.1 vs 78.4) improvements for Drosophila and the other
domains. A similar improvement is visible for the simpler worm and zebrafish datasets, with
even higher gains of up to 13 PCK points. Although there remains a gap compared to training on
real images with manual labels for small error thresholds, our method comes already close to
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Drosophila melanogaster

Metric
PI-PCK ↑
(5 pix)

PI-PCK ↑
(15 pix)

PI-AUC ↑
(4-45 pix)

PI-RMSE ↓
(pix)

Synthetic 19.8 67.9 75.75 13.456
Fast-Style-Transfer 15.4 57.6 68.9 17.309
Gc-GAN 11.9 68.7 76.3 13.175
Cycle-GAN 15.0 72.9 78.4 12.302
Ours 38.6 83.2 85.1 9.289
Supervised 72.2 88.8 90.35 6.507

Table 2 – Pose estimation accuracy comparison on Drosophila melanogaster. A similar im-
provement as for Drosophila is attained on the other tested laboratory animals, with a particularly
big improvements on the zebrafish. Pose-invariant training improves results.

Caenorhabditis elegans Danio rerio

Metric
PI-PCK ↑
(5 pix)

PI-AUC ↑
(2-20 pix)

PI-RMSE ↓
(pix)

PCK ↑
(10 pix)

AUC ↑
(2-20 pix)

RMSE ↓
(pix)

Synthetic 0.0 0.9 67.29 29.3 37.4 20.15
Fast-Style-Transfer 3.1 25.0 20.50 15.6 20.8 19.25
Gc-GAN 9.7 25.0 27.38 68.2 54.5 27.38
Cycle-GAN 45.3 63.2 14.71 68.7 59.1 9.70
Ours 64.0 70.9 11.17 85.0 72.1 7.23
Supervised 93.1 91.3 4.15 97.6 84.9 4.35

Table 3 – Pose estimation accuracy on C. elegans and D. rerio. Our method significantly
outperforms all baselines and approaches the supervised baseline. Units are given in round
brackets.
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Figure 9 – Automatic Pose Annotation. Our method faithfully transfers poses across domains,
while Cycle-GAN, the best performing baseline, loses correspondence on all three datasets.

the supervised reference method in PCK 15 and above. Compared to existing unpaired image
translation methods, we gain a large margin.

The effect of the introduced explicit and hierarchical deformation model and the two-stage
shape-separating training is analyzed independently in the following section.

3.3.4 Ablation study

We compared our full model at PCK-15 (83.2), to not using one of our core contributions: no
deformation (64.9), only global affine (57.3), only local non-linear (79.3), and directly encoding
a vector field (69.0). The numbers and Fig. 12 shows that all contributions are important. Also
end-to-end training with D I is important, as shown in Fig. 7, and by additional examples in the
supplemental document.

The additional metrics in Table 4 show that our contributions improve consistently across different
PCK thresholds.

Each of our contributions is significant with gains of 8 to 30 on PCK-15 and 4 to 14 AUC
points. Notably, using global affine deformation is worse than without any deformation. This
may be because the affine network rotates the body of synthetic fly to match the shape of real fly.
However, the rotation also affects the leg orientation, which leads to less realistic poses. It is best
to use global and local motion together (Ours).

Moreover, Fig. 13 provides additional results comparing the generated image quality with and
without using D I . Clear improvements are gained for the fish and Drosophila. For instance,
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Figure 10 – Pose estimation accuracy. The accumulated error curves show the accuracy (vertical
axis) for different PCK thresholds (horizontal axis). Our method clearly outperforms the baselines
and approaches the manually supervised reference.

legs are properly superimposed on the ball, while holes arise without D I (therefore, without
end-to-end training). No significant improvement could be observed on the worm case due to its
simplicity.

Fig. 14 provides additional examples of the image generation quality and the accuracy of the
associated keypoint annotations, inferred via our explicit deformation field.

Moreover, Fig. 15 shows additional examples of the pose estimation quality compared to using
Cycle-GAN. Our approach produces much fewer miss classifications, for instance, in the case of
extreme bending positions of the worm.

3.4 Conclusion

In this chapter, we have presented an approach for translating synthetic images to a real domain
via explicit shape and pose deformation that consistently outperforms existing image translation
methods. Our method allows us to train a pose estimator on synthetic images that generalize
to real ones; without requiring manual keypoint labels. One of our test cases is on Drosophila
tethered to a microscope used to measure neural activity. By combining our improvements on pose
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3.4. Conclusion

Figure 11 – Qualitative pose estimation results. The estimator provides decent results across
all three animals. Occasional failures (last two rows) happen when legs cross, at occlusions, and
for the fine fish tail. Training on Cycle-GAN images does not succeed.

estimation with state-of-the-art microscopy, we anticipate more rapid advances in understanding
the relationship between animal behaviour and neural activity.

For some domains the assumption of a target segmentation mask is constraining. For instance,
our method is not applicable for transferring synthetic humans to real images on cluttered
backgrounds. In the future, we plan on integrating unsupervised segmentation, as demonstrated
by [160] for single-domain image generation.

Although we could synthesize a variety of poses for the worm and fish using a single stylized
source image, our method was not able to synthesize entirely new Drosophila poses, because
crossing legs could not be modeled using a 2D image deformation. Therefore, sufficiently varied
examples were needed in the source domain. Moreover, symmetries and self-similarities can
lead to flipped limb identities. This remains a hard, open problem that we do not address in this
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Figure 12 – Ablation study. All our contributions are important, removing the global spatial
transformer leads to lower local details (bends legs), only global transformation does not cor-
rect shape and pose differences (thinner, straight legs), and predicting the vector field (not its
derivative) produces foldovers. *silhouette estimated from an unpaired target domain image.

Metric
Batch
size

PI-PCK ↑
(5 pix)

PI-PCK ↑
(15 pix)

PI-AUC ↑
(4-45 pix)

Ours 128 28.0 74.4 80.6
Ours 12 38.6 83.2 85.1
Ours w/o global deformation 12 31.4 79.2 84.0
Ours w/o deformation 12 18.5 64.9 74.9
Ours w/o local deformation 12 13.1 57.4 73.8
Ours using vector field 12 18.6 69.1 79.0

Table 4 – Detailed ablation study on Drosophila Melanogaimster. All model components
contribute to the final reconstruction accuracy. Surprisingly, a smaller batch size improved
results.

study. Nevertheless, we believe that this is an important first step and that temporal cues and
multi-view can be used to find a consistent and correct assignment in the future, following ideas
used in [105] to perform pose estimation of humans and monkeys.

The attained accuracy is not yet perfect (see bottom of Fig. 11) and can only be used to classify
gross behaviours. Additional advances are needed to obtain pixel accurate reconstructions which
would enable analysis of detailed movements, such as the activation of individual muscles.
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Figure 13 – Ablation study on D I . Without D I , small artifacts in the generated (deformed)
segmentation masks lead to unrealistic images.
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Figure 14 – Qualitative image generation results. Our approach can generate realistic and
diverse poses, which are transferred across domains faithfully. Our method works on all three
tested animals, including the Drosophila dataset with superimposed legs that are on the ball that
has no correspondence in the source domain.
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3.4. Conclusion

Figure 15 – Pose estimation result comparison. Training a pose estimator on our generated
images yields accurate detections with far less failures when compared to Cycle-GAN, the best
performing baseline. The Drosophila case is most challenging as the legs are thin and self-similar.

37





Part 4Multi-view uncalibrated 3D pose
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4.1. Introduction

Semih Günel, Helge Rhodin, Daniel Morales, Pavan Ramdya, Pascal Fua; DeepFly3D, a deep
learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila, eLife,
2019.

4.1 Introduction

The precise quantification of movements is critical for understanding how neurons, biomechanics,
and the environment influence and give rise to animal behaviors. For organisms with skeletons
and exoskeletons, these measurements are naturally made with reference to 3D joint and ap-
pendage locations. Paired with modern approaches to simultaneously record the activity of neural
populations in tethered, behaving animals [30–32], 3D joint and appendage tracking promises to
accelerate the dissection of neural control principles, particularly in the genetically tractable and
numerically simple nervous system of the fly, Drosophila melanogaster.

However, algorithms for reliably estimating 3D pose in such small Drosophila sized animals have
not yet been developed. Instead, multiple alternative approaches have been taken. For example,
one can affix and use small markers—reflective, colored, or fluorescent particles—to identify
and reconstruct keypoints from video data [161–163]. Although this approach works well on
humans [164], in smaller, textitDrosophila-sized animals markers likely hamper movements,
are difficult to mount on sub-millimeter scale limbs, and, most importantly, measurements of
one or even two markers on each leg [163] cannot fully describe 3D limb kinematics. Another
strategy has been to use computer vision techniques that operate without markers. However,
these measurements have been restricted to 2D pose in freely behaving flies. Before the advent of
deep learning, this was accomplished by matching the contours of animals seen against uniform
backgrounds [165], measuring limb tip positions using complex TIRF-based imaging [166], or
measuring limb segments using active contours [167]. In addition to being limited to 2D rather
than 3D pose, these methods are complex, time-consuming, and error-prone in the face of long
data sequences, cluttered backgrounds, fast motion, and occlusions that naturally occur when
animals are observed from a single 2D perspective.

As a result, in recent years the computer vision community has largely forsaken these techniques
in favor of deep learning-based methods. Consequently, the effectiveness of monocular 3D human
pose estimation algorithms has improved greatly. This is especially true when capturing human
movements for which there is enough annotated data to train deep networks effectively. Walking
and upright poses are prime examples of this, and state-of-the-art algorithms [8, 10, 95–100, 168–
170] now deliver impressive real-time results in uncontrolled environments. Increased robustness
to occlusions can be obtained by using multi-camera setups [98, 171–173] and triangulating the
2D detections. This improves accuracy while making it possible to eliminate false detections.

These advances in 2D pose estimation have also recently been used to measure behavior in
laboratory animals. For example, DeepLabCut provides a user-friendly interface to DeeperCut, a
state-of-the-art human pose estimation network [174], and LEAP [124] can successfully track
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limb and appendage landmarks using a shallower network. Still, 2D pose provides an incomplete
representation of animal behavior: important information can be lost due to occlusions, and
movement quantification is heavily influenced by perspective.

Approaches used to translate human 2D to 3D pose have also been applied to larger animals, like
lab mice and cheetahs, but require the use of calibration boards. These techniques cannot be
easily transferred for the study of small animals like Drosophila: adult flies are approximately
2.5 mm long and precisely registering multiple camera viewpoints using traditional approaches
would require the fabrication of a prohibitively small checkerboard pattern, along with the tedious
labor of using a small, external calibration pattern. Moreover, flies have many appendages and
joints, are translucent, and in most laboratory experiments are only illuminated using infrared
light (to avoid visual stimulation)—precluding the exploitation of color information.

To overcome these challenges, we introduce DeepFly3D, a deep learning-based software pipeline
that achieves comprehensive, rapid, and reliable 3D pose estimation in tethered, behaving adult
Drosophila (16). DeepFly3D is applied to synchronized videos acquired from multiple cameras
(24). It first uses a state-of-the-art deep network [9] and then enforces consistency across views
(20). This makes it possible to eliminate spurious detections, achieve high 3D accuracy, and
use 3D pose errors to further fine-tune the deep network to achieve even better accuracy (26).
To register the cameras, DeepFly3D uses a novel calibration mechanism in which the fly itself
is the calibration target (19). During the calibration process, we also employ sparse bundle
adjustment methods, as previously used for human pose estimation [175–177]. Thus, the user
doesn’t need to manufacture a prohibitively small calibration pattern, or repeat cumbersome
calibration protocols. We explain how users can modify the codebase to extend DeepFly3D
for 3D pose estimation in other animals (23 and see Methods). Finally, we demonstrate that
unsupervised behavioral embedding of 3D joint angle data (28) is robust against problematic
artifacts present in embeddings of 2D pose data (27). In short, DeepFly3D delivers 3D pose
estimates reliably, accurately, and with minimal manual intervention while also providing a
critical tool for automated behavioral data analysis.

4.2 Method

With synchronized Drosophila video sequences from seven cameras in hand, the first task for
DeepFly3D is to detect the 2D location of 38 landmarks. These 2D locations of the same
landmarks seen across multiple views are then triangulated to produce 3D pose estimates. This
pipeline is depicted in 17. First, we will describe our deep learning-based approach to detect land-
marks in images. Then, we will explain the triangulation process that yields full 3D trajectories.
Finally, we will describe how we identify and correct erroneous 2D detections automatically.

Deep Network Architecture. We aim to detect five joints on each limb, six on the abdomen,
and one on each antenna, giving a total of 38 keypoints per time instance. To achieve this, we
adapted a state-of-the-art Stacked Hourglass human pose estimation network [9] by changing the
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4.2. Method

Figure 16 – Deriving 3D pose from multiple camera views. (A) Raw image inputs to the Stacked
Hourglass deep network. (B) Probability maps output from the trained deep network. For
visualization purposes, multiple probability maps have been overlaid for each camera view. (C)
2D pose estimates from the Stacked Hourglass deep network after applying pictorial structures
and multi-view algorithms. (D) 3D pose derived from combining multiple camera views. For
visualization purposes, the 3D pose has been projected onto the original 2D camera perspectives.
(E) 3D pose rendered in 3D coordinates. Immobile thorax-coxa joints and antennal joints have
been removed for clarity.

input and output layers to accommodate a new input image resolution and a different number
of tracked points. A single hourglass stack consists of residual bottleneck modules with max
pooling, followed by up-sampling layers and skip connections. The first hourglass network begins
with a convolutional layer and a pooling layer to reduce the input image size from 256×512 to
64×128 pixels. The remaining hourglass input and output tensors are 64×128. We used 8 stacks
of hourglasses in our final implementation. The output of the network is a stack of probability
maps, also known as heatmaps or confidence maps. Each probability map encodes the location of
one keypoint, as the belief of the network that a given pixel contains that particular tracked point.
However, probability maps do not formally define a probability distribution: their sum over all
pixels does not equal 1.

2D pose training dataset. We trained our network for 19 keypoints, resulting in the tracking
of 38 points when both sides of the fly are accounted for. Determining which images to use for
training purposes is critical. The intuitively simple approach—training with randomly selected
images—may lead to only marginal improvements in overall network performance. This is
because images for which network predictions can already be correctly made give rise to only
small gradients during training. On the other hand, manually identifying images that may lead to
incorrect network predictions is highly laborious. Therefore, to identify such challenging images,
we exploited the redundancy of having multiple camera views (see section 3D pose correction).
Outliers in individual camera images were corrected automatically using images from other
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Figure 17 – The DeepFly3D pose estimation pipeline. (A) Data acquisition from the multi-camera
system. (B) Training and retraining of 2D pose. (C) 3D pose estimation.

cameras, and frames that still exhibited large reprojection errors on multiple camera views were
selected for manual annotation and network retraining. This combination of self supervision and
active learning permits faster training using a smaller manually annotated dataset [173]. The
full annotation and iterative training pipeline is illustrated in 17. In total, 40,063 images were
annotated: 5,063 were labeled manually in the first iteration, 29,000 by automatic correction, and
6,000 by manually correcting those proposed by the active learning strategy.

Deep network training procedure. We trained our Stacked Hourglass network to regress from
256×512 pixel grayscale video images to multiple 64×128 probability maps. Specifically, during
training and testing, networks output a 19×64×128 tensor; one 64×128 probability map per
tracked point. During training, we created probability maps by embedding a 2D Gaussian with
mean at the ground-truth point and 1px symmetrical extent, i.e., with σ= 1px on the diagonal of
the covariance matrix. We calculated the loss as the L2 distance between the ground-truth and
predicted probability maps. During testing, the final network prediction for a given point was
the probability map pixel with maximum probability. We started with a learning rate of 0.0001

and then multiplied the learning rate by a factor of 0.1 once the loss function plateaued for more
than 5 epochs. We used an RMSPROP optimizer for gradient descent, following the original
Stacked Hourglass implementation, with a batch-size of 8 images. Using 37,000 training images,
the Stacked Hourglass network usually converges to a local minimum after 100 epochs (20 hours
on a single GPU).
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4.2. Method

Network training details. Variations in each fly’s position across experiments are handled by
the translational invariance of the convolution operation. In addition, we artificially augment
training images to improve network generalization for further image variables. These variables
include (i) illumination conditions – we randomly changed the brightness of images using a
gamma transformation, (ii) scale – we randomly rescaled images between 0.80x - 1.20x, and
(iii) rotation – we randomly rotated images and corresponding probability maps ±15◦. This
augmentation was enough to compensate for real differences in the size and orientation of tethered
flies across experiments. Furthermore, as per general practice, the mean channel intensity was
subtracted from each input image to distribute annotations symmetrically around zero. We
began network training using pretrained weights from the MPII human pose dataset [89]. This
dataset consists of more than 25,000 images with 40,000 annotations, possibly with multiple
ground-truth human pose labels per image. Starting with a pretrained network results in faster
convergence. However, in our experience, this does not affect final network accuracy in cases with
a large amount of training data. We split the dataset into 37,000 training images, 2,063 testing
images, and 1,000 validation images. None of these subsets shared common images or common
animals, to ensure that the network could generalize across animals, and experimental setups.
5,063 of our training images were manually annotated, and the remaining data were automatically
collected using belief propagation, graphical models, and active learning, (see section 3D pose
correction). Deep neural network parameters need to be trained on a dataset with manually
annotated ground-truth key point positions. To initialize the network, we collected annotations
using a custom multicamera annotation tool that we implemented in JavaScript using Google
Firebase (18). The DeepFly3D annotation tool operates on a simple web-server, easing the
distribution of annotations across users and making these annotations much easier to inspect and
control. We provide a GUI to inspect the raw annotated data and to visualize the network’s 2D
pose estimation (21).

Computing hardware and software. We trained our model on a desktop computing workstation
running on an Intel Core i9-7900X CPU, 32 GB of DDR4 RAM, and a GeForce GTX 1080. With
37,000 manually and automatically labeled images, training takes nearly 20 hours on a single
GeForce GTX 1080 GPU. Our code is implemented with Python 3.6, Pytorch 0.4 and CUDA 9.2.
Using this desktop configuration, our network can run at 100 Frames-Per-Second (FPS) using
the 8-stack variant of the Hourglass network, and can run at 420 FPS using the smaller 2-stack
version. Thanks to an effective initialization step, calibration takes 3-4 s. Error checking and
error correction can be performed at 100 FPS and 10 FPS, respectively. Error correction is only
performed in response to large reprojection errors, and does not create a bottleneck in the overall
speed of the pipeline.

Accuracy analysis. Consistent with the human pose estimation literature, we report accuracy
as Percentage of Correct Keypoints (PCK) and Root Mean Squared Error (RMSE). PCK refers
to the percentage of detected points lying within a specific radius from the ground-truth label.
We set this threshold as 50 pixels, which is roughly one third of the 3D length of the femur. The
final estimated position of each keypoint was obtained by selecting the pixel with the largest
probability value on the relevant probability map. We compared DeepFly3D’s annotations with
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Figure 18 – The DeepFly3D annotation tool. This GUI allows the user to manually annotate
joint positions on images from each of 7 cameras. Because this tool can be accessed from
a web browser, annotations can be performed in a distributed manner across multiple users
more easily. A full description of the annotation tool can be found in the online documentation:
https://github.com/NeLy-EPFL/DeepFly3D. Scale bar is 50 pixels.

manually annotated ground-truth labels to test our model’s accuracy. For RMSE, we report
the square root of average pixel distance between the prediction and the ground-truth location
of the tracked point. We remove trivial points such as the body-coxa and coxa-femur—which
remain relatively stationary—to fairly evaluate our algorithms and to prevent these points from
dominating our accuracy measurements.

