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Optimizing probe width σ

Figure S1: Transition level of the local probe as a function of its Gaussian charge distribution
width σ compared to hydrogen interstitial (starred) in GaP. Note that here the single-particle
energy levels are not finite-size corrected.

The probe used in this work follows a local potential
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where σ determines the width of the Gaussian charge distribution. It has been shown that

increasing σ shifts the defect level up monotonously.? In this work, we select the optimized

σ based on the level of hybridization between the defect state and the valence band. In most

of the cases, this is sought by setting the not-finite-size-corrected D(0/+) transition level

calculated at PBE level in the middle of the band gap. Figure S1 demonstrates this selection

of σ in GaP. While the hydrogen interstitial transition level falls into the valence band, with

optimized σ = 0.86 Bohr, the X(0/+) level sits right in the middle of the band gap. This

optimization process allows us to achieve localized state in materials where physical defects

fail to work.

In most of materials surveyed in this work, we are able to find σ that sets the transition

level right in the middle of the band gap. However, in some cases, the H(0/+) transition

level already sits above midgap and tuning σ fails to bring it to the middle. In these cases,

a minimum σ of 0.05 Bohr is used. Another exception is that for ZnO, we found stronger

interaction between the probe state and the band states with larger σ. As such, we selected

the minimum σ that creates an in-gap defect state, which is 0.25 Bohr. As we have discussed

in the manuscript, as far as a well-localized state is achieved, the value of σ and the specific

defect type hardly affect the corresponding αK value sought.

The case of silicon

In most of the materials we surveyed, the perturbative one-shot method produces single-

particle energy levels quantitatively similar to the full self-consistently method. The rationale

here is that the localized defect wave function at PBE0 level does not differ too much from

the PBE one. Silicon provides an exception in the list of materials studied in this work.

Figure S2 shows the occupied and unoccupied levels in the gap with varying α in silicon.

The hydrogen interstitial level lies close to the band edge and hybridizes strongly with the

valence band (Figure S2a). The close similarity between PBE and PBE0 defect wave function
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Figure S2: Occupied and unoccupied defect levels in Si with varying α for (a) hydrogen
interstitial with full PBE0(α) calculation, (b) optimized probe with full PBE0(α) calculation,
and (c) optimized probe with one-shot PBE0(α) calculation.

is broken in this case. As a result, we observe that the defect level versus α slope changes

from the small-α regime to the large-α regime, which results in two different αKs. Here αK

= 0.06 corresponds to a band gap of 0.84 eV while αK = 0.21 corresponds to a band gap

of 1.54 eV, both deviating from the experimental value (1.23 eV). This is one of the cases

where the hydrogen interstitial method fails.

Replacing the hydrogen interstitial with the optimized probe brings the defect levels into

the gap and reduces the change in slope as α increases. However, there is still a non-negligible

change in the resulted αK (Figure S2b). Extrapolating from the high α regime gives αK =

0.14, with a band gap of 1.21 eV.

In the one-shot method (Figure S2c), PBE wave function is retained throughout and the

linearity is kept across the range of α. The obtained αK is very close to that of the full

calculation in the high-α regime and both predict accurate band gaps. In other words, even

though the PBE wave funtion used in the one-shot method does not reproduce exactly the

defect state at high αK , the resulting αK values are close. Out of the nineteen materials

studied in this work, we only observe this behavior in Si and TiO2. Whether this agreement
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between full and one-shot calculations is coincidental or not remains an open question.

The evolution of defect wave function with α is shown in Figure S3. Here we can directly

observe that, the H0 wave function hybridizes with the valence band and is spread across the

cell, whereas H+ level moves away from the band edge as α increases and tends to localize

at high α. This explains the non-linearity of H+ level versus α in Figure S2a. In contrast,

for the optimized probe, the change in the defect wave function is much less pronounced as

a localized in-gap state is achieved (Figure S3c, d).

Figure S3: Wavefunction densities (|ψD|2) averaged on the xy plane at Γ-point for (a) the
highest occupied band of H0, (b) the highest occupied band of H+, (c) the lowest unoccupied
band of X0, and (d) the lowest unoccupied band of X+ in Si.
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Band gaps predicted by one-shot method

Table S1: Band gaps (in eV) and obtained αK using hydrogen interstitial defect and potential
probe compared with QSGŴ and experimental values for the one-shot method. Zero-phonon
renormalizaton (ZPR) corrected experimental band gaps are taken from ref ? and used
as references for calculating the mean absolute error (MAE). QSGŴ are taken from ref ?
. For the validity of comparison, MAEs on the same row only include materials for which
data from both methods are available. Since the hydrogen interstitial method is only valid
for three 3d materials, it is excluded from the 3d MAE and total MAE comparison.

