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Abstract. We prove the semi-global controllability and stabilization of the (1+1)-dimensional
wave maps equation with spatial domain S1 and target Sk. First we show that damping
stabilizes the system when the energy is strictly below the threshold 2π, where harmonic maps
appear as obstruction for global stabilization. Then, we adapt an iterative control procedure
to get low-energy exact controllability of the wave maps equation. This result is optimal in the
case k = 1.

1. Introduction

1.1. The wave maps. Wave maps are prototypes of geometric wave equations. Let us be
given a Riemannian manifold (M, g) and the classical (R1+n, h) with Minkowski metric h =
diag(−1, 1, ..., 1). If we consider functions with geometric target,

φ : R× Rn →M
with Lagrangian of the form

LhM =

∫
R1+n

−|∂tφ|2g + |∇xφ|2g dtdx,

the Euler-Lagrange equation is given by

Dα∂αφ = 0,

which, in local coordinates, has the form

2φi + Γijk(φ)∂αφj∂αφ
k = 0,

with d’Alembertian 2 referring to −∂tt + ∆. We shall also keep in mind the special case with
M being a submanifold of Rm equipped with the Euclidean metric, such as Sd ⊂ Rd+1. In these
cases, thanks to the special structure of the second fundamental form, the wave maps equation
becomes

2φ+ Sφ(∂αφ, ∂αφ) = 0,

where Sφ is a symmetric quadratic form on the tangent space mapping into the normal space.

The well-posedness and singularity formation issues of wave maps have been extensively
studied in the past few decades. In general the well-posedness in Hs(Rn)-spaces is related
to various factors, such as the energy critical dimension n = 2, the Sobolev degree threshold
s = n

2 , the scale of data, the lifespan, and geometric features of the target M. There is a
huge amount of literature dedicated to this topic, see for example the works by Christodoulou–
Tahvildar-Zadeh [6, 7], Klainerman-Machedon [23], Tao [41, 42, 43, 44, 45, 46, 47], Tataru [48],
Sterbenz-Tataru [39, 40], Krieger-Schlag [25]. We also refer to the survey by Tataru [49] and the
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references therein. The evolution of wave maps becomes more delicate for large data in energy
critical (and supercritical) cases, as finite time blow up may occur. Singularity formation has
been among one of the central topics of dispersive equations in the last few decades, see for
example [24, 35, 36] in the wave maps context.

Remark that in some situations wave maps admit non trivial stationary states: solutions of
the elliptic equation,

∆φi + Γijk(φ)∂αφj∂αφ
k = 0.

These solutions are the so-called harmonic maps. Harmonic maps form a central mathematical
topic with connections to various branches of mathematical physics, we refer to the lecture
notes by Schoen and Yau [38] for an introduction to them. It is natural that these objects are
crucial to the study of wave maps, for instance in [24] blow up solutions are explicitly found as
approximately self-shrinking harmonic maps. In this paper we further observe that harmonic
maps appear as obstruction for global damping stabilization.

In this work, more specifically, we focus on the (1 + 1)–dimensional wave maps with sphere
as target φ : R × S1 → Sk. The quadratic form Sφ is further simplified and the wave maps
equation becomes

2φ =
(
|φt|2 − |φx|2

)
φ, φ[0] = (g0, g1),

where φ[t] denotes (φ, φt)(t). For ease of presentation we also lift them to 2π-periodic wave
maps φ(t, x) : R × R → Sk ⊂ Rk+1 while keeping the same notation. This system is globally
well-posed for large data in Hs with s > 3/4 according to [22]. Finally we shall notice that
wave maps conserve the energy,

E(t) :=

∫
S1

(
|φt|2 + |φx|2

)
(t, x)dx = constant.

1.2. The controlled wave maps. Control theory aims at controlling systems using additional
control terms. For example, a general linear control system in finite dimension or infinite
dimension can be written as

ẋ = Ax+Bu

where x is the state and u is the control. Typical problems in control theory are controllability
problems and stabilization problems. We refer to the book by Coron [9] for an excellent intro-
duction on this topic.
Exact controllability in a set H means that by choosing suitable controls we are able to steer any
given initial state to another desired final state in H. In general H is chosen as a Hilbert space
or a small ball inside some Hilbert space. In the latter case we shall call it local controllability,
since states are supposed to be small (thus “local”)1. In this paper we only deal with exact
controllability problems. Other weaker controllability properties are also natural to investigate,
namely null controllability, approximate controllability and controllability around trajectory.
Stabilization is an action to stabilize systems with the help of suitable feedback controls, i.e.
controls are governed by feedback laws and we are interested in the stability of closed-loop
systems. Can we make the system asymptotically stable, exponentially stable or even rapidly
stable (namely, the exponential decay rate can be as large as we want)?

In this paper we are interested in control problems related to wave maps. For any initial
state u[0] taking values in Sk × TSk and any Rk+1-valued source term f(t, x) having regularity

1Remark that in control theory usually the terminology “local” is used to describe the scale of states, namely
small data, which is different from some other branches of PDEs’ study, for example “local well-posedness”
usually refers to well-posedness in a small time period.
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L2(0, T ;L2
x(S1)) we can look at the following inhomogeneous system:

(1.1) 2φ =
(
|φt|2 − |φx|2

)
φ+ fφ

⊥
, φ[0] = u[0]

where, by fφ
⊥

we refer to the orthogonal projection of f onto the tangent space φ⊥. In par-
ticular, when f(t, x) is chosen to coincide with 1ωf we call the preceding system an internally
controlled wave maps equation, since controls are supported in an internal domain ω ⊂ S1.

Moreover, the precise control term is given implicitly by 1ωf
φ⊥ .

First remark that the inhomogeneous wave maps equation (1.1) is Sk invariant, namely
φ[t] : S1 → Sk×TSk. Actually, if we denote by y(t, x) the value of |φ(t, x)|2, then the conditions
on the initial state φ[0] become

y(0, x) = 1 and yt(0, x) = 0, ∀x ∈ S1,

while the wave maps equation turns into a scalar wave equation in terms of y:

2y = 2〈2φ, φ〉 − 2
(
|φt|2 − |φx|2

)
= 2

(
|φt|2 − |φx|2

)
(y − 1).

Since the preceding wave equation admits a unique solution (y, yt) = (1, 0), the controlled wave
maps equation stays on Sk:

|φ(t, x)| = 1, ∀t ∈ R, ∀x ∈ S1.

In this geometric framework by performing “linearization” around trivial equilibrium points
we “roughly” arrive at the controlled wave equation, where we have also ignored the geometric
constraints upon controls and states,

2φ = 1ωf.

The controllability of wave equations has been heavily investigated in the past decades based
on the Hilbert Uniqueness Method (HUM) introduced by Lions [33]. Heuristically speaking,
HUM transforms controllability problems into (quantitative) unique continuation problems,
which are also known as duality and observability inequalities. Based on this observation
satisfactory controllability results have been discovered using different analytic techniques, for
example, in cases that the controlled domain verifies certain conditions, the multiplier method
leads to explicit observability inequalities [28]; on the other hand microlocal analysis provides an
(almost) necessary and sufficient condition for controllability properties, the so called Geometric
Control Condition (GCC) introduced by Bardos–Lebeau–Rauch [2] (we also refer to [3] for
a simplified proof), for which, however, the control is not always explicit due to the use of
compactness arguments.

In particular the preceding wave equation is exactly controllable in the space H1
x × L2

x(S1),
see Lemma 3.3 for a detailed statement of this result. This motivates the first question that we
may ask for the controlled wave maps equation.
Question 1: Is the controlled wave maps equation (globally) controllable?

1.3. Damping stabilization for waves. From now on we fix a(x) as some function that is
non-negative, smooth, and supported in ω ⊂ S1, which is assumed to have non-empty interior.
We shall also assume that a(x) is strictly positive in ω0, an interval inside ω. Let us consider
the damped wave maps equation,

(1.2) 2φ =
(
|φt|2 − |φx|2

)
φ+ a(x)φt, φ[0] ∈ Sk × TSk.

The damped wave maps equation can be regarded as a special case of the controlled wave maps
equation. In particular it also remains Sk-invariant whence φt ⊥ φ. In fact, by labelling y(t, x)
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the value of |φ(t, x)|2 we get

2y = 2
(
|φt|2 − |φx|2

)
(y − 1) + a(x)yt,

y(0, x) = 1 and yt(0, x) = 0, ∀x ∈ S1,

hence |φ(t, x)| = 1.
It is well-known that damping dissipates waves’ energy, we refer to the (nonlinear) wave

equations [1, 2, 18, 28], the defocusing Klein-Gordon equations [29], the (nonlinear) Schrödinger
equations [16], KdV [34, 37], among others. Indeed, this is also the case for wave maps:

1

2

d

dt
E(t) = −

∫
S1

a(x)|φt|2(t, x)dx ≤ 0,

thus implying

E(T )− E(0) = −2

∫ T

0

∫
S1

a(x)|φt|2(t, x) dxdt.

Based on this energy dissipation observation, it is natural to ask about the stability of such
damped systems: is the damped wave maps equation asymptotically stable or even exponen-
tially stable? In control theory this type of stabilization problem has been extensively studied,
which turned out to be linked with unique continuation problems and observability inequality
type estimates. To be more precise, suppose that the following observability inequality holds,

(1.3) E(0) ≤ c
∫ T

0

∫
S1

a(x)|φt|2(t, x)dxdt,

then the (nonlinear) system is exponentially stable with some decay rate depending explicitly
on T and c:

E(t) ≤ Ce−γtE(0), ∀t ∈ (0,+∞).

In the context of wave equations, damping terms lead to exponential stability provided GCC
is satisfied, according to [2]. Otherwise weaker stability properties can be expected such as
logarithmic stability, see for instance [1, 32] and the references therein on this subject.

By considering the nonlinear terms as perturbation, it is standard to derive from the stability
of the damped wave equations that the “linearized damped wave maps equation” is exponen-
tially stable. One may ask the following question:
Question 2: What is the global stability of the damped wave maps equation?

1.4. Main results and the strategy of proofs. In this paper we answer Questions 1–2
concerning (global) controllability and stabilization of wave maps. More precisely, we present
the following theorem on the quantitative semi-global controllability of wave maps, where by
semi-global we mean that the energy is strictly below 2π. We will see that 2π is the energy
threshold on stabilization of the damped wave maps equation, moreover, it is also optimal for
controllability if the wave maps’ target is S1. However, global controllability of wave maps is
anticipated when the target is Sk with k strictly greater than 1. To the best of our knowledge
this is the first control result on a geometric wave equation.

Theorem 1.1 (Semi-global exact controllability of wave maps). For any ν > 0 there exists
some effectively computable2 T ≥ 2π and C > 0 such that, for any pair of states u[0] and
u[T ] : S1 → Sk × TSk satisfying

‖u[0]‖2
Ḣ1
x×L2

x
, ‖u[T ]‖2

Ḣ1
x×L2

x
≤ 2π − ν,

2Throughout this paper the phrase “effectively computable” is used on those constants that can be totally
quantitatively expressed in terms of given parameters.
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we are able to construct a Rk+1-valued control f(t, x) satisfying

‖f‖L∞t L2
x([0,T ]×S1) ≤ C

(
‖u[0]‖Ḣ1

x×L2
x

+ ‖u[T ]‖Ḣ1
x×L2

x

)
,

such that the unique solution of the inhomogeneous wave maps equation

2φ =
(
|φt|2 − |φx|2

)
φ+ 1ωf

φ⊥ , φ[0] = u[0],

verifies (φ, φt)(t, x) ∈ Sk × TSk and

φ[T ] = u[T ].

Here we adapt a two-step strategy for semi-global controllability: global-stabilization/local-
control.

• The first step is devoted to stabilize wave maps’ energy using damping terms, as damping
terms can be regarded as special control terms. This process stops as soon as the energy
becomes sufficiently small. See Theorem 1.3 for details, whose proof is presented in
Section 2.
• In the second step we prove exact controllability of wave maps for states with small

energy. Actually, this step is again composed of two stages: we first prove local exact
controllability around every trivial equilibrium state, i.e. (p, 0) with p ∈ Sk; then for
any p, q ∈ Sk we move the state from (p, 0) to (q, 0) slowly. Section 3 is devoted to this
step leading to the proof of Theorem 1.2.

Such a global-stabilization/local-control strategy has been widely adapted to global controlla-
bility problems. It is natural to expect local controllability results in cases where linearized
systems are controllable. However, when dealing with global problems, usually controllability
around equilibria is not enough to conclude global controllability properties, as nonlinear terms
may play a significant role: that is the reason we first stabilize the system. Damping provides
a simple stabilization process for global stabilization of nonlinear systems, as we may observe
from the inequality (1.3) that exponential stability is hidden from observability inequalities
despite nonlinear structure. Successful examples include but are not limited to Benjamin-Ono
equations [30], KdV equations [31], NLW equations [18, 29], NLS equations [16].
Concerning global stabilization there exist many other techniques in the literature, for instance,
the authors in [14] have benefited from a stabilization process to move solutions around initial
states to some point near final states; in [15] based on the transport property of the viscous
Burgers equations some feedback laws have been constructed to globally stabilize states in short
time. We shall also mention that in some circumstances it is more efficient to obtain global
controllability without relying on stabilization. In particular, the return method introduced
by Coron turned out to be a powerful philosophy to get small-time global controllability, as is
the case for various models including Euler equations [8, 20], Navier–Stokes equations [10, 13],
KdV [4], the viscous Boussinesq system [5] among others.

Low-energy exact controllability of wave maps
Keeping in mind that wave equations are exactly controllable, by ignoring the geometric

constraints and regarding the controlled wave maps equation as a controlled semilinear wave
system, it sounds natural to expect local exact controllability around trivial equilibrium points
(p, 0) with p ∈ Sk. The main difficulty comes from the geometric constraint ensuring that u[t]
remains on the target Sk × TSk; this is handled by an iterative control construction.