4.2.1 From 2D landmarks to 3D trajectories

In the previous section, we described our approach to detect 38 2D landmarks. Let xc, j ∈ R2

denote the 2D position of landmark j and the image acquired by camera c. For each landmark,
our task is now to estimate the corresponding 3D position, X j ∈ R3. To accomplish this, we
used triangulation and bundle-adjustment [12] to compute 3D locations, and we used pictorial
structures [178] to enforce geometric consistency and to eliminate potential errors caused by
misdetections. We present these steps below.
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4.2. Method

Pinhole camera model. The first step is to model the projection operation that relates a specific
X j to its seven projections in each camera view xc, j . To make this easier, we follow standard
practice and convert all Cartesian coordinates

[
xc , yc , zc

]
to homogeneous ones

[
xh , yh , zh , s

]
such that xc = xh/s, yc = yh/s, zc = zh/s. From now on, we will assume that all points are
expressed in homogeneous coordinates and omit the h subscript. Assuming that these coordinates
are expressed in a coordinate system whose origin is in the optical center of the camera and whose
z-axis is its optical axis, the 2D image projection

[
u, v

]
of a 3D homogeneous point

[
x, y, z,1

]
can be written as

u =U /W ,

v =V /W ,U

V

W

= K


x

y

z

1

 , with K =

 fx 0 cx 0

0 fy cy 0

0 0 1 0

 , (7)

where the 3×4 matrix K is known as the intrinsic parameters matrix—scaling in the x and y

direction and image coordinates of the principal point cx and cy —that characterizes the camera
settings.

In practice, the 3D points are not expressed in a coordinate system tied to the camera, especially
in our application where we use seven different cameras. Therefore, we use a world coordinate
system that is common to all cameras. For each camera, we must therefore convert 3D coordinates
expressed in this world coordinate system to camera coordinates. This requires rotating and
translating the coordinates to account for the position of the camera’s optical center and its
orientation. When using homogeneous coordinates, this is accomplished by multiplying the
coordinate vector by a 4×4 extrinsic parameters matrix

M =
[

R T

0 1

]
, (8)

where R is a 3×3 rotation matrix and T a 3×1 translation vector. Combining 7 and 8 yields

u =U /W ,

v =V /W ,U

V

W

= P


x

y

z

1

 , where P = MK is a 3×4 matrix. (9)

Camera distortion. The pinhole camera model described above is an idealized one. The
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projections of real cameras deviate from it and these deviations are referred to as distortions and
need to be accounted for. The most significant one is known as radial distortion because the error
grows with the distance to the image center. For the cameras we use, radial distortion can be
expressed as

u pinhole = u
(
1+kx

1 r2 +kx
2 r4) , (10)

v pinhole = v
(
1+ky

1 r2 +ky
2 r4) ,

where
[

u, v
]

is the actual projection of a 3D point and
[

u pinhole , v pinhole

]
is the one the pinhole

model predicts. In other words, the four parameters {kx
1 ,kx

2 ,k y
1 ,k y

2 } characterize the distortion.
From now on, we will therefore write the full projection as

X =π(x) = fd ( fp (x)) , (11)

X =
[

x, y, z
]

,

x =
[

u, v
]

,

where fp denotes the ideal pinhole projection of 9 and fd the correction of 10.

Triangulation. We can associate to each of the seven cameras a projection function πc like the
one in 11, where c is the camera number. Given a 3D point and its projections xc in the images,
its 3D coordinates can be estimated by minimizing the reprojection error

argmin
X∈R4

7∑
c=1

ec‖πc (X)−xc‖2
2 , (12)

where ec is one if the point was visible in image c and zero otherwise. In the absence of camera
distortion, that is, when the projection π is a purely linear operation in homogeneous coordinates,
this can be done for any number of cameras by solving a Singular Value Decomposition (SVD)
problem [12]. In the presence of distortions, we replace the observed u and v coordinates of the
projections by the corresponding u pinhole and u pinhole values of 11 before performing the SVD.

Camera calibration. Triangulating as described above requires knowing the projection matrices
Pc of 9 for each camera c, corresponding distortion parameters {kx

1 ,kx
2 ,k y

1 ,k y
2 } of 10, together

with the intrinsic parameters of focal length and principal point offset. In practice, we use the
focal length and principal point offset provided by the manufacturer and estimate the remaining
parameters automatically: the three translations and three rotations for each camera that define
the corresponding matrix M of extrinsic parameters along with the distortion parameters.

To avoid having to design the exceedingly small calibration pattern that more traditional methods
use to estimate these parameters, we use the fly itself as calibration pattern and minimize the
reprojection error of 12 for all joints simultaneously while allowing the camera parameters to
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4.2. Method

also change. In other words we look for

argmin

πc 1≤c≤7

Xj1≤ j≤m

7∑
c=1

m∑
j=1

ec, jρ(πc (X j )−xc, j ), (13)

where Xj and xc, j are the 3D locations and 2D projections of the landmarks introduced above and
ρ denotes the Huber loss. 13 is known as bundle-adjustment [12]. Huber loss is defined as

ρδ(a) =
{

1
2 a2 for |a| ≤ δ
δ

(|a|− 1
2δ

)
otherwise

.

Replacing the squared loss by the Huber loss makes our approach more robust to erroneous
detections xc, j . We empirically set δ to 20 pixels. Note that we perform this minimization
with respect to ten degrees-of-freedom per camera: three translations, three rotations, and four
distortions.

For this optimization to work properly, we need to initialize these ten parameters and we need
to reduce the number of outliers. To achieve this, the initial distortion parameters are set to
zero. We also produce initial estimates for the three rotation and three translation parameters by
measuring the distances between adjacent cameras and their relative orientations. To initialize
the rotation and translation vectors, we measure the distance and the angle between adjacent
cameras, from which we infer rough initial estimates. Finally, we rely on epipolar geometry [12]
to automate outlier rejection. Because the cameras form a rough circle and look inward, the
epipolar lines are close to being horizontal. Thus, corresponding 2D projections must belong to
the same image rows, or at most a few pixels higher or lower. In practice, this means checking if
all 2D predictions lie in nearly the same rows and discarding a priori those that do not.

4.2.2 3D pose correction

The triangulation procedure described above can produce erroneous results where the 2D estimates
of landmarks are wrong. Additionally, it may result in implausible 3D poses for the entire animal
because it treats each joint independently. To enforce more global geometric constraints, we
rely on pictorial structures [178] as described in 20. Pictorial structures encode the relationship
between a set of variables (in this case the 3D location of separate tracked points) in a probabilistic
setting using a graphical model. This makes it possible to consider multiple 2D locations xc, j for
each landmark Xc instead of only one. This increases the likelihood of finding the true 3D pose.

Generating multiple candidates. Instead of selecting landmarks as the locations with the
maximum probability in maps output by our Stacked Hourglass network, we generate multiple
candidate 2D landmark locations xc, j . From each probability map, we select ten local probability
maxima that are at least one pixel apart from one another. Then, we generate 3D candidates by
triangulating 2D candidates in every tuple of cameras. Because a single point is visible from at
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most four cameras, this results in at most
(4

2

)×102 candidates for each tracked point.

Choosing the best candidates. To identify the best subset of resulting 3D locations, we introduce
the probability distribution P (L|I ,θ) that assigns a probability to each solution L, consisting of
38 sets of 2D points observed from each camera. Our goal is then to find the most likely one.
More formally, P represents the likelihood of a set of tracked points L, given the images, model
parameters, camera calibration, and geometric constraints. In our formulation, I denotes the seven
camera images I = {Ic }1≤c≤7 and θ represents the set of projection functions πc for camera c

along with a set of length distributions Si , j between each pair of points i and j that are connected
by a limb. L consists of a set of tracked points {Li }1≤i≤n , where each Li describes a set of 2D
observations li ,c from multiple camera views. These are used to triangulate the corresponding 3D
point locations li . If the set of 2D observations is incomplete, as some points are totally occluded
in some camera views, we triangulate the 3D point l i using the available ones and replace the
missing observations by projecting the recovered 3D positions into the images, πc (l i ) in 9. In the
end, we aim to find the solution L̂ = argmaxL P (L|I ,θ). This is known as Maximum a Posteriori
(MAP) estimation. Using Bayes rule, we write

P (L|I ,θ) ∝ P (I |L,θ)P (L|θ) , (14)

where the two terms can be computed separately. We compute P (I |J ,θ) using the probability
maps H j ,c generated by the Stacked Hourglass network for the tracked point j for camera c. For
a single joint j seen by camera c, we model the likelihood of observing that particular point
using P (H j ,c |l j ,c ), which can be directly read from the probability maps as the pixel intensity.
Ignoring the dependency between the cameras, we write the overall likelihood as the product of
the individual likelihood terms

P (I |L,θ) = P (H |L) ∝
n∏

i=1

7∏
c=1

P (H j ,c |li ,c ) ,

which can be read directly from the probability maps as pixel intensities and represent the
network’s confidence that a particular keypoint is located at a particular pixel. When a point is
not visible from a particular camera, we assume the probability map only contains a constant
non-zero probability, which does not effect the final solution. We express P (L|θ) as

P (L|θ) = P (L|π,S) = ∏
(i , j)∈E

P
(
l i , l j |Si , j

) n∏
j=1

7∏
c=1

ec, j‖πc (l j )− lc, j‖−1
2 ,

where pairwise dependencies P
(
l i , l j |Si , j

)
between two variables respect the segment length

constraint when the variables are connected by a limb. The length of segments defined by pairs
of connected 3D points follows a normal distribution. Specifically, we model P

(
l i , l j |Si , j

)
as

Si , j (l i , l j ) =N (‖l i − l j‖−µi , j ,σi , j ). We model the reprojection error for a particular point j as∏7
c=1 ec, j‖πc (l j )− lc, j‖−1

2 which is set to zero using the variable ec, j denoting the visibility of the
point j from camera c. If a 2D observation for a particular camera is manually set by a user with
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4.2. Method

the DeepFly3D GUI, we take it to be the only possible candidate for that particular image and we
set P (L j |H) to 1, where j denotes the manually assigned pixel location.

Solving the MAP problem using the Max-Sum algorithm. For general graphs, MAP estima-
tion with pairwise dependencies is NP-hard and therefore intractable. However, in the specific
case of non-cyclical graphs, it is possible to solve the inference problem using belief propagation
[179]. Since the fly’s skeleton has a root and contains no loops, we can use a message passing
approach [178]. It is closely related to Viterbi recurrence and propagates the unary probabilities
P (L j |Li ) between the edges of the graph starting from the root and ending at the leaf nodes.
This first propagation ends with the computation of the marginal distribution for the leaf node
variables. During the subsequent backward iteration, as P (L j ) for leaf node is computed, the
point L j with maximum posterior probability is selected in O(k) time, where k is the upper
bound on the number of proposals for a single tracked point. Next, the distribution P (Li |L j ) is
calculated, adjacent nodes for the leaf node. Continuing this process on all of the remaining
points results in a MAP solution for the overall distribution P (L), as shown in 20, with overall
O(k2) computational complexity.

Learning the parameters. We learn the parameters for the set of pairwise distributions Si , j

using a maximum likelihood process and assuming the distributions to be Gaussian. We model
the segment length Si , j as the euclidean distance between the points l j and l j . We then solve for
argmaxS P (S|L,θ), assuming segments have a Gaussian distribution resulting from the Gaussian
noise in point observations L. This gives us the mean and variance, defining each distribution
Si . j . We exclude the same points that we removed from the calibration procedure, that exhibit
high reprojection error.

In practice, we observe a large variance for pretarsus values. This is because occlusions occa-
sionally shorten visible tarsal segments. To eliminate the resulting bias, we treat these limbs
differently from the others and model the distribution of tibia-tarsus and tarsus-tip points as a
Beta distribution, with parameters found using a similar Maximum Likelihood Estimator (MLE)
formulation. Assuming the observation errors to be Gaussian and zero-centered, the bundle
adjustment procedure can also be understood as an MLE of the calibration parameters [176].
Therefore, the entire set of parameters for the formulation can be learned using MLE. Thus, prior
information about potentially occluded targets can be used to guide inference. For example, in a
head-fixed rodent, the left eye may not always be visible from the right-side of the animal. This
information can be incorporated into DeepFly3D’s inference system in the file, ‘skeleton.py’, by
editing the function ‘camera_see_joint’. Afterwards, predictions from occluded cameras will not
be used to triangulate a given 3D point. If no such information is provided, every prediction will
be used to triangulate a given 3D point.

The pictorial structure formulation can be further expanded using temporal information, penaliz-
ing large movements of a single tracked point between two consecutive frames. However, we
abstained from using temporal information more extensively for several reasons. First, temporal
dependencies would introduce loops in our pictorial structures, thus making exact inference
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NP-hard as discussed above. This can be handled using loopy belief propagation algorithms [180]
but requires multiple message passing rounds, which prevents real-time inference without any
theoretical guarantee of optimal inference. Second, the rapidity of Drosophila limb movements
makes it hard to assign temporal constraints, even with fast video recording. Finally, we em-
pirically observed that the current formulation, enforcing structured poses in a single temporal
frame, already eliminates an overwhelming majority of false-positives inferred during the pose
estimation stage of the algorithm.

Modifying DeepFly3D to study other animals. As DeepFly3D does not assume a circular
camera arrangement or that there is one degree of freedom in the camera network, it could
easily be adapted for 3D pose estimation in other animals, ranging from rodents to primates and
humans (23). We illustrate this flexibility by using DeepFly3D to capture human 3D pose in the
Human 3.6M Dataset (http://vision.imar.ro/human3.6m/description.php), a very popular, publicly
available computer vision benchmarking dataset generated using four synchronized cameras [29,
181].

Generally, for any new dataset, the user first needs to provide an initial set of manual annotations.
The user would describe the number of tracked points and their relationships to one another
in a python setup file. Then, in a configuration file, the user specify the number of cameras
along with the resolutions of input images and output probability maps. DeepFly3D will then
use these initial manual annotations to (i) train the 2D Stacked Hourglass network, (ii) perform
camera calibration without an external calibration pattern, (iii) learn the epipolar geometry to
perform outlier detection, and (iv) learn the segment length distributions Si , j . After this initial
bootstrapping, DeepFly3D can be then used with pictorial structures and active learning to
iteratively improve pose estimation accuracy.

The initial manual annotations can be performed using the DeepFly3D Annotation GUI. After-
wards, these annotations can be downloaded from the Annotation GUI as a CSV file using the
Save button (18). Once the CSV file is placed in the images folder, DeepFly3D will automatically
read and display the annotations. To train the Stacked Hourglass network, use the csv-path
flag while running pose2d.py (found in deepfly/pose2d). DeepFly3D will then train the Stacked
Hourglass network by performing transfer learning using the large MPII dataset and the smaller
set of user manual annotations.

To perform camera calibration, the user should select the Calibration button on the GUI 21.
DeepFly3D will then perform bundle adjustment (13) and save the camera parameters in calibra-
tion.pickle (found in the images folder). The path of this file should then be added to Config.py to
initialize calibration. These initial calibration parameters will then be used in further experiments
for fast and accurate convergence. If the number of annotations is insufficient for accurate
calibration, or if bundle adjustment is converging too slowly, an initial rough estimate of the
camera locations can be set in Config.py. As long as a calibration is set in Config.py, DeepFly3D
will use it as a projection matrix to calculate the epipolar geometry between cameras. This step is
necessary to perform outlier detection on further calibration operations.
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4.2. Method

DeepFly3D will also learn the distribution Si , j , whose non-zero entries are found in skeleton.py.
One can easily calculate these segment length distribution parameters using the functions provided
with DeepFly3D. CameraNetwork class (found under deepfly/GUI/), will then automatically
load the points and calibration parameters from the images folder. The function CameraNet-
work.triangulate will convert 2D annotation points into 3D points using the calibration parameters.
The Si , j parameters can then be saved using the pickle library (the save path can be set in Con-
fig.py). The calcBoneParams method will then output the segment lengths’ mean and variance.
These values will then be used with pictorial structures (14).

We provide further technical details for how to adapt DeepFly3D to other multi-view datasets
online 1.

4.2.3 Experimental setup

We positioned seven Basler acA1920-155um cameras (FUJIFILM AG, Niederhaslistrasse,
Switzerland) 94 mm away from the tethered fly, resulting in a circular camera network with
the animal in the center (24). We acquired 960×480 pixel video data at 100 FPS under 850
nm infrared ring light illumination (Stemmer Imaging, Pfäffikon Switzerland). Cameras were
mounted with 94 mm W.D. / 1.00x InfiniStix lenses (Infinity Photo-Optical GmbH, Göttingen).
Optogenetic stimulation LED light was filtered out using 700 nm longpass optical filters (Edmund
Optics, York UK). Each camera’s depth of field was increased using 5.8 mm aperture retainers
(Infinity Photo-Optical GmbH). To automate the timing of optogenetic LED stimulation and
camera acquisition triggering, we use an Arduino (Arduino, Sommerville MA USA) and custom
software written using the Basler camera API.

We assessed the optimal number of cameras for DeepFly3D and concluded that increasing the
number of cameras increases accuracy by stabilizing triangulation. Specifically, we observed
the following. (i) Calibration is not a significant source of error: calibrating with fewer than 7
cameras does not dramatically increase estimation error. (ii) Having more cameras improves
triangulation. Reducing the number of cameras down to four, even having calibrated with 7
cameras, results in an increase of 0.05 mm triangulation error. This may be because the camera
views are sufficiently different, having largely non-overlapping 2D-detection failure cases. Thus,
the redundancy provided by having more cameras mitigates detection errors by finding a 3D pose
that is consistent across at least two camera views.

Drosophila transgenic lines. UAS-CsChrimson [182] animals were obtained from the Bloom-
ington Stock Center (Stock #55135). MDN-1-Gal4 [183] (VT44845-DBD; VT50660-AD) was
provided by B. Dickson (Janelia Research Campus, Ashburn USA). aDN-Gal4 [184](R76F12-
AD; R18C11-DBD), was provided by J. Simpson (University of California, Santa Barbara USA).
Wild-type, PR animals were provided by M. Dickinson (California Institute of Technology,
Pasadena USA).

1https://github.com/NeLy-EPFL/DeepFly3D
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Optogenetic stimulation experiments. Experiments were performed in the late morning or
early afternoon Zeitgeber time (Z.T.), inside a dark imaging chamber. An adult female animal
2-3 days-post-eclosion (dpe), was mounted onto a custom stage [32] and allowed to acclimate for
5 minutes on an air-supported spherical treadmill [32]. Optogenetic stimulation was performed
using a 617 nm LED (Thorlabs, Newton, NJ USA) pointed at the dorsal thorax through a hole
in the stage, and focused with a lens (LA1951, 01” f = 25.4 mm, Thorlabs, Newton, NJ USA).
Tethered flies were otherwise allowed to behave spontaneously. Data were acquired in 9 s epochs:
2 s baseline, 5 s with optogenetic illumination, and 2 s without stimulation. Individual flies were
recorded for 5 trials each, with one-minute intervals. Data were excluded from analysis if flies
pushed their abdomens onto the spherical treadmill—interfering with limb movements—or if flies
struggled during optogenetic stimulation, pushing their forelimbs onto the stage for prolonged
periods of time.

