
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Real-Time Nonlinear Model Predictive Control for Fast 
Mechatronic Systems 

Petr LISTOV

Thèse n° 7699

2022

Présentée le 19 mai 2022

Prof. A. Karimi, président du jury
Prof. C. N. Jones, directeur de thèse
Prof. E. Kerrigan, rapporteur
Prof. R. Schmehl, rapporteur
Prof. G. Ferrari Trecate, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire d’automatique 3
Programme doctoral en génie électrique 





To strive, to seek, to find, and not to yield.

— Alfred Tennyson

To Olga. . .





Acknowledgements

I would like to express sincere gratitude to my advisor, Prof. Colin Jones, for giving me the

opportunity to pursue my PhD at Laboratoire d’Automatique. I deeply appreciate the freedom

of choosing research directions and academic courses that I enjoyed over the past several

years. Whatever path I took Colin always provided encouraging support, guidance and had

a whole bag of creative ideas. Finally, thanks to his talent for attracting funds I could buy as

many embedded computers and build as many robots as a PhD student could possibly only

dream about.

I would also like to say a big thank you to Prof. Eric Kerrigan, Prof. Roland Schmehl, Prof.

Giancarlo Ferrari-Trecate and Prof. Alireza Karimi for taking their time to read the dissertation

and for providing valuable feedback and criticism during the defence.

Visits to other labs within the AWESCO training network always were a big source of inspiration.

I am very grateful to Prof. Moritz Diehl and members of his group Misha Katliar, Andrea Zanelli,

Robin Verschueren, Dimitris Kouzoupis and Per Rutquist for hosting me at the University of

Freiburg. It is during this visit that the architecture of what later would become PolyMPC was

outlined after enjoyable discussions and brainstorms with the lab members. Many thanks to

Prof. Roy Smith and Eva Ahbe for welcoming me at ETHZ during my second secondment. It

was a great pleasure to discover the world of stochastic processes together. Overall, AWESCO

was a great and enriching experience and I am grateful to all PI’s that made it possible and to

all my fellow student researchers.

This thesis would not be possible without fruitful collaborations with brilliant master students

at EPFL. Thanks to Michael Spieler with whom we developed and deployed on a microcon-

troller an early version of PolyMPC. The flight experiments would hardly be possible without

Johannes Waibel with whom we spent many hours together building, programming and flying

airplanes. It was a pleasure to host Johannes Schwarz for his master thesis at the lab. His

enquiring mind and deep questions helped me to grow as an expert in control. I truly enjoyed

our collaboration that led to the novel stochastic optimal control algorithms development.

Huge thanks to master students, Jean Pierre Allamaa, Gregoire Du Pasquier, and Arrival Racing

i



Acknowledgements

Team members, Pavel Savinkov, Rinat Shagiev and Max Kumskoy, for their hard work creating

and testing the predictive controller for the autonomous racing car. Finally, thanks to Raphaël

Linsen and Albéric Lajarte for unforgettable experience building a thrust vector controlled

rocket prototype.

I will always remember the days spent at Laboratoire d’Automatic with great warmth. It was

an honour to become an invited member of the ”Empty head research group" along with

Ehsan and Dr. Philippe Müllhaupt with whom we concealed the idea of the first commercial

Vasco da Gamma university. I feel lucky to share the lab space with the nicest and smartest

people: Georgios, Luca, Altug, Sanket, my old fellow programmer Harsh, Christophe, Sriniketh,

Martand, Tafarel, Tomasz, Predrag, Sohail, Ivan and the younger generation: Emilio, Philippe,

Clara, Paul, Yingzhao, Wenji, Yang and my new programming fellow Roland. A big thank

you to Lloris who helped me with the abstract translation. I am grateful to Dr. Yuning Jiang,

Dr. Tony Wood and Emilio for improving the writing quality of this thesis. Thanks to Dr.

Christophe Salzmann for sharing his immense knowledge about network protocols and for

his readiness to help virtually with any possible hardware and organisational question I could

have. I thank Ruth, Eva, Margot and Nicole for providing the best administrative assistance

and for managing my numerous trip and procurements.

I am very thankful to my former colleagues at RoboCV for introducing me to robotics and

software engineering, particularly to Artur Emagulov and Dr. Ilya Nedelko. It was Ilya who

initiated me into the field of numerical optimisation and helped to implement the first nonlin-

ear solver. His fundamental understanding of algorithms, analysis and problem-solving skills

influenced my decision to pursue a PhD degree. Many thanks to Artur for making me a better

engineer but primarily for being a good friend all these years.

It is hard to find the right words to express all the gratitude to my family for their unconditional

support and care. I will be eternally grateful to the two heroic women, my mother Arina and

babushka Zinaida Aleksandrovna, who despite very hard times raised me and my brothers. I

thank my stepfather Boris for his patience in helping me to prepare for university entrance

exams but perhaps most importantly for fostering the right work attitude which I will carry

through days.

At last but not least, I say thank you to my beloved wife Olga without whom I would never have

started (and finished) this journey.

Lausanne, December 24, 2021 P. L.

ii



Abstract

This thesis presents an efficient and extensible numerical software framework for real-time

model-based control. We are motivated by complex and challenging mechatronic applica-

tions spanning from flight control of fixed-wing aircraft and thrust vector control drones to

autonomous driving.

In the first part, we present PolyMPC, a novel C++ software framework for real-time embedded

nonlinear optimal control and optimisation. A key feature of the package is a highly optimised

implementation of the pseudospectral collocation method that exploits instruction set par-

allelism available on many modern computer architectures. Polynomial representation of

the state and control trajectories allows the tool to be used as a standalone controller and as

an efficient solver for low-level tracking controllers in hierarchical schemes. Another distinc-

tive property of PolyMPC is that, unlike almost all other software tools for real-time optimal

control, it does not employ code generation. Instead, we leverage the flexibility of templates

and static polymorphism in C++ to optimise computations, statically allocate memory and

dispatch algorithmic optimisation at compilation time. Algorithmically, the choice is made

towards computational speed. For nonlinear problems, we combine a sequential quadratic

programming (SQP) strategy with the alternating direction method of multipliers (ADMM) for

quadratic programs (QP), which is especially favourable for embedded applications thanks to

the low computational cost per iteration. The user is not limited to the available implementa-

tions and has the option of interfacing several other established QP and NLP solvers. PolyMPC

has been tested on many embedded platforms and shown to provide better performance than

other similar tools for numerical optimal control.

In the second part, the developed numerical methods and software are used to experimentally

study optimisation-based control of airborne wind energy (AWE) systems. For this purpose,

we designed and built a small-scale prototype of a single-line rigid-wing AWE kite which

comprises an aircraft fitted with necessary sensors and computers and a fully autonomous

ground station for tether control. The prototype serves as a research platform for studying

flight navigation and control systems thanks to very flexible custom mission management

and control software. We further develop a dynamic optimisation based methodology for

iii



Abstract

parameter identification and provide a validated flight simulator that matches well the real

behaviour of the system. Finally, a model-predictive path following flight controller is designed

and tested in real-world experiments.

The third part of the thesis is concerned with the application of real-time nonlinear model

predictive control (NMPC) to autonomous driving at the limits of handling, which requires

high sampling rates and robustness of the motion control system. We propose a dynamic

optimization-based hierarchical framework for the local refinement of the racing lines that

takes into account the nonlinear vehicle and actuator dynamics, adaptive tyre constraints, and

the safety corridor around the initial path. The top layer receives a discrete obstacle-free local

path computed by a coarse planner and transforms it into auto-differentiable look-up tables

(LUT) for efficient continuous sampling. The PolyMPC-based nonlinear model predictive

control algorithm computes an optimal trajectory that steers the race car to the path while

respecting dynamic and actuator constraints. This continuous trajectory is then sampled

by a fast discrete-time linear quadratic regulator (LQR) at the stabilisation layer. We provide

rigorous processor-in-the-loop (PiL) benchmarks using validated high-fidelity simulation

tools. Our solution provides an improvement in lap time over the current state of the art

method and minimises interference of emergency stabilisation systems.

Separately, we investigated the problem of safe trajectory planning under parametric model

uncertainties motivated by automotive applications. We use generalised polynomial chaos

expansions for efficient nonlinear uncertainty propagation and distributionally robust in-

equalities for chance constraint approximation. Inspired by tube-based model predictive

control, an ancillary feedback controller is used to control the deviations of stochastic modes

from the nominal solution, and therefore, decrease the variance. Our approach reduces

conservatism related to nonlinear uncertainty propagation while guaranteeing constraint

satisfaction with a high probability. The performance is demonstrated on the example of a

trajectory optimisation problem for a simplified vehicle model with uncertain parameters.

Key words: Nonlinear Model Predictive Control, Pseudospectral Methods in Optimal Control,

Flight Control, Stochastic Optimal Control

iv



Résumé

Cette thèse présente un logiciel efficace, extensible, et en temps réel pour le contrôle basé

sur des modèles (MPC). Nous sommes motivés par des applications mécatroniques très com-

plexes et exigeantes allant du contrôle de vol d’aéronefs à voilure fixe et du vecteur de poussée

de drones à la conduite autonome.

Dans la première partie, nous présentons PolyMPC, un nouveau logiciel en C++ pour le

contrôle et l’optimisation embarqué et en temps réel de systèmes non linéaires. Une de ses

caractéristiques clés est une implémentation hautement optimisée de la méthode de colloca-

tion pseudospectrale qui exploite le parallélisme d’instructions disponible sur de nombreuses

architectures informatiques modernes. Une représentation polynomiale des trajectoires du

système (états et commandes) permet d’utiliser PolyMPC comme contrôleur autonome et

comme guidage efficace pour des contrôleurs de suivi de bas niveau dans des schémas hié-

rarchiques. Une autre propriété notable de PolyMPC est que, contrairement à presque tous

les autres logiciels de contrôle et optimisation en temps réel, il n’utilise pas de génération de

code. A la place, nous tirons parti de la flexibilité des modèles et du polymorphisme statique

en C++ pour optimiser les calculs, allouer la mémoire statiquement, et répartir l’optimisation

algorithmique au moment de la compilation. Pour le choix des algorithmes, les décisions

sont prises en fonctions de leur vitesse de calcul. Pour les problèmes non linéaires, nous

combinons la stratégie de programmation quadratique séquentielle (SQP) avec la méthode

des multiplicateurs à directions alternées (ADMM) pour les problèmes quadratiques (QP) qui

est particulièrement intéressante pour les applications embarquées de par son faible coût

de calcul par itération. L’utilisateur n’est pas limité aux implémentations disponibles et a la

possibilité d’interfacer plusieurs autres solveurs pour des QP et d’autres programmes non

linéaires (NLP) existants. PolyMPC a été testé sur de nombreuses plates-formes embarquées

et s’est avéré offrir de meilleures performances que d’autres outils similaires pour le contrôle

prédictif basé sur des modèles.

Dans la deuxième partie, les méthodes numériques et les logiciels développés sont utilisés

pour étudier expérimentalement le contrôle et l’optimisation des systèmes aéroportés d’éner-

gie éolienne (AWE). À cette fin, nous avons conçu et construit un prototype à petite échelle

v



Résumé

d’un cerf-volant AWE à voilure rigide et à une seule ligne, qui comprend un aéronef équipé

des capteurs et des calculateurs nécessaires et une station au sol entièrement autonome

pour le contrôle de l’ancrage. Ce prototype sert de plate-forme de recherche pour l’étude des

systèmes de navigation et de contrôle de vol grâce à un logiciel de gestion et de contrôle de

mission sur mesure et très flexible. De plus, nous développons une méthodologie d’optimi-

sation dynamique pour l’identification des paramètres et fournissons un simulateur de vol

validé qui correspond bien au comportement réel du système. Enfin, un contrôleur de suivi

de trajectoires de vol basé sur les prédiction du modèle est conçu et testé lors d’expériences

réelles.

La troisième partie de la thèse s’intéresse à l’application en temps réel d’un contrôleur pré-

dictif basé sur un modèle non linéaire (NMPC) à la conduite autonome d’un véhicules aux

actions limitées qui nécessite des taux d’échantillonnage élevés et un système de contrôle de

mouvement robuste. Nous proposons une architecture hiérarchique basée sur l’optimisation

dynamique pour le raffinement des lignes de course locales, laquelle prend en compte les

dynamiques non linéaires du véhicule et des actionneurs, les contraintes adaptatives des

pneus et le corridor de sécurité autour du parcours initial. La couche supérieure reçoit un

parcours local discret et sans obstacle calculé par un planificateur plus grossier et le trans-

forme en tables de consultation (LUT) auto-différentiables pour un échantillonnage continu

efficace. L’algorithme de NMPC, basé sur PolyMPC, calcule la trajectoire optimale pour diriger

la voiture de course sur le parcours tout en respectant les contraintes du parcours et des ac-

tionneurs. Cette trajectoire continue est ensuite échantillonnée par un régulateur quadratique

linéaire à temps discret (LQR) rapide au niveau de la couche de stabilisation. Nous fournissons

des références précises pour comparer notre méthode à l’aide d’outils de simulation haute

fidélité validés et en utilisant le procédé de processor-in-the-loop (PiL). Notre solution permet

d’améliorer le temps au tour par rapport à la méthode de pointe actuelle et de minimiser les

interférences des systèmes de stabilisation d’urgence.

Séparément, motivés par des applications automobiles, nous avons étudié le problème de la

planification de trajectoires sûres lorsque des incertitudes paramétriques de modèle existent.

Nous utilisons l’expansion polynomiale généralisée du chaos pour une propagation efficace

de l’incertitude non linéaire et des inégalités robustes sous l’incertitude pour l’approxima-

tion des contraintes aléatoires. Inspiré du contrôle prédictif basé sur des tubes (tube-based

MPC), un contrôleur de rétroaction auxiliaire est utilisé pour contrôler les écarts des modes

stochastiques par rapport à la solution nominale et, par conséquent, diminuer la variance.

Notre approche permet de réduire le conservatisme lié à la propagation de l’incertitude non

linéaire tout en garantissant la satisfaction des contraintes avec une probabilité élevée. Sa

performance est démontrée pour un problème d’optimisation de trajectoire pour un modèle

de véhicule simplifié avec des paramètres incertains.

vi



Résumé

Mots clés : Contrôle prédictif de modèle non linéaire, méthodes pseudospectrales en contrôle

optimal, contrôle de vol, contrôle optimal stochastique

vii





Contents

Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1

1.1 Introduction and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 PolyMPC: software for fast embedded Nonlinear Model Predictive Control 1

1.1.2 Identification and Flight Control of Rigid-Wing Airborne Wind Energy

Kites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Predictive Control for Autonomous Racing . . . . . . . . . . . . . . . . . . 4

1.2 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I PolyMPC: Software for Fast Embedded NMPC 7

2 Software Design and Algorithms 9

2.1 Purpose and Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Pseudospectral Methods for Optimal Control . . . . . . . . . . . . . . . . . . . . 17

2.3 Optimisation Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II Identification and Predictive Flight Control of Rigid-Wing Airborne Wind

Energy Kites 59

3 Introduction 61

3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Modelling of a Rigid-Wing AWE Kite 65

ix



Contents

4.1 Modelling: Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Modelling: Ground Station and Tether . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Prototype: Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Prototype: Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Identification of an AWE Kite 81

5.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Identification Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Nonlinear Multi-experiment Identification via Dynamic Optimisation . . . . . 85

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Predictive Path Following Control 99

6.1 Hierarchical Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

III Predictive Control for Autonomous Racing 111

7 Predictive Path Following Control for Racing 113

7.1 Modelling of a Racing Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Trajectory Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Stochastic NMPC for Safe Autonomous Driving 135

8.1 Polynomial Chaos Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 Distributionally Robust Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Stochastic Optimal Control with Prestabilising Controller . . . . . . . . . . . . . 143

8.4 Optimal Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.5 Trajectory Optimisation under Parametric Uncertainties . . . . . . . . . . . . . 149

8.6 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

IV Conclusions and outlook 165

Bibliography 171

x



Contents

Curriculum Vitae 185

xi





Chapter 1

Introduction

1.1 Introduction and Contributions

The last decade has seen a surge of interest in optimisation-based solutions for real-time

control and decision making for various robotic and mechatronic systems both in industry

and in the research community. Initially developed to control slow chemical processes, model

predictive techniques are becoming more and more important for mechatronic systems

with faster dynamics, which includes industrial manipulators, advanced driving assistants

and cruise and flight control systems to name a few. This has become possible thanks to

active research in computational methods and software tailored to model predictive control

problems. Despite recent advances, however, embedded deployment of nonlinear model-

predictive control algorithms in real applications remains a challenging task. In this thesis, we

present a novel computational and software framework for real-time embedded nonlinear

optimal control that aims to reduce the complexity of embedded deployment. Furthermore,

we demonstrate how this framework enables novel control applications in the areas of airborne

wind energy and autonomous driving.

1.1.1 PolyMPC: software for fast embedded Nonlinear Model Predictive Control

The first part of the thesis concerns a novel C++ framework for fast embedded nonlinear opti-

misation and optimal control called PolyMPC. PolyMPC is a collection of carefully optimised

algorithms for quadratic and nonlinear optimisation problems, pseudospectral transcription

of optimal control problems and spectral projections. The tool is cross-platform and provides

competitive or better performance compared to state-of-the-art open-source optimal control

software. PolyMPC supports dense and sparse computations, and thanks to its design, enables

1



Introduction

simple algorithm customisation. The remainder of this section provides details about this

software tool.

In Part 1, we outline the major design choices and technical requirements for PolyMPC. The

software employs static polymorphism and other modern C++ design patterns to allow the

user cost-free customisation and extension of available algorithms. PolyMPC leverages the

powerful template mechanism of C++ to analyse the problem data, allocate memory and

dispatch optimisations at compile time. The software can adaptively allocate data statically or

dynamically depending on the problem and available stack sizes or programmer preference.

Once the data is allocated, PolyMPC makes sure that at no point temporary objects are created,

which helps to improve runtime and avoids possible memory fragmentation, which is critical

for embedded platforms.

The chapter also provides the necessary background on pseudospectral collocation meth-

ods for nonlinear optimal control. We argue that collocation techniques could be a good

alternative to classical shooting schemes for real-time nonlinear predictive control as they

typically require fewer optimisation variables for the same prediction horizon. Polynomial

parametrisation also becomes advantageous for hierarchical control schemes since state and

control trajectories can be cheaply and continuously re-sampled.

PolyMPC targets fast real-time systems and, therefore, prioritizes computational speed over

robustness. The toolbox offers two custom implementations of the alternating directions

method of multipliers (ADMM) for quadratic problems (QP) with slightly different splitting

strategies. ADMM iterations are known to be computationally cheap and provide moderate

accuracy results for reasonably scaled QPs. To enhance the robustness of the method, if

necessary, the user is allowed to define a preconditioning routine. For nonlinear optimisation

problems (NLPs) we implement a sequential programming (SQP) algorithm with a collection

of regularisation routines and line search routines. For the generation of sensitivities, we use

an existing forward mode automatic differentiation library and extend it with some commonly

used vector functions. Finally, PolyMPC provides interfaces to some established QP and NLP

solvers.

We conclude with some examples of nonlinear optimisation and optimal control problems, as

well as benchmark against popular open-source and commercial tools for model predictive

control.

1.1.2 Identification and Flight Control of Rigid-Wing Airborne Wind Energy Kites

The PolyMPC toolbox was initially developed to study experimentally if nonlinear model

predictive control (NMPC) techniques can increase the robustness, accuracy and flexibility of

2



1.1. Introduction and Contributions

airborne wind energy (AWE) flight control systems. AWE systems are a new technology for

energy harvesting from high altitude winds. Unlike conventional wind turbines, AWE systems

do not require massive concrete and steel structures to hold the blades. Instead, the power

is produced by a rigid or soft flying wing, often referred to as a kite, tethered to the ground

station. One variant of the technology foresees a two-phase operation of an AWE kite: During

the power generating phase, or traction phase, the kite moves away from the ground station in

cross-wind, reeling out the tether and spinning the rotor of the generator. In the de-powering

phase (or retraction phase) the kite glides back to the ground station at a low angle of attack,

during which time the generator switches to act as a motor and reels in the loose tether. The

difference between the traction and re-traction phases constitutes the power yield. Another

AWE concept has the kite continuously flying a certain orbit in cross-wind, typically a circle.

In this case, the power is generated by onboard turbines and transmitted to the ground station

via a conductive tether.

Despite offering potential improvements over classical wind turbines, AWE systems are very

complex from the state estimation, identification and control perspectives. To become practi-

cally viable, the control systems should possess robustness against unexpected wind distur-

bances while preserving the flying vehicle within the safe flight envelope. In this thesis, we

studied how nonlinear optimisation-based controllers can achieve these requirements. To

perform experimental studies, we designed and built a small-scale prototype of a fixed-wing

AWE system and tested our algorithms in real flight conditions. For this purpose, a commer-

cially available styrofoam glider was fitted with necessary sensors, an embedded computer, a

low-level flight controller and a tether release mechanism to enable fully autonomous flight

operation. The software includes the onboard mission control module, several flight con-

trollers, a custom telemetry module, a ground station control unit and a lightweight command

line interface for in-flight management of the system. In order to test the algorithms in the lab,

a kite simulator with graphical visualisation was also implemented.

Chapter 3 presents the state of the art in control of rigid-wing AWE kites and Chapters 4 and 5

of the thesis present our work on modelling and identification of the prototype. We employ

a control-oriented six degree of freedom (DoF) model with quaternion parametrisation of

rotations, a linearised aerodynamic model and a tether that is modelled as a viscoelastic

element. We rely on standard fixed-wing identification manoeuvres to collect data and the

model parameter estimation problem is posed as a nonlinear dynamic optimisation problem

and solved for multiple experiments using the PolyMPC toolbox.

The contribution of Chapter 6 is a real-time optimisation-based path following algorithm

for full-body motion control of a kite. The algorithm allows for a flexible geometric path

specification, does not require preliminary trajectory optimisation and explicitly encodes a

safe flight envelope and we show the real-time capability of the NMPC implementation on an

3



Introduction

embedded platform. To improve the robustness in real flight conditions, we implement and

compare two hierarchical schemes: high-frequency feed-forward re-sampling and low-level

tracking of the optimal trajectories. Finally, the control scheme is validated on real flight

experiments.

1.1.3 Predictive Control for Autonomous Racing

The third part of the thesis explores real-time NMPC for motion control of a racing car at

the limits of handling. The aim of the project was to develop an embedded optimisation-

based controller to steer an electric vehicle in a realistic racing scenario while respecting

dynamic safety bounds. The simulation and experimental parts of the project were carried

out in collaboration with the Arrival Racing team in the context of the Roborace autonomous

competition. We further investigated techniques to improve robustness and to ensure safe

autonomous driving in the case of model parametric uncertainty.

Chapter 7 provides background on the mathematical modelling of a racing car both in Carte-

sian and curvilinear reference frames. Further, a nonlinear path following model predictive

control algorithm for racing line tracking is presented and a PolyMPC-based implementation

is adapted for a real sensing system and car hardware limitations. A fast re-sampling scheme

with the existing low-level controller is implemented to enhance the robustness during the

experimental racing sessions. Processor-in-the-loop simulation results with an industry-grade

simulator and embedded automotive platform conclude the chapter.

In Chapter 8, a stochastic NMPC approach is proposed for the case when some of the model

parameters cannot be established precisely or change quickly over time. Unknown param-

eters are modelled as random variables, and the model equations thus become stochastic

differential equations. Polynomial chaos expansion (PCE) is proposed as a numerical tool for

nonlinear uncertainty propagation, and safety chance constraints are approximated by distri-

butionally robust inequalities. In order to reduce the conservatism of the stochastic approach,

we proposed a novel optimal control problem formulation with a pre-stabilising controller.

The performance of the stochastic NMPC algorithm is demonstrated using a simplified car

model in simulation.

1.2 Collaborations

The first part of the thesis was done in collaboration with Michael Spieler, who wrote the first

prototype of the SQP solver during his master thesis. The second part would be impossible

without Johannes Waibel, who contributed a lot to the hardware and software development of

4



1.3. Publications

the AWE prototype, implemented a backup geometric controller and masterfully piloted the

aircraft. The third part is the result of the fruitful collaboration of many people: Jean-Pierre

Allamaa contributed to the curvilinear path following NMPC formulation, he also developed

the PolyMPC interface to Simulink. We are grateful to Pavel Savinkov and other engineers

from the Arrival Racing Team for providing us with the industrial-grade simulation tools

and helping to deploy the NMPC controller on the embedded hardware. Johannes Schwarz

has contributed to the stochastic NMPC simulation and proposed the idea of an ancillary

controller for stochastic NMPC during his master thesis in the laboratory.

1.3 Publications

• JP. Allamaa, P. Listov, H. Van der Auweraer, C. Jones, S. Tong Duy, “Real-Time Nonlinear

MPC Strategy with Full Vehicle Validation for Autonomous Driving”, submitted to IEEE

American Control Conference (ACC), (under review)

• P. Listov∗, J. Schwarz*, C. Jones, “Stochastic Optimal Control for Autonomous Driving

Applications via Polynomial Chaos Expansions”, submitted to Optimal Control Applica-

tions and Methods, (under review).

• R. Linsen*, P. Listov*, A. Lajarte*, R. Schwan, C. Jones, “Optimal Thrust Vector Control of

an Electric Small-Scale Rocket Prototype”, submitted to IEEE International Conference

on Robotics and Automation, 2022 (under review).

• Y. Jiang*, P. Listov*, C. Jones, “Block BFGS based Distributed Optimization for NMPC

using PolyMPC”, European Control Conference (ECC), 2021.

• E.Ahbe, P. Listov, A. Ianneli, R. Smith, “Feedback Control Design Maximizing the Region

of Attraction of Stochastic Systems Using Polynomial Chaos Expansion", 21st IFAC World

Congress, 2020.

• P. Listov, C. Jones, “PolyMPC: An Efficient and Extensible Tool for Real-Time Nonlinear

Model Predictive Tracking and Path Following for Fast Mechatronic Systems”, Optimal

Control Applications and Methods, 2020.

• P. Listov, T. Faulwasser, C. Jones, “Nonlinear Model Predictive Path Following Control of

a Fixed-Wing Single-Line Kite”, Book of Abstracts of the International Airborne Wind

Energy Conference (AWEC), 2017.

*The authors contributed equally

5



Introduction

Articles in preparation:

• P. Listov*, JP. Allamaa*, G. Du Pasquier, J. Schwarz, P. Savinkov, C. Jones, “Real-Time

Nonlinear Model Predictive Control for Autonomous Racing”

• P. Listov*, J. Waibel*, C. Jones, “Identification and Predictive Control of an Airborne

Wind Energy System”

6



Part IPolyMPC: Software for Fast

Embedded NMPC

7





Chapter 2

Software Design and Algorithms

2.1 Purpose and Design Goals

Optimal control aims at finding a control function that minimises (or maximises) a given

criterion subject to system dynamics, typically governed by differential equations, and path

constraints. A generic continuous-time Optimal Control Problem (OCP) is often written in the

following form:

minimize
x(·),u(·),p

J [x(t0),u(·), p] =Φ[x(tf ), tf ,p]+
∫ t f

t0

L[x(τ),u(τ),τ, p]dτ (2.1a)

s.t. ∀τ ∈ [t0, t f ] (2.1b)

ẋ(τ) = f (x(τ),u(τ),τ, p), x(t0) = x0 (2.1c)

g (x(τ),u(τ),τ, p) ≤ 0 (2.1d)

ψ(x(t f ), t f , p) ≤ 0 (2.1e)

where τ ∈ R denotes time, x(τ) ∈ Rnx is the state of the system, u(τ) ∈ Rnu is the vector of

control inputs and p ∈Rnp is the vector of parameters. The functionΦ :Rnx ×R×Rnp →R is the

terminal cost function and L :Rnx ×Rnu ×R×Rnp →R is called the running cost. The system

dynamics are given by the function f :Rnx ×Rnu ×R×Rnp →Rnx , g :Rnx ×Rnu ×R×Rnp →Rng

is the path constraint function, and finally ψ :Rnx ×R×Rnp →Rnϕ is the terminal constraint

function.

Due to the significant progress both in the theory and the development of numerical methods

over the last decades, optimal control has become a mature technology with many applications

in the aerospace, robotics, chemical and manufacturing industries.

9



Chapter 2. Software Design and Algorithms

Nonlinear Model Predictive Control (NMPC) is an advanced feedback control method that

utilizes a dynamic model of a system to iteratively solve a finite time OCP and apply the

optimal solution u∗(x0, t0) in a receding horizon fashion. MPC theory is concerned with

designing the functionsΦ and ϕ such that the closed-loop system is stable and the recursive

feasibility is guaranteed, i.e. a solution to (2.1) exists at every iteration. Practical deployment

of NMPC algorithms still remains challenging due to the high computational demand of the

method.

Numerical Methods for Optimal Control

A globally optimal control function for (2.1) can be recovered from the solution of the Hamilton-

Jacobi-Bellman (HJB) equation [1, 2]. However, except for certain specific cases, a solution to

the HJB equation is hard or impossible to find analytically. Therefore, in practice it is usually

discretised and solved with algorithms based on the dynamic programming recursion, which

are known to suffer from the so called curse of dimensionality, i.e. computational complexity

grows exponentially with the problem dimension.

Numerical approaches for computing local OCP solutions are usually divided into two main

categories: the indirect and direct methods. The indirect approach requires a solution of a

boundary value problem for a system of differential algebraic equations (DAE) resulting from

the necessary optimality conditions [3, 4]. The main disadvantage of these methods is a high

sensitivity to the unspecified boundary conditions [4]. Hence, the reliability of the numerical

solution depends on a good initial guess, which is not always available. Another difficulty

limiting the practical application of the indirect methods is the inability to treat inequality

constraints efficiently, since the sequence of constrained and unconstrained arcs should be

guessed prior to solving the problem. The direct, or mathematical programming methods, on

the other hand, seek to transform a continuous time OCP into a finite dimensional nonlinear

program (NLP) by employing certain parametrizations of the state and control functions.

The ability to handle inequality constraints efficiently, as well as the active development of

nonlinear programming algorithms and software in the last several decades, has made the

direct methods a favoured choice for real-time optimal control.

Direct OCP transcription methods differ in their parametrisation of control and state trajecto-

ries, as well as integration methods for differential equations that govern dynamical systems.

In the single-shooting, or sequential approach, the prediction horizon is typically evenly

divided into segments. Within each time segment, the control is assumed to be constant (zero-

order hold assumption), and explicit integration techniques are used to eliminate the state

variables. This approach is primarily applied to the systems governed by well-conditioned

stable differential equations. For stiff and unstable dynamical systems, single-shooting often

10



2.1. Purpose and Design Goals

is not efficient due to insufficient numerical stability of explicit integration techniques and

high sensitivity of the solution to the control inputs [5].

Unlike single-shooting, the direct multiple-shooting approach developed by Bock [6, 7] does

not eliminate the state variables, and therefore can benefit from available implicit integration

schemes, which allows for the handling of unstable nonlinear systems. Efficient numerical

implementations exploit separability of the cost function and system constraints inherent to

the method [8].

Pseudospectral collocation is another numerical technique that employs a polynomial ap-

proximation of the state and control trajectories to discretize continuous-time OCPs. Initially

developed for solving differential equations, the collocation method was adopted for optimal

control problems by Biegler [9] and further analysed and developed by Ross [10], Benson

[11] and Huntington [12] in the early 2000s. One distinctive feature of this method is that the

solution of a system of differential equations and optimisation of the cost function happen

simultaneously. It also inherits the stability properties of the collocation method for ODEs,

and therefore is particularly useful for stiff nonlinear and unstable systems. Furthermore, for

some smooth problems the method can exhibit very fast, or spectral, convergence [13].

Software for Optimal Control

There exist a number of software tools that allow one to formulate and solve optimal control

problems. Among those based on pseudospectral collocation methods probably the most

well-known is the commercial package GPOPS-II [14]. Originally developed in Matlab, GPOPS-

II has been very recently released in C++. The software employs the Gauss pseudospectral

method with Legendre collocation nodes to solve multi-phase OCPs using interfaces to non-

linear solvers IPOPT [15] or SNOPT [16]. An important feature of the tool is the hp mesh

refinement algorithm that allows one to adjust the order of interpolating polynomials and

the length of subintervals to achieve a high accuracy of the optimal solution, even for dis-

continuous systems. This accuracy comes at the expense of computational resources, which

renders the use of this tool impossible in real-time applications. An open-source alternative

to GPOPS-II in Matlab is ICLOCS2 [17], which additionally offers multiple-shooting and direct

collocation methods, and an interface to a sequential programming code WORHP [18].

However, these packages rely on Matlab, which is neither free nor available on every platform.

The software tool PSOPT [19] overcomes this limitation, as it is a free and open-source C++

package that implements pseudospectral discretization on Legendre-Gauss-Lobatto (LGL) and

Chebyshev-Gauss-Lobatto (CGL) nodes, along with the p mesh refinement method. Similar to

GPOPS-II and ICLOCS, it can handle multi-stage problems and relies on the IPOPT nonlinear

11



Chapter 2. Software Design and Algorithms

optimization solver. A possible inconvenience for control systems developers is the necessity

to input model equations, cost and constraint functions in the scalar form, which can be very

difficult and error prone for complex systems. Another free and open-source alternative is a

Python package mpopt [20] which was co-developed by the author of the thesis. It features

several collocation schemes, h grid refinement and problem formulation using the symbolic

framework CasADi [21]. Some commercial software packages for optimal control employing

pseudospectral collocation methods include DIRCOL [22], DIDO and SOS [23].

Another popular software for direct optimal control that does not rely on spectral methods

is ACADO [24], which is a highly optimized C++ framework that implements single- and

multiple-shooting discretization combined with various explicit and implicit integration

routines, as well as a custom sequential programming (SQP) solver. For OCP modelling,

ACADO implements a symbolic algebra system that allows for automatic differentiation of the

user-provided expressions and generation of efficient tailored C code for solving the problem

in real-time. The successor of ACADO, acados [25] does not provide a modelling language but

rather requires the user to allocate data and implement cost, constraints, system dynamics

and their sensitivities with the respect to the state and control in the C language directly. This

approach allows for better modularity of the software, since it avoids the code generation step,

but demands significantly larger coding effort and is prone to errors in memory management.

To simplify the process, acados offers interfaces to Matlab and Python where OCPs can be

formulated using the symbolic framework CasADi [21] and be exported back to the C language.

The previously mentioned software CasADi is not specific to optimal control applications, but

provides a set of tools and interfaces to various numerical codes allowing the implementation

of different dynamic optimisation algorithms. At the core of the toolbox is a symbolic frame-

work that transforms user-specified scalar and matrix expressions into topologically sorted

directed acyclic graphs which allows the reuse of repeating expressions and the optimisation

of memory usage. Such a graph representation helps to efficiently evaluate expressions and

their sensitivities using forward or backward mode automatic differentiation. Therefore, the

software serves as a powerful prototyping instrument that does not require a lot of coding

effort or skills from the user. As a result of this flexibility and generality, however, CasADi

does not typically posses the same level of computational performance as more specialised

real-time optimal control tools. For embedded deployment, CasADi is able to generate C code

for the large subset of available functionality including a custom SQP solver.

PolyMPC

One can conclude that software for real-time and embedded optimal control follows one of the

two design patterns. In the first one, a high level modelling language is used to describe an OCP

12



2.1. Purpose and Design Goals

such that a code generation engine can create a self-contained low level code, typically in the

C language. This approach is particularly attractive for quick NMPC prototyping and testing.

On the downside, the code generation obscures the algorithmic components from the control

or optimisation expert, i.e. it is hard to single out or extend the algorithms. Thus, the user is

limited to a set of algorithms already implemented in a package. The modular design pattern,

conversely, allows more flexibility and full control of the code at the expense of programming

effort from the user. Most of the packages pursuing modular design, however, are highly

optimised for a particular structure of discretisation or optimisation methods developed by

the authors and therefore, adding an algorithm that does not fit into a given structure is

difficult without significant loss of performance. Furthermore, procedural languages like C do

not favour generic programming and many levels of abstractions.

This section presents PolyMPC, an open-source C++ library for real-time embedded nonlinear

optimal control that combines high computational performance, modularity and a simple

and intuitive user interface. PolyMPC is a lightweight collection of optimised and loosely

coupled tools for nonlinear optimisation and optimal control which includes several QP and

NLP solvers, quasi-Newton Hessian approximation and Hessian regularisation methods, a

polynomial interpolation and approximation module and an implementation of the Cheby-

shev pseudospectral collocation method, a continuous algebraic Riccati equation (CARE)

solver, linear quadratic regulator (LQR), and more. The design goals of the project that guided

the development are:

Performance: the software is designed to create real-time NMPC algorithms for fast

mechatronic systems that potentially can run on low-power computa-

tion platforms. Therefore, it is important to avoid unnecessary memory

allocations, copying and expensive calls of virtual methods while exploiting

vectorisation capabilities of modern processors. To allow for embedded

deployment on microcontrollers without an operating system the software

supports fully static memory allocation.

Usability: a key factor in the development is to create an efficient implementation of

state-of-the-art methods while preserving simplicity and a user-friendly

interface. The use of modern frameworks for linear algebra and automatic

differentiation allows the user to formulate problems using intuitive vector

notation.

Modularity: each algorithmic component of PolyMPC should be usable independently

and interaction of the components should happen at zero computational

cost. Moreover, interfaces and implementations should be logically sepa-

rated, i.e. for each family of algorithms (QP, NLP solvers, OCP discretisation

13



Chapter 2. Software Design and Algorithms

etc) a unifying interface should be provided.

Extensibility: the tool is designed in a manner that allows the user to formulate OCPs

as well as easily utilize and modify the building blocks of the algorithm by

changing or adding a corresponding implementation. It is further impor-

tant that the code is kept concise and clear.

Key design choices

The choice of the programming language is crucial to achieve the aforementioned design goals.

The object-oriented (OO) paradigm in C++ facilitates the development of a cleaner, modular

and extensible code. At the same time, modern C++ follows the zero-overhead principle that

states [26, 27]:

1 “You don’t pay for what you don’t use.”

2 “What you do use is just as efficient as what you could reasonably write by hand.”

This means, it is possible in principle to write a program using abstractions that will be at

least as efficient as with a low level code. It is further important to note that C++ is a quickly

evolving language with the standard being updated every three years with new concepts and

library features. While the newest language standards possess some attractive features such as

an improved aligned memory allocation, concurrency, type deduction and more convenient

conditional compilation, not all vendors of operating systems and compilers support them yet.