Theorem 1.2 (Low-energy exact controllability of wave maps). There exist effectively com-
putable T ≥ 2π, es > 0 and CG > 0 such that, for any pair of states u[0] and u[T ] : S1 → Sk×TSk
satisfying

‖u[0]‖Ḣ1
x×L2

x
+ ‖u[T ]‖Ḣ1

x×L2
x
≤ es,
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we are able to construct a Rk+1-valued control function f(t, x) satisfying

‖f‖L∞t L2
x([0,T ]×S1) ≤ CG

(
‖u[0]‖Ḣ1

x×L2
x

+ ‖u[T ]‖Ḣ1
x×L2

x

)
,

such that the unique solution of the inhomogeneous wave maps equation

2φ =
(
|φt|2 − |φx|2

)
φ+ 1ωf

φ⊥ , φ[0] = u[0],

verifies (φ, φt)(t, x) ∈ Sk × TSk and

φ[T ] = u[T ].

Remark that low energy controllability implies the typical local controllability but is different
from the latter.

Semi-global stabilization of the damped wave maps.
Thanks to the preceding step, it suffices to prove semi-global approximate controllability,

namely for any initial state we are able to steer it towards some state having sufficiently small
energy.
Here, we focus on damping stabilization where damping terms can be regarded as a simple local
feedback law, despite various other powerful stabilization techniques in the literature. These
methods usually provide more complicated nonlocal feedback laws, which include but are not
limited to, the backstepping method [11, 12, 19], the basic Lyapunov approach for systems of
conservation laws [21], the frequency Lyapunov for finite time stabilization problems [50], and
[26] for the focusing NLKG.

Regarding Theorem 1.1 one may ask where the 2π-energy bound in Theorem 1.1 comes from.
In fact, harmonic maps appear as non-trivial stationary states for wave maps, i.e. functions
ϕ(x) satisfying

∆ϕ =
(
|ϕt|2 − |ϕx|2

)
ϕ.

They are also stationary states for the damped wave maps equation: we are not able to expect
any global (i.e. large data) exponential stability of the damped wave maps equation. In our
simplified context, namely maps from S1 to Sk, such a harmonic map is given by

Q(x) = (cosx, sinx, 0, ..., 0) ∈ Sk ⊂ Rk+1, ∀x ∈ S1,

whose energy is

E = 2π.

Inspired by the preceding observations it is natural to ask if the damped wave maps equation
is exponentially stable for initial states with energy uniformly below the threshold 2π. The
answer is positive:

Theorem 1.3 (Semi-global stabilization of the damped wave maps). For any ν > 0 there
exist some effectively computable C and c such that for any initial state φ[0] : S1 → Sk × TSk
satisfying

E(0) ≤ 2π − ν

the unique solution of the damped wave maps equation

2φ =
(
|φt|2 − |φx|2

)
φ+ a(x)φt,

decays exponentially:

E(t) ≤ Ce−ctE(0), ∀t ∈ (0,+∞).
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The advantages of this stabilization result are twofold.
First, we would like to emphasize its quantitative feature. In fact the proof is based on a
quantitative version of the observability inequality (1.3). In the literature usually such observ-
ability inequalities are derived from compactness/uniqueness arguments of contradiction type,
and consequently, in many circumstances we do not have enough knowledge on the exact value
of those constants. This argument is standard for stability problems in control theory includ-
ing KdV equations [37], the semilinear wave equations [18, 29], the (nonlinear) Schrödinger
equations [16] among others. Is there a quantitative alternative to the compactness/uniqueness
argument? In [27] the authors have introduced a method for this purpose for KdV equations,
where the proof is based on smoothing effects of semigroups and explicit flux estimates. Theo-
rem 1.3 provides another instance of bypassing compactness/uniqueness arguments.
Second, we shall mention that this analysis framework is based on the nonlinear structure of
wave maps. Indeed, as we will see in Section 2.1, Proposition 2.1, the observation becomes
weaker when the wave map’s energy approaches the energy threshold 2π which perfectly fits
the limitation on damping caused by harmonic maps. Such a phenomenon does not exist for
the defocussing nonlinear wave equations.

1.5. Some comments on global results. Let us briefly turn to the case when we replace the
special target Sk by a general Riemannian target M. By Nash’s embedding theorem, we may
assume thatM is isometrically embedded into some Rk. Notice that solutions of the controlled
wave maps equation belong to C([0, T ];H1

x × L2
x(S1)) taking values in M. Due to the Sobolev

embedding H1(S1) ↪→ C(S1), for any time t ∈ [0, 1] the state φ(t ·T ) ∈ H1(S1) can be regarded
as a curve (loop) on M:

γt(x) : S1 →M,

x 7→ γt(x) := φ(t · T, x).

This implies that γ0 deforms to γ1 continuously, namely γt is a homotopy from γ0 to γ1. This
gives a necessary condition on global exact controllability: the wave maps equation can only be
globally exactly controllable if the fundamental group π1(M) is trivial. As a direct consequence
of this condition we notice that Theorem 1.1 is optimal in the case with k = 1; however, this is
probably not the case for k ≥ 2 despite the fact that harmonic maps appear as obstruction for
global damping stabilization.

Moreover, this homotopy information also motivates the following conjecture:

Conjecture 1.4. Let (M, g) be a Riemannian manifold. The controlled wave maps equation
φ : R × S1 → M is globally exactly controllable in the homotopic sense. More precisely, for
any pair of states u[0] and v[0] : S1 →M× TM belonging to H1

x × L2(S1) such that u(x) and
v(x) are homotopic, we are able to construct a Rk-valued control f ∈ L2

t,x([0, T ]×S1) with some
T > 0 such that the unique solution of the controlled wave maps equation with the initial state
φ[0] = u[0] and the control f verifies φ[T ] = v[0].

Finally, it is important to comment that in this framework we choose to limit ourselves to
large time controllability properties and leave the more refined small-time controllability or
optimal-time controllability problems to later investigations, namely to control the states from
one to another in some optimal time or any possible small time (when 0 is the optimal time).
For example, the incompressible Euler equation is exact controllable in small time [8, 20], while
the transport equation with boundary control is exact controllable if and only if the control
time is larger than L,

yt + yx = 0, y(t, 0) = u(t), ∀x ∈ (0, L).

Due to the finite speed of propagation it is not possible to get small-time controllability. But
maybe we can expect (global) controllability of wave maps in some optimal time period like 2π.
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2. Quantitative semi-global stabilization of the damped wave maps

This section is devoted to the proof of semi-global stabilization of the damped wave maps
equation. This stability analysis is based on the damping effect and the quantitative charac-
terization of semi-global observability inequalities (1.3). More precisely, in Section 2.1 we show
that several properties lead to the stabilization result, namely Propositions 2.1–2.3. Then, after
making some preliminary preparation in Section 2.2, these propositions are successively proved
in Sections 2.3–2.5.

2.1. Strategy of the semi-global stabilization. The stabilization result, i.e. Theorem 1.3,
is a consequence the following three propositions. The proofs of these results can be found in
Section 2.3–2.5.

Proposition 2.1. There exists some cb ∈ (0, 1) effectively computable such that, for any µ ∈
(0, π) and for any initial state ϕ[0] : S1 → Sk × TSk satisfying

µ ≤ E(0) ≤ 2π −√µ,(2.1)

the unique solution of the damped wave maps equation (1.2),

2φ =
(
|φt|2 − |φx|2

)
φ+ a(x)φt, φ[0] = ϕ[0],

verifies

‖φt‖2L∞x (S1;L2
t (0,3π)) > δE(0),

where δ = δ(µ) = cbµ > 0.

Proposition 2.2. There exist some q > 0 and Cq > 0 effectively computable such that, for any
δ ∈ (0, 1) there exists ε0 = ε0(δ) = Cqδ

q such that, if some solution of the damped wave maps
equation (1.2) verifies

E(0) ≤ 2π,(2.2) ∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt ≤ ε0E(0),(2.3)

then

(2.4) ‖φt‖2L∞x (S1;L2
t (0,3π)) ≤ δE(0).

Proposition 2.3 (Low-energy exponential stability). There exist some µ0 > 0 and cµ0 effec-
tively computable such that, if some φ, a solution of the damped wave maps equation (1.2),
verifies

E(0) ≤ µ0,

then

cµ0E(0) ≤
∫ 16π

0

∫
S1

a(x)|φt|2(t, x)dxdt.

Let us quickly comment on how Propositions 2.1–2.3 lead to quantitative exponential decay
of the damped wave maps equation, namely Theorem 1.3.

Proof of Theorem 1.3. Let Q > 1 be some given constant such that3

(2.5) Q−1E(−16π) ≤ E(0) ≤ E(−16π).

3It is easily seen that one may choose Q only in dependence of ‖a‖L∞ .
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We first show that Proposition 2.1 together with Proposition 2.2 implies the asymptotic stability.
Indeed, if E(−16π) ∈ [µ, 2π − √µ], then E(0) ∈ [Q−1µ, 2π − √µ]. Thanks to Proposition 2.1
we know that

‖φt‖2L∞x (S1;L2
t (0,3π)) > δE(0),

with δ = δ(Q−1µ) = cbQ
−1µ. Next, according to Proposition 2.2, we must have that∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt > ε0E(0),

with ε0 = ε0(δ) = Cq(cbQ
−1µ)q. Thus, for any E(−16π) ∈ [µ, 2π −√µ] we have∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt > CµqE(−16π),

which implies that, for any E(−16π) ∈ (0, π) the following holds:

E(−16π)− E(16π) = 2

∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt > CE(−16π)q+1.

This is easily seen to imply asymptotic stability.

Finally we invoke Proposition 2.3 to conclude the desired semi-global exponential stability.
Take µ as µ0 in the preceding step. On the one hand, if E(−16π) ∈ [µ0, 2π −

√
µ0], then∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt > Cµp0E(−16π).

On the other hand, if E(−16π) ∈ [0, µ0], then according to Proposition 2.3∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt ≥ cµ0E(−16π).

Hence
E(16π) ≤

(
1− 2 min{cµ0 , Cµ

q
0}
)
E(−16π).

�

2.2. Some preliminaries. Without loss of generality we may assume that a(x) is greater
than 1 inside a small interval ω0, and we may also assume that ω0 = (−l0/2, l0/2). As usual we
interchange the roles of t and x, and focus on the diamond shaped region thanks to the finite
speed of propagation,

D := {(t, x) : |t+ x| ≤ 18π, |t− x| ≤ 18π}
which covers the basic domain of interest

D0 := {(t, x) : x ∈ [−2π, 2π], t ∈ [−16π, 16π]}.
For ease of presentation we also define

D1 := {(t, x) : x ∈ [−18π, 18π], t ∈ [−18π, 18π]},
such that D0 ⊂ D ⊂ D1. Throughout this paper we focus on (as we may) solutions at energy
level regularities, but only work with C∞(D) solutions to make sure all operations in the sequel
are justified. In other words, for any given initial state

(φ(0, x), φt(0, x)) ∈ H1
x(S1)× L2

x(S1),

we study

φ(t, x) ∈ H1(D),

(φt(t, x), φtx(t, x)) ∈ L2
t (0, T )×H−1

t (0, T ), ∀x ∈ [−π, π].
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2.2.1. Null coordinates. In terms of the standard null coordinates

(2.6) u = x+ t, v = t− x,

the diamond shaped region becomes

D = {(u, v) : |u| ≤ 18π, |v| ≤ 18π}.

In the following we keep the notation φ for functions in null coordinates, i.e. φ(t, x) = φ(u, v)
provided the relation (2.6). Thus

φu(u, v) = φu(t, x) =
1

2
(φt + φx) (t, x), φv(t, x) =

1

2
(−φx + φt) (t, x),

φu · φv =
1

4
(−|φx|2 + |φt|2), φuv =

1

4
(φtt − φxx).

Notice that the equation for wave maps is reduced to

(2.7) −φuv = (φu · φv)φ+
1

4
aφt =: F (t, x) = F (u, v),

where, for the ease of notations, we have kept the notation F in null coordinates. As an
immediate consequence of this change of variables one can express φ as follows. By denoting
u0 = y+ s, v0 = s− y, so that (s, y) corresponds to the original (t, x) coordinates while (u0, v0)
corresponds to the (u, v) coordinates, we integrate on the triangular region to benefit from the
information on the line t = 0,

φu(u, v) = −
∫ v

−u
F (u, v0)dv0 + φu(u,−u) = −2

∫ t

0
F (s, x+ t− s)ds+ φu(u,−u),

and φ is further given by

φ(u, v) =

∫ u

−v

∫ v

−u0

−F (u0, v0)dv0du0 +

∫ u

−v
φu(u0,−u0)du0 + φ(−v, v),

= 2

∫ u

−v

∫ v

−u0

F (s, y)dyds+

∫ u

−v
φu(u0,−u0)du0 + φ(−v, v),

= 2

∫ t

0

∫ x+t−s

x−t+s
F (s, y)dyds+

∫ u

−v
φu(u0,−u0)du0 + φ(−v, v).

For the purpose of controlling the H−1-norm of φtx, we are also interested in the equation
satisfied by φt(t, x):

−φt,tt + φt,xx = (|φt|2 − |φx|2)φt + 2(φt · φtt − φx · φtx)φ+ aφtt.

Since

φu · ψv + φv · ψu =
1

2
(φt · ψt − φx · ψx),

we get

−φt,uv = (φu · φv)φt + (φu · φt,v + φv · φt,u)φ+
1

4
aφtt =: G(t, x).

Similarly, φt is expressed by

φt(t, x) = 2

∫ t

0

∫ x+t−s

x−t+s
G(s, y)dyds+

∫ u

−v
φt,u(u0,−u0)du0 + φt(−v, v).
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2.2.2. Basic estimates. Here we present several straightforward and useful quantitative energy
estimates on the damped wave maps equation (1.2). Furthermore, by adapting the same proof,
similar estimates can be obtained to the inhomogeneous wave maps equation (3.2) leading to
Lemma 3.2 (see Section 3.2 for details).

E(0) . E(t) . E(0), ∀t ∈ (−36π, 36π),(2.8)

‖(φt, φx, φu, φv)‖2L2
t,x(D) . E(0),(2.9)

‖(φt, φx)‖2L∞t L2
x(D1) . E(0),(2.10)

‖(φt, φx)‖2L∞x L2
t (D1) . E(0),(2.11)

‖φu‖2L2
uL
∞
v (D) + ‖φv‖2L2

vL
∞
u (D) + ‖φu · φv‖L2

u,v(D) . E(0).(2.12)

Proof. For any given t ∈ R, the estimates (2.8) and (2.10) are direct consequences of the time
variation of the energy. This further yields the L2

t,x bound in (2.9), while the L2
u,v bound follows

directly. Now we turn to the proof of the estimate (2.11). Thanks to (2.9) we can pick some
x̄ ∈ (−π, π) such that ∫ 36π

−36π
(|φt|+ |φx|)2 (t, x̄)dt . E(0).