4.2.4 Unsupervised behavioral classification

To create unsupervised embeddings of behavioral data, we mostly followed the approach taken
by [163, 185]. We smoothed 3D pose traces using a 1euro filter. Then we converted them into
angles to achieve scale and translational invariance [186]. Angles were calculated by taking
the dot product from sets of three connected 3D positions. For the antenna, we calculated the
angle of the line defined by two antennal points with respect to the ground-plane. This way, we
generated four angles per leg (two body-coxa, one coxa-femur, and one femur-tibia), two angles
for the abdomen (top and bottom abdominal stripes), and a single angle for the antennae (head
tilt with respect to the axis of gravity). In total, we obtained a set of 20 angles, extracted from 38
3D points.

We transformed angular time series using a Continous Wavelet Transform (CWT) to create a
posture-dynamics space. We used the Morlet Wavelet as the mother wavelet, given its suitability
to isolate periodic chirps of motion. We chose 25 wavelet scales to match dyadically spaced
center frequencies between 5Hz and 50Hz. Then, we calculatd spectrograms for each postural
time-series by taking the magnitudes of the wavelet coefficients. This yields a 20×25 = 500-
dimensional time-series, which was then normalized over all frequency channels to unit length,
at each time instance. Then, we could treat each feature vector from each time instance as a
distribution over all frequency channels.

Later, from the posture-dynamics space, we computed a two-dimensional representation of
behavior by using the non-linear embedding algorithm, t-SNE [187]. t-SNE embedded our high-
dimensional posture-dynamics space onto a 2D plane, while preserving the high-dimensional
local structure, while sacrificing larger scale accuracy. We used the Kullback–Leibler (KL)
divergence as the distance function in our t-SNE algorithm. KL assesses the difference between
the shapes of two distributions, justifying the normalization step in the preceding step. By
analyzing a multitude of plots generated with different perplexity values, we empirically found
perplexity 35 to best suit the features of our posture-dynamics space.
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From this generated discrete space, we created a continuous 2D distribution, that we could
then segment into behavioral clusters. We started by normalizing the 2D t-SNE projected space
into a 1000×1000 matrix. Then, we applied a 2D Gaussian convolution with a kernel of size
σ= 10px. Finally, we segmented this space by inverting it and applying a Watershed algorithm
that separated adjacent basins, yielding a behavioral map.

4.3 Evaluation

4.3.1 DeepFly3D

The input to DeepFly3D is video data from seven cameras (24). These images are used to identify
the 3D positions of 38 landmarks per animal: (i) five on each limb – the thorax-coxa, coxa-femur,
femur-tibia, and tibia-tarsus joints as well as the pretarsus, (ii) six on the abdomen - three on
each side, and (iii) one on each antenna - useful for measuring head rotations. Our software
incorporates a number of innovations designed to ensure automated, high-fidelity, and reliable
3D pose estimation:

Calibration without an external calibration pattern: Estimating 3D pose from multiple im-
ages requires calibrating the cameras to achieve a level of accuracy that is commensurate with
the target size—a difficult challenge when measuring leg movements for an animal as small
as Drosophila. Therefore, instead of using a typical external calibration grid, DeepFly3D uses
the fly itself as a calibration target. It detects arbitrary points on the fly’s body and relies on
bundle-adjustment [188] to simultaneously assign 3D locations to these points and to estimate
the positions and orientations of each camera (19). To increase robustness, it enforces geometric
constraints that apply to tethered flies with respect to limb segment lengths and ranges of motion.

Geometrically consistent reconstructions: Starting with a state-of-the-art deep network for
2D keypoint detection in individual images [9], DeepFly3D enforces geometric consistency
constraints across multiple synchronized camera views. When triangulating 2D detections to
produce 3D joint locations, it relies on pictorial structures and belief propagation message
passing [178] to detect and further correct erroneous pose estimates (20).

Self-supervision and active learning: We also use multiple view geometry as a basis for active
learning. Thanks to the redundancy inherent in obtaining multiple views of the same animal,
we can detect erroneous 2D predictions for correction (22) that would most efficiently train the
2D pose deep network. This approach greatly reduces the need for time-consuming manual
labeling [173]. We also use pictorial structure corrections to fine-tune the 2D pose deep network.
Self-supervision constitutes 85% of our training data.
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4.3.2 2D pose performance and improvement using pictorial structures

We validated our approach using a challenging dataset of 2063 image frames manually annotated
using the DeepFly3D annotation tool (18) and sampled uniformly from each camera. Images
for testing and training were 480×960 pixels. The test dataset included challenging frames and
occasional motion blur to increase the difficulty of pose estimation. For training, we used a final
training dataset of 37,000 frames, an overwhelming majority of which were first automatically
corrected using pictorial structures. On test data, we achieved a Root Mean Square Error (RMSE)
of 13.9 pixels. Compared with a ground truth RMSE of 12.4 pixels – via manual annotation of
210 images by a new human expert – our Network Annotation / Manual Annotation ratio of 1.12

(13.9 pixels / 12.4 pixels) is similar to another state-of-the-art network [174]: 1.07 (2.88 pixels /
2.69 pixels). Setting a 50 pixel threshold (approximately one third the length of a femur) for PCK
(percentage of correct keypoints) computation, we observed a 98.2% general accuracy before
applying pictorial structures. Notably, if we reduced our threshold to 30 or 20 pixels, we could
still achieve 95% or 89% accuracy, respectively (25A).

To test the performance of the network in a low data regime, we trained a two-stacked network
using ground-truth annotations data from 7 cameras (25B). We compared the results to an
asymptotic prediction error (i.e., the error observed when the network is trained using the full
dataset of 40,000 annotated images) and to the variability observed in human annotations of
210 randomly selected images. We measured an asymptotic MAE (mean absolute error) of 10.5
pixels and a human variability MAE of 9.2 pixels. With 800 annotations, our network achieved
a similar accuracy to manual annotation and was near the asymptotic prediction error. Further
annotation yielded diminishing returns.

Although our network achieves high accuracy, the error is not isotropic (25C). The tarsus tips
exhibited larger error than the other joints, perhaps due to occlusions from the spherical treadmill,
and higher positional variance. Increased error observed for body-coxa joints might be due to the
difficulty of annotating these landmarks from certain camera views.

To correct the residual errors, we applied pictorial structures. This strategy fixed 59% of the
remaining erroneous predictions, increasing the final accuracy to 99.2%, from 98.2%. These
improvements are illustrated in 26. Pictorial structure failures were often due to pose ambiguities
resulting from heavy motion blur. These remaining errors were automatically detected with
multi-view redundancy using 12, and earmarked for manual correction using the DeepFly3D
GUI (21).

4.3.3 3D pose permits robust unsupervised behavioral classification

Unsupervised behavioral classification approaches enable the unbiased quantification of animal
behavior by processing data features—image pixel intensities [185, 189], limb markers [163], or
2D pose [124]—to cluster similar behavioral epochs without user intervention and to automatically
distinguish between otherwise similar actions. However, with this sensitivity may come a

56



4.4. Conclusion

susceptibility to features unrelated to behavior. These may include changes in image size or
perspective resulting from differences in camera angle across experimental systems, variable
mounting of tethered animals, and inter-animal morphological variability. In theory, each of these
issues can be overcome—providing scale and rotational invariance—by using 3D joint angles
rather than 2D pose for unsupervised embedding.

To test this possibility, we performed unsupervised behavioral classification on video data
taken during optogenetic stimulation experiments that repeatedly and reliably drove specific
actions. Specifically, we optically activated CsChrimson [190] to elicit backward walking in
MDN>CsChrimson animals (28sv1) [183], or antennal grooming in aDN>CsChrimson ani-
mals (28sv2) [184]. We also stimulated control animals lacking the UAS-CsChrimson transgene
(28sv3)(MDN-GAL4/+ and aDN-GAL4/+). First, we performed unsupervised behavioral classi-
fication using 2D pose data from three adjacent cameras containing keypoints for three limbs
on one side of the body. Using these data, we generated a behavioral map (27A). In this map
each individual cluster would ideally represent a single behavior (e.g., backward walking, or
grooming) and be populated by nearly equal amounts of data from each of the three cameras.
This was not the case: data from each camera covered non-overlapping regions and clusters
(27B-D). This effect was most pronounced when comparing regions populated by cameras 1
and 2 versus camera 3. Therefore, because the underlying behaviors were otherwise identical
(data across cameras were from the same animals and experimental time points), we concluded
that unsupervised behavioral classification of 2D pose data is highly sensitive to corruption by
viewing angle differences.

By contrast, performing unsupervised behavioral classification using DeepFly3D-derived 3D
joint angles resulted in a map (28) with clear segregation and enrichment of clusters for different
GAL4 drivers lines and their associated behaviors (i.e., backward walking, grooming, and forward
walking. Thus, 3D pose overcomes serious issues arising from the unsupervised embedding of
2D pose data, enabling more reliable and robust behavioral data analysis.

4.4 Conclusion

We have developed DeepFly3D, a deep learning-based 3D pose estimation system that is opti-
mized for quantifying limb and appendage movements in tethered, behaving Drosophila. By
using multiple synchronized cameras and exploiting multiview redundancy, our software delivers
robust and accurate pose estimation at the sub-millimeter scale. Ultimately, we may work solely
with monocular images by lifting the 2D detections [98] to 3D or by directly regressing to
3D [170] as has been achieved in human pose estimation studies. Our approach relies on super-
vised deep learning to train a neural network that detects 2D joint locations in individual camera
images. Importantly, our network becomes increasingly competent as it runs: By leveraging the
redundancy inherent to a multiple-camera setup, we iteratively reproject 3D pose to automatically
detect and correct 2D errors, and then use these corrections to further train the network without
user intervention.
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None of the techniques we have put together—an approach for multiple-camera calibration
that uses the animal itself rather than an external apparatus, an iterative approach to inferring
3D pose using graphical models as well as optimization based on dynamic programming and
belief propagation, and a graphical user interface and active learning policy for interacting with,
annotating, and correcting 3D pose data—are fly-specific. They could easily be adapted to other
limbed creatures, from mice to primates and humans. The only thing that would have to change
significantly are the dimensions of the setup. This would remove the need to deal with the very
small scales that Drosophila requires and would, in practice, make things easier. In the Methods
section, we explain in detail how organism-specific features of DeepFly3D—bone segment length,
number of legs, and camera focal distance—can be modified to study, for example, humans (23),
primates, rodents, or other insects.

As in the past, we anticipate that the development of new technologies for quantifying behavior
will open new avenues and enhance existing lines of investigation. For example, deriving 3D
pose using DeepFly3D can improve the resolution of studies examining how neuronal stimulation
influences animal behavior [189, 191], the precision and predictive power of efforts to define
natural action sequences [191, 192], the assessment of interventions that target models of human
disease [193, 194], and the linking of neural activity with animal behavior—when coupled with
recording technologies like 2-photon microscopy [31, 32]. Importantly, 3D pose dramatically
improves the robustness of unsupervised behavioral classification approaches. Therefore, Deep-
Fly3D is a critical step toward the ultimate goal of achieving fully-automated, high-fidelity
behavioral data analysis.
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4.4. Conclusion

Figure 19 – Camera calibration. (A) Correcting erroneous 2D pose estimations by using epipolar
relationships. Only 2D pose estimates without large epipolar errors are used for calibration. x2

represents a 2D pose estimate from the middle camera. Epipolar lines are indicated as blue and
red lines on the image plane. (B) The triangulated point, XT , uses the initial camera parameters.
However, due to the coarse initialization of each camera’s extrinsic properties, observations
from each camera do not agree with one another and do not yield a reasonable 3D position
estimate. (C) The camera locations are corrected, generating an accurate 3D position estimate by
optimizing Equation 13 using only the pruned 2D points.
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Figure 20 – 3D pose correction for one leg using the MAP solution and pictorial structures. (A)
Candidate 3D pose estimates for each keypoint are created by triangulating local maxima from
probability maps generated by the Stacked Hourglass deep network. (B) For a selection of these
candidate estimates, we can assign a probability using Equation 14. However, calculating this
probability for each pair of points is computationally intractable. (C) By exploiting the chain
structure of Equation 14, we can instead pass a probability distribution across layers using a
belief propagation algorithm. Messages are passed between layers as a function of parent nodes,
describing the belief of the child nodes on each parent node. Grayscale colors represent the
calculated belief of each node where darker colors indicate higher belief. (D) Corrected pose
estimates are obtained during the second backward iteration, by selecting the nodes with largest
belief. We discard nodes (x’s) that have non-maximal belief during backwards message passing.
Note that beliefs have been adjusted after forward message passing.

Figure 21 – DeepFly3D graphical user interface (GUI). The top-left buttons enable operations
like 2D pose estimation, camera calibration, and saving the final results. The top-right buttons
can be used to visualize the data in different ways: as raw images, probability maps, 2D pose,
or the corrected pose following pictorial structures. The bottom-left buttons permit frame-by-
frame navigation. A full description of the GUI can be found in the online documentation:
https://github.com/NeLy-EPFL/DeepFly3D
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4.4. Conclusion

Figure 22 – Pose correction using pictorial structures. (A) Raw input data from four cameras,
focusing on the pretarsus of the middle left leg. (B) Probability maps for the pretarsus output
from the Stacked Hourglass deep network. Two maxima (white arrowheads) are present on
the probability maps for camera 5. The false-positive has a larger unary probability. (C) Raw
predictions of 2D pose estimation without using pictorial structures. The pretarsus label is
incorrectly applied (white arrowhead) in camera 5. By contrast, cameras 4, 6, and 7 are correctly
labeled. (D) Corrected pose estimation using pictorial structures. The false-positive is removed
due to the high error measured in Equation 14. The newly corrected pretarsus label for camera 5
is shown (white arrowhead).

Figure 23 – DeepFly3D graphical user interface (GUI) used with the Human3.6M dataset [29].
To use the DeepFly3D GUI on any new dataset (Drosophila or otherwise), users can provide
an initial small set of manual annotations. Using these annotations, the software calculates the
epipolar geometry, performs camera calibration, and trains the 2D pose estimation deep network.
A description of how to adopt DeepFly3D for new datasets can be found in the Methods section
and, in greater detail, online: https://github.com/NeLy-EPFL/DeepFly3D

61

https://github.com/NeLy-EPFL/DeepFly3D


Figure 24 – A schematic of the seven camera spherical treadmill and optogenetic stimulation
system that was used in this study.
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4.4. Conclusion

Figure 25 – Mean Absolute Error distribution. (A) PCK (percentage of keypoints) accuracy as a
function of mean absolute error (MAE) threshold. (B) Evaluating network prediction error in a
low data regime. The Stacked Hourglass network (blue circles) shows near asymptotic prediction
error (red dashed line), even when trained with only 400 annotated images. After 800 annotations,
there are minimal improvements to the MAE. (C) MAE for different limb landmarks. Violin
plots are overlaid with raw data points (white circles).
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Figure 26 – Pose estimation accuracy before and after using pictorial structures. Shown are
pixel-wise 2D pose errors/residuals (top) and their respective distributions (bottom) (A) before,
or (B) after applying pictorial structures. Residuals larger than 35 pixels (red circles) represent
incorrect keypoint detections. Those below this threshold (blue circles) represent correct keypoint
detections.

Figure 27 – Unsupervised behavioral classification of 2D pose data is sensitive to viewing angle.
(A) Behavioral map derived using 2D pose data from three adjacent cameras (Cameras 1, 2, and
3) but the same animals and experimental time points. Shown are clusters (black outlines) with
enriched (yellow), or sparsely (blue) populated data. Different clusters are enriched for data from
either (B) camera 1, (C) camera 2, or (D) camera 3. Behavioral embeddings were derived using
1 million frames during 4 s of optogenetic stimulation of MDN>CsChrimson (n=6 flies, n=29
trials), aDN>CsChrimson (n=6 flies, n=30 trials), and wild-type control animals (MDN-GAL4/+:
n=4 flies, n=20 trials. aDN-GAL4/+: n=4 flies, n=23 trials).
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4.4. Conclusion

Figure 28 – Unsupervised behavioral classification of 3D joint angle data. Behavioral embeddings
were calculated using 3D joint angles from the same 1 million frames used in Figure 3. (A)
Behavioral map combining all data during 4 s of optogenetic stimulation of MDN>CsChrimson
(n=6 flies, n=29 trials), aDN>CsChrimson (n=6 flies, n=30 trials), and wild-type control animals
(For MDN-Gal4/+, n=4 flies, n=20 trials. For aDN-Gal4/+ n=4 flies, n=23 trials). The same
behavioral map is shown with only the data from (B) MDN>CsChrimson stimulation, (C)
aDN>CsChrimson stimulation, or (D) control animal stimulation. Associated videos reveal that
these distinct map regions are enriched for backward walking, antennal grooming, and forward
walking, respectively.
The following video supplements are available:
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5.1. Introduction

Adam Gostztolai*, Semih Günel*, Victor Lobato Rios, Marco Pietro Abrate, Daniel Morales,
Helge Rhodin, Pascal Fua, Pavan Ramdya; LiftPose3D, a deep learning-based approach for
transforming 2D to 3D pose in laboratory animals, Nature Methods, 2021.

I worked on conceptualization, methodology, software, formal analysis, data curation, writ-
ing—original draft, writing—review and editing.

5.1 Introduction

To identify how actions arise from neural circuit dynamics, one must first make accurate mea-
surements of behavior in laboratory experiments. Recent innovations in 3-dimensional (3D)
pose estimation promise to accelerate the discovery of these neural control principles. 3D pose
estimation is typically accomplished by triangulating 2-dimensional (2D) poses acquired using
multiple, synchronized cameras and deep learning-based tracking algorithms [9, 14, 108, 111,
124, 174, 195–197]. Triangulation requires that every tracked keypoint (body landmark) be
visible from at least two synchronized cameras [198] and that each camera is calibrated. These
requirements are often difficult to meet in space-constrained experimental systems that also house
sensory stimulation devices [30, 31, 199], or when imaging untethered, freely behaving animals
like fur-covered rodents [200] for whom keypoints can sometimes be occluded.

Because of these challenges, most animal studies have favored 2D pose estimation using one
camera [108, 124, 167, 174, 201]. Nevertheless, 3D poses are desirable because they eliminate a
problematic camera-angle dependence that can arise during behavioral analyses [111]. Recent
work on human pose estimation has performed “lifting" of 2D poses by regressing them to a
library of 3D poses [202–205]. However, high accuracy has only recently been achieved using
deep learning [10, 104, 206–216]. These techniques have not been adapted to the study of animals
due to the lack of large and diverse training datasets.

