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Abstract

Let G be either a simple linear algebraic group over an algebraically closed field of characteristic ` > 0

or a quantum group at an `-th root of unity. The category Rep(G) of finite-dimensional G-modules is

non-semisimple. In this thesis, we develop new techniques for studying Krull-Schmidt decompositions

of tensor products of G-modules.

More specifically, we use minimal complexes of tilting modules to define a tensor ideal of singular

G-modules, and we show that, up to singular direct summands, taking tensor products of G-modules

respects the decomposition of Rep(G) into linkage classes. In analogy with the classical translation

principle, this allows us to reduce questions about tensor products of G-modules in arbitrary `-regular

linkage classes to questions about tensor products of G-modules in the principal block of G. We

then identify a particular non-singular indecomposable direct summand of the tensor product of two

simple G-modules in the principal block (with highest weights in two given `-alcoves), which we call

the generic direct summand because it appears generically in Krull-Schmidt decompositions of tensor

products of simple G-modules (with highest weights in the given `-alcoves). We initiate the study of

generic direct summands, and we use them to prove a necessary condition for the complete reducibility

of tensor products of simple G-modules, when G is a simple algebraic group of type An.

Keywords: algebraic groups, quantum groups, representation theory, tensor products, Krull-Schmidt

decomposition, tensor ideals, linkage principle, translation principle, complete reducibility

Zusammenfassung

Sei G entweder eine einfache lineare algebraische Gruppe über einem algebraisch abgeschlossenen

Körper von Charakteristik ` > 0 oder eine Quantengruppe an einer `-ten Einheitswurzel. Die Kategorie

Rep(G) der endlichdimensionalen G-Moduln ist nicht halbeinfach. In dieser Arbeit entwickeln wir neue

Techniken um Krull-Schmidt Zerlegungen von Tensorprodukten von G-Moduln zu untersuchen.

Genauer gesagt werden wir minimale Komplexe von Kippmoduln nutzen um ein Tensorideal von

singulären G-Moduln zu definieren und wir zeigen, dass Tensorprodukte von G-Moduln – abgesehen

von singulären direkten Summanden – die Zerlegung von Rep(G) in Verkettungsklassen respektieren.

In Analogie mit dem klassischen Translationsprinzip können wir so Fragen über Tensorprodukte von G-

Moduln in beliebigen `-regulären Verkettungsklassen auf Fragen über Tensorprodukte von G-Moduln

im Hauptblock von G reduzieren. Weiterhin identifizieren wir einen bestimmten nicht singulären un-

zerlegbaren direkten Summanden im Tensorprodukt zweier einfacher G-Moduln im Hauptblock (mit

höchsten Gewichten in zwei gegebenen `-Alkoven), und wir bezeichnen diesen als generischen direkten

Summanden, da er generisch in Krull-Schmidt Zerlegungen von Tensorprodukten einfacher G-Moduln

(mit höchsten Gewichten in den gegebenen `-Alkoven) vorkommt. Wir beginnen das Studium gene-

rischer direkter Summanden und benutzen diese, um eine notwendige Bedingung für die vollständige

Reduzibilität von Tensorprodukten einfacher G-Moduln zu beweisen, wenn G eine einfache algebrai-

sche Gruppe vom Typ An ist.

Stichwörter: algebraische Gruppen, Quantengruppen, Darstellungstheorie, Tensorprodukte, Krull-

Schmidt Zerlegung, Tensorideale, Verkettungsprinzip, Translationsprinzip, vollständige Reduzibilität
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Introduction

Tensor products are ubiquitous in representation theory, and the problem of finding direct sum de-

compositions of tensor products of representations has been studied by many mathematicians and in

many different settings. A prime example is the well-known Clebsch-Gordan formula, which describes

the decomposition of a tensor product of two irreducible representations of the algebraic group SL2(C)

as a direct sum of irreducible representations. More generally, one has the Littlewood-Richardson rule,

which gives a combinatorial description of the multiplicity of an irreducible representation of GLn(C)

in a tensor product of two irreducible representations. The situation becomes more complicated when

one replaces the field C of complex numbers by a field of positive characteristic. Then, the correspond-

ing categories of representations are no longer semisimple, i.e. not every representation can be written

as a direct sum of irreducible representations. Nevertheless, a finite-dimensional representation usually

still admits an essentially unique decomposition as a direct sum of indecomposable representations,

called a Krull-Schmidt decomposition. One of the main objectives of this thesis is to develop new

techniques for studying Krull-Schmidt decompositions of tensor products of representations in certain

non-semisimple categories.

When studying representations in a non-semisimple setting, it is often helpful to decompose the

category under consideration as a direct product of subcategories called blocks, in such a way that

every indecomposable representation belongs to a unique block. One can then hope to obtain stronger

results by considering one block of the category at a time. However, this strategy is generally not well

suited for understanding the monoidal structure1 of the category, because a tensor product of two

representations, each belonging to a given block, may have indecomposable direct summands in many

different blocks. Our results provide a way of partially overcoming this obstacle, for categories of

representations of simple algebraic groups (over fields of positive characteristic) and quantum groups

(at roots of unity). More precisely, we will use the theory of tilting modules and minimal complexes to

define a tensor ideal of singular modules in the representation categories. When considering represen-

tations modulo this tensor ideal, it turns out that the so-called principal block is closed under tensor

products and that the monoidal structure of the entire category is governed to a large extent by the

resulting monoidal structure on the principal block. We refer to these results as a linkage principle

and a translation principle for tensor products, in analogy with the classical results describing the

block decomposition of the categories in question (as recalled below).

The categories of (finite-dimensional) representations of simple algebraic groups and of quantum

groups have many structural properties in common. For instance, the isomorphism classes of irre-

ducible representations in either of these categories are in bijection with a certain set of dominant

weights, which also parametrizes the classes of Weyl modules, induced modules and indecomposable

tilting modules. Furthermore, the decomposition of the representation category into blocks is governed

1A category is called monoidal if it has a tensor product bifunctor that satisfies certain natural axioms.
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Introduction

by the alcove geometry associated with the so-called dot action of an affine Weyl group, for simple

algebraic groups and quantum groups alike.

In the following, we refer to the representation theory of simple algebraic groups as the modular

case and to the representation theory of quantum groups as the quantum case. The aforementioned

similarities often make it possible to treat the two cases simultaneously. In order to do this in a

consistent way, we fix the following notational conventions:

The modular case Here G is a simply connected simple linear algebraic group over an al-

gebraically closed field of characteristic ` > 0. We write Rep(G) for the

category of finite-dimensional rational G-modules.

The quantum case Here G = Uζ(g) is the specialization at a complex `-th root of unity ζ

of Lusztig’s divided powers version of the quantum group corresponding

to a complex simple Lie algebra g. We write Rep(G) for the category of

finite-dimensional G-modules of type 1.

In either of the two cases, G comes equipped with a simple root system Φ and a weight lattice X. For

this introduction (and for most of this document), we suppose that ` ≥ h, the Coxeter number of Φ.

In the quantum case, we further assume that ` is odd (and not divisible by 3 if Φ is of type G2). From

now on, we use the term G-module to refer to the objects of Rep(G); in particular, all G-modules

that we consider are implicitly assumed to be finite-dimensional.

The isomorphism classes of simple G-modules are parametrized by the set X+ of dominant weights

in X, with respect to a fixed positive system Φ+ ⊆ Φ, and we write L(λ) for the simple G-module

corresponding to a dominant weight λ ∈ X+. Furthermore, we denote by ∆(λ), ∇(λ) and T (λ) the

Weyl module, the induced module and the indecomposable tilting module of highest weight λ ∈ X+.

Let us write Wfin and Waff = ZΦ oWfin for the finite Weyl group and the affine Weyl group of Φ,

respectively, and denote the natural embedding ZΦ→Waff by γ 7→ tγ . We consider the dot action of

Waff on X, defined by

tγw · λ = w(λ+ ρ)− ρ+ `γ

for γ ∈ ZΦ, w ∈Wfin and λ ∈ X, where ρ = 1
2

∑
α∈Φ+ α. Finally, let us write Cfund for the fundamental

`-alcove in XR = X ⊗Z R, with respect to the dot action (see Section I.6), and note that Cfund ∩X is

non-empty because ` ≥ h. The linkage principle asserts that Rep(G) admits a decomposition

Rep(G) =
⊕

λ∈Cfund∩X

Repλ(G),

where the linkage class Repλ(G) of λ ∈ C fund ∩X is defined as the full subcategory of Rep(G) whose

objects are the G-modules all of whose composition factors have highest weight in Waff · λ.2 The

linkage class Rep0(G) is called the principal block of G. Furthermore, for λ, µ ∈ Cfund∩X, the linkage

classes of λ and µ are equivalent, via a so-called translation functor Tµλ : Repλ(G) → Repµ(G) with

quasi-inverse T λµ . With this notation in place, we can start giving a more detailed summary of our

results.

2Not all of the linkage classes are blocks (in the usual sense that they can not be decomposed any further), but those

corresponding to weights in Cfund ∩X are. A precise description of the blocks of Rep(G) can be found in Section II.7.2

of [Jan03].
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Introduction

Minimal tilting complexes

Tilting modules were introduced to the representation theory of algebraic groups by S. Donkin [Don93],

following earlier work of C. Ringel in the setting of quasi-hereditary algebras [Rin91], and they have

been at the heart of some exciting new developments in this area in recent years [RW18]. The full

subcategory Tilt(G) of tilting modules in Rep(G) is closed under tensor products, and the canonical

functor

T : Kb
(
Tilt(G)

)
−→ Db

(
Rep(G)

)
from the bounded homotopy category of Tilt(G) to the bounded derived category of Rep(G) is an

equivalence of triangulated monoidal categories, which we call the tilting equivalence. In some respects,

the monoidal structure of Tilt(G) is better understood than that of Rep(G) (see for instance [AP95,

Ost97]), and we will follow the strategy of transporting information about tensor products from Tilt(G)

to Rep(G) via the tilting equivalence and the notion of minimal complexes.

As a consequence of the tilting equivalence, there exists for every G-module M a bounded complex

of tilting modules that is isomorphic to M when considered as an object of Db
(
Rep(G)

)
, and this

complex is unique up to homotopy equivalence. Furthermore, as Tilt(G) is a Krull-Schmidt category,

every homotopy class in Kb
(
Tilt(G)

)
contains a complex that is minimal in a suitable sense, and

the latter is unique up to isomorphism of complexes. Combining these two observations, it follows

that there exists a unique bounded minimal complex Cmin(M) of tilting modules that is isomorphic

to M when considered as an object of Db
(
Rep(G)

)
, and we call Cmin(M) the minimal tilting complex

of M . The minimal tilting complex Cmin(M) is a powerful invariant of M , and it encodes important

information, such as the good filtration dimension gfd(M) and the Weyl filtration dimension wfd(M).

Furthermore, minimal tilting complexes are well-behaved with respect to direct sums, short exact

sequences and tensor products of G-modules.

Singular G-modules

The definition of singular G-modules, which we will give below, serves as a good example of how

minimal tilting complexes allow us to use results about tensor products in Tilt(G) to study the

monoidal structure of Rep(G). A tilting module in Rep(G) is called negligible if it has no direct

summands of the form T (λ) with λ ∈ Cfund∩X. It is well-known that the negligible tilting modules are

a tensor ideal in Tilt(G), that is, that they form an isomorphism-closed set which is stable under direct

sums, retracts and tensor products with arbitrary tilting modules in Rep(G) (see [GM94, AP95]).

Definition. A G-module M is called singular if all terms of Cmin(M) are negligible. Otherwise, we

say that M is regular.3

Using elementary properties of minimal tilting complexes, we can show that the singular G-modules

form a tensor ideal in Rep(G). For every G-module M , we can now write

M ∼= Msing ⊕Mreg,

where Msing is the direct sum of all singular indecomposable direct summands of M and where Mreg

is the direct sum of all regular indecomposable direct summands of M . We call Msing and Mreg the

singular part and the regular part of M , respectively.

3Our terminology is justified by the fact that, for λ ∈ X+, the simple G-module L(λ) is regular if and only if its

highest weight λ is `-regular, i.e. if λ ∈Waff · λ′ for some λ′ ∈ Cfund ∩X (see Lemma II.4.3 below).

3



Introduction

We can now state our linkage principle for tensor products, which asserts that the monoidal struc-

ture of Rep(G) is compatible with the decomposition into linkage classes, when we consider Rep(G)

modulo the tensor ideal of singular G-modules.

Theorem A. Let λ ∈ Cfund ∩X and let M and N be G-modules in the linkage classes of 0 and λ,

respectively. Then (M ⊗N)reg belongs to the linkage class of λ.

As a consequence of Theorem A, the essential image of the principal block Rep0(G) in the quotient

category of Rep(G) by the ideal of singular G-modules is closed under tensor products. The next

result is our translation principle for tensor products.

Theorem B. Let M and N be G-modules in Rep0(G). For λ, µ ∈ Cfund ∩X, we have(
T λ0 M ⊗ T

µ
0 N
)

reg
∼=

⊕
ν∈Cfund∩X

T ν0 (M ⊗N)
⊕cνλ,µ
reg ,

where cνλ,µ = [T (λ)⊗ T (µ) : T (ν)]⊕ for ν ∈ Cfund ∩X.

The translation functors T λ0 and Tµ0 are equivalences for λ, µ ∈ Cfund ∩X, so Theorem B implies

that the monoidal structure of Rep(G) modulo singular G-modules is completely determined by the

monoidal structure of Rep0(G) modulo singular G-modules. We point out that the coefficients cνλ,µ
are the structure constants of the so-called Verlinde algebra (i.e. the split Grothendieck group of the

quotient of Tilt(G) by the tensor ideal of negligible tilting modules) and that they can be computed

as an alternating sum of dimensions of weight spaces of the Weyl module ∆(λ) (see Section I.9).

Generic direct summands

We now consider the regular parts of tensor products of specific G-modules, such as Weyl modules

and simple G-modules. By Theorems A and B, we can restrict our attention to tensor products of G-

modules in the principal block. Let us write W+
aff = {x ∈Waff | x · 0 ∈ X+}. Then, for x, y ∈W+

aff , we

show that the tensor product ∆(x ·0)⊗∆(y ·0) has a unique regular indecomposable direct summand,

which we denote by G∆(x, y) and call the generic direct summand of ∆(x · 0)⊗∆(y · 0). This name

reflects the fact that, for λ, µ ∈ Cfund ∩X, we have(
∆(x · λ)⊗∆(y · µ)

)
reg
∼=

⊕
ν∈Cfund∩X

T ν0 G∆(x, y)⊕c
ν
λ,µ

by Theorem B; hence the G-modules T ν0 G∆(x, y) appear generically in Krull-Schmidt decompositions

of tensor products of Weyl modules with highest weights in the alcoves x · Cfund and y · Cfund.

A tensor product of simple G-modules in the principal block may generally have more than one

regular indecomposable direct summand, but there is still a unique one with maximal good filtration

dimension: For x, y ∈W+
aff , the tensor product L(x · 0)⊗L(y · 0) has a unique regular indecomposable

direct summand G(x, y) with good filtration dimension `(x) + `(y), where ` : Waff → Z≥0 denotes the

length function with respect to the reflections in the walls of Cfund. We call G(x, y) the generic direct

summand of L(x · 0)⊗ L(y · 0).

We believe that describing the structure of generic direct summands of tensor products (of Weyl

modules and of simple G-modules) is a key problem for better understanding the monoidal structure

of Rep(G). We give such descriptions for G of type A1 and A2 in Chapter III, but the problem seems

elusive in its full generality. In order to get a grasp on it, one can try to understand families of generic

4
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direct summands G(x0, y), where x0 ∈W+
aff is fixed and y ∈W+

aff is arbitrary. The most basic example,

where x0 = e is the neutral element in Waff , leads to the family of generic direct summands

G(e, y) ∼= L(y · 0)

for y ∈W+
aff because L(e · 0) = L(0) is the trivial G-module. Next we consider the case where x0 = s0

is the affine simple reflection in Waff . As s0 is the unique element of length one in W+
aff , this may

be considered as the smallest non-trivial instance of our problem. For G of type An, we can give

a detailed description of the functor L(s0 · λ) ⊗ −, for certain weights λ ∈ Cfund ∩ X, and use this

description to study the generic direct summands G(s0, y) of L(s0 · 0)⊗L(y · 0), for y ∈W+
aff . We will

prove the following necessary condition for the simplicity of G(s0, y):

Theorem C. Suppose that G is of type An and let y ∈W+
aff . If the generic direct summand G(s0, y)

of the tensor product L(s0 · 0)⊗ L(y · 0) is simple then y · Cfund = Cfund + `γ for some γ ∈ X+.

Let us also mention that the converse of Theorem C is true for n ≥ 2 in the modular case, and for

all n in the quantum case.

Complete reducibility of tensor products

Our original motivation for developing the theory of generic direct summands was to find necessary

conditions for the complete reducibility of tensor products of simple G-modules (in the modular

case). We have initiated our investigation of this problem in [Gru21], where the main result was a

reduction theorem that allows us to restrict our attention to tensor products of simple G-modules

with `-restricted highest weights. In Chapter V, we will demonstrate how our theory of generic direct

summands can be used to make further progress on this problem. More specifically, we will prove the

following complete reducibility theorem:

Theorem D. Suppose that we are in the modular case and that G is of type An for some n ≥ 1. Let

λ and µ be `-regular `-restricted weights. If the tensor product L(λ) ⊗ L(µ) is completely reducible

then either λ ∈ Cfund or µ ∈ Cfund.

Let us briefly explain how generic direct summands can be used to prove Theorem D. For `-regular

weights λ, µ ∈ X+, there exist x, y ∈ W+
aff and λ′, µ′ ∈ Cfund ∩X such that λ = x · λ′ and µ = y · µ′.

Then we have L(λ) ∼= T λ
′

0 L(x · 0) and L(µ) ∼= Tµ
′

0 L(x · 0), and using Theorem B, one sees that there

exists a weight ν ∈ Cfund ∩X such that T ν0 G(x, y) is a direct summand of L(λ)⊗L(µ). In particular,

if L(λ)⊗ L(µ) is completely reducible then G(x, y) is simple. Therefore, we can prove Theorem D by

establishing the non-simplicity of certain generic direct summands.

In addition to the argument given above, we will use truncation to Levi subgroups and proceed by

induction on the rank n of G. The base case is given by our examples for G of type A1 and A2. The

proof then essentially splits in two cases, one of which can be resolved using the necessary condition

for the simplicity of G(s0, y), for y ∈W+
aff , from Theorem C. The second case requires a detailed study

of the composition multiplicities and the Loewy structure of certain Weyl modules, which we will

compute via the Jantzen sum formula. The results of these computations may well be of independent

interest, beyond their applications to the study of generic direct summands.

5
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Outlook

We conclude this introduction by discussing our results in the context of other important developments

in the representation theory of reductive algebraic groups and quantum groups.

One of the key results in modular representation theory in the past decade was G. Williamson’s

discovery of counterexamples to Lusztig’s conjecture in characteristics that are much larger than the

previously expected bound ` ≥ h [Wil17]. The conjecture proposes a character formula for simple G-

modules in terms of so-called Kazhdan-Lusztig polynomials for the affine Weyl group and was proven

in the quantum case by combining results of D. Kazhdan, G. Lusztig, M. Kashiwara and T. Tanisaki

[KL93, KL94, Lus94, KT95, KT96]. While it had long been believed that the conjecture should still

be true for ` ≥ h in the modular case (under certain assumptions on the highest weight of the simple

G-module), it had only been possible to establish its validity in the case where ` is larger than some

non-explicit bound depending on the root system of G, by a reduction to the quantum case due

to H.H. Andersen, J.C. Jantzen and W. Soergel [AJS94]. An explicit (but enormous) bound was

later found by P. Fiebig [Fie12]. Using geometric methods and the theory of diagrammatic Soergel

bimodules that was pioneered by M. Khovanov, B. Elias and G. Williamson in [EK10, Eli16, EW16],

G. Williamson was able to exhibit a sequence of counterexamples to Lusztig’s conjecture where the

characteristic ` grows at least exponentially in the Coxeter number h of G, thus also demonstrating

that the quantum case and the modular case are less similar than one might previously have expected.

Diagrammatic Soergel bimodules play an increasingly important role in representation theory,

especially when it comes to understanding tilting modules. In their landmark monograph [RW18],

S. Riche and G. Williamson conjectured that the category of diagrammatic Soergel bimodules should

admit a ‘categorical action’ on the principal block Rep0(G) of G in the modular case. Furthermore,

they explained how their conjecture leads to a character formula for indecomposable tilting modules

in terms of `-Kazhdan-Lusztig polynomials, which is analogous to a well-known character formula that

was found by W. Soergel in the quantum case [Soe97]. The conjecture from [RW18] was proven by

S. Riche and R. Bezrukavnikov in [BR20] and independently by J. Ciappara in [Cia21]. In view of

these results, it would be very interesting to try to use diagrammatic Soergel bimodules in order to

further study minimal tilting complexes and generic direct summands. This approach may be helpful

for finding combinatorial descriptions of generic direct summands in terms of the affine Weyl group.

Beyond the theory of generic direct summands (which only works for ` ≥ h and for `-regular

weights), it may be worthwhile to use minimal tilting complexes to study tensor products of G-modules

in a broader sense. An important open conjecture (in the modular case) that may be amenable to these

techniques proposes that the tensor product of the Steinberg module with any simple G-module of

`-restricted highest weight should be a tilting module in any characteristic ` > 0. The latter conjecture

has important connections with Donkin’s tilting module conjecture and the theory of `-Weyl filtrations.

These topics present another important way of understanding the differences between the modular

case and the quantum case, and they were explored in detail in work of C.P. Bendel, T. Kildetoft,

D.K. Nakano, C. Pillen and P. Sobaje [KN15, Sob18, BNPS20b]. Notably, counterexamples to Donkin’s

conjecture in small characteristics were recently found in [BNPS20a, BNPS21]. It is possible that our

techniques for studying minimal tilting complexes of tensor products can be used to gain a better

understanding of tensor products of the Steinberg module with simple G-modules of `-restricted

highest weight. In relation with this, it would be very interesting to further investigate the tensor

ideals in Tilt(G) and the minimal tilting complexes of simple G-modules in small characteristics.

Finally, our results about tensor ideals (in Section II.3) may be interesting from the point of view of
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support theory and tensor triangular geometry (as introduced by P. Balmer in [Bal05]). In the quantum

case, tensor ideals in the stable module category were studied in detail by B.D. Boe, J.R. Kujawa and

D.K. Nakano in [BKN19]. Using our techniques, it may be possible to obtain similar results for the

tensor triangulated category Kb
(
Tilt(G)

)
. In the modular case, a new support theory and a stable

module category were recently introduced by E.M. Friedlander in [Fri21]. It would be interesting to

explore connections with our construction of tensor ideals in Rep(G) using minimal tilting complexes.

Structure of the thesis

In the following, we give a brief outline of the content of the different chapters.

Chapter I. We recall some important results about representations of algebraic groups and quantum

groups, and we fix the notation that will be used for the rest of the thesis.

Chapter II. We prove our main results about regular parts and generic direct summands of tensor

products, including Theorems A and B (see Lemma II.4.12 and Theorem II.4.14). The existence

of generic direct summands is established in Propositions II.5.1 and II.5.7.

Chapter III. We determine the regular parts and the generic direct summands of tensor products

of simple G-modules and of induced G-modules for G or type A1 and A2.

Chapter IV. We study generic direct summands of the form G(s0, y), for y ∈ W+
aff . The proof of

Theorem C is given in Theorem IV.6.3.

Chapter V. We use generic direct summands to give a necessary condition for the complete reducibil-

ity of tensor products of simple G-modules, for G of type An. Sections V.3 and V.4 are devoted

to a detailed study of the composition multiplicities and the Loewy structure of certain Weyl

modules, and the proof of Theorem D is given in Theorem V.6.3.

Numbering conventions. Before we start with the actual content, a few remarks are in order about

the numbering of results in this document. Our chapters are numbered with Roman numerals. Every

chapter consists of a number of sections, which are numbered with Arabic numerals, starting at 1

whenever we begin a new chapter. The theorems, lemmas, definitions etc. are numbered consecutively

within each section, so the third element in Section III.4 would get referred to as Theorem / Lemma /

Definition III.4.3. However, to avoid excessive numbering, we suppress the number of the chapter

from the notation, when referencing a result that belongs to the same chapter as the position of the

reference in the text. For example, when referring to Lemma II.4.12 from within Chapter II, we will

omit the Roman numeral and simply write Lemma 4.12.
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I. Foundations

In the first chapter, we present some background material, mostly about the representation theory

of simply connected simple algebraic groups and of quantum groups at roots of unity. Let us briefly

discuss the contents of this chapter. In Section 1, we set up our notation for root systems and weight

lattices, and in Section 2, we discuss some preliminary results about affine Weyl groups and the

associated alcove geometry. We will introduce simply connected simple algebraic groups and quantum

groups at roots of unity in Section 3, and we start recalling some classical results about the categories

of finite-dimensional representations of these objects in Section 4. The remaining sections will be

devoted to giving brief expositions to different aspects of the representation theory of algebraic groups

and quantum groups. Specifically, we will discuss good filtrations and tilting modules in Section 5, the

linkage principle and the translation principle in Section 6 and the notion of good filtration dimension

in Section 7. In Section 8, we recall some results from the representation theory of Frobenius kernels

and the small quantum group, and in Section 9, we introduce the tensor ideal of negligible tilting

modules, which will play an important role in the following chapters.

1 Roots and weights

Let Φ be a simple root system in a euclidean space XR with scalar product (− ,−). For α ∈ Φ, we

denote by α∨ = 2α
(α,α) the coroot of α. The weight lattice of Φ is

X := {λ ∈ XR | (λ, α∨) ∈ Z for all α ∈ Φ},

and the Weyl group of Φ is the (finite) subgroup Wfin = 〈sα | α ∈ Φ〉 of GL(XR) generated by the

reflections sα, where sα(x) = x− (x, α∨) ·α for x ∈ XR. The index of the root lattice ZΦ in the weight

lattice X is finite, and the quotient X/ZΦ is is called the fundamental group of Φ. Now fix a positive

system Φ+ ⊆ Φ corresponding to a base Π of Φ, and let

X+ := {λ ∈ X | (λ, α∨) ≥ 0 for all α ∈ Φ+}

be the set of dominant weights with respect to Φ+. We consider the partial order on X that is

defined by λ ≥ µ if and only if λ − µ is a non-negative integer linear combination of positive roots.

Furthermore, we write α̃h and αh for the highest root and the highest short root in Φ+, respectively,

with the convention that α̃h = αh (and that all roots are short) if Φ is simply laced. The height of an

element γ =
∑

α∈Π cα · α of the root lattice is ht(γ) =
∑

α∈Π cα. We let ρ = 1
2

∑
α∈Φ+ α be the half

sum of all positive roots and write h = (ρ, α∨h ) + 1 for the Coxeter number of Φ. The dot action of

Wfin on XR is defined by

w · x = w(x+ ρ)− ρ

9



Chapter I. Foundations

for w ∈ Wfin and x ∈ XR. The set of simple reflections Sfin = {sα | α ∈ Π} with respect to Π is a

minimal generating set of Wfin, and (Wfin, Sfin) is a Coxeter system. As Wfin is finite, there exists a

unique longest element w0 ∈Wfin with respect to Sfin.

The root system Φ is determined up to isomorphism by its Dynkin diagram; a graph with vertex

set Π, where the number of edges between α ∈ Π and β ∈ Π is (α, β∨)(β, α∨). If (α, α) > (β, β) then

we decorate the edge between α and β with an arrow pointing from α to β. Simple root systems come

in four infinite families of classical root systems denoted by

An (n ≥ 1), Bn (n ≥ 3), Cn (n ≥ 2) and Dn (n ≥ 4)

and five exceptional types

E6, E7, E8, F4 and G2.

In Figures 1.1 and 1.2, we give the Dynkin diagrams of the irreducible root systems. Whenever we

choose a numbering of the simple roots Π, it will be in accordance with the labeling of these Dynkin

diagrams (which also coincides with the standard labeling from [Bou02]). For every simple root α ∈ Π,

there is a fundamental dominant weight $α ∈ X with ($α, α
∨) = 1 and ($α, β

∨) = 0 for α 6= β ∈ Π.

The fundamental dominant weights form a basis of XR and a Z-basis of X. To be more precise, we

have

λ =
∑
α∈Π

(λ, α∨) ·$α

for all λ ∈ XR. Whenever a numbering of the simple roots Π = {α1, . . . , αn} is given, we number the

fundamental dominant weights accordingly (that is $i = $αi for i = 1, . . . , n).

An

1 2 n− 1 n

. . .

Bn

1 2 n− 1 n

. . . >

Cn

1 2 n− 1 n

. . . <

Dn

1 2 n− 2

n− 1

n

. . .

Figure 1.1: Dynkin diagrams of classical root systems

2 Alcove geometry and the affine Weyl group

The affine Weyl group (to be defined below) is a subgroup of the group AGL(XR) = XRoGL(XR) of

invertible affine linear transformations of XR. In order to distinguish elements of XR from elements of

the translation subgroup of AGL(XR), we write the canonical embedding XR → AGL(XR) as x 7→ tx.

The standard action of AGL(XR) on XR is given by

(txg)(y) = g(y) + x

for x, y ∈ XR and g ∈ GL(XR).
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E6

1 3 4 5 6

2

E7

1 3 4 5 6 7

2

E8

1 3 4 5 6 7 8

2

F4

1 2 3 4

>

G2

1 2

<

Figure 1.2: Dynkin diagrams of exceptional root systems

type An Bn Cn Dn E6 E7 E8 F4 G2

h n+ 1 2n 2n 2n− 2 12 18 30 12 6

Figure 1.3: Coxeter numbers of irreducible root systems

Definition 2.1. The affine Weyl group of Φ is Waff := ZΦoWfin, and the extended affine Weyl group

of Φ is Wext := X oWfin.1

We can restrict the standard action of AGL(XR) on XR to an action of Wext that preserves the

weight lattice X ⊆ XR. Analogously, the action of Waff on XR preserves the root lattice ZΦ ⊆ XR.

One easily verifies that the induced action of Waff on X/ZΦ is trivial, that Waff is a normal subgroup

of Wext and that Wext/Waff
∼= X/ZΦ.

For β ∈ Φ+ and m ∈ Z, consider the affine reflection sβ,m := tmβsβ with

sβ,m(x) = sβ(x) +mβ = x−
(
(x, β∨)−m

)
· β

for x ∈ XR. The set of fixed points of sβ,m in XR is the hyperplane

Hβ,m := {x ∈ XR | (x, β∨) = m};

we call Hs = Hβ,m the reflection hyperplane of s = sβ,m.

Definition 2.2. An alcove is a connected component of XR \
(⋃

β,mHβ,m

)
.

The action of Wext (and of Waff) on XR permutes the reflection hyperplanes, so it also permutes

the alcoves. Every reflection hyperplane Hβ,m divides XR into two half spaces

H+
β,m = {x ∈ XR | (x, β∨) > m} and H−β,m = {x ∈ XR | (x, β∨) < m}

1Some autors define the affine Weyl group as the semidirect product of Wfin with the coroot lattice (rather than the

root lattice). The reader should note that this is the case in the book [Hum90], which we use as a reference here.

11
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with XR \ Hβ,m = H+
β,m t H

−
β,m, and every alcove is contained in one of these half spaces. We say

that two alcoves A,A′ ⊆ XR are separated by Hβ,m if they do not belong to the same half space with

respect to Hβ,m. Furthermore, we call A and A′ adjacent if they are separated by a unique reflection

hyperplane, which is then called a wall of A.

For a fixed alcove A ⊆ XR and β ∈ Φ+, we set

nβ = nβ(A) := max{m ∈ Z | A ⊆ H+
β,m},

so that A * H+
β,nβ+1 and therefore A ⊆ H−β,nβ+1. As H+

β,nβ
∩ H−β,nβ+1 is convex for all β ∈ Φ+, it

follows that

A =
⋂
β∈Φ+

H+
β,nβ
∩H−β,nβ+1 =

{
x ∈ XR

∣∣ nβ < (x, β∨) < nβ + 1 for all β ∈ Φ+
}
.

Let X+
R = {x ∈ XR | (x, α∨) > 0 for all α ∈ Φ+} be the dominant Weyl chamber. As

XR \
(⋃

β,m
Hβ,m

)
⊆ XR \

(⋃
β
Hβ,0

)
=

⊔
w∈Wfin

w(X+
R ),

every alcove is contained in a unique Weyl chamber w(X+
R ) with w ∈ Wfin. The alcoves that are

contained in the dominant Weyl chamber are called dominant alcoves; an alcove A ⊆ XR is dominant

if and only if nβ(A) ≥ 0 for all β ∈ Φ+. Note that a hyperplane Hβ,m separates two alcoves A and A′

if and only if nβ(A) < m ≤ nβ(A′) or nβ(A′) < m ≤ nβ(A). In particular, we have m > 0 for every

hyperplane Hβ,m separating two dominant alcoves.

Example 2.3. The set Afund := {x ∈ XR | 0 < (x, β∨) < 1 for all β ∈ Φ+} is an alcove, called the

fundamental alcove. We have nβ(Afund) = 0 for all β ∈ Φ+, and Afund is the unique dominant alcove

whose closure contains 0. Note that α∨h is the highest root in the dual root system Φ∨, and that, for

every positive root β ∈ Φ+, there exists a simple root α ∈ Π with α∨ ≤ β∨. Then, for all x ∈ X+
R , we

have (x, α∨) ≤ (x, β∨) ≤ (x, α∨h ), and it follows that

Afund = {x ∈ XR | 0 < (x, α∨) for all α ∈ Π and (x, α∨h ) < 1}.

Definition 2.4. We call S := {sα | α ∈ Π} ∪ {sαh,1} the set of simple reflections in Waff .

In view of Example 2.3, S is the set of reflections in the hyperplanes bounding Afund. We now

recall some important results from Chapter 4 in [Hum90]:

Theorem 2.5. (1) The action of Waff on XR permutes the set of alcoves simply transitively.

(2) For every alcove A ⊆ XR, the closure A is a fundamental domain for the action of Waff on XR.

(3) (Waff , S) is a Coxeter system.

Example 2.6. Let Φ be of type An and fix a numbering Π = {α1, . . . , αn} of the simple roots, in

accordance with the Dynkin diagram in Figure 1.1. Denote by $i = $αi and si = sαi the fundamental

dominant weight and the simple reflection corresponding to αi, for i = 1, . . . , n. For i, j ∈ {1, . . . , n}
with i 6= j, we have

si(αj) =

{
αi + αj if |i− j| = 1,

αj otherwise ,

12
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and it follows that sisjsi = ssi(αj) = ssj(αi) = sjsisj when |i− j| = 1, and sisj = sjsi otherwise. Now

let us write s0 := sαh,1 and note that αh = α1 + . . . + αn = $1 + $n. Using this observation, it is

straightforward to see that s0si = sis0 for 1 < i < n and that s0s1s0 = s1s0s1 and s0sns0 = sns0sn.

We conclude that the Coxeter system (Waff , S) has the Coxeter diagram given in Figure 2.1.2

1 2 n− 1 n

0

. . .

Figure 2.1: The Coxeter diagram of (Waff , S) for Φ of type An

Let us write ` : Waff → Z≥0 for the length function with respect to S. (Recall that `(w) is the

minimal length of an expression w = s1 · · · sm with s1, . . . , sm ∈ S. Such an expression of minimal

length is also called a reduced expression.) As for any Coxeter group, the map w 7→ (−1)`(w) is a group

homomorphism, called the sign representation and denoted by sign: Waff → {1,−1}. In particular,

we have `(xs) ∈ {`(x)− 1, `(x) + 1} for all x ∈Waff and s ∈ S. For w ∈Wext, we denote by L(w) the

set of reflection hyperplanes separating Afund and w(Afund). By Section 4.5 in [Hum90], the length

function is also given by `(w) = |L(w)| for w ∈Waff , so we can extend it to a function ` : Wext → Z≥0

by setting

`(w) := |L(w)|

for w ∈Wext. An element w ∈Wext satisfies `(w) = 0 if and only if w(Afund) = Afund, so we have

Ω := StabWext(Afund) = {w ∈Wext | `(w) = 0}.

As Waff acts simply transitively on the set of alcoves, there is a natural decomposition Wext = WaffoΩ,

and it follows that Ω ∼= Wext/Waff
∼= X/ZΦ is finite and abelian. We write x 7→ ωx for the canonical

epimorphism Wext → Ω with kernel Waff .

Remark 2.7. Note that for w ∈Waff , the alcove w(Afund) is adjacent to Afund if and only if

1 = |L(w)| = `(w),

or equivalently, if w ∈ S is a simple reflection. As Waff acts transitively on the set of alcoves, this

implies that an alcove A ⊆ XR is adjacent to Afund if and only if A = s(Afund) for some s ∈ S, and

that the walls of Afund are precisely the hyperplanes {Hα,0 | α ∈ Π} ∪ {Hαh,1} corresponding to the

simple reflections. The action of Ω on XR permutes the walls of Afund because Ω stabilizes Afund;

therefore the action of Ω on Waff by conjugation permutes the set of simple reflections.

Next we study the set of elements of Wext (or Waff) that send Afund to a dominant alcove.

Definition 2.8. We write W+
ext := {w ∈Wext | w(Afund) is dominant} and W+

aff := W+
ext ∩Waff .

Remark 2.9. As Ω stabilizes Afund, we have W+
ext = W+

affΩ.

Lemma 2.10. Let w ∈Wfin and x ∈W+
ext. Then L(wx) = L(w)tw

(
L(x)

)
and `(wx) = `(w) + `(x).

2The Coxeter diagram of a Coxeter system (W,S) has vertices labeled by S. Two simple reflections s, t ∈ S are joined

by an edge if s and t do not commute, and the edge is labeled by the order of st if that order is greater than 3.
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Proof. As Afund and w(Afund) both contain 0, so does every hyperplane separating Afund and w(Afund),

and we conclude that L(w) ⊆ {Hβ,0 | β ∈ Φ+}. Furthermore, we have L(x) ⊆ {Hβ,m | β ∈ Φ+,m > 0}
because Afund and x(Afund) are dominant, hence w

(
L(x)

)
⊆ {Hβ,m | β ∈ Φ+,m 6= 0} and L(w) is

disjoint from w
(
L(x)

)
. For any hyperplane H ∈ L(wx), the half space with respect to H that

contains the alcove w(Afund) cannot contain both Afund and wx(Afund), so either H separates Afund

and w(Afund) or H separates w(Afund) and wx(Afund). As w
(
L(x)

)
is the set of hyperplanes separating

the alcoves w(Afund) and wx(Afund), we conclude that L(wx) ⊆ L(w) t w
(
L(x)

)
. Now let H ∈ L(w).

By the disjointness of L(w) and w
(
L(x)

)
, the alcoves w(Afund) and wx(Afund) belong to the same half

space with respect to H, and it follows that H ∈ L(wx). Similarly, if H ∈ L(x) then the alcoves Afund

and w(Afund) belong to the same half space with respect to w(H), and it follows that w(H) ∈ L(wx).

We conclude that L(wx) = L(w) t w
(
L(x)

)
, and the second claim is immediate.

Corollary 2.11. For all w ∈Wext, the coset Wfinw has a unique element of minimal length. Further-

more, we have

W+
ext = {w ∈Wext | w has minimal length in Wfinw}.

Proof. As Wfin acts simply transitively on the set of Weyl chambers, every coset Wfinw with w ∈Wext

contains a unique element of W+
ext. Now the claim is immediate from Lemma 2.10.

The next two results will be important for proofs by induction on the length of an element w ∈W+
aff

in the following sections.

Lemma 2.12. Let x ∈ W+
aff and let x = s1 · · · sm be a reduced expression. Then s1 · · · si ∈ W+

aff for

1 ≤ i ≤ m and s1 = sαh,1.

Proof. We prove the first claim for i = m− 1, the general case then follows by descending induction.

Let us write x′ = s1 · · · sm−1, so that x = x′sm and `(x′) = m− 1. For w ∈ Wfin with `(wx′) ≤ `(x′),

we have

`(wx) = `(wx′sm) ≤ `(wx′) + 1 ≤ `(x′) + 1 = m = `(x),

and Corollary 2.11 forces w = e. Hence x′ is the unique element of minimal length in the coset Wfinx
′,

and therefore x′ ∈W+
aff , again by Corollary 2.11. The second claim follows from the first because sαh,1

is the only simple reflection that does not belong to Wfin.

Corollary 2.13. For x ∈W+
aff and s ∈ S such that `(xs) < `(x), we have xs ∈W+

aff .

Proof. Recall that `(xs) ∈ {`(x) − 1, `(x) + 1} for all x ∈ Waff and s ∈ S, so the assumption implies

that `(xs) = `(x) − 1. Hence, if xs = s1 · · · sm is a reduced expression then so is x = s1 · · · sms, and

the claim follows from Lemma 2.12.

For applications in representation theory, two partial orders, one on Waff and the other on the

set of alcoves, play an important role. The first one is the usual Bruhat order ≤ on Waff , that can

be defined as the reflexive and transitive closure of the relation that is given by x ≤ y if `(x) < `(y)

and y = sx, for a reflection s ∈ Waff . Note that we could equally well ask that y = xs, because the

conjugate of a reflection is a reflection. The linkage order ↑ on the set of alcoves is the reflexive and

transitive closure of the relation that is given by A ↑ A′ if there exists a reflection s ∈ Waff such that

A ⊆ H−s , A′ ⊆ H+
s and A′ = s(A). These partial orders are equivalent on the set of dominant alcoves,

in the following sense:
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Theorem 2.14. For x, y ∈W+
aff , we have x ≤ y if and only if x(Afund) ↑ y(Afund).

The proof of the theorem, based on results of J. Wang [Wan87], is postponed to Section IV.1,

where we will study the alcove geometry associated with Waff in more detail.

3 Algebraic groups and quantum groups

The root system Φ is at the heart of the structure of two kinds of Lie theoretic objects whose finite-

dimensional simple modules are canonically indexed by X+: simple algebraic groups (over a field

of positive characteristic) and quantum groups (at a root of unity). The representation theory of

quantum groups parallels that of algebraic groups to a large extent, so we will often treat the two

cases simultaneously. When a distinction becomes necessary, we refer to the representation theory of

the algebraic group as the modular case and to the representation theory of the quantum group as

the quantum case.

The modular case

We follow the notational conventions from Section II.1 in [Jan03]. Let GZ be a split simply-connected

simple algebraic group scheme over Z with split maximal torus TZ, such that the root system of GZ
with respect to TZ is isomorphic to Φ. For every root α ∈ Φ, there is a root subgroup Uα,Z of GZ and

a root homomorphism xα : Z→ Uα,Z (where by abuse of notation, we write Z for the additive group

scheme over Z), and the latter is unique up to a sign change. The positive system Φ+ ⊆ Φ determines

a unipotent subgroup U+
Z =

∏
α∈Φ+ Uα,Z and a Borel subgroup B+

Z = U+
Z o TZ. Analogously, the

negative roots −Φ+ determine a Borel subgroup BZ = UZ oTZ. We fix an algebraically closed field

k of characteristic ` > 0 and denote by G = Gk the simply-connected simple algebraic group scheme

over k corresponding to GZ, with maximal torus T = Tk, Borel subgroup B = Bk with unipotent

radical U = Uk, and root subgroups Uβ for β ∈ Φ.

The quantum case

The term quantum group is broadly used to refer to a class of Hopf algebras that are obtained by

deforming the universal enveloping algebra of a Lie algebra over the field of rational functions Q(q).

The quantum groups that we will be interested in admit an integral version over the ring Z[q, q−1]

of Laurent polynomials over the integers (due to G. Lusztig). For any ring R and unit ζ ∈ R×,

there is a unique ring homomorphism Z[q, q−1] → R with q 7→ ζ, and we can extend scalars along

this homomorphism to obtain a specialization of the quantum group at the parameter ζ. The most

interesting cases arise when either R has positive characteristic or ζ is a root of unity. In the first

case (and when ζ = 1), one essentially recovers the distribution algebra of a simply-connected simple

algebraic group. When ζ ∈ C× is a primitive `-th root of unity (for some ` > 0) and R = Q(ζ) then

one obtains a Hopf algebra whose representation theory is very similar to that of the corresponding

algebraic group ‘in characteristic `’. In the discussion below, we closely follow Chapter II.H in [Jan03].

Suppose that the short roots α ∈ Φ satisfy (α, α) = 2, so that dβ := (β,β)
2 ∈ {1, 2, 3} and

(λ, β) = (λ, β∨) · dβ ∈ Z

for all λ ∈ X and β ∈ Φ. Furthermore, let cβ,α = (β, α∨), and write qα = qdα ∈ Q(q), for α, β ∈ Π.
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The quantum integer associated with m ∈ Z>0 and qα is

[m]α =
qmα − q−mα
qα − q−1

α

and we can define quantum factorials by [m]α! = [m]α · [m− 1]α! and [0]α = 1.

Now let g be the complex simple Lie algebra with root system Φ. The quantum group Uq(g)

associated with g is the Q(q)-algebra with generators Eα, Fα, Kα and K−1
α , for α ∈ Π, subject to the

relations

KαK
−1
α = 1 = K−1

α Kα, KαKβ = KβKα,

KαEβK
−1
α = q(α,β) · Eβ, KαFβK

−1
α = q−(α,β) · Fβ,

EαFβ − FβEα = δαβ ·
Kα −K−1

α

qα − q−1
α

,∑
i+j=1−cβ,α

(−1)i · E(i)
α EβE

(j)
α = 0,

∑
i+j=1−cβ,α

(−1)i · F (i)
α FβF

(j)
α = 0

for α, β ∈ Π, where δαβ denotes the Kronecker delta and

E(i)
α =

Eiα
[i]α!

and F (i)
α =

F iα
[i]α!

are the quantum divided powers. There is a Hopf algebra structure on Uq(g) with comultiplication ∆,

antipode σ and counit ε defined on the generators by

∆(Eα) = Eα ⊗ 1 +Kα ⊗ Eα, σ(Eα) = −K−1
α Eα, ε(Eα) = 0,

∆(Fα) = Fα ⊗K−1
α + 1⊗ Fα, σ(Fα) = −FαKα, ε(Fα) = 0,(3.1)

∆(Kα) = Kα ⊗Kα, σ(Kα) = K−1
α , ε(Kα) = 1.

The Lusztig integral form of Uq(g) is the Z[q, q−1]-subalgebra UZq (g) of Uq(g) that is generated by the

elements K±1
α along with the quantum divided powers defined above for α ∈ Π and i > 0. By taking

commutators of suitable divided powers, one sees that UZq (g) contains the elements

(
Kα;m

k

)
=

k∏
i=1

Kαq
m−i+1
α −K−1

α q−m+i−1
α

qiα − q−iα

for all α ∈ Π, m ∈ Z and k ∈ Z≥0. We write U0
q (g) for the Q(q)-subalgebra of Uq(g) generated by the

elements K±1
α and UZ,0q (g) for the Z[q, q−1]-subalgebra of UZq (g) generated by the elements K±1

α and(
Kα;m
k

)
, for α ∈ Π, m ∈ Z and k ∈ Z≥0.

Let ` > 1 be an odd integer, and further assume that ` is not divisible by 3 if Φ is of type G2.

We fix a primitive `-th root of unity ζ ∈ C and set k = C. (One reason for the assumptions on `

is to ensure that ζdα is a primitive `-th root of unity for all α ∈ Π.) Then there is a unique ring

homomorphism Z[q, q−1]→ k with q 7→ ζ, and we define

U ′ζ(g) := UZq (g)⊗Z[q,q−1] k

16



4. Representation categories

to be the specialization of UZq (g) along this homomorphism. In U ′ζ(g), the images of the `-th powers

of the generators Kα are central. We will only be interested in ‘type 1’ representations where these

central elements act by the scalar 1, so we define

Uζ(g) := U ′ζ(g)
/〈
K`
α ⊗ 1− 1⊗ 1

∣∣ α ∈ Π
〉
.

The quantum group Uζ(g) inherits a Hopf algebra structure from Uq(g), and by abuse of notation, we

denote the images of the generators of UZq (g) in U ′ζ(g) or Uζ(g) by the same symbols. We define two

subalgebras U0
ζ (g) and U−ζ (g) of Uζ(g) by

U0
ζ (g) =

〈
Kα,

(
Kα;m
k

) ∣∣ α ∈ Π,m ∈ Z, k > 0
〉

and U−ζ (g) =
〈
U0
ζ (g), F (i)

α

∣∣ α ∈ Π, i > 0
〉
.

These subalgebras will later play roles similar to those that the maximal torus T and the Borel

subgroup B play in the modular case.

4 Representation categories

Throughout this thesis, we will only consider finite-dimensional representations, so whenever we talk

about modules over a group scheme or an algebra, they are implicitly assumed to be finite-dimensional.

In the modular case, we write Rep(H) for the category of (finite-dimensional) modules over a

k-group scheme H, in the sense of Section I.2.7 in [Jan03]. By definition of G and T, there is an

isomorphism between the weight lattice X and the character group X(T) of T (i.e. the group of k-

group scheme homomorphisms from T to the multiplicative group scheme). As T is a diagonalizable

group scheme, every T-module M admits a weight space decomposition

M =
⊕
λ∈X

Mλ.

As B = U oT, every weight λ ∈ X ∼= X(T) gives rise to a one-dimensional B-module kλ, where T

acts via λ and U acts trivially.