Consider the propagation of the “vertical energy” with respect to x: by defining

Ẽ(y) :=

∫ 36π−|y|

−36π+|y|
(|φt|+ |φx|)2 (t, x̄+ y)dt

thanks to integration by parts, we have

d

dy
Ẽ(y) = 2

∫ 36π−|y|

−36π+|y|
(φt · φtx + φx · φxx) (t, x̄+ y)dt

− sign(y)
(

(|φt|+ |φx|)2 (36π − |y|, x̄+ y) + (|φt|+ |φx|)2 (−36π + |y|, x̄+ y)
)

= 2

∫ 36π−|y|

−36π+|y|
(φx ·2φ) (t, x̄+ y)dt+ 2(φt · φx)

∣∣∣36π−|y|

−36π+|y|
(t, x̄+ y)

− sign(y)
(

(|φt|+ |φx|)2 (36π − |y|, x̄+ y) + (|φt|+ |φx|)2 (−36π + |y|, x̄+ y)
)
.

By plugging the wave maps equation into the preceding formula we obtain

sign(y)
d

dy
Ẽ(y) . Ẽ(y),

which implies the inequality (2.11).

Finally, concerning (2.12) it suffices to prove the first two inequalities as the last estimate
follows as a direct consequence. Thanks to (2.9) there exists some v̄ ∈ (−18π, 18π) such that∫ 18π

−18π
|φu|2(u, v̄)du . E(0).

For ease of notations we may assume that v̄ = −18π. Recalling the wave maps equation under
(u, v) coordinate. we get

d

dv
|φu|2 = 2φu · φuv = −a

2
φu · φt.
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Thus, for any u, v ∈ (−18π, 18π) there is

|φu(u, v)|2 .
(
|φu|(u,−18π) +

∫ v

−18π
|φt(u, v0)|dv0

)2

. |φu|2(u,−18π) +

∫ v

−18π
|φt(u, v0)|2dv0.

Hence,

‖φu‖2L2
uL
∞
v
.
∫ 18π

−18π

(
|φu|2(u,−18π) +

∫ 18π

−18π
|φt(u, v0)|2dv0

)
du.

Similarly one concludes estimates on ‖φv‖L2
vL
∞
u

. Finally, we shall also recall that L2
uL
∞
v ⊂

L∞v L
2
u. �

2.3. Proof of Proposition 2.1. This section is devoted to the proof of Proposition 2.1, which
is divided into four steps. Let us construct a non-negative smooth cutoff function ψ(t) such
that

(2.13)

∫
R
ψ(t) = 1 and ψ supp (0, 3π).

Here, the support (0, 3π) is chosen such that the truncated function ψ(t)φ(t, x) takes information
from φ(t, x)|t∈[0,3π].
Step 1: Assume that for some δ ∈ (0, 1) we have

E(0) ≤ 2π,

‖φt‖2L∞x (−π,π;L2
t (0,3π)) ≤ δE(0).(2.14)

This assumption implies that ∫
R

∫
S1

|φt|2(t, x)ψ(t)dxdt . δE(0),(2.15) ∫ 3π

0

∫
S1

a(x)|φt|2(t, x)dxdt .
∫ 3π

0

∫
S1

|φt|2(t, x)dxdt . δE(0),(2.16)

thus

E(0)− E(t) . δE(0), ∀t ∈ [0, 3π].

By definition of the energy

E(t) =

∫
S1

(|φt|2 + |φx|2)(t, x) dx

and the choice of ψ, we know that∣∣∣∣∫
R

∫
S1

(|φt|2 + |φx|2)(t, x)ψ(t)dxdt− E(0)

∣∣∣∣ =

∣∣∣∣∫
R
ψ(t)

(
E(t)− E(0)

)
dt

∣∣∣∣ . δE(0).

The preceding inequality, to be combined with (2.15), yields∣∣∣∣∫
R

∫
S1

|φx|2(t, x)ψ(t)dxdt− E(0)

∣∣∣∣ . δE(0),

which further implies the existence of some x̄ ∈ S1 such that∣∣∣∣∫
R
|φx|2(t, x̄)ψ(t)dt− E(0)

2π

∣∣∣∣ . δE(0).(2.17)
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Step 2: In this step we show that the preceding inequality holds for every x ∈ S1. Write the
wave maps equation as follows

φxx + |φx|2φ = φtt + |φt|2φ+ a(x)φt.

Multiply the preceding wave maps equation by φx and integrate against ψ(t) in (t, x) ∈ R ×
(x̄, x1). It follows that∫ x1

x̄

∫
R
φxx · φxψ(t) dtdx =

∫ x1

x̄

∫
R

(φtt · φxψ(t) + a(x)φt · φxψ(t)) dtdx

=

∫ x1

x̄

∫
R

(−φt · φxψ′(t)− φt · φxtψ(t) + a(x)φt · φxψ(t)) dtdx.

Because

2

∫ x1

x̄
φxx · φx(t, x) dx = |φx|2(t, x1)− |φx|2(t, x̄),

2

∫ x1

x̄
φxt · φt(t, x) dx = |φt|2(t, x1)− |φt|2(t, x̄),

we have∫
R
|φx|2(t, x1)ψ(t) dt−

∫
R
|φx|2(t, x̄)ψ(t) dt = 2

∫ x1

x̄

∫
R

(−φt · φxψ′(t) + a(x)φt · φxψ(t)) dtdx

+

∫
R
|φt|2(t, x̄)ψ(t) dt−

∫
R
|φt|2(t, x1)ψ(t) dt.

Keeping in mind that ∫
S1

∫ 3π

0
|φt · φx|(t, x) dtdx .

√
δE(0),

we get ∣∣∣∣∫
R
|φx|2(t, x1)ψ(t)dt− E(0)

2π

∣∣∣∣ . √δE(0), ∀x1 ∈ S1.(2.18)

Step 3: Now we consider the following function φ̃(x) as well as the equation satisfied by it:

φ̃(x) :=

∫
R
φ(t, x)ψ(t) dt.

Note that |φ(t, x)| = 1 and ‖φt‖L∞x L2
t

= O(
√
δE(0)), we have |φ̃| = 1 + O(

√
δE(0)). Indeed,

for any t, t̄ ∈ [0, 3π] and any x ∈ S1,

|φ(t, x)− φ(t̄, x)| =
∣∣∣∣∫ t

t̄
φt(s, x) ds

∣∣∣∣ .√δE(0).

Thus

|φ̃(x)− φ(t̄, x)| .
√
δE(0), ∀t̄ ∈ [0, 3π].

In particular, there exists some δ̄ ∈ (0, 1) such that for any δ ∈ (0, δ̄] and for any E(0) ∈ (0, 2π]
satisfying the assumption (2.14), there is

(2.19) |φ̃(0)| ∈
(

1

2
,
3

2

)
.
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By the definition of φ̃ and the wave maps equation,

φ̃xx(x) =

∫
R
φxx(t, x)ψ(t) dt

=

∫
R

(
−|φx|2φ+ φtt + |φt|2φ+ a(x)φt

)
(t, x)ψ(t) dt

=

∫
R
−|φx|2φψ(t)− φtψ′(t) + (|φt|2φ+ a(x)φt)ψ(t) dt.

Successively, we are able to derive that for ∀x ∈ S1,∣∣∣∣∫
R
−φtψ′(t) + (|φt|2φ+ a(x)φt)ψ(t) dt

∣∣∣∣ .√δE(0),∣∣∣∣∫
R

(|φx|2φ)(t, x)ψ(t) dt− φ̃(x)

∫
R
|φx|2(t, x)ψ(t) dt

∣∣∣∣ .√δE(0)E(0),

and ∣∣∣∣φ̃(x)

∫
R
|φx|2(t, x)ψ(t) dt− E(0)

2π
φ̃(x)

∣∣∣∣ .√δE(0).

Consequently

(2.20)

∣∣∣∣φ̃xx(x) +
E(0)

2π
φ̃(x)

∣∣∣∣ .√δE(0), ∀x ∈ S1.

Step 4: Finally, in this step we show that for δ sufficiently small we must have E(0) = 0 which
leads to a contradiction. Let us denote by cE the value of E(0)/2π. Then

|f(x)| :=
∣∣∣φ̃xx(x) + cEφ̃(x)

∣∣∣ .√δE(0), ∀x ∈ S1.

By decomposing

f(x) =
∑
n∈Z

fne
inx and φ̃(x) =

∑
n∈Z

ane
inx,

we get

an(cE − n2) = fn, ∀n ∈ Z.
Remark that by working with wave maps equations the notations an and fn are referring to
(k + 1)-dimensional vectors. We immediately notice from the definition of fn that

|fn| .
√
δE(0), ∀n ∈ Z,

which further implies

|an| =
fn

cE − n2
.

1

n2

√
δE(0), ∀n ∈ Z \ {0,±1},

|a0| =
∣∣∣∣ f0

cE

∣∣∣∣ .
√

δ

E(0)
and |a±1| =

∣∣∣∣ 2πf±1

E(0)− 2π

∣∣∣∣ .
√
δE(0)

2π − E(0)
.

Let us assume that for some µ ∈ (0, π) the initial energy further verifies

(2.21) E(0) ∈ [µ, 2π −√µ].

Under this assumption there is

|φ̃(0)| ≤
∑
n∈Z
|an| ≤ C

(√
δE(0) +

√
δ

E(0)
+

√
δ

µ

)
.
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Define cb in such fashion that 2πcb < δ̄ and that

C
(√

2cbπ2 + 2
√
cb

)
≤ 1

2
.

Then, by choosing δ = cbµ ∈ (0, δ̄) we know that

|φ̃(0)| ≤ 1

2
,

which is in contradiction with (2.19). Thus we conclude the proof of Proposition 2.1.

2.4. Proof of Proposition 2.2. This section is devoted to the proof of Proposition 2.2. The
strategy is to first find some point x0 such that ‖φt(t, x0)‖L2

t (−T,T ) is sufficiently small, and then

to propagate such smallness to x ∈ (−π, π) (or x ∈ (0, 2π)). More precisely, in Section 2.4.1 we
prove Lemma 2.4 concerning the choice of x0; Section 2.4.2 is devoted to the proof of Lemma 2.5
on quantitative characterization of the propagation of smallness; finally, thanks to these two
lemmas, in Section 2.4.3 we conclude the proof of Proposition 2.2.

Cutoff functions
At first we introduce a series of cutoff functions which will be used later on especially when

dealing with H−1
t -norms. Select a even, smooth, non-negative, truncated function µ(t) such

that
µ(t) = 1 on [0, 1/2], µ(t) = 0 on [1,+∞].

For any α < β and for any τ ∈ (0, 1) we define the following cutoff function ηβα[τ ] as

(2.22) ηβα[τ ](t) :=


µ( t−βτ ), ∀t ∈ (β,+∞),

1, ∀t ∈ [α, β],

µ( t−ατ ), ∀t ∈ (−∞, α),

that is supported in (α− τ, β + τ).

2.4.1. On the choice of x0. We are interested in both ‖φt(·, x)‖L2
t

and ‖φtx(·, x)‖H−1
t

. To

avoid possible problems on the definition of H−1
t norms, we work on the truncation functions,

ηβα[τ ]φtx, and estimate

‖〈∂t〉−1
(
ηβα[τ ](t)φtx(t, x)

)
‖L2

t (R).

Lemma 2.4. There exists some effectively computable C0 > 0 such that, for any ε ∈ (0, 1), for
any τ ∈ (0, 1), if there is some solution φ of the damped wave maps equation satisfying

E(0) ≤ 2π,∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt ≤ εE(0),(2.23)

then, there exists some x0 ∈ [0, 2π) such that

(2.24) ‖φt(t, x0)‖2L2
t (−16π,16π) + ‖〈∂t〉−1

(
η15π
−15π[τ ]φtx

)
(t, x0)‖2L2

t (R) ≤ C0

√
ε

τ2
E(0).

Proof of Lemma 2.4. For ease of notation, in the remainder of this proof, we simply denote the
function η15π

−15π[τ ](t, x) by η(t, x) or simply η(t). The assumption (2.23) is equivalent to

(2.25)

∫
S1

a(x)

∫ 16π

−16π
|φt|2(t, x)dtdx ≤ εE(0).

Thus it suffices to conclude the smallness of∫
S1

a(x)

∫
R

(
〈∂t〉−1 (η(t)φtx(t, x))

)2
dtdx.
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A priori we do not have smallness of the preceding candidate: therefore, more careful estimates
are required to achieve it.

Observe that

〈∂t〉−1 (η(t)ψt(t)) = 〈∂t〉−1 (∂t(ηψ)− ηtψ) ,

which, combined with the fact that η(t) = η15π
−15π[τ ](t), implies

‖〈∂t〉−1 (η(t)ψt(t)) ‖L2
t (R) .

1

τ
‖ψ‖L2

t (−16π,16π).

Hence,

‖〈∂t〉−1 (η(t)φtx(t, x)) ‖2L2
t,x(R×S1) .

1

τ2
‖φx‖2L2

t,x(D0) .
1

τ2
E(0),

‖〈∂t〉−2 (η(t)φtt(t, x)) ‖L2
t (R) ≤ ‖〈∂t〉−1 (η(t)φtt(t, x)) ‖L2

t (R) .
1

τ
‖φt‖L2

t (−16π,16π).