Here, we introduce LiftPose3D, a tool for 3D pose estimation of tethered and freely behaving
laboratory animals from a single camera view. Our method builds on a neural network architecture
designed to lift human poses [10]. We develop data transformations and network training
augmentation methods that enable accurate 3D pose estimation across a wide range of animals,
camera angles, experimental systems, and behaviors using relatively little data. We applied
LiftPose3D to a series of use cases to demonstrate that (i) a library of 3D poses can be used to
train our network to lift 2D poses from one camera, with minimal constraints on camera hardware
and positioning and, consequently, no calibration, (ii) by aligning animal poses, our network
can overcome occlusions and outliers in ground truth data, and (iii) pretrained networks can
generalize across experimental setups using linear domain adaptation.
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5.2 Method

5.2.1 Theoretical basis for LiftPose3D

LiftPose3D estimates the 3D pose X = (X1, . . . ,Xn), i.e., an ensemble of keypoints, by learning
a nonlinear mapping between triangulated ground truth 3D poses and corresponding 2D poses
xc = (xc,1, . . . ,xc,n). Formally, this operation is encoded in a lifting function f mapping a 2D pose
from any camera c to their corresponding 3D pose in camera-centered coordinates, Yc = f (xc ),
and a camera transformation φc , encoding a rotation and translation operation (see Eq. (16)),
mapping from camera-centered coordinates to world coordinates X =φ−1

c (Yc ). The lifting function
f can be approximated using a deep neural network F (xc ;Θ), where Θ represents the network
weights controlling the behavior of F . In a specific application, Θ are trained by minimizing the
discrepancy between 3D poses predicted by lifting from any camera and ground truth 3D poses,

J1(Θ) :=∑
c

n∑
j=1

χVc ( j )||(F (xc ;Θ)) j −Yc, j ||22 , (15)

where χVc ( j ) is an indicator function of the set Vc of visible points from camera c. For F (xc ;Θ),
we adapted a network architecture from [10] composed of fully connected layers regularized
by batch-norm and dropout [217] and linked with skip connections (Figure 29B). This network
was developed to perform human-pose estimation following training on approximately 106 fully
annotated 2D-3D human pose pairs for many different behaviors.

Our approach implicitly assumes that the network learns two operations: lifting the 2D pose xc to
camera-centered 3D coordinates Yc by predicting the depth component of the pose, and learning
perspective effects encoded in the animal-to-camera distance and the intrinsic camera matrix (see
Eqs. (16)–(19)). The intrinsic camera matrix is camera-specific, suggesting that a trained network
can only lift poses from cameras used during training and that application to new settings with
strong perspective effects (short focal lengths) may require camera calibration. We show that
this is not necessarily the case and that one can generalize pre-trained networks to new settings
by weakening perspective effects. This can be accomplished by either using a large focal length
camera, or by increasing the animal-to-camera distance and normalizing the scale of 2D poses.

5.2.2 Obtaining 3D pose ground truth data by triangulation

Triangulated 3D positions served as ground truth data for assessing the accuracy of LiftPose3D.
If a keypoint j of interest is visible from at least two cameras, with corresponding 2D coordinates
xc, j ∈ R2 in camera c and camera parameters (extrinsic and intrinsic matrices), then its 3D
coordinates X j ∈R3 in a global world reference frame can be obtained by triangulation. Let us
express X j = (x1

j , x2
j , x3

j ) in homogeneous coordinates as X̂ j = (x1
j , x2

j , x3
j , 1). The projection from

the 3D points in the global coordinate system to 2D points in a local coordinate system centered
on camera c is performed by the function πc : R4 → R3 defined as x̂c, j = πc (X̂ j ). This function
can be expressed as a composition πc = proj1,2 ◦ φc of an affine transformation φc :R4 →R4 from
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5.2. Method

global coordinates to camera-centered coordinates and a projection proj1,2 :R4 →R3 to the first
two coordinates. Both functions can be parametrized using the pinhole camera model [198]. On
the one hand, we have

φc (X j ) := Cc X̂T
j = Ŷc, j , (16)

where Cc is the extrinsic camera matrix corresponding to the φc and can be written as

Cc =
(

Rc Tc

0 1

)
(17)

where Rc ∈R3×3 is a matrix corresponding to rotation around the origin and Tc ∈R3 is a translation
vector representing the distance of the origin of the world coordinate system to the camera center.
Likewise, the projection function can be expressed as

proj1,2Ŷc, j := KŶc, j = x̂c, j , (18)

where K is the intrinsic camera transformation

K =

 fx 0 cx 0

0 fy cy 0

0 0 1 0

 , (19)

where fx , fy denote the focal lengths and cx ,cy denote the image center. The coordinates
projected to the camera plane can be obtained by converting back to Euclidean coordinates
xc, j = (x̂1

c, j /x̂3
c, j , x̂2

c, j /x̂3
c, j ).

Triangulation of the coordinate X j of joint j with respect to πc is obtained by minimizing the
reprojection error, that is, the discrepancy between the 2D camera coordinate, xc, j , and the 3D
coordinate projected to the camera frame, πc (X j ). Let Vc be the set of visible joints from camera
c. The reprojection error for joint j is taken to be

eRP
(

j ; {πc }
)=∑

c
χVc ( j ) ||xc, j −πc (X j )||22 , (20)

where χVc (·) is the indicator function of set Vc of visible keypoints from camera c. The camera
projection functions πc are initially unknown. To avoid having to use a calibration grid, we
jointly minimize with respect to the 3D location of all joints and to the camera parameters, a
procedure known as bundle adjustment [198]. Given a set of 2D observations, we seek

min
πc , X j

∑
j

eRP
(

j ; {πc }
)

. (21)

using a second-order optimization method. For further details, we refer the interested reader
to [111].
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5.2.3 LiftPose3D network architecture and optimization

The core LiftPose3D network architecture is similar to the one of [10] and is depicted in
Figure 29B. Its main module includes two linear layers of dimension 1024 rectified linear
units (ReLU [218]), dropout [217] and residual connections [219]. The inputs and outputs of
each block are connected during each forward pass using a skip connection. The model contains
4×106 trainable parameters, which are optimized by stochastic gradient descent using the Adam
optimizer [220]. We also perform batch normalization [221].

In all cases, the parameters were set using Kaiming initialization [219] and the optimizer was run
until convergence—typically within 30 epochs—with the following training hyperparameters:
Batch-size of 64 and an initial learning rate of 10−3 that was dropped by 4% every 5000 steps.
We implemented our network in PyTorch on a desktop workstation running on an Intel Core
i9-7900X CPU with 32 GB of DDR4 RAM, and a GeForce RTX 2080 Ti Dual O11G GPU.
Training time was less than 10 minutes for all cases studied.

5.2.4 Weak perspective augmentation

To project 2D poses from 3D poses, one needs to know the camera transformation φc (Eq.
(16)), encoded by the extrinsic matix Cc (Eq. (17)) and the projection function proj1,2 (Eq.
(18)), encoded by the intrinsic matrix K (Eq. (19)). K may be unknown a priori at test time.
Alternatively, one may want to use one of our pre-trained networks on a novel dataset without
having to match the camera positioning (focal length, camera-to-animal distance) used to collect
the training data. In this case, one may still be able to predict the 3D pose in a fixed camera-
centered coordinate frame by assuming that either the camera-to-animal distance or the focal
length are large enough to neglect perspective effects and by normalizing the scale of 2D poses.
Following Ref. [6], we chose the Frobenius norm to perform normalization on the input 2D
poses xc, j /||xc, j ||F , which is the diagonal distance of the smallest bounding box around the 2D
pose. Note, that if the 2D poses are obtained via projections, one may use the unit intrinsic
matrix Eq. (19) with fx = fy and cx = cy = 0 before performing normalization. Here, using
cx = cy = 0 assumes that the 2D poses are centered, which in each of our examples is achieved
by considering coordinates relative to root joints placed at the origin. Importantly, the 2D poses
must be normalized both at training and test times.

5.2.5 Camera-angle augmentation

The object-to-camera orientation is encoded by the extrinsic matrix Cc of Eq. (17). When it is
unavailable, one can still use our framework by taking 3D poses from the ground truth library
and, during training, performing virtual 2D projections around the approximate camera location
or for all possible angles. To this end, we assume that the rotation matrix R is unknown, but
that the intrinsic matrix K and the object-to-camera distance d are known such that we may
take T = (0,0,d)T . When K or d are also unknown, or dynamically changing, one can make
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5.2. Method

the weak-perspective assumption as described in the next section. Then, instead of training the
LiftPose3D network with pairs of 3D poses and 2D poses at fixed angles, we perform random 2D
projections of the 3D pose to obtain virtual camera planes whose centers cx ,cy lie on the sphere
of radius d . To define the projections we require a parametric representation of the rotations.
Rotating a point in 3D space can be achieved using three consecutive rotations around the three
Cartesian coordinate axes x, y, z commonly referred to as Euler angles and denoted by ψx ,ψy ,
and ψy . The rotation matrix can then be written as

R = Rx y z = Rx (ψx )Ry (ψy )Rz (ψz )

=

1 0 0

0 cosψx −sinψx

0 sinψx cosψx


 cosψy 0 sinψy

0 1 0

−sinψy 0 cosψy


cosψz −sinψz 0

sinψz cosψz 0

0 0 1

 . (22)

Given Eq. (16)–(19) we may then define a random projection x̂ j on the sphere of radius d of a
keypoint with homogeneous coordinate X̂ j as

x̂ j = K

(
Rx y z T

0 1

)
X̂ j (23)

where T = (0,0,d)T . Likewise, the 3D pose in camera coordinates can be expressed as

Ŷ j =
(

Rx y z T

0 1

)
X̂ j . (24)

Before training, we fix d , fx , fy ,cy ,cy and define intervals for the Euler angle rotations. We then
obtain the mean and standard deviation in each dimension for both 2D and 3D poses in the
training dataset by performing random projections within these angle ranges. The obtained means
and standard deviations are then used to normalize both the training and test datasets.

5.2.6 Linear domain adaptation

Here we describe the process of adapting a network trained on data from experiment A to lift 2D
poses in experiment B. Domain adaptation is also useful if the camera parameters or the distance
from the camera are not known and the weak perspective assumption cannot be invoked. Before
performing domain adaptation, we first estimate 2D poses from ventral images in domain B, as
before. This allowed us to circumvent the difficulties arising from differences in appearance and
illumination that are present in the more general image domain adaptation problem [16, 116].
Thus, adapting poses became a purely geometric problem of adjusting proportions and postural
differences across domains.

The basis for domain adaptation is to first find a function d2 : B |2 → A|2, where A|2 and B |2 are
restrictions of 3D poses in the two domains, to the corresponding 2n-dimensional spaces of 2D
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poses. This function maps poses in domain B to domain A and makes them compatible inputs for
the network trained on poses in domain A. In the scenario that 3D data is available in domain B,
we can also find a function d3 : B → A where A and B are 3n-dimensional spaces of 3D poses in
the two experimental domains. After 3D poses have been obtained in domain A, we map these
poses back to domain B by inverting this function.

We now describe how to obtain the functions d2 and d3, which we denote collectively as d .
To find d , we assume that poses in domain B can be obtained by small perturbations of poses
in domain A. This allows us to set up a matching between the two domains by finding nearest
neighbor 2D poses in domain A for each 2D pose in domain B, xB

i = (xB
i ,1, . . . ,xB

i ,n). We use 2D
rather than 3D poses to find a match because 3D poses may not always be available in domain
B. Moreover, the nearest poses in 3D space will necessarily be among the nearest poses in 2D
space. Specifically, for each xB

i , we find a set of k nearest poses in domain A, {N (xB
i ) j }k

j=1 such
that ||N (xB

i ) j −xB
i ||2 < ||N (xB

i ) j+1 −xB
i ||2. We then use these poses to learn a linear mapping

WB A ∈R2n×2n from domain B to A, where n is the number of keypoints, as before. We can find
this linear mapping by first defining a set of p training poses in domain B, xB

tr = xB
1 , . . .xB

p and
writing WB AxB

tr = xA
tr, where xB

tr ∈Rdn×kp and xA
tr ∈Rdn×kp with d = 2 or 3 are matrices defined

according to

WB A

(
xB

1 · · · xB
1︸ ︷︷ ︸

k

· · · xB
p · · · xB

p︸ ︷︷ ︸
k

)
=

(
N

(
xB

1

)
1 · · · N

(
xB

1

)
k︸ ︷︷ ︸

k

· · · N
(
xB

p

)
1 · · · N

(
xB

p

)
k︸ ︷︷ ︸

k

)
. (25)

Transposing this linear equation yields the linear problem (xB
tr)T WT

B A = (xA
tr)T . Given that

the p training poses are different, xB
tr has linearly independent columns and this problem is

overdetermined as long as kp > dn. Thus, by least-squares minimization, we obtain WT
B A =

((xB
tr)T xB

tr)−1(xB
tr)T (xA

tr)T .

5.2.7 Experimental systems and conditions

All adult Drosophila melanogaster experiments were performed on female flies raised at 25◦C
on a 12 h light/dark cycle at 2-3 days post-eclosion (dpe). Before each experiment, wild-type
(PR) animals were anaesthetized using CO2 or in ice-cooled vials and left to acclimate for 10
min. DeepFly3D tethered fly data were taken from [111]. OpenMonkeyStudio macaque data
were taken from [14]. LocoMouse mouse data were taken from [200]. CAPTURE rat data
were taken from [15]. FlyLimbTracker freely-behaving fly data were taken from [167]. See
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5.2. Method

these publications for detailed experimental procedures. For more information on the datasets
including the number of keypoints, poses, animals, resolution, framerate we refer the reader to
Supplementary Table 2.

Freely behaving Drosophila recorded from two high-resolution views using one camera
and a right-angle prism mirror

We constructed a transparent arena coupled to a right-angle prism mirror [222, 223]. The enclosed
arena consists of three vertically stacked layers of 1/16” thick acrylic sheets laser-cut to be 15
mm long, 3 mm wide, and 1.6 mm high. The arena ceiling and walls were coated with Sigmacote
(Sigma-Aldrich, Merck, Darmstadt, Germany) to discourage animals from climbing onto the
walls and ceilings. One side of the enclosure was physically coupled to a right-angled prism
(Thorlabs PS915). The arena and prism were placed on a kinematic mounting platform (Thorlabs
KM100B/M), permitting their 3D adjustment with respect to a camera (Basler acA1920-150um)
outfitted with a lens (Computar MLM3X-MP, Cary, NC USA). Data were acquired using the
Basler Pylon software (pylon Application 1.2.0.8206, pylon Viewer 6.2.0.8206). The camera was
oriented vertically upwards below the arena to provide two views of the fly: a direct ventral view,
and an indirect, prism mirror-reflected side view. The arena was illuminated by four Infrared
LEDs (Thorlabs, fibre-coupled LED M850F2 with driver LEDD1B T-Cube and collimator
F810SMA-780): two from above and two from below. To elicit locomotor activity, the platform
was acoustically and mechanically stimulated using a mobile phone speaker. Flies were then
allowed to behave freely, without optogenetic stimulation.

Freely behaving Drosophila recorded from one ventral view at low-resolution

We constructed a square arena consisting of three vertically stacked layers of 1/16" thick acrylic
sheets laser-cut to be 30 mm long, 30 mm wide, and 1.6 mm high. This arena can house
multiple flies at once, increasing throughput at the expense of spatial resolution (26 px mm−1).
Before each experiment the arena ceiling was coated with 10 uL Sigmacote (Sigma-Aldrich,
Merck, Darmstadt, Germany) to discourage animals from climbing onto the ceiling. A camera
(pco.panda 4.2 M-USB-PCO, Gloor Instruments, Switzerland, with a Milvus 2/100M ZF.2 lens,
Zeiss, Switzerland) was oriented with respect to a 45 ◦ mirror below the arena to capture a ventral
view of the fly. An 850 nm infrared LED ring light (CCS Inc. LDR2-74IR2-850-LA) was placed
above the arena to provide illumination. Although the experiment contained optogenetically
elicited behaviors interspersed with periods of spontaneous behavior, here we focused only on
spontaneously generated forward walking.

The positions and orientations of individual flies were tracked using custom software including a
modified version of Tracktor [224]. Using these data, a 138×138 px image was cropped around
each fly and registered for subsequent analyses.
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5.2.8 2D pose estimation

In the prism-mirror setup, we split the data acquired from a single camera into ventral and
side view images. We hand-annotated the location of all 30 leg joints (five joints per leg) on
640 images from the ventral view and up to 15 visible unilateral joints on 640 images of the
side view. We used these manual annotations to train two separate DeepLabCut [174] 2D pose
estimation networks (root-mean-squared errors for training and testing were 0.02 mm and 0.04

mm for ventral and side views, respectively). We ignored frames in which flies were climbing the
enclosure walls (thus exhibiting large yaw and roll orientation angles). We also removed keypoints
with < 0.95 DeepLabCut confidence and higher than 10 px mismatch along the x-coordinate of
ventral and side views. FlyLimbTracker data [167] was manually annotated. Images acquired in
the new low-resolution ventral view setup were annotated using DeepLabCut [174] trained on
160 hand-annotated images. Due to the low resolution of images, the coxa-femur joints were not
distinguishable. Therefore, we treated the thorax-coxa and coxa-femur joints as a single entity.

5.2.9 Training the LiftPose3D network

An important step in constructing LiftPose3D training data is to choose r root joints (see the
specific use cases below for how these root joints were selected), and a target set corresponding
to each root joint. The location of joints in the target set are predicted relative to the root joint to
ensure translation invariance of the 2D poses.

The training dataset consisted of input-output pose pairs (xtr
c , Xtr) with dimensionality equal to

the number of keypoints visible from a given camera c minus the number of root joints r , namely
xtr

c ∈ R2(|Vc |−r ) and Xtr ∈ R3(|Vc |−r ). Then, the training data was standardized with respect to the
mean and standard deviation of a given keypoint across all poses.

Tethered Drosophila melanogaster

Of the 38 original keypoints in Ref. [111], here we focused on the 30 leg joints. Specifically, for
each leg we estimated 3D position for the thorax-coxa, coxa-femur, femur-tibia, and tibia-tarsus
joints and the tarsal tips (claws). Thus, the training data consisted of input-output coordinate pairs
for 24 joints (30 minus six thorax-coxa root joints) from all cameras. The training convergence is
shown on Extended Data Figure 2A).

Freely behaving macaque monkeys

The OpenMonkeyStudio dataset [14] consists of images of freely behaving macaques inside a
2.45×2.45×2.75 m arena in which 62 cameras are equidistant horizontally at two heights along
the arena perimeter. We extracted all five available experiments (7, 9, 9a, 9b and 11) for training
and testing. Since 2D pose annotations were not available for all cameras, we augmented this
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dataset during training by projecting triangulated 3D poses onto cameras lacking 2D annotation
using the provided camera matrix. We removed fisheye lens-related distortions of 2D poses
using the provided radial distortion parameters. We normalized each 2D pose to unit length, by
dividing it by its Euclidean norm as well as the 3D pose with respect to bone lengths to reduce
the large scale variability of the OpenMonkeyStudio annotations (animals ranged between 5.5
and 12 kg). We set the neck as the root joint during training. We compare our absolute errors
to the total body length, calculated as the sum of the mean lengths of the nose-neck, neck-hip,
hip-knee, knee-foot joints pairs. Over multiple epochs, we observed rapid convergence of our
trained network (Extended Data Figure 2B).