Therefore, at the moment, in the PolyMPC implementation we strictly adhere to the C++11

standard, which is supported on the majority of computational platforms that can run C++

code.

A very important example of this principle is the curiously recurring template pattern (CRTP)

[28] that is widely used in PolyMPC to abstract interfaces and implementation methods, to

customise the existing algorithms, and to supply user-defined functions for OCP and NLP

formulations. CRTP achieves a similar effect to the virtual function call system, but without

memory and performance overheads related to dynamic polymorphism: creating and storing

virtual method tables, runtime method lookups and so on. The compile-time dispatching

of the functions also often results in a better optimised machine code since the program

flow is transparent to the compiler. The downside of this approach is the impossibility of

changing function implementations at runtime, but since we target embedded applications

and prioritise computational speed over flexibility, the static polymorphism remains well

motivated.

14



2.1. Purpose and Design Goals

Another important paradigm in the language to implement static polymorphism is called

function templates [26]. In procedural languages like C, if one needs a function to operate

with different data types, it is necessary to define this function with all possible combinations

of data types, or to overload it. The template mechanism provides a more elegant solution to

this problem, where yet undefined data types serve as template parameters. Moreover, the

function is only fully defined when it becomes instantiated with particular data types. This

feature helps to avoid unnecessary computational overheads. For example, if only a numerical

value of a user-defined function is required by an algorithm, it can be called with one of the

standard floating point types, e.g. double or float. However, if an algorithm requires, for

instance, derivatives of the function, it can be called with a special AutoDiff scalar type which

carries the sensitivity information, and therefore is more computationally expensive. The

compiler will generate different machine code for these two different function calls. Function

templates also allow the parametrisation of the complete workflow of an optimisation or

MPC algorithm by a preferred scalar type, e.g. it is easy to switch between single-precision or

double-precision floating point numbers without any changes to the code.

It is possible to further speed-up computations by specifying a custom implementation

for a particular data type through a so called partial class (or full) template specialisation

mechanism. In PolyMPC this approach is employed to optimise sensitivity computations of

some vector-valued functions where first and second order sensitivities can be found in closed

form or can be vectorised efficiently, for instance, affine functions or quadratic forms. The

compiler performs a name lookup to detect if a functor was called with a particular type and

replaces a generic implementation with an optimised one.

Inlining is another feature in C++ that reduces the overhead associated with function calls.

If the inline specifier is used ahead of a function declaration, the compiler will expand the

function body at the point where it is called. This technique is typically used to optimise

frequently used small functions. In general, an extensive use of templates and inline functions

leads to the generated machine code growing in size and can cause losses in computational

performance. Therefore, in PolyMPC we run benchmarks to determine which functions should

be inlined.

Linear algebra

Linear algebra (LA) is a crucial component of any optimisation or optimal control algorithm.

For LA, PolyMPC relies on a fast and lightweight C++ template library Eigen [29] that possesses

several interesting and important features that will be briefly highlighted in the following. The

library exploits the CRTP idiom to implement the expression templates technique [30, 29],

which allows one to avoid creating temporary objects, reduces the number of memory ac-

15



Chapter 2. Software Design and Algorithms

cesses and performs loop unrolling if necessary. Internally, Eigen performs aligned memory

allocation and explicitly vectorises computations using hardware-specific single instruction,

multiple data (SIMD) intrinsics (AVX, SSE, SSE2, Neon, AltiVec). Besides high computational

performance Eigen provides a user-friendly interface for matrix expression manipulations,

supports dense and sparse matrix formats, direct and iterative linear system solvers, polyno-

mial and geometric modules and a basic automatic differentiation module. To summarise, the

particular LA library was chosen for its high performance, active maintenance by the research

and industrial communities and its good documentation. All these factors also contribute to

usability and extensibility of the PolyMPC package itself.

Memory management

Eigen provides the user with an option of heap or stack allocation of dense matrix objects. For

computational performance reasons and keeping in mind embedded deployment, PolyMPC

requires that the dimensions of the objects in the generic OCP (2.1) or the dimensions of the

optimisation variables and the number of constraints for optimisation problems are known

at compile time. Provided problem dimensions, the software can estimate the sizes and the

necessary amount of memory for every object that will be created during the optimisation

procedure and decide whether to allocate each of them statically or on the heap depending on

the available stack size. For embedded applications, if the provided stack size is insufficient,

the compilation will fail with a corresponding warning. Otherwise, larger objects will be

allocated on the heap. This approach also allows one to perform compile-time checks on the

consistency of matrix expressions and the avoid invalid memory accesses at runtime. Static

memory allocation for sparse matrices is impossible since, in general, the sparsity pattern

of a matrix can change during computations, which will then require memory re-allocation.

Whenever possible, PolyMPC will precompute the sparsity pattern of matrices and perform

block-updates using the low-level column compressed storage (CCS) format without memory

re-allocation.

CasADi

For historical reasons, some functionality in PolyMPC is duplicated using the CasADi frame-

work. This is useful for validating the sensitivity computations and solutions to nonlinear

problems. For embedded deployment, this interface is inefficient and we recommend to use

the Eigen interface instead.

16



2.2. Pseudospectral Methods for Optimal Control

Summary

This section briefly introduced the key implementation and programming concepts that were

used in PolyMPC development. We make extensive use of the static polymorphism paradigm

and templates in C++ to achieve high computational performance while preserving the mod-

ularity of each algorithmic module in the software. Our memory management approach

enables embedded deployment on systems where dynamic memory allocators are not avail-

able. In the next two sections, we provide some details on the algorithmic modules currently

implemented in PolyMPC.

2.2 Pseudospectral Methods for Optimal Control

The global Gauss pseudospectral method with application to some optimal problems in

aerospace was proposed in [11]. The authors established the equivalence between optimality

conditions on the NLP and the discretised OCP, and proposed a method for co-state estimation.

This work was extended in [12] for Legendre and Radau collocation schemes, as well as for

local, or piece-wise polynomial, approximation of state and control trajectories. Superior

convergence properties of the method were observed compared to other OCP discretisation

techniques for smooth problems. The method has since become widely popular to solve

trajectory optimization problems that arise in aerospace applications [31, 10] since it provides

high numerical accuracy for long prediction horizons. The pseudospectral transcription of

these problems results, however, in large-scale non-convex NLPs that can take minutes to

solve for complex systems using modern software. Recent advances in the computational

performance of available hardware make it possible to apply pseudospectral collocation to

generate real-time model predictive feedback control laws for complex and highly nonlinear

systems such as unmanned aerial vehicles, mobile robots, self-driving cars, and manipulators.

We suggest that the pseudospectral collocation method is suitable for real-time model pre-

dictive control applications for several reasons. First, as was observed in the literature before,

the method can exhibit fast, or even spectral, convergence in practice for smooth problems.

Spectral convergence implies that the error of approximating a solution to a problem decays

exponentially with the order of approximation polynomials, i.e. very few parameters are

needed to find an accurate approximation of the solution. Second, for the shooting methods

that are typically used in real-time NMPC codes, one needs to find a trade-off between the

computation time and number of shooting intervals as an insufficient number of intervals

can lead to suboptimality and inaccurate representation of the trajectories. This renders the

application of these methods for higher dimensional systems or for problems where longer

prediction horizon is desirable challenging. Thanks to the rich parametrisation of control

17



Chapter 2. Software Design and Algorithms

and state trajectories, collocation methods require fewer parameters and smaller NLPs. Ad-

ditionally, due to the polynomial parametrisation, state and control trajectories can be very

efficiently resampled by a low-level controller in hierarchical control schemes. To the best

of the author’s knowledge, there is no openly available software that allows for real-time em-

bedded deployment of pseudospectral collocation based controllers. The contribution of this

chapter, therefore, is a highly optimised implementation of the Chebyshev pseudospectral

collocation method.

In the following, we provide some preliminaries on the pseudospectral collocation method,

describe the Chebyshev collocation method implemented in PolyMPC and discuss several

issues that one can face in practice when applying such a method.

Pseudospectral Collocation Method

The software is designed to solve generic nonlinear optimal control problems of the form (2.1).

An example of using Chebyshev pseudospectral transcription of the optimal control problem

can be found in [32]. In this section we provide the basic relations from spectral approximation

methods and extend previous work to the case of local approximation of the domain.

Approximation of Differential Constraints

Assuming the approximate solution for the state and control trajectories are represented by an

appropriately chosen set of basis functions ϕk (·):

x(t ) ≈ xN (t ) =
N∑

k=0
xkϕk (t )

u(t ) ≈ uN (t ) =
N∑

k=0
ukϕk (t )

(2.2)

the collocation approach requires that equation (2.1c) is satisfied exactly at a set of collocation

points t j ∈ (t0, t f ):
d xN

d t
− f (xN ,uN , t j , p)

∣∣∣∣
t=t j

= 0, j = 1, ..., N (2.3)

With some initial conditions: xN (t0) = x0. Formulas (2.2) represent a function expansion in

the nodal basis, where xk is the value of x(t ) at the node tk and ϕk denotes a specific cardinal

18



2.2. Pseudospectral Methods for Optimal Control

basis function, which satisfies the condition: ϕ j (ti ) = δi j , i , j = 0, ..., N , where:

δi j =
1 i = j

0 i 6= j
(2.4)

A common choice of the cardinal basis in pseudospectral methods is the characteristic La-

grange polynomial of order N . This means that each basis function reproduces one function

value at a particular point in the domain. The general expression for these polynomials is

given by:

ϕk (t ) =
N∏

j , j 6=k

(t − t j )

(tk − t j )
, k = 0, ..., N (2.5)

Using the approximations above one can compute derivatives of the state trajectory at the

nodal points:

(xN (t j ))′ =
N∑

k=0
xkϕ̇k (t j ) =

N∑
k=0

xk D j k (2.6)

where D j k are elements of the interpolation derivative matrix D. And the approximate solution

to the (2.1c) satisfies a system of algebraic equations:

N∑
k=0

xk D j k = f (x j ,u j , t j , p), j = 0, . . . , N (2.7)

Chebyshev Collocation Method

A careful choice of collocation points is crucial for numerical accuracy and convergence of

the collocation method. An equidistant spacing of the collocation nodes is known to cause

an exponential error growth of the polynomial interpolation near the edges of the domain

[33, 34, 35, 36] an effect called Runge’s phenomenon. Initially developed for solving partial

differential equations in fluid dynamics, the Chebyshev spectral method provides an elegant

solution to this problem. The idea is to project the solution of (2.1c) onto the set of Chebyshev

polynomials Tk (x), that are orthogonal on the interval [−1,1] with respect to the weight

function ω(x) = 1/
p

1−x2: ∫ 1

−1
Tn(x)Tm(x)ω(x)d x = 0, n 6= m (2.8)

19



Chapter 2. Software Design and Algorithms

So in addition to (2.2) the state and control trajectories can be expressed in terms of Chebyshev

transform coefficients, or in the nodal basis:

xN (t ) =
N∑

k=0
x̃k Tk (t )

uN (t ) =
N∑

k=0
ũk Tk (t )

(2.9)

Where x̃k and ũk are spectral coefficients of the Chebyshev transform. Representation (2.9) is

employed in numerical methods based on the weak formulation, for instance the Chebyshev-

Tau approach. In the context of collocation this representation is useful to speed-up the

computation of the approximate derivative (2.6) as will be discussed later. The k-th order

Chebyshev polynomial can be expressed as:

Tk (t ) = cos(k ·arccos(t )) (2.10)

Another feature of Chebyshev polynomials that makes them computationally attractive com-

pared to other Jacobi polynomials is that collocation points have explicit formulas. In the

PolyMPC we employ the most commonly used set of N +1 Chebyshev Gauss-Lobatto (CGL)

points:

t j = cos

(
π j

N

)
, j = 0, ..., N (2.11)

Using Chebyshev polynomials in the collocation scheme is not efficient because they do not

satisfy the cardinality condition (2.4), and therefore we will be using CGL nodes, which allow

us to avoid Runge’s phenomenon, in combination with Lagrange polynomials. Equipped

with the set of collocation points, it is possible to compute the (N +1)× (N +1) interpolation

derivative matrix D [34]:

D j k =



c j

ck

(−1) j+k

t j−tk
j 6= k

− tk

2(1−t 2
k )

1 ≤ j = k ≤ N −1

2N 2+1
6 j = k = 0

2N 2+1
6 j = k = N

(2.12)

where

ci =
2 i = 0 or N

1 otherwise
(2.13)

To account for the cases when the dimension of the state space n is larger than one, we

will write the “composite” differentiation matrix D as the Kronecker product between the

20



2.2. Pseudospectral Methods for Optimal Control

(N +1)× (N +1) interpolation derivative matrix D and the n ×n identity matrix:

D= D⊗ In×n , D ∈R(N+1)n×(N+1)n (2.14)

It is worth noting that obtaining derivative approximates with matrix multiplication requires

2N 2 operations. For large order polynomial approximation N one can benefit from the Fast

Chebyshev Transform (similar to the Fast Fourier Transform) that has a lower computational

complexity of 5N (log2 N +2). For this approach, one has to differentiate the function approxi-

mation in Chebyshev transform space and then transform these spectral derivatives back to

physical space.

In most cases the time domain of the optimal control problem does not coincide with the

interval [-1, 1] where the orthogonality of Chebyshev polynomials is preserved. Therefore, the

time and system dynamics equations must be transformed accordingly:

t = t f − t0

2
τ+ t f + t0

2
, τ ∈ [−1,1]

ẋ(τ) = t f − t0

2
f (x(τ),u(τ),τ, p)

(2.15)

Putting these expressions in compact matrix form we obtain:

X= [xN ; · · · , x j ; · · · , x1; x0]T = [x(1); · · · ; x(t j ); · · · ; x(t1); x(−1)]

U= [uN ; · · · ,u j ; · · · ,u1;u0]T = [u(1); · · · ;u(t j ); · · · ;u(t1);u(−1)]

F(X,U, {τ j }, p) = t f − t0

2
[ f (xN ,uN ,1, p); · · · ; f (x j ,u j ,τ j , p); · · · ; f (x0,u0,−1, p)]

(2.16)

Here (;) denotes the vertical concatenation, and the CGL points are ordered backwards in time

following the convention from the classic numerical literature. Finally (2.2) can be written as a

system of nonlinear algebraic equations:

DX−F(X,U, {τ j }, p) = 0 (2.17)

Cost Function Approximation

The Mayer term of the cost function (2.1a) can be trivially approximated at the last collocation

point:

Φ[x(τf )],τf ,p =Φ[xN ,1,p] =Φ[x(1),1,p] (2.18)

For the Lagrange term approximation using the CGL set of points it is convenient to utilize the

21



Chapter 2. Software Design and Algorithms

Clenshaw-Curtis quadrature integration scheme, as suggested in [33]. The method allows one

to find a set of weights {ω j } ∈R, j = 0, · · · , N such that the following approximation is exact for

all polynomials p(t ) of order less than N and corresponding weight function ω(t ):

N∑
j=0

p(t j )ω j =
∫ 1

−1
p(t )ω(t )d t , p(t ) ∈PN (2.19)

Where PN is the space of polynomials of degree less or equal than N and p(t ) is a Chebyshev

approximation of the integrated function:

L(x(t ),u(t ), t , p) ≈ p(t ) =
N∑

k=0
ak Tk (t ) (2.20)

The symmetric quadrature weights are given by:

ω0 =ωN = 1

N 2 −1
, for even N

ω j =ωN− j = 2

N

[
1−

N /2−1∑
k=1

2

1−4k2 cos

(
2π j k

N

)
− 1

1−N 2 cos

(
Nπ j

N

)]
, j = 1, · · · , N /2

(2.21)

and

ω0 =ωN = 1

N 2 , for odd N

ω j =ωN− j = 2

N

[
1−

b(N−1)/2c∑
k=0

2

1−4k2 cos

(
2π j k

N

)]
, j = 1, · · · ,bN /2c

(2.22)

Therefore the cost function can be approximated with the following formula:

J(x(t ),u(t )) ≈Φ[xN ,1,p]+ t f − t0

2

N∑
j=0

L(x j ,u j ,τ j , p)ω j (2.23)

Constraint Discretization

The constraints defined in (2.1d) are simply enforced at the collocation points:

g (X,U, {t j }, p) = [g (xN ,uN , t f , p); · · · ; g (x j ,u j , t j , p); · · · ; g (x0,u0, t0, p)] ≤ 0

X ≤X≤ X , X =1N+1 ⊗x, X =1N+1 ⊗x

U ≤U≤U , U =1N+1 ⊗u, U =1N+1 ⊗u

(2.24)

22



2.2. Pseudospectral Methods for Optimal Control

And similarly for the terminal constraints (2.1e):

ψ(xN , t f , p) =ψ(xN , t f , p) ≤ 0 (2.25)

Multiple Interval Extension

The Chebyshev nodes are clustered on the edges of the collocation interval, and therefore

sometimes it is desired to split the entire domain to achieve a more uniform distribution of

collocation points. This is particularly important when dealing with discontinuous cost or

dynamics functions.

The software allows one to split the time horizon of the optimal control problem into S equal

subintervals with N collocation points in each interval. Vectors of collocation coefficients now

D̃

D̃

D

Figure 2.1 – Structure of the composite differentiation matrix Dc for multiple interval CGL
collocation scheme.

have the form:
X= [xS−1

N ; · · · ; xs
j ; · · · ; x1

1 ; x0
N ; · · · ; x0

1 ; x0
0] ∈R(SN+1)n

U= [uS−1
N ; · · · ;us

j ; · · · ;u1
1;u0

N ; · · · ;u0
1;u0

0] ∈R(SN+1)m
(2.26)

Here the superscript denotes the index of an interval and the subscript the index of a colloca-

23



Chapter 2. Software Design and Algorithms

tion point within this interval.

The structure of the composite Chebyshev Gauss-Lobatto differentiation matrix Dc is pre-

sented in Figure 2.1. Here D is computed according to (2.12), D̃ = D[0 : N −1;0 : N ]. The last

row is removed to enforce the continuity of the state trajectory at the splitting points- the

end point of interval s is the starting point of interval s +1: xs
N = xs+1

0 . Also the first and the

last columns of neighbouring matrices are aligned. Again the full differentiation matrix is the

Kronecker product between the composite derivative matrix and the identity matrix of size

n ×n:

D= Dc ⊗ In×n , D ∈R(SN+1)n×(SN+1)n (2.27)

The collocation equations become:

F(X,U, {τ j }, p) = t f − t0

2S
[ f (xS−1

N ,uS−1
N ,τS−1

j , p), · · · , f (xs
j ,us

j ,τs
j , p), · · · , f (x0

0 ,u0
0,τ0

j , p)]T

DX−F(X,U, p) = 0
(2.28)

The cost function is computed in the following way:

J(X,U, p) =Φ[xS−1
N ]+ t f − t0

2S

S−1∑
s=0

N∑
j=1

c j L(xs
j ,us

j ,τs
j , p)ω j +

t f − t0

2S
L(x0

0 ,u0
0,τ0

0, p)ω0 (2.29)

where

c j =
2 j = N

1 other wi se
(2.30)

Nonlinear Optimization Problem

Using (2.28) and (2.29) the optimal control problem (2.1) can be written as a nonlinear opti-

mization problem:

minimize
X,U,p

J(X,U, p)

subject to:

DX−F(X,U, p) = 0

g (X,U, p) ≤ 0

X ≤X≤ X

U ≤U≤U

p ≤ p ≤ p

x0
0 = x(t0)

(2.31)

24



2.2. Pseudospectral Methods for Optimal Control

This optimisation problem can be solved using generic nonlinear optimisation algorithms

available in PolyMPC, which will be outlined in the next section.

Discussion

It is important to note that unlike in [14] or [19] the full set of collocation equations along

with the initial condition are considered, as suggested by [37] and [38]. This is essential for

real-time NMPC applications since one is most interested in the value of the optimal control

signal at the initial time. Otherwise, if the starting point is left uncollocated as is the case

for the Gauss or one of the Gauss-Radau schemes, an extrapolation of the optimal control

function is required to find its value at the t0 time instant. In the case when the final point is

uncollocated, one has to use quadrature formulas in order to compute the terminal state.

The chosen approach is also different from standard collocation techniques where usually

the last n or the first and last n equations in (2.28) are replaced by specific boundary con-

ditions. This means that the system of equality constraints in (2.31) is overdetermined for

some fixed vector U, and therefore cannot be simulated forward and can only be used in

the optimal control problem context. Moreover, since the Dmatrix is singular, it is harder to

determine whether the linearized constraints would satisfy the linear independence constraint

qualification (LICQ).

In general, even if the LICQ is met, finding a solution to (2.28) can be challenging for complex

nonlinear and stiff systems especially in the context of nonlinear optimisation problems. One

possible solution for this problem is to apply a continuation strategy as in [39], i.e. the original

system (2.28) is replaced by a simpler system of equations F̃(X,U, p) for which a solution can

be easily found and the original solution is gradually recovered by decreasing the homotopy

parameter λ:

H(X,U, p,λ) =λF̃(X,U, p)+ (1−λ)F(X,U, p) (2.32)

Here, H(X,U, p,λ) → F(X,U, p) as λ : 1 → 0. This approach is not very suitable for real-time

control but rather for large scale problems where long simulation horizons are desirable;

for instance trajectory optimisation or parameter identification for highly complex systems.

PolyMPC features an implementation of the pseudo arclength continuation strategy [40] in

the experimental subset of the package.

Another relaxation strategy is to augment the original Lagrange term of the cost function (2.1a)

with a squared residual function of the system dynamics:

J [x(t0),u(·), p] =Φ[x(tf ), tf ,p]+
∫ t f

t0

L[x(τ),u(τ),τ, p]+ρ‖ẋ(τ)− f (x(τ),u(τ),τ, p)‖2
2dτ (2.33)

25



Chapter 2. Software Design and Algorithms

where ρ is a large scalar. Authors in [41] augment the cost with the integral of the ODE

residual and adds a logarithmic barrier for inequality constraints to obtain an unconstrained

optimisation problem. An alternative solution refinement technique based on the integral

square residual minimisation is proposed in [42] which, however, requires that the problem is

first solved with a standard direct collocation approach to obtain a bound for the cost function.

In PolyMPC this relaxation strategy is available only using the CasADi interface.

Another potential source of problems is a discontinuous optimal control trajectory which

often appears in problems where systems have affine input or where there is no control

regularisation, for example. In these cases, an optimal control solution obtained with the

pseudospectral approach can exhibit undesired oscillations related to Gibb’s phenomenon.

The classical way to tackle this problem is through grid refinement: changing the length

or amount of collocation segments (h-refinement), increasing the order of approximating

polynomials (p-refinement), or both combined (hp-refinement). Again, these methods are not

particularly suitable for real-time applications as the optimisation problem has to be solved

for each refinement iteration. Alternatively, a heuristic approach that often leads to reduced

oscillations in practice is to constrain the control signal derivative which can be achieved

by introducing an auxiliary control variable or done directly using the spectral derivative

approximation as suggested in [43].

Another interesting observation is about the sparsity pattern of the differentiation matrix D.

In the case of global collocation, that is, there is only one interpolation segment, D consists of

(N +1)× (N +1) diagonal matrices of size n ×n. When there is more than one interpolating

segment, the sparsity pattern is depicted in Figure 2.1. One can observe that the larger the

number of interpolating segments, the sparser the differentiation matrix (and overall con-

straint Jacobian). On the other hand, the spectral convergence of the Chebyshev collocation

method is not guaranteed for multiple interval interpolation.

Implementation Details

Given user-defined functions to evaluate the cost, system dynamics and constraints, the num-

ber of segments and order of approximating polynomials, PolyMPC creates a class that allows

the evaluation of discretised system dynamics and constraints along with their sensitivities, as

well as the value, gradient and Hessian of the discretised cost and Lagrangian of (2.31). We

take advantage of the separability of the discretised cost function (2.29) and constraints(2.28),

which is characteristic of the Lobatto schemes, to compute or update the sensitivities in a

block-wise manner. This is very important since for embedded applications we are limited to

the forward mode automatic differentiation (AD) by operator overloading [44] where memory

can be statically preallocated. Backward mode AD codes typically require dynamic memory

26



2.3. Optimisation Kernel

management to compute and store the tape or expression trace (except for codes based on a

source code transformation method embedded in the compiler). Forward mode AD is less

efficient than backward mode for functions where the number of outputs is a lot lower than

the number of inputs. Exploiting function separability alleviates this disadvantage and this is

the reason why the integral squared residual method, discussed earlier, is only available in

the CasADi interface which features the backward mode AD implementation. The derivative

operator in (2.33) makes use of all collocation points in a segment and therefore, breaks the

separability of the cost function, and makes the problem denser. Computing a dense Hessian

by forward mode AD introduces large overheads.

For a sparse implementation, we precompute the sparsity patterns of the Jacobians and

Hessians and allocate exactly the required amount of memory. However, block updates of

sparse matrices are typically very inefficient due to the high cost of random insertion, thus

this feature is not available in Eigen. In our implementation, we exploit the knowledge of

the sparsity pattern to work directly with data in CCS format, which allows one to perform

vectorised block updates and therefore, significantly improve the performance.

2.3 Optimisation Kernel

PolyMPC is a collection of carefully optimised and loosely coupled numerical optimisation

algorithms. This means that all available methods can be used completely independently of

each other and of a particular problem structure. At the same time, the software architecture

allows one to seamlessly combine the algorithmic blocks employing the template mechanism

in C++ to enable the solution of complex nonlinear optimisation and optimal control prob-

lems. In the following, we present a brief overview of the available algorithms for numerical

optimisation.

QP Solvers

There exist a number of software tools for solving the quadratic problems (QP) arising in

optimal control that are potentially suitable for embedded applications. They are typically

divided into two groups:

Sparsity-exploiting Among generic sparsity-exploiting solvers, OOQP [45] is a C++ pro-

gram based on the interior-point method (IPM) [46]. Another tool,

OSQP, uses the alternating direction method of multipliers (ADMM)

and features code-generation capabilities for embedded deploy-

27



Chapter 2. Software Design and Algorithms

ment.

Structure-exploiting The software tools in this cohort exploit the QP structure inherent

in optimal control problems. qpOASES [47] and PRESAS [48] are

both block-structured active set solvers written in C. HPIPM [8] and

FORCES [49] are IPM-based solvers optimised for problems resulting

from multiple-shooting transcription.

PolyMPC solves quadratic programs with two-sided linear inequality constraints of the form:

minimize
x

1
2 xT P x +qT x

subject to l ≤ Ax ≤ u

xl ≤ x ≤ xu

(2.34)

where x ∈ Rn is an optimisation variable, xl ∈Rn ∪−∞ and xu ∈Rn ∪+∞ are box constraints,

P ∈Sn+ positive semidefinite, q ∈ Rn , A ∈ Rm×n , l ∈ Rm ∪−∞ and u ∈ Rm ∪+∞. For equality

constraints li = ui .

ADMM

The ADMM algorithm was chosen for its cheap and well vectorisable iterations that are

particularly suitable for embedded applications. We first present a standard splitting approach

suggested in the literature [50, 51, 52]. This will require the introduction of an extended

constraint matrix Ã = [A; I ], where I is an n ×n identity matrix, and an additional variable

z ∈Rm+n to write an equivalent QP:

minimize
x,z

1
2 xT P x +qT x

subject to l ≤ z ≤ u

Ãx = z

(2.35)

One can then rewrite the modified QP (2.35) by introducing auxiliary variables x̃ and z̃.

minimize
x,z,x̃,z̃

1
2 x̃T P x̃ +qT x̃ +IÃx=z (x̃, z̃)+IC (z)

subject to (x̃, z̃) = (x, z)
(2.36)

where x ∈ Rn , z ∈ Rm+n . IÃx=z is the indicator function for set {(x, z) | Ãx = z} to enforce

Ãx̃ = z̃ and IC is the indicator function for set C = [l ,u] = {z | li ≤ zi ≤ ui , i = 1 · · ·m +n} to

enforce l ≤ z ≤ u.

28



2.3. Optimisation Kernel

The augmented Lagrangian for this problem is

Lσρ(x, z, x̃, z̃, w, y) = 1
2 x̃T P x̃ +qT x̃ +IÃx=z (x̃, z̃)+IC (z)

+σ
2 ‖x̃ −x +σ−1w‖2

2 + ρ
2 ‖z̃ − z +ρ−1 y‖2

2

(2.37)

with dual variables (w, y) and corresponding penalty parameters (σ,ρ) > 0.

Problem (2.36) can be solved using the following ADMM iterations:

(x̃k+1, z̃k+1) ← argmin
(x̃,z̃):Ãx̃=z̃

1

2
x̃T P x̃ +qT x̃ + σ

2
‖x̃ −xk +σ−1wk‖2

2 +
ρ

2
‖z̃ − zk +ρ−1 yk‖2

2 (2.38)

xk+1 ← x̃k+1 +σ−1wk (2.39)

zk+1 ←ΠC

(
z̃k+1 +ρ−1 yk

)
(2.40)

wk+1 ← wk +σ(x̃k+1 −xk+1) (2.41)

yk+1 ← yk +ρ(z̃k+1 − zk+1) (2.42)

The final algorithm is listed in Alogrithm 1. A relaxation is added to update steps (2.39)–(2.42)

using the parameter α ∈ (0,2) and rpr i m = ‖Ax − z‖∞ and rdual = ‖P x + q + AT y‖∞ are the

primal and dual residuals accordingly.

Algorithm 1 ADMM Solver

1: given: initial values x0, z0, y0 and parameters ρ > 0,σ> 0,α ∈ (0,2), εp ,εd > 0
2: while rpr i m ≥ εp || rdual ≥ εd do

3: (x̃k+1,νk+1) ← solve linear system

[
P +σI ÃT

Ã −ρ−1I

][
x̃k+1

νk+1

]
=

[
σxk −q

zk −ρ−1 yk

]
4: z̃k+1 ← zk +ρ−1(νk+1 − yk )
5: xk+1 ←αx̃k+1 + (1−α)xk

6: zk+1 ←ΠC (αz̃k+1 + (1−α)zk +ρ−1 yk )
7: yk+1 ← yk +ρ(αz̃k+1 + (1−α)zk − zk+1)
8: end while

boxADMM

For dense problems with box constraints the splitting described before is not very efficient

due to the potentially large number of zero values in Ã and the linear system at the step (2) in

Algorithm 1 that have to be stored. We therefore propose an additional splitting which aims at

reducing memory consumption and better vectorisation – we call this solver boxADMM. As

29



Chapter 2. Software Design and Algorithms

before, auxiliary variables z, z̃ ∈Rm and x̃,ξ ∈Rn are introduced to pose an equivalent QP:

minimize
x,x̃,z,z̃,ξ

1
2 x̃T P x̃ +qT x̃ +IÃx=z (x̃, z̃)+IC (z)+IB(ξ)

subject to (x̃, z̃) = (x, z)

x̃ = ξ
(2.43)

where IAx=z is the indicator function for set {(x, z) | Ax = z} to enforce Ax̃ = z̃, IC is the

indicator function for set C = [l ,u] = {z | li ≤ zi ≤ ui , i = 1...m} to enforce l ≤ z ≤ u and IB is

the indicator function for box constraints B = [xl , xu] = {ξ | xl ≤ ξ≤ xu}.

The boxADMM algorithm 2 is derived following the standard procedure from [50]:

Algorithm 2 boxADMM Solver

1: given: initial values x0, z0,ξ0, y0,λ0 and parameters ρ > 0,β> 0,σ> 0,α ∈ (0,2), εp ,εd > 0
2: while rpr i m ≥ εp || rdual ≥ εd do

3: (x̃k+1,νk+1) ← solve

[
P +σI +βI AT

A −ρ−1I

][
x̃k+1

νk+1

]
=

[
σxk −q +βξk −λk

zk −ρ−1 yk

]
4: z̃k+1 ← zk +ρ−1(νk+1 − yk )
5: xk+1 ←αx̃k+1 + (1−α)xk

6: zk+1 ←ΠC (αz̃k+1 + (1−α)zk +ρ−1 yk )
7: ξk+1 ←ΠB(xk+1 +β−1λk )
8: yk+1 ← yk +ρ(αz̃k+1 + (1−α)zk − zk+1)
9: λk+1 ←λk +β(xk+1 −ξk+1)

10: end while

Where λ ∈Rn is a vector of Lagrange multipliers associated with box constraints of the original

problem (2.34), rpr i m = max(‖Ax − z‖∞,‖x −ξ‖∞) and rdual = ‖P x +q + AT y +λ‖∞ are the

primal and dual residuals correspondingly.

Both the ADMM and the boxADMM algorithms are statically (specified at compile time)

parametrised by:

Problem

dimensions

Dimension of the optimisation variable and number of constraints (exclud-

ing box constraints). This allows the allocation of the necessary memory

and compile-time data consistency checks.

Scalar type double (default), float, complex or user-defined scalar types.

Matrix format DENSE (default) or SPARSE. This allows one to have a unifying interface

for sparse and dense linear algebra.

Linear system

solver

QP solvers support all direct and iterative, dense and linear solvers available

in Eigen. The user also can provide a custom linear solver given it is derived

30



2.3. Optimisation Kernel

from one of the base solver classes in Eigen.

Besides two custom ADMM implementations, PolyMPC interfaces an established ADMM

solver OSQP, which additionally includes an infeasibility detection feature, and a Goldfarb-

Idnani active-set solver QPMAD.

Our ADMM implementation has several attractive features compared to OSQP. First, opera-

tions (3-8) of Algorithm 2 are explicitly vectorised so a significant speed-up is expected when

SIMD optimisations are enabled. Second, our implementation supports both dense and

sparse linear algebra, where only sparse computations are available in OSQP. Third, OSQP

supports static memory allocation only through code generation, which requires that the

ρ-update mechanism is not available and factorisation of the KKT matrix happens only once.

PolyMPC on the other hand, supports all algorithmic features for sparse and dense static

matrices.

Nonlinear Problem

We are concerned with solving nonlinear optimisation programs (NLP) of the form

minimize
x

f (x)

subject to c(x) = 0

gl ≤ g (x) ≤ gu

xl ≤ x ≤ xu

(2.44)

with x ∈Rn , equality constraint c(x) :Rn →Rm , inequality constraint g (x) :Rn →Rg , and box

constraint defined by vectors xl ∈ Rn and xu ∈ Rn . Before describing a numerical method

for solving these NLPs in PolyMPC we introduce basic definitions and concepts in nonlinear

optimisation.

For the problem (2.44), the Lagrangian function is defined as:

L (x,λc ,λg ,λx ) = f (x)+λT
c c(x)+λT

g g (x)+λT
x x (2.45)

Where λc ,λg ,λx are the Lagrange multipliers corresponding to the constraints c(x) = 0, gl ≤
g (x) ≤ gu and xl ≤ x ≤ xu respectively.

The i−th constraint gli ≤ gi (x) ≤ gui is called inactive if the inequalities hold strictly, otherwise

it is called active. A subset of of all active constraints will be denoted by a subscript A , e.g.,

31



Chapter 2. Software Design and Algorithms

gA . A point x? is called regular if it is feasible and the following matrix has full row rank:[
∇x c(x?)

∇x g (x?)A

]
(2.46)

The last conditions are referred to as the linear independence constraint qualification (LICQ).

The Karush-Kuhn-Tucker conditions (KKT conditions) state the necessary conditions of opti-

mality for an NLP: for a regular and locally optimal point x? there exist Lagrange multipliers

λ?c , λ?g , λ?x such that the following holds:

Stationarity:

∇xL (x?,λ?c ,λ?g ,λ?x ) = 0 (2.47)

Primal feasibility:

c(x?) = 0, gl ≤ g (x?) ≤ gu , xl ≤ x? ≤ xu (2.48)

Dual feasibility

and

complimentarity:

(λ?g )i


≥ 0 if the i-th upper bound of g (x) is active

≤ 0 if the i-th lower bound of g (x) is active

= 0 if the i-th constraint is inactive

(λ?x )i


≥ 0 if the i-th upper bound of x is active

≤ 0 if the i-th lower bound of x is active

= 0 if the i-th box constraint is inactive

SQP Solver

The sequential quadratic programming (SQP) approach approximates the problem (2.44) by

a constrained quadratic subproblem (2.49) at the current iteration xk , and the minimizer

of this subproblem p? is used to compute the next iterate xk+1. For equality-constrained

NLPs, solving this subproblem is equivalent to applying a Newton iteration to the KKT condi-

tions (2.47), (2.48) [46].

minimize
p

1
2 pT H p +hT p

subject to c(xk )+ Ac p = 0

gl − g (xk ) ≤ Ag p ≤ g (xk )− gu

xl −xk ≤ p ≤ xu −xk

(2.49)

with Ac ∈ Rm×n and Ag ∈ Rg×n the Jacobian of the constraints c(x) and g (x) at point xk ,

the Hessian of the Lagrangian H = ∇xx L(xk ,λk ), λk = [λk
c ,λk

g ,λk
x ]T and objective gradient

32



2.3. Optimisation Kernel

h =∇x f (xk ).

An extended version of the line search SQP algorithm 18.3 from [46] is presented in Algorithm 3.

Here rpr i m denotes the maximum constraint violation of the problem (2.31) at the iterate xk ,

and α0 = 1.

Algorithm 3 SQP

1: given: x0,λ0, p0, p0
λ

, εp ,ελ,ε> 0

2: while αk‖pk‖∞ ≥ εp || αk‖pk
λ
‖∞ ≥ ελ || rpr i m ≥ ε do

3: (H ,h,c, Ac , g , Ag ) ← linearization(xk ,λk ) of the Problem (2.44)

4: H ← apply regularisation(H)

5: Apply preconditioning to Problem (2.49)

6: pk , λ̂← solve Problem (2.49)

7: pk , λ̂← revert preconditioning

8: pk
λ
← λ̂−λk

9: αk ← line search(pk , λ̂)

10: xk+1 ←αk pk

11: λk+1 ←αk pk
λ

12: k ← k +1

13: end while

The SQP algorithm requires three template arguments:

Problem The solver will deduce the problem dimensions and data types from the

problem class (an example of an NLP class definition will be shown in the

next section) and allocate necessary memory, as the problem itself typically

does not require any allocation by the user. The problem will then be used

to evaluate user defined functions and sensitivities.

QP Solver Here any of the available QP solvers can be used: boxADMM (default),

ADMM, OSQP or QPMAD. The user can provide a custom QP implementa-

tion by deriving from the QPBase interface class.

