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Abstract

Machine learning has become the state of the art for the solution of the diverse inverse

problems arising from computer vision and medical imaging, e.g. denoising, super-resolution,

de-blurring, reconstruction from scanner data, quantitative magnetic resonance imaging, etc,

largely replacing the variational solutions of regularized optimization problems. However,

between the two extremes of purely model-driven solutions, such as the solution of regularized

optimization problems, and purely data-driven solutions, such as supervised deep learning,

exist hybrid methods which combine aspects of both model-driven and data-driven solutions.

Such hybrid methods are as manifold as the number of different inverse problems, as the

particular characteristics of the inverse problem, e.g. availability of training data, complexity

of the forward model, prior knowledge on solutions, etc., will understandably have a huge

impact on the structure as well as the underlying techniques of the hybrid method. Further-

more, the validation of such approaches is also of utmost importance, particularly in medical

imaging, where there are stringent requirements on the reliability of methods. In particular,

hybrid methods are important when large, realistic training datasets are unavailable, such that

one cannot immediately apply standard data-driven algorithms.

In this thesis, we examine the solution and validation of four inverse problems derived from

Magnetic Resonance Imaging (MRI) and computer vision, where we address the lack of large,

realistic training datasets through solutions which try to maximally take advantage of the

available model-driven and data-driven resources.

We first show that self-supervised learning embedded in traditional model-driven schemes can

be used to robustly solve inverse problems without ground-truth data. We conduct a rigorous

validation of self-supervised methods for reconstructing MR images from raw measurement

data through novel experiments on clinically relevant data, showing the importance of correct

formulation of the forward model/conformity to the training data for image reconstruction

quality, critically examining commonly used metrics for quantitative evaluation, and the gen-

eralization capabilities of self-supervised approaches. Furthermore, we propose embedding a

neural network into a Hamiltonian Markov Chain Monte Carlo (HMCMC) sampling scheme

with a self-supervised loss which improves the robustness and accuracy of solutions to a joint

diffusometry/relaxometry problem, with respect to state of the art methods.
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Complementarily, we show that embedding realistic modeling into standard supervised learn-

ing schemes can be used to accommodate the lack of realistic, ground truth data. We combine

realistic models and priors to create an extensive synthetic dataset and train a multi-layer

perceptron for reconstructing T2 spectra from MRI data which is more accurate, robust, and

orders of magnitude less computationally expensive than the state of the art. Finally, we

propose parametrizing an analytically infeasible albeit realistic downsampling model in single

image super-resolution through a neural network and integrating it into arbitrary deep learn-

ing pipelines which were trained on data with an unrealistic downsampling model, achieving

state of the art performance in real-world super-resolution.

Key words: Inverse Problems, Machine Learning, Deep Learning, Self-Supervised Learning,

Quantitative MRI, Validation, Super-Resolution, Markov Chain Monte Carlo, Relaxometry
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Résumé

L’apprentissage automatique est devenu l’état de l’art dans la résolution de divers problèmes

inverses issus de la vision par ordinateur et de l’imagerie médicale, par exemple le débruitage,

la super-résolution, le défloutage, la reconstruction des données du scanner, l’IRM quanti-

tative, etc., substituant largement les solutions variationnelles de problèmes d’optimisation

régularisés. Cependant, entre les deux extrêmes que sont les solutions purement guidées par

un modèle, comme la résolution de problèmes d’optimisation régularisés, et les solutions

purement guidées par les données, comme l’apprentissage profond (deep-learning) supervisé,

il existe des méthodes hybrides qui combinent des aspects des solutions guidées par le modèle

et des solutions guidées par les données. Ces méthodes hybrides sont autant nombreuses que

les problèmes inverses, car les caractéristiques particulières du problème inverse, par exemple

la disponibilité des données d’entraînement, la complexité du modèle avant (forward model),

les connaissances préalables sur les solutions, etc. auront évidemment un énorme impact

sur la structure ainsi que sur les techniques sous-jacentes de la méthode hybride. En outre,

la validation de ces approches est également de la plus haute importance, notamment dans

le domaine de l’imagerie médicale, où la fiabilité des méthodes est soumise à des exigences

strictes. En particulier, les méthodes hybrides sont importantes lorsque de grands ensembles

de données d’entraînement réalistes ne sont pas disponibles, de sorte qu’il n’est pas possible

d’appliquer immédiatement des algorithmes standard guidés par les données.

Dans cette thèse, nous examinons la résolution et la validation de quatre problèmes inverses

dérivés de l’imagerie par résonance magnétique (IRM) et de la vision par ordinateur, où nous

taclons le problème du manque de grands et réalistes ensembles de données d’entraînement

par des solutions qui tentent de tirer le meilleur parti possible des ressources disponibles

orientées modèle et données.

Nous montrons tout d’abord que l’apprentissage auto-supervisé (self-supervised learning)

intégré dans des schémas traditionnels basés sur des modèles peut être utilisé pour résoudre

de manière robuste des problèmes inverses sans données de vérification (ground truth). Nous

procédons à une validation rigoureuse des méthodes autosupervisées pour la reconstruction

d’images IRM à partir de données de mesure brutes par le biais d’expériences inédites sur des

données cliniquement pertinentes, en montrant l’importance d’une formulation correcte du

vii



Chapter 0 Résumé

modèle avant (forward model) et la conformité aux données d’apprentissage pour la qualité

de la reconstruction d’image, en examinant scrupuleusement les métriques couramment

utilisées pour l’évaluation quantitative, et les capacités de généralisation des approches au-

tosupervisées. De plus, nous proposons d’intégrer un réseau de neurones dans un schéma

d’échantillonnage Hamiltonian Markov Chain Monte Carlo (HMCMC) avec une fonction de

perte (loss function) auto-supervisée qui améliore la robustesse et la précision des solutions à

un problème conjoint de diffusométrie/relaxométrie, par rapport aux méthodes de l’état de

l’art.

En complément, nous montrons que l’intégration d’une modélisation réaliste dans des sché-

mas d’apprentissage supervisé standard peut être utilisée pour pallier le manque de données

de vérification (ground truth). Nous combinons des modèles ainsi que des a priori réalistes afin

de créer un vaste ensemble de données synthétiques et d’entraîner un perceptron multicouche

(multi-layer perceptron) pour reconstruire les spectres T2 à partir de données d’IRM, ce qui

est plus précis, plus robuste et beaucoup moins coûteux en termes de calcul que l’état de l’art.

Enfin, nous montrons qu’un modèle de sous-échantillonnage analytiquement infaisable mais

réaliste dans la super-résolution d’une seule image (single image super-resolution) peut être

paramétré par un réseau de neurones et intégré dans des pipelines d’apprentissage profond

arbitraires qui ont été entrainés sur des données avec un modèle de sous-échantillonnage non

réaliste, ce qui permet d’atteindre des performances d’état de l’art dans la super-résolution

dans des situations réelles.

Mots clefs : Problèmes inverses, apprentissage automatique, apprentissage profond, appren-

tissage autogéré, IRM quantitative, validation, super-résolution, Monte Carlo par chaîne de

Markov, relaxométrie.
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1 Introduction

Image reconstruction in computer vision and medical imaging can often be formulated as an

inverse problem, where one reconstructs an image from measurements for which the model

relating the measurements to the image is well or approximately known [1]–[3]. If algebraic

or explicit solutions are not feasible, inverse problems are traditionally solved through the

solution of optimization problems, though Markov Chain Monte Carlo (MCMC) methods

have also been used. In particular, regularized optimization schemes, where a prior on the

reconstructed image, such as sparsity in a certain signal domain, is imposed were until recently

the state of the art for image reconstruction. We denote these approaches as model-driven, as

they explicitly leverage knowledge of the measurement model as well as priors on plausible

solutions. With the advent of deep learning, approaches based on end-to-end, supervised

machine learning, where, for example, mappings from the measurements directly to the

desired image were learned over large datasets, quickly overtook regularized optimization

schemes as the state of the art [4]. As these approaches mainly or solely leverage information

from the training datasets, we denote these approaches as data-driven.

1.1 Motivation

Supervised machine learning generally require large amounts of realistic training data for

learning accurate and robust mappings [5]. For example, problems arise when supervised

methods are trained on insufficient data or unrealistic data, such as in cases where ground

truth data is difficult or infeasible to obtain. Consequently, problems with domain shifts and

generalization often arise when data-driven methods are used in the real world. Furthermore,

validating methods also become difficult without realistic data or ground truth. Ideally, recon-

struction methods will leverage all the information available; both model-driven information

(i.e. realistic modelling, knowledge of a-priori constraints/characteristics of plausible solu-

tions, the use of model-driven schemes, etc.) and data-driven information (i.e. using machine

learning on the available data). In practice, the optimal ratio of model-driven and data-driven

components of a given reconstruction method depends significantly on the specifics of the

inverse problem considered; for example, whether the forward model is known/efficiently
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Chapter 1 Introduction

computable or not, the feasibility of generating a sufficient amount of realistic, synthetic data,

the desired tradeoff between computational complexity and performance, the amount of

training data available, etc.

Therefore the main questions explored in this thesis are as follows.

• How can data-driven methods, e.g. machine learning, be used to help solve inverse

problems in the setting where no or very limited, realistic datasets are available which

could be used for standard, supervised learning?

• How can data-driven and model-driven methods be combined to form hybrid methods

which leverage all available information?

• How can methods for solving inverse problems be quantitatively or qualitatively vali-

dated in the setting where little to no ground truth data is available?

The main chapters of this thesis focus on answering these questions in the context of 4 different

inverse problems which arise from Magnetic Resonance Imaging (MRI) and computer vision,

with different chapters emphasizing certain questions more than others. These inverse

problems are all connected by a lack of large, realistic training datasets that could be used

for simple application of supervised learning or validation.

In particular, we proposed and studied two orthogonal strategies:

• Embedding self-supervised (i.e., learning only from measurement data) neural networks

into traditional, model-driven schemes.

• Embedding realistic modelling into the pipelines of standard, supervised machine

learning approaches.

1.2 Thesis Outline and Contributions

The thesis is organized as follows:

• Chapter 2 consists of a general, non-rigorous introduction to inverse problems, partic-

ularly as it relates to image reconstruction. We start from the formulation of generic

inverse problems, define a traditional, variational framework for solving generic inverse

problems through convex optimization, and conclude with a description of machine

learning for solving inverse problems. This chapter gives context for understanding the

contributions of this thesis from a methodological point of view.

• Chapter 3 consists of an introduction to Magnetic Resonance Imaging (MRI) in order

to give context for the inverse problems in MRI which are addressed in the subsequent

chapters (4, 5, and 6).
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In Chapters 4 and 5, we validate (Chapter 4) and propose (Chapter 5) novel methods where

self-supervised learning is embedded into different model-driven schemes for more accurate

and robust solution of inverse problems where no ground truth data is generally available.

Specifically:

• In Chapter 4, we begin with a rigorous validation of self-supervised methods for re-

constructing MR images from raw, undersampled measurements. This chapter first

illustrates the importance of validating on realistic, undersampled datasets by showing

significant differences between reconstructions performed on prospectively vs. ret-

rospectively undersampled data in an MR phantom and an assortment of fruits and

vegetables. It also draws inspiration from the computer vision literature to critique

and suggest alternatives to image metrics commonly used for validating MR image

reconstruction. Finally, it showcases the potential for generalizability of self-supervised

methods using an extensive dataset of different sequences, as well as showing the po-

tential for no-reference image metrics to be used for quantitative evaluation when no

ground truth is available. The results of this chapter are a first step toward realizing

standardized, realistic validation of machine learning methods for undersampled MR

reconstruction which is necessary for future deployment in the clinic.

• In Chapter 5, we continue with self-supervised learning by proposing to solve inverse

problems in a probabilistic framework through embedding a self-supervised neural

network into a Hamiltonian Markov Chain Monte Carlo (HMCMC) sampler; we extend

an existing approach by modifiying the self-supervised loss function to enforce more

conformity to ideal Hamiltonian dynamics, showing that this results in faster mixing and

greater robustness. We test the efficacy of our proposed method on a complex, extremely

nonlinear inverse problem in MRI derived from joint relaxometry and diffusometry,

showing greater robustness and accuracy in comparison to the state of the art.

In Chapters 6 and 7, we show how to integrate realistic training data, through either judicious

use of a small quantity of physically acquired data or the synthetic generation of a large dataset

of realistic data, into supervised methods to solve inverse problems for which large, realistic

training datasets do/did not exist. We show that this results in improvements in all dimensions

of inverse problem solving compared to the state of the art: accuracy, robustness, and speed.

Specifically:

• In Chapter 6, we pivot to supervised learning for multi-component T2 relaxometry,

where no physical, ground truth data is available; we focus on relaxometry in the white

matter of the brain/nervous system, where there is much prior information. We show

that realistic forward modelling and realistic priors on the structure of the solutions can

be combined to generate a large, realistic, and synthetic dataset for training a simple

multi-layer perceptron, achieving better accuracy, robustness, and orders of magnitude

difference in speed in comparison to state of the art methods. Furthermore, we show
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that a Wasserstein loss function tailored to the specific solutions, in this case probability

distributions, can significantly help in the accuracy of solutions in the estimation of the

contribution from myelin. The results of Chapters 5 and 6, in providing new methods

for diffusometry and relaxometry, contribute to the analysis of MRI biomarkers for

pathology and research on neurodevelopment.

• In Chapter 7, we conclude with supervised learning for real-world single image super-

resolution (SR), where again, usually little to no physical, ground truth data is available;

most approaches use artificial, bicubic downsampling to generate unrealistic datasets

for training, resulting in poor performance on ”realistic” low-resolution images. We

show that a small amount of realistic, ground truth data can be leveraged to train a

network which, roughly, maps the space of ”realistic”, low resolution images to the space

of bicubically downsampled images. This network can then be used in conjunction

with any standard network trained on bicubically downsampled data to generate a high

resolution image. Hence, we propose a method which leverages both a small amount of

realistic data and a large amount of unrealistic data such that one can robustly perform

super-resolution on realistic images while still being able to reuse virtually any previous,

pretrained SR network. Our method facilitates efficient and easy adaptation of existing

SR networks for real-world super-resolution, with applications ranging from television

to cell-phone images.

• Chapter 8 first discusses the contributions of this thesis in a general context, followed

by a conclusion with an eye toward future work.

4



2 Background

2.1 Inverse Problems

We note that the mathematical foundations of inverse problem theory are generally framed

in terms of functional analysis, with particular emphasis on theoretical estimates/bounds

for stability, convergence, and error of proposed solutions. In this background section, we

provide a brief and high-level overview of inverse problems, leaning more towards accessibility

and relevance to later sections of the thesis rather than an extensive, rigorous mathematical

exposition; readers interested in the latter are directed to the following references which were

used to guide this chapter: [1], [2], [6], [7].

2.1.1 Can you hear the shape of a drum?

We begin with a decidedly non-imaging related, canonical example of an inverse problem,

popularized by the mathematician Mark Kac, which can be summarized in a single question:

can you hear the shape of a drum [8]?

More precisely, consider a clamped drum in 2D which is modeled by a domain Ω with a

condition on its boundary, ∂Ω.

Then the frequencies of the normal modes of the drum,λ, can be determined from the solution

of the following partial differential equation, derived from a separation of variables approach

to solving the wave equation for the height of the drum:

∆U +λU = 0 (2.1)

U ↾∂Ω= 0 (2.2)

where U :R2 →R.

We note that given the domain Ω, it is straightforward to calculate, analytically or computa-

tionally, the normal mode frequencies; the above model which takes as input the domain Ω
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and provides the frequencies, λ, is called the forward model.

The question then arises: does the spectrum of frequencies uniquely determine the domain

Ω? That is, if the domain Ω is unknown, can we cover it from measurement of the spectrum?

This is called the inverse problem, as we are seeking to invert the forward model. In general

the answer is no, as proven by counterexample in [9]. In Fig. 2.1, are two shapes which have

the same spectrum of frequencies, constructed by the authors in [9].

Figure 2.1: Here are two shapes which generate the same spectrum of frequencies [9] [10]

However, while recovering the shape is not generally possible, it is possible to recover the area

of the drum from its spectrum as shown in [11]. Let N (λ) be the number of frequencies less

than λ, A the area of Ω. Then Weyl’s law in 2D states that:

A = 4π lim
λ→∞

N (λ)

λ
(2.3)

Furthermore, in [12], the authors show that in 2D, one can hear whether a drum has corners

or not, i.e. whether the boundary of Ω is smooth or not fundamentally changes the spectrum

of frequencies.

This problem nicely illustrates fundamental problems, issues, and questions to consider for

the solution of inverse problems in general, particularly from a practical viewpoint.

• Modelling:

– How realistic is the model?: As this is a toy model, it is not clear whether modelling

the system as 2D/with the above PDE is realistic enough.

– How computationally expensive is the forward model?: Depending on the do-

main/dimension, simulating the PDE above can be quite expensive.
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• Measurement

– How accurate/noisy are the measurements?: It is not clear how accurately the

spectrum of frequencies can be measured in real life, whether due to the impact of

bias or random noise.

– How many measurements do you need?: Weyl’s law applies asymptotically; there-

fore, it not clear how well characterized the spectrum must be for an accurate

estimation of A.

• Theory:

– What are the limits of what can be recovered?: [9] gives a fundamental limit on

what we can recover from measurements of the spectrum.

– If recovery is possible, how can it be accomplished?: While there is a formula for

calculating A, we note that there is no formula for determining whether a shape

has corners; it was only proved that it was possible.

2.1.2 Theoretical Formulation

In the following, we will only consider finite dimensional inverse problems for accessibili-

ty/conceptual understanding; however, proper theoretical formulation takes place between

infinite dimensional function spaces (Hilbert/Banach spaces), e.g. images are modeled as

continuous functions on R2. However, for computational solutions, generally one passes to a

discretized version of the continuous inverse problem, e.g. pixelization of images.

Therefore, let x ∈ Rn , y ∈ R, and a function M : Rn → Rm . The goal of inverse problems is to

recover x from the measurements y, given knowledge of a model function M such that

y = M(x)+n (2.4)

where n indicates measurement noise. Note that if M has a well-defined inverse and there is no

measurement noise, then the solution is straightforward. For interesting inverse problems, this

is not true or simple inversion is insufficient for good quality/unstable; however, the notion of

inverting M is where the term ”inverse problems” originates. This formulation encompasses a

wide variety of applications in engineering and physics; however, in this chapter, we focus on

applications in imaging as they are relevant to the thesis and easy to understand.

2.1.3 Examples of Inverse Problems in Imaging

In many inverse problems related to images, y is a distorted image, x the undistorted image,and

M is the model for distorting x. Below we list some simple inverse problems in imaging where

we identify M (see Fig. 2.2).
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• Denoising: In this inverse problem, we want to remove the noise from an image. Here

M is the identity function, with y = x+n.

• Deblurring: In this inverse problem, we want to deblur a blurred image. Here M can be

modeled as a convolution with a blur kernel, e.g. a Gaussian kernel.

• In-painting: In this inverse problem, we want to fill in missing portions of an image,

using only the visible portions of the image. Here M can be modeled as a masking

function which sets portions of an input image to zero.

Figure 2.2: Here are three example inverse problems: denoising, deblurring, and in-painting,
from left to right. On the top row, we show the measurements y, and the bottom row shows
the ground truth signal x.
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2.1.4 Variational Framework for Solution of Ill-Posed Inverse Problems

We can examine the solution of inverse problems in light of Hadamard’s famous criteria for a

well-posed mathematical problem [13]:

• That a solution to the inverse problem exists for any given y.

• That given measured data, y, the solution to the inverse problem is unique.

• That the solution to the inverse problem is stable or depends continuously on y.

The solution of interesting inverse problems are generally ill-posed, in the above sense, due to

violating the second and third conditions: non-uniqueness of solutions and instability with

respect to the input data. In the following, we outline a generic framework for solving ill-posed

inverse problems.

Given no other information other than the triple (M ,x,y), one might naively solve Equation

2.4 by

x = argmin
x′

D(M(x′),y) (2.5)

where we are simply optimizing for the vector which, upon applying the forward model, best

fits to the data, using some function D to compare the predicted and measured data. For

example, D(M(x),y) = ∥M(x)−y∥2
2 is commonly used.

However, this solution already exemplifies the ill-posedness discussed above.

• As noise is usually present in the measurements, it may overfit to the noise or the model

function may be unstable with respect to noise, leading to suboptimal solutions.

• It can be unstable/inaccurate due to degeneracy of solutions.

As an example of the first, consider Fig. 2.3, where the forward model M is multiplication by a

matrix with a high condition number, meaning small changes in the input vector lead to large

changes in the output vector. We can see that even simple inverse problems (solving a system

of linear equations) can demonstrate high instability with respect to noise.

As an example of the second, consider Fig. 2.4, where we show that the in-painting inverse

problem is inherently degenerate. Given an image with missing patches, there are an infinite

number of images which, upon applying the forward model i.e. masking, returns the original

image with missing patches. Each of the candidate images in Fig. 2.4 yields the exact same

error with respect to the measured data, i.e. the masked image: zero. This degeneracy prevents

the solution of Eq. 2.5 from being useful.
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Figure 2.3: Let M be a linear function corresponding to multiplication by a Vandermonde
matrix from a given vector. These matrices are known to be highly ill-conditioned. To the left,
we show the ground truth signal. In the middle, we show the corresponding measurement
vectors, without (top) and with (bottom) noise; note that the ratio of the L2 norm of the
noise to that of the measurement vector is less than 1 percent. To the right, we show the
reconstruction from solving Eq. 2.5 using D(M(x),y) = ∥M(x)−y∥2

2, for both noise-free and
noisy cases. We can see that the addition of even a small amount of noise to a measurement
vector can drastically alter the resulting reconstruction, demonstrating the problem’s inherent
noise instability.

Therefore, for ill-posed problems, we can see that there must be additional criteria/assump-

tions other than best fit to noisy data to robustly solve inverse problems.

In Fig. 2.4, perceptually, we have an idea of what the missing patches of the images should

look like, even if we had not seen the original image. This is because we have prior knowledge,

having seen these kinds of images before. We know that the bottom-most patch is most likely

a continuation of the red background. We know that the missing patch near the bread is

most likely a continuation of the bread, etc. In fact, one general guess would be that missing

patches should be similar to the image content near them. Therefore, we could reject all but

the ground truth image simply based on the implausibility of the proposed images. This idea

of using prior knowledge or assumptions on x as an additional criterion for judging the quality

of solutions is called regularization, and can be implemented as follows:

x = argmin
x′

D(M(x′),y)+λR(x′). (2.6)

Here R :Rn →R is a regularization function which encodes prior knowledge/assumptions on

x and penalizes deviation from these during optimization. λ is the regularization parameter

which determines the weight given to R vs. the data consistency term during optimization.

We note that while we motivated R as injecting prior knowledge, it can also be used to stabilize

solutions to Equation 2.6. We further note that this framework for solving inverse problems is

called a variational framework as the optimization is over classes of functions, e.g. images.

While there are other frameworks for solving inverse problems, e.g. spectral frameworks, which

are concerned with the spectrum of M when it is a linear operator, variational frameworks

10
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Figure 2.4: Let us consider the in-painting inverse problem, where M masks select patches
from an image and sets them to zero. In the top row we show three candidate solutions, along
with their image upon operation by M . From this example, we can see with respect to Eq. 2.5,
that for any reasonable function D , all three of the images in the top row will have zero error in
fitting to the data since their masked version are all the same/equal to the initial measurement.
As these three images include both implausible images (left and right) as well as the actual
ground truth (middle), we can see that the degeneracy of the model makes the solution of Eq.
2.5 unhelpful as it will have infinite global minima.

dominate in inverse problems in imaging. Hence, with different choices of R , Equation 2.6 is a

generic framework for solving ill-posed inverse problems.

Below we list some common types of regularization in inverse problems:

• Tikhonov Regularization [14], [15]: R(x) = ∥T x∥2
2. Here T is a linear operator which can

11
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be, for example, the identity, which encourages x with minimal L2 norm, or difference

operators which approximate the derivative, encouraging smoothness of x. This is

motivated by the fact that, for example, using T with the identity operator and λ > 0

guarantees a unique solution to 2.6 when M is linear; in this case, this choice can be

interpreted as a filter which removes the effects of small singular values of M , which are

one of the sources of instability in solving Equation 2.5.

• Total Variation Regularization [16]: Let v be a discretized 2D image with indices i , j .

Then the total variation, T V (v) =
∑

i , j

√
∥vi+1, j − vi , j∥2 +∥vi , j+1 − vi , j∥2 . This is the

discretization of the integral of the norm of the gradient of an image. If x is the flattened

vector corresponding to v, then R(x) = T V (v). This regularization is motivated by the

observation that in noisy images, there are abrupt shifts in image intensity across the

whole image, meaning the norm of the gradient of the image is high over the whole

image. This implies noisy images will have a high total variation, since TV is the spatial

integral of the norm of the gradient of the image. Hence, using TV regularization should

penalize noisy instances of x during optimization.

• Compressed Sensing Regularization [17], [18]: Let W denote the transformation matrix

to an arbitrary orthonormal basis. Then a compressed sensing regularization has the

form R(x) = ∥W x|∥1, which is the L1 norm of x expressed in the orthonormal basis. This

regularization is motivated by two observations. First, is that generally, signals (such

as natural images) are sparse when expressed in certain bases; e.g. when a natural

image is expressed in a wavelet basis, only relatively few elements of the image vector in

this basis will be significant, with others being small/insignificant. This is in contrast

to the usual spatial (pixel) basis of images, in which the images are dense. Second, is

that while it is difficult/impossible to optimize the sparsity of W x, optimizing the L1

norm,∥x∥1, is feasible and can be shown to be a good proxy for the sparsity of x under

some assumptions. Combining these observations, compressed sensing (CS) regular-

ization promotes the sparsity of x in a convenient domain, encoding the assumption

that desirable solutions are sparse in that domain. The practical importance of CS is

that with this regularization/assumption, one can reconstruct sparse signals from far

fewer measurements than expected by, for example, the Shannon-Nyquist limit [19];

this can greatly accelerate processes where measurements are time-consuming, such as

in magnetic resonance imaging.

As can be seen above, the variational framework in Equation 2.6 is extremely flexible, allowing

for arbitrary assumptions/prior knowledge/constraints to be imposed on x through R , as long

as R can be formulated in a mathematically tractable way; indeed the vast majority of inverse

problems in imaging (and all the inverse problems addressed in this thesis) can be formulated

and efficiently solved in this framework.

Within this framework, given an inverse problem, one must select three things to proceed:

12
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• what regularization function R to use,

• what optimization algorithm is used to solve Equation 2.6,

• what strategy to use to set λ.

With all three choices, there are a wide variety of options to choose from, with an enormous

amount of literature covering all three aspects. As we have already given several examples of

regularization functions, we briefly give some examples for the latter two.

Setting the Optimization Algorithm

In order to solve Equation 2.6, one must select an optimization algorithm; a suitable algorithm

depends on the relevant mathematical properties of D, M and R; i.e., the linearity/non-

linearity, degree of differentiability/smoothness, convexity, etc. In general depending on these

properties, one chooses an algorithm with some theoretical proof of convergence (given the

assumed properties of D, M and R), an algorithm which works empirically, or preferably

both. From a practical viewpoint, the data consistency term D(M(x),y) is usually one which

is smooth, convex, etc, enjoying nice properties (e.g. when M is linear and using the L2

norm for D). Therefore, selection of algorithms generally hinge on the choice of R, whose

mathematical properties can vary greatly. Furthermore, depending on the scale of the problem

(e.g. if the discretization of M is a prohibitively large matrix to store/compute with), iterative

algorithms which only require matrix-vector multiplications rather than storing matrices may

be preferred/required. Here we briefly describe two classes of algorithms relevant for the

problems in this thesis, with more detail given as necessary in the subsequent chapters of the

thesis.

If D,M and R are differentiable/smooth: then simple gradient descent/other iterative algo-

rithms which rely on taking derivatives will work; for instance, if we let D(M(x),y) = ∥M(x)−y∥2
2

, R = I d as in Tikhonov regularization, and M is also linear, the resulting optimization problem

reduces to solving a system of linear equations as the first order optimality condition can be

written explicitly as such. Then algorithms for solving these systems can be used, e.g. the

conjugate gradient algorithm [20]. Furthermore, if the entire optimization problem can be

recast into either a linear or nonlinear least squares form, one can use the Newton/Gauss-

Newton/Levenberg-Marquardt algorithms [21].

In many inverse problems in imaging, M is linear, D(M(x),y) = ∥M(x)−y∥2
2 (hence smooth

and convex), and R is not differentiable but is convex. For example, in compressed sensing,

the L1 norm is necessary for R, since it serves as a proxy for sparsity; however, since it is not

differentiable, gradient based methods cannot be used. In this case, there are a broad class of

closely related algorithms (alternating direction method of multipliers [22], forward-backward

splitting [23], Douglas Rachford Splitting [24], Proximal Gradient Descent [25], Primal Dual
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Splitting [26], etc.) which can solve optimization problems of the form

x = argmin
x′

D(M(x′),y)+R(x′) (2.7)

where D is a smooth/convex function of x′ and R is proper, lower semi-continuous, and

convex. Very imprecisely, these are iterative methods which have update steps which alternate

between optimizing D and R (hence the splitting) in order to converge to a solution; as R

is not differentiable, global update steps using the gradient of the sum of the terms is not

possible. We will define proximal gradient descent as it is the simplest but conveys the general

idea behind these algorithms. For all the algorithms mentioned above, the following notion is

important; given a function h :Rn →R and a point x, the proximal operator [27] of h evaluated

at x is defined by

pr oxh,t (x) = argmin
z

1

2t
∥x−z∥2

2 +h(z). (2.8)

Note that if h is closed, lower-semicontinuous, and convex, then this definition is well-defined;

∀x, the solution always exists and is unique. In the case where h is the indicator function of

of a closed and convex set, then the proximal operator is the projection operator onto that

set. This motivates the definition, as somehow the proximal operator is trying to ”project” a

given point onto the set of minima of h, without having to take the gradient of h. Though

the definition requires solving an optimization problem for each x, analytical expressions for

the proximal operator are known for a wide variety of h, including those commonly used for

regularization in inverse problems. Then proximal gradient descent for solving Equation 2.7 is

an iterative algorithm where beginning with an initial guess x(0), the kth iteration is defined by

x(k) = pr oxR,tk (x(k−1) − tk∇D(M(x(k−1)),y). (2.9)

Note that both ∇D and pr oxR,tk are well-defined from the assumptions defined before. One

can interpret this algorithm as basically alternating/splitting the optimization between D

and R; that is, in each iteration, a standard gradient descent step with respect to D is per-

formed, then the result is ”projected” onto the set of minima of R through the proximal

operator. Therefore, this, and the aforementioned related algorithms, allow for the solution

of inverse problems in the common case where the objective function is a sum of a smooth,

convex function (the data consistency term) and a convex but non-differentiable function (the

regularizer).

Setting the Regularization Parameter

The regularization parameter can have an enormous impact on the final solution; e.g., setting

the regularization parameter of total variation too high can completely oversmooth the result-

ing image. However, in general, it is difficult to select the optimal regularization parameter

without access to the ground truth, which is of course, usually unavailable. Below we list some

14



Background Chapter 2

examples of strategies for setting the regularization parameter, with different strategies being

appropriate depending on the amount of information available; for example, some strategies

require information on the noise in the data. Heuristic strategies require no information other

than the residuals during optimization.

• Hope for Generalization: Suppose we have a dataset where the ground truth is available;

i.e., we have access to N pairs (yi,xi) for a given model M . Let λi
opt = argminλ′ ∥xi

λ′ −xi∥,

where xi
λ′ is the solution of Equation 2.6 using yi,λ′ as inputs. Then we can setλ =

∑
i
λi

opt

N ;

that is, we set λ as the average over all pairs of the optimal regularization parameter

which minimizes deviation to the ground truth. Then, one can hope that for similar

datasets (for which no ground truth exists), that this parameter will also work well.

• Morozov Discrepancy Principle [28]: Suppose we have some knowledge of the noise

level present in the measurement y. That is, let yT be the measurement with no noise;

assume that we know that ∥y−yT ∥2 ≈σ. Let xλ denote the solution of Equation 2.6 using

regularization parameter λ. Then Morozov’s discrepancy principle dicates that one

should choose the largest possible λ such that ∥M(xλ)−y∥2 ≈σ; i.e., to choose λ such

that the discrepancy between the simulated measurement of the proposed solution and

the noisy, measured data is the same as the known discrepancy between the noise-free

and noisy, measured data. This principle can help prevent overfitting to the noise.

• L-Curve Principle [29]: In this method, one observes the 2 dimensional graph cor-

responding to (log(∥xλ∥), log(∥M(xλ)−y∥2)) as a function of λ. One then chooses the

λ corresponding to the corner of this curve; i.e. where there is an abrupt shift. The

motivation for this principle is that when λ is too high, the regularization term will

dominate, and the norm of the residual will be high; in contrast, when λ is too low, then

the data consistency term will dominate, and the noise instability will tend to make

the norm of the proposed solution high, in comparison to well-regularized solutions.

Therefore, the chosen λ should balance the residual norm and the norm of the proposed

solution, corresponding to the point in the graph where one switches from one regime

to the other. The name comes from the fact that the curve will roughly look like an L.

Probabilistic Formulation

We note that the Equation 2.6 also admits a probabilistic interpretation as a maximum a-

posteriori (MAP) estimate; indeed, this is one method within the probablistic framework for

solutions to inverse problems, a more complicated version of which is proposed in Chapter 5.

As probablistic solutions are restricted to this chapter, we will explain this framework in detail

there.
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2.1.5 Caveats

We note that our discussion so far of inverse problems has a very modular, convenient form.