In many cases, it will be useful to replace G-modules by modules over the distribution algebra of

G, which we will define next. By Section I.2.3 in [Jan03], the group scheme structure of G gives rise

to a Hopf algebra structure on the coordinate algebra k[G] of G, with counit εG : k[G]→ k, comulti-

plication ∆G : k[G]→ k[G]⊗ k[G] and antipode σG : k[G]→ k[G] coming from the neutral element,

the multiplication morphism and the inversion morphism of G, respectively. The augmentation ideal

of k[G] is IG := ker(εG), and we define the distribution algebra of G as

Dist(G) :=
{
ϑ ∈ k[G]∗

∣∣ ϑ(InG) = 0 for some n > 0
}
,

with multiplication given by ϑ · ϑ′ := (ϑ ⊗ ϑ′) ◦ ∆G, for ϑ, ϑ′ ∈ Dist(G), and neutral element εG;

see Section I.7.7 in [Jan03]. One can show that the image of Dist(G) ⊆ k[G]∗ under the dual of the

multiplication map k[G]⊗ k[G]→ k[G] is contained in the naturally embedded subspace

Dist(G)⊗Dist(G) ⊆ k[G]∗ ⊗ k[G]∗ ⊆
(
k[G]⊗ k[G]

)∗
;

thus the Hopf algebra structure on k[G] gives rise to a Hopf algebra structure on Dist(G), with counit,

comultiplication and antipode denoted by ε, ∆ and σ, respectively. Every G-module M is naturally a

k[G]-comodule, and the comodule map ∆M : M → M ⊗ k[G] defines a Dist(G)-module structure on

17



Chapter I. Foundations

M via ϑ⊗m 7→ (idM⊗ϑ)◦∆M (m) for ϑ ∈ Dist(G) and m ∈M ; see Sections I.2.8 and I.7.11 in [Jan03].

Under our assumptions on G, the resulting functor from Rep(G) to the category of finite-dimensional

Dist(G)-modules is an equivalence of categories by Section II.1.20 in [Jan03].

Let us give a more explicit description of Dist(G), following Sections II.1.11 and II.1.12 in [Jan03].

The root homomorphisms xβ : Z→ Uβ,Z, for β ∈ Φ, give rise to a Chevalley basis

{Xβ, Hα | β ∈ Φ, α ∈ Π}

of the complex simple Lie algebra g with root system Φ, and the divided powers

Xβ,r :=
Xr
β

r!
and Hα,m :=

Hα · (Hα − 1) · · · (Hα −m)

m!

generate a Z-subalgebra UZ(g) of the universal enveloping algebra U(g) which admits a PBW-type

basis, consisting of products of the form∏
β∈−Φ+

Xβ,rβ ·
∏
α∈Π

Hα,mα ·
∏
β∈Φ+

Xβ,rβ

with rβ,mα ∈ Z≥0 for β ∈ Φ and α ∈ Π, for any fixed ordering of the roots in the product. There is

a canonical Hopf algebra structure on U(g), with comultiplication, counit and antipode given by

x 7→ x⊗ 1 + 1⊗ x, x 7→ 0 and x 7→ −x

for all x ∈ g, and one can show that UZ(g) is a Z-Hopf subalgebra. Furthermore, there are isomorphisms

of Hopf algebras

Dist(GZ) ∼= UZ(g) and Dist(G) ∼= UZ(g)⊗ k =: Uk(g),

over Z and k, respectively. We write Xβ,r instead of Xβ,r ⊗ 1 and Hα,m instead of Hα,m ⊗ 1 for the

images of the divided powers in Uk(g).

In the quantum case, the role of the maximal torus T is played by the subalgebra U0
ζ (g), and the

role of the Borel subgroup B is played by the subalgebra U−ζ (g). For every weight λ ∈ X, there is

a Q(q)-algebra homomorphism ελ,q : U0
q (g) −→ Q(q) with Kα 7→ q(λ,α) for all α ∈ Π, which restricts

to a Z[q, q−1]-algebra homomorphism εZλ : UZ,0q (g) → Z[q, q−1]. By specialization of q at ζ, we obtain

a k-algebra homomorphism ελ : U0
ζ (g) → k. We say that a U0

ζ (g)-module M has a weight space

decomposition if

M =
⊕
λ∈X

Mλ,

where the weight spaces are defined by

Mλ :=
{
m ∈M

∣∣ u ·m = ελ(u) ·m for all u ∈ U0
ζ (g)

}
.

By Theorem 9.12 in [AKP91], every finite-dimensional Uζ(g)-module has a weight space decomposition.

We write Rep
(
Uζ(g)

)
for the category of finite-dimensional Uζ(g)-modules and Rep

(
U−ζ (g)

)
for the

category of finite-dimensional U−ζ (g)-modules that have a weight space decomposition. As in the

modular case, a weight λ ∈ X gives rise to a one-dimensional U−ζ (g)-module kλ, where U0
ζ (g) acts

via the homomorphism ελ and all divided powers act by zero. Keeping these analogies in mind, we

introduce a notation that will allow as to treat the modular case and the quantum case simultaneously.
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4. Representation categories

Notation. In the quantum case, we write G = Uζ(g), B = U−ζ (g) and T = U0
ζ (g).

From now on, we will not distinguish between the modular case and the quantum case any more,

except when there are significant differences. In both cases, the objects of the category Rep(G) will be

called G-modules, and we write HomG(M,N) and ExtiG(M,N) for the space of homomorphisms and

the Ext-groups between G-modules M and N , respectively. A G-module is called completely reducible

if it is isomorphic to a direct sum of simple G-modules, and we define the socle socGM to be the largest

completely reducible G-submodule of M . Similarly, we define the radical radGM to be the smallest

G-submodule of M such that M/radGM is completely reducible, and we call headGM := M/radGM

the head of M . We say that a G-module is uniserial if its submodules are totally ordered by inclusion,

or equivalently, if it has a unique composition series. Recall that every G-module M admits a weight

space decomposition

M =
⊕
λ∈X

Mλ;

we call λ ∈ X a weight of M if Mλ 6= 0. The character of M is defined as the element

chM =
∑
λ∈X

dim(Mλ) · eλ

of the group ring Z[X] (with a basis of formal exponentials {eλ | λ ∈ X}, where eλ · eµ = eλ+µ for

λ, µ ∈ X). The standard action of Wfin on X induces an action of Wfin on Z[X] by ring automorphisms,

and it turns out that the characters of all G-modules belong to the ring Z[X]Wfin of Wfin-fixed points

in Z[X]. For G-modules M and N , the tensor product M ⊗ N (over k) has a canonical G-module

structure, defined in the usual way in the modular case and via the comultiplication of Uζ(g) in

the quantum case. This endows Rep(G) with the structure of a braided monoidal category, i.e. a

category with a tensor product bifunctor and a natural braiding isomorphism M ⊗N ∼= N ⊗M that

commutes with the associativity isomorphisms between triple tensor products in a suitable sense. In

the modular case, the braiding is the standard one and Rep(G) is symmetric (i.e. the square of the

braiding is the identity); in the quantum case, it is constructed in Chapter 32 in [Lus10]. The dual

space M∗ = Homk(M, k) of a G-module M also carries a natural G-module structure, defined in the

usual way in the modular case and via the antipode of Uζ(g) in the quantum case. Taking duals is a

contravariant autoequivalence of Rep(G), and we have chM∗ =
∑

λ∈X dim(Mλ) · e−λ. The natural

evaluation map and coevaluation map

evM : M ⊗M∗ −→ k and coevM : k −→M∗ ⊗M

are homomorphisms of G-modules, where k denotes the trivial G-module. For G-modules N and N ′,

there are natural isomorphisms (M ⊗N)∗ ∼= N∗⊗M∗ and HomG(N ⊗M,N ′) ∼= HomG(N,N ′⊗M∗).
As explained in Section II.2.13 in [Jan03] (for the modular case), there is a second duality on Rep(G)

which we call contravariant duality and denote by M 7→ M τ . On the level of characters, we have

chM = chM τ , and we call a G-module M contravariantly self-dual if M ∼= M τ . The quantum

analogue of this duality is constructed in Section 9.20 in [Jan96] for the quantum group Uq(g) (not at

a root of unity); one can check that a similar construction works for Uζ(g). For G-modules M and

N , there are natural isomorphisms (M ⊗N)τ ∼= N τ ⊗M τ and HomG(M,N) ∼= HomG(N τ ,M τ ).

Next we recall the definitions of some important G-modules, following Chapters II.2 and II.H in

[Jan03]. The restriction functor

resGB : Rep(G) −→ Rep(B)
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Chapter I. Foundations

has a right adjoint induction functor

indG
B : Rep(B) −→ Rep(G),

and the induction of a simple B-module kλ is non-zero if and only if λ is dominant. For λ ∈ X+, we

call

∇(λ) := indG
B(kλ)

the costandard module (or induced module) of highest weight λ. The terminology highest weight λ here

refers to the fact that the weight spaces ∇(λ)µ are zero unless µ ≤ λ, and that dim∇(λ)λ = 1. The

characters χ(λ) := ch∇(λ) of the costandard modules are given by Weyl’s character formula, that is

χ(λ) =

∑
w∈Wfin

det(w) · ew(λ+ρ)∑
w∈Wfin

det(w) · ewρ
,

and they form a basis of Z[X]Wfin . In fact, the formula above can be used to define χ(λ) ∈ Z[X]Wfin

for any λ ∈ X (and not just for dominant weights) and one easily checks that χ(w ·λ) = det(w) ·χ(λ)

for all λ ∈ X and w ∈ Wfin, and that χ(λ) = 0 if (λ, α∨) = −1 for some α ∈ Π. The costandard

module ∇(λ) has a unique simple submodule

L(λ) := socG∇(λ),

and the G-modules L(λ) with λ ∈ X+ form a set of representatives for the isomorphism classes of

simple objects in Rep(G); see Sections II.2.3–6 and II.H.11 in [Jan03]. Every G-module M has a

finite composition series, and we write [M : L(λ)] for the multiplicity of the simple module L(λ) as

a composition factor of M . The existence of finite composition series also implies that Rep(G) is a

Krull-Schmidt category (in the sense of Appendix A). For a G-module M and an indecomposable

G-module N , we write [M : N ]⊕ for the multiplicity of N in a Krull-Schmidt decomposition of M .

The dual of a simple G-module is simple, and as chL(λ)∗ =
∑

µ∈X dim(L(λ)µ) · e−µ and −w0λ is the

unique dominant weight in the Wfin-orbit of −λ, for all λ ∈ X+, we have L(λ)∗ ∼= L(−w0λ). Similarly,

we see that L(λ)τ ∼= L(λ), for all λ ∈ X+. The standard module (or Weyl module) of highest weight

λ is defined as

∆(λ) := ∇(−w0λ)∗ ∼= ∇(λ)τ ;

it has a unique maximal submodule radG∆(λ) and ∆(λ)/radG∆(λ) ∼= L(λ).

Remark 4.1. The standard modules and costandard modules satisfy the following important Ext-

vanishing property:

(4.1) ExtiG
(
∆(λ),∇(µ)

) ∼= {k if i = 0 and λ = µ,

0 otherwise.

More generally, if M is a G-module and λ ∈ X+ such that ExtiG
(
M,∇(λ)

)
6= 0 for some i ≥ 0 then M

has a weight µ with µ ≥ λ and ht(µ− λ) ≥ i. In the modular case, this is derived as a consequence of

Kempf’s vanishing theorem; see Propositions II.4.5 and II.4.13 in [Jan03]. The quantum analogue of

Kempf’s vanishing theorem was proven (in its most general form) in [RH03b], and (4.1) then follows

as in the modular case.

Using the preceding remark about Ext-vanishing, we can prove the following well-known universal

property of Weyl modules:
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Lemma 4.2. Let λ ∈ X+ and let M be a G-module with headGM ∼= L(λ) and such that λ is maximal

among the weights of M . Then there is a surjective homomorphism ∆(λ)→M .

Proof. First observe that the maximality of λ among the weights of M implies that

Ext1
G

(
∆(λ), radGM

) ∼= Ext1
G

(
(radGM)τ ,∇(λ)

)
= 0,

by Remark 4.1. Thus, the short exact sequence

0 −→ radGM −→M −→ L(λ) −→ 0

gives rise to a short exact sequence

0→ HomG

(
∆(λ), radGM

)
→ HomG

(
∆(λ),M

)
→ HomG

(
∆(λ), L(λ)

)
→ 0.

It follows that there exists a homomorphism ϕ : ∆(λ) → M such that the composition of ϕ with the

epimorphism M → L(λ) with kernel radGM is non-zero. In particular, the image of ϕ is not contained

in the unique maximal submodule radGM of M , and we conclude that ϕ is surjective.

Let us conclude this section with some remarks about truncation to Levi subgroups.

Remark 4.3. Suppose that we are in the modular case. For a subset I ⊆ Π, we consider the root

system ΦI = ZI ∩ Φ, and write LI for the derived subgroup of the Levi subgroup 〈T,Uβ | β ∈ ΦI〉
of G corresponding to I. The weight lattice of LI can be identified with XI :=

⊕
α∈I Z$α, and for

λ ∈ X, we call

λI :=
∑
α∈I

(λ, α∨) ·$α

the truncation of λ to XI . For µ ∈ XI ∩X+, let us write LI(µ) and ∇I(µ) for the simple LI -module

and the costandard LI -module of highest weight µ, respectively. The truncation of a G-module M to

LI at a weight λ ∈ X is defined as the direct sum of weight spaces

TrλIM :=
⊕
γ∈ZΦI

Mλ−γ .

By Sections II.2.10 and II.2.11 in [Jan03], we have

LI(λI) ∼= TrλIL(λ) and ∇I(λI) ∼= TrλI∇(λ)

for all λ ∈ X+. For λ, µ ∈ X+ such that λ−µ ∈ ZΦI , it follows that [∇(λ) : L(µ)] = [∇I(λI) : LI(µI)].

Furthermore, we have

LI(λI)⊗ LI(µI) ∼= TrλIL(λ)⊗ TrµIL(µ) = Trλ+µ
I

(
L(λ)⊗ L(µ)

)
for all λ, µ ∈ X+; in particular, LI(λI) ⊗ LI(µI) is completely reducible whenever L(λ) ⊗ L(µ) is

completely reducible. (This observation will be important in Chapter V.) Similar results apply in the

quantum case (see for instance Section 4.2 in [GGN18]), but they will not be needed here.
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5 Good filtrations and tilting modules

A good filtration of a G-module M is a sequence of submodules

0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M

such that either Mi = Mi−1 or Mi/Mi−1
∼= ∇(λi) for some λi ∈ X+, for i = 1, . . . , r. The following

proposition is sometimes referred to as Donkin’s cohomological criterion for the existence of good

filtrations. See Proposition 4.16 in [Jan03] for a proof in the modular case, the quantum case is

analogous.

Proposition 5.1. For a G-module M , the following are equivalent:

(1) M has a good filtration;

(2) ExtiG
(
∆(λ),M

)
= 0 for all λ ∈ X+ and i > 0;

(3) Ext1
G

(
∆(λ),M

)
= 0 for all λ ∈ X+.

If 0 = M0 ⊆ · · · ⊆Mr = M is a good filtration with Mi/Mi−1
∼= ∇(λi) for i = 1, . . . , r then

|{i | λi = λ}| = dim HomG

(
∆(λ),M)

for all λ ∈ X+.

The last statement of the proposition tells us that the multiplicity of a costandard module in a

good filtration is independent of the chosen filtration. For a G-module M admitting a good filtration

and for λ ∈ X+, we write

[M : ∇(λ)]∇ = dim HomG

(
∆(λ),M

)
for this multiplicity. The direct sum M ⊕N of two G-modules M and N admits a good filtration if

and only if M and N do, since

ExtiG
(
∆(λ),M ⊕N

) ∼= ExtiG
(
∆(λ),M

)
⊕ ExtiG

(
∆(λ), N

)
for all λ ∈ X+ and i > 0. As is pointed out in Remark 4 after Proposition II.4.16 in [Jan03], a

G-module M admitting a good filtration always admits a good filtration 0 ⊆ M0 ⊆ · · · ⊆ Mr = M

with quotients Mi/Mi−1
∼= ∇(λi), such that i < j whenever λi < λj .

A key property of good filtrations is that they are preserved under tensor products. In the modular

case, this was proven in type An by J. Wang [Wan82] and, for almost all primes and root systems,

by S. Donkin [Don85]. A uniform proof for all primes and root systems was given by O. Mathieu in

[Mat90] using Frobenius splitting; the quantum analogue is treated in [Par94] using crystal bases.

Theorem 5.2. If M and N are G-modules admitting a good filtration then so is M ⊗N .

A Weyl filtration of a G-module M is a sequence of submodules

0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M

such that either Mi = Mi−1 or Mi/Mi−1
∼= ∆(λi) for some λi ∈ X+, for i = 1, . . . , r. As the dual

(or the contravariant dual) of a standard module is a costandard module, we see that M has a Weyl

filtration if and only if M∗ (or M τ ) has a good filtration. By taking duals, it is straightforward to

22



5. Good filtrations and tilting modules

obtain analogues of Proposition 5.1 and Theorem 5.2 for modules that admit a Weyl filtration. We

refrain from spelling this out in detail and only mention that, for a G-module M admitting a Weyl

filtration 0 = M0 ⊆ · · · ⊆Mr = M with Mi/Mi−1
∼= ∆(λi), we have

[M : ∆(λ)]∆ := dim HomG

(
M,∇(λ)

)
= |{i | λi = λ}|

for λ ∈ X+. Here, one may assume that i < j whenever λi > λj
A G-module is called a tilting module if it admits a good filtration and a Weyl filtration, and we

write Tilt(G) for the full subcategory of tilting modules in Rep(G). By the results about G-modules

admitting a good filtration, the category Tilt(G) is closed under forming direct sums and tensor

products, and under taking direct summands. In particular, every tilting module is isomorphic to a

direct sum of indecomposable tilting modules. As was first pointed out by C.M. Ringel [Rin91] and

S. Donkin [Don93], the indecomposable tilting modules are classified by their highest weight in X+.

Proposition 5.3. For every λ ∈ X+, there exists a tilting module T (λ), unique up to isomorphism,

with dimT (λ)λ = 1 and dimT (λ)µ = 0 unless µ ≤ λ. Every indecomposable tilting module is isomor-

phic to T (λ) for some λ ∈ X+.

The characterization of the tilting module T (λ) in terms of its weight spaces implies that

[T (λ) : ∇(λ)]∇ = 1 = [T (λ) : ∆(λ)]∆,

and that

[T (λ) : ∇(µ)]∇ = 0 = [T (λ) : ∆(µ)]∆

unless µ ≤ λ. By the above discussion, a good filtration 0 = M0 ⊆ · · · ⊆ Mr = T (λ) of T (λ) can

be chosen in such a way that Mr/Mr−1
∼= ∇(λ), so there exists an epimorphism T (λ)→ ∇(λ) whose

kernel has a good filtration. Similarly, we can find a Weyl filtration of T (λ) that starts with ∆(λ),

giving rise to a monomorphism ∆(λ) → T (λ) whose cokernel has a Weyl filtration. Further weight

considerations show that T (λ)∗ ∼= T (−w0λ) and T (λ)τ ∼= T (λ), and it follows that

[T (λ) : ∇(µ)]∇ = [T (λ) : ∆(µ)]∆

for all µ ∈ X+.

The Ext-vanishing property (4.1) implies that ExtiG(M,N) = 0, for all tilting modules M and N

and all i > 0. Combining this observation with the fact that every simple G-module can be realized

as a subquotient of a tilting module, one can prove that the canonical functor from the bounded

homotopy category Kb
(
Tilt(G)

)
of Tilt(G) to the bounded derived category Db

(
Rep(G)

)
of Rep(G)

is an equivalence of (triangulated monoidal) categories. This statement is well-known to experts in

the field; we refer to it as the tilting equivalence. It was proven (in a different context) in [BBM04],

some variations of the result were certainly known earlier (see Lemma III.2.1 in [Hap88]). We include

a sketch of a proof here, for the reader’s convenience. For some background on homotopy categories

and derived categories, see Appendix B.

Proposition 5.4. The canonical functor

T : Kb
(
Tilt(G)

)
−→ Db

(
Rep(G)

)
is an equivalence of categories.
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Proof. For the sake of convenience, let us write K = Kb
(
Tilt(G)

)
and D = Db

(
Rep(G)

)
. The functor

T sends a complex of tilting modules to itself, and a homotopy class of chain maps to its equivalence

class in the derived category. By a standard result from category theory, it suffices to prove that T

is fully faithful and essentially surjective.3 First let M and N be tilting G-modules and consider the

corresponding one-term complexes. For i < 0, we have

HomD(M,N [i]) = 0 = HomK(M,N [i]),

and for i > 0, we get

HomD(M,N [i]) = ExtiG(M,N) = 0 = HomK(M,N [i])

by the above discussion. Finally, we have

HomD(M,N) ∼= HomG(M,N) ∼= HomK(M,N),

so HomD(M,N [i]) ∼= HomK(M,N [i]) for all i ∈ Z, and the isomorphism is induced by T. For bounded

non-zero complexes M = (M•, d
M
• ) and N = (N•, d

N
• ) of tilting modules, we can choose r ∈ Z maximal

with the property that Mr 6= 0. With

M ′ := (· · · →Mr−2 →Mr−1 → 0→ · · · ) and M ′′ := (· · · → 0→Mr → 0→ · · · ),

there is a distinguished triangle

M ′ −→M ′′ −→M −→M ′[1]

(in both K and D). Applying the cohomological functors

HomK(−, N) and HomD(−, N)

yields a commutative diagram

HomK(M ′′[1], N) HomK(M ′[1], N) HomK(M,N) HomK(M ′′, N) HomK(M ′, N)

HomD(M ′′[1], N) HomD(M ′[1], N) HomD(M,N) HomD(M ′′, N) HomD(M ′, N)

with exact rows, and where the vertical arrows are induced by T. Now the five lemma implies that the

third vertical arrow is an isomorphism if all the other vertical arrows are isomorphisms, so we can use

induction on the number of non-zero terms in M to reduce to the case where M is a (possibly shifted)

one-term complex. Similarly, we can use induction on the number of non-zero terms in N to reduce

to the case where N is also a (shifted) one-term complex. In this case, we have already shown that T

induces isomorphisms between the Hom-spaces in K and D, so it follows that T is fully faithful.

It remains to show that T is essentially surjective, i.e. that every bounded complex M = (M•, d
M
• )

of G-modules is isomorphic to a bounded complex of tilting G-modules in D. If M fits into a

distinguished triangle

M ′
f−−→M ′′

g−−→M −→M ′[1]

3This means that T induces bijections between the Hom-spaces in the categories K and D and that every object in D
is isomorphic to TX for some object X of K. See Theorem IV.4.1 in [ML98].
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6. Linkage and translation

then M ∼= cone(f), and using the fact that T preserves distinguished triangles, we can once again

reduce to the case where M is a one-term complex. As every short exact sequence in Rep(G) gives

rise to a distinguished triangle, we can further reduce to the case where M = L(λ) is a simple G-

module, viewed as a complex with a single non-zero term in degree zero. Then the claim follows by

induction on the number of dominant weights below λ: If there are no dominant weights below λ then

L(λ) = T (λ), and the one-term complex with T (λ) in degree zero certainly belongs to the essential

image of T. In general, we can write L(λ) as a subquotient of T (λ), and all the other composition

factors of T (λ) are of the form L(µ) with µ < λ, so the claim follows by induction.

6 Linkage and translation

The (`-dilated) dot action of the extended affine Weyl group Wext on XR is defined by

tγw · x = w(x+ ρ) + `γ − ρ,

for x ∈ XR, γ ∈ X and w ∈ Wfin. The linkage principle describes the decomposition of Rep(G)

into linkage classes that arise from this action, and the translation principle relates the different

linkage classes via translation functors. Before recalling these results, we need to introduce some more

notation, describing the alcove geometry with respect to the dot action.

The set of fixed points of a reflection s = sβ,m with respect to the dot action is the affine hyperplane

H`
s = H`

β,m := {x ∈ XR | (x+ ρ, β∨) = `m},

and the `-alcoves are the connected components of XR \
⋃
β,mH

`
β,m. A weight λ ∈ X is called `-

singular if it lies on at least one of the hyperplanes H`
β,m, and `-regular if it lies in an `-alcove. Recall

that we write Hβ,m for the hyperplane of fixed points of the affine reflection sβ,m with respect to the

standard action. We have

H`
β,m = {` · x− ρ | x ∈ Hβ,m},

so the map A 7→ ` · A− ρ is a bijection between the set of alcoves (in the sense of Section 2) and the

set of `-alcoves. Using this bijection, we can translate the results from Section 2 into results about

`-alcoves, and we generally use the notation which was introduced in Section 2 for `-alcoves as well.

For instance, we call

Cfund := ` ·Afund − ρ = {x ∈ XR | 0 < (x+ ρ, β∨) < ` for all β ∈ Φ+}

the fundamental `-alcove; its closure is a fundamental domain for the dot action of Waff on XR. In

order to distinguish between `-alcoves and alcoves, we usually label the former by the letter C and

the latter by the letter A (as we did with Cfund and Afund). As in Section 2, an `-alcove C ⊆ XR is

determined by a collection of integers nβ(C), for β ∈ Φ+, such that

C =
{
x ∈ XR

∣∣ nβ(C) · ` < (x+ ρ, β∨) < (nβ(C) + 1) · ` for all β ∈ Φ+
}
,

and we set d(C) :=
∑

β nβ(C). For all λ ∈ X and β ∈ Φ+, we can choose nβ(λ) ∈ Z such that

nβ(λ) · ` ≤ (λ+ ρ, β∨) < (nβ(λ) + 1) · `,

and we set d(λ) :=
∑

β nβ(λ). The linkage order ↑` on X is the reflexive and transitive closure of the

relation given by µ ↑` λ if µ ≤ λ and there exists a reflection s ∈ Waff with λ = s · µ. Using the

25



Chapter I. Foundations

bijection between alcoves and `-alcoves, the linkage order ↑ from Section 2 induces a partial order ↑`
on the set of `-alcoves. For `-alcoves C1 and C2 with C1 ↑` C2 and a weight λ ∈ C1, there is a unique

weight λ′ ∈Waff · λ ∩ C2, and we have λ ↑` λ′.
Now we are ready to give the key results establishing the linkage principle; see Sections II.6.13–20

in [Jan03] for the modular case. The quantum analogues were first established in [AKP91] under the

assumption that ` is an odd prime power, but this restriction was subsequently removed, as is pointed

out in [And94].

Proposition 6.1 (The strong linkage principle). If λ, µ ∈ X+ such that

[∇(λ) : L(µ)] 6= 0

then µ ↑` λ.4

Corollary 6.2 (The weak linkage principle). If λ, µ ∈ X+ such that

ExtiG
(
L(λ), L(µ)

)
6= 0

for some i ≥ 0 then µ ∈Waff · λ.

Proposition 6.3. If λ, µ ∈ X+ and i ≥ 0 such that

ExtiG
(
L(λ),∇(µ)

)
6= 0 or ExtiG

(
∇(λ),∇(µ)

)
6= 0

then µ ↑` λ and i ≤ d(λ)− d(µ).

The strong linkage principle has an analogue for Weyl filtration multiplicities in indecomposable

tilting modules; see the remarks after Lemma II.E.3 in [Jan03].

Proposition 6.4. If λ, µ ∈ X+ such that

[T (λ) : ∆(µ)]∆ 6= 0

then µ ↑` λ.

As an immediate consequence of Propositions 6.1 and 6.4, we obtain that

L(λ) ∼= ∆(λ) ∼= ∇(λ) ∼= T (λ)

for all λ ∈ C fund ∩X+.

For µ ∈ C fund∩X, the linkage class Repµ(G) of µ is the full subcategory of Rep(G) whose objects

are the G-modules all of whose composition factors are of the form L(x · µ), for some x ∈ Waff . We

call the linkage class Repµ(G) `-regular if µ ∈ Cfund, and `-singular if µ ∈ C fund \ Cfund. According

to Corollary 6.2, every G-module M admits a decomposition

M =
⊕

µ∈Cfund∩X

prµM,

4This is a slightly weaker version of what is called the strong linkage principle in [Jan03]. The version that is given

there also takes into account the G-modules Ri indG
B (kλ), arising from the derived functors of indG

B .
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6. Linkage and translation

where prµM denotes the unique largest submodule of M that belongs to Repµ(G). Furthermore, there

cannot be any non-zero homomorphisms between G-modules that belong to different linkage classes,

so we obtain a decomposition

Rep(G) =
⊕

µ∈Cfund∩X

Repµ(G)

with projection functors prµ : Rep(G) → Repµ(G). The linkage class Rep0(G) containing the trivial

G-module L(0) ∼= k is called the principal block of G, and we call

RepΩ·0(G) :=
⊕
λ∈Ω·0

Repλ(G)

the extended principal block , where Ω = StabWext(Cfund) as in Section 2.

Now fix λ, µ ∈ C fund ∩X and let ν be the unique dominant weight in the Wfin-orbit of µ− λ. The

translation functor from Repλ(G) to Repµ(G) is defined as

Tµλ := prµ
(
L(ν)⊗−

)
: Repλ(G) −→ Repµ(G).

The results about translation functors that we list below can all be found in Chapter II.7 in [Jan03]

for the modular case, the proofs in the quantum case are analogous.

First note that Tµλ is an exact functor. As −w0ν is the unique dominant weight in the Wfin-orbit

of λ− µ and as L(−w0ν) ∼= L(ν)∗, the functor T λµ is both left and right adjoint to Tµλ . Furthermore,

we have

(TµλM)τ ∼= TµλM
τ and (TµλM)∗ ∼= T−w0µ

−w0λ
M∗

for every G-module M in Repλ(G). In the remarks in Sections II.7.6–7 in [Jan03], it is explained that

the simple module L(ν) in the definition of Tµλ can be replaced by any G-module of highest weight ν,

such as ∇(ν), ∆(ν) or T (ν), without changing Tµλ (up to a natural isomorphism). In particular,

translation functors preserve the subcategories of modules with good filtrations or Weyl filtrations,

and the subcategory of tilting modules. On the level of characters, the action of translation functors

is described by the following proposition:

Proposition 6.5. Let M be a G-module in Repλ(G) and write chM =
∑

x∈Waff
ax · χ(x · λ), for

certain ax ∈ Z such that ax = 0 for all but finitely many x ∈Waff . Then

ch
(
TµλM

)
=

∑
x∈Waff

ax
∑
y

χ(xy · µ),

where y runs over a system of representatives for StabWaff
(λ)
/(

StabWaff
(λ) ∩ StabWaff

(µ)
)
.

As a consequence, we can determine the multiplicities in a good filtration of Tµλ∇(x · λ).

Proposition 6.6. Let x ∈ Waff such that x · λ ∈ X+. Then Tµλ∇(x · λ) has a good filtration with

subquotients ∇(xw · µ) for w ∈ StabWaff
(λ) such that xw · µ ∈ X+, with each weight xw · µ appearing

precisely once.

In order to discuss the properties of translation functors in more detail, we need a refinement of the

notion of `-alcoves: A subset F ⊆ XR is called an `-facet if there exist a decomposition Φ+ = Φ+
0 tΦ+

1

and integers nβ for β ∈ Φ+ such that

F =
{
x ∈ XR

∣∣ (x+ ρ, β∨) = nβ · ` for β ∈ Φ+
0 and nβ · ` < (x+ ρ, β∨) < (nβ + 1) · ` for β ∈ Φ+

1

}
.
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The upper closure of F is defined as

F̂ :=
{
x ∈ XR

∣∣ (x+ ρ, β∨) = nβ · ` for β ∈ Φ+
0 and nβ · ` < (x+ ρ, β∨) ≤ (nβ + 1) · ` for β ∈ Φ+

1

}
.

We will sometimes write Φ+
0 = Φ+

0 (F ), Φ+
1 = Φ+

1 (F ) and nβ = nβ(F ), for β ∈ Φ+. Note that the

`-alcoves are precisely the `-facets F with Φ+
0 (F ) = ∅. Every element x ∈ XR belongs to a unique

`-facet, which we denote by Fx.

The translation functor Tµλ is particularly well-behaved when λ and µ belong to the same facet.

Proposition 6.7. Suppose that Fλ = Fµ. Then

Tµλ : Repλ(G) −→ Repµ(G)

is an equivalence of categories, with quasi-inverse T λµ .

Under slightly weaker assumtions, it is still possible to describe the action of Tµλ on costandard

modules and on simple G-modules.

Proposition 6.8. Suppose that µ ∈ F λ and let x ∈Waff such that x · λ ∈ X+. Then

Tµλ∇(x · λ) ∼=

{
∇(x · µ) if x · µ ∈ X+,

0 otherwise

and

TµλL(x · λ) ∼=

{
L(x · µ) if x · µ ∈ F̂x·λ,
0 otherwise.

We conclude this section with some results about translation from a wall, that is, about the

translation functor T λµ when λ ∈ Cfund and StabWaff
(µ) = {e, s} for some s ∈ S. By Section II.6.2

in [Jan03], we have Cfund ∩X ⊆ X+, and Cfund ∩X is non-empty if and only if ` ≥ h (the Coxeter

number of Φ). Observe that for λ ∈ Cfund∩X and x ∈Waff , we have x ·λ ∈ X+ if and only if x ∈W+
aff .

Furthermore, if ` ≥ h then there exists, for every s ∈ S, a weight µs ∈ C fund ∩X such that

StabWaff
(µs) = {e, s};

see Section II.6.3 in [Jan03]. The following result, describing the translation from a wall of a costandard

module, is taken from Proposition II.7.19 in [Jan03].

Proposition 6.9. Suppose that λ ∈ Cfund and StabWaff
(µ) = {e, s} for some s ∈ S, and let x ∈ Waff

with x · λ ∈ X+ and x · λ < xs · λ. Then x · µ ∈ X+ and T λµ∇(x · µ) is indecomposable, with simple

socle

socG
(
T λµ∇(x · µ)

) ∼= L(x · λ).

Furthermore, there is a (non-split) short exact sequence

0 −→ ∇(x · λ) −→ T λµ∇(x · µ) −→ ∇(xs · λ) −→ 0.

As usual, there is an analogue of Proposition 6.9 where costandard modules are replaced by stan-

dard modules; we leave the details to the reader. By Lemma II.7.20 in [Jan03], the translation from

a wall of a simple G-module admits the following description:
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7. Good filtration dimension

Proposition 6.10. Suppose that λ ∈ Cfund and StabWaff
(µ) = {e, s} for some s ∈ S, and let x ∈Waff

with x · λ ∈ X+ and x · λ < xs · λ. Then x · µ ∈ X+ and T λµL(x · µ) is indecomposable, with simple

head and socle

headG

(
T λµL(x · µ)

) ∼= socG
(
T λµL(x · µ)

) ∼= L(x · λ).

Furthermore, we have

[T λµL(x · µ) : L(xs · λ)] = 1 and [T λµL(x · µ) : L(x · λ)] = 2.

For any y ∈W+
aff with y 6= x and [T λµL(x · µ) : L(y · λ)] 6= 0, we have ys · λ ↑` y · λ ↑` xs · λ.

Proof. Most of the statements of the proposition are proven in Lemma II.7.20 in [Jan03]; it only

remains to show that y · λ ↑` xs · λ for all y ∈W+
aff with [T λµL(x · µ) : L(y · λ)] 6= 0. This follows from

Proposition 6.9, the strong linkage principle and the fact that T λµL(x ·µ) embeds into T λµ∇(x ·µ).

Under the assumptions of Propositions 6.9 and 6.10, it is also shown in Proposition II.7.19 in

[Jan03] that

dim Ext1
G

(
L(xs · λ),∇(x · λ)

)
= dim Ext1

G

(
∇(xs · λ),∇(x · λ)

)
= 1.

In particular T λµ∇(x · µ) is the unique non-split extension of ∇(xs · λ) by ∇(x · λ). Furthermore, we

have the following result, which is very useful for the computation of composition multiplicities in

costandard modules (see Proposition II.7.18 in [Jan03]).

Proposition 6.11. Suppose that λ ∈ Cfund and let x, y ∈ W+
aff and s ∈ S such that y · λ < ys · λ.

If xs ∈W+
aff then

[∇(x · λ) : L(y · λ)] = [∇(xs · λ) : L(y · λ)].

7 Good filtration dimension

The good filtration dimension of a G-module M is an invariant which was introduced by E.M. Fried-

lander and B.J. Parshall in order to study the cohomology of Lie algebras and algebraic groups [FP86].

Their results can easily be generalized to the quantum case.

Definition 7.1. The good filtration dimension of a G-module M is

gfd(M) := max
{
d
∣∣ ExtdG(∆(µ),M) 6= 0 for some µ ∈ X+

}
.

The Weyl filtration dimension of M is

wfd(M) := max
{
d
∣∣ ExtdG(M,∇(µ)) 6= 0 for some µ ∈ X+

}
.

The good filtration dimension and Weyl filtration dimension are well-defined by the Ext-vanishing

property in Remark 4.1. By Donkin’s cohomological criterion, a G-module M satisfies gfd(M) = 0

if and only if M has a good filtration. More generally, E.M. Friedlander and B.J. Parshall showed in

Proposition 3.4 in [FP86] that M satisfies gfd(M) ≤ d if and only if there exists a coresolution

0→M →M0 → · · · →Md → 0,

where M0, . . . ,Md are G-modules admitting good filtrations. We call such a coresolution a costandard

coresolution. Similarly, we have wfd(M) ≤ d if and only if there exists a resolution

0→Md → · · · →M0 →M → 0,
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where M0, . . . ,Md admit Weyl filtrations, and we call such a resolution a standard resolution. The

following lemma is also due to E.M. Friedlander and B.J. Parshall, see Proposition 3.4 in [FP86]. The

restrictions on the characteristic ` in [FP86] can be removed in view of [Mat90]. The third part of the

lemma will play an important role later, so we include a proof for the sake of completeness.

Lemma 7.2. Let M and M ′ be G-modules. Then

gfd(M) = wfd(M∗) = wfd(M τ ),

gfd(M ⊕M ′) = max{gfd(M), gfd(M ′)},
gfd(M ⊗M ′) ≤ gfd(M) + gfd(M ′).

Proof. The first and the second equality are straightforward from the definitions. Now let d = gfd(M)

and d′ = gfd(M ′), and fix costandard coresolutions

0→M →M0 → · · · →Md → 0 and 0→M ′ →M ′0 → · · · →M ′d′ → 0.

Note that the tensor product Mi ⊗M ′j admits a good filtration for all 0 ≤ i ≤ d and 0 ≤ j ≤ d′

by Theorem 5.2. Using the tensor product of complexes from Appendix B, we obtain a costandard

coresolution

0→M ⊗M ′ → N0 → · · · → Nd+d′ → 0

with Nk =
⊕

i+j=kMi ⊗M ′j for k = 0, . . . , d+ d′, and it follows that gfd(M ⊗M ′) ≤ d+ d′.

Remark 7.3. Let λ, µ ∈ C fund ∩ X and let M be a G-module in Repλ(G). As TµλM is a direct

summand of M⊗T for some tilting module T , we have gfd
(
TµλM

)
≤ gfd(M) and wfd

(
TµλM

)
≤ wfd(M)

by Lemma 7.2.

Next we discuss how the good filtration dimension and Weyl filtration dimension interact with

short exact sequences of G-modules.

Lemma 7.4. Consider a short exact sequence 0→ A→ B → C → 0 of G-modules. We have

(1) gfd(A) ≤ max{gfd(B), gfd(C) + 1} with equality if gfd(B) 6= gfd(C);

(2) gfd(B) ≤ max{gfd(A), gfd(C)} with equality if gfd(A) 6= gfd(C) + 1;

(3) gfd(C) ≤ max{gfd(A)− 1, gfd(B)} with equality if gfd(A) 6= gfd(B);

(4) wfd(A) ≤ max{wfd(B),wfd(C)− 1} with equality if wfd(B) 6= wfd(C);

(5) wfd(B) ≤ max{wfd(A),wfd(C)} with equality if wfd(C) 6= wfd(A) + 1;

(6) wfd(C) ≤ max{wfd(B),wfd(A) + 1} with equality if wfd(A) 6= wfd(B).

Proof. We only prove (1), the proofs of (2) and (3) are completely analogous and (4)–(6) follow by

taking duals. For i ≥ 0 and µ ∈ X+, the short exact sequence 0→ A→ B → C → 0 gives rise to an

exact sequence

ExtiG
(
∆(µ), B

)
→ ExtiG

(
∆(µ), C

)
→ Exti+1

G

(
∆(µ), A

)
→ Exti+1

G

(
∆(µ), B

)
→ Exti+1

G

(
∆(µ), C

)
.

If i+ 1 > max{gfd(B), gfd(C) + 1} then ExtiG(∆(µ), C) = 0 and Exti+1
G (∆(µ), B) = 0 for all µ ∈ X+,

and we conclude that Exti+1
G (∆(µ), A) = 0 for all µ ∈ X+, hence

gfd(A) ≤ max{gfd(B), gfd(C) + 1}.
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8. Infinitesimal theory

If gfd(B) < gfd(C) =: d then ExtdG(∆(µ), C) 6= 0 for some µ ∈ X+, and as ExtdG(∆(µ), B) = 0, the

Ext-group ExtdG(∆(µ), C) embeds into Extd+1
G (∆(µ), A). This implies that Extd+1

G (∆(µ), A) 6= 0 and

therefore gfd(A) = d + 1. Analogously, if gfd(C) < gfd(B) =: d′ then Extd
′

G(∆(µ), B) 6= 0 for some

weight µ ∈ X+, and Extd
′

G(∆(µ), A) surjects onto Extd
′

G(∆(µ), B) because Extd
′

G(∆(µ), C) = 0. As

before, we conclude that Extd
′

G(∆(µ), A) 6= 0 and gfd(A) = d′.

Corollary 7.5. Let M be a G-module. Then

gfd(M) ≤ max
{

gfd
(
L(δ)

) ∣∣ δ ∈ X+ with [M : L(δ)] 6= 0
}

and

wfd(M) ≤ max
{

wfd
(
L(δ)

) ∣∣ δ ∈ X+ with [M : L(δ)] 6= 0
}
.

Proof. This follows from parts (2) and (5) of Lemma 7.4, by induction on the composition length.

By Proposition 6.3, we have gfd
(
L(λ)

)
≤ d(λ) and gfd

(
∆(λ)

)
≤ d(λ) for all λ ∈ X+. These

inequalities become equalities when λ is an `-regular weight, as was shown by A. Parker in [Par03].

We will rederive her results in Section II.2 using different methods.

8 Infinitesimal theory

In the modular case, the group scheme G admits a Frobenius endomorphism Fr: G → G that fixes

the Borel subgroup B and the maximal torus T; see Section II.3.1 in [Jan03]. The Frobenius kernels

Gr := ker(Frr) for r > 0 are infinitesimal subgroup schemes (in the sense of Section I.8.1 in [Jan03])

and play an important role in the representation theory of G. In this section, we will discuss some

results related to the representation theory of the subgroup schemes Gr and GrT for r > 0, and to

the Frobenius twist functors M 7→ M [r] on Rep(G), which arise by composing the action of G on a

G-module M with the powers Frr of the Frobenius endomorphism.

In the quantum case, the analogue of the Frobenius morphism was constructed by G. Lusztig in

[Lus89], but it is no longer an endomorphism of G = Uζ(G). Instead, G. Lusztig defined a surjective

Hopf algebra homomorphism Fr: Uζ(g) → U(g) from Uζ(g) to the universal enveloping algebra U(g)

of the complex simple Lie algebra g. Again, this gives rise to an exact and monoidal Frobenius twist

functor M 7→M [1], this time from the (semisimple) category Rep(g) of finite-dimensional g-modules to

Rep(G). The kernel of Fr is generated by a finite-dimensional normal Hopf subalgebra uζ(g) of Uζ(g),

called the small quantum group. The representation theory of the small quantum group is similar to

that of the first Frobenius kernel G1 in the modular case, but there are no quantum analogues of

the higher Frobenius kernels and Frobenius twist functors (because it does not make sense to take

powers of the quantum Frobenius morphism). Because of these (and other) differences between the

infinitesimal representation theory in the modular case and in the quantum case, we temporarily

deviate from our strategy of treating the two cases simultaneously.

The modular case

For r > 0, we write Rep(Gr) for the category of (finite-dimensional) Gr-modules, and HomGr(M,N)

for the space of homomorphisms between Gr-modules M and N . As Gr is a normal subgroup scheme

of G, there is a natural restriction functor resGGr
: Rep(G) → Rep(Gr), and for every G-module M ,

the Gr-fixed points MGr form a G-submodule of M . By Lemma II.3.3 in [Jan03], the distribution
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algebra Dist(Gr) of Gr can be identified with the finite-dimensional subalgebra of Uk(g) with basis

given by the products of the form∏
β∈−Φ+

Xβ,rβ ·
∏
α∈Π

Hα,mα ·
∏
β∈Φ+

Xβ,rβ ,

with 0 ≤ rβ,mα < `r for β ∈ Φ and α ∈ Π, and the category Rep(Gr) is equivalent to the category

of Dist(Gr)-modules because Gr is infinitesimal; see Sections I.8.4, I.8.6 and I.9.6 in [Jan03]. The

Frobenius endomorphism Fr: G→ G induces a Hopf algebra endomorphism

Dist(Fr) : Dist(G)→ Dist(G)

with

Xβ,r 7→

{
Xβ,r/` if ` | r,
0 otherwise

and Hα,m 7→

{
Hα,m/` if ` | m,
0 otherwise,

for r,m ≥ 0, and the action of Dist(G) on the Frobenius twist M [1] of a G-module M is obtained by

composing the Dist(G)-action on M with Dist(Fr). Let us denote by

Xr := {λ ∈ X+ | (λ, α∨) < `r for all α ∈ Π}

the set of `r-restricted weights, and observe that every weight λ ∈ X can be uniquely written in the

form λ = λ0 + `r · λ1, with λ0 ∈ Xr and λ1 ∈ X (where λ ∈ X+ if and only if λ1 ∈ X+). According

to Section II.3.15 in [Jan03], the restriction to Gr of a simple G-module L(λ) with λ ∈ Xr affords

a simple Gr-module, which we denote by Lr(λ), and the different Lr(λ), for λ ∈ Xr, form a set of

representatives for the isomorphism classes of simple Gr-modules.

Note that, for a G-module M , the restriction to Gr of the Frobenius twist M [r] is a direct sum of

copies of the trivial one-dimensional Gr-module. Conversely, if N is a G-module whose restriction to

Gr is a direct sum of copies of the trivial one-dimensional Gr-module then there exists a G-module

M , uniquely determined by N , with N = M [r], and we write M = N [−r]. For G-modules M and N ,

the identification HomGr(M,N) ∼= (N ⊗M∗)Gr gives rise to a G-module structure on HomGr(M,N).

The Gr-socle socGrM of M is a G-submodule of M , and there is an isomorphism of G-modules

socGrM
∼=
⊕
λ∈Xr

L(λ)⊗HomGr

(
L(λ),M

)
.

Applying these observations to a simple G-module yields the following important result; see Section

II.3.16 in [Jan03].

Theorem 8.1 (Steinberg’s tensor product theorem). Let λ ∈ X+ and write λ = λ0 + `r · λ1 with

λ0 ∈ Xr and λ1 ∈ X+. Then

L(λ) ∼= L(λ0)⊗ L(λ1)[r].

In Section II.6 below, it will be important to have an indecomposability criterion for twisted tensor

products M ⊗N [1] of G-modules. The following result of S. Donkin will be very useful; see the lemma

in Section 2 of [Don80].

Lemma 8.2. Let V and W be G-modules such that V is indecomposable as a G1-module, W is

indecomposable as a Gr-module for some r > 0 and resGG1
W is a direct sum of copies of the trivial

one-dimensional G1-module. Then V ⊗W is indecomposable as a Gr-module.
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Some remarks are in order about the preceding lemma. First, note that the condition that resGG1
W

is a direct sum of copies of the trivial one-dimensional G1-module implies that W = M [1] for the

G-module M = W [−1] defined above. Furthermore, W being indecomposable as a Gr-module is

equivalent to M being indecomposable as a Gr−1-module, because Dist(Fr) restricts to a surjective

algebra homomorphism Dist(Gr)→ Dist(Gr−1). Therefore, we can reformulate the lemma as follows:

Corollary 8.3. Let V and M be G-modules such that V is indecomposable as a G1-module and M is

indecomposable as a Gr-module, for some r > 0. Then V ⊗M [1] is indecomposable as a Gr+1-module.

Recall that by assumption, all G-modules (and Gr-modules) we consider are finite-dimensional.

Therefore, one can use the Fitting lemma to show that a G-module (or Gr-module) is indecomposable

if and only if its endomorphism algebra is local.

Lemma 8.4. Let M be a G-module. Then M is indecomposable as a G-module if and only if M is

indecomposable as a Gr module for some r > 0.

Proof. As Gr is a subgroup scheme of G for all r > 0, every G-module that is indecomposable as

a Gr-module is also indecomposable as a G-module. Now suppose that M is indecomposable as a

G-module. By point (6) in Section I.9.8 in [Jan03], there is an n ≥ 0 with EndG(M) = EndGr(M)

for all r > n. Thus EndGr(M) is local and M is indecomposable as a Gr-module for all such r.

Equipped with the preceding lemma, we can prove two more corollaries of S. Donkin’s lemma.

Corollary 8.5. Let V and M be G-modules such that V is indecomposable as a G1-module and M

is indecomposable as a G-module. Then V ⊗M [1] is indecomposable as a G-module.

Proof. By Lemma 8.4, M is indecomposable as a Gr-module for some r > 0, and by Corollary 8.3,

this implies that V ⊗M [1] is indecomposable as a Gr+1-module. Again by Lemma 8.4, we conclude

that V ⊗M [1] is indecomposable as a G-module.

Corollary 8.6. Let M0, . . . ,Mr be G-modules such that M0, . . . ,Mr−1 are indecomposable as G1-

modules and Mr is indecomposable as a G-module. Then the tensor product M0 ⊗M [1]
1 ⊗ · · · ⊗M

[r]
r

is indecomposable as a G-module.