In order to benefit from the smallness of (2.23) we adapt integration by parts to consider∫
S1

∫
R
a(x)

(
〈∂t〉−1 (η(t)φtx(t, x))

)
·
(
〈∂t〉−1 (η(t)φtx(t, x))

)
dtdx

=

∫
S1

∫
R
a(x)

(
〈∂t〉−1 (η(t)φtt)

)
·
(
〈∂t〉−1 (η(t)φxx)

)
dtdx

+

∫
S1

∫
R
a(x)

(
〈∂t〉−1 (ηt(t)φt)

)
·
(
〈∂t〉−1 (η(t)φxx)

)
dtdx

+

∫
S1

∫
R
a(x)

(
〈∂t〉−1 (η(t)φt)

)
·
(
〈∂t〉−1 (ηt(t)φxx)

)
dtdx

−
∫
S1

∫
R
ax(x)

(
〈∂t〉−1 (ηt(t)φt)

)
·
(
〈∂t〉−1 (η(t)φtx)

)
dtdx

=: I + II + III + IV.

In the following we shall treat the preceding terms one by one. Firstly, noticing the formula

ax(x)√
a(x)

= 2∂x
√
a(x) . 1,

we immediately get the smallness of IV :

IV ≤
∥∥∥√a(x)〈∂t〉−1 (ηt(t)φt)

∥∥∥
L2
x(S1;L2

t (R))

∥∥∥∥∥ ax(x)√
a(x)
〈∂t〉−1 (η(t)φtx)

∥∥∥∥∥
L2
x(S1;L2

t (R))

.
1

τ

∥∥∥√a(x) (ηt(t)φt)
∥∥∥
L2
x(S1;L2

t (R))
‖φx‖L2

x(S1;L2
t (−16π,16π))

.

√
ε

τ2
E(0).

As for the other components, I− III, the difficult part is on the estimates of right hand side
items: 〈∂t〉−1 (η(t)φxx) and 〈∂t〉−1 (ηt(t)φxx). Keeping in mind that∥∥√a〈∂t〉−1 (ηφtt)

∥∥
L2
x(S1;L2

t (R))
.

√
ε

τ

√
E(0)∥∥√a〈∂t〉−1 (ηtφt)

∥∥
L2
x(S1;L2

t (R))
.

√
ε

τ

√
E(0)∥∥√a〈∂t〉−1 (ηφt)

∥∥
L2
x(S1;L2

t (R))
.
√
ε
√
E(0),
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it suffices to arrive at ∥∥〈∂t〉−1 (η(t)φxx)
∥∥
L2
x(S1;L2

t (R))
.

1

τ

√
E(0),(2.26) ∥∥〈∂t〉−1 (ηt(t)φxx)

∥∥
L2
x(S1;L2

t (R))
.

1

τ2

√
E(0).(2.27)

For this purpose we replace φxx by the other terms from the wave maps equation to get

〈∂t〉−1 (η(t)φxx) = 〈∂t〉−1
(
η(t)

(
φtt + (|φt|2 − |φx|2)φ+ a(x)φt

))
= 〈∂t〉−1

(
η(t)φtt

)
+ 〈∂t〉−1

(
η(t)

(
|φt|2 − |φx|2

)
φ
)

+ a(x)〈∂t〉−1
(
η(t)φt

)
.

The L2
t,x-norms of the first and the last candidates are controlled by∥∥〈∂t〉−1 (η(t)φtt)

∥∥
L2
x(S1;L2

t (R))
.

1

τ
‖φt‖L2

x(S1;L2
t (−16π,16π)) .

1

τ

√
E(0),∥∥a(x)〈∂t〉−1

(
η(t)φt

)∥∥
L2
x(S1;L2

t (R))
. ‖φt‖L2

x(S1;L2
t (−16π,16π)) .

√
E(0).

Concerning the middle term, by ignoring the 〈∂t〉−1 operator for the L2
t -estimate, it suffices

to conclude ∥∥η(t)
(
|φt|2 − |φx|2

)
φ
∥∥
L2
x(S1;L2

t (R))
.

1

τ

√
E(0),

or, equivalently, ∥∥η(t)
(
|φt|2 − |φx|2

)∥∥
L2
x(S1;L2

t (R))
.

1

τ

√
E(0).

This is the consequence of∥∥η(t)
(
|φt|2 − |φx|2

)
(t, x)

∥∥
L2
x(S1;L2

t (R))
≤
∥∥(|φt|2 − |φx|2) (t, x)

∥∥
L2
x(−π,π;L2

t (−16π,16π))

= 4 ‖(φu · φv) (t, x)‖L2
x(−π,π;L2

t (−16π,16π))

≤ 4 ‖(φu · φv) (t, x)‖L2
t,x(D)

= 2 ‖(φu · φv) (u, v)‖L2
u,v(D) . E(0) .

√
E(0),

Thus it finishes the proof of Inequality (2.26) on 〈∂t〉−1 (η(t)φxx). Similarly, we get the estimate
(2.27) concerning 〈∂t〉−1 (ηt(t)φxx).

In conclusion we have obtained that

(2.28)

∫
S1

a(x)

∫
R

(
〈∂t〉−1

(
η15π
−15π[τ ](t)φtx(t, x)

) )2
dtdx ≤ C

√
ε

τ2
E(0),

where the constant C does not depend on ε ∈ (0, 1), τ ∈ (0, 1) and E(0) ∈ [0, 2π].
By combining inequalities (2.25) and (2.28) we can find some x0 belonging to supp a (or even
[−l0/2, l0/2]) such that

(2.29)

∫ 16π

−16π
|φt|2(t, x0)dt+

∫
R

(
〈∂t〉−1

(
η15π
−15π[τ ](t)φtx(t, x0)

))2
dt ≤ C0

√
ε

τ2
E(0),

where the value of C0 is independent of the choice of ε ∈ (0, 1), τ ∈ (0, 1), and initial states
satisfying E(0) ∈ [0, 2π]. �



18 JOACHIM KRIEGER AND SHENGQUAN XIANG

2.4.2. Propagation of the smallness. Now we try to propagate the preceding smallness to
arrive at some global bound:

‖φt‖2L∞x (S1;L2
t (0,2π)) . ε̃E(0).

First we show that this is possible in a narrow vertical strip with width |S| using bootstrap
arguments, then we iterate this procedure to obtain global bounds. Actually, due to the finite
speed of propagation instead of vertical strips we shall work with some vertical trapezoidal
regions: for α+ 2π < β and l ≤ π we define

P lα,β(y) := {(t, x) : x ∈ [y, y + l], t ∈ [α+ x− y, β − x+ y]},(2.30)

and the L∞x L
2
t -norm on it as

‖ψ‖L∞x L2
t (P

l
α,β(y)) := sup

x∈[y,y+l]
‖ψ(t, x)‖L2

t (α+x−y,β−x+y).(2.31)

The rest part of this subsection is devoted to the proof of the following key lemma.

Lemma 2.5. There exist some effectively computable values S0 and CS0 such that, for any
τ ∈ (0, 1), for any α ∈ [−15π, 0), β ∈ (2π, 15π], for any z ∈ [0, 4π], and for any initial state of
the damped wave maps equation (1.2) satisfying

E(0) ≤ 2π,

we have

(2.32) ‖φt‖L∞x L2
t (P

S0
α,β(z))

≤ 2‖φt(t, z)‖L2
t (α,β) + 6‖〈∂t〉−1

(
ηβα[τ ](t)φtx(t, z)

)
‖L2

t (R),

and, moreover, by denoting τ0 := S0/16, there exists some x̄ ∈ (z + S0/2, z + S0) such that

‖〈∂t〉−1
(
ηβ−S0−τ0
α+S0+τ0

[τ0](t)φtx(t, x̄)
)
‖L2

t (R)

≤ CS0 (E(0))
1
4

(
‖φt(t, z)‖L2

t (α,β) + ‖〈∂t〉−1
(
ηβα[τ0](t)φtx(t, z)

)
‖L2

t (R)

) 1
2
.(2.33)

Proof of Lemma 2.5. Its proof is divided in two steps: first we get a uniform L2 bound for
φt; then, armed with this uniform L2 bound, by considering the average we are able to find a
specific x̄ such that φtx(t, x̄) is bounded in H−1

t space.

Step 1: On the characterization of φt.
In the following we assume that z = x0 ∈ [0, 4π). Let given −15π ≤ α < 0 < 2π < β ≤ 15π.

Let us consider the damped wave maps equation in the region P := PSα,β(x0) with the value of
S to be chosen later on. Our goal is to perform a bootstrap argument to get the desired bound
(2.32).

Recall the equation of φt

−φt,uv = (φu · φv)φt + (φu · φt,v + φv · φt,u)φ+
1

4
aφtt =: G(t, x),

for any (u, v) ∈ P there is

−φt,u(u, v) = −φt,u(u, u− 2x0) +

∫ v

u−2x0

G(u, v0)dv0,



SEMI-GLOBAL CONTROLLABILITY OF A GEOMETRIC WAVE EQUATION 19

and

−φt(u, v) = −φt(2x0 + v, v) +

∫ u

2x0+v
−φt,u(u0, v)du0,

= −φt(2x0 + v, v)−
∫ u

2x0+v
φt,u(u0, u0 − 2x0)du0 +

∫ u

2x0+v

∫ v

u0−2x0

G(u0, v0)dv0du0,

= −1

2

(
φt(u− x0, x0) + φt(v + x0, x0) + φx(u− x0, x0)− φx(v + x0, x0)

)
+

∫ u

2x0+v

∫ v

u0−2x0

(
(φu · φv)φt +

1

4
aφtt

)
(s, y)dv0du0

+

∫ u

2x0+v

∫ v

u0−2x0

(φu · φt,v + φv · φt,u)φ(u0, v0)dv0du0.

Simple change of variables yields,∫ u

2x0+v

∫ v

u0−2x0

ψ(s, y)dv0du0 = −2

∫ x

x0

∫ t+x−y

t−x+y
ψ(s, y)dsdy.

Then, thanks to integration by parts, we get∫ u

2x0+v

∫ v

u0−2x0

((φu · φt,v)φ) (u0, v0)dv0du0

= −
∫ u

2x0+v

∫ v

u0−2x0

((φu · φt)φv + (φuv · φt)φ) (u0, v0)dv0du0

+

∫ u

2x0+v
(φu · φt)φ(u0, v)− (φu · φt)φ(u0, u0 − 2x0)du0

=

∫ u

2x0+v

∫ v

u0−2x0

(
−(φu · φt)φv +

a

4
|φt|2φ

)
(u0, v0)dv0du0

+

∫ u

2x0+v
(φu · φt)φ(u0, v)− (φu · φt)φ(u0, u0 − 2x0)du0

and ∫ u

2x0+v

∫ v

u0−2x0

((φv · φt,u)φ) (u0, v0)dv0du0

= −
∫ u−2x0

v

∫ u

v0+2x0

((φv · φt,u)φ) (u0, v0)du0dv0

=

∫ u−2x0

v

∫ u

v0+2x0

(
(φv · φt)φu −

a

4
|φt|2φ

)
(u0, v0)du0dv0

+

∫ u−2x0

v
(φv · φt)φ(v0 + 2x0, v0)− (φv · φt)φ(u, v0)dv0

=

∫ u

2x0+v

∫ v

u0−2x0

(
−(φv · φt)φu +

a

4
|φt|2φ

)
(u0, v0)dv0du0

+

∫ u−2x0

v
(φv · φt)φ(v0 + 2x0, v0)− (φv · φt)φ(u, v0)dv0.
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Combining the preceding calculations together we get that for any (t, x) ∈ P with x = x0 +d,

−φt(t, x) = −2

∫ x

x0

∫ t+x−y

t−x+y

(
(φu · φv)φt − (φu · φt)φv − (φv · φt)φu +

a

2
|φt|2φ

)
(s, y)dsdy

− 1

2

(
φt(u− x0, x0) + φt(v + x0, x0)

)
− 1

2

∫ t+d

t−d
φtx(s, x0)ds

− 1

2

∫ x

x0

a(y)φt(t+ x− y, y)dy +
1

2

∫ x

x0

a(y)φt(t− x+ y, y)dy

+

∫ u

2x0+v
(φu · φt)φ(u0, v)du0 −

∫ u

2x0+v
(φu · φt)φ(u0, u0 − 2x0)du0

+

∫ u−2x0

v
(φv · φt)φ(v0 + 2x0, v0)dv0 −

∫ u−2x0

v
(φv · φt)φ(u, v0)dv0,

=:
6∑
j=1

fj(t, x).

For some fixed x = x0 + d with d ≤ |S|, by the construction of PSα,β(x0) we are interested in

t ∈ [α+d, β−d]: in the following we shall estimate the values of |fj(t, x)| or ‖fj(t, x)‖L2
t (α+d,β−d)

for j ∈ {1, 2..., 6} successively.

1) Concerning f2(t, x), since x = x0 + d, there is

φt(u− x0, x0) = φt(t+ d, x0), φt(v + x0, x0) = φt(t− d, x0),

which immediately leads to

(2.34) ‖f2(t, x)‖L2
t (α+d,β−d) ≤ ‖φt(t, x0)‖L2

t (α,β).

2) Concerning f4 we know that∫ β−d

α+d

(∫ x

x0

a(y)φt(t+ x− y, y)dy

)2

dt . d
∫ β−d

α+d

∫ x

x0

φ2
t (t+ x− y, y)dydt

. d2‖φt‖2L∞x L2
t (P ),

thus

(2.35) ‖f4(t, x)‖L2
t (α+d,β−d) . d‖φt‖L∞x L2

t (P ).

3) Now we turn to f5 and f6. By noticing(∫ u

2x0+v
(φu · φt)φ(u0, v)du0

)2

≤
∫ u

2x0+v
|φu|2(u0, v)du0

∫ u

2x0+v
|φt|2(u0, v)du0

≤ ‖φu‖2L2
uL
∞
v (P )

∫ x0+d

x0

|φt|2(t− x0 − d+ y, y)dy

we get∫ β−d

α+d

(∫ u

2x0+v
(φu · φt)φ(u0, v)du0

)2

dt . E(0)

∫ β−d

α+d

∫ x0+d

x0

|φt|2(t− x0 − d+ y, y)dydt

. dE(0)‖φt‖2L∞x L2
t (P ).
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Similarly,∫ u

2x0+v
(φu · φt)φ(u0, u0 − 2x0)du0 =

∫ t+d

t−d
(φu · φt)φ(s, x0)ds

=
1

2

∫ t+d

t−d
(φx · φt)φ(s, x0)ds+

1

2

∫ t+d

t−d
|φt|2φ(s, x0)ds.