That is, given some model M , we simply pick an appropriate regularization function(s), a way

to select the regularization parameter, and an optimization algorithm which makes sense

given the mathematical properties of M and R. Indeed, several popular software libraries

for the computational solution of inverse problems (GlobalBioIm [30], ODL [31], Pycsou [32]

etc.) more or less follow this modular route, in particular for inverse problems in imaging as

described in the optimization section. However, while this abstract/modular framework works

well for conceptual understanding and accessibility, we emphasize that we have omitted a

great deal of the machinery/theory underlying this framework, including proofs of existence/-

convergence, making precise/rigorous the notion of ill-posedness, the usual formulation of

inverse problems with reference to Hilbert/Banach spaces as the domain for x, error estimates

when passing from continuous to discretized inverse problems, etc. We encourage the reader

to peruse the supplied references for these important details.

16



Background Chapter 2

2.2 Machine Learning for Inverse Problems

Figure 2.5: Here we show example reconstructions for denoising. In the top row, we show
the noisy image (left) and the corresponding ground truth image (right). In the bottom row,
we compare a reconstruction using total variation regularization (left) and a neural network
reconstruction called DNCNN [33] (right). While the reconstruction quality is similar, note that
the total variation reconstruction oversmooths considerably (see texture of the hair, skin, red
background) in comparison to the neural network reconstruction, which looks more realistic.
Furthermore, using the same CPU, the neural network reconstruction took 5 sec, while the
total variation reconstruction took 5min. This example illustrates the power of using neural
networks to solve inverse problems.
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2.2.1 Motivation

Given an inverse problem with model M , we have outlined a flexible framework for solving

it, the most important part being the selection of a regularization function which encodes

prior knowledge on the solution, as all other choices hinge on this. However, thus far the

regularization functions we have addressed have been handcrafted; i.e., manually constructed

functions involving tractable operations (differentiation, scaling, change of basis) composed

with tractable norms (L1, L2), such that they approximately impose our intuition/prior knowl-

edge. This handcraftedness is also convenient for the subsequent optimization problems

as, for example, the algorithms we outlined for optimizing problems with non-differentiable

regularizers hinge on the regularizers having certain, nice mathematical properties/a tractable

proximal operator in order to prove convergence/existence of solutions.

However, among others, handcrafted regularizers have three major problems:

• while the mathematical form of the regularizer may have been constructed to impose a

given prior, this same form may also induce other, undesirable results,

• there is no adaptivity to the input data, since handcrafting implies that a given regularizer

is the same for all input data, and

• the regularization parameter requires tuning for each problem instance.

To illustrate the first point, consider total variation regularization. While effective for denoising,

it has been shown that the non-differentiability of the regularizer tends to cause staircasing

[34]: i.e. favoring piece-wise constant, cartoonish reconstructions in highly oscillating regions

of the ground truth. This implicit prior is undesirable in medical imaging, for example, as it

does not reflect real images.

To illustrate the second point, consider compressed sensing regularization. In our example,

we used sparsity in a wavelet basis i.e. sparsity of W x as the regularization. However, the

wavelet basis is a handcrafted basis; the justification that natural images are sparse in the

wavelet basis is empirical. This raises the question of whether the wavelet basis or, indeed, any

given handcrafted basis is optimal for a particular set of input data, particularly because image

content can vary widely. For instance, a priori, it is not clear whether a wavelet transform

or, for example, a discrete cosine transform is better for reconstructing medical images vs.

cellphone images.

To the third point, even if the solution of Eq. 2.6 can be found efficiently, tuning the regulariza-

tion parameter could require the computation of many solutions corresponding to different

values of the regularization parameter; in addition, many effective tuning methods require

information on the measurement noise which may not be available.

There are of course remedies for these problems. Instead of total variation regularization,

one can use another handcrafted regularizer called total generalized variation [35], which has
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been shown to eliminate the staircasing effects. Instead of a handcrafted transform, one can

consider compressed sensing with a learned sparsifying transform [36] i.e., learn from the

input data the optimal basis in which the input data is most sparse while maintaining data

consistency. However, in the first case, we have simply replaced one handcrafted regularizer

for another, which could have other undesirable effects. In the latter case, the optimization

becomes more difficult as now both x and the change of basis need to be optimized simulta-

neously, requiring more computation time as well as less theoretical assurance. Furthermore,

in both cases, we are still only imposing a single prior. It is not clear whether a single prior is

sufficient for the best possible signal reconstruction. It is possible to encode more/different

priors by using multiple regularizers; however, depending on the number/nature of priors,

this can become intractable for optimization. Furthermore, the regularization parameters of

all priors need to be tuned as well.

For simplicity, let us consider the problem of denoising cell-phone images. The problem is

that it is difficult/impossible to handcraft a regularizer which somehow perfectly captures

the essence of what it means for a cell-phone image to be noise-free; to put it another way,

total variation seems to capture a necessary condition (penalizing oscillations in the image

gradient over the whole image which come from noise), but not a sufficient condition to be a

denoised image, as the image content should not be affected, but can be by regularization. In

addition, even if we add together multiple different handcrafted priors, it seems that capturing

this ”perfect” prior is impossible.

Therefore, if possible, it would be desirable to construct a regularizer which enforces a stronger,

more comprehensive prior, qualitatively different from simply using a single or multiple

handcrafted priors. As such a regularizer most likely could not be applied universally due

to the incredible diversity in the set of signals desirable for reconstructions, it is clear that it

would have to be tailored or adapted for a specific set of data.

Learning a sparsifying transform for compressed sensing was a step toward realizing such a

regularizer: using machine learning to solve inverse problems. Using machine learning, one

can implicitly or explicitly learn a regularizer from the data itself. In recent years, machine

learning approaches to solving inverse problems, particularly using neural networks/deep

learning, have become the state of the art for the solution of a wide variety of inverse problems

in computer vision and medical imaging (e.g. denoising, deblurring, dehazing, inpainting,

super-resolution, image reconstruction from physical measurements, etc.). For an example in

denoising, see Figure 2.5.

We begin with a brief introduction to artificial neural networks and deep learning:

2.2.2 Artificial Neural Networks and Deep Learning

Abstractly, artificial neural networks (ANNs) are parametrized functions whose parameters are

tuned to approximate other functions; their name derives from the fact that their structure
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was designed to mimic models of biological neural networks. Given sufficient data, they

have become the state of the art for solving many problems (image classification, image

segmentation, etc.) including the solution of inverse problems. Here we briefly describe two

types of neural networks which are relevant for this thesis: multi-layer perceptrons [37], [38]

and convolutional neural networks [39], [40]. Deep learning generally refers to artificial neural

networks which are ”deep”, i.e. have multiple layers.

Multi-layer Perceptron

We will start by first defining the prototypical ANN: the multilayer perceptron. Concretely,

fix an input domain Rn and an output domain Rm ; For an input x ∈ Rn , the mapping of the

multilayer perceptron, MPθ : Rn → Rm corresponds to an iterated output of n functions or

layers: fn . . . ( f2( f1(x)) . . .). The layers fi :Rp →Rq have the form

fi (y) = g (Wi y+ci ) (2.10)

where W is a linear transformation W : Rp → Rq , c ∈ Rq is a bias vector, and g : Rq → Rq is

a nonlinear function which is applied elementwise; e.g., the hyperbolic tangent. Note that

the input dimension of f1 and the output dimension of fn are constrained to be Rn and

Rm respectively due the desired input and output domains of the network; otherwise, all

other input/output dimensions of intermediate spaces can be set freely. The parameters θ

of the multi-layer perceptron are the set of linear transformations and bias vectors: (Wi ,ci ).

The structure of the multilayer perceptron was inspired by the hierarchical and iterative

connections between neurons and the transmission of electrical impulses along neurons.

Each component of the output of each layer can be described as a linear combination over all

the input components followed by a nonlinearity; these layers are thus called fully-connected

layers since each output component is connected to each input component. Note that the

use of the nonlinearity is crucial; otherwise, the application of all layers could be reduced to

a single linear transformation and bias vector addition.

Suppose one is given a dataset of pairs (y,x), where there is an underlying function h such that

h(y) = x. Then multi-layer perceptrons can be used to learn the function h by solving for the

optimal parameters as follows, for example

MPθ =
1

N
argmin

θ′

∑
i
∥xi −MPθ′(yi)∥2, (2.11)

This optimization can be done efficiently using gradient or stochastic gradient descent effi-

ciently through the backpropagation algorithm, which takes advantage of the iterative struc-

ture of the neural network layers for computing the derivatives with respect to the network

parameters.

In the universal approximation theorem [41], [42], it was shown that a neural network of this

type composed of a single layer followed by a linear output could approximate any continuous
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and bounded function between finite dimensonal, real spaces to an arbitrary degree of error,

provided that the output dimension of the single layer is large enough. However we note that

this gives no guarantee that any function can be learned by the optimization in Equation

2.11, merely that the expressive power of the neural network is sufficient to represent any

function, given sufficiently wide layers. In practice, the number of layers, the dimensionality

of the inputs and outputs, and the type of nonlinear function used must be tuned for the

specific mapping being learned.

Convolutional Neural Networks

We note that while multi-layer perceptrons could, in principle, be used for images and other

higher dimensional signals, the size of the network and number of parameters of the resulting

neural network can quickly become intractable for training, due to the large dimension of

typical vectorized images. Furthermore, multi-layer perceptrons do not take advantage of

structure in the data since the output of each neuron comes from the linear combination of

all neurons in the previous layer.

For example, consider 2D, grayscale images as an input. Consider the output of a fully con-

nected layer acting on a vectorized image; each output component will come from a linear

combination over all the pixels in the 2D image, followed by element-wise application of a

nonlinear function. In contrast, instead of generating outputs through linear combinations

over all the pixels, we could generate outputs by convolving the image with a 2D kernel ma-

trix followed by element-wise application of a nonlinear function. In this case, each output

component of this so-called convolutional layer will come from a linear combination of the

pixels in a localized patch (determined by the kernel size) of the 2D image, rather than all the

pixels as with a fully connected layer. Furthermore, within a single convolutional layer, one

can stack many different kernels which are independently convolved with the input image,

such that the final output of the convolutional layer is a set of maps each coming a from

different convolution. In this case, the learnable parameters of a convolutional layer are

the kernels and (potentially) bias vectors. Convolutional layers have the advantage of much

sparser connections (since outputs are only connected to localized patches of inputs) and

take into account the structure of the input; in this example, natural images have plenty of

local structure (e.g. locally, image patches tend to be similar) which can be exploited with

a convolutional structure. Furthermore, generating maps by convolution with a kernel can

be understood as extending traditional computer vision techniques for edge detection and

analysis of local structure with linear filters.

Convolutional neural networks, as a whole, are neural networks which use different combi-

nations/arrangements of convolutional layers to generate outputs; they can be trained for

learning the mapping between training pairs as in Equation 2.11.
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Practical Application

There is a bewildering large array of theoretical/practical concerns for which we have omitted

a general discussion concerning the application of neural networks as they are outside the

scope of this thesis; for example, algorithms for optimizing the neural network parameters,

different topologies of neural networks used, strategies for determining the optimal structure

of neural networks, etc. We address relevant concerns for practical application in each chapter

of the thesis for the specific problem involved; for more general discussion, we point the

reader to [5].

Application to Inverse Problems

Having described two types of neural networks relevant for this thesis, in the following subsec-

tion we broadly classify supervised, deep learning approaches to solving inverse problems into

two categories: approaches which implicitly incorporate the model M , and approaches which

explicitly incorporate the model M . In the following, given a model M , consider a dataset

of N pairs (yi,xi), where yi is the i th measurement sample and xi the i th ground truth signal

corresponding to yi. This dataset could be collected from real life or generated artificially.

2.2.3 Supervised Approaches which Implicitly Embed M

At the advent of deep learning in inverse problems, many approaches followed the following

generic framework: given a generic neural network fθ :Rm →Rn with parameters θ, one can

train the neural network to take as input y and output x by empirical risk minimization:

fθ = argmin
θ′

∑
i

1

N
L(xi, fθ′(yi)), (2.12)

where L is a metric which measures the difference between ground truth and predicted signals;

e.g. L(xi, fθ′(yi)) = ∥xi − fθ′(yi)∥2
2. Therefore, machine learning is used to learn an approximate

inverse to M over the dataset, with the hope that this would generalize to other data. Examples

include denoising [43] (mapping noisy images directly to noise-free images), super-resolution

[44] (mapping low-resolution images directly to high-resolution images), and reconstruction of

magnetic resonance images [45] (mapping Fourier measurements directly to contrast images),

Note that in practice, memory issues require training to be done in mini-batches of the dataset

rather than all at once or reconstructing the signal in patches, etc. Furthermore, there are a

variety of modifications that can be made: e.g. approaches input the adjoint reconstruction

M T yi and learn the residual xi −M T yi. Nevertheless, the main idea of learning the inverse

from training data is captured by Equation 2.14. In some sense, fθ has to implicitly learn both

data consistency and regularization from the distribution of training data; in particular, the

regularization is not handcrafted but learned by observing examples of high quality, ground

truth signals. Here the model M is implicitly embedded in the training pairs.
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2.2.4 Supervised Approaches which Explicitly Embed M

Particularly in medical imaging but also in computer vision, approaches to supervised learn-

ing for solving inverse problems were developed which explicitly embed the model M into

the reconstruction pipeline. A generic framework for explicitly embedding M goes back to

the variational framework for solving inverse problems introduced before. In essence, the

handcrafted regularizer is replaced by the neural network; consequently, one can construct

so-called unrolled networks which mimic the iterations of a generic, iterative optimization

algorithm, albeit with steps involving the handcrafted regularizer replaced by a neural network.

There are a wide variety of such approaches as any iterative algorithm can be modified in this

way; here, we give a simple example using proximal gradient descent which illustrates the

main idea. Consider T iterations of the proximal gradient descent from before; then one can

let the kth iteration be defined by

x(k) = f k
θ (x(k−1) − tk∇D(M(x(k−1)),y)). (2.13)

where now instead of using the proximal operator of a handcrafted regularizer for projection,

one uses a neural network, f k
θ

. Note that in this formulation, a different neural network is

trained for each iteration; however, one can also use the same network for each iteration.

The parameters of the (these) neural network regularizers can then be trained again through

empirical risk minimization:

(θ1,θ2, . . . ,θT ) = argmin
θ′1,θ′2,...,θ′T

1

N

∑
i
L(xi, fT (yi)) (2.14)

where fT (yi) is the T th iteration of Equation 2.13. As the model M is explicitly used in the

reconstruction, data consistency is explicitly enforced. Furthermore, the neural network is

more interpretable than in implicit approaches as it can really be identified as acting as a

regularization function, albeit learned from the training data rather than handcrafted. We note,

in passing, that this framework is also compatible with generative/probabilistic frameworks

which use, neural networks to, roughly speaking, parametrize the prior probability distribution

of xi . One can, for example, solve a maximum a-posteriori problem, i.e. optimize for the

signal which maximizes a weighted sum of the prior probability and the data consistency; This

devolves back to an iterative framework as well.

This type of approach has been used extensively in MRI [46]–[48]. However, we note that

the emulation of an iterative, splitting approach has the advantage that the neural network

component is separate from the data consistency step; therefore, for image restoration tasks

such as denoising, deblurring, super-resolution, etc. where the same regularization is desired,

i.e. regularization that encodes being a ”high quality”, natural image, one can learn a single

regularizer (over natural images) and use this for solving multiple different inverse problems.

This kind of approach has been used in [49], [50], where the authors used a single regularizer

for image deblurring, denoising, etc.
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2.2.5 Comparison of Supervised Approaches

Having broadly outlined different approaches to using machine learning for solving inverse

problems, we note that machine learning approaches which implicitly and explicitly embed

M have their advantages and disadvantages.

While implicit approaches were dominant for a period of time, there are immediate problems

with generalizability/robustness. First, there is no enforcement/guarantee that the resulting

prediction is consistent with the model/input data. Second, as the model is only implicitly

embedded in the training pairs, data generated from a slight variation of the model could

result in a completely different solution. For example, a network trained to deblur images

blurred by a particular blur kernel could fail completely when presented with images blurred

by a slightly different blur kernel. Third, depending on the complexity of the task, very large

datasets of training pairs could be required for training, which is not always feasible to acquire,

for example, in medical imaging. In addition, implicit methods can require an extremely large

number of parameters in the network as it must learn both the model and the regularizer. In

contrast, explicit approaches are more robust to variations in M due to explicitly enforcing data

consistency, and the decoupling between data consistency and regularization. In addition,

explicit approaches generally require much training data in comparison to implicit methods,

again due to the added information from explicitly including the model. Finally, as explicit

methods include the data consistency, they tend to require smaller networks than in implicit

methods.

However, implicit approaches, at inference, generally require a single forward pass through

the trained network. Furthermore, while they require more training data, they are still effective

if the model M is unknown, difficult to compute analytically, or difficult to integrate into an

optimization framework; in contrast, explicit approaches can be impossible or infeasible when

faced with these issues. Furthermore, if the model M is a poor approximation to the true,

underlying model, then this can cause biased solutions. In addition, explicit approaches gen-

erally require more computation time at inference than implicit approaches as they iteratively

apply data consistency and neural network steps.

2.2.6 Comparison of Machine Learning and Traditional Approaches

In many cases, machine learning approaches to solving inverse problems outperform tra-

ditional solutions using the variational framework on virtually all dimensions: accuracy,

inference speed, etc. In principle, this is because machine learning solutions can learn a

similar or better prior than any single or combination of handcrafted regularizer; furthermore,

implicit approaches can produce solutions, once trained, orders of magnitude faster than

traditional approaches which require the use of iterative algorithms. However, with machine

learning, one still has a variety of impactful choices to make in terms of practical application,

just as in traditional approaches. One must select:
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• what kind of neural network to use/ what kind of network architecture,

• what optimization algorithm is used to solve Equation 2.14, and

• how to tune the hyperparameters of the selected network

Furthermore, a big disadvantage of machine learning approaches compared to traditional

approaches is the general lack of proofs of convergence or stability estimates, in particular

for supervised approaches which implicitly embed M . However, for supervised approaches

which explicitly embed M through unrolled networks, there is a growing literature which

theoretically analyze convergence and stability [51]–[53]; nonetheless, these analyses depend

on the specific network architecture/unrolled algorithm used.

2.2.7 Our Approach

Having broadly outlined the evolution of solutions to inverse problems, from variational

optimization to supervised machine learning, we briefly outline and motivate the approaches

to inverse problems examined in this thesis. In the supervised paradigm, broadly speaking,

the problem is that the training dataset should be realistic and of sufficient quantity for

learning the desired inverse mapping. However, in the inverse problems addressed in this

thesis, realistic training datasets are either unavailable or scarce. Therefore, we consider two

broad approaches to address this issue: self-supervised learning and realistic modelling.

Self-Supervised Learning

In self-supervised approaches to inverse problems, machine learning is still used, but no

ground truth is required: only the measurement data yi and the model M are required. These

being more specialized to each inverse problem, we defer their description to later chapters of

the thesis, where we propose (Chapter 5) and validate (Chapter 4) different self-supervised

approaches.

Integration of Realistic Training Data through Realistic Modelling

In Chapters 6 and 7, we integrate realistic training data into supervised methods, in inverse

problems for which realistic training data is nonexistent or scarce, by either synthetically

generating a large realistic dataset by combining realistic models with realistic priors on

desirable solutions or leveraging a small quantity of realistic training data in conjunction with

a large amount of unrealistic training data.
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2.3 Closing Remarks

In this section, we engaged in a whirlwind tour of inverse problems and their solutions. We

introduced the traditional variational framework as well as machine learning frameworks for

solving inverse problems; in doing so, we tried to stay in as generic a setting as possible to

show the flexibility/wide applicability of such approaches, while showing specific examples

for visualization and understanding. However, two aspects of inverse problems are difficult to

discuss in a generic way: what it means for the training data for a model M to be realistic

and how to rigorously validate algorithms for solving inverse problems with a model M .

This is because, of course, models used in inverse problems can be wildly different; in this

thesis alone, the models used range from the effect of changing the focal length of a digital

camera to sampling the magnetic moments of hydrogen atoms in the brain. Furthermore,

validation of algorithms depends on the use case of the resulting solutions. As the reader will

see, these crucial aspects are central to the contributions of this thesis.
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3 Introduction to Magnetic Resonance
Imaging

In this chapter, we give a quick overview of Magnetic Resonance Imaging (MRI) in order to

give context for the models/inverse problems introduced in the following chapters. MRI is

one of the foundational modalities in medical imaging, enabling detailed and high resolution

imaging of the human anatomy without using ionizing radiation. This overview is largely

adapted from [3]. Most of the figures were inspired by analogous figures in [3].

3.1 Nuclear Magnetic Resonance for a Single Spin

The basic physics underlying MRI is the phenomenon of nuclear magnetic resonance (NMR),

in which nuclei, exposed to a constant magnetic field, can absorb radio-frequency (RF) energy

when the RF pulse has a specific frequency related to the magnetic field and properties of

the nuclei itself. This process is not unlike, for example, the resonance that occurs when

one pushes someone on a swing at the right frequency. In MRI, one primarily probes the

magnetic resonance of the protons of the constituent hydrogen atoms of water molecules.

This section will explain this phenomenon from a semi-classical picture.

3.1.1 Magnetic Moment

From quantum mechanics, we know that the angular momentum of nuclei are a sum of two

terms: the orbital angular momentum (angular momentum related to the orbital motion of the

nuclei) and the spin angular momentum (angular momentum analogous to a body rotating

about itself). A macroscopic example of this is a planet rotating on its own axis (spin angular

momentum) which is also in orbit (orbital angular momentum) (see Figure 3.1). However,

the spin angular momentum of nuclei is a purely quantum phenomenon; while the name is

inspired by thinking of the nuclei as spinning on its own axis, it is purely an intrinsic property

of the nuclei.

The fact that elementary particles have an intrinsic, quantized magnetic moment/spin angular

momentum was first discovered in the Stern-Gerlach experiment [54], [55] in 1922, which
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showed, by sending a beam of silver atoms through an inhomogeneous magnetic field, that

the silver atoms split into two distinct beams, rather than a continuous fan of beams; this

implied that the outer electrons of silver atoms had to have a quantized, intrinsic angular

momentum, later called spin.

Figure 3.1: Here is an example of a macroscopic system with spin and orbital angular momen-
tum: the ball is spinning around its own axis and also moving in a circular path. Quantum
mechanics shows that this picture also applies to microscopic systems, e.g. nuclei, albeit the
spin angular momentum derives from inherent properties of the nuclei rather than physical
spinning.

This intrinsic spin angular momentum leads to an intrinsic magnetic moment for elementary

particles with mass/electric charge which can be motivated by thinking of the charged particle

as an infinitesmally small current loop (i.e. a charged particle spinning).

To see the interaction between the magnetic moment of a particle and a fixed magnetic field,

consider a simple loop of current, with current I in a homogeneous, invariant magnetic field B

in the z direction. From the Lorentz force law, we have that the differential of the force exerted

on a point of the loop due to the magnetic field is

dF = I dl×B (3.1)

The differential torque exerted by a differential force is

dτ = r×dF (3.2)

Now consider two cases in Fig. 3.2, where the normal of a current loop is parallel to the

magnetic field and at an angle. While there is no net torque in the first case, in the second case,

from the above equations, we can see there is a net torque which rotates the loop into the x-y

plane. If one take the cross product of the unit normals of the loops in both cases with the

28



Introduction to Magnetic Resonance Imaging Chapter 3

Figure 3.2: Here are two situations: to the left, a current loop whose unit normal is parallel to
the magnetic field. To the right, a current loop whose unit normal is at an angle with respect to
the magnetic field. Basic force calculations show that in the case to the right, there is a torque
exerted on the current loop that pushes the unit normal of the current loop to align with the
magnetic field. We will see later that this phenomenon also occur with nuclei in a magnetic
field.

magnetic field, one can see that this is proportional to the torque from calculation. In fact,

this motivates defining the magnetic moment of a current loop µ in relation to the torque by

τ =µ×B. (3.3)

3.1.2 Magnetic Moment in a Static Field

By definition, the angular momentum J obeys

dJ

dt
= τ. (3.4)

One can show that the spin angular momentum is proportional to the magnetic moment by a

factor called the gyromagnetic ratio, γ, which is different for each particle

µ = γJ. (3.5)

Combining these equations, we see that

dµ

dt
= γµ×B. (3.6)
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Equation 3.6 gives the time evolution of the magnetic moment of a single particle exposed to a

constant magnetic field B .

Figure 3.3: Here we show the geometry of the evolution of the magnetic moment µ in a
magnetic field. In red, we show the differential dµ which can be derived from the form of the
time evolution equations. By expressing the magnitude of the differential in two ways, both
derived from the geometry of the system, we can derive that the magnetic moment precesses
around the magnetic field at a rate depending on the magnitude of the magnetic field, called
the Larmor Frequency.

While Equation 3.6 is far from complete for a realistic description of the magnetic moment,

we can already derive an important concept: precession at the Larmor frequency. Consider

a magnetic field, B in the z direction, and a magnetic moment µ at an angle θ with respect

to B; see Figure 3.3 for the geometry. The magnetic moment will precess about the magnetic

field instantaneously at a frequency called the Larmor Frequency. We can derive this geomet-

rically by first noting that the differential of µ must lie in a plane parallel to the x − y plane;
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furthermore, as dµ
dt is always perpendicular to µ, this implies that the tip of µ will trace a circle.∥∥dµ

∥∥ = γ
∥∥µ∥∥∥B∥sinθdt (3.7)

Now, let dφ denote the differential angle subtended by the change in the magnetic moment

on the circle on which the tip of the magnetic moment rotates. Then geometrically (using that

the arc length subtended by an angle is equal to the radius multiplied by the angle in radians)∥∥dµ
∥∥ =

∥∥µ∥∥sinθ
∥∥dφ

∥∥ . (3.8)

Using these two equations for
∥∥dµ

∥∥, we have that∥∥∥∥dφ

dt

∥∥∥∥ = γ∥B∥ =ω0. (3.9)

Therefore µ precesses around B with frequency ω0, which is called the Larmor Frequency.

3.1.3 Magnetic Moment in a Static Field with an RF Perturbation

We now consider a static background magnetic field perturbed by a time varying magnetic

field orthogonal to the background magnetic field. Let the static field lie in the z direction, and

let us use a reference frame rotating at the Larmor frequency clockwise around the z axis (See

top row of Figure 3.4).

We note that that given a rotating reference frame with rotation vector Ω, the time rate of

change in the fixed reference frame of a vector function V(t ) is given by

dV

dt
=

dV

dt RotF r ame
+Ω×V. (3.10)

Using this expression for the magnetic moment and comparing it to the already known

differential equation for the magnetic moment in a static field, we have that

dµ

dt RotF r ame
= γµ×Be f f , (3.11)

Be f f = B+Ω

γ
. (3.12)

Hence, the motion of the magnetic moment with respect to the rotating frame is the same as

in the lab frame except with a different, effective magnetic field.

Now, let ω be the frequency of an RF perturbation we will use to push the magnetic moment

away from the orientation of the static field. Note that from the differential equation, this

pulse must have components in the x or y direction. As our rotating reference frame, let

Ω = −ωẑ. (3.13)
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Note that if we have a circularly polarized RF perturbation

Bci r c = B1(x̂ cosωt +−ŷ sinωt ), (3.14)

then in the rotating frame this just becomes

Bci r c = B1x̂ ′. (3.15)

Now we write the equations of motion in a rotating reference frame with the constant field

and the circularly polarized field, where the rotation is at the RF frequency, ω

dµ

dt RotF r ame
=µ× (ẑ(ω0 −ω)+ x̂ ′ω1), (3.16)

where

ω1 = γB1 (3.17)

is the precession frequency caused by the rf field. If the RF frequency matches the Larmor

frequency, then the above equation simplifies to

dµ

dt RotF r ame
=ω1µ× x̂ ′. (3.18)

This implies that in the rotating reference frame, the magnetic moment will precess about the

x̂ ′ axis only (See bottom row of Figure 3.4). This frequency matching is called the resonance

condition, as matching this flips the spin to the new axis maximally. In essence, what has

been demonstrated is that an RF perturbation applied at the resonant frequency (i.e. the

Larmor Frequency) produces an effective magnetic field, in the rotating frame, solely in the

x̂ ′ direction, instead of the ẑ direction. This makes the magnetic moment flip and precess

around a different axis. Altogether this phenomenon is called nuclear magnetic resonance.

Nuclear magnetic resonance was first demonstrated by Isidor Isaac Rabi [56] in 1939, who

used it to measure the magnetic moment/spin of atoms in molecular beams.

Suppose we turn on the RF perturbation for time τ then turn it off; this is called an RF pulse.

In that case, the spin will rotate

∆θ = γB1τ. (3.19)

Note that explicit solutions in the resonance case for a series of pulses can be written as the

product of a set of rotation matrices applied to the initial magnetic moment. This is because

of the form of the differential equation in the rotating frame.
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Figure 3.4: In the top row, we show the rotating reference frame (rotation about the z axis);
note that while the z axis remains the same in both frames, the unit vectors of the transverse
plane are different. In the bottom row, we show how the imposition of a RF perturbation at the
Larmor Frequency can cause the magnetic moment to flip to a different axis in the rotating
frame.

3.1.4 Quantum Note

In the preceding subsection, we derived the basics of Nuclear Magnetic Resonance in a

semi-classical way, starting from the existence of an intrinsic spin/magnetic moment due to

quantum mechanics and continuing with the classical equations for the time evolution of a

magnetic moment in a constant magnetic field and a time varying magnetic field. A rigorous

derivation of NMR should be grounded in a quantum mechanical calculation, starting from

the Hamiltonian corresponding to the magnetic moment in a magnetic field/the Schrodinger

Equation and calculating the expectation value of the spin operators i.e. the magnetic moment,

up to the gyromagnetic ratio, in each spatial dimension. We note that this calculation results

in the same answer as in the semi-classical case.

We can give a handwaving intuition for this by noting that as spin is a quantum phenomenon,

it is quantized; it can only take a certain set of discrete values, depending on the particle. In

MRI, we are primarily interested in the spins of the hydrogen protons of water; protons are spin
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1
2 particles, meaning there are only 2 different spin states. The addition of an external magnetic

field in a fixed direction causes splitting in the discrete energy levels of the proton, as the spin

state parallel with the field has a lower energy than the anti-parallel spin state. One can show

that the energy difference between these two states is ℏω0, where ℏ is the reduced Planck’s

constant and ω0 is precisely the Larmor frequency associated to the proton and the external

magnetic field. Therefore transitions between spin states can only be induced by the addition

or subtraction of this amount of energy by, for example, photons with a frequency equal to

the Larmor frequency, corresponding to the the resonance condition on the RF perturbation

previously derived semi-classically.

3.2 Nuclear Magnetic Resonance for an Ensemble of Spins

3.2.1 Net Magnetization

In the previous section, we considered only a single spin; however, we need to consider

macroscopic bodies composed of many spins, as is the case in MRI. We deal with this by

defining the net magnetization M:

M =
1

V

∑
pr otons

µi , (3.20)

where V is a volume small enough such that external fields are constant over it, but large

enough to contain many particles/spins. Nuclear magnetic resonance in bulk matter/solids,

as will be examined here, was first demonstrated concurrently and separately by two different

groups in 1946: the group of Felix Bloch [57] and the group of Edward Purcell [58].

Suppose that we have an ensemble of protons in a static magnetic field with strength B0 at a

temperature T (See Figure 3.5). As previously noted, the static field induces a splitting in the

energy levels of the protons due to an energetically preferred spin state. This is because the

potential energy of a magnetic moment in a magnetic field is

U = −µ ·B. (3.21)

As there are two possible spin states, the ensemble of spins will tend toward the favored spin

state; however, due to thermal interactions/interactions between spins, the spins do not all

respond as in the previous sections. This can be made precise by calculating the average

magnetization through the Boltzmann distribution of the ensemble of spins, as each spin

state corresponds to a different energy; with no static field, the net magnetization should be

zero, as the sum of the spins will average to 0. Letting M0 denote the magnitude of the average

magnetization, one can derive the approximation

M0 ≈ 1

4
ρ0
γ2ℏ2

kT
B0, (3.22)

34



Introduction to Magnetic Resonance Imaging Chapter 3

where k is Boltzmann’s constant and ρ is the volume density of spins. Therefore, a static

magnetic field induces a non-trivial net magnetization.

Figure 3.5: To the left is an ensemble of spins with no external magnetic field; in this case,
no spin state is energetically favored, so there is no net magnetization as the spins will be
randomly distributed. To the right is an ensemble of spins with an external magnetic field;
this induces a favorable spin state aligned with the magnetic field. Note that there are spins
which are anti-parallel, as thermal interactions/other factors can cause spin transitions from
the energetically favored state. However, as there are more spins parallel than anti-parallel,
this ensemble will produce a net magnetic moment.

If we now sum over each spin and take an average of the spin evolution equations for each

spin, we have

dM

dt
= γM×B. (3.23)

However, this equation also needs to be modified to take into account so-called relaxation

effects as we now consider many spins, which can interact with each other as well as the

surrounding environment.

3.2.2 Bloch Equation

In the following discussion, it will be helpful to separate M into its components parallel and

perpendicular to the static, external field. Previously, while we derived the equations of

motion for the magnetic moment, we did not discuss the initial conditions, i.e. the initial

state of the magnetic moment. As previously stated, a static field induces an equilibrium, net

magnetization aligned with the static field, due to the fact that magnetic moments aligned

with the static field are energetically favored.

If an RF pulse pushes the magnetization away from equilibrium, then we see that the parallel

component will change. Note that in the previously derived equation for the rate of change of
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the magnetization, we have that

dM∥
dt

= 0, (3.24)

since the cross product has zero magnitude in the parallel direction. To model the return to

equilibrium, which is mediated by thermal exchange with the lattice of surrounding spins, we

can replace this equation with

dM∥
dt

=
M0 −M∥

T1
. (3.25)

Note that this equation implies that M∥ exponentially approaches M0, the equilibrium mag-

netization. T1, the characteristic time of this asymptotic approach, is called the spin-lattice

relaxation time.