Freely behaving mice and Drosophila recorded from two views using a right-angle mirror

Freely behaving mouse data [200] consisted of recordings of animals traversing a 66.5 cm long,
4.5 cm wide, and 20 cm high glass corridor. A 45◦ mirror was used to obtain both ventral and
side views with a single camera beneath the corridor. 2D keypoint positions were previously
tracked using the LocoMouse software [200]. We considered six major keypoints—the four paws,
the proximal tail, and the nose. Keypoint positions were taken relative to a virtual root keypoint
placed on the ground midway between the nose and the tail. The networks were trained on partial
ground truth data following pose alignment, as described in the main text. The networks for
Drosophila and mouse training data converged within 30 and 10 training epochs (Extended Data
Figure 2C,D).

Freely behaving rat in a naturalistic enclosure

The CAPTURE dataset contains recordings of freely behaving rats in a 2-foot diameter cylindrical
enclosure video recorded using six cameras. Motion capture markers on the animal were tracked
using a commercial motion capture acquisition program [15] to obtain 2D poses. Out of 20
possible joints, we limited our scope to the 15 joints that were not redundant and provided most
of the information about the animal’s pose. The dataset includes 4 experiments recording 3 rats
from two different camera setups. Before using LiftPose3D, we removed the distortion from
2D poses using radial distortion parameters provided by the authors. The CAPTURE dataset
has many missing 3D pose instances which we handle by not computing the loss corresponding
to these keypoints during back-propagation. We selected the neck joint as the single root joint
and predicted all of the other joints with respect to this root joint. We observed that LiftPose3D
converged within 15 training epochs (Extended Data Figure 2E).

Freely behaving adult Drosophila melanogaster recorded from one ventral camera view

For both the newly acquired low-resolution and previously published high-resolution [167] images
of freely behaving flies taken using one ventral view camera, we trained a LiftPose3D network
on partial ground truth data acquired from the prism mirror system. For the high-resolution data,
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we considered the thorax-coxa joints as roots. For the low resolution data, the coxa-femur joints
were imperceptible. Therefore, the thorax-coxa joints were selected as roots. The training dataset
consisted of coordinate pairs (xtr

ventral +η, ztr
side) where xtr

ventral, ztr
side were chosen to represent the

annotated ventral coordinates and z-axis depth for the visible joints, as before. Meanwhile, η was
a zero-mean Gaussian noise term with a joint-independent standard deviation of 4 px. The role of
this noise term was to account for the keypoint position degeneracy inherent in the transformation
from high-resolution prism training data to lower-resolution testing data. For the high resolution
dataset this noise term was set to zero.

5.2.10 Comparing joint angles derived from lifted 3D and 2D poses

To illustrate the benefits of using lifted 3D coordinates versus 2D coordinates for kinematic
analyis, we derived the joint angles obtained from 3D coordinates along with projected 2D
coordinates. Consider the (2D or 3D) coordinates of three consecutive joints in the kinematic
chain of one leg with coordinates u, v, w. Then, vectors s1 = u−v and s2 = u−w describe adjacent
bones. Their enclosed angle is found by the cosine rule, cos−1(s1 · s2/(||s1|| ||s2||) ). Due to the
uncertainty of 2D and 3D pose estimation, we assumed that keypoint coordinates are Gaussian
distributed around the estimated coordinate. As a proxy for the variance we took the variation of
bone lengths ||s1|| and ||s2|| because they are expected to remain approximately constant owing
to the low mechanical compliance of the fly’s exoskeleton (with the exception of the flexible
tarsal segments). This allowed us to predict 3D joint angles by Monte Carlo sampling (using
5×103 samples), drawing one sample from each of three distributions and then computing the
corresponding joint angle by the cosine rule.

5.3 Evaluation

5.3.1 Predicting 3D poses with a single camera at an arbitrary position

Rather than taking independent 2D keypoints as inputs, as for triangulation-based 3D pose
estimation, LiftPose3D uses a deep-neural network to regress an ensemble of 2D keypoints
viewed from a camera—the 2D pose—to a ground truth library of 3D poses. Considering all
keypoints simultaneously allows the network to learn geometric relationships intrinsic to animal
poses.

First, we illustrate how this approach can reduce the number of cameras needed for 3D pose
estimation on a tethered adult Drosophila dataset [111]. Here, 15 keypoints are visible from
three synchronized cameras on each side of the animal (Figure 29A). These keypoints were
annotated and triangulated using DeepFly3D [111]. Using this dataset as a 3D pose library
we trained a LiftPose3D network that lifts half-body 2D poses from any side camera without
knowing the camera’s orientation Figure 29B,C). First, we ensured that the output of LiftPose3D
was translation invariant by predicting the keypoints of the respective legs relative to six "root"
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immobile thorax-coxa joints (green circles, Figure 29B,C). Second, to avoid the network having
to learn perspective distortion, we assumed that the focal length (intrinsic matrix) of the camera
and the animal-to-camera distance were known, or that one of them is large enough to assume
weak perspective effects. In the latter case, we normalized 2D input poses by their Frobenius
norm during both training and testing. Third, to facilitate lifting from any angle, we assumed
that extrinsic matrices, which could be obtained by calibration, might also be unknown. Instead,
we parametrized them by Euler angles ψz ,ψy ,ψx representing ordered rotations around the z, y

and x axes of a coordinate system centered around the fly (Figure 29D). During training, we
took as inputs 2D poses (from 3D poses randomly projected to virtual camera planes, rather
than 2D pose estimates), and as outputs 3D poses triangulated from three cameras. To measure
lifting accuracy, we tested the network on software-annotated 2D poses (Figure 29B) from two
independent animals and computed the mean absolute error (MAE), ete

j , for each joint j as well
as the MAE across all joints ete = (1/n)

∑
j ete

j relative to triangulated 3D poses.

We found that LiftPose3D could predict 3D poses using only one camera per side (Figure 29C).
When the virtual projections during training were performed using known intrinsic and extrinsic
matrices, the network’s accuracy was at least as good as triangulation using two cameras per
keypoint (Figure 29E). The accuracy did not suffer when the network was trained using virtual
2D projections around an approximate camera location (Figure 29E) rather than with known
instrinsic matrices, or using normalized 2D poses rather than with known intrinsic matrices.
Accuracy remained excellent when virtual projections extended to all possible angles around the
meridian (Figure 29E). Lifting could be performed for optogenetically induced backward walk-
ing (Supplementary Video 1), antennal grooming (Supplementary Video 2), and spontaneous,
irregular limb movements (Supplementary Video 3). Because the network predicts joint coordi-
nates with respect to thoracic root joints, the MAE was larger for distal joints that move within a
larger kinematic volume. By contrast, the error for triangulation depended only on the accuracy
of 2D annotations because it treats each keypoint independently. We also assessed camera-angle
dependence for our wide angle-range network by lifting virtual 2D poses projected onto the
meridian of the unit sphere, or 2D poses captured from each of the six cameras (Figure 29F).
The test MAE was low (< 0.05 mm) and had no camera-angle dependence. Because we make no
assumptions about camera placement when training our angle-invariant networks, these pretrained
networks might also be used to predict accurate 3D poses for tethered Drosophila recorded in
other laboratories.

We next explored how the similarity between animal behaviors used for training and testing might
influence lifting accuracy. Our tethered Drosophila dataset contained optogenetically induced
antennal grooming (aDN), and backward walking (MDN), as well as spontaneous behaviors
like forward walking (control). We trained a network using poses from only one behavior (not
including rest frames) and evaluated it on all three behaviors while keeping the amount of training
data fixed (2.5×104 poses). As expected, the MAE was higher when test data included untrained
behaviors than when test data included trained behaviors (Figure 29G). Furthermore, training on
all three behaviors led to comparable or lower MAE (Figure 29E) than training and testing on
one single behavior (Figure 29G). Thus, higher training data diversity improves lifting accuracy.
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To illustrate the advantage of using lifted 3D poses versus 2D poses in downstream analyses, we
derived joint angles during forward walking from lifted 3D poses and from 2D poses projected
from 3D poses in the ventral plane (Extended Data Figure 1). Joint angles derived from lifted
and triangulated 3D poses were in close agreement. On the other hand, when viewed from a
projected plane, we found spurious dynamics in the distal joints likely due to rotations upstream
in the kinematic chain (proximal joints) that cause movements of the whole leg. Thus, 3D poses
predicted by LiftPose3D can help to decouple underlying physical degrees-of-freedom.

We also tested LiftPose3D in freely behaving animals where the effective camera angle dy-
namically changes, and in animals without exoskeletons whose neighboring keypoints are less
constrained. Specifically, we considered freely behaving macaque monkeys [14] where 3D
poses were triangulated using 2D poses from 62 synchronized cameras (Figure 29H). After
training LiftPose3D with only 6,571 3D poses, we could lift 3D poses from test images with
diverse animal poses (Supplementary Video 4), acquired from any camera (Figure 29I), and
with relatively low body length-normalized MAE (Figure 29J).

Taken together, these results demonstrate that, using simple data preprocessing and a relatively
small but diverse training dataset, LiftPose3D can reduce the number of cameras required to
perform accurate 3D pose estimation.

5.3.2 Predicting 3D poses despite occluded keypoints

In freely behaving animals, keypoints are often missing from certain camera angles due to
self-occlusions and, therefore, only partial 3D ground truth can be obtained by triangulation.
We asked how the global nature of lifting—all keypoints are lifted simultaneously—might be
leveraged to reconstruct information lost by occlusions, allowing one to predict full 3D poses.

To address this question, we built an experimental system similar to others used for flies and
mice [200, 222, 223] that consisted of a transparent enclosure coupled to a right-angle prism
mirror and with a camera beneath to record ventral and side views of a freely behaving fly
(Figure 30A). Due to the right-angle prism and the long focal length camera (i.e., negligible
perspective effects), the ventral and side views are orthographic projections of the true 3D pose.
Triangulation thus consisted of estimating the z-axis depth of keypoints from the side view.
Although keypoints closer to the prism were simultaneously visible in both views and could
be triangulated, other joints had only ventral 2D information. We therefore aligned flies in the
same reference frame in the ventral view (Figure 30B), turning lifting into a regression problem
similar to that for tethered animals. During training we took ventral view 2D poses as inputs,
but trained only those keypoints with complete 3D information, i.e., those having both ventral
and side views (Figure 30C). By also aligning these data, we found that the network training
converged despite the unseen coordinates (Extended Data Figure 2), which were implicitly
augmented during training by learning geometric relationships between keypoints. The network
could predict 3D positions for every joint at test time, including those occluded in the side view
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(Figure 30D and Supplementary Video 5). Notably, owing to the high spatial resolution of this
setup, the accuracy, based on available triangulation-derived 3D positions (Figure 30E), was
better than that obtained for tethered flies triangulated using four cameras (Figure 29E). Thus,
LiftPose3D can estimate 3D poses from 2D images in cases where keypoints are occluded and
cannot be triangulated.

These results suggested an opportunity to apply lifting to potentially correct inaccurate 3D poses
obtained using other tracking approaches. To test this, we used a dataset consisting of freely
behaving mice traversing a narrow corridor [200] and tracked using the LocoMouse software
from ventral and side views [200]. We triangulated and aligned incomplete 3D ground truth poses
as we did for Drosophila and then trained a LiftPose3D network using ventral 2D poses as inputs.
Predictions were in good agreement with the LocoMouse’s side view tracking (Figure 30E and
Supplementary Video 6) and could recover expected cycloid-like kinematics between strides
(Figure 30F). LiftPose3D predictions could also correct poorly labeled or missing side-view
poses (Figure 30F). However, lifting accuracy depended on the fidelity of input 2D poses:
incorrect ventral 2D poses generated false side view predictions (Figure 30F). These errors
were always localized to a single joint and were relatively infrequent. Overall, LiftPose3D
and LocoMouse performed similarly compared with manual human annotation (Figure 30G)
demonstrating that LiftPose3D can be used to test the consistency of ground truth datasets.

To assess how well spatial relationships learned by LiftPose3D could generalize to animals
with more complex behaviors and larger variations in body proportions, we next considered the
CAPTURE dataset which was taken using six cameras that recorded freely behaving rats within
a circular arena [15] (Figure 30H). Animal joints were intermittently self-occluded during a
variety of complex behaviors (Figure 30I). Therefore, to allow the network to learn the skeletal
geometry, we aligned animals in the camera-coordinate frame and replaced missing input data
with zeros. Furthermore, to make the network robust to bone length variability within and across
animals (Figure 30J) we assumed that bone lengths were normally distributed and generated,
for each triangulated 3D pose, rescaled 3D poses by sampling from bone-length distributions
while preserving joint angles. Then, we obtained corresponding 2D poses via a virtual projection
within the Euler angle range of ±10◦ with respect to the known camera locations (to augment the
range of camera-to-animal angles). Finally, we normalized 2D poses by their Frobenius norm, as
before, assuming a large enough camera-to-animal distance.

To show that the network generalizes across new experimental setups, we used two experiments
from this dataset (i.e., two animals and two camera arrangements) for training and tested with a
third experiment (a different animal, camera focal length, and animal-to-camera distance). By
replacing low confidence or missing coordinates with zeros, LiftPose3D could accurately predict
the nonzero coordinates (Figure 30H, K and Supplementary Video 7). Thus, this is a viable
way to correct for erroneous input keypoints and makes our network directly applicable to other
rat movement studies.
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5.3.3 Lifting diverse experimental data without 3D ground truth

Although our angle-invariant networks for lifting 3D poses in tethered flies (Figure 29D-F) and
freely behaving rats (Figure 30H-K) can be used in similar experimental systems without the
need for additional training data, small variations resulting from camera distortions or postural
differences may limit the accuracy of lifted poses. Therefore, we explored how domain adaptation
might enable pretrained networks to lift poses in new experimental systems despite small postural
variations.

We assessed the possibility of domain adaptation by training a network in domain A—tethered
flies—and predicting 3D poses in domain B—freely-moving flies (Figure 31A). To do so, we
identified two linear transformations d2 and d3. d2 is used to map 2D poses from domain B as
inputs to the pre-trained network in domain A, while d−1

3 is used to transform lifted 3D poses
back to domain B. These linear transformations were found as best-fit mappings from every
pose in a training dataset B’ to their k nearest neighbors A’ (Figure 31B). They are expected
to generalize as long as the poses in domain A are rich enough to cover the pose repertoire in
domain B and are sufficiently similar between domains. We found by 10-fold cross-validation
that the error associated with the transformations converged after training with less than 500
poses (Figure 31C). The final lifted poses were also in good agreement with the triangulated
poses in domain B (Figure 31D) having accuracies comparable to a network lifting purely in
domain A (Figure 31E).

To demonstrate the full potential of linear domain adaptation, we next lifted Drosophila 2D poses
from a single ventral camera. This experimental system is common due to its simplicity, low cost,
and increased throughput and has been used to study C. elegans [225], larval zebrafish [226],
larval Drosophila [227], adult Drosophila [228], and mice [229]. Because depth sensors [230,
231] cannot resolve small laboratory animals, 3D pose estimation from a single 2D view remains
unsolved, but has the potential to enrich behavioral datasets and improve downstream analysis.

We developed an experimental system with a square-shaped arena in which multiple freely-
behaving flies were recorded ventrally using a single camera (Figure 31F, left) at four-fold lower
spatial resolution (26 px mm−1) than in our prism-mirror system. We pretrained a network using
prism-mirror training data for keypoints present in both datasets and then augmented these data
using a Gaussian noise term with standard deviation of ∼ 4. We adapted annotated 2D poses
into the network’s domain before lifting (Figure 31B). We found that the network could predict
physiologically realistic 3D poses in this dataset using only ventral 2D poses (Figure 31G and
Supplementary Video 8). This is remarkable because ventrally-viewed swing and stance phases
are difficult to distinguish, particularly at lower resolution. During walking, 2D tracking of the
tarsal claws traced out stereotypical trajectories in the x-y plane [166] and circular movements in
the unmeasured x-z plane (Figure 31H). The amplitudes of these movements were consistent
with real kinematic measurements during forward walking [232].

Another possibility offered by LiftPose3D is to ’resurrect’ previously published 2D pose data
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for 3D kinematic analyses. We applied our network that was trained on prism-mirror data to lift
video data of a fly walking through a capsule-shaped arena [167] (Figure 31I). Using a similar
processing pipeline as before (Figure 31B,F,G), including registration and domain adaptation
but not noise perturbations (the target data were of similarly high resolution as the training
data), LiftPose3D could predict 3D poses from this dataset (Figure 31J). We again observed
physiologically realistic cyclical movements of the pretarsi during forward walking (Figure 31K,
bottom; Supplementary Video 9). These data illustrate that linear domain-adaptation and
LiftPose3D can be combined to lift 3D poses from previously published 2D video data for which
3D triangulation would be otherwise impossible.

5.3.4 Drosophila LiftPose3D station

These domain adaptation results suggested that one could make 3D pose acquisition more accessi-
ble by designing a “Drosophila LiftPose3D station"—an open-source hardware system including
a 3D printed rig supporting a rectangular arena (Extended Data Figure 3, Supplementary
Note 1). A common hardware solution like this overcomes potential variability across different
experimental systems that arise from camera distortions and perspective effects. Using pre-trained
DeepLabCut and LiftPose3D networks we found that one can effectively lift Drosophila 3D
poses with this system (Supplementary Video 10). We envision that a similar approach might,
in the future, also facilitate cross-laboratory 3D lifting of mouse 2D poses from a single camera.

5.4 Conclusion

Here we have introduced LiftPose3D, a deep learning-based tool that simplifies 3D pose estima-
tion across a wide variety of laboratory contexts. LiftPose3D can take as inputs 2D poses from
any of a variety of annotation softwares[111, 174]. Through input data preprocessing, training
augmentation, and domain adaptation one can train a lifting network [10] with several orders
of magnitude less data as well as incomplete or innacurate ground truth poses. LiftPose3D is
invariant to camera hardware and positioning, making it possible to use the same networks across
laboratories and experimental systems. We provide an intuitive Python notebook that serves as
an interface for data preprocessing, network training, 3D predictions, and data visualization.

Several factors must be considered when optimizing LiftPose3D for new experimental systems.
First, because predicting depth from a 2D projection depends on comparing the lengths of
body parts, input poses must be sufficiently well-resolved to discriminate between 3D poses with
similar 2D projections. Second, prediction accuracy depends on training data diversity: previously
untrained behaviors may not be as accurately lifted. Further work may improve LiftPose3D by
constraining 3D poses using body priors [114, 233–236] and temporal information [213].