Noticing that ∫ t+d

t−d
|φt|2(s, x0)ds ≤ ‖φt(t, x0)‖2L2

t (α,β),∫ t+d

t−d
|φx|2(s, x0)ds ≤ ‖φx(t, x0)‖2L2

t (α,β) . E(0),

where in the last inequality we have applied the energy estimate (2.11), we have∫ β−d

α+d

(∫ t+d

t−d
|φt|2φ(s, x0)ds

)2

dt ≤ ‖φt(t, x0)‖2L2
t (α,β)

∫ β−d

α+d

∫ t+d

t−d
|φt|2(s, x0)dsdt

≤ 2d‖φt(t, x0)‖4L2
t (α,β),

and∫ β−d

α+d

(∫ t+d

t−d
(φx · φt)φ(s, x0)ds

)2

dt ≤
∫ β−d

α+d

(∫ t+d

t−d
φ2
x(s, x0)ds

)(∫ t+d

t−d
φ2
t (s, x0)ds

)
dt

≤ 2d‖φx(t, x0)‖2L2
t (α,β)‖φt(t, x0)‖2L2

t (α,β)

. dE(0)‖φt(t, x0)‖2L2
t (α,β).

Hence

‖f5(t, x)‖L2
t (α+d,β−d) + ‖f6(t, x)‖L2

t (α+d,β−d) .
√
d
√
E(0)‖φt‖L∞x L2

t (P ) +
√
d‖φt(t, x0)‖2L2

t (α,β)

.
√
d
√
E(0)‖φt‖L∞x L2

t (P )(2.36)

4) Then, we turn to f1, again, by treating the items one by one. Since∫ x

x0

∫ t+x−y

t−x+y
((φu · φv)φt) (s, y)dsdy ≤ ‖φu · φv‖L2

t,x
‖φt‖L2

t,x

≤ 2
√
d‖φu · φv‖L2

u,v
‖φt‖L∞x L2

t

.
√
dE(0)‖φt‖L∞x L2

t (P )

and ∫ x

x0

∫ t+x−y

t−x+y

(a
2
|φt|2φ

)
(s, y)dsdy . d‖φt‖2L∞x L2

t (P ),

we have

|f1|(t, x) .
√
dE(0)‖φt‖L∞x L2

t (P ) + d‖φt‖2L∞x L2
t (P )

.
(√

dE(0) + d
√
E(0)

)
‖φt‖L∞x L2

t (P ),

which further implies that

(2.37) ‖f1(t, x)‖L2
t (α+d,β−d) .

(√
dE(0) + d

√
E(0)

)
‖φt‖L∞x L2

t (P ).
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5) Finally, we deal with the ‖f3(t, x)‖L2
t (α+d,β−d) term, for which one also requires the smallness

of φtx to close the loop. Indeed, it sounds natural to replace the integration of φtx by φx to
simplify the presentation,∫ t+d

t−d
φtx(s, x0)ds = φx(t+ d, x0)− φx(t− d, x0),

However, by performing this integration we immediately lose the control of smallness: because
we are not able to compensate the ‖φx(t, x0)‖2

L2
t (α,β)

term in our bootstrap argument, which is

not supposed to be small in general.
Let us define

g(t) := ηβα[τ ](t)φtx(t, x0) with τ ∈ (0, 1),

for which we assume that the upper bound of ‖〈∂t〉−1g(t)‖L2
t (R) is known. Then, for t ∈

(α+ d, β − d) and s ∈ (t− d, t+ d) there is

φtx(s, x0) = ηβα[τ ](s)φtx(s, x0) = g(s).

This implies that for x = x0 + d and t ∈ (α+ d, β − d),

f3(t, x) = −1

2

∫ t+d

t−d
g(s)ds.

By performing the inverse Fourier transformation we get

g(s) =

∫
λ∈R

eisλĝ(λ)dλ,

thus

−2f3(t, x) =

∫ t+d

t−d

∫
λ∈R

eisλĝ(λ)dλds

=

∫ t+d

t−d

∫
|λ|≤1

eisλĝ(λ)dλds+

∫ t+d

t−d

∫
|λ|>1

eisλĝ(λ)dλds.

Concerning the first candidate in the preceding formula there is a trivial bound∣∣∣∣∣
(∫
|λ|≤1

eisλĝ(λ)dλ

)∣∣∣∣∣
2

≤ 2

∫
|λ|≤1
〈λ〉−2|ĝ(λ)|2dλ ≤ 2‖〈∂t〉−1g(t)‖2L2

t (R).

Therefore, ∣∣∣∣∣
∫ t+d

t−d

∫
|λ|≤1

eisλĝ(λ)dλds

∣∣∣∣∣ ≤ 3d‖〈∂t〉−1g(t)‖L2
t (R).

Next, we turn to the high frequency part of f3(t, x): thanks to symmetry reasons it further
suffices to treat the positive high frequency part,∫ t+d

t−d

∫
λ>1

eisλĝ(λ)dλds =

∫
λ>1

ĝ(λ)

∫ t+d

t−d
eisλdsdλ

= −i
∫
λ>1

ĝ(λ)

(
ei(t+d)λ

λ
− ei(t−d)λ

λ

)
dλ.

By denoting

F (ū) :=

∫
R

(χλ>1

λ
ĝ(λ)

)
eiλūdλ
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we know that

‖
∫
λ>1

ĝ(λ)
ei(t+d)λ

λ
dλ‖L2

t (α+d,β−d) = ‖
∫
λ>1

ĝ(λ)
eiūλ

λ
dλ‖L2

ū(α+2d,β)

= ‖F (ū)‖L2
ū(α+2d,β)

≤ ‖F (ū)‖L2
ū(R)

= ‖χλ>1

λ
ĝ(λ)‖L2

λ(R)

≤ 3

2
‖〈∂t〉−1g(t)‖L2

t (R).

Similarly

‖
∫
λ>1

ĝ(λ)
ei(t−d)λ

λ
dλ‖L2

t (α+d,β−d) ≤
3

2
‖〈∂t〉−1g(t)‖L2

t (R).

Hence

(2.38) ‖f3(t, x)‖L2
t (α+d,β−d) ≤

(
3

2
+ 15d

)
‖〈∂t〉−1

(
ηβα[τ ](t)φtx(t, x0)

)
‖L2

t (R).

In conclusion, by combining the estimates (2.34), (2.35), (2.36), (2.37) and (2.38) we obtain:
for x = x0 + d and for any τ ∈ (0, 1), there is

‖φt(t, x)‖L2
t (α+d,β−d)

≤ ‖φt(t, x0)‖L2
t (α,β) + 3‖〈∂t〉−1

(
ηβα[τ ](t)φtx(t, x0)

)
‖L2

t (R) + C
(
d+
√
d
√
E(0)

)
‖φt‖L∞x L2

t (P )

≤ ‖φt(t, x0)‖L2
t (α,β) + 3‖〈∂t〉−1

(
ηβα[τ ](t)φtx(t, x0)

)
‖L2

t (R) + C̃
√
d‖φt‖L∞x L2

t (P ),

where the constant C̃ is independent of α ∈ [−15π, 0), β ∈ (2π, 15π], d ∈ (0, 1/10), τ ∈
(0, 1), x0 ∈ [0, 4π] and E(0) ≤ 2π. In order to close the loop of bootstrap, it suffices to define

(2.39) S0 :=

(
1

2C̃

)2

.

The preceding inequality immediately yields

‖φt‖L∞x L2
t (P

S0
α,β(x0))

≤ 2‖φt(t, x0)‖L2
t (α,β) + 6‖〈∂t〉−1

(
ηβα[τ ](t)φtx(t, x0)

)
‖L2

t (R).

Step 2: on the choice of z such that φtx(t, z) is small.
Different from φt for which we have get a uniform bound on L2

t -norm on a strip with width
S0, for the φtx term we only select one specific slide, namely some x̄ ∈ [x0 +S0/2, x0 +S0] such
that the H−1

t -norm of φtx(·, x̄) is small. First we construct a 2π-periodic, non-negative, smooth
cutoff function b(x),

(2.40) b(x) = 1 on

[
S0

8
,
3S0

8

]
, b(x) = 0 on S1 \

[
0,
S0

2

]
,

and further define bz as

(2.41) bz(x) := b(x− z).
Armed with the smallness of

‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2
t (α+S0,β−S0))

being proved in Step 1, in this step we use it to dominate the following:∫
S1

bx0+S0/2(x)

∫
R

(
〈∂t〉−1

(
ηβ−S0−τ0
α+S0+τ0

[τ0](t)φtx(t, x)
))2

dtdx.
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Since τ0 and S0 are fixed, the C2-norms of the truncated functions ηβ−S0−τ0
α+S0+τ0

[τ0](t) and bz(x)
are uniformly bounded. For ease of notations, in the rest part of this section we simply denote

the functions ηβ−S0−τ0
α+S0+τ0

[τ0](t) by η(t) and bx0+S0/2(x) by b̃(x).

Similar to the proof of Lemma 2.4, there is

‖〈∂t〉−1 (η(t)φtx(t, x)) ‖L2
t (R) . ‖φx‖L2

t (α+S0,β−S0)

‖〈∂t〉−1 (η(t)φtt(t, x)) ‖L2
t (R) . ‖φt‖L2

t (α+S0,β−S0),

‖〈∂t〉−1 (η(t)φtx(t, x)) ‖2L2
t,x(R×S1) . E(0),

and ∫
S1

∫
R
b̃(x)

(
〈∂t〉−1 (η(t)φtx(t, x))

)
·
(
〈∂t〉−1 (η(t)φtx(t, x))

)
dtdx

=

∫
S1

∫
R
b̃(x)

(
〈∂t〉−1 (η(t)φtt)

)
·
(
〈∂t〉−1 (η(t)φxx)

)
dtdx

+

∫
S1

∫
R
b̃(x)

(
〈∂t〉−1 (ηt(t)φt)

)
·
(
〈∂t〉−1 (η(t)φxx)

)
dtdx

+

∫
S1

∫
R
b̃(x)

(
〈∂t〉−1 (η(t)φt)

)
·
(
〈∂t〉−1 (ηt(t)φxx)

)
dtdx

−
∫
S1

∫
R
b̃x(x)

(
〈∂t〉−1 (ηt(t)φt)

)
·
(
〈∂t〉−1 (η(t)φtx)

)
dtdx

=: I + II + III + IV.

The same calculation yields

IV .
√
E(0)

∥∥∥∥√b̃(x) (ηt(t)φt)

∥∥∥∥
L2
x(S1;L2

t (R))

.
√
E(0)‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2

t (α+S0,β−S0)).

We also know that∥∥∥√b̃〈∂t〉−1 (ηφtt)
∥∥∥
L2
x(S1;L2

t (R))
. ‖φt‖L2

x(x0+S0/2,x0+S0;L2
t (supp η))

. ‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2
t (α+S0,β−S0))

and ∥∥∥√b̃〈∂t〉−1 (ηtφt)
∥∥∥
L2
x(S1;L2

t (R))
. ‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2

t (α+S0,β−S0))∥∥∥√b̃〈∂t〉−1 (ηφt)
∥∥∥
L2
x(S1;L2

t (R))
. ‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2

t (α+S0,β−S0)).

Again, by adapting the wave maps equation we obtain∥∥〈∂t〉−1 (η(t)φxx)
∥∥
L2
x(S1;L2

t (R))
+
∥∥〈∂t〉−1 (ηt(t)φxx)

∥∥
L2
x(S1;L2

t (R))
.
√
E(0).

Therefore

I + II + III .
√
E(0)‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2

t (α+S0,β−S0)),

which, together with the estimate on IV , yields∫
S1

bx0+S0/2(x)

∫
R

(
〈∂t〉−1

(
ηβ−S0−τ0
α+S0+τ0

[τ0](t)φtx(t, x)
))2

dtdx

≤ CH
√
E(0)‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2

t (α+S0,β−S0)),
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where the value of CH does not depend on the choice of x0 ∈ S1, α ∈ [−15π, 0], β ∈ [2π, 15π]
and E(0) ≤ 2π.

As a direct consequence of the preceding inequality, we are able to find some point x̄ ∈
[x0 + 5S0

8 , x0 + 7S0
8 ] such that∫

R

(
〈∂t〉−1

(
ηβ−S0−τ0
α+S0+τ0

[τ0](t)φtx(t, x̄)
))2

dt

≤ 4CH
S0

√
E(0)‖φt(t, x)‖L∞x (x0+S0/2,x0+S0;L2

t (α+S0,β−S0))

≤ 24CH
S0

√
E(0)

(
‖φt(t, x0)‖L2

t (α,β) + ‖〈∂t〉−1
(
ηβα[τ0](t)φtx(t, x0)

)
‖L2

t (R)

)
.

This concludes the proof of Inequality (2.33) by choosing

(2.42) CS0 :=

(
24CH
S0

) 1
2

.

�

2.4.3. Proof of Proposition 2.2. Armed with Lemma 2.4 and Lemma 2.5 we show that
Proposition 2.2 is a direct consequence of these properties.

Proof of Proposition 2.2. We start the proof by fixing some constants: C0 by Lemma 2.4, S0 by
(2.39), CS0 by (2.42) and τ0 as S0/16. Let φ be a solution of the damped wave maps equation
(1.2) satisfying E(0) ≤ 2π. Assume as we may that∫ 16π

−16π

∫
S1

a(x)|φt|2(t, x)dxdt ≤ εE(0).

Step 0: Define (α0, β0) := (−15π, 15π). By applying Lemma 2.4 we are able to find some
x0 ∈ [0, 2π) such that

max
{
‖φt(t, x0)‖L2

t (α0,β0), ‖〈∂t〉−1
(
ηβ0
α0

[τ0]φtx

)
(t, x0)‖L2

t (R)

}
≤ ε

1
4

(
C0

τ2
0

) 1
2

(E(0))
1
2 .