Just as the spin-lattice interactions causes the longitudinal magnetization to tend towards the

equilibrium magnetization, interactions between spins causes transverse magnetizations to

decay. The transverse magnetization is the average over many transverse spins. Variations in

local fields, interactions between the magnetic fields of other spins, etc, cause individual spins

to have different precession frequencies, as they experience different local magnetic fields.

This causes them to dephase/decohere/spread out relative to each other. Note that unlike the

parallel case, there is no energy favorable condition restoring the transverse spins to any set

state. Hence, the magnetization tends to zero since it becomes an average of many moments

pointing in random directions. We modify the equations for the transverse magnetization by

adding a term for this decay

dM⊥
dt

= γM⊥×B− M⊥
T2

. (3.26)

Combining all these corrections into a single equation, we have the Bloch equation:

dM

dt
= γM×B+ M0 −M∥

T1
ẑ − M⊥

T2
. (3.27)

This equation gives the time evolution of the net magnetization, including the phenomeno-

logical relaxation effects.

3.2.3 Bloch-Torrey Equation

While the Bloch equation captures the time evolution of the net magnetization due to the

effects of an external magnetic field and relaxation effects, it does not capture time evolution

from the physical movement of the particles with spin. That is, if we consider a concentrated

population of fixed spins which diffuse to spread out over a spatial domain, then there will

still be a time evolution of the magnetization due to this diffusion, which has no relation to the
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time evolution in the Bloch equation. A simple way to extend the Bloch equation to account

for this is to add a diffusion term, resulting in the Bloch-Torrey Equation:

∂M

∂t
= γM×B+ M0 −M∥

T1
ẑ − M⊥

T2
+∇· (D∇M) (3.28)

where D is the diffusion tensor (3x3 matrix), encoding the diffusivity in different directions.

3.3 Signal Detection

In the preceding sections, we showed how exposing a sample of magnetic nuclei to a constant

magnetic field and an RF pulse can cause its net magnetization to change in a way predicted

by the Bloch Equation. MRI is based on detecting these changes in net magnetization. Here

we present a simplified model of signal detection in MRI. Signals from MRI come from an RF

coil near the body of the object being probed and measuring the resulting Faraday induction

in the coil from the changing magnetization of the body induced by the combination of a

static magnetic field and an RF perturbation, as previously described. There is an effective

current associated with the magnetization

JM(r, t ) = ∇×M(r, t ). (3.29)

This effective current results in a magnetic field. From the formulas for magnetic fields, vector

potentials, etc, we can write the flux through the recieve coil as a volume integral over the

sample depending on the magnetization and the induced magnetic field per unit current in

the recieve coil

ΦM (t ) =
∫

sample
d3r Br ecei ve (r ) ·M(r, t ). (3.30)

Hence,

s(t ) =
d

dt

∫
sample

d3r Br ecei ve (r ) ·M(r, t ) (3.31)

s(t ) which is the electromotive force in the coil, is the measured signal for MRI images.

From the Bloch equation we can write the following general solution:

Mz (r, t ) = exp(
−t

T1(r)
)Mz (r,0)+ (1−exp(

−t

T1(r)
))M0 (3.32)

M+(r, t ) = exp(
−t

T2(r)
)exp(−iω0t + iφ0(r))M⊥(r,0), (3.33)

where M+ is the complex representation of the transverse magnetization; Mx = Re(M+), My =

Im(M+). φ0 is the initial phase distribution of the transverse magnetization. Inserting these

into Equation 3.31, decomposing Br ecei ve
x (r ) = B⊥ cos(θB (r )),Br ecei ve

y (r ) = B⊥ sin(θB (r )), and
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assuming that the Larmor Frequency, ω0, dominates the reciprocals of T1,T2, we have that

s(t ) ≈ω0

∫
d3r exp(

−t

T2(r )
)M⊥(r,0)B⊥(r )sin(ω0t +θB (r )−φ0(r )). (3.34)

In this case, the signal is dominated by the oscillations in the transverse magnetization; parallel

magnetization contributes negligibly to the measured signal. Note that this approximation

does not take into account variations of the constant magnetic field on the z-axis nor time

dependence of additional magnetic fields, although these are easily accomodated.

The resulting signal is usually demodulated (multiplied by sin and cosine with a certain

reference frequency) then low pass filtered. This is done in order to get rid of the high frequency

oscillations at the Larmor frequency (sin(ω0t+θB (r )−φ0(r ))) and replace it with low frequency

oscillations at the offset. This demodulation results in two channels, called real and imaginary,

where it is convenient to define a complex demodulated signal

s(t ) = sr (t )+ i si (t ). (3.35)

The complex, demodulated signal turns Equation 3.34 into

s(t ) ≈ω0

∫
d3r exp(

−t

T2(r )
)M⊥(r,0)B⊥(r )exp(i ((Ω−ω0)t −θB (r )+φ0(r ))), (3.36)

where Ω is the reference freq; note that if Ω =ω0 we eliminate the high frequency oscillations

of the signal.

3.4 Basic Imaging Model

In the previous section, we showed how we can measure the signal from the changing magneti-

zation of a sample. However, as the name denotes, in MRI, the goal is to produce an image, the

most basic of which is the spatial distribution of the spin density associated with the hydrogen

proton. In fact, as we will show in this section, the key to producing an image is the application

of a spatially varying magnetic field (also called a field gradient) on top of the static, main

magnetic field. This idea of using magnetic field gradients, while introduced previously, was

first used to produce an image by Paul Lauterbur [59] in 1973.

Here we consider a very simplified model of how to produce such an image. We assume that

the initial phases, the phase of the receive field and the amplitude of the receive field are

all independent of position, and thus can be ignored or absorbed into an overall constant.

Furthermore, we neglect relaxation effects. Then the complex demodulated signal from the

previous section can be written as

s(t ) ≈ω0B⊥
∫

d3r M⊥(r,0)exp(i (Ωt +φ(r, t ))), (3.37)
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where φ is the accumulated phase

φ(r, t ) = −
∫ t

0
ω(r, t )dt , (3.38)

and ω(r, t ) is the precession frequency. We note that this differs from Equation 3.36 in that we

now assume that the precession frequency can change spatially/temporally; we assume that

the spatial and time dependence of the precession frequency comes only from the spatial and

temporal changes in the magnetic field; otherwise, it remains the precession frequency from

the main magnetic field.

Let there be a π
2 pulse (i.e. an RF pulse which rotates the net magnetization from the z axis to

the transverse plane). Then the initial perpendicular magnetization will be the equilibrium

magnetization, M0 which can be expressed in terms of the volume spin density as well as other

factors. Then we can write

s(t ) =
∫

d3ρ(r )exp(i (Ωt +φ(r, t ))), (3.39)

where ρ(r ) is an effective spin density. We say effective because they are proportional to the

volume spin density, but contain many multiplicative factors depending on temperature, freq,

etc,

ρ(r ) =ω0B⊥M0(r ) (3.40)

Consider the one dimensional case where the phase depends only on z. Then

s(t ) =
∫

dzρ(z)exp(i (Ωt +φ(z, t ))) (3.41)

ρ(z) =
∫ ∫

dxdyρ(r ) (3.42)

To obtain a simple image, we want to determine the spin density ρ(z). Let us add a linearly

varying magnetic field in z such that

Bz (z, t ) = B0 + zG(t ). (3.43)

Then the precession frequencies of the spins also become time/spatially dependent

ω(z, t ) =ω0 +γzG(t ) =ω0 +ωG (z, t ). (3.44)

Using a magnetic field gradient to establish a relationship between the position of the

spins (z coordinate) and the precessional frequency is called frequency encoding. This is a

cornerstone of MRI. Note that the gradient is added only after the pulse.

After setting the reference frequency of demodulation to the Larmor frequency due to the
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static field, we have

s(t ) =
∫

dzρ(z)exp(iφG (z, t )), (3.45)

φG (z, t ) = −γz
∫ t

0
ωG (z, t ′)t′, (3.46)

where φG (z, t ) is the associated accumulated phase with the additional magnetic field from G .

This is called the 1D imaging equation. Let

k(t ) =
γ

2π

∫ t

0
dt ′G(t ′). (3.47)

Then we can write the signal in the suggestive form

s(k) =
∫

dzρ(z)exp(−2iπkz) (3.48)

This shows that the measured signal is the Fourier transform of the spin density. We say

that the spin density is Fourier encoded along z. In principle, we can reconstruct the spin

density by applying the inverse Fourier transform to the signal. In practice, we need to sample

many different values of k (through application of the magnetic field gradient), measure the

corresponding signal, and apply a discrete Fourier transform. Furthermore, sampling many

k values can be difficult since relaxation effects, among other things, destroy the transverse

signal over time. In MR, the space of Fourier measurements is called the k-space.

To generalize to 3 dimensions one can define

G(t ) = Gx (t )x̂ +Gy (t )ŷ +Gz (t )ẑ. (3.49)

where G(t ) is now a vector. Then the z component of the magnetic field is

Bz (r, t ) = B0 +G(t ) · r. (3.50)

We then have

s(t ) =
∫

d3rρ(r )exp(−i 2πk · r) (3.51)

k(t ) = γ
∫ t

0
G(t ′)dt ′ (3.52)

We emphasize again that the model presented here has neglected many important effects,

relaxation of the signal being chief among them. While the spatial distribution of the spin

density is one image of interest, spatial maps of the relaxation times (T1,T2) are also of interest.

Furthermore, we have not mentioned many practical concerns, such as how the k space is

sampled, the limits on G that can be practically realized, etc. Indeed, the development of MR
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sequences (particular arrangements of magnetic field gradients and RF pulses used), which

is out of the scope of this thesis, is concerned with how to accomplish imaging taking these

effects and practical concerns into account. One tailors the kind of image (i.e. the contrast) one

wants by manipulating the field gradients/RF pulses such that the resulting signal expresses

the contrast in which one is interested. However, at this point, we can assume that for the

basic MR image model (applicable, with modifications, to Chapter ???), we can use the finite

dimensional model

y = F x+n, (3.53)

where y is the measured signal, F is the Discrete Fourier Transform, x is the image of interest,

i.e. the effective spin density weighted by different factors (e.g. by T1,T2), and n is Gaussian

noise. Note that both the signal and the reconstructed image are complex-valued in general.

The signal is complex-valued by construction. However, while the spin density is real-valued

in principle, the data acquisition process, signal processing, etc usually add phases such that

the effective spin density is complex-valued. The images shown for typical MR images are

produced from taking the magnitude of the reconstructed image. For an example of acquired

k-space and reconstructed magnitude image, see Figure 3.6

Figure 3.6: To the right, we show a magnitude MR image obtained from scanning several
fruits/vegetables. To the left, we show the logarithm of the magnitude of the k-space measure-
ments from which the image to the right was reconstructed.

3.5 Image Contrast

In the previous section, we derived an inverse problem which allows for the reconstruction of

a spatial image of the spin density from MR measurements. However, we emphasize that in

fact, what we recover is an effective spin density, since it is really the spin density multiplied

or weighted by a series of complex factors, such as relaxation factors, peculiarities due to the

specific MR machine used, additional factors due to the sequence used; detailed examination
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of these factors are out of the scope of this thesis. Therefore, the main utility of the image is

to see the contrast/differences in image magnitude between different parts of the scanned

sample. The actual image magnitudes are not quantitatively meaningful in themselves because

of the complex multiplicative factors. Such images are then called contrast weighted images.

For example, the diagnostic value of scaling a contrast image globally by an arbitrary constant

is unchanged since there is no difference in contrast.

However, through different sequences (different arrangements of RF pulses and magnetic

field gradients), one can ensure that the resulting image is the spin density multiplied pre-

dominately by a factor of interest, such as the relaxation times T1 and T2, or the diffusion

coefficient. In this way, the images produced are said to be T1 or T2 or diffusion weighted,

meaning that the image intensity in a voxel depends largely on the value of the T1 or T2 or

diffusion of the spins in that voxel. In other words, one can design sequences to choose what

kind of contrast an MR image will have.

For example, if we express the Bloch equation for the transverse magnetization in the rotating

frame, we find that

dM⊥
dt

= −M⊥
T2

, (3.54)

which has the well known exponential solution

M⊥(t ) = M⊥(0)exp(
t

T2
). (3.55)

Therefore, roughly, measuring the signal from the transverse magnetization at time T after

tilting the magnetic moment to the transverse plane with a π
2 RF pulse will add an exponential

weighting to the effective spin density of the form exp( T
T2

). This implies, for example, that the

actual spin density being equal, regions of the sample with lower T2 relative to others will also

have lower image magnitudes, allowing us to see contrast in the image due to T2 differences.

Similarly, contrast images can also be produced for other parameters of interest, such as the

T1, the proton density, and diffusion coefficients; for examples, see Figure 3.7
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Figure 3.7: Here we show axial MR images of the brain with different contrasts from the fastMRI
[60] and IXI [61] datasets. We can see that the relative contrast of the image intensities for the
same parts of the brain (ventricles, white matter, gray matter) are different for each image.





4 Validation of Self-Supervised, Under-
sampled MRI Reconstruction

The content of the following chapter is based on the preprint version of the article: “Validation

and Generalizability of Self-Supervised Image Reconstruction Methods for Undersampled MRI”

submitted to the Journal of Machine Learning for Biomedical Imaging [62].

4.1 Introduction

For the first non-background chapter of our thesis, we begin, in some sense, by focusing on

the end of the inverse problem pipeline: validation of methods. As mentioned in closing

in Chapter 2, validation of inverse problems is difficult to discuss generically as acceptable

validation depends entirely on the use of the solutions; for medical imaging, where solutions

of inverse problems can be used by radiologists to diagnose pathologies, the validation in a

realistic setting is of utmost importance in order to reflect the expected performance in the

clinic. However, validation becomes complicated in situations where large, realistic datasets

of ground truth data are not available, as is the case for the inverse problems in this thesis. In

this chapter, we engage in a rigorous validation of self-supervised methods for reconstructing

MR images from undersampled MR data; in contrast to the previous literature, we try to go

beyond the typical validation pipeline by using/evaluating reconstructions of prospectively

accelerated data, i.e. data as it would arise in the clinic, as much as possible. We begin with an

explanation of parallel and undersampled MRI.

4.1.1 Parallel, Undersampled MRI Reconstruction

In Chapter 3, we showed that the measurements in MRI are connected to the underlying

density of spins through the Fourier transform (Equation 3.53). However, as we mentioned,

this model neglects many factors, some of which we will address here. First, our construction

assumed the use of only one coil/sensor for taking measurements. However, one can use
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multiple coils/sensors and reconstruct an image jointly from the data from each coil; this is

called parallel MRI.

Furthermore, we did not discuss the sampling of the k-space in the previous section. Ne-

glecting the physics of how the k-space is sampled in practice through MR sequences, we

note that the sampling must be discretized and finite for practical reasons, even though in

theory both the image and the k-space are continuous. Then the resulting image will also be

discretized and finite. Consider a 2 dimensional image for simplicity, and suppose that the

sampling is symmetric in both dimensions/positive and negative axes. Suppose we want an

image which encompasses a field of view (FOV) or spatial extent of LxL millimeters (mm),

with a spatial resolution of δx mm; i.e. the discretization of the image is δx mm. We can

consider the corresponding continous k-space measurements as a band-limited function

since its Fourier transform, which is the image, is limited to the FOV of LxL millimeters, i.e.

the spatial frequency f satisfies ∥ f ∥ ≤ L
2 . Then the Nyquist-Shannon theorem dictates that a

discretized sampling of the k-space can recover the continuous k-space without aliasing as

long as the sampling interval or discretization δk satisfies

δk ≤ 1

L
(4.1)

Furthermore, in order to achieve an image resolution of δx, this implies a constraint on the

number of samples taken in k-space. Roughly speaking, if the sampling of each k-space axis

takes place in the interval [−n
2δk, n−1

2 δk], then

δx =
1

δk ×n
(4.2)

Therefore in order reconstruct an image from sampling the k-space discretely and finitely,

the sampling interval and number of samples must be chosen carefully in order to faithfully

represent the Fourier transform of the underlying image. In the above example, this implies

discretely sampling the 2D box [−n
2δk, n−1

2 δk]× [−n
2δk, n−1

2 δk]. However, depending on the

FOV, the image resolution desired, and the dimensionality (e.g. going to 3D), the time to

sample the k-space according to these constraints can be prohibitive.

Therefore, it would be desirable to reconstruct MR images from undersampled measurements,

where only a fraction of the samples theoretically necessary are acquired, as this will accelerate

the acquisition. For example, a 5x acceleration corresponds to undersampling by a factor of

5/taking only 20 percent of the theoretically required measurements. However, undersam-

pled measurements require special reconstruction techniques to compensate for having less

information.

In this chapter, we consider the inverse problem of parallel, undersampled MRI reconstruction,

where we want to reconstruct an image from the joint measurements from multiple sensors,

with the measurement being undersampled in the aforementioned sense.
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4.1.2 Motivation

Since the introduction of MRI, methods for image reconstruction have evolved with acquisition

acceleration and have seen great advances with parallel imaging techniques such as sensitivity

encoding (SENSE) [63] and generalized auto-calibrating partially parallel acquisition (GRAPPA)

[64]. While parallel imaging reliably accelerates clinical contrasts by factors of two to three,

more recent methods such as compressed sensing (CS) have achieved even higher acceleration

factors [65]. Now, supervised deep learning methods reign as the state of the art in the

reconstruction of accelerated acquisitions [48], [66], [67]. However, these supervised methods

require a non-trivial amount of fully sampled data to use as ground truth/target, which can

be difficult or infeasible to obtain depending on the type of acquisition. Consequently, there

has been interest in unsupervised or self-supervised, deep learning approaches which train

solely on accelerated acquisitions, with no need for ground truth, fully sampled data [68]–[71].

However, the validation of these methods is generally done by quantitative evaluation through

pixel-wise metrics on retrospectively undersampled acquisitions (i.e., artificial undersampling

of a fully sampled dataset), accompanied by qualitative evaluation on datasets where no

ground truth is available. This limitation may stem from commonly used datasets [60], [72]

being fully sampled, as well as difficulties in acquiring datasets which contain both fully

sampled and prospectively accelerated scans without motion corruption. However, this

neglects quantitative evaluation of reconstructions from prospectively undersampled data,

the clinically relevant scenario, as well as potential differences between prospective and

retrospective reconstructions; furthermore, the pixel-wise metrics generally used may not

correlate well with the perceptual quality of the images. This point is crucial for clinical

deployment as even if different methods can be robustly ranked using retrospective data,

the image quality from prospective data from the different methods may be unsuitable for

clinical use. Furthermore, if these techniques will be used in future clinical routines, they likely

will be subject to variations of data quality and content. For example, different surface coils,

parameter differences between centers or even the use of the same sequence on different

organs. Therefore, the generalizability, i.e., inference data different from the training/tuning

data (e.g. in terms of field strength, sequence parameters, motion, anatomy, etc.), using

prospective data should be explored.

4.1.3 Contributions

In this work, we conducted an extensive, realistic validation of state of the art self-supervised

reconstruction methods through two overarching experiments. First, by using data with both

full and prospective sampling, we quantitatively and qualitatively evaluate both prospective

and retrospective reconstructions using both pixel-wise and perceptual metrics for fidelity to

ground truth, allowing us to study them individually as well as to see any relevant differences.

Second, using an extensive, prospectively accelerated dataset with changes in anatomy, con-

trast, hardware, field strength, etc., we study the generalizability of the methods quantitatively,

using no-reference image quality metrics and qualitatively, using rating by MR scientists and a
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Figure 4.1: An overview of the basic formulation of the MR reconstruction inverse problem, as
well as how each method in the paper solves the inverse problem.

radiologist.

4.2 Theory

The self-supervised, machine-learning based methods we examine in this paper rely on two

powerful ideas drawn from machine learning: self-supervised denoising and restriction to

the range of convolutional neural networks (CNN) as an effective prior for image reconstruc-

tion. These concepts have been shown to be both empirically effective and theoretically well

founded, making them attractive for clinical use. In Figure 4.1, we show an overview of the

different methods used in this paper. We begin with the basic inverse problem formulation of

parallel MR image reconstruction. This formulation differs from the formulation in Chapter 3

in that one needs to take into account the undersampling (through a mask) and the spatial
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sensivity of each coil (through a spatial sensitivity map). Let yi ,ni denote the undersampled

MR measurements and Gaussian noise respectively, from the i th coil element and x denote

the underlying image. These quantities are related by:

yi = Ai x+ni , (4.3)

Ai = M ◦F ◦Si (4.4)

where M is the element-wise multiplication by a mask (corresponding to the location of the

undersampled measurements), F denotes the Fourier transform, and Si denotes element-

wise multiplication by the i th sensitivity map (note that this sensitivity map encodes the

spatial sensitivity of the coil). The classical regularized reconstruction of x is the solution of an

optimization problem

x = argmin
x′

D(x′,y)+λR(x′), (4.5)

where D(x,y) measures the consistency of the solution to the data (e.g. ∥Ai x−yi∥2), R(x) is

a regularization function, which, for example, prevents overfitting to the noise, and λ is the

regularization parameter. In combination with incoherently undersampled measurements,

compressed sensing reconstructions have been shown to effectively reconstruct the underlying

images by setting R(x) to encourage sparsity of x in a set domain [65]. Many state of the art

deep learning methods, both supervised and unsupervised, implicitly or explicitly parametrize

R(x) with a neural network.

4.2.1 DeepDecoder

The first self-supervised method we examine is called DeepDecoder. DeepDecoder is based

on a seminal work in the machine learning literature called Deep Image Prior (DIP) [73] which

showed that untrained CNNs could be used to effectively solve inverse problems without

ground truth. Concretely, let fθ denote a randomly initialized CNN with parameters θ. Let z

be a sample of a random, Gaussian vector. Then DIP solves Equation 4.5 by

x = fθ(z) = argmin
θ′

∥Ai fθ′(z)−yi∥2 (4.6)

This formulation is equivalent to setting R(x) to the indicator function with support over the

range of the neural network; this assumes that the convolutional network fθ itself provides a

strong prior on the space of image solutions, such that only the data consistency term needs to

be minimized. However, since only the noisy signal y is used during training, minimization can

overfit the noise in the signal, depending on the inverse problem being solved (e.g. denoising,

super-resolution), thus requiring early stopping [73]. DeepDecoder [70] is a CNN with a

simplified architecture (only upsampling units, pixel-wise linear combination of channels,

ReLU activation, and channel-wise normalization) which is amenable to theoretical analysis

and was shown to be competitive with other architectures for solving inverse problems in a
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DIP framework.

In [74], the authors theoretically showed that for the case of image recovery from compressed

sensing measurements, CNNs (in particular, CNNs with the structure of DeepDecoder) are

self-regularizing with respect to noise and can simply be trained to convergence with gra-

dient descent without early stopping or additional regularization, provided that the true,

underlying image has sufficient smoothness/structure. In a knee MR example, they showed

that early stopping would have only provided a marginally better solution than running to

convergence. Hence, from a theoretical and practical standpoint, DeepDecoder is attractive

for self-supervised reconstruction from undersampled measurements. We emphasize that

DeepDecoder entails training a separate network for each separate acquisition/slice, rather

than training a single network over a dataset of undersampled acquisitions.

4.2.2 Self-supervised learning via data under-sampling

The second self-supervised method we examine is called Self-supervised learning via data

under-sampling (SSDU). SSDU uses an unrolled, iterative architecture, with alternating neural

network and data consistency modules, to reconstruct MR images using only undersampled

measurements, with the adjoint image corresponding to the input k-space measurements as

an initial guess. It solves Eqn 4.5 using an iterative, variable splitting approach where the kth

iteration consists of

x̂k = CNN(xk−1) (4.7)

xk = argmin
x′

∥Ai x′−yi∥2 +λ∥x′− x̂k∥2. (4.8)

where the superscript denotes the iteration, CNN denotes a generic CNN, and x̂k denotes an

auxiliary variable. The regularization parameter λ is learned during training. Let fSSDU denote

the function defined by the unrolled network. In each training step of SSDU, the k-space of

the data is split into two disjoint sets, denoted by yΘ and yΛ. yΘ is passed to the unrolled

network as input. The loss function for SSDU compares the simulated k-space measurements

of the corresponding image output fSSDU (yΘ) to yΛ:

L(yΛ, AΛ fSSDU (yΘ)) (4.9)

where AΛ is the measurement operator corresponding to sampling the locations of Λ, and

L is an equally weighted combination of the L1 and L2 loss. Hence, during each training

step, fSSDU only sees information from yΘ, and the loss is only computed over a disjoint set

yΛ. We note that at inference time, the entire, acquired k-space measurements are given as

input. While the authors of SSDU give an intuitive explanation of this approach as similar

to cross validation in order to prevent overfitting to noise or learning the identity, results

from the machine learning literature on blind, signal denoising can help give a theoretical

explanation. In the Noise2Self framework [75], the authors prove that a neural network can be
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trained to denoise a noisy signal, using solely the noisy signal for training. In the following, we

describe a special case of the general theory proven in [75]: the signal, y is partitioned into

disjoint sets, yΘ and yΛ. The neural network takes as input yΘ and predicts a denoised signal;

the loss function used for training is the mean squared error between the denoised signal

restricted to Λ and yΛ. The authors showed that this loss function/strategy approximates

the mean squared error between the signal predicted by the network and the ground-truth

signal without noise, plus a constant independent of the network. Hence the Noise2Self

strategy allows to minimize the error between the predicted signal and the ground truth

signal with only access to the noisy signal. We can see that the training of SSDU conforms to

the Noise2Self framework with the k-space measurements acting as the noisy signal, albeit

with SSDU using an L1 loss in addition to the L2 loss. Thus, SSDU takes as input the noisy,

acquired k-space measurements, and is optimized to output an image whose simulated k-

space measurements are the acquired k-space measurements without noise. In this way,

SSDU avoids overfitting to noise. This, combined with the powerful image prior from using a

CNN as the neural network as well as the interleaving of the data consistency term, explains

SSDU’s demonstrated ability to provide denoised images which retain image sharpness, as

compared to traditional methods. We can interpret SSDU as an iterative method which

interleaves the application of a denoising network and a data consistency step. We note in

contrast to DeepDecoder, that we can train different networks for separate acquisitions or

train a single, reusable network on a dataset of undersampled acquisitions. In this paper, we

do the latter.

In conclusion, both unsupervised approaches accomplish noise robust MR reconstruction

using only noisy, undersampled MR measurements.

4.3 Methods

In the following experiments, we compare four image reconstruction methods:

1. CG-SENSE, which solves Equation 4.5 with no regularization using the conjugate gradi-

ent algorithm; this is a least squares fit to the acquired data similar to the description in

[76].

2. CS-L1Wavelet, where we solve Equation 4.5 with a compressed sensing reconstruction,

with R(x) = ∥W x∥1, where W is a wavelet transform operator.

3. DeepDecoder with a depth/width of 300/10 and Gaussian input of size (10,10).

4. SSDU, where we use a U-Net [77] with 12 channels and 4 downsampling/upsampling

layers.

We used Sigpy[78] for the computation of CS-L1Wavelet and ESPiRiT[79] sensitivity maps. We

implemented CG-SENSE and SSDU in Pytorch [80], and we used Github implementations of
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DeepDecoder I and U-Net II. We used Adam [81] to optimize both SSDU and DeepDecoder.

SSDU was trained until convergence (10 epochs) with a learning rate of 0.5e-4. For each

subject, DeepDecoder was optimized using the acceleration strategy in [82]; a single slice for

each subject is optimized to convergence (over 10,000 iterations) from a random initialization.

All other slices are optimized for 1,000 iterations, initialized with the network model from this

single slice. All training and inference was done on a NVIDIA Quadro RTX 8000 with 45GB of

RAM.

4.3.1 Training Data and Hyperparameter Tuning

To mimic a realistic scenario with a sequence for which fully sampled, ground truth data is

difficult/infeasible to acquire, and where the training dataset is limited in size and variability,

we acquired for ten healthy subjects a 5x accelerated 3D MPRAGE prototype sequence [83] of

the brain at 3T (MAGNETOM PrismaFit, Siemens Healthcare, Erlangen, Germany) using a 64ch

Rx Head/Neck coil. These incoherently undersampled data were used for training/tuning

the hyperparameters of all reconstruction methods. In what follows, all training/inference

is done on 2D slices of both phase-encoding directions formed from performing the inverse

Fourier transform along the readout direction. In the absence of prior knowledge/heuristics,

the hyperparameters of the methods should also be tuned in a self-supervised way, as the

traditional method for hyperparameter tuning, using a hold-out set of data for which the

ground truth is known, is not available in the realistic scenario. We use the Noise2Self frame-

work, which also underlies SSDU, for selecting hyperparameters, as it optimizes for preventing

overfitting to the noise in the measurements. For example, to set the regularization parameter

of CS-L1Wavelet, we treat it as a function with a single parameter (λ). We can then optimize

this parameter using the Noise2Self training framework to estimate the λ which minimizes

the noise-free error between simulated measurements and the acquired measurements. Con-

cretely, we fix 20 logarithmically spaced values from 0.00001 to 0.1. We set each value as λ

and run 50 image reconstructions corresponding to different, random masks and average

the corresponding errors with respect to the complementary mask in order to approximate

the true measurement error associated with using each value. We then select the value with

the lowest measurement error as the optimal regularization parameter. This is done for each

slice in each subject; the final regularization value which is used throughout this paper is the

average over all subjects. The hyperparameters of DeepDecoder and SSDU are set similarly

with a grid search over the network hyperparameters, albeit over a much smaller set of data

due to the high computational demand.

Ihttps://github.com/MLI-lab/cs_deep_decoder
IIhttps://github.com/facebookresearch/fastMRI

52



Validation of Self-Supervised, Undersampled MRI Reconstruction Chapter 4

4.3.2 Validation using Prospectively Accelerated and Fully Sampled Data

In our first experiment, using the aforementioned 3D MPRAGE prototype sequence used

for acquiring the training/tuning data, we acquired both fully sampled and 5x prospectively

accelerated scans of the following:

1. Siemens multi-purpose phantom E-38-19-195-K2130 filled with MnC l2 ·4H2O doped

water

2. Assortment of fruits/vegetables (Pineapple, tomatoes, onions, brussel sprouts)

This allowed us to reconstruct prospective, retrospective (applying the same mask as in

prospective sampling on the fully sampled data), and fully-sampled images.

No in-vivo data was used in this experiment since subject motion could bias the results.

Furthermore, we used fruits/vegetables as a second phantom since they have more complex

structures than a water filled container.

Quantitative Assessment

First, we qualitatively compared the results through visual inspection. Second, we quantita-

tively compare reconstructions to the ground truth using Peak Signal to Noise Ratio (PSNR)

[84], the Structural Similarity Index Measure (SSIM) [85], and a metric we will call the Percep-

tual Distance (PercDis) score. While the first two are commonly used metrics in MR image

reconstruction/image reconstruction in general, the PercDis score comes from computer

vision (super-resolution, style transfer, etc), where it is called the perceptual loss [86]; the

distance between two images is defined as the L1 distance between the respective induced

features from an intermediate layer of a pretrained network. The scores of center cropped

slices, along the read-out direction, are averaged for the final score.

4.3.3 Generalizability of Self-Supervised Reconstruction Methods

In our second experiment, we examined the generalizability of the reconstruction methods.

To that end, we scanned three, healthy subjects with the following prospectively accelerated

sequences(anatomy):

1. 1.5T MPRAGE (Brain)

2. 3T MPRAGE (Brain)

3. 7T MPRAGE (Brain)

4. 3T MPRAGE with 1Tx/20Rx Coil (Brain)
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5. 3T MPRAGE with Subject Motion (Brain)

6. 3T MPRAGE with Different Parameters (Brain)

7. 3T, T1 SPACE (Brain)

8. 3T, T2 FLAIR SPACE (Brain)

9. 3T, PD SPACE (Knee)

10. 3T, T2 SPACE (Knee)

The brain scans at 1.5T, 3T and 7T (MAGNETOM Sola, Vida, and Terra, Siemens Healthcare,

Erlangen, Germany) were done using a 1Tx/20Rx, 1Tx/64Rx (unless otherwise stated), and

8pTx/32Rx (Nova Medical, Wilmington, MA, USA) head coil, respectively. The knee scans at 3T

were done with a 1Tx/18Rx coil. All detailed sequence parameters can be found in Table 4.2.

As ground truth data is not available since motion would render quantitative comparison

difficult due to blurring from image co-registration, we evaluated the reconstructions from

the above data quantitatively through no-reference image quality metrics and qualitatively

through rating by four MR scientists and a radiologist.

No-Reference Image Metrics

No-reference image quality metrics quantify the quality of a given image (i.e. blurriness,

noise) using only its statistical features in a way that correlates with the perceptual quality

of a human observer. They have been shown to potentially be useful for MR/medical image

evaluation without ground truth [87], [88]; we use the following three metrics: a metric used

originally for assessing the quality of JPEG-compressed images which we call NRJPEG [89], the

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [90], and Perception based

Image Quality Evaluator (PIQE) [91]. BRISQUE and PIQE have also been used in other image

reconstruction challenges where the ground truth is not available, such as super-resolution

[92]. The metrics were calculated for the central 100 slices (along the read-out direction) of

each reconstruction.