Proof. Note that M0 ⊗M [1]
1 ⊗ · · · ⊗M [r] ∼= M0 ⊗

(
M1 ⊗ · · · ⊗M [r−1]

r

)[1]
. Using this observation, the

claim follows from Corollary 8.5, by induction on r.

For applications in Chapter IV, we also need to discuss some results about representations of the

subgroup schemes GrT of G for r > 0; see Chapter II.9 in [Jan03] for references. As for G and Gr,

we denote the category of (finite-dimensional) GrT-modules by Rep(GrT) and write HomGrT(M,N)

for the space of GrT-module homomorphisms between GrT-modules M and N . By Proposition

II.9.6 in [Jan03], the isomorphism classes of simple GrT-modules are naturally in bijection with the

weight lattice X, and we write L̂r(λ) for the simple GrT-module corresponding to λ ∈ X. The simple

GrT-modules of the form L̂r(`
rλ) are one-dimensional, with T acting via `rλ and Gr acting trivially,

and we simplify notation by writing L̂r(`
rλ) = `rλ. For a G-module M , the restriction to GrT of the

Frobenius twist M [r] decomposes as a direct sum of one-dimensional simple GrT-modules `rµ for the

different weights µ of M , each occurring dimMµ times. For λ = λ0 + `rλ1 with λ0 ∈ Xr, we have

L̂r(λ) ∼= L̂r(λ0)⊗ `rλ1 and L̂r(λ0) ∼= resGGrTL(λ0).
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The quantum case

Recall from the beginning of this section that the quantum Frobenius morphism, constructed by

G. Lusztig in [Lus89], is a surjective Hopf algebra homomorphism Fr: G = Uζ(g)→ U(g), which gives

rise to an exact and monoidal Frobenius twist functor M 7→M [1] from Rep(g) to Rep(G). For λ ∈ X+,

let us write LC(λ) for the simple g-module of highest weight λ. Recall from above the notation

X1 = {λ ∈ X+ | (λ, α∨) < ` for all α ∈ Π}

for the set of `-restricted weights. We have the following quantum analogue, due to G. Lusztig, of

Steinberg’s tensor product theorem; see Section II.H.10 in [Jan03].

Theorem 8.7 (Lusztig’s tensor product theorem). Let λ ∈ X+ and write λ = λ0 + `λ1 with λ0 ∈ X1

and λ1 ∈ X+. Then

L(λ) ∼= L(λ0)⊗ L(`λ1)

and L(`λ1) ∼= LC(λ1)[1].

Let us write G1 = uζ(g) for the small quantum group, that is, the subalgebra of G = Uζ(g)

generated by the elements Eα, Fα and K±1
α for α ∈ Π. (We will mostly use the notation G1 when we

want to emphasize analogies with the representation theory of Frobenius kernels, and uζ(g) when we

discuss the algebra structure.) As before, we write Rep(G1) for the category of (finite-dimensional)

G1-modules and HomG1(M,N) for the space of G1-module homomorphisms between G1-modules

M and N . Similarly to the modular case, the restriction to G1 of a simple G-module L(λ) with

`-restricted highest weight λ ∈ X1 affords a simple G1-module which we denote by L1(λ), and the

different L1(λ), with λ ∈ X1, form a set of representatives for the isomorphism classes of simple G1-

modules; see Section II.H.13 in [Jan03]. The algebra uζ(g) is a finite-dimensional Hopf subalgebra of

Uζ(g), and we write u+ for the augmentation ideal of uζ(g) (i.e. the kernel of the restriction to uζ(g)

of the counit ε of Uζ(g)). It was shown by G. Lusztig that the two-sided ideal Uζ(g) · u+ = u+ ·Uζ(g)

of Uζ(g) is precisely the kernel of Fr; see Section 8.16 of [Lus90]. This implies that every G-module

M whose restriction to G1 is isomorphic to a direct sum of copies of the trivial one-dimensional G1-

module (or equivalently, that is annihilated by u+) is also annihilated by ker(Fr), and it follows that

M = N [1] for a (uniquely determined) g-module N = M [−1]. As in the modular case, the G1-fixed

points MG1 of a G-module M , defined as the subspace of M of elements that are annihilated by the

augmentation ideal u+, form a G-submodule of M . Similarly, the G1-socle socG1M is a G-submodule

of M , and as before, there is an isomorphism of G-modules

socG1M
∼=
⊕
λ∈X1

L(λ)⊗HomG1

(
L(λ),M

)
(see Section 3.4 in [AKP92]), where the G-module structure on HomG1

(
L(λ),M

)
comes from the

identification

HomG1

(
L(λ),M

) ∼= (M ⊗ L(λ)∗
)G1 .

Note that Lusztig’s tensor product theorem, together with the above observation about ‘untwisting’

G-modules on which G1 acts trivially and the fact that Rep(g) is a semisimple category, implies that

socG1M is completely reducible as a G-module, whence socG1M = socGM .

Next we establish a quantum analogue of the indecomposability criterion for twisted tensor prod-

ucts from Corollary 8.5. Note that the hypotheses in the following lemma are stronger than those

that we imposed in the modular case. We do not know if a direct analogue of Corollary 8.5 holds in

the quantum case.
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Lemma 8.8. Let V be a G-module that has simple socle as a G1-module, and let L be a simple

g-module. Then V ⊗ L[1] is an indecomposable G-module.

Proof. By the assumption, there exists a weight λ ∈ X1 such that dim HomG1

(
L(λ), V

)
= 1, and as

G1 acts trivially on L[1], there are isomorphisms of G-modules

HomG1

(
L(λ), V ⊗ L[1]

) ∼= HomG1

(
L(λ), V

)
⊗ L[1] ∼= L[1].

Suppose for a contradiction that there is a non-trivial direct sum decomposition V ⊗L[1] ∼= M1⊕M2.

As G1-modules, both M1 and M2 are isomorphic to (non-empty) direct sums of copies of V , so we

obtain a non-trivial direct sum decomposition (as G-modules)

L[1] ∼= HomG1

(
L(λ), V ⊗ L[1]

) ∼= HomG1

(
L(λ),M1

)
⊕HomG1

(
L(λ),M2

)
,

contradicting the simplicity of L[1].

To conclude this section, let us discuss some topics that are analogous to the theory of GrT-

modules which we discussed in the modular case. See Section II.H.13 in [Jan03] for an overview with

further references. We set G1T = uζ(g) ·U0
ζ (g) (which is consistent with the notations G1 = uζ(g) and

T = U0
ζ (g) defined earlier), denote by Rep(G1T) the category of (finite-dimensional) G1T-modules

and write HomG1T(M,N) for the space of G1T-module homomorphisms between G1T-modules M

and N . As in the modular case, the isomorphism classes of simple G1T-modules are naturally in

bijection with X, and we write L̂1(λ) for the irreducible G1T-module corresponding to λ ∈ X. Still as

in the modular case, the simple G1T-modules of the form L̂1(`λ) are one-dimensional, and we write

L̂1(`λ) = `λ. For a G-module M , the restriction to G1T of the Frobenius twist M [1] decomposes

as a direct sum of one-dimensional simple G1T-modules `µ for the different weights µ of M , each

occurring dimMµ times. Furthermore, for λ = λ0 + `λ1 with λ0 ∈ X1, we have

L̂1(λ) ∼= L̂1(λ0)⊗ `λ1 and L̂1(λ0) ∼= resGG1TL(λ0).

Linkage and translation for GrT-modules

For applications in Chapter IV, we briefly discuss some ‘infinitesimal analogues’ of the results about

linkage classes and translation functors from Section 6. We return to our strategy of treating the

modular case and the quantum case simultaneously. The results that we will outline below can be

found in Section 9.22 of [Jan03] in the modular case; the proofs in the quantum case are analogous.

Let us fix r > 0 in the modular case and r = 1 in the quantum case. For µ ∈ C fund ∩ X, we

define the linkage class Repµ(GrT) of µ as the full subcategory of Rep(GrT) whose objects are the

GrT-modules all of whose composition factors are of the form L̂r(x ·µ), for some x ∈Waff . In analogy

with the situation in Section 6, there is a projection functor prµ : Rep(GrT) → Repµ(GrT) and we

obtain a decomposition

Rep(GrT) =
⊕

µ∈Cfund∩X

Repµ(GrT).

Furthermore, the functors prµ on Rep(G) (from Section 6) and on Rep(G1T) (described above) are

intertwined by the restriction functor resGG1T
: Rep(G)→ Rep(G1T), that is

prµ ◦ resGG1T = resGG1T ◦ prµ.

35



Chapter I. Foundations

This justifies using the same symbol for these functors. For all γ ∈ ZΦ and λ ∈ C fund∩X, the weights

λ and λ+ `γ lie in the same Waff -orbit, and it follows that prλ ◦ (`γ ⊗−) = (`γ ⊗−) ◦ prλ. Using the

same definition as in Section 6, we can define translation functors Tµλ from Repλ(G1T) to Repµ(G1T),

for λ, µ ∈ C fund ∩X, such that

resGG1T ◦ T
µ
λ = Tµλ ◦ resGG1T.

If λ and µ belong to the same `-facet then Tµλ is an equivalence of categories, with quasi-inverse T λµ ,

and we have Tµλ L̂1(x · λ) ∼= L̂1(x · µ) for all x ∈Waff .

9 Negligible modules and the fusion category

Tensor ideals are a natural generalization of the notion of ideals in rings to the setting of monoidal

categories. We will be particularly interested in one specific tensor ideal in Tilt(G), namely the ideal

of negligible tilting modules, which will be defined below. We start with some general definitions.

Definition 9.1. Let A be an additive braided monoidal category. A thick tensor ideal in A is an

isomorphism-closed collection J of objects of A that is stable under direct sums and retracts, and

under tensor products with arbitrary objects of A.

More specifically, this means that, for any pair of objects M and N of A, we have

(1) if M ∈ J and M ∼= N then N ∈ J ;

(2) if M ∈ J and N ∈ J then M ⊕N ∈ J ;

(3) if M ⊕N ∈ J then M ∈ J and N ∈ J ;

(4) if M ∈ J then M ⊗N ∈ J .

Given a thick tensor ideal J in A and objects M and N of A, we define

J (M,N) :=
{
f ∈ HomA(M,N)

∣∣ f factors through an object in J
}
.

The subgroups J (M,N) ⊆ HomA(M,N) form a tensor ideal of morphisms in A, i.e. they are stable

under composition from the left and the right and under tensor products with arbitrary morphisms

in A. Thus the quotient category A/J , with the same objects as A and homomorphisms given by

HomA/J (A,B) := HomA(A,B)/J (A,B),

has a natural monoidal structure, and the quotient functor A → A/J , that sends an object to itself

and a homomorphism to its residue class, is monoidal. If A has split idempotents then an object M

of A belongs to J if and only if its image under the quotient functor is isomorphic to the zero object

in A/J (see Appendix A).

By Theorem 5.2, the category Tilt(G) is a braided monoidal subcategory of Rep(G), so it makes

sense to ask about its thick tensor ideals. Under the assumption that ` > h, these thick tensor ideals

were classified by V. Ostrik in the quantum case, using anti-spherical Kazhdan-Lusztig cells [Ost97].

His results were extended to the modular case by P. Achar, W. Hardesty and S. Riche in Section 7

of [AHR19], using `-cells instead of Kazhdan-Lusztig cells. We are only interested in one particular

tensor ideal, which had already been studied (in both cases) by H.H. Andersen and J. Pardowski

[AP95] before the work of V. Ostrik: Even under the slightly weaker assumption that ` ≥ h, the set
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N of tilting G-modules T with [T : T (λ)]⊕ = 0 for all λ ∈ Cfund ∩X forms a thick tensor ideal, which

we call the ideal of negligible tilting modules.5 The quotient category F = Tilt(G)/N is a semisimple

tensor category; it is called the fusion category or the semisimplification of Tilt(G).6 The tilting

modules T (λ) with λ ∈ Cfund ∩X are called (indecomposable) fusion modules; they are precisely the

indecomposable tilting modules whose image under the quotient functor Tilt(G)→ F is non-zero. We

also call fusion module any tilting module that is isomorphic to a direct sum of indecomposable fusion

modules. The split Grothendieck group [F ]⊕ of the fusion category is called the Verlinde algebra; it is

a free Z-algebra with basis {[T (λ)] | λ ∈ Cfund ∩X} the classes of the indecomposable fusion modules

and multiplication given by

[T (λ)] · [T (µ)] = [T (λ)⊗ T (µ)] =
∑

ν∈Cfund∩X
cνλ,µ · [T (ν)],

where cνλ,µ := [T (λ) ⊗ T (µ) : T (ν)]⊕ for λ, µ, ν ∈ Cfund ∩ X. The structure constants cνλ,µ of the

Verlinde algebra can also be computed as

cνλ,µ = [T (λ)⊗ T (µ) : T (ν)]⊕

=
∑

x∈W+
aff

(−1)`(x) · [∆(λ)⊗∆(µ) : ∆(x · ν)]∆

=
∑

x∈Waff

(−1)`(x) · dim ∆(λ)x·ν−µ;

see Proposition II.E.12 in [Jan03]. For later use, we need to establish two elementary properties of these

structure constants. We first prove that they are invariant under the action of Ω = StabWext(Cfund)

on Cfund, in the following sense:

Lemma 9.2. Let λ, µ, ν ∈ Cfund ∩X and ω ∈ Ω. Then

[T (λ)⊗ T (ω · µ) : T (ω · ν)]⊕ = [T (λ)⊗ T (µ) : T (ν)]⊕.

In particular, we have T (λ)⊗ T (ω · 0) ∼= T (ω · λ) in F .

Proof. As conjugation by ω is an automorphism of Waff , we have

[T (λ)⊗ T (ω · µ) : T (ω · ν)]⊕ =
∑

x∈Waff

dim ∆(λ)xω·ν−ω·µ =
∑

x∈Waff

dim ∆(λ)ωx·ν−ω·µ.

Writing ω = tγw with γ ∈ X and w ∈Wfin, it is straightforward to see that

ωx · ν − ω · µ = w(x · ν − µ)

and therefore dim ∆(λ)ωx·ν−ω·µ = dim ∆(λ)x·ν−µ. We conclude that

[T (λ)⊗ T (ω · µ) : T (ω · ν)]⊕ =
∑

x∈Waff

dim ∆(λ)x·ν−µ = [T (λ)⊗ T (µ) : T (ν)]⊕,

as claimed.
5One can use the braided monoidal structure of Tilt(G) to define a notion of ‘dimension’ that takes values in the

ground field k, and it turns out that the negligible tilting modules are precisely those where the ‘dimension’ of all

indecomposable direct summands is zero. In the modular case, the ‘dimension’ is just the usual dimension modulo `. In

the quantum case, it is the so-called quantum dimension.
6The semisimplification of monoidal categories has been studied in detail by P. Etingof and V. Ostrik in [EO18].

Similar ideas can already be found in D. Benson and J. Carlson’s article [BC86].
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Lemma 9.3. Let λ, µ ∈ Cfund ∩X and denote by ν be the unique dominant weight in the Wfin-orbit

of w0λ+ µ. Then ν ∈ Cfund ∩X and cνλ,µ 6= 0.

Proof. Recall that T (δ) ∼= ∇(δ) ∼= L(δ) for all weights δ ∈ Cfund∩X. As −w0ν is the unique dominant

weight in the Wfin-orbit of −w0λ − µ, the remarks above Proposition 6.5 imply that the translation

functor T−w0λ
µ is naturally isomorphic to pr−w0λ

(
T (−w0ν)⊗−

)
. By Proposition 6.8, we have

T (−w0λ) ∼= ∇(−w0λ) ∼= T−w0λ
µ ∇(µ) ∼= pr−w0λ

(
T (−w0ν)⊗∇(µ)

) ∼= pr−w0λ

(
T (−w0ν)⊗ T (µ)

)
,

so T (−w0λ) is a direct summand of T (−w0ν)⊗ T (µ). Analogously, we see that

T (0) ∼= ∇(0) ∼= T 0
λ∇(λ) ∼= pr0

(
T (−w0λ)⊗∇(λ)

) ∼= pr0

(
T (−w0λ)⊗ T (λ)

)
,

whence T (0) is a direct summand of T (−w0λ) ⊗ T (λ) and of T (−w0ν) ⊗ T (µ) ⊗ T (λ). Hence there

exists a weight ν ′ ∈ X+ such that T (ν ′) is a direct summand of T (µ) ⊗ T (λ) and T (0) is a direct

summand of T (−w0ν)⊗ T (ν ′). Now T (0) is non-negligible, and as the negligible tilting modules form

a thick tensor ideal in Tilt(G), it follows that T (ν ′) is non-negligible and ν ′ ∈ Cfund∩X. Furthermore,

the existence of a non-zero homomorphism from the trivial G-module T (0) to the tensor product

T (−w0ν) ⊗ T (ν ′) ∼= L(−w0ν) ⊗ L(ν ′) implies that L(ν ′) ∼= L(−w0ν)∗ ∼= L(ν) by Schur’s lemma. We

conclude that ν = ν ′, so T (ν) is a direct summand of T (λ)⊗ T (µ), as claimed.
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In this chapter, we develop the theory of singular G-modules and of generic direct summands of tensor

products. The main idea is to use the tilting equivalence

T : Kb
(
Tilt(G)

)
−→ Db

(
Rep(G)

)
from Proposition I.5.4 to associate to every G-module a minimal tilting complex and to study tensor

products of G-modules via these complexes. For instance, we can use minimal tilting complexes to

define a map from the set of thick tensor ideals in Tilt(G) to the set of thick tensor ideals in Rep(G),

and the tensor ideal of singular G-modules in Rep(G) arises as the image of the tensor ideal of

negligible tilting modules from Section I.9 under this map.

A large part of this chapter is devoted to a detailed investigation of the tensor ideal of singular

G-modules and of the corresponding quotient category. Among other things, we prove two results that

we consider as a ‘linkage principle’ and a ‘translation principle’ for tensor products of G-modules. The

linkage principle for tensor products asserts that the monoidal structure of Rep(G) is compatible with

the decomposition into linkage classes when considering Rep(G) modulo the tensor ideal of singular

G-modules, in the sense that the essential images of the principal block Rep0(G) and the extended

principal block RepΩ·0(G) are closed under tensor products in the quotient category. The translation

principle for tensor products allows us to describe the monoidal structure of the entire quotient category

in terms of the monoidal structure on the principal block (modulo singular G-modules), via translation

functors. It also shows that the multiplicities in Krull-Schmidt decompositions of tensor products of

G-modules are governed to a large extent by the Verlinde algebra from Section I.9. After establishing

these general results, we turn to tensor products of specific G-modules, such as Weyl modules and

simple G-modules. We will show that a tensor product of two Weyl modules in the extended principal

block has a unique regular indecomposable direct summand and that a tensor product of two simple

G-modules in the extended principal block has a unique regular indecomposable direct summand of

maximal good filtration dimension. These are the generic direct summands from the title.

The content of this chapter is organized as follows: We start by discussing the theory of minimal

complexes over an arbitrary Krull-Schmidt category in Section 1. In Section 2, we define minimal

tilting complexes and study their properties, and in Section 3, we use minimal tilting complexes

to construct tensor ideals in Rep(G) from tensor ideals in Tilt(G). Our results about singular G-

modules, including the ‘linkage principle’ and the ‘translation principle’ for tensor products, will be

proven in Section 4, and the existence of generic direct summands is established in Section 5. Finally,

in Section 6, we explain how the Steinberg-Lusztig tensor product theorem can be used to describe

generic direct summands of tensor products of arbitrary simple G-modules in terms of generic direct

summands of tensor products of simple G-modules with `-restricted highest weights.
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1 Minimal complexes

In order to transport information from Tilt(G) to Rep(G) using the tilting equivalence

T : Kb
(
Tilt(G)

)
−→ Db

(
Rep(G)

)
from Proposition I.5.4, it will be helpful to choose a unique representative from every homotopy class

in Kb
(
Tilt(G)

)
that is minimal in a suitable sense. One way to achieve this is via the theory of

minimal complexes which we explain below. Some of the ideas in this section stem from Lemma 4.2

in [BN07] and from Section 2.10 in [EH17].

Let A be an additive category. As in Appendix B, we write Cb(A) for the category of bounded

(cochain) complexes over A and Kb(A) for the bounded homotopy category of A. The unbounded

versions of these categories are denoted by C(A) and K(A).

Definition 1.1. The radical of A is the ideal radA with

radA(A,B) =
{
f ∈ HomA(A,B)

∣∣ b ◦ f ◦ a ∈ J(EndA(C)
)

for all a : C → A and b : B → C
}
,

for all objects A and B of A, where J
(
EndA(C)

)
denotes the Jacobson radical of the ring EndA(C).

Definition 1.2. A complex

· · · d−2−−−→ A−1
d−1−−−→ A0

d0−−→ A1
d1−−→ · · ·

over A is called minimal if di ∈ radA(Ai, Ai+1) for all i ∈ Z.

We first prove two results that show that every homotopy class in K(A) contains at most one

minimal complex.

Lemma 1.3. Let C and C ′ be complexes over A, and let f : C → C ′ be a morphism of complexes.

(1) If C is a minimal complex and f is a split monomorphism in K(A) then f is also a split

monomorphism in C(A).

(2) If C ′ is a minimal complex and f is a split epimorphism in K(A) then f is also a split epimor-

phism in C(A).

Proof. Let us write C = (A•, d•) and suppose that di ∈ radA(Ai, Ai+1) for all i ∈ Z. If f is a split

monomorphism in the homotopy category K(A) then there exist a morphism of complexes g : C ′ → C

and a homotopy equivalence h = (hi)i∈Z from g ◦ f to idC , so

idAi − gi ◦ fi = hi+1 ◦ di + di−1 ◦ hi

for all i ∈ Z. Now hi+1 ◦ di + di−1 ◦ hi ∈ radA(Ai, Ai) ⊆ J
(
EndA(Ai)

)
, and it follows that ϕi := gi ◦ fi

is invertible. Then g′ := (ϕ−1
i ◦ gi)i∈Z is a morphism of complexes, and g′ ◦ f = idC , so f is a split

monomorphism in C(A). The second claim can be proven analogously.

Corollary 1.4. Let C and C ′ be minimal complexes over A, and let f : C → C ′ be a morphism of

complexes. If f is an isomorphism in K(A) then f is an isomorphism in C(A).

Proof. By Lemma 1.3, f has a left inverse and a right inverse in C(A). It is straightforward to check

that these must coincide, so f is invertible, as claimed.
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From now on, suppose that A is a Krull-Schmidt category (as defined in Appendix A). Then we

can give an alternative characterization of the radical of A as follows:

Lemma 1.5. Let A and B be objects of A and f ∈ HomA(A,B). The following are equivalent:

(1) f ∈ radA(A,B);

(2) no isomorphism between non-zero objects of A factors through f ;

(3) no isomorphism between indecomposable objects of A factors through f .

Proof. If some isomorphism g : C → D between non-zero objects of A factors through f then so does

idC = g−1 ◦ g, so we can write idC = b ◦ f ◦ a for certain morphisms a : C → A and b : B → C. As idC
does not belong to the Jacobson radical of EndA(C), we conclude that f /∈ radA(A,B) and that (1)

implies (2). It is obvious that (2) implies (3).

Now assume (3), let C be an object of A with homomorphisms a : C → A and b : B → C and

write f ′ := b ◦ f ◦ a. We need to show that idC − x ◦ f ′ ◦ y is invertible for all x, y ∈ EndA(C). Note

that x ◦ f ′ ◦ y factors through f , hence no isomorphism between indecomposable objects of A factors

through x ◦ f ′ ◦ y. Therefore, it suffices to show that idC − g is invertible for all g ∈ EndA(C) with

the property that no isomorphism between indecomposable objects of A factors through g. If C is

indecomposable then this is clear from the fact that EndA(C) is local, so now suppose that we have

C = C1 ⊕ C2, for certain objects C1 6= 0 and C2 6= 0 of A, and write

g =

(
g11 g12

g21 g22

)
with gij ∈ HomA(Cj , Ci).

Then gij factors through g for all i, j ∈ {1, 2}, so no isomorphism between indecomposable objects

of A can factor through gij . By induction on the number of indecomposable direct summands in a

Krull-Schmidt decomposition, the endomorphism ϕ := idC2 − g22 of C2 is invertible, and we can write

idC − g =

(
idC1 − g11 −g12

−g21 ϕ

)
=

(
idC1 −g12 ◦ ϕ−1

0 idC2

)
◦

(
ψ 0

0 ϕ

)
◦

(
idC1 0

−ϕ−1 ◦ g21 idC2

)
,

where ψ = idC1−g11−g12◦ϕ−1◦g21. Again using the fact that endomorphism rings of indecomposable

objects are local, we see that no isomorphism between indecomposable objects of A factors through the

endomorphism g11 + g12 ◦ ϕ−1 ◦ g21 of C1, and again by induction on the number of indecomposable

direct summands in a Krull-Schmidt decomposition, we get that ψ is invertible. Hence idC − g is

invertible, as required.

Next we show that every bounded complex over a Krull-Schmidt category is homotopy equivalent

to a unique minimal complex. The proof is based on ideas from Lemma 4.2 in [BN07].

Lemma 1.6. Every bounded complex C over A is homotopy equivalent to a minimal complex Cmin,

and Cmin is unique up to isomorphism in the category of complexes Cb(A). Furthermore, Cmin is a

direct summand of C in Cb(A).

Proof. The uniqueness statement is clear from Corollary 1.4. If C is minimal then there is nothing to

show, so now write C = (A•, d•) and suppose that di /∈ radA(Ai, Ai+1) for some i ∈ Z. By Lemma 1.5,

there exists an indecomposable object M of A such that idM factors through di, so idM = b ◦di ◦a for

some a : M → Ai and b : Ai+1 → M . Then a is a split monomorphism and b is a split epimorphism,

so Ai ∼= Bi ⊕M and Ai+1
∼= Bi+1 ⊕M for certain objects Bi and Bi+1 of A. Consequently, we can

write C as
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· · · Ai−1 Bi ⊕M Bi+1 ⊕M Ai+2 · · · ,

(
f1

f2

) (
d11 d12

d21 idM

) (
g1 g2

)

and arguing as in the proof of Lemma 1.5, we see that C is isomorphic to a complex of the form

(1.1)

· · · Ai−1 Bi ⊕M Bi+1 ⊕M Ai+2 · · · .

(
f1

0

) (
ψ 0

0 idM

) (
g1 0

)

Indeed, with ψ = d11 − d12 ◦ d21, an isomorphism of complexes is given by

· · ·

· · ·

Ai−1 Bi ⊕M Bi+1 ⊕M Ai+2

Ai−1 Bi ⊕M Bi+1 ⊕M Ai+2

· · ·

· · · ,

(
f1

f2

) (
d11 d12

d21 idM

) (
g1 g2

)

(
f1

0

) (
ψ 0

0 idM

) (
g1 0

)
idAi−1

(
idBi 0

d21 idM

) (
idBi+1 −d12

0 idM

)
idAi+2

where the left square and the right square commute because C is a complex and the middle square

commutes by direct computation. Now the complex in (1.1) is isomorphic to the direct sum of the

complexes

C ′ : · · · → Ai−1
f1−−→ Bi

ψ−→ Bi+1
g1−−→ Ai+2 → · · · and C ′′ : · · · → 0→M →M → 0→ · · ·

(with M in degrees i and i+ 1). As C ′′ is homotopy equivalent to the zero complex, we conclude that

C is homotopy equivalent to C ′. Now the existence of Cmin easily follows by induction on the sum of

the numbers of indecomposable direct summands of the terms in C. The final claim is a consequence

of the construction, since C ′ is a direct summand of C in Cb(A). Alternatively, we can just note that

a homotopy equivalence between Cmin and C is a split monomorphism in Kb(A), and thus also a split

monomorphism in Cb(A) by Lemma 1.3.

Definition 1.7. Let C be a bounded complex over A and let Cmin be the unique minimal complex

in the homotopy class of C. We say that Cmin is the minimal complex of C.

Corollary 1.8. Let C be a bounded complex over A, with minimal complex Cmin, and let M be an

indecomposable object of A. Write C and Cmin as

· · · −→ Ai −→ Ai+1 −→ · · · and · · · −→ Bi −→ Bi+1 −→ · · · ,

respectively. Then

[Ai : M ]⊕ ≥ [Bi : M ]⊕ ≥ [Ai : M ]⊕ − [Ai−1 : M ]⊕ − [Ai+1 : M ]⊕

for all i ∈ Z.
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Proof. By the uniqueness of minimal complexes and by the proof of Lemma 1.6, we can obtain Cmin

from C by successively removing pairs of isomorphic indecomposable direct summands from two

adjacent terms Aj and Aj+1 of C. The maximum number of times that an indecomposable direct

summand isomorphic to M can be removed from Ai in this fashion is [Ai−1 : M ]⊕+ [Ai+1 : M ]⊕, and

the claim follows.

2 Minimal complexes of tilting modules

As Tilt(G) is a Krull-Schmidt category, the theory of minimal complexes explained in the previous

section can be applied. Let M be a G-module. We can view M as a one-term complex, concentrated in

degree 0, in the derived category Db
(
Rep(G)

)
, and the latter corresponds to a unique homotopy class

in Kb
(
Tilt(G)

)
under the tilting equivalence (see Proposition I.5.4). By Lemma 1.6, this homotopy

class contains a unique minimal complex, up to isomorphism in Cb
(
Tilt(G)

)
, which we denote by

Cmin(M) and call the minimal tilting complex of M . By construction, Cmin(M) is the unique bounded

minimal complex of tilting modules with Cmin(M) ∼= M in Db
(
Rep(G)

)
, or equivalently, with

H i
(
Cmin(M)

) ∼= {M if i = 0,

0 otherwise.

Note that taking the cohomology of a complex over Tilt(G) makes sense because Tilt(G) is a sub-

category of the abelian category Rep(G). We start by listing some elementary properties of minimal

tilting complexes.

Lemma 2.1. Let M , M1 and M2 be G-modules.

(1) If M is a tilting module then Cmin(M) = M , viewed as a one-term complex with M in degree 0.

(2) We have Cmin(M1 ⊕M2) ∼= Cmin(M1)⊕ Cmin(M2) in Cb
(
Tilt(G)

)
.

(3) If C is a bounded complex of tilting modules with C ∼= M in Db
(
Rep(G)

)
then Cmin(M) is the

minimal complex of C and there is a split monomorphism Cmin(M)→ C in Cb
(
Tilt(G)

)
.

(4) Cmin(M1 ⊗M2) is the minimal complex of Cmin(M1)⊗Cmin(M2). In particular, there is a split

monomorphism Cmin(M1 ⊗M2)→ Cmin(M1)⊗ Cmin(M2) in Cb
(
Tilt(G)

)
.

Proof. The first claim is obvious since M (viewed as a complex with M in degree 0) is a minimal

complex, and the second claim follows from the observation that a direct sum of minimal complexes

is minimal. If C is a bounded complex of tilting modules with C ∼= M in Db
(
Rep(G)

)
then we also

have C ∼= Cmin(M) in Db
(
Rep(G)

)
. Using the tilting equivalence from Proposition I.5.4, it follows

that C ∼= Cmin(M) in Kb
(
Tilt(G)

)
, whence Cmin(M) is the minimal complex of C. By Lemma 1.3,

any homotopy equivalence from Cmin(M) to C is a split monomorphism in Cb
(
Tilt(G)

)
. Finally, we

have

H i
(
Cmin(M1)⊗ Cmin(M2)

) ∼= {M1 ⊗M2 if i = 0,

0 otherwise

by the Künneth formula (see Appendix B), hence the tensor product complex Cmin(M1)⊗ Cmin(M2)

is isomorphic to M1 ⊗M2 in Db
(
Rep(G)

)
, and the fourth claim follows from the third.
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Lemma 2.2. Let λ ∈ C fund ∩X and let M be a G-module in Repλ(G). Then all terms of Cmin(M)

belong to Repλ(G).

Proof. As M belongs to Repλ(G) and the projection functor prλ : Rep(G) → Repλ(G) is exact, we

have M ∼= prλM
∼= prλCmin(M) in Db

(
Rep(G)

)
. By part (3) of Lemma 2.1, Cmin(M) admits a split

monomorphism into prλCmin(M) in Cb
(
Tilt(G)

)
, and the claim follows.

Next we observe that the good filtration dimension and the Weyl filtration dimension of a G-

module can be read off from its minimal tilting complex.

Lemma 2.3. Let M be a G-module and write Cmin(M) as

· · · d−2−−−→ T−1
d−1−−−→ T0

d0−−−→ T1
d1−−−→ · · · .

Then gfd(M) = max{i | Ti 6= 0} and wfd(M) = −min{i | Ti 6= 0}.

Proof. As M ∼= H0
(
Cmin(M)

)
= ker(d0)/im(d−1), there is a short exact sequence

0 −→ im(d−1) −→ ker(d0) −→M −→ 0,

and we claim that gfd
(
im(d−1)

)
= 0. Indeed, as Cmin(M) is exact in all non-zero degrees, there are

short exact sequences

0 −→ im(di−1) −→ Ti −→ im(di) −→ 0

for all i ≤ −1, and using part (3) of Lemma I.7.4, it follows that

gfd
(
im(di)

)
≤ max

{
gfd
(
im(di−1)

)
− 1, 0

}
≤ gfd

(
im(di−1)

)
.

Furthermore, as Cmin(M) is bounded, we have im(dj) ∼= Tj for some j ≤ −1, and we conclude that

0 = gfd
(
im(dj)

)
= gfd

(
im(dj+1)

)
= · · · = gfd

(
im(d−1)

)
,

as claimed. By applying part (3) of Lemma I.7.4 to our first short exact sequence, it now follows that

gfd(M) = gfd
(

ker(d0)
)
,

so it suffices to prove that ker(d0) has good filtration dimension r := max{i | Ti 6= 0}.
If r = 0 then ker(d0) = T0 is a tilting module and gfd

(
ker(d0)

)
= 0, so now suppose that r > 0.

For all i ≥ 0, there is a short exact sequence

0 −→ ker(di) −→ Ti −→ ker(di+1) −→ 0,

and part (1) of Lemma I.7.4 yields

gfd
(

ker(di)
)
≤ gfd

(
ker(di+1)

)
+ 1,

with equality whenever gfd
(

ker(di+1)
)
> 0. Observe that ker(dr) = Tr is a tilting module and that

the minimal tilting complex of ker(dr−1) is given by

0 −→ Tr−1 −→ Tr −→ 0,

with Tr−1 in homological degree zero. By part (1) of Lemma 2.1, ker(dr−1) is not a tilting module, and

as wfd
(

ker(dr−1)
)

= 0 by part (4) of Lemma I.7.4, it follows that gfd
(

ker(dr−1)
)

= 1. Now induction

on i yields gfd
(

ker(dr−i)
)

= i for i = 0, . . . , r and therefore gfd(M) = gfd
(

ker(d0)
)

= r, as required.

The claim about wfd(M) follows by taking duals.
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Let us introduce an additional piece of notation: For G-modules M and N , we write M
⊕
⊆ N if

there exists a split monomorphism from M into N .

Lemma 2.4. Let 0→ A→ B → C → 0 be a short exact sequence of G-modules. Then

Cmin(A)i
⊕
⊆ Cmin(B)i ⊕ Cmin(C)i−1,

Cmin(B)i
⊕
⊆ Cmin(A)i ⊕ Cmin(C)i,

Cmin(C)i
⊕
⊆ Cmin(A)i+1 ⊕ Cmin(B)i

for all i ∈ Z. For an indecomposable tilting module M and i ∈ Z, we have[
Cmin(B)i : M

]
⊕ +

[
Cmin(C)i−1 : M

]
⊕ ≥

[
Cmin(A)i : M

]
⊕

≥
[
Cmin(B)i : M

]
⊕ −

[
Cmin(B)i−1 : M

]
⊕ −

[
Cmin(B)i+1 : M

]
⊕

+
[
Cmin(C)i−1 : M

]
⊕ −

[
Cmin(C)i−2 : M

]
⊕ −

[
Cmin(C)i : M

]
⊕,[

Cmin(A)i : M
]
⊕ +

[
Cmin(C)i : M

]
⊕ ≥

[
Cmin(B)i : M

]
⊕

≥
[
Cmin(A)i : M

]
⊕ −

[
Cmin(A)i−1 : M

]
⊕ −

[
Cmin(A)i+1 : M

]
⊕

+
[
Cmin(C)i : M

]
⊕ −

[
Cmin(C)i−1 : M

]
⊕ −

[
Cmin(C)i+1 : M

]
⊕,[

Cmin(A)i+1 : M
]
⊕ +

[
Cmin(B)i : M

]
⊕ ≥

[
Cmin(C)i : M

]
⊕

≥
[
Cmin(A)i+1 : M

]
⊕ −

[
Cmin(A)i : M

]
⊕ −

[
Cmin(A)i+2 : M

]
⊕

+
[
Cmin(B)i : M

]
⊕ −

[
Cmin(B)i−1 : M

]
⊕ −

[
Cmin(B)i+1 : M

]
⊕.

Proof. The short exact sequence gives rise to a distinguished triangle A → B → C → A[1] in the

derived category Db
(
Rep(G)

)
, and via the tilting equivalence, to a distinguished triangle

Cmin(A) −→ Cmin(B) −→ Cmin(C) −→ Cmin(A)[1]

in the homotopy category Kb
(
Tilt(G)

)
. Let us write f : Cmin(A) → Cmin(B) for the leftmost chain

map in this distinguished triangle. By the definition of distinguished triangles in Kb
(
Tilt(G)

)
(see

Appendix B), the complexes Cmin(C) and cone(f) are homotopy equivalent, whence Cmin(C) is the

minimal complex of cone(f). Now Lemma 1.3, applied to a homotopy equivalence between Cmin(C)

and cone(f), implies that Cmin(C) admits a split monomorphism into cone(f); in particular

Cmin(C)i
⊕
⊆ cone(f)i = Cmin(A)i+1 ⊕ Cmin(B)i

for all i ∈ Z. Furthermore, we have[
Cmin(A)i+1 : M

]
⊕ +

[
Cmin(B)i : M

]
⊕ =

[
cone(f)i : M

]
⊕ ≥

[
Cmin(C)i : M

]
⊕

≥
[
cone(f)i : M

]
⊕ −

[
cone(f)i−1 : M

]
⊕ −

[
cone(f)i+1 : M

]
⊕

=
[
Cmin(A)i+1 : M

]
⊕ −

[
Cmin(A)i : M

]
⊕ −

[
Cmin(A)i+2 : M

]
⊕

+
[
Cmin(B)i : M

]
⊕ −

[
Cmin(B)i−1 : M

]
⊕ −

[
Cmin(B)i+1 : M

]
⊕

for all i ∈ Z, by Corollary 1.8. By triangle rotation, there are also distinguished triangles

Cmin(C)[−1] −→ Cmin(A) −→ Cmin(B) −→ Cmin(C)
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and

Cmin(B)[−1] −→ Cmin(C)[−1] −→ Cmin(A) −→ Cmin(B)

in Kb
(
Tilt(G)

)
, and the remaining claims follow from Lemma 1.3 and Corollary 1.8 as before.

Now we proceed to study the minimal complexes of some specific G-modules. Let us assume until

the end of the section that ` ≥ h, the Coxeter number of G, and recall that we write x 7→ ωx for the

canonical epimorphism Wext = Waff o Ω→ Ω, where Ω = StabWext(Afund).

Proposition 2.5. Let x ∈W+
ext and λ ∈ Cfund ∩X, and write Cmin

(
∆(x · λ)

)
as

· · · d−2−−−→ T−1
d−1−−−→ T0

d0−−−→ T1
d1−−−→ · · · .

Then

(1) Ti = 0 for all i < 0 and all i > `(x);

(2) if ν ∈ X+ and i ∈ Z such that [Ti : T (ν)]⊕ 6= 0 then ν = yωx · λ for some y ∈W+
aff with

0 ≤ i ≤ `(x)− `(y);

(3) T0
∼= T (x · λ) and T`(x)

∼= T (ωx · λ);

(4) Ti is negligible for all i 6= `(x).

Proof. For x′ := xω−1
x , we have x′ ∈W+

aff and `(x′) = `(x) because x(Afund) = x′(Afund). Hence, after

replacing x by x′ and λ by ωx · λ ∈ Cfund ∩X, we may (and shall) assume that x ∈W+
aff and ωx = e.

We prove the claims by induction on `(x). If `(x) = 0 then x = e and ∆(λ) ∼= T (λ), so ∆(λ) has

minimal tilting complex 0 → T (λ) → 0 and all claims are satisfied. Now suppose that `(x) > 0 and

that the proposition holds for all y ∈ W+
aff with `(y) < `(x). For a simple reflection s ∈ S such that

xs < x, we have xs ∈W+
aff by Corollary I.2.13 and xs ·λ < x ·λ by Theorem I.2.14. Let µ ∈ C fund∩X

with StabWaff
(µ) = {e, s}, and consider the short exact sequence

0 −→ ∆(x · λ) −→ T λµ∆(x · µ) −→ ∆(xs · λ) −→ 0,

which is obtained from the short exact sequence in Proposition I.6.9 by taking duals. Furthermore,

let us write

Cmin

(
T λµ∆(x · µ)

)
= (A•, d

A
• ) and Cmin

(
∆(xs · λ)

)
= (B•, d

B
• ),

and observe that Ti is a direct summand of Ci := Ai ⊕ Bi−1 for all i ∈ Z, by Lemma 2.4. By the

induction hypothesis, we may assume that Bi = 0 for i < 0 and i > `(xs) = `(x) − 1, that Bi is

negligible for i 6= `(x)− 1, that B`(x)−1
∼= T (λ) and that all weights ν ∈ X+ with [Bi : T (ν)]⊕ 6= 0 for

some i ∈ Z are of the form y · λ for some y ∈W+
aff with 0 ≤ i ≤ `(xs)− `(y). By Proposition I.6.8, we

have

∆(x · µ) = ∆(xs · µ) ∼= Tµλ ∆(xs · λ),

and it follows that T λµ∆(x · µ) is isomorphic to the complex T λµT
µ
λCmin

(
∆(xs · λ)

)
in Db

(
Rep(G)

)
.

Using Lemma 2.1, we conclude that Ai is a direct summand of T λµT
µ
λBi for all i ∈ Z, and it follows

that Ai = 0 for i < 0 and i > `(x)− 1. Further note that all tilting modules in Repµ(G) are negligible

because µ /∈ Cfund and that the translation functor T λµ sends negligible tilting modules to negligible

46



2. Minimal complexes of tilting modules

tilting modules, because negligible tilting modules form a thick tensor ideal in Tilt(G). It follows

that the functor T λµ ◦ T
µ
λ sends all tilting modules to negligible tilting modules, so T λµT

µ
λBi and Ai

are negligible for all i ∈ Z. We conclude that Ci = Ai ⊕ Bi−1 = 0 for i < 0 and i > `(x), that Ci is

negligible for all i 6= `(x) and that

C`(x)
∼= A`(x) ⊕B`(x)−1

∼= T (λ).

As Ti is a direct summand of Ci for all i ∈ Z, this implies that Ti = 0 for i < 0 and i > `(x) and that

Ti is negligible for all i 6= `(x). Furthermore, Lemma 2.4 yields

1 = [C`(x) : T (λ)]⊕ ≥ [T`(x) : T (λ)]⊕ ≥ [C`(x) : T (λ)]⊕ − [C`(x)−1 : T (λ)]⊕ − [C`(x)+1 : T (λ)]⊕ = 1

because C`(x)−1 is negligible and C`(x)+1 = 0, and we conclude that T`(x)
∼= T (λ).

Now suppose that ν ∈ X+ such that [Ai : T (ν)]⊕ 6= 0 for some i ∈ Z. Then HomG

(
∆(ν), Ai

)
6= 0

and therefore HomG

(
∆(ν), T λµT

µ
λBi

)
6= 0. This implies that ν = y ·λ for some y ∈W+

aff by the linkage

principle, and as Tµλ and T λµ are mutually left and right adjoint, we have

0 6= HomG

(
∆(y · λ), T λµT

µ
λBi

) ∼= HomG

(
T λµT

µ
λ ∆(y · λ), Bi

)
.

By Proposition I.6.8, this implies that y ·µ ∈ X+ and Tµλ ∆(y ·λ) ∼= ∆(y ·µ), and by Proposition I.6.6,

the G-module T λµT
µ
λ ∆(y ·λ) has a Weyl filtration with subquotients ∆(y ·λ) and ∆(ys ·λ). Hence, at

least one of the Hom-spaces HomG

(
∆(y · λ), Bi

)
and HomG

(
∆(ys · λ), Bi

)
is non-zero, and it follows

that there exists a weight ν ′ ∈ X+ such that [Bi : T (ν ′)]⊕ 6= 0 and at least one of the multiplicities

[T (ν ′) : ∇(y · λ)]∇ and [T (ν ′) : ∇(ys · λ)]∇ is non-zero. By Proposition I.6.4, we have either y · λ ↑` ν ′

or ys ·λ ↑` ν ′, and it follows that ν ′ = y′ ·λ for some y′ ∈W+
aff with `(y′) ≥ min{`(y), `(ys)} ≥ `(y)−1.

By our initial observations about Cmin

(
∆(xs · λ)

)
, the condition [Bi : T (y′ · λ)]⊕ 6= 0 implies that

0 ≤ i ≤ `(xs)− `(y′) = `(x)− 1− `(y′) ≤ `(x)− `(y).

We conclude that any weight ν ∈ X+ with [Ai : T (ν)]⊕ 6= 0 for some i ∈ Z is of the form y · λ for

some y ∈W+
aff with 0 ≤ i ≤ `(x)− `(y). As Ti is a direct summand of Ci = Ai ⊕Bi−1 for all i ∈ Z, it

is straightforward to see that this statement remains true when we replace Ai by Ti.

It remains to show that T0
∼= T (x · λ). Recall that there is a short exact sequence

0 −→ ∆(x · λ) −→ T (x · λ) −→M −→ 0,

where M is a G-module admitting a Weyl filtration. By Lemma 2.3, we have Cmin(M)i = 0 for i < 0,

and Lemma 2.4 yields

T0

⊕
⊆ Cmin

(
T (x · λ)

)
0
⊕ Cmin(M)−1

∼= T (x · λ),

whence T0
∼= T (x · λ), as required.

Proposition 2.6. Let x ∈W+
ext and λ ∈ Cfund ∩X, and write Cmin

(
L(x · λ)

)
as

· · · d−2−−−→ T−1
d−1−−−→ T0

d0−−−→ T1
d1−−−→ · · · .

Then

(1) Ti ∼= T−i for all i ∈ Z;
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(2) Ti = 0 for all i ∈ Z with |i| > `(x);

(3) if µ ∈ X+ and i ∈ Z with [Ti : T (µ)]⊕ 6= 0 then µ = yωx·λ for some y ∈W+
aff with |i| ≤ `(x)−`(y);

(4) [T0 : T (x · λ)]⊕ = 1 and T`(x)
∼= T−`(x)

∼= T (ωx · λ);

(5) T`(x)−1
∼= T1−`(x) is negligible.

Proof. As in the proof of Proposition 2.5, we can replace x by xω−1
x ∈W+

aff and λ by ωx ·λ ∈ Cfund∩X,

so we will henceforth assume that x ∈ W+
aff and ωx = e. As L(x · λ) is contravariantly self-dual, the

complex

· · ·
dτ1−−−→ T τ1

dτ0−−−→ T τ0
dτ−1−−−→ T τ−1

dτ−2−−−→ · · ·

is a minimal tilting complex of L(x · λ), and by uniqueness, we have Ti ∼= T τ−i
∼= T−i for all i. (Recall

that all tilting modules are contravariantly self-dual.) We prove the remaining claims by induction

on `(x). If `(x) = 0 then x = e and L(λ) ∼= T (λ), so L(λ) has minimal tilting complex 0→ T (λ)→ 0

and all claims are satisfied. Now suppose that `(x) > 0 and that the proposition holds for all y ∈W+
aff

with `(y) < `(x). Consider the short exact sequence

0 −→ radG∆(x · λ) −→ ∆(x · λ) −→ L(x · λ) −→ 0

and the minimal tilting complexes

Cmin

(
radG∆(x · λ)

)
= (A•, d

A
• ) and Cmin

(
∆(x · λ)

)
= (B•, d

B
• ),

and observe that Ti is a direct summand of Ci := Ai+1 ⊕ Bi for all i ∈ Z, by Lemma 2.4. By the

induction hypothesis and the linkage principle, we may assume that (1)–(5) are satisfied for the minimal

tilting complexes of all composition factors of radG∆(x · λ). Using Lemma 2.4 and induction on the

length of a composition series of radG∆(x ·λ), we see that every weight µ ∈ X+ with [Ai : T (µ)]⊕ 6= 0

for some i ∈ Z is of the form y · λ, for some y ∈ W+
aff with |i| ≤ `(x) − `(y) − 1. In particular, we

have Ai = 0 for all i ∈ Z with |i| ≥ `(x). Now recall from Proposition 2.5 that Bi is negligible for

all i 6= `(x), that B`(x)
∼= T (λ) and that every weight µ ∈ X+ with [Bi : T (µ)]⊕ 6= 0 for some i ∈ Z

is of the form y · λ, for some y ∈ W+
aff with |i| ≤ `(x) − `(y). As Ci = Ai+1 ⊕ Bi for all i ∈ Z, we

conclude that every weight µ ∈ X+ with [Ci : T (µ)]⊕ 6= 0 for some i ∈ Z is of the form y · λ, for some

y ∈W+
aff with |i| ≤ `(x)− `(y). Furthermore, we have Ai+1 = 0 for i ≥ `(x)− 1, so C`(x)−1 = B`(x)−1

is negligible and C`(x) = B`(x)
∼= T (λ). The claims (2), (3) and (5) are now immediate because Ti is a

direct summand of Ci for all i ∈ Z. The first part of claim (4) follows from Lemma 2.4 because

[C0 : T (x · λ)]⊕ = [A1 : T (x · λ)]⊕ + [B0 : T (x · λ)]⊕ = 1

and [C−1 : T (x · λ)]⊕ = 0 = [C1 : T (x · λ)]⊕, and therefore

1 = [C0 : T (x · λ)]⊕ ≥ [T0 : T (x · λ)]⊕ ≥ [C0 : T (x · λ)]⊕ − [C−1 : T (x · λ)]⊕ − [C1 : T (x · λ)]⊕ = 1.