Preconditioner ADMM methods are known to be sensitive to the problem conditioning

[52, 51]. However, it is sometimes possible to scale the data to achieve better

conditioning and therefore improve the convergence of the QP solver. At

the moment, the user can choose between no preconditioning (default)

and a heuristic Ruiz matrix equilibration algorithm [53].

Furthermore, the solver in PolyMPC is designed such that every step of the algorithm can be

33



Chapter 2. Software Design and Algorithms

customised by the user. The rest of the section briefly outlines the steps required for the SQP

algorithm.

Sensitivity Computation

For sensitivity computation, the software relies on the forward mode AD implemented using

the operator overloading method in Eigen. We extend the existing functionality of the library to

deal with some vector-valued functions where the sensitivity computations can be efficiently

vectorised or derivative expressions are known in the closed form and do not require the

AD procedure. Our current solution relies on the template specialisation mechanism which

allows compile-time selection of a particular implementation based on the scalar type. This

mechanism is demonstrated on a simplified example of a quadratic form differentiation in

Listing 1.

Listing 1 Vectorised sensitivity computation of a quadratic form. The AD type is a complex
structure and therefore the computation of the quadratic form will be performed coefficient-
wise as in a generic quad_form function. By providing a specialised implementation for the
adscalar_t we take advantage of the explicit vectorisation mechanism in Eigen
// general scalar
template<typename scalar_t>
scalar_t quad_form(Ref<vector_t<scalar_t>> x, const Ref<const real_vector_t>& y)
{

return x.dot(A * x);
}

// autodiff
template<>
adscalar_t quad_form<adscalar_t>(Ref<vector_t<adscalar_t>> x,

const Ref<const real_matrix_t>& A)
{

real_vector_t xt;
for (Index i = 0; i < Size; ++i)

xt(i) = x(i).value();

// vectorised matrix-vector multiplication and dot product
xt = A * xt;
Scalar value = xt.dot(xt);

// vectorised dot product
real_vec_t derivative;
for (Index i = 0; i < Size; ++i)

derivative(i) = 2 * xt.dot(x(i).derivative())

return adscalar_t(value, derivative);
}

For dense problems, the software can generate sensitivities automatically or mix AD and

34



2.3. Optimisation Kernel

user-provided functions to evaluate derivatives. For sparse problems, the user must provide

functions for sensitivity computations. It is possible to estimate the sparsity pattern of Jaco-

bians and Hessians automatically by using, for example, Bayesian boolean probing [54] or

graph colouring techniques [55]. This feature is subject to future development.

Computing the Hessian of the Lagrangian in Algrithm 3 can be quite expensive for moderate-

sized and large problems. Therefore, we implement the damped Broyden-Fletcher-Goldfarb-

Shanno (BFGS) update method [46] summarised in Algorithm 4

Algorithm 4 Damped BFGS Update

1: procedure DAMPED BFGS(B ,y ,s)

2: if sT y < 0.2sT B s then

3: θ← 0.8(sT B s)/(sT B s − sT y)

4: r ← θy + (1−θ)B s . Damped update

5: else

6: r ← y . Normal update

7: end if

8: B k+1 ← B − B ssT B
sT B s + r r T

sT r

9: return B k+1

10: end procedure

where B denotes the Hessian approximation, y = xk+1−xk is the step and s =∇xL (xk+1,λk+1)−
∇xL (xk ,λk ) is the corresponding change of the gradient of the Lagrangian. In the pseudospec-

tral collocation module, where the sparsity pattern is known we implement dense and sparse

block-BFGS updates which further improves the computational performance.

Regularisation

In our numerical implementation, the Hessian of the Lagrangian is evaluated exactly at the first

SQP iteration and then updated using the sparsity-preserving block-BFGS method 4 or exact

linearisation. The chosen adaptive line-search strategy in the SQP requires that the Hessian is

kept positive-definite [46] which is not guaranteed by the algorithm design. For this reason,

we approximate the Hessian by a positive definite one through regularization and the simplest

way to regularise the Hessian is by adding a multiple of the identity matrix [46]. It is often hard,

however, to choose the scaling parameter without knowing the minimal negative eigenvalue.

Furthermore, this method perturbs the positive eigenvalues as well, and therefore changes the

curvature information. Eigenvalue mirroring is another regularisation technique that corrects

only negative eigenvalues. As the name suggests, however, the eigenvalue decomposition

35



Chapter 2. Software Design and Algorithms

should be available at each solver iteration, which renders the method infeasible for most

real-time applications. An alternative convexification method preserving the sparsity pattern

is presented in [56]. The method is tailored to the multiple-shooting structure of the problem

and assumes explicit integration of the dynamics, i.e. not suitable for the pseudospetral

collocation method used in our approach.

To cope with the potentially indefinite Hessian, we propose a heuristic regularization algo-

rithm that modifies the eigenvalues of the Hessian based on Gershgorin spectrum bounds.

Gershgorin circle theorem [57] states that every eigenvalue of a square matrix A lies within the

union of discs D(ai i ,Ri ) such that ai i the diagonal element in A is the center of the disc with

radius Ri equal to the sum of the off-diagonal entries of every row:

Ri =
∑
i 6= j

|ai j | (2.50)

By using the symmetry of the Hessian, it is possible to take advantage of the column-major

storage order for both dense and sparse matrices to compute the Gershgorin discs efficiently.

Algorithm 5 Gershgorin regularisation

1: while i ≤ Nr ow s do

2: if ai i −Ri ≤ 0 then

3: ai i ←−(ai i −Ri )+ε
4: end if

5: end while

This algorithm will conservatively guarantee that the approximated Hessian is positive definite

with eigenvalues contained in Gershgorin discs intersecting the real axis at a minimum ε> 0.

Preconditioning

In general, convergence of first order methods is affected by the distribution of the eigenvalues

of the matrix that characterises the problem data:

M =
[

H AT

A 0

]
(2.51)

Preconditioning is a numerical technique that aims to improve the eigenvalue distribution,

typically by transforming data matrices H and A. In the context of quadratic programming

in control, several diagonal preconditioners minimising the conditioning number of M were

proposed in the literature [52, 58]. These techniques, however, require solving a semi-definite

36



2.4. Examples

program which is usually more expensive than solving a QP itself. In [48] a preconditioned

conjugate-gradient method is used in combination with a block-structured active-set QP

solver.

By default, in PolyMPC no preconditioning is performed but, similar to [51] the user has an

option of using an implemented Ruiz matrix equilibration algorithm that aims at scaling

primal and dual variables x̄ = Dx, λ̄= Eλ such that the modified matrix M has columns with

equal l∞-norms. It is important to note that matrix equilibration is a heuristic method and

does not guarantee desirable distribution of eigenvalues of a matrix but sometimes improves

it in practice. The modular design of PolyMPC allows one to provide a custom preconditioning

algorithm both for QP data and for iterative linear solvers.

2.4 Examples

This section provides usage examples of the different modules in PolyMPC. We start with very

simple QP and NLP problems to showcase the simplicity and compactness of the code. In

the second part of the section we demonstrate how the software is used to create optimal

guidance and real-time nonlinear predictive controllers for a highly nonlinear and unstable

system, which emulates thrust vector control (TVC) of a sounding rocket. Both guidance and

NMPC algorithms are deployed on a low-power embedded platform and demonstrate the

real-time capabilities in real-world flight experiments.

Quadratic Program

The purpose of this example is to demonstrate how one can create an embedded QP solver in

just a few lines of code.

min
x

1

2
xT

[
4 1

1 2

]
x +

[
1

1

]T

x

s.t . 1 ≤ x1 +x2 ≤ 1[
0

0

]
≤ x ≤

[
0.7

0.7

] (2.52)

Solving this problem with PolyMPC would require writing the following simple program: We

first define a scalar type that will be used for all data types in the solver, in this case double. All

modules are compatible with Eigen data types, so if the user passes a matrix of a wrong size or

type, the static checker will return a compilation error with a corresponding message. After

37



Chapter 2. Software Design and Algorithms

Listing 2 Solving (2.52) with PolyMPC
using Scalar = double;

Eigen::Matrix<Scalar, 2,2> H;
Eigen::Matrix<Scalar, 2,1> h, xu, xl,;
Eigen::Matrix<Scalar, 1,2> A;
Eigen::Matrix<Scalar, 1,1> al, au;

H << 4, 1, 1, 2;
h << 1, 1;
A << 1, 1;
al << 1; xl << 0, 0;
au << 1; xu << 0.7, 0.7;

/** ADMM method with LDLT linear solver */
ADMM<2, 1, Scalar> admm_solver;

/** boxADMM with LDLT linear solver */
boxADMM<2, 1, Scalar> box_admm_solver;

/** boxADMM with Conjugate Gradient linear solver */
boxADMM<2, 1, Scalar, DENSE, Eigen::ConjugateGradient,

Eigen::Lower | Eigen::Upper > cg_admm_solver;

/** solve with 3 different solvers */
admm_solver.solve(H, h, A, al, au, xl, xu);
box_admm_solver.solve(H, h, A, al, au, xl, xu);
cg_admm_solver.solve(H, h, A, al, au, xl, xu);

/** get the solution */
Eigen::Vector2d sol = admm_solver.primal_solution();

the problem data was created, the user needs to define the QP solver which is parametrised

by: dimension of the optimisation variable, number of constraints (excluding box constraints,

which do not require additional memory allocation), scalar type (default: double), matrix

format (DENSE/SPARSE, default: DENSE), linear solver (default: LDLT (DENSE) : Simplicial

LDLT (SPARSE)). It is further possible to provide a hint to the solver if the Hessian is symmetric,

lower or upper triangular. In the next commented line we show how an iterative conjugate

gradient solver can be used with the very same setup.

38



2.4. Examples

Nonlinear Program

In order to demonstrate the NLP interface of the PolyMPC package, we consider Problem 71

from the Hock-Schittkowski problem collection [59].

min
x∈R4

x1x4(x1 +x2 +x3)+x3

s.t . x2
1 +x2

2 +x2
3 +x2

4 = 40

x1x2x3x4 ≥ 25

(2.53)

with the starting point x0 =
[

1 5 5 1
]T

. The problem definition is in Listing 3.

Listing 3 Solving (2.53) with PolyMPC
/** HS071 problem as in Ipopt tutorial */
POLYMPC_FORWARD_NLP_DECLARATION(/*Name*/ HS071, /*NX*/ 4, /*NE*/ 1,

/*NI*/ 1, /*NP*/ 0, /*Type*/ double);
class HS071 : public ProblemBase<HS071>
{
public:

template<typename T>
inline void cost_impl(const Ref<const variable_t<T>>& x,

const Ref<const static_parameter_t>& p,
T& cost) const

{
cost = x(0)*x(3)*(x(0) + x(1) + x(2)) + x(2);

}

template<typename T>
inline void inequality_constraints_impl(const Ref<const variable_t<T>>& x,

const Ref<const static_parameter_t>& p,
Ref<ineq_constraint_t<T>> constraint) const

{
// 25 <= x^2 + y^2 <= Inf -> will set bounds once the problem is instantiated
constraint << x(0)*x(1)*x(2)*x(3);

}

template<typename T>
inline void equality_constraints_impl(const Ref<const variable_t<T>>& x,

const Ref<const static_parameter_t>& p,
Ref<eq_constraint_t<T>> constraint) const

{
// x(0)^2 + x(1)^2 + x(2)^2 + x(3)^2 == 40
constraint << x.squaredNorm() - 40;

}
};

The POLYMPC_FORWARD_DECLARATION macro creates type traits for the HS071 class so

that the base class ProblemBase can statically preallocate necessary memory. The user must

39



Chapter 2. Software Design and Algorithms

specify the name, number of variables, number of equality and inequality constraints, size of

the parameter vector and a scalar type. As the next step the user needs to implement the cost

and constraint functions. The resulting class HS071 can then be passed to a nonlinear solver.

Guidance and Control of a Sounding Rocket Prototype

Thrust Vector Control (TVC) is a key technology enabling rockets to perform complex au-

tonomous missions, such as active stabilization, orbit insertion, or propulsive landing. This

is achieved by independently controlling the thrust direction and magnitude of each of its

engines. Compared to aerodynamic control such as fins or a canard, it guarantees a high

control authority even in the absence of an atmosphere, i.e. during high altitude launches or

exploration of other planetary bodies.

In the following, we present an implementation of an optimal guidance, navigation and control

(GNC) system for the motion control of a small-scale electric prototype of a thrust-vectored

rocket. The aim of this prototype is to provide an inexpensive platform to explore GNC

algorithms for automatic landing of sounding rockets. The guidance and trajectory tracking

are formulated as continuous-time optimal control problems and are solved in real-time

on embedded hardware using PolyMPC. Finally, indoor and outdoor flight experiments are

performed to validate the architecture and NMPC performance.

The vehicle portrayed in Figure 2.2 is 60 cm tall, and has a diameter of 26 [cm], totaling a

weight of 1.7 kg. It has a maximum thrust of about 2.3 kg. The center of mass is located at a

distance of 21.5 cm from the propellers. The batteries are mounted at the top of the vehicle to

achieve similarity with rocket dynamics by moving the center of gravity (CoG) further from

the propellers.

A Pixhawk 4 mini is used for state estimation and servo control. It contains an inertial mea-

surement unit (IMU) with a magnetometer, as well as an external GPS antenna. The state

estimates are accessed through the MAVROS protocol. For indoor flights, the motion capture

system Optitrack replaces the GPS measurements.

A Raspberry Pi 4 model B, equipped with a quad-core Cortex-A72 processor and 4 GB of RAM,

plays the role of the onboard computer and hosts the guidance, control and disturbance

estimation algorithms. Each of the aforementioned algorithms is assigned to a separate core

to enhance the performance. The robot operating system (ROS) [60] running on an embedded

Ubuntu Server provides the interprogram communication interface between the software

components. The GNC architecture can be seen in Figure 2.3. The guidance algorithm

computes an optimal trajectory linking the current and the target states, which is then tracked

by the nonlinear model predictive controller (NMPC).

40



2.4. Examples

(a) TVC Prototype. (b) Two-axis gimbal with mounted propellers

Figure 2.2 – The prototype of a TVC rocket.

debugging data

Remote computer

GUI logging

GNC (Raspberry Pi 4)

Control
2 s horizon

full dynamics
50 Hz

Guidance

minimal energy
~ 20 Hz target

trajectory Navigation
Kalman Filter

125 Hz
extended state

actuators control

state

Pixhawk

Low level
sensor fusion

Prototype

sensor data

actuators PWM

target apogee

Figure 2.3 – GNC software architecture.

Equations of motion

Throughout the section, the vectors without superscript are assumed to be given in the fixed

inertial reference frame (IRF), and the vectors with superscript b are given in the body reference

frame (BRF). The position vector is denoted by p =
[

x y z
]

, the velocity v =
[

vx vy vz

]
,

and the orientation is defined by the quaternion q =
[

qx qy qz qw

]
, while the angular

speed in BRF is given by ωb =
[
ωb

x ωb
y ωb

z

]
. The rotation matrix from BRF to IRF derived

from the quaternion q is denoted R(q).

The state vector is denoted x , and contains the position vector, the velocity, the orientation q ,

41



Chapter 2. Software Design and Algorithms

and the angular speed in the body frame ωb :

x =
[

p v q ωb
]T

(2.54)

The control vector is denoted u and the prototype is controlled through the command servo

angles θ1 and θ2, as well as the speed of the bottom and top propellers, PB and PT respectively

(in % for the rest of the section). It is more convenient, however, to consider the propellers’

average command speed as an input P = PB+PT
2 and the command speed difference P4 =

PT −PB :

u =
[
θ1 θ2 P P4

]T
(2.55)

The state equations are given by generic 6 DoF solid body dynamics. Omitting atmospheric

interactions, the forces acting on the vehicle are: gravity mg , thrust F b
T and total torque M b in

BRF. M b comprises the torque due to the thrust vector F b
T and the torque M b

P caused by the

speed difference between the two propellers. The complete dynamics is given by:

ẋ = f (x ,u) =


ṗ

v̇

q̇

ω̇b

=



v

R(q)F b
T

m
+ g

1
2 q ◦ωb

I−1(M b −ωb × (Iωb))


M b = r ×F b

T +M b
P

(2.56)

Both the thrust F b
T and the torque M b

P vectors are determined by the gimbal angles:

F b
T

‖F b
T ‖

= M b
P

‖M b
P‖

=


sinθ2

−sinθ1 cosθ2

cosθ1 cosθ2

 (2.57)

The relations between the absolute values of F b
T and M b

P and the control parameters P ,P4
are difficult to establish from the physical principles, and therefore, these relations have been

identified experimentally:

‖F b
T ‖= f1(P ,P4) = a P

2 +b P + c

‖M b
P‖= f2(P ,P4) = c Izz P4

(2.58)

42



2.4. Examples

Guidance

Similar to [61] and [62], the guidance algorithm is based on a point mass model and uses a

minimal energy formulation where terminal time t f is an optimization variable. The final

position p(t f ) is constrained to the small neighborhood of the target position pt with zero-

velocity.

min
FT (t ),ϕ(t ),ψ(t ),t f

∫ t f

t0

F 2
T (t )d t +ρη

s.t . ṗ(t ) = v(t ), v̇(t ) = FT (t )

m


sinϕsinψ

−cosϕsinψ

cosψ

+ g

vmi n ≤ v(t ) ≤ vmax

Fmi n ≤ FT (t ) ≤ Fmax

−ψmax ≤ψ(t ) ≤ψmax

p(t0) = p0

v(t0) = v0

z(t f ) = zt

(x(t f )−xt )2 + (y(t f )− yt )2 ≤ η
v(t f ) = 0

(2.59)

The propulsion vector of the rocket is defined in spherical coordinates, where FT is the absolute

value of thrust, ϕ the azimuth angle and ψ the polar angle. Symmetric constraints on the

polar angle define the aperture of the reachable cone. Since the attitude of the vehicle is not

explicitly considered in the guidance problem, the polar angle is usually related to the tilt

angle of the rocket, and thus should not be too large.

The slack variable η weighted by ρ is used to formulate a slack constraint on the target hori-

zontal position, which may be violated when close to the target position.

Since the guidance OCP has a free terminal time, the horizon is scaled to the interval [0, 1],

τ ≡ t−t0
t f −t0

, the dynamics become ẋ = (t f − t0) f (x,u), and the horizon length (t f − t0) then

becomes a variable parameter in the OCP. An initial guess for this parameter is given to

accelerate the solving of the OCP using a simple closed form solution.

43



Chapter 2. Software Design and Algorithms

NMPC Tracking Controller

The NMPC controller uses the full state dynamics (2.56), augmented with the disturbance

estimation and has a prediction horizon of two seconds. Close to the target, the length of the

horizon is scaled down to match the time to target provided by the guidance algorithm.

min
u(t )

∫ t f

t0

l (x ,u, t )d t +V f (x f )

s.t . ẋ = f (x ,u)

−θmax ≤ θ1 ≤ θmax

−θmax ≤ θ2 ≤ θmax

− θ̇max ≤ θ̇1 ≤ θ̇max

− θ̇max ≤ θ̇2 ≤ θ̇max

Pmi n ≤ P +P4/2 ≤ Pmax

Pmi n ≤ P −P4/2 ≤ Pmax

P4mi n ≤ P4 ≤ P4max

0 ≤ z

(2.60)

The servo motors are constrained in a range of ±15° and we introduce derivative constraints

to limit the maximum rate of input change given by the controller and to smoothen the

open-loop trajectories.

The propeller speed models are directly included in the formulation, and along with the

constraints on top and bottom propeller speeds PT and PB , provide a simple way to deal with

the trade-off between roll control (through P4) and altitude control (through P ).

Stage Cost

The tracking residual at time t corresponds to the difference between the predicted x(t ) and

the target guidance trajectory xG (t ). The stage cost combines the squared tracking residual,

penalty on the control input and penalty on the deviation from vertical orientation. The

components qw qx −qy qz and qw qy +qx qz penalize deviations of pitch and yaw angles from

zero [63]. The roll angle is not controlled directly, but rather the roll rate ωb
z , as the final roll

angle is not critical for the flight mission.

l (x ,u, t ) = e(x −xG (t ))T Q e(x −xG (t ))+uT Ru (2.61)

44



2.4. Examples

e(x) ≡
[

p v qw qx −qy qz qw qy +qx qz ωb
]T

(2.62)

Terminal Cost In order to improve stability, a continuous-time linear quadratic regulator

(LQR) based on a linearization around the zero-speed steady-state (2.63) is used as a terminal

controller. The matrices Q and R for the LQR design are identical to the ones used in the stage

cost.

A = ∂ f (x,u)

∂x

∣∣∣∣
xs ,us

B = ∂ f (x,u)

∂u

∣∣∣∣
xs ,us

(2.63)

Note that the states qw and qz are fixed in the linearization, as they are not controlled. The

matrix of the terminal quadratic cost Q f is then obtained by solving the continuous time

algebraic Riccati equation (CARE). The final cost is then:

V f (x f ) = e(x f )T Q f e(x f ) (2.64)

Compared to previously proposed methods, this formulation allows for simultaneous tracking

of the optimal trajectory and vertical stabilization, and therefore improves the agility of the

vehicle.

Indoor Experiment

For the GNC system validation, the controller had to track a complex “MPC”-shaped pattern

with a constant speed of 0.35 [m/s]. The flight was performed indoors, where Optitrack was

used to obtain the position and orientation data. Simulation and real-world flight experiments

are in Figure 2.4.

Outdoor Experiment

In order to validate the overall architecture using the guidance and tracking system, the

outdoor experiment includes reaching a 3-meter apogee, followed by a controlled descent to a

given landing point two meters away from the starting position.

The resulting trajectory can be observed in Figure 2.5.

45



Chapter 2. Software Design and Algorithms

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

y [m]

0.0

0.5

1.0

1.5

2.0

z
[m

]

Simulation state

(a) Simulation

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

y [m]

0.0

0.5

1.0

1.5

2.0

z
[m

]

Motion capture estimated state

(b) Real flight

Figure 2.4 – Comparison of the NMPC tracking performance in simulation study and indoor
flight experiment.

46



2.4. Examples

Figure 2.5 – Apogee tracking and controlled descent. It could be observed that the vehicle
initially deviates from the vertical trajectory due to the wind disturbance, then recovers and at
the altitude of 3 meters computes the descent trajectory.

47



Chapter 2. Software Design and Algorithms

2.5 Benchmarks

This section consists of two parts: The first presents a number of simulation experiments

in order to underline the performance properties of the algorithm, namely scalability with

the number of collocation points and the prediction horizon. The second provides a short

run-time performance comparison for the same problem implemented using the ACADO

code generation tool and the PSOPT library, as well as highlighting the main differences of the

considered optimal control tools. The benchmarks are performed using both the CasADi and

the Eigen interfaces of the software on a desktop computer, low-power embedded computer

running Linux and a micro-controller (MCU).

An example of an orbit tracking flight controller synthesis for an Airborne Wind Energy (AWE)

kite is considered. The state of the kite can be characterized by its position with respect to a

ground station in spherical coordinates- elevation angle θ and azimuth ϕ, as well as heading

angle γ, while the tether length L is assumed to be constant. It is possible to directly affect

the flight direction, or heading angle, by pulling the control lines of the kite and the control

signal uγ is the rate of change of the heading angle. A more detailed description of the kite

mathematical model can be found in [64]. The kite kinematics are given by the following

system of ODEs:[
L 0

0 L cos(θ)

][
θ̇

ϕ̇

]
= R̄N K

[
1 0 −E

0 0 0

]
RT

N K RT
GN vw − R̄N K

[
E z

0

]
γ̇= uγ

(2.65)

Where R̄N K , RN K and RGN are the following rotation matrices:

RGN =


−sinθcosϕ −sinϕ −cosθcosϕ

−sinθ sinϕ cosϕ −cosθ sinϕ

cosθ 0 −sinθ

 , RN K =
[

R̄N K 0

0 1

]
,

R̄N K =
[

cosγ −sinγ

sinγ cosγ

] (2.66)

Other parameters are wind speed vw , glide ratio E and tether reel-out/in speed z (assumed

to be zero in this example). One of the most common trajectories in AWE applications is a

“lemniscate" orbit, the parametric equation of which is given below:

θ(τ) = h +a sin(2τ)

ϕ(τ) = 4a cos(τ)
(2.67)

48



2.5. Benchmarks

State and control constraints:
0 ≤ θ(t ) ≤ π

2

−π
2
≤ϕ(t ) ≤ π

2

−π≤ γ(t ) ≤π
−5 ≤ uγ ≤ 5

(2.68)

A simulation study was carried out in order to assess the real-time feasibility of the predictive

controller for the kite path following problem. The orbit following controller was implemented

using the CasADi interface of PolyMPC with IPOPT as an NLP solver. The kite simulator

and controller were set to run asynchronously on a 2.8 GHz Intel Core i7 processor with

inter-process communication provided through ROS [60]. The simulator was run at 100 Hz,

and the controller node was set to run at 50Hz with the following parameters: number of

collocation points- 12; number of subintervals- 3, prediction horizon - 1.5 seconds and the NLP

convergence tolerance is set to 10−5. The average computation time for the control is 3 ms and

the kite, path and controller parameters used in the simulation study are: vw = 5 [m/s], E = 7,

L = 5 [m], h = π
6 , a = 0.2, θ̇r e f = 1.0, Q = di ag {500,500}, R = di ag {0.001,0.1}, W = di ag {1.0}.

Figures 2.6 to 2.9 show respectively the orbit tracking error, the computational delay, the

normalised delay distribution, and the closed loop orbit (lemniscate). Furthermore, two

computational experiments have been conducted to demonstrate the sensitivity of the com-

putation time against the number of collocation points and prediction horizon length.

In the first experiment the five sets of simulation scenarios are conducted with the total

number of Chebyshev collocation points equal to 8, 12, 16, 20 and 24 and each set consists

of 10 scenarios with different initial conditions. For the multi-segment scheme, the order of

polynomial approximation is chosen to be 4 within each segment. Figure 2.10 depicts the

mean and the standard deviation of the computational delay for each of the simulation runs

and it can be observed that in both cases computational delay grows almost linearly with

the number of collocation points. The multi-segment scheme in this example is consistently

faster and has a lower standard deviation of the computational delay after a certain number of

collocation points thanks to the efficient sparsity exploiting direct linear algebra solver.

During the second study, the terminal time of the OCP was varied from 1 to 2.5 seconds and

the increase of the integration period, in general, worsens the conditioning of the system

of nonlinear equations resulting from an implicit integration scheme, or in particular the

collocation equations (2.28). This in turn often leads to a higher number of iterations required

to solve the corresponding NLP to a desired precision. In this experiment the number of

collocation points was 16 for both single- and multi-segment schemes. Figure 2.11 indicates

that in either case, the method is not very sensitive to the change of prediction horizon. The

49



Chapter 2. Software Design and Algorithms

Figure 2.6 – Tracking accuracy of the NMPF controller.

computation time scales linearly with prediction horizon: 250% increase of the horizon leads

to a 21% rise in computation time for the single-segment and 13% for multi-segment meth-

ods. It is important to note that the multi-segment method is less affected by the increase

of horizon as the higher number of segments tends to improve the conditioning of (2.28).

For the comparison study the same problem has been implemented using the PSOPT and

ACADO toolboxes. The benchmark implementations can be found in open access at the

link http://github.com/petlist/simple_kite_benchmark. In the following the important fea-

tures and differences to the PolyMPC package are highlighted. A short summary of all three

programs is presented in Table 2.1.

Since PSOPT uses a similar approximation strategy to PolyMPC, it has been configured to

have the same number of collocation points, subintervals as well as convergence tolerances.

The mesh refinement was disabled during the simulation. Additionally, it was set to interface

the same NLP solver, therefore, the timing differences are mostly due to the source code

optimizations and utilised libraries. Some of the key differences are summarised below:

• It follows from Figure 2.12a that the software is not optimized for real-time predic-

50



2.5. Benchmarks

Figure 2.7 – Computational delay of the path following controller.

tive control of systems with fast dynamics, since the computation time was nearly 30

times slower. It was not possible to use the code in the real-time simulation, so the

PSOPT-based controller was applied on the data collected from the previously described

simulation.

• PSOPT uses CppAD [65] syntax to formulate the OCP, which requires implementation

of system equations and cost function in scalar form. This increases the chance of a

coding error, particularly in cases with many matrix calculations.

The C++ interface to the ACADO code generation tool was used to create the orbit tracking

controller. A multiple-shooting discretization with 12 intervals has been chosen and within

each interval the Runge-Kutta scheme of order 4 is utilised for trajectory and sensitivity

propagation. QPOASES [47] is set as the quadratic problem solver with the exact Hessian. The

number of RTI [66] iterations at each sampling time is defined by the KKT tolerance. Some of

the obtained results are given below:

• The ACADO-generated controller is sufficiently fast for real-time control of the consid-

ered system. The average computation delay over several periods is only a fraction of

51



Chapter 2. Software Design and Algorithms

Figure 2.8 – Computational delay of the path following controller.

a millisecond larger than that of PolyMPC. Interestingly, as becomes clear from Figure

2.12b, the standard deviation of the delay is significantly lower than the ones of PolyMPC

and PSOPT. This is probably due to the more efficient handling of warm-starting in the

ACADO solver.

• Important to note that unlike PSOPT or PolyMPC, the ACADO code generation tool

does not directly support economic cost functions. Therefore, the particular benchmark

problem has had to be reformulated to the Mayer form OCP.

• ACADO uses its own modelling language which, to the best of the authors understanding,

does not support vector operations. This is usually an error-prone approach when

dealing with complex motion equations, for example, aircraft flight modelling. PolyMPC

on the other hand is designed to work with the CasADi and Eigen data types that

naturally support vector operations.

• The code generation tool in ACADO is an attractive feature as it allows the creation of fast

and memory-lean embeddable predictive controllers. The negative side of this feature is

the restricted debugging and analysis capabilities since the generated C code is usually

52



2.5. Benchmarks

Figure 2.9 – Closed loop path following performance.

hard to understand. In contrast, PolyMPC is designed to be more developer friendly

while still providing comparable runtime performance and embedding capabilities.

Name PolyMPC PSOPT ACADO

Delay : mean [ms] 3.11 (CasADi) 100.51 3.29
Delay : std [ms] 1.13 (CasADi) 10.33 0.24

Build system CMake Makefile CMake
Modelling language CasADi/Eigen CppAD ACADO
Supported platforms Linux/Mac OS/Windows Linux Linux/Mac OS/ Windows (req. gcc)
Embedded Yes No Yes
Interfaces C++ C++ C++/Matlab

Table 2.1 – Timings and software summary

53



Chapter 2. Software Design and Algorithms

Figure 2.10 – Comparison of computational delays of single- and multi-segment Chebyshev
collocation.

Embedded benchmark

The kite control problem was benchmarked on the STM32 microcontroller, the Odroid XU4

and a MacBook Pro. The specifications of the embedded platforms is summarised in Table 2.2.

The MCU benchmark code and tutorial on how to deploy PolyMPC-based controllers on MCU

can be found here: https://github.com/LA-EPFL/polympc-stm32f7.

54



2.5. Benchmarks

Figure 2.11 – Comparison of computational delays of single- and multi-segment Chebyshev
collocation.

Name Odroid XU4 Nucleo-F767ZI

Platform Samsung Exynos5422 STM32F767ZI

CPU 8x ARM Cortex™-A15/A7 ARM Cortex™-M7

Architecture ARMv7-A (32bit) ARMv7E-M (32bit)

Acceleration FPU, NEON SIMD, DSP FPU (DP+SP), DSP

Clock 2GHz 216MHz

RAM 2GB LPDDR3 512KB SRAM

Storage 16GB eMMC/SDCard 2MB flash

OS Ubuntu 18.04 bare metal

Dimensions 83mm x 58mm 133mm x 70mm

Power consumption 10W - 20W <1.5W

Table 2.2 – Embedded hardware comparison

For Nucleo-F767ZI during embedded testing, the Eigen interface was employed with dense

linear algebra and single-precision floating point scalars. On the MacBook and the Odroid XU4,

55



Chapter 2. Software Design and Algorithms

sparse linear algebra with double-precision floating point numbers was used. Additionally,

NEON SIMD optimisation was set for Odroid. The timing results are shown in Table 2.3

platform solve time [ms] factor

MacBook Pro 0.91 1.0

Odroid XU4 4.31 4.8

STM32F767ZI 41.86 46.0

Table 2.3 – Kite benchmark solve time comparison

It can be observed that our optimised Eigen-based implementation is more than three times

faster on average than CasADi version or ACADO. On the memory consumption aspect, the

kite controller object uses 60984 bytes of memory when using single precision floating point

types. This fits easily into the 512Kbytes available on the microcontroller.

2.6 Summary

In this chapter, we presented PolyMPC, a free and open-source software toolkit for real-time

embedded optimisation and optimal control. Thanks to its modular structure and flexibility,

the software is helpful for control practitioners and researchers in the field of optimisation

and optimisation-based control as it allows full control over the source code. Some of the

algorithmic modules already include several ADMM QP solvers, an SQP solver, Chebyshev

and Legendre pseudospectral collocation codes, polynomial interpolation and approximation

modules. All algorithmic components support dense and sparse linear algebra, and provide an

option for a static memory allocation for embedded deployment even on bare metal platforms.

PolyMPC performance is proven in numerical benchmarks and real-life experiments.

56



2.6. Summary

(a) Computational delay of the PSOPT-based path following controller.

(b) Computational delay of the ACADO-based path following controller.

Figure 2.12 – Computational delays produced by PSOPT and ACADO

57





Part IIIdentification and Predictive Flight

Control of Rigid-Wing Airborne Wind

Energy Kites

59





Chapter 3

Introduction

Airborne Wind Energy (AWE) is an emerging technology aimed at harvesting wind energy

at higher altitudes than conventional wind turbines. Since traditional turbines were widely

introduced to the energy sector about four decades ago, blade sizes and consequently the

supporting structures have been constantly increasing to maximise the energy yield [67].

Despite the steady growth of world-wide installations, wind variability poses challenges for

continuous energy supply and as a result, lead to financial losses to wind farms and electric

grid operators [68]. Reaching higher altitudes and therefore steadier winds is difficult due to

structural limitations, but recent studies show that by reaching altitudes of approximately 300

to 800 meters, the number of places on earth suitable for wind energy harvesting is augmented

significantly [69, 70]. AWE technology is being developed to address the aforementioned

limitations of conventional wind turbines by replacing massive blades with an aerodynamic

wing connected to a ground station by a flexible and relatively lightweight tether which

potentially allows AWE kites, to access much higher altitudes.

There exist several AWE technological concepts depending on the flight operation and elec-

tricity production principles. In this thesis, we consider the two, most commonly adopted

concepts: lift-mode and drag-mode. The two concepts differ in the way they transform wind

energy into electricity and, therefore, in their operation strategy. In lift mode, the aerodynamic

force generated by the aircraft flying cross-wind is used to reel out a tether from the ground

station and rotate a drum connected to the rotor of the generator. The product of the tether

force and the reel-out speed is proportional to the mechanical power that can be converted

to electricity. Once the maximum length of the tether is reached, the system switches to a

retraction (or recovery) phase where the generator works as a motor and reels in the tether

while the aircraft flies towards the ground station in a low-tension regime, typically with high

angle of attack. In drag mode, ram-air turbines oriented towards the airstream are mounted on

61



Chapter 3. Introduction

the aircraft to convert kinetic energy to electricity that is transmitted to the ground station via

a conducting tether. For the aircraft, the generator resistance corresponds to additional drag.

Besides these operating strategies, existing AWE prototypes differ in their wing structure (rigid

or flexible), number of flying vehicles, on-board or ground-based actuation. A comprehensive

overview of the existing AWE technologies and concepts can be found in [71, 72, 73].

Even though there is no clearly superior technology, the trend among AWE companies and

practitioners over the past few years has been shifting towards rigid-wing single-line kites. The

focus of this thesis is on modelling, identification and predictive control of this type of kite.

We develop a small-scale, low-cost prototype AWE kite, perform identification and validation

of the flying vehicle and tether models and present our work towards embedded hierarchical

nonlinear model predictive control for geometric path following.

3.1 State of the art

Flight control of AWE kites is a complex problem since the system is inherently unstable,

highly nonlinear, and operates in an uncertain environment. Standard steady-state flight

assumptions [74, 75] cannot be applied since the aircraft moves at high accelerations and

aerodynamic angles.

For fixed-wing single-line kites, the control systems typically have a modular structure. Rapp

et al. [76] propose a complete pumping cycle flight control algorithm based on a state machine

and a cascaded path-following controller. The guidance layer defines the desired path and

course angles using the projection of the aircraft onto the local tangential plane of a continu-

ously parametrised geometric path. These angles are then used in the path-following layer

to compute the bank angle and angle of attack which, in turn, are transformed to roll, pitch,

and yaw rates by the attitude loop. Finally, the actuator inputs are deduced by dynamic model

inversion. Control in the radial direction is realised through the winch system. Finally, a state

machine is used to switch among the operating regimes. Sieberling [77] represents the desired

kite trajectory as a collection of scheduled waypoints in the Cartesian reference frame and

controls longitudinal and lateral motions independently using cascaded PID loops. Fagiano et

al. [78] present a flight control system specific to lemniscate-type trajectories for a drag-mode

kite. In this approach, two particular waypoints are placed on a sphere defined by the tether

length. The reference course angle is computed as an angular distance between a waypoint

and an aircraft when projected on the local tangential plane. The path angle is proportional to

the altitude difference between waypoint and aircraft. Once the guidance signal is computed,

it is transformed to yaw and pitch rate signals and tracked by low level controllers.

Nonlinear Model Predictive Control (NMPC) can be seen as another guidance method for

62



3.2. Contributions

rigid-wing AWE kites. Stastny et al. [79] employ a model predictive controller with a first-order

kinematic kite model similar to the ones presented in [80, 81] to generate a yaw rate reference

for tracking of a tilted circle. The yaw rate is then tracked by low-level PID controllers. The

approach was experimentally validated using a small-scale prototype. The NMPC algorithm

in their work provides a compromise between circle tracking accuracy and local power opti-

misation. In [82], the authors take a different approach and let the NMPC algorithm directly

control the actuators. A 6 degree-of-freedom (DoF) airplane model is used for predictions and

a power-optimal reference trajectory is assumed to be available. The tether is modelled as a

geometric constraint which leads to the differential algebraic equations (DAE) constraint in

the optimal control formulation. A simulation study was carried out using the ACADO toolkit

[24]. A key limitation of the solution is the computation time of the NMPC implementation.