Human Quality Rating

The human quality rating was done according to [47] by four experienced MR scientists and a

radiologist. Using a 4-point ordinal scale, reconstructed images were evaluated for sharpness

(1: no blurring, 2: mild blurring, 3: moderate blurring, 4: severe blurring), SNR (1: excellent, 2:

good, 3: fair, 4: poor), presence of aliasing artifacts (1: none, 2: mild, 3: moderate, 4: severe)

and overall image quality (1: excellent, 2: good, 3: fair, 4: poor). Raters were blinded to the

reconstruction method.
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4.3.4 Statistical Significance

For all quantitative metrics/ratings, we use the Wilcoxon rank sum test with significance level
0.05

6 (Bonferroni correction with 6 pair-wise comparisons among the 4 methods) to determine

statistical significance.

4.4 Results

In general, perceptually, CG-SENSE produces noisy but sharp images since it is not regular-

ized. DeepDecoder produces smoother reconstructions with spatially varying noise behavior

and sharpness, e.g Figure 4.2 (yellow arrows). CS-L1Wavelet and SSDU produce similar im-

ages, smoother than those of CG-SENSE with comparable sharpness; however, CS-L1Wavelet

exhibits more artifacts, e.g Figure 4.2 (red arrows).

4.4.1 Validation Using Prospectively Accelerated and Fully Sampled Data

In Fig. 4.2 and Fig. 4.3, we can see spatial distortions of hyper/hypo-intense features in

the prospective reconstructions and changes in contrast in comparison to the ground truth

reconstruction; this distortion is not present in the retrospective reconstructions; however,

they are similar across all reconstruction methods.

Retrospective reconstructions have significantly higher mean scores for all metrics in compar-

ison to the prospective reconstructions in both acquisitions (see Table 4.1).

Comparing the methods, in the phantom, the prospective/retrospective reconstructions of

DeepDecoder have the highest pixel-wise fidelity to the ground truth with a mean PSNR of

(18.67/23.44) and SSIM of (0.49/0.52); however, qualitatively, it has more spatially varying

oversmoothing than those of CS-L1Wavelet and SSDU. SSDU and CS-L1Wavelet perform

similarly, with the highest qualitative similarity to the ground truth, with SSDU having a higher

mean PSNR overall (17.79/21.95). In contrast to the PSNR/SSIM results, with the PercDis score,

SSDU has the highest fidelity to the ground truth (0.63/0.61).

Qualitatively and quantitatively (with PSNR and SSIM), the differences between the meth-

ods are much less in the fruits/vegetables. The main qualitative difference is the greater

denoising capabilities of SSDU and CS-L1Wavelet in comparison to CG-SENSE and DeepDe-

coder. Quantitatively, there are only minor differences between the methods with respect to

PSNR and SSIM. In contrast, the PercDis scores clearly indicate that CS-L1Wavelet and SSDU

(with similar scores) are perceptually more similar to the ground truth than CG-SENSE and

DeepDecoder (with similar scores).
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Figure 4.2: Ground truth images and reconstructed images using prospectively and retrospec-
tively accelerated data from the multi-purpose phantom, scanned with a MPRAGE sequence
at 3T. Reconstructions from prospectively accelerated data are distorted (see closeups) relative
to the ground truth/retrospective reconstructions. DeepDecoder exhibits spatially varying
smoothness/distortion (see yellow arrows) relative to CS-L1Wavelet and SSDU which have
similar scores/appearance, although CS-L1Wavelet has more artifacts (see red arrows). CG-
SENSE produces noisy but sharp reconstructions, while CS-L1Wavelet and SSDU reduce noise
but preserve sharpness relative to CG-SENSE.
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Figure 4.3: Ground truth images as well as reconstructed images using prospectively and
retrospectively accelerated data from the fruits/vegetables, scanned with a MPRAGE sequence
at 3T. Reconstructions from prospectively accelerated data are distorted in hypointense re-
gions (see closeup/red arrows) relative to the ground truth/retrospective reconstructions.
Qualitatively, the main difference between the methods are between CS-L1Wavelet/SSDU and
CG-SENSE/DeepDecoder, where the former group is smoother than the latter.
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PSNR ↑ Phantom Fruits/Vegetables

(µ,σ) Prospective Retrospective Prospective Retrospective

CG-SENSE (13.54,9.69) (16.82,12.17) (33.4,4.86) (39.3,5.73)

CS-L1Wavelet (16.0,8.36) (20.62,11.65) (33.59,3.83) (38.88,4.44)

DeepDecoder (18.67,6.65) (23.44,10.66) (33.65,2.86) (38.25,4.42)

SSDU (17.79,6.9) (21.95,10.09) (33.88,3.75) (39.49,4.27)

SSIM ↑
(µ,σ) Prospective Retrospective Prospective Retrospective

CG-SENSE (0.35,0.18) (0.42,0.23) (0.92,0.09) (0.95,0.09)

CS-L1Wavelet (0.4,0.21) (0.47,0.27) (0.93,0.08) (0.96,0.08)

DeepDecoder (0.49,0.22) (0.52,0.28) (0.93,0.04) (0.95,0.08)

SSDU (0.41,0.22) (0.47,0.27) (0.93,0.08) (0.96,0.08)

PD ↓
(µ,σ) Prospective Retrospective Prospective Retrospective

CG-SENSE (1.05,0.08) (1.02,0.06) (0.45,0.16) (0.29,0.09)

CS-L1Wavelet (0.84,0.08) (0.79,0.05) (0.41,0.17) (0.25,0.09)

DeepDecoder (0.68,0.15) (0.64,0.09) (0.44,0.19) (0.3,0.11)

SSDU (0.63,0.13) (0.61,0.1) (0.42,0.16) (0.26,0.09)

Table 4.1: Mean and standard deviation of PSNR/SSIM/PD scores of the reconstructions with
respect to the ground truth for the phantom and the fruit/vegetables; arrows beside each
metric denote whether higher or lower values are better. PSNR/SSIM/PD were calculated over
all the slices in the read-out direction with center cropping. Using the Wilcoxon rank sum test
with significance level 0.05

6 (Bonferroni correction), we found statistically significant differences
between each method for each metric other than (CS-L1Wavelet vs SDDU, Retrospective
SSIM, Phantom) and (CG-SENSE vs SSDU, Retrospective PSNR, Fruits/Vegetables) Note that
while with respect to PSNR/SSIM, DeepDecoder performs the best in the phantom, and all
methods perform similarly in Fruits/Vegetables. In contrast, with respect to the PD score,
SSDU performs the best in both cases by larger relative margins than with PSNR/SSIM.
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4.4.2 Generalizability

Figures 4.4, 4.5 show axial MPRAGE brain slices at the different field strengths and correspond-

ing closeups of the cerebellum and the left frontal lobe. Figure 4.6 shows a sagittal PD knee

slice (3T) with closeups of articular cartilage interfaces in sagittal (femur) and axial (patella)

views. These show the generalizability of the methods to different magnetic field strengths as

well as changes in anatomy and contrast. Example reconstructions for the other sequences

can be found in Figures 4.7, 4.8.

Perceptual Evaluation

Qualitatively, we can see from Figures 4.4, 4.5, 4.6 that all methods are able to generalize

well (in the sense of approximately preserving performance/appearance on dataset used

for training/tuning) to changing field strengths, anatomy, and contrast, although changing

anatomy clearly worsened absolute image quality as compared to changing field strength.

DeepDecoder preserves its spatially varying smoothing/artifacts, and SSDU/CS-L1Wavelet

are able to produce images with less noise and comparable sharpness to CG-SENSE, although

CS-L1Wavelet exhibits more artifacts. As expected, the perceptual quality of all methods

increase with increasing field strength due to higher spatial resolution. Differences between

the methods are less pronounced in the knee scan although overall image quality is worse.

No-reference Image Quality Metrics

In the first row of Figure 4.9, we show a bar plot of the scores for the no-reference image quality

metrics averaged over all sequences and subjects. In general, CS-L1Wavelet and SSDU have

the highest (by a small margin) mean NRJPEG score (10.54/10.39) and lowest, mean BRISQUE

(29.35/28.06) and PIQE (25.56/22.87) scores, indicating better image quality in comparison to

CG-SENSE and DeepDecoder.

Human Ratings

In the second row of Figure 4.9, we show bar plots of the scores from the MR scientists and

the radiologist; we pooled the scores of the MR scientists. We see that MR scientists and

the radiologist generally agree for evaluating SNR, aliasing, and overall quality, rating CS-

L1Wavelet/SSDU as being better than or the same as CG-SENSE/DeepDecoder. We recall that

lower ratings correspond to better quality. MR scientists rated CS-L1Wavelet/SSDU with a

mean overall quality of (2.09/1.97) as compared to CG-SENSE/DeepDecoder with (2.96/3.57).

The radiologist rated CS-L1Wavelet/SSDU with a mean overall quality of (2.73/2.23) as com-

pared to CG-SENSE/DeepDecoder with (3.63/3.87). We note that for both sets of raters, the

difference between CS-L1Wavelet and SSDU in overall image quality was found to not be sta-

tistically significant. Furthermore, when we restrict our analysis to the average score change

between the subgroup of changes in field strength vs. the subgroup of PD Knee/T2 Knee
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scans, the overall image quality rating of CG-SENSE/CS-L1Wavelet/DeepDecoder/SSDU all

worsen in the knee scans for the MR scientists, with increases of 0.26,0.40,0.11, and 0.79

respectively. In contrast, for the radiologist, this shift results in changes of -0.33,0.33,-0.16, and

0.83 respectively, indicating that only CS-L1Wavelet and SSDU worsened.

4.5 Discussion

In contrast to the previous literature, this work critically examines the validation and general-

izability of self-supervised algorithms for undersampled MRI reconstruction through novel

experiments with a focus on prospective reconstructions, the clinically relevant scenario. To

this end, we analyze results from acquiring both fully-sampled and prospectively accelerated

data on two phantoms and prospectively accelerated, in-vivo data over a wide variety of

different sequences.

4.5.1 Validation using Prospectively Accelerated and Fully Sampled Data

Concerns about the differences between prospective and retrospective reconstructions were

also raised in [93], in the context of end-to-end, supervised methods for parallel MR image

reconstruction. In particular, they noted that retrospective undersampling neglects potential

differences in signal relaxation across echo trains, and verification should be performed before

clinical use. From our results using both fully sampled and prospectively accelerated data, it

is clear that for the 3D MPRAGE sequence, prospective vs. retrospective reconstructions can

differ meaningfully, with retrospective reconstructions having greater fidelity to the fully sam-

pled reconstruction; prospective reconstructions exhibit spatial distortions and local changes

in contrast, with respect to the ground truth. This is despite the methods being tuned/trained

on prospectively accelerated data; hence, this can be attributed to the differences in the

prospectively vs. retrospectively sampled k-space data, potentially due to the different gradi-

ent patterns used in the sequences. This difference is relevant both for self-supervised and

supervised machine learning methods; indeed, end-to-end, supervised methods which are

trained on retrospective data may yield even greater distortion than self-supervised methods

when prospective data is used for inference. However, the performance ranking of the differ-

ent methods was the same in both prospective and retrospective reconstructions. Therefore,

retrospective image quality cannot necessarily be taken as a reliable proxy for prospective

image quality; however, they can be used to show differences between methods.

The quantitative results in the phantom show how ranking by PSNR and SSIM can be mislead-

ing, as images that are perceptually/qualitatively more similar to the ground truth (SSDU,CS-

L1Wavelet) can have significantly worse or almost identical mean PSNR/SSIM scores than

images which are less qualitatively similar (CG-SENSE,DeepDecoder). In contrast, ranking

with the PercDis score, which measures distances between the feature activations within a

pretrained classification network of the images rather than the images themselves, better

matches with the perceptual quality of the images, showing that SSDU or SSDU/CS-L1Wavelet
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Figure 4.4: Axial slices from prospective reconstructions of MPRAGE scans of the brain at dif-
ferent field strengths. Images are not co-registered; The interpolation of image co-registration
introduces blurring and thus was omitted. We chose slices at similar locations for visualization.
CG-SENSE produces noisy but sharp reconstructions, and DeepDecoder produces smoother
reconstructions with spatially varying noise and oversmoothing. CS-L1Wavelet and SSDU
produce similarly smooth/sharp reconstructions.
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Figure 4.5: Closeups of the prospective reconstructions of MPRAGE scans of the brain at
different field strengths; we show closeups of the cerebellum in a sagittal view as well as the
left frontal lobe in an axial view. In the axial closeups, the spatially varying smoothness of
DeepDecoder is apparent (yellow arrows); furthermore, wavelet artifacts of CS-L1Wavelet can
be seen in, for example, the axial closeup at 1.5T (red arrow). In general, we can see that all
methods improve in sharpness (as can be seen from the closeups of the corpus callosum) with
increasing field strength.
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Figure 4.6: Prospective reconstructions from PD SPACE scans of the knee, where we show
a sagittal slice as well as closeups on the articular cartilage interface in sagittal (femur) and
axial (patella) views. Qualitatively, the main differences are between CS-L1Wavelet/SSDU and
CG-SENSE/DeepDecoder, where the former group removes noise better than the latter.



64 Validation of Self-Supervised, Undersampled MRI Reconstruction

Figure 4.7: Here we show axial brain slice reconstructions from three different perturbations of
the MPRAGE sequence: the addition of motion, using 20 coils instead 64 coils, and changing
the parameters of the MPRAGE sequence. The images are not registered due to interpolation
effects from co-registration.



4.5 Discussion 65

Figure 4.8: Here we show axial brain slices and a sagittal knee slice from the reconstructions
from the SPACE acquisitions. The images are not registered due to interpolation effects from
co-registration.
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Figure 4.9: Barplot of the no-reference image metrics averaged over all the subjects/different
sequences in the generalizability study (top row). The arrow next to each metric indicates
whether higher/lower scores are better. Barplots of the qualitative rating done by the MR
Physicists (pooled together) and the radiologist respectively (bottom row). Using the Wilcoxon
rank sum test with significance level 0.05

6 (Bonferroni correction), we found statistically sig-
nificant differences between all methods with respect to the no-reference image metrics.
With respect to the MR physicists the following differences were not statistically significant:
(DeepDecoder,CS-L1Wavelet,Sharpness),(DeepDecoder,SSDU,Sharpness), all of the alias-
ing comparisons, and (CS-L1Wavelet, SSDU, Overall Quality). All other comparisons were
found to be statistically significant. With respect to the radiologist, all sharpness and aliasing
comparisons were found to not be statistically significant. In the SNR comparisons, only (CG-
SENSE/DeepDecoder vs. SSDU) were found to be statistically significant. In the overall quality
comparisons, only (CG-SENSE vs DeepDecoder) and (CS-L1Wavelet vs. SSDU) were found to
not be statistically significant. Overall, the no reference image metrics and human rating agree
that CS-L1Wavelet/SSDU exhibit better overall image quality than DeepDecoder/CG-SENSE.
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are better, by a significant margin (relatively with respect to the same differences in PSNR/S-

SIM), than the other methods. The PercDis score or perceptual loss [86] was created precisely

because they found this metric better suited for measuring perceptual similarity than PSNR/S-

SIM. This apparent tradeoff between PSNR/SSIM and perceptual similarity is well-known

in the computer vision community, where it is called the perception-distortion tradeoff [94].

This concept has also recently been explored in MR; in [95], the authors train an in-painting

network on the Fastmri dataset, and use the features of intermediate layers for quantitative

evaluation, producing a perceptual distance tailored for MR images. In [96], the authors

propose a new reconstruction method which uses distances in feature space (trained from

ground truth MR reconstructions) to better recover textures/perceptual appearance than

using just pixel-wise metrics.

4.5.2 Generalizability

We note that as our generalizability study is conducted on prospective reconstructions, which

we showed can exhibit distortions relative to fully-sampled reconstructions, it cannot be con-

sidered as clinical validation; however, as all methods are affected the same way, this study still

can give a good idea of how well each method generalizes. While one might conjecture that

generalizability is less of a problem for self-supervised methods, if the parameters/hyperpa-

rameters of the methods are tuned for a specific sequence/anatomy as in our case, this could

potentially impact the robustness of the methods, as these parameters/hyperparameters are

obtained from training/tuning on 3D, brain MPRAGE scans acquired at 3T. This is despite the

data consistency inherently embedded in CS-L1Wavelet, DeepDecoder, and SSDU.

Generalizability and robustness of reconstruction methods have been studied in the context

of end-to-end, supervised methods for MR reconstruction in [97]–[99]. We briefly summarize

some relevant conclusions from these articles. [97] found that that different domain shifts

reduced performance more than others (e.g. changing SNR vs. image contrast), and that

transfer learning is a viable strategy for handling distribution shifts. [98] found that data

consistency is important for robustness, and that at acceleration factor 4, distribution shifts are

less of an issue. [99] found that supervised methods are vulnerable to adversarial perturbations,

i.e. perturbations constructed such that minimal changes in the input data result in significant

changes in the output. In [100], the authors examine the robustness of end-to-end methods,

compressed sensing, and variations of Deep Image Prior/DeepDecoder to distribution shifts,

adversarial perturbations, and recovery of small features. They found that for both supervised

and self-supervised methods, distribution shifts resulted in decreased PSNR/SSIM scores;

in addition, the decrease was roughly the same for each method, preserving the ranking of

the methods. Furthermore they found that all methods, including self-supervised methods,

were vulnerable to adversarial attacks. We note that these works are based on retrospective

reconstructions/retrospective sampling from fully-sampled datasets for their validation.

In line with [97], we found that different distribution shifts affected generalization differently;
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changing anatomy/contrast worsened the overall image quality rating in comparison to

changing the field strength for all methods according to the MR scientists; in contrast, the

radiologist found that only SSDU/CS-L1Wavelet worsened. However, as the mean scores in

the knee scans for CG-SENSE/DeepDecoder were already 4 (the worst score), the decrease

may not reflect any substantial difference in quality. As in [98], data consistency is crucial for

the robustness of self-supervised methods as network parameters are trained solely through

the modelling/the acquired undersampled data; in particular, we do not see any hallucination

that can occur with end-to-end networks without data consistency. Furthermore, we see that

as CG-SENSE produces a plausible image with acceleration factor 5, this can explain why

distribution shifts were not so troublesome, as the self-supervised methods mainly needed to

denoise, rather than recover anatomy/missing high frequency details.

In contrast to [100], our PSNR/SSIM results on the phantoms do not preserve the ranking

between methods, although the PercDis results do, approximately. However, the qualitative

metrics between distribution shifts over the different brain/knee scans seem to preserve

ranking according to the no-reference image metrics/human ratings; this is consistent with

PercDis being a better measure for perceptual image quality/similarity than PSNR/SSIM. In

addition, the distribution shift in [100] was between two, similar datasets of knee MRI, as

compared to our distribution shifts, where we change anatomy, contrast, etc.

For a clinical scenario, it was of interest to see if self-supervised methods could potentially

work, without retraining, on other sequences, as retraining after deployment could be im-

practical. Furthermore, while adversarial perturbations are valuable for studying the input

stability of reconstruction methods, they need to be manually constructed for each method

and added to the input data. As clinical MR reconstruction is a closed loop, this kind of manual

perturbation would require hacking the internal MR computer. Therefore, transfer learning

and adversarial perturbations were outside the scope of this work, although from [97], [98],

[100], we would expect an increase in image quality from transfer learning and vulnerability to

adversarial perturbations for the methods considered in this paper. For example, [82] found,

in a retrospective study, that DeepDecoder had different optimal (judged by PSNR/SSIM)

hyperparameters for brain vs. knee scans. However, SSDU and CS-L1Wavelet, tuned only on

3T MPRAGE brain data, are able to achieve an overall image quality of fair to good on a diverse

dataset.

4.5.3 Ranking Methods through Quantitative Metrics

From a perceptual viewpoint (PercDis score, no-reference image metrics, human rating),

SSDU and CS-L1Wavelet performed the best, with an edge to SSDU in the PercDis score/no-

reference image metrics. From a pixel-wise metric viewpoint (PSNR,SSIM), DeepDecoder

was better than or similar to all methods, as was also found in [100]. CG-SENSE consistently

performed the worst or similarly to all methods over all metrics. With respect to validation,

both approaches have their advantages and disadvantage; while pixel-wise metrics are the
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natural way to compare against a ground-truth, they may not correlate well with the perception

of a radiologist. While perceptual metrics may be intuitive, the absence of ground truth can

make it less objective. To our knowledge, current state of the art MR image reconstructions are

generally not evaluated with perceptual metrics such as PercDis or [95], which require ground

truth, or the no-reference image quality metrics. However, given the close correspondence of

the image quality metrics/PercDis to the human ratings/perceptual evaluation, as well as other

evidence from the literature [87], [88], perceptual metrics could be used as a complement to

pixel-wise metrics/human ratings.

4.5.4 Future of Validation

To assist validating future methods, we will make available all the raw data acquired/used in

this paper at Zenodo. However, whatever metrics or datasets are used for validating methods,

the ultimate test for reconstruction methods is the usefulness to radiologists for reliably

diagnosing pathology in comparison to currently used methods [101], [102]. This can imply

many things, including fine grained analysis of small textures/details/pathologies as well as

tissue specific analysis, requiring novel datasets with extensive annotations by radiologists.

[103], [104] are two recent works in this direction, providing datasets with bounding box

annotations/pathology annotations to further validate reconstructions. Furthermore, in

this chapter we only considered self-supervised methods, as we focused on prospectively

undersampled data with little to no fully-sampled counterpart. While previous studies have

used retrospectively undersampled data to compare both fully supervised and self-supervised

methods, finding them competitive under certain conditions, for the future, ideally validation

would include both self-supervised and supervised methods on prospectively undersampled

data.

4.6 Conclusion

Rigorous validation is required to introduce new reconstruction algorithms into clinical rou-

tines. In this study, validation of prospective reconstructions, generalizability, and different

image quality metrics were investigated. The results show that self-supervised image re-

construction methods have potential, but that further development is required to not only

improve image quality but also to define a reliable, standardized way of validating new meth-

ods. Reliable validation can facilitate quicker translation to the clinical routine, with the

ultimate goal of improving patient care.
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5 Neural Network Enhanced MCMC

The content of the following chapter is based on the postprint version of the article: “Robust

biophysical parameter estimation with a neural network enhanced hamiltonian markov chain

monte carlo sampler” published in the Proceedings of the International Conference on Informa-

tion Processing in Medical Imaging [105]. DOI: 10.1007/978-3-030-20351-1_64.

5.1 Introduction

In Chapter 4, we examined methods where self-supervised machine learning methods were

embedded in the variational framework introduced in Chapter 2; in this chapter, we propose

a method for how self-supervised machine learning can be embedded into a probabilistic

framework for solving inverse problems.

5.1.1 Probabilistic Framework and MCMC for Inverse Problems

Recall the setting for inverse problems introduced in Chapter 2: let x ∈Rn , y ∈R, and a function

M :Rn →Rm . Such that

M(x) = y+n (5.1)

Let n ∼ N (0,σ) i.e. Gaussian noise with standard deviation σ. Then we can construct a

probabilistic framework where we view the problem as recovering the posterior probability

distribution of x given the measurements y [106].

Using Bayes’ theorem, the posterior probability distribution of x given the measurements y is

proportional to the product of the likelihood function and the prior on x:

p(x|y) ∝ p(y|x)p(x), (5.2)
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where,

p(y|x) = N (M(x),σ2) (5.3)

=
1√

(2π)mσ2m
exp(−∥y−M(x)∥2

2

2σ2 ), (5.4)

where we assume that the elements of y are statistically independent. The prior distribution

p(x) can encode constraints such as sum constraints or upper/lower bounds through, for

example, Dirichlet and uniform distributions [107]. The proportionality constant is a normal-

izing factor. An immediate candidate to recover x is the maximum a posteriori (MAP) point

estimate

xM AP = argmax
x′

p(x′|y) (5.5)

In fact, the MAP estimate links the probabilistic framework outlined here and the variational

framework in Chapter 2. We can see this by first noting that maximizing the posterior proba-

bility is equivalent to maximizing the logarithm of the posterior probability. Furthermore, all

factors independent of x, such as the the normalizing factor, can be omitted after taking the

logarithm. Then

xM AP = argmax
x′

log(p(x′|y)) (5.6)

= argmax
x′

−∥y−M(x′)∥2
2

2σ2 + log(p(x′)) = argmin
x′

∥y−M(x′)∥2
2 −λ log(p(x′)) (5.7)

At this point, one can identify − log(p(x′)) as exactly the regularization function from the

variational framework, since their purpose is the same; minimizing the former encourages

solutions x which are more probable according to the assumptions of prior knowledge on x,

which is exactly the point of the regularization function. Hence, we have

xM AP = argmin
x′

∥y−M(x′)∥2
2 +λR(x′) (5.8)

Therefore, the MAP estimate (in the case of Gaussian noise) reduces to the variational solution.

However, there are two potential problems with this point estimate. First, the general problems

of uniqueness and feasibility of optimization, i.e. finding the MAP estimate. Second, the

underlying assumption of this point estimate is that the mode is a good representation of the

underlying probability distribution. Intuitively, we can see the truth of this assumption for

many commonly used distributions in three or less dimensions e.g. normal or exponential.

However, this assumption can fail as the dimensionality and complexity of the distribution

increases. That is, define (loosely) the typical set to be the set of points in parameter space

containing most of the probability mass. Due to the geometry of high dimensional spaces [108]

and the concentration of measure phenomenon [108], [109], the typical set in high dimensions

tends to lie in narrow bands of parameter space further and further away from the mode of
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the distribution. Hence, a mode point estimate can lead to spurious results. One approach to

handle these issues is to first characterize the posterior distribution with Markov Chain Monte

Carlo (MCMC) techniques [110] by sampling from the posterior distribution. One can then,

as an example, use the mode, mean, median, etc. of the marginal posterior distributions of

the elements of x for the parameter estimate. In this chapter, we use the expectation of each

parameter over its marginal posterior, approximated by

x∗ ≈ 1

N

N∑
i

xi, (5.9)

where the subscript i denotes one of the N samples.

Two examples of highly nonlinear inverse problems, whose difficulties are well known, are

multi-compartment T2 relaxometry and multi-compartment diffusometry; in this chapter, we

test our proposed method on an inverse problem which combines the two.

5.1.2 Multi-Compartment T2 Relaxometry/Diffusometry

In contrast (no pun intended), to contrast images as introduced in Chapter 3, MRI can be

used to produce images which are quantitatively meaningful; the magnitude of each image

voxel can correspond to measuring something quantitatively. An example of a quantitative

measurement is the spin-spin relaxation time T2, which is the physical decay time of the

transverse magnetization; a quantitative T2 map would be an image where the magnitude of

each voxel is the average T2 of the underlying spins in that voxel.

For example, recall the exponential solution for the transverse magnetization from the Bloch

Equation:

M⊥(t ) = M⊥(0)exp(
t

T2
) (5.10)

If we were able to acquire a sequence of measurements (Mper p (T n
E ), we could obtain the T2

using a log-linear regression for example. We use the variable TE to denote the sampled times

as most methods for acquiring such measurements use so-called spin or gradient echo se-

quences, with the acquired sample times being called echo times (TE ) This can approximately,

for example, be done by acquiring a sequence of N contrast images, xi such that

xi ≈ M⊥(x, y, t = 0)exp(
T i

E

T2(x, y)
) (5.11)

where T i
E denotes when in the time evolution of the spins when the signal was acquired. For

example see Figure 5.1, where we show a sequence of scans with varying TEs.

Given a voxel indexed by (i , j ), let yT2
i , j = (x1

i , j ,x2
i , j , . . . ,xN

i , j ). Then for each voxel, we have the
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Figure 5.1: Here we show a sequence of T2 weighted axial MR images of the brain, where the
TE increases from left to right. Note that larger TE implies greater signal decay, which is clear
in the images.

inverse problem (M ,yT2
i , j , (A,T i , j

2 )) where

M(A,T i , j
2 ) = (A exp(

T 1
E

T i , j
2

), A exp(
T 2

E

T i , j
2

), . . . , A exp(
T N

E

T i , j
2

)) (5.12)

where A is an overall constant which includes the net magnetization, and T i , j
2 denotes the

T2 at the voxel indexed by (i , j ). This problem can be made into a linear inverse problem by

taking the logarithm of the measurements/the model.

Hence, in practice, one acquires N different acquisitions of the same subject (corresponding

to the different T n
E ), then reconstructs N corresponding images using the MR image model

or modifications thereof. Then for each voxel there are N image intensities which can be fit

to a model to find the T2 in the voxel. Therefore, while contrast images are reconstructed

as a whole from the k-space, quantitative maps can be reconstructed independently and

voxel-wise using a sequence of contrast images.

Compartment Models

As previously stated, the T2 can be found voxel-wise. However, voxels can contain multiple

different spin populations, each with a different T2 due to, for example, different local environ-

ments. Hence, if one calculates the T2 through a log-linear regression, the resulting T2 of the

voxel will be some average of the underlying T2s in the voxel.

As an example, suppose that there are k different spin populations with different spin-spin

relaxation times in a voxel. Further assume that these spin populations do not interact/mix/ex-

change spins with each other. We refer to each spin population as a compartment as with

these assumptions, the transverse magnetization of the voxel can be written as a simple linear
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combination over the compartments:

M⊥(t ) = Mper p (0)
k∑

i =1
wi exp(

t

T i
2

) (5.13)∑
i

wi = 1 (5.14)

where wi ,T i
2 are the fraction of spins and the T2 associated to the i th compartment. The

associated inverse problem of recovering A, wi ,T i
2 (constructed similarly as in the single spin

case) is significantly more ill-posed and complex than in the single population cases as now

the problem can no longer be converted to a linear form, as the model is a sum of exponentials.

Diffusometry

In Chapter 3, we also introduced the Bloch-Torrey equation, which takes into account the

diffusion of spins; analogously to the T2, one can estimate the diffusion properties of a voxel

from a sequence of contrast images, and the different spin populations can have different dif-

fusive properties due to differences in the local environment. While we will use the analogous

inverse problem to recover the diffusion properties of different compartments, we omit the

derivation.

Multi Echo Spherical Mean Technique Model (MESMT)

MRI Diffusometry and T2 relaxometry can be combined into a multi-modal analysis which

jointly estimates diffusivities, T2’s, and water volume fractions of different compartments. The

extended spherical mean technique (SMT) framework introduced by [111] is one example of

this, generalizing the diffusion MRI model SMT [112] by including the effects of changing the

echo time TE in the acquisition on the MRI signal and using the additional information to

simultaneously estimate the T2’s and diffusivities of the compartments; in particular we focus

on an application targeting brain white matter, where we define three compartments/popula-

tions of spins: intra-axonal, extra-axonal, and cerebrospinal fluid (CSF). The acquired signal

in a voxel is a function of the diffusion weighting b (analogous to TE in T2 acquisitions) and

TE . For given b,TE , the model for the signal is

M (TE ,b,x) =v I exp(
−TE

T I
2

)

p
πerf(

√
bλ∥)

2
√

bλ∥
(5.15)

+ vE exp(
−TE

T E
2

)exp(−bλ⊥)

p
πerf(

√
b(λ∥−λ⊥))

2
√

b(λ∥−λ⊥)
(5.16)

+ vC SF exp(
−TE

T cs f
2

)exp(−bDcs f ), (5.17)
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where v I , vE , vC SF are the volume fractions of the intra-axonal, extra-axonal, and cerebrospinal

fluid (CSF) compartments respectively, T I
2 ,T E

2 ,T cs f
2 are the respective T2s, and λ∥,λ⊥ are

the parallel and perpendicular diffusivities. We note that the model function M is then

concatenation of M over the different TE ,b considered. The likelihood of this model is

constructed as in the introduction. In the fitting, we fix the values of T cs f
2 = 2s and Dcs f =

0.003 mm2

s at those of free water [112], [113], but we allow vC SF to be free. Therefore x in this

inverse problem is made up of the free volume fractions, T2s and diffusivities.

5.1.3 Contributions

The main contributions of this chapter are, first, to extend a Hamiltonian MCMC sampler

parametrized with neural networks proposed in [114]. This sampler, called L2HMC, proposes

to use a neural network modification to Hamiltonian dynamics to propose new samples; in

particular, the network is trained, in a self-supervised way, to maximize the expected distance

between sucessive samples. This approach is an example of how a model-driven method

(Hamiltonian MCMC sampling) can be augmented with a data-driven method (neural network

parametrization), without requiring ground truth. We modify the loss function in [114] to

balance acceptance probability and mixing such that both fast mixing and stable exploration

of problematic regions of state space are possible; in particular, we enforce a weak conformity

to standard Hamiltonian dynamics, which does not exist in [114], through an acceptance

probability term in the loss function, which we show leads to more stable sampling and faster

mixing than [114]; evidence of the latter is shown on a toy example. In this way, our MCMC

sampler shows how incorporating more model-driven information (Hamiltonian dynamics)

can help with learning to sample. We note that as in Chapter 4, our proposed approach is not

specific to any model/inverse problem.

As our intent was to create methods for MR imaging, our second main contribution is to

apply our extended sampler to solve the relatively complex and ill-posed inverse problem

described in the previous section defined by the MESMT model, for which there is no ground

truth available. We provide a proof of concept using synthetic data generated from realistic

prior knowledge, comparing to a least squares fitting and application of two state of the art

Hamiltonian samplers (L2HMC and NUTS).

5.2 Related Work

5.2.1 Hamiltonian Markov Chain Monte Carlo

In the following, we denote the posterior distribution from which we want to sample as p(x)

with x ∈Rn being the state variables. MCMC methods sample from the posterior by generating

a sequence of samples where each new sample xt is generated from the previous sample xt−1

according to a transition distribution T (xt |xt−1) [115]. In order for the posterior to be the

unique distribution to which this sequence converges, the transition distribution must satisfy
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ergodicity, which can usually be safely assumed, and an invariance property which is usually

shown by proving a property called detailed balance p(xt )T (xt−1|xt ) = p(xt−1)T (xt |xt−1).