Analogously, we have C`(x)
∼= T (λ) and [C`(x)−1 : T (λ)] = 0 = [C`(x)+1 : T (λ)] because C`(x)−1 is

negligible and C`(x)+1 = 0. Using Lemma 2.4 again, it follows that T`(x)
∼= T (λ).

As an immediate consequence of Propositions 2.5 and 2.6, we can reprove A. Parker’s results about

the good filtration dimension of Weyl modules and simple G-modules from [Par03].
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Corollary 2.7. Let x ∈W+
ext and λ ∈ Cfund ∩X. Then

gfd
(
∆(x · λ)

)
= `(x) and gfd

(
L(x · λ)

)
= wfd

(
L(x · λ)

)
= `(x).

Proof. By Lemma 2.3, we have

gfd(M) = max{i | Cmin(M)i 6= 0} and wfd(M) = −min{i | Cmin(M)i 6= 0}

for every G-module M , and the claim follows from the description of the minimal tilting complexes

of ∆(x · λ) and L(x · λ) in Propositions 2.5 and 2.6.

3 Tensor ideals in Rep(G)

In this section, we explain how minimal tilting complexes can be used to construct thick tensor ideals

in Rep(G) from thick tensor ideals in Tilt(G). Later, we will mainly be interested in the thick tensor

ideal in Rep(G) that corresponds to the ideal N of negligible tilting modules from Section I.9, but

our construction works in greater generality. The thick tensor ideals in Rep(G) which are obtained

from arbitrary thick tensor ideals in Tilt(G) may be useful for other applications than those that are

considered here. All of the thick tensor ideals in Rep(G) that can be obtained by our construction

will have the following property:

Definition 3.1. Let J be a thick tensor ideal in Rep(G). We say that J has the 2/3-property (or

two-out-of-three property) if for any short exact sequence 0 → A → B → C → 0 of G-modules such

that two of the G-modules A, B and C belong to J , the third also belongs to J .

Definition 3.2. For any thick tensor ideal I in Tilt(G), we call

〈I〉 :=
{
M ∈ Rep(G)

∣∣ all terms of Cmin(M) belong to I
}

the extension of I to Rep(G).

Lemma 3.3. Let I be a thick tensor ideal in Tilt(G). Then 〈I〉 is a thick tensor ideal in Rep(G)

and 〈I〉 has the 2/3-property.

Proof. First note that 〈I〉 is closed under direct sums and retracts because

Cmin(M1 ⊕M2) = Cmin(M1)⊕ Cmin(M2)

for all G-modules M1 and M2, by part (2) of Lemma 2.1. If M2 ∈ 〈I〉 then all terms of the tensor

product complex Cmin(M1) ⊗ Cmin(M2) belong to I because I is a tensor ideal. As Cmin(M1 ⊗M2)

is a direct summand of Cmin(M1) ⊗ Cmin(M2) in Cb
(
Tilt(G)

)
by part (4) of Lemma 2.1 and as I is

closed under retracts, we conclude that M1 ⊗M2 ∈ 〈I〉. Finally, for a short exact sequence

0→ A→ B → C → 0

of G-modules, we have

Cmin(A)i
⊕
⊆ Cmin(B)i ⊕ Cmin(C)i−1,

Cmin(B)i
⊕
⊆ Cmin(A)i ⊕ Cmin(C)i,

Cmin(C)i
⊕
⊆ Cmin(A)i+1 ⊕ Cmin(B)i

for all i ∈ Z, by Lemma 2.4. As I is closed under retracts, we conclude that 〈I〉 has the 2/3-

property.
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The following Lemma justifies the notation 〈I〉 for the extension of a thick tensor ideal I in Tilt(G)

to Rep(G).

Lemma 3.4. Let I be a thick tensor ideal in Tilt(G). Then 〈I〉 is the smallest thick tensor ideal with

the 2/3-property in Rep(G) that contains I.

Proof. The inclusion I ⊆ 〈I〉 follows from the fact that Cmin(M) = M for every tilting module M ;

see part (1) of the Lemma 2.1. Now let J be a thick tensor ideal with the 2/3-property in Rep(G)

such that I ⊆ J , and let M be a G-module in 〈I〉. We claim that M belongs to J . Writing Cmin(M)

as

· · · d−2−−−→ T−1
d−1−−−→ T0

d0−−−→ T1
d1−−−→ · · · ,

we have M ∼= ker(d0)/im(d−1), so there is a short exact sequence

0 −→ im(d−1) −→ ker(d0) −→M −→ 0.

As J has the 2/3-property, it suffices to show that im(d−1) and ker(d0) belong to J . As Cmin(M) is

exact in all degrees except zero, there are short exact sequences

0 −→ ker(di) −→ Ti −→ ker(di+1) −→ 0

for all i ≥ 0, where Ti ∈ I ⊆ J , and using the 2/3-property, we see that ker(di) belongs to J if and

only if ker(di+1) belongs to J . Now Cmin(M) is bounded, so Ti = 0 for some i > 0, and we conclude

that ker(d0) belongs to J . Analogously, we see that im(d−1) belongs to J , and the claim follows.

For a thick tensor ideal J in Rep(G), it is straightforward to see that J ∩Tilt(G) (the set of tilting

modules in J ) is a thick tensor ideal in Tilt(G). The next result shows that the map J 7→ J ∩Tilt(G)

is a section to the map I 7→ 〈I〉 from the set of thick tensor ideals in Tilt(G) to the set of thick tensor

ideals with the 2/3-property in Rep(G).

Lemma 3.5. Let I be a thick tensor ideal in Tilt(G). Then 〈I〉 ∩ Tilt(G) = I.

Proof. For a tilting G-module M , we have Cmin(M) = M by part (1) of Lemma 2.1, and it follows

that M belongs to I if and only if all terms of Cmin(M) belong to I.

Remark 3.6. In the quantum case, the map I 7→ 〈I〉 from the set of thick tensor ideals in Tilt(G)

to the set of thick tensor ideals in Rep(G) with the 2/3-property is actually a bijection, when ` > h.

We give an outline of a proof of this fact; a more detailed account will appear elsewhere.

Let us call a proper thick tensor ideal P in Rep(G) a prime ideal if M ⊗N ∈ P implies that either

M ∈ P or N ∈ P, for G-modules M and N . As in Lemma 4.2 in [Bal05], one can adapt standard

techniques from commutative algebra to show that the intersection of all prime thick tensor ideals with

the 2/3-property in Rep(G) containing a given thick tensor ideal J with the 2/3-property in Rep(G)

is the radical of J , i.e. the set of G-modules M such that M⊗n ∈ J for some n > 0. Now as every

G-module M admits a dual M∗ and as M is a direct summand of M ⊗M∗ ⊗M , we can show that

the ideal J coincides with its radical (see Remark 4.3 and Proposition 4.4 in [Bal05]). In particular,

we have J =
⋂
J⊆P P. By Theorem 8.2.1 in [BKN19], every prime thick tensor ideal P with the

2/3-property in Rep(G) is generated by some tilting module, and it follows that P = 〈P ∩ Tilt(G)〉.
We conclude that

J =
⋂
J⊆P

P =
⋂
J⊆P
〈P ∩ Tilt(G)〉 =

〈 ⋂
J⊆P

P ∩ Tilt(G)
〉
,
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4. The ideal of singular G-modules

where the last equality follows from the definition of the extension of a thick tensor ideal from Tilt(G)

to Rep(G). This implies that the map I 7→ 〈I〉 is surjective, and it is also injective by Lemma 3.5.

We remark that the existence of a bijection between the set of thick tensor ideals in Tilt(G) and

the set of thick tensor ideals in Rep(G) with the 2/3-property can also be deduced by combining

Corollary 7.7.2 and Theorem 8.1.1 in [BKN19]. However, it is not clear from the results in [BKN19]

that this bijection can be described in terms of minimal tilting complexes, as we have done here.

Let us also point out that the analogous statement is not true in the modular case: Using Proposi-

tion 2.6, one sees that there is no proper thick tensor ideal I in Tilt(G) such that the simple G-module

L := L
(
` · (`− 1) · ρ

) ∼= L
(
(`− 1) · ρ

)[1]

belongs to 〈I〉 (because Cmin(L) has a non-negligible term in degree `(t(`−1)·ρ) and N is maximal

among the thick tensor ideals in Tilt(G)). On the other hand, Theorem 2.4 in [Nak95] provides an

upper bound on the complexity of L over the second Frobenius kernel G2, which can be used to show

that L generates a proper thick tensor ideal with the 2/3-property in Rep(G). In particular, this

tensor ideal is not of the form 〈I〉 for any thick tensor ideal I in Tilt(G). Again, the details will be

presented elsewhere.

4 The ideal of singular G-modules

From now on and for the rest of this chapter, we suppose that ` ≥ h, the Coxeter number of G.

Recall from Section I.9 that we write N for the thick tensor ideal of negligible tilting modules. In this

section, we study the extension 〈N〉 of N to Rep(G), as defined in the Section 3.

Definition 4.1. We call 〈N〉 the ideal of singular G-modules and say that a G-module is regular if

it does not belong to 〈N〉. We refer to the quotient category Rep(G) := Rep(G)/〈N〉 as the regular

quotient of Rep(G) and write q : Rep(G)→ Rep(G) for the quotient functor.

Note that a G-module M is regular if and only if q(M) is non-zero in the regular quotient Rep(G);

see the material on quotient categories in Appendix A. We first prove two results that justify our

terminology.

Lemma 4.2. The ideal 〈N〉 of singular G-modules is the smallest thick tensor ideal in Rep(G) with

the 2/3-property that contains all `-singular linkage classes.

Proof. Recall that a linkage class Repµ(G) is called `-singular if µ ∈ C fund \ Cfund. For a G-module

M in an `-singular linkage class Repµ(G), all terms of the minimal complex Cmin(M) are negligible

because they belong to Repµ(G) by Lemma 2.2, so M ∈ 〈N〉.
Now let I be a thick tensor ideal with the 2/3-property that contains all `-singular linkage classes.

In order to show that I contains 〈N〉, it suffices to verify that I contains N , by Lemma 3.4. All

indecomposable tilting modules of `-singular highest weight belong to I by assumption, so now consider

a negligible tilting module T (x · λ) of `-regular highest weight, where λ ∈ Cfund ∩ X and x ∈ W+
aff

with x 6= e. For a simple reflection s ∈ S with xs < x, we have xs ∈ W+
aff by Corollary I.2.13 and

xs · λ < x · λ by Theorem I.2.14. We can choose a weight µ ∈ C fund ∩X with StabWaff
(µ) = {e, s},

and using Proposition I.6.9 and weight considerations, it is straightforward to see that T (x · λ) is a

direct summand of T λµT (x · µ). (In fact, we have T λµT (x · µ) ∼= T (x · λ) by Section II.E.11 in [Jan03].)

As T (x · µ) belongs to I and as T λµT (x · µ) is a direct summand of T (x · µ)⊗ T (ν), for ν the unique

dominant weight in the Wfin-orbit of λ− µ, we conclude that T (x · λ) belongs to I, as required.
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Lemma 4.3. For λ ∈ X+, the following are equivalent:

(1) ∆(λ) is regular;

(2) L(λ) is regular;

(3) λ is `-regular.

Proof. Suppose first that λ is `-regular and write λ = x · λ′ for some x ∈W+
aff and λ′ ∈ Cfund ∩X. By

Propositions 2.5 and 2.6, the minimal tilting complexes of both ∆(λ) and L(λ) have the non-negligible

tilting module T (λ′) as their term in degree `(x), and it follows that ∆(λ) /∈ 〈N〉 and L(λ) /∈ 〈N〉.
Conversely, if λ is `-singular then the linkage class containing ∆(λ) and L(λ) is contained in 〈N〉 by

Lemma 4.2, and it follows that ∆(λ) ∈ 〈N〉 and L(λ) ∈ 〈N〉.

Our next goal is to prove two results that we consider as a ‘linkage principle’ and a ‘translation

principle’ for tensor products. (See Remark 4.9 below for an explanation of this terminology.) The first

one (Corollary 4.5) asserts that the principal block (and the extended principal block) are closed under

tensor products in the regular quotient. The second one (Theorem 4.7) shows that the Krull-Schmidt

decomposition of any tensor product in Rep(G) can be determined by looking at the Krull-Schmidt

decomposition of (the projection to Rep0(G) of) a tensor product of G-modules in Rep0(G) and that

the multiplicities of indecomposable direct summands are governed by the Verlinde algebra. Our main

tool for proving these results will be the following lemma.

Lemma 4.4. Let λ ∈ Cfund∩X and ω ∈ Ω. For G-modules M and N in the linkage classes Repλ(G)

and Repω·0(G), respectively, the canonical embedding

prω·λ
(
M ⊗N

)
−→M ⊗N

and the canonical projection

M ⊗N −→ prω·λ
(
M ⊗N

)
descend to isomorphisms in Rep(G).

Proof. By the linkage principle, we have

M ⊗N ∼=
⊕

ν∈Cfund∩X

prν
(
M ⊗N

)
,

and the lemma is equivalent to the statement that prν
(
M ⊗N

) ∼= 0 in the regular quotient Rep(G),

for all weights ν ∈ C fund ∩X with ν 6= ω · λ. Observe that all terms of Cmin(M) belong to Repλ(G)

and all terms of Cmin(N) belong to Repω·0(G) by Lemma 2.2. As Cmin

(
prν(M ⊗N)

)
admits a split

monomorphism into the complex prν
(
Cmin(M) ⊗ Cmin(N)

)
by part (4) of Lemma 2.1, it suffices to

prove that prν
(
T (x · λ)⊗ T (yω · 0)

)
is negligible for all x, y ∈W+

aff and ν ∈ C fund ∩X with ν 6= ω · λ.

If x 6= e or y 6= e then T (x · λ)⊗ T (yω · 0) is negligible, because the negligible tilting modules form a

thick tensor ideal in Tilt(G). For x = y = e, we have T (λ)⊗T (ω · 0) ∼= T (ω ·λ) in the fusion category

Tilt(G)/N by Lemma I.9.2, and it follows that prν
(
T (λ)⊗T (ω · 0)

)
is negligible for all ν ∈ C fund ∩X

with ν 6= ω · λ, as required.

For λ ∈ Cfund∩X, let us write Repλ(G) for the essential image of the linkage class Repλ(G) under

the quotient functor q : Rep(G)→ Rep(G), i.e. the full subcategory of Rep(G) whose objects are the

G-modules that are isomorphic to a G-module in Repλ(G), when considered as objects in Rep(G).

We also write RepΩ·0(G) for the essential image of the extended principal block RepΩ·0(G) in Rep(G).

As a consequence of Lemma 4.4, we obtain our ‘linkage principle’ for tensor products.
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Corollary 4.5. The subcategories Rep0(G) and RepΩ·0(G) are closed under tensor products.

Proof. For ω, ω′ ∈ Ω and G-modules M and N in the linkage classes of ω · 0 and ω′ · 0, respectively,

we have M ⊗N ∼= prωω′·0(M ⊗N) in Rep(G) by Lemma 4.4, so M ⊗N belongs to Repωω′·0(G). The

claim about Rep0(G) follows by setting ω = ω′ = e.

As a further consequence of Lemma 4.4, we prove that a translation functor with source in the

extended principal block descends in the regular quotient to tensoring with a tilting module.

Corollary 4.6. Let λ ∈ Cfund∩X and ω ∈ Ω. Then λ is the unique dominant weight in the Wfin-orbit

of ω · λ− ω · 0, and the canonical natural transformations

Tω·λω·0 = prω·λ
(
T (λ)⊗−

)
=⇒

(
T (λ)⊗−

)
=⇒ prω·λ

(
T (λ)⊗−

)
= Tω·λω·0

of functors from Repω·0(G) to Rep(G) give rise to an isomorphism of functors

q ◦ Tω·λω·0
∼= q ◦

(
T (λ)⊗−

)
.

Proof. Writing ω = tγw with γ ∈ X and w ∈Wfin, it is straightforward to see that ω ·λ−ω ·0 = w(λ),

so λ is indeed the unique dominant weight in the Wfin-orbit of ω · λ − ω · 0. By Lemma 4.4, the

component at a G-module N in Repω·0(G) of either of the two natural transformations descends to

an isomorphism in Rep(G), and the claim follows.

We are now ready to establish our ‘translation principle’ for tensor products.

Theorem 4.7. For λ, µ ∈ Cfund ∩X and ω, ω′ ∈ Ω, there is a natural transformation of bifunctors

Ψ:
(
Tω·λω·0 −

)
⊗
(
Tω
′·µ

ω′·0 −
)

=⇒
⊕

ν∈Cfund∩X

(
Tωω

′·ν
ωω′·0 ◦ prωω′·0(−⊗−)

)⊕cνλ,µ
from Repω·0(G) × Repω′·0(G) to Rep(G), where cνλ,µ = [T (λ) ⊗ T (µ) : T (ν)]⊕, such that qΨ is an

isomorphism of bifunctors.

Proof. We construct the natural transformation in several steps.

(1) By Corollary 4.6, the natural embedding(
Tω·λω·0 −

)
⊗
(
Tω
′·µ

ω′·0 −
)

= prω·λ
(
T (λ)⊗−

)
⊗ prω′·µ

(
T (µ)⊗−

)
=⇒

(
T (λ)⊗−

)
⊗
(
T (µ)⊗−

)
induces an isomorphism of functors upon passage to the regular quotient Rep(G).

(2) The braiding on Rep(G) gives rise to a natural isomorphism(
T (λ)⊗−

)
⊗
(
T (µ)⊗−

) ∼= (T (λ)⊗ T (µ)
)
⊗ (−⊗−).

(3) The canonical projection to the linkage class of ωω′ · 0 gives rise to a natural transformation

(−⊗−) =⇒ prωω′·0(−⊗−)

of bifunctors from Repω·0(G)×Repω′·0(G) to Rep(G), which descends to a natural isomorphism

in Rep(G) by Lemma 4.4. Tensoring with T (λ)⊗ T (µ) yields a natural transformation(
T (λ)⊗ T (µ)

)
⊗ (−⊗−) =⇒

(
T (λ)⊗ T (µ)

)
⊗ prωω′·0(−⊗−),

which again descends to a natural isomorphism in Rep(G).
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(4) The tensor product T (λ)⊗ T (µ) can be decomposed as a direct sum

T (λ)⊗ T (µ) ∼= N ⊕
⊕

ν∈Cfund∩X
T (ν)⊕c

ν
λ,µ

of its fusion part and a negligible tilting module N . This decomposition gives rise to a natural

isomorphism(
T (λ)⊗T (µ)

)
⊗prωω′·0(−⊗−) ∼=

(
N⊗prωω′·0(−⊗−)

)
⊕

⊕
ν∈Cfund∩X

(
T (ν)⊗prωω′·0(−⊗−)

)⊕cνλ,µ .
As N is negligible, the essential image of the bifunctor N ⊗ prωω′·0(−⊗−) is contained in 〈N〉,
and it follows that q ◦

(
N ⊗ prωω′·0(−⊗−)

)
= 0. Therefore, the projection onto the fusion part

gives rise to a natural transformation(
T (λ)⊗ T (µ)

)
⊗ prωω′·0(−⊗−) =⇒

⊕
ν∈Cfund∩X

(
T (ν)⊗ prωω′·0(−⊗−)

)⊕cνλ,µ ,
which descends to an isomorphism of functors in Rep(G).

(5) Again by Corollary 4.6, the canonical natural transformation⊕
ν∈Cfund∩X

(
T (ν)⊗ prωω′·0(−⊗−)

)⊕cνλ,µ =⇒
⊕

ν∈Cfund∩X

(
Tωω

′·ν
ωω′·0 ◦ prωω′·0(−⊗−)

)⊕cνλ,µ
induces an isomorphism of functors upon passage to the regular quotient.

All of the natural transformations in (1)–(5) give rise to natural isomorphisms upon passage to the

regular quotient Rep(G). Therefore, their composition is a natural transformation

Ψ:
(
Tω·λω·0 −

)
⊗
(
Tω
′·µ

ω′·0 −
)

=⇒
⊕

ν∈Cfund∩X

(
Tωω

′·ν
ωω′·0 ◦ prωω′·0(−⊗−)

)⊕cνλ,µ
such that qΨ is a natural isomorphism.

Remark 4.8. The statement of Theorem 4.7 becomes more readable (but also slightly less general)

if we set ω = ω′ = e: For λ, µ ∈ Cfund ∩X, there is a natural transformation of bifunctors

Ψ:
(
T λ0 −

)
⊗
(
Tµ0 −

)
=⇒

⊕
ν∈Cfund∩X

(
T ν0 ◦ pr0(−⊗−)

)⊕cνλ,µ
from Rep0(G)×Rep0(G) to Rep(G), such that qΨ is an isomorphism of bifunctors. Taking the action

of Ω into account complicates our notation here, but it will be very useful in the following chapters.

Remark 4.9. Let us briefly explain why we think of Corollary 4.5 and Theorem 4.7 as a ‘linkage

principle’ and a ‘translation principle’ for tensor products. The usual linkage principle asserts that

the category Rep(G) decomposes into linkage classes, and the usual translation principle establishes

equivalences between the different `-regular linkage classes. Thus, many questions about the structure

of the category Rep(G) can be reduced to questions about the principal block Rep0(G). However,

this strategy fails for two reasons when one tries to take the monoidal structure of Rep(G) into

account. Firstly, the principal block is not closed under tensor products. In fact, the tensor product

of two G-modules in Rep0(G) can have non-zero indecomposable direct summands in many different

linkage classes, including `-singular ones. Secondly, it is a priori not clear how structural information
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about tensor products of G-modules in the principal block can be used to deduce (precise) structural

information about tensor products of G-modules in arbitrary `-regular linkage classes.

The preceding results show that both of these obstacles can be partially resolved by passing to

the regular quotient. Indeed, Corollary 4.5 tells us that the essential image Rep0(G) of the principal

block in the regular quotient is closed under tensor products; hence, the decomposition of Rep(G) into

linkage classes is, to some extent, compatible with the monoidal strucure of Rep(G). Furthermore,

Theorem 4.7 enables us to describe (the regular parts of) tensor products of G-modules in arbitrary `-

regular linkage classes, once we know the structure of (the components in Rep0(G) of) tensor products

of G-modules in Rep0(G). The reader should note, however, that all information about singular direct

summands is lost in the process.

In the following, we present a second approach to the ‘linkage principle’ and the ‘translation

principle’ for tensor products, which largely bypasses the quotient category Rep(G), but also loses

the functoriality of Theorem 4.7. When studying tensor product of specific G-modules, rather than

categorical properties of Rep(G), this second approach will turn out to be more convenient.

Definition 4.10. For a G-module M , we write M ∼= Msing ⊕Mreg, where for a fixed Krull-Schmidt

decomposition of M , we define Msing to be the direct sum of the singular indecomposable direct

summands of M and Mreg to be the direct sum of the regular indecomposable direct summands of M .

We call Msing the singular part of M and Mreg the regular part of M .

Note that the decomposition M ∼= Msing ⊕Mreg in the previous definition is neither canonical

nor functorial. Nevertheless, the singular part and the regular part are uniquely determined up to

isomorphism by the Krull-Schmidt decomposition of M .

Lemma 4.11. For G-modules M and N , we have

Mreg ⊕Nreg
∼= (M ⊕N)reg and (M ⊗N)reg

∼=
(
Mreg ⊗Nreg

)
reg
.

Proof. The first isomorphism is straightforward to see from the definition. The second one follows

from the direct sum decomposition

M ⊗N ∼= (Mreg ⊕Msing)⊗ (Nreg ⊕Nsing)

∼= (Mreg ⊗Nreg)⊕ (Mreg ⊗Nsing)⊕ (Msing ⊗Nreg)⊕ (Msing ⊗Nsing)

and the fact that singular G-modules form a thick tensor ideal.

The following lemma can be seen as another version of the ‘linkage principle’ for tensor products.

Lemma 4.12. Let λ ∈ Cfund ∩X and ω ∈ Ω, and let M and N be G-modules such that Mreg belongs

to Repλ(G) and Nreg belongs to Repω·0(G). Then (M ⊗N)reg belongs to Repω·λ(G).

Proof. By Lemma 4.11 and the linkage principle, we have

(M ⊗N)reg =
(
Mreg ⊗Nreg

)
reg
∼=

⊕
ν∈Cfund∩X

(
prν(Mreg ⊗Nreg)

)
reg
,

and it suffices to show that prν(Mreg⊗Nreg) is singular for all ν ∈ C fund ∩X with ν 6= ω ·λ. This was

already observed in the proof of Lemma 4.4, for arbitrary G-modules in the linkage classes Repλ(G)

and Repω·0(G).
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Next we give a reformulation of Corollary 4.6 in terms of regular parts of G-modules.

Corollary 4.13. Let λ ∈ Cfund ∩X and ω ∈ Ω, and let M be a G-module in Repω·0(G). Then(
T (λ)⊗M

)
reg
∼=
(
Tω·λω·0 M

)
reg
.

Proof. Recall from Corollary 4.6 that λ is the unique dominant weight in the Wfin-orbit of ω ·λ−ω ·0,

so Tω·λω·0 = prω·λ
(
T (λ)⊗−

)
. Using Lemma 4.12, we obtain(

T (λ)⊗M
)

reg
∼= prω·λ

((
T (λ)⊗M

)
reg

)
∼=
(

prω·λ
(
T (λ)⊗M

))
reg

∼=
(
Tω·λω·0 M

)
reg
,

as required.

The following result is a non-functorial version of the ‘translation principle’ for tensor products

from Theorem 4.7.

Theorem 4.14. Let λ, µ ∈ Cfund∩X and let M and N be G-modules in the linkage classes Repω·0(G)

and Repω′·0(G), respectively, for certain ω, ω′ ∈ Ω. Then(
Tω·λω·0 M ⊗ T

ω′·µ
ω′·0 N

)
reg
∼=

⊕
ν∈Cfund∩X

(
Tωω

′·ν
ωω′·0 (M ⊗N)reg

)⊕cνλ,µ
Proof. By Lemma 4.11 and Corollary 4.13, we have(

Tω·λω·0 M ⊗ T
ω′·µ
ω′·0 N

)
reg
∼=
((
Tω·λω·0 M

)
reg
⊗
(
Tω
′·µ

ω′·0 N
)

reg

)
reg

∼=
((
T (λ)⊗M

)
reg
⊗
(
T (µ)⊗N

)
reg

)
reg

∼=
(
T (λ)⊗M ⊗ T (µ)⊗N

)
reg

∼=
((
T (λ)⊗ T (µ)

)
reg
⊗
(
M ⊗N

)
reg

)
reg
.

Now (
T (λ)⊗ T (µ)

)
reg
∼=

⊕
ν∈Cfund∩X

T (ν)⊕c
ν
λ,µ

and (M ⊗N)reg belongs to the linkage class Repωω′·0(G) by Lemma 4.12. Again using Corollary 4.13,

we obtain (
T (ν)⊗ (M ⊗N)reg

)
reg
∼=
(
Tωω

′·ν
ωω′·0 (M ⊗N)reg

)
reg
∼= Tωω

′·ν
ωω′·0 (M ⊗N)reg

for all ν ∈ Cfund ∩X, and we conclude that(
Tω·λω·0 M ⊗ T

ω′·µ
ω′·0 N

)
reg
∼=

⊕
ν∈Cfund∩X

(
T (ν)⊗ (M ⊗N)reg

)⊕cνλ,µ
reg

∼=
⊕

ν∈Cfund∩X

(
Tωω

′·ν
ωω′·0 (M ⊗N)reg

)⊕cνλ,µ ,
as claimed.

For applications in the following chapters, let us briefly explain how the action of Ω can be used

to compare the regular parts of tensor products of G-modules with constituents belonging to different

linkage classes in the extended principal block RepΩ·0(G). For ω ∈ Ω, consider the auto-equivalence

Tω :=
⊕
λ∈Ω·0

Tω·λλ

of RepΩ·0(G).
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Lemma 4.15. Let M and N be G-modules in RepΩ·0(G) and let ω, ω′ ∈ Ω. Then(
TωM ⊗ Tω′N

)
reg
∼= Tωω

′
(M ⊗N)reg.

Proof. We could deduce this as a special case of Theorem 4.14 where λ and µ belong to Ω · 0, but to

avoid excessive indexing, we prefer to prove the claim directly. (The reader will note that the proof is

also just a special case of the proof of Theorem 4.14.) By Lemma 4.11 and Corollary 4.13, we have(
TωM ⊗ Tω′N

)
reg
∼=
(
(TωM)reg ⊗ (Tω

′
N)reg

)
reg

∼=
((
T (ω · 0)⊗M

)
reg
⊗
(
T (ω′ · 0)⊗N

)
reg

)
reg

∼=
(
T (ω · 0)⊗M ⊗ T (ω′ · 0)⊗N

)
reg

∼=
((
T (ω · 0)⊗ T (ω′ · 0)

)
reg
⊗
(
M ⊗N

)
reg

)
reg
,

where
(
T (ω · 0)⊗ T (ω′ · 0)

)
reg
∼= T (ωω′ · 0) by Lemma I.9.2. Again using Corollary 4.13, we obtain

(
T (ωω′ · 0)⊗ (M ⊗N)reg

)
reg
∼=
(
Tωω

′
(M ⊗N)reg

)
reg
∼= Tωω

′
(M ⊗N)reg,

and the claim follows.

For certain applications, it will be important to decide if the tensor product M ⊗N of two regular

G-modules M and N is regular. Though we are not aware of any examples where this is not the case,

we were not able to prove it in general (but see Remark 4.19 below). To overcome this problem, we

introduce the notion of strong regularity.

Definition 4.16. A G-module M with gfd(M) = d is called strongly regular if Cmin(M)d−1 is negli-

gible and Cmin(M)d is non-negligible.

Remark 4.17. Observe that, for x ∈ W+
ext and λ ∈ Cfund ∩ X, the Weyl module ∆(x · λ) and the

simple G-module L(x · λ) are both strongly regular. Indeed, by the description of the minimal tilting

complexes of ∆(x ·λ) and L(x ·λ) in Propositions 2.5 and 2.6, the tilting modules Cmin

(
∆(x ·λ)

)
`(x)−1

and Cmin

(
L(x · λ)

)
`(x)−1

are negligible and we have

Cmin

(
∆(x · λ)

)
`(x)
∼= Cmin

(
L(x · λ)

)
`(x)
∼= T (ωx · λ),

where `(x) = gfd
(
∆(x · λ)

)
= gfd

(
L(x · λ)

)
by Corollary 2.7.

Our interest in strongly regular G-modules is founded in the following result:

Lemma 4.18. Let M and N be strongly regular G-modules. Then M ⊗N is strongly regular and

gfd(M ⊗N) = gfd(M) + gfd(N).

Proof. Set d = gfd(M) and d′ = gfd(N) and note that by Lemma 2.3, we have Cmin(M)i = 0 for i > d

and Cmin(N)i = 0 for i > d′. By the definition of strong regularity, there exist ν, ν ′ ∈ Cfund ∩X such

that [
Cmin(M)d : T (ν)

]
⊕ 6= 0 and

[
Cmin(N)d′ : T (ν ′)

]
⊕ 6= 0.
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By Lemma I.9.3, there exists δ ∈ Cfund ∩ X with
[
T (ν) ⊗ T (ν ′) : T (δ)

]
⊕ 6= 0, so T (δ) appears as a

direct summand of the tensor product Cmin(M)d ⊗ Cmin(N)d′ , which is the degree d+ d′ term of the

tensor product complex Cmin(M)⊗ Cmin(N). Furthermore, the degree d+ d′ − 1 term(
Cmin(M)d−1 ⊗ Cmin(N)d′

)
⊕
(
Cmin(M)d ⊗ Cmin(N)d′−1

)
of the tensor product complex is negligible, and the terms in degree i > d + d′ of the tensor product

complex are zero. Now Cmin(M ⊗ N) is the minimal complex of Cmin(M) ⊗ Cmin(N) by part(4) of

Lemma 2.1, hence Cmin(M⊗N)d+d′−1 is negligible and Cmin(M⊗N)i = 0 for i > d+d′. As the terms

of the tensor product complex Cmin(M)⊗Cmin(N) in degrees d+ d′ − 1 and d+ d′ + 1 are negligible

or zero, respectively, Corollary 1.8 implies that

0 6=
[
Cmin(M)d ⊗ Cmin(N)d′ : T (δ)

]
⊕ =

[
Cmin(M ⊗N)d+d′ : T (δ)

]
⊕.

Finally, Lemma 2.3 yields gfd(M ⊗N) = d+ d′, and it follows that M ⊗N is strongly regular.

Remark 4.19. In the quantum case, we claim that the tensor product M ⊗ N of two regular G-

modules M and N is always regular, if ` > h. Observe that the claim is equivalent to the statement

that singular G-modules form a prime ideal, i.e. that the tensor product M ⊗ N of two G-modules

M and N is singular only if at least one of M and N is singular. As in Remark 3.6, we have

〈N〉 =
⋂
〈N〉⊆P

P =
⋂
〈N〉⊆P

〈P ∩ Tilt(G)〉,

where the intersection runs over the prime thick tensor ideals P in Rep(G) with the 2/3-property such

that 〈N〉 ⊆ P. For any such tensor ideal P, we have N ⊆ P ∩ Tilt(G), and as N is maximal among

the proper thick tensor ideals in Tilt(G) (by Lemma I.9.3), it follows that N = P ∩ Tilt(G) and

〈N〉 = 〈P ∩ Tilt(G)〉 = P

is prime, as required. We do not know if the analogous statement is true in the modular case.

The fact that strongly regular G-modules M and N satisfy gfd(M⊗N) = gfd(M)+gfd(N) (rather

than just the inequality from Lemma I.7.2) is a very convenient additional feature of strong regularity.

It allows us to prove the following generalization to tensor products of A. Parker’s results from [Par03]

about the good filtration dimension of Weyl modules and simple G-modules (see Corollary 2.7).

Theorem 4.20. Let x1, . . . , xm, y1, . . . , yn ∈ W+
ext and λ1, . . . , λm, µ1, . . . , µn ∈ Cfund ∩X. Then the

tensor product

∆(x1 · λ1)⊗ · · · ⊗∆(xm · λm)⊗ L(y1 · µ1)⊗ · · · ⊗ L(yn · µn)

is strongly regular and has good filtration dimension `(x1) + · · ·+ `(xm) + `(y1) + · · ·+ `(yn).

Proof. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, the G-modules ∆(xi · λi) and L(yj · µj) are strongly regular by

Remark 4.17, and their good filtration dimensions are given by

gfd
(
∆(xi · λi)

)
= `(xi) and gfd

(
L(yj · λj)

)
= `(yj)

according to Corollary 2.7. The claim follows from Lemma 4.18, by induction on m+ n.
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We conclude this section by giving a further application of the tensor ideal 〈N〉 of singular G-

modules, which may be of independent interest. We prove that the composition of two translation

functors between `-regular linkage classes is naturally isomorphic to a translation functor. This state-

ment should not be very surprising to experts in the field, but the author is not aware of a proof in

the literature.

Proposition 4.21. Let λ, µ, δ ∈ Cfund ∩X. Then there is an isomorphism of functors Tµδ
∼= Tµλ ◦ T

λ
δ .

Proof. First suppose that δ = 0 and recall that

T λ0 = prλ
(
∇(λ)⊗−

)
, Tµ0 = prµ

(
∇(µ)⊗−

)
and Tµλ = prµ

(
∇(ν)⊗−

)
,

where ν is the unique dominant weight in the Wfin-orbit of µ− λ. Consider the functor

Ψ := prµ
(
∇(ν)⊗∇(λ)⊗−

)
,

and note that the canonical embedding of functors T λ0 =⇒
(
∇(λ) ⊗ −

)
gives rise to a natural trans-

formation Tµλ ◦ T
λ
0 =⇒ Ψ. Furthermore, we have

∇(µ) ∼= Tµλ∇(λ) = prµ
(
∇(ν)⊗∇(λ)

)
by Proposition I.6.8, and the canonical projection ∇(ν)⊗∇(λ)→ ∇(µ) affords a natural transforma-

tion Ψ =⇒ Tµ0 . We claim that the composition of these natural transformations

ϑ : Tµλ ◦ T
λ
0 =⇒ Ψ =⇒ Tµ0

is a natural isomorphism.

Let N be a complement of ∇(µ) ∼= prµ
(
∇(ν)⊗∇(λ)

)
in ∇(λ)⊗∇(ν), and observe that prµN = 0.

For a G-module M in Rep0(G), we have

(M ⊗N)reg
∼=

⊕
ν∈Cfund∩X

(M ⊗ prνN)reg

by the linkage principle and Lemma 4.2, and as (M ⊗ prνN)reg belongs to Repν(G) by Lemma 4.12,

we conclude that

prν(M ⊗N)reg
∼= (M ⊗ prνN)reg

for all ν ∈ Cfund ∩X. In particular, the functor prµ(N ⊗ −) maps every G-module in Rep0(G) into

the tensor ideal 〈N〉 of singular G-modules. As Ψ decomposes as the direct sum of the functors Tµ0
and prµ(N ⊗−), this implies that all components of the natural transformation Ψ =⇒ Tµ0 descend to

isomorphisms in the regular quotient Rep(G). Similarly, the embedding of functors

T λ0 =⇒
(
∇(λ)⊗−

) ∼= (T (λ)⊗−
)

descends to a natural isomorphism in Rep(G) by Corollary 4.6, and it follows that the same is true

for the natural transformation

Tµλ ◦ T
λ
0 =⇒ prµ

(
∇(ν)⊗−

)
◦
(
∇(λ)⊗−

)
= Ψ.

In particular, the component of ϑ at any simple G-module L(x·0) with x ∈W+
aff affords an isomorphism

in Rep(G). Now L(x · 0) is non-zero in Rep(G) by Lemma 4.3, whence the endomorphism algebra
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of L(x · 0) in Rep(G) is also non-zero. Since the latter endomorphism algebra is a quotient of the

endomorphism algebra of L(x · 0) in Rep(G), we conclude that the component of ϑ at L(x · 0) is

non-zero; hence it affords an isomorphism between Tµλ T
λ
0 L(x · 0) ∼= L(x ·µ) and Tµ0 L(x · 0) ∼= L(x ·µ),

by Schur’s Lemma. Using the snake Lemma and induction on the length of a composition series, one

easily deduces that the component of ϑ at every G-module in Rep0(G) is an isomorphism, so ϑ is a

natural isomorphism, as claimed.

Now since T λ0 ◦T 0
λ is isomorphic to the identity functor on Repλ(G), we further obtain isomorphisms

of functors

Tµλ
∼= Tµλ ◦ T

λ
0 ◦ T 0

λ
∼= Tµ0 ◦ T

0
λ .

For arbitrary δ ∈ Cfund ∩X, we conclude that

T δµ ◦ T
µ
λ
∼= T δ0 ◦ T 0

µ ◦ T
µ
0 ◦ T

0
λ
∼= T δ0 ◦ T 0

λ
∼= T δλ ,

as required.

5 Generic direct summands

In this section, we study the regular indecomposable direct summands of tensor products of specific

G-modules (such as Weyl modules and simple modules). Our knowledge about the minimal tilting

complexes of these G-modules allows us to show that (certain) regular indecomposable direct sum-

mands of the corresponding tensor products are essentially unique. Recall that we write x 7→ ωx for

the canonical epimorphism Wext = Waff o Ω→ Ω with kernel Waff and that we assume ` ≥ h.

Proposition 5.1. Let x, y ∈ W+
ext. Then the tensor product ∆(x · 0)⊗∆(y · 0) has a unique regular

indecomposable direct summand G∆(x, y). Furthermore, G∆(x, y) belongs to the linkage class of ωxy ·0
and satisfies

gfd
(
G∆(x, y)

)
= `(x) + `(y).

Proof. Recall from Lemma 2.1 that Cmin

(
∆(x · 0) ⊗ ∆(y · 0)

)
is the minimal complex of the tensor

product complex Cmin

(
∆(x · 0)

)
⊗ Cmin

(
∆(y · 0)

)
. By Proposition 2.5, the terms Cmin

(
∆(x · 0)

)
i

of

the minimal tilting complex of ∆(x · 0) are negligible for i < `(x) and zero for i > `(x), and we have

Cmin

(
∆(x · 0)

)
`(x)
∼= T (ωx · 0).

Analogously, we have

Cmin

(
∆(y · 0)

)
`(y)
∼= T (ωy · 0),

and Cmin

(
∆(y · 0)

)
i

is negligible for i < `(y) and zero for i > `(y).

Combining the above observations, we see that the terms Cmin

(
∆(x ·0)⊗∆(y ·0)

)
i

of the minimal

tilting complex of ∆(x · 0) ⊗ ∆(y · 0) are negligible for i < `(x) + `(y) and zero for i > `(x) + `(y).

Furthermore, the term in degree `(x) + `(y) is a direct summand of the tensor product of tilting

modules

Cmin

(
∆(x · 0)

)
`(x)
⊗ Cmin

(
∆(y · 0)

)
`(y)
∼= T (ωx · 0)⊗ T (ωy · 0),

which is isomorphic to T (ωxωy · 0) = T (ωxy · 0) in the fusion category Tilt(G)/N by Lemma I.9.2. As

the terms of the tensor product complex Cmin

(
∆(x · 0)

)
⊗ Cmin

(
∆(y · 0)

)
in degrees `(x) + `(y) − 1

and `(x) + `(y) + 1 are negligible or zero, respectively, Corollary 1.8 implies that[
Cmin

(
∆(x · 0)⊗∆(y · 0)

)
`(x)+`(y)

: T (ωxy · 0)
]
⊕ = 1,
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and T (ωxy · 0) is the unique non-negligible indecomposable direct summand of the degree `(x) + `(y)

term of Cmin

(
∆(x · 0)⊗∆(y · 0)

)
.

Now fix a Krull-Schmidt decomposition

∆(x · 0)⊗∆(y · 0) ∼= M1 ⊕ · · · ⊕Mr

and note that

Cmin

(
∆(x · 0)⊗∆(y · 0)

) ∼= Cmin(M1)⊕ · · · ⊕ Cmin(Mr).

Hence there exists a unique k ∈ {1, . . . , r} with [Cmin(Mk)`(x)+`(y) : T (ωxy · 0)]⊕ 6= 0, and all of the

terms Cmin(Mi)j of the minimal tilting complexes Cmin(Mi) are negligible for i 6= k (or i = k and

j < `(x) + `(y)) and zero for j > `(x) + `(y). In particular, Mk is the unique regular indecomposable

direct summand of ∆(x · 0) ⊗∆(y · 0), Mk belongs to the linkage class of ωxy · 0 by Lemma 2.2 and

we have gfd(Mk) = `(x) + `(y) by Lemma 2.3.

Remark 5.2. For x, y ∈W+
ext, one can show as in Proposition 5.1 that ∇(x ·0)⊗∇(y ·0) has a unique

regular indecomposable direct summand G∇(x, y). Furthermore, G∇(x, y) satisfies

wfd
(
G∇(x, y)

)
= `(x) + `(y)

and belongs to the linkage class of ωxy ·0. In the following, we will mostly restrict our attention to one

of the classes of modules G∆(x, y) or G∇(x, y), which is justified by the fact that G∇(x, y) ∼= G∆(x, y)τ .

Indeed, G∆(x, y)τ is a direct summand of(
∆(x · 0)⊗∆(y · 0)

)τ ∼= ∇(x · 0)⊗∇(y · 0),

and G∆(x, y)τ is regular since Cmin

(
G∆(x, y)τ

)
i
∼= Cmin

(
G∆(x, y)

)
−i for all i ∈ Z.

Definition 5.3. For x, y ∈ W+
ext, we call the G-module G∆(x, y) from Proposition 5.1 the generic

direct summand of ∆(x · 0)⊗∆(y · 0). Analogously, we call the G-module G∇(x, y) from Remark 5.2

the generic direct summand of ∇(x · 0)⊗∇(y · 0).

Remark 5.4. The term generic direct summand is justified by the fact that translates of G∆(x, y)

appear ‘generically’ in Krull-Schmidt decompositions of tensor products of Weyl modules with highest

weights in the alcoves x · Cfund and y · Cfund: For λ, µ ∈ Cfund and x, y ∈W+
aff , we have(

∆(x · λ)⊗∆(y · µ)
)

reg
∼=
(
T λ0 ∆(x · 0)⊗ Tµ0 ∆(y · 0)

)
reg

∼=
⊕

ν∈Cfund∩X
T ν0
(
∆(x · 0)⊗∆(y · 0)

)⊕cνλ,µ
reg

∼=
⊕

ν∈Cfund∩X
T ν0 G∆(x, y)⊕c

ν
λ,µ

by Theorem 4.14 and Proposition 5.1.

The following elementary lemma is an immediate consequence of Lemma 4.15.

Lemma 5.5. Let x, y ∈W+
ext and ω, ω′ ∈ Ω. Then

G∆(xω, yω′) ∼= Tωω
′
G∆(x, y) and G∇(xω, yω′) ∼= Tωω

′
G∇(x, y).
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Proof. First note that ∆(xω · 0) ∼= Tω∆(x · 0) and ∆(yω′ · 0) ∼= Tω
′
∆(y · 0). By Proposition 5.1 and

Lemma 4.15, we have

G∆(xω, yω′) ∼=
(
∆(xω · 0)⊗∆(yω′ · 0)

)
reg

∼=
(
Tω∆(x · 0)⊗ Tω′∆(y · 0)

)
reg

∼= Tωω
′(

∆(x · 0)⊗∆(y′ · 0)
)

reg

∼= Tωω
′
G∆(x, y),

as claimed. The isomorphism G∇(xω, yω′) ∼= Tωω
′
G∇(x, y) can be proven analogously.

Remark 5.6. Observe that the proof of Proposition 5.1 implies that[
Cmin

(
G∆(x, y)

)
`(x)+`(y)

: T (ωxy · 0)
]
⊕ = 1

for all x, y ∈ W+
ext. Now suppose that x, y ∈ W+

aff , so that ∆(x · 0) and ∆(y · 0) belong to Rep0(G).

Then we have Cmin

(
∆(x · 0)

)
`(x)
∼= T (0) and Cmin

(
∆(y · 0)

)
`(y)
∼= T (0) by Proposition 2.5. Arguing

as in the proof of Proposition 5.1, we see that

Cmin

(
∆(x · 0)⊗∆(y · 0)

)
`(x)+`(y)

∼= T (0)⊗ T (0) ∼= T (0),

not only in the fusion category but as actual G-modules, and that

Cmin

(
G∆(x, y)

)
`(x)+`(y)

∼= T (0).

Note that this argument also shows that G∆(x, y) is the unique indecomposable direct summand of

the tensor product ∆(x · 0)⊗∆(y · 0) with good filtration dimension `(x) + `(y). For x, y ∈ W+
ext, it

follows from Lemma 5.5 that

Cmin

(
G∆(x, y)

)
`(x)+`(y)

∼= T (ωxy · 0).

The regular indecomposable direct summands of tensor products of simple G-modules in the

extended principal block are in general not unique. To get uniqueness, we need to impose a condition

on the good filtration dimension.

Proposition 5.7. Let x, y ∈ W+
ext. Then the tensor product L(x · 0) ⊗ L(y · 0) has a unique regular

indecomposable direct summand G(x, y) with gfd
(
G(x, y)

)
= `(x)+ `(y). Furthermore, G(x, y) belongs

to the linkage class of ωxy · 0.

Proof. First suppose that x, y ∈ W+
aff . Recall from Proposition 2.6 that the terms Cmin

(
L(x · 0)

)
i

of

the minimal tilting complex of L(x · 0) are zero for i > `(x) and negligible for i = `(x)− 1, and that

Cmin

(
L(x · 0)

)
`(x)
∼= T (0).

Analogously, we have

Cmin

(
L(y · 0)

)
`(y)
∼= T (0),

and Cmin

(
L(y ·0)

)
i

is zero for i > `(y) and negligible for i = `(x)−1. Hence the degree `(x) + `(y)−1

term of the tensor product complex Cmin

(
L(x · 0)

)
⊗ Cmin

(
L(y · 0)

)
is the negligible tilting module(

Cmin

(
L(x · 0)

)
⊗ Cmin

(
L(y · 0)

))
`(x)+`(y)−1

=
(
Cmin

(
L(x · 0)

)
`(x)−1

⊗ Cmin

(
L(y · 0)

)
`(y)

)
⊕
(
Cmin

(
L(x · 0)

)
`(x)
⊗ Cmin

(
L(y · 0)

)
`(y)−1

)
,
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the degree `(x) + `(y) term of Cmin

(
L(x · 0)

)
⊗ Cmin

(
L(y · 0)

)
is

Cmin

(
L(x · 0)

)
`(x)
⊗ Cmin

(
L(y · 0)

)
`(y)
∼= T (0)⊗ T (0) ∼= T (0),

and the terms of Cmin

(
L(x · 0)

)
⊗ Cmin

(
L(y · 0)

)
in degree i > `(x) + `(y) are all zero. By part (4)

of Lemma 2.1, Cmin

(
L(x · 0) ⊗ L(y · 0)

)
is the minimal complex of Cmin

(
L(x · 0)

)
⊗ Cmin

(
L(y · 0)

)
,

and using Corollary 1.8, we conclude that Cmin

(
L(x · 0)⊗ L(y · 0)

)
`(x)+`(y)

∼= T (0). This implies that

there is a unique indecomposable direct summand G(x, y) of L(x · 0)⊗L(y · 0) whose minimal tilting

complex has a non-zero term in degree `(x) + `(y), and the latter satisfies

Cmin

(
G(x, y)

)
`(x)+`(y)

∼= T (0).