Using our domain adaptation methodology, networks with the largest and most diverse training
data, like those for the tethered fly, may be sufficiently robust to accurately lift 2D to 3D pose
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in other laboratories. In the future, similarly robust lifting networks might be generated for
other animals through a cross-laboratory aggregation of diverse 3D pose ground truth datasets.
In summary, LiftPose3D can accelerate 3D pose estimation by reducing the need for complex
and expensive synchronized multi-camera systems, and arduous calibration procedures. This
enables the acquisition of rich behavioral data and can accelerate our understanding of the
neuromechanical control of behavior.
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Figure 29 – LiftPose3D predicts 3D poses with a single, flexibly positioned camera A Ground truth 3D poses of

tethered Drosophila are triangulated using six camera views (3 cameras per keypoint). B LiftPose3D predicts 3D poses

using deep network-derived 2D poses from only two cameras (red and blue, 1 camera per keypoint). The coordinates

are considered relative to a set of root joints (green). The inputs are scaled up and passed twice through the main

processing unit (gray rectangle) comprising batch norm, dropout and ReLU wrapped by a skip connection. C The

output, 3D half-body poses (blue/red), are compared with triangulated 3D poses. Limbs are labeled by left (L)/right (R)

and front (1), mid (2), or hind (3) positions. D LiftPose3D can be trained using virtual camera projections of 3D poses

to lift from cameras within the angles ψz ,ψy ,ψx (representing ordered yaw, roll, pitch rotations). E Error of 3D poses

relative to triangulation using three cameras per keypoint. We compare triangulation error using 2 cameras per keypoint

(white), test error for a network trained with known camera parameters (orange) and two angle-invariant networks

with narrow (green, ψz =±10◦, ψy =±5◦, ψx =±5◦ with respect to a known camera orientation), or wide ranges

(red, ψz = ±180◦, ψy = ±5◦, ψx = ±5◦). F Error of lifted 3D poses at different virtual camera orientations of the

wide-range lifter network and a network with known camera parameters. Blue dots represent lifting errors for a given

projected 2D pose. Orange circles represent averages over the test dataset for a given camera. G Error of estimated 3D

poses for a network trained and tested on different combination of behavioral data including optogenetically induced

backward walking (MDN, left), antennal grooming (aDN, middle), or spontaneous, unstimulated behaviors (control,

right). H Two representative images from the OpenMonkeyStudio dataset. 2D poses are superimposed (black). I 3D

poses obtained by triangulating up to 62 cameras (red lines), or using a single camera and LiftPose3D (dashed black

lines). J Absolute errors for different body parts with respect to total body length. Violin plots represent Gaussian

kernel density estimates with bandwidth 0.5, truncated at the 99th percentile and superimposed with the median (gray

dot), 25th, and 50th percentiles (black line).
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Figure 30 – LiftPose3D performs 3D poses estimation on freely behaving animals with occluded keypoints.
A Drosophila behaving freely within a narrow, transparent enclosure. Using a right-angle prism mirror, ventral (top)

and side (bottom) views are recorded with one camera. Afterwards, 2D poses are annotated (colored lines). Ventral

2D poses (green box) are used to lift 3D poses. B Keypoints near the prism mirror (red and blue) can be tracked

in both views and triangulated. Other keypoints (gray) are only visible ventrally and thus have no 3D ground truth.

Unilateral ground truth for both sides are obtained by registering the orientation and position of ventral images of the

fly. C Training data consist of full ventral 2D poses and their corresponding partial 3D poses. D Following training,

LiftPose3D can predict 3D poses for new ventral view 2D poses. E Joint-wise and overall absolute errors of the

network’s 3D pose predictions for freely behaving Drosophila. F A similar data preprocessing approach is used to

lift ventral view 2D poses of mice (green boxes) walking within a narrow enclosure and tracked using LocoMouse

software. LocoMouse ground truth (blue and red) and LiftPose3D (orange) pose trajectories are shown for the right

forepaw (top) and hindpaw (bottom) during one walking epoch. Arrowheads indicate where LiftPose3D lifting of the

ventral view can be used to correct LocoMouse side view tracking errors (red). Asterisks indicate where inaccuracies

in the LocoMouse ventral view ground truth (red) disrupt LiftPose3D’s side view predictions (orange). G Absolute

errors of LiftPose3D and LocoMouse side view predictions for six keypoints with respect to manually annotated

ground truth data. H Camera image from the CAPTURE dataset superimposed with the annotated 2D pose (left).

LiftPose3D uses this 2D pose to recover the full 3D pose (right). I LiftPose3D can be trained to lift 3D poses of a

freely moving rat with occluded keypoints (open circles). J Histograms of the measured lengths of the spinal segment

for two different animals. K Error distribution over all keypoints for the CAPTURE dataset.
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Figure 31 – A pretrained LiftPose3D network predicts 3D poses for diverse data and when triangulation is
impossible. A Linear domain adaptation between domain A (fly on a spherical treadmill) and domain B (fly on a flat

surface). 2D poses in B are mapped to A by a linear transformation d2 then lifted with a network trained only on

domain A poses. After lifting, the 3D poses are mapped back to B by another linear transformation d3. B A typical 2D

pose in domain B mapped into domain A by the best-fit linear transformation d2 between poses in B and their nearest

neighbors in A. C Error between mapped pose and k nearest neighbor poses for d2,d3 against the number of poses

used to train them (k = 1 for d2 and k = 2 for d3). D Lifted 3D pose following domain adapation of a ventral domain

B 2D pose and lifting with a network trained on domain A data. The prediction is superimposed with the incomplete

ground truth 3D pose in domain B. E Lifting error following domain adaptation of domain B poses compared with

lifting error in the domain A with no domain adaptation. F Freely behaving flies were recorded from below using a

low-resolution camera. Following body tracking, the region-of-interest containing the fly was cropped and registered.

2D pose estimation was then performed for 24 visible joints. G 2D poses are adapted to the prism-mirror domain.

These are then lifted to 3D poses using a network pre-trained with prism-mirror data and coarse-grained to match the

lower resolution 2D images in the new experimental system. H These 3D poses permit the analysis of claw movements

in an otherwise unobserved x −z plane (bottom). I Freely behaving fly recorded from below using one high-resolution

camera. 2D pose estimation was performed for all 30 joints. Following tracking, a region-of-interest containing the fly

was cropped and registered. The same LiftPose3D network trained in panel B—but without coarse-graining—was

used to predict J 3D poses and K unobserved claw movements in the x − z plane (bottom).
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Figure 32 – Joint angles resulting from lifting compared with 3D triangulated ground truth and 2D projec-
tions. Joint angles α,β,γ, and ω for the front, mid, and hind left legs during forward walking. Shown are angles

computed from 3D triangulation using DeepFly3D (blue), LiftPose3D predictions (red), and ventral 2D projections

α′,β′,γ′, and ω′ (green). The mean (solid lines) and standard deviation of joint error distributions (transparency) are

shown. Joint angles were computed by Monte Carlo sampling and errors were computed by taking the fluctuation in

bone lengths.

Figure 33 – Training and test loss convergence of the LiftPose3D network applied to a variety of datasets.
Shown are the absolute test errors of LiftPose3D for all joints as a function of optimization epoch. Note that the

test error is sometimes lower than the training error because we do not apply dropout at test time. A Two-camera

data of Drosophila on a spherical treadmill (each color denotes a different pair of diametrically opposed cameras).

B OpenMonkeyStudio dataset (each color denotes a different training run). C Single-camera data of Drosophila

behaving freely in the right-angle prism mirror system. D LocoMouse dataset. E CAPTURE dataset.
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Figure 34 – Drosophila LiftPose3D station. A CAD drawing of the LiftPose3D station indicating major compo-

nents (color-coded). B Photo of the LiftPose3D station. C Electronic circuit for building the illumination module on a

pre-fabricated prototyping board, electronic components, and additional wiring are indicated (color-coded). D Printed

circuit board provided as an alternative to the pre-fabricated board for building the illumination module.
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Figure 35 – Our Motion Capture and Two-Photon (MC2P) Dataset. A tethered fly
(Drosophila melanogaster) is recorded using six multi-view infrared cameras and a two-photon
microscope. The resulting dataset includes the following. (A) 2D poses extracted from all views
(only three are shown), calculated on grayscale images. (B) 3D poses triangulated from the 2D
views. (C) Synchronized, registered, and denoised single-channel fluorescence calcium imaging
data using a two-photon microscope. Shown are color-coded activity patterns for populations of
descending neurons from the brain. These carry action information (red is active, blue is inactive).
(D) Annotations for eight animals of eight different behaviors, four of which are shown here. (E)
Manual neural segmentation has been performed to extract neural activity traces for each neuron.
We will release our MC2P publicly.

Semih Günel, Florian Aymanns, Sina Honari, Pavan Ramdya, Pascal Fua; Overcoming the
Domain Gap in Contrastive Learning of Neural Action Representations. arXiv, 2022.

6.1 Introduction

neural decoding of actions, the accurate prediction of animal behavior from brain activity, is a
fundamental challenge in neuroscience with important applications in the development of robust
brain machine interfaces. Recent technological advances have enabled simultaneous recordings
of neural activity and behavioral data in experimental animals and humans [30–36]. Nevertheless,
our understanding of the complex relationship between behavior and neural activity remains
limited.

A major reason is that it is difficult to obtain many long recordings from mammals and a few
subjects are typically not enough to perform meaningful analyses [237]. This is less of a problem
when studying the fly Drosophila melanogaster, for which long neural and behavioral datasets can
be obtained for many individual animals (Fig. 35). Nevertheless, current supervised approaches
for performing neural action decoding [3, 238] still do not generalize well across animals because
each nervous system is unique (Fig. 36A). This creates a significant domain-gap that necessitates
tedious and difficult manual labeling of actions. Furthermore, a different model must be trained
for each individual animal, requiring more annotation and overwhelming the resources of most

93



laboratories.

Another problem is that experimental neural imaging data often has unique temporal and spatial
properties. The slow decay time of fluorescence signals introduces temporal artifacts. Thus,
neural imaging frames include information about an animal’s previous behavioral state. This
complicates decoding and requires specific handling that standard machine learning algorithms
do not provide.

To address these challenges, we propose to learn neural action representations—embeddings of
behavioral states within neural activity patterns—in an unsupervised fashion. To this end, we
leverage the recent development of computer vision approaches for automated, markerless 3D
pose estimation [18, 111] to provide the required supervisory signals without human intervention.
We first show that using contrastive learning to generate latent vectors by maximizing the mutual
information of simultaneously recorded neural and behavioral data modalities is not sufficient to
overcome the domain gap between animals and to generalize to unlabeled animals at test time
(Fig. 36C). To address this problem, we introduce two sets of techniques:

1. To close the domain gap between animals, we leverage 3D pose information. Specifically,
we use pose data to find sequences of similar actions between a source and multiple target
animals. Given these sequences, we input to our model neural data from one animal and
behavioral data composed of multiple animals. This allows us to train our decoder to ignore
animal identity and close the domain gap.

2. To mitigate the slowly decaying calcium data impact from past actions on neural images, we
add simulated randomized versions of this effect to our training neural images in the form
of a temporally exponentially decaying random action. This trains our decoder to learn the
necessary invariance and to ignore the real decay in neural calcium imaging data. Similarly, to
make the neural encoders robust to imaging noise resulting from low image spatial resolution,
we mix random sequences into sequences of neural data to replicate this noise.

The combination of these techniques allowed us to bridge the domain gap across animals in an
unsupervised manner, making it possible to perform action recognition on unlabeled animals
(Fig. 36E) better than earlier techniques, including those requiring supervision [3, 58, 76].

To test the generalization capacity of neural action decoding algorithms, we record and use MC2P
dataset, which we will make publicly available. It includes two-photon microscope recordings of
multiple spontaneously behaving Drosophila, and associated behavioral data together with action
labels.

Finally, to demonstrate that our technique generalizes beyond this one dataset, we tested it on
two additional ones: One that features neural ECoG recordings and 2D pose data for epileptic
patients [239, 240] along with the well-known H36M dataset [29] in which we treat the multiple
views as independent domains. Our method markedly improves across-subject action recognition
in all datasets.
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6.2. Method

Figure 36 – Domain gap across nervous systems and learned representations. (Top row) (A)
Neural imaging data from four different animals in our MC2P dataset. Images differ in terms
of total brightness, the location and number of visible neurons, and the shape and size of axons.
(Bottom row) t-SNE embeddings of different neural representation algorithms on MC2P dataset.
Each color denotes a different fly. The two red dots are embeddings of the same action label for
two different animals. t-SNE embeddings of (B) Raw neural data. (C) Contrastive SimCLR [5]
representation trained on behavioral and neural pairs, (D) SimCLR and domain adaptation using
a two-layer MLP discriminator and a Gradient Reversal Layer [241]. (E) Ours. The identify of
the animals is discarded and the semantic structure is preserved, as evidenced by the fact that the
two red dots are very close to one another.

We hope our work will inspire the use and development of more general unsupervised neural
feature extraction algorithms in neuroscience. These approaches promise to accelerate our
understanding of how neural dynamics give rise to complex animal behaviors and can enable
more robust neural action decoding algorithms to be used in brain-machine interfaces.

6.2 Method

Our goal is to be able to interpret neural data such that, given a neural image, one can generate
latent representations that are useful for downstream tasks. This is challenging, as there is a wide
domain-gap in neural representations for different animals (Fig. 36A). We aimed to leverage
unsupervised learning techniques to obtain rich features that, once trained, could be used on
downstream tasks including action recognition to predict the behaviors of unlabeled animals.

Our data is composed of two-photon microscopy neural images synchronized with 3D behavioral
data, where we do not know where each action starts and ends. We leveraged contrastive learning
to generate latent vectors from both modalities such that their mutual information would be
maximized and therefore describe the same underlying action. However, this is insufficient to
address the domain-gap between animals (Fig. 36C). To address this issue, we perform swapping
augmentation: we replace the original pose or neural data of an animal with one from another set
of animals for which there is a high degree of 3D pose similarity at each given instance in time.
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Unlike behavioral data, neural data has unique properties. Neural calcium data contains informa-
tion about previous actions because it decays slowly across time and it involves limited spatial
resolution. To teach our model the invariance of these artifacts of neural data, we propose two
data augmentation techniques: (i) Neural Calcium augmentation - given a sequence of neural
data, we apply an exponentially decaying neural snapshot to the sequence, which imitates the
decaying impact of previous actions, (ii) Neural Mix augmentation - to make the model more
robust to noise, we applied a mixing augmentation which merges a sequence of neural data with
another randomly sampled neural sequence using a mixing coefficient.

Together, these augmentations enable a self-supervised approach to (i) bridge the domain gap
between animals allowing testing on unlabeled ones, and (ii) imitate the temporal and spatial
properties of neural data, diversifying it and making it more robust to noise. In the following
section, we describe steps in more detail.

6.2.1 Problem Definition

We assume a paired set of data Ds =
{(

bs
i ,ns

i

)}ns

i=1, where bs
i and ns

i represent behavioral and
neural information respectively, with ns being the number of samples for animal s ∈ S . We
quantify behavioral information bs

i as a set of 3D poses bs
k for each frame k ∈ i taken of animal

s, and neural information ns
i as a set of two-photon microscope images ns

k , for all frames k ∈ i

capturing the activity of neurons. The data is captured such that the two modalities are always
synchronized (paired) without human intervention, and therefore describe the same set of events.
Our goal is to learn an unsupervised parameterized image encoder function fn , that maps a set of
neural images ns

i to a low-dimensional representation. We aim for our learned representation to
be representative of the underlying action label, while being agnostic to both modality and the
identity. We assume that we are not given action labels during unsupervised training. Also note
that we do not know at which point in the captured data an action starts and ends. We just have a
series of unknown actions performed by different animals.

6.2.2 Contrastive Representation Learning

For each input pair
(
bs

i ,ns
i

)
, we first draw a random augmented version (b̃s

i , ñs
i ) with a sampled

transformation function tn ∼Tn and tb ∼Tb , where Tn and Tb represent a family of stochastic
augmentation functions for behavioral and neural data, respectively, which are described in the
following sections. Next, the encoder functions fb and fn transform the input data into low-
dimensional vectors hb and hn , followed by non-linear projection functions gb and gn , which
further transform data into the vectors zb and zn . During training, we sample a minibatch of N
input pairs

(
bs

i ,ns
i

)
, and train with the loss function

L b→n
NC E =−

N∑
i=1

log
exp

(〈
zi

b ,zi
n

〉
/τ

)
∑N

k=1 exp
(〈

zi
b ,zk

n
〉

/τ
) (26)
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6.2. Method

Figure 37 – Overview of our contrastive learning-based neural action representation learn-
ing approach. First, we sample a synchronized set of behavioral and neural frames, (bi,ni). Then,
we augment these data using randomly sampled augmentation functions tb and tn . Encoders
fb and fn then generate intermediate representations hb and hn , which are then projected into
zb and zt by two separate projection heads gb and gn . We maximize the similarity between the
two projections using an InfoNCE loss. At test time, the red branch and hn

i is used for neural
decoding.

where
〈

zi
b ,zi

n

〉
is the cosine similarity between behavioral and neural modalities and τ ∈R+ is the

temperature parameter. An overview of our method for learning fn is shown in Fig 37. Intuitively,
the loss function measures classification accuracy of a N-class classifier that tries to predict zi

n

given the true pair zi
b . To make the loss function symmetric with respect to the negative samples,

we also define

L n→b
NC E =−

N∑
i=1

log
exp

(〈
zi

b ,zi
n

〉
/τ

)
∑N

k=1 exp
(〈

zk
b ,zi

n
〉

/τ
) . (27)

We take the combined loss function to be LNC E = L b→n
NC E +L n→b

NC E , as in [242, 243]. The loss
function maximizes the mutual information between two modalities [244]. Although standard
contrastive learning bridges the gap between different modalities, it does not bridge the gap
between different animals (Fig. 36C). This is a fundamental challenge that we address in this
work through augmentations described in the following section, which are part of the neural and
behavioral family of augmentations Tn and Tb .

Swapping Augmentation. Given a set of consecutive 3D poses bs
i , for each k ∈ i, we stochasti-

cally replace bs
k with one of its nearest pose neighbors in the set of domains DS , where S is the

set of all animals. To do this, we first randomly select a domain ŝ ∈S and define a probability
distribution Pŝ

bs
k

over the domain Dŝ with respect to bs
k ,

Pŝ
bs

k
(bŝ

l ) = exp(−‖bŝ
l −bs

k‖2)∑
bŝ

m∈Dŝ
exp(−‖bŝ

m −bs
k‖2)

. (28)

We then replace each 3D pose bs
k by first uniformly sampling a new domain ŝ, and then sampling
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from the above distribution Pŝ
bs

k
, which yields in b̃s

k ∼ Pŝ
bs

k
. In practice, we calculate the distribution

P only over the first N nearest neighbors of bs
k , in order to sample from a distribution of

the most similar poses. We empirically set N to 128. Swapping augmentation reduces the
identity information in the behavioral data without perturbing it to the extent that semantic action
information is lost. Since each behavioral sample bs

i is composed of a set of 3D poses, and each
3D pose bs

k ,∀k ∈ i is replaced with a pose of a random domain, the transformed sample b̃s
i is now

composed of multiple domains. This forces the behavioral encoding function fb to leave identity
information out, therefore merging multiple domains in the latent space (Fig. 38).

Swapping augmentation is similar to the synonym replacement augmentation used in natural
language processing [245], where randomly selected words in a sentence are replaced by their
synonyms, therefore changing the syntactic form of the sentence without altering the semantics.
To the best of our knowledge, we are the first to use swapping augmentation in the context of
time-series analysis or for domain adaptation.