The authors report an average computation of over 180 milliseconds on a desktop computer

which is not suitable for real-time applications. Moreover, one will typically observe a 5x to

10x increase of the computation time when ported to high-end embedded platforms.

3.2 Contributions

Experimental validation of advanced control schemes for rigid-wing AWE kites is particularly

challenging due to the high design and manufacturing costs of the prototypes. For this reason,

industrial partners are often reluctant to adopt novel control approaches published by the

academic community. To address this issue and foster experimental studies of AWE flight

control systems, we have developed a complete small-scale prototype of a rigid-wing AWE

system capable of operating in lift mode. The prototype features a 1.8m wing-span foam

aircraft equipped with an inertial measurements unit (IMU), global positioning (GPS), an

airspeed sensor, a flight controller, and a companion computer running embedded Linux

for demanding computations. A portable and fully autonomous ground station comprises

high-precision line angle encoders, a load cell for tension measurement and an electric motor

for tether control. The versatile flight management software based on ROS [60] allows for quick

integration of new control algorithms, flexible mission management and switching between

regimes and algorithms.

The second contribution of this part is a methodology for identification of the kite model

parameters. Here we adopt a multi-experiment averaging technique from [83] and use stan-

dard assumptions on the separability of the longitudinal and lateral motions. For each flight

experiment, a perturbed 3-2-1-1 input sequence is applied in open-loop fashion. After the

experimental data is collected, the PolyMPC toolbox is used to solve a large-scale dynamic

optimisation problem over several experiments.

63



Chapter 3. Introduction

Finally, we propose a nonlinear path-following optimal control formulation that is used as a

fast trajectory optimisation algorithm in a hierarchical flight control system. The proposed

approach allows for any geometric path to be flown while respecting the flight envelope

constraints. The efficient embedded implementation is shown to be on average 5x faster than

the one presented in [82] and is tested experimentally on the embedded computer. A novel

delay compensation mechanism allows running the NMPC algorithm in real-time on the

prototype.

64



Chapter 4

Modelling of a Rigid-Wing AWE Kite

This section presents a control-oriented mathematical model of a single-line rigid-wing AWE

kite. In general, mathematical models for this type of AWE kite differ in the level of detail of the

aerodynamic wing simulation and tether. For control applications, aerodynamic properties of

the flying vehicle are typically characterised by a set of aerodynamic coefficients which can be

obtained with specialized computation fluid dynamics (CFD) software by perturbing aircraft

around equilibrium flight conditions [75]. In AWE literature examples of such models can be

found in [84, 85, 76]. A reduced set of coefficients that neglects the influence of angular motion

on the lift, drag and aerodynamic forces is used in [82]. Tethers are modelled as a geometric

constraint (rigid rod) [82, 85], lumped mass models where mass points are connected by

springs and dampers [86, 87] or a single visco-elastic element [84] as in this thesis. In our

work, a full set of aerodynamic coefficients is employed for the flying vehicle simulation, and a

smooth approximation of the tether tension force allows using the model both for simulation

and dynamic optimisation.

4.1 Modelling: Aircraft

We utilize the aircraft dynamic equations of motion from [75]. The aircraft is assumed to

operate in a close neighbourhood of the ground station (GS) and, thus, the effects of the earth

shape and rotation as well as variation of the gravity field are neglected. Quaternions are

chosen to represent rotations for their computational efficiency and absence of gimbal-lock

effect. In the following, we briefly introduce three relevant reference frames that appear in the

model.

Body Reference Frame

(BRF)

the origin is fixed at the center of mass (CoM) of an aircraft, longitu-

65



Chapter 4. Modelling of a Rigid-Wing AWE Kite

х

T

u

p хb
v

r

Zb

yb q

v

w

Figure 4.1 – Body Reference Frame. Adopted from [75]

dal axis (Oxb) - an axis drawn through the body of the vehicle from

tail to nose in the normal direction of flight, lateral axis (O yb) - an

axis is pointing to the starboard and parallel to the wings of a winged

aircraft, normal axis (Ozb) - an axis drawn from top to bottom and

perpendicular to the other two axes.

Inertial Reference Frame

(NED)

the origin is fixed at an any point (at the groundstation (GS) for

instance) and does not move over time relative to the ground, (Ozn) -

axis is pointing downward (gravity vector), (Oxn) and (O yn) axes are

perpendicular to (Ozn) and point to the geographic North and East

directions correspondingly.

Aerodynamic Reference

Frame (ARF)

the aerodynamic forces can be conveniently expressed in ARF where

the origin is fixed at the CoM of a vehicle, (Oxa) axis points towards

apparent velocity vector, (Oza) axis is perpendicular to (Oxa) and

points down, (O ya) complements these two axes to a right triangle.

We use the following conventions: a vector v in reference frame ‘a’ is given by av. The oper-

ator (·) denotes the transformation of a vector defined in frame ‘a’ to frame ‘b’ using a unit

quaternion:

bv = qba · av := qba ⊗
[

0

av

]
⊗q−1

ba (4.1)

66



4.1. Modelling: Aircraft

The state vector of a 6 DoF rigid-body model is defined as

x =


bvK

ω

r

q

 (4.2)

where bvK = (u, v, w)T is the flight path velocity and ω = (
p, q,r

)T is the angular velocity

in the body frame, r = (
x, y, z

)T denotes the position in the NED reference frame, and q =(
qw , qx , qy , qz

)T
nb = qnb is the quaternion that describes the rotation of the body frame with

respect to the NED frame. The control vector is defined as

u =
(

FT hr,0, δe , δr , δa

)T
(4.3)

with the static thrust (at zero airspeed) FT hr,0, and the control surface deflections of the

elevator, rudder, and ailerons, δe , δr , δa , respectively. The equations of motion in the body

frame are

b v̇K = 1

m

∑
i

bFi −ω× bvK (4.4)

ω̇= I−1

(∑
i

bMi −ω× Iω

)
(4.5)

where bFi and bMi are the external forces and moments acting on the aircraft, m is the aircraft

mass and I contains the moments of inertia where Ix y and Iy z components are neglected [75]

I =


Ixx 0 −Ixz

0 Iy y 0

−Ixz 0 Izz

 (4.6)

The evolution of the aircraft position and attitude of the aircraft are described by the kinematic

equations

ṙ = q · bvK , (4.7)

q̇ = 1

2
q⊗

(
0

ω

)
(4.8)

For a tethered airplane, the total force consists of aerodynamic, thrust, gravitational, and tether

components. Assuming the thrust vector is aligned with the body x-axis, the total moment

67



Chapter 4. Modelling of a Rigid-Wing AWE Kite

consists of an aerodynamic and a tether portion:

∑
i

bFi = bFA + bFT hr + bFG + bFT∑
i

bMi = bMA(+bMT )
(4.9)

Aerodynamics, Propulsion and Gravity

With the apparent air velocity

bvA = (uA , v A , w A)T = bvK −qbn ·nvW (4.10)

where nvW is a wind velocity vector expressed in the NED frame, the angle of attack (AoA) α,

and the angle of sideslip β are defined as

α= arctan

(
w A

uA

)
β= arcsin

(
v A

VA

) (4.11)

with VA = ‖bvA‖2. The aerodynamic lift (L), drag (D) and side (Y ) forces can be estimated

using the following equations [75]:

L = q̄S ·CL

D = q̄S ·CD

Y = q̄S ·CY

(4.12)

Here CL ,CD ,CY denote dimensionless aerodynamic coefficients which can be computed

using the following linear approximations:

CL =CL0 +CLαα+ c

2VA
CLq q +CLδeδe

CD =CD0 +
C 2

L

πeΛ

CY =CY ββ+ b

2VA

(
CY p p +CY r r

)+CY δrδr

(4.13)

Similarly, for aerodynamic roll (l ), pitch (m) and roll (n) moments we have

l = q̄Sb ·Cl

m = q̄Sc ·Cm

n = q̄Sb ·Cn

(4.14)

68



4.2. Modelling: Ground Station and Tether

and

Cl =Clββ+ b

2VA

(
Cl p p +Cl r r

)+Clδrδr +Clδaδa

Cm =Cm0 +Cmαα+ c

2VA
Cmq q +Cmδeδe

Cn =Cnββ+ b

2VA

(
Cnp p +Cnr r

)+Cnδrδr +Cnδaδa

(4.15)

with the reference quantities S, b, c, e, and Λ for the wing area, span, chord length, Oswald

efficiency, and aspect ratio, respectively, and the dynamic pressure q̄ = ρ/2 ·V 2
A . CL0,CD0,C Lα

are aerodynamic coefficients, CL_,CY _,Cl_,Cm_,Cn_ are dimensionless stability coefficients

and control derivatives. These coefficients characterise dynamics of the aircraft for a defined

trimmed flight condition and can be found through wind tunnel test, identification flight

experiments, or computational fluid dynamics (CFD) simulations.

The total aerodynamic forces and moments in the body reference frame are

bFA = qba ·


−D

Y

−L

 , bMA =


l

m

n

 (4.16)

with qba = q2(α)⊗q3(−β). We assume that the aerodynamic coefficients are constant, and

that the symmetric aircraft does not produce lateral forces or moments for zero sideslip. The

thrust and gravitational forces are

bFT hr =


FT hr

0

0

 , bFG = qbn ·


0

0

mg


with the local gravitational acceleration g . The thrust magnitude depends on the airspeed and

is approximated from the static thrust command with a second order polynomial [88]:

FT hr = FT hr,0 ·
(
p2V 2

A +p1VA +1
)

(4.17)

where (p2, p1) are polynomial coefficients obtained with of a propeller design software.

4.2 Modelling: Ground Station and Tether

This section extends the modelling approach presented in [84]. The tether force comprises

the drag, weight and tension components and can be written in the BRF as:

bFT = bFten + bDT + bWT (4.18)

69



Chapter 4. Modelling of a Rigid-Wing AWE Kite

This force is applied at the tether attachment point relative to the CoM: brt = (xt ,0, zt )T , which

results in the torque

bMT = brt × bFT (4.19)

Tether Tension

The tension force is modelled as a visco-elastic element and points towards the GS. Given the

aircraft position nr and velocity nvK in the NED frame, the force can be computed using the

following formula

nFT = nr

‖nr‖
[

Ks(lt −‖nr‖)−K d
nrT

nvK

‖nr‖
]

H(lt −‖nr‖) (4.20)

Where K s,K d are the spring and damping coefficients of the line, lt is a current length of the

tether and H(·) is a Heaviside function which activates the tension component of the tether

force only when ‖nr‖ > lt . In the BRF we have:

bFten = qbn ·n FT (4.21)

Tether Drag

The tether drag results from the component of the apparent velocity that is perpendicular to

the tether. Assuming a straight tether, a horizontal projection of the apparent velocity in the

NED frame is given by:

nvA = qnb ·nvK −n vW

nvA,hor =

nvA,x

nvA,y

0


The tether drag force is orthogonal to this projected velocity. Assuming that the airspeed

increases linearly from 0 at the ground station to l vA,hor at the aircraft position, the drag can

be computed as

nDT =−1

8
ρnvA,hor

∥∥
nvA,hor

∥∥c⊥dT lt

bDT = qnl bDT

where ρ is the air density, c⊥,dT are diameter and drag coefficient of the tether correspond-

ingly.

Tether Weight

70



4.2. Modelling: Ground Station and Tether

φ
P   
,      ω

P

v
P

τ
M

T

r
ir

F
M

τ
T

Figure 4.2 – Definition of the forces and moments acting on the pulley.

The total tether mass can be written as

mT = cmlt (4.22)

where

cm = ρT AT

expresses the mass per meter of tether. Assuming that the aircraft carries the whole tether

mass the weight portion in the BRF can be computed as

bWT = qbn ⊗


0

0

mT · g

 (4.23)

Winch Dynamics

The pulley dynamics can be expressed by its angular position ϕP and velocity ωP , as defined

in Figure 4.2. The angular dynamics of the winch is defined by the sum of external torques

divided by the angular inertia I of moving parts:

ϕ̈P = 1

I

∑
i
τi (4.24)

In our case, I is dominated by the angular inertia of the motor. The tether tension T = ‖nFT ‖
applies at the variable radius r , which results in a torque τT = T · r that acts on the pulley. The

71



Chapter 4. Modelling of a Rigid-Wing AWE Kite

motor applies a torque τM in the opposite direction so that the angular acceleration of the

pulley equals

ϕ̈P = 1

I
(τT −τM ). (4.25)

The angular velocity can be converted to its linear equivalent:

vP = ϕ̇P r

l̇t = vP

(4.26)

The radius r depends on the tether diameter and the number of turns on the pulley. To

convert the tether tension to its torque equivalent on the pulley or the motor torque to its

force equivalent, the radius must be approximated by a model. The equivalent quantities are

drawn with dashed lines in Figure 4.2.

Power Output

The mechanical power that is transmitted to or from the ground station equals

P = T vP , (4.27)

where T is the tether tension and vP is the linear velocity of the pulley. As for the tension control

in the following section, we assume to have mainly a stationary case where the tension equals

the torque equivalent induced by the motor. Neglecting all losses in the energy conversion

from the battery to the winch dynamics:

P = FM vP (4.28)

with the motor force

FM = τM

r
. (4.29)

This means, when we reel out the tether at the velocity vP > 0 against the motor force FM , we

transmit the power P to the ground station battery. On the other hand, as soon as the velocity

equals 0, there is no power transmitted, no matter how high the motor force is.

4.3 Prototype: Hardware

The AWE system prototype presented in this thesis consists of a commercial electric foam

glider connected to a ground station by a tether. The ground station is designed and built

specifically for the experimental validation of AWE systems. The prototype allows performing

automatic flight experiments with minimal operator intervention and serves as a research

72



4.3. Prototype: Hardware

Figure 4.3 – EasyGlider 4 by Multiplex.

Table 4.1 – EasyGlider4 technical data.

Wingspan 1.8 m
Overall Length 1.08m
Take-off Mass (modified) 1.1(1.35)kg

platform to experimentally study the performance of flight control systems.

Airplane

The airplane is the EasyGlider 4 by Multiplex. It is an electric glider made of ELAPOR foam,

see Figure 4.3 and Table 4.1. While the elastic material makes it robust to rough landings

or even minor crashes, these favorable properties come at the cost of slightly weaker flight

performance.

Electronics and On-Board Computer

Every ordinary remote-controlled (RC) aircraft requires a battery, an RC receiver, and servos

to move the control surfaces (ailerons, elevator, rudder). An electric motor also requires an

Electronic Speed Controller (ESC) that converts the battery voltage to appropriate voltages for

the motor and servos and also controls the motor at the low-level. For autonomous operation,

it requires a Flight Controller (FC) and additional components according to the flight tasks

and type of the vehicle.

In the system configuration, which can be seen in Figure 4.4, we use a Pixhawk4 Mini as

the FC. It features a built-in Inertial Measurement Unit (IMU) and is connected to all crucial

avionic components, such as a Sensirion SDP3x airspeed sensor, a Pixhawk GPS Module,

and an RC receiver for manual control commands from the pilot. All these components

are powered through the Pixhawk by a 3DR APM/Pixhawk Power Module v1.0. The servos

73



Chapter 4. Modelling of a Rigid-Wing AWE Kite

M
ot
or

LiPo 3S Battery
3200 mAh

11.1 V

Power Module

3DR PM v1.0

Electronic Speed Controller 
(ESC)

ROXXY BL-Control 720 S-BEC

Radio Telemetry 
Module

Holybro 433 MHz

Offboard/Companion 
Computer

Odroid XU4

U
SB

U
SB

Stepdown 
(UBEC)

FTDI 
Adapter

Airspeed Sensor

Sensirion SDP3x

RC Receiver

OrangeRX R920X

GPS Module

Pixhawk GPS Module

Flight Controller (FC)

Pixhawk4 Mini

Elevator

Aileron R

Aileron L

Rudder

Throttle

Teth Cpl

Inertial 
Measurement 

Unit (IMU)

Servos

Mechanical 
Switch

5V 5V

5V

Data

Power

Radio
Communication

Sensors/Actuators

Computation

Power Supply

Figure 4.4 – Avionics Architecture.

and the ESC are directly connected to the Pixhawk. The ESC powers all servos through

the Pixhawk servo rail circuit. To avoid the servos from randomly running to the extreme

positions at system startup, an additional mechanical switch was added for the servo power

supply. Finally, there is an Odroid XU4 Offboard Computer (often referred to in practice as

a Companion Computer). The comparably power-demanding Offboard Computer allows

for computationally expensive control and estimation algorithms to be executed. In the

control system architecture, we use the Offboard Computer for all custom-written software

and algorithms. The Offboard Computer is connected to the Pixhawk via an FTDI Adapter

which bridges from USB to Pixhawk’s JST-GH connector. As all relevant flight tasks run on

the Odroid, the Holybro 433 MHz Radio Telemetry Module enables communication with the

ground station. Optionally, the telemetry modules can be connected to the Pixhawk which

is necessary for certain configuration tasks. Connecting the telemetry module to the Odroid

enables transmission of parameters and real-time data related to the control and navigation

algorithms. The Odroid and devices connected to it are powered by an additional step-down

DC converter to ensure that the Odroid running power-demanding optimizations will not

affect the safety-critical FC or servo power supply.

Assembly

The available space inside the fuselage is very constrained. Apart from increasing the total

take-off weight, the majority of the additional components are placed in front of the center

74



4.3. Prototype: Hardware

Pixhawk Mini

Odroid

Battery

TelemetryESC

Power

Module

S
te

p
d
o
w

n

RC

Motor

Servos

GPS

Figure 4.5 – Component arrangement in the fuselage.

of gravity (CoG) and make the aircraft nose-heavy. It is therefore desirable to place as many

heavy components as possible close to the tail, so that less additional balancing weights are

needed. For this reason, the battery is positioned in the very back of the fuselage which had to

be extended by a few millimeters to allow the tether guiding tube to cross the fuselage.

Ideally, the Pixhawk is placed near the CoG because it contains the IMU. Due to electromag-

netic interference the RC receiver and the telemetry module are placed on two opposing sides

of the Odroid.

The arrangement of the components inside the fuselage is shown by Figure 4.5. The GPS

module is fixed on the upper of the fuselage. Together with the tether coupling servo cable, its

cable is connected to the Pixhawk.

Ground Station

The Ground Station is shown in Figure 4.6 The main components are a direct current (DC)

motor, a pulley that spools the tether and is directly mounted on the motor shaft, and a set

of rollers that redirect the tether towards the aircraft. In addition, there is a force sensor to

measure the tether tension and two angular sensors that measure the orientation of the rod

guiding the tether.

The tether has the diameter of 0.2mm and a length of 2 ·150m and is a fishing line that is rated

for 13.6kg of maximum load. The pulley has been designed to allow for high linear speeds.

For safe and reliable operation, protections are placed around all rotating parts. The ground

station is equipped with a 48V battery which allows for its mobile and autonomous use.

The sensors are read out with an Arduino board and the motor is controlled by a Maxon

Motor control unit. Both are connected to an ordinary laptop computer through USB, or an

embedded computer if graphical visualisation is not necessary.

75



Chapter 4. Modelling of a Rigid-Wing AWE Kite

Figure 4.6 – Ground station. FMU statnds for the force measurement unit.

4.4 Prototype: Software

This section presents the software architecture that is used onboard the aircraft and, for the

ground station as well as the developing environment. It contains tools for flight log analysis

and a software-in-the-loop simulator.

Onboard

The Pixhawk FC runs the open-source autopilot software PX4, which manages all the sensors

and actuators. It processes the sensor data by running an Extended Kalman Filter (EKF) to

obtain state estimates which are sent over the serial port to the Odroid which is running the

Ubuntu MATE 18.04 operating system. The inter-program communication is performed using

Robot Operating System (ROS) Melodic [60]. Figure 4.7 demonstrates the ROS nodes that

run on the Odroid, with the arrows showing the data flow between the nodes. The Odroid

interfaces to the PX4, through the MAVROS package which publishes all received data streams

as ROS topics over the serial interface.

The Offboard Control node is the essential autopilot implementation. Offboard Control

receives control and flight mission related data such as position, attitude, linear and angular

velocities, airspeed, manual control input from the RC receiver, and the status of the FC. It

manages the system parameters with a parameter server and switches between flight control

76



4.4. Prototype: Software

modes depending on the current state and commands from the ground station or pilot. Within

one of the flight control modes (attitude hold, identification experiments, AWE regime, etc), it

computes all necessary values to navigate, guide and control the aircraft. The resulting control

command is then sent to Pixhawk which implements the command. Additionally, it publishes

some status and diagnostic information for flight analysis.

The Air Telemetry node provides the interface to the ground station. Air Telemetry processes

parameter read and write requests from the ground, sends status information and, if necessary,

real-time flight data to the ground for monitoring. The parameter server uses the built-in

ROS infrastructure rosparam and loads the parameters from a YAML-file, which then can be

read and overwritten by any node. Every time Offboard Control becomes inactive, that is

the pilot takes manual control, all parameters are saved to the file again. When the node is

closed, it dumps and clears the parameters from the server. All data streams between nodes

are recorded in a ROS BAG-file, with the recording started and stopped by Offboard Control

on arming and disarming of the Pixhawk, respectively.

USB

Flight Controller (FC)Radio Telemetry

USB

Offboard/Companion Computer Odroid XU4 running Ubuntu MATE 18.04

Offboard Control

MAVROS
Interface to PX4

Get flight data and system status Set actuator control

Air Telemetry
Interface to ground

Parameters/flight data

Serial Radio Telemetry

ROS Melodic

ROS 
Parameter 

Server

PolyMPC Controller
Generates optimal state 

and control trajectory

PolyMPC Resampler
Generates continuous 

signals from trajectories

Update & manage

- Preprocess flight data

- Update parameters

- Select flight mode

Control flight

Navigation, Guidance, Control

Publish

- Control commands

- System status

- Diagnostic data

SensorsSensorsSensors ActuatorsActuatorsActuators

Figure 4.7 – Software architecture on the Offboard Computer.

Offboard Control

The Offboard Control node consists of two processes that run at different rates. Navigation

data processing, parameter and flight state machine management executes at a high rate. This

includes the decision whether Offboard Control is active or not and which flight control mode

is executed. The slow loop contains the high-level controllers, which is all controllers except

77



Chapter 4. Modelling of a Rigid-Wing AWE Kite

Radio Telemetry

USB

ROS Parameter Server Air Telemetry
Interface to ground

Parameters/flight data

Serial Radio Telemetry

Radio Telemetry

USB

Ground Computer running Ubuntu 18.04

Ground Telemetry
Interface to air

Command line user interface

Automatically prints status 
changes of the air system

Serial Radio Telemetry

Offboard/Companion Computer Odroid XU4 running Ubuntu MATE 18.04

Offboard Control

ROS Melodic

Figure 4.8 – Telemetry air-ground connection.

the velocity, attitude, and rate controllers. The fast loop then processes the references from the

high-level controllers at the fastest possible frequency, based on the newest measurements.

Besides the use of flight control modes, Offboard Control contains an event-based framework

to manage flight missions that enables changing the flight control mode or any parameter

within Offboard Control.

Telemetry and Parameter Management

Both Ground and Air Telemetry are built on the Serial Radio Telemetry package, which is a

custom serial protocol. It enables creation of custom messages to be transmitted over the serial

telemetry connection. The main task of the Ground Telemetry node is to change parameters

during flight. Our parameter management system is sketched in Figure 4.8. At system launch,

Offboard Control initialises the parameter server by loading all parameters from a file. Ground

Telemetry provides a command line user interface (CLI) that enables real-time interaction

with the parameter server on-board. Whenever a parameter is selected, Ground Telemetry

first sends a read request for the current value to the air node. Air Telemetry processes this

request, reads out the corresponding value from the ROS parameter server, and sends it to

the ground, where it is displayed to the user. The write request works in a similar fashion. If

written correctly, the user gets a confirmation. Air telemetry also notifies Offboard Control

to update all parameters. For robustness, Ground Telemetry attempts sending parameter

requests until it receives a confirmation.

Additionally, every time Offboard Control changes the flight control mode or the PX4 is armed

or disarmed, the Air Telemetry node sends a corresponding status message to the ground

node which also contains the battery voltage, capacity and flight time.

78



4.5. Summary

In the remaining time, when none of the above mentioned tasks is due, Air Telemetry can

send flight data down to the GS for monitoring and algorithm tuning. By default, this feature

is deactivated to save battery.

Ground Station

The GS software comprises a motor control unit and drivers for a force measurement unit

and encoders. The motor control unit includes torque, velocity, and position controllers.

The ground station is controlled by several ROS nodes that read out measurements and set

references to its controllers. Additional nodes manage custom ground station parameters and

an interface to set the motor mode and control reference with the laptop keyboard.

The software package also includes a monitoring tool. It displays the control mode and motor

torque or velocity references, and indicates the reeling direction of the tether. Moreover, it

monitors all relevant measurements of the ground station.

Flight Log Analysis

All ROS communication in our system is recorded in BAG-files. They allow to replay the system

later, with an option to export to CSV-files. The CSV-files are then parsed by topic in Matlab.

The implemented script is quite flexible. The data can be selected by the offboard control

mode or mission mode, or any other condition derived from the data. Relevant data sequences

are then processed further. Above all, the flight log analysis provides plots that visualize the

recorded data and make it intuitive.

Simulator

Our AWE software pack also includes a flight simulator and visualization tool to display the

flight behavior. For control algorithm debugging it additionally outputs aerodynamic angles

and specific non-gravitational forces on the aircraft.

For visualization, the ROS package RViz is used, which displays 3D data in different coordinate

frames. Figure 4.9 shows the visualization in RViz: it displays all relevant coordinate frames,

the wind vector, aircraft body, geodetic and aerodynamic velocities and aircraft position trace.

For tethered flight, there is also the tether force vector and a numerical indication of its load

magnitude. Furthermore, the specific non-gravitational force vector can be displayed.

4.5 Summary

In this chapter, we presented a dynamical model of a fixed-wing single-line AWE kite. Our

approach to the modelling of aerodynamic forces and smooth approximation of tether tension

79



Chapter 4. Modelling of a Rigid-Wing AWE Kite

Figure 4.9 – Flight simulation and visualization in RViz. Display of the body reference frame
in red-green-blue, the flight path velocity vK (white), apparent velocity vA (dark blue), and
resulting specific non-gravitational force (light blue).

force allow for high fidelity simulation while being computationally feasible for model-based

control design. Additionally, a unique small-scale platform has been designed and built to

enable the experimental study of AWE kite dynamics and control systems. The flexible software

architecture facilitates quick control design iterations and allows switching and tuning of flight

controllers in the air without the need for landing.

80



Chapter 5

Identification of an AWE Kite

5.1 Identification

Accurate modelling of the system is instrumental for designing and validating control and

estimation algorithms. A key challenge for any fixed-wing flying vehicle is characterisation of

its aerodynamic properties, i.e. interaction with the atmosphere. Dimensionless aerodynamic

coefficients, stability and control derivatives introduced in Section 4.1 depend on the profiles

of aerodynamic surfaces and geometry of the aircraft. Initial estimates of these coefficients

can obtained using an empirical framework DATCOM [89] that performs calculations based

on the geometry of a flying vehicle and a vast data base of tunnel experiments. XFLR5 [90]

is a more elaborate software tool that utilises the vortex lattice method (VLM) to compute

aerodynamic polars for a specified wing profile for small Reynolds numbers. The software

then employs a 3D panel method to estimate the pressure distribution on the aerodynamic

surfaces of the aircraft. To estimate stability and control derivatives, XFLR5 computes the

trimmed flight conditions and introduces small perturbations to angular rates and control

surfaces. Some limitations of VLM include inability to estimate the viscous portion of the drag

and small range of aerodynamic angles for which the method can produce reliable results

(small angle approximation). Additionally, XFLR5 neglects the influence of the fuselage. Other

powerful CFD methods like finite element method (FEM) are able to produce more accurate

and reliable estimates but require special qualification and experience. Wind tunnel tests is

another method known to produce very accurate aerodynamic characteristics of an aircraft

but require expensive infrastructure that is not always available.

In this thesis, initial estimates of the aerodynamic coefficients were obtained with XFLR5

simulations and refined through an extensive experimental flight campaign. For model

identification, similar to Licitra et al [91], we employ a model-based parameter estimation

81



Chapter 5. Identification of an AWE Kite

Table 5.1 – Mass and moments of inertia. Note that Ixz is an estimate from XFLR.

m 1.3474kg
Ixz −0.00215kgm2

Ixx 0.0832kgm2

Iy y 0.0667kgm2

Izz 0.1173kgm2

Table 5.2 – Geometric values obtained with XFLR5.

b 1.8m
c 0.185m
Λ 10.016
S 0.323m2

methodology (MBPE) where a full set model equation from Section 4.1 is used to formulate

a constrained nonlinear least-squares dynamic optimisation problem. In our approach,

however, another method is used for the reference input design. Instead of one optimised

control sequence, we propose to use a standard in aerospace field, the so called 3-2-1-1 input

sequence for longitudinal and lateral motions with random parameter perturbations in each

experiment. Additionally, for each flight experiment, we estimate short-term constant wind

disturbances since exact wind measurements are not available on the prototype. Finally, in

order to improve robustness and generalisation properties of the model, the multi-experiment

averaging strategy from [83] is used where one set of parameters is optimised for several

experiments simultaneously. The resulting large scale dynamic optimisation problem that is

discretised and solved using PolyMPC and the nonlinear solver Ipopt [92].

A-Priori Parameters

The mathematical model of a rigid-wing aircraft is over-parametrised, i.e. change in forces or

moments can be attributed to or influenced by several parameters, therefore, it is crucial to

reduce the search space of the parameter estimation problem. Mass and inertia are determined

by measurements and swing experiments as described in [93], see Table 5.1. A first guess for the

aerodynamic parameters is obtained with XFLR5. After modelling the wing-tail geometry (see

Figure 5.1), the software outputs derived geometric quantities, static aerodynamic coefficients,

stability and control derivatives. As airfoil profile data is not available from the manufacturer,

for simulation we use a NACA 2412 profile for the main wing due to its geometric similarity.

XFLR5 analysis results are shown in Tables 5.2-5.4, and the aerodynamic coefficients are

summarised in Table 5.3 and 5.4.

Table 5.3 – Aerodynamic coefficients of the longitudinal dynamics obtained with XFLR5.

e 0.97
CD0 0.009

CL0 0.630
CLα 5.347

Cm0 −0.020
Cmα −0.910

CLδe 0.275
Cmδe −0.894

82



5.1. Identification

(a) (b)

Figure 5.1 – CFD modeling of the wing-tail combination in XFLR5. (a) Panel grid used for CFD
analysis. (b) The colored surfaces represent the pressure distribution, the yellow and purple
lines visualize the viscous and induced drag, respectively.

Table 5.4 – Aerodynamic coefficients of the lateral dynamics obtained with XFLR.

CY β −0.307
Clβ −0.097
Cnβ 0.084

CY p −0.124
Cl p −0.540
Cnp −0.075

CY r 0.234
Cl r 0.139
Cnr −0.066

CY δr 0.203
Clδr 0.010
Cnδr −0.074

Clδa −0.315
Cnδa −0.008

The range of control surface deflections and static thrust are determined prior to flight experi-

ments. The maximum deflection angles of the elevator, rudder, and ailerons are measured

from photos. For the differentially deflected ailerons, we average the two asymmetric deflec-

tions. The static thrust FT hr,0,max at full throttle and battery voltage is measured with a force

measurement unit. Thrust decrease related to airspeed is approximated using a free propeller

design tool PropCalc [94] for a standard propeller of corresponding size and pitch, as seen in

Figure 5.2. We fit the speed-thrust curve with a second-order polynomial

f (VA) = p ′
2V 2

A +p ′
1VA +p ′

0, (5.1)

normalized it such that it maps the airspeed to [0, 1], and multiply it by the measured maxi-

mum static thrust:

FT hr = FT hr,0 ·
(
p2V 2

A +p1VA +1
)

(5.2)

Results are given in Table 5.5.

83



Chapter 5. Identification of an AWE Kite

Figure 5.2 – Thrust curve (blue) in PropCalc.

Table 5.5 – Maximum control surface deflections and thrust parameters.

δe,max 20.0˚ 0.35rad
δr,max 26.0˚ 0.45rad
δa,max 20.0˚ 0.35rad

FT hr,0,max 6.37N
p1 −0.0147
p2 −0.001

5.2 Identification Experiments

The a-priori aerodynamic coefficients are refined through experimental flight data. After

performing a stability analysis of the aircraft dynamic modes in XFLR5, we choose to apply 3-2-

1-1 square-waves to separately excite the longitudinal and lateral dynamics of the system. This

class of inputs has traditionally been used in airplane identification [95]. The unit pulse length

is set such that the power density is concentrated around the particular natural frequency of

the fast longitudinal mode or the lateral dutch roll mode, as proposed in [95, 91]. Large input

amplitudes are favourable for a high signal-to-noise ratio and information-rich trajectories.

It is important to note, however, that input design based on the eigenfrequency analysis is a

heuristic method and must be adapted and validated during flight experiments as it can lead

to insufficient excitations or violation of the flight envelop.

As common in control-oriented applications, the aerodynamic coefficients are assumed to

be constant which is only true in a limited range of aerodynamic angles and airspeeds. It is,

therefore, undesirable to steer the aircraft to large angles of attack and side slip angles.

To use the longitudinal and lateral motion separation assumption, for every experiment the

aircraft is brought to quasi-steady level flight condition: angular rates (p, q,r ), velocities (v, w)

and roll angle are close to zero and the aircraft flies with a constant airspeed. Some randomness

is, however, desired increasing the information content [95]. During longitudinal experiments,

when the elevator excites the longitudinal dynamics, the lateral motion (roll and yaw rates) are

84



5.3. Nonlinear Multi-experiment Identification via Dynamic Optimisation

stabilised by ancillary controllers. All identification manoeuvres are flown without propulsion

to avoid vibration and parasitic forces and moments and we perform as many redundant

experiments as possible to minimize the effect of disturbances, e.g. turbulence.

As state and control signals are updated at different rates, they are interpolated with splines and

resampled at desired time instants during optimisation. Before optimisation, all identification

experiments of the same kind are standardised to start North-headed from the same position.

This allows for convenient comparison and avoids resampling issues with periodic state

components, such as quaternion. Optionally, data is smoothed if noisy.

Figures 5.3 and 5.4 show data from three exemplary longitudinal and lateral identification

experiments, respectively. To simulate transient response of actuators the 3-2-1-1 inputs are

filtered by a second-order linear filter.

5.3 Nonlinear Multi-experiment Identification via Dynamic Optimi-

sation

Lagrange polynomial interpolation is utilised to obtain an approximation of the continu-

ous measurements ymeas(·) and control u(·) trajectories. We then formulate the following

continuous-time optimal parameter estimation problem for K experiments of length t f :

min
x(k)(·),θ

J (x(k)(·),θ) =
K−1∑
k=0

(∫ t f

0

∥∥∥y(k)
meas(τ)−h(x(k)(τ))

∥∥∥2

W
dτ +

∥∥∥θ(k)
∥∥∥2

Q∆wi nd

)
subject to x(k)(0) = x(k)

meas(0)

ẋ(k)(·) = f(x(k)(·),u(k)(·), θ̃
(k)

)

x ≤ x(k)(·) ≤ x

θ̃ ≤ θ̃(k) ≤ θ̃,

(5.3)

Where h(x(·)) is the output mapping and quaternions are transformed to Euler angles, roll

ϕ and yaw ψ, to obtain lateral attitude errors. The matrix W weights the outputs differently

according to the type of identification experiment: higher weights are assigned for u, w , q ,

z, qy in longitudinal experiments, and for v, p,r,ϕ,ψ in lateral. In addition, all weights are

normalised by typical maximum magnitudes of the respective output variable.

The full multi-experiment parameter vector consists of the aerodynamic parameters θaer o

and an experiment-specific part θ(k)
∆wi nd that parametrises unmeasured short-term wind

85



Chapter 5. Identification of an AWE Kite

measurement error:

θ =


θaer o

θ(0)
∆wi nd

...

θ(K−1)
∆wi nd

 , θ̃
(k)

:=
(

θaer o

θ(k)
∆wi nd

)

Given that one 3-2-1-1 experiment is of a few seconds in length, we assume the short-term

wind deviation can be modeled as a constant offset vector ∆vW from the long-term mean vW ,

i.e., θ(k)
∆wi nd

:=∆v(k)
W and therefore, Q∆wi nd is used to regularise the disturbance estimate.

The aerodynamic parameter vector is initialised with an initial guess and bounded to posi-

tive multiples of its initial values, such that sign switching is not allowed. The wind offsets

are bounded to ± (2,2,1)T m/s. Therefore, the parameter bounds (θ̃, θ̃) are identical for all

experiments.

For numerical simplification and to compare tendencies in the estimates, we divide the

available identification experiments into groups of six. For each group, we run a multi-

experiment parameter estimation and compare the estimates between groups.

Longitudinal experiments show almost perfect lateral stabilization but lateral experiments

usually provoke some pitch dynamics. Therefore, longitudinal parameter estimation is per-

formed first, and the subsequent lateral identification already uses the identified longitudinal

parameters.

It can be observed that the estimation problem with the full set of longitudinal and lateral

parameters is over-parametrised and does not have a unique optimal solution. For instance,

the Oswald efficiency e and the pitch moment coefficient show strong co-linearity, and the

optimiser drives one value to an upper or lower bound while compensating with the other

value. We, therefore, employ some engineering knowledge as described in the following section

to reduce the degrees of freedom in the optimization problem and fix some parameters to

their a-priori values.

Drag and lift polars

As the nonlinear parameter identification tends to provide ambiguous results, it is desirable

to determine and fix as many parameters as possible beforehand to decrease the degrees of

freedom of the optimization problem. One approach is to evaluate characteristic curves, or

polars. By plotting the lift and drag curves (see Figure 5.5) using accelerometer measurements

and angle of attack estimates [95], conclusions about the data quality can be formed. The

noisy nature of the data has two sources. First, the aircraft is not in steady flight and nonzero

pitch rates introduce additional lift. Second, the angle of attack used to compute the lift and

drag coefficients (CL ,CD ) is an estimate and thus introduces uncertainty. Initial experiments

86



5.3. Nonlinear Multi-experiment Identification via Dynamic Optimisation

with angle of attack sensors suggest that measurements would narrow the data point envelope

considerably. We find that polynomials fitted with the least squares method characterize the

noisy data acceptably and obtain data-based coefficients for CD0, e, CL0 and CLa that can be

fixed in the following identification.