One well known way to construct a transition satisfying detailed balance called the Metropolis-

Hastings algorithm [110] is as follows: given a proposal distribution q(x′|xt−1), sample a

candidate x′; then, accept x′ with probability A(x′|xt−1) = mi n(1, p(x′)q(xt−1|x′)
p(xt−1)q(x′|xt−1) ). If accepted,

xt = x′. If rejected, xt = xt−1. However, even if a sampler satisfies these properties, the con-

vergence is only proven asymptotically [115]. The typical procedure is to first have a burn-in

stage where the sampler is run for some amount of steps in order for it to converge. Then, the

actual sampling begins, with the burn-in samples being discarded [115].

For efficient exploration, the samples should ideally be uncorrelated, which can be accom-

plished by large distances between samples in the sample space, i.e. mixing. Autocorrelation

analysis using multiple chains of samples can be used as a rough measure of how many

samples are necessary. We emphasize that a balance must be found between the acceptance

probability and the mixing; acceptance probabilities which are very high can mean the sam-

ples are very close/correlated and large distances between samples can lead to only a small

number of samples being accepted. One powerful MCMC method which scales with the

dimensionality and complexity of the posterior is Hamiltonian MCMC (HMCMC) [116]. In

HMCMC, one generates proposal samples by integrating along trajectories of a Hamiltonian

dynamical system constructed from combining the posterior distribution of interest with a

momentum distribution. This is then followed by the Metropolis acceptance step to yield a

new sample. Formally a joint distribution is constructed with state variables (x,p):

p H (x,p) ∝ exp(−U (x)−K (p)), (5.18)

p(x) ∝ exp(−U (x)), (5.19)

K (p) =
1

2
pT p, (5.20)

where we omit a normalizing constant and p are the momentum variables which are added.

This form is motivated from statistical physics by the canonical distribution of energy states

of a system, where U and K denote the potential and kinetic energy respectively, and the

Hamiltonian (total energy) is H = U +K [116]. HMCMC samples from p H (x,p), and we can

obtain the marginal distribution of x from the samples. H defines a dynamical system, which

is a set of differential equations used to evolve x,p forward in time from an initial sample.

In practice, these equations are integrated numerically, characterized by a step size ϵ and a

number of steps L such that Lϵ is the time period over which a sample trajectory is evolved.

The most common numerical scheme is the leapfrog scheme, which we write below for one

time step with initial condition (x,p) and result (x′,p′).

p
1
2 = p− ϵ

2
∂xU (x), x′ = x+ϵp

1
2 , p′ = p− ϵ

2
∂xU (x′). (5.21)

Given an initial x0, an initial momentum p0 is sampled from a distribution, usually a standard

77



Chapter 5 Neural Network Enhanced MCMC

Gaussian [115]. The proposed sample from running the dynamics, (x′,p′), is then accepted

in a Metropolis-Hastings step with probability α = mi n(1,
exp(−U (x)− 1

2 pT p)

exp(−U (x0)− 1
2 p0

T p0)
). Ideally, this

procedure is then repeated until the convergence of the samples to the distribution, with the

output of each proposal becoming the new initial sample. The main advantage of HMCMC is

that it generally proposes samples which are far away from the initial sample, thus efficiently

exploring the posterior, while maintaining reasonable acceptance probabilities [115]. A state

of the art HMCMC sampler called the No U Turn Sampler (NUTS) [117] improves on standard

HMCMC by adaptively tuning L,ϵ to manage the distance between samples and acceptance

probability. HMCMC can perform poorly in certain circumstances, in particular, in highly

curved sample spaces such as those that might arise in the posteriors derived from parameter

estimation of complex models [118].

5.2.2 L2HMC

Levy et. al. [114] recently proposed a framework called L2HMC which parametrizes the

standard HMCMC sampler with a neural network and maximizes the expected distance

between samples through minimization of a loss function which rewards large expected

squared distances between samples. Furthermore, the parametrization is carefully tailored to

preserve detailed balance and have a tractable Jacobian for the correction of the acceptance

probability due to the potential non-volume preserving dynamics. The algorithm of L2HMC is

structurally similar to standard HMCMC, but modifications are made to the proposal stage.

First, for each step t , 1 ≤ t ≤ L, a random binary mask mt ∈ {0,1}n is constructed such that

approximately half of the entries of the mask are 1. The conjugate mask is denoted as mc
t .

Instead of updating x in one step according to the classical algorithm, the update is split into

two steps each updating only the variables of x corresponding to mt ,mc
t separately. These

are denoted as xmt = x⊙mt and xmc
t

= x⊙mc
t respectively, where ⊙ is the component-wise

multiplication operator. Each update equation is modified with scaling factors for each term

depending on only variables which are not being updated. Concretely, let ζ1 = (x,∂xU (x′), t ).

Then p is first updated according to

p
1
2 = p⊙exp(

ϵ

2
Sp (ζ1))− ϵ

2
∂xU (x)⊙exp(ϵQp (ζ1))+Tp (ζ1), (5.22)

where Sp ,Qp ,Tp :R2n+1 →Rn are scaling functions parameterized by a neural network. Let

ζ2 = (xmc
t
,p, t ) and ζ3 = (x

1
2
mt

,p, t ). Then x is updated according to

x
1
2 = xmc

t
+mt ⊙

[
x⊙exp(ϵSx (ζ2))+ϵ(p

1
2 ⊙exp(ϵQx (ζ2))+Tx (ζ2))

]
, (5.23)

x′ = xmt +mc
t ⊙

[
x⊙exp(ϵSx (ζ3))+ϵ(p

1
2 ⊙exp(ϵQx (ζ3))+Tx (ζ3))

]
, (5.24)
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where Sx ,Qx ,Tx : R2n+1 → Rn are also scaling functions parameterized by a neural network.

Finally, let ζ4 = (x′,∂xU (x′), t ):

p′ = p
1
2 ⊙exp(

ϵ

2
Sp (ζ4))− ϵ

2
∂xU (x′)⊙exp(ϵQp (ζ4))+Tp (ζ4). (5.25)

These learned scaling functions, structured as a two layer neural network, can allow the

sampler to learn, for example, how to carefully navigate regions of high curvature in the

parameter space rather than having to manipulate ϵ and L to accomplish this. As in NUTS

[117], the time reversed version of the above dynamics can also be used to propose samples,

and L2HMC takes a random combination of the forward and backward dynamics proposal

as the final proposal [114]. Let θ be the vector of parameters of the above functions. After

each complete cycle of proposal and acceptance, the loss function is optimized using Adam

[81]. Concretely, let ξ = (x, p) be the initial sample, and ξ′ = (x ′, p ′) be the sample after the

acceptance step. Let δ(ξ,ξ′) = ∥x −x ′∥2
2 and A(ξ′,ξ) denote the acceptance probability. Then

the loss function L (θ) used is

L (θ) = Ep(ξ)

[
−δ(ξ,ξ′)A(ξ′,ξ)

λ2 + λ2

δ(ξ,ξ′)A(ξ′,ξ)

]
, (5.26)

where the expectation is taken over the batch of samples over which the training is taking

place. λ is the typical length scale of the distribution, which Levy et. al. set in the case

of a multivariate normal distribution, as the smallest standard deviation in the covariance

matrix. For simplicity, in eq. 13, we omit an additional term with identical form as above

[114] designed to enhance burn-in by using an arbitary proposal distribution. Fig 5.2 shows a

flowchart of the algorithm of sampling with the neural network parametrization.

5.3 Methods

5.3.1 Neural Network Enhanced Hamiltonian MC (NNEHMC)

The first contribution of this chapter is to extend L2HMC by augmenting the loss function to

balance acceptance probability and the distance between samples. Let AH MC (ξ′,ξ) denote

the acceptance probability used in standard HMCMC. We introduce the loss function

L N N E H MC (θ) = Ep(ξ)
[−δ(ξ,ξ′)A(ξ′,ξ)−βAH MC (ξ′,ξ)

]
. (5.27)

We removed the reciprocal distance term as it did not meaningfully change the dynamics

of the sampling in the distributions we considered. Further, we do not integrate the time

reversed dynamics in our sampling. We argue that this form of loss function more faithfully

and naturally enhances the desirable properties of Hamiltonian dynamics. In theory, Hamilto-

nian dynamics preserve energy along trajectories; hence, since the probability of a sample

is proportional to exp(−H), the acceptance probability is always 1 [115]. However, the intro-

duction of numerical integration causes violation of this property; nonetheless HMCMC still,
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Figure 5.2: Flowchart of the training algorithm for neural network parametrization of HM-
CMC. The components of the algorithm are very similar to standard HMCMC; however, the
differences lie in the altered dynamics/proposal stage and the update of the neural network
parameters after each step. When sampling, the network parameters are fixed at the last
training values.

generally, provides high acceptance rates, with additional tuning possible through changing

ϵ or L. One can view this tuning as reducing the error of the leapfrog scheme such that the

numerical integration gets closer and closer to the theoretical Hamiltonian dynamics with

its property of preserving energy. However, the dynamics of L2HMC is no longer a numerical

approximation of Hamiltonian dynamics due to the scaling terms. Hence, while it is valid

as an MCMC sampler, there is no theoretical basis for the sampler to produce samples with

high acceptance probabilities, which are largely independent of the squared distance as in

standard HMCMC.

As a way of both inducing the sampler to remain close to Hamiltonian dynamics and balancing

the acceptance probability and mixing, we add the negative standard HMCMC acceptance

probability in the loss function, with the parameter β enforcing the tradeoff between it and the

negative expected squared distance. We argue that this loss function can lead to two desirable

properties. First, it could lead to faster mixing and faster convergence than in L2HMC since,

from the beginning, it can balance learning the standard, approximately energy preserving

Hamiltonian dynamics with opportunities to move great distances. One can interpret the

additional term as enforcing approximate conformity, in some sense, to Hamiltonian dy-

namics, mediated by β. Second, crucial for parameter estimation, we argue that this term

helps to keep the sampler stable when exploring high curvature regions. In these regions,

the acceptance probability can drop to zero easily due to large distance steps and numerical

issues can develop [118]. The acceptance probability of the neural network parametrized

sampler differs from the classical acceptance by the Jacobian of the new, scaled dynamics,

which is identically 1 in the standard case. Hence, if the standard acceptance probability is

the dominant term, it can still enforce high acceptance probabilities for the sampler. We thus

treat the neural network as an enhancement that allows the sampler to learn "approximate"
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Hamiltonian dynamics which can balance and enhance the desirable properties of HMCMC

while learning to minimize its weaknesses. We henceforth refer to our sampler as Neural

Network Enhanced Hamiltonian MC (NNEHMC).

In the results, we compare the performance of NNEHMC and L2HMC on a toy distribution

also tested in [114]. The distribution is a strongly correlated 2-D Normal distribution with

mean zero, and a covariance matrix obtained from di ag (100,0.1) rotated by 45 degrees. For

both samplers, we use the same ϵ = 0.1,L = 10, initialize with the same 200 samples, train in

batches of 200 samples for 5000 steps, then fix the neural network parameters and sample 200

chains for 2000 steps using the trained sampler[114]. We tune β in NNEHMC by looking at the

autocorrelation analysis and the acceptance probabilities. We set λ = 0.1 as is done in [114].

We compare the two samplers by the autocorrelation of the samples as well as the effective

sample size derived from the autocorrelation, which can be seen as a measure of how many of

the samples are "useful" for inference [115].

5.3.2 Biophysical Parameter Estimation

The second contribution of this chapter to apply NNEHMC to biophysical parameter estima-

tion in a recently proposed MRI model, the Multi Echo Spherical Mean Technique (MESMT)

[111], which was described in the introduction.

Multi Echo Spherical Mean Technique (MESMT): Experimental Setup

We simulate three datasets from the MESMT model using three different T ′
E s = 50,75,100ms,

with three b = 300,2150,4000s/mm2 values per dataset, and fit them simultaneously. The

ground truth parameters are as follows: v I = 0.5, vE = 0.3, vC SF = 0.2,λ∥ = 0.0015 mm2

s ,λ⊥ =

0.0002 mm2

s ,T I
2 = 140ms,T E

2 = 70ms. Since the volume fractions must sum to one, we use a 3D,

symmetric Dirichlet prior for the volumes: (v I , vE , vC SF ) ∼ Dir(1.0,1.0,1.0). We can bound the

T2’s and diffusivities based on prior physical knowledge [112], [113], using uniform priors as

follows:

T I
2 ∼U (5ms,200ms), T E

2 ∼U (5ms,100ms), λ∥ ∼U (0.0005 mm2

s ,0.003 mm2

s ),

λ⊥ ∼U (0.0001 mm2

s ,0.0005 mm2

s ). We generated one hundred signals from the ground truth

parameters by adding one hundred realizations of Gaussian noise with a standard deviation

of σ = 1
120 . We simulated many instances of a typical diffusion acquisition using Dmipy [119]

with a mean SNR of 20 on the b0 data, then performed spherical averaging on each instance.

The standard deviation of the resulting signals over the instances was estimated to be around
1

120 , which motivates our setting of σ. We then estimated the parameters over each signal

using NUTS, L2HMC, and NNEHMC within the Bayesian framework described above. We also

show a fitting using constrained least squares (LSQ). We imposed the same constraints in both

the probabilistic and deterministic fittings. We initialize NUTS with a variational inference

estimate [120], and use 1000 samples for burn-in and 1000 samples for inference. We initialize

L2HMC and NNEHMC with the first 50 samples of the NUTS burn-in, train on batches of 50
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Figure 5.3: Plot of the average autocorrelation of 200 chains of length 2000 for L2HMC and
NNEHMC with the corresponding effective sample size. The autocorrelation and effective
sample size are calculated as in [114]. We see that NNEHMC mixes faster in sampling steps
and has a larger effective sample size.

samples for 1000 steps, then fix the parameters of the network and use the trained sampler to

generate 1000 samples for inference. We set λ =σ, since it is roughly the length scale of the

distribution. In the results, we report the relative absolute error as follows: letting g denote

the ground truth parameter and e as the estimate, the relative absolute error is computed as

|g −e|/g . We note that we scale b by 10e−2 and the diffusivities by 10e2 in the sampling and

results.

5.4 Results and Discussion

5.4.1 Strongly Correlated Gaussian

In Fig 5.3, we show the average autocorrelation of the samples over 50 chains from sampling

the strongly correlated Gaussian as a function of steps in the chain as well as a table with

the effective sample sizes derived from the autocorrelation. We note that NNEHMC mixes

faster and has an effective sample size almost eight times larger than that of L2HMC. Further,

on the same computer, NNEHMC requires 179s of computation time while L2HMC requires

1561s. This is mostly because NNEHMC does not use the time reversed dynamics. In cases

with tractable distributions and derivatives one can also speed up the sampling by using GPU

computation [121].
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Figure 5.4: Box plots of relative absolute errors from ground truth using least squares (blue),
NUTS (orange), L2HMC (green), and NNEHMC (red). We note that in general, NNEHMC has
the lowest mean error and variance. Further, NUTS has significant issues in the estimation of
λ∥ and the volume fractions, which is not observed in NNEHMC or L2HMC.

5.4.2 Multi Echo Spherical Mean Technique (MESMT)

In Fig. 5.4, 5.5, we show the relative absolute error and an example of the marginal posterior

probability distributions produced by the MCMC samplers.

We can see that, in general, the MCMC samplers are more accurate and precise than the least

squares fitting. However, we see that NNEHMC and L2HMC significantly outperform NUTS in

estimating volume fractions and λ∥, even though they all start from the same initialization.

Inspection of the probability distributions reveals that NUTS gives distributions biased away

from the ground truth for these parameters. Furthermore, we note that NNEHMC generally

outperforms L2HMC regarding the accuracy and variance of the estimates. Unlike in the

toy example, where we knew the precise mean and variance of the distribution, we can only

compute an approximate autocorrelation analysis in this case. We obtained an effective

sample size of 1.5e−3 for NNEHMC and 1.9e−3 for L2HMC. However, the mean computation

times for a single signal are 280s for NNEHMC and 443s for L2HMC.

Furthermore we emphasize that using L2HMC on this model is numerically unstable. By

changing the random seed in our implementation, 18 out of the 100 trials with L2HMC either

decline to and remain at zero acceptance probability for all chains by the end of training or
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Figure 5.5: Representative plots of the marginal probability distributions for each parameter,
where the black vertical line denotes the ground truth value. We can see that NNEHMC
provides informative posterior distributions from which inference seems justified, while
NUTS provides quasi-uniform distributions and distributions biased towards the parameter
bounds.

encounter numerical errors (NaN, infinities). This can happen, for instance, if the proposal

samples move too far away. NNEHMC was robust to such changes. We do not consider these

results in the analysis since they are invalid for parameter estimation and would artificially bias

the results for L2HMC negatively. In order for NUTS not to develop similar numerical issues,

we had to set a desired acceptance probability of 99%. It is probable that the poor results of

NUTS stem, in part, from inefficient sampling due to a highly curved parameter space which

the adaptive tuning could not overcome. Thus, we can see that the parametrization with

a neural network can enable efficient sampling of problematic regions in parameter space;

however, regularization with an acceptance probability term is needed for stability.

5.5 Discussion and Conclusion

The motivation to use MCMC for inverse problems stems from the desire to explicitly consider

the probablistic nature of inverse problems. The motivation to use machine learning in MCMC

was to learn from the data, in a self-supervised way, the best way to propose new samples;

this is made possible since one criterion for judging the samples is the autocorrelation of the

samples, which can be optimized easily using a tractable loss function. As shown, MCMC

and self-supervised machine learning can be combined in a natural way, as NNEHMC and

L2HMC are natural extensions of HMCMC samplers; in NUTS, for example, the innovation

was largely the automatic way in which the parameters of the leapfrog algorithm for running

the Hamiltonian dynamics are tuned during the burn-in period. This is analogous to the
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self-supervised way in which the proposal networks are trained; in both cases, parameters

which determine the proposed samples are tuned/optimized. That the training period is

clearly analogous to the burn-in period further illustrates how seamlessly self-supervised

methods can be introduced to MCMC, a traditional approach. Depending on the speed of

the MCMC sampler, the addition of the neural network component could come at little to no

addition in computational time since all methods use burn-in periods.

However, this seamless combination also inherits the main drawback of MCMC methods:

ths computation method. While our method is parallelizable since it fits the signal from

one voxel, the computation time of 280s per signal is prohibitive, considering that a single

brain image could require the solution for millions of voxels. However, this computation

time could potentially be reduced with tuning of the number of burn-in samples or infer-

ence samples. Furthermore, the current implementation of our methods and L2HMC were

written in Tensorflow 1.0; it is possible that the additional optimizations in subsequent ver-

sions/switching to Pytorch could provide a substantial speedup, particularly as our method

currently makes extensive use of while/for loops due to the iterative nature of running the

Hamiltonian dynamics.

While our proposed method of embedding a self supervised network with a weak constraint to

Hamiltonian dynamics into a MCMC scheme can be applied broadly to many inverse prob-

lems, we validated on a synthetic case of a joint diffusometry/relaxometry inverse problem,

where we simulated MR measurements in a white matter voxel of the brain. While our method

was dramatically better in terms of robustness and accuracy than competing methods, we

note that it still exhibited significant relative errors with respect to the ground truth. In some

sense, this was expected as the model was extremely nonlinear (sum of products of error

functions and exponential functions) and degenerate due to the multi-compartment nature

(i.e. multiple different mixtures of compartments could explain the same signal). Further-

more, we simulated a realistic SNR. However, in line with the theme of this thesis, subsequent

work [122] has shown that the solution of this inverse problem can be dramatically simplified

with realistic modelling of the constituent compartments in white matter, in combination

with using targeted values for the experimental parameters T E and b. Realistic modelling

shows that as b →∞, the signal contributions of two out of three of the compartments in our

model go to zero. Then, one can simply fit the T2 and diffusion coefficient of the remaining

compartment by varying T E and b, with the constraint that b is ”large enough”. One can then

plug in these values into the full problem, thereby reducing the complexity/degeneracy since

some previously estimated parameters are now fixed. For future work, it would be interesting

to combine this work with our method to solve the reduced problem.

Furthermore, our application only studied a specific joint diffusometry/relaxometry inverse

problem, i.e. the marriage of a spherically averaged diffusion model and an exponential decay

model for the T2; using different measurement models/assumptions, there are many inverse

problems in this area [123]–[126], with correspondingly different solution methods.
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In this chapter, we have proposed and tested a parametrization of Hamiltonian MCMC with

a neural network (NNEHMC) which jointly optimizes sample acceptance probability and

distances between successive samples in order to efficiently and stably sample probability

distributions, particularly in regions of parameter space with high curvature; in particular,

our method is an extension of an existing work (L2HMC), where we applied a weak constraint

to Hamiltonian dynamics through an addition to the loss function. High curvature regions

frequently occur in the probabilistic estimation of parameters in bio-physical models since

the posterior distributions are parametrized, in part, by highly nonlinear models. We show on

a recently proposed MRI model that the neural network enhancement provides parameter

estimates which are more accurate and precise than those given by a least squares fitting

and the state of the art NUTS and L2HMC samplers; in addition NNEHMC provides more

numerically stable sampling than NUTS or L2HMC. Furthermore, we show that the neural

network parametrization provides qualitatively different and more informative posterior

distributions than those produced from NUTS; NNEHMC can produce posterior distributions

which are Gaussian-like centered near the correct parameter values. This highlights the

potential of augmenting MCMC methods with neural networks to improve probabilistic

solutions of inverse problems.
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6 Model Informed Machine Learning

The content of the following chapter is based on the postprint version of the article: “Model-

informed machine learning for multi-component T2 relaxometry” published in Medical Image

Analysis [127]. DOI: 10.1016/j.media.2020.101940.

6.1 Introduction

In this chapter, we transition from self-supervised methods to supervised methods for solving

inverse problems; in particular, in this chapter we show how the combination of realistic

models and priors allows for the generation of large synthetic datasets so that supervised

methods can be used in a problem where there is usually no ground truth data available.

As in Chapter 5, we consider an inverse problem related to T2 relaxometry; however, instead of

focusing on recovering a single T2 for each compartment, we consider a different viewpoint by

viewing the T2 in each voxel as a spectrum or distribution. Furthermore, we consider a more

realistic model for the signal that takes into account practical difficulties in data acquisition as

well as realistic priors for the structure of the solution.

In the previous discussions, we presented the T2 as single number per voxel or per compart-

ment; however, tissue heterogeneity and partial volume effects in a voxel can render it more

appropriate to consider distributions of T2s per voxel rather than a single T2 values [128], as

the mixture of spins can be more continuous than discrete. We distinguish single-component

T2 relaxometry, where each voxel is characterized with a single T2 or the T2s of a small number

of compartments, from multicomponent T2 relaxometry, where each voxel is characterized

with a T2 distribution. In general, T2 distributions are reconstructed from multi-echo T2 MRI

signals, which can be acquired, for example, through multi-echo spin echo sequences, where

a 90° excitation pulse is followed by a train of 180° refocusing pulses. Given a sequence of

n pulses, the signal s is a vector of n measurements at the corresponding echo times (T Ei ).
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Let p(T2) and α denote the distribution of T2s in a voxel and the effective flip angle of the

refocusing pulses, respectively. If α = 180° and the voxel is assumed to have a single T2, then

the decay of the signal is exponential, as is implied by the Bloch equations [129]. In practice,

inhomogeneities in the transmit field (B1+) result in an effective refocusing pulse that can vary

significantly from 180° and can be spatially heterogeneous [130]. This leads the resulting signal

to deviate from the ideal exponential behavior, which can be modelled using the extended

phase graph (EPG) formalism [131]. The EPG formalism considers as parameters α,T E , T1

and a single T2. The code used for the EPG simulations in this chapter is based on work in

[132]. We use the common simplification of fixing T1 = 1000ms, as the T1 relaxation time

cannot be estimated using the acquisition sequences we examine in this chapter [133]; hence,

it is commonly fixed to its mean value in brain tissue. Then the normalized signal follows

s(T Ei ) =
∫

EPG(T Ei ,T1,T2,α)p(T2)dT2. (6.1)

Identifying y as series of signal measurements at different TE and x = p(T2), we can see that this

model defines an inverse problem where M(x) is the expectation of the EPG signal, weighted

by x.

One key application of multi-component T2 relaxometry is in neuroimaging, where the differ-

ent parts of the T2 distribution are assumed to arise from the different anatomical compart-

ments in brain tissue, particularly in white matter, as is considered in Chapter 5. This can be

used, for instance, to generate a map of the myelin water fraction (MWF) [134] such that areas

of demyelination corresponding to the effects of neurodegenerative disorders can be identi-

fied [135]. In particular, it is commonly assumed/modelled that the T2 distribution in white

matter contains multiple lobes having well-separated peaks, and that the eventual overlap

between the T2 lobes of myelin and the intra/extra axonal space water pools is minimal [128],

[136]–[139]. However, we note that there is generally no in-vivo ground truth data, making

supervised methods infeasible.

6.1.1 Related Work

In order to estimate p(T2) from Equation 6.1 two main approaches are generally used: para-

metric and non-parametric approaches. Parametric approaches rely on a priori information

on the T2 distribution in brain tissue, particularly white matter, in order to fit the parameters

of biophysical models to the MRI signal [140]–[145]. In these approaches, the MRI signal is

modelled as a linear combination of signals from a fixed number of water pools (around 2-3)

such as myelin water, the water in the intra-/extra-axonal space, and cerebrospinal fluid:

p(T2) =
n∑

i =1
vi Fi (mi ,T2) (6.2)

Here n is the number of water pools assumed, and Fi ,mi, vi are the probability distribution,
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Figure 6.1: An overview of our method (MIML) for multicomponent T2 relaxometry where
we learn a mapping from the multi-echo MR signal to the corresponding T2 distribution.
On the left are example MR signals, on the right are the corresponding T2 distributions: the
first distribution is in white matter (WM), where there are assumed to be two lobes: one at
a T2 of around 10-40ms corresponding to myelin water and one at a T2 of around 50-120ms
corresponding to the intra and extra axonal spaces. The second distribution includes WM and
cerebrospinal fluid (CSF), whose T2 is commonly assumed to be around 1-2s. Our method
consists of training a neural network on a synthetic dataset derived from biophysical models
to learn the mapping from signal to distribution. At the bottom, we show a small subset of
1000 simulated signals and corresponding T2 distributions from our synthetic training dataset.
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parameters of the probability distribution, and volume fraction of the i th water pool. A wide

variety of parametric distributions (Delta, Gaussian, Truncated Gaussian, Wald, Gamma, Log-

Gaussian, Laplacian) are used to model the T2 distributions in these pools; however, [140]

shows that using these different distributions have negligible differences on the corresponding

signal when using the same means and variances; they conclude that due to the ill-posedness

of the inverse problem, extracting more than general lobular shapes (characterized by the

mean and variance) is extremely difficult if not impossible, even at extremely high signal to

noise ratios (SNR). We note that the compartment, single-component model used in Chapter

5 can be integrated in this framework by using a Dirac delta function as the distributions. The

parameters estimated are the water volume fractions and the parameters of the distributions

which are done through optimization [143], [145] or Monte Carlo methods [142], [146]. To sta-

bilize the fitting and to use prior information on the compartments, constraints are enforced

on the parameters. For instance, the mean T2 of myelin water is typically bounded between

10 and 40ms, and the mean T2 of CSF is typically assumed to be greater than 1s. Some works,

such as [143], go even further and fix the mean or standard deviations of the probability distri-

butions of some compartments to predetermined values. While parametric estimations are

generally stable and histologically validated, they are usually computationally expensive and

restricted by the biophysical model used; the number of compartments needs to be fixed for

each voxel before fitting. Further, we note that the a priori information used in the parametric

approaches i.e. the assumption of lobular structure, bounds on the parameters of the distribu-

tion, etc. comes from historical evidence, where studies used non-parametric methods to

estimate the T2 distributions and assigned lobes in their reconstructions to different water

pools [147].

In contrast, non-parametric approaches do not make a priori assumptions on the data, such

as the number of compartments. This is relevant for studying abnormal brain tissue, where

compartments not considered in standard biophysical models might be present [135]. In

addition, they generally require orders of magnitude less computation time than parametric

methods. Non-parametric methods discretize equation (1) as a product of a dictionary matrix

and a discretized T2 distribution and solve directly for the discretized T2 distribution [130],

[137] using non-negative least squares (NNLS) algorithms [148]. The T2 distribution, p(T2),

is recovered by solving an inverse problem [130], [137]. First, given discretized ranges of flip

angle (α) values and T2 values, a dictionary Dα of T2 decay signals is constructed for each α

value through the EPG formalism. Dα is a matrix where the columns are the simulated MRI

signals (obtained from the experimental TEs) over a range of T2 values. Given a flip angle α,

the corresponding dictionary Dα, and the MRI signal s, the following optimization problem is

solved

argmin
p≥0

∥Dαp−s∥2
2 +λΦ(p) (6.3)

where Φ is a regularization function with parameter λ, and p is the discretized, un-normalized

T2 distribution to be estimated. The flip angle corresponding to s is chosen by solving the
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Figure 6.2: Here we show reconstructions from two different SNRs (40,1000) using NNLS with
Laplacian regularization, with the corresponding ground truth for comparison. We can see
that at the lower SNR, the reconstructed distribution is severely oversmoothed.

above problem (with λ = 0) for multiple values of α and taking the value which corresponds to

the least fitting error [130]. Two standard choices for Φ(p) [149] are

• Φ(p) = ∥p∥2
2, which we refer to as Tikhonov regularization.

• Φ(p) = ∥Lp∥2
2, where L is a finite difference approximation of the Laplacian operator.

We refer to this as Laplacian regularization.

These choices are used in order to promote increased conditioning of the problem and the

smoothness of the resulting distribution [150]. Without regularization, solutions to Eq. (3)

are vulnerable to noise and usually produce inaccurate solutions that overfit the signal with

e.g. false positive peaks, etc. A common heuristic for selecting λ is to accept λ such that the

signal fitting error is approximately 1.02-1.025 times greater than the error from NNLS with no

regularization [151]. However, it is known that regularization can introduce undesirable bias

to the reconstructed signals, e.g. over-smoothing. In particular, regularization can contradict

the expectation of disparate lobes in the distribution corresponding to disparate tissues in the

same voxel (e.g. myelin and intra/extra axonal space water), particularly at lower SNRs. For

example, at low SNRs, the myelin water lobe can become completely over-smoothed, for an

example see Fig. 6.2.

Once the T2 distribution is recovered, generating parameters of interest such as volume

fractions of the water pools in the voxel require either a distribution where distinct lobes can be

assigned to distinct compartments (such as in the right side of Fig. 6.1) or a priori information.

After examining distributions reconstructed from experimental scans, the different lobes of

the distributions (if distinct lobes are present) are assigned to different water pools based on

theoretical and experimental grounds [135]. From the mean and standard deviation of these

lobes, bounds are derived for the T2 values for each water pool. Then water volume fractions

for each pool are calculated by integrating the probability distribution between the bounds of
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the T2 for each pool. For instance, at 3T the myelin water fraction (MWF) is usually computed

as

MW F =

∫ T2=40ms
T2=10ms p(T2)dT2∫ T2=2000ms

T2=10ms p(T2)dT2

, (6.4)

where the bounds 10-40ms were obtained from the myelin water lobe in NNLS reconstructions

in past papers [147].

We note previous studies found that both parametric and non-parametric methods require a

high signal-to-noise ratio (SNR) to detect different components in the T2 distribution [152]–

[154]. For a clinically achievable SNR=100, more than 5% of the voxels were incorrectly

estimated to have no myelin water component, and the percentage raised to 12% for SNR=50

[155]. Similar results were reported in [156], where the myelin water component was not found

in human brain regions located in myelinated areas of the frontal and lateral projections fibers.

In addition, [154] found that in synthetic studies, NNLS with Tikhonov Regularization tends

to underestimate the true MWF value in the range of 0.3 to 4 percent at SNR 1000, with the

problem worsening at lower SNRs; for reference, the MWF is assumed to be in the range of

0-30 percent in normal appearing white matter.

Recently, [157], [158] have both proposed to augment non-parametric approaches with ma-

chine learning in order to speed up the computation time. As training data, they acquired

brain scans in several subjects in vivo using a 3D multiple echo gradient and spin echo se-

quence with 32 echoes [159]. They then ran regularized NNLS reconstructions on the data

and obtained the probability distributions and MWF for each voxel. [158] trained a multi-layer

perceptron (MLP) to take as input the raw data, and output the MWF, using the in vivo NNLS

reconstructions as ground truth. [157] trained MLPs to reconstruct the MWF as well as the

probability distributions from the raw echo data, using the in vivo NNLS reconstructions

as ground truth. These approaches have the advantage of reconstructing regularized NNLS

solutions for the whole brain in under a minute, a fraction of the time required using the

standard NNLS algorithm. However, as their ground truth is the regularized NNLS solution,

their method inherits all the problems of NNLS. Further, by training on data acquired from

specific MRI machines using a specific sequence, there is the problem of generalizing to

different machines and different sequences. Both would require new acquisitions as well as

additional training time.

In summary, parametric methods implicitly regularize and stabilize the problem by using

biophysical models and prior knowledge to constrain the space of T2 distributions. However,

the resulting optimization problems to be solved are significantly more costly than those

of non-parametric methods, with an additional loss of flexibility due to imposition of the

number of compartments and other details of the model. Non-parametric solutions are fast,

but also ill-posed and highly susceptible to noise; hence, regularization is necessary, with the

concomitant drawbacks of over-smoothing and sparsity of the reconstructed distributions,
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particularly at clinically achievable SNRs for sequences with high spatial resolution. Further,

the extraction of parameters of interest such as the MWF is theoretically based on assuming a

lobular structure of the reconstructed distribution, which is often not the case in middling to

high levels of noise.

6.1.2 Contributions

In this chapter, we propose a new method for multi-component T2 relaxometry in brain

tissue. In Fig. 6.1, we show the overview of our proposed method as well as a prototypical T2

distribution in white matter, composed of the myelin water lobe and the lobe corresponding to

the water in the intra/extra axonal space; in addition, we show the corresponding MRI signal.