Step 1: Next, we define (α1, β1) := (α0 + S0 + τ0, β0 − S0 − τ0). Since τ0 ∈ (0, 1), α0 ∈
[−15π, 0), β0 ∈ (2π, 15π] and x0 ∈ [0, 2π], we are allowed to apply Lemma 2.5 to find some
point x1 belongs to [x0 + S0/2, x0 + S0] such that

‖φt‖L∞x (x0,x1;L2
t (α1,β1))

≤ 2‖φt(t, x0)‖L2
t (α0,β0) + 6‖〈∂t〉−1

(
ηβ0
α0

[τ0](t)φtx(t, x0)
)
‖L2

t (R),

≤ 8ε
1
4

(
C0

τ2
0

) 1
2

(E(0))
1
2 ,

and

‖〈∂t〉−1
(
ηβ1
α1

[τ0](t)φtx(t, x1)
)
‖L2

t (R)

≤ CS0 (E(0))
1
4

(
‖φt(t, x0)‖L2

t (α0,β0) + ‖〈∂t〉−1
(
ηβ0
α0

[τ0](t)φtx(t, x0)
)
‖L2

t (R)

) 1
2

≤ 2CS0ε
1
8

(
C0

τ2
0

) 1
4

(E(0))
1
2 .
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Thus

max
{
‖φt‖L∞x (x0,x1;L2

t (α1,β1)), ‖〈∂t〉−1
(
ηβ1
α1

[τ0](t)φtx(t, x1)
)
‖L2

t (R)

}
≤ 2CS0ε

1
8

(
C0

τ2
0

) 1
2

(E(0))
1
2 .

Step 2: Then, we define (α2, β2) := (α0 + 2S0 + 2τ0, β0 − 2S0 − 2τ0). Since τ0 ∈ (0, 1), α1 ∈
[−15π, 0), β1 ∈ (2π, 15π] and x1 ∈ [0, 4π], we are allowed to apply Lemma 2.5 to find some point
x2 belongs to [x1 + S0/2, x1 + S0] such that

max
{
‖φt‖L∞x (x1,x2;L2

t (α2,β2)), ‖〈∂t〉−1
(
ηβ2
α2

[τ0](t)φtx(t, x2)
)
‖L2

t (R)

}
≤ (2CS0)2ε

1
16

(
C0

τ2
0

) 1
2

(E(0))
1
2 .

Step 3: We iterate this procedure: suppose that for every k ∈ {1, 2, ..., n} we have found

(αk, βk) = (α0 + kS0 + kτ0, β0 − kS0 − kτ0) and xk ∈ [xk−1 + S0/2, xk−1 + S0],

such that

max
{
‖φt‖L∞x (xk−1,xk;L2

t (αk,βk)), ‖〈∂t〉−1
(
ηβkαk [τ0](t)φtx(t, xk)

)
‖L2

t (R)

}
≤ (2CS0)kε

1

2k+2

(
C0

τ2
0

) 1
2

(E(0))
1
2 .

If xn−1 < x0 + 2π ≤ xn, then we stop the procedure. Now we notice from the choices of xk
that n ∈ [2π

S0
, 4π
S0

], and that for every k ∈ {1, 2, ..., n} we have αk ∈ [−15π, 0), βk ∈ [3π, 15π] and

xk ∈ [0, 4π].
If xn < x0 + 2π, then since n ≤ 4π

S0
we conclude from the choice of (αk, βk, xk) that αn ∈

[−15π, 0), βn ∈ (2π, 15π] and xn ∈ [0, 4π]. Consequently, we are allowed to use Lemma 2.5 to
find some point xn+1 ∈ [xn + S0/2, xn + S0] such that

max
{
‖φt‖L∞x (xn,xn+1;L2

t (αn+1,βn+1)), ‖〈∂t〉−1
(
ηβn+1
αn+1

[τ0](t)φtx(t, xn+1)
)
‖L2

t (R)

}
≤ (2CS0)n+1ε

1
2n+3

(
C0

τ2
0

) 1
2

(E(0))
1
2 ,

where (αn+1, βn+1) = (α0 + (n+ 1)S0 + (n+ 1)τ0, β0 − (n+ 1)S0 − (n+ 1)τ0).

Step 4: In conclusion we have found some N ∈ [2π
S0
, 4π
S0

] such that xN−1 < x0 + 2π ≤ xN and

that for every k ∈ {1, 2, ..., N} there is

αk = α+ 0 + kS0 + kτ0 ∈ [−15π, 0),

βk = β0 − kS0 − kτ0 ∈ [3π, 15π],

xk ∈ [xk−1 + S0/2, xk−1 + S0],

and

max
{
‖φt‖L∞x (xk−1,xk;L2

t (αk,βk)), ‖〈∂t〉−1
(
ηβkαk [τ0](t)φtx(t, xk)

)
‖L2

t (R)

}
≤ (2CS0)kε

1

2k+2

(
C0

τ2
0

) 1
2

(E(0))
1
2 .

Hence, thanks to the 2π-periodicity of φ(x), we know that

‖φt‖L∞x (0,2π;L2
t (0,3π)) ≤ (2CS0)Nε

1

2N+2

(
C0

τ2
0

) 1
2

(E(0))
1
2 ,

which concludes the proof of Proposition 2.2 by setting ε0 = ε0(δ) in such fashion that

(2CS0)2[4π/S0]ε
1

2[4π/S0]+1

0

(
C0

τ2
0

)
= δ.
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In other words there exist some q and Cp effectively computable such that in Proposition 2.2,

(2.43) ε0 = ε0(δ) = Cpδ
q.

�

2.5. Proof of Proposition 2.3. This section is devoted to the proof of the local exponential
stability of the damped wave maps equation: the aim is to benefit from the exponential stability
of the scalar damped wave equations and treat the nonlinear terms as perturbation.

Recall the following quantitative results concerning stabilization of wave equations, the ex-
plicit decay rate for the one dimensional damped wave equation can be calculated directly. We
also refer to [1] for a detailed review on stability of the damped wave equations.

Lemma 2.6 (Exponential stabilization of wave equations). For any T ≥ 2π there exists some
JT > 0 effectively computable such that the solution of the wave equation{

−ytt + yxx = a(x)yt,

y(0, x) = y0, yt(0, x) = y1,

satisfies

JTE1(0) ≤ 2

∫ T

0

∫
S1

a(x)(yt)
2(t, x) dxdt

where

E1(t) :=

∫
S1

(yx(t, x))2 + (yt(t, x))2dx.

Return to the proof of Proposition 2.3. As we know that the damped wave maps equation{
2φ =

(
|φt|2 − |φx|2

)
φ+ a(x)φt,

(φ, φt)(0, x) = (g0, g1)(x),

admits a unique solution φ. Now let us consider the solution of the linearized damped wave
maps equation {

2φ1 = a(x)φ1t,

(φ1, φ1t)(0, x) = (g0, g1)(x).

Thanks to Lemma 2.6, the unique solution of the linearized wave maps equation also decays
exponentially: in particular, by choosing T = 16π the unique solution φ1 verifies

J16πE(0) ≤ 2

∫ 16π

0

∫
S1

a(x)|φ1t|2(t, x) dxdt.

Thus

(2.44)

∫
S1

|φ1x(16π, x)|2 + |φ1t(16π, x)|2dx ≤ (1− J16π)E(0).

By considering φ2 := φ− φ1 we get{
2φ2 = a(x)φ2t +

(
|φt|2 − |φx|2

)
φ,

(φ2, φ2t)(0, x) = (0, 0).
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Therefore, for any t ∈ [0, 16π],∫
S1

|φ2x(t, x)|2 + |φ2t(t, x)|2dx = −2

∫ t

0

∫
S1

(
|φt|2 − |φx|2

)
φ · φ2t + a(x)|φ2t|2 dxdt

≤ 2

∫ t

0

∫
S1

(
|φt|2 − |φx|2

)
|φ · φ2t| dxdt

≤ 2‖φt‖L∞t L2
x(At)‖φt‖L2

tL
∞
x (At)‖φ2t‖L2

tL
2
x(At)

+ 2‖φx‖L∞t L2
x(At)‖φx‖L2

tL
∞
x (At)‖φ2t‖L2

tL
2
x(At)

. E(0)‖φ2t‖L∞t L2
x(A16π)

where At := {(s, y) : s ∈ [0, t], y ∈ S1}. This implies that

(2.45)

∫
S1

|φ2x(t, x)|2 + |φ2t(t, x)|2dx ≤ R2(E(0))2, ∀t ∈ [0, 16π].

Combine estimates (2.44) and (2.45),

E(16π) ≤ (1 + J16π)

∫
S1

|φ1x(16π, x)|2 + |φ1t(16π, x)|2dx

+ (1 + J−1
16π)

∫
S1

|φ2x(16π, x)|2 + |φ2t(16π, x)|2dx

≤ (1− J2
16π)E(0) + (1 + J−1

16π)R2(E(0))2.

By choosing µ0 in such fashion that 2(1 + J−1
16π)R2µ0 ≤ J2

16π, when E(0) ≤ µ0 there is

E(16π) ≤ (1− J2
16π/2)E(0),

which is equivalent to

J2
16πE(0) ≤ 4

∫ 16π

0

∫
S1

a(x)|φt|2(t, x) dxdt.

This ends the proof of Proposition 2.3.

3. Semi-global exact controllability of wave maps

The semi-global controllability is proved by two steps: we first stabilize the semi-global
solution to some state with small energy with the help of damping control, then we prove local
controllability of the controlled wave maps. In this section we focus on the second step. More
precisely, in Section 3.1 we recall some controllability results on the related wave equations;
then, we make some preparation on the controlled wave maps equation and present our strategy
to local exact controllability in Section 3.2; next, Section 3.3 is devoted to the proof of local
controllability using an iterative construction.

3.1. Known controllability results on wave equations. We first recall the exact con-
trollability result of wave equations in S1, which will be used later on to leading to the local
controllability of wave maps. One can refer to [17, Section 1], [29, Section 3.1] for such duality
arguments and more details on the controllability of wave equations.

Lemma 3.1 (Controllability of wave equations). For any T ≥ 2π there exists some J̃T > 0
effectively computable such that, for any (y0, y1) ∈ H1

x × L2
x and any (ỹ0, ỹ1) ∈ H1

x × L2
x there

exists some control f(t, x) ∈ L2
t,x satisfying

‖f‖L∞t (0,T ;L2
x(S1)) ≤ J̃T

(
‖y0‖H1

x
+ ‖y1‖L2

x
+ ‖ỹ0‖H1

x
+ ‖ỹ1‖L2

x

)
,

such that the unique solution of

2y = 1ωf, y[0] = (y0, y1),
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verifies y[T ] = (ỹ0, ỹ1).

Usually in the terminology of HUM the desired control candidate is chosen from the L2(0, T ;U)
space (which also determines the optimal control choice in this space). In the context of wave
equations this control term can be expressed by the so-called HUM operator: let us define
operators R and S as follows,

R : L2([0, T ]× ω)→ H1 × L2(S1)

f 7→ y[0],

where

2y = 1ωf, y[T ] = (0, 0),

and

S : L2 ×H−1(S1)→ L2([0, T ]× ω)

(z0, z1) 7→ 1ωz,

where

2z = 0, z[0] = (z0, z1).

Since T := R◦S is an isomorphism from L2×H−1(S1) to H1×L2(S1), for any y[0] ∈ H1×L2(S1)
the optimal control that steers the state from y[0] to (0, 0) is given by

f := S ◦ T −1(y[0]),

which also belongs to L∞(0, T ;L2(S1)). Different from multidimensional cases where prop-
agation of singularity techniques are adapted for GCC arguments, the explicit observability
inequality can be obtained via direct calculation on the one dimensional free wave equation.

3.2. Strategy of the local exact controllability. Thanks to the damping stabilization, we
focus on the proof of the low-energy controllability result. We shall call some data u[0] =
(u, ut)(x) to be ε-concentrated around p provided that

(3.1) |u(x)− p| ≤ ε, ∀x ∈ S1.

Recall that by fp
⊥

we refer to the orthogonal projection of f onto the plane p⊥, while by fp

we refer to the projection of f onto the direction ~p. In particular, we notice that every data
u[0] = (u(x), ut(x)) : S1 → Sk × TSk and p ∈ Sk satisfying

‖u[0]− (p, 0)‖H1
x×L2

x
≤ ε

is 3ε-concentrated around p, which, thanks to the geometry of the sphere, further implies that

|(ux(x))p| = |〈ux, p〉p| = |〈ux, p− u〉| ≤ 3ε|ux(x)|,

|(ut(x))p| ≤ 3ε|ut(x)| and |(u(x)− p)p| ≤ 3ε

2
|u(x)− p| .

Hence

‖ (u[0]− (p, 0))p ‖H1
x×L2

x
≤ 3ε‖u[0]− (p, 0)‖H1

x×L2
x

Let us start by presenting the following well-posedness results:

Lemma 3.2 (The inhomogeneous wave maps equation). Let T = 2π. For any initial sate
φ[0] : S1 → Sk × TSk in H1

x × L2
x and any source term f(t, x) : S1 → Rk+1 in L2

tL
2
x([0, T ]× S1)

the inhomogeneous wave maps equation

(3.2) 2φ =
(
|φt|2 − |φx|2

)
φ+ 1ωf

φ⊥
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admits a unique solution φ[t]. Moreover, there exists some effectively computable constant
Cw > 0 such that this unique solutions verifies the energy estimates

‖φ[t]‖Ḣ1
x×L2

x
≤ ‖φ[0]‖Ḣ1

x×L2
x

+ ‖f‖L1
tL

2
x([0,T ]×S1), ∀t ∈ [0, T ],

‖(φx, φt)‖L∞x L2
t ([0,T ]×S1) ≤ Cw

(
‖φ[0]‖Ḣ1

x×L2
x

+ ‖f‖L1
tL

2
x([0,T ]×S1) + ‖f‖L2

tL
1
x([0,T ]×S1)

)
,

‖φu‖L2
uL
∞
v ([0,T ]×S1) + ‖φv‖L2

vL
∞
u ([0,T ]×S1) ≤ Cw

(
‖φ[0]‖Ḣ1

x×L2
x

+ ‖f‖L2
tL

2
x([0,T ]×S1)

)
,

as well as

(φ, φt)(t, x) ∈ Sk × TSk,

|φ(t, x)− p| ≤ Cw
(
‖φ[0]− (p, 0)‖H1

x×L2
x

+ ‖f‖L1
tL

2
x([0,T ]×S1)

)
,∀p ∈ S1,

for any (t, x) ∈ [0, T ]× S1.