Experimental Results

In the following, we present one complete identification procedure. The coefficients CD0,

e, CL0 and CLa that have been identified as described above are considered part of the a-

priori parameter set ’xflr-graph’. We use ≈ 80% of 81 available longitudinal identification

experiments for identification which yields 10 groups of 6 experiments. For each experiment

group, we perform a multi-experiment nonlinear parameter estimation, where the remaining

optimizable parameters are Cm0, Cmα, CLq , Cmq , and Cmδe . The lift contribution from the

elevator CLδe is neglected. Figure 5.6 shows the estimates for the 10 experiment groups. We

observe a considerable variance in the estimation as well as different estimation branches

which indicates that there are several local minima. The estimated trajectory is portrayed in

Figure 5.7 and demonstrates the satisfactory quality of the parameter estimates. We choose

to determine the final estimates as the median of the identification groups. The updated

parameter set is called "xflr-graph-P" ("Pitch" experiment).

In the next step, we identify the lateral dynamics using the "xflr-graph-P" parameter set.

Having in general small contribution, the side force coefficients CY(·) have been set to their

a-priori values. The resulting estimates are depicted in Figure 5.8, and a low-error validation

experiment is shown in Figure 5.9. Note that with a longer experiment duration, compared to

the longitudinal experiments, fitting gets more difficult because the contribution of distur-

bances becomes stronger. While the lateral linear and angular velocities generally fit well, the

attitude angles roll and yaw tend to have increasing errors along the experiment time due to

integration of small errors in the velocities. In the longitudinal dynamics, we generally see

errors. The experiments reveal how continuous, small disturbances from the atmosphere add

up and bring uncertainty into the trajectory within seconds if no significant input is given. We

call the final parameter set "xflr-graph-P-YR" ("Yaw-Roll" experiment), as listed in Table 5.6.

For validation, we simulate both the a-priori XFLR model and the best identified model ’xflr-

graph-P-YR’ with manual inputs that have a duration of multiple seconds. Figure 5.10 shows

the two trajectories along with the flight experiment data. While the angular velocities usually

fit well across different validation experiments, the linear velocities often show more errors.

Accordingly, attitude and position integrate the velocity errors, together with unmeasured

disturbances. The quantitative assessment of the model predictive quality is performed using

87



Chapter 5. Identification of an AWE Kite

Table 5.6 – Complete parameter set.

(a) Geometric val-
ues from XFLR5.

b 1.8m
c 0.185m
Λ 10.016
S 0.323m2

(b) Aerodynamic coefficients of the longitudinal dynamics after complete iden-
tification.

e 0.47
CD0 0.025

CL0 0.78
CLα 5.3

Cm0 −0.060
Cmα −0.659

CLδe 0
Cmδe −0.615

(c) Aerodynamic coefficients of the lateral dynamics after complete identification.

CY β −0.307
Clβ −0.071
Cnβ 0.053

CY p −0.130
Cl p −0.293
Cnp −0.061

CY r 0.231
Cl r 0.176
Cnr −0.066

CY δr 0.203
Clδr 0
Cnδr −0.057

Clδa −0.121
Cnδa 0

the Theil Inequality Coefficient (TIC) which is defined by the following formula:

T IC =
√

1
N

∑N
i=1(y(τi )−h(x(τi ),u(τi ),θ))2√

1
N

∑N
i=1 y2(τi )+

√
1
N

∑N
i=1 h(x(τi ),u(τi ),θ))2

(5.4)

where N is a number of test points sampled from validation trajectories. TIC provides a

normalised and dimensionless metric of predictive quality of a mathematical model where

T IC = 0 corresponds to a perfect model fit and T IC = 1 indicates that the measured data

cannot be explained by the model. Values of T IC ≤ 0.25 are considered good for rigid-wing

aircraft models [91]. Figure 5.11 compares TIC values for the a-priori model based on the CFD

simulations and the estimated from flight experiments. It can be observed that the quality

of the model was significantly improved after the identification, especially for the angular

velocities (p, q , r ), the vertical component of the linear velocity (w) as well as for the pitch

and roll angle (ϕ, ψ).

5.4 Summary

This chapter presents a novel model-based parameter estimation methodology for the identi-

fication of fixed-wing aircraft. Initial estimates of aerodynamic coefficients are obtained CFD

simulations and refined through an extensive experimental flight campaign. In our approach,

MBPE is combined with random perturbation of the 3-2-1-1 control sequences across multiple

88



5.4. Summary

experiments, which are optimised simultaneously using the polyMPC toolbox. Without access

to high precision wind speed measurements on-board, the long-term wind disturbances are

additionally estimated for each flight experiment. The proposed methodology proved its effi-

ciency on validation flights in different wind conditions and allowed significant improvement

of the predictive quality of the aircraft aerodynamic model.

89



Chapter 5. Identification of an AWE Kite

0 0.2 0.4 0.6 0.8 1 1.2 1.4

sec

10

12

14

16

u
 (

m
/s

)

Longitudinal experiment

0 0.2 0.4 0.6 0.8 1 1.2 1.4

sec

-2

-1

0

w
 (

m
/s

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

sec

-40

-20

0

 (
d

e
g

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

sec

-50

0

50

p
 (

d
e

g
/s

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time sec

-10

0

10

e
 (

d
e

lt
a

)

Figure 5.3 – Three example longitudinal identification experiments. Amplitude and pulse
duration are randomised to increase the information from multiple experiments.

90



5.4. Summary

0 0.5 1 1.5 2 2.5 3 3.5 4

sec

-5

0

5

v
 (

m
/s

)

Lateral experiment

0 0.5 1 1.5 2 2.5 3 3.5 4

sec

-40

-20

0

 (
d

e
g

)

0 0.5 1 1.5 2 2.5 3 3.5 4

sec

-60

-40

-20

0

 (
d

e
g

)

0 0.5 1 1.5 2 2.5 3 3.5 4

sec

-100

0

100

p
 (

d
e

g
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4

sec

-100

-50

0

50

r 
(d

e
g

/s
)

0 0.5 1 1.5 2 2.5 3 3.5 4

sec

-10

0

10

a
 (

d
e

g
)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time sec

-10

0

10

r (
d

e
g

)

Figure 5.4 – Three example lateral identification experiments. Amplitude and pulse duration
are randomised to increase the information from multiple experiments.

91



Chapter 5. Identification of an AWE Kite

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C
D

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
C

L

C
D0

 = 0.025,   C
L,C

D0

 = 0,   e
oswald

 = 0.35311

data

manual

-15 -10 -5 0 5 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
L

C
L0

 = 0.78,   C
L

 = 5.3

data

manual

Figure 5.5 – Approximated lift and drag polars. We fit a second-order polynomial CD (CL) =
CD0 +C 2

L/(πeΛ) for the drag polar (left) and a first-order polynomial CL(α) =CL0 +CLαα for
the lift polar (right).

92



5.4. Summary

0 1 2 3

-0.08

-0.06

-0.04

-0.02

0
Cm0

-0.0598
-0.0647

0 1 2 3

0

0.5

1

1.5

2

2.5

3
10

-4 Sensitivity

1

2

3

4

5

6

7

8

9

10

0 1 2 3

-0.8

-0.6

-0.4

-0.2

0
Cma

-0.659

-0.725

0 1 2 3

0

0.5

1

1.5

2

2.5

3
10

-5

1

2

3

4

5

6

7

8

9

10

0 1 2 3

0

2

4

6

8

10

12

CLq

4.28

1.11

0 1 2 3

0

0.1

0.2

0.3

0.4

1

2

3

4

5

6

7

8

9

10

0 1 2 3

-15

-10

-5

0
Cmq

-14
-12.8

0 1 2 3

0

0.2

0.4

0.6

0.8

1
10

-6

1

2

3

4

5

6

7

8

9

10

0 1 2 3

-0.8

-0.6

-0.4

-0.2

0
Cmde

-0.615 -0.604

0 1 2 3

0

0.5

1

1.5
10

-5

1

2

3

4

5

6

7

8

9

10

Iteration Iteration

Figure 5.6 – Results of longitudinal nonlinear parameter estimation over three consecutive
iterations. Each line represents an identification group of 6 experiments that have been
processed together. Larger symbol size represents better fit in terms of the cost. The overall
estimates are determined by the median.

93



Chapter 5. Identification of an AWE Kite

Figure 5.7 – State trajectory fit from longitudinal nonlinear parameter estimation. Note that lat-
eral errors (v , p, q , ϕ, ψ, y(=East)) are only lightly weighted in longitudinal identification, and
their magnitude is small compared to the longitudinal states (u, w , q , θ, x(=North), z(=Down)).
The elevator input δe induces the longitudinal excitation signal filtered by simulated actuator
dynamics, while the lateral inputs δa and δr stabilize the lateral dynamics.

94



5.4. Summary

0 1 2 3

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
CYb

-0.307 -0.307

0 1 2 3

-0.1

-0.08

-0.06

-0.04

-0.02

0
Clb

-0.0962

-0.0795

0 1 2 3

0

0.02

0.04

0.06

0.08

Cnb

0.0862

0.0535

0 1 2 3

-0.5

-0.4

-0.3

-0.2

-0.1

0
Clp

-0.542

-0.296

0 1 2 3

-0.06

-0.04

-0.02

0
Cnp

-0.0581
-0.0625

0 1 2 3

Iteration

0

0.05

0.1

0.15

0.2

0.25

CYr

0.231 0.231

(a)

0 1 2 3

0

0.05

0.1

0.15

Clr

0.119

0.181

0 1 2 3

-0.08

-0.06

-0.04

-0.02

0
Cnr

-0.0679

-0.0774

0 1 2 3

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
Clda

-0.317

-0.123

0 1 2 3

0

0.05

0.1

0.15

0.2

CYdr

0.203 0.203

0 1 2 3

0

0.002

0.004

0.006

0.008

0.01

0.012

Cldr

0.0115

0

0 1 2 3

Iteration

-0.08

-0.06

-0.04

-0.02

0
Cndr

-0.0747

-0.0661

(b)

Figure 5.8 – Results of lateral nonlinear parameter estimation over 3 (warm-started) iterations.
Each line represents an identification group of 10 experiments that have been processed
together. Larger symbol size represents better fit in terms of smaller cost. For two experiment
groups, the overall estimates are determined by the better fit.

95



Chapter 5. Identification of an AWE Kite

Figure 5.9 – State trajectory fit from lateral nonlinear parameter estimation (best example).
Lateral states are about 5 times higher weighted than longitudinal states. The lateral excitation
signal is induced by consecutive inputs in rudder and aileron.

96



5.4. Summary

Figure 5.10 – Validation with manual input sequence. All three control surfaces are deflected
during the experiment. The best identified model clearly outperforms the a-priori XFLR5
model. Prediction is particularly good for the angular velocities (p, q , r ) as well as for the pitch
and roll angle (ϕ, ψ).

97



Chapter 5. Identification of an AWE Kite

u v w p q r North East Down
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T
IC

xflr

grPYR

Figure 5.11 – Theil Inequality Coefficient values for 10 validation flight experiments with
random pilot input. Orange and yellow boxes denote the 75th percentile of the TIC values
for the a-priori (XFLR5) and identified models correspondingly. The dashed vertical lines
show extreme low and high TIC values for both models. The best identified model clearly
outperforms the a-priori XFLR5 model. Prediction quality is significantly improved for the
angular velocities (p, q , r ), the vertical component of the linear velocity (w) as well as for the
pitch and roll angle (ϕ, ψ).

98



Chapter 6

Predictive Path Following Control

In this section, we consider the problem of optimising the flight trajectory given a geometric

representation of a desired path. The goal of the optimisation algorithm is to find a trajectory

that steers the kite onto this path while respecting dynamic, actuation and flight envelope

constraints. This approach is more flexible than in [82] since it does not require a precomputed

optimal trajectory but only a geometric curve and possibly a speed profile. Compared to [76],

the projection onto the path is done automatically by the optimisation algorithm. Thanks

to the look-ahead capabilities, the controller can detect high curvature segments earlier and

adjust the trajectory accordingly.

For the predictive controller design, we adopt the optimisation-based path following method-

ology from [96, 97]. Consider the system output y ∈ Rny , y = h(x), and a reference path to

follow p :R→Rny parametrised by a path parameter θ ∈R. The goal then is to find the control

signal u(·) that steers the system to this path. That is, to some sequence θ(t ), t ∈ [t0, t f ] that

corresponds to a sequence of points on the path p(θ(t)), we seek for a u(t) to minimize the

distance between the path and the system:

u?(t ) = argmin
u(t )

∫ t f

t0

‖p(θ(t ))−h(x(t ))‖d t (6.1)

A standard approach for finding such an optimal sequence θ(t ) is to assign dynamics to the

parameter with a pseudo-input v(t ):

θ̇(t ) = fθ(θ(t ), v(t )) (6.2)

In the particular implementation here the choice of fθ(θ(t), v(t)) is a second-order linear

system: [96]

99



Chapter 6. Predictive Path Following Control

ż =
[

0 1

0 0

]
z+

[
0

1

]
ν= Az+Bv (6.3)

where z consists of the path parameter and its derivative

z =
[
θ

θ̇

]
(6.4)

The path following problem then becomes:

min
u(·),v(·),x(·),z(·)

Φ (x(tf),z(tf))+
∫ tf

t0

L (x(τ),z(τ),u(τ))dτ.

s.t. ∀t ∈ [
t0, t f

]
: ẋ(t ) = f(x(t ),u(t ))

ż(t ) = Az(t )+Bv(t )

gl ≤ g (x(t ),z(t ),u(t )) ≤ gu

u(t ) ∈U , v(t ) ∈ V

x(t0) = x0

(6.5)

Where x,u, f are the state, control vectors and kite dynamic as introduced in Section 4.1.

The associated Lagrange term penalises the deviation from the path, input signal, reference

velocity deviations and large aerodynamic angles.

L[x(t ),z(t ),u(t )] = Lpath +Linput +Laero (6.6)

Path tracking cost The path tracking portion of the cost is designed to address objective (6.1):

Lpath(x,z,u) = ‖h(x(t ))−p(θ(t ))‖2
Q +‖θ̇(t )− θ̇ref(θ(t ))‖2

W (6.7)

Aerodynamic cost This term promotes piloting within the desired aerodynamic flight enve-

lope, i.e., keeping the sideslip angle β small

Laer o(x,u) =
[
β

]T
Waer o

[
β

]
Control cost This term is designed to improve the energy efficiency of the controller by

minimizing the deflection of the control surfaces from the neutral position and amount of

throttle. Above all, the throttle usage determines the flight duration, significantly draining the

battery. Additionally, a penalty on the control signal derivative is included to avoid oscillatory

solutions.

L(u,p) = uT Wuu+ u̇T Wδuu̇

100



6.1. Hierarchical Control Scheme

Flight envelope constraints In a moving atmosphere, it is the apparent velocity rather than

the geodetic velocity that is crucial for the aerodynamic forces. It is, therefore, desirable to

limit the minimum airspeed to a value where the aircraft does not stall. In addition, the angle

of attack α and sideslip angle β shall not exceed certain limits for which the airplane is not

designed for. The mentioned quantities can be computed using Equations (4.11) and posed

as nonlinear constraints:

Va ≤Va ≤Va

α≤α≤α
β≤β≤β

Attitude Constraints Quaternions are not very intuitive for representation of attitude con-

straints, thus, we use Euler angles instead:

ϕ≤ϕ≤ϕ
θ ≤ θ ≤ θ

here ϕ and θ are the roll and pitch angles, respectively. We further apply constraints on the

change of the control signal:

uδ ≤ u̇ ≤ uδ

The bounds for the control surfaces are symmetrical but the throttle bounds may be asymmet-

ric, to take into account that the real motor runs up slower than it can be cut off:

uδ =
[

FT hr,0,δmax , δe,δmax , δr,δmax , δa,δmax

]T

uδ =
[

FT hr,0,δmi n , −δe,δmax , −δr,δmax , −δa,δmax

]T

6.1 Hierarchical Control Scheme

The continuous optimal control (8.37) is discretised and solved using the PolyMPC toolbox.

Even though, our implementation is on average 5 times faster than the solution presented in

[82] with a similar setup, i.e. ≈ 40ms average solve time, this would not be sufficient for real-

time embedded flight control applications. Typically, computations on our Offboard computer

run 5-10 times slower than on a desktop. And since embedded Linux is used on the prototype,

additional delay may be introduced due to the unsteady performance of the operating system

scheduler which can change the priority of the process. To address computational delays, a

hierarchical control scheme was developed.

101



Chapter 6. Predictive Path Following Control

PolyMPC implements the pseudospectral collocation method, and therefore, allows for effi-

cient sampling of the optimal control and state trajectories at any given time t using Lagrange

interpolation:

x(t ) =
N∑

k=0
xkϕk (t ), u(t ) =

N∑
k=0

ukϕk (t ) (6.8)

where xk = x(tk ) and uk = u(tk ) are the state and controls trajectories evaluated at the so-

called collocation nodes tk , and ϕk is a Lagrange polynomial of order k. We leverage this

representation to resample the solution of (8.37) at a faster rate in a low-level stabilization

loop. In this scenario, the NMPC algorithm operates in the guidance mode providing optimal

trajectory and feed-forward control signals.

The hierarchical controller is implemented as two separate asynchronous processes, or nodes.

In the following, the word "publishing" refers to broadcasting data over the network. The

PolyMPC Control node repeatedly solves the OCP (8.37) and publishes the optimal trajectory,

in the form of expansion coefficients (6.8). At a high constant rate, the PolyMPC Resampler

node resamples and publishes these reference trajectories.

In order to account for external disturbances and model mismatch, we use a high-rate feedback

control loop that stabilises the aircraft around the most recently computed optimal trajectories.

The steering input from the PolyMPC Control node is used as a feed-forward component:

ucmd = kF F ·uMPC +Υ(
x̃r e f − x̃

)
, (6.9)

where ucmd is the control command applied to the aircraft, uMPC is the feed-forward control

command, Υ(·) is a low-level feedback controller (in our case, PID or LQR), and (̃·) is the

selection operator. In this work, the angular rates are stabilised. As was mentioned earlier, the

highly nonlinear and nonconvex nature of the problem (8.37) can pose significant challenges

for the nonlinear solver, which might not converge in assigned time or can get stuck in a local

minima. To mitigate the risks and increase the reliability of the system a supervising layer is

added. Whether a new optimal trajectory is accepted by the watchdog depends on the status of

the nonlinear solver and a solution quality heuristic. As the heuristic, the path tracking portion

cost is used and the critical value is estimated prior to the flight tests based on simulation

studies. Apart from the trajectory quality the watchdog tracks the period of time since the last

optimal solution was accepted because the open-loop solution will inevitably diverge from

the actual aircraft state after some time. If the solution provided by PolyMPC Control does not

satisfy the quality criteria or the solution has not been available for a certain amount of time,

the watchdog switches to a simpler backup controller similar to the one presented in [77] that

102



6.1. Hierarchical Control Scheme

Offboard Control
Flight Control Mode: MPC (Circle)

Plant
Real or simulated

Position, velocity, attitude, rates, … Control

ROS Melodic

PolyMPC Controller PolyMPC Resampler

Offboard/Companion Computer Odroid XU4 running Ubuntu MATE 18.04

Compensate delay

Initial state

Solve OCP

NMPFC <PolyMPC>

IPOPT Solver

MPC Config

Path parameters
Wind estimate
Delay estimate

MPC State

Capture time,
Vel, Rates
Pos., Quaternion

Valid?
(Cost < threshold)

Control Trajectory

State Trajectory

Path, Wind

State Ref

−
PID/
LQR

Polynomial interpolation

Control

PolyMPC ResamplerPolyMPC Controller

Delay

AWECIRCLE
Capture

Not-avail
timeout

Apply

Capture
−

ApplyDelay =

Figure 6.1 – Integration of PolyMPC Control into the Offboard Control architecture with
trajectory stabilization extension.

would safely steer the aircraft in the neighbourhood of the desired path. The complete control

system structure is depicted in Figure 6.1.

Through the whole control system pipeline, the Offboard Control software tracks the times-

tamps of each event. This allows for exact estimation of delays caused by the NMPC node

which can be used for accurate delay compensation as will be explained next.

Delay compensation

Delay compensation is a feature that is particularly relevant when the computation of the

control command takes a considerable amount of time, which is usually the case when running

optimization algorithms on embedded platforms. Basically, the problem is that when the

optimal control command is applied to the plant, its state has already changed considerably

in the meanwhile, compared to the state that was used to start the computation.

Figure 6.2 summarises delays that occur in our flight control system as well as the delay

compensation mechanism. We use two distinguished time instants:

tc Capture time. This is the time when the true flight state is first captured by a sensor.

The resulting state measurement is then xc = x(tc ).

103



Chapter 6. Predictive Path Following Control

ta Apply time. This is the time when a control command that was computed based on

the state measurement xc at capture time tc is applied to the plant.

Since Offboard Control logs the timestamps of received and published data it can exactly

measure the time delay between receiving a state estimate and publishing the control signal.

This will be called "measured delay" in Figure 6.2. The additional delay between the apply

time and the consequent control surface deflection can be determined experimentally. It is

called "external" delay as it accounts for delays in data transmission over local network, serial

ports and in actuators.

We can use this information for compensation. After filtering the measured delay using a

moving average filter and optionally adding the external delay component, Offboard Control

publishes the "expected delay". PolyMPC Control receives a state x(i )
c with its capture time

t (i )
c , along with the expected delay dexpected , and can therefore compute the apply time of the

trajectory which is about to be calculated:

t (i )
a = t (i )

c +dexpected

Based on the flight model presented in Section 4.1, the state is propagated in the future where

it is expected to be applied. Simulation (i ) therefore runs from t (i )
c to t (i )

a with the initial

state xsi m(t (i )
c ) = x(i )

c . The question of what control inputs to use for this simulation remains.

PolyMPC Control keeps a limited number of valid previous trajectories in a buffer, together

with their apply times. Simulating along these control trajectories over the expected delay

reconstructs what will have happened to the plant until the solution of the present OCP will

be applied. If no valid trajectory is available the last input is applied with the zero-order hold

assumption.

Figure 6.2 shows three example cases:

1. Iteration (i ) is about solving OCP(i ). The state is considered constant until t (i )
a .

2. Iteration (i +1) is about solving OCP(i+1). The state is considered constant until t (i )
a ,

where traj(t(i)
a ) begins, which was computed in iteration (i ).

3. Iteration (i +2) is about solving OCP(i+2). The simulation time is covered by traj(t(i)
a )

from beginning. From t (i+1)
a on, the next newer traj(t(i+1)

a ) is used.

6.2 Experimental Results

Flight Experiments

104



6.3. Summary

First MPC tests are performed without tether and with small declination angles of a reference

circle. The prediction horizon was set to 5s More declined circles often bring the aircraft to

its flight performance limits. It considerably loses energy while flying down the circle at high

speed and drag. Even at full thrust, the aircraft can potentially stall on the way to the topmost

point.

Figure 6.4 shows the flight trajectory of the supervised flight. During the experiments, there

was a wind speed of up to ≈ 3 m/s. The computation time to solve the OCP ranged from ≈ 0.3s

to 1.2s which brings necessity to the previously described resampling strategy with angular

rates stabilisation was used. The stabilization gains and the model parameter set used for MPC

are tuned in flight. The NMPC algorithm follows the circle path with visible oscillations. These

oscillations are caused by high computation times on the embedded hardware which means

that the aircraft often tracks open-loop trajectories. Currently, the prototype does not have

sensors for aerodynamic angles measurements which creates another source of modelling

mismatch.

Figure 6.5 shows typical control command signals computed by the MPC controller. They

usually contain visible discontinuities between the MPC iterations because the real flight state

deviates from the optimal predicted trajectory during solving of the OCP.

6.3 Summary

In this thesis, we present a complete testing platform of an AWE system which allows for

affordable validation of novel flight control algorithms. We further present identification

methodology for aerodynamic parameters which enables significant improvement of the

quality of the aerodynamic models. Finally, an optimisation based path following controller is

implemented and tested on an embedded platform.

Simulations with the nominal model show that the NMPC performance deteriorate when

adding constant wind that is unknown to the controller. During the outdoor flight test, the

PX4 state estimation includes the horizontal wind vector. This estimation is based on the level

flight assumption, i.e., the measured airspeed lies in the horizontal plane, which is rarely true

in an AWE flight. The future work will be aimed at developing airspeed angles sensors for the

prototype which should improve the performance of the controller.

It is expected that the model parameters cannot be identified with high accuracy. In addition,

the flight model itself contains considerable simplifications. For instance, the aerodynamic

parameters are assumed to be constant with respect to the airspeed and angle-of-attack. At

sufficiently high computation rates, however, the sensitivity of the closed-loop performance

105



Chapter 6. Predictive Path Following Control

to these inaccuracies is reduced. However, for the Odroid computer, the computation times

average at ≈ 450ms which renders it difficult for reliable real-time control. For the future work,

approximate schemes such as real-time iteration will be implemented and tested.

106



6.3. Summary

P
ol

yM
P

C
 

C
on

tr
ol

le
r

15
 H

z 
/ 

0.
06

7 
s

P
ol

yM
P

C
R

es
am

pl
er

 10
0 

H
z 

/ 
0.

01
 s

O
ffb

oa
rd

 
C

on
tr

ol
10

0 
H

z 
/ 

0.
01

 s

P
la

nt
co

nt
in

uo
us

 t
im

e

x s
im

(t
a
(i)
)

sim
(i)
: x

si
m
(t

c(i)
) 

=
 x

c(i)

t c
(i) x c
(i)

t a
(i)

O
C

P(i)

tr
aj

(t
a
(i)
)

x s
im

(t
a
(i)
)

x s
im

(t
a
(i+

1)
)

sim
(i+

1)
: x

si
m
(t

c(i+
1)
) 

=
 x

c(i+
1)

t c
(i+

1)

x c
(i+

1)

t a
(i+

1)

O
C

P(i+
1)

tr
aj

(t
a
(i+

1)
)

x s
im

(t
a
(i+

1)
)

x s
im

(t
a
(i+

2)
)

sim
(i+

2)
: x

si
m
(t

c(i+
2)
) 

=
 x

c(i+
2)

t c
(i+

2)

x c
(i+

2)

t a
(i+

2)

O
C

P(i+
2)

tr
aj

(t
a
(i+

2)
)

x s
im

(t
a
(i+

2)
)

co
ns

t./
lin

.

m
ea

su
re

d 
de

la
y

ex
pe

ct
ed

 d
ela

y 
=

 m
ea

su
re

d 
+

 e
xt

er
na

l d
el

ay

R
O

S 
m

es
sa

ge
R

O
S 

ca
llb

ac
k

O
C

P 
so

lv
in

g 
pr

oc
es

s
O

C
P 

in
iti

al
 s

ta
te

Si
m

ul
at

io
n

Figure 6.2 – Delay compensation over several trajectories.

107



Chapter 6. Predictive Path Following Control

Figure 6.3 – Stabilised NMPFC controller on AWE circle path in simulation. The simulator
model and the model used for predictive control differ from each other to simulate the model
uncertainty in the real world.

108



6.3. Summary

-110

D
o
w

n

-120

50

Local position

60

40

20

North

0

East

0

-20

-40
-50 -60

orig

start

Figure 6.4 – Supervised MPC circle flight (untethered).

109



Chapter 6. Predictive Path Following Control

271 272 273 274 275 276 277 278 279

sec

-1

-0.5

0

0.5

1

A
il
e
ro
n

Actuator controls

271 272 273 274 275 276 277 278 279

sec

-1

-0.5

0

0.5

1

E
le
v
a
to
r

271 272 273 274 275 276 277 278 279

sec

-1

-0.5

0

0.5

1

R
u
d
d
e
r

271 272 273 274 275 276 277 278 279

Time sec

0

0.5

1

T
h
ro
tt
le

Figure 6.5 – Stabilised MPC control command signals for aileron, elevator, rudder, and thrust.
The control commands follow the PX4 convention here, i.e., they are on the range [−1,1] and
[0,1]. The characteristic discontinuities in the signals result from long computation times to
solve the OCP while the real trajectory deviates from the last optimal solution.

110



Part IIIPredictive Control for Autonomous

Racing

111





Chapter 7

Predictive Path Following Control for

Racing

This chapter presents a new methodology for the real-time dynamic trajectory optimisation

in the context of the Roborace competition. In this competition, academic and industrial

research teams compete in the development of advanced navigation, trajectory planning

and motion control algorithms for fully autonomous electrically powered race cars. During

the race, the vehicles similar to the one portrayed in Figure 7.1 drive at high speeds up to

200 [km/h] and accelerations up to 1.3 [g], which in turn requires high sampling rates and

robustness of the motion control system. This motivates our work on the real-time trajectory

planning considering dynamical limitations of the race car operating at the limits of handling.

The developed hierarchical algorithm generates a local trajectory based on typically coarse

motion plans while respecting the nonlinear dynamics of the car, tire saturation constraints,

delays in the steering and braking mechanisms and power limits of the electric motors.

Our approach reduces the overly aggressive behaviour of the low level tracking systems, often

observed in practice, when strong deviations from the desired path occur, which might lead to

increased tire slip and activation of the emergency stabilisation systems. This can be explained

by the highly nonlinear dynamics of the car at higher speeds and slip angles that are hard to

capture with the existing linear controllers that typically assume small deviations from the

reference trajectory. The proposed adaptive algorithm relies on the optimal path following

control formulation to refine the speed and acceleration profiles, and the driving line geometry

in a defined corridor around the local obstacle-free path given the car dynamic limits and

current tire and road conditions.

In order to satisfy the strict requirements on the sampling rates for racing applications, we

implemented the trajectory optimisation framework in C++ using PolyMPC [98], a highly

113



Chapter 7. Predictive Path Following Control for Racing

efficient toolbox for numerical optimisation and optimal control. This allowed us to run the

trajectory updates every 10 [ms] on a Speedgoat computer (Intel Dual Core-i7, 2.5 GHz) and

20 [ms] on a NVidia Xavier, equipped with a 64-bit Quad-Core ARM-57 microprocessor.

Albeit developed for racing applications at extreme speeds, the proposed method can poten-

tially also improve safety and robustness for general advanced driving assistant systems.

The rest of the chapter is organised as follows: In Section 7.1, we provide a brief description

of the mathematical model of the car used for optimisation and a short background on

the numerical methods for optimal control problems. Then, Section 7.2 presents the key

components of the proposed framework: transformation from discrete to continuous path

parametrization, path localisation, and formulation of the continuous-time path-following

optimal control problem. Finally, in Section 7.4, we demonstrate the hardware-in-the-loop

(HIL) performance of the algorithm in racing scenarios using the industrial-grade driving

simulator [99].

Figure 7.1 – DevBot 2.0

State of the art

Driving an autonomous vehicle along a racing track involves solving two sub-problems:

finding the global, typically time-optimal, or local collision-free trajectory and designing

a feedback control algorithm to steer the car along this trajectory. There exist a number of

approaches for global racing trajectory and path generation. In [100] the authors iteratively

perturb evenly spaced points along the center line of the road to obtain the minimal curvature

line by solving a convex QP. The minimum-curvature lines provide a good approximation to the

114



minimum-time driving trajectories, since in the steady state the maximum cornering speed

is inversely proportional to the square-root of the curvature. A similar idea with curvature

minimisation is proposed in [101] where a sequence of connected straight lines, clothoids and

constant-radius arcs are used to parametrize the racing line. A different approach is suggested

by [102], where the authors formulate and efficiently solve a minimum-time mixed-integer

nonlinear optimal control problem for a car with a gear box. Unlike the first two approaches,

this methodology allows for the computation of the complete trajectory of the vehicle. In [103],

researchers extend the idea to spatially varying friction coefficients. The corresponding highly

nonlinear optimal control problem is discretized using the direct collocation method and

solved offline with CasADi [21] and Ipopt [15].

Control methods for high-speed racing line tracking usually differ in their assumptions about

the vehicle dynamics. The simplest control techniques tend to separate longitudinal and

lateral motions of the car. Often, the vehicle is assumed to have neutral steering for lateral

control as it allows one to directly relate steering angle and the curvature of the track [104]. For

longitudinal control, the accelerated point-mass assumption can be utilised for speed control

of the race car [100]. Alternatively, the concept of input-output linearisation can be used

to enforce exact trajectory tracking. In [105], the authors consider the center of percussion

(CoP) of the front axis as output for I/O linearisation of the simplified bicycle model. They

further provide yaw motion stability analysis when tracking straight lines and steady turns.

[106] and [107] apply CoP I/O linearisation for lateral motion control of a racing car in an

experimental setup. Another approach for lateral motion control is investigated in [108]. The

researchers combine linear quadratic regulator (LQR) design for the linearised single-track

vehicle model with torque-vectoring. They demonstrate in simulation that this combination

improves robustness against the parametric mismatch.

Recent advances in numerical methodologies and software for nonlinear optimal control

paved the way for real-time applications of advanced model-based control algorithms in the

area of autonomous driving at the limits of handling. These algorithms have an advantage of

handling lateral and longitudinal motions simultaneously. One of the first real-time capable

implementations of model predictive algorithms for car motion control was presented in [109].

The authors utilise a nonlinear single-track vehicle model with a Pacejka tire model for the

optimal path following problem. The code-generation toolkit ACADO [24] manages to solve

the problem using a real-time iteration (RTI) [66] mode with a sampling rate under 50 [ms].

The vehicle speed used in simulation was limited to 40 [km/h] only, however. Liniger [110]

introduces the contouring approach using a similar model with application to small scale

race cars. A sufficient sampling rate of 50 [Hz] was achieved by linearisation of the nonlinear

optimisation problem and solving a single QP with FORCES [111] at each sampling instant.

The recent report from the AMZ racing team [112] extends the contouring optimal control

115



Chapter 7. Predictive Path Following Control for Racing

formulation with combined tire-force constraints and solves the corresponding nonlinear

OCP to optimality with the commercial toolbox FORCES PRO [113] under 65 [ms], and 50 [ms]

on average.

When it comes to racing applications, the requirements on computational latency and robust-

ness become much stricter. Due to the extreme driving speeds, the required hard real-time

sampling rate of the motion control system is 250 [Hz] on the embedded hardware which

renders infeasible the application of nonlinear MPC algorithms for direct actuator control.

Constraints on the computation times also limit the prediction horizon of the algorithm, which

may lead to crashes if the speed profile is not available globally and potential obstacles make

the problem even harder. Several hybrid approaches have been suggested in the literature

to cope with these issues. Novi and Liniger [114] propose a hierarchical scheme where a

simple point-mass model with track and acceleration constraints is used to compute the

path and speed profile over a longer horizon of 250 [m]. An NMPC algorithm with a seven

degree-of-freedom (DoF) and much shorter horizon is then used to track the line. Herrmann

et al [115] use a graph-based local path planning strategy [116] with an adaptive refinement of

the speed-profile. First, a precomputed state-lattice graph is traversed to find a local obstacle-

free path, the initial speed profile is estimated from the curvature of the path assuming no slip

and then, the speed-profile is refined with a dynamic optimisation-based algorithm that takes

into consideration the variable friction coefficient, air drag and engine power limits.

Thanks to the pseudospectral OCP transcription, carefully tuned numerical solvers and soft-

ware implementation our NMPC algorithm allows sampling times up to an order of magnitude

smaller than previously proposed solutions from the literature. Additionally, the continuously

parametrised state and control trajectories can be efficiently resampled by a low-level tracking

controller if a higher sampling rate is required. Hierarchical structure makes the control

system more robust to possible computational delays and convergence issues of the nonlinear

solver.

7.1 Modelling of a Racing Car

We start by presenting the ordinary differential equations (ODE) that govern the dynamics

of the racing vehicle. A bicycle, or single track vehicle model is chosen here as a trade-off

between point-mass models and high fidelity simulation models. In the following we neglect

the roll, pitch and heave motions, which is a reasonable simplification for racing cars which

typically have a low center of gravity and stiff suspension systems. We further assume the

absence of the longitudinal slip as it is significantly lower in practice than the lateral slip.

The longitudinal slip also makes the ODEs very stiff and therefore, significantly harder for

116



7.1. Modelling of a Racing Car

optimisation. A planar diagram of the bicycle model is shown in Figure 7.2.

Fy,r(αr)

Fx,r

Fx,f

δ

yB

xB

v

β

ψ

ϕ

ψ̇

xI

yI

αr

COG

lr

lf

Fy,f(αf)

αf

Figure 7.2 – Bicycle model

We first introduce the car dynamics in the natural Cartesian reference frame:

v̇x = ψ̇vy + 1

M
(Fx, f cosδ−Fy, f sinδ+Fx,r −Fdr ag ),

v̇y = ψ̇vx + 1

M
(Fx, f sinδ+Fy, f cosδ+Fy,r ), (7.1)

ω̇= 1

Iz
(−Lr Fy,r +L f (Fy, f cosδ+Fx, f sinδ)),

Ẋ = vx cosψ− vy sinψ,

Ẏ = vx sinψ+ vy cosψ,

ψ̇=ω,

The first three equations are the dynamics of the system in the car body frame with x pointing

forward along the main symmetry axis. The position and orientation in the fixed Inertial

reference frame (IRF) is given by X , Y and ϕ.

This bicycle model takes as input the steering angle δ and the longitudinal forces Fx f and Fxr

on the front and rear axles are summarized in

η̇= f (η,u)

η= [vx , vy ,ω, X ,Y ,ψ]

u = [δ,Fx f ,Fxr ]

(7.2)

117



Chapter 7. Predictive Path Following Control for Racing

There exist several approaches for tire force modelling that differ in numerical complexity. For

autonomous driving at moderate speeds, one could use the linear tire model with a constant

cornering stiffness. However, for high lateral accelerations in racing scenarios this model

becomes inadequate as can be seen in Figure 7.3. It is important to represent the lateral

dynamics with a high degree of accuracy, and therefore, the Pacejka magic formula is used for

tire models [117]:

Fy f = Fz D f sin
(
C f tan−1

(
B f α f −E f (B f α f − tan−1(B f α f ))

))
,

Fyr = Fz Dr sin
(
Cr tan−1 (

Brαr −Er (Brαr − tan−1(Brαr ))
))

.
(7.3)

Front and rear lateral forces each have their own set of magic formula coefficients B ,C ,D,E

and are functions of the slip angles α, which can be modeled as in Equation 7.4.

α f =− tan−1
( vy + ψ̇L f

vx

)
+δ,

αr =− tan−1
( vy − ψ̇Lr

vx

)
.

(7.4)

Figure 7.3 – Exemplary curve of the friction coefficient µ(α) of Pacejka’s magic formula.