We propose to combine machine learning and aspects of parametric and non-parametric

approaches to the reconstruction of T2 distributions from multi-echo T2 data. We do this

by creating a synthetic dataset derived from biophysical models and training a multi-layer

perceptron (MLP) [38] on this dataset to take as input the MRI signal and directly output the

associated T2 distribution. In this way, we fully use all the available model-driven information

(the realistic EPG model and tractable prior information on the structure of solutions) while

also leveraging data-driven methods (MLP). We call our method Model-Informed Machine

Learning (MIML). Our main contributions are as follows:

• Construction of an extensive synthetic dataset that we construct purely from simulations

guided by biophysical models, which we use for training the MLP.

• Introduction of a robust loss function for the network to recover the T2 distribution

consisting of a combination of the mean squared error and the Wasserstein-1 Distance

[160]. We show that training with the Wasserstein distance significantly increases the

accuracy of MWF estimates on a realistic, synthetic case, compared to training with

solely a mean squared error (MSE) loss function.

• Rigorous and extensive evaluation of our method and previous work in non-parametric

and parametric approaches, on synthetic and real datasets (ex vivo, in vivo, healthy,

pathological). We show that our method outperforms other methods in terms of accu-

racy, plausibility, and robustness of the reconstructed distributions and MWF maps as

well as lesion visualization.

6.2 Methods

Our method for reconstructing T2 distributions from MRI data is based on a MLP which is

trained to learn a map directly from MRI signals with a 32 echo acquisition scheme to the

corresponding T2 distribution, as is the result in non-parametric methods. To reduce the

inherent ill-posedness of this problem, the training is conducted on a synthetic dataset of

pairs of MRI signals and T2 distributions which we constructed using EPG simulations and is
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Range of Mean and Standard Deviation for Simulated Water Pools

Water Pool Range of Mean T2 (µ) Range of Std. of T2 (σ)

Myelin 15-30ms 0.1-5ms

Intra/Extra Axonal Space (IES) 50-120ms 0.1-12ms

Gray Matter (GM) 60-300ms 0.1-12ms

Pathology 300-1000ms 0.1-5ms

CSF 1000-2000ms 0.1-5ms

Table 6.1: The ranges for the possible mean (µ) and the standard deviations (σ) used for the
Gaussian, T2 distributions of the different water pools used in our dataset.

informed by biophysical models and realistic values for the parameters of interest, such as the

range of T2s for different water pools, taken from the literature. This implicitly constrains the

space of possible T2 distributions (as in parametric approaches). We show an overview of our

method in Fig. 6.1.

6.2.1 Synthetic Dataset Generation

To generate the synthetic T2 distributions, we start from standard biophysical models for

the brain [137]. Brain tissue can be roughly subdivided into white matter, grey matter, cere-

brospinal fluid, pathological tissue, and combinations of these tissues. The water of these

tissues are made up of a combination of different pools of water. We model the T2 distributions

of brain tissue as a mixture of Gaussians, where each Gaussian component corresponds to a

different water pool (e.g. myelin water, intra/extra axonal space water).

p(T2) =
∑

i

vi

σ
p

2π
exp(

−(T2 −µi )2

2σ2
i

) (6.5)

vi ∈ [0,1],
∑

i
vi = 1 (6.6)

Here vi is the volume fraction of the i th water pool, and µi ,σi are the mean and standard

deviation of the T2 distribution of the i th water pool. We justify our choice of modelling

using Gaussians by noting that [140] found that modelling the T2 distributions using a variety

of different distributions including the Gaussian distribution had negligible differences in

parametric methods; essentially, they found that the ill-posedness of the reconstruction

made it extremely difficult to distinguish between different distributions when the mean and

standard deviation were fixed. In Table 6.1, we show the water pools we consider as well as the

range of the means and standard deviations for each water pool.

These water pools were chosen based on the commonly used biophysical models for the water

pools in brain tissue. In parametric models, white matter is modelled as a combination of the

myelin and intra/extra axonal water pools [140]–[144]. Further, they consider a water pool
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which accounts for cerebrospinal fluid (CSF). The water in gray matter can be modelled as

similar to the IES water pool, with an extended mean T2. However, brain pathologies can result

in T2 distributions different from those of white matter, gray matter, and CSF; for example,

[161] found that MS lesions can contain a water pool in the range between that of the IES pool

and the CSF pool. We set the mean values in line with those reported in the literature [136],

[147], [161], [162]. We included an extensive range for the standard deviations, ensuring that

our dataset has both sparse, intermediate, and wide T2 distributions in order not to bias our

dataset towards any extreme. However, there can be partial volume effects, where different

configurations of brain tissues are contained in a single voxel; for example, water from white

matter and CSF could be present in a single voxel. Therefore, in our dataset, we divide T2

distributions in the brain into seven cases, each with a characteristic mixture of water pools.

• White matter (WM): 2 Water Pools (Myelin and IES).

• Cerebrospinal fluid (CSF): 1 Water Pool (CSF)

• Gray matter : 2 Water Pools (Myelin and GM)

• Mixture of WM and CSF: 3 Water Pools (Myelin,IES, and CSF)

• Mixture of WM and GM: 3 Water Pools (Myelin,IES, and GM)

• Mixture of CSF and GM: 3 Water Pools (GM and CSF)

• Pathology: 1 Water Pool (Pathology)

We note that as there is a small quantity of myelin in gray matter, the gray matter pool is

composed primarily of the GM component in Table 6.1 as well as the myelin water component

which is constrained to have a random vi between 0 and 5 percent. Concretely, suppose we

want to generate a random T2 distribution for the case of a mixture of WM and CSF. This

distribution is characterized by the combination of three water pools (myelin, IES, and CSF).

p(T2) =
3∑

i =1

vi

σ
p

2π
exp(

−(T2 −µi )2

2σ2
i

) (6.7)

Therefore, by randomly selecting vi from a Dirichlet distribution and uniformly sampling

(µi ,σi ) for the three pools within the bounds in Table 6.1, we can generate a random T2 distri-

bution. Given the T2 distribution, we use the EPG formalism to simulate the corresponding

signal from an acquisition based on acquiring 32 echos with around 10ms spacing between

each echo. In the real data we use for our evaluation, three slightly different echo times are

used; the in vivo scans of healthy subjects use an echo train of 10.68ms, 21.36ms, ... 341.76ms,

the in vivo scan of the subject with pathology uses an echo train of 10.36 ms, 20.72 ms, ...,

331.52 ms, and the ex vivo scan uses an echo train of 10ms, 20ms, ... 320ms. In the following,

we describe our procedure with a single, fixed echo train: for the evaluation, we generated
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three training datasets, one for each echo train. We note that alternative sequences with

different numbers of echoes/different spacings can be accommodated by generating a new

dataset. We first construct a family of dictionaries of EPG signals, defined as in the previous

section, (Dα), where we varyα from 90 to 180. We use a high resolution T2 grid (1ms to 2000ms

with a spacing of 0.1ms) for the dictionaries. We generate 200,000 T2 distribution variations

per case by sampling (vi ) and (µi ,σi ) randomly from flat Dirichlet and uniform distributions,

for a total of 1.4 million distributions. We randomly vary the flip angle (α) of the acquisition for

each signal between 90 and 180 ° so that our method learns to account for different flip angles

automatically, rather than having to first estimate the flip angle as in non-parametric methods.

Given vi , (µi ,σi ), we numerically approximate the corresponding T2 distribution on the same

T2 grid as used for the dictionaries (Dα). Let pHR denote the discretized distribution. Given

the pre-constructed dictionary of EPG signals Dα corresponding to the randomly chosen α,

the EPG signal corresponding to this distribution, sEPG , is

sEPG = DαpHR (6.8)

As noted in the previous section, non-parametric approaches commonly use a much coarser,

logarithmically spaced grid of T2s for the discretization of the distribution. This allows to

significantly reduce the computation time. Therefore, to directly compare our approach

with non-parametric approaches, we downsample the ground truth distributions from the

high resolution T2 grid to a grid of 60 T2’s logarithmically spaced from 10ms to 2000ms, as

is commonly used [159]. Denoting this downsampled, ground truth distribution as pDS, the

dataset consists of the pairs (sEPG ,pDS). We note that our method does not depend on this

downsampling; we use it for a fair comparison with non-parametric approaches. As outlined in

the related work, the SNR of the signals is a crucial aspect of the reconstruction and hence the

dataset generation. We define SNR with respect to the first echo of the signal sequence. From

previous studies [136], [154], it is known that NNLS methods, perform well in the high-SNR

regime (on the order of 1000). However, clinical scans with high spatial resolutions will rarely

meet this SNR requirement; in the real scans of healthy subjects we use in our evaluation,

we estimate a mean SNR on the order of 100. In order to make our method robust to the

realistically low SNR regime, in training we randomly vary the SNRs of the signals between 80

and 200 in order to cover the potential SNR range of the voxels. We use a Rician noise model

to add noise to the signals. In our evaluation, we show that training on this SNR range results

in robustness to a wide range of SNRs (40-1000) on synthetic data. The data generation for 1.4

million signal/distribution pairs took less than one hour on a cluster using parallelization on

46 threads.

Using the synthetic datasets described, we train a MLP to map the MRI signal to the corre-

sponding T2 distribution.
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6.2.2 Mapping the MR Signal to the T2 Distribution

Architecture

Our network is composed of 6 hidden layers with 256 neurons per layer and an output layer

with 60 units, corresponding to the size of the discretization of the distributions we use. The

hidden layers use a ReLu function as the activation function, while the output layer uses a

SoftMax activation function since the output should be the T2 distribution. The input to the

network is a vector with 32 elements corresponding to the 32 echos of the standard acquisition

sequence. We note that we normalize the input by the magnitude of the first echo before

feeding it to the network. To select the structure of the network, we trained 12 networks

where we varied the number of hidden layers (3-6) and the number of neurons per layer

(64,128,256,512). We selected 6 hidden layers and 256 neurons as this configuration had the

lowest validation loss at the end of training; however, we note that the validation loss was not

significantly different between the configurations.

Loss Function

Let (x,px) denote the normalized MRI signal and the corresponding T2 distribution. Let Φ(·,θ)

denote the multi-layer perceptron function with parameters θ, with Φ(x,θ) the predicted

distribution. Given a batch of training samples (xi) of size n, the cost function we use to train

Φ is

L(θ) =
1

n

n∑
i
λ∥pxi −Φ(xi,θ)∥2

2 +W1(pxi ,Φ(xi,θ)) (6.9)

where the first term corresponds to the squared L2 norm (MSE loss) and the second term

corresponds to the Wasserstein-1 distance on probability distributions [160]. We set λ to give

approximately equal numerical weight to both terms in the loss function. Let u, v denote 1-D

probability distributions with cumulative distribution functions U ,V . Then the Wasserstein-1

Distance is equivalent to the following formulation [163]

W1(u, v) =
∫ ∞

−∞
|U (p)−V (p)|dp (6.10)

In this formulation, the Wasserstein distance can be efficiently computed on GPU using

the cumulative sum function. The Wasserstein-1 distance is an appropriate metric to judge

reconstruction quality in our application of T2 distribution recovery as it correctly penalizes

deviations from the ground truth distribution in relation to the location of the lobes in contrast

to other losses such as MSE or Kullback-Liebler (KL) divergence. In particular, given two

non-overlapping lobes, if the lobes are moved toward each other (but still do not overlap), the

Wasserstein Distance will decrease significantly while the MSE and the KL Divergence will not

change. An example is presented in Fig 6.3.

Using the Wasserstein distance helps us to avoid, for example, cases where the location

97



Chapter 6 Model Informed Machine Learning

Figure 6.3: Here we show how the Wasserstein Distance, KL Divergence, and the MSE changes
between two, non-intersecting lobes, as one is shifted closer to the other. We can see that while
the MSE and the KL Divergence are almost the same for both cases, the Wasserstein distance
decreases significantly when the means of the lobes are closer together. For judging the
recovery of the T2 distributions, it is then clear that the Wasserstein distance is an appropriate
metric which coincides with our intuition as to judge how "close" two distributions are in our
application

of lobes in the distribution could be arbitrarily placed with a similar loss if other metrics

are used. We note that training with either MSE loss or Wasserstein-1 distance exclusively

leads to suboptimal results, due to increased Wasserstein-1 distance in the first case and

unstable reconstructions in the second case. We find that training with a combination of these

results worked optimally; we further show in our evaluation that adding the Wasserstein-1

distance improves the accuracy of MWF estimation in realistic cases in comparison to training

exclusively with MSE loss.

Implementation Details

We used TensorFlow 2.0 [164] on Python 3.6 [165] with an Nvidia GTX 2070 laptop GPU for

constructing and training the network. For each case, we use 80 percent of the generated

data for training, corresponding to a total of 1,120,000 signal/distribution pairs. We reserve 10

percent of the dataset as the validation set and the remaining 10 percent as the test set in our

evaluation on synthetic data. We use the Adam optimizer [81] with a learning rate of 1e-3 and

a batch size of 2000. We trained for 30 epochs, where we stopped the training based on the

validation loss oscillating/no longer decreasing. We use the epoch with the lowest validation

loss as the final model. This training took approximately 70 seconds to complete, showing the

feasibility, given a large database of signals, to retrain models specific to given sequences, etc.
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6.3 Evaluation

We perform reconstructions of the T2 distributions from synthetic and real data using the

following methods:

• Our proposed method, MIML,trained on signals with SNR 80-200 and the appropriate

sequence of echoes.

• NNLS with Tikhonov regularization (NNLS-T)

• NNLS with Laplacian regularization (NNLS-L)

• Gaussian Mixture Fitting (GMF)

Both NNLS methods were implemented in-house in Python with full parallelization, and

we use a standard method for selecting the regularization parameter [130], [151] by keeping

the signal fitting error close to 1.025 times the signal fitting error obtained using NNLS

without regularization. GMF is our implementation of a parametric approach similar to that

of [140], where we fit a Gaussian mixture model with three compartments (Myelin water, IES

water, CSF), extracting the volume fractions, the means/standard deviations of the T2 of each

compartment, and the overall normalization factor. We model as follows:

p(T2) =
3∑

i =1
vi N (µi ,σi ,T2). (6.11)

Then, the corresponding model signal is

sm(T Ei ) = M0

∫
EPG(T Ei ,T1,T2,α)p(T2)dT2. (6.12)

where M0 is the normalization constant. We calculate this integral numerically using a high

resolution grid of T2s as in the dataset construction. Given the experimental decay signal s, the

parameters x = ((vi ,µi ,σi ), M0) are calculated by solving the following optimization problem:

x = argmin
x

∥s−sm(x)∥2 (6.13)

where we constrain the µi ,σi according to the bounds used for generating the dataset for

MIML. Finally, vi are constrained to the interval (0,1), and are normalized before each calcu-

lation of the model signal during the optimization. As jointly estimating the flip angle adds

significantly to the computation time and contributes to instability, we fix the flip angle in

the Gaussian mixture fitting for each voxel to that calculated using a standard NNLS method

[130]. We validated the accuracy of this flip angle estimation by comparing against B1 maps

acquired on healthy subjects. We used the least squares optimization function in the Python

library Scipy [166] to fit the signals to the Gaussian model.
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6.3.1 Synthetic Data

Test Split of Synthetic Dataset

We show reconstructions on the test split of the synthetic dataset we generated using the

acquisition sequence of 10.68ms, 21.36ms, ... 341.76ms. We show results over an SNR range

from 40 to 1000 (40,80,150,200,400,1000). We compare the methods using the MSE and

Wasserstein Distances of the reconstructed distributions with respect to the ground truth

distributions.

Realistic Synthetic Case in WM

MWF mapping is a crucial application of T2 relaxometry. In order to analyze the robustness

and performance of our approach in a realistic case in WM, we show reconstructions on the

following model of the distribution in a white matter voxel, with one lobe for myelin water

and one lobe for IES water.

p(T2) = vm ∗ InvGamma(µm ,σm)+ v I E ∗ InvGamma(µI E ,σI E ) (6.14)

where we fix the values of the parameters to realistic values in line with those reported in the

literature [135], [147]: vm=0.15, v I E =0.85, µm= 20ms, µI E = 70ms, σm=2.5ms, σI E =6ms. We use

the inverse Gamma distribution to create the ground truth distribution to test the robustness

of our method to changes in the assumed biophysical model. To study robustness to noise, we

vary the SNR on the corresponding synthetic MRI signal from 40 to 1000, as in the test split.

We generate 1000 realizations of noisy signals per SNR used. Further, we also show numerical

results using our method without using the Wasserstein Distance in the loss function. We

refer to this variant as MIML’. We compare the methods using the MSE, Wasserstein Distance,

and estimated MWF of the reconstructed distributions with respect to the ground truth.

6.3.2 Real Data

As there is no ground truth for the T2 distributions in real data, we evaluate the methods as in

the literature by examining the MWF maps/comparing to anatomical scans or correlation to

histology, the plausibility of the T2 distributions, maps of the mean T2 in the 50-200ms range,

etc. We also report the mean SNR for each dataset, calculated in the same manner as in [154],

where the first echo of the signals is divided by the standard deviations of the residuals from

the NNLS-T reconstruction.

Ex Vivo Data

We show reconstructions from a Multi Echo Spin Echo (MESE) scan from the White Matter

Microscopy Database [167] with 32 echoes (starting from 10ms with 10ms spacing), with a
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TR of 3s and 8-fold averaging, of a single, cervical slice of a dog’s spinal cord acquired ex vivo

with an Agilent 7T animal scanner [168]. Five days before scanning, the spinal cord (perfused

and post-fixed with paraformaldehyde 4) was extracted and washed in Phosphate-buffered

saline (PBS) solution. After scanning, the spinal cord was osmified for two hours, embedded

in EMbed 812 Resin, cut using a microtome, and polished. A scanning electron microscope

(Low-angle backscattered electron mode) (JEOL 7600F) was used to image an entire slice of

the spinal cord at a resolution of 0.26 micrometers per pixel. Using this histology image, we

construct a histological map of the fraction of myelin in each voxel using a deep learning

segmentation tool called Axon Deepseg [169]. We then register this histological map to the MRI

space. The resulting histological map is a map of the fraction of the voxel corresponding to

the segmented myelin, not a map of the MWF. However, assuming that the fraction of myelin

in a voxel scales with the amount of myelin water, the two maps should be linearly correlated.

We conduct a correlation analysis between the histological map and the MWF maps produced

from the different methods. The estimated SNR on this slice is 784.

Healthy Subjects

We show reconstructions from high-resolution human brain scans acquired from 4 healthy

controls using a 3T MRI scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Ger-

many) located at CHUV Hospital (Lausanne, Switzerland), with a standard 64-channel head-

/neck coil. The dataset was collected using a 3D multi-echo gradient and spin-echo (GRASE) se-

quence accelerated with CAIPIRINHA [170] with the following parameters: matrix-size=144x126;

voxel-size = 1.6x1.6x1.6mm3; ∆TE/N-echoes/TR = 10.68ms/32/1s; prescribed FA =180°;

number-of-slices = 84; CAIPIRINHA acceleration factor = 3x2; number of averages = 1; ac-

quisition time=10:30min. Each subject was also scanned using an MPRAGE sequence for

whole-brain T1-weighted imaging [171]. To test the repeatability of the reconstructions, the

healthy controls were scanned twice over two consecutive scanning sessions (scan-rescan

scenario). We compare the MWF maps and the T2 distributions produced from each method,

show the coefficient of variability of the MWF in regions of interest (ROI) in WM, and conduct

a study of the reproducibility of each method. The data for these subjects have an estimated

mean SNR of 128.

MS Subject

We show reconstructions on a high-resolution human brain scan of a patient with relapsing-

remitting multiple sclerosis, scanned using a 3T MRI scanner (MAGNETOM Prisma, Siemens

Healthcare, Erlangen, Germany) located at the University Hospital of Basel (Basel, Switzer-

land) with a standard 32-channel head coil. In this case, MET2 data was collected using the

previously described GRASE sequence for the healthy subjects, albeit with a starting echo time

of 10.36ms and lower spatial resolution (voxel-size=1.8x1.8x1.8mm3) to accelerate the scan.

In addition, a FLAIR [172] scan was acquired. A probabilistic lesion mask was generated by

first using a convolutional neural network (CNN) trained to segment WM lesions [173] on
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FLAIR images with subsequent manual correction by an expert. The FLAIR image/lesion mask

were then registered to the multi-echo T2 space. We use a threshold of 0.9 to denote a voxel as

lesional. We analyze maps of the geometric mean T2 in the range 50-200ms and MWF maps to

study the MS lesions as in [174]. We also compare the correspondence of these maps to the

lesion masks. In addition, we compare the T2 distributions produced from each method in

both normal-appearing tissue and the lesions. The estimated SNR of this scan is 112.

6.4 Results

6.4.1 Synthetic Data

Test Split of Synthetic Dataset

In order to visualize the average performance over the test split, in Fig. 6.4 we plot the mean

distribution over all the ground truth distributions in the test split. In addition, we show the

mean reconstructed distributions over the test split from the methods we compare. We also

show plots zooming in on the different T2 regions for better visualization. MIML performs

robustly and consistently across the whole SNR range, providing the best conformity to the

ground truth distributions over the entire range of T2s. In contrast, NNLS with Tikhonov and

Laplacian regularization both require SNR 1000 in order to generate a plausible distribution in

the T2 range 10−50ms, with SNRs below this resulting in highly over-smoothed distributions.

Further, even at high SNRs, both methods have over-smoothing in the T2 range 50−2000ms.

For the Gaussian mixture fitting, we note that only the cases of WM and WM + CSF correspond

to the model used, as it is necessary to fix the number of compartments beforehand. Therefore,

the relevant T2 ranges to examine are 10−120,1000−2000ms. For GMF, high SNRs (200-1000)

are required for plausible distributions with respect to the ground truth, with remaining

distortions at low T2 values. In Fig. 6.5 we show boxplots of the MSE and the Wasserstein

Distance between the ground truth distributions and the reconstructed distributions from

the different methods over the SNR range. As the model used in GMF only applies to WM and

WM+CSF, we show the results over the whole test set as well as over just the WM and WM+CSF

cases in the test set.

For both MSE and Wasserstein Distance, MIML performs the best with the lowest median error

and comparable or smaller interquartile ranges, across the whole SNR range. As expected,

all methods improve with increasing SNR. The limitations of the GMF model are clear, as

it provides competitive results with the other methods only when restricted to the signals

from the WM and WM+CSF cases, due to the need to fix the model/number of compartments

beforehand. Overall, MIML, which is trained on signals with SNR 80 to SNR 200, generalizes

well to the test set as well as to SNRs outside the range on which it was trained. From

the plots of the mean distributions and the boxplots of the error metrics, we can see that

MIML performs better in distribution reconstruction than the other methods, parametric and

non-parametric, across a wide range of SNRs. In addition, the flexibility of using MIML in
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NNLS-L
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Whole Spectrum Zoom on 10-50ms Zoom on 50-300ms Zoom on 500-2000ms

Figure 6.4: Plots of the mean distribution over all of the ground truth distributions in the test
split of our synthetic dataset, as well as the mean reconstructed distribution over the test
split from each method. We zoom in on the T2 ranges 10-50ms, 50-400ms, 400-2000ms to
show the average performance in the different cases (WM, CSF, etc.). Our method produces
the most robust and accurate reconstructions with respect to changing SNR and the ground
truth distributions respectively. All other methods require high SNRs (400-1000) for plausible
distributions that, however, still retain distortions, particularly in the range of T2s associated
with myelin water (10-50ms). We note that the poor performance of GMF outside the T2 range
10-120ms, and 1000-2000ms is due to model mismatch; GMF is valid only for the WM and
WM+CSF cases. We use a logarithmic scale for the T2 axis.
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Whole Dataset WM and WM+ CSF Data

Figure 6.5: Boxplots of the MSE and Wasserstein Distance between the ground truth distribu-
tions in the test set of our synthetic dataset and the corresponding, reconstructed distributions
from each method over a range of different SNRs. We show results over both the whole test set,
as well as results restricted to the WM and WM+CSF cases, where the GMF model is valid. In
general, MIML provides the most accurate and robust reconstructions, with the lowest median
errors as well as lower or comparable interquartile ranges. As expected, the performance of
GMF becomes comparable to other methods when we restrict to only the WM and WM+CSF
cases, where the GMF model is valid.
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comparison to GMF is clear, as MIML does not require fixing the number of compartments.

However, the test set is generated according to the Gaussian mixture model; further, as we

randomly generate the ground truth distributions, not all of the ground truth distributions

are realistic, though we note that unrealistic distributions in the training can improve the

generalizability of MIML.

Realistic Synthetic Case in WM

In Fig. 6.6, we plot the ground truth distribution and the mean reconstructed distributions

from each method over the SNR range. In addition, we show boxplots of the MSE and Wasser-

stein Distance between the ground truth distribution and the reconstructed distributions from

the different methods over the SNR range. Further, we show a boxplot of the error in MWF

estimation. MIML performs robustly and consistently, on average, across the whole SNR

range. However, the reconstructed distributions resolve a more spread out myelin water lobe

than in the ground truth, even at SNR 1000; this could be due to training on significantly lower

SNRs or the model mismatch. At SNRs below 400, NNLS-T and NNLS-L are unable to resolve

a myelin water lobe due to over-smoothing as well as a displaced IES lobe; GMF resolves

the myelin water lobe, but with a significantly displaced mean. At SNR 1000, NNLS-T and

NNLS-L are able to resolve the myelin water lobe accurately, albeit still with a small distortion

at T2 = 10; GMF is able to accurately capture the myelin water lobe at SNR 1000, albeit with a

displaced IE lobe.

With regard to MSE and Wasserstein Distance, MIML performs the best, with the lowest

median error and comparable or smaller interquartile range across the whole SNR range. As

expected, MIML’ performs similarly to MIML with respect to MSE and significantly worse

with respect to Wasserstein Distance, as it is only trained with the MSE loss. With regard

to the estimated MWF (obtained by summing from T2 bounds of 10-40ms), we see that

MIML performs the best in the SNR range 80-400, with median errors closest to zero, and

comparable or smaller interquartile ranges; we remind that the ground truth MWF was 0.15.

At SNR 40, all methods either significantly over or underestimate the MWF, while at SNR

1000, MIML and NNLS-L provide comparable median errors. However, we note that NNLS-L

has a significantly higher standard interquartile range than MIML at SNR 1000. Further, the

results are consistent with results in [154] that the NNLS methods tend to underestimate

the MWF. MIML’ provides mediocre performance, generally underestimating the MWF value.

Comparing the performance of MIML and MIML’, we can see that using the Wasserstein

Distance in the loss function during training significantly improves the performance of our

method in terms of MWF estimation in a realistic case as well as the Wasserstein Distance of

reconstructed distributions to the ground truth. Finally, in Fig. 6.7, we show the reconstructed

distributions and the mean distribution for each method for SNRs of 200 and 1000. Although

the mean distribution from NNLS-T and NNLS-L corresponds well to the ground truth

distribution at SNR 1000, the reconstructions of NNLS-T and NNLS-L are highly sensitive to

added noise, with huge variability in the reconstructed distributions, particularly in the

105



Chapter 6 Model Informed Machine Learning

myelin lobe. In contrast, MIML, and to a lesser extent, GMF, are much more robust to the

noise, showing little variability in the reconstructed distributions. Overall, MIML performs

accurately and robustly across the SNR range with respect to the MSE, Wasserstein Distance,

and the MWF value, showing the robustness to changing the assumed Gaussian model for the

distribution as well as the applicability in a realistic case. Other methods perform comparably,

on average, at high SNR values (SNR 1000), as expected.

From the results on the synthetic data, we conclude that MIML, even trained on a limited

range of SNRs, is able to robustly and accurately reconstruct T2 distributions over a wide

range of SNR values. Overall, MIML outperforms all other methods in terms of MSE and

Wasserstein Distance with respect to the ground truth. Furthermore, from the realistic case,

MIML is the most accurate overall method for MWF estimation, showing the applicability to

MWF estimation. In addition, we can see the robustness to changes in the assumed model

for the T2 distributions, and the importance of including the Wasserstein Distance in the loss

function of MIML. Finally, from examining all the reconstructed distributions and the mean

reconstructed distribution, MIML is the most robust to noise, while the non-parametric

methods show high variability and sensitivity to noise even at SNR 1000. In the next section,

we show results on real data from in vivo and ex vivo scans, considering both healthy and

pathological cases.

6.4.2 Real Data

Ex vivo Data

We note that in Equation (4), the MWF is obtained by summing from T2 = 10ms to T2 = 40ms.

This formula, commonly used for acquisitions at 3T, in theory should be adjusted for higher

field strengths due to the shortening of T2s [175], [176]. We note that these limits historically

derive from assignment of the different lobes in T2 distributions to different water pools

e.g. myelin, IE space, etc.[147]. For instance, in [136], the authors use NNLS-T on their data

(acquired at 1.5T) and found two large T2 lobes, one in the range of 10-50ms and the other in

the range of 70-100ms; they then assigned these to myelin water and the IES water respectively.

In the following, we restrict our analysis to the white matter, and we will show two versions of

MWF maps, with accompanying correlations to histology obtained as follows:

• Fixed Limits: Following [136], we fix the limits of summation for each method by taking

the limits of the myelin water lobe in the mean T2 distribution from using NNLS-T. This

corresponds to bounds of 10-35ms.

• Tailored Limits: For each method, we set the limits of summation from the limits of the

low T2 lobe in the mean T2 distribution from that method. For MIML and NNLS-L this

corresponds to bounds of 10-38ms and 10-32ms respectively.

In Table 6.2, we show the spatial Pearson correlations (with accompanying p-values) be-
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MIML NNLS-T

NNLS-L GMF

Figure 6.6: Mean reconstructed distributions (ground truth and from each method) over a
range of SNRs as well as boxplots of the MSE and Wasserstein distance between the ground
truth and reconstructed distributions from the results on the realistic, synthetic case. MIML
produces the most robust reconstructions with respect to changing SNR, albeit with a con-
sistently over-smoothed myelin water lobe. However, the other methods require high SNRs
(1000) to resolve a myelin water lobe (still with distortions) close to the ground truth lobe as
well as correct placement of the IE lobe. With regard to MSE and Wasserstein Distance, MIML
performs the best, with the lowest median error and comparable or smaller interquartile range
across the whole SNR range. With regard to MWF error (the ground truth MWF value is 0.15),
MIML performs the best in the SNR range 80-400, with median errors closest to zero, and
comparable or smaller interquartile ranges. MIML’ performs similarly to MIML with respect
to the MSE and significantly worse with respect to the Wasserstein Distance and MWF Error,
showing the importance of using the Wasserstein Distance in the training of our method.



Chapter 6 Model Informed Machine Learning

MIML NNLS-T NNLS-L GMF

SNR 200

SNR 1000

Figure 6.7: Distribution reconstructions from different noise realizations for SNRs 200 and 1000
on the realistic, synthetic case. The ground truth distribution is shown with blue crosses, and
all the corresponding reconstructed distributions from different noise realizations are shown
in color. The mean reconstructed distribution is shown in black Note that the reconstructions
of NNLS-T and NNLS-L are highly sensitive to noise, even at SNR 1000, with large variability
in the reconstructed distributions; this is in contrast to the stability and robustness of the
reconstructions from MIML and, to a lesser extent, GMF. Note that for SNR 1000, MIML
predicts virtually the same distribution for all the noisy signals. We use a logarithmic scale for
the T2 axis.

tween the MWF maps for each method and the histology map. In both cases, the MWF map

from MIML has the highest correlation to the histology map. Only the correlation of NNLS-L

changes between the two cases, increasing when using the fixed bounds. In Fig 6.8, we show

the MWF maps corresponding to each case for the bounds, the histology map, and the recon-

structed distributions for each method. MIML predicts higher values for the MWF than the

other methods, particularly the NNLS methods. The MIML MWF map is smoother/less noisy

than the other methods and corresponds better to the histology map. We can see from the

mean distributions that all methods are, on average, able to recover the myelin water and IES

water lobe in similar locations; however, the NNLS methods, in particular NNLS-L, produce

more implausible, over-smoothed lobes in comparison to MIML and GMF. Examining the

reconstructed distributions, the influence of the model priors in MIML and GMF is evident,

with clear separation between the myelin lobe and the IES lobe, while the NNLS methods

produce distributions which are spread more uniformly across the T2 axis. We note that the

small number of distributions with lobes in the range 200-1000ms and the lobes in the range

1000ms-2000ms can be attributed to the gray matter around the spine as well as CSF.

For all methods, the MWF values are significantly higher than those of the in vivo 3T scans

we show later. However, this could be attributed to the differences resulting from the fact that

ex vivo scan is of chemically treated spinal cord at 7T while the in vivo scans are of human

brain at 3T.
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Pearson Correlation of MWF Maps to Histology

MIML NNLS-T NNLS-L GMF

Tailored Bounds (0.54,5.63E-81) (0.44,8.58E-53) (0.45,5.51E-55) (0.39,1.43E-39)

Fixed Bounds (0.54,2.04E-81) (0.44,8.58E-53) (0.49,1.13E-64) (0.39,1.43E-39)

Table 6.2: Table of the spatial Pearson correlations (with p-values) between the MWF maps
constructed from each method and the histology map of the myelin in a white matter mask.
In bold are the highest correlations. We note that the histology map is not a map of the myelin
water fraction, but a map of the fraction of pixels in the histology which correspond to the
myelin tissue. In either case of fixed or tailored bounds, the MWF map from MIML has the
highest spatial correlation to the histology.