In particular, G(x, y) is regular and belongs to the linkage class of 0 by Lemma 2.2, and G(x, y) is the

unique indecomposable direct summand of L(x ·0)⊗L(y ·0) with good filtration dimension `(x)+ `(y)

by Lemma 2.3.

For arbitrary elements x, y ∈W+
ext, we can write x = x′ωx and y = y′ωy with x′, y′ ∈W+

aff , and the

claim follows from the previous case because(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
(
TωxL(x′ · 0)⊗ TωyL(y′ · 0)

)
reg
∼= Tωxy

(
L(x′ · 0)⊗ L(y′ · 0)

)
reg

by Lemma 4.15 (and because the translation functor Tωxy preserves the good filtration dimension).

Remark 5.8. For x, y ∈W+
ext, one can show as in Proposition 5.7 that L(x ·0)⊗L(y ·0) has a unique

regular indecomposable direct summand G′(x, y) with wfd
(
G′(x, y)

)
= `(x) + `(y). In the following,

we will only study the modules G(x, y), which is justified by the fact that G′(x, y) ∼= G(x, y)τ . Indeed,

G(x, y)τ is a direct summand of
(
L(x · 0)⊗ L(y · 0)

)τ ∼= L(x · 0)⊗ L(y · 0) with

wfd
(
G(x, y)τ

)
= gfd

(
G(x, y)

)
= `(x) + `(y),

and G(x, y)τ is regular since Cmin

(
G(x, y)τ

)
i
∼= Cmin

(
G(x, y)

)
−i for all i ∈ Z.

Definition 5.9. For x, y ∈W+
ext, we call the indecomposable G-module G(x, y) from Proposition 5.7

the generic direct summand of L(x · 0)⊗ L(y · 0).

Lemma 5.5 has an obvious analogue for generic direct summands of tensor products of simple

G-modules.

Lemma 5.10. Let x, y ∈W+
ext and ω, ω′ ∈ Ω. Then

G(xω, yω′) ∼= Tωω
′
G(x, y).

Proof. We can essentially copy the proof of Lemma 5.5, replacing Weyl modules by simple modules.

The only additional fact that one needs to use is that the translation functor Tωω
′

preserves the good

filtration dimension.

Remark 5.11. Observe that the proof of Proposition 5.7 implies that

Cmin

(
G(x, y)

)
`(x)+`(y)

∼= T (ωxy · 0)

for all x, y ∈ W+
ext. Furthermore, if x, y ∈ W+

aff then G(x, y) is the unique indecomposable direct

summand of the tensor product L(x · 0)⊗ L(y · 0) with good filtration dimension `(x) + `(y).
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Remark 5.12. The G-modules G(x, y) and G∆(x, y), for x, y ∈ W+
ext, are not only regular but

strongly regular. Indeed, by Remark 4.17 and Lemma 4.18, the tensor products L(x · 0)⊗L(y · 0) and

∆(x · 0)⊗∆(y · 0) are both strongly regular of good filtration dimension `(x) + `(y). Therefore, there

exist strongly regular indecomposable direct summands M of L(x·0)⊗L(y·0) and N of ∆(x·0)⊗∆(y·0)

with gfd(M) = gfd(N) = `(x)+ `(y), and the uniqueness statements in Propositions 5.1 and 5.7 imply

that G(x, y) ∼= M and G∆(x, y) ∼= N are strongly regular. We point out that the strong regularity of

the G-modules G(x, y) and G∆(x, y) is also implicit in the proofs of Propositions 5.1 and 5.7.

Remark 5.13. In principle, there is no reason why one would need to restrict one’s attention to the

study of regular indecomposable direct summands of tensor products of G-modules that belong to

the same ‘class’ of modules (such as Weyl modules or simple modules). For x, y ∈ W+
ext, the proof of

Proposition 5.1 can easily be adapted to show that a tensor product of the form ∆(x · 0) ⊗ ∇(y · 0)

has a unique regular indecomposable direct summand G∆,∇(x, y), and the latter satisfies[
Cmin

(
G∆,∇(x, y)

)
`(x)−`(y)

: T (ωxy · 0)
]
⊕ = 1.

Similarly, we can adapt the proof of Proposition 5.7 to show that L(x·0)⊗∆(y ·0) has a unique regular

indecomposable direct summand with good filtration dimension `(x)+ `(y) and that L(x ·0)⊗∇(y ·0)

has a unique regular indecomposable direct summand with Weyl filtration dimension `(x) + `(y).

Remark 5.14. For the most part of this manuscript, we have been (and will be) restricting our

attention to tensor products of two G-modules, but one may also ask about regular indecomposable

direct summands of iterated tensor products with more than two constituents. For x1, . . . , xn ∈W+
ext,

one can use the techniques from the proofs of Propositions 5.1 and 5.7 to show that the iterated tensor

product

∆(x1 · 0)⊗ · · · ⊗∆(xn · 0)

has a unique regular indecomposable direct summand G∆(x1, . . . , xn) (which has good filtration di-

mension `(x1) + · · ·+ `(xn)) and that the iterated tensor product

L(x1 · 0)⊗ · · · ⊗ L(xn · 0)

has a unique regular indecomposable direct summand G(x1, . . . , xn) that satisfies

gfd
(
G(x1, . . . , xn)

)
= `(x1) + · · ·+ `(xn).

In analogy with the results from Section 4, we can also prove a translation principle for iterated tensor

products, where the structure constants of the Verlinde algebra are replaced by multiplicities of basis

elements in iterated products.

6 The Steinberg-Lusztig tensor product theorem

Recall from Section I.8 that every dominant weight λ ∈ X+ can be uniquely written as λ = λ0 + `λ1

with λ0 ∈ X1 an `-restricted weight and λ1 ∈ X+. Then, by Steinberg’s and Lusztig’s tensor product

theorems, the simple module L(λ) admits a tensor product decomposition

L(λ) ∼= L(λ0)⊗ L(`λ1),

where L(`λ1) ∼= L(λ1)[1] in the modular case and L(`λ1) ∼= LC(λ1)[1] in the quantum case. Further

recall that we assume that ` ≥ h, the Coxeter number of G. It is straightforward to see that the
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weight λ = λ0 + `λ1 is `-regular if and only if λ0 is `-regular, and that `λ1 is always `-regular. For

`-regular dominant weights λ = λ0 + `λ1 and µ = µ0 + `µ1, our goal in this section is to describe the

regular indecomposable direct summands of the tensor product L(λ) ⊗ L(µ) in terms of the regular

indecomposable direct summands of L(λ0) ⊗ L(µ0) and L(λ1)[1] ⊗ L(µ1)[1] (in the modular case) or

of L(λ0)⊗L(µ0) and L(λ1)
[1]
C ⊗LC(µ1)[1] (in the quantum case). Note that by Theorem 4.14, we can

restrict our attention to the case where λ and µ belong to W+
ext · 0. The main results from this section

will be crucial for the description of the regular indecomposable direct summands of tensor products

of simple G-modules in small rank cases, which will be given in Chapter III.

Because of the connection between the good filtration dimension of simple modules and the length

function on the (extended) affine Weyl group (see Corollary 2.7), we start by proving some elementary

properties of this length function. The following result is taken from Proposition 1.23 in [IM65]:

Proposition 6.1. Let γ ∈ X and w ∈Wfin. Then

`(tγw) =
∑
α∈Φ+

w−1(α)∈Φ+

|(γ, α∨)|+
∑
α∈Φ+

w−1(α)/∈Φ+

|(γ, α∨)− 1|.

Recall that we write ρ for the half-sum of all positive roots in Φ. Analogously, we define ρ∨ to be

the half-sum of all positive coroots, that is

ρ∨ :=
1

2
·
∑
α∈Φ+

α∨.

Using this notation, the length function on W+
ext takes a very simple form.

Corollary 6.2. For γ ∈ X and w ∈Wfin such that tγw ∈W+
ext, we have

`(tγw) = 2 · (γ, ρ∨)− `(w).

Proof. For α ∈ Φ+ and x ∈ Afund, we have

0 <
(
tγw(x), α∨

)
=
(
γ, α∨

)
+
(
x,w−1(α)∨

)
,

where 0 <
(
x,w−1(α)∨

)
< 1 if w−1(α) ∈ Φ+ and −1 <

(
x,w−1(α)∨

)
< 0 if w−1(α) /∈ Φ+, and

where (γ, α∨) is an integer. This implies that (γ, α∨) ≥ 0 for all α ∈ Φ+ with w−1(α) ∈ Φ+ and that

(γ, α∨) ≥ 1 for all α ∈ Φ+ with w−1(α) /∈ Φ+, whence we can omit the absolute values from the length

formula in Proposition 6.1. More precisely, we have

`(tγw) =
∑
α∈Φ+

w−1(α)∈Φ+

|(γ, α∨)|+
∑
α∈Φ+

w−1(α)/∈Φ+

|(γ, α∨)− 1|

=
∑
α∈Φ+

w−1(α)∈Φ+

(γ, α∨) +
∑
α∈Φ+

w−1(α)/∈Φ+

(
(γ, α∨)− 1

)
= 2 · (γ, ρ∨)−

∣∣{α ∈ Φ+
∣∣ w−1(α) /∈ Φ+

}∣∣,
and the claim follows from the well-known fact that `(w) = `(w−1) equals the number of positive roots

that are sent to negative roots by w−1, again by Proposition 6.1.

Corollary 6.3. For x ∈W+
ext and λ ∈ X+, we have `(tλx) = `(tλ) + `(x).
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Proof. Let us write x = tγw with γ ∈ X and w ∈ Wfin, so `(x) = 2 · (γ, ρ∨) − `(w) by Corollary 6.2.

Analogously, we have `(tλ) = 2 · (λ, ρ∨) and

`(tλx) = `(tλ+γw) = 2 · (λ+ γ, ρ∨)− `(w) = 2 · (λ, ρ∨) + 2 · (γ, ρ∨)− `(w) = `(tλ) + `(x),

as claimed.

Next we prove two results that compare the canonical order on X induced by Φ+ with the linkage

order and the Bruhat order.

Lemma 6.4. For λ, µ ∈ X with λ ≤ µ, we have tλ(Afund) ↑ tµ(Afund).

Proof. Recall that λ < µ means that µ − λ is a non-zero non-negative integral linear combination of

simple roots. Hence it suffices to prove that tλ(Afund) ↑ tλ+α(Afund) for α ∈ Φ+. We set r = (λ, α∨)+1

and claim that

tλ(Afund) ↑ sα,rtλ(Afund) = sα,r+1tλ+α(Afund) ↑ tλ+α(Afund).

Indeed, it is straightforward to see that for x ∈ Afund, we have (λ+x, α∨) < r and (λ+α+x, α∨) > r+1,

so tλ(Afund) ⊆ H−α,r and tλ+α(Afund) ⊆ H+
α,r+1, as required.

Corollary 6.5. For λ, µ ∈ X+ with λ ≤ µ, we have tλ ≤ tµ and `(tλ) ≤ `(tµ).

Proof. This follows from Lemma 6.4 and the fact that the linkage order is equivalent to the Bruhat

order on W+
aff ; see Theorem I.2.14.

Equipped with the above results about the length function, we can prove our results relating

generic direct summands with the tensor product theorems of R. Steinberg and G. Lusztig. We start

with the quantum case and then proceed to study the modular case.

The quantum case

Suppose until otherwise stated that we are in the quantum case. Until the end of the section, we fix

two elements x, y ∈W+
ext and write

x · 0 = λ′ + `λ and y · 0 = µ′ + `µ

with λ′, µ′ ∈ X1 and λ, µ ∈ X+. Furthermore, we set

x0 := t−λx and y0 = t−µy.

Observe that x0 · 0 = x · 0− `λ = λ′, whence x0 ∈W+
ext and

`(x) = `(tλx0) = `(tλ) + `(x0)

by Corollary 6.3, and similarly `(y) = `(tµ) + `(y0). As Rep(g) is a semisimple category, the tensor

product of the simple g-modules LC(λ) and LC(µ) decomposes as a direct sum

LC(λ)⊗ LC(µ) ∼=
⊕
ν∈X+

LC(ν)⊕d
ν
λ,µ

of simple g-modules, for certain multiplicities dνλ,µ ∈ Z≥0.

66



6. The Steinberg-Lusztig tensor product theorem

Lemma 6.6. There is an isomorphism

(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
⊕
ν∈X+

((
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗ LC(ν)[1]

)⊕dνλ,µ
reg

Proof. By Lusztig’s tensor product theorem, we have

L(x · 0) ∼= L(x0 · 0)⊗ LC(λ)[1] and L(y · 0) ∼= L(y0 · 0)⊗ LC(µ)[1],

and using Lemma 4.11, we obtain(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
((
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗
(
LC(λ)[1] ⊗ LC(µ)[1]

)
reg

)
reg
.

Now

LC(λ)[1] ⊗ LC(µ)[1] ∼=
(
LC(λ)⊗ LC(µ)

)[1] ∼=
⊕
ν∈X+

(
LC(ν)[1]

)⊕dνλ,µ ,
and the claim follows since LC(ν)[1] ∼= L(`ν) is regular for all ν ∈ X+, by Lemma 4.3.

Lemma 6.7. The G-module G(x, y) is a direct summand of G(x0, y0)⊗ LC(λ+ µ)[1].

Proof. Recall that by definition, G(x, y) is the unique regular indecomposable direct summand of the

tensor product L(x · 0)⊗ L(y · 0) that attains the maximal good filtration dimension

gfd
(
G(x, y)

)
= `(x) + `(y) = `(x0) + `(y0) + `(tλ) + `(tµ).

For ν ∈ X+ with dνλ,µ > 0, we have ν ≤ λ+ µ and by Corollaries 2.7, 6.3 and 6.5, we get

gfd
(
LC(ν)[1]

)
= gfd

(
L(`ν)

)
= `(tν) ≤ `(tλ+µ) = `(tλ) + `(tµ),

with equality precisely when ν = λ + µ. As G(x0, y0) is the unique regular indecomposable direct

summand of L(x0 · 0)⊗L(y0 · 0) that attains the maximal good filtration dimension `(x0) + `(y0), we

conclude (using Lemmas I.7.2 and 6.6) that G(x, y) is a direct summand of G(x0, y0)⊗ LC(λ+ µ)[1],

as claimed.

Corollary 6.8. If G(x0, y0) has simple socle as a G1-module then G(x, y) ∼= G(x0, y0)⊗LC(λ+µ)[1].

Proof. The assumption implies that G(x0, y0)⊗ LC(λ+ µ)[1] is indecomposable by Lemma I.8.8, and

the claim is immediate since G(x, y) is a direct summand of G(x0, y0)⊗LC(λ+µ)[1] by Lemma 6.7.

In order to discuss other regular indecomposable direct summands of tensor products of simple

modules, we will use the following lemma:

Lemma 6.9. Let M be a regular G-module. Then M ⊗ LC(ν)[1] is regular for all ν ∈ X+.

Proof. Note that LC(−w0ν) is dual to LC(ν), hence the trivial one-dimensional g-module LC(0) is a

direct summand of LC(ν) ⊗ LC(−w0ν), and the trivial one-dimensional G-module L(0) ∼= LC(0)[1] is

a direct summand of LC(ν)[1] ⊗ LC(−w0ν)[1]. This implies that M ∼= M ⊗ L(0) is a direct summand

of the tensor product M ⊗LC(ν)[1]⊗LC(−w0ν)[1], and the claim follows because singular G-modules

form a thick tensor ideal (see Lemma 3.3).
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Corollary 6.10. Let M be a regular indecomposable direct summand of L(x0 · 0) ⊗ L(y0 · 0) and let

ν ∈ X+ with dνλ,µ > 0. Then M ′ := M ⊗ LC(ν)[1] is regular, and every regular indecomposable direct

summand of M ′ is a regular indecomposable direct summand of L(x · 0) ⊗ L(y · 0). If M has simple

socle as a G1-module then M ′ is a regular indecomposable direct summand of L(x · 0)⊗ L(y · 0).

Proof. The tensor product M ′ = M ⊗L(ν)[1] is regular by Lemma 6.9. Every regular indecomposable

direct summand of M ′ is also a regular indecomposable direct summand of L(x · 0) ⊗ L(y · 0) by

Lemma 6.6, whence the first claim. If M has simple socle as a G1-module then M ′ is indecomposable

as a G-module by Lemma I.8.8.

Corollary 6.11. Suppose that all regular indecomposable direct summands of L(x0 ·0)⊗L(y0 ·0) have

simple socle as G1-modules. Then(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
⊕
ν∈X+

((
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗ LC(ν)[1]

)⊕dνλ,µ
.

Proof. By Lemma 6.6, we have(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
⊕
ν∈X+

((
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗ LC(ν)[1]

)⊕dνλ,µ
reg

and the claim follows because all indecomposable direct summands of
(
L(x0 ·λ)⊗L(y0 ·λ)

)
reg
⊗LC(ν)[1]

are regular by Corollary 6.10.

The modular case

Suppose until the end of the section that we are in the modular case. We would like to establish

modular analogues of the results that were proven above for the quantum case. One key argument in

Lemma 6.6 was that the (quantum) Frobenius twist of a g-module is always regular, because it is a

direct sum of simple Uζ(g)-modules of `-regular highest weight. Since in the modular case, the domain

of the Frobenius twist functor is the non-semisimple category Rep(G), we will need to replace this

argument by the following result:

Proposition 6.12. Let M be a G-module in Repν(G), for some ν ∈ C fund ∩X. Then the Frobenius

twist M [1] is strongly regular. More precisely, define

d = dM := max
{

2 · (γ, ρ∨)
∣∣ γ ∈ X+ with [M : L(γ)] 6= 0

}
,

and let γ ∈ X+ with [M : L(γ)] 6= 0 and 2 · (γ, ρ∨) = d. Then Cmin

(
M [1]

)
d

is a fusion module with[
Cmin

(
M [1]

)
d

: T (ωtγ · 0)
]
⊕ 6= 0.

Furthermore, we have Cmin

(
M [1]

)
i

= 0 for i > d and Cmin

(
M [1]

)
d−1

is negligible.

Proof. Note that the composition factors of M [1] are of the form L(γ′)[1] ∼= L(`γ′), for γ′ ∈ X+ such

that [M : L(γ′)] 6= 0. By Corollaries 2.7 and 6.3, we have

gfd
(
L(`γ′)

)
= `(tγ′) = 2 · (γ′, ρ∨) ≤ d,

so gfd
(
M [1]

)
≤ d by Corollary I.7.5 and Cmin

(
M [1]

)
i

= 0 for all i > d by Lemma 2.3. We prove the

remaining claims by induction on the composition length of M .
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If M ∼= L(γ) is simple then M [1] ∼= L(`γ) = L(tγ · 0) and `(tγ) = 2 · (γ, ρ∨) = d by Corollary 6.2,

so the claim follows from Proposition 2.6. Now suppose that M has at least two composition factors

and fix a short exact sequence

0→ L→M → N → 0

with L and N non-zero. By induction, we may assume that the proposition holds for L and N .

Note that by assumption, both L and N belong to the linkage class Repν(G). In particular, all

highest weights of composition factors of L and of N belong to the same ZΦ-coset in X. As (β, ρ∨) ∈ Z
for all β ∈ Φ, it follows that dL and dN have the same parity. Furthermore, by applying Lemma 2.4

to the short exact sequence

0→ L[1] →M [1] → N [1] → 0,

we see that

Cmin

(
M [1]

)
i

⊕
⊆ Cmin

(
L[1]
)
i
⊕ Cmin

(
N [1]

)
i

=: Ci

for all i ∈ Z. It is straightforward to see that d = dM = max{dL, dN}, and we distinguish three cases:

(1) Suppose that d = dL > dN . Then L(γ) is a composition factor of L with dL = 2 · (γ, ρ∨).

Furthermore, we have dN ≤ dL − 2 = d − 2 because dL and dN have the same parity, and it

follows that Cmin

(
N [1]

)
i

= 0 for i > d− 2. In particular, we have

Cmin

(
M [1]

)
d−1

⊕
⊆ Cmin

(
L[1]
)
d−1

and Cmin

(
M [1]

)
d

⊕
⊆ Cmin

(
L[1]
)
d
,

whence Cmin

(
M [1]

)
d−1

is negligible and Cmin

(
M [1]

)
d

is a fusion module. Finally, the assumption

on L and Lemma 2.4 imply that

0 6=
[
Cmin

(
L[1]
)
d

: T (ωtγ · 0)
]
⊕ =

[
Cmin

(
M [1]

)
d

: T (ωtγ · 0)
]
⊕

because Cd−1 = Cmin

(
L[1]
)
d−1

is negligible and Cd+1 = 0.

(2) Suppose that d = dN > dL. Then L(γ) is a composition factor of N with dN = 2 · (γ, ρ∨).

Furthermore, we have dL ≤ dN − 2 = d− 2 because dL and dN have the same parity. Now the

claim follows precisely as in case (1), with the roles of L and N interchanged.

(3) Suppose that d = dL = dN . Then Cmin

(
M [1]

)
d−1

is negligible because

Cmin

(
M [1]

)
d−1

⊕
⊆ Cmin

(
L[1]
)
d−1
⊕ Cmin

(
N [1]

)
d−1

,

and Cmin

(
M [1]

)
d

is a fusion module because

Cmin

(
M [1]

)
d

⊕
⊆ Cmin

(
L[1]
)
d
⊕ Cmin

(
N [1]

)
d
.

Furthermore, the simple G-module L(γ) is a composition factor of at least one of the G-modules

L and N , and we have 2 · (γ, ρ∨) = dL = dN . Using again the assumptions on L and N together

with Lemma 2.4, we obtain

0 6=
[
Cmin

(
L[1]
)
d

: T (ωtγ · 0)
]
⊕ +

[
Cmin

(
N [1]

)
d

: T (ωtγ · 0)
]
⊕ =

[
Cmin

(
M [1]

)
d

: T (ωtγ · 0)
]
⊕

because the Cd−1 = Cmin

(
L[1]
)
d−1
⊕ Cmin

(
N [1]

)
d−1

is negligible and Cd+1 = 0.
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Now we are ready to give a modular analogue of Lemma 6.6. Recall that we fix x, y ∈ W+
ext and

write x · 0 = λ′ + `λ and y · 0 = µ′ + `µ with λ′, µ′ ∈ X1 and λ, µ ∈ X+. As before, we set x0 := t−λx

and y0 := t−µy.

Lemma 6.13. Fix a Krull-Schmidt decomposition L(λ) ⊗ L(µ) ∼= M1 ⊕ · · · ⊕Mr. Then there is an

isomorphism (
L(x · 0)⊗ L(y · 0)

)
reg
∼=

r⊕
i=1

((
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗M [1]

i

)
reg

Proof. As in the proof of Lemma 6.6 (replacing Lusztig’s tensor product theorem by Steinberg’s tensor

product theorem), we see that(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
((
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗
(
L(λ)[1] ⊗ L(µ)[1]

)
reg

)
reg
.

Now

L(λ)[1] ⊗ L(µ)[1] ∼=
(
L(λ)⊗ L(µ)

)[1] ∼= M
[1]
1 ⊕ · · · ⊕M

[1]
r ,

and the claim follows since M
[1]
i is regular for i = 1, . . . , r by Proposition 6.12.

In order to formulate an analogue of Lemma 6.7, we need the following definition:

Definition 6.14. Let M(λ, µ) be the unique indecomposable direct summand of L(λ)⊗ L(µ) with a

non-zero λ+ µ-weight space.

Note that M(λ, µ) is well-defined since the λ+ µ-weight space of L(λ)⊗ L(µ) is one-dimensional.

We could alternatively define M(λ, µ) as the unique indecomposable direct summand of the tensor

product L(λ)⊗ L(µ) that has L(λ+ µ) as a composition factor.

Lemma 6.15. The G-module G(x, y) is a direct summand of G(x0, y0)⊗M(λ, µ)[1].

Proof. Recall that `(x) = `(x0) + `(tλ) and `(y) = `(y0) + `(tµ) by Corollary 6.3, and that G(x, y) is

the unique regular indecomposable direct summand of L(x · 0) ⊗ L(y · 0) that attains the maximal

good filtration dimension

gfd
(
G(x, y)

)
= `(x) + `(y) = `(x0) + `(y0) + `(tλ) + `(tµ).

By Lemma 6.13, G(x, y) is a direct summand of M ⊗ N [1], for some regular indecomposable direct

summand M of L(x0 · 0)⊗L(y0 · 0) and some indecomposable direct summand N of L(λ)⊗L(µ), and

it suffices to show that M ∼= G(x0, y0) and N ∼= M(λ, µ).

By Lemma I.7.2 and Corollary 2.7, we have

gfd(M) ≤ gfd
(
L(x0 · 0)⊗ L(y0 · 0)

)
≤ gfd

(
L(x0 · 0)

)
+ gfd

(
L(y0 · 0)

)
= `(x0) + `(y0)

and similarly

gfd
(
N [1]

)
≤ gfd

(
L(λ)[1] ⊗ L(µ)[1]

)
= gfd

(
L(`λ)⊗ L(`µ)

)
≤ `(tλ) + `(tµ).

Again using Lemma I.7.2, we see that

`(x0) + `(y0) + `(tλ) + `(tµ) = gfd
(
G(x, y)

)
≤ gfd

(
M ⊗N [1]

)
≤ gfd

(
M
)

+ gfd
(
N [1]

)
,
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and it follows that gfd(M) = `(x0) + `(y0) and gfd
(
N [1]

)
= `(tλ) + `(tµ). As G(x0, y0) is the unique

regular indecomposable direct summand of L(x0 · 0) ⊗ L(y0 · 0) that has good filtration dimension

`(x0) + `(y0), we conclude that M ∼= G(x0, y0).

Next note that N [1] has a composition factor L(γ) with

gfd
(
L(γ)

)
≥ gfd

(
N [1]

)
= `(tλ) + `(tµ) = `(tλ+µ),

by Corollaries I.7.5 and 6.3, and that γ = `γ′ for some γ′ ∈ X+ with [N : L(γ′)] 6= 0. As N is a direct

summand of L(λ)⊗L(µ), it follows that γ′ ≤ λ+µ, whence tγ′ ≤ tλ+µ by Corollary 6.5. Furthermore,

we have

`(tλ+µ) ≤ gfd
(
L(γ)

)
= gfd

(
L(`γ′)

)
= `(tγ′)

by Corollary 2.7, whence tγ′ = tλ+µ and γ′ = λ + µ. We conclude that L(λ + µ) is a composition

factor of N , hence N ∼= M(λ, µ), as required.

Corollary 6.16. If G(x0, y0) is indecomposable as a G1-module then G(x, y) ∼= G(x0, y0)⊗M(λ, µ)[1].

Proof. The assumption implies that G(x0, y0)⊗M(λ, µ)[1] is indecomposable by Lemma I.8.5, and the

claim is immediate since G(x, y) is a direct summand of G(x0, y0)⊗M(λ, µ)[1] by Lemma 6.15.

The weights λ and µ can be written as λ =
∑

i≥0 `
i · λi and µ =

∑
i≥0 `

i · µi with λi, µi ∈ X1 for

all i ≥ 0. By iterating Steinberg’s tensor product theorem, we obtain tensor product decompositions

L(λ) ∼=
⊗
i≥0

L(λi)
[i] and L(µ) ∼=

⊗
i≥0

L(µi)
[i].

In many cases, this allows us to describe M(λ, µ) as a tensor product of Frobenius twists of the

different M(λi, µi).

Lemma 6.17. Suppose that M(λi, µi) is indecomposable as a G1-module for all i ≥ 0. Then

M(λ, µ) ∼=
⊗
i≥0

M(λi, µi)
[i].

Proof. Since M(λi, µi) is a direct summand of L(λi)⊗L(µi), the tensor product M :=
⊗

iM(λi, µi)
[i]

is a direct summand of

L(λ)⊗ L(µ) ∼=
⊗
i≥0

(
L(λi)⊗ L(µi)

)[i]
.

Furthermore, the λ+µ-weight space of M is non-zero because the λi +µi weight space of M(λi, µi) is

non-zero for all i, so it remains to show that M is indecomposable. This follows from Corollary I.8.6,

by our assumption on the G-modules M(λi, µi).

As in the quantum case, we would like to discuss other regular indecomposable direct summands of

tensor products of simple modules as well. Unfortunately, there is no modular analogue of Lemma 6.9

that suits our purpose. We will solve this problem using the notion of strong regularity which was

introduced in Section 4.

Lemma 6.18. Let M and N be G-modules such that M is strongly regular and N is indecomposable

as a G-module. Then M ⊗ N [1] is strongly regular. If M is indecomposable as a G1-module then

M ⊗N [1] is indecomposable as a G-module.
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Proof. The Frobenius twist N [1] is strongly regular by Proposition 6.12, so Lemma 4.18 implies that

the tensor product M⊗N [1] is strongly regular. If M is indecomposable as a G1-module then M⊗N [1]

is indecomposable as a G-module by Corollary I.8.5.

Corollary 6.19. Let M be a strongly regular indecomposable direct summand of L(x0·0)⊗L(y0·0), and

let N be an indecomposable direct summand of L(λ)⊗L(µ). Then M ′ := M ⊗N [1] is strongly regular,

and every regular indecomposable direct summand of M ′ is a regular indecomposable direct summand

of L(x · 0) ⊗ L(y · 0). If M is indecomposable as a G1-module then M ′ is a regular indecomposable

direct summand of L(x · 0)⊗ L(y · 0).

Proof. The tensor product M ′ = M ⊗ N [1] is strongly regular by Lemma 6.18, and every regular

indecomposable direct summand of M ′ is also a regular indecomposable direct summand of the tensor

product L(x · 0) ⊗ L(y · 0) by Lemma 6.13, whence the first claim. If M is indecomposable as a

G1-module then M ′ is indecomposable as a G-module, again by Lemma 6.18.

Corollary 6.20. Fix a Krull-Schmidt decomposition L(λ)⊗L(µ) ∼= M1⊕· · ·⊕Mr, and suppose that all

regular indecomposable direct summands of L(x0 ·0)⊗L(y0 ·0) are strongly regular and indecomposable

as G1-modules. Then

(
L(x · 0)⊗ L(y · 0)

)
reg
∼=

r⊕
i=1

(
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗M [1]

i .

Proof. By Lemma 6.13, we have

(
L(x · 0)⊗ L(y · 0)

)
reg
∼=

r⊕
i=1

((
L(x0 · 0)⊗ L(y0 · 0)

)
reg
⊗M [1]

i

)
reg
,

and the claim follows because all indecomposable direct summands of
(
L(x0 · λ)⊗L(y0 · λ)

)
reg
⊗M [1]

i

are regular for i = 1, . . . , r, by Corollary 6.19.
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In this chapter, we compute examples of generic direct summands for G of type A1 and A2. In each of

the two cases, we consider first the generic direct summands G(x, y) of tensor products L(x·0)⊗L(y ·0)

of simple G-modules, and then turn our attention to the generic direct summands G∇(x, y) of tensor

products ∇(x · 0)⊗∇(y · 0) of induced modules, for x, y ∈W+
ext.

1 Type A1

In this section, we suppose (unless otherwise stated) that G is of type A1. Then Φ+ = Π = {αh} and

we write α := αh for the unique positive root. The weight lattice X is the free Z-module of rank 1,

spanned by the fundamental dominant weight $α, and we can identify X with Z via $α 7→ 1. Under

this identification, the unique positive root α is mapped to 2, ρ = 1
2 · α is mapped to 1 and the scalar

product (− ,−) on the euclidean space XR = X ⊗Z R ∼= R corresponds to the multiplication of real

numbers. Furthermore, the set X+ of dominant weights is identified with the set Z≥0 of non-negative

integers. Accordingly, we denote the G-modules L(a$α), ∇(a$α), ∆(a$α) and T (a$α) by L(a),

∇(a), ∆(a) and T (a), respectively, for a ∈ Z≥0.

The representation theory of G in type A1 has been studied extensively, including results about

tensor products of simple modules [DH05] and of induced modules [Cav11] (both in the modular case).

Nevertheless, we choose to present an approach that is largely self-contained, allowing us to treat the

quantum case and the modular case simultaneously.

Simple modules

Our first aim is to determine the regular indecomposable direct summands of tensor products of

simple G-modules. In view of the results from Section II.6, we should start by trying to understand

tensor products of simple G-modules with `-restricted highest weights. In a second step, we can

describe the regular indecomposable direct summands of a tensor product of two simple G-modules

with arbitrary highest weights as tensor products of different Frobenius twists of the indecomposable

direct summands of restricted tensor products.

Note that under our identification of X with Z, the set of `-restricted weights X1 = {0, . . . , `−1} is

contained in C fund∩X = {−1, 0, . . . , `−1}. In particular, the fundamental `-alcove Cfund is the unique

`-alcove containing `-restricted weights. By Theorem II.4.14, the observation that L(0)⊗L(0) ∼= L(0),

and therefore G(e, e) ∼=
(
L(0) ⊗ L(0)

)
reg
∼= L(0), completely determines the regular parts of all

tensor products of simple G-modules with `-restricted `-regular highest weight. However, in order to

determine the regular indecomposable direct summands of tensor products of simple G-modules with

arbitrary `-regular highest weights (in the modular case), we also need some information about possibly

non-regular indecomposable direct summands of tensor products of simple modules with possibly `-
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singular highest weights (see Lemma II.6.13). Therefore, we will compute in Lemma 1.6 below the

complete Krull-Schmidt decomposition of a tensor product of simple G-modules with `-restricted

highest weights. We first need to establish some preliminary (and mostly well-known) results.

Note that since X1 ⊆ C fund, we have L(a) ∼= ∇(a) ∼= T (a) for all a ∈ X1, by the linkage principle.

Using Theorem I.5.2 and weight considerations, we obtain the following elementary lemma:

Lemma 1.1. All indecomposable direct summands of a tensor product L(a) ⊗ L(b), with a, b ∈ X1,

are of the form T (c) for some c ≤ 2`− 2.

As explained above, we have T (c) ∼= ∇(c) ∼= L(c) for all c ≤ ` − 1. In the following well-known

lemma, we describe the submodule structure of the tilting modules T (c) with ` ≤ c ≤ 2`− 2.

Lemma 1.2. Let ` ≤ c ≤ 2`− 2 and set c′ := 2`− 2− c. Then there is a short exact sequence

0→ ∇(c′)→ T (c)→ ∇(c)→ 0.

Furthermore, T (c) is uniserial and of composition length 3, with

socGT (c) ∼= L(c′), headGT (c) ∼= L(c′) and radGT (c)/socGT (c) ∼= L(c).

Proof. Let t = sα,1 ∈Waff and note that t · x = 2`− 2− x for all x ∈ Z, so t · c = c′. Furthermore, it

is straightforward to see that StabWaff
(`− 1) = {e, t} and T (`− 1) ∼= ∇(`− 1). Now Proposition I.6.9

shows that there is a short exact sequence

0→ ∇(c′)→ T c
′
`−1T (`− 1)→ ∇(c)→ 0

and that socGT
c′
`−1T (`− 1) ∼= L(c′). In particular, T c

′
`−1T (`− 1) is indecomposable, and as translation

functors preserve tilting modules, we conclude that T c
′
`−1T (`− 1) ∼= T (c). The final claim follows from

Proposition I.6.10 because T (`− 1) ∼= L(`− 1).

The final result that we need in order to determine the Krull-Schmidt decomposition of a tensor

product of simple G-modules with `-restricted highest weight is the following ‘Clebsch-Gordan rule’:

Lemma 1.3. Let a, b ∈ Z≥0 and suppose that a ≥ b. Then ∇(a)⊗∇(b) has a good filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mb ⊆Mb+1 = ∇(a)⊗∇(b)

with Mi+1/Mi
∼= ∇(a− b+ 2i) for i = 0, . . . , b.

Proof. Recall from Theorem I.5.2 that the tensor product ∇(a)⊗∇(b) has a good filtration. By Weyl’s

character formula, we have

ch∇(c) =
ec+1 − e−c−1

e− e−1
= ec + ec−2 + · · ·+ e2−c + e−c

for all c ∈ Z≥0, and it is straightforward to verify that

ch
(
∇(a)⊗∇(b)

)
= ch∇(a) · ch∇(b) =

b∑
i=0

ch∇(a− b+ 2i).

As the characters of the induced modules ∇(c), for c ∈ Z≥0, form a basis of Z[X]Wfin , it follows that

∇(a) ⊗ ∇(b) has a good filtration with subquotients ∇(a − b + 2i), for i = 0, . . . , b, each appearing

with multiplicity one. By the remarks after Proposition I.5.1, we can choose a good filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mb ⊆Mb+1 = ∇(a)⊗∇(b)

with Mi+1/Mi
∼= ∇(a− b+ 2i) for i = 0, . . . , b, as claimed.
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Remark 1.4. The ‘classical’ Clebsch-Gordan rule for g = sl2(C) states that

LC(a)⊗ LC(b) ∼=
b⊕
i=0

LC(a− b+ 2i)

for all a, b ∈ Z≥0 with a ≥ b. Just as Lemma 1.3, this can be proven by comparing characters.

Definition 1.5. For a, b ∈ Z≥0, we set

CG(a, b) =
{
|a− b|+ 2i

∣∣ i = 0, . . . ,min{a, b}
}

and

CG`(a, b) := CG(a, b) \
{

2`− 2− c
∣∣ c ∈ CG(a, b) with c ≥ `

}
.

The following result also appears as Lemma 1.3 in [DH05] in the modular case; the proof in the

quantum case is completely analogous. Note that the set CG`(a, b) is denoted by W (a, b) in [DH05].

Lemma 1.6. For a, b ∈ X1, we have

L(a)⊗ L(b) ∼=
⊕

c∈CG`(a,b)

T (c).

Proof. Recall from Lemma 1.1 that L(a) ⊗ L(b) is a direct sum of indecomposable tilting modules.

As the characters chT (c), for c ∈ Z≥0, form a basis of Z[X]Wfin , it suffices to prove that the tensor

product on the left hand side has the same good filtration multiplicities as the direct sum on the right

hand side. This is straightforward to see, using Lemmas 1.2 and 1.3.

Before we return to generic direct sumands, let us say some words about the (extended) affine

Weyl group of G and its (dot) action on X ∼= Z. The finite Weyl group Wfin is cyclic of order 2,

generated by the reflection s := sα, which acts on XR ∼= R via s(z) = −z for z ∈ R. The root lattice

ZΦ ⊆ X identifies with the set 2Z of even integers, and it follows that Ω ∼= X/ZΦ ∼= Z/2Z is also cyclic

of order 2. The non trivial element of Ω is w := t1s (where t1 denotes the translation z 7→ z+ 1 on R,

according to our identification of XR with R), and its (dot) action on R is given by w · z = `− 2− z,
for z ∈ R. For x = tas

ε ∈Wext, with a ∈ Z and ε ∈ {0, 1}, we have

x · 0 = tas
ε · 0 = `a− 2ε = ` · (a− ε) + ε · (`− 2) = ta−εw

ε · 0,

and it follows that, for all x ∈ Wext, we can choose an integer b ∈ Z and and element ω ∈ Ω such

that x · 0 = tbω · 0. Furthermore, b and ω are unique with this property if ` > 2, and we have b ≥ 0

whenever x ∈W+
ext.

In the quantum case, the classical Clebsch-Gordan rule already allows us to determine all regular

indecomposable direct summands of tensor products of simple G-modules with highest weights in

arbitrary `-alcoves.

Lemma 1.7. Suppose that we are in the quantum case. For x, y ∈W+
ext, let a, b ∈ Z≥0 and ω, ω′ ∈ Ω

such that x · 0 = taω · 0 and y · 0 = tbω
′ · 0. Then(

L(x · 0)⊗ L(y · 0)
)

reg
∼=

⊕
c∈CG(a,b)

Tωω
′
L(`c)

and G(x, y) ∼= Tωω
′
L
(
` · (a+ b)

)
.
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Proof. As L(x · 0) ∼= TωL(ta · 0) and L(y · 0) ∼= Tω
′
L(tb · 0) by Proposition I.6.8 and(

L(x · 0)⊗ L(y · 0)
)

reg
∼=
(
TωL(ta · 0)⊗ Tω′L(tb · 0)

)
reg
∼= Tωω

′(
L(ta · 0)⊗ L(tb · 0)

)
reg

by Theorem II.4.14, it suffices to prove that(
L(ta · 0)⊗ L(tb · 0)

)
reg
∼=

⊕
c∈CG(a,b)

L(`c).

Observe that L(ta · 0) = L(`a) ∼= LC(a)[1] and L(tb · 0) = L(`b) ∼= LC(b)[1], and therefore

L(ta · 0)⊗ L(tb · 0) ∼=
(
LC(a)⊗ LC(b)

)[1] ∼=
⊕

c∈CG(a,b)

LC(c)[1]

by Remark 1.4. Now the first claim follows since LC(c)[1] ∼= L(`c) is regular for all c ∈ CG(a, b), by

Lemma II.4.3. Using Corollary II.2.7, we see that Tωω
′
L
(
`·(a+b)

)
is the unique regular indecomposable

direct summand of L(x · 0)⊗ L(y · 0) of good filtration dimension `(ta+b) = a+ b = `(x) + `(y), and

we conclude that G(x, y) ∼= Tωω
′
L
(
` · (a+ b)

)
.

From now on until Lemma 1.11 (included), suppose that we are in the modular case.

Definition 1.8. For a sequence u = (u0, u1, . . .) ∈ ZN with 0 ≤ ui ≤ 2`− 2 for all i and ui = 0 for all

but finitely many i, let

J(u) :=
⊗
i≥0

T (ui)
[i].

Lemma 1.9. For any sequence u = (u0, u1, . . .) ∈ ZN with 0 ≤ ui ≤ 2`− 2 for all i and ui = 0 for all

but finitely many i, the G-module J(u) is indecomposable.

Proof. By Lemma I.8.6, it suffices to prove that the tilting module T (a) is indecomposable as a G1-

module for all 0 ≤ a ≤ 2` − 2. If a < ` then T (a) ∼= L(a) affords the simple G1-module L1(a), so

now suppose that a ≥ `, and recall from Lemma 1.2 that T (a) (considered as a G-module) is uniserial

and of composition length 3, with simple head and socle isomorphic to L(2`− 2− a). As explained in

Section I.8, there is an isomorphism of G-modules

socG1T (a) ∼=
`−1⊕
b=0

L(b)⊗HomG1

(
L(b), T (a)

)
,

and as socG1T (a) is a G-submodule of T (a), the fact that socGT (a) ∼= L(2`− 2− a) implies that

socG1T (a) ∼= L(2`− 2− a)⊗HomG1

(
L(2`− 2− a), T (a)

)
.

Now weight considerations show that HomG1

(
L(2` − 2 − a), T (a)

) ∼= L(0) is the trivial G-module,

whence socG1T (a) ∼= L(2`− 2− a) and T (a) is indecomposable as a G1-module.

Lemma 1.10. Let a, b ∈ Z≥0 and write a =
∑

i ai`
i and b =

∑
i bi`

i with 0 ≤ ai, bi < ` for all i. Then

the Krull-Schmidt decomposition of L(a)⊗ L(b) is given by

L(a)⊗ L(b) ∼=
⊕
u

J(u),

where the direct sum runs over all sequences u = (u0, u1, . . .) with ui ∈ CG`(ai, bi) for all i.
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Proof. By Steinberg’s tensor product theorem, we have L(a) ∼=
⊗

i L(ai)
[i] and L(b) ∼=

⊗
i L(bi)

[i], and

it follows that

L(a)⊗ L(b) ∼=
⊗
i≥0

(
L(ai)⊗ L(bi)

)[i]
.

Furthermore, we have

L(ai)⊗ L(bi) ∼=
⊕

u∈CG`(ai,bi)

T (u)

for all i ≥ 0 by Lemma 1.6, and by distributivity of tensor products and direct sums, we obtain the

claimed direct sum decomposition

L(a)⊗ L(b) ∼=
⊕
u

J(u).

This is a Krull-Schmidt decomposition because J(u) is indecomposable for all u, by Lemma 1.9

Lemma 1.11. Suppose that we are in the modular case. For x, y ∈W+
ext, let a, b ∈ Z≥0 and ω, ω′ ∈ Ω

such that x · 0 = taω · 0 and y · 0 = tbω
′ · 0. Furthermore, write a =

∑
i ai`

i and b =
∑

i bi`
i with

0 ≤ ai < ` and 0 ≤ bi < ` for all i. Then(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
⊕
u

Tωω
′
J(u)[1],

where the direct sum runs over all sequences u = (u0, u1, . . .) with ui ∈ CG`(ai, bi) for all i. Further-

more, with a = (a0 + b0, a1 + b1, . . .), we have and G(x, y) ∼= Tωω
′
J(a)[1].

Proof. As in the proof of Lemma 1.7, we have(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
(
TωL(ta · 0)⊗ Tω′L(tb · 0)

)
reg
∼= Tωω

′(
L(ta · 0)⊗ L(tb · 0)

)
reg
,

and it suffices to prove that (
L(ta · 0)⊗ L(tb · 0)

)
reg
∼=
⊕
u

J(u)[1].

Observe that L(ta · 0) = L(`a) ∼= L(a)[1] and L(tb · 0) = L(`b) ∼= L(b)[1], and therefore

L(ta · 0)⊗ L(tb · 0) ∼=
(
L(a)⊗ L(b)

)[1] ∼=
⊕
u

J(u)[1]

by Lemma 1.10. Now the first claim follows since J(u)[1] is regular for all u by Proposition II.6.12.

Furthermore, it is straightforward to see that J(a) ∼= M(a, b) is the unique indecomposable direct

summand of L(a)⊗ L(b) with a non-zero a+ b-weight space. As G(e, e) ∼= L(0) is indecomposable as

a G1-module, Lemmas II.5.10 and II.6.16 yield

G(x, y) = G(taω, tbω
′) ∼= Tωω

′
G(ta, tb) ∼= Tωω

′
M(a, b)[1] ∼= Tωω

′
J(a)[1],

as claimed.

77



Chapter III. Results in small rank

Costandard modules

Instead of computing the generic direct summands of tensor products of costandard modules directly

for G of type A1, we are going to prove a much more general result about tensor products of costandard

modules whose highest weights are multiples of the first fundamental dominant weight $1, for G of

type An and n ≥ 1. It will be necessary to temporarily leave the realm of simple algebraic group

schemes (or quantum groups corresponding to simple Lie algebras) and work with Ĝ = GLn+1(k) or

Ĝ = Uζ
(
gln+1(C)

)
instead of SLn+1(k) or Uζ

(
sln+1(C)

)
, in the modular case or the quantum case,

respectively. Furthermore, the Schur algebras corresponding to the (quantum) general linear group

will play an important role. More specifically, we will show that the unique indecomposable direct

summand of the tensor product ∇(a$1) ⊗ ∇(b$1) with a non-zero (a + b) · $1-weight space is the

injective hull of a simple module of the form L
(
(a+ b) ·$1− cα1

)
over a Schur algebra S

(
n+ 1, a+ b

)
,

for a, b ≥ 0. We start with the modular case and then discuss the changes one needs to make to obtain

a quantum analogue.

The modular case. Suppose that we are in the modular case and that Φ is of type An for some n ≥ 1.

Then G = SLn+1(k) and we can choose T as the subgroup of diagonal matrices in G and B as the

subgroup of lower triangular matrices in G. We fix a numbering of the simple roots Π = {α1, . . . , αn}
according to the Dynkin diagram in Figure I.1.1 and define Ĝ = GLn+1(k).

Following Sections II.1.21 and II.2.15 in [Jan03] (up to an index shift), the weight lattice X̂ of Ĝ,

with respect to the maximal torus of diagonal matrices in Ĝ, is a free Z-module of rank n + 1 with

basis ε0, . . . , εn, given by the weights of the canonical basis vectors e0, . . . , en of the natural Ĝ-module

E = kn+1. A base of the root system Φ̂ = {εi − εj | 0 ≤ i, j ≤ n, i 6= j} of Ĝ, corresponding to the

Borel subgroup of upper triangular matrices, is given by Π̂ = {εi−1 − εi | 1 ≤ i ≤ n}, and the set of

dominant weights in X̂ with respect to Π̂ is

X̂+ =
{ n∑
i=0

λiεi

∣∣∣ λ0 ≥ · · · ≥ λn
}
.

For λ ∈ X̂+, we write L̂(λ), ∆̂(λ), ∇̂(λ) and T̂ (λ) for the simple module, the Weyl module, the

induced module and the indecomposable tilting module of highest weight λ over Ĝ, respectively. It is

straightforward to see that

E ∼= ∇̂(ε0) ∼= L̂(ε0),

and as in Section II.2.16 in [Jan03], one can show that SaE ∼= ∇̂(aε0) for all a ≥ 0, where SaE denotes

the a-th symmetric power of the natural Ĝ-module E.

There is a surjective homomorphism of Z-modules X̂ → X (coming from restriction to the maximal

torus T of G) with

(1.1) λ =
n∑
i=0

λiεi 7−→ λ′ :=
n∑
i=1

(λi−1 − λi) ·$i,

and it is straightforward to verify that the latter maps Π̂ to Π and X̂+ onto X+. By Section II.2.10

in [Jan03], we have resĜGL̂(λ) ∼= L(λ′), for all λ ∈ X̂+, and similarly, one sees that resĜG∇̂(λ) ∼= ∇(λ′).