To keep swapping symmetric, we also swap the neural modality. To swap a set of neural images
ns

i , we take its behavioral pair bs
i , and searched for similar sets of poses in other domains, with the

assumption that similar sets of poses describe the same action. Therefore, once similar behavioral
data is found, their neural data can be swapped. Note that, unlike behavior swapping, we do not
calculate the distribution on individual 3D pose bs

k , but instead on the whole set of behavioral
data bs

i , because similarity in a single pose does not necessarily imply similar actions. More
formally, given the behavioral-neural pair

(
bs

i ,ns
i

)
, we swap the neural modality ns

i with nŝ
j , with

the probability

Pŝ
ns

i
(bŝ

j ) =
exp(−‖bŝ

j −bs
i ‖2)∑

bŝ
m∈Dŝ

exp(−‖bŝ
m −bs

i ‖2)
. (29)

This results in a new pair
(
bs

i , ñs
i

)
, where the augmented neural data comes from a new animal

ŝ ∈S /s.

Neural Calcium Augmentation. Our neural data was obtained using two-photon microscopy
and fluorescence calcium imaging. The resulting images are only a function of the underlying
neural activity, and have temporal properties that differ from the true neural activity. For example,
calcium signals from a neuron change much more slowly than the neuron’s actual firing rate.
Consequently, a single neural image nt includes decaying information concerning neural activity
from the recent past, and thus carries information about previous behaviors. This makes it harder
to decode the current behavioral state.

We aimed to prevent this overlap of ongoing and previous actions. Specifically, we wanted to
teach our network to be invariant with respect to past behavioral information by augmenting
the set of possible past actions. To do this, we generated new data ñs

i , that included previous
neural activity ns

k . To mimic calcium indicator decay dynamics, given a neural data sample ns
i of

multiple frames, we sample a new neural frame ns
k from the same domain, where k ∉ i. We then
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6.2. Method

neighbors
replace

behavioral space
Domain 3

Domain 2

Domain 1

Figure 38 – Swapping augmentation. Each 3D pose in the motion sequence of Domain 2 is
randomly replaced with its neighbors, from the set of domains ŝ ∈S /s, which includes Domain
1 and Domain 3. The swapping augmentation hides identity information, while keeping pose
changes in the sequence minimal.

convolve ns
k with the temporally decaying calcium convolutional kernel K , therefore creating a

set of images from a single frame ns
k , which we then add back to the original data sample ns

i . This
results in ñs

i = ns
i +K ∗ns

k where ∗ denotes the convolutional operation. In the Supplementary
Material, we explain calcium dynamics and our calculation of the kernel K in more detail.

Neural Mix Augmentation. Two-photon microscopy images often include multiple neural
signals combined within a single pixel. This is due to the the fact that multiple axons can be
present in a small tissue volume that is below the spatial resolution of the microscope. To mimic
this noise-adding effect, given a neural image ns

i , we randomly sample a set of frames nŝ
k, from a

random domain ŝ. We then return the blend of these two videos, ñs
i = ns

i +αnŝ
k, to mix and hide

the behavioral information. Unlike the CutMix [246] and Mixup [247] augmentations used for
supervised training, we apply the augmentation in an unsupervised setup to make the model more
robust to noise. We sample a random α for the entire set of samples in ns

i .

Augmentations. Aside from the augmentations mentioned before, for the neural image trans-
formation family Tn , we used a sequential application of Poisson noise and Gaussian blur and
color jittering. In contrast with recent work on contrastive visual representation learning, we
only applied brightness and contrast adjustments in color jittering because neural images have
a single channel that measures calcium indicator fluorescence intensity. We did not apply any
cropping augmentation, such as cutout, because action representation is often highly localized
and non-redundant (e.g., grooming is associated with the activity of a small set of neurons and
thus with only a small number of pixels). We applied the same augmentations to each frame in
single sample of neural data.

For the behavior transformation family Tb , we used a sequential application of scaling, shear, and
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random temporal and spatial dropping. We did not apply rotation and translation augmentations
because the animals were tethered (i.e., restrained from moving freely), and their direction and
absolute location were fixed throughout the experiment. We did not use time warping because
neural and behavioral information are temporally linked (e.g., fast walking has different neural
representations than slow walking).

Swapping Parameters. We analyze the effects of swapping individual poses, instead of whole
motion sequences, through our swapping augmentation in Fig. 42. We compare the distribution
similarity across individuals when tested on single poses and windows of poses. We observe that
the distribution similarity across individuals in behavioral modality is much larger in pose level
when compared to the whole motion sequence, therefore making it easier to swap behavioral data
in pose level. We quantify the distribution similarity using MMD (Mean Maximum Discrepancy)
and Homogeneity metrics. Similarly, swapping individual poses decreases the overall change in
the motion sequence, as quantified by the Mean Squared Distance. Yet, the degree to which iden-
tity information is hid does not strongly correlate with the window size of swapping. Therefore,
overall, suggesting swapping in pose level is better than swapping whole motion sequences.

Implementation Details: For all methods, we initialized the weights of the networks randomly
unless otherwise specified. To keep the experiments consistent, we always paired 32 frames of
neural data with 8 frames of behavioral data. For the neural data, we used a larger time window
because the timescale during which dynamic changes occur are smaller. For the paired modalities,
we considered data synchronized if their center frames had the same timestamp. We trained
contrastive methods for 200 epochs and set the temperature value τ to 0.1. We set the output
dimension of zb and zn to 128. We used a cosine training schedule with three epochs of warm-up.
For non-contrastive methods, we trained for 200 epochs with a learning rate of 1e −4, and a
weight decay of 1e −5, using the Adam optimizer [220]. We ran all experiments using an Intel
Core i9-7900X CPU, 32 GB of DDR4 RAM, and a GeForce GTX 1080. Training for a single
SimCLR network for 200 epochs took 12 hours. To create train and test splits, we removed
two trials from each animal and used them only for testing. We used the architecture shown in
Supplementary Table 1 for the neural image and behavioral pose encoder. Each layer except
the final fully-connected layer was followed by Batch Normalization and a ReLU activation
function [221]. For the self-attention mechanism in the behavioral encoder (Supplementary
Table 1), we implement Bahdanau attention [248]. Given the set of intermediate behavioral
representations S ∈RT×D , we first calculated,

r =W2 tanh
(
W1S>)

and ai =− log

(
exp(ri )∑
j exp

(
r j

))

where W1 and W2 are a set of matrices of shape R12×D and R1×12 respectively. ai is the assigned
score i-th pose in the sequence of motion. Then the final representation is given by

∑T
i ai Si .

100



6.3. Evaluation

Figure 39 – Motion Capture and two-photon dataset statistics. Visualizing (A) the number of
annotations per animal and (B) the distribution of the durations of each behavior across animals.
Unlike scripted human behaviors, animal behaviors occur spontaneously. The total number of
behaviors and their durations do not follow a uniform distribution, therefore making it harder to
model.
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Figure 40 – Visualizing the temporal correlation between behavioral and neural energies on
multiple animals. The behavioral and neural energies are calculated as the normalized distances
between consecutive frames. The multi-modal energies show a similar temporal pattern. The
slower neural energy decay is due to the calcium dynamics.

6.3 Evaluation

We test our method on three datasets. In this section, we describe these datasets, the set of
baselines against which we compare our model, and finally the quantitative comparison of all
models.

6.3.1 Datasets

We ran most of our experiments on a large dataset of fly neural and behavioral recordings that we
acquired and describe below. To demonstrate our method’s ability to generalize, we also adapted
it to run on another multimodal dataset that features neural ECoG recordings and markerless
motion capture[239, 240], as well as the well known H36M human motion dataset [29].
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MC2P: Since there was no available neural-behavioral dataset with a rich variety of sponta-
neous behaviors from multiple individuals, we acquired our own dataset that we name Motion
Capture and Two-photon Dataset (MC2P). We will release this dataset publicly. MC2P features
data acquired from tethered behaving adult flies, Drosophila melanogaster (Fig. 35), It includes:

1. Infrared video sequences of the fly acquired using six synchronized and calibrated infrared
cameras forming a ring with the animal at its center. The images are 480×960 pixels in size
and recorded at 100 fps.

2. Neural activity imaging obtained from the axons of descending neurons that pass from the
brain to fly’s ventral nerve cord (motor system) and drive actions. The neural images are
480×736 pixels in size and recorded at 16 fps using a two-photon microscope [249] that
measures the calcium influx which is a proxy for the neuron’s actual firing rate.

We recorded 40 animals over 364 trials, resulting in 20.7 hours of recordings with 7,480,000
behavioral images and 1,197,025 neural images. We provide additional details and examples in
the Supplementary Material. We give an example video of synchronized behavioral and neural
modalities in Supplementary Videos 1-2.

To obtain quantitative behavioral data from video sequences, we extracted 3D poses expressed in
terms of the 3D coordinates of 38 keypoints [111]. We provide an example of detected poses and
motion capture in Supplementary Videos 3-4. For validation purposes, we manually annotated
a subset of frames using eight behavioral labels: forward walking, pushing, hindleg grooming,
abdominal grooming, rest, foreleg grooming, antenna grooming, and eye grooming. We provide
an example of behavioral annotations in Supplementary Video 5.

ECoG dataset [239, 240]: This dataset was recorded from epilepsy patients over a period of
7-9 days. Each patient had 90 electrodes implanted under their skull. The data comprises human
neural Electrocorticography (ECoG) recordings and markerless motion capture of upper-body 2D
poses. The dataset is labeled to indicate periods of voluntary spontaneous motions, or rest. As for
two-photon images in flies, ECoG recordings show a significant domain gap across individual
subjects. We applied our multi-modal contrastive learning approach on ECoG and 2D pose data
along with swapping-augmentation. Then, we applied an across-subject benchmark in which we
do action recognition on a new subject without known action labels.

We apply multi-modal contrastive learning on windows of time series and RGB videos. We
make the analogy that, similar to the neural data, RGB videos from different view angles show
a domain gap although they are tied to the same 3D pose. Therefore, to test our method, we
select three individuals with different camera angles where all actors perform the same three
actions. We test domain adaptation using the Across-Subject benchmark, where we train our
linear action classifier on labels of one individual and test it on the others. We repeat the same
experiment three times and report the mean results. We show the results of Across-Subject and
Identity Recognition in Table 7.
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Figure 41 – Domain Gap in the H3.6M dataset. Similar to the domain gap across nervous
systems, RGB images show a significant domain gap when the camera angle changes across
individuals. We guide action recognition across cameras in RGB images using 3D poses and
behavioral swapping.

Figure 42 – Changing window size for the swapping of behavioral modality on the MC2P
dataset. Statistics of the behavioral modality as a function of changing the window size. De-
creasing the window size increases clustering homogeneity and Mean Maximum Discrepancy
(MMD) when applied to the raw data, therefore suggesting higher quality swapping in individual
poses instead of sequences of poses. Swapping augmentation with a smaller window size lowers
the degree of perturbation, quantified by Mean Squared Distance. However, identity recognition
accuracy does not change considerably when swapping is done with different window sizes.

For preprocessing, we remove global translation and rotation from 3D poses by subtracting the
root joint and then rotating the skeletons to point in the same direction. We use resnet18 for the
RGB encoder and a 4 layer convolutional network for the 3D pose encoder. We use S1, S5 and
S7 and all their behaviors for training, except for the three behaviors which we used for testing.
For each number, we report three-fold cross-validation results.

H3.6M [29]: H3.6M is a multi-view motion capture dataset that is not inherently multimodal.
However, to test our approach in a very different context than the other two cases, we treated the
videos acquired by different camera angles as belonging to separate domains. Since videos are
tied to 3D poses, we used these two modalities and applied swapping augmentation together with
multimodal contrastive learning to reduce the domain gap across individuals. Then, we evaluated
the learned representations by performing action recognition on a camera angle that we do not
have action labels for. This simulates our across-subject benchmark used in the MC2P dataset.
For each experiment we selected three actions, which can be classified without examining large
window sizes. We give additional details in the Supplementary Material.

Dataset Collection. Here we provide a more detailed technical explanation of the experimental
dataset. Transgenic female Drosophila melanogaster flies aged 2-4 days post-eclosion were
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selected for experiments. They were raised on a 12h:12h day, night light cycle and recorded in
either the morning or late afternoon Zeitgeber time. Flies expressed both GCaMP6s and tdTomato
in all brain neurons as delineated by otd-Gal4 expression,

(; Otd−nl s:F LPo(at tP40)
P20XU AS−IV S−GC aMP6sat tP40 ; R57C 10−G AL4,tub>G AL80>

P w [+mC ]=U AS−tdTom.S3 .) The fluorescence of GCaMP6s proteins within
the neuron increases when it binds to calcium. There is an increase in intracellular calcium
when neurons become active and fire action potentials. Due to the relatively slow release (as
opposed to binding) of calcium by GCaMP6s molecules, the signal decays exponentially. We also
expressed the red fluorescent protein, tdTomato, in the same neurons as an anatomical fiduciary
to be used for neural data registration. This compensates for image deformations and translations
during animal movements. We recorded neural data using a two-photon microscope (ThorLabs,
Germany; Bergamo2) by scanning the cervical connective. This neural tissue serves as a conduit
between the brain and ventral nerve cord (VNC) [32]. The brain-only GCaMP6s expression
pattern in combination with restrictions of recording to the cervical connective allowed us to
record a large population of descending neuron axons while also being certain that none of the
axons arose from ascending neurons in the VNC. Because descending neurons are expected to
drive ongoing actions [189], this imaging approach has the added benefit of ensuring that the
imaged cells should, in principle, relate to paired behavioral data.

Neural Pre-Processing. For neural data processing, data were synchronized using a custom
Python package [250]. We then estimated the motion of the neurons using images acquired on the
red (tdTomato) PMT channel. The first image of the first trial was selected as a reference frame
to which all other frames were registered. For image registration, we estimated the vector field
describing the motion between two frames. To do this, we numerically solved the optimization
problem in Eq. 30, where w is the motion field, It is the image being transformed, Ir is the
reference image, and Ω is the set of all pixel coordinates [32, 251].

ŵ = ar g mi nw
∑

x∈Ω
||It (x +w(x))−Ir (x)||22 (30)

−λ ∑
x∈Ω

||∇w(x)||22

A smoothness promoting parameter λ was empirically set to 800. We then applied ŵ to the
green PMT channel (GCaMP6s). To denoise the motion corrected green signal, we trained a
DeepInterpolation network [252] for nine epochs for each animal and applied it to the rest of
the frames. We only used the first 100 frames of each trial and used the first and last trials as
validation data. The batch size was set to 20 and we used 30 frames before and after the current
frame as input. In order to have a direct correlation between pixel intensity and neuronal activity
we applied the following transformation to all neural images F−F0

F0
×100, where F0 is the baseline

fluorescence in the absence of neural activity. To estimate F0, we used the pixel-wise minimum
of a moving average of 15 frames.
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Neural Fluorescence Signal Decay. The formal relationship between the neural image nt and
neural activity (underlying neural firings) st can be modeled as a first-order autoregressive process

nt = γnt−1 +αst ,

where st is a binary variable indicating an event at time t (e.g. the neuron firing an action
potential). The amplitudes γ and α determine the rate at which the signal decays and the initial
response to an event, respectively. In general, 0 < γ< 1, therefore resulting in an exponential
decay of information pertaining to st to be inside of nt . A single neural image nt includes
decaying information from previous neural activity, and hence carries information from previous
behaviors. For more detailed information on calcium dynamics, see [28, 253]. Assuming no
neural firings, st = 0, nt is given by nt = γt n0. Therefore, we define the calcium kernel K as
Kt = γt .

Dataset Analysis. We show the distribution of annotations across 7 animals and action duration
distribution in Supplementary Fig. 39. Unlike scripted actions in human datasets, the animal
behavior is spontaneous, therefore does not follow a uniform distribution. The average duration
of behaviors can also change across behaviors. Walking is the most common behavior and lasts
longer than other behaviors. We visualize the correlation between the neural and behavioral
energy in Supplementary Fig. 40. We quantify the energy as the Euclidean distance between
consecutive, vectorized 3D poses. Similarly, for the neural energy, we calculate the Euclidean
distance between consecutive images. To be able to compare corresponding energies, we first
synchronize neural and behavioral modalities. We then smooth the corresponding time series
using Gaussian convolution with kernel size of 11 frames. We observe that there is a strong
correlation between the modalities, suggesting large mutual information.

6.3.2 Baselines

We evaluated our method using two supervised baselines, Neural Linear and Neural MLP. These
directly predict action labels from neural data without any unsupervised pretraining using cross-
entropy loss. We also compared our approach to three regression methods that attempt to
regress behavioral data from neural data, which is a common neural decoding technique. These
include a recent neural decoding algorithm, BehaveNet [58], as well as to two other regression
baselines with recurrent and convolutional approaches: Regression (Recurrent) and Regression
(Convolution). In addition, we compare our approach to recent self-supervised representation
learning methods, including SeqCLR [68] and SimCLR [5]. We also combine convolutional
regression-based method (Reg. (Conv)) or the self-supervised learning algorithm SimCLR
with the common domain adaptation techniques Gradient Reversal Layer (GRL)[241], or Mean
Maximum Discrepancy [254]. This yields four domain adaptation models. Finally, we apply a
recent multi-modal domain adaptation network for action recognition, MM-SADA[82] on MC2P
dataset. For all of these methods, we used the same backbone architecture. We describe the
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Tasks → Single-Subject ↑ Across-Subject ↑ Identity Recog. ↓
Percentage of Data → 0.5 1.0 0.5 1.0 0.5 1.0

Random Guess 16.6 16.6 16.6 16.6 12.5 12.5

Neural (Linear)

Su
p. 29.3 32.5 18.4 18.4 100.0 100.0

Neural (MLP) – – 18.4 18.4 100.0 100.0

SeqCLR [68]
Se

lf-
Su

pe
rv

is
ed 39.5 42.1 21.9 28.4 93.0 96.5

Ours (Neural Only) 42.0 44.8 21.3 30.6 94.1 96.8
SimCLR[5] 54.3 57.6 46.9 50.6 69.9 80.3
Regression (Recurrent) 53.6 59.7 49.4 51.2 89.5 91.8
Regression (Convolution) 52.6 59.6 50.6 55.8 88.7 92.5
BehaveNet [58] 54.6 60.2 50.5 56.8 80.2 83.4
Ours 57.9 63.3 54.8 61.9 12.5 12.5

SimCLR [5] + MMD

D
om

ai
n

A
da

.

53.6 57.8 50.1 53.1 18.4 21.2
SimCLR [5] + GRL 53.5 56.3 49.9 52.3 16.7 19.1
Reg. (Conv.) + MMD 54.5 60.7 52.6 55.4 18.2 19.5
Reg. (Conv.) + GRL 55.5 60.2 51.8 55.7 17.2 17.3
MM-SADA [82] 53.1 56.2 49.2 52.1 13.8 15.2

Table 5 – Action Recognition Accuracy. Single- and Across-Subject action recognition results
on the MC2P dataset. Neural MLP results for the single-subject task are removed because single
subject often do not have enough labels for every action. Smaller numbers are better for Identity
Recognition. Our method performs better than previous neural decoding methods and other
self-supervised learning methods in all benchmarks, while at the same time closing the domain
gap between animals, as shown by the identity recognition task.

backbone architecture and the baseline methods in more detail in the Supplementary Material.

Supervised:A feedforward network trained with manually annotated action labels using cross-
entropy loss, having neural data as input. We discarded datapoints that did not have associated
behavioral labels. For the MLP baseline, we trained a simple three layer MLP with a hidden layer
size of 128 neurons with ReLU activation and without batch normalization.