H(0/+) X(0/+)

Eg(αK) σ (bohr) Eg(αK) QSGŴ Expt + ZPR
sp semiconductors

AlAs 2.03(0.12) 0.92 1.99(0.11) 2.39 2.28
AlP 2.21(0.12) 0.20 2.27(0.13) 2.56 2.54
Ar 13.70(0.51) 0.53 14.42(0.58) 14.23 14.33
BN 6.51(0.24) 0.05 6.51(0.24) 6.59 6.74
C 5.73(0.21) 0.14 5.72(0.21) 5.83 5.85

CaO 6.31(0.28) 0.15 6.35(0.28) 6.79 7.09
LiCl 9.33(0.34) 0.31 9.51(0.36) 9.87 9.57
LiF 15.25(0.48) 0.18 15.37(0.49) 15.52 15.35
MgO 8.20(0.33) 0.05 8.21(0.33) 8.37 8.36
Si — 1.23 1.15(0.12) 1.27 1.23
SiC 2.52(0.19) 0.05 2.49(0.18) 2.56 2.52
MAE 0.28 0.20 0.12

3d materials
GaN — 0.29 3.35(0.19) 3.61 3.67
GaP — 0.86 2.37(0.15) 2.41 2.43
GaAs — 0.67 0.99(0.09) 1.58 1.57
ZnO — 0.25 3.08(0.24) 3.41 3.60
InP — 0.78 1.13(0.09) 1.42 1.47
ZnS 3.39(0.17) 0.30 3.52(0.19) 3.63 3.94
ZnSe 1.81(0.11) 0.07 1.91(0.13) 2.75 2.87
TiO2 3.19(0.14) 0.05 3.21(0.14) — 3.30
MAE 0.46 0.11
MAE 0.29 0.11
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Band gaps predicted by the CAM functional

Table S2: Band gaps (in eV) and obtained αK for PBE0 and CAM functionals compared
to HSE06 and experimental values. Dielectric constants, HSE06-calculated band gaps, and
ZPR corrected experimental band gaps are taken from ref ? .

PBE0(αK) CAM(αs,K ,αl = 1/ε, µHSE)

Eg(αK) ε αl Eg(αs,K) HSE06 Expt
sp semiconductors

AlAs 1.99(0.11) 8.16 0.12 1.96(0.09) 1.93 2.28
AlP 2.31(0.14) 7.54 0.13 2.31(0.15) 2.27 2.54
Ar 14.70(0.61) 1.66 0.60 14.70(0.61) 10.36 14.33
BN 6.53(0.24) 4.50 0.22 6.79(0.26) 5.83 6.74
C 5.71(0.21) 5.70 0.18 5.75(0.23) 5.35 5.85

CaO 6.40(0.29) 3.30 0.30 6.48(0.28) 5.30 7.09
LiCl 9.65(0.37) 2.70 0.37 9.64(0.37) 7.80 9.57
LiF 15.83(0.53) 1.90 0.53 15.76(0.52) 11.50 15.35
MgO 8.32(0.34) 3.00 0.33 8.35(0.35) 6.47 8.36
Si 1.21(0.14) 12.00 0.08 1.03(0.12) 1.14 1.23
SiC 2.34(0.16) 6.52 0.15 2.66(0.26) 2.24 2.52
MAE 0.248 0.228 1.425

3d semiconductors
GaN 3.58(0.22) 5.30 0.19 3.21(0.16) 3.14 3.67
GaP 2.36(0.14) 9.10 0.11 2.59(0.25) 2.31 2.43
GaAs 1.00(0.09) 10.58 0.09 1.02(0.09) 1.26 1.57
InP 1.13(0.09) 9.60 0.10 1.17(0.08) 1.47 1.47
ZnO 3.13(0.25) 3.74 0.27 3.22(0.25) 2.43 3.60
ZnS 3.57(0.20) 5.13 0.19 3.63(0.21) 3.29 3.94
ZnSe 2.03(0.14) 5.90 0.17 2.09(0.14) 2.20 2.87
TiO2 3.19(0.14) 5.70 0.18 2.94(0.08) 3.39 3.30
MAE 0.358 0.412 0.443

Total MAE 0.294 0.306 1.011

The parameters of the range-separated CAM functional is determined as the following:

The fraction of long-range Fock exchange αl is set to 1/ε, where ε is the dielectric constant

taken from experimental values.? The screening length µ is fixed to 0.106 Bohr−1, which

is the value used in HSE06 functional.? ? The fraction of short-range Fock exchange αs is

sought by enforcing Koopmans’ condition with the optimized probe.

A complete list of the parameters for the CAM functional and comparison with PBE0(αK)
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and HSE06 band gaps is included in Table S2. We can see that for simple sp semiconductors,

K-CAM has similar accuracy as K-PBE0, reducing the mean absolute error to 0.23 eV from

the HSE06 error of 1.43 eV. However, the mean absolute error for 3d semiconductors is almost

doubled, with K-CAM yielding an error of 0.41 eV. On the other hand, while HSE06 tends to

significantly underestimate the band gaps of sp materials, especially those with intermediate

to wide band gaps, the predictions for 3d materials are within reasonable range and gives a

similar mean absolute error comparing to K-CAM.
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