The energy estimates are similar to those of the damped wave maps (see Section 2.2.2 in
particular the proof of (2.11) for details). The first inequality on L∞t L

2
x-norm of (φx, φt) comes

from time derivation of the energy; then we extend f(t) by 0 on [0, T ]c, which allows us to

find some x0 ∈ S1 such that ‖(φx, φt)(t, x0)‖L2
t (−2π,T+2π) is linearly bounded by

√
E(0) and

‖f‖L1
tL

2
x
, thus

‖(φx, φt)(t, x0 + y)‖L2
t (−2π+y,T+2π−y) − ‖(φx, φt)(t, x0)‖L2

t (−2π,T+2π), ∀y ∈ [0, 2π],

is controlled by ‖f‖L1
xL

2
t
. Concerning the inequality on (φu, φv), the same approach leading

to Inequality (2.12) applies here. Remark that this estimate becomes important when dealing
with the nonlinear wave maps system, in particular there is

(3.3) ‖φt · ϕt − φx · ϕx‖L2
tL

2
x
. ‖φu‖L2

uL
∞
v
‖ϕv‖L∞u L2

v
+ ‖φv‖L2

vL
∞
u
‖ϕu‖L2

vL
∞
u
.

Finally, we comment on the last estimate concerning ε-concentration: it is a direct conse-
quence of ∣∣∣∣∫

S1

φ(t, x)− φ(0, x) dx

∣∣∣∣ =

∣∣∣∣∫
S1

∫ t

0
φt(s, x)dsdx

∣∣∣∣ . ∫ t

0
‖φt(s, x)‖L2

x
ds,∣∣∣∣∫

S1

φ(0, x)− p dx
∣∣∣∣ . ‖φ(0, x)− p‖L2

x
,

and
|φ(t, x)− φ(t, y)| . ‖φx(t, x)‖L2

x
.

Lemma 3.3 (The controlled wave equation). Let T = 2π. For any source term f(t, x) : S1 →
Rk+1 in L2

tL
2
x([0, T ]× S1), the unique solution of the inhomogeneous wave equation

(3.4) 2φ = f, φ[0] = (0, 0),

verifies

‖φ[t]‖Ḣ1
x×L2

x
≤ ‖f‖L1

tL
2
x([0,T ]×S1), ∀t ∈ [0, T ],

‖(φx, φt)‖L∞x L2
t ([0,T ]×S1) ≤ Cw

(
‖f‖L1

tL
2
x([0,T ]×S1) + ‖f‖L2

tL
1
x([0,T ]×S1)

)
,

‖φu‖L2
uL
∞
v ([0,T ]×S1) + ‖φv‖L2

vL
∞
u ([0,T ]×S1) ≤ Cw‖f‖L2

tL
2
x([0,T ]×S1),

‖φ‖L∞t,x([0,T ]×S1) ≤ Cw
(
‖f‖L1

tL
2
x([0,T ]×S1)

)
.

There exists some effectively computable GT > 0 such that, for any target state (u1, v1)(x) ∈
H1
x × L2

x(S1) one can find some explicit control function 1ωf(t, x) satisfying

(3.5) ‖f‖L∞t L2
x([0,T ]×S1) ≤ GT ‖(u1, v1)‖H1

x×L2
x
,
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such that the unique solution of (3.4) with control 1ωf verifies φ[T ] = (u1, v1).

Now we are in position to state the local null controllability of the controlled wave maps
equation:

Theorem 3.4. Let T = 2π. There exist some effectively computable ε̃ > 0 such that for any
initial state u[0] = (a, b) : S1 → Sk × TSk satisfying

‖(a, b)− (p, 0)‖H1
x×L2

x
= ε ≤ ε̃,

for some p ∈ Sk, we are able to construct a control f satisfying

‖f‖L∞t L2
x([0,T ]×S1) ≤ 50GT ε,

such that the unique solution of the inhomogeneous wave maps equation

2φ =
(
|φt|2 − |φx|2

)
φ+ 1ωf

φ⊥ , φ[0] = (a, b),

verifies

φ[T ] = (p, 0).

Thanks to the time reversal of the controlled wave maps equation, Theorem 3.4 implies the
local exact controllabilty of the controlled wave maps. becasue Sk is compact and connected,
there exists some integer N such that for any p, q ∈ Sk we are able to select a sequence
{pi}Ni=0 ⊂ Sk satisfying (p0, pN ) = (p, q) in such fashion that

|pi − pi+1| ≤ ε̃. ∀i ∈ {0, 1, ..., N − 1}.

Further notice that we can construct a control to move the state from (pk, 0)to (pk+1, 0) ac-
cording to Theorem 3.4, we arrive at the following detailed version of Theorem 1.2 concerning
low-energy exact controllability of wave maps.

Corollary 3.5. Let T = 2π(N + 1). For any states u[0], u[T ] : S1 → Sk × TSk in H1
x × L2

x

satisfying

‖u[0]‖Ḣ1
x×L2

x
, ‖u[T ]‖Ḣ1

x×L2
x
≤ (ε̃)2

100
,

we are able to construct a control f(t, x) satisfying

‖f‖L∞t L2
x([0,T ]×S1) ≤ 5000G2π

(
‖u[0]‖Ḣ1

x×L2
x

+ ‖u[T ]‖Ḣ1
x×L2

x

)
,

such that the unique solution of the inhomogeneous wave maps equation

2φ =
(
|φt|2 − |φx|2

)
φ+ 1ωf

φ⊥ , φ[0] = u[0],

verifies

φ[T ] = u[T ].

3.3. Proof of the local null controllability. Now we are in position to prove Theorem 3.4
concerning local null controllability. We adapt an iteration scheme to construct the required
control function: for every k ∈ N we construct a pair (φk, fk−1) satisfying

(3.6) 2φk =
(
|φk,t|2 − |φk,x|2

)
φk + 1ωf

φ⊥k
k−1, φk[0] = (a, b),

such that φk[T ] converges to (p, 0) and that their limit, (φ̃, f̃), is the desired solution:

2φ̃ =
(
|φ̃t|2 − |φ̃x|2

)
φ̃+ 1ωf̃

φ̃⊥ ,

φ̃[0] = (a, b) and φ̃[T ] = (p, 0).
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Step 0. In the zeroth iterate, namely k = 0, we select f−1 = 0, thus the system becomes a
simple wave maps equation:

2φ0 =
(
|φ0,t|2 − |φ0,x|2

)
φ0, φ0[0] = (a, b).

Since

(3.7) ‖(a, b)− (p, 0)‖H1
x×L2

x
= ε ≤ ε̃,

by conservation of the energy

‖φ0[t]‖Ḣ1
x×L2

x
≤ ε, ∀t ∈ [0, T ].

Furthermore, since∣∣∣∣∫
S1

φ0(t, x)− φ0(0, x) dx

∣∣∣∣ =

∣∣∣∣∫ t

0

∫
S1

φ0,t(s, x) dxdt

∣∣∣∣ ≤ 6πε, ∀t ∈ [0, T ],

we know that for any t ∈ [0, T ],

φ0[t] is 9ε-concentrated around p,(3.8)

‖φ0[t]− (p, 0)‖H1
x×L2

x
≤ 25ε,(3.9)

‖(φ0,x, φ0,t)‖L∞x L2
t ([0,T ]×S1) ≤ Cwε,(3.10)

‖φ0,u‖L2
uL
∞
v ([0,T ]×S1) + ‖φ0,v‖L2

vL
∞
u ([0,T ]×S1) ≤ Cwε.(3.11)

According to the geometry of sphere we have the important observation that

(3.12) ‖ (φ0[t]− (p, 0))p ‖H1
x×L2

x
≤ 9ε‖φ0[t]− (p, 0)‖H1

x×L2
x
.

This finishes the zeroth iterate with error estimate

(3.13) ‖φ0[T ]− (p, 0)‖H1
x×L2

x
≤ 25ε.

Step 1. We start the first iterate by fixing the error as much as possible using some well chosen
control f0(t, x), then construct the related function φ1. Thanks to Lemma 3.3 concerning the
exact controllability of wave equations, we are able to select f0 in such fashion that the solution
of

2ϕ̃0 = 1ωf0, ϕ̃0[0] = (0, 0),

satisfies
ϕ̃0[T ] = −φ0[T ] + (p, 0),

with

(3.14) ‖f0‖L∞t L2
x([0,T ]×S1) ≤ GT ‖φ0[T ]− (p, 0)‖H1

x×L2
x
≤ 25GT ε.

Then we have that the slightly modified solution of

2ϕ0 = 1ωf
p⊥

0 , ϕ0[0] = (0, 0),

satisfies

ϕ0[T ] = −φ0[T ] + (p, 0) + (φ0[T ]− (p, 0))p .

We also know from Lemma 3.3 that

‖ϕ0[t]‖Ḣ1
x×L2

x
≤ 2πGT ‖φ0[T ]− (p, 0)‖H1

x×L2
x
≤ 50πGT ε, ∀t ∈ [0, T ],

‖ϕ0,u‖L2
uL
∞
v ([0,T ]×S1) + ‖ϕ0,v‖L2

vL
∞
u ([0,T ]×S1) ≤ 8πGTCw‖φ0[T ]− (p, 0)‖H1

x×L2
x
≤ 200πGTCwε,

‖ϕ0‖L∞t,x([0,T ]×S1) ≤ 4πGTCw‖φ0[T ]− (p, 0)‖H1
x×L2

x
≤ 100πGTCwε.

Notice that φ̃1 := φ0 + ϕ0 verifies

‖φ̃1[T ]− (p, 0)‖H1
x×L2

x
= ‖ (φ0[T ]− (p, 0))p ‖H1

x×L2
x
≤ 9ε‖φ0[T ]− (p, 0)‖H1

x×L2
x
,
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as well as

φ̃1[t] is (9 + 100πGTCw)ε-concentrated around p,

‖φ̃1[t]− (p, 0)‖H1
x×L2

x
. ε,

‖φ̃0,u‖L2
uL
∞
v ([0,T ]×S1) + ‖φ̃0,v‖L2

vL
∞
u ([0,T ]×S1) . ε.

Thus in principle we would like to set φ1 as φ̃1. However, this still needs to be modified a bit
to guarantee the geometric constraint, thus the form (3.6). Observe from the construction of

φ̃1 that

(3.15) 2φ̃1 =
(
|φ̃1,t|2 − |φ̃1,x|2

)
φ̃1 + 1ωf

φ̃⊥1
0 + e0, φ̃1[0] = (a, b)

with

e0(t, x) = φ0 (〈2φ0,x + ϕ0,x, ϕ0,x〉 − 〈2φ0,t + ϕ0,t, ϕ0,t〉)

− ϕ0

(
|φ̃1,t|2 − |φ̃1,x|2

)
+ 1ω

(
fp
⊥

0 − f φ̃
⊥
1

0

)
.

Combining the preceding estimates on φ0 and ϕ0 we know from Inequality (3.3) that

‖ϕ0

(
|φ̃1,t|2 − |φ̃1,x|2

)
‖L2

t,x([0,T ]×S1) . ε
2‖φ0[T ]− (p, 0)‖H1

x×L2
x
,

‖φ0 (〈2φ0,x + ϕ0,x, ϕ0,x〉 − 〈2φ0,t + ϕ0,t, ϕ0,t〉) ‖L2
t,x([0,T ]×S1) . ε‖φ0[T ]− (p, 0)‖H1

x×L2
x
.

Moreover, since |φ̃1(t, x)− p| ≤ Cε, there is

|gp⊥ − gφ̃⊥1 | . ε|g|, ∀g ∈ Rk+1,

which yields

‖1ω
(
fp
⊥

0 − f φ̃
⊥
1

0

)
‖L2

t,x([0,T ]×S1) . ε‖f0‖L2
t,x([0,T ]×S1) . ε‖φ0[T ]− (p, 0)‖H1

x×L2
x
.

Thus

(3.16) ‖e0‖L2
t,x([0,T ]×S1) . ε‖φ0[T ]− (p, 0)‖H1

x×L2
x
.

In order to eliminate the error e0 we try to find some suitable correction term w0 such that

φ1 := φ̃1 + w0 = φ0 + ϕ0 + w0 satisfies

(3.17) 2φ1 =
(
|φ1,t|2 − |φ1,x|2

)
φ1 + 1ωf

φ⊥1
0 , φ1[0] = (a, b).

According to Lemma 3.2 the Cauchy problem (3.17) admits a unique solution satisfying

|φ1(t, x)− p| . ε, ∀(t, x) ∈ [0, T ]× S1,

‖(φ1,x, φ1,t)‖L∞t ×L2
x([0,T ]×S1) . ε,

‖φ1,u‖L2
uL
∞
v ([0,T ]×S1) + ‖φ1,v‖L2

vL
∞
u ([0,T ]×S1) . ε.

In order to simplify the notations from now on we shall denote the W−norm of a function
φ[t] by

(3.18) ‖φ‖W := ‖(φx, φt)‖L∞t ×L2
x([0,T ]×S1) + ‖φu‖L2

uL
∞
v ([0,T ]×S1) + ‖φv‖L2

vL
∞
u ([0,T ]×S1).

Next, we investigate the correction term w0 satisfying

2w0 = g0, w0[0] = (0, 0),

with

g0 =
(
|φ1,t|2 − |φ1,x|2

)
φ1 −

(
|φ̃1,t|2 − |φ̃1,x|2

)
φ̃1 + 1ωf

φ⊥1
0 − 1ωf

φ̃⊥1
0 − e0.
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Thanks to Lemma 3.3, there is

‖w0‖W + ‖w0‖L∞t,x([0,T ]×S1) . ‖g0‖L2
t,x([0,T ]×S1).

It suffices to estimate the value of ‖g0‖L2
t,x([0,T ]×S1). Because

|φ1(t, x)− p|+ |φ̃1(t, x)− p| . ε, ∀(t, x) ∈ [0, T ]× S1,

by the geometry of the sphere we have

|f φ⊥1
0 − f φ̃

⊥
1

0 | . ε|f0|,
which further yields

‖1ωf
φ⊥1

0 − 1ωf
φ̃⊥1
0 ‖L2

t,x([0,T ]×S1) . ε‖f0‖L2
t,x([0,T ]×S1) . ε‖φ0[T ]− (p, 0)‖H1

x×L2
x
.