The navigation information is naturally provided in the Cartesian frame. For the control

system, however, it is beneficial to represent the car position in the reference frame linked to

the track; the so called Curvilinear reference frame shown in Figure 7.4, which is also local

and attached to the car body frame. This transformation allows a natural formulation of the

path-following problem, since each point on the path is characterised by a position in the

Cartesian frame Xc ,Yc , global heading ψc and a curvature κc . It is further possible to move

from a time to a spatial characterization of the optimal trajectories. Finally, track limits can be

added as varying box constraints to the formulation in an efficient manner.

From the position and heading in the Cartesian frame, we calculate the distance w and the

118



7.1. Modelling of a Racing Car

Figure 7.4 – Transformation to the Curvilinear frame

heading deviation θ from the center line, with w > 0 to the left of the center line and θ > 0 a

counter-clockwise rotation with respect to the tangent to the centerline ψc .

w = (Y −Yc )cos(ψc )− (X −Xc )sin(ψc ),

X = Xc −w sin(ψc ),

Y = Yc +w cos(ψc ),

θ =ψ−ψc .

(7.5)

An additional state, s, is added to track the evolution along the racing line. The resulting

kinematic equations in the Curvilinear frame are:

ṡ = 1

1−κc w
(vx cosθ− vy si nθ),

ẇ = vx sinθ+ vy cosθ,

θ̇ = ψ̇− ψ̇c = ψ̇−κc ṡ.

(7.6)

Finally, the race car is affected by actuation delays that can cause instabilities. In order to

compensate for these actuation delays and the computation latency of the NMPC algorithm,

we introduce a new variable δd that denotes the delayed steering input. We approximate the

transfer function between δd and δ with a first order low-pass filter with a time constant Td .

δd (s)

δ(s)
= 1

1+ sTd
−→ δ̇d (t ) = δ(t )−δd (t )

Td
(7.7)

119



Chapter 7. Predictive Path Following Control for Racing

State Description Unit

vx Local longitudinal velocity m
s

vy Local lateral velocity m
s

ψ̇ Local yaw rate r ad
s

s Distance along center line m
w Deviation from center line m
θ Heading deviation from center line rad

X,Y Global Cartesian coordinates m
ψ Yaw angle (heading) rad

Xc ,Yc Global center line coordinates m
ψc Global center line orientation rad

Table 7.1 – Bicycle model states in curvilinear frame

The list of curvilinear states is presented in Table 7.1, where the velocities and the yaw rate are

expressed in terms of the Curvilinear (local) frame and not the global one.

7.2 Trajectory Optimization Framework

In the proposed framework, NMPC acts as a high-level controller that refines the trajectories

generated by the coarse discrete planner. It will then produce optimized trajectories and

feed-forward control actions that respect the vehicle dynamics, actuator limits and spatial

constraints.

Furthermore, the NMPC controller is fit into the existing motion control system with a discrete

local planner and a low-level LQR tracking controller [108]. A key benefit of fast trajectory

optimization in this application is its ability to handle extreme scenarios like over-steering at

high speeds.

The complete trajectory optimization framework is represented in Figure 7.5. Based on the

current navigation information, a coarse planner that will be briefly discussed in the next

section provides chunks of points representing the obstacle-free local path. In order to use

these discrete chunks in our continuous NMPC path formulation, we first fit a cubic spline

through an online path parametrization, then compute the car state in the Curvilinear frame

and solve a path-following OCP. The NMPC controller computes both the state and feed-

forward control trajectories, which are then passed to the LQR controller running at a higher

rate.

Coarse Planner and Online Path Parametrization

In this project, a previously developed racing line planner similar to [100] was used. The

120



7.2. Trajectory Optimization Framework

Figure 7.5 – Trajectory optimisation framework

algorithm is initialised with evenly spaced points along the center line of the road and it then

searches for an obstacle-free minimal curvature path by perturbing the position of these

points in the direction orthogonal to the original path. In order to estimate the speed and

acceleration profiles, the method considers a point mass moving along the path. The maximal

speed in the turns is defined by the lateral acceleration limits, assuming steady-state motion

and the longitudinal acceleration can then be found by maximising the overall speed along

the path. Since the method employs a very simplified model of the vehicle it cannot guarantee

that the generated path can be always tracked well by the race car. In the proposed scheme, in

Figure 7.5, the NMPC layer receives this coarse path and solves a continuous-time optimal

path following problem to compute the racing trajectory respecting the car dynamics and

actuator constraints.

In the current implementation, the output of the coarse planner is a set of equally spaced

points, which we will call a chunk. Each point is characterised by its position, curvature and

reference speed. Such a discrete representation is not very efficient for the continuous path

following NMPC, and we therefore choose to interpolate the chunk with custom cubic splines

that can be efficiently automatically differentiated. In the following, we detail the developed

interpolation procedure.

Let y denote one of the path parameters to be approximated by a cubic spline. We divide

every data chunk into Ns equidistant segments and fit a cubic spline y(s) parametrised by

121



Chapter 7. Predictive Path Following Control for Racing

polynomial coefficients for each segment {Pi }.

min
{Pi }

smax∑
s=0

(y(s)− ỹ(s))2,

subject to: y(s = 0) = ỹ(0),

d y

d s

∣∣∣∣
s=0

= ˙̃y(0),

d y

d s

∣∣∣∣
s=smax

= ˙̃y(smax ),

where smax is the maximum spline length and ỹ(s) is data evaluated at the grid points and the

derivative constraints enforce continuity of the two neighbouring segments.

We formulate a QP in the form of 1
2 (DT P − Ỹ )2 where P is the coefficient vector of all segments

in one spline, and D is the data vector containing all the grid points.

Di =


1 . . . 1

s0,Ni . . . smax,Ni

s2
0,Ni

. . . s2
max,Ni

s3
0,Ni

. . . s3
max,Ni

 ∈R4×Nc,i

D =


D1

. . .

DNs

 (7.8)

where Nc,i is the number of points in one segment of the chunk such that
∑Ns

i=1 Nc,i = Nc , with

Nc the total number of points received in one chunk. In this application 50, Ỹ ∈RNc×1 is the

vector of true data and P ∈R4×1 is the coefficients vector to optimize over.

This least squares formulation has the same minimum as the equivalent QP problem:

min
X

1

2
X T H X +hT X ,

subject to: AX = b.
(7.9)

where H ,h, A are the Hessian, gradient and constraint Jacobian of the problem and b is the

122



7.2. Trajectory Optimization Framework

constant vector of data input.

A =


A1

. . .

ANs



ANi =


1 s0,Ni s2

0,Ni
s3

0,Ni

0 1 2s0,Ni 3s2
0,Ni

0 1 2smax,Ni 3s2
max,Ni


H = DDT ,

h =−DỸ

b = [ỹ1(0), ˙̃y0(0), ˙̃y1(smax,1), . . . , ỹNs (0), ˙̃yNs (0), ˙̃yNs (smax,Ns )]T

A and H do not depend on the data but only on the data grid (in terms of s). Therefore for

problems where the chunks are given in the same discrete grid samples, the two matrices can

be computed only once, with h being computed for every new data set.

We approximate with splines the center line (Xc , Yc ), desired heading (tangent) (ψc ) and

curvature (κc ). A cubic spline is also fit for the reference velocity profile (vx,r e f ). Discrete

chunks are received in grids spanning over 25m, and we fit a spline with two segments of 12.5m

each, sufficient for our formulation. The resulting equality-constrained dense QP problem

can be efficiently solved in microseconds on modern hardware.

A clear advantage arising from this continuous spline formulation is instead of carrying 100

or more data points for every road parameter, we are able to transmit 4Ns spline coefficients;

enough to describe the parameter in question on the spline made out of Ns segments. In this

application, as a result of this compression we reduce the amount of data transmitted between

blocks by almost 90%.

Frame Transformation and Path Localisation

As mentioned earlier, navigation is represented in the Cartesian frame. Therefore, in order to

convert to the curvilinear frame using (7.5), we must first find the projection of the car onto

the racing line.

This projection problem is sketched in Figure 7.6 and written as a minimization problem of

123



Chapter 7. Predictive Path Following Control for Racing

Figure 7.6 – Localization on a path

the form:

min
s

‖p −pc (s)‖2

subject to : 0 ≤ s ≤ smax

(7.10)

Where p = [x, y]T is the current positon of the car and pc (s) = [xc (s), yc (s)] is a parametric

path, which in our project is the cubic splines as defined in the previous subsection.

Once an optimal solution of (7.10), s?, is found, κc and vx,r e f can be computed and the state

vector converted to the Curvilinear frame. This NLP is solved using the PolyMPC toolbox using

the dense SQP solver.

Path Following NMPC

At the core of the OCP are the differential equations defined in (7.1) and (7.6). For smooth

driving, hard rate constraints on the steering and acceleration rates are required. For this,

we augment the OCP system states with the steering control, delayed steering and the two

longitudinal forces such that:

d

d t
δ= δ̇= v1

d

d t
δd = δ(t )−δd (t )

Td

d

d t
Fx, f = Ḟx, f = v2

d

d t
Fx,r = Ḟx,r = v3

(7.11)

The resulting augmented state vector is denoted with ξ and control with v . To take into

124



7.2. Trajectory Optimization Framework

consideration the delay, the bicycle model dynamics are evaluated with δd as indicated in

ξ= [vx , vy ,ω, s, w,θ,δ,δd ,Fx, f ,Fx,r ]

v = [δ̇, Ḟx, f , Ḟx,r ]

ξ̇= F (ξ, v) = F
(

f (η, {δd ,Fx, f ,Fx,r }), v
) (7.12)

The continuous-time nonlinear path following formulation is presented in Equation 7.13. The

constraint on the deviation from the center line w is such that at every instant w is bounded

between the right and left boundaries of the lane. The slip angles are constrained to avoid tire

saturation.

min
ξ(.),v(.)

∫ t f

t0

l (ξ(t ), v(t ), p)d t +V f (ξ(t f ))

subject to: ξ0 = ξ(0)

ξ̇(t ) = F (ξ(t ), v(t ), p) t ∈ [t0, ..., t f ]

0 ≤ w(t )−wr (t )

wl (t )−wr (t )
≤ 1

θmi n ≤ θ(ti ) ≤ θmax

vx,mi n ≤ vx (t ) ≤ vx,max

vy,mi n ≤ vy (t ) ≤ vy,max

ψ̇mi n ≤ ψ̇(t ) ≤ ψ̇max

0 ≤ s(t )

αmi n ≤α(t ) ≤αmax

δmi n ≤ δ(t ),δd (t ) ≤ δmax

Fx,mi n ≤ Fx, f (t ),Fx,r (t ) ≤ Fx,max

δ̇mi n ≤ ˙δ(t ) ≤ δ̇max

jerkx,min ≤ Ḟx, f (t ), Ḟx,r (t ) ≤ jerkx,max

(7.13)

We do not assume equal front and rear longitudinal forces so that the control allocation

strategies can be added at a later stage. Nevertheless, large differences are penalised in the

cost function. The stage cost l (x,u) is defined as:

l (ξ(t ), v(t ), p) = (ξ∗(t )−ξ∗r e f (t ))T Q(ξ∗(t )−ξ∗r e f (t ))+ v(t )T Rv(t )+σ(Fx,r −Fx, f )2 (7.14)

with Q ∈R10×10 º 0,R ∈R3×3 Â 0, σ ∈R≥ 0

Tracking is equivalent to keeping w and θ close to zero. The coarse planner provides a velocity

125



Chapter 7. Predictive Path Following Control for Racing

profile which helps to keep the optimisation horizon shorter. Another benefit of the track-

centered formulation is the position constraint which can be simplified box constraints on the

variables, which makes tracking the local racing line within a given corridor simpler.

7.3 Implementation

This section presents some implementation details of the framework modules shown in

Figure 7.5. We discuss the different deployment strategies and numerical heuristics that were

used to speed-up and robustify the computations.

NVidia Xavier

Since the complete motion control system developed by the Arrival Racing team is not yet

available on the NVidia Xavier platform, we apply the spline fitting algorithm (7.9) to the

complete pre-recorded racing line and the racing line is not, therefore, updated during the

simulation. Finally, communication with the simulator is implemented with ROS [60].

Simulink and Hardware Deployment

Currently, the deployment of the entire motion control system to the target racing platform

Speedgoat is performed by means of the Matlab Code Generation Toolbox. This requires that

each component of the framework has to be implemented as independent Simulink blocks.

The absence of code-generated components and header-only nature of the library allows for

simple code integration.

We use S-function builder blocks to call our custom C++ algorithms in Simulink by creating

blocks for the several class objects and implementing the different methods inside the S-

function builder. The resulting S-function can be connected to any other Simulink block by

specifying the required input and output sizes and widths of the signals. Finally, compilation of

the S-function builder blocks requires only specification of the path to C++ codes without the

need to link to any library or binary. At run-time, every block based on our custom toolbox and

codes operates as a standalone executable, which was compiled via Simulink using Microsoft

Visual Studio 17.

The simulation study is carried out with a high-fidelity numerical simulator of the vehicle dy-

namics and low-level trajectory tracking LQR controller. Due to the hard real-time constraints,

the trajectory optimisation block is set to execute at a lower frequency than the rest of the

motion control system. Using the rate transition blocks in Simulink, input to the trajectory

optimization is down-sampled and later the output is re-sampled at a higher frequency by the

LQR. Although running at a slower rate, the trajectory optimization still operates at almost

126



7.4. Results

70Hz.

Heuristics: Fault detection

The optimisation framework is designed for racing applications at speeds greater than 100

[km/h]. Because of safety concerns, we introduce a trajectory quality measure that is passed

down to the low-level tracking level. The quality measure takes into consideration constraint

violation, the primal and dual residuals and the computation time. If a fault, or insufficient

quality, in the solution is detected, then the LQR controller can switch to the previously

computed optimal trajectory or to the coarse path if necessary.

Heuristics: OCP scaling

In order to improve the numerical conditioning of the OCP (7.13) and reduce computation

times we introduce a scaling of the state and control variables as recommended in [118]: ξ∗ =
Σξξ and v∗ =Σv v such that all components of ξ∗ and v∗ are of the same order of magnitude.

The system dynamics then become:

ξ∗(t ) =Σ−1
ξ F (Σ−1

ξ ξ∗(t ),Σ−1
v v(t ), p) (7.15)

Matrices Σξ, Σv , Σ−1
ξ

and Σ−1
v are diagonal in our implementation and do not change at

run-time. Note, that all the bounds and weights in (7.13) must also be scaled accordingly.

Heuristics: Variable horizon length

Unlike [109], we do not completely eliminate the time from the OCP. Therefore, we need to

ensure that the optimisation algorithm does not attempt the access the path beyond the 25

meters limit, because the data describing the raceline only goes this far. For this, the prediction

horizon is conservatively scaled using the maximum allowed speed on the interval:

t f =
smax

max(vx,r e f (s))
(7.16)

7.4 Results

In this section, we present a simulation study with a high-fidelity racing environment on two

circuits that feature in the Roborace competition: Bedford (England) and Croix-en-Ternois

(France). First, we investigate the computational performance and real-time capability of

the NMPC algorithm on three different hardware platforms: Desktop PC, Speedgoat real-time

target machine and a low-power NVidia Xavier embedded computer. Next, we demonstrate

127



Chapter 7. Predictive Path Following Control for Racing

that the proposed hierarchical approach yields better lap time and robustness to unknown

road conditions than the existing LQR controller.

Processor-in-the-Loop Benchmark

The presented framework modules are implemented as header-only C++ libraries with a strong

adherence to the C++11 coding standard, which has significantly simplified the portability of

the software across various hardware platforms. For Processor-in-the-loop (PiL) testing, the

code was deployed to a Speedgoat along with the existing motion control system through the

Simulink Code Generation toolbox. Our numerical studies were performed on the Croix-en-

Ternois racing track shown in the Figure 7.7 with a high-fidelity simulation tool [99] that runs

on a desktop computer.

For the path following problem (7.13), the control and state trajectories are interpolated by a

two-segment spline, where in each segment a Lagrange polynomial of order five is collocated

on a Chebyshev-Gauss-Lobatto grid. The Hessian of the Lagrangian for the corresponding

NLP is computed exactly for the first SQP iteration and updated using a sparsity preserving

block-BFGS update step. The maximum number of iterations is set to five and the primal and

dual residuals are set to 10−5.

A summary of the tested computational platforms and computational benchmark is shown in

Table 7.2.

Platform PC Speedgoat NVidia Xavier

System Windows QNX 7.1 Linux

Compiler Visual C++ qcc gcc

OCP (7.13) 6.21/7.9 10.07/11.37 15.43/18.21

Spline fit. (7.9) 0.021/0.027 0.032/0.037 0.053/0.061

Path loc. (7.10) 0.012/0.16 0.019/0.023 0.044/0.051

Table 7.2 – PiL Simulation benchmark: average and maximum computation times in millisec-
onds [avg/max] on various platforms. Our implementation is faster than other implemen-
tations in the literature [114, 110, 112] for a similar OCP complexity and prediction horizon
length. It also shows good scalability on embedded platforms thanks to efficient memory
management and vectorisation.

Racing Performance

As shown in the previous subsection, the NMPC algorithm can successfully track a racing

line and satisfies hard real-time constraints on the automotive hardware. As a next step, we

compare the racing performance of the developed hierarchical control scheme to an existing

128



7.4. Results

and carefully tuned LQR controller. In the provided racing scenario the look-ahead range is

limited to 25 [m], NMPC is set to run at 16 [ms] and the optimal control and state trajectories

are tracked by the LQR at a constant rate of 250 [Hz]. An initial race line is provided by a coarse

planner discussed in Section 7.2 which uses a quasi-static car model and therefore, tends to

overestimate feasible speed. NMPC is allowed to change the speed profile and geometry of

the initial line within a corridor dynamically provided by the planner.

Figure 7.7 illustrates the path driven by the NMPC algorithm using the high fidelity simulator.

In Figure 7.8 one can observe the difference in the driving performance of NMPC and LQR

algorithms. We notice that the LQR steering is smoother as our predictive controller chooses

to steer more aggressively to initiate a turn and then performs a sawing motion past the

apex. Interestingly enough, such a steering strategy is often used by professional pilots to

counteract the oversteering which occurs when the vehicle decelerates and consequently the

load increases on the front axle. This load transfer from the rear to the front axle during a

cornering manoeuvre reduces the grip of the rear tires and leads to higher lateral slip. By rapidly

steering in the opposite direction NMPC controller avoids oversteering and allows passing the

turns up to 3 [km/h] faster than LQR. As a consequence, our controller shows 0.6 [s] better

lap time than the existing professionally tuned controller which is a substantial difference

for racing, especially in simulation. Additional high-order oscillations are introduced by the

low-level tracking controller as follows from Figure 7.9c. Deviations from the initial race are

shown in Figures 7.9a,7.9b. These deviations are higher for the NMPC algorithm than for the

existing LQR controller as it is allowed to change the line geometry in order to better reflect the

dynamic constraints of the car. It is evident from Figure 7.7, however, that the modified line

does not violate racing circuit boundaries. Finally, during this one-lap race, NMPC algorithm

always returned valid solutions, i.e. the backup controller was never active.

Figure 7.7 – Closed-loop trajectory on the Croix-en-Ternois circuit.

Robustness

129



Chapter 7. Predictive Path Following Control for Racing

(a) Speed profiles of the NMPC and LQR controllers. The NMPC algorithm drives the car slightly faster during
cornering manoeuvres by exploiting lateral slip predictions

(b) Steering profiles of the NMPC and LQR controllers. NMPC counteracts oversteering by reducing steering angle
at the apex where braking effort is maximal.

(c) Driving torque applied by the NMPC and LQR controllers.

Figure 7.8 – Comparison of the speed profiles and control strategies of the NMPC and LQR
controllers along the Croix-en-Ternois circuit.

130



7.4. Results

(a) Deviation from the initial race line. Even though, the deviation from the initial line reaches 0.76 meters the car
remains within the track bounds.

(b) Deviation from the intended heading, i.e. tangent direction of the initial race line.

(c) Feedforward and feedback portions of the steering signal. Solid black line is the feedforward signal provided by
NMPC, solid grey line is feedback portion coming from the low-level LQR controller tracking the updated race line
at a higher rate. The LQR controller is provided by the Roborace engineers as a black box.

Figure 7.9 – NMPC tracking of the initial path and the stabilising LQR controller

131



Chapter 7. Predictive Path Following Control for Racing

In the next experiment, we explore the robustness of our control scheme to uncertain envi-

ronment parameters. The racing scenario is set at the Bedford circuit that features a chicane,

highlighted in Figure 7.10 that requires fast switching of the steering angle at high speed. In

this scenario, the road friction coefficient was reduced by 15% in the simulation environment

which corresponds to a light drizzle in reality. The tuning of NMPC and LQR controllers remain

as in the previous experiment and the racing line and speed profile are optimised for a dry

circuit with a maximum allowed lateral acceleration of 1.1 [g ].

Figure 7.11 demonstrates how the LQR controller fails to pass the chicane and goes off the

track while the NMPC algorithm is able to steer the car very close to the original path. One can

notice that the LQR controller initiates left turn a little later than NMPC which means that it

has to steer more aggressively. However, with less grip on the front axle the clearly understeers

as can be seen in Figure 7.12a and triggers activation of the traction system around 52 [s] that

reduces the steering input and torque demand to improve the grip and lower the slip angles.

Since the NMPC can predict the tire saturation at high slip angles it initiates the turns earlier

and does not use the full range of the steering wheel.

Figure 7.10 – Path driven by the NMPC controller on the Bedford circuit.

132



7.5. Summary

Figure 7.11 – Comparison of the LQR and NMPC controllers driving chicane on a slightly wet
circuit. The dashed yellow line is the original racing path, the solid yellow line is the path
driven by LQR and solid green line is path driven by NMPC. The car driven by LQR understeers
due to aggressive steering at high speed and goes of the track, whereas the NMPC controller
follows the racing path very closely.

7.5 Summary

The presented real-time embedded trajectory optimisation framework for local path refine-

ment demonstrated two key advantages of optimisation-based solutions for autonomous

electric vehicle control at the limits of handling. First, it allows to improve the racing perfor-

mance at the limits of handling over the state of the art controller in simulation. Second, due

to predictive capabilities it has shown to be more robust to the road friction uncertainty and

to reduce the involvement of the low-level car traction control systems during high speed

tracking of the racing lines. Importantly, the pseudospectral collocation OCP transcription

and efficient implementation allowed for very high sampling rates even on automotive grade

embedded platforms. The method is expected to be tested on the real track in the near future.

133



Chapter 7. Predictive Path Following Control for Racing

(a) Lateral slip angles during driving the chicane with
LQR. High steering input causes a high slip angle of the
front wheel and understeering.

(b) Lateral slip angles during driving the chicane with
NMPC.

Figure 7.12 – Comparison of lateral slip angles. The maximum lateral slip of the front wheel is
three times lower for NMPC than for LQR.

134



Chapter 8

Stochastic NMPC for Safe Autonomous

Driving

In optimal control problems, uncertainty can be modelled in different ways: parametric or

structural uncertainty of the plant model, the state measurements being subject to uncertainty,

or unmeasured disturbances entering model equations as noise. In the presence of path

constraints, quantifying and predicting state evolution uncertainty is necessary to allow for a

robust trajectory optimisation and control design. Constraint violation due to uncertainty can

be reduced by keeping sufficient distance from the constraints, or tightening them. On the

other hand, an overly conservative handling of uncertainty leads to poor performance, and

thus better estimation of the state uncertainty leads to an improved compromise. [119] [120]

We propose a computational methodology for reducing the conservatism of stochastic nonlin-

ear optimal control problems with parametric uncertainty. The approach builds on the idea of

approximating stochastic processes governed by nonlinear controlled differential equations

with uncertain parameters using the generalised polynomial chaos expansion and controlling

spectral modes of such expansion with an ancillary feedback controller. Advantages of the

method are illustrated with a safe trajectory optimisation problem relevant for autonomous

driving applications.

In order to handle uncertainties in the system, robust optimal control methodologies have

been developed. The methods can be classified by the way they handle constraints, the

type of uncertainty they address, and the type of uncertainty prediction. Constraints can be

either violated with a probability greater or equal zero, so called chance constraints, or with

probability zero, which implies that the uncertainties or disturbances have to be bounded.

The uncertainty can either be time variant or constant. The prediction can either be open-loop

without consideration of a feedback controller or closed loop.

135



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

Tube-based model predictive control (MPC) schemes handle disturbances by an ancillary

stabilizing feedback controller, and do an open-loop prediction for the nominal model. To

account for the interference of the ancillary controller, constraints are tightened in the open-

loop prediction [121]. This implies that a stabilizing controller and the amount of tightening

have to be appropriately designed. Both tasks are challenging for nonlinear systems and

are subject to current research. Mayne et al [122] suggests a dual-MPC approach to handle

additive time varying disturbances, where both the ancillary and the nominal controller are

model predictive controllers. Singh [123] develops a contraction-based framework to design

the ancillary controller and to define the constraint tightening for input- and disturbance-

affine nonlinear systems. Nubert [124] develops a Lyapunov-based constraint tightening

methodology for nonlinear systems assuming the ancillary controller is known and applies

the theory to a feedback-linearized robotic manipulator.

While classic tube-based MPC assumes the disturbances to be bounded and guarantees

constraint satisfaction for all disturbance realizations, stochastic optimal control introduces

chance constraints, which means that constraint satisfaction is only guaranteed up to a

certain probability [120]. The authors in [125] combines stochastic MPC and the so called

scenario-based approach to address highway driving scenarios, where the manoeuvres of the

surrounding vehicles are uncertain. Simple linear point mass models facilitate computation.

The scenario approach randomly samples time varying uncertainty and solves the OCP with-

out considering feedback. The constraints are formulated as chance constraints and, as is

common for scenario-based approaches, the confidence of their satisfaction is influenced by

the number of samples [126].

In order to avoid sampling for the uncertainty propagation, approaches based on so called

generalized polynomial chaos (gPC) have been developed [120]. They transform a stochastic

ordinary differential equation (ODE) into a deterministic ODE by approximating the ran-

dom processes by polynomials with time varying coefficients; for a detailed explanation see

Section 8.1. Still, the probability density function of the uncertain states needs to be recon-

structed to enforce chance constraints, which is done in [127] by efficient sampling. Since

the prediction does not consider feedback in the open-loop, trajectories of realizations of

the uncertainties might diverge quickly, which leads to a growing variance and thus conser-

vatism [121]. Authors in [128] use Gaussian processes and a race car model linearized around

the reference trajectory to run stochastic nonlinear MPC with open-loop predictions. To

reduce conservatism, chance constraints are only considered for the short initial part of the

optimization horizon.

A key challenge for general nonlinear systems is that there are no closed form solutions for the

uncertainty propagation, which is crucial to reduce conservatism. Generalized polynomial

chaos (gPC) can serve as a method to treat time invariant uncertainties, e.g., in the parameters

136



or the initial conditions of initial value problems. [120] An example of linear stochastic MPC

with gPC is given in [129], where the authors use the Galerkin projection method and a

distributionally robust probabilistic inequality to steer a stable linear system. An advantage of

the Galerkin projection for linear ODEs is that expansion coefficients, or the so called Galerkin

tensor, can be computed offline. Fagiano [130] proposes a regularised stochastic collocation-

based MPC method for stabilisation of nonlinear systems. In their approach, however, the

constraints are satisfied only in expectation.

We combine the idea of stochastic and tube-based MPC algorithms: a nominal optimal control

formulation is augmented by a stochastic system stabilized around the nominal system by

an ancillary feedback controller, whose parameters can also be subject to optimization. The

applied control action is then the sum of the nominal MPC and the ancillary controller. In order

to ensure satisfaction of input constraints, the control authority of the ancillary controller is

restricted by a saturation function. The path constraints are formulated as chance constraints

using a spectral representation of uncertainties and distributionally robust probabilistic

inequalities, which tighten the constraints of the nominal MPC in an adaptive fashion taking

the predicted uncertainty of the stabilized stochastic system into account.

Contributions

In this thesis, we present several contributions to the field of robust trajectory planning and

control for autonomous vehicles.

First, time invariant uncertainties are considered using a stochastic nonlinear OCP with

gPC. Thereafter, the computational toolbox PolyMPC is extended to transform stochastic

OCPs with chance constraints into deterministic OCPs using gPC expansions. Using open-

loop predictions, especially for unstable systems, in the optimisation algorithm leads to

conservatism, which is demonstrated for an example problem of generating a vehicle trajectory

respecting road boundaries. To overcome this conservatism, a robust stochastic optimal

control formulation is proposed. The formulation combines the idea of a tube-based approach

with the capability of gPC based stochastic optimal control: an ancillary feedback controller

stabilizes the uncertain system around the nominal optimal trajectory, and gPC predicts the

stochastic evolution of the stabilized system. Chance constraints on the uncertain system

implicitly tighten the constraints of the nominal OCP, which circumvents the problem of

constraint tightening in the construction of classical tube-based MPC for nonlinear systems.

Simulation studies show the comparison of stochastic nonlinear trajectory optimisation, and

the proposed formulation of robust stochastic nonlinear optimal control using the Dubin’s car

model with uncertain parameters.

Additionally, a numerical study demonstrates the properties of the polynomial chaos approach

137



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

applied to the sensitivity analysis of a nonlinear model of a single track dynamic model

of a car with the Pacejka tire model. The focus is on the influence of the uncertain tire

model parameters on the lateral dynamics of the car which is the most relevant for control

applications.

8.1 Polynomial Chaos Expansion

In this work, we are concerned with parametric uncertainties in the plant model which lead to

the following general stochastic optimal control problem:

min
u(t )

Φ (x(tf,ξ))+
∫ tf

t0

L (x(τ,ξ),u(τ))dτ.

s.t. ẋ(t ,ξ) = f(x(t ,ξ),u(t ),ξ)

Pr[gi (x(t ,ξ),u(t )) ≤ 0] ≤ εi ∀i = 0. . .ng

x(t0,ξ) = x0

(8.1)

where ξ ∈Rnξ is a random variable defined on Ξwith probability density function ρ(ξ); t ∈R
denotes time, x(τ,ξ) ∈Rnx is a stochastic process describing the evolution of the system state,

u ∈Rnu is a vector of control inputs. The function Φ :Rnx →R is the terminal cost function, or

the Mayer term, and L : Rnx ×Rnu → R is called the running cost, or the Lagrange term. In a

stochastic formulation, Lagrange and Mayer terms typically depend on the expected value

E[x(t ,ξ)] and the variance Var[x(t ,ξ)]. The uncertain system dynamics is given by the function

f : Rnx ×Rnu ×Rnξ → Rnx , gi : Rnx ×Rnu → R are the path constraints, and finally, εi are the

probabilities with which i -th constraint should be satisfied. In the following, we briefly explain

how this problem can be efficiently transformed to a numerically tractable OCP that can be

handled by the standard tools.

Generalized polynomial chaos (gPC) approximates random variables using polynomial basis

functionsΨi(ξ) : Ξ→R such that the expansion p̃(ξ) ∈R up to polynomial degree NgPC of the

random variable p(ξ) ∈R is

p(ξ) ≈ p̃(ξ) =
NgPC∑
k=0

pkΨk(ξ). (8.2)

The choice of basis functions is crucial for the quality of the approximation. For a gPC

expansion, the key idea is to use polynomials that are orthogonal with respect to the probability

density function (PDF) ρ(ξ) of the random variable ξ. In the space of square-integrable

138



8.1. Polynomial Chaos Expansion

functions orthogonality is defined as

〈Ψi,Ψj〉L2(ρ) :=
∫
Ξ
ΨiΨjρ(ξ)dξ= γiδij (8.3)

where 〈·, ·〉L2(ρ) denotes the inner product, Ξ is the domain of ξ, δij is the Kronecker delta, and

γi is the normalization constant

γi = 〈Ψi,Ψi〉L2(ρ). (8.4)

Polynomials orthogonal with respect to any PDF ρ(ξ) can be constructed by a three-term

recurrence relation which defines a relation between Ψk+1, Ψk, and Ψk−1 with Ψ0 = 1 and

Ψ−1 = 0 or by using the Gram-Schmidt orthogonalisation procedure [131][132]. Orthogonal

polynomials for some commonly used distributions can be found for example in [133].

The orthogonality property can be used to determine the expansion coefficients pk by the

projection

pk =
1

γk
〈p(ξ),Ψk〉L2(ρ), (8.5)

which results in the truncation error e(ξ) = p(ξ)− p̃(ξ) being orthogonal to the approximation

basis:

〈e(ξ),Ψi〉L2(ρ) = 0, for i = 0, ...,NgPC. (8.6)

It can be shown [131] that the expected value and variance of the random variable p̃(ξ) can be

expressed in terms of approximation coefficients (8.5) as

E[p̃(ξ)] = p0,

Var[p̃(ξ)] =
NgPC∑
k=1

γkp2
k.

(8.7)

In the case of p being a stochastic process p(t ,ξ), performing the same operations leads to the

approximation

p(t ,ξ) ≈ p̃(t ,ξ) =
NgPC∑
k=0

pk(t )Ψk(ξ) (8.8)

with the stochastic modes pk(t ) and time dependent expected value and variance. Additionally,

if p ∈ Rnp , the coefficients are also in Rnp . Var[p] ∈ Rnp then denotes elementwise variance

of p.

Galerkin Projection

139



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

is a numerical procedure that allows one to determine the evolution of the stochastic process

x(t ,ξ) driven by a controlled stochastic ordinary differential equation (SODE):

ẋ(t ,ξ) = f(x(t ,ξ),u(t ),ξ) (8.9)

As before, the process x(t ,ξ) is approximated by a corresponding polynomial basis:

x(t ,ξ) ≈ x̃(t ,ξ) =
NgPC∑
i=0

xi(t )Ψi(ξ) (8.10)

Galerkin projection determines a governing ODE for the stochastic modes xk(t) by a weak

formulation of the stochastic ODE from Equation 8.9 which needs needs to be rewritten in the

residual form

˙̃x(t ,ξ)− f(x̃(t ,ξ),u(t ),ξ) = R
(
˙̃x(t ,ξ), x̃(t ,ξ),u(t ),ξ

)
. (8.11)

In order to eliminate ξ and the residual, the Galerkin approach then demands the projection

of the residual onto the gPC expansion’s basis function Ψj be zero:

〈R(·),Ψj〉L2(ρ) = 0, for j = 0, ...,NgPC. (8.12)

For each j the projection of the derivative part of the residual ˙̃x(t ,ξ) reduces to

〈˙̃x(t ,ξ),Ψj〉L2(ρ) = γjẋj(t ) (8.13)

due to the orthogonality and the separation of t and ξ in the gPC expansion. The right hand

side of the SODE, f(x̃(t ,ξ),u(t ),ξ), is less trivial for general nonlinear systems and the projection

integral

〈f(·),Ψj〉L2(ρ) =
∫
Ξ

f

(
NgPC∑
i=0

xi(t )Ψi(ξ),u(t ),ξ

)
Ψjρ(ξ)dξ (8.14)

needs to be calculated numerically, e.g., by Gauss quadrature with a sufficient number of

integration nodes. By defining the expanded state X as

X =


x0

x1
...

xNgPC

 , (8.15)

where xi are the modes of the spectral expansion defined in (8.10) and the j-th projection of

140



8.2. Distributionally Robust Constraints

the right hand side as

fj = 〈f(·),Ψj〉L2(ρ) = fj(X(t ),u(t )), (8.16)

and the expanded dynamics F by

F =


f0

f1
...

fNgPC

 (8.17)

one can compactly write a deterministic ODE for the stochastic modes or expanded states,

respectively,

Ẋ(t ) = F(X(t ),u(t )). (8.18)

This has the same form as the dynamics of the deterministic OCP and can be treated using

standard numerical integration methods.

8.2 Distributionally Robust Constraints

The transformation of chance constraints into a deterministic formulation is another chal-

lenging step. Evaluating probabilities requires integration of the PDF of the term g(x(t ,ξ),u(t ))

in chance constraints as introduced in (8.1), which becomes elaborate for several reasons.

Assuming that the gPC approximation of x(t ,ξ) is known, determining its PDF is still not

straightforward, especially if x(t ,ξ) is not globally invertible. The same holds for g if it is a

nonlinear function in x. Even if the PDF is known, evaluating joint chance constraints that

arise from multivariate ξ and the resulting multivariate integration becomes computationally

demanding. Popular methods to solve these integrals are Monte Carlo methods which are

based on function evaluations with samples drawn from the underlying distribution [131]. The

scenario approach is another sampling-based method to handle chance constraints. Analytic

approaches on the other hand render chance constraints deterministic by using deterministic

bounds, which ensure constraint satisfaction with higher or equal probability than necessary.

A good overview over several analytic and sampling based methods to handle constraints

can be found in [134]. Despite their conservatism analytic methods are ideal for optimal

control due to their lower calculation costs. If the shape of the constraint PDF is not known

in advance, so called distributionally robust chance constraints can be used. These methods

define probabilistic bounds that are valid for any PDF [120]. One such bound is the Chebyshev

inequality, which only depends on the expected value µ= E[y] and variance σ2 = Var[y] of the

141



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

random variable y : [135]

Pr [|y −µ| > t ] ≤ σ2

t 2 . (8.19)

In other words, it states a bound on the probability of y being in the set y >µ+ t ∪ y <µ− t ,

i.e., the two tails of the domain of y centered around µ. In the chance constraint from (8.1),

the probability of y < 0 needs to be bounded, consequently t has to be set to µ. One can write

Pr [y < 0] ≤ Pr [|y −µ| >µ] ≤ σ2

µ2 ≤ ε (8.20)

such that it is sufficient to demand, under consideration that µ> 0 has to hold to satisfy the

inequality,

µ2 − 1

ε
σ2 ≥ 0. (8.21)

In addition to the conservatism introduced by distributional robustness, the Chebyshev

inequality bounds the probability of y being in one of the two tails of the domain, whereas

only one tail is needed in the chance constraint. Calafiore [136] suggests another inequality

for one tail, which becomes after some simplification

µ−
√

1−ε
ε

σ≥ 0 =⇒ Pr [y < 0] ≤ ε. (8.22)

which gives a better bound for small ε and significantly better bounds for ε closer to 1. To

avoid calculating σ as a square root of the variance and again with µ> 0, one can write

µ2 − 1−ε
ε

σ2 ≥ 0, (8.23)

Both bounds are applicable to any probability distribution where the mean and variance are

defined. The downside of this generality is that the provided bounds usually are not sharp.