As for simply-connected simple algebraic groups, let us write Rep(Ĝ) for the category of (finite-

dimensional) Ĝ-modules. For any subset π ⊆ X+, we denote by Rep(G, π) the truncated subcategory

of Rep(G) corresponding to π, that is, the full subcategory whose objects are the G-modules M such
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that for λ ∈ X+, we have [M : L(λ)] = 0 unless λ ∈ π. We say that π is saturated if µ ↑` λ and λ ∈ π
implies that µ ∈ π, for all λ, µ ∈ X+. Analogously, we write Rep(Ĝ, π̂) for the truncated subcategory

of Rep(Ĝ) corresponding to π̂ ⊆ X̂+, and we say that π̂ is saturated if µ ↑` λ and λ ∈ π̂ implies that

µ ∈ π̂, for all λ, µ ∈ X̂+. Note that for π̂ ⊆ X̂+ and π ⊆ X+ with λ′ ∈ π for all λ ∈ π̂, the restriction

functor resĜG : Rep(Ĝ)→ Rep(G) gives rise to a restriction functor Rep(Ĝ, π̂)→ Rep(G, π).

Now let π̂ ⊆ X̂+ be finite and saturated, and note that every Ĝ-module has a natural Dist(Ĝ)-

module structure, as for simply-connected simple algebraic groups. We define the Schur algebra of Ĝ

with respect to π̂ as the quotient

SĜ(π̂) := Dist(Ĝ)/IĜ(π̂)

of Dist(Ĝ) by the two-sided ideal IĜ(π̂) of elements of Dist(Ĝ) that annihilate all Ĝ-modules in the

truncated category Rep(Ĝ, π̂). Analogously, we define the Schur algebra of G with respect to π ⊆ X+

(finite and saturated) as the quotient

SG(π) := Dist(G)/IG(π)

of Dist(G) by the two-sided ideal IG(π) of elements of Dist(G) that annihilate all G-modules in the

truncated category Rep(G, π).1 By Sections II.A.15 and II.A.16 in [Jan03], the Schur algebras SĜ(π̂)

and SG(π) are finite-dimensional. More precisely, we have

dimSĜ(π̂) =
∑
λ∈π̂

(
dim ∆̂(λ)

)2
and dimSG(π) =

∑
λ∈π

(
dim ∆(λ)

)2
.

Note that by definition, every Ĝ-module in Rep(Ĝ, π̂) has a natural SĜ(π̂)-module structure and

every G-module in Rep(G, π) has a natural SG(π)-module structure. According to Section II.A.17 in

[Jan03], this gives rise to an equivalence between Rep(Ĝ, π̂) and the category of (finite-dimensional)

SĜ(π̂)-modules, and between Rep(G, π) and the category of (finite-dimensional) SG(π)-modules.

By point (3) in Section I.7.2 in [Jan03], the embedding of G into Ĝ gives rise to an embedding of

Dist(G) into Dist(Ĝ). For π̂ ⊆ X̂+ and π ⊆ X+ with λ′ ∈ π for all λ ∈ π̂, it is straightforward to see

that the latter affords a homomorphism SG(π)→ SĜ(π̂).

Lemma 1.12. Let π̂ ⊆ X̂+ and π ⊆ X+ be finite and saturated, and suppose that the map λ 7→ λ′

induces a bijection between π̂ and π. Then the canonical homomorphism SG(π) → SĜ(π̂) is an

isomorphism.

Proof. By Weyl’s character formula, we have dim ∆̂(λ) = dim ∆(λ′) for all λ ∈ X̂+, and it follows

that

dimSĜ(π̂) = dimSG(π).

Hence it suffices to prove that the homomorphism is injective, or in other words, that an element of

Dist(G) which annihilates the restriction to G of every Ĝ-module in Rep(Ĝ, π̂) also annihilates all

G-modules in Rep(G, π). So let ϑ ∈ Dist(G) and suppose that ϑ annihilates the restriction to G of

all Ĝ-modules in Rep(Ĝ, π̂). By Section II.E.7 in [Jan03], the restriction to G of an indecomposable

tilting Ĝ-module T̂ (λ) with λ ∈ π̂ is isomorphic to T (λ′), hence ϑ annihilates all indecomposable

tilting G-modules T (µ) with µ ∈ π.

1The definition of Schur algebras in Section II.A of [Jan96] is a different one, but the two definitions are equivalent

by Proposition II.A.16 in [Jan03].
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For an arbitrary G-module M in Rep(G, π), we claim that all terms of Cmin(M), the minimal

tilting complex of M , belong to Rep(G, π). Indeed, as

ExtiRep(G,π)(V,W ) ∼= ExtiG(V,W )

for all G-modules V and W in Rep(G, π) (see Proposition II.A.10 in [Jan03]), we can show as in

Proposition I.5.4 that the natural functor

Tπ : Kb
(
Tilt(G, π)

)
−→ Db

(
Rep(G, π)

)
,

from the bounded homotopy category of the full subcategory Tilt(G, π) of tilting modules in Rep(G, π)

to the bounded derived category of Rep(G, π), is an equivalence of categories. Therefore, we can choose

the minimal tilting complex of M with terms in Tilt(G, π), as claimed. As ϑ annihilates all tilting

modules in Rep(G, π), this implies that ϑ annihilates M , as required.

Now for d ≥ 0, let us fix

π̂(d) = {λ ∈ X̂+ | λ ≤ dε0}
=
{
a0ε0 + · · ·+ anεn

∣∣ a0 ≥ · · · ≥ an ≥ 0 and a0 + · · ·+ an = d}

and

π(d) = {λ ∈ X+ | λ ≤ d$1}

=
{∑

i
bi$i

∣∣∣ b1, . . . , bn ≥ 0 and d−
∑

i
ibi = (n+ 1) · a for some a ∈ Z≥0

}
.

Note that π̂(d) and π(d) satisfy the hypothesis of Lemma 1.12, so

SG
(
π(d)

) ∼= SĜ
(
π̂(d)

)
=: S(n+ 1, d).

By Section II.A.18 in [Jan03], the algebra S(n + 1, d) coincides with the classical Schur algebra (as

introduced in Section 2.3 of [Gre07]), defined as the dual algebra of a certain finite-dimensional sub-

coalgebra A(n+ 1, d) of the coordinate ring k[Ĝ]. The main reason for our interest in Schur algebras

is the following result of S. Donkin:

Proposition 1.13. Let α = a0ε0 + · · ·+ anεn ∈ X̂ with a0, . . . , an ≥ 0 and set r = a0 + · · ·+ an. The

tensor product of symmetric powers

SαE := Sa0E ⊗ · · · ⊗ SanE

belongs to Rep
(
Ĝ, π̂(r)

)
. Furthermore, for every Ĝ-module M in Rep

(
Ĝ, π̂(r)

)
, we have

HomS(n+1,r)(M,SαE) ∼= Mα,

the α-weight space of M , and SαE is an injective S(n+ 1, r)-module.

Proof. The first claim is straightforward to verify by weight considerations. The remaining claims are

proven in Section 2.1(8) of [Don98] for the so-called q-Schur algebra Sq(n + 1, r). For q = 1, this is

just the classical Schur algebra S(n+ 1, r).
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Let again π ⊆ X+ be saturated. By Section II.A.6 in [Jan03], every simple G-module L(λ) with

highest weight λ ∈ π has an injective hull Iπ(λ) in Rep(G, π), and the latter has a good filtration with

(1.2)
[
Iπ(λ) : ∇(µ)

]
∇ =

[
∇(µ) : L(λ)

]
for all µ ∈ π. In view of Proposition 1.13, a tensor product of the form

∇(a$1)⊗∇(b$1) ∼= SaE ⊗ SbE,

for a, b ≥ 0, (where we omit the restriction functor from Ĝ to G) decomposes as a direct sum of injective

indecomposable S(n+ 1, a+ b) = SG
(
π(a+ b)

)
-modules, and for µ ∈ π(a+ b), the multiplicity of the

injective hull Iπ(a+b)(µ) of L(µ) in such a direct sum decomposition is[
∇(a$1)⊗∇(b$1) : Iπ(a+b)(µ)

]
⊕ = dim HomS(n+1,a+b)

(
L(µ), SaE ⊗ SbE

)
= dimL(µ)(aε0+bε1)′

= dimL(µ)(a−b)·$1+b$2
.

(1.3)

In addition to this observation, we will need the following well-known lemma about composition

multiplicities in induced modules for G of type A1:

Lemma 1.14. Suppose that G is of type A1. Let a, b ∈ Z≥0 and write b =
∑

i≥0 bi`
i with 0 ≤ bi < `

for all i ≥ 0. Then

[∇(a) : L(b)] ≤ 1,

and [∇(a) : L(b)] = 1 if and only if there exist ai ∈ Z≥0, with ai ∈ {bi, 2`− bi − 2} for all i ≥ 0, such

that a =
∑

i≥0 ai`
i.

Proof. The first statement follows from the fact that ∇(a) has one-dimensional weight spaces. The

second one can be found in Theorem 2.1 in [Hen01].

Now let us return to G of type An for some n ≥ 1. Before discussing generic direct summands, we

determine the unique indecomposable direct summand with a non-zero (a+ b) ·$1-weight space in a

tensor product of the form ∇(a$1)⊗∇(b$1).

Proposition 1.15. Let a, b ∈ Z≥0 and write a =
∑

i≥0 ai`
i and b =

∑
i≥0 bi`

i with 0 ≤ ai, bi < ` for

all i ≥ 0. Furthermore, define

ci :=

{
ai + bi − (`− 1) if ai + bi ≥ `− 1,

0 otherwise,

for all i ≥ 0, and c = c(a, b) :=
∑

i≥0 ci`
i. Then Iπ(a+b)

(
(a+b) ·$1−cα1

)
is the unique indecomposable

direct summand of ∇(a$1)⊗∇(b$1) with a non-zero (a+ b) ·$1-weight space.

Proof. By weight considerations, it is straightforward to see that ∇(a$1) ⊗ ∇(b$1) has a unique

indecomposable direct summand that has a non zero (a+ b) ·$1-weight space. Note that

a+ b− 2c =
∑
i≥0

(ai + bi − 2ci) · `i
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with 0 ≤ ai + bi − 2ci < ` and

ai + bi ∈ {ai + bi − 2ci, 2`− (ai + bi − 2ci)− 2}

for all i ≥ 0, by definition of the ci. For G of type A1, we have
[
∇(a + b) : L(a + b − 2c)

]
= 1 by

Lemma 1.14. Using truncation to the Levi subgroup corresponding to the subset {α1} ⊆ Π and the

reciprocity formula (1.2), we conclude (for G of type An with n ≥ 1) that

1 =
[
∇(a+ b) : L(a+ b− 2c)

]
=
[
∇
(
(a+ b) ·$1

)
: L
(
(a+ b) ·$1 − cα1

)]
=
[
Iπ(a+b)

(
(a+ b) ·$1 − cα1

)
: ∇
(
(a+ b) ·$1

)]
∇.

In particular, Iπ(a+b)

(
(a+ b) ·$1 − cα1

)
has a non-zero (a+ b) ·$1-weight space.

By equation (1.3), it now suffices to prove that the weight space L
(
(a+ b) ·$1 − cα1

)
(a−b)·$1+b$2

is non-zero. As before, we can truncate to the Levi subgroup corresponding to {α1} ⊆ Π and consider

the weight space L(a+ b− 2c)a−b of the simple SL2(k)-module L(a+ b− 2c) instead. Recall that

a+ b− 2c =
∑
i≥0

(ai + bi − 2ci) · `i,

where 0 ≤ ai + bi − 2ci < ` for all i ≥ 0, and note that

a− b =
∑
i≥0

(ai − bi) · `i.

By Steinberg’s tensor product theorem, it suffices to prove that ai − bi is a weight of L(ai + bi − 2ci)

for all i. If ai + bi ≤ `− 1 then ci = 0 and ai − bi belongs to the set {ai + bi, ai + bi − 2, . . . ,−ai − bi}
of weights of L(ai + bi). Otherwise, we have

ai + bi − 2ci = 2 · (`− 1)− (ai + bi) ≥ |ai − bi|

since ai, bi ≤ `− 1, and again, it follows that ai − bi is a weight of L(ai + bi − 2ci).

The following corollary is also proved in Proposition 4.8.(12) in [Don98].

Corollary 1.16. Let a, b ∈ Z≥0 and write a =
∑

i≥0 ai`
i and b =

∑
i≥0 bi`

i with 0 ≤ ai, bi < ` for all

i ≥ 0. Then ∇
(
(a + b) ·$1

)
is a direct summand of ∇(a$1) ⊗∇(b$1) if and only if ai + bi ≤ ` − 1

for all i ≥ 0.

Proof. With c = c(a, b) as in Proposition 1.15, the unique indecomposable direct summand of the ten-

sor product ∇(a$1)⊗∇(b$1) with a non-zero (a+b) ·$1-weight space is the injective indecomposable

S(n+ 1, a+ b)-module Iπ(a+b)

(
(a+ b) ·$1 − cα1

)
. In particular, ∇

(
(a+ b) ·$1

)
is a direct summand

of ∇(a$1) ⊗∇(b$1) if and only if Iπ(a+b)

(
(a + b) ·$1 − cα1

) ∼= ∇((a + b) ·$1

)
. By the reciprocity

formula (1.2) and the fact that (a+ b) ·$1 is maximal in π(a+ b), we have

∇
(
(a+ b) ·$1

) ∼= Iπ(a+b)

(
(a+ b) ·$1

)
,

and it follows that ∇
(
(a + b) ·$1

)
is a direct summand of ∇(a$1)⊗∇(b$1) if and only if c = 0, or

equivalently, if ai + bi ≤ `− 1 for all i ≥ 0.

From the preceding corollary, we can also get some information about generic direct summands.
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Corollary 1.17. Suppose that ` ≥ h = n+1. Let a, b ∈ Z≥0 and write a =
∑

i≥0 ai`
i and b =

∑
i≥0 bi`

i

with 0 ≤ ai, bi < ` for all i ≥ 0. If ai+ bi ≤ `−1 for all i ≥ 0 then G∇(ta$1 , tb$1) ∼= ∇
(
` · (a+ b) ·$1

)
.

Proof. By Corollary 1.16, the assumption implies that ∇
(
` · (a+ b) ·$1

)
is a direct summand of

∇(`a$1)⊗∇(`b$1) = ∇(ta$1 · 0)⊗∇(tb$1 · 0),

and the claim is immediate because ∇
(
` · (a+ b) ·$1

)
is regular (see Lemma II.4.3).

Now let us return to G = SL2(k). Using Proposition 1.15, we can determine the generic direct

summands of tensor products of induced modules.

Lemma 1.18. For x, y ∈W+
ext, let a, b ∈ Z≥0 and ω, ω′ ∈ Ω such that x ·0 = taω ·0 and y ·0 = tbω

′ ·0.

Define c = c(a, b) as in Proposition 1.15. Then

G∇(x, y) ∼= Tωω
′
Iπ(`·(a+b))

(
` · (a+ b− 2c)

)
.

Proof. By Lemma II.5.5, we have G∇(x, y) ∼= Tωω
′
G∇(ta, tb), so it suffices to prove that

G∇(ta, tb) ∼= Iπ(`·(a+b))

(
` · (a+ b− 2c)

)
.

Let us write M := Iπ(`·(a+b))

(
` · (a + b − 2c)

)
, and recall from Proposition 1.15 that M is the unique

indecomposable direct summand of ∇(ta ·0)⊗∇(tb ·0) = ∇(`a)⊗∇(`b) with a non-zero `·(a+b)-weight

space. As G∇(ta, tb) has Weyl filtration dimension `(ta) + `(tb) = a + b and belongs to the linkage

class of ωtatb · 0 = ωta+b
· 0, it suffices to prove that every indecomposable direct summand M ′ � M

of ∇(`a) ⊗ ∇(`b) that belongs to the linkage class of ωta+b
· 0 satisfies wfd(M ′) < a + b. By weight

considerations, every composition factor of M ′ has highest weight in an `-alcove td · Cfund for some

d ∈ Z≥0 with d < a+ b, and using Corollaries I.7.5 and II.2.7, we conclude that wfd(M ′) < a+ b.

We complete our discussion of the modular case by the determination of the good filtration muti-

plicities of the generic direct summands G∇(x, y) for x, y ∈W+
ext (and G of type A1).

Corollary 1.19. Let a, b, d ∈ Z≥0 and write a =
∑

i≥0 ai`
i and b =

∑
i≥0 bi`

i with 0 ≤ ai, bi < ` for

all i ≥ 0. Furthermore, define a−1 = b−1 = 0. Then

[G∇(ta, tb) : ∇(d)]∇ ≤ 1,

and [G∇(ta, tb) : ∇(d)]∇ = 1 if and only if there exist

di ∈ {ai−1 + bi−1, 2`− (ai−1 + bi−1)− 2},

for i ∈ Z≥0, such that d =
∑

i≥0 di`
i and dj < aj−1 + bj−1 if j is maximal with dj 6= aj−1 + bj−1.

Proof. Recall from Lemma 1.18 that G∇(ta, tb) ∼= Iπ(`·(a+b))

(
` · (a+ b− 2c)

)
, where c =

∑
i≥0 ci`

i and

ci :=

{
ai + bi − (`− 1) if ai + bi ≥ `− 1,

0 otherwise

for all i ≥ 0. Let us also set c−1 = 0, and note that we can write

` · (a+ b− 2c) =
∑
i≥0

(ai−1 + bi−1 − 2ci−1) · `i,
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where 0 ≤ ai−1 + bi−1 − 2ci−1 < ` for all i ≥ 0. By Lemma 1.14 and the reciprocity formula (1.2), the

good filtration multiplicities in G∇(ta, tb) are bounded by 1. Furthermore, an induced module ∇(d),

for d ≥ 0, appears in a good filtration of G∇(ta, tb) if and only if d ∈ π(` · (a+ b)) and d =
∑

i≥0 di`
i,

where

di ∈
{
ai−1 + bi−1 − 2ci−1, 2`− (ai−1 + bi−1 − 2ci−1)− 2

}
=
{
ai−1 + bi−1, 2`− (ai−1 + bi−1)− 2

}
for all i ≥ 0. It is straightforward to see that the condition d ∈ π(` · (a + b)) is equivalent to the

requirement that dj < aj−1 + bj−1 if j is maximal with dj 6= aj−1 + bj−1.

The quantum case. Let us start by introducing the ‘quantum version’ of GLn+1(k) that is suitable

for our purpose. As before, we denote by X̂ the free Z-module with basis ε0, . . . , εn. We consider the

scalar product (− ,−) on X̂R = X̂ ⊗Z R with (εi, εj) = δij , for 0 ≤ i, j ≤ n, and the root system

Φ̂ = {εi − εj | 0 ≤ i, j ≤ n, i 6= j}

with base

Π̂ = {εi−1 − εi | 1 ≤ i ≤ n}.

The quantized enveloping algebra of the reductive Lie algebra ĝ = gln+1(C) is the Q(q)-algebra Uq(ĝ)

with generators Eα, Fα and Ki for α ∈ Π̂ and 0 ≤ i ≤ n, subject to the relations

KiK
−1
i = 1 = K−1

i Ki, KiKi′ = KiKi′ ,

KiEαK
−1
i = q(εi,α) · Eα, KiFαK

−1
i = q−(εi,α) · Fα,

EαFβ − FβEα = δαβ ·
Kα −K−1

α

q − q−1
,∑

j+k=1−cα,β

(−1)j · E(j)
α EβE

(k)
α = 0,

∑
j+k=1−cβ,α

(−1)j · F (j)
α FβF

(k)
α = 0

for α, β ∈ Π̂ and 0 ≤ i, i′ ≤ n, where cα,β = (α, β) and Kα := Kr−1K
−1
r if α = εr−1 − εr, and where

E(j)
α =

Ejα
[j]α!

and F (j)
α =

F jα
[j]α!

are the quantum divided powers, as in Section I.3. There is a Hopf algebra structure on Uq(ĝ) with

comultiplication, antipode and counit defined as in (I.3.1), with Kα replaced by Ki in the third line

(but not in the first and the second line). The Lusztig integral form UZq (ĝ) of Uq(ĝ) is the Z[q, q−1]-

subalgebra generated by the quantum divided powers along with the elements K±1
i and(

Ki;m

r

)
=

r∏
j=1

Kiq
m−j+1 −K−1

i q−m+j−1

qj − q−j
,

for 0 ≤ i ≤ n and m, r ≥ 0. We define

U ′ζ(ĝ) := UZq (ĝ)⊗Z[q,q−1] C
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to be the specialization of UZq (ĝ) along the ring homomorphism Z[q, q−1] → C with q 7→ ζ. As

before, we will only be interested in ‘type 1’ representations on which the central elements K`
i ⊗ 1, for

0 ≤ i ≤ n, act trivially, so we further define

Ĝ = Uζ(ĝ) := U ′ζ(ĝ)
/〈
K`
i ⊗ 1− 1⊗ 1

∣∣ 0 ≤ i ≤ n
〉
.

By abuse of notation, we denote the images of the generators of UZq (ĝ) in U ′ζ(ĝ) or Uζ(ĝ) by the same

symbols. With these conventions, the quantum group U ′ζ(g) corresponding to the simple Lie algebra

g = sln+1(C) is isomorphic to the subalgebra of U ′ζ(ĝ) generated by the elements K±1
α and the divided

powers of the elements Eα and Fα, for α ∈ Π̂, and there is a natural homomorphism from G = Uζ(g)

to Ĝ = Uζ(ĝ). For all λ ∈ X̂+, we can define the simple module L̂(λ), the costandard module ∇̂(λ)

and the Weyl module ∆̂(λ) over Ĝ, just as we did for G. As in the modular case, we have

resĜGL̂(λ) ∼= L(λ′), resĜG∆̂(λ) ∼= ∆(λ′) and resĜG∇̂(λ) ∼= ∇(λ′),

where λ 7→ λ′ is as in (1.1). One way of seeing this for the Weyl modules is to note that resĜG∆̂(λ) and

∆(λ′) have the same character and that resĜG∆̂(λ) is generated by a maximal vector of weight λ′. The

claim for induced modules follows by taking duals. Finally, any non-zero homomorphism of Ĝ-modules

∆̂(λ) → ∇̂(λ) affords a non-zero homomorphism of G-modules ∆(λ′) → ∇(λ′), and the statement

about simple modules follows because L̂(λ) is the image of the former homomorphism, while L(λ′) is

the image of the latter homomorphism.

The natural Uq(ĝ)-module is the Q(q)-vector space Eq with basis e0, . . . , en, on which the action

of the generators is given, for α = εi−1 − εi ∈ Π̂ and 0 ≤ j, k ≤ n, by

Eα · ek = δi,kek−1, Fα · ek = δi−1,kek+1 and Kj · ek = qδj,k · ek.

The Z[q, q−1]-submodule EZq spanned by e0, . . . , en is stable under UZq (ĝ), so it specializes to a U ′ζ(ĝ)-

module E := EZq ⊗Z[q,q−1] ⊗C, which naturally descends to a Uζ(ĝ)-module (denoted again by E),

because K`
i acts trivially for 0 ≤ i ≤ n. We have E ∼= L̂(ε0) ∼= ∇̂(ε0).

For r > 0, the tensor space E⊗r is naturally a U ′ζ(ĝ)-module and a Uζ(ĝ)-module (via the Hopf

algebra structure inherited from Uq(ĝ)) and we define the ζ-Schur algebra Sζ(n + 1, r) as the image

of either of U ′ζ(ĝ) or Uζ(ĝ) in EndC(E⊗r). Alternatively, as in the modular case, Sζ(n + 1, r) can be

defined as the dual algebra of a coalgebra Aζ(n+1, r) as in Section 0.20 of [Don98]. The two definitions

coincide because in both cases, one finds that Sζ(n+ 1, r) can be identified with the full centralizer in

EndC(E⊗r) of the action of the Hecke algebra of the symmetric group Sr; see Theorem 3.6 in [Du95]

and Section 4.1.3 in [Don98]. The category of finite-dimensional Sζ(n + 1, r)-modules is naturally

equivalent to the category of finite-dimensional Ĝ-modules that are annihilated by the kernel of the

representation Ĝ→ EndC(E⊗r). Recall from the modular case that we write

π̂(r) = {λ ∈ X̂+ | λ ≤ rε0}
=
{
a0ε0 + · · ·+ anεn

∣∣ a0 ≥ · · · ≥ an ≥ 0 and a0 + · · ·+ an = r}.

By Sections 0.22 and 2.1.(7) in [Don98], every Sζ(n+ 1, r)-module M admits a ‘weight space decom-

position’ M =
⊕

λMλ with weights in the set

Wfinπ̂(r) = {a0ε0 + · · ·+ anεn | a0, . . . , an ≥ 0 and a0 + · · ·+ an = r}.
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Furthermore, again by Section 0.22 in [Don98], the isomorphism classes of simple Sζ(n+1, r)-modules

are in bijection with the set π̂(r), and by weight considerations, one sees that the simple Sζ(n+ 1, r)-

modules afford precisely the simple Ĝ-modules L̂(λ) with λ ∈ π̂(r). Another important example of

an Sζ(n+ 1, r)-module is the quantum symmetric power

SrE ∼= ∇̂(rε0),

which can be defined as a quotient of E⊗r (see Section 2.1.(15) and the introduction to Section 2.1 in

[Don98])2. More generally, for α = a0ε0 + · · ·+ anεn ∈ X̂+ with r = a0 + · · ·+ an, the tensor product

of symmetric powers

SαE := Sa0E ⊗ · · · ⊗ SanE

is in a natural way an Sζ(n+1, r)-module. The reason for our interest in these modules is the following

result from Section 2.1.(8) in [Don98].

Proposition 1.20. Let α = a0ε0 + · · ·+anεn ∈ X̂ with a0, . . . , an ≥ 0 and set r = a0 + · · ·+an. Then

SαE is an injective Sζ(n+ 1, r)-module. For any finite-dimensional Sζ(n+ 1, r)-module M , we have

HomSζ(n+1,r)(M,SαE) ∼= Mα,

the α-weight space of M .

Now for λ ∈ π̂(r), let us denote by Ir(λ) the injective hull of the simple Sζ(n+ 1, r)-module L̂(λ).

As pointed out in Section 2.1.(13) in [Don98], the algebra Sζ(n + 1, r) is quasi-hereditary, so the

injective indecomposable Sζ(n+ 1, r)-module Ir(λ) has a good filtration with multiplicities[
Ir(λ) : ∇̂(µ)

]
∇ =

[
∇̂(µ) : L̂(λ)

]
for µ ∈ π̂(r); see Proposition A2.2 in [Don98].

The following result is a quantum analogue of Proposition 1.15.

Proposition 1.21. Let a, b ∈ Z≥0 and write a = a0 + `a1 and b = b0 + `b1 with 0 ≤ a0, b0 < `.

Furthermore, let

c :=

{
a0 + b0 − (`− 1) if a0 + b0 ≥ `− 1,

0 otherwise.

Then Ia+b

(
(a+ b) · ε0− c · (ε0− ε1)

)
is the unique indecomposable direct summand of SaE⊗SbE with

a non-zero (a+ b) · ε0-weight space.

Proof. Let us first show that Ia+b

(
(a+ b) · ε0 − c · (ε0 − ε1)

)
has a non-zero (a+ b) · ε0-weight space.

By the above discussion, we have[
Ia+b

(
(a+ b) · ε0 − c · (ε0 − ε1)

)
: ∇̂
(
(a+ b) · ε0

)]
∇ =

[
∇̂
(
(a+ b) · ε0

)
: L̂
(
(a+ b) · ε0 − c · (ε0 − ε1)

)]
and it suffices to prove that the composition multiplicity on the right hand side is non-zero. Using the

Schur algebra analogue of truncation to a Levi subgroup from Section 4.2.(5) in [Don98], it further

suffices to do this in the case n = 1, i.e. for the ζ-Schur algebra Sζ(2, a + b). It is straightforward to

see that the composition multiplicity in question is non-zero if c = 0, so now assume that a0 + b0 ≥ `.
2The existence of symmetric powers of representations is not obvious in the quantum case because the braiding on

the category of Ĝ-modules is not the standard one.
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Then we can write a+ b = (a1 + b1 + 1) · `+ (a0 + b0 − `), with 0 ≤ a0 + b0 − ` < `, and as explained

in Section 3.4 in [Don98], the Sζ(2, a+ b)-module ∇̂
(
(a+ b) · ε0

)
has a composition factor of highest

weight

(a+ b) · ε0 − (a0 + b0 − `+ 1) · (ε0 − ε1) = (a+ b) · ε0 − c · (ε0 − ε1),

as required.

It remains to show that Ia+b

(
(a+ b) · ε0− c · (ε0− ε1)

)
is a direct summand of SaE ⊗ SbE. Recall

from Proposition 1.20 that SaE ⊗ SbE is an injective Sζ(n+ 1, a+ b)-module and that

HomSζ(n+1,a+b)(M,SaE ⊗ SbE) ∼= Maε0+bε1

for every finite-dimensional Sζ(n+1, a+b)-module M . Therefore, it suffices to prove that the aε0+bε1-

weight space of the simple module L̂
(
(a+ b) · ε0 − c · (ε0 − ε1)

)
is non-zero. (Compare with the proof

of Proposition 1.15.) As before, we can use Section 4.2.(5) in [Don98] to reduce to the case n = 1,

and the claim follows exactly as in Proposition 1.15, using the version of Steinberg’s tensor product

theorem from Section 3.2.(5) in [Don98].

The preceding result allows us to determine the generic direct summands G∇(ta$1 , tb$1) of tensor

products of induced modules ∇(ta$1 · 0)⊗∇(tb$1 · 0) for all a, b ∈ Z≥0. Suppose that ` ≥ h = n+ 1.

Theorem 1.22. For a, b ∈ Z≥0, we have G∇(ta$1 , tb$1) ∼= ∇
(
t(a+b)·$1

· 0
)

= ∇
(
` · (a+ b) ·$1

)
.

Proof. As G∇(ta$1 , tb$1) is the unique regular indecomposable direct summand of the tensor product

∇(ta$1 · 0)⊗∇(tb$1 · 0) and as the costandard module ∇(t(a+b)·$1
· 0) is regular by Lemma II.4.3, it

suffices to prove that ∇(t(a+b)·$1
· 0) is a direct summand of ∇(ta$1 · 0)⊗∇(tb$1 · 0). Recall that we

have

∇(r$1) ∼= resĜG∇̂(rε0) ∼= resĜGS
rE,

for all r ∈ Z≥0; hence it further suffices to prove that S`·(a+b)E is a direct summand of S`aE ⊗ S`bE.

Note that the Ĝ-module S`·(a+b)E ∼= ∇̂
(
` · (a+ b) ·ε0

)
is injective as an Sζ

(
n+1, ` · (a+ b)

)
-module

by Proposition 1.20 and that it has simple socle L̂
(
` · (a+ b) · ε0

)
. Therefore, we have

S`·(a+b)E ∼= I`·(a+b)

(
` · (a+ b) · ε0

)
,

and Proposition 1.21 implies that S`·(a+b)E is a direct summand of S`aE ⊗ S`bE, as required.

Finally, let us return to the case n = 1 and G = Uζ
(
sl2(C)

)
.

Corollary 1.23. For x, y ∈W+
ext, let a, b ∈ Z≥0 and ω, ω′ ∈ Ω such that x·0 = taω·0 and y·0 = tbω

′·0.

Then

G∇(x, y) ∼= Tωω
′∇
(
` · (a+ b)

)
.

Proof. By Lemma II.5.5 and Theorem 1.22, we have

G∇(x, y) ∼= Tωω
′
G∇(ta, tb) ∼= Tωω

′∇
(
` · (a+ b)

)
,

as required.
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Figure 2.1: Alcoves for G of type A2. For some elements x ∈ Waff , we have labeled x · Cfund by x.

The gray-colored region is the set of dominant alcoves.

2 Type A2

In this Section, we consider the case where G is of type A2 and ` ≥ 3. Our discussion of regular

indecomposable direct summands (and generic direct summands) of tensor products of G-modules

strongly relies on the two articles [BDM15] (by C. Bowman, S. Doty and S. Martin) and [CW15] (by

X. Chan and J. Wang), whose contents we will briefly discuss here. The main result of [BDM15] is a

description of the set of indecomposable G-modules that arise as direct summands of tensor products

of simple G-modules with `-restricted highest weights. Strictly speaking, the article only covers the

modular case, but none of its methods are specific to that case, and the results that we will use hold in

the quantum case as well. The analogous problem (of finding the indecomposable direct summands of

tensor products) for costandard modules with `-restricted highest weights was considered in [CW15].

Again, the authors discuss only the modular case, but the results are valid in the quantum case as

well (as is pointed out at the end of the introduction of that article). We can combine the results of

[BDM15] with the techniques developed in Section II.6 to give a complete description of the generic

direct summands of tensor products of simple G-modules with arbitrary `-regular (not necessarily

`-restricted) highest weights. For costandard modules, there is (at present) no method for reducing

the study of generic direct summands to the case of `-restricted highest weights, so we do not go

any further than to point out which of the indecomposable G-modules from [CW15] are the generic

direct summands. Note however that for some specific highest weights, the generic direct summands

of tensor products of costandard modules can be determined using Corollary 1.17 and Theorem 1.22.

Before we go into any more detail, let us fix some notation. According to the conventions from

Section I.1, we have Π = {α1, α2} and Φ+ = {α1, α2, αh} with αh = α1 + α2. The weight lattice

X ∼= Z2 is spanned by the fundamental dominant weights $1 and $2, and the affine Weyl group Waff

is generated by the simple reflections S = {s, t, u}, where s = sα1 , t = sα2 and u = sαh,1. Recall that

Waff is in bijection with the set of alcoves (or `-alcoves) in XR via x 7→ x(Afund) (or x 7→ x ·Cfund). In

Figure 2.1, we display some alcoves for G, and we label some of them by the corresponding elements

of Waff . The only `-alcoves containing `-restricted weights are Cfund and u · Cfund.
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Simple modules

Let us start by recalling the results of C. Bowman, S. Doty and S. Martin in more detail. According to

Section 8.5 in [BDM15], the tilting module T (ust · ν), for ν ∈ Cfund ∩X, has a unique contravariantly

self-dual submodule M(ν) (denoted there by M(u · ν)) with

chM(ν) = chL(us · ν) + chL(ut · ν) + 2 · chL(u · ν) + chL(ν),

and the latter has simple head and socle isomorphic to L(u·ν). Furthermore, the quotient of radGM(ν)

by socGM(ν) is completely reducible; more precisely, we have

radGM(ν)/socGM(ν) ∼= L(us · ν)⊕ L(ut · ν)⊕ L(ν).

Observe that the definition of M(ν) implies that T λνM(ν) ∼= M(λ) for all λ ∈ Cfund ∩ X. Following

the conventions of [BDM15], we can depict the structure of M(ν) in an ‘Alperin diagram’, where we

replace a simple module L(x · ν) by the label x ∈W+
aff .

M(ν) =

u

us e ut

u

With this notation in place, a simplified version of the main result of [BDM15] can be stated as follows:

Theorem 2.1. Let λ, µ ∈ X1 and let M be an indecomposable direct summand of L(λ)⊗L(µ). Then

either M is a tilting module or M = L(u · ν) or M ∼= M(ν), for some ν ∈ Cfund ∩X. The third case

M ∼= M(ν) can occur only if λ, µ ∈ u · Cfund.

Remark 2.2. It is pointed out at the end of Section 3 (below Theorem B) in [BDM15] that an

indecomposable direct summand M of L(λ)⊗L(µ) as in the preceding theorem has simple socle with

`-restricted highest weight as a G1T-module, unless possibly when

M ∼= T (ustus · ν) or M ∼= T (utsut · ν)

for some ν ∈ C fund ∩X. As the G1T-socle of a G-module coincides with its G1-socle (see Remark 1

in Section II.9.6 of [Jan03]), this implies that M is indecomposable as a G1-module (with the same

exceptions).

Lemma 2.3. We have G(u, u) ∼= M(0) and(
L(u · 0)⊗ L(u · 0)

)
reg
∼= M(0)⊕ L(0)

Proof. Recall that G(u, u) belongs to the linkage class of 0 and that gfd
(
G(u, u)

)
= `(u) + `(u) = 2;

see Proposition II.5.7. By Theorem 2.1, all indecomposable direct summands of L(u ·0)⊗L(u ·0) that

are not of the form M(ν), for some ν ∈ Cfund ∩X, have good filtration dimension either zero (because

they are tilting modules) or one (by Corollary II.2.7, because `(u) = 1), and it follows that

G(u, u) ∼= M(0).

In particular, M(ν) ∼= T ν0 M(0) is regular for all ν ∈ Cfund ∩X.
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By Section 8.6 in [BDM15], there exist λ, µ, ν ∈ Cfund ∩X such that

prν
(
L(u · λ)⊗ L(u · µ)

) ∼= M(ν)⊕ L(ν).

Since M(ν) and L(ν) are both regular, Theorem II.4.14 yields

T ν0
(
M(0)⊕ L(0)

) ∼= M(ν)⊕ L(ν) ∼= prν
(
L(u · λ)⊗ L(u · µ)

)
reg
∼= T ν0

(
L(u · 0)⊗ L(u · 0)

)⊕cνλ,µ
reg

,

and we conclude that cνλ,µ = 1 and
(
L(u · 0)⊗ L(u · 0)

)
reg
∼= M(0)⊕ L(0).

Also note that we have

G(e, e) ∼= L(0) ∼=
(
L(0)⊗ L(0)

)
reg

and G(u, e) ∼= L(u · 0) ∼=
(
L(u · 0)⊗ L(0)

)
reg
.

As Cfund and u · Cfund are the only `-alcoves containing `-restricted weights, this gives a complete

description of the regular parts (and the generic direct summands) of tensor products of simple G-

modules with `-regular `-restricted highest weights. Furthermore, all regular indecomposable direct

summands of such tensor products are strongly regular (because simple G-modules with `-regular

highest weights and generic direct summands of tensor products of simple G-modules are strongly

regular, by Remarks II.4.17 and II.5.12) and indecomposable (with simple socle) as G1-modules by

Remark 2.2. (These are important observations in view of Corollaries II.6.10 and II.6.19.)

Now as in Section II.6, let us fix x, y ∈W+
ext and write

x · 0 = x0 · 0 + `λ and y · 0 = y0 · 0 + `µ

with λ, µ ∈ X+ and x0, y0 ∈ W+
ext such that x0 · 0, y0 · 0 ∈ X1. As Cfund and u · Cfund are the only `-

alcoves containing `-restricted weights, we have x0, y0 ∈ Ω∪uΩ, and we write x0 = uεω and y0 = uε
′
ω′

with ε, ε′ ∈ {0, 1} and ω, ω′ ∈ Ω. Note that by Lemma II.4.15, we have(
L(x0 · 0)⊗ L(y0 · 0)

)
reg
∼=
(
TωL(uε · 0)⊗ Tω′L(uε

′ · 0)
)

reg
∼= Tωω

′(
L(uε · 0)⊗ L(uε

′ · 0)
)

reg
.

In the quantum case, we get the following complete desccription of regular parts and generic direct

summands of tensor products of simple G-modules, from Corollaries II.6.8, II.6.10 and II.6.11.

Theorem 2.4. Suppose that we are in the quantum case and write

LC(λ)⊗ LC(µ) ∼=
⊕
ν∈X+

LC(ν)⊕d
ν
λ,µ .

(1) If ε = ε′ = 0 then (
L(x · 0)⊗ L(y · 0)

)
reg
∼=
⊕
ν∈X+

(
L(ωω′ · 0)⊗ LC(ν)[1]

)⊕dνλ,µ
∼=
⊕
ν∈X+

L(ωω′ · 0 + `ν)⊕d
ν
λ,µ

is a Krull-Schmidt decomposition and G(x, y) ∼= L(ωω′ · 0)⊗LC(λ+µ)[1] ∼= L(ωω′ · 0 + `λ+ `µ).

(2) If ε+ ε′ = 1 then (
L(x · 0)⊗ L(y · 0)

)
reg
∼=
⊕
ν∈X+

(
L(uωω′ · 0)⊗ LC(ν)[1]

)⊕dνλ,µ
∼=
⊕
ν∈X+

L(uωω′ · 0 + `ν)⊕d
ν
λ,µ

is a Krull-Schmidt decomposition and G(x, y) ∼= L(uωω′ ·0)⊗LC(λ+µ)[1] ∼= L(uωω′ ·0+`λ+`µ).
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(3) If ε = ε′ = 1 then(
L(x · 0)⊗ L(y · 0)

)
reg
∼=
⊕
ν∈X+

(
M(ωω′ · 0)⊗ LC(ν)[1]

)⊕dνλ,µ ⊕ ⊕
ν∈X+

L
(
ωω′ · 0 + `ν

)⊕dνλ,µ
is a Krull-Schmidt decomposition and G(x, y) ∼= M(ωω′ · 0)⊗ LC(λ+ µ)[1].

Recall that in the modular case, we write M(λ, µ) for the unique indecomposable direct summand

of L(λ)⊗ L(µ) with a non-zero λ+ µ-weight space. The modular analogue of the preceding theorem

follows from Corollaries II.6.16, II.6.19 and II.6.20.

Theorem 2.5. Suppose that we are in the modular case and fix a Krull-Schmidt decomposition

L(λ)⊗ L(µ) ∼= M1 ⊕ · · · ⊕Mr.

(1) If ε = ε′ = 0 then (
L(x · 0)⊗ L(y · 0)

)
reg
∼=

r⊕
i=1

L(ωω′ · 0)⊗M [1]
i

is a Krull-Schmidt decomposition and G(x, y) ∼= L(ωω′ · 0)⊗M(λ, µ)[1].

(2) If ε+ ε′ = 1 then (
L(x · 0)⊗ L(y · 0)

)
reg
∼=

r⊕
i=1

L(uωω′ · 0)⊗M [1]
i

is a Krull-Schmidt decomposition and G(x, y) ∼= L(uωω′ · 0)⊗M(λ, µ)[1].

(3) If ε = ε′ = 1 then

(
L(x · 0)⊗ L(y · 0)

)
reg
∼=

r⊕
i=1

M(ωω′ · 0)⊗M [1]
i ⊕

r⊕
i=1

L(ωω′ · 0)⊗M [1]
i

is a Krull-Schmidt decomposition and G(x, y) ∼= M(ωω′ · 0)⊗M(λ, µ)[1].

For the rest of this section, suppose that we are in the modular case. Let us write λ =
∑

i≥0 `
iλi

and µ =
∑

i≥0 `
iµi, with λi, µi ∈ X1 for all i ≥ 0. Our next goal is to show that M(λ, µ) is a tensor

product of Frobenius twists of the G-modules M(λi, µi), for i ≥ 0, as in Lemma II.6.17. We start by

determining the module M(λ′, µ′), for λ′, µ′ ∈ X1, more explicitly.

Lemma 2.6. Let λ′, µ′ ∈ X1. We have

M(λ′, µ′) ∼= L(λ′ + µ′)

whenever λ′ + µ′ ∈ u · Cfund and either λ′ ∈ u · Cfund or µ′ ∈ u · Cfund, and

M(λ′, µ′) ∼= T (λ′ + µ′)

in all other cases.
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Proof. First suppose that neither of λ′ and µ′ belongs to u ·Cfund. As λ′, µ′ ∈ X1 ⊆ C fund ∪ u ·C fund,

this implies that λ′, µ′ ∈ Cfund or that at least one of λ′ and µ′ is `-singular. If λ′, µ′ ∈ Cfund then

L(λ′)⊗ L(µ′) ∼= T (λ′)⊗ T (µ′)

is a tilting module and it follows that M(λ′, µ′) ∼= T (λ′ + µ′). If either of the weights λ′ or µ′ is

`-singular then one of the simple modules L(λ′) and L(µ′) is singular by Lemma II.4.3, and M(λ′, µ′)

is singular because singular modules form a thick tensor ideal. On the other hand, L(u · ν) is regular

for all ν ∈ Cfund ∩ X (again by Lemma II.4.3), and Theorem 2.1 implies that M(λ′, µ′) is a tilting

module, so M(λ′, µ′) ∼= T (λ′ + µ′).

By symmetry, we may now suppose that λ′ ∈ u ·Cfund and that µ′ is `-regular. If λ′+µ′ ∈ u ·Cfund

then µ′ is the unique dominant weight in the Wfin-orbit of u · (λ′+µ′)−u ·λ′ = sαh
(µ′), and it follows

that

L(λ′ + µ′) ∼= T
u·(λ′+µ′)
u·λ′ L(λ′) = pru·(λ′+µ′)

(
L(λ′)⊗ L(µ′)

)
,

whence M(λ′, µ′) ∼= L(λ′ + µ′). If µ′ ∈ Cfund and λ′ + µ′ /∈ u ·Cfund then M(λ′, µ′) is singular because

the regular part (
L(λ′)⊗ L(µ′)

)
reg
∼=
(
T u·λ

′
0 L(u · 0)⊗ Tµ

′

0 L(0)
)

reg

∼=
⊕

ν∈Cfund∩X
T ν0
(
L(u · 0)⊗ L(0)

)⊕cν
u·λ′,µ′

reg

∼=
⊕

ν∈Cfund∩X

(
T ν0 L(u · 0)

)⊕cν
u·λ′,µ′

∼=
⊕

ν∈Cfund∩X
L(u · ν)

⊕cν
u·λ′,µ′

is a direct sum of simple G-modules with highest weights in u ·Cfund; see Theorem II.4.14. As before,

Theorem 2.1 implies that M(λ′, µ′) is a tilting module and therefore M(λ′, µ′) ∼= T (λ′ + µ′).

Finally, suppose that µ′ ∈ u · Cfund. By Lemma 2.3 and Theorem II.4.14, we have(
L(λ′)⊗ L(µ′)

)
reg
∼=
(
T u·λ

′
0 L(u · 0)⊗ T u·µ

′

0 L(u · 0)
)

reg

∼=
⊕

ν∈Cfund∩X
T ν0
(
L(u · 0)⊗ L(u · 0)

)⊕cν
u·λ′,u·µ′

reg

∼=
⊕

ν∈Cfund∩X

(
T ν0 M(0)⊕ T ν0 L(0)

)⊕cν
u·λ′,u·µ′

∼=
⊕

ν∈Cfund∩X

(
M(ν)⊕ L(ν)

)⊕cν
u·λ′,u·µ′ ,

and all singular indecomposable direct summands of L(λ′)⊗L(µ′) are tilting modules by Theorem 2.1.

On the other hand, we have (λ′+µ′+ρ, α∨h ) ≥ 2` because (λ′+ρ, α∨h ) ≥ `+ 1 and (µ′+ρ, α∨h ) ≥ `+ 1,

hence

λ′ + µ′ /∈ Cfund ∪ u · Cfund ∪ us · Cfund ∪ ut · Cfund

and L(λ′ + µ′) is not a composition factor of M(ν) or L(ν), for any ν ∈ Cfund ∩X. We conclude that

M(λ′, µ′) is a tilting module, so M(λ′, µ′) ∼= T (λ′ + µ′).

Corollary 2.7. Let λ′, µ′ ∈ X1. Then M(λ′, µ′) is indecomposable as a G1-module.
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Proof. By Lemma 2.6, we have either

M(λ′, µ′) ∼= T (λ′ + µ′) or M(λ′, µ′) ∼= L(λ′ + µ′).

In the second case, we further have λ′+µ′ ∈ u ·Cfund∩X ⊆ X1 and it follows that L(λ′+µ′) is simple

as a G1-module. As λ′, µ′ ∈ X1, we have

λ′ + µ′ ∈
{
γ ∈ X+

∣∣ (γ, α∨) ≤ 2`− 2 for all α ∈ Π
}
.

This set of weights is disjoint from ustus · C fund and utsut · C fund (see Figure 2.1), so Remark 2.2

implies that T (λ′ + µ′) is indecomposable as a G1-module.

Recall that we write λ =
∑

i≥0 `
iλi and µ =

∑
i≥0 `

iµi, with λi, µi ∈ X1 for all i ≥ 0.

Corollary 2.8. We have M(λ, µ) ∼=
⊗

i≥0M(λi, µi)
[i].

Proof. The G-modules M(λi, µi), for i ≥ 0, are indecomposable as G1-modules by Corollary 2.7 and

the claim follows from Lemma II.6.17.

Finally, let us point out that not all of the indecomposable direct summands of L(λ)⊗L(µ) can be

obtained as tensor products of Frobenius twists of indecomposable direct summands of L(λi)⊗L(µi),

for i ≥ 0. Indeed, for λ = (`− 1) · ρ and µ = (2`− 1) ·$1 + 2$2, we have

L(λ0)⊗ L(µ0) = L
(
(`− 1) · ρ

)
⊗ L

(
(`− 1) ·$1 + 2$2

) ∼= T
(
(`− 1) · ρ

)
⊗ T

(
(`− 1) ·$1 + 2$2

)
by the linkage principle, and it is straightforward to see (by weight considerations) that the tilting

module T
(
`$1 + (`− 1) · ρ

)
is a direct summand of L(λ0)⊗L(µ0). Observe that, again by the linkage

principle and by Steinberg’s tensor product theorem, the tilting module T
(
`$1 + (` − 1) · ρ

)
has a

tensor product decomposition

T
(
`$1 + (`− 1) · ρ

) ∼= L
(
`$1 + (`− 1) · ρ

) ∼= L
(
(`− 1) · ρ

)
⊗ L($1)[1].