MIML NNLS-T NNLS-L GMF

MIML NNLS-T NNLS-L GMF

Histology
Tailored
Bounds

Fixed
Bounds

Figure 6.8: MWF maps from each method, the histology map, and the reconstructed distribu-
tions for each method on the ex-vivo data. We can see that the MIML MWF map is smoother
than those of other maps and corresponds better to the histology map. The mean distribution
is shown in black, and all the reconstructed distributions in color. All methods can recover the
myelin water and IES water lobe in similar locations; however, the NNLS methods produce
more smooth lobes in comparison to those of MIML and GMF. The effect of the model prior
on MIML and GMF is clear, with unambiguous separation between the myelin lobe and the
IES lobe. We emphasize that the histology map is a map of the fraction of the voxel which is
occupied by myelin, not the MWF. We use a logarithmic scale for the T2 axis.
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Healthy Subjects

In Fig. 6.9 we show the MWF maps in axial, coronal, and sagittal slices for two healthy

subjects with corresponding, registered MPRAGE images for comparison. In MPRAGE images,

WM is hyperintense; hence, we treat the MPRAGE as a very rough proxy for the MWF map

since MWF values are highest in the WM. Although the MWF maps are fairly similar, the

MWF map of MIML most accurately and smoothly conforms to the MPRAGE image. The

NNLS methods exhibit higher distortions, e.g. in the ventricles of subject 1, and difficulty in

recovering the MWF in the frontal region of the brain. GMF produces maps comparable to

the NNLS methods, albeit, looking noisier. We note that all methods exhibit lower MWFs in

the frontal part of the brain as compared to other regions, which may stem from effects due

to the gradient echo acquisition [177]. In Fig. 6.10, we show the reconstructed distributions

over the WM voxels in the axial slices. Only MIML produces a mean WM distribution with

two distinct, well-separated lobes corresponding to myelin water and the IES water as is

expected from previous studies. Further, the peaks of the myelin water lobe and the IES water

lobe correspond to the range expected at 3T. The NNLS methods recover the IES water lobe

in line with expectations, but over-smooth the distribution in the region corresponding to

myelin water, as was seen in the results on the synthetic data, with an implausible myelin

water peak at 10ms. GMF also recovers the IE lobe in line with expectations, but produces a

dispersed lobe in the myelin region. From the reconstructed distributions, we can again see

the influence of the model priors on MIML and GMF, with the NNLS methods producing much

more variable distributions. We note that the small component in the range 1000ms-2000ms

for each method can be attributed to partial volume effects with the CSF.

In order to compare the MWF maps on regions of interest, and to conduct the scan-rescan anal-

ysis we did the following: in a first step, all the estimated MWF images for the 4 subjects were

registered to the ’ICBM-DTI-81’ white-matter tract labels atlas [178], [179] using the non-linear

registration ’BSplineSyN’ algorithm included in the ANTs software (https://github.com/ANTsX/ANTs).

After visually inspecting the images, we removed small ROIs affected by registration errors

and kept 44 tract labels showing a good anatomical agreement between the atlas and subject

native spaces. Finally, the mean MWF value and the coefficient of variation of the MWF for

each region of interest (ROI) was calculated for the scan and rescan maps from each method.

A list of the ROIs can be found in Table 6.3.

In Fig. 6.11, we show boxplots of the mean MWF and the standard deviation of the MWF over

the WM ROIs for each subject. We note that MIML results in a larger mean MWF across all

subjects than the non-parametric methods; this can be explained by the underestimation of

MWF by the non-parametric methods as is shown in the results on the realistic synthetic data

as well as in [154]. However, the standard deviations of the MWF from MIML are generally

comparable to that of the other methods, similar to that of NNLS-T and slightly higher than

that of NNLS-L. In particular, the magnitude of the increase in the mean MWF using MIML as

compared to the other methods is larger than the increase in the standard deviation of the

MWF. This indicates that the smoothness of the MIML MWF map is comparable to that of
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List of Brain ROIs used for Healthy Subjects

1 Middle cerebellar peduncle

2 Pontine crossing tract

3 Genu of corpus callosum

4 Body of corpus callosum

5 Splenium of corpus callosum

6 Fornix

7 Corticospinal tract R

8 Corticospinal tract L

13 Superior cerebellar peduncle R

14 Superior cerebellar peduncle L

15 Cerebral peduncle R

16 Cerebral peduncle L

17 Anterior limb of internal capsule R

18 Anterior limb of internal capsule L

19 Posterior limb of internal capsule R

20 Posterior limb of internal capsule L

21 Retrolenticular part of internal capsule R

22 Retrolenticular part of internal capsule L

23 Anterior corona radiata R

24 Anterior corona radiata L

25 Superior corona radiata R

26 Superior corona radiata L

27 Posterior corona radiata R

28 Posterior corona radiata L

29 Posterior thalamic radiation R

30 Posterior thalamic radiation L

31 Sagittal stratum R

32 Sagittal stratum L

33 External capsule R

34 External capsule L

35 Cingulum (cingulate gyrus) R

36 Cingulum (cingulate gyrus) L

37 Cingulum (hippocampus) R

38 Cingulum (hippocampus) L

39 Fornix/Stria terminalis R

40 Fornix/Stria terminalis L

41 Superior longitudinal fasciculus R

42 Superior longitudinal fasciculus L

43 Superior fronto-occipital fasciculus R

44 Superior fronto-occipital fasciculus L

45 Uncinate fasciculus R

46 Uncinate fasciculus L

47 Tapetum R

48 Tapetum L

Table 6.3: Here we show a table of the regions of interest (ROI) in the brain used to estimate the
coefficient of variations in the scans, as well as the comparisons for the scan-rescan analysis
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Mean and Standard Deviation of MWF Differences between Scan and Rescan WM ROIs

MIML NNLS-T NNLS-L GMF

Subject 1 (0.0067,0.0388) (0.0093,0.0353) (0.0094,0.0305) (0.0055,0.0357)

Subject 2 (0.0004,0.0448) (0.0012,0.0473) (0.0010,0.0418) (0.0044,0.0454)

Subject 3 (0.0191,0.0726) (0.0134,0.0755) (0.0176,0.0723) (0.0108,0.0712)

Subject 4 (0.0104,0.0573) (0.0107,0.0543) (0.0103,0.0504) (0.0065,0.0561)

Table 6.4: Table of the mean and standard deviation of the absolute difference between the
mean MWF values of the scan and rescan in white matter ROIs for each method and for each
healthy subject. In bold are the lowest values per subject. Overall, GMF has the smallest mean
differences for 3/4 subjects with standard deviations comparable to those of other methods.
The performance of MIML and the NNLS methods are overall quite similar; while MIML has
the smallest mean difference on Subject 2, NNLS methods have smaller mean differences in
Subjects 3 and 4.

Pearson Correlation and Linear Regression Coefficients between Scan and Rescan WM ROIs

MIML NNLS-T NNLS-L GMF

Subject 1 (0.92, 0.89,0.0069) (0.91,0.887,0.0016) (0.93,0.90,0.0004) (0.93,0.85,0.0130)

Subject 2 (0.90,1.00,0.0002) (0.87,0.98,0.0008) (0.89,1.02,-0.0034) (0.91,0.99,0.0045)

Subject 3 (0.77,0.74,0.0546) (0.70,0.65,0.0527) (0.72,0.69,0.0520) (0.77,0.76,0.0433)

Subject 4 (0.87,0.87,0.0087) (0.87,0.97,-0.0064) (0.89,0.97,-0.0076) (0.89,0.96,0.0001)

Table 6.5: Table of the spatial Pearson correlation and the linear regression coefficients (slope
and intercept) between the mean MWF values of the scan and rescan in white matter ROIs
for each method and each healthy subject. In bold are the highest Pearson correlations per
subject. All Pearson correlations have p values less than 0.01. Overall, all methods perform
quite similarly. However, GMF has the best correlations between scans (by a small margin),
with MIML and the NNLS methods performing similarly.

other methods.

In Tables 6.4 and 6.5, we show the results of our scan-rescan analysis over all four healthy

subjects; we show a table of the mean and standard deviation of the absolute difference

between the mean MWF values of the scan and rescan in the specified ROIs as well as a table

of the Pearson correlation and linear regression coefficients between the mean MWF values

of the scan and rescan in the specified ROIs. We can see that in general, GMF provides the

smallest mean differences and highest Pearson correlations. In particular, it is difficult to rank

MIML and the NNLS methods as they perform better/worse on different subjects. We note

that GMF’s superior reproducibility may stem from the lower flexibility in the fitting of the

MWF, as compared to MIML and the NNLS methods. However, overall, the reproducibility of

the methods is quite similar.
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Figure 6.9: Example MWF maps produced from each method, in the axial, coronal, and
sagittal planes of two healthy subjects. On the left, we show the corresponding MPRAGE
slice. Compared to the MPRAGE (where WM is hyper-intense), we can see that MIML most
accurately and smoothly reproduces the extent of white matter, which is consistent with WM
having relatively high MWF values. Particularly, the NNLS methods struggle in MWF recovery
in the frontal part of the brain. GMF produces comparable to better MWF recovery than the
NNLS methods, but with a noisier map. In addition, MIML has the least distortion in the
ventricles.
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Figure 6.10: Reconstructed distributions (in color) in the WM voxels of the axial slices of two
healthy subjects for each method. The mean distribution is shown in black. We note that
only MIML produces a mean WM distribution with two distinct, well-separated lobes, and the
myelin water peak in line with expectations at 3T. The NNLS methods and GMF recover the IE
lobe well, but the myelin lobe is either irregular or appears at an extremely low T2. Further, we
see that NNLS-T/L produces a much more variable set distributions in contrast to those from
MIML and GMF which are constrained by model priors. We use a logarithmic scale for the T2

axis.

Figure 6.11: Boxplots of the mean MWF (left) and the standard deviation of the MWF (right)
for each method over all the WM ROIs for each subject in the cohort of healthy subjects. We
see that MIML produces a larger mean MWF across all subjects than the other methods. This
is likely due to the underestimation of MWF by the non-parametric methods as is shown in
the results on the realistic synthetic data as well as in [154]. The standard deviations of the
MWF from MIML are generally comparable to that of the other methods, similar to that of
NNLS-T and slightly higher than that of NNLS-L. We note that the magnitude of the increase
in the mean MWF using MIML as compared to the other methods is larger than the increase
in the standard deviation of the MWF. This indicates that the smoothness of the MIML MWF
map is comparable to that of other methods.
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MS Subject

In Fig. 6.12, we show the maps of the geometric mean T2 in the IE range of 50-200ms as well

as the MWF maps in an axial slice of a subject with MS. In addition, in Fig. 6.13, we zoom

in on the lesions for better visualization. For the mean T2 maps, in all methods, all except

one of the lesions can be clearly seen as hyperintensities i.e. with increased mean IE T2.

Further, the maps are similar across the methods, with the main differences residing in the

ventricles. Visualizing the lesions is far more difficult with MWF maps than with the mean T2

maps, as the MWF maps are much noisier independent of the applied method. However, as

with the healthy subjects, the MIML MWF map in both slices most smoothly and accurately

conforms to the WM and the cortices, with the other methods exhibiting more variability and

missing patches in the WM and worse delineation of the cortices; this occurs particularly in the

frontal region. All three lesions can be seen on the MIML MWF map with minimal ambiguity;

in particular, in lesions 1 and 3, we can clearly delineate the lesions from very close, adjacent

structures. Concerning the NNLS methods, it appears that Lesion 1 is exaggerated in size

and mixed with the adjacent structure, making it difficult to delineate the lesion as the dark

region is extended far beyond the lesion region on the FLAIR image. In addition, due to poor

contrast between the normal-appearing tissue and lesion tissue/noise, it is difficult to identify

Lesion 2 unambiguously with the NNLS methods. As with Lesion 1, Lesion 3 can be seen but is

connected to the adjacent grey matter, making localization problematic. Further, we can see

that the MWF in the lesion is comparable to the MWF of the normal-appearing, contralateral

brain region, due to the poor MWF reconstruction. The GMF MWF map resembles the MIML

MWF map albeit noisier/ with greater variability.

In addition to the mean T2 and MWF maps, in Fig. 6.14, we compare the T2 distributions in

the lesion masks to the T2 distributions in the normal appearing, contralateral regions. As in

the healthy subjects, MIML consistently produces a mean distribution with two distinct,

well-separated lobes corresponding to myelin water and the IES water as is expected from

previous studies. Further, the peaks of the myelin water lobe and the IES water lobe corre-

spond to the range expected at 3T. The NNLS methods produce over-smoothed myelin water

lobes with peaks occurring at implausibly low T2 values. The IES water lobes are generally

plausible. GMF produces more plausible myelin water lobes than those of the NNLS meth-

ods, but the lobes in the contralateral tissue are more variable, with the estimated mean and

standard deviation of the myelin lobes varying significantly over the 3 regions of contralateral

tissue. MIML reconstructs a diminished myelin water lobe in the lesions as compared to the

normal-appearing tissue, reflecting lower MWF; this is in line with expectations of MS as a

demyelinating disorder. In contrast, the distributions from the NNLS methods in Lesions 2/3

exhibit larger myelin water lobes in lesion tissue as compared to normal-appearing tissue,

indicative of the poor MWF reconstruction in the normal-appearing tissue.

In conclusion, all methods perform similarly in detecting lesions from the mean T2. However,

MIML improves upon the NNLS methods and GMF in detecting lesions from MWF maps, by

providing better contrast between lesions and normal appearing tissues, clearer delineation of
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Average Computation for Whole Brain

MIML NNLS-T NNLS-L GMF

Time 34s 752s 701.2s 159382.4s

Table 6.6: Table of the average computation time for whole brain reconstructions for each
method on the healthy subjects; all reconstructions were done using the same computer, with
16 threads. MIML is orders of magnitude faster than the other methods.

lesions from adjacent structures, and smoother, more plausible reconstructions overall in the

WM. The comparison of the myelin water lobes of lesion and normal appearing tissue from

MIML is consistent with the demyelinating nature of MS in contrast to that from the NNLS

methods. Therefore, the performance of MIML meets or exceeds the performance of the other

methods when used on a pathological case.

From our results on real data, we see that MIML generalizes to different machines, different

magnetic field strengths, and different sequences since it is trained on a model of the signal

decay which is agnostic to these differences; MIML’s performance on the real data shows its

potential for multi-component T2 relaxometry at clinically achievable SNRs in high resolution

scans.

6.4.3 Computation Time

Here we provide a brief overview of the computational cost of the different methods. For

consistent comparison, we used one computer using Ubuntu 18.04 with an Intel Xeon CPU

E5-1650v4 running at 3.6 GHz with 12 available threads to run parallelized whole-brain re-

constructions on four of the healthy subjects (matrix size 144x126x84) using MIML, NNLS-T,

NNLS-L, and GMF; we recorded the time to completion and show the average computation

time for each method in Table 6.6. We can see that MIML is 1 to 4 orders of magnitude faster

than the other methods.

6.5 Discussion

Overall, from our evaluation on synthetic data, an ex vivo scan and in vivo scans (healthy

and pathological), we conclude that MIML provides fast, noise-robust, and plausible recon-

structions of T2 distributions, with potential for use in myelin water fraction mapping. We

attribute the performance of our method to the blending of the advantages of machine learn-

ing, parametric, and non-parametric methods. We note that our approach is essentially using

machine learning to solve the inverse problem of parametric approaches, albeit express-

ing the solution non-parametrically. We view our approach as an extension of the recent

progress in using machine learning to solve inverse problems in many domains [180]. By using

machine learning, our method is much faster than standard parametric or non-parametric
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Figure 6.12: Anatomical FLAIR map where the white matter is hypointense (first column), maps
of the MWF (second column), and maps of the geometric mean T2 in the range corresponding
to the IE space (50-200ms) (third column) for an axial slice in a subject with MS. We show the
MS lesions on the FLAIR map marked in red and labeled numerically. Regarding the mean T2

maps, we can see that the all lesions but Lesion 2 can be seen as hyperintensities, with the
maps very similar across all methods. Regarding the MWF maps, as in the healthy subjects,
MIML most smoothly and accurately reconstructs the WM, with the other methods exhibiting
more noisy maps with missing patches. MIML provides the best lesion visualization due to
better contrast between normal appearing tissue and lesions and a more smooth MWF map;
in particular, lesions can clearly be delineated from close, adjacent structures in contrast to
the NNLS methods (see Lesion 1, 3). See Fig. 6.13 for a closer look/analysis of the MWF maps
compared to the lesions.
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Figure 6.13: Here we zoom in on the lesions as well as the corresponding patches in the
MWF map. We are able to see distinctly see all the lesions using the MIML MWF map; in
particular, lesions 1 and 3 can be clearly distinguished from close, adjacent structures. Due to
the lower contrast between normal appearing tissue and lesion tissue and noisier appearance
in comparison to the MIML MWF map, lesions 1 and 2 are somewhat ambiguous on the NNLS
maps; in particular, it appears the lesion 1 is exaggerated in size and mixed with the structure
next to it. Similarly Lesion 3 is mixed with the structure next to it with the NNLS maps. The
GMF MWF maps are similar to those of MIML, albeit noisier.
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Figure 6.14: Here we compare the T2 distributions within the lesion mask and the same mask
translated to the normal appearing region contralateral to the lesion for each lesion and
method. We can see that MIML consistently produces a mean distribution with two distinct,
well-separated lobes, and the myelin water peak in line with expectations at 3T. In general, the
NNLS methods and GMF recover the IE lobe well, with occasional noise, but the myelin water
lobes are over-smoothed with peaks at implausibly low values or irregular. We note that MIML
finds a diminished myelin water lobe in the lesion as compared to the normal appearing tissue,
in line with expectations of MS as a demyelinating disorder; in contrast, the NNLS methods in
Lesions 2/3 exhibit larger myelin water lobes in lesion tissue as compared to normal appearing
tissue. GMF performs similarly to MIML in this regard, albeit with more irregular distributions,
due to the more variable reconstruction in the myelin lobe in the contralateral tissue. We use
a logarithmic scale for the T2 axis.
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approaches. By training on solely simulated data, our approach does not require expensive,

in vivo acquisitions for training data, nor the need for multiple scans to adapt to different

machines or sequences. Further, by simulating random flip angles in the dataset, our method

is able to automatically account for the flip angle, in contrast to non-parametric methods

which need to estimate the flip angle before fitting. Altogether, this allows for noise-robust

reconstruction by training the network on simulated signals with an SNR range and noise

model corresponding to those from clinical scans. By generating the simulations guided by

biophysical models, we can simultaneously retain stability in the reconstruction by constrain-

ing the space of T2 distributions while not being restricted to a specific number of water pools

at inference time. Further, the produced distributions are implicitly constrained to have a

plausible, lobular structure (as in parametric approaches), which makes the interpretation of

parameters of interest such as the MWF consistent with past studies, in contrast to potential

irregular distributions from non-parametric methods. The trained MIML model and code

for generating the synthetic data and training the model is available at the following website:

https://github.com/thomas-yu-epfl/Model_Informed_Machine_Learning.

However, our current approach has several limitations. First, while we attempted to be as

comprehensive as possible in the simulated dataset, advances in biophysical modelling make

it possible that there are additional relevant water pools to be estimated. For example, the

Gaussian Mixture model we use assumes the symmetry of the mixture distributions, which

may not be true in real distributions; in the case of skew, ground truth distributions, our

method can result in a biased reconstruction. Second, while we fixed the Rician noise model

for the training signals, with a fixed SNR range of 80-200, we note that in some sequences, more

complex noise models such as the non-central chi distribution [181] with different SNR ranges

may also be appropriate. Third, we only consider 32-echo sequences in this chapter. Fourth,

we use a fixed, logarithmic T2 discretization consisting of 60 points from 10ms to 2000ms for

both our method and the NNLS methods. However, finer or coarser discretizations could also

have been used. Finally, there may be relevant physical effects such as magnetization transfer

[182], [183] which, if modelled in the dataset, could improve the reconstructions. In particular,

it has recently been shown [184] that the T2 of different compartments in white matter show

an orientation dependence with respect to the main magnetic field, with concomitant effects

on the estimation of the MWF, for example.

However, we highlight the flexibility and modularity of our approach for accounting for these

limitations. Additional water pools can be easily added to the training dataset. The noise

model and SNR range used in training can be swapped out for different noise models and

SNRs. A sequence with a different number of echoes can be accommodated by reconstructing

the dataset with the required number of echos and retraining the network. Different T2

discretizations would simply require downsampling of the high resolution T2 distributions

in our dataset to match the new discretization, with subsequent retraining of the network.

More advanced physical modelling can be added to the generation of new datasets. As the

training of the network is quite fast (70s on a laptop GPU), the bottleneck for addressing these

limitations is the dataset generation (1 hour on 46 CPU threads). However, while we generated
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our dataset on CPU, GPU acceleration of the EPG formalism can potentially speedup dataset

generation significantly [185].

As for future work: in this chapter, we did not study the impact of denoising the data on the

reconstruction performance of the methods compared. This is first because in our overview

of the literature, we found that presenting results on denoised data is not typical unless the

subject of the paper is denoising. Second, the type of denoising, setting of denoising param-

eters, and accounting for potential biases due to denoising all require careful justification

and study, which we felt was out of the scope of this paper, which introduces a proof of con-

cept. However, we note that in the MS data, particularly for the NNLS methods, ostensibly

normal appearing regions of the brain had unusually low MWF values, sometimes less than

that predicted for the lesion. These areas of unusually low MWF values could also be seen

in the scans of healthy subjects. These may be due to, in part, instability/ill-posedness in

the estimation due to comparatively low SNRs in the in vivo scans; the in vivo scans we used

have fairly high resolution (1.6-1.8mm) and are isotropic, while typical scans in the literature

generally use much thicker slices ( ≥ 2mm) along the axial direction [130], [147]. We note that

both distributions and MWF maps from the NNLS methods were more plausible in the ex

vivo scan, where the SNR was much higher. This is consistent with the observations in [154]

concerning the noise dependence of NNLS methods. Future studies will be conducted to

study the impact of denoising algorithms such as PCA denoising [186], or the NESMA filter

[187] on MIML as well as other methods, and any effect this has on their comparison.

Our method, as well as the other methods compared to in this chapter, reconstruct the T2

distribution in each voxel separately. However, there are parametric and non-parametric

approaches to T2 relaxometry which use spatial regularization [188]–[190]. These approaches

assume that voxels spatially close to each other should also have similar reconstructions;

hence, they perform reconstructions on groups of adjacent voxels simultaneously, with con-

straints that limit the variation of the reconstructions over the group. In addition, another

approach estimates over groups of voxels by assuming the joint sparsity of the distributions

in a region of interest [191]. In future work, we will study how regularization/simultaneous

fitting over regions of interest can be incorporated into our machine-learning framework as

well as its effects on distribution reconstruction.

In this paper, we tested our method on two types of sequences: a multi-echo spin echo

sequence and a 3D gradient and spin echo sequence. While in principle our approach is

agnostic to the sequence used, in the future we will further validate our method on data from

other sequences such as the T2 prepared gradient echo sequences [192].

Finally, we note that using more advanced neural networks such as Long short term memory

(LSTM) networks [193], which are suitable for time series data, may offer improved recon-

structions as well as potentially eliminating the need for fixed size inputs. In addition, while

our synthetic dataset generation is based solely on the most common cases for biophysical

modelling, we will investigate how to improve dataset generation i.e. the number of pools, the
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maximum number of pools present per signal, etc. in order to optimize the generalization

capabilities of the network while minimizing the ill-posedness of the reconstruction.

6.6 Conclusion

In this chapter, we presented Model-Informed Machine Learning (MIML), an approach for

estimating T2 distributions from MRI signals using a neural network trained on synthetic

data derived from biophysical models. Through our evaluations on synthetic data, an ex

vivo scan, as well as healthy and pathological in vivo data, we show that MIML provides

more robust, accurate, and plausible T2 distributions than standard parametric and non-

parametric methods across a wide range of SNRs. We show that MWF maps derived from

MIML show the highest conformity to anatomical scans, have the greatest correlation to

a histological map of myelin volume, and improve upon the lesion visualization capabili-

ties of other methods, with better contrast between lesions and normal-appearing tissue

as well as clearer delineation between lesions and close adjacent structures. The code for

generating the datasets and training the network is available at https://github.com/thomas-

yu-epfl/Model_Informed_Machine_Learning.
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7 Using Realistic and Bicubic Downsam-
pling for Super-Resolution

The content of the following chapter is based on the postprint version of the article: “Benefiting

from Bicubically Down-Sampled Images for Learning Real-World Image Super-Resolution”

published in the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision [194]. DOI: 10.1109/WACV48630.2021.00163.

7.1 Introduction

Similarly to Chapter 6, in this chapter we consider how realistic models can inform supervised

methods for solving inverse problems where no, or only small amounts of ground truth data

are available; in contrast to Chapter 6, instead of doing so through the synthetic generation of a

large, realistic dataset, we leverage a small quantity of realistic, physically generated data such

that we can improve upon and reuse existing supervised methods trained on large, unrealistic

datasets.

In this chapter we shift away from MRI related inverse problems to the inverse problem corre-

sponding to single image super resolution (SR), where we want to recover a high-resolution

image from a low-resolution image; concretely, a general, analytical model for image degrada-

tion which is commonly assumed is

y = (x∗k) ↓s +n (7.1)

where y is a low-resolution(LR) image, x is the corresponding high-resolution(HR) image,

∗ denotes convolution, k is a blur kernel, n is noise, and ↓s denotes downsampling by a

factor s. We note that while MR super-resolution is a field in its own right, the realistic

modelling considered in this chapter applies only to camera images, making transferability of

this framework to MR super-resolution difficult. However, this problem has some connection

to the undersampled MR image reconstruction problem in that in both cases, in some sense,
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4× RealSR 4× RBSR (proposed) 

Figure 7.1: An example SR produced by our system on a real-world LR image, for which no
higher resolution/ground-truth is available. Our method is compared against the RealSR
[195] method, a state-of-the-art of real SR method trained in a supervised way on real low-
resolution and high-resolution pairs. The low-resolution image is taken from HR images in
the DIV2K validation set [196].

one needs to compensate for the lack of information of the input to produce a ”high quality”

image. In undersampled MR, one is implicitly trying to fill in the missing k-space values

by reconstructing a high quality image. In super-resolution, one is trying to increase the

resolution of a LR image, while maintaining high frequency detail, which is equivalent to filling

in the Fourier components (or k-space) of the HR image corresponding to high frequencies.

In recent years, supervised, deep learning methods which implicitly imbed the above model

through training sets have become the state of the art for solving the SR inverse problem.

However, since the first introduction of deep learning for SR [197], the training datasets for

proposed methods have been synthetically generated from bicubically downsampling high

quality images [197]–[201]. Partly this was due to the desire for standardizing datasets for fair

comparisons between methods. However, although the performance of these methods on

bicubically downsampled images are quite impressive [202], [203], applying these methods on

real-world LR images, with unknown degradations from cameras, cell-phones, etc. often lead

to poor results [195], [204]. This indicates that training on datasets from bicubic downsampling,
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6 

Original image Estimated kernels from HR to real LR Estimated kernels from HR to bicubic LR 

Figure 7.2: Downsampling kernels estimated patchwise on a RealSR [195] LR image and the
same image bicubically downsampled from the HR image. Estimations were done using least
squares optimization with regularization on the kernel using the LR and HR images, assuming
the standard degradation model of kernel convolution followed by subsampling. We can see
that the RealSR LR images are difficult to estimate with the standard image degradation model.

in general, is not realistic enough for generalizable performance. Therefore, there remains

the real-world SR problem: to super-resolve LR images downsampled by unknown, realistic

image degradations [205].

Recent works try to model realistic degradations by acquisition instead of artificial down-

sampling, such as hardware binning, where the downsampling corresponds to a coarser grid

of photoreceptors of the camera [206], or camera focal length changes, which changes the

apparent size of an object [195]. The latter, in particular, is compelling as a model for realistic

downsampling as the resulting solution of the SR problem can be interpreted as ”zooming in”

on in image, which is intuitively what is desired in SR. However, in terms of training datasets,

these approaches propose a very limited number of physically real low and high-resolution

pairs in comparison to the typically used synthetically generated datasets. Furthermore,

as shown in [207], correct modeling of the image degradation is crucial for accurate super-

resolution. However, as can be seen in Figure 7.2, even Equation 7.1 is not general enough to

encompass the true downsampling model of [195]. Therefore, the real-world SR problem is in

the regime where the model M is either unknown or cannot easily be expressed accurately

in an analytical fashion. Therefore, a naive, implicit supervised approach may not have a

sufficient amount of data for optimal learning.

Recently, there has been a push to account for more realistic image degradations through

implicit supervised methods on physical generated datasets with real LR to HR pairs [195],

[206], synthetically generating real LR to HR pairs through unsupervised learning or blind

kernel estimation [204], [208], and simulating more complex image degradation models such

as in Equation 7.1, with and without restrictions on k and ↓s [209], [210]. The pipelines of

these approaches generally have the ultimate goal of training an end-to-end network to take

as input a ”real" image and output a HR image. Although these approaches result in better

reconstruction quality, the real challenge of the real-world LR to HR problem is not only

limited to a lack of real LR and HR pairs; the large variety of degraded images and the difficulty

in accurately modeling the degradations makes realistic SR even more ill-posed than SR based

on bicubically down-sampled images [211].
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Main idea We propose to address real world SR with a two-step approach, which we call Real

Bicubic Super-Resolution (RBSR). RBSR generally decomposes the difficult problem of real

world SR into two, sequential subproblems: 1- Transformation of the wide variety of real LR

images to a single, tractable LR space. 2- Use of generic, pretrained SR networks trained on

bicubically downsampled datasets with the transformed LR image as input.

We choose to transform real LR images to the common space of bicubically downsampled

images because of two main advantages. First, bicubic images are tractably generated with

the standard convolutional model of image degradation in Equation 7.1, therefore the inverse

transform is less ill-posed compared to the cases of arbitrary/unknown degradations. Second,

we can leverage the already impressive performance of SR networks trained on bicubically

downsampled images, thanks to the availability of huge SR image datasets using bicubic

kernels (see Figure 7.1); as bicubically downsampled images are still at least somewhat related

to realistically downsampled images, we can still hope that the impressive performance of

bicubic SR networks will transfer over to real-world images once we approximately convert

inputs to bicubically downsampled inputs. As the transformation of realistic LR images to

bicubically downsampled LR images is less complex than the transformation of realistic LR

images to HR images, we are essentially splitting the SR inverse problem into two, more

tractable inverse problems. In this way, we are able to combine all the available model-

driven (small, realistic training datasets with intractable models M) and data-driven (networks

pretrained on large datasets of unrealistic training data) information.

7.2 Contributions

1. We use adversarial training for a CNN-based image-to-image translation network, which

we call a “bicubic look-alike generator”, to map the distribution of real LR images to

the easily modeled and well understood distribution of bicubically downsampled LR

images. We use a SR network with the transformed LR image by our proposed bicubic

look-alike generator as input to solve the real-world super-resolution problem.

2. To this end, and for the consistency of the bicubic look-alike generator, we propose a

novel copying mechanism, where the network is fed with identical, bicubically down-

sampled images as both input and ground-truth during training; this way, the network

loses its tendency to merely sharpen the input images, as realistic low-resolution images

usually seem to be much smoother.

3. We train our bicubic look-alike generator by using an extended version of perceptual

loss, where its feature extractor is specifically trained for SR task and on bicubically

downsampled images. The proposed “bicubic perceptual loss” is shown to result in less

artifacts.

4. We demonstrate the effectiveness of the proposed two-step approach by comparing it

to an end-to-end setup, trained in the same setting. Furthermore, we show that our
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proposed approach outperforms the state-of-the-art works in terms of both qualitative

and quantitative results, as well as results of an extensive user study conducted on

several real image datasets.

In summary, training models on paired datasets of real LR and HR pairs requires expensive

collection of big datasets; in addition, training a single model on multiple degradations for

SR is ill-posed/vulnerable to instability [211]. Training on synthetic datasets coming from

analytical degradation models have the benefit of much larger datasets and an easier task for

the network, at the cost of being less realistic. However, this approach still has the ill-posedness

problem of training on multiple degradations. In RBSR, we try to simultaneously keep the

added information from realistic LR images and the impressive performance of SR networks

on single, well-defined degradations.

7.3 Related Work

The vast majority of prior work for Single image super-resolution (SISR) focuses on super-

resolving low-resolution images which are artificially generated by bicubic or Gaussian down-

sampling as the degradation model. We consider that recent research on addressing real-world

conditions can be broadly categorized into two groups. The first group proposes to physically

generate new, real LR and HR pairs and/or learn from real LR images in supervised and unsu-

pervised ways (Section 7.3.1). The second group extends the standard bicubic downsampling

model, usually by more complex blur kernels, and generates new, synthetic LR and HR pairs

(Section 7.3.2).

7.3.1 Real-World SR through real data

Some recent works [195], [212] propose to capture real LR/HR image pairs to train SR models

under realistic settings. However, the amount of such data is limited. The authors in [195], [212]

proposed to generate real, low-resolution images by taking two pictures of the same scene,

with camera parameters all kept the same, except for a changing camera focal length. Hence,

the image degradation corresponds to "zooming" out of a scene. They generate a dataset of

real LR and HR pairs according to this procedure and show that bicubically trained SR models

perform poorly on super-resolving their dataset. Since this model’s image degradation can be

modeled as convolution with a spatially varying kernel, they propose to use a kernel prediction

network to super-resolve images. In [204], the authors perform unsupervised learning to train

a generative adversarial network (GAN) to map bicubically downsampled images to the space

of real LR images with two unpaired datasets of bicubically downsampled images and real

LR images. They then train a second, supervised network to super-resolve real LR images,

using the transformed bicubically downsampled images as the training data. In a similar work,

[213] trains a GAN on face datasets, for the specific face SR task, but their approach relies on

unrealistic blur-kernels.
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In [214], the authors model image degradation as convolution over the whole image with

a single kernel, followed by downsampling. Given a LR image, they propose a method to

estimate the kernel used to downsample the image solely from subpatches of the image by

leveraging the self-similarity present in natural images. This is done by training a GAN, where

the generator produces the kernel and the discriminator is trained to distinguish between

crops of the original image and crops which are downsampled from original image using this

estimated kernel. This method relies on the accuracy of the standard convolutional model

of downsampling, which is shown to not hold for RealSR images in Figure 7.2. Further, the

estimation of the kernel and subsequent SR are quite time consuming in comparison to

supervised learning based methods; the calculation of the kernel alone for a 1000×1000 image

can take more than three minutes on a GTX 1080 TI. In addition, their method constrains the

size of the input images to be "large enough" since they need to downsample the input images

during training. In [215], the authors propose an unsupervised cycle-in-cycle GAN, where they

create one module for converting real LR images to denoised, deblurred LR images and one

module for SR using these Clean LR images. They then tune these networks simultaneously

in an end-to-end fashion, which causes this intermediate representation of the LR image to

deviate from their initial objective.