An example comparing both bounds for a time slice of a random process will be provided in

the Section 8.5. The expected value and variance required for these bounds can be efficiently

calculated from the gPC expansions as introduced in the previous section. Projection of a

general nonlinear constraint onto the gPC basis results in the expansion coefficients being

nonlinear functions of all state coefficients X and the input u,

g(x(t ,ξ),u(t )) ≈ g̃(x(t ,ξ),u(t )) =
NgPC∑
k=0

gk(X(t ),u(t ))Ψk(ξ). (8.24)

If the constraints are affine in x(t ,ξ), i.e., g(x(t ,ξ),u(t )) has the form a(u(t ))Tx(t ,ξ)+b(u(t )), its

142



8.3. Stochastic Optimal Control with Prestabilising Controller

gPC coefficients are linear combinations of the state coefficients,

glin,k(xk(t ),u(t )) = a(u(t ))Txk(t )+δk0b(u(t )), (8.25)

where the first coefficient and thus the expected value is shifted by b.

Putting expected value and variance of the constraint’s gPC expansion and the Inequality (8.23)

together results in a deterministic nonlinear inequality constraint on the expanded state X

and input u.

Discussion

For unstable systems state trajectories of different uncertainty realizations may diverge quickly,

which leads to a growing state variance, although a feedback controller reacting on the as

unknown disturbances could reduce the variance. Consequently, an open-loop stochastic

solution tends to overestimate the variance and thus becomes conservative.

It is important to note that, similar to the spectral methods for partial differential equations

(PDE), the gPC expansion can suffer from the so called curse of dimensionality, i.e. the

computational complexity grows exponentially with the number of independent random

variables in the SODE. One solution to reduce the computational complexity is to use sparse

grids [131][137]. Related, one of the assumptions necessary for the efficient use of gPC is

a restriction to time invariant uncertainties, as uncertainties that are uncorrelated in time,

e.g., white noise, would lead to an infinite number of random variables. Approaches exist to

incorporate noise at the cost of a higher computational effort [138, 139, 140].

The quality of the gPC expansion depends on the number of basis functions and the regularity

of the states in the random space. If the state distribution differs significantly from the

distribution of the random variable ξ, which might be the case for long prediction horizons,

the quality of the gPC expansion might deteriorate over time. Time dependent gPC therefore

adapts the choice of basis functions over time [141, 142].

8.3 Stochastic Optimal Control with Prestabilising Controller

To overcome the conservatism linked to a rapidly growing variance of stochastic predictions,

a novel stochastic optimal control formulation is proposed. The formulation combines the

idea of a tube-based approach with the capability of gPC to efficiently solve stochastic ODEs:

an ancillary feedback controller stabilizes the uncertain system represented by the spectral

modes of the gPC expansion around the nominal optimal trajectory. Chance constraints on

the uncertain system implicitly tighten the constraints of the nominal OCP, which circumvents

143



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

the problem of constraint tightening in the construction of classical tube-based MPC for

nonlinear systems. As the performance of the ancillary controller is predicted by gPC, failures

are avoided by falling back into the conservative mode of stochastic optimal control. This

means that the chance constraints will still be satisfied even if the ancillary controller fails

to stabilise the system. To the best of the authors knowledge, such approach to the variance

control has not been explored in the literature before.

Algorithm The proposed stochastic OCP considers both the nominal and stochastic system:

the nominal dynamics f̂ :Rnx ×Rnu →Rnx mapping the nominal control û ∈Rnu and nominal

state x̂ ∈Rnx to the nominal state derivatives, the uncertain dynamics f :Rnx ×Rnu ×Rnξ →Rnx

mapping control u ∈ Rnu and state x ∈ Rnx to the state derivatives in dependence of the

uncertainty ξ ∈ Rnξ , the cost J : Rnx ×Rnu → R on nominal states and inputs, and inequality

chance constraints as introduced in (8.1) on state x and input u. An ancillary controller

µ :Rnx ×Rnpc →Rnu parametrized by pc ∈Rnpc limits the deviation of x from the reference x̂ to

stabilize the uncertain system around the nominal trajectory. The predicted control applied

to the uncertain system is consequently

u(t ,ξ;pc(t )) = û(t )+µ(
∆x(t ,ξ);pc(t )

)
, (8.26)

with the uncertain deviation from the reference

∆x(t ,ξ) = x(t ,ξ)− x̂(t ). (8.27)

As the ancillary controller saturates, a lower and upper bound possibly depending on the

controller parameters can be given by

|µ(
∆x(t ,ξ);pc(t )

) | ≤µmax(pc(t )) (8.28)

where µmax controls the level of authority of the ancillary controller. The OCP then becomes

min
u(t ),pc(t )

J [x̂(t ), û(t ),Var[x(t ,ξ)]]

s.t. ˙̂x(t )− f̂(x̂(t ), û(t )) = 0,

x̂(t0) = E[x(t0,ξ)],

ẋ(t ,ξ)− f(x(t ,ξ), û(t )+µ(
∆x(t ,ξ);pc(t )

)
),ξ) = 0,

x(t0,ξ) = x0,

Pr[gi (x(t ,ξ),u(t )) ≤ 0] ≤ εi ∀i = 0. . .ng

umin +µmax(pc(t )) ≤ û(t ) ≤ umax −µmax(pc(t )),

gc(pc(t )) ≤ 0,

(8.29)

144



8.4. Optimal Path Planning

where gi denotes all inequality constraints on states and inputs other than the inputs con-

straint and gc denotes inequality constraints on the ancillary controller parameters.

The proposed methodology can be applied not only for robust trajectory planning for uncer-

tain systems but also in receding horizon fashion for model predictive control. In the MPC

scenario, until the new solution of the OCP (8.29) is available MPC applies the sum of the

nominal and the ancillary controller:

u(t ) = û(t )+µ(
xmeas(t )− x̂(t );pc(t )

)
. (8.30)

Discussion

All parts of the OCP can be treated with the methods presented in the previous sections. In our

work, the stochastic dynamics and the chance constraints are transformed to a standard OCP

formulation by the Galerkin projection method and distributionally robust chance constraint

as outlined in Sections ( 8.1, 8.2). The resulting deterministic OCP can then be transformed

into an optimization problem by pseudospectral collocation using the PolyMPC toolbox.

Special attention should be paid to the structure of the OCP: the ancillary controller and

its parameters pc(t) shape the dynamics of the uncertain system and can thus reduce the

state variance if chosen accordingly. The state variance influences the chance constraint gi

and a smaller variance allows the expected value to be closer to the deterministic inequality

constraints. If the nominal dynamics are chosen to be close to the dynamics of the expected

states of the uncertain system, this leads to less tightened constraints for the nominal states

and a cost reduction.

To avoid the constraints being the only coupling mechanism of the uncertain system and

the nominal systems, and thus the only influence of the controller parameters, a cost on the

state variance can be introduced. In the case of failing to stabilize the uncertain dynamics,

the nominal solution can adapt to prevent the state variance to grow, for instance, by slowing

down the vehicle as will be shown in the simulation studies.

8.4 Optimal Path Planning

Vehicle Modelling

The kinematic bicycle, or Dubin’s car, model has three states [x, y,ψ], where x and y are the

position of the lumped rear wheel and ψ is the heading angle of the vehicle. By using the

steering angle δ and the velocity v as inputs, the states can be controlled and follow the

145



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

dynamics derived by simple kinematic relations
ẋ

ẏ

ψ̇

=


v cos

(
ψ

)
v sin

(
ψ

)
v
l tan(δ)

 (8.31)

with wheelbase l , i.e., the distance between front and rear axis, as the only parameter of the

system. For small angles, the steering angle and curvature of the driven path are proportional

and the resulting relation is the Ackermann steering angle for curvature κ [143]:

δacker = κ · l . (8.32)

The dynamic bicycle is the same as in Section 7.1 .

Path Following

In this section, we consider the problem of optimising a vehicle trajectory given a geometric

representation of the center line of the road and its boundaries. It is common for modern

vision-based road recognition systems to compute the road boundaries as parametrised

curves, for example splines. The goal of the optimisation algorithm is to find a trajectory

within the road that respects dynamic and actuation constraints of the vehicle. To achieve this

we adopt the optimisation-based path following methodology from [96][97].

Consider the system output y ∈ Rny , y = h(x), and a reference path to follow xp : R→ Rny

parametrized by a path parameter θ ∈R. The goal then is to find the control signal u(·) that

steers the system to this path. That is, for some sequence θ(t), t ∈ [t0, t f ] corresponding to

a sequence of points on the path p(θ(t)), one seeks to find a u(t) to minimize the distance

between the path and the system:

u?(t ) = argmin
u(t )

∫ t f

t0

‖xp (θ(t ))−h(x(t ))‖d t (8.33)

A standard approach to pick an optimal sequence θ(t ) is to assign dynamics to the parameter:

θ̇(t ) = fθ(θ(t ), v(t )) (8.34)

In the particular implementation here the choice of fθ(θ(t ), v(t )) is a second order linear sys-

tem which is often used for mechatronic systems as it allows to control speed and acceleration

profiles: [96]

ż =
[

0 1

0 0

]
z+

[
0

1

]
v = Az+B v (8.35)

146



8.4. Optimal Path Planning

where z consists of the path parameter and its derivative

z =
[
θ

θ̇

]
. (8.36)

The path following problem then becomes:

min
u(t ),v(t )

Φ (x(tf),z(tf))+
∫ tf

t0

L (x(τ),z(τ),u(τ))dτ.

s.t. ẋ(t ) = f(x(t ),u(t ))

ż(t ) = Az(t )+Bv(t )

g (x(t ),z(t ),u(t )) ≥ 0

u(t ) ∈U , v(t ) ∈ V

x(t0,ξ) = x0

(8.37)

Where f is the vehicle dynamic equations, U and V are box constraints on the vehicle and

virtual inputs. The associated Lagrange term cost penalises the geometric path deviation, the

input the reference velocity deviations. The Mayer term can also be complemented by a cost

on the reference velocity:

L[x(t ),z(t ),u(t )] = Lpath +Linput +Lvelocity

= ‖h(x(t ))−xp (θ(t ))‖Q +‖u(t )‖R +‖θ̇(t )− θ̇ref(θ(t ))‖W ,

Φ[x(tf)] = ‖h(x(t f ))−xp (θ(t f ))‖Q +‖x(tf)−xref(tf)‖Qf
+‖z(tf)−zref(tf)‖Wf

(8.38)

Road Boundaries

In our implementation, the geometric curves representing the reference path xp(θp) and the

parametric curves describing the right and left boundaries of the road xb,r(θp) and xb,l(θp)

are synchronised. Synchronisation means that the curves are parametrised such that for any

path parameter θ∗p in the domain, the points xb,r(θ∗p ) and xb,l(θ
∗
p ) are the closest possible to

xp(θ∗p ) in the sense of the second norm. The condition of being on the inner side of the road

boundary is replaced by the condition to be on the inner side of its tangent, which reduces to

a simple dot product when synchronised curves are used:

gb,i =
(
xp (θ)−xb,i (θ)

)T (
xcog −xb,i (θ)

)≥ 0, (8.39)

where xcog are the coordinates of the vehicle’s center of gravity (CoG) as depicted in Figure 8.1

and i ∈ {r, l} is the right or left road boundary. In order to account for the vehicle’s width and

orientation, the road boundary constraints are tightened by half the width of the vehicle.

147



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

An advantage of such a constraint formulation is its linearity, which is helpful when computing

the impact of uncertainty: as described in Section 8.2, note that the path parameter θ is not

subject to uncertainty but can be seen as an internal state of the controller. Thus, Equation

(8.39) is linear in the uncertain states and chance constraints can be formulated in a simple

manner.

xp(θp) xb,r(θp)

xb,r(θ)

xp(θ)
xcog

gb,r < 0

Figure 8.1 – Tangential approximation of the right road boundary, so that xcog cannot enter
the red region where gb,r < 0.

Stochastic Cost

A common choice to account for uncertainty in the cost is to consider the expected value and

variance of the state [119] [144]. Lagrange and Mayer terms in (8.38) then become

L[x(t ,ξ),z(t ),u(t )] = ‖h(E[x(t ,ξ)])−xp (θ(t ))‖Q +‖u(t )‖R +‖θ̇(t )− θ̇ref(θ(t ))‖W +qT
VarVar[x(t ,ξ)],

Φ[x(tf,ξ),z(tf)] = ‖h(E[x(t f ,ξ)])−xp (θ(tf))‖Qf
+‖z(tf)−zref(θ(tf))‖Wf .

(8.40)

where Var[·] denotes the diagonal entries of the covariance matrix.

148



8.5. Trajectory Optimisation under Parametric Uncertainties

8.5 Trajectory Optimisation under Parametric Uncertainties

In addition to the time dimension of states and controls, the dimension of the uncertainty has

to be examined for stochastic MPC. The following sections show and interpret results from

a sensitivity analysis of the dynamic bicycle, the solutions of the stochastic OCPs with the

kinematic bicycle, and the effect of an ancillary controller in an OCP of the robust stochastic

OCP scheme.

On Uncertainty Visualisation

This section briefly explains the generation of PDFs and the visualization of the road bound-

aries as chance constraints.

We start with the visualisation of the stochastic process governed by a SODE and chance con-

straints as described in Section 8.1. For a better understanding of results a good visualization

can be helpful, e.g., for the construction of a PDF of a random variable. Following [131], the

PDF of a random variable p(ξ) is the push-forward of the PDF of ξ under the map p. If p(ξ) is

invertible, one can write

ρξ(ξ(p∗))|dξ| = ρp (p∗)|dp| (8.41)

with ρξ and ρp denoting the PDFs of ξ and p, respectively, i.e., the probability of an element

in ξ is assigned to the probability of the corresponding element in p. It follows that

ρp (p∗) =
∣∣∣∣(dp

dξ

)−1∣∣∣∣ρξ(ξ(p∗)), (8.42)

i.e., the PDF is scaled by the inverse of the slope of p(ξ). Consequently, the PDF can reach

infinity if the slope becomes zero. If p(ξ) is not invertible (8.42) is not correct, but the right

hand side can be adapted:

ρp (p∗) =
N∑

i=1

∣∣∣∣(dp

dξ

)−1∣∣∣∣ρξ(ξi ,p∗), (8.43)

Figure (8.2) shows the push forward of a uniform distribution through some simple polynomi-

als as an example.

An interesting random variable to analyze is the chance constraint of a road boundary violation

given the vehicle’s current position x(ξ), path and boundary vectors xp and xb. One way to

visualise is to calculate the tightest boundary parallel to the original boundary that does not

149



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

(a) Polynomials pi (ξ). (b) PDFs corresponding to the push-forwards through
pi (ξ).

Figure 8.2 – Push-forward of a uniform distribution through different polynomials pi (ξ).

violate the chance constraints. Equation 8.39 can be reformulated as

Pr[γnTxcog (ξ)−γnT (
xp −γn

)≥ 0] ≥ ε (8.44)

where γ= ‖xp−xb‖2 is the distance from boundary to the path and n = xp−xb

γ is the normalized

vector from boundary to path. The tightest bound of a chance constraint for probability of

violation ε- γε can be found by applying one of the distributionally robust chance constraints

from Section 8.2. Equation 8.44 can be reformulated to

Pr[nTxcog (ξ)−nTxp −γε = gγε(ξ) ≥ 0] ≥ ε (8.45)

and using the chance constraint from Equation (8.23) leads to

E[gγε(ξ)]−
√

1−ε
ε

Var[gγε(ξ)] ≥ 0. (8.46)

Calculation of the expected value and variance is then straightforward if the gPC expansion

coefficients xi of x(ξ) are known. As stated in Equation (8.25), orthogonality of the polynomials

implies

gγε,0 =−nTxcog ,0 +nTxp +γε,

gγε,i =−nTxcog ,i,
(8.47)

and the expected value and variance can be calculated according to (8.7). Using σγε =

150



8.5. Trajectory Optimisation under Parametric Uncertainties

√
Var[gγε(ξ)], the estimate of boundary becomes

γε =
√

1−ε
ε

σγε +nT (
xcog,0 −xp

)
. (8.48)

Optimal Control Problem

The kinematic bicycle introduced above is used to demonstrate the capability of gPC expan-

sions of a stochastic OCP. In the test case, the vehicle has an uncertain wheelbase between

0.95 ·Lnominal and 1.05 ·Lnominal modelled by a uniform distribution that scales the influence

of the steering angle on the driven curvature. The OCP is parametrized with path-, velocity-

and regularization cost as listed in Table 8.2b, the gPC expansion has three basis functions,

and the vehicle is supposed to follow a cosine with wavelength 20 [m] along the x-axis with

an amplitude of 1 [m] in the y-direction, a constant longitudinal velocity of 10 [m/s], and

boundaries with a distance of 0.2 [m] from the center line of the path.

Figure 8.3a shows the optimal solution for a horizon length of 2 [s] not enforcing boundary

chance constraints. The expected path of the vehicle is shown with the solid blue line, and

the dashed red lines denote the boundaries of a 95% confidence region, i.e. the region where

all possible realisations of the vehicle trajectories will lie with the 95% probability. It can be

observed that these boundaries cross the road boundaries at around 7[m], and therefore,

the vehicle will leave the road with high probability from some realisations of the uncertain

parameter if the control was applied in open-loop. In fact, due to the kinematic relations

in the model, it is not possible to reduce the size of the tube, as any steering increases the

variance. Figure 8.3b shows solution to the same stochastic problem but the chance con-

strained enforced. The vehicle has to considerably slow down so that the chance constraints

are satisfied. This conservatism is avoidable in reality, however, if one considers the feedback

correction that will keep the vehicle closer to the center line. In the following, we demonstrate

how the method introduced in Section 8.3 allows to avoid the conservatism of the open-loop

predictions while guaranteeing chance constraint satisfaction.

151



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

(a) OCP without consideration of the road boundaries as chance constraints. The red dash lines define the
confidence tube, i.e. the tube that contains all possible realisations of the vehicle trajectory with probability 95%.
The tube crosses the road boundaries which will lead to constraint violation for some realisations of the uncertain
parameter.

(b) OCP with consideration of the road boundaries as chance constraints. Due to the kinematic relations in the
model, the vehicle cannot influence the effect of uncertainty while proceeding in x-direction, and therefore has to
reduce the speed.

Figure 8.3 – Path solution of the stochastic OCP for the kinematic bicycle with uncertain
wheelbase following a cosine with constant velocity.

152



8.5. Trajectory Optimisation under Parametric Uncertainties

qx qy w qx, f qy, f rδ̇ r v̇ rν̇

unit 1/(m2 · s) 1/(m2 · s) s/m2 1/m2 1/m2 s s3/m2 s5/m2

value 1e2 1e2 1e2 1e2 1e2 1e0 1e0 1e0

(a) Parameters for MPC with the kinematic bicycle.

m J lf lr CD CR

unit kg kgm2 m m kg/m N

value 1200 1400 1.6 1.4 1 600

Bf Cf Df Ef Clin,f Br Cr Dr Er Clin,r

unit 1/rad N/rad 1/rad N/rad

value 10.3 2.4 1.3 1 1.77e5 10 2.7 1.3 1 2.20e5

(b) Model parameters for the dynamic bicycle.

rδ rFx,f rFx,r rν rδ̇ rḞx,f
rḞx,r

rν̇

unit 1/s 1/(s ·N2) 1/(s ·N2) s3/m4 s s/N2 s/N2 s5/m2

value 1e3 1e−6 1e−6 1e−1 1e4 1e−4 1e−4 1e−1

(c) Regularization cost parameters for MPC on the dynamic bicycle.

setup qx qy w qx, f qy, f w f qψ, f

unit 1/(m2 · s) 1/(m2 · s) s/m2 1/m2 1/m2 s2/m2

1 value 1e5 1e5 1e6 1e5 1e5

2 value 1e5 1e5 1e3 1e5 1e5 1e3

3 value 1e5 3e2 1e3 1e5 3e2 1e3 1e5

4 value 1e5 1e4 1e3 1e5 1e4 1e3 1e4

(d) Velocity- and path cost parameters for MPC on the dynamic bicycle.

Table 8.1 – Model- and MPC parameters for the kinematic- and dynamic bicycle.

Stochastic Optimal Control with a Prestabilising Controller

The major drawback of the open-loop predictions in stochastic OCP is the conservatism of the

prediction as illustrated in the previous section. Stochastic model predictive control proposed

in Section 8.3 circumvents this problem by applying an ancillary controller in a tube-based

MPC fashion. To test this assertion the same parameters and tuning as in the stochastic OCP

are used in the proposed robust formulation. Note that the OCP parameters listed in Table 8.2b

have a slightly different meaning, as qx , qy , qx, f , and qy, f now parametrize the cost on the

nominal system of the robust stochastic OCP in contrast to the cost on the expected values in

the stochastic OCP. The ancillary feedback controller applies an additional steering command

that depends on the lateral path deviation dlat and the orientation error dor to reduce the

153



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

setup parameters minimal factor maximal factor
1 Df, Dr 0.95 1.05
2 Bf, Cf, Br, Cr

p
0.95

p
1.05

3 Br, Cr
p

0.90 1.0

(a) Parameter variations for sensitivity analysis. The dependency of pa-
rameter p on ξ is given by p(ξ) = 0.5((pmin(1 − ξ)+ pmax(1 + ξ)). The
minimal/maximal parameter value is the minimal/maximal factor times
the nominal parameters from Table 8.1b.

qx qy w qx, f qy, f rδ̇ r v̇ rν̇
unit 1/(m2 · s) 1/(m2 · s) s/m2 1/m2 1/m2 s s3/m2 s5/m2

value 1e4 1e4 1e3 1e4 1e4 1e1 1e1 1e0

(b) Parameters for the stochastic open-loop OCP, and the robust stochastic OCP.

psat pslope,lat pslope,or

rad rad/m
2e−2 3e−1 1

(c) Ancillary controller parameters
for the robust stochastic OCP.

Table 8.2 – Parameter variation for open-loop sensitivity, parameters of the stochastic open-
loop OCP, and for the robust stochastic OCP.

effect of the uncertain wheelbase. The heuristic proportional steering feedback law is given by

µδ(t ,ξ) =−psat · tanh

(
pslope,lat

psat
dlat(t ,ξ)+ pslope,or

psat
dor(t ,ξ)

)
(8.49)

The saturation is implemented with the tanh function and the coefficient psat that defines the

range of the ancillary control signal. The values can found in Table 8.2c. As the saturation limit

psat is set to 0.02 [rad], the ancillary lateral controller is responsible for at most one percent of

the available steering angle of π/6. Three different setups show the effect of the additional

controller: the first setup assumes the same uncertainty on the wheelbase as in the stochastic

OCP from i.e., between 0.95 to 1.05 times the nominal wheelbase, to compare the open-loop

solution with the robust solution. The second setup has an uncertainty with a larger range

of 0.90 to 1.10 times the nominal wheelbase which leads to the saturation of the ancillary

controller. Finally, the third setup uses the same uncertainty as in the second experiment but

applies the road boundaries as chance constraints.

Figure 8.4 shows the optimal solution of the first setup. Since the nominal and expected

value of the wheelbase parameter coincide the nominal dynamics are close to the expected

stochastic dynamics and as the initial value of the nominal system is equal to the expected

initial value of the stochastic system, the nominal and expected paths coincide. The ancillary

controller reduces the variance of the lateral path error and stabilizes the uncertain system

154



8.5. Trajectory Optimisation under Parametric Uncertainties

around the nominal system. Contrary to the optimal solution of the open-loop stochastic

OCP shown in Figure 8.3a, the road boundary chance constraints are not violated and the

vehicle can reach the desired end point of the horizon at x = 20 [m]. As the ancillary controller

depends on the uncertain lateral path deviation and orientation error, it becomes a random

process. Its PDF is shown in Figure 8.6 at x = 15 [m] and is drawn from the linear region of the

tanh function as the controller output µ is far from saturation.

A larger uncertainty in the second setup leads to a larger variance of the lateral path error and

consequently the ancillary controller comes closer to saturation. Figure 8.5a shows how the

boundary constraints are violated despite the stabilizing controller. The kinematic nature

of the vehicle is preserved despite the ancillary controller and the vehicle cannot reach the

desired end point at x = 20 [m] in the third setup, where the chance constraints are considered

as shown in Figure 8.5b. To go as far as possible, the vehicle takes advantage of the small

variance at the apex of the turn and takes the shortest possible path. For both setups two and

three, the ancillary controller is close to its saturation of 0.02 [rad], which equals to 1.15 [deg]

as shown in Figure 8.6 for the end of the optimization horizon. Because of the decreasing

slope of tanh in the region of saturation, the maximal or minimal ancillary controller output is

more likely than for the solution of in first setup from Figure 8.6 with less uncertainty and thus

less controller saturation.

Figure 8.4 – Path solution of the stochastic OCP with the ancillary controller for the kinematic
bicycle with uncertain wheelbase following a cosine with constant reference velocity. The
ancillary controller reduces the variance and the vehicle reaches the desired end point at 20m.

155



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

(a) Solution without enforcing the chance constraints. Saturation of the ancillary controller leads to violation of
road boundary constraints for some realisations of the uncertain parameter.

(b) Solution with consideration of the chance constraints. Due to the ancillary controller saturation and kinematic
nature of the vehicle, the desired end point at 20m cannot be reached. To go as far as possible within the horizon of
2s, the optimiser exploits the kinematic relations in the model and finds the shortest path that less steering input
and thus reduces the variance further.

Figure 8.5 – Path solution of the robust stochastic OCP for the kinematic bicycle with uncertain
wheelbase following a cosine with constant reference velocity. Because of a large uncertainty
between 0.9 and 1.0 times the nominal wheelbase, the variance grows faster than in the
solution of Figure 8.4.

156



8.6. Sensitivity Analysis

Figure 8.6 – PDF of the ancillary controller output at x = 15m for the first setup with an
uncertainty in the range of 0.95 to 1.05 times the nominal wheelbase, the second setup with a
range of 0.90 to 1.10 without consideration of the road boundaries as chance constraints, and
the third setup with a range of 0.90 to 1.10 with consideration of chance constraints. For all
setups, the ancillary controller saturates at 1.15deg.

8.6 Sensitivity Analysis

In this section, the Galerkin projection method introduced in Section 8.1 is applied to examine

the sensitivity of the car dynamics with respect to the tire parameters. For this numerical study

we use the recorded control trajectory computed by the NMPC algorithm using the dynamic

bicycle with nominal parameters. Simulation is done the SODE with fixed control input for

different parameters that are often uncertain in practice. The control inputs come from a

double lane change manoeuvre as shown in Figure 8.7 planned with a 1.5[g ] acceleration limit

with the vehicle parameter of setup 4 as listed in Tables 8.1b and 8.1d. Inputs and reference

states are taken from an optimization horizon of length 2[s] starting right before the second

turn of the double lane change manoeuvre and ending after the third turn. As both right and

left turns as well as a fast transient in between are within the horizon and the vehicle drives

close to its limits, high sensitivities on the parameters can be expected.

The sensitivities to three different Pacejka model parameters are investigated using uniform

distributions of several parameters: the system for the first sensitivity analysis has an un-

certain D-parameter for the front and rear axes varying between 0.90 ·Dnominal and Dnominal

corresponding proportionally to ξ=−1 and ξ= 1, respectively. Apart from its influence on

the linear cornering stiffness, D is proportional to the maximally transmittable lateral tire

force. The second sensitivity analysis retains the neutral behavior of the vehicle by varying

157



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

15 30 3025 25

0.
45

0.
65

0.
85

3.
6

Figure 8.7 – Double lane change manoeuvre.

the linearized cornering stiffness of the front and rear axes in the same proportion. Since

Clin ∝ B ·C , B and C are varied equally to maintain the overall shape of the Pacejka tire curve.

Clin is varied between 0.95·Clin,nominal and 1.05·Clin,nominal again corresponding proportionally

to ξ=−1 and ξ= 1, respectively. The last sensitivity study weakens the rear axes by reducing

the rear linear cornering stiffness only, with Clin,r varying 0.90 ·Clin,nominal and Clin,nominal for

ξ between ξ=−1 and ξ= 1, which renders the vehicle oversteering for small rear cornering

stiffnesses. All setups are listed in Table 8.2a.

Figure 8.8 shows different realisations of the driven path of the dynamic bicycle model with

uncertain D . y-position and the orientation deviate considerably from the nominal solution,

as the vehicle saturates the rear tire and does not manage to get into the second turn for some

realizations of ξ. To verify the approximation of gPC and the Galerkin projection, the solution

of the stochastic modes evaluated at different ξi are compared to samples of solutions of

the original ODE with parameters evaluated at the same ξi . Despite the rich gPC basis with

polynomials up to degree eleven, the regular sampling and the gPC solution diverge. Figure 8.9

shows the reason for the divergence with the states y and ψ̇ as an example: the gPC expansion

has to approximate a kink in y and a step in ψ̇, which leads to oscillating solutions related to

the Gibbs’ phenomenon [131]. Because of the poor regularity of the functions to approximate,

the gPC coefficients only converge slowly in comparison to the coefficients of the solution for

an uncertainty in the rear cornering stiffness as shown in Figure 8.10.

The sensitivity to the changes in the linear cornering stiffnesses is easier to approximate and a

smaller basis for the gPC expansion is sufficient. In this scenario, Legendre polynomials up

to degree six are used. Figure 8.11 shows a comparison of trajectory samples of the second

experiment maintaining the vehicle’s neutral behavior and the third experiment with the

oversteering behavior. While the neutral vehicle stays close to the nominal solution, the

oversteering vehicle integrates up deviations in the yaw dynamics and thus y-coordinate

158



8.6. Sensitivity Analysis

Figure 8.8 – Sensitivity for parameter variation of D of front an rear axis. The solutions with
different realizations deviate from the nominal solution due to tire saturation for small D.
The realizations are calculated from the gPC expansion of the system states determined by
the expanded ODE and are compared to trajectory samples of the original ODE through the
same parameter realizations. Errors come from the poor regularity of some system states to
be expanded as shown in Figure 8.9.

deviates considerably from the nominal solution. The yaw dynamic error arises mainly in

the transient phase between the turns where the tires generate yaw acceleration. Due to the

lower rear stiffness, the vehicle drives with a higher slip angle β in the first turn of the horizon

to counteract the centripetal acceleration. The higher slip angle also leads to higher lateral

forces at the front axis, which results in a higher yaw acceleration and thus higher yaw rate

than the nominal model. In the transient phase after the turn, the yaw rate must change sign

rapidly, which implies high yaw acceleration in the opposite direction. The nominal model

achieves this by changing the steering to the left, reducing the front lateral tire force and leads

to a moment on the vehicle. The higher slip angle countersteers the force reduction and thus

the yaw acceleration as shown in Figure 8.12b and the error takes the integrator chain from

yaw rate to orientation. In the end of the last turn, the slip angle reduces to zero again, and the

delayed yaw dynamics help the vehicle to reduce it as depicted in Figure 8.12a.

Figure 8.13 shows the nominal optimal trajectory, the OCP solution with the nominal model

for the controller and worst case model as plant, the expected value of the uncertain model,

the envelope of the solutions of the uncertain model and the chance constraints for a violation

probability of five percent. While the worst case solution tightly follows the nominal prediction,

the open-loop prediction of the uncertainty diverges as explained before. Together with the

159



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

(a) GPC expansion trying to approximate a step in y . (b) GPC expansion trying to approximate a kink in ψ̇.

Figure 8.9 – Gibbs’ phenomenon [131] in the polynomial approximation of y and ψ̇ at the end
of the optimization horizon.

chance constraints the prediction of the open-loop system is very conservative and does not

resemble the feedback solution. For the y-coordinate, which points into the same direction as

the boundary normal, Figure 8.14 shows the expansion, PDF, and chance constraints at the

end of the horizon.

8.7 Summary

The stochastic nonlinear OCP controller uses gPC expansions to approximate the uncertain

states. The implemented projection algorithm generates a deterministic ODE governing the

evolution of the expansion coefficients of a stochastic ODE with arbitrary right hand sides

using the Galerkin projection and numerical quadrature. Its potential and limits are demon-

strated in a sensitivity analysis of the dynamic bicycle. Road boundaries are reformulated to

chance constraints, i.e., constraint satisfaction can only be guaranteed to a certain probability.

Their effect on the stochastic OCP is shown with the Dubin’s car model.

Finally, a stochastic nonlinear OCP formulation with an ancillary controller is proposed to

overcome the conservatism of the open-loop predictions in stochastic OCP. The key idea is to

stabilise the uncertain system around a nominal optimal trajectory by an ancillary feedback

controller. The gPC expansions are used for efficient nonlinear uncertainty propagation. The

idea is verified in simulation using the Dubin’s car model.

160



8.7. Summary

Figure 8.10 – Maximal magnitude of the i-th expansion coefficient of the approximation of
states y and ψ̇. The gPC solution of the system with D-variation shows a slower decay than
the system with variation of the rear axis’ cornering stiffness.

Figure 8.11 – System with variation of front and rear cornering stiffness maintaining the neutral
behavior of the vehicle compared with a variation of the rear cornering stiffness leading to
an oversteering behavior. While the sampled trajectories of the oversteering vehicle deviate
significantly from the nominal solution, the neutral vehicle is less sensitive.

161



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

(a) Slip angle β for different realizations of a weakened rear axis. Because of the weaker rear axis higher side slip
angles are necessary to withstand the centripetal forces.

(b) Slip angle ψ̇ for different realizations of a weakened rear axis.The yaw acceleration is delayed for a weaker rear
axis, as the higher side slip angle reduces the effect of the steering angle in the transient phase after the first turn.

Figure 8.12 – Yaw rate ψ̇ and side slip angle β for different realizations of a weakened rear axis.
The rear cornering stiffness varies between 0.90 and 1.0 times the nominal stiffness.

In general, stochastic nonlinear optimal control is computationally demanding and poses

significant challenges to nonlinear optimisation solvers. Distributed numerical frameworks

for nonlinear optimal control[145] could be explored in the future to improve robustness and

162



8.7. Summary

Figure 8.13 – Expected value, envelope as max/min deviations, and chance constraint of
system with variation of the rear cornering stiffness compared to the nominal solution and
the MPC solution with nominal model in the controller and worst case model as plant. While
MPC manages to track the nominal solution tightly despite the uncertainty, the open-loop
prediction diverges, amplified by the conservative chance constraints.

facilitate real-time applications of the proposed methodology.

While the gPC methodology demonstrated its efficiency for nonlinear uncertainty propaga-

tion in dynamical systems, it can be observed from the presented sensitivity study that the

conservatism of chance constraints can be further reduced if sharper probabilistic bounds

for chance constraints were available. Furthermore, since at every time slice the stochastic

state is characterised by polynomials it is potentially possible to cast the chance constraints as

polynomial positivity condition by exploring connection with the Bernstein polynomial basis

[146]. These directions are also subject for the future research.

163



Chapter 8. Stochastic NMPC for Safe Autonomous Driving

(a) GPC expansion and sampled trajectories of y at the end of the horizon. GPC approximates well the shape of
y(ξ) and a basis with polynomials of lower order can be considered.

(b) PDF as a push-forward of the uniform distribution of ξ through y , and chance constraints coming from
Chebyshev’s inequality as well as the alternative one-sided chance constraint introduced in Section 8.2.

Figure 8.14 – Expansion, PDF and chance constraints for y at the end of the horizon.

164



Part IVConclusions and outlook

165





Conclusions and outlook

In this thesis, we presented a novel computational and software framework for real-time

embedded nonlinear optimal control that reduces the complexity of embedded deployment

of optimisation-based control solutions. Furthermore, we demonstrated the application of

our framework to real-time model-based motion control of several complex mechatronic

systems: guidance and control of a TVC rocket prototype, identification and flight control of a

fixed-wing AWE kite and autonomous driving at the limits of handling.

The main contribution of the first part is PolyMPC, an open-source C++ framework for real-

time embedded optimisation and optimal control. Thanks to the modular design, efficiency

and flexibility, the software targets not only control practitioners but also researchers in

the field of optimisation and optimisation-based control as it provides full access to the

code and allows simple modifications and extensions of the existing algorithmic modules.

The computational efficiency is achieved with a highly optimised implementation of the

Chebyshev pseudospectral collocation method and utilisation of instruction set parallelism

for optimisation routines. Besides numerical benchmarks, we demonstrate the application of

the software to embedded optimal guidance and motion control of a small-scale TVC rocket

prototype.

Currently, PolyMPC exploits only instruction set parallelism in computations. For large-scale

problems, e.g. stochastic optimal control or optimisation of PDEs, it is interesting to take

advantage of the modern multi-core hardware architectures and distributed numerical op-

timisation techniques. Initial benchmarks for parallel sensitivity evaluation demonstrated

that standard multi-threading and distributed computation frameworks OpenMP [147] and

MPI [148] introduce considerable overhead related to thread spawning and communication

corresponding to some problems considered in this thesis. From the software engineering

perspective, the non-blocking thread pools [149] appear as a better alternative for parallel sen-

sitivity computation. Numerically, ALADIN [150] provides an attractive numerical framework

for distributed computation in optimal control.

An important future feature of PolyMPC could be generic block storage of static matrices. This

167



extension will allow the reduction of memory usage and enable the application of the software

using sparse representations on low-end microcontrollers. The development of a high-level

Python interface to the tool is another research project that is currently under development at

the host laboratory.

In the second part, we presented a fully functioning AWE system prototype that serves as a

low-cost platform for flight control system validation. Besides the hardware, a reliable flight

simulation tool is crucial for control system development. Therefore, we developed an identi-

fication methodology for aerodynamic parameters which allows one to significantly improve

the quality of the aerodynamic models. Initial estimates of the aerodynamic coefficients

were obtained with CFD simulations and refined through an extensive experimental flight

campaign. In our approach, we combine a model-based parameter estimation methodology,

random perturbations of the 3-2-1-1 control sequences, short-term wind velocity estimation

and multi-experiment averaging.

The second contribution is a real-time optimisation-based path following algorithm for full-

body motion control of a kite. The algorithm allows for a flexible geometric path specification,

does not require preliminary trajectory optimisation and explicitly encodes a safe flight en-

velope. The real-time capability of the NMPC implementation on an embedded platform is

demonstrated during flight experiments. To improve the robustness in real flight conditions,

we implemented a hierarchical scheme with low-level tracking of the optimal trajectories. Fi-

nally, the control scheme is validated on real flight experiments. To the best of our knowledge,

it is the first NMPC implementation capable of direct actuator control of a fixed-wing aircraft.