Furthermore, we have λ1 = 0 and µ1 = $1; so L($1) is the unique indecomposable direct summand

of L(λ1)⊗ L(µ1). Now the tensor product

T
(
`$1 + (`− 1) · ρ

)
⊗ L($1)[1] ∼= L

(
(`− 1) · ρ

)
⊗
(
L($1)⊗ L($1)

)[1]

is decomposable because L($1) ⊗ L($1) ∼= L(2$1) ⊕ L($2) is decomposable (since ` ≥ h = 3), and

the simple module

L
(
2`$1 + (`− 1) · ρ

) ∼= L
(
(`− 1)ρ

)
⊗ L(2$1)[1]

is an indecomposable direct summand of L(λ)⊗ L(µ). Now suppose for a contradiction that

L
(
2`$1 + (`− 1) · ρ

) ∼= M ⊗N [1],

for indecomposable direct summands M and N of L(λ0)⊗L(µ0) and L(λ1)⊗L(µ1), respectively. Then

M and N are simple and, as observed above, we must have N ∼= L($1). By weight considerations, it

follows that

M ∼= L
(
`$1 + (`− 1) · ρ

) ∼= T
(
`$1 + (`− 1) · ρ

)
and we arrive at the contradiction that M ⊗N [1] is decomposable.
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Costandard modules

Let us once again start by recalling the main results of X. Chan and J. Wang in more detail. We

return to our strategy of discussing the modular case and the quantum case at the same time.

According to Theorem 2.1(3) in [CW15], there is, for every ν ∈ Cfund∩X, a unique indecomposable

G-module M∇(ν) (denoted there by Q(u · ν)) that admits a short exact sequence

0→ ∇(u · ν)→M∇(ν)→ ∇(us · ν)⊕∇(ut · ν)→ 0.

See also Lemma 3.1 in [CW15] and the computation thereafter. Furthermore, the G-module M∇(ν)

is isomorphic to the injective hull Iπ(u · ν) of the simple G-module L(u · ν) in the truncated category

Rep(G, π) corresponding to the set of weights π = {ν, u · ν, us · ν, ut · ν}. Now (a shortened version

of) Theorem 2.1 in [CW15] is as follows:

Theorem 2.9. Let λ, µ ∈ Cfund ∩X.

(1) The tensor product ∇(λ)⊗∇(µ) is a direct sum of indecomposable tilting modules.

(2) The tensor product ∇(u·λ)⊗∇(µ) is a direct sum of induced modules ∇(u·ν), with ν ∈ Cfund∩X,

and of negligible tilting modules.

(3) The tensor product ∇(u · λ) ⊗ ∇(u · µ) is a direct sum of G-modules of the form M∇(ν), with

ν ∈ Cfund ∩X, and of negligible tilting modules.

Using the preceding theorem, it is straightforward to work out the generic direct summands of

tensor products of induced modules with `-restricted `-regular highest weights. First note that

∇(0) ∼= ∇(0)⊗∇(0) ∼=
(
∇(0)⊗∇(0)

)
reg
∼= G∇(e, e)

and similarly

∇(u · 0) ∼= ∇(u · 0)⊗∇(0) ∼=
(
∇(u · 0)⊗∇(0)

)
reg
∼= G∇(u, e),

even without using the theorem. The generic direct summand G∇(u, u) of ∇(u ·0)⊗∇(u ·0) is regular

and belongs to Rep0(G), so part (3) of Theorem 2.9 implies that

G∇(u, u) ∼= M∇(0).

Remark 2.10. In Corollary 3.15 in [CW15], it is shown that, for λ, µ, ν ∈ Cfund ∩X, the multiplicity

of M∇(ν) in a Krull-Schmidt decomposition of ∇(u · λ)⊗∇(u · µ) is given by the structure constant

cνλ,µ of the Verlinde algebra. The idea that these structure constants should govern the multiplicities

of regular indecomposable direct summands in tensor products (as in Theorem II.4.14) arose when the

author was studying this result, but the proof from [CW15] does not carry over to our more general

setting. A similar argument to X. Chan and J. Wang’s proof can, however, be used to show that cνλ,µ is

the multiplicity of T ν0 G∇(x, y) in a Krull-Schmidt decomposition of ∇(x ·λ)⊗∇(y ·µ), for x, y ∈W+
aff .

(In our setting, this follows from Remarks II.5.2 and II.5.4.)
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The most basic example of generic direct summands is given by the observation that

G(e, x) ∼= L(x · 0) and G∇(e, x) ∼= ∇(x · 0)

for all x ∈ W+
ext because L(0) ∼= ∇(0) is the trivial G-module. In this chapter, we study the family

of generic direct summands G(sαh,1, x), for x ∈ W+
ext, under the assumption that G is of type An.

Note that this can be considered as the smallest non-trivial example of such a family of generic direct

summands because sαh,1 is the unique element of length one in W+
aff (see Lemma I.2.12). We loosely

refer to sαh,1 · Cfund as the second alcove (Cfund being the first).

Let us briefly outline our strategy. We first observe that

Cmin

(
L(sαh,1 · 0)

)
=
(

0→ T (0)→ T (sαh,1 · 0)→ T (0)→ 0
)
.

This minimal complex gives rise to natural transfomations

e : idRep(G)
∼=
(
T (0)⊗−

)
=⇒

(
T (sαh,1 · 0)⊗−

)
and

p :
(
T (sαh,1 · 0)⊗−

)
=⇒

(
T (0)⊗−

) ∼= idRep(G)

such that the components eM and pM of e and p at any G-module M satisfy im(eM ) ⊆ ker(pM ) and

ker(pM )/im(pM ) ∼= L(sαh,1 · 0)⊗M.

Therefore, we could try to understand tensor products of the form L(sαh,1 · 0)⊗L(x · 0), for x ∈W+
ext,

via a detailed study of the functor
(
T (sαh,1 · 0)⊗−

)
and the natural transformations e and p. We will

simplify this task in two ways:

Firstly, we denote by ω ∈ Ω the image of the translation by the first fundamental dominant weight

under the epimorphism Wext → Ω and consider the tilting module T (sαh,1ω · 0) instead of T (sαh,1 · 0).

By the translation principle, we have

Cmin

(
L(sαh,1ω · 0)

)
=
(

0→ T (ω · 0)→ T (sαh,1ω · 0)→ T (ω · 0)→ 0
)
,

so we replace the natural transformations e and p by a pair of natural transformations(
T (ω · 0)⊗−

)
=⇒

(
T (sαh,1ω · 0)⊗−

)
=⇒

(
T (ω · 0)⊗−

)
.

The advantage is that the tilting module T (sαh,1ω ·0) is much easier to compute with than T (sαh,1 ·0)

because the weight sαh,1ω · 0 lies ‘just above’ the hyperplane H`
αh,1

separating Cfund and sαh,1 ·Cfund.

Furthermore, we do not lose any information about generic direct summands when replacing the
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simple G-module L(sαh,1 · 0) by L(sαh,1ω · 0) because G(sαh,1ω, x) ∼= TωG(sαh,1, x) for all x ∈ W+
ext,

by Lemma II.5.10.

Secondly, the G-module G(sαh,1ω, x) belongs to the linkage class of ω · 0 for all x ∈ W+
aff , so we

can project to this linkage class and consider the pair of natural transformations

Tω·00 = prω·0
(
T (ω · 0)⊗−

)
=⇒ prω·0

(
T (sαh,1ω · 0)⊗−

)
=⇒ prω·0

(
T (ω · 0)⊗−

)
= Tω·00

of functors from Rep0(G) to Repω·0(G). It turns out that the functor Ψ := prω·0
(
T (sαh,1ω · 0) ⊗ −

)
decomposes as a direct sum of functors Ψs, for s ∈ S, which behave in many ways like the wall crosing

functors Θs = Tω·0µs T
µs
0 , for µs ∈ C fund ∩X with StabWaff

(µs) = {e, s}. By projecting onto the direct

summands Ψs, we obtain natural transformations

Tω·00 =⇒ Ψs =⇒ Tω·00 ,

for s ∈ S, and these will be our main objects of study in Sections 4 and 5. Before that, we need to

establish some additional results about the affine Weyl group and the associated alcove geometry (see

Section 1) and about quasi-translation functors of the form

Tµ,δλ := prµ
(
∇(δ)⊗−

)
: Repλ(G) −→ Repµ(G),

for λ, µ ∈ C fund ∩X and δ ∈ X+, not necessarily Wfin-conjugate to µ− λ (see Section 2). The details

of the strategy which was explained above will be discussed in Section 3, and in Section 6, we use the

results from Sections 4 and 5 to study the G-modules prω·0
(
L(sαh,1ω · 0)⊗L(x · 0)

)
and G(sαh,1ω, x)

for x ∈W+
aff . While the description that we can give for prω·0

(
L(sαh,1ω ·0)⊗L(x ·0)

)
is fairly explicit,

the structure of G(sαh,1ω, x) remains somewhat elusive. Nevertheless, we achieve a classification of

the elements x ∈W+
aff such that G(sαh,1ω, x) is simple.

1 More alcove geometry

A number of proofs in the following sections rely on intricate properties of the alcove geometry asso-

ciated with the affine Weyl group Waff (see Section I.2). The aim of this section is to establish these

properties. We start by introducing some new tools, namely the notion of a minimal gallery connect-

ing two alcoves and the corresponding distance function, and by proving some of their elementary

properties. Recall that two alcoves A,A′ ⊆ XR are called adjacent if they are separated by a unique

reflection hyperplane H. In that case, we have A′ = sH(A) by Remark I.2.7 and the fact that Waff

acts transitively on the set of alcoves; see Theorem I.2.5.

Definition 1.1. Let A,A′ ⊆ XR be alcoves. A gallery from A to A′ of length d is a sequence of alcoves

A = A0, A1, . . . , Ad = A′

such that Ai−1 and Ai are adjacent for i = 1, . . . , d. The gallery is called minimal if there exists no

gallery of smaller length from A to A′. The distance d(A,A′) between A and A′ is the length of a

minimal gallery from A to A′.

A priori, it is not clear that the distance between alcoves A and A′ is well-defined (because there

might not exist any gallery from A to A′). The following remark shows that every pair of alcoves

is connected by a gallery. Once well-definedness is established, it is straightforward to see that the

distance defines a Waff -invariant metric on the set of alcoves.
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Remark 1.2. For alcoves A,A′ ⊆ XR, we can choose x, y ∈Waff with x(Afund) = A and y(Afund) = A′

and write x−1y = s1 · · · sd with s1, . . . , sd ∈ S. Let x0 = e and xi = s1 · · · si for i = 1, . . . , d. We claim

that

A = x(Afund), xx1(Afund), . . . , xxd(Afund) = A′

is a gallery from A to A′. Indeed, for i = 1, . . . , d, the alcoves Afund and si(Afund) are adjacent by

Remark I.2.7, and it follows that xxi−1(Afund) is adjacent to xxi−1si(Afund) = xxi(Afund).

The following lemma and corollary will be extremely useful when working with galleries and the

distance function.

Lemma 1.3. Let A,A′ ⊆ XR be alcoves with A 6= A′ and let H be a hyperplane separating A and A′.

Then d
(
A, sH(A′)

)
< d(A,A′).

Proof. Let A = A0, A1, . . . , Ad = A′ be a minimal gallery from A to A′. As H separates A and A′,

there exists i ∈ {1, . . . , d} such that H separates Ai−1 and Ai. Then Ai−1 = sH(Ai) because Ai−1 is

adjacent to Ai, and there is a gallery

A = A0, A1, . . . , Ai−1 = sH(Ai), sH(Ai+1), . . . , sH(Ad) = sH(A′)

of length d− 1 from A to sH(A′). Hence d
(
A, sH(A′)

)
< d = d(A,A′).

Corollary 1.4. Let A,A′ ⊆ XR be alcoves and let H be a reflection hyperplane. Then H separates A

and A′ if and only if d(A, sH(A′)) < d(A,A′).

Proof. If H separates A and A′ then d(A, sH(A′)) < d(A,A′) by Lemma 1.3. If H does not separate

A and A′ then H separates A and sH(A′). Again by Lemma 1.3, we get

d(A,A′) = d(A, sHsH(A′)) < d(A, sH(A′))

and the claim follows.

Definition 1.5. The number of times a gallery A0, . . . , Ad crosses a reflection hyperplane H is the

cardinality of the set {i | 1 ≤ i ≤ d and Ai = sH(Ai−1)}. We say that a gallery crosses H if it

crosses H at least once.

Remark 1.6. Let A,A′ ⊆ XR be alcoves and let A = A0, . . . , Ad = A′ be a gallery from A to A′. It

is straightforward to see that a hyperplane H separates A and A′ if and only if A = A0, . . . , Ad = A′

crosses H an odd number of times.

Lemma 1.7. A minimal gallery crosses any given reflection hyperplane at most once.

Proof. Let A,A′ ⊆ XR be alcoves and let A = A0, . . . , Ad = A′ be a gallery which crosses a given

reflection hyperplane H at least twice. Let 1 ≤ i < j ≤ d such that Ai = sH(Ai−1) and Aj = sH(Aj−1).

Then Ai−1 = sH(Ai), and there is a gallery

A = A0, . . . , Ai−1 = sH(Ai), sH(Ai+1), . . . , sH(Aj−1) = Aj , . . . , Ad = A′

of length d− 2 from A to A′. Hence A = A0, . . . , Ad = A′ is not minimal.

Corollary 1.8. Let A,A′ ⊆ XR be alcoves and let A = A0, . . . , Ad = A′ be a minimal gallery. A

hyperplane H separates A and A′ if and only if A = A0, . . . , Ad = A′ crosses H.
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Proof. It is clear that the gallery A = A0, . . . , Ad = A′ crosses every hyperplane that separates the

alcoves A and A′. Conversely, if A = A0, . . . , Ad = A′ crosses H then A = A0, . . . , Ad = A′ crosses H

exactly once by Lemma 1.7, and it follows that H separates A and A′.

Recall that for β ∈ Φ+ and an alcove A ⊆ XR, we write nβ(A) = max{m ∈ Z | A ⊆ H+
β,m}.

Corollary 1.9. Let A,A′ ⊆ XR be alcoves. Then d(A,A′) equals the number of reflection hyperplanes

that separate A and A′. In particular, we have

d(A,A′) =
∑
β∈Φ+

|nβ(A)− nβ(A′)|.

Proof. By Corollary 1.8, the set of hyperplanes that are crossed by a minimal gallery from A to A′

is precisely the set of hyperplanes that separate A and A′. As a minimal gallery crosses any given

reflection hyperplane at most once by Lemma 1.7, we conclude that the length d(A,A′) of a minimal

gallery from A to A′ equals the number of reflection hyperplanes that separate A and A′. The second

claim follows from the observation that, for all β ∈ Φ+ and m ∈ Z, the hyperplane Hβ,m separates A

and A′ if and only if nβ(A) < m ≤ nβ(A′) or nβ(A′) < m ≤ nβ(A).

In Section 4, we will need to verify that a certain set A of alcoves that satisfies a specific symmetry

property around an alcove A is of the form {A, s(A)}, for some reflection s = sH in a wall H of A. In

Lemma 1.13 below, we show that this follows once we know that s(A) is the unique alcove in A that

is adjacent to A. We first define the symmetry property we want to consider.

Definition 1.10. A non-empty set A of alcoves is centered at an alcove A ⊆ XR if, for every alcove

A′ ∈ A and every reflection hyperplane H separating A and A′, we have sH(A′) ∈ A.

Lemma 1.11. Let A be a set of alcoves centered at an alcove A ⊆ XR and let A′ ∈ A. For any

minimal gallery A = A0, . . . , Ad = A′, we have Ai ∈ A for i = 0, . . . , d. In particular A ∈ A.

Proof. If H is the hyperplane separating A′ = Ad and Ad−1 then H also separates Ad and A by

Corollary 1.8, so Ad−1 = sH(Ad) ∈ A as A is centered at A. The claim follows by induction on d.

Corollary 1.12. Let A be a set of alcoves centered at an alcove A ⊆ XR and let A′ ∈ A. For any

wall H of A that separates A and A′, we have sH(A) ∈ A.

Proof. Note that A and sH(A) are adjacent and that d
(
sH(A), A′

)
< d(A,A′) by Lemma 1.3. This

implies that a minimal gallery sH(A) = A0, . . . , Ad = A′ from sH(A) to A′ can be completed to a

minimal gallery A, sH(A) = A0, . . . , Ad = A′ from A to A′. Now Lemma 1.11 yields sH(A) ∈ A.

Lemma 1.13. Let A be a set of alcoves centered at an alcove A ⊆ XR, and suppose that there exists

a unique wall H of A with sH(A) ∈ A. Then A = {A, sH(A)}.

Proof. First note that A ∈ A by Lemma 1.11. For an alcove A′ ∈ A with A′ 6= A and a wall H ′ of A

that separates A and A′, we have sH′(A) ∈ A by Corollary 1.12. By the assumption on A, it follows

that H ′ = H. Now H does not separate the alcoves A and sH(A′), and as before, we see that no wall

H ′′ of A with H ′′ 6= H separates A and sH(A′) either. As no wall of A separates A and sH(A′), we

conclude that A = sH(A′) and A′ = sH(A).

Recall from Theorem I.2.5 that the closure A of every alcove A ⊆ XR is a fundamental domain for

the action of Waff on XR, so every Waff -orbit in XR intersects with A in a unique point.
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Definition 1.14. For x ∈ XR and A ⊆ XR an alcove, denote by (x)A the unique element of A lying

in the Waff -orbit of x.

For a subset S ⊆ XR, we denote by conv(S) the convex hull of S. The situation in which we want

to apply Lemma 1.13 in Section 4 is the following.

Lemma 1.15. Let x, y, z ∈ XR and consider the set

A(x, y, z) :=
{
A ⊆ XR

∣∣ A is an alcove and (y)A − x ∈ conv
(
Wfin(z)

)}
.

If A(x, y, z) is non-empty and A is an alcove with x ∈ A then A(x, y, z) is centered at A.

Proof. Let A′ ∈ A(x, y, z) with A′ 6= A and let H = Hβ,m be a hyperplane separating A and A′.

Suppose that A ⊆ H− and A′ ⊆ H+ and set y′ := (y)A′ , so (y′, β∨) ≥ m ≥ (x, β∨). We have

(y)sH(A′) − x = sβ,m(y′)− x = y′ − x−
(
(y′, β∨)−m

)
· β,

and if (y′, β∨) = m then it follows that

(y)sH(A′) − x = y′ − x = (y)A′ − x ∈ conv
(
Wfin(z)

)
,

so sH(A′) ∈ A(x, y, z). If (y′, β∨) > m ≥ (x, β∨) then

(y)sH(A′) − x = y′ − x−
(
(y′, β∨)−m

)
· β

= (y′ − x)− (y′, β∨)−m
(y′ − x, β∨)

· (y′ − x, β∨) · β

= (y′ − x) +
(y′, β∨)−m
(y′ − x, β∨)

·
(
sβ(y′ − x)− (y′ − x)

)
is an element of conv

{
y′ − x, sβ(y′ − x)

}
. Now y′ − x ∈ conv

(
Wfin(z)

)
because A′ ∈ A(x, y, z) by

assumption, and sβ(y′ − x) ∈ conv
(
Wfin(z)

)
because conv

(
Wfin(z)

)
is Wfin-invariant. We conclude

that

(y)sH(A′) − x ∈ conv
{
y′ − x, sβ(y′ − x)

}
⊆ conv

(
Wfin(z)

)
,

so sH(A′) ∈ A(x, y, z) as required. The case A ⊆ H+ and A′ ⊆ H− is analogous.

Recall that the linkage order ↑ on the set of alcoves is the reflexive and transitive closure of the

relation that is given by A ↑ A′ if there exists a reflection s ∈ Waff with A ⊆ H−s and A′ ∈ H+
s such

that A′ = s(A). For our further study of the linkage order, the following function on the set of alcoves

will be of central importance.

Definition 1.16. For an alcove A ⊆ XR, let d(A) :=
∑

β∈Φ+ nβ(A).

Note that for γ ∈ X and alcoves A,A′ ⊆ XR, we have A ↑ A′ if and only if A+ γ ↑ A′ + γ, and

d(A′ + γ)− d(A+ γ) = d(A′)− d(A).

Furthermore, if A ⊆ XR is a dominant alcove then nβ(A) ≥ 0 for all β ∈ Φ+ and therefore

d(A) =
∑
β∈Φ+

nβ(A) =
∑
β∈Φ+

|nβ(A)| = d(Afund, A)

by Corollary 1.9 and Example I.2.3. The connection between the function d and the linkage order

comes from the following lemma, which is proven in Section II.6.6 in [Jan03].

99



Chapter IV. The second alcove

Lemma 1.17. Let A ⊆ XR be an alcove and let s ∈ Waff be a reflection. Then A ↑ s(A) if and only

if d(A) < d
(
s(A)

)
.

The two following results are immediate consequences of Lemma 1.17 and the definition of the

linkage order.

Corollary 1.18. Let A,A′ ⊆ XR be alcoves with A ↑ A′. Then d(A) ≤ d(A′), with equality if and

only if A = A′.

Corollary 1.19. Let A,A′ ⊆ XR be alcoves with A ↑ A′ and d(A′) = d(A) + 1. Then there is a

reflection s ∈Waff with A′ = s(A).

We are now ready to show that the linkage order on the set of dominant alcoves is equivalent to

the Bruhat order on W+
aff , with the help of some results from [BB05] and [Wan87]. This was already

stated in Theorem I.2.14, but the proof was postponed to this section. The article [Wan87] has been

published only in Chinese, but a translation of the main result into English is available as an appendix

to [GHS18].

Theorem 1.20. For x, y ∈W+
aff , we have x ≤ y if and only if x(Afund) ↑ y(Afund).

Proof. First suppose that x ≤ y. By Theorem 2.5.5 in [BB05], there exist elements x0, . . . , xr ∈ W+
aff

with

x = x0 < x1 < · · · < xr = y

and such that

`(x) + i = `(xi) = d
(
Afund, xi(Afund)

)
= d
(
xi(Afund)

)
for i = 1, . . . , r, where the second equality follows from Corollary 1.9 and the third equality holds

because xi(Afund) is a dominant alcove. As xi−1 < xi and `(xi) − `(xi−1) = 1, for i = 1, . . . , r, there

exists a reflection si ∈Waff with xi = xi−1si. Furthermore, as

d
(
xi−1si(Afund)

)
= d
(
xi(Afund)

)
> d
(
xi−1(Afund)

)
,

we have xi−1(Afund) ↑ xi−1si(Afund) = xi(Afund) by Lemma 1.17 (applied to the reflection xi−1six
−1
i−1),

for i = 1, . . . , r, and we conclude that x(Afund) ↑ y(Afund).

Now suppose that x(Afund) ↑ y(Afund). By Theorem A.1.1 in [GHS18], there exists a sequence of

dominant alcoves

x(Afund) = A0 ↑ A1 ↑ · · · ↑ Ar = y(Afund)

such that d(Ai)− d(Ai−1) = 1 for i = 0, . . . , r. As Waff acts (simply) transitively on the set of alcoves

(see Theorem I.2.5), there exist x0, . . . , xr ∈ W+
aff with xi(Afund) = Ai for i = 0, . . . , r. Furthermore,

by Corollary 1.19, there exist reflections s1, . . . , sr ∈ Waff with Ai = si(Ai−1) for i = 1, . . . , r, and it

follows that xi = sixi−1. Now as xi−1, xi ∈W+
aff , we have

`(xi) = d
(
xi(Afund)

)
= d(Ai) = d(Ai−1) + 1 = d

(
xi−1(Afund)

)
+ 1 = `(xi−1) + 1 > `(xi−1)

for i = 1, . . . , r, and we conclude that x = x0 < x1 < · · · < xr = y.

The next result describes the stabilizer of a point x ∈ XR in terms of the walls of an alcove A ⊆ XR
with x ∈ A; see Section 6.3 in [Jan03].
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Lemma 1.21. Let x ∈ XR and let A ⊆ XR be an alcove with x ∈ A. Then StabWaff
(x) is generated

by the reflections in the walls H of A with x ∈ H, that is

StabWaff
(x) = 〈sH | H is a wall of A with x ∈ H〉.

In particular, we have StabWaff
(x) = {e} if and only if x ∈ A.

For applications in Chapter V, we prove some further results about stabilizers in Waff . Recall that

we write X+
R = {x ∈ XR | (x, α∨) > 0 for all α ∈ Φ+} for the dominant Weyl chamber.

Lemma 1.22. For x ∈ Afund and w ∈Waff , we have w(x) ∈ X+
R if and only if wStabWaff

(x) ⊆W+
aff .

Proof. Suppose that w(x) ∈ X+
R and let w′ ∈ StabWaff

(x). Then w(x) = ww′(x) ∈ ww′(Afund), so

0 <
(
w(x), α∨

)
≤ nα

(
ww′(Afund)

)
+ 1

for all α ∈ Φ+, and it follows that nα
(
ww′(Afund)

)
≥ 0 and ww′ ∈W+

aff .

Now suppose that wStabWaff
(x) ⊆W+

aff . For any simple root α ∈ Π, we have

w(w−1sαw) = sαw /∈W+
aff

because w ∈ W+
aff , and it follows that w−1sαw /∈ StabWaff

(x) and sα /∈ StabWaff

(
w(x)

)
. This implies

that
(
w(x), α∨

)
6= 0, and as

0 ≤ nα
(
w(Afund)

)
≤
(
w(x), α∨

)
,

we conclude that w(x) ∈ X+
R , as required.

We can also characterize the upper closure of an alcove in terms of stabilizers.

Definition 1.23. The upper closure of an alcove A ⊆ XR is the set

Â :=
{
x ∈ XR

∣∣ nα(A) < (x, α∨) ≤ nα(A) + 1 for all α ∈ Φ+
}
.

It is straightforward to see that, for every point x ∈ XR, there is a unique alcove A ⊆ XR such

that x ∈ Â.

Lemma 1.24. Let x ∈ Afund and w ∈Waff . Then the following are equivalent:

(1) w(x) belongs to the upper closure of w(Afund);

(2) w(Afund) is minimal (in the linkage order) among the alcoves whose closure contains w(x);

(3) w(Afund) ↑ ws(Afund) for all s ∈ S ∩ StabWaff
(x).

Proof. Suppose first that w(x) belongs to the upper closure of w(Afund), and let A ⊆ XR be an alcove

with w(x) ∈ A. If A 6= w(Afund) then there exists a reflection hyperplane H = Hβ,m separating

w(Afund) and A, that is

nβ
(
w(Afund)

)
+ 1 ≤ m ≤ nβ(A) or nβ(A) + 1 ≤ m ≤ nβ

(
w(Afund)

)
.

As w(x) belongs to the upper closure of w(Afund) and to the closure of A, we have

nβ
(
w(Afund)

)
<
(
w(x), β∨

)
≤ nβ(A) + 1
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and

nβ(A) ≤
(
w(x), β∨

)
≤ nβ

(
w(Afund)

)
+ 1,

and we conclude that

m = nβ
(
w(Afund)

)
+ 1 = nβ(A) =

(
w(x), β∨

)
.

This implies that sβ,m(A) ↑ A and that sβ,m ∈ StabWaff

(
w(x)

)
, so w(x) ∈ sβ,m(A). By induction on

the distance between w(Afund) and A (see Corollary 1.4), we conclude that

w(Afund) ↑ sβ,m(A) ↑ A,

so (1) implies (2). It is straightforward to see that (2) implies (3).

We proceed to prove that (3) implies (1), so now suppose that w(Afund) ↑ ws(Afund) for all simple

reflections s ∈ S ∩ StabWaff
(x). Let A ⊆ X+

R be the unique alcove whose upper closure contains w(x),

and suppose for a contradiction that A 6= w(Afund). Then there exists a simple reflection s ∈ S such

that the wall w(Hs) = Hwsw−1 of w(Afund) separates w(Afund) and A. Since w(x) belongs to the

closures of both of the alcoves w(Afund) and A, we also have

w(x) ∈ A ∩ w(Afund) ⊆ w(Hs)

and it follows that s ∈ StabWaff
(x). Now let us write wsw−1 = sβ,m, for some β ∈ Φ+ and m ∈ Z,

and note that we have m =
(
w(x), β∨

)
because wsw−1 ∈ StabWaff

(
w(x)

)
. As x belongs to the upper

closure of A, we further have

nβ(A) <
(
w(x), β∨

)
≤ nβ(A) + 1

and it follows that nβ(A) + 1 = m and A ⊆ H−β,m. Finally, as Hβ,m = Hwsw−1 separates the alcoves

w(Afund) and A, we conclude that w(Afund) ⊆ H+
β,m and ws(Afund) ↑ w(Afund), contradicting the

assumption.

Next, for an alcove A ⊆ XR and reflections s, t ∈Waff , we want to investigate the linkage relation

between s(A) and ts(A).

Lemma 1.25. Let A ⊆ XR be an alcove and let H be a wall of A with corresponding reflection s = sH .

For any reflection t ∈Waff with t 6= s and A ↑ t(A), we have s(A) ↑ ts(A).

Proof. Note that the alcoves A and s(A) are adjacent and that H = Hs is the unique reflection

hyperplane separating them. Now the assumption A ↑ t(A) implies that A ⊆ H−t . As t 6= s, the

hyperplane Ht does not separate A and s(A), whence s(A) ⊆ H−t and s(A) ↑ ts(A).

Corollary 1.26. Let A ⊆ XR be an alcove and let H be a wall of A with corresponding reflection

s = sH . For any reflection t ∈Waff with t 6= s and d(A) < d
(
t(A)

)
, we have d

(
s(A)

)
< d
(
ts(A)

)
.

Proof. This is immediate from Lemmas 1.17 and 1.25.

As Waff is in bijection with the set of of alcoves (via x 7→ x(Afund), see Theorem I.2.5), we can also

consider d as a function on Waff .

Definition 1.27. For x ∈Waff , let d(x) := d
(
x(Afund)

)
.

Note that for x ∈ W+
aff , we have d(x) = d

(
Afund, x(Afund)

)
= `(x). The following result is only a

reformulation of Corollary 1.26 in terms of elements of Waff .
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Corollary 1.28. Let x ∈ Waff and s ∈ S. For any reflection t ∈ Waff with t 6= s and d(x) < d(xt),

we have d(xs) < d(xts).

Proof. Apply Corollary 1.26 to the alcove x(Afund) and the reflections xsx−1 and xtx−1.

Lemma 1.29. For x ∈Waff and s ∈ S, we have d(xs) ∈ {d(x) + 1, d(x)− 1}.

Proof. As the alcoves Afund and s(Afund) are adjacent (by Remark I.2.7), so are x(Afund) and xs(Afund).

Now Corollary 1.9 implies that

1 = d
(
x(Afund), xs(Afund)

)
=
∑
β∈Φ+

∣∣nβ(x(Afund)
)
− nβ

(
xs(Afund)

)∣∣ ,
from which the claim is immediate.

Lemma 1.30. Let x ∈W+
aff with x 6= e and let s ∈ S with xs < x. Then

xs ∈W+
aff , xs(Afund) ↑ x(Afund) and d(xs) = d(x)− 1.

Proof. We have xs ∈W+
aff by Corollary I.2.13 and therefore

d(xs) = `(xs) = `(x)− 1 = d(x)− 1 < d(x).

Now Lemma 1.17, applied to xs(Afund) and the reflection xsx−1, implies that xs(Afund) ↑ x(Afund).

Let x ∈ Waff and s ∈ S with x(Afund) ↑ xs(Afund). For applications in Section 5, it will be

important to consider sequences of elements x0, . . . , xd ∈Waff with

x0(Afund) ↑ x1(Afund) ↑ · · · ↑ xd(Afund) = x(Afund)

and such that d(xi) = d(x0)+ i and xi(Afund) ↑ xis(Afund) for i = 0, . . . , d. In the following, we denote

by s0 := sαh,1 the unique simple reflection with Afund ↑ s0(Afund).

Proposition 1.31. Let x ∈ Waff such that xs0 ∈ W+
aff and x(Afund) ↑ xs0(Afund). Then there exist

y0, . . . , yr ∈Waff with y0 ∈W+
aff and

y0(Afund) ↑ · · · ↑ yr(Afund) = x(Afund)

such that d(yi) = d(y0) + i, yi(Afund) ↑ yis0(Afund) and yis0 ∈W+
aff for i = 0, . . . , r.

Proof. We prove the claim by induction on d = d(xs0). Note that since xs0 ∈W+
aff , we have

d = d(xs0) = d
(
Afund, xs0(Afund)

)
= `(xs0).

If d = 0 then xs0 = e and x = s0, contradicting the assumption that x(Afund) ↑ xs0(Afund). If d = 1

then xs0(Afund) is adjacent to Afund, so xs0 = s for some s ∈ S. As sα /∈ W+
aff for all α ∈ Π, we

conclude that xs0 = s0 and x = e, and the claim follows with r = 0.

Now suppose that d ≥ 2 and that the claim is true for all y ∈Waff with d(ys0) < d that satisfy the

hypotheses of the proposition. If x ∈W+
aff then the claim follows with r = 0, so let us further assume

that x /∈W+
aff . We have d(xs0) = d(x) + 1 by Lemmas 1.17 and 1.29. Furthermore, as d(xs0) = d > 0,

we have xs0 6= e and there exists s ∈ S with xs0s < xs0, whence

xs0s ∈W+
aff , xs0s(Afund) ↑ xs0(Afund) and d(xs0s) = d(xs0)− 1
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by Lemma 1.30. Note that we have s 6= s0 because xs0s0 = x /∈W+
aff . As d(xs0s) < d(xs0) = d(xs0ss),

Corollary 1.28 yields

d(xs0ss0) < d(xs0sss0) = d(x) = d(xs0)− 1 = d(xs0s),

and using Lemma 1.29, we conclude that d(xs0ss0) = d(xs0s)− 1 = d(x)− 1. Now Lemma 1.17 yields

xs0ss0(Afund) ↑ x(Afund) and xs0ss0(Afund) ↑ xs0s(Afund) = (xs0ss0)s0(Afund),

and as (xs0ss0)s0 = xs0s ∈ W+
aff , the element xs0ss0 satisfies the hypothesis of the proposition.

Furthermore, we have d
(
(xs0ss0)s0

)
= d(xs0s) < d(xs0) = d, and by the induction hypothesis, there

exist y0, . . . yr ∈Waff with y0 ∈W+
aff and

y0(Afund) ↑ · · · ↑ yr(Afund) = xs0ss0(Afund)

such that d(yi) = d(y0) + i, yi(Afund) ↑ yis0(Afund) and yis0 ∈W+
aff for i = 0, . . . , r. Then the chain

y0(Afund) ↑ · · · ↑ yr(Afund) = xs0ss0(Afund) ↑ x(Afund)

has the required properties.

For the following result, we suppose that Φ is of type An. By Example I.2.6, this ensures that, for

all s, t ∈ S, we have either st = ts or sts = tst. Recall that we write s0 = sαh,1.

Proposition 1.32. Suppose that Φ is of type An. Let x ∈ W+
aff such that x(Afund) ↑ xs0(Afund) and

set d = d(x). Then there exist x0, . . . , xd ∈Waff with

Afund = x0(Afund) ↑ x1(Afund) ↑ · · · ↑ xd(Afund) = x(Afund)

and such that xi(Afund) ↑ xis0(Afund) and d(xi) = i for i = 0, . . . , d.

Proof. We prove the claim by induction on d = d(x) = d
(
Afund, x(Afund)

)
. If d = 0 then x = e and

the claim follows with x0 = e. Now suppose that d > 0 and that the claim is true for all y ∈W+
aff such

that d(y) < d and y(Afund) ↑ ys0(Afund). As d(x) = d > 0, we have x 6= e and there exists a simple

reflection s ∈ S with xs < x. Then Lemma 1.30 implies that

xs ∈W+
aff , xs(Afund) ↑ x(Afund) and d(xs) = d(x)− 1.

Also note that d(xs0) = d(x) + 1 = d+ 1 by Lemmas 1.17 and 1.29, in particular s 6= s0.

If xs(Afund) ↑ xss0(Afund) then, by induction, there exist x0, . . . , xd−1 ∈Waff with

Afund = x0(Afund) ↑ x1(Afund) ↑ · · · ↑ xd−1(Afund) = xs(Afund)

and such that xi(Afund) ↑ xis0(Afund) and d(xi) = i for i = 0, . . . , d− 1. In this case, the claim follows

with xd = x. Now suppose that xss0(Afund) ↑ xs(Afund) and therefore d(xss0) = d(xs)− 1 = d(x)− 2

by Lemmas 1.17 and 1.29. If s and s0 commute then

d(xss0) = d(xs0s) ≥ d(xs0)− 1 = d(x) > d(xs)

by Lemma 1.29 and therefore xs(Afund) ↑ xss0(Afund) by Lemma 1.17, a contradiction. Hence s does

not commute with s0, and it follows that ss0s = s0ss0 (see Example I.2.6). Applying Lemma 1.29

three times, we obtain

d(x)− 1 = d(xss0) + 1 ≥ d(xss0s) = d(xs0ss0) ≥ d(xs0s)− 1 ≥ d(xs0)− 2 = d(x)− 1,
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and therefore

d(x)− 1 = d(xss0) + 1 = d(xss0s) = d(xs0s)− 1.

Now Lemma 1.17 yields

xss0(Afund) ↑ xss0s(Afund) ↑ x(Afund) and xss0s(Afund) ↑ xs0s(Afund) = (xss0s)s0(Afund).

Recall that xs ∈ W+
aff and that xss0(Afund) ↑ xs(Afund) = (xss0)s0(Afund) by assumption. By Propo-

sition 1.31 (applied to xss0), there exist y0, . . . , yr ∈Waff with y0 ∈W+
aff and

y0(Afund) ↑ · · · ↑ yr(Afund) = xss0(Afund)

such that yi(Afund) ↑ yis0(Afund) and d(yi) = d(y0) + i for i = 0, . . . , r. Then d(y0) ≤ d(xss0) < d(x),

and by the induction hypothesis, there exist x0, . . . , xr′ ∈Waff with

Afund = x0(Afund) ↑ · · · ↑ xr′(Afund) = y0(Afund)

and such that xi(Afund) ↑ xis0(Afund) and d(xi) = i for i = 0, . . . , r′. Now the chain

Afund = x0(Afund) ↑ · · · ↑ xr′(Afund)

= y0(Afund) ↑ · · · ↑ yr(Afund) = xss0(Afund) ↑ xss0s(Afund) ↑ x(Afund)

has the required properties.

Chains of alcoves as in the preceding proposition will also be of interest if we replace s0 = sαh,1 by

an arbitrary simple reflection s ∈ S (and the fundamental alcove Afund by Afund + γ for some γ ∈ X).

Before stating a corollary of the proposition that establishes the existence of such chains, we need to

discuss the notion of extremal points of the fundamental alcove.

Remark 1.33. Recall from Remark I.2.7 that {Hα,0 | α ∈ Π} ∪ {Hαh,1} is the set of walls of Afund.

A point that lies in the intersection of all but one wall of Afund is called an extremal point of Afund.

It is straightforward to see that 0 is the unique extremal point of Afund that does not lie on Hαh,1.

Furthermore, for each simple root α ∈ Π, the unique extremal point of Afund that does not lie on the

wall Hα,0 is given by 1
cα
·$α, where cα := ($α, α

∨
h ).

As the action of Ω = StabWext(Afund) on XR permutes the walls of Afund, it also permutes the set

of extremal points of Afund. Furthermore, the only affine linear transformation of XR that fixes all

of the extremal points is the identity; hence the action of Ω on the set of extremal points of Afund is

faithful. This implies that the action of Ω on XR faithfully permutes the walls of Afund and that the

action of Ω on Waff by conjugation faithfully permutes the simple reflections.

Example 1.34. Suppose that Φ is of type An. Then α∨h =
∑

α∈Π α
∨ and by Remark 1.33, the set of

extremal points of Afund is given by {$α | α ∈ Π} ∪ {0}. Note that all extremal points belong to X

(which may not be true for other types of root systems).

Conjugation by ω ∈ Ω is an automorphism of Waff which permutes the simple reflections, hence it

induces a graph automorphism of the Coxeter diagram of Waff . As the action of

Ω ∼= X/ZΦ ∼= Z/(n+ 1)Z

by conjugation on the set S of simple reflections is faithful (again by Remark 1.33) and as the Coxeter

diagram of Waff (for Φ of type An) is a cycle of length n + 1 (see Example I.2.6), the action of Ω on

S by conjugation is transitive.
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Corollary 1.35. Suppose that Φ is of type An. Let x ∈Waff and s ∈ S such that x(Afund) ↑ xs(Afund).

Then there exist γ ∈ X and x0, . . . , xd ∈Waff with

Afund + γ = x0(Afund) ↑ x1(Afund) ↑ · · · ↑ xd(Afund) = x(Afund)

and such that xi(Afund) ↑ xis(Afund) and d(xi) = d(tγ) + i for i = 0, . . . , d.

Proof. The action of Ω on S by conjugation is transitive by Example 1.34, so let ω ∈ Ω with s = ωs0ω
−1

and write x′ = ω−1xω and ω = tµy with µ ∈ X and y ∈Wfin. Observe that we have

xs(Afund) = xωs0ω
−1(Afund) = xωs0(Afund) = ωx′s0(Afund) = yx′s0(Afund) + µ

and

x(Afund) = xω(Afund) = ωx′(Afund) = yx′(Afund) + µ,

so

yx′(Afund) + µ = x(Afund) ↑ xs(Afund) = yx′s0(Afund) + µ,

and it follows that yx′(Afund) ↑ yx′s0(Afund). Let us fix ν ∈ ZΦ with tνyx
′ ∈W+

aff , and note that

tνyx
′(Afund) = yx′(Afund) + ν ↑ yx′s0(Afund) + ν = tνyx

′s0(Afund).

By Proposition 1.32, there exist y0, . . . , yd ∈Waff with

Afund = y0(Afund) ↑ y1(Afund) ↑ · · · ↑ yd(Afund) = tνyx
′(Afund)

and such that d(yi) = i and yi(Afund) ↑ yis0(Afund) for i = 0, . . . , d. We define γ := µ− ν and

xi := tγyiω
−1 = tµt−νyiω

−1 = ω(y−1t−νyi)ω
−1 ∈Waff

for i = 0, . . . , d, so that xi(Afund) = yi(Afund) + γ. Thus

Afund + γ = x0(Afund) ↑ · · · ↑ xd(Afund) = tνyx
′(Afund) + γ = yx′(Afund) + µ = x(Afund)

and

d(xi)− d(tγ) = d
(
yi(Afund) + γ

)
− d(Afund + γ) = d(yi) = i

for i = 0, . . . , d. Furthermore, we have

xi(Afund) = yi(Afund) + γ ↑ yis0(Afund) + γ = tγyiω
−1 · ωs0ω

−1(Afund) = xis(Afund)

for i = 1, . . . , d, so the elements x0, . . . , xd ∈Waff have the required properties.

We conclude this section with another result that is only valid for Φ of type An; it will be needed

in Section 6.

Lemma 1.36. Suppose that Φ is of type An. For every alcove A ⊆ XR, there is a wall H of A such

that A ↑ sH(A). If there is a unique wall H of A with A ↑ sH(A) then A = Afund + γ for some γ ∈ X.
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Proof. Suppose that there are (at least) n walls H1, . . . ,Hn of A such that sHi(A) ↑ A for i = 1, . . . , n

and let w ∈ Waff such that w(A) = Afund. Then w(H1), . . . , w(Hn) are walls of Afund and there is an

extremal point δ of Afund such that
⋂
iw(Hi) = {δ}. By Example 1.34, we have δ ∈ X (recall that Φ is

of type An), so γ := w−1(δ) ∈ X and {γ} =
⋂
iHi. Thus A− γ is an alcove whose closure contains 0,

and the hyperplanes Hi− γ, for i = 1, . . . , n, are precisely the walls of A− γ containing 0. As Afund is

the unique dominant alcove whose closure contains 0, we have A− γ = w′(Afund) for some w′ ∈Wfin.

If w′ = e then A = Afund + γ, as required. Suppose for a contradiction that w′ 6= e, and choose

a simple root α ∈ Π such that w′(α) ∈ −Φ+. As Hα,0 is a wall of Afund (see Remark I.2.7), the

hyperplane H := H−w′(α),0 = w′(Hα,0) is a wall of the alcove A − γ = w′(Afund), and as 0 ∈ H, we

conclude that H = Hi − γ for some i ∈ {1, . . . , n}. Furthermore, we have

sH(A− γ) = sHi−γ(A− γ) = sHi(A)− γ ↑ A− γ,

because sHi(A) ↑ A. However, for x ∈ A− γ = w′(Afund), there exists y ∈ Afund such that x = w′(y)

and we have (
x,−w′(α)∨

)
=
(
w′(y),−w′(α)∨

)
= −(y, α∨) < 0,

that is A−γ ⊆ H−, a contradiction. Hence w′ = e and A−γ = Afund. The first claim follows because

the hyperplane H ′ := Hαh,1 + γ is a wall of A = Afund + γ with A ↑ sH′(A).

2 Quasi-translation functors

In the following sections, we will be concerned with functors of the form

Tµ,δλ := prµ(∇(δ)⊗−) : Repλ(G) −→ Repµ(G),

for λ, µ ∈ C fund ∩X and δ ∈ X+ not necessarily Wfin-conjugate to µ−λ. We call such functors quasi-

translation functors, because of their similarity with the translation functors Tµλ from Section I.6.

The purpose of this section is to discuss some properties of quasi-translation functors. We rely on

the following result from Lemma II.7.5 in [Jan03], which we will use to describe the action of quasi-

translation functors on the level of characters.

Lemma 2.1. Let M be a G-module in Repλ(G), for some λ ∈ C fund ∩X, and write

ch(M) =
∑

w∈Waff

aw · χ(w · λ),

with aw ∈ Z for all w ∈ Waff and aw = 0 for all but finitely many w. For any G-module V and any

weight µ ∈ C fund ∩X, we have

ch
(
prµ(V ⊗M)

)
=

∑
w∈Waff

aw ·
∑
ν

dimVν · χ
(
w · (λ+ ν)

)
,

where we sum over all ν ∈ X with λ+ ν ∈Waff · µ.

Now let us consider a quasi-translation functor

Tµ,δλ = prµ(∇(δ)⊗−) : Repλ(G) −→ Repµ(G),

for λ, µ ∈ C fund ∩X and δ ∈ X+. By the character formula in Lemma 2.1, we have

chTµ,δλ ∇(x · λ) = ch prµ
(
∇(δ)⊗∇(x · λ)

)
=
∑
ν

dim∇(δ)ν · χ
(
x · (λ+ ν)

)
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for all x ∈ Waff with x · λ ∈ X+, where we sum over all ν ∈ X such that λ + ν ∈ Waff · µ. The

summand corresponding to ν ∈ X contributes a non-zero term to this sum only if ν is a weight of the

costandard module ∇(δ); hence, setting

Λ(λ, µ, δ) :=
{
ν ∈ X

∣∣ λ+ ν ∈Waff · µ and ν is a weight if ∇(δ)
}
,

we have

(2.1) chTµ,δλ ∇(x · λ) =
∑

ν∈Λ(λ,µ,δ)

dim∇(δ)ν · χ
(
x · (λ+ ν)

)
.

Now for γ ∈ X and an `-alcove C ⊆ XR, let us write (γ)C for the unique Waff -conjugate of γ in the

closure of C (cf. Definition 1.14), with respect to the `-dilated dot action. Furthermore, let us define

C(λ, µ, δ) :=
{
C ⊆ XR

∣∣ C is an `-alcove and (µ)C − λ is a weight of ∇(δ)
}
.

Lemma 2.2. We have

Λ(λ, µ, δ) =
{

(µ)C − λ
∣∣ C ∈ C(λ, µ, δ)}

and

C(λ, µ, δ) =
{
C ⊆ XR

∣∣ C is an `-alcove with (µ)C − λ ∈ Λ(λ, µ, δ)
}
.

In particular, Λ(λ, µ, δ) is non-empty if and only if C(λ, µ, δ) is non-empty.

Proof. For ν ∈ Λ(λ, µ, δ) and C ⊆ XR an `-alcove with λ+ν ∈ C, we have (µ)C = λ+ν and it follows

that C ∈ C(λ, µ, δ). Conversely, for C ∈ C(λ, µ, δ) and ν := (µ)C − λ, we have ν + λ ∈ Waff · µ and ν

is a weight of ∇(δ), so ν ∈ Λ(λ, µ, δ).

Note that Λ(λ, µ, δ) is empty unless δ lies in the same ZΦ-coset as x ·µ−λ for some (and hence all)

x ∈Waff . Using the well-known fact that the set of weights of ∇(δ) equals conv
(
Wfin(δ)

)
∩ (δ + ZΦ),

it follows that

C(λ, µ, δ) =
{
C ⊆ XR

∣∣ C is an `-alcove and (µ)C − λ ∈ conv
(
Wfin(δ)

)}
,

whenever C(λ, µ, δ) is non-empty.

Lemma 2.3. If C(λ, µ, δ) is non-empty then C(λ, µ, δ) is centered at Cfund and Cfund ∈ C(λ, µ, δ).

Proof. Suppose that C(λ, µ, δ) is non-empty, so that

C(λ, µ, δ) =
{
C ⊆ XR

∣∣ C is an `-alcove and (µ)C − λ ∈ conv
(
Wfin(δ)

)}
by the above discussion. As explained in Section I.6, we have a correspondence between alcoves and

`-alcoves in XR, which sends an alcove A ⊆ XR to the `-alcove ` ·A− ρ. Let us define

x := (λ+ ρ)/`, y := (µ+ ρ)/` and z = δ/`

and consider the set of alcoves

A(x, y, z) =
{
A ⊆ XR

∣∣ A is an alcove and (y)A − x ∈ conv
(
Wfin(z)

)}
,

which is either empty or centered at Afund by Lemma 1.15, because λ ∈ C fund and thus

x = (λ+ ρ)/` ∈ (C fund + ρ)/` = Afund.
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Now it is straightforward to see that

C(λ, µ, δ) =
{
C ⊆ XR

∣∣ C is an `-alcove and (µ)C − λ ∈ conv
(
Wfin(δ)

)}
=
{
` ·A− ρ

∣∣ A ⊆ XR is an alcove and (y)A − x ∈ conv
(
Wfin(z)

)}
=
{
` ·A− ρ

∣∣ A ∈ A(x, y, z)
}

is centered at ` ·Afund − ρ = Cfund, as claimed. The second claim follows from Lemma 1.11.