Bicubic 
look-alike 
generator 

Real LR Bicubic 
look-alike 

LR 

Adversarial loss 
Bicubic 

perceptual loss 

Bicubically  
down-sampled 

dataset 

L1 loss 

SR decoder 

Trained on bicubically down-sampled LR/HR pairs 

SR image 

L1 loss x4 

Figure 7.3: We propose a two-step pipeline for real world SR. First, we transform real LR images
to bicubically downsampled looking images through our bicubic look-alike generator. We
then pass the transformed image as input to a generic SR decoder trained on bicubically
downsampled images.

7.3.2 Real World SR through extended models

In [210], the authors extend the bicubic degradation model by modeling image degradation

as a convolution with an arbitrary blur kernel, followed by bicubic downsampling. They

explicitly embed this unrealistic super-resolution model into an alternating iterative scheme

where analytical deblurring is alternated with applying a SR network trained on bicubically

downsampled images. Although this method generalizes to arbitrary kernels, one has to

provide the kernel and the number of iterations as an input to the pipeline. In [209], the authors

extend the bicubic degradation model by modeling image degradation as a convolution with

a Gaussian blur kernel, followed by bicubic downsampling. They use an iterative scheme

using only neural networks, where at each iteration the pipeline produces both the SR image

and an estimate of the corresponding downsampling kernel. In [208], the authors also model
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image degradations as convolution with a blur kernel followed by bicubic downsampling.

They estimate the blur kernel using a pre-existing blind deblurring method on a set of "real"

images which are bicubically upsampled; they use the same dataset of low quality cell-phone

pictures used in [204]. They then train a GAN to generate new, realistic blur kernels using

the blindly estimated blur kernels. Finally, they generate a large synthetic dataset using these

kernels and train an end-to-end network on this dataset to perform SR. These three methods

all rely on an analytical model for image degradation as well as being reliant on restrictive

kernels or blind kernel estimation.

7.4 Methodology

7.4.1 Overall pipeline

RBSR consists of two steps; first, we use a Convolutional Neural Network (CNN)-based network,

namely the bicubic look-alike image generator, whose objective is to take as input the real LR

image and transform it into an image of the same size and content, but which looks as if it had

been downsampled bicubically rather than with a realistic degradation. We call this output

the bicubic look-alike image. Second, we use any generic SR network trained on bicubically

downsampled data to take as input the transformed LR image and output the SR image. Figure

7.3 shows an overview of our proposed pipeline. We restrict the upsampling factor to four. In

the following subsections, we describe each component of our pipeline in more detail.

7.4.2 Bicubic look-alike image generator

The bicubic look-alike image generator is a CNN, trained in a supervised manner. The main

objective of this network is to transform real LR images to bicubic look-alike images. In this

section, we present its architecture in detail. Then, we introduce a novel perceptual loss used

to train it. Finally, we also introduce a novel copying mechanism used during training to make

this transformation consistent.

Architecture

The architecture of the bicubic look-alike generator is shown in Figure 7.4. The generator is

a feed-forward CNN, consisting of convolutional layers and several residual blocks, which

has shown great capability in image-to-image translation tasks [216]. The real low-resolution

image I Real−LR is passed through the first convolutional layer with a ReLU activation function

with a 64 channel output. This output is subsequently passed through 8 residual blocks. Each

block has two convolutional layers with 3×3 filters and 64 channel feature maps. Each one

is followed by a ReLU activation. By using a long skip connection, the output of the final

residual block is concatenated with the features of the first convolutional layer. Finally, the

result is filtered by a last convolution layer to get the the 3-channel bicubic look-alike image
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Figure 7.4: Schematic diagram of the bicubic-alike decoder. We train the decoder using our
new bicubic perceptual loss, alongside standard L1 and adversarial losses. In this schema, k,
n and s correspond to kernel size, number of feature maps and stride size, respectively.

(I Bi cubi c−LR ).

Loss functions

In the bicubic look-alike generator, we use a loss function (Ltot al ) composed of three terms:

1- Pixel-wise loss (Lpi x.wi se ), 2- adversarial loss, and 3- our novel bicubic perceptual loss

function (Lbi c.per c.). The overall loss function is given by:

Ltot al =αLpi x.wi se +βLbi c.per c. +γLad v , (7.2)

where α, β and γ are the corresponding weights of each loss term used to train our network.

In the following, we present each term in detail:

• Pixel-wise loss. We use the L1 norm of the difference between predicted and ground-truth

images as this has been shown to improve results compared to the L2 loss [217].

• Adversarial loss. This loss measures how well the image generator can fool a separate

discriminator network, which originally was proposed to reconstruct more realistic looking

images for different image generation tasks [218]–[221]. However, in our approach, as we are

feeding the discriminator with bicubically downsampled images as the “real data”, it results in

images which are indistinguishable from bicubically downsampled images. The discriminator

network used to calculate the adversarial loss is similar to the one presented in [219]; it consists

of a series of convolutional layers with the number of channels of the feature maps of each

successive layer increasing by a factor of two from that of the previous layer, up to 512 feature

maps. The result is then passed through two dense layers, and finally, by a sigmoid activation

function. The discriminator classifies the images as either “bicubically downsampled image”

(real) or “generated image”(fake).

• Bicubic perceptual loss. Perceptual loss functions [86], [222] tackle the problem of blurred

textures caused by optimization of using per-pixel loss functions and generally result in

more photo-realistic reconstructions. In our approach, we take inspiration from this idea of

perceptual similarity by introducing a novel perceptual loss.

However, instead of using a pre-trained classification network, e.g. VGG [223] for the high-level
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feature representation, we use a pre-trained SR network trained on bicubically down-sampled

LR/HR pairs. In particular, we use the output of the last residual block of our SR network,

presented in Section 7.4.3, to map both HR and SR images into a feature space and calculate

their distances. The bicubic perceptual loss term is formulated as:

Lbi c._per c. =
1

Wi , j Hi , j

Wi , j∑
x=1

Hi , j∑
y=1

(
φSR

k

(
I Bi cubi c−LR

)
−φSR

k

(
I T−LR))2

,

(7.3)

where Wi , j and Hi , j denote the dimensions of the respective feature maps. φSR
k indicates the

output feature map of the k-th residual block from the SR decoder and I T−LR denotes the

transformed LR image. We conjecture that using a SR feature extractor, which is specifically

trained for SR task and on bicubically down-sampled images, will better reflect features

corresponding to the characteristics of bicubically downsampled images than using a feature

extractor trained for image classification.

In Figure 7.5, we compare the effect of using the standard perceptual loss which uses a pre-

trained classification network versus our bicubic perceptual loss. Note that the standard

perceptual loss introduces artifacts in the transformed LR image which are avoided by the

bicubic perceptual loss. Further, we see that using the bicubic perceptual loss produces

sharper edges as compared to using just the L1 loss.

Copying mechanism

Bicubically downsampled images are in general seem to be much sharper than realistic

low-resolution images, therefore, training the bicubic look-alike network with only real LR

images gives it a tendency to merely sharpen the input images instead of learning bicubic

characteristics. To address this issue, we want the network to be consistent and apply minimal

sharpening to already sharp images. To that end, we utilize a novel copying mechanism, where

the network is periodically fed with identical, bicubically downsampled images as both input

and output during training. This is done in order to prevent the network from just learning to

sharpen images, as this can cause oversharpening or amplification of artifacts.

In Figure 7.6 we compare the outputs of the network trained with and without the copying

mechanism. We can see clearly that training without the copying mechanism results in severe

over-sharpening of the output image.
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7.4.3 SR generator

The second step of our pipeline is to feed the output of our bicubic-like image generator as

the input to any SR network trained on bicubically downsampled images. For simplicity, we

use a network based on EDSR [224]. The EDSR architecture is composed of a series of residual

blocks bookended by convolutional layers. Crucially, batch normalization layers are removed

from these blocks for computational efficiency and artifact reduction. For simplicity, as well

as decreasing training/inference time, we only use 16 residual blocks, as compared to the 32

residual blocks used in EDSR. This generator is trained on DIV2K training images (track 1:

bicubically downsampled images and HR pairs) and by using the L1 loss function.

7.4.4 Training parameters

Bicubic look-alike generator For the training data, as input, we use 400 RealSR [195] and

400 DIV2K Track 2 [196] LR images. The RealSR dataset contains real LR-HR pairs, captured

by adjusting the focal length of a camera and taking pictures from the same scene. Track 2

images are downsampled using unknown kernels. As the desired output is the bicubic look-

alike image, we use the bicubically downsampled RealSR and the bicubically downsampled

DIV2K (track 1) images as the ground truth for the training inputs. In addition, as described

in Section 7.4.2, we add 400 bicubically downsampled images from DIV2K, identical for both

input and ground-truth, to make the generator consistent and avoid oversharpening or artifact

amplification. We use the same 400 bicubically downsampled images from DIV2K as the real

input of the discriminator. At each epoch, we randomly cropped the training images into

128×128 patches. The mini-batch size in all the experiments was set to 16. The training

was done in two steps; first, the SR decoder was pre-trained for 1000 epochs with only the L1

pixel-wise loss function. Then the proposed bicubic perceptual loss function, as well as the

adversarial loss, were added and the training continued for 3000 more epochs. The weights of

the L1 loss, bicubic perceptual loss and adversarial loss function (α, β and γ) were set to 1.0,

3.0, and 1.0 respectively. The Adam optimizer [81] was used during both steps. The learning

rate was set to 1×10−4 and then decayed by a factor of 10 every 800 epochs. We also alternately

optimized the discriminator with similar parameters to those proposed by [219].

SR generator The SR decoder is also trained in a single step for 4000 epochs and using the L1

loss function. For the training data, we only use track 1 images of DIV2K, which consists of 800

pairs of bicubically downsampled LR and HR images. Similar to the training of the bicubic

look-alike generator, the Adam optimizer was used for the optimization process. The learning

rate was set to 1×10−3 and then decayed by a factor of 10 every 1000 epochs.

End-to-end baseline To investigate the effectiveness of RBSR, which super-resolves a given

input in two steps, we also fine-tune the EDSR architecture with the same datasets used to

train the bicubic look-alike generator. This dataset consists of 400 RealSR and 400 DIV2K Track

2 LR and HR pairs. We further noticed that the inclusion of 400 bicubically downsampled

LR and HR pairs in this dataset adds more robustness to the performance. In order to keep
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the same number of parameters as in the RBSR pipeline, we increase the number of residual

blocks of this end-to-end generator to 24. The training parameters used for this baseline is

similar to the ones used in [224].

7.5 Experimental results

In this section, we compare RBSR to several SOTA algorithms (CVPR 2019, ICCV 2019) in

real-world SR both qualitatively and quantitatively. We show standard distortion metrics

for the datasets with ground truth, and we show a comprehensive user study conducted

over six image datasets with varying image quality and degradations. In all cases, we use an

upsampling factor of four.

We emphasize that the distortion metrics are not directly correlated to the perceptual quality as

judged by human raters [219], [226]–[230]; the super-resolved images could have higher errors

in terms of the PSNR and SSIM metrics, but still generate more appealing images. Moreover,

the RealSR images represent only a limited group of realistic images from Nikon and Canon

cameras. Therefore, we validate the effectiveness of our approach by qualitative comparisons

and by an extensive user study in the following sections.

7.5.1 Test images

Lack of ground-truth in real-world SR

One of the main challenges of real-world SR is the lack of real low and high resolutions pairs,

for both training and testing. As mentioned previously, most of the known benchmarks in

super-resolution had no choice but using a known kernel to create a counterpart with lower

resolution. To the best of our knowledge RealSR [195] is the only dataset with real images

of the same scenes with different resolutions: their LR and HR images are generated by

taking two camera pictures of the same scene, but changing the focal length of the camera

between the two pictures. Hence, both are real images, but with the RealSR LR being degraded

with the degradation from changing the focal length of the camera (zooming out). DIV2K

Unknown kernel LR images [196] is another attempt to create pairs of real low and high-

resolutions images. They generate synthetically real low and high resolution images by using

unknown/random degradation operators.

Images without ground-truth

In addition to RealSR LR and DIV2K Unknown kernel datasets, we also evaluate our method

on four datasets of real images, without having any ground-truth as this is the main focus

of real-world SR: 1- RealSR [195] HR test images, 2- DIV2K HR [196] validation images (real),

3- DPED [225] Mobile Phone images, 4- TV Stream images (unknown, depending on the

original content of the TV). The DPED Mobile Phone dataset is a dataset of real images where

cell-phones were used to take pictures. The TV stream images are decoded images from an
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actual TV channel stream at HD (1920×1080) resolution; our acquisition algorithm captured

one image every ten minutes over a period of two days, to ensure that our these test images

cover different types of content. We note that no information is available about their type

of degradations, as the original resolutions of the contents before streaming are unknown.

Further, we note that we only have the ground-truth high-resolution images for the DIV2K

Unknown Kernels images and the RealSR LR images.

7.5.2 Quantitative results

In this work, calculating distortion metrics such as PSNR and SSIM is not possible for test

images that truly reflect the real-world problem (original images from smartphones, TV

streams, etc.), as in real cases the downsampling operator is not known and therefore no

ground-truth is available. RealSR [195] is the only dataset with physically produced high and

low-resolution image pairs.

Table 7.1 shows the SSIM and PSNR values estimated between super-resolved images of RealSR

LR test images and their HR counterparts, using bicubic upsampling, EDSR-real [224], the

RealSR network [195], DPSR [210] and our proposed method. The training details of each

method is presented in Section 4.3 of the main manuscript. We also add the perception index

(PI) metric to our evaluation; this index combines two no-reference image quality measures

of Ma et al. [231] and NIQE [232] and was shown to have a higher correlation with human

opinion than other commonly used metrics [226]. As PI is a no-reference metric, it can be also

used for test images that have no ground-truth.

Dataset Method bicubic SRResNet RCAN EDSR-real DPSR RealSR RBSR

SSIM 0.77 0.79 0.80 0.81 0.79 0.81 0.82

RealSR PSNR 26.63 26.98 27.11 26.51 27.02 28.05 26.54

PI 9.28 9.06 9.19 7.94 9.12 8.97 7.76

DIV2K SSIM/PSNR - - - no ground-truth - - -

HR PI 10.02 9.62 9.81 9.01 9.36 9.19 8.48

DPED SSIM/PSNR - - - no ground-truth - - -

(cellphones) PI 10.24 9.91 10.02 9.62 9.73 9.55 7.92

TV SSIM/PSNR - - - no ground-truth - - -

Streams PI 11.52 10.71 10.64 10.04 11.19 10.32 10.15

Table 7.1: Comparison of bicubic interpolation, SRResNet [219], RCAN [233], EDSR [224],
DPSR [210], RealSR [195] and RBSR (ours) on different presented test sets. Best measures
(SSIM ↑, PSNR [dB] ↑, PI ↓) are highlighted in bold.
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7.5.3 Qualitative comparison

For the qualitative comparison, we compare the following real world SR algorithms: 1- RBSR

(Ours), 2- EDSR-real: the EDSR [224] network trained end-to-end on the same data/settings

as RBSR, 3- The pretrained RealSR network [195], and 4- The pre-trained DPSR network with

default settings for real-world SR [210]. We compare with the end-to-end EDSR network in

order to show the efficacy of splitting the problem into two steps. We compare to RealSR and

DPSR as they are two of the most recent state-of-the-art algorithms. We use their pre-trained

models along with the default settings for real images they provideI,II. In Figure 7.7, we show

qualitative results on a random subset of the image datasets described in the previous sections.

7.5.4 User study

We also conducted a user study comprising forty one people in order to gauge the perceptual

image quality of SR images using the image datasets described in the previous section. We

chose five images randomly from each dataset, with thirty total images. For each image, the

users were shown four SR versions of the image, each corresponding to the real-world SR

algorithms being compared. Users were asked to select which SR image felt more realistic and

appealing. The images were shown to users in a randomized manner.

Figure 7.9 shows a screenshot of the survey that we used to evaluate our proposed method.

We note that no reference image was shown, since the vast majority of the images had no

ground truth. In sum, 41 people participated in user study.

As the datasets reflect a wide range of image quality, etc., we show the evaluations of the

algorithms for each dataset separately. Our metric of evaluation for the algorithms is the

percent of votes won. We show the results of the user study in Figure 7.8. We find that RBSR

won the largest percent of votes over all six image datasets individually. RBSR decisively won

the largest percentage of votes, by a margin of 10 to 55% from the second ranked algorithm, on

the DIV2K HR, the RealSR-HR, the RealSR-LR, and the TV stream image datasets. The second

place algorithm on these datasets alternated from RealSR, DPSR, and EDSR-Real, and RealSR

respectively. We note that on the RealSR-LR dataset, for which the RealSR algorithm is tailored

and trained, RBSR and EDSR-Real are the first and second place. This shows the efficacy of

both the two step approach of RBSR and introducing bicubically downsampled images into

the training dataset. On the DPED dataset, RBSR won by a small margin over DPSR.

Ihttps://github.com/csjcai/RealSR
IIhttps://github.com/cszn/DPSR
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7.6 Additional Experiments

7.6.1 Generalizability of RBSR

Our proposed approach (RBSR) is a two step procedure. The first step transforms the real LR

image using the bicubic look-alike generator. The second step uses any generic SR decoder

trained on bicubically downsampled images, taking the transformed LR image as input. For

the qualitative comparison and the user study, we used a pre-trained EDSR network for this

second step. Here, we show the robustness and generalizability of our two step approach by

replacing the EDSR network with pretrained ESRGAN and RCAN models. To do so, we compare

the results of these models on real LR images and our transformed LR images obtained from

the bicubic look-alike generator. Experimental results demonstrate that these SR methods

generate more plausible results with greater perceptual quality when fed with transformed LR

images instead of real LR images (see Figure 7.10).

7.6.2 Ablation study

In this section, we perform another study to investigate the effectiveness of each proposed

component of the bicubic look-alike generator. We compare the performance of our net-

work trained with the combinations of different settings such as different loss functions, and

trainings with and without copying mechanism. These setting are listed in Table 7.2. We

calculate PSNR and SSIM for each setting on RealSR [195] test set, the only available dataset

with ground-truth for real-world SR task. For each setting, SSIM and PSNR values are calcu-

lated after upsampling the picture by a fixed ×4 SR decoder and comparing it to the RealSR

ground-truth.

Name Description SSIM PSNR

RBSRMSE only LMSE loss 0.788 27.69

RBSRE only L1 loss 0.792 27.95

RBSREP L1 +Lper ceptual 0.811 26.98

RBSREPA L1 +Lper ceptual +Lad ver sar i al 0.798 26.60

RBSREB A L1 +Lbi cubi c per ceptual +Lad ver sar i al 0.835 26.73

RBSR L1 +Lbi cubi c per ceptual +Lad ver sar i al+ Copying mechanism 0.820 26.54

Table 7.2: Comparing the effect of each proposed component of the bicubic look-alike genera-
tor on LR and HR images of [195] test set. Best measures (SSIM ↑, PSNR [dB] ↑) are highlighted
in bold. As mentioned earlier, these metrics are not directly correlated to the perceptual
quality, therefore, we chose our best baseline based on qualitative comparison shown in
Figure 5 and Figure 6 of the manuscript, comparing RBSREPA to RBSREB A and RBSREB A to
RBSR, respectively.

As already emphasized, the distortion metrics are not directly correlated to the perceptual
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quality as judged by human raters, therefore, we chose our best baseline based on qualitative

comparisons.

7.6.3 Computational cost

We compared our two step approach (RBSR), our end-to-end comparison (EDSR-real), Re-

alSR [195], and DPSR [210]. In terms of computational cost, both RealSR and DPSR have

different disadvantages. RealSR’s network calculations take place in the high-resolution space,

incurring a heavy memory overhead cost. For example, running the model on CPU requires

19 GB of RAM for an image of size 1200×1200, which is the maximum possible. DPSR is an

iterative algorithm, requiring multiple forward passes and multiple deblurring steps in order

to converge to an acceptable solution; DPSR uses an iterative approach by default for real LR

images. Hence, these two algorithms have either high memory overhead or high computation

time overhead. In contrast, RBSR requires two forward passes per input image. The first

network is relatively lightweight, as it operates exclusively in the LR space. The second network

can be any generic SR decoder for bicubically downsampled images. The complete pipeline

(using EDSR as the SR decoder) reconstructs 1024× 768 pixel images at 26.9 FPS, using a

GeForce GTX 1080 Ti. Our end-to-end setting (EDSR-real) reconstructs the same size images

at 33.7 FPS using the same GPU.

7.7 Conclusion

In this chapter, we have shown that the challenges of super resolution on realistic images

can be partly alleviated by decomposing the typical SR inverse problem solution into two

sub-problems. First, is the conversion of real LR images to bicubic look-alike images using

our novel copying mechanism and bicubic perceptual loss. Second, is the super-resolution of

the converted images using any generic network trained on bicubically downsampled images.

Each sub-problem addresses a different aspect of the real-world SR problem. Converting real

low-resolution images to bicubic look-alike images allows us to handle and model the variety

of realistic image degradations. The super-resolution of bicubically downsampled images

allows for the application of state-of-the-art super-resolution models, which have achieved

impressive results on images with well defined degradations. In this way, we can leverage both

the latest advances in model-based approaches, with realistic albeit small training datasets,

and the latest advances in data-driven approaches, which achieve incredible results on large,

albeit unrealistic training datasets. We show that our approach (RBSR) outperforms the SOTA

in real-world SR both qualitatively and quantitatively using a comprehensive user study over a

variety of real image datasets. In particular, we can see that RBSR, which implicitly embeds a

realistic, albeit analytically challenging SR model, is able to beat DPSR, a supervised approach

which explicitly embeds a conventional albeit unrealistic SR model in its iterative solution.
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Figure 7.5: The effectiveness of using bicubic perceptual loss: (a) HR image, (b) Only L1 loss,
(c) perceptual loss, (d) bicubic perceptual loss, and (e) bicubic perceptual loss + adversarial
loss. Red boxes show how using bicubic perceptual loss (c) decreases artifacts comparing to
using conventional perceptual losses (d), while still producing sharper edges comparing to
only using L1 loss.
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Figure 7.6: Example images generated without (a) and with (b) the copying mechanism during
training. We can clearly see that without the copying mechanism, resulting images suffer from
oversharpening and artifact amplification.
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Figure 7.7: Qualitative results of ×4 SR on a subset of the DIV2k [196] (Rows 1-2), RealSR
HR [195] (Rows 3-4), TV Streams (Row 5), and DPED cell-phone images [225] (Row 6). Results
from left to right: bicubic, EDSR [224] fine-tuned with real LR and HR pairs, DPSR [210],
RealSR [195], and RBSR (ours). Please note that no ground-truth is available for these images.
Zoom in for the best view.
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Figure 7.8: Results of the user study comprising forty one people, comparing EDSR [224], fine-
tuned with real LR and HR pairs, DPSR [210], RealSR [195], and RBSR (ours), on six different
datasets: DIV2K HR [196], RealSR [195] HR, RealSR LR, TV Stream images, DPED [225] Mobile
Phone images, and DIV2K Unknown Kernel LR.
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Figure 7.9: Example screenshot of our online survey to perform a user study and compare our
method to state-of-the-art real-world SR approaches. In total, 41 people participated in this
survey.
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Figure 7.10: Comparison results of RCAN (a) and ESRGAN (2) methods on original images
from the RealSR dataset and our transformed LR images, generated by our bicubic look-alike
generator (BLG). Experimental results demonstrate that these SR methods generate more
plausible results with greater perceptual quality when fed with transformed LR images instead
of real LR images.



8 Discussion and Conclusion

8.1 General Discussion

In the preceding chapters, we concluded each section with a discussion specific to the inverse

problem considered. Here, we make a few general observations.

8.1.1 Self-Supervised vs. Supervised Approaches

We note that the self-supervised methods of Chapters 4 and 5 are independent of the specific

model M of the inverse problem, though of course their success greatly relies on being embed-

ded in traditional, model-driven schemes (Hamiltonian MCMC and variational optimization);

being more flexible, these methods can applied to all inverse problems, for example, where

noise plays a significant role. In contrast, the realistic modelling approaches in Chapters 6 and

7 are entirely specific to the model M of the inverse problem by design; furthermore, for these

approaches we used standard supervised learning methods. Therefore, the introduction of a

self-supervised component along with realistic modelling could further enhance performance;

for example, combining the self-supervised noise reduction of Noise2Self with supervised

super-resolution models.

8.1.2 Validation

While we focused exclusively on validation in Chapter 4, validation is a key component/con-

cern in all the inverse problems we considered, since, in all cases, there is little to no real

ground truth data. Other than Chapter 5, where we only validated on synthetic data, the

validations heavily relied on qualitative analyses through visual inspection and quality ratings

in the absence of ground truth. Therefore, in some sense, these analyses more consider the

plausibility, consistency, and conformity to expected content from prior knowledge of the

reconstructions. In the case of real-world super-resolution, this is entirely appropriate as one

of the primary applications of real-world super-resolution is simply to produce images which

”look good”, e.g. for television or personal use; extreme fidelity to the ground truth is not
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critical for this purpose. In contrast, fidelity to the ground truth is critical for medical images

since the purpose of the image is not merely to look plausible, but to reflect the actual physical

state of the imaged region since the purpose is medical diagnosis and research. Hence, while

qualitative analysis, particularly by radiologists and MR experts, can be a reasonable proxy for

physical validation, it should be taken with a grain of salt. Furthermore, even when ground

truth data is available, making quantitative analysis possible, we showed in Chapters 4 that

commonly used quantitative metrics (PSNR, SSIM, MSE) can be misleading, with counter-

intuitive results which have little correlation with qualitative analysis where ground truth is

available. While we showed alternative quantitative metrics that yield more intuitive results

(e.g. Wasserstein distance for probability distributions, perceptual distance for images), these

have to be carefully tailored to the problem at hand. Therefore, while fidelity to the ground

truth is important, establishing universal, robust ways in which fidelity is measured in inverse

problems is still an open problem.

8.1.3 Properties of Measurement Data and Solutions

Finally, we recall the list of fundamental questions (2.1.1) introduced in the introductory

chapter, applying to all inverse problems. Throughout the thesis, we have addressed the

questions of how realistic the model is, computational expense, the effect of noise in the

measurements, and the myriad ways to solve inverse problems. However, two questions in

particular remain outstanding: the theoretical number of measurements/amount of data

needed for successful recovery and theoretical limits on what solutions can be recovered.

Data Requirements

With model-driven methods, such as compressed sensing, there are proven, theoretical re-

quirements of the measurement data in order for successful recovery; the theory of com-

pressed sensing proves that sparse signals can be reconstructed, with high probability, from

a small set of random measurements (small in comparison to the Nyquist-Shannon limit).

Hence, the measurement data is required to be randomly sampled. However, it is hard, in

general, to theoretically characterize requirements of the measurement data. For example,

in undersampled MRI, suppose the goal is to recover spatial features of a certain size; e.g. if

one wants to detect small tumors or lesions in a brain scan. Then there is clearly an upper

bound on the acceleration factor; at some point there is simply not enough information in

the measured data to recover this information. However, other than through experiment, it is

difficult to see how to establish a sharp bound. This is important as with machine learning

algorithms, if the acceleration factor is ”too high”, one runs the risk of producing a plausible

image with no indication that small features have been omitted. There is a similar problem

in multi-component T2 relaxometry: there is clearly a lower bound on the number of echos

necessary to resolve a lobe of a specific size. In the respective chapters, we fixed the acceler-

ation factor and number of echos; however, it would be desirable to have some theoretical

estimates of the number of measurements required to solve the inverse problem to a given
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specification. Note that we would expect looser requirements on machine learning methods

since they can take advantage of learning from training data; however, as previously stated,

this runs the concomitant risk of simply outputting an image from the implicit prior of the

training data when there is insufficient measurement data.

Properties of Solution Methods

With model-driven methods based on the variational framework of Chapter 2, there are usually

theoretical guarantees on the convergence of the optimization algorithms; while these do not

guarantee that the method converges to the correct solution, they are still desirable as they

show that solutions, unique or otherwise, exist and will be reached. In contrast, data-driven

methods, while showing impressive empirical performance, generally have comparatively less

theoretical guarantees, particularly for end-to-end supervised methods that implicitly embed

M . Indeed, other than the neural network sampler of Chapter 5 and DeepDecoder of Chapter

4, which can be shown to satisfy theoretical guarantees on the validity as a MCMC sampler

and convergence for compressed sensing respectively, none of the other data-driven/hybrid

methods proposed or examined enjoy such theoretical guarantees. In Chapter 2, we noted

that theoretical analysis of data-driven methods exists and is gaining popularity, but is usually

specific to a network architecture/learning strategy. In the future, it would be desirable to have

more general theoretical analyses of data-driven methods.

8.2 Future Work and Conclusion

• In Chapter 4, we engaged in a rigorous validation of self-supervised methods for image

reconstruction from undersampled MR measurements, where, in contrast to the pre-

vious literature, we focused primarily on prospectively accelerated data, the clinically

relevant scenario. Encouragingly, we found that self-supervised methods have high

potential for generalization, as well as evidence that no-reference image quality metrics

could be useful as quantitative metrics when no ground truth is available. However,

we also found that commonly used quantitative metrics do not necessarily reflect per-

ceptual quality. Furthermore, we confirmed that retrospective reconstruction quality

cannot necessarily be taken as a reliable proxy for prospective reconstruction quality.

For the future, more work should be done to investigate quantitative metrics which

reflect perceptual quality. Furthermore, as the end goal of the images is for diagnosis,

more work should be done to add standardize validation over, for example, the detection

of pathological features in the images.

• In Chapter 5, we proposed to solve inverse problems in a probabilistic framework using

a neural network enhanced MCMC sampler which is trained in a self-supervised way.

We found that our proposed method was more robust and accurate than the state of

the art in solving a difficult joint diffusometry-relaxometry problem. For the future,

more work should be done to accelerate the MCMC sampling by optimizing the burnout
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period/number of samples and potentially modifying the algorithm in a more GPU

friendly way. Furthermore, our method, in conjunction with realistic modelling, could

be used to solve the joint diffusometry-relaxometry problem in a more well-posed way

by adding additional constraints.

• In Chapter 6, we created a large, realistic dataset for training a multi-layer perceptron

to solve the inverse problem of multi-component T2 relaxometry, using realistic signal

modelling and realistic priors on the solutions. Furthermore, we introduced a novel

loss function tailored for probability distributions. We demonstrated that our method

was more robust, accurate, and orders of magnitude faster than the state of the art. For

the future, more work should be done to incorporate additional physical modelling

into the dataset generation, to make the modelling even more realistic. Furthermore,

there is potential to combine different types of acquisitions to simultaneously solve

for the spectrum along multiple parameters (T2, T1, Diffusion, Magnetization transfer,

etc) as more realistic modelling needs to incorporate effects on the signal from these

parameters.

• In Chapter 7, we proposed a two step pipeline for real-world super resolution, where we

first convert real low-resolution images to a bicubically downsampled version using a

neural network, then we put this as input to any generic SR network which has been

trained on bicubically downsampled images. This allowed us to leverage both a small re-

alistic dataset as well as much larger, unrealistic datasets for solving the super-resolution

inverse problem, while also being able to take advantage of existing SR approaches with-

out any modifications. For the future, more work should be done to expand the realistic

dataset with additional realistic downsampling, as we concentrated mainly on focal

length changes. Furthermore, the validation of real-world super resolution algorithms

is still heavily based on user perception of image quality, as no ground truth is usually

available. While quantitative validation using unrealistic datasets with ground truth is

still an option, there is no guarantee that image quality will be robust to realistic inputs

or that commonly used quantitative metrics will correspond to perceptual quality. More

work should be done to standardize the validation of real-world super resolution algo-

rithms such that it does not have to heavily rely on different subjective judgments from

different people or quantitative evaluation on unrealistic datasets.

A naive observer first introduced to machine learning and the deep learning revolution might

remark on the declining usefulness of modelling, analytical solutions, and traditional algo-

rithms; after all, one can simply acquire a huge dataset of training pairs and train a neural

network which outperforms traditional approaches on every metric without having to deal

with these complexities. To some extent, this is true for some subjects, such as image classifi-

cation. However, when faced with complex problems for which no or little ground truth data is

available or even feasible to acquire, one must use all the tools at one’s disposal, model-driven

and data-driven. In this thesis, we have addressed four inverse problems, arising from MRI and

computer vision, for which large, realistic datasets for training standard, supervised machine
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learning methods are unavailable, with concomitant constraints and limitations on their

solution and validation. We showcased two broad strategies for dealing with this lack of data:

self-supervised learning and the application of realistic modelling such that traditional super-

vised methods can be trained with large, realistic datasets which are synthetically generated or

large, unrealistic datasets augmented by a comparatively small quantity of realistic, physically

acquired data. In doing so, we showed that model-driven and data-driven methods can be

combined in a variety of different ways to robustly and accurately solve inverse problems,

though the details and structure of the combination depend heavily on the specific of the

inverse problem addressed.
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