Simulations and real flight experiments highlighted the sensitivity of the model-based control

algorithms to accurate model parameters and wind estimation. Future work will be aimed at

developing airspeed angle sensors for the prototype which should improve the performance

of the flight controller. Additionally, sensitivity to the model parameters can be reduced in

practice by higher sampling rates, and it is, therefore, interesting to investigate approximate

optimal control schemes [66] or [151].

In the third part of the thesis, we develop model-based algorithms for real-time control of

electric racing cars at the limits of handling. Our first contribution is an implementation of a

hierarchical NMPC scheme that increases racing performance and improves robustness to

uncertain road friction coefficients over the existing state of the art controller. The control

algorithm is tested in a HiL platform using an industrial-grade racing simulator and automotive

embedded hardware. Future work will aim at experimental testing of our implementation in a

racing scenario.

In continuation of the work on NMPC for autonomous driving, we propose a stochastic NMPC

approach for the case when some of the model parameters cannot be established precisely

168



or change quickly over time. Unknown parameters are modelled as random variables, and

the model equations thus becomes stochastic differential equations. Polynomial chaos ex-

pansion (PCE) is used as a numerical tool for nonlinear uncertainty propagation, and safety

chance constraints are approximated by distributionally robust inequalities. To reduce the

conservatism of the stochastic approach, we proposed a novel optimal control problem for-

mulation with a pre-stabilising controller. The performance of the stochastic NMPC algorithm

is demonstrated on a simplified car model in simulation.

As mentioned before, the proposed stochastic optimal control methodology can benefit from

distributed and parallel computation frameworks to enable their wider adoption in practice.

Furthermore, since at every time slice the stochastic state is characterised by polynomials it

is potentially possible to cast the chance constraints as polynomial positivity condition by

exploring a connection with the Bernstein polynomial basis [146] for example.

169





Bibliography

[1] D. E. Kirk, Optimal Control Theory: An Introduction, ser. Dover Books on Electrical

Engineering Series. Dover Publications, 2004.

[2] R. Bellman, Dynamic Programming. Dover Publications, 1957.

[3] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathe-

matical Theory of Optimal Processes. New York: John Wiley & Sons, 1962.

[4] A. E. Bryson and Y.-C. Ho, Applied optimal control: optimization, estimation, and control.

Hemisphere Publishing Corporation, 1975.

[5] J. B. Rawlings, Q. D. Mayne, and M. Diehl, Model Predictive Control: theory, computation,

and design. Madison, Wisconsin: Nob Hill Publishing, 2017.

[6] H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution of optimal control

problems*,” IFAC Proceedings Volumes, vol. 17, no. 2, pp. 1603–1608, 1984, 9th IFAC

World Congress: A Bridge Between Control Science and Technology, Budapest, Hungary,

2-6 July 1984.

[7] H. G. Bock, M. M. Diehl, D. B. Leineweber, and J. P. Schlöder, “A direct multiple shooting

method for real-time optimization of nonlinear dae processes,” in Nonlinear Model

Predictive Control, F. Allgöwer and A. Zheng, Eds. Basel: Birkhäuser Basel, 2000, pp.

245–267.

[8] G. Frison and M. Diehl, “Hpipm: a high-performance quadratic programming frame-

work for model predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569,

2020, 21st IFAC World Congress.

[9] L. T. Biegler, “Solution of dynamic optimization problems by successive quadratic

programming and orthogonal collocation,” Computers & Chemical Engineering, vol. 8,

no. 3, pp. 243–247, 1984.

171



Bibliography

[10] F. Fahroo, D. B. Doman, and A. D. Ngo, “Footprint generation for reusable launch vehicles

using a direct pseudospectral method,” ser. American Control Conference, vol. 3, 2003,

pp. 2163–2168.

[11] D. Benson, “A gauss pseudospectral transcription for optimal control,” Ph.D. disserta-

tion, Massachusetts Institute of Technology, 2005.

[12] G. Huntington, “Advancement and analysis of gauss pseudospectral transcription for

optimal control problems,” Ph.D. dissertation, Massachusetts Institute of Technology,

2007.

[13] W. Kang, I. M. Ross, and Q. Gong, Pseudospectral Optimal Control and Its Convergence

Theorems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 109–124. [Online].

Available: https://doi.org/10.1007/978-3-540-74358-3_8

[14] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for solving multiple-phase

optimal control problems using hp-adaptive gaussian quadrature collocation methods

and sparse nonlinear programming,” ACM Transactions on Mathematical Software

(TOMS), vol. 41, no. 1, p. 1, 2014.

[15] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming,” Mathematical Programming,

vol. 106, pp. 25–57, 2006.

[16] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale

constrained optimization,” SIAM review, vol. 47, no. 1, pp. 99–131, 2005.

[17] Y. Nie, O. Faqir, and E. C. Kerrigan, “ICLOCS2: Try this optimal control problem solver

before you try the rest,” in 2018 UKACC 12th International Conference on Control (CON-

TROL), 2018, pp. 336–336.

[18] C. Büskens and D. Wassel, “The ESA NLP Solver WORHP,” in Modeling and Optimization

in Space Engineering, G. Fasano and J. D. Pintér, Eds. Springer New York, 2013, vol. 73,

pp. 85–110.

[19] V. M. Becerra, “Solving complex optimal control problems at no cost with PSOPT,”

ser. 2010 IEEE International Symposium on Computer-Aided Control System Design

(CACSD). IEEE, 2010, pp. 1391–1396.

[20] D. Thammisetty, P. Listov, and C. Jones, “mpopt: Multi-Phase Dynamic Optimisation,”

https://mpopt.readthedocs.io/en/latest/, accessed: 2021-10-25.

[21] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software

framework for nonlinear optimization and optimal control,” Mathematical Program-

ming Computation, vol. 11, no. 1, pp. 1–36, 2018.

172

https://doi.org/10.1007/978-3-540-74358-3_8
https://mpopt.readthedocs.io/en/latest/


Bibliography

[22] O. von Stryk, “User’s guide for dircol version 2.1,” Simulation and Systems Optimization

Group, Technische Universität Darmstadt, 1999.

[23] J. Betts, “Sparse optimization suite, sos, user’s guide, release 2015.11,” 2016.

[24] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating Microsecond Solvers

for Nonlinear MPC: a Tutorial Using ACADO Integrators,” Optimal Control Applications

and Methods, vol. 36, no. 5, pp. 685–704, 2014.

[25] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli, B. Novosel-

nik, T. Albin, R. Quirynen, and M. Diehl, “acados – a modular open-source framework

for fast embedded optimal control,” Mathematical Programming Computation, October

2021.

[26] B. Stroustrup, “Foundations of c++,” in Proceedings of the 21st European Conference

on Programming Languages and Systems, ser. ESOP’12. Berlin, Heidelberg: Springer-

Verlag, 2012, p. 1–25. [Online]. Available: https://doi.org/10.1007/978-3-642-28869-2_1

[27] ——, The C++ Programming Language, 4th ed. Addison-Wesley Professional, 2013.

[28] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools, and

Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional,

2004.

[29] G. Guennebaud, B. Jacob et al., “Eigen v3,” 2010, http://eigen.tuxfamily.org.

[30] D. Vandevoorde, N. M. Josuttis, and D. Gregor, C++ Templates: The Complete Guide (2nd

Edition), 2nd ed. Addison-Wesley Professional, 2017.

[31] K. F. Graham and A. V. Rao, “Minimum-time trajectory optimization of low-thrust earth-

orbit transfers with eclipsing,” Journal of Spacecraft and Rockets, vol. 53, no. 2, pp.

289–303, 2016.

[32] F. Fahroo and I. M. Ross, “Direct trajectory optimization by a chebyshev pseudospectral

method,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 160–166, 2002.

[33] L. N. Trefethen, Spectral methods in MATLAB, ser. Software, Environments and Tools.

SIAM, 2000, vol. 10.

[34] C. G. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods: Funda-

mentals in single domains. Springer, 2010.

[35] B. Fornberg, A Practical Guide to Pseudospectral Methods. Cambdridge University Press,

1998.

173

https://doi.org/10.1007/978-3-642-28869-2_1


Bibliography

[36] J. P. Boyd, Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[37] G. N. Elnagar and M. A. Kazemi, “Pseudospectral chebyshev optimal control of con-

strained nonlinear dynamical systems,” Computational Optimization and Applications,

vol. 11, no. 2, pp. 195–217, 1998.

[38] F. Fahroo and I. M. Ross, “Costate estimation by a legendre pseudospectral method,”

Journal of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 270–277, 2001.

[39] S. Gros, M. Zanon, and M. Diehl, “A relaxation strategy for the optimization of airborne

wind energy systems,” in 2013 European Control Conference (ECC), 2013, pp. 1011–1016.

[40] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction. Berlin,

Heidelberg: Springer-Verlag, 1990.

[41] M. P. Neuenhofen and E. C. Kerrigan, “An integral penalty-barrier direct transcription

method for optimal control,” in 59th IEEE Conference on Decision and Control, CDC

2020, Jeju Island, South Korea, December 14-18, 2020. IEEE, 2020, pp. 456–463.

[42] Y. Nie and E. C. Kerrigan, “Efficient and more accurate representation of solution tra-

jectories in numerical optimal control,” IEEE Control Systems Letters, vol. 4, no. 1, pp.

61–66, 2020.

[43] ——, “Efficient implementation of rate constraints for nonlinear optimal control,” IEEE

Transactions on Automatic Control, vol. 66, no. 1, pp. 329–334, 2021.

[44] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algo-

rithmic Differentiation, 2nd ed. USA: Society for Industrial and Applied Mathematics,

2008.

[45] E. M. Gertz and S. J. Wright, “Object-oriented software for quadratic programming,”

ACM Trans. Math. Softw., vol. 29, no. 1, p. 58–81, Mar. 2003. [Online]. Available:

https://doi.org/10.1145/641876.641880

[46] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY, USA:

Springer, 2006.

[47] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES: A para-

metric active-set algorithm for quadratic programming,” Mathematical Programming

Computation, vol. 6, no. 4, pp. 327–363, 2014.

[48] R. Quirynen and S. Di Cairano, “Presas: Block-structured preconditioning of iterative

solvers within a primal active-set method for fast model predictive control,” Optimal

Control Applications and Methods, vol. 41, no. 6, pp. 2282–2307, 2020. [Online].

Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2652

174

https://doi.org/10.1145/641876.641880
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2652


Bibliography

[49] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones, “Efficient

interior point methods for multistage problems arising in receding horizon control,” in

2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 668–674.

[50] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization

and statistical learning via the alternating direction method of multipliers,” Found.

Trends Mach. Learn., vol. 3, no. 1, p. 1–122, Jan. 2011. [Online]. Available:

https://doi.org/10.1561/2200000016

[51] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting

solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4,

pp. 637–672, 2020. [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2

[52] G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones, Operator Splitting Methods

in Control. Now Foundations and Trends, 2016.

[53] D. Ruiz, “A scaling algorithm to equilibrate both rows and columns norms in matrices,”

Rutherford Appleton Lab, Tech. Rep., 2001.

[54] A. Griewank and C. Mitev, “Detecting Jacobian sparsity patterns by Bayesian probing,”

Mathematical Programming, Ser. A, vol. 93, no. 1, pp. 1–25, 2002.

[55] J. Andersson, “A General-Purpose Software Framework for Dynamic Optimization,” PhD

thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering

(ESAT/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001-

Heverlee, Belgium, October 2013.

[56] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “A sparsity preserving convexifi-

cation procedure for indefinite quadratic programs arising in direct optimal control,”

SIAM Journal on Optimization, vol. 27, 04 2017.

[57] S. Gerschgorin, “Uber die abgrenzung der eigenwerte einer matrix,” Izvestija Akademii

Nauk SSSR, Serija Matematika, vol. 7, no. 3, pp. 749–754, 1931.

[58] F. Rey, D. Frick, A. Domahidi, J. L. Jerez, M. Morari, and J. Lygeros, “Admm prescaling for

model predictive control,” 2016 IEEE 55th Conference on Decision and Control (CDC),

pp. 3662–3667, 2016.

[59] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes. Berlin,

Heidelberg: Springer-Verlag, 1981.

[60] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,

“ROS: an open-source Robot Operating System,” ser. ICRA workshop on open source

software, vol. 3. IEEE, 2009.

175

https://doi.org/10.1561/2200000016
https://doi.org/10.1007/s12532-020-00179-2


Bibliography

[61] B. Acikmese and S. R. Ploen, “Convex programming approach to powered descent

guidance for mars landing,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 5,

pp. 1353–1366, 2007.

[62] B. Açıkmeşe, J. M. Carson, and L. Blackmore, “Lossless convexification of nonconvex

control bound and pointing constraints of the soft landing optimal control problem,”

IEEE Transactions on Control Systems Technology, vol. 21, no. 6, pp. 2104–2113, 2013.

[63] B. Graf, “Quaternions and dynamics,” 2008.

[64] S. Diwale, A. Alessandretti, I. Lymperopoulos, and C. N. Jones, “A nonlinear adaptive

controller for airborne wind energy systems,” ser. American Control Conference (ACC).

IEEE, 2016, pp. 4101–4106.

[65] B. Bell, “CppAD: a package for c++ algorithmic differentiation,” 2019, http://www.coin-

or.org/CppAD.

[66] B. Houska, H. J. Ferreau, and M. Diehl, “An Auto-Generated Real-Time Iteration Algo-

rithm for Nonlinear MPC in the Microsecond Range,” Automatica, vol. 47, no. 10, pp.

2279–2285, 2011.

[67] M. G. Molina and P. E. Mercado, “Modelling and control design of pitch-controlled

variable speed wind turbines,” in Wind Turbines, I. Al-Bahadly, Ed. Rijeka: IntechOpen,

2011, ch. 16.

[68] W. Katzenstein and J. Apt, “The cost of wind power variability,” Energy Policy, vol. 51, pp.

233–243, 2012, renewable Energy in China.

[69] C. L. Archer, L. Delle Monache, and D. L. Rife, “Airborne wind energy: Optimal locations

and variability,” Renewable Energy, vol. 64, pp. 180–186, 2014.

[70] M. Sommerfeld, C. Crawford, A. Monahan, and I. Bastigkeit, “Lidar-based characteriza-

tion of mid-altitude wind conditions for airborne wind energy systems,” Wind Energy,

vol. 22, no. 8, pp. 1101–1120, 2019.

[71] A. Cherubini, A. Papini, R. Vertechy, and M. Fontana, “Airborne wind energy systems:

A review of the technologies,” Renewable and Sustainable Energy Reviews, vol. 51, pp.

1461–1476, 2015.

[72] U. Ahrens, M. Diehl, and R. Schmehl, Airborne Wind Energy. Berlin, Heidelberg:

Springer, 11 2013.

[73] C. Vermillion, M. Cobb, L. Fagiano, R. Leuthold, M. Diehl, R. S. Smith, T. A. Wood, S. Rapp,

R. Schmehl, D. Olinger, and M. Demetriou, “Electricity in the air: Insights from two

176



Bibliography

decades of advanced control research and experimental flight testing of airborne wind

energy systems,” Annual Reviews in Control, 2021.

[74] B. Etkin and L. D. Reid, Dynamics of flight : stability and control, 3rd ed. New York ;

Brisbane: Wiley, 1996.

[75] R. F. Stengel, Flight Dynamics. Princeton University Press, 2004.

[76] S. Rapp, R. Schmehl, E. Oland, and T. Haas, “Cascaded pumping cycle control for rigid

wing airborne wind energy systems,” Journal of Guidance, Control, and Dynamics,

vol. 42, no. 11, pp. 2456–2473, 2019.

[77] S. Sieberling, “Flight guidance and control of a tethered glider in an airborne wind

energy application,” in Advances in Aerospace Guidance, Navigation and Control, Q. Chu,

B. Mulder, D. Choukroun, E.-J. van Kampen, C. de Visser, and G. Looye, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 337–351.

[78] L. Fagiano, E. Nguyen-Van, F. Rager, S. Schnez, and C. Ohler, “Autonomous takeoff and

flight of a tethered aircraft for airborne wind energy,” IEEE Transactions on Control

Systems Technology, vol. 26, no. 1, pp. 151–166, 2018.

[79] T. Stastny, E. Ahbe, M. Dangel, and R. Siegwart, “Locally power-optimal nonlinear model

predictive control for fixed-wing airborne wind energy,” in 2019 American Control

Conference (ACC), 2019, pp. 2191–2196.

[80] S. Costello, G. François, and D. Bonvin, “Real-time optimizing control of an experimental

crosswind power kite,” IEEE Transactions on Control Systems Technology, vol. 26, no. 2,

pp. 507–522, 2018.

[81] T. A. Wood, H. Hesse, A. U. Zgraggen, and R. S. Smith, “Model-based flight path planning

and tracking for tethered wings,” in 2015 54th IEEE Conference on Decision and Control

(CDC), 2015, pp. 6712–6717.

[82] S. Gros, M. Zanon, and M. Diehl, “Control of airborne wind energy systems based on

nonlinear model predictive control and moving horizon estimation,” in 2013 European

Control Conference (ECC), 2013, pp. 1017–1022.

[83] L. Ljung, System Identification (2nd Ed.): Theory for the User. USA: Prentice Hall PTR,

1999.

[84] P. Listov, T. Faulwasser, and C. N. Jones, “Nonlinear model predictive path following

control of a fixed-wing single-line kite,” in Book of Abstracts of the International

Airborne Wind Energy Conference (AWEC 2017), M. Diehl, R. Leuthold, and

R. Schmehl, Eds. Freiburg, Germany: University of Freiburg | Delft University

177



Bibliography

of Technology, 2017, p. 90. [Online]. Available: http://resolver.tudelft.nl/uuid:

febc767a-8360-45d4-b737-071723420bec

[85] E. C. Malz, J. Koenemann, S. Sieberling, and S. Gros, “A reference model for airborne

wind energy systems for optimization and control,” Renewable Energy, 2019.

[86] U. Fechner, R. van der Vlugt, E. Schreuder, and R. Schmehl, “Dynamic model of a

pumping kite power system,” Renewable Energy, vol. 83, pp. 705–716, 2015. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0960148115003080

[87] J. Koenemann, P. Williams, S. Sieberling, and M. Diehl, “Modeling of an airborne wind

energy system with a flexible tether model for the optimization of landing trajectories,”

IFAC-PapersOnLine, vol. 50, pp. 11 944–11 950, 2017.

[88] D. J. J. Anderson, Aircraft Performance and Design. USA: McGraw-Hill Education, 1999.

[89] R. Finck and M. A. C. S. L. MO., USAF (United States Air Force) Stability and Control

DATCOM (Data Compendium). Defense Technical Information Center, 1978. [Online].

Available: https://books.google.ch/books?id=80S2NQAACAAJ

[90] “Xflr5 guidelines,” https://sourceforge.net/projects/xflr5/files/Guidelines.pdf. [Online].

Available: https://sourceforge.net/projects/xflr5/files/Guidelines.pdf

[91] G. Licitra, A. Bürger, P. Williams, R. Ruiterkamp, and M. Diehl, “Optimal input design for

autonomous aircraft,” Control Engineering Practice, vol. 77, pp. 15–27, 2018.

[92] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming, 2006, vol. 106, no. 1.

[93] M. Koken, “The experimental determination of the moment of inertia of a model air-

plane,” Williams Honors College, Honors Research Projects 585, 2017.

[94] H. Schenk, “Propcalc,” http://www.drivecalc.de/PropCalc/index.html. [Online].

Available: http://www.drivecalc.de/PropCalc/index.html

[95] V. Klein and E. A. Morelli, Aircraft system identification: theory and practice, ser. AIAA

education series. Reston, VA: American Institute of Aeronautics and Astronautics, 2006,

oCLC: ocm68263458.

[96] T. Faulwasser and R. Findeisen, “Nonlinear model predictive control for constrained

output path following,” IEEE Transactions on Automatic Control, vol. 61, no. 4, pp.

1026–1039, 2016.

[97] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation of Nonlinear

Model Predictive Path-Following Control for an Industrial Robot,” IEEE Transactions on

Control Systems Technology, vol. 25, no. 4, pp. 1505–1511, 2017.

178

http://resolver.tudelft.nl/uuid:febc767a-8360-45d4-b737-071723420bec
http://resolver.tudelft.nl/uuid:febc767a-8360-45d4-b737-071723420bec
https://www.sciencedirect.com/science/article/pii/S0960148115003080
https://books.google.ch/books?id=80S2NQAACAAJ
https://sourceforge.net/projects/xflr5/files/Guidelines.pdf
http://www.drivecalc.de/PropCalc/index.html


Bibliography

[98] P. Listov and C. Jones, “PolyMPC: An efficient and extensible tool for real-time nonlinear

model predictive tracking and path following for fast mechatronic systems,” Optimal

Control Applications and Methods, vol. 41, no. 2, pp. 709–727, 2020.

[99] J. Herman, J. Francis, S. Ganju, B. Chen, A. Koul, A. Gupta, A. Skabelkin, I. Zhukov,

M. Kumskoy, and E. Nyberg, “Learn-to-race: A multimodal control environment for

autonomous racing,” 2021. [Online]. Available: https://arxiv.org/abs/2103.11575

[100] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B. Lohmann,

“Minimum curvature trajectory planning and control for an autonomous race car,”

Vehicle System Dynamics, vol. 58, no. 10, pp. 1497–1527, 2020. [Online]. Available:

https://doi.org/10.1080/00423114.2019.1631455

[101] P. A. Theodosis and J. C. Gerdes, “Generating a Racing Line for an Autonomous Racecar

Using Professional Driving Techniques,” ser. Dynamic Systems and Control Conference,

vol. ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium

on Fluid Power and Motion Control, Volume 2, 10 2011, pp. 853–860. [Online]. Available:

https://doi.org/10.1115/DSCC2011-6097

[102] C. Kirches, S. Sager, H. G. Bock, and J. P. Schlöder, “Time-optimal control of automobile

test drives with gear shifts,” Optimal Control Applications and Methods, vol. 31, no. 2,

2010.

[103] F. Christ, A. Wischnewski, A. Heilmeier, and B. Lohmann, “Time-optimal trajectory

planning for a race car considering variable tyre-road friction coefficients,” Vehicle

System Dynamics, vol. 59, no. 4, pp. 588–612, 2021.

[104] W. F. Milliken and D. L. Milliken, Race car vehicle dynamics, 1994.

[105] S. C. Peters, E. Frazzoli, and K. Iagnemma, “Differential flatness of a front-steered vehicle

with tire force control,” IEEE International Conference on Intelligent Robots and Systems,

vol. 02139, pp. 298–304, 2011.

[106] K. Kritayakirana and J. C. Gerdes, “Autonomous vehicle control at the limits of handling,”

International Journal of Vehicle Autonomous Systems, vol. 10, no. 4, pp. 271–296, 2012.

[107] J. H. Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsiotras, and K. Iagnemma,

“Optimal motion planning with the half-car dynamical model for autonomous high-

speed driving,” Proceedings of the American Control Conference, pp. 188–193, 2013.

[108] C. Chatzikomis, A. Sorniotti, P. Gruber, M. Zanchetta, D. Willans, and B. Balcombe,

“Comparison of path tracking and torque-vectoring controllers for autonomous electric

vehicles,” IEEE Transactions on Intelligent Vehicles, 2018.

179

https://arxiv.org/abs/2103.11575
https://doi.org/10.1080/00423114.2019.1631455
https://doi.org/10.1115/DSCC2011-6097


Bibliography

[109] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and M. Diehl, “An

auto-generated nonlinear mpc algorithm for real-time obstacle avoidance of ground

vehicles,” 2013 European Control Conference (ECC), pp. 4136–4141, 2013.

[110] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1:43

scale RC cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647,

2015.

[111] A. Domahidi, “Forces: Fast optimization for real-time control on embedded systems,”

Available at Forces ETHZ, 2012.

[112] J. Kabzan, M. I. Valls, V. J. F. Reijgwart, H. F. C. Hendrikx, C. Ehmke, M. Prajapat,

A. Bühler, N. Gosala, M. Gupta, R. Sivanesan, A. Dhall, E. Chisari, N. Karnchanachari,

S. Brits, M. Dangel, I. Sa, R. Dubé, A. Gawel, M. Pfeiffer, A. Liniger, J. Lygeros,

and R. Siegwart, “Amz driverless: The full autonomous racing system,” Journal

of Field Robotics, vol. 37, no. 7, pp. 1267–1294, 2020. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21977

[113] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “Forces nlp: an efficient implementation

of interior-point methods for multistage nonlinear nonconvex programs,” International

Journal of Control, vol. 93, no. 1, pp. 13–29, 2020.

[114] T. Novi, A. Liniger, R. Capitani, and C. Annicchiarico, “Real-time control for at-limit

handling driving on a predefined path,” Vehicle System Dynamics, vol. 0, no. 0, pp. 1–30,

2019. [Online]. Available: https://doi.org/00423114.2019.1605081

[115] T. Herrmann, A. Wischnewski, L. Hermansdorfer, J. Betz, and M. Lienkamp, “Real-time

adaptive velocity optimization for autonomous electric cars at the limits of handling,”

IEEE Transactions on Intelligent Vehicles, pp. 1–1, 2020.

[116] T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer graph-based trajectory

planning for race vehicles in dynamic scenarios,” 2019 IEEE Intelligent Transportation

Systems Conference (ITSC), pp. 3149–3154, 2019.

[117] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle System Dynamics,

vol. 21, no. sup001, pp. 1–18, 1992.

[118] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear

Programming, Second Edition, 2nd ed. Society for Industrial and Applied Mathematics,

2010. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/1.9780898718577

[119] A. Mesbah, “Stochastic model predictive control: An overview and perspectives for

future research,” IEEE Control Systems, vol. 36, no. 6, pp. 30–44, 2016.

180

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21977
https://doi.org/00423114.2019.1605081
https://epubs.siam.org/doi/abs/10.1137/1.9780898718577


Bibliography

[120] T. A. N. Heirung, J. A. Paulson, J. O’Leary, and A. Mesbah, “Stochastic model predictive

control — how does it work?” Computers and Chemical Engineering, vol. 114, pp. 158–

170, 2018. [Online]. Available: http://dx.doi.org/10.1016/j.compchemeng.2017.10.026

[121] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert, C. National, and F. Telecom,

“Constrained model predictive control : Stability and optimality,” vol. 36, 2000.

[122] D. Q. Mayne, E. C. Kerrigan, E. J. Van Wyk, and P. Falugi, “Tube-based robust nonlinear

model predictive control,” International Journal of Robust and Nonlinear Control, vol. 21,

no. 11, pp. 1341–1353, 2011.

[123] S. Singh, M. Pavone, and J.-j. E. Slotine, “Tube-Based MPC: a Contraction Theory Ap-

proach,” IEEE Conference on Decision and Control (CDC), 2016.

[124] J. Nubert, K. Johannes, V. Berenz, F. Allg, and S. Trimpe, “Safe and Fast Tracking Control

on a Robot Manipulator: Robut MPC and Neural Network Control,” 2019.

[125] T. Brudigam, M. Olbrich, M. Leibold, and D. Wollherr, “Combining Stochastic and Sce-

nario Model Predictive Control to Handle Target Vehicle Uncertainty in an Autonomous

Driving Highway Scenario,” IEEE Conference on Intelligent Transportation Systems, Pro-

ceedings, ITSC, vol. 2018-Novem, pp. 1317–1324, 2018.

[126] M. C. Campi, S. Garatti, and M. Prandini, “The scenario approach for systems and

control design,” Annual Reviews in Control, vol. 33, no. 2, pp. 149–157, 2009.

[127] S. Streif, M. Karl, and A. Mesbah, “Stochastic Nonlinear Model Predictive Control with

Efficient Sample Approximation of Chance Constraints,” no. October, 2014. [Online].

Available: http://arxiv.org/abs/1410.4535

[128] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with Gaussian

Process Dynamics for Autonomous Miniature Race Cars,” in 2018 European

Control Conference (ECC). IEEE, jun 2018, pp. 1341–1348. [Online]. Available:

https://ieeexplore.ieee.org/document/8550162/

[129] S. Lucia, P. Zometa, M. Kögel, and R. Findeisen, “Efficient stochastic model predictive

control based on polynomial chaos expansions for embedded applications,” in 2015

54th IEEE Conference on Decision and Control (CDC), 2015, pp. 3006–3012.

[130] L. Fagiano and M. Khammash, “Nonlinear stochastic model predictive control via

regularized polynomial chaos expansions,” in IEEE Conference on Decision and Control

(CDC), 2012, pp. 142–147.

[131] T. Sullivan, Introduction to Uncertainty Quantification. Springer Berlin Heidelberg,

2015.

181

http://dx.doi.org/10.1016/j.compchemeng.2017.10.026
http://arxiv.org/abs/1410.4535
https://ieeexplore.ieee.org/document/8550162/


Bibliography

[132] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach.

Princeton University Press, 2010. [Online]. Available: http://www.jstor.org/stable/j.

ctv7h0skv

[133] D. Xiu and G. E. Karniadakis, “The wiener–askey polynomial chaos for stochastic dif-

ferential equations,” SIAM Journal on Scientific Computing, vol. 24, no. 2, pp. 619–644,

2002.

[134] M. Vitus, “Stochastic Control via Chance Constrained Optimization and its Application

to Umanned Aerial Vehicles,” Ph.D. dissertation, 2012.

[135] J. A. Rice, Mathematical Statistics and Data Analysis, 2006.

[136] G. C. Calafiore and L. E. Ghaoui, “On distributionally robust chance-constrained linear

programs,” Journal of Optimization Theory and Applications, vol. 130, no. 1, pp. 1–22,

2006.

[137] J. Winokur, “Adaptive sparse grid approaches to polynomial chaos expansions for uncer-

tainty quantification,” Ph.D. dissertation, Duke University, 2015.

[138] Y. Xu, L. Mili, and J. Zhao, “A novel polynomial-chaos-based kalman filter,” IEEE Signal

Processing Letters, vol. 26, no. 1, pp. 9–13, 2019.

[139] H. C. Ozen and G. Bal, “A dynamical polynomial chaos approach for long-time evolution

of SPDEs,” Journal of Computational Physics, vol. 343, pp. 300–323, 2017.

[140] U. Konda, P. Singla, T. Singh, and P. Scott, “Uncertainty Evolution In Stochastic Dynamic

Models Using Polynomial Chaos,” Lairs.Eng.Buffalo.Edu, 2009. [Online]. Available:

http://lairs.eng.buffalo.edu/wiki/images/1/10/RC30.pdf

[141] M. Gerritsma, J. B. van der Steen, P. Vos, and G. Karniadakis, “Time-dependent

generalized polynomial chaos,” Journal of Computational Physics, vol. 229, no. 22, pp.

8333–8363, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.jcp.2010.07.020

[142] V. Heuveline, “A local time–dependent Generalized Polynomial Chaos method for

Stochastic Dynamical Systems,” A local time–dependent Generalized Polynomial Chaos

method for Stochastic Dynamical Systems, no. 04, 2011.

[143] H. Pacejka and I. Besselink, Tire and Vehicle Dynamics. Elsevier Ltd, 2012.

[144] A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz, “Stochastic nonlinear model pre-

dictive control with probabilistic constraints,” Proceedings of the American Control

Conference, pp. 2413–2419, 2014.

182

http://www.jstor.org/stable/j.ctv7h0skv
http://www.jstor.org/stable/j.ctv7h0skv
http://lairs.eng.buffalo.edu/wiki/images/1/10/RC30.pdf
http://dx.doi.org/10.1016/j.jcp.2010.07.020


Bibliography

[145] P. Piprek, S. Gros, and F. Holzapfel, “A distributed robust optimal control framework

based on polynomial chaos,” in CEAS Specialist Conference on Guidance, Navigation &

Control (EuroGNC 2019), 2019.

[146] T. Leth, “Polynomials in the bernstein basis and their use in stability analysis,” Ph.D.

dissertation, Aalborg University, 2017.

[147] L. Dagum and R. Menon, “OpenMP: An industry-standard api for shared-memory

programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, p. 46–55, Jan. 1998.

[148] M. P. Forum, “MPI: A message-passing interface standard,” USA, Tech. Rep., 1994.

[149] R. P. Garg and I. A. Sharapov, “Techniques for optimizing applications: High performance

computing,” 2001.

[150] B. Houska and Y. Jiang. Springer, 2021, ch. Distributed Optimization and Control with

ALADIN, p. 135–163.

[151] V. M. Zavala and L. T. Biegler, “The advanced-step nmpc controller: Optimality, stability

and robustness,” Automatica, vol. 45, no. 1, pp. 86–93, 2009. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0005109808004196

183

https://www.sciencedirect.com/science/article/pii/S0005109808004196




Petr Listov

Route de la Maladière, 4
1022 Chavannes-près-Renens

Switzerland
H +41 (075) 412 3713
B plistov@gmail.com

Date of Birth: 14.06.1989

Summary
• PhD in Electrical Engineering with 8+ years of experience in algorithms and numerical
software for motion planning and control

• Solid expertise in numerical optimisation, simulation, predictive control and robotic systems

Work Experience
2016–2021 PhD Candidate, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

• Developed a software framework for fast embedded nonlinear optimisation and optimal
control. The software has been used in several research projects and teaching robotic
practicals at the University.

• Demonstrated first autonomous flight of a small-scale airborne wind energy (AWE)
kite prototype using embedded optimal control. The platform led to 2 master theses
and one follow-on PhD thesis.

• Co-developed an NMPC algorithm for autonomous racing at Roborace competition
with Arrival Racing Team.

• Supervised 14 master students, assisted with Control Systems and Model Predictive
Control courses, co-designed robotic practicals, twice coached teams in interdisci-
plinary robotic competition.

March–July
2019

Consultant, Arrival Ltd, London, UK.
• Implemented fast motion planning and NMPC algorithms for automatic parking in

dynamic environments using my software framework. The work prompt the company
to further explore embedded optimisation solutions and led to a follow-on project
with the company’s racing division.

2013–2016 Lead Research Engineer, RoboCV, Moscow, Russia.
• Developed an NMPC algorithm for trajectory tracking and precise pallet handling of

the company autonomously guided vehicles (AGV).
• Created an encoder calibration methodology using gradient-free optimisation. This

approach facilitated quick and simple calibration of customer’s vehicles at the de-
ployment sight.

• Developed a pose estimation algorithm based on AR markers and camera.
• Led a team of two engineers to develop a motion planning technique for AGV in

warehouse environment. The algorithm would allow global and local real-time path
re-planning in the presence of static and dynamic obstacles.

• Actively participated in trial and deployment robotisation projects at Volkswagen
(33 robots deployed) and Samsung (9 robots deployed) plants in Moscow as well as
several major retail companies in Russia.

185



2012–2013 Junior Researcher, RoboCV, Moscow, Russia.
• Created a simulation model for the company mobile robot prototype in Gazebo.
• Developed a predictive path matching algorithm for autonomous navigation of mobile

robots in warehouse environment.
• In collaboration with Sputnix LLC, developed and deployed an EKF-based orbit

parameters estimation algorithm using limited GPS data and the SGP-4 ballistic
model.

Education
2016–2021 PhD Candidate in Electrical Engineering,

Automatic Control Laboratory, EPFL.
Thesis title: Real-Time Embedded NMPC for Fast Mechatronic Systems
Thesis director: Prof. Colin N. Jones

2006–2012 Master in Automatic Control Systems for Flight Vehicles, 4.7/5,
Department of Computer Science and Control Systems,
Bauman Moscow State Technical University, Moscow, Russia.
Thesis title: Vision-Based Navigation for Unmanned Aerial Vehicle

Languages
English Full professional proficiency French Elementary proficiency
German Limited working proficiency Russian Native proficiency

Software Tools
Programming languages: C++, C, Matlab, Python
Mathematical programming: Eigen, CasADi, Boost (BGL, OdeInt) SciPy, TensorFlow, OpenCV,
OpenMP\MPI
Robotics and aerodynamics: ROS\2, Gazebo, XFLR5, VRPN
Development tools: QtCreator, Git, CLion, PyCharm

Publications
[1] E. Ahbe, P. Listov, A. Iannelli, and R. S. Smith. Feedback control design

maximizing the region of attraction of stochastic systems using polynomial
chaos expansion. IFAC-PapersOnLine, 53(2):7197–7203, 2020. 21th IFAC World
Congress.

[2] Y. Jiang, P. Listov, and C. Jones. Block BFGS based distributed optimization
for NMPC using PolyMPC. Accepted to European Control Conference, 2021.

[3] P. Listov, T. Faulwasser, and C. Jones. Nonlinear model predictive path following
control of a fixed-wing single-line kite. In Book of Abstracts of the International
Airborne Wind Energy Conference (AWEC 2017), page 90, Freiburg, Germany,
2017. University of Freiburg | Delft University of Technology.

[4] P. Listov and C. Jones. PolyMPC: An efficient and extensible tool for real-time
nonlinear model predictive tracking and path following for fast mechatronic
systems. Optimal Control Applications and Methods, 41(2):709–727, 2020.

186


	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Introduction and Contributions
	PolyMPC: software for fast embedded Nonlinear Model Predictive Control
	Identification and Flight Control of Rigid-Wing Airborne Wind Energy Kites
	Predictive Control for Autonomous Racing

	Collaborations
	Publications

	I PolyMPC: Software for Fast Embedded NMPC
	Software Design and Algorithms
	Purpose and Design Goals
	Pseudospectral Methods for Optimal Control
	Optimisation Kernel
	Examples
	Benchmarks
	Summary


	II Identification and Predictive Flight Control of Rigid-Wing Airborne Wind Energy Kites
	Introduction
	State of the art
	Contributions

	Modelling of a Rigid-Wing AWE Kite
	Modelling: Aircraft
	Modelling: Ground Station and Tether
	Prototype: Hardware
	Prototype: Software
	Summary

	Identification of an AWE Kite
	Identification
	Identification Experiments
	Nonlinear Multi-experiment Identification via Dynamic Optimisation
	Summary

	Predictive Path Following Control
	Hierarchical Control Scheme
	Experimental Results
	Summary


	III Predictive Control for Autonomous Racing
	Predictive Path Following Control for Racing
	Modelling of a Racing Car
	Trajectory Optimization Framework
	Implementation
	Results
	Summary

	Stochastic NMPC for Safe Autonomous Driving
	Polynomial Chaos Expansion
	Distributionally Robust Constraints
	Stochastic Optimal Control with Prestabilising Controller
	Optimal Path Planning
	Trajectory Optimisation under Parametric Uncertainties 
	Sensitivity Analysis
	Summary


	IV Conclusions and outlook
	Bibliography
	Curriculum Vitae



