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Abstract

We present a calculation-efficient procedure for nonempirically tuning hybrid func-

tionals to accurately predict band gaps of solid systems. By inserting an optimized

potential probe, we obtain localized electronic state and seek the optimal mixing pa-

rameter by enforcing Koopmans’ condition on the achieved state. This method yields

an averaged band gap error of 0.25 eV for simple sp materials and 0.39 eV for 3d ma-

terials. We further propose a perturbative one-shot approach where the single-particle

eigenvalues are calculated with wave functions obtained at the semilocal level, which

reduces the computational cost of optimal tuning by an average of 85% without dete-

riorating the accuracy. Tests on different defect species and functional forms suggest

that the scheme is robust in producing accurate band gaps across narrow band-gap and

wide band-gap solids.

Kohn-Sham density functional theory (KS-DFT)1,2 with local-density approximation

(LDA) or generalized gradient approximation (GGA) is known to underestimate materi-

als band gap due to the self-interaction error.3,4 Hybrid functionals open up the gap by
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mixing a fraction of the non-local Fock exchange and thus greatly improve the predictions.5

For instance, the hybrid Perdew-Burke-Ernzerhof (PBE0) functional6,7 mixes a fraction α

= 0.25 of the Fock exchange. Another important group of functionals, commonly named

as the range-separated Coulomb attenuating method (CAM)-type functional,8 separates the

nonlocal exchange potential into long-range (LR) and short-range (SR) parts bridged by the

error function.
1

|r− r′|
=

1− erf(µ|r− r′|)
|r− r′|︸ ︷︷ ︸

SR

+
erf(µ|r− r′|)
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. (1)

The exchange potential then gives the form

vx(r, r′) = αsv
sr−Fock
x (r, r′;µ)+(1−αs)v

sr−PBE
x (r;µ)+αlv

lr−Fock
x (r, r′;µ)+(1−αl)v

lr−PBE
x (r;µ).

(2)

Here vsr−PBE
x (r;µ), vlr−PBE

x (r;µ) represent the short-range and long-range semilocal exchange

potentials, while vFockx (r, r′) represents the exact Fock exchange. Heyd-Scuseria-Ernzerhof

(HSE) is one of the most widely used range-separated functionals, in which µ is set to 0.106

Bohr−1, αs = 0.25, and αl = 0.9,10 In the limit of µ→ 0, it falls back to the form of PBE0.

Despite the great success of the hybrid functional family in improving band gap de-

scription, the parameterized nature of the functionals limits their applicability to specific

types of materials. While PBE0 performs well on materials with intermediate band gaps,

it overestimates for small band-gap materials in which electrons are easily polarizable and

a stronger screening is required, and underestimates for wide band-gap materials in which

the screening is minimal.11 HSE06 functional also suffer from the latter due to the elimi-

nation of the long-range Fock exchange.12 Nonempirical hybrid functionals, for which the

mixing parameters are chosen system-specifically satisfying exact constraints, are designed

to address this challenge.11–14 One such direction is to enforce the generalized Koopmans’

condition on the system.15 By creating a localized state in the system where one can add

or remove one electron from the orbital and tune the parameters of hybrid functionals to
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ensure that the single-particle energy level does not change whether empty or filled, one

essentially retains the piecewise linearity of the functional upon electron insertion according

to Janak’s theory.16 Enforcing the generalized Koopmans’ condition has been demonstrated

to be an effective method for determining parameters in hybrid functionals in a nonempirical

fashion, yielding accurate description for electronic structures for a wide range of solid-state

materials17–23 as well as molecules.24–29

To search for the optimized parameters for the hybrid functionals by enforcing Koopmans’

condition, a procedure often times referred to as optimal tuning, requires performing multiple

self-consistent hybrid calculations for the localized states. The rather burdensome tuning

procedure limits the practical use of Koopmans’ method as a cheap alternative to many-

body perturbation theory calculations.30–34 In this paper, we present a calculation-efficient

process for applying Koopmans’ method on crystalline systems through defect insertion. We

simplify the generalized Koopmans’ method on two aspects. First, we have shown that by

using an adjustable hydrogenic-like potential probe, one can move the defect level within the

band gap.18 The probe is defined by a local potential

Vloc(r) = −1

r
erf

(
r√
2σ

)
, (3)

where σ determines the width of the Gaussian charge distribution.The degree of hybridiza-

tion between the defect state and band states serves as a criterion for selecting the defect

that most accurately retains the generalized Koopmans’ condition. Second, the defect wave

functions obtained by the semilocal approach are oftentimes approximately similar to those

obtained through the full self-consistent application of a hybrid functional given that the

defect states are properly localized. This allows one to envisage a perturbative approach in

which the single-particle energy levels are calculated with semilocal wave functions, avoiding

the full self-consistent hybrid calculation and thus greatly reducing the total computational

cost. Simplifying and automating the implementation allows us to study systems with larger
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number of electrons and semi-core states and test this approach on materials ranging from

simple sp materials to 3d transition metal materials.