Observe that (
|φ1,t|2

)
φ1 −

(
|φ̃1,t|2

)
φ̃1 −

(
|φ1,x|2

)
φ1 +

(
|φ̃1,x|2

)
φ̃1

=
(
〈w0,t, φ1,t + φ̃1,t〉 − 〈w0,x, φ1,x + φ̃1,x〉

)
φ1 +

(
|φ̃1,t|2 − |φ̃1,x|2

)
w0,

thus

‖
(
|φ1,t|2

)
φ1 −

(
|φ̃1,t|2

)
φ̃1 −

(
|φ1,x|2

)
φ1 +

(
|φ̃1,x|2

)
φ̃1‖L2

t,x

. ‖w0‖W‖φ1 + φ̃1‖W + ‖w0‖L∞t,x‖φ̃1‖2W

. ε
(
‖w0‖W + ‖w0‖L∞t,x

)
.

Combining the preceding estimates we arrive at

‖w0‖W + ‖w0‖L∞t,x([0,T ]×S1) . ε‖φ0[T ]− (p, 0)‖H1
x×L2

x
+ ε

(
‖w0‖W + ‖w0‖L∞t,x

)
.

Therefore,

(3.19) ‖w0‖W + ‖w0‖L∞t,x([0,T ]×S1) . ε‖φ0[T ]− (p, 0)‖H1
x×L2

x

provided ε̃ sufficiently small. In particular, this implies that

(3.20) ‖φ1[T ]− (p, 0)‖H1
x×L2

x
. ε‖φ0[T ]− (p, 0)‖H1

x×L2
x
,

thus we have gained an extra ε.
In conclusion we are able to find some effectively computable constant C > 0 such that

‖φ1‖W ≤ Cε,
|φ1(t, x)− p| ≤ Cε, ∀(t, x) ∈ [0, T ]× S1,

‖f0‖L∞t L2
x([0,T ]×S1) ≤ 25GT ε,

‖φ1[T ]− (p, 0)‖H1
x×L2

x
≤ Cε‖φ0[T ]− (p, 0)‖H1

x×L2
x
.

Step 2. In the following we repeat the iteration procedure. Inspired by the preceding conclusion
we expect to construct {(φk, fk−1)}k in such fashion that

‖φk‖W ≤ 2Cε,
|φk(t, x)− p| ≤ 2Cε, ∀(t, x) ∈ [0, T ]× S1,

‖fk−1‖L∞t L2
x([0,T ]×S1) ≤ 50GT ε,

satisfying
‖φk[T ]− (p, 0)‖H1

x×L2
x
≤ Cε‖φk−1[T ]− (p, 0)‖H1

x×L2
x
.

This motivates us to prove the following lemma at first:
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Lemma 3.6. Let T = 2π. There exist some effectively computable ε̃ > 0 and C1 > 0 such that
for any initial state u[0] = (a, b) : S1 → Sk × TSk satisfying

‖(a, b)− (p, 0)‖H1
x×L2

x
= ε ≤ ε̃,

if some pair (φk, fk−1) satisfies

2φk =
(
|φk,t|2 − |φk,x|2

)
φk + 1ωf

φ⊥k
k−1, φk[0] = (a, b),

‖φk‖W ≤ 2Cε,
|φk(t, x)− p| ≤ 2Cε, ∀(t, x) ∈ [0, T ]× S1,

‖fk−1‖L∞t L2
x([0,T ]×S1) ≤ 50GT ε,

then we are able to construct another pair (φk+1, fk) such that

2φk+1 =
(
|φk+1,t|2 − |φk+1,x|2

)
φk+1 + 1ωf

φ⊥k+1

k , φk+1[0] = (a, b),

‖φk+1[T ]− (p, 0)‖H1
x×L2

x
≤ C1ε‖φk[T ]− (p, 0)‖H1

x×L2
x
,

‖φk+1 − φk‖W + ‖φk+1 − φk‖L∞t,x([0,T ]×S1) ≤ C1‖φk[T ]− (p, 0)‖H1
x×L2

x
,

‖fk − fk−1‖L∞t L2
x([0,T ]×S1) ≤ GT ‖φk[T ]− (p, 0)‖H1

x×L2
x
.

Let us quickly comment on the use of Lemma 3.6 to continue the iteration procedure. Clearly
Case k = 1 verifies the conditions of Lemma 3.6 according to Step 1. By reducing the value of
ε̃ if necessary a standard mathematical induction argument yields,

2φk =
(
|φk,t|2 − |φk,x|2

)
φk + 1ωf

φ⊥k
k−1, φk[0] = (a, b),

‖φk‖W ≤ (2− 21−k)Cε,

|φk(t, x)− p| ≤ (2− 21−k)Cε, ∀(t, x) ∈ [0, T ]× S1,

‖fk−1‖L∞t L2
x([0,T ]×S1) ≤ 25(2− 21−k)GT ε,

‖φk[T ]− (p, 0)‖H1
x×L2

x
≤ 2−kε3/2,

for all k ∈ N∗.

Proof of Lemma 3.6. We mimic the construction in Step 1: first we shall find some fk = fk−1 +
hk to correct the error as much as possible (with the choice of hk by using the controllability
of the linear wave equation), then we try to solve the inhomogeneous wave maps equation with
the source term fk hoping that the solution φk+1 becomes closer to (p, 0).

If coincidently φk[T ]− (p, 0) = (0, 0), then we stop the procedure as (φk, fk−1) is the required
pair. Otherwise, we solve the linear control problem and select hk in such fashion that the
solution of

2ϕ̃k = 1ωhk, ϕ̃k[0] = (0, 0),

satisfies

ϕ̃k[T ] = −φk[T ] + (p, 0),

with

(3.21) ‖hk‖L∞t L2
x([0,T ]×S1) ≤ GT ‖φk[T ]− (p, 0)‖H1

x×L2
x
.

Again, thanks to the geometry of sphere, we can define ϕk as the solution of

2ϕk = 1ωh
p⊥

k , ϕk[0] = (0, 0)

satisfying, according to Lemma 3.3,

‖ϕk‖W + ‖ϕk‖L∞t,x([0,T ]×S1) . ‖φk[T ]− (p, 0)‖H1
x×L2

x
. ε.



36 JOACHIM KRIEGER AND SHENGQUAN XIANG

By defining φ̃k+1 = φk + ϕk and fk = fk−1 + hk we get

‖φ̃k+1[T ]− (p, 0)‖H1
x×L2

x
= ‖ (φk[T ]− (p, 0))p ‖H1

x×L2
x
. ε‖φk[T ]− (p, 0)‖H1

x×L2
x
,

as well as

‖φ̃k+1‖W . ε and |φ̃k+1(t, x)− p| . ε, ∀(t, x) ∈ [0, T ]× S1.

The function φ̃k+1 verifies the equation

(3.22) 2φ̃k+1 =
(
|φ̃k+1,t|2 − |φ̃k+1,x|2

)
φ̃k+1 + 1ωf

φ̃⊥k+1

k + ek, φ̃k+1[0] = (a, b)

with

ek = φk (〈2φk,x + ϕk,x, ϕk,x〉 − 〈2φk,t + ϕk,t, ϕk,t〉)

− ϕk
(
|φ̃k+1,t|2 − |φ̃k+1,x|2

)
+ 1ω

(
hp
⊥

k + f
φ⊥k
k−1 − f

φ̃⊥k+1

k

)
.

Immediately we have

‖φk (〈2φk,x + ϕk,x, ϕk,x〉 − 〈2φk,t + ϕk,t, ϕk,t〉) ‖L2
t,x
. ε‖φk[T ]− (p, 0)‖H1

x×L2
x
,

‖ϕk
(
|φ̃k+1,t|2 − |φ̃k+1,x|2

)
‖L2

t,x
. ε2‖φk[T ]− (p, 0)‖H1

x×L2
x

Furthermore, since

|φ̃k+1 − φk| . ‖φk[T ]− (p, 0)‖H1
x×L2

x
,

|φ̃k+1 − p| . ε,
we obtain

‖fφ
⊥
k

k−1 − f
φ̃⊥k+1

k−1 ‖L2
t,x
. ‖φk[T ]− (p, 0)‖H1

x×L2
x
‖fk−1‖L2

t,x
. ε‖φk[T ]− (p, 0)‖H1

x×L2
x
,

‖hp
⊥

k − h
φ̃⊥k+1

k ‖L2
t,x
. ε‖hk‖L2

t,x
. ε‖φk[T ]− (p, 0)‖H1

x×L2
x
.

The preceding estimates lead to

(3.23) ‖ek‖L2
t,x([0,T ]×S1) . ε‖φk[T ]− (p, 0)‖H1

x×L2
x
.

Finally we replace φ̃k+1 by φk+1 = φ̃k+1 +wk = φk + ϕk +wk with some suitable correction
term wk satisfying

(3.24) 2φk+1 =
(
|φk+1,t|2 − |φk+1,x|2

)
φk+1 + 1ωf

φ⊥k+1

k , φk+1[0] = (a, b).

According to Lemma 3.2 the preceding Cauchy problem admits a unique solution satisfying

|φk+1(t, x)− p| . ε, ∀(t, x) ∈ [0, T ]× S1,

‖φk+1‖W . ε,

which implies that |wk| . ε. In order to get better estimates on wk we investigate its equation
as

2wk = gk, wk[0] = (0, 0),

with

gk =
(
|φk+1,t|2 − |φk+1,x|2

)
φk+1 −

(
|φ̃k+1,t|2 − |φ̃k+1,x|2

)
φ̃k+1 + 1ωf

φ⊥k+1

k − 1ωf
φ̃⊥k+1

k − ek.

Thanks to Lemma 3.3, there is

‖wk‖W + ‖wk‖L∞t,x([0,T ]×S1) . ‖gk‖L2
t,x([0,T ]×S1).
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We have(
|φk+1,t|2

)
φk+1 −

(
|φ̃k+1,t|2

)
φ̃k+1 = 〈wk,t, φk+1,t + φ̃k+1,t〉φk+1 + |φ̃k+1,t|2wk,(

|φk+1,x|2
)
φk+1 −

(
|φ̃k+1,x|2

)
φ̃k+1 = 〈wk,x, φk+1,x + φ̃k+1,x〉φk+1 + |φ̃k+1,x|2wk,

thus

‖
(
|φk+1,t|2

)
φk+1 −

(
|φ̃k+1,t|2

)
φ̃k+1 −

(
|φk+1,x|2

)
φk+1 +

(
|φ̃k+1,x|2

)
φ̃k+1‖L2

t,x

. ε
(
‖wk‖W + ‖wk‖L∞t,x

)
.

Since
|φ̃k+1 − φk+1| ≤ ‖wk‖L∞t,x � 1,

we have

‖f φ⊥k+1

k − f φ̃
⊥
k+1

k ‖L2
t,x
. ‖wk‖L∞t,x‖fk‖L2

t,x
. ε‖wk‖L∞t,x .

Combine the preceding estimates we arrive at

‖wk‖W + ‖wk‖L∞t,x([0,T ]×S1) . ε
(
‖wk‖W + ‖wk‖L∞t,x

)
+ ε‖φk[T ]− (p, 0)‖H1

x×L2
x
,

hence, for ε̃ sufficiently small

(3.25) ‖wk‖W + ‖wk‖L∞t,x([0,T ]×S1) . ε‖φk[T ]− (p, 0)‖H1
x×L2

x
.

Therefore, there exists some effectively computable C1 > 0 such that

‖φk+1[T ]− (p, 0)‖H1
x×L2

x
≤ C1ε‖φk[T ]− (p, 0)‖H1

x×L2
x
,

‖φk+1 − φk‖W + ‖φk+1 − φk‖L∞t,x([0,T ]×S1) ≤ C1‖φk[T ]− (p, 0)‖H1
x×L2

x
,

‖fk − fk−1‖L∞t L2
x([0,T ]×S1) ≤ GT ‖φk[T ]− (p, 0)‖H1

x×L2
x
.

This ends the proof of Lemma 3.6. �

Step 3. By the construction of {(φk, fk−1)}k∈N∗ we know that

{φk[t]}k∈N∗ is a Cauchy sequence in C0
t ([0, T ];H1

x × L2
x(S1)),

{φk,u}k∈N∗ is a Cauchy sequence in L2
uL
∞
v ([0, T ]× S1),

{φk,v}k∈N∗ is a Cauchy sequence in L2
vL
∞
u ([0, T ]× S1),

{φk}k∈N∗ is a Cauchy sequence in C0
t,x([0, T ]× S1),

{fk−1}k∈N∗ is a Cauchy sequence in C0
t ([0, T ];L2

x(S1)).

Hence there exist a pair (φ, f) such that

(φk, φk,t)→ (φ, φt) in C0
t ([0, T ];H1

x × L2
x(S1)),

φk,u → φu in L2
uL
∞
v ([0, T ]× S1),

φk,v → φv in L2
vL
∞
u ([0, T ]× S1),

φk → φ in C0
t,x([0, T ]× S1),

fk−1 → f in C0
t ([0, T ];L2

x(S1)).

By passing the limit of those equations satisfied by {(φk, fk−1)}k we easily conclude the following
equation on φ:

2φ =
(
|φt|2 − |φx|2

)
φ+ 1ωf

φ⊥ ,

φ[0] = (a, b) and φ[T ] = (0, 0).
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3.4. Semi-global exact controllability. Let given ν > 0. According to the exponential sta-
bility of the damped wave maps equation Theorem 1.3 (or the asymptotic stability guaranteed
by Propositions 2.1–2.2), there exists some effectively computable T1 > 0 such that for any
initial state φ[0] : S1 → Sk × TSk satisfying

E(0) ≤ 2π − ν,
the unique solution of the damped wave maps equation verifies E(T1) ≤ (ε̃)2/100. Then,
thanks to Corollary 3.5 we are able to find some effectively computable T2 > 0 and control
f ∈ L∞t (T1, T1 + T2;L2

x(S1)) such that the controlled wave maps equation has final state (1, 0).
By the time reversal of the controlled wave maps equation, this implies that the wave maps
equation is exact controllable in time period 2(T1 + T2) for states with energy below 2π − ν.
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[2] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch. Sharp sufficient conditions for the observation, control,
and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.
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