Regression (Convolutional):A fully-convolutional feedforward network trained with MSE loss
for behavioral reconstruction task, given the set of neural images. To keep the architectures
consistent with the other methods, the average pooling is followed by a projection layer, which is
used as the final representation of this model.

Regression (Recurrent):This is similar to the one above but the last projection network was
replaced with a two-layer GRU module. The GRU module takes as an input the fixed represen-
tation of neural images. At each time step, the GRU module predicts a single 3D pose with a
total of eight steps to predict the eight poses associated with an input neural image. This model is
trained with an MSE loss. We take the input of the GRU module as the final representation of
neural encoder.
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6.3. Evaluation

BehaveNet [58]:This uses a discrete autoregressive hidden Markov model (ARHMM) to decom-
pose 3D motion information into discrete “behavioral syllables." As in the regression baseline,
the neural information is used to predict the posterior probability of observing each discrete
syllable. Unlike the original method, we used 3D poses instead of RGB videos as targets. We
skipped compressing the behavioral data using a convolutional autoencoder because, unlike RGB
videos, 3D poses are already low-dimensional.

SimCLR [5]:We trained the original SimCLR module without the calcium imaging data and
swapping augmentations. As in our approach, we took the features before the projection layer as
the final representation.

Gradient Reversal Layer (GRL) [241]:Together with the contrastive loss, we trained a two-
layer MLP domain discriminator per modality, Db and Dn , which estimates the domain of the
neural and behavioral representations. Discriminators were trained by minimizing

LD =∑
x∈{b,n}−d log

(
Dm

(
fm(x)

))
(31)

where d is the one-hot identity vector. Gradient Reversal layer is inserted before the projection
layer. Given the reversed gradients, the neural and behavioral encoders fn and fb learn to fool
the discriminator and outputs invariant representations across domains, hence acting as a domain
adaptation module. We kept the hyperparameters of the discriminator the same as in previous
work [82]. We froze the weights of the discriminator for the first 10 epochs, and trained only the
LNC E . We trained the network using both loss functions, LNC E +λDLD , for the remainder of
training. We set the hyperparameters λD to 10 empirically.

Maximum Mean Discrepancy (MMD) [254]:We replaced adversarial loss in GRL baseline
with a statistical test that minimizes the distributional discrepancy from different domains.

MM-SADA [82]:A recent multi-modal domain adaptation model for action recognition that min-
imizes cross-entropy loss on target labels, adverserial loss for domain adaptation, and contrastive
losses to maximize consistency between multiple modalities. As we do not assume any action
labels during the contrastive training phase, we removed the cross-entropy loss.

SeqCLR [68]:This approach learns a uni-modal self-supervised contrastive model. Hence, we
only apply it to the neural imaging data, without using the behavioral modality. As this method
was previously applied on datasets with Electroencephalography (ECoG) imaging technique, we
removed ECoG specific augmentations.

Maximum Mean Discrepancy (MMD):We replaced adversarial loss in GRL baseline with a
statistical test to minimize the distributional discrepancy from different domains [254]. Similar
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to previous work, we applied MMD only on the representations before the projection layer
independently on both modalities [80, 82]. Similar to the GLR baseline, we first trained 10 epochs
only using the contrastive loss, and trained using the combined losses LNC E +λM MDLM MD for
the remainder. We set the hyperparameters λM MD as 1 empirically. For the domain adaptation
methods GRL and MMD, we reformulated the denominator of the contrastive loss function.
Given a domain function dom which gives the domain of the data sample, we replaced one side
of LNC E in Eq. 26 with,

log
exp

(〈
zi

b ,zi
n

〉
/τ

)
∑N

k=1 1[dom(i )=dom(k)] exp
(〈

zi
b ,zk

n
〉

/τ
) , (32)

where selective negative sampling prevents the formation of trivial negative pairs across domains,
therefore making it easier to merge multiple domains. Negative pairs formed during contrastive
learning try to push away inter-domain pairs, whereas domain adaptation methods try to merge
multiple domains to close the domain gap. We found that the training of contrastive and domain
adaptation losses together could be quite unstable, unless the above changes were made to the
contrastive loss function.

6.3.3 Benchmarks

Since our goal is to create useful representations of neural images in an unsupervised way, we
focused on single- and across-subject action recognition. Specifically, we trained our neural
decoder fn along with the others without using any action labels. Then, freezing the neural
encoder parameters, we trained a linear model on the encoded features, which is an evaluation
protocol widely used in the field [5, 73, 75, 255]. We used either half or all action labels. We
mention the specifics of the train-test split in the Supplementary Material.

Single-Subject Action Recognition.For each subject, we trained and tested a simple linear
classifier independently on the learned representations to predict action labels. We assume that
we are given action labels on the subject we are testing. In Table 5 we report aggregated results.

Across-Subject Action Recognition.We trained linear classifiers on N-1 subjects simultaneously
and tested on the left-out one. Therefore, we assume we do not have action labels for the target
subject. We repeated the experiment for each individual and report the mean accuracy in Table 5
and Table 7.

Identity Recognition.As a sanity check, we attempted to classify subject identity among the
individuals given the learned representations. We again used a linear classifier to test the domain
invariance of the learned representations. In the case that the learned representations are domain
(subject) invariant, we expect that the linear classifier will not be able to detect the domain of the
representations, resulting in a lower identity recognition accuracy. Identity recognition results are
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6.3. Evaluation

rerported in Table 5 and Table 7.

6.3.4 Results

Single-Subject Action Recognition on M2CP.For the Single-Subject baseline, joint modeling
of common latent space out-performed supervised models by a large margin, even when the
linear classifier was trained on the action labels of the tested animal. Our swapping and neural
augmentations resulted in an accuracy boost when compared with a simple contrastive learning
method, SimCLR[5]. Although regression-based methods can extract behavioral information
from the neural data, they do not produce discriminative features. When combined with the
proposed set of augmentations, our method performs better than previous neural decoding models
because it extracts richer features thanks to a better unsupervised pretraining step. Domain
adaptation techniques do not result in a significant difference in the single-subject baseline; the
domain gap in a single animal is smaller than between animals.

Across-Subject Action Recognition on M2CP.We show that supervised models do not gen-
eralize across animals, because each nervous system is unique. Before using the proposed
augmentations, the contrastive method SimCLR performed worse than convolutional and recur-
rent regression-based methods including the current state-of-art BehaveNet [58]. This was due to
large domain gap between animals in the latent embeddings (Fig. 36C). Although the domain
adaptation methods MMD (Maximum Mean Discrepancy) and GRL (Gradient Reversal Layer)
close the domain gap when used with contrastive learning, they do not position semantically
similar points near one another (Fig. 36D). As a result, domain adaptation-based methods do
not result in significant improvements in the across-subject action recognition task. Although
regression-based methods suffer less from the domain gap problem, they do not produce repre-
sentations that are as discriminative as contrastive learning-based methods. Our proposed set
of augmentations close the domain gap, while improving the action recognition baseline for
self-supervised methods, for both single-subject and across-subject tasks (Fig. 36E).

Action Recognition on ECoG Motion vs Rest.As shown at the bottom of Table 7, our approach
significantly lowers the identity information in ECoG embeddings, while significantly increasing
across-subject action recognition accuracy compared to the regression and multi-modal SimCLR
baselines. Low supervised accuracy confirms a strong domain gap across individuals. Note that
uni-modal contrastive modeling of ECoG recordings (SimCLR (ECoG)) does not yield strong
across-subject action classification accuracy because uni-modal modeling cannot deal with the
large domain gap in the learned representations.

Human Action Recognition on H3.6M.We observe in Table 7 that, similar to the previous
datasets, the low performance of the supervised baseline and the uni-modal modeling of RGB
images (SimCLR (RGB)) are due to the domain-gap in the across-subject benchmark. This obser-
vation is confirmed by the high identity recognition of these models. Our swapping augmentation
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strongly improves compared to the regression and multi-modal contrastive (SimCLR) baselines.
Similar to the previous datasets, uni-modal contrastive training cannot generalize across subjects,
due to the large domain gap.

6.3.5 Ablation Study

We compare the individual contributions of different augmentations proposed in our method.
We report these results in Table 8. We observe that all augmentations contribute to single- and
across-subject benchmarks. Our swapping augmentation strongly affects the across-subject
benchmark, while at the same time greatly decreasing the domain gap, as quantified by the
identity recognition result. Other augmentations have minimal effects on the domain gap, as they
only slightly affect the identity recognition benchmark.

6.4 Conclusion

We have introduced an unsupervised neural action representation framework for neural imag-
ing and behavioral videography data. We extended previous methods by incorporating a new
swapping based domain adaptation technique which we have shown to be useful on three very
different multimodal datasets, together with a set of domain-specific neural augmentations. Two
of these datasets are publicly available. We created the third dataset, which we call MC2P, by
recording video and neural data for Drosophila melanogaster and will release it publicly to
speed-up the development of self-supervised methods in neuroscience. We hope our work will
help the development of effective brain machine interface and neural decoding algorithms. In
future work, we plan to disentangle remaining long-term non-behavioral information that has
a global effect on neural data, such as hunger or thirst, and test our method on different neural
recording modalities. As a potential negative impact, we assume that once neural data is taken
without consent, our method can be used to extract private information.
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6.4. Conclusion

(a) First part of the Neural Encoder fn

Layer # filters K S Output

input 1 - - T ×128×128
conv1 2 (3,3) (1,1) T ×128×128
mp2 - (2,2) (2,2) T ×64×64
conv3 4 (3,3) (1,1) T ×64×64
mp4 - (2,2) (2,2) T ×32×32
conv5 8 (3,3) (1,1) T ×32×32
mp6 - (2,2) (2,2) T ×16×16
conv7 16 (3,3) (1,1) T ×16×16
mp8 - (2,2) (2,2) T ×8×8
conv9 32 (3,3) (1,1) T ×8×8
mp10 - (2,2) (2,2) T ×4×4
conv11 64 (3,3) (1,1) T ×4×4
mp12 - (2,2) (2,2) T ×2×2
fc13 128 (1,1) (1,1) T ×1×1
fc14 128 (1,1) (1,1) T ×1×1

(a) Second part of the Neural Encoder fn

Layer # filters K S Output

input 60 - - T ×128
conv1 64 (3) (1) T ×128
conv2 80 (3) (1) T ×128
mp2 - (2) (2) T /2×128
conv2 96 (3) (1) T /2×128
conv2 112 (3) (1) T /2×128
conv2 128 (3) (1) T /2×128
attention6 - (1) (1) 1×128
fc7 128 (1) (1) 1×128

(a) Behavioral Encoder fb

Layer # filters K S Output

input 60 - - T ×60
conv1 64 (3) (1) T ×64
conv2 80 (3) (1) T ×80
mp2 - (2) (2) T /2×80
conv2 96 (3) (1) T /2×96
conv2 112 (3) (1) T /2×112
conv2 128 (3) (1) T /2×128
attention6 - (1) (1) 1×128
fc7 128 (1) (1) 1×128

Table 6 – Architecture details. Shown are half of the neural encoder fn and behavior encoder
fb functions. How these encoders are used is shown in Fig. 3. Neural encoder fn is followed
by 1D convolutions similar to the behavioral encoder fb , by replacing the number of filters.
Both encoders produce 128 dimensional output, while first half of the neural encoder do not
downsample on the temporal axis. mp denotes a max-pooling layer. Batch Normalization and
ReLU activation are added after every convolutional layer.
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Tasks → A.S. ↑ A.S. ↑ I.R. ↓
Dataset Percentage of Data → 0.5 1.0 1.0

H3.6M
Walking,
Sitting,
Posing

Random Gu. 33.0 33.0 33.0
Supervised 46.6 48.3 100.0
SimCLR [5] (RGB) 33.2 33.5 99.5
SimCLR[5] 53.3 55.7 99.2
Regression (Conv.) 65.2 68.8 68.4
Ours 72.4 73.6 42.3

H3.6M
Walking
Together,
Direc-
tions,
Eating

Random Gu. 33.3 33.3 33.3
Supervised 31.2 30.9 100.0
SimCLR [5] (RGB) 34.6 34.4 100.0
SimCLR[5] 52.3 53.2 94.8
Regression (Conv.) 44.8 48.7 62.1
Ours 63.2 68.3 44.8

ECoG
Moving,
Rest

Random Gu. 50.0 50.0 33.3
Supervised 54.2 53.8 100.0
SimCLR [5] (ECoG) 52.3 55.1 98.0
SimCLR[5] 64.6 72.1 81.1
Regression (Conv.) 64.1 71.8 74.3
Ours 75.8 81.9 53.0

Table 7 – Across-subject (A.S.) and identity recognition (I.R.) results on H3.6M dataset[29]
using RGB and 3D pose, and on ECoG Move vs Rest [239] using neural ECoG recordings and
2D pose. For Ours, we remove calcium imaging specific augmentations and only use swapping
augmentation. Swapping augmentation closes the domain gap for the contrastive learning and
strongly improves across-subject action recognition on both datasets.

Single Across Identity
Method Subj.↑ Subj.↑ Recog. ↓
w/ Swapping Augmentation N + 2.7 N + 7.9 H -63.0
+ w/ Calcium Augmentation N + 2.1 N + 2.7 � +1.2
+ w/ Mix Augmentation N + 1.1 N + 1.2 � -0.8

Table 8 – Ablation Study. Showing the effect of different augmentations on single-subject,
across-subject and identity recognition benchmarks.
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Part 7Concluding Remarks
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7.1. Summary

This thesis presents several solutions to the problems of unsupervised neural decoding and 3D
pose estimation on laboratory animals. These challenging problems find several applications
in neuroscience and brain-machine interfaces. In the following, we first summarize the accom-
plishments and contributions presented in the thesis. We then discuss some limitations of our
approaches and identify directions for future research.

7.1 Summary

Chapter 3 presented a novel unsupervised markerless 2D pose estimation system. Extracting pose
information from laboratory animals requires significant annotation labor. Our model requires
only unrealistic renderings of the target animal without requiring any manual pose labeling.
While deep learning models cannot be trained on unrealistic renderings of laboratory animals due
to the domain gap, we propose a novel deformation-based generative network that transforms
the unrealistic renderings into real images while at the same time keeping the pose information
intact. This enables us to train a pose estimation network on generated images with annotations.

Chapter 4 proposed a markerless self-calibrating motion capture system on tethered animals.
Although the 2D pose is enough for many applications, it suffers from the loss of information
due to projection operation. Main-stream extraction of 3D pose requires multi-view calibration.
However, this tedious setup is not ideal for many laboratory setups. Therefore, we model a
self-calibrating system that uses the animal as the calibration pattern. To make the system even
more reliable, we explain a which uses animal shape and skeleton as the 3D prior, therefore fixing
the deep learning based motion capture system on the go.

Chapter 5 proposed a monocular 3D motion capture algorithm for laboratory animals. Although
3D pose includes all motion information, multi-camera systems require hardware. To ease the
motion capture on laboratory animals, we explain a monocular system that can still recover 3D
pose. We test our network on multiple lab animals, including flies, mice, rats, and macaques. We
show that our monocular motion capture system performs reliably and on-par with multi-camera
motion capture systems.

Chapter 6 proposed a novel unsupervised domain adaptation method for neural decoding, using
the previously mentioned animal markerless motion capture systems for domain adaptation. We
show that our neural decoding algorithm can successfully generalize across individuals and can
provide better neural decoding performance on low data regimes when compared to supervised
algorithms and performs better than previous unsupervised neural decoding algorithms.

7.2 Limitations and Future Work

This section discusses the main limitations of the proposed methods and suggests potential
directions for future work.
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3D Animal Body Shape Estimation: In this thesis, we have shown that the 2D and 3D animal
pose estimation problem is solvable in terms of predicting joint locations. Although this captures
the location of body parts, it does not fully encode the shape information. One exciting direction
for future research is to predict the full 3D shape of an animal by fitting a detailed 3D body model
to the initial 3D pose predictions, using realistic models such as [117, 235].

Multiple Animal Pose Estimation: In Chapters 3, 4, and 5, we have assumed that we have a
single animal in the given image and estimated the 3D pose of a single animal. Our algorithms
can still be used for multi-animal 3D pose estimation by operating on individually cropping
the images around individual animals. To both benefit from scene context and interactions, one
could jointly predict the pose of multiple animal from the entire image with a single-shot method.
Therefore, our work is open to further extensions by incorporating the top-down multi-animal
pose estimation approaches, such as [256].

Self-Supervised Learning Motion-Capture for Generalizability: For many animals, in the
wild pose annotations do not exist. Present annotations are recorded only in restricted lab settings.
This makes animal pose estimation hard to generalize across animals. Self-supervised and
weakly-supervised methods can be incorporated into animal pose estimation to make it more
reliable across animals and setups.

Domain Generalization: In Chapter 6, we have shown success in transductive domain adapta-
tion across individuals and animals for neural decoding. However, our algorithm still requires
target individuals without action labels to be visible during the training. Therefore, our algorithm
must be re-trained given a new domain. However, this requirement is challenging and not feasible
in many real-world applications. We hope the future directions will provide truly non-transductive
domain adaptation for neural decodings [257].

General Neural Representations: In Chapter 6, we showed we can generate neural represen-
tations that can be used for downstream tasks. However, we have only tested our representations
under the action recognition setting. One obvious next step is to test our embeddings on other
downstream tasks such as motion prediction.
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A An appendix

7.0.1 Dataset sources and splits.

The worm dataset in Chapter 3 stems from the OpenWorm initiative [155, 156]. We used three
videos after subsampling to 8x speed. The OpenWorm videos are referred by strain type and
timestamp. We used the three videos specified in Table A.1, downloaded from YouTube at
subsampled framerate (8x speed compared to the original recording).

Strain Strain description Time stamp
OW940 zgIs128[P(dat-1)::alpha-Synuclein::YFP] 2014-03-14T13:39:36+01:00
OW940 zgIs128[P(dat-1)::alpha-Synuclein::YFP] 2014-03-06T09:11:51+01:00
OW939 zgIs113[P(dat-1)::alpha-Synuclein::YFP] 2014-02-22T14:13:49+01:00

Table A.1 – OpenWorm videos. Strain type and timestamp of the used videos published by [155,
156].

The worm is tracked in each video to be roughly centered. The only transformation done is
scaling the original frames to resolution 128×128 pixels. We randomly picked 100 frames of
these three videos for test and then picked 1000 frames out of all remaining frames for unpaired
training. We manually annotated every 10th frame (100 frames) from the unpaired training
examples with two keypoints (head and tail) to train the supervised baseline, and the entire test
set (100 frames) for quantifying pose estimation accuracy.

For the zebrafish larva experiments, we used Video 3 (672246_file04.avi) published in the
supplemental of [123] (biorxiv.org/content/10.1101/672246v1.supplementary-material). We crop
the original video from 1920×1080 pixels to the region with top left corner (500,10) and bottom
right (1290,800), and scale it to 128×128 pixels. We deleted some repetitive frames where the
zebrafish is not moving to increase the percentage of frames where zebrafish is bending. In total,
we retained 600 frames. We selected the last 100 frames for test and 500 left for unpaired training.
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Appendix A. An appendix

Besides the test images, we also manually annotated every 5th (100 frames) from the 500 training
images as the training data for the supervised baseline.
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