All calculations are performed with Quantum ESPRESSO35–37 with plane wave basis

sets and normconserving pseudopotentials.38,39 Semicore states are explicitly included. For

the tuning process, 64-atom supercells are used for the defective calculations with Γ-point

to obtain the αK values. Energy cut-offs are individually selected with band gap accuracy

within 1 meV. The single-particle defect levels are obtained with no structural relaxation

with a convergence criterion of 10−8 Ry for each self-consistency step. For charged cell

calculations, state-of-the-art finite-size corrections are applied,40 where ∆Ecorr is calculated

with the Freysoldt-Neugebauer-Van de Walle (FNV) scheme41 and the correction for the

individual KS defect level εKS
corr = −2

q
∆Ecorr. Unit cells are used for calculating the band

gaps with the optimally-tuned αK using sufficiently dense k-point grids which achieve a

band gap convergence of 1 meV. The structures of the materials calculated can be found in

Ref 42 where experimental lattice parameters are used. Details of optimizing the adjustable

potential probe are provided in Section 1 of Supporting Information.

In Figure 1 we demonstrate the tuning procedure for a PBE0(αK) (K-PBE0) functional

with hydrogen interstitial (H) and potential probe (X) states in GaP as an example. For

each defect state, we calculate its occupied (D0) and unoccupied (D+) single-particle energy

level with varying α. These levels evolve linearly with increasing α, and their intersecting

point represents the α at which the Koopmans’ condition is satisfied. Certain defect types,

like the hydrogen interstitial in GaP shown here, hybridize strongly with the band-edge

states. In these cases, the defect states are ill-defined and we exclude them from further

calculations. We also note that for some of the hybridized states, the single particle level

does not change linearly with respect to varying α. An example of Si is given in Figure S2

in Supporting Information where strong non-linearity is observed for the H+ level and the

resulted αK produces relatively large error. In contrast, tuning the width of the adjustable

probe σ moves the defect level close to the middle of the band gap and restore the linear

4



behavior, as shown by the X0 and X+ states in Figure 1. By using the optimized probe, we

achieve localized states in all materials considered in this work.

Figure 1: Single-particle energy levels for the probe and hydrogen interstitial defect varying
with the mixing parameter α in GaP. The intersecting point of the occupied and unoccupied
levels represent αK which satisfies Koopmans’ condition.

Table 1 summarizes the αK values and corresponding band gaps obtained with the hy-

drogen interstitial and the optimized probe. Six out of the nineteen materials considered

in this work have hydrogen interstitial levels that fall below the valence band. For those

materials in which the hydrogen interstitial level fall within the band gap, the resulted αK

by enforcing Koopmans’ condition on the hydrogen state does not differ much from the αK

values obtained with the optimized probe. The mean absolute errors (MAEs) in band gap as

compared to experimental values are also similar, as shown graphically in Figure 2. This sug-

gests that as long as a well-localized defect state is defined, the Koopmans’ scheme is robust

in producing similar mixing parameters regardless of the specific defect type. The advantage

of using the potential probe is that it provides an automated procedure for locating in-gap

defect states that is universally applicable to different materials.

We benchmark the band gaps produced by the K-PBE0 functional in Table 1 by com-
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paring with experimental values. Since electron-phonon coupling is not included in the cal-

culations, the zero-point renormalization (ZPR) terms are added to the experimental band

gaps to correct for the gap modification due to zero-point motion.43 For simple sp materials,

K-PBE0 obtained with the optimized potential probe results in a MAE of 0.27 eV, with a

maximal error of 0.69 eV for CaO (band gap 7.09 eV). The prediction accuracy is consistent

from narrow band gap materials (1.23 eV for Si) to wide band gap insulators (15.35 eV for

LiF) with a mean absolute relative error of 5.1%. However, when 3d semi-core states are

involved, the K-PBE0 functional appears to systematically underestimate the band gaps.

The MAE increases from 0.27 eV to 0.39 eV, with a mean absolute relative error (MARE)

of 16.6 %.

Figure 2: Comparison between the calculated PBE0(αK) and the ZPR-corrected experimen-
tal band gaps through enforcing Koopmans’ condition of (a) hydrogen interstitial Hi(+/0)
and (b) the potential probe X(+/0) from full self-consistent calculations. Simple sp semi-
conductors are shown with square markers whereas materials with d valence electrons are
shown with circle markers. For the sake of comparison, materials in Table 1 for which the
hydrogen interstitial method does not work are excluded in calculating the MAEs.

We also compare the K-PBE0 results with the quasiparticle self-consistent GW calcula-

tions44,45 with state-of-the-art vertex correction (QSGŴ).34 The QSGŴ method produces
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an overall MAE of 0.11 eV consistently across the table. The MARE increases from 1.9%

for sp materials to 3.4% and 3d semiconductors and we also observe a systematic underesti-

mation of the band gaps of 3d materials, which is possibly due to the high d-orbital energy

error in GW method.46,47

With the accuracy of the K-PBE0 functional established, now we turn to the perturbative

one-shot approach to simplify the calculation scheme. The approach is based on the follows:

for a well-localized defect state, as the ones achieved with the optimized potential probe, the

defect wave function calculated at the PBE0 level does not change much from the one cal-

culated at the semilocal PBE level.48 This allows one to calculate single-particle eigenvalues

from the semilocal PBE functionals and avoid the burdensome process of obtaining PBE0

wave functions in a self-consistent manner where the exact exchange needs to be calculated

at each step. In other words, we calculate the defect single-particle level as

εKS
D ≈< ψPBE

D |ĤKS[ψPBE
i ]|ψPBE

D > (4)

where ĤKS[ψPBE
i ] represents the full Kohn-Sham Hamiltonian with Fock exchange calculated

with the PBE wave functions.

In Figure 3, we show the difference and relative errors in the predicted band gaps obtained

with the full self-consistent hybrid calculations and with the one-shot method. We observe

that for all the materials considered here, the discrepancies are either less than 0.25 eV, or

5% of the materials band gap, as indicated by the grey bands in Figure 3. The one-shot

method produces a MEA of 0.29 eV (see Table S1 in Supporting Information) as compared

to 0.30 eV for the full calculation (Table 1), indicating that the fluctuations in αK brought

about by the approximation does not harm the overall accuracy of the Koopmans’ scheme

with significant reduction in the computational cost. While the standard hybrid calculations

commonly take five to ten steps to reach self-consistency, the one-shot method only requires

calculating the exact exchange Fock operator once in calculating ĤKS[ψPBE
i ]. By comparing
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Table 1: Band gaps (in eV) and obtained αK using hydrogen interstitial defect and po-
tential probe compared with QSGŴ and experimental values. Zero-phonon renormalizaton
(ZPR) corrected experimental band gaps are taken from ref 12 and used as references for
calculating the mean error (ME), mean absolute error (MAE) and mean absolute relatively
error (MARE). QSGŴ are taken from ref 34. For the validity of comparison, MAEs on the
same row only include materials for which data from both methods are available. Since the
hydrogen interstitial method is only valid for three 3d materials, it is excluded from the 3d
and total ME, MAE, MARE comparison.

H(0/+) X(0/+)

Eg(αK) σ (bohr) Eg(αK) QSGŴ Expt + ZPR
sp semiconductors

AlAs 2.03(0.12) 0.92 1.99(0.11) 2.39 2.28
AlP 2.25(0.13) 0.20 2.31(0.14) 2.56 2.54
Ar 14.60(0.60) 0.53 14.70(0.61) 14.23 14.33
BN 6.52(0.24) 0.05 6.53(0.24) 6.59 6.74
C 5.73(0.21) 0.14 5.71(0.21) 5.83 5.85

CaO 6.35(0.28) 0.15 6.40(0.29) 6.79 7.09
LiCl 9.50(0.35) 0.31 9.65(0.37) 9.87 9.57
LiF 15.73(0.52) 0.18 15.83(0.53) 15.52 15.35
MgO 8.31(0.34) 0.05 8.32(0.34) 8.37 8.36
Si — 1.23 1.21(0.14) 1.27 1.23
SiC 2.28(0.15) 0.05 2.34(0.16) 2.56 2.52
ME −0.13 −0.08 0.01
MAE 0.26 0.27 0.12
MARE 5.3% 5.1% 1.9%

3d materials
GaN — 0.29 3.58(0.22) 3.61 3.67
GaP — 0.86 2.36(0.14) 2.41 2.43
GaAs — 0.67 1.00(0.09) 1.58 1.57
InP — 0.78 1.13(0.09) 1.42 1.47
ZnO — 0.25 3.13(0.25) 3.41 3.60
ZnS 3.46(0.18) 0.30 3.57(0.20) 3.63 3.94
ZnSe 2.11(0.15) 0.07 2.03(0.14) 2.75 2.87
TiO2 3.19(0.14) 0.05 3.19(0.14) 3.30
ME -0.39 -0.11
MAE 0.39 0.11
MARE 16.6% 3.4%
ME -0.20 -0.03
MAE 0.30 0.11
MARE 9.4% 2.6%
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the wall time for obtaining εKS
D , we found an average of 85% reduction in computational

time in obtaining αK for the K-PBE0 calculations.

Figure 3: Differences and relative errors in band gap values between the full self-consistent
and perturbative one-shot calculations.

To further explore the influence of functional form, we compared the K-PBE0 functional

with a Koopmans-compliant CAM functional (K-CAM). The K-CAM functional is designed

as follows. The screening parameter µ is set to 0.106 Bohr−1 as in HSE06 and αl is set

to 1/ε∞. The latter setting describes correctly the long-range dielectric screening49–51 and

has been shown to produce accurate electronic structures for solid state systems,12,20,52,52,53

also commonly named as dielectric-dependent hybrid (DDH) functionals. αs is sought by

enforcing Koopmans’ condition on the optimized probe state following the same scheme as

the K-PBE0 functional we have described so far and annotated as αs,K . Details on the

resulted αs,K , αl, and band gaps for each material are listed in Table S2 of Supporting

Information along with HSE06 results.

In Figure 4, we compare the band gap errors of the K-PBE0 and K-CAM functionals

referenced to ZPR-corrected experimental values. We observe that, for simple sp materials,

the K-CAM functional performs similarly as K-PBE0, producing a MAE of 0.23 eV as

compared to 0.25 eV for K-PBE0. The performance is slightly worse for 3d materials. The K-

CAM functional appears to give a systematic underestimation of the band gaps, especially for

Zn-based materials. The MAE increases to 0.53 eV from 0.39 eV of the K-PBE0 functional.

These results lead us to the conclusion that, while tuning the range-separated functional by

enforcing Koopmans’ condition improves the band gap prediction from HSE06 functional
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Figure 4: Band gap errors calculated with the CAM(αs,K ,αl = 1/ε∞,µHSE) functional com-
pared to PBE0(αK). Simple sp semiconductors are shown on the left panel whereas materials
with d valence electrons are shown on the right. The grey bands respective MAEs calculated
with CAM functional.

(the total MAE decreases from 1.01 eV to 0.36 eV), the gain in accuracy is minimal, if at

all, compared to the K-PBE0 functional. This finding is in agreement with previous works

where the tests were done on a smaller set of materials.17,19

In summary, we have studied hybrid functional tuning by enforcing Koopmans’ condition

on defect probe state for an extended list of semiconductors and insulators. We show that

while the natural hydrogen interstitial states are heavily delocalized in some materials and

render the Koopmans’ scheme invalid, the optimized probe works universally across different

materials and produces a total MAE of 0.30 eV in band gap with the PBE0(αK) functional.

Out of these values, the accuracy is on average 0.25 eV for simple spmaterials, and 0.39 eV for

3d materials, indicating that the inclusion of d orbitals deteriorates the predictions. Based on

the rationale that the wave functions of localized defect states do not vary significantly with

α, we implemented a perturbative one-shot method in which the PBE wave functions are

used to calculate the single-particle PBE0 Hamiltonian and to obtain the eigenvalues. The

one-shot method reduces the computation time by 85% comparing to the full self-consistent

calculation without undermining the accuracy. Last, we compared the PBE0(αK) functional

with a range-separated CAM functional in which αl is fixed to 1/ε, screening parameter

0.106 Bohr−1 as in HSE06, and αs sought by enforcing Koopmans’ condition. We find that

while this K-CAM functional performs better than HSE06 in terms of averaged accuracy

(0.31 eV for the former, 1.01 eV for the latter), the improvement is minimal comparing to
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K-PBE0. On account of these findings, we propose the perturbative one-shot approximation

with optimized potential probe as a cheap and robust technique for tuning nonempirical

hybrid functionals.
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