Corollary 2.4. If Tµ,δλ is non-zero then µ− λ is a weight of ∇(δ).

Proof. If Tµ,δλ is non-zero then Λ(λ, µ, δ) is non-empty by equation (2.1), so C(λ, µ, δ) is non-empty

by Lemma 2.2 and Cfund ∈ C(λ, µ, δ) by Lemma 2.3. By the definition of C(λ, µ, δ), this means that

µ− λ = (µ)Cfund
− λ is a weight of ∇(δ), as claimed.

An immediate application of the preceding corollary is the following result, which will be very

useful later on.

Proposition 2.5. Let M be a G-module in Repλ(G) and let V be a minuscule G-module. Then

V ⊗M ∼=
⊕
ν

T νλM,

where we sum over all ν ∈ C fund ∩X such that ν − λ is a weight of V .

Proof. Recall that a G-module is called minuscule if all of its weights belong to the same Wfin-orbit

and that the minuscule G-module V is of the form V ∼= L($) = ∇($) for a minuscule weight $ ∈ X+,

that is, a dominant weight $ with ($,α∨h ) = 1. By the linkage principle, we have

V ⊗M =
⊕

ν∈Cfund∩X

prν
(
V ⊗M

) ∼= ⊕
ν∈Cfund∩X

T ν,$λ M,

where T ν,$λ M = 0 if ν − λ is not a weight of V , by Corollary 2.4. If ν − λ is a weight of V then ν − λ
is Wfin-conjugate to the highest weight $ of V because V is minuscule, so

T ν,$λ M ∼= prν
(
∇($)⊗M

) ∼= T νλM

and the claim follows.

3 The setup

From now on until the end of this chapter, we suppose that G is of type An and that ` ≥ n + 1.

We fix a numbering of the simple roots Π = {α1, . . . , αn}, in accordance with the Dynkin diagram in

Figure I.1.1 and denote by $i = $αi and si = sαi the fundamental dominant weight and the simple

reflection corresponding to αi, for i = 1, . . . , n. Furthermore, we write s0 = sαh,1 and adopt the

convention that $0 = 0 and $n+1 = 0. The positive roots in Φ are given by

Φ+ = {βi,j | 1 ≤ i ≤ j ≤ n},

where

βi,j = αi + · · ·+ αj = $i−1 +$i +$j −$j+1,
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and we have αh = β1,n = $1 +$n.

Recall from the introduction to the chapter (see page 95) that we want to study the generic direct

summand G(s0ω, x) of L(s0ω · 0) ⊗ L(x · 0), for x ∈ W+
aff and a certain fixed element ω ∈ Ω (to be

specified below), by realizing L(s0ω · 0) as a subquotient of the tilting module T (s0ω · 0) and giving a

detailed description of the functor

prω·0
(
T (s0ω · 0)⊗−

)
: Rep0(G) −→ Repω·0(G).

The starting point for our strategy is the following elementary lemma (which does not yet require the

hypothesis that G is of type An):

Lemma 3.1. For λ ∈ Cfund ∩X, the minimal tilting complex of L(s0 · λ) is of the form

Cmin

(
L(s0 · λ)

)
=
(

0→ T (λ)→ T (s0 · λ)→ T (λ)→ 0
)
,

with the tilting module T (s0 · λ) in homological degree 0.

Proof. This follows from Proposition II.2.6 because `(s0) = 1 and because e and s0 are the only

elements of W+
aff of length at most 1 (by Lemma I.2.12).

Remark 3.2. Let us explain another way of computing the minimal complex from Lemma 3.1. For

a weight µ ∈ C fund ∩X with StabWaff
(µ) = {e, s0}, we have L(µ) ∼= T (µ) by the linkage principle, and

it follows that T λµL(µ) is a tilting module. Now T λµL(µ) is indecomposable with simple head and socle

socGT
λ
µL(µ) ∼= headGT

λ
µL(µ) ∼= L(λ)

and with

radGT
λ
µL(µ)/socGT

λ
µL(µ) ∼= L(s0 · λ)

by Proposition I.6.10. By weight considerations, we conclude that T λµL(µ) ∼= T (s0 · λ). Furthermore,

the monomorphism T (λ) ∼= L(λ)→ T (s0 · λ) and the epimorphism T (s0 · λ)→ L(λ) ∼= T (λ) give rise

to a complex

C =
(

0→ T (λ)→ T (s0 · λ)→ T (λ)→ 0
)
,

where T (s0 · λ) is in homological degree zero, with H0(C) ∼= L(s0 · λ) and H i(C) = 0 for i 6= 0. It is

straightforward to see that C is minimal, and we conclude that C = Cmin

(
L(s0 · λ)

)
.

As mentioned before, we will apply Lemma 3.1 in the case where λ = ω · 0 for an element ω ∈ Ω,

which we define in the following lemma:

Lemma 3.3. We have ω := t$1s1s2 · · · sn ∈ Ω.

Proof. Note that we have snsn−1 · · · s1(α1) = −αh and snsn−1 · · · s1(αi) = αi−1 for 1 < i ≤ n. For

1 ≤ i, j ≤ n, we further have(
ω($i), α

∨
j

)
=
(
s1s2 · · · sn($i) +$1, α

∨
j

)
=
(
$i, snsn−1 · · · s1(α∨j )

)
+ δ1,j ,

and for j = 1, it follows that
(
ω($i), α

∨
1

)
= −

(
$i, α

∨
h

)
+ 1 = 0. For j > 1, we obtain(

ω($i), α
∨
j

)
= ($i, α

∨
j−1) = δi,j−1,

and we conclude that ω($n) = 0 and ω($i) = $i+1 for 1 ≤ i < n. Furthermore, we have ω(0) = $1,

so ω permutes the set {0, $1, . . . , $n} of extremal points of Afund (see Example 1.34), and it follows

that ω(Afund) = Afund and ω ∈ StabWext(Afund) = Ω, as claimed.
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For the remainder of this chapter, we fix

ω := t$1s1s2 · · · sn ∈ Ω and λ := ω · 0 ∈ Cfund ∩X.

Lemma 3.4. We have λ = ω · 0 = (`− n− 1) ·$1.

Proof. It is straightforward to see, by induction on i, that

sn−isn−i+1 · · · sn · 0 = −αn − 2αn−1 − · · · − (i+ 1) · αn−i = (i+ 1) ·$n−i−1 − (i+ 2) ·$n−i

for i = 0, . . . , n−1, with the convention that $0 = 0. In particular, we have s1s2 · · · sn·0 = −(n+1)·$1

and ω · 0 = t$1s1s2 · · · sn · 0 = (`− n− 1) ·$1, as claimed.

One advantage of working with T (s0 · λ) = T (s0ω · 0), rather than T (s0 · 0), is that we have a

tensor product decomposition of the former tilting module.

Proposition 3.5. We have s0 · λ = (`− n) ·$1 +$n and

T (s0 · λ) ∼= ∇($n)⊗∇
(
(`− n) ·$1

)
.

Proof. By Lemma 3.4, we have λ = (`− n− 1) ·$1, and it is straightforward to compute that

s0 · λ = λ− (λ+ ρ, α∨h ) · αh + `αh = λ+ αh = (`− n) ·$1 +$n.

Now the G-module ∇($n) is minuscule with set of weights {$n,−$1} ∪ {$i−1 − $i | 1 < i ≤ n}.
Furthermore, we have µ := (`− n) ·$1 ∈ C fund and using Proposition 2.5, it follows that

∇($n)⊗∇(µ) ∼=
⊕
ν

T νµ∇(µ),

where we sum over all ν ∈ C fund ∩X such that ν − µ is a weight of ∇($n).

For 1 < i ≤ n, the weight δi := µ+$i−1−$i is non-dominant and we have and δi ∈ Fµ ⊆ C fund, so

Proposition I.6.8 implies that T δiµ ∇(µ) = 0. As µ+$n /∈ C fund and µ−$1 = λ ∈ Cfund, we conclude

that

∇($n)⊗∇(µ) ∼= T λµ∇(µ).

Now ∇(µ) ∼= T (µ) by the linkage principle (because µ ∈ C fund) and it follows that T λµ∇(µ) ∼= T λµT (µ)

is a tilting module. Furthermore, as s0 is the only simple reflection that stabilizes µ, Lemma 1.21

implies that StabWaff
(µ) = {e, s0}. By Proposition I.6.9, the G-module T λµ∇(µ) is indecomposable

and has a good filtration with subquotients ∇(λ) and ∇(s0 · λ). We conclude that

∇($n)⊗∇(µ) ∼= T λµ∇(µ) ∼= T (s0 · λ),

as claimed.

Now let us consider the functor

Ψ := prλ
(
T (s0 · λ)⊗−

)
: Rep0(G) −→ Repλ(G).

By Lemma 3.1, we can choose a monomorphism

e : T (λ) −→ T (s0 · λ)
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and an epimorphism

p : T (s0 · 0) −→ T (λ)

such that im(e) ⊆ ker(p) and ker(p)/im(e) ∼= L(s0 · λ), and as λ ∈ Cfund, these homomorphisms give

rise to natural transformations

ϑ = prλ(e⊗−) : T λ0 = prλ
(
T (λ)⊗−

)
=⇒ prλ

(
T (s0 · λ)⊗−

)
= Ψ

and

π = prλ(p⊗−) : Ψ = prλ
(
T (s0 · λ)⊗−

)
=⇒ prλ

(
T (λ)⊗−

)
= T λ0 .

For every G-module M in Rep0(G), the components of ϑ and π at M satisfy im(ϑM ) ⊆ ker(πM ) and

ker(πM )/im(ϑM ) ∼= prλ

((
ker(p)/im(e)

)
⊗M

)
∼= prλ

(
L(s0 · λ)⊗M

)
,

by the construction of ϑ and π.

Next, let us set µ := (`− n) ·$1 and fix an isomorphism

f : T (s0 · λ) −→ ∇($n)⊗∇(µ),

as given by Proposition 3.5. Then f and the associativity of tensor products give rise to a natural

isomorphism

Ψ = prλ
(
T (s0 · 0)⊗−

)
=⇒ prλ

(
∇($n)⊗−

)
◦
(
∇(µ)⊗−

)
,

where we view
(
∇(µ)⊗−

)
as a functor from Rep0(G) to Rep(G) and prλ

(
∇($n)⊗−

)
as a functor

from Rep(G) to Repλ(G). By the linkage principle, we have an isomorphism of functors(
∇(µ)⊗−

) ∼= ⊕
ν∈Cfund∩X

prν
(
∇(µ)⊗−

)
,

and by composing with the functor prλ
(
∇($n)⊗−

)
, we obtain

Ψ ∼= prλ
(
∇($n)⊗−

)
◦
(
∇(µ)⊗−

)
∼=

⊕
ν∈Cfund∩X

prλ
(
∇($n)⊗−

)
◦ prν

(
∇(µ)⊗−

)
=

⊕
ν∈Cfund∩X

T λ,$nν ◦ T ν,µ0 .

Recall from Corollary 2.4 that T λ,$nν is zero unless λ− ν is a weight of ∇($n) and from the proof of

Proposition 3.5 that ∇($n) is minuscule with set of weights {$n,−$1} ∪ {$i−1 −$i | 1 < i ≤ n}.
Let us define

µ0 := λ+$1 = (`− n) ·$1 = µ,

µ1 := λ− ($1 −$2) = (`− n− 2) ·$1 +$2 = µ− α1,

µi := λ− ($i −$i+1) = (`− n− 1) ·$1 −$i +$i+1 = µ− β1,i for 2 ≤ i ≤ n,

and note that µi ∈ C fund ∩X for 0 ≤ i ≤ n. By construction, {µ0, µ1, . . . , µn} is precisely the set of

weights ν ∈ C fund ∩X such that λ− ν is a weight of ∇($n), and it follows that

Ψ ∼=
n⊕
i=0

T λ,$nµi ◦ Tµi,µ0 =

n⊕
i=0

T λµi ◦ T
µi,µ
0 ,
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where T λ,$nµi = T λµi because λ− µi is Wfin-conjugate to $n for i = 0, . . . , n. We write

pri : Ψ =⇒ T λµi ◦ T
µi,µ
0 =: Θi

for the natural transformation that projects onto a direct summand in the above direct sum decom-

position of Ψ and consider the natural transformations

ϑi := pri ◦ ϑ : T λ0 =⇒ Θi,

for i = 0, . . . , n. In the following sections, we will show that

(1) the functor Θi = T λµi ◦ T
µi,µ
0 behaves essentially like the wall crossing functor T λµi ◦ T

µi
0 corre-

sponding to the simple reflection si (with some adjustments in the case i = 1);

(2) the component (ϑi)L(x·0) of ϑi at a simple G-module L(x · 0), for x ∈ W+
aff , is non-zero if and

only if x(Afund) ↑ xsi(Afund).

This will enable us to give a description of the generic direct summands G(s0ω, x) for all x ∈W+
aff .

4 Properties of Θi

We keep the notation and assumptions from Section 3. Recall that we consider the functors

Θi = T λµi ◦ T
µi,µ
0

for i = 0, . . . , n, where λ = ω · 0 = (`− n− 1) ·$1, µ = (`− n) ·$1 and

µ0 = λ+$1 = (`− n) ·$1 = µ,

µ1 = λ− ($1 −$2) = (`− n− 2) ·$1 +$2,

µi = λ− ($i −$i+1) = (`− n− 1) ·$1 −$i +$i+1 for 2 ≤ i ≤ n.

Note that for i 6= 1, we have StabWaff
(µi) = {e, si} because si is the unique simple reflection that

stabilizes µi (see Lemma 1.21). For i = 1, we still have StabWaff
(µ1) = {e, s1} in case ` = n + 1,

but for ` > n + 1, the weight µ1 is `-regular (so that T λµ1
is an equivalence by Proposition I.6.7).

In either case, the translation functors T λµi are well-understood by the results from Section I.6 (see

in particular Propositions I.6.9 and I.6.10), so we will focus on understanding the quasi-translation

functors Tµi,µ0 . For i = 0, we have µ0 = µ and therefore Tµ0,µ
0 = Tµ0

0 = Tµ0 . Our first aim will be to

show that for i ≥ 2, the quasi-translation functor Tµi,µ0 acts like the translation functor Tµi0 on the

level of characters. (We do not know if there exists a natural isomorphism between these functors.)

Recall from equation (2.1) that we have

(4.1) chTµi,µ0 ∇(x · 0) =
∑

ν∈Λ(0,µi,µ)

dim∇(µ)ν · χ(x · ν)

for all x ∈W+
aff , where

Λ(0, µi, µ) =
{
ν ∈ X

∣∣ ν ∈Waff · µi and ν is a weight of ∇(µ)
}
.

Furthermore, we have Λ(0, µi, µ) =
{

(µi)C
∣∣ C ∈ C(0, µi, µ)

}
, where

C(0, µi, µ) =
{
C ⊆ XR

∣∣ C is an `-alcove and (µi)C is a weight of ∇(µ)
}
,

and the set C(0, µi, µ) is centered at Cfund (or empty); see Lemmas 2.2 and 2.3. In order to describe the

action of the functors Tµi,µ0 on the level of characters, we first compute the sets of `-alcoves C(0, µi, µ).

This will be achieved in Corollary 4.4 below, but we start with some weight considerations.
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Lemma 4.1. For i = 0, . . . , n, we have dim∇(µ)µi = 1.

Proof. For i = 0, the claim is obvious because µ0 = µ, and for i = 1, it follows by truncation to

to the Levi subgroup corresponding to the subset {α1} ⊆ Π, since µ1 = µ − α1. For i > 1, it is

straightforward to see that µi−1 = si(µi) and therefore

dim∇(µ)µn = dim∇(µ)µn−1 = · · · = dim∇(µ1)µ1 = 1,

as claimed.

Lemma 4.2. Let i, j ∈ {1, . . . , n}. Then µ− β1,i + αj is a weight of ∇(µ) if and only if i = j.

Proof. If j > i then µ− β1,i + αj � µ and if j < i then

sβj+1,i
(µ− β1,i + αj) = µ− β1,j−1 + βj+1,i � µ,

with the convention that β1,0 = 0. In both cases, it follows that µ− β1,i + αj is not a weight of ∇(µ).

If i = j then we have

µ− β1,i + αi = µ− β1,i−1 = µi−1

for i > 1 and µ− β1,1 + α1 = µ, so the claim follows from Lemma 4.1.

Proposition 4.3. For i = 0, . . . , n and s ∈ S, we have s · Cfund ∈ C(0, µi, µ) if and only if s = si.

Proof. First note that we have (µi)s·Cfund
= s · µi for all s ∈ S because µi ∈ C fund. Therefore, our

claim is equivalent to proving that s · µi is a weight of ∇(µ) if and only if s = si. For i 6= 1, we have

si · µi = µi (as observed before) and dim∇(µ)µi = 1 by Lemma 4.1. For i = 1, we have

s1 · µ1 = s1(µ1)− α1 = s1(µ1 + α1) = s1(µ)

and dim∇(µ)s1(µ) = dim∇(µ)µ = 1. It remains to show that sj · µi is not a weight of ∇(µ) for j 6= i.

First suppose that j = 0. We have

s0 · µi = µi + αh = µ+ βi+1,n > µ

for 1 ≤ i < n and

s0 · µn = µn + 2αh = µ+ αh > µ,

and it follows that s0 · µi is not a weight of ∇(µ) for i 6= 0.

Now suppose that j ≥ 1 and note that sj · x = sj(x)− αj = sj(x+ αj) for all x ∈ XR. For i = 0,

it follows that sj · µ0 = sj(µ+αj) is not a weight of ∇(µ) because µ+αj > µ. For 1 ≤ i ≤ n, we find

that

sj · µi = sj(µi + αj) = sj(µ− β1,i + αj)

is a weight of ∇(µ) if and only if i = j by Lemma 4.2.

Corollary 4.4. For i = 0, . . . , n, we have C(0, µi, µ) = {Cfund, si · Cfund}.

Proof. Recall from Proposition 4.3 that si is the unique simple reflection with si · Cfund ∈ C(0, µi, µ)

and from Lemma 2.3 that the set C(0, µi, µ) is centered at Cfund. As the walls of Cfund are precisely

the reflection hyperplanes corresponding to the simple reflections (see Remark I.2.7), the claim follows

from Lemma 1.13.
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Now we are ready to prove that the quasi-translation functors Tµi,µ0 act like translation functors

on the level of chatacters, first for i 6= 1 and then for i = 1.

Proposition 4.5. Let M be a G-module in Rep0(G) and let i ∈ {0, . . . , n}. Furthermore, suppose

that either i 6= 1 or ` = n+ 1. Then we have

ch
(
Tµi,µ0 M

)
= ch

(
Tµi0 M

)
.

Proof. If ` = n+ 1 then µi = −$i +$i+1 is Wfin-conjugate to µ = $1 for i = 0, . . . , n, so Tµi,µ0 = Tµi0

and the claim is immediate. Now suppose that i 6= 1 and ` ≥ n+ 1. As the characters of the induced

modules form a basis of Z[X]Wfin , it suffices to prove the claim in the case where M = ∇(x · 0) for

some x ∈W+
aff . As StabWaff

(0) = {e}, Proposition I.6.5 yields

ch
(
Tµi0 ∇(x · 0)

)
= χ(x · µi).

Furthermore, we have C(0, µi, µ) = {Cfund, si · Cfund} by Corollary 4.4 and

Λ(0, µi, µ) =
{

(µi)Cfund
, (µi)si·Cfund

}
= {µi, si · µi} = {µi},

by Lemma 2.2, and using equation (4.1), we conclude that

ch
(
Tµi,µ0 ∇(x · 0)

)
=

∑
ν∈Λ(0,µi,µ)

dim∇(µ)ν · χ
(
x · ν

)
= dim∇(µ)µi · χ(x · µi).

Now the claim follows because dim∇(µ)µi = 1 by Lemma 4.1.

Proposition 4.6. Suppose that ` > n+1 and let M be a G-module in Rep0(G). Then, for any weight

δ ∈ C fund ∩X with StabWaff
(δ) = {e, s1}, we have

ch
(
Tµ1,µ

0 M
)

= ch
(
Tµ1

δ T δ0M
)

Proof. As in the proof of Proposition 4.5, it suffices to prove the claim in the case where M = ∇(x ·0)

for some x ∈W+
aff . By Proposition I.6.5, we have

ch
(
T δ0∇(x · 0)

)
= χ(x · δ) and ch

(
Tµ1

δ T δ0∇(x · 0)
)

= χ(x · µ1) + χ(xs1 · µ1)

because StabWaff
(0) = {e} = StabWaff

(µ1) and StabWaff
(δ) = {e, s1}. Furthermore, we have

Λ(0, µ1, µ) =
{

(µ1)Cfund
, (µ1)s1·Cfund

}
= {µ1, s1 · µ1}

by Lemma 2.2 and Corollary 4.4, and equation (4.1) yields

ch
(
Tµ1,µ

0 ∇(x · 0)
)

=
∑

ν∈Λ(0,µ1,µ)

dim∇(µ)ν · χ
(
x · ν

)
= dim∇(µ)µ1 · χ(x · µ1) + dim∇(µ)s1·µ1 · χ(xs1 · µ1).

The claim follows because dim∇(µ)µ1 = 1 (by Lemma 4.1) and dim∇(µ)s1·µ1 = 1 (since s1·µ1 = s1(µ),

as computed in the proof of Proposition 4.3).

For i 6= 1, we can now explicitly determine Tµi,µ0 ∇(x · 0) and Tµi,µ0 L(x · 0) for x ∈W+
aff .
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Corollary 4.7. Let x ∈W+
aff and i ∈ {0, . . . , n}. Furthermore, suppose that either i 6= 1 or ` = n+ 1.

Then we have

Tµi,µ0 ∇(x · 0) ∼=

{
∇(x · µi) if x · µi ∈ X+,

0 otherwise

and

Tµi,µ0 L(x · 0) ∼=

{
L(x · µi) if x · Cfund ↑` xsi · Cfund,

0 otherwise.

Proof. Note that Tµi,µ0 ∇(x·0) = prµi
(
∇(µ)⊗∇(x·0)

)
has a good filtration and that the multiplicity of

an induced module as a subquotient in a good filtration is determined by the character of Tµi,µ0 ∇(x·0).

Analogously, the multiplicity of a simple G-module in a composition series of Tµi,µ0 L(x·0) is determined

by the character of Tµi,µ0 L(x · 0). As

ch
(
Tµi,µ0 ∇(x · 0)

)
= ch

(
Tµi0 ∇(x · 0)

)
and ch

(
Tµi,µ0 L(x · 0)

)
= ch

(
Tµi0 L(x · 0)

)
by Proposition 4.5, the claim follows from Proposition I.6.8 and the observation that x · µi belongs to

the upper closure of x · Cfund if and only if x · Cfund ↑` xsi · Cfund (see Lemma 1.24).

Let us conclude this Section with some observations about the functors Θi = T λµi ◦ T
µi,µ
0 , which

will be important later on.

Corollary 4.8. For x ∈W+
aff and i ∈ {0, . . . , n} with xsi(Afund) ↑ x(Afund), we have ΘiL(x · 0) = 0.

Proof. If i 6= 1 or ` = n+ 1 then Tµi,µ0 L(x · 0) = 0 by Corollary 4.7 and it follows that ΘiL(x · 0) = 0.

Now suppose that i = 1 and ` > n + 1, and let δ ∈ C fund ∩ X such that StabWaff
(δ) = {e, s1}. By

Proposition 4.6, we have

ch
(
Tµ1,µ

0 L(x · 0)
)

= ch
(
Tµ1

δ T δ0L(x · 0)
)
.

As xs1(Afund) ↑ x(Afund), the weight x · δ does not belong to the upper closure of the alcove x ·Cfund

by Lemma 1.24, so Proposition I.6.8 implies that T δ0L(x · 0) = 0 and the claim follows.

Corollary 4.9. For x ∈ W+
aff and i ∈ {0, . . . , n} such that x(Afund) ↑ xsi(Afund), there is a non-split

short exact sequence

0 −→ ∇(x · λ) −→ Θi∇(x · 0) −→ ∇(xsi · λ) −→ 0.

Proof. If i 6= 1 or ` = n+ 1 then StabWaff
(µi) = {e, si} and the assumption that x(Afund) ↑ xsi(Afund)

implies that x·µi ∈ X+. Now Corollary 4.7 yields Tµi,µ0 ∇(x·0) ∼= ∇(x·µi), so Θi∇(x·0) ∼= T λµi∇(x·µi)
and the claim follows from Proposition I.6.9.

Now suppose that i = 1 and ` > n+ 1, and note that Tµ1,µ
0 ∇(x · 0) = prµ1

(
∇(µ)⊗∇(x · 0)

)
has a

good filtration. Furthermore, for δ ∈ C fund ∩X with StabWaff
(δ) = {e, s1}, we have

ch
(
Tµ1,µ

0 ∇(x · 0)
)

= ch
(
Tµ1

δ T δ0∇(x · 0)
)

by Proposition 4.6. Using Propositions I.6.8 and I.6.9, we see that T δ0∇(x · 0) ∼= ∇(x · δ) and that

there is a short exact sequence

0 −→ ∇(x · µ1) −→ Tµ1

δ T δ0∇(x · 0) −→ ∇(xs1 · µ1) −→ 0.

In particular, we have

ch
(
Tµ1,µ

0 ∇(x · 0)
)

= ch
(
Tµ1

δ T δ0∇(x · 0)
)

= ch∇(x · µ1) + ch∇(xs1 · µ1)
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and it follows that Tµ1,µ
0 ∇(x ·0) has a good filtration with subquotients ∇(x ·µ1) and ∇(xs1 ·µ1), both

appearing with multiplicity one. As x · µ1 < xs1 · µ1, the good filtration can be chosen with ∇(x · µ1)

as a submodule and ∇(xs1 ·µ1) as a quotient of Tµ1,µ
0 ∇(x ·0) (see the remarks after Proposition I.5.1),

so there is a short exact sequence

0 −→ ∇(x · µ1) −→ Tµ1,µ
0 ∇(x · 0) −→ ∇(xs1 · µ1) −→ 0.

Note that µ is `-singular, so ∇(µ) is a singular G-module by Lemma II.4.2. As singular G-modules

form a thick tensor ideal, it follows that Tµ1,µ
0 ∇(x · 0) is singular. In particular, as ∇(x ·µ1) is regular

by Lemma II.4.3 (and taking duals), the above short exact sequence is non-split. Now the claim follows

by applying the translation functor T λµ1
to this short exact sequence.

Proposition 4.10. Let x ∈W+
aff and i ∈ {0, . . . , n} such that x(Afund) ↑ xsi(Afund). Then there exists

a weight δ ∈ C fund ∩X with StabWaff
(δ) = {e, si} such that ΘiL(x · 0) ∼= T λδ L(x · δ).

Proof. If i 6= 1 or ` = n+ 1 then StabWaff
(µi) = {e, si} and by Corollary 4.7, we have

Tµi,µ0 L(x · 0) ∼= L(x · µi).

This implies that ΘiL(x · 0) ∼= T λµiL(x ·µi) and the claim follows with δ = µi. Now suppose that i = 1

and ` > n+ 1, and choose any weight δ ∈ C fund ∩X with StabWaff
(δ) = {e, s1}. By Proposition I.6.9,

there is a non-split short exact sequence

0 −→ ∇(x · λ) −→ T λδ ∇(x · δ) −→ ∇(xs1 · λ) −→ 0

and we have socGT
λ
δ ∇(x ·δ) ∼= L(x ·λ). Furthermore, the G-module T λδ ∇(x ·δ) is the unique non-split

extension of ∇(xs1 · λ) by ∇(x · λ), as remarked after Proposition I.6.10. Now by Corollary 4.9, there

is a non-split short exact sequence

0 −→ ∇(x · λ) −→ Θ1∇(x · 0) −→ ∇(xs1 · λ) −→ 0

and it follows that Θ1∇(x · 0) ∼= T λδ ∇(x · δ). As Θ1 is exact, there is an embedding

Θ1L(x · 0) −→ Θ1∇(x · 0) ∼= T λδ ∇(x · δ),

and in particular, we have either socGΘ1L(x · 0) ∼= L(x · λ) or Θ1L(x · 0) = 0. We claim that the

above embedding factors through an embedding of Θ1L(x · 0) into T λδ L(x · δ).
First observe that we have

ch Θ1L(x · 0) = ch
(
T λµ1

Tµ1

δ T δ0L(x · 0)
)

= chT λδ L(x · δ)

by Propositions 4.6 and I.6.8 and that T λδ L(x · δ) is non-zero by Proposition I.6.10. Furthermore, we

have ∇(µ) ∼= L(µ) because µ ∈ C fund, so Θ1L(x · 0) = T λµ1
Tµ1,µ

0 L(x · 0) is contravariantly self-dual and

it follows that

headGΘ1L(x · 0) ∼= socGΘ1L(x · 0) ∼= L(x · λ).

By Propositions I.6.10 and I.6.11, we have [T λδ L(x · δ) : L(x · λ)] = 2 and

[∇(xs1 · λ) : L(x · λ)] = [∇(x · λ) : L(x · λ)] = 1,

so [T λδ ∇(x · δ) : L(x · λ)] = 2 by our first short exact sequence. This implies that L(x · λ) is not a

composition factor of the quotient Q of T λδ ∇(x · δ) by the naturally embedded submodule T λδ L(x · δ).
As headGΘ1L(x · 0) ∼= L(x · λ), there is no non-zero homomorphism from Θ1L(x · 0) to Q, and we

conclude that the embedding Θ1L(x · 0)→ T λδ ∇(x · δ) factors through T λδ L(x · δ), as claimed. Finally,

as the characters of Θ1L(x · 0) and T λδ L(x · δ) coincide, it follows that Θ1L(x · 0) ∼= T λδ L(x · δ).
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5 Properties of ϑi

We keep the notation and assumptions from Section 3. Recall that we consider the functor

Ψ = prλ
(
T (s0 · λ)⊗−

)
,

which decomposes as a direct sum

Ψ ∼= Θ0 ⊕Θ1 ⊕ · · · ⊕Θn

of the functors Θi studied in Section 4. Furthermore, the fixed homomorphisms

e : T (λ) −→ T (s0 · λ) and p : T (s0 · λ) −→ T (λ)

give rise to natural transformations

ϑ = prλ(e⊗−) : T λ0 =⇒ Ψ and π = prλ(p⊗−) : Ψ =⇒ T λ0

such that, for every G-module M in Rep0(G), we have ker(πM )/im(ϑM ) ∼= prλ
(
L(s0 · λ)⊗M

)
.

For x ∈W+
aff , we have

ΨL(x · 0) ∼= Θ0L(x · 0)⊕ · · · ⊕ΘnL(x · 0),

and each of the G-modules ΘiL(x · 0) is either zero or admits a description as the ‘translation from

an si-wall’ T λδiL(x · δi) of a simple G-module L(x · δi), for δi ∈ C fund ∩X with StabWaff
(δi) = {e, si}

(see Corollary 4.8 and Proposition 4.10). The component at L(x · 0) of the natural transformation ϑ

gives an embedding

ϑL(x·0) : L(x · λ) ∼= T λ0 L(x · λ) −→ ΨL(x · 0),

which induces homomorphisms L(x · λ)→ ΘiL(x · 0) for i = 0, . . . , n by composition with the projec-

tions onto the direct summands. In order to describe the subquotient

ker
(
πL(x·0)

) /
im
(
ϑL(x·0)

) ∼= prλ
(
L(s0 · λ)⊗ L(x · 0)

)
,

we need to understand precisely which of the homomorphisms L(x · λ) → ΘiL(x · 0) are non-zero.

This requires a detailed analysis of the natural transformations

ϑi = pri ◦ ϑ : T λ0 =⇒ Θi

(where pri : Ψ =⇒ Θi denotes the canonical projection), which will be carried out in this section. We

start by giving a sufficient condition for the non-vanishing of the component (ϑi)L(x·0) of ϑi at a simple

G-module L(x · 0).

Lemma 5.1. Let x ∈W+
aff and i ∈ {0, . . . , n} such that x(Afund) ↑ xsi(Afund). If x(Afund) = Afund +γ

for some γ ∈ X then (ϑi)L(x·0) 6= 0.

Proof. As observed before, the alcove Afund has a unique wall H = Hαh,1 with Afund ↑ sH(Afund),

hence x(Afund) = Afund + γ has a unique wall H ′ = H + γ with x(Afund) ↑ sH′x(Afund). This implies

that si is the unique simple reflection with x(Afund) ↑ xsi(Afund), so xsj(Afund) ↑ x(Afund) for j 6= i

and ΘjL(x · 0) = 0 by Corollary 4.8. In particular, we have (ϑj)L(x·0) = 0 for j 6= i, and the claim

follows because

ϑL(x·0) : L(x · λ) ∼= T λ0 L(x · 0) −→ ΨL(x · 0)

is injective (hence non-zero) and ϑ = ϑ0 ⊕ · · · ⊕ ϑn.
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Our next goal is to show that the non-vanishing of (ϑi)L(x·0) is ‘invariant under translation by the

root lattice’. More precisely, we want to establish that, for x ∈W+
aff and γ ∈ ZΦ such that tγx ∈W+

aff ,

we have (ϑi)L(x·0) 6= 0 if and only if (ϑi)L(tγx·0) 6= 0. To that end, we will consider analogues of Θi and

ϑi for G1T-modules (rather than G-modules) and use the fact that tensoring with the one-dimensional

G1T-module `γ is an equivalence with `γ⊗ L̂1(x ·λ) ∼= L̂1(tγx ·λ) (see Section I.8). Our goal will then

be achieved by a comparison of Θi and ϑi with their G1T-versions. In order to carry out this strategy,

we will need some more notation for functors and natural transformations, which we introduce in the

following remark.

Remark 5.2. Let C and D be categories and let F1 and F2 be functors from C to D. As before, for

a natural transformation ψ : F1 → F2 and M an object of C, we write ψM : F1(M) → F2(M) for the

component of ψ at M . For a category E and a functor F : D → E , we have a natural transformation

F ψ : F ◦ F1 → F ◦ F2

with component (F ψ)M = F (ψM ) : F ◦ F1(M)→ F ◦ F2(M) at an object M of C. Analogously, for a

category B and a functor F ′ : B → C, there is a natural transformation

ψ F ′ : F1 ◦ F ′ → F2 ◦ F ′

with component (ψ F ′)N = ψF ′(N) : F1 ◦F ′(N)→ F2 ◦F ′(N) at an object N of B. For another functor

F3 : C → D and a natural transformation ϕ : F2 → F3, we have

F (ϕ ◦ ψ) = F ϕ ◦ F ψ and (ϕ ◦ ψ)F ′ = ϕF ′ ◦ ψ F ′,

and it is straightforward to see that F ψ F ′ := (F ψ)F ′ = F (ψ F ′).

Recall that from Section 3 that the functor Θi : Rep0(G)→ Repλ(G) is defined by

Θi = T λµi ◦ T
µi,µ
0 = prλ

(
∇($1)⊗−

)
◦ prµi

(
∇(µ)⊗−

)
,

for i ∈ {0, . . . , n}. Furthermore, the natural transformation ϑi : T
λ
0 → Θi is the composition of

prλ
(
(f ◦ e)⊗−

)
: T λ0 = prλ

(
T (λ)⊗−

)
=⇒ prλ

(
∇($1)⊗∇(µ)⊗−

)
with

prλ
(
∇($1)⊗−

)
prµi

(
∇(µ)⊗−

)
: prλ

(
∇($1)⊗∇(µ)⊗−

)
=⇒ prλ

(
∇($1)⊗−

)
◦prµi ◦

(
∇(µ)⊗−

)
,

where e : T (λ) → T (s0 · λ) and f : T (s0 · λ) → ∇($1) ⊗ ∇(µ) are the fixed homomorphisms from

Section 3. Here, by abuse of notation, we consider prµi as a natural transformation from the identity

functor on Rep(G) to the projection functor prµi , whose component at a G-module M is the natural

projection M → prµiM . Thus prλ
(
∇($1) ⊗ −

)
prµi

(
∇(µ) ⊗ −

)
is indeed a natural transformation

from the functor

prλ
(
∇($1)⊗∇(µ)⊗−

) ∼= prλ
(
∇($1)⊗−

)
◦ idRep(G) ◦

(
∇(µ)⊗−

)
to the functor prλ

(
∇($1)⊗−

)
◦ prµi ◦

(
∇(µ)⊗−

)
; see Remark 5.2.

Now let us simplify notation by writing r = resGG1T
and define

Θ̂i := prλ
(
r∇($1)⊗−

)
◦ prµi

(
r∇(µ)⊗−

)
: Rep0(G1T) −→ Repλ(G1T),
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for i = 0, . . . , n. Furthermore, we define natural transformations ϑ̂i : T
λ
0 =⇒ Θ̂i by

ϑ̂i :=
(

prλ
(
r∇($1)⊗−

)
prµi

(
r∇(µ)⊗−

))
◦ prλ

(
r(f ◦ e)⊗−

)
;

see the last paragraph of Section I.8 for a discussion of translation functors for G1T-modules. By

construction, we have equalities of functors r ◦Θi = Θ̂i ◦ r and of natural transformations r ϑi = ϑ̂i r

(from r ◦T λ0 = T λ0 ◦ r to r ◦Θi = Θ̂i ◦ r). This allows us to relate the non-vanishing of the components

of ϑi and ϑ̂i at simple G-modules and simple G1T-modules, respectively.

Lemma 5.3. For x ∈W+
aff and i ∈ {0, . . . , n}, we have (ϑi)L(x·0) 6= 0 if and only if (ϑ̂i)L̂1(x·0)

6= 0.

Proof. Let us write x · 0 = λ0 + `λ1 with λ0 ∈ X1 and set L = L(λ1) or L = LC(λ1), in the modular

case or in the quantum case, respectively. As explained in Section I.8, we have

L̂1(x · 0) ∼= L̂1(λ0)⊗ `λ1 and L(x · 0) ∼= L(λ0)⊗ L[1],

where L̂1(λ0) ∼= rL(λ0). Furthermore, the restriction to G1T of the Frobenius twist L[1] decomposes

as a direct sum of one-dimensional G1T-modules `ν for the different weights ν of L, each occurring

dimLν times; hence there exists an embedding of G1T-modules `λ1 → rL[1]. It is straightforward to

see that the latter induces an embedding of G1T-modules

ι : L̂1(x · 0) −→ rL(x · 0).

By the above discussion, we have a commutative diagram

L̂1(x · λ) Θ̂iL̂1(x · 0)

rL(x · λ) Θ̂irL(x · 0)

(ϑ̂i)L̂1(x·0)

Tλ0 ι Θ̂iι

(ϑ̂i)rL(x·0)

where Θ̂irL(x · 0) = rΘiL(x · 0) and (ϑ̂i)rL(x·0) = r
(
(ϑi)L(x·0)

)
. If (ϑi)L(x·0) is non-zero then (ϑi)L(x·0)

is injective because L(x ·λ) is simple, hence r
(
(ϑi)L(x·0)

)
◦T λ0 ι is injective. It follows that (ϑ̂i)L̂1(x·0)

is

injective and therefore non-zero. Conversely, if (ϑ̂i)L̂1(x·0)
is non-zero then Θ̂iι ◦ (ϑ̂i)L̂1(x·0)

is non-zero

because Θ̂iι is injective by exactness of Θ̂i; hence (ϑi)L(x·0) is non-zero, as claimed.

Now recall that for γ ∈ ZΦ, tensoring with the one-dimensional simple G1T-module `γ = L̂1(`γ)

gives rise to an auto-equivalence of Rep(G1T) with prν ◦(`γ⊗−) = (`γ⊗−)◦prν for all ν ∈ C fund∩X.

Any fixed choice of isomorphisms of G1T-modules

(5.1) r∇($1)⊗ `γ ∼= `γ ⊗ r∇($1) and r∇(µ)⊗ `γ ∼= `γ ⊗ r∇(µ)

gives rise to a commutative diagram of functors and natural transformations
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prλ
(
r∇($1)⊗ r∇(µ)⊗ `γ ⊗−

)
prλ
(
r∇($1)⊗−

)
◦ prµi ◦

(
r∇(µ)⊗ `γ ⊗−

)

prλ
(
r∇($1)⊗ `γ ⊗ r∇(µ)⊗−

)
prλ
(
r∇($1)⊗−

)
◦ prµi ◦

(
`γ ⊗ r∇(µ)⊗−

)

prλ
(
r∇($1)⊗ `γ ⊗ r∇(µ)⊗−

)
prλ
(
r∇($1)⊗ `γ ⊗−

)
◦ prµi ◦

(
r∇(µ)⊗−

)

prλ
(
`γ ⊗ r∇($1)⊗ r∇(µ)⊗−

)
prλ
(
`γ ⊗ r∇($1)⊗−

)
◦ prµi ◦

(
r∇(µ)⊗−

)

`γ ⊗ prλ
(
r∇($1)⊗ r∇(µ)⊗−

)
`γ ⊗ prλ

(
r∇($1)⊗−

)
◦ prµi ◦

(
r∇(µ)⊗−

)
for i = 0, . . . , n, where the vertical arrows are natural isomorphisms, induced by the isomorphisms

from (5.1) and the equalities

prµi ◦ (`γ ⊗−) = (`γ ⊗−) ◦ prµi and prλ ◦ (`γ ⊗−) = (`γ ⊗−) ◦ prλ,

and where the horizontal arrows are obtained, like ϑi, by considering prµi as a natural transformation

from the identity functor on Rep(G1T) to the projection functor prµi . Furthermore, the isomorphisms

from (5.1) give rise to an isomorphism

r∇($1)⊗ r∇(µ)⊗ `γ ∼= r∇($1)⊗ `γ ⊗ r∇(µ) ∼= `γ ⊗ r∇($1)⊗ r∇(µ),

and we claim that the latter induces an isomorphism rT (λ)⊗ `γ ∼= `γ⊗ rT (λ), such that the following

diagram commutes:

(5.2)

rT (λ)⊗ `γ r∇($1)⊗ r∇(µ)⊗ `γ

`γ ⊗ rT (λ) `γ ⊗ r∇($1)⊗ r∇(µ)

r(f ◦ e)⊗ `γ

`γ ⊗ r(f ◦ e)

Indeed, T (λ) ∼= L(λ) is isomorphic to the unique simple submodule of ∇($1) ⊗ ∇(µ) ∼= T (s0 · λ)

by Remark 3.2, and arguing as in the proof of Lemma III.1.9, we see that rT (λ) ∼= L̂1(λ) is in fact

isomorphic to the unique simple G1T-submodule of r∇($1)⊗ r∇(µ). Hence the isomorphism

r∇($1)⊗ r∇(µ)⊗ `γ ∼= `γ ⊗ r∇($1)⊗ r∇(µ)

identifies the image of r(f ◦e)⊗ `γ with the image of `γ⊗r(f ◦e); therefore it induces an isomorphism

rT (λ)⊗ `γ ∼= `γ ⊗ T (λ)

that makes the diagram (5.2) commute, as claimed.
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Remark 5.4. In the modular case, we could of course choose the isomorphisms in (5.1) to be the

canonical ones (arising from the standard braiding). Then the canonical isomorphism

rT (λ)⊗ `γ ∼= `γ ⊗ T (λ)

would make the diagram (5.2) commute. In the quantum case, we could give a similar argument if we

were given a braiding on the monoidal category Rep(G1T), or just a natural isomorphism between

the functors (`γ ⊗−) and (−⊗ `γ), respecting the associativity of tensor products. The existence of

a braiding on Rep(G1T) seems to be widely accepted, but we were not able to find an explicit proof

in the literature. This is the reason why we have chosen the direct approach above.

Now the commutative diagram (5.2) affords a commutative diagram of functors and natural trans-

formations

prλ
(
rT (λ)⊗ `γ ⊗−

)
prλ
(
r∇($1)⊗ r∇(µ)⊗ `γ ⊗−

)

prλ
(
`γ ⊗ rT (λ)⊗−

)
prλ
(
`γ ⊗ r∇($1)⊗ r∇(µ)⊗−

)

`γ ⊗ prλ
(
rT (λ)⊗−

)
`γ ⊗ prλ

(
r∇($1)⊗ r∇(µ)⊗−

)
where the vertical arrows are natural isomorphisms and the horizontal arrows are induced by r(f ◦ e).
By combining the two commutative diagrams of functors and natural transformations above, we see

that, for i = 0, . . . , n, there are natural isomorphisms

ϕγ : T λ0 ◦ (`γ ⊗−) = prλ
(
rT (λ)⊗ `γ ⊗−

)
=⇒ `γ ⊗ prλ

(
rT (λ)⊗−

)
= (`γ ⊗−) ◦ T λ0

and

ψγ : Θ̂i ◦ (`γ ⊗−) = prλ
(
r∇($1)⊗−

)
◦ prµi ◦

(
r∇(µ)⊗ `γ ⊗−

)
=⇒ `γ ⊗ prλ

(
r∇($1)⊗−

)
◦ prµi ◦

(
r∇(µ)⊗−

)
= (`γ ⊗−) ◦ Θ̂i

such that the following diagram commutes:

(5.3)

T λ0 ◦ (`γ ⊗−) Θ̂i ◦ (`γ ⊗−)

(`γ ⊗−) ◦ T λ0 (`γ ⊗−) ◦ Θ̂i

ϑ̂i (`γ ⊗−)

ϕγ ψγ

(`γ ⊗−) ϑ̂i

Using this observation, we can now prove that ‘translation by the root lattice’ does not affect the non-

vanishing of the components of ϑ̂i or ϑi at a simple G1T-module or a simple G-module, respectively.

Lemma 5.5. For x ∈Waff , γ ∈ ZΦ and i ∈ {0, . . . , n}, we have

(ϑ̂i)L̂1(x·0)
6= 0 if and only if (ϑ̂i)L̂1(tγx·0)

6= 0.
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Proof. We have L̂1(tγx · 0) = L̂1(x · 0 + `γ) ∼= `γ ⊗ L̂1(x · 0) and

(ϑ̂i)`γ⊗L̂1(x·0)
◦ (ϕγ)

L̂1(x·0)
=
(
ϑ̂i (`γ ⊗−)

)
L̂1(x·0)

◦ (ϕγ)
L̂1(x·0)

= (ψγ)
L̂1(x·0)

◦
(
(`γ ⊗−) ϑ̂i

)
L̂1(x·0)

= (ψγ)
L̂1(x·0)

◦
(
`γ ⊗ (ϑ̂i)L̂1(x·0)

)
by the commutative diagram (5.3). Now the claim follows because (`γ ⊗−) is an equivalence and ϕγ
and ψγ are natural isomorphisms.

Corollary 5.6. Let x ∈W+
aff and γ ∈ ZΦ such that tγx ∈W+

aff . For i ∈ {0, . . . , n}, we have

(ϑi)L(x·0) 6= 0 if and only if (ϑi)L(tγx·0) 6= 0.

Proof. This is immediate from Lemmas 5.3 and 5.5.

We continue to examine the non-vanishing of (ϑi)L(x·0) for x ∈ W+
aff . Our next goal is to show

that, for any pair of elements x, y ∈W+
aff with d(y) = d(x) + 1 and such that

x(Afund) ↑ y(Afund) ↑ ysi(Afund) and x(Afund) ↑ xsi(Afund),

the non-vanishing (ϑi)L(x·0) 6= 0 implies that (ϑi)L(y·0) 6= 0. This will be achieved by a comparison

of the components (ϑi)L(x·0) and (ϑi)∇(x·0) and by an application of the snake lemma to a non-split

extension of L(y · λ) by ∇(x · λ). We will need the following elementary lemma:

Lemma 5.7. Let M and N be G-modules and let ϕ : M → N be a homomorphism. If the restriction

of ϕ to socGM is injective then ϕ is injective.

Proof. If the restriction of ϕ to socGM is injective then

socG ker(ϕ) ⊆ socG(M) ∩ ker(ϕ) = 0

and therefore ker(ϕ) = 0, as claimed.

Lemma 5.8. For x ∈W+
aff , we have (ϑi)L(x·0) 6= 0 if and only if (ϑi)∇(x·0) is injective.

Proof. Note that (ϑi)L(x·0) 6= 0 if and only if (ϑi)L(x·0) is injective because T λ0 L(x · 0) ∼= L(x · λ) is

simple. As ϑi is a natural transformation, the canonical embedding ι : L(x · 0)→ ∇(x · 0) gives rise to

a commutative diagram

L(x · λ) ∇(x · λ)

ΘiL(x · 0) Θi∇(x · 0)

Tλ0 ι

(ϑi)L(x·0) (ϑi)∇(x·0)

Θiι

where T λ0 ι and Θiι are injective by exactness of T λ0 and Θi. This implies that (ϑi)L(x·0) is injective

whenever (ϑi)∇(x·0) is injective. Conversely, if (ϑi)L(x·0) is injective then (ϑi)∇(x·0) is injective by

Lemma 5.7 because L(x · λ) = socG∇(x · λ).
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In order to apply Lemma 5.7 to a non-split extension of a simple G-module L(y ·λ) by an induced

module ∇(x · λ), for x, y ∈W+
aff , we make the following observation:

Lemma 5.9. Let x, y ∈ W+
aff and ν ∈ Cfund ∩X, and suppose that there is a non-split extension M

of L(y · ν) by ∇(x · ν). Then socGM ∼= L(x · ν).

Proof. The existence of M implies that x 6= y because Ext1
G

(
L(x · ν),∇(x · ν)

)
= 0 by Remark I.4.1.

By assumption, there is a non-split short exact sequence

0 −→ ∇(x · ν)
a−−→M

b−−→ L(y · ν) −→ 0,

and the latter gives rise to an exact sequence

0→ HomG

(
L(z · ν),∇(x · ν)

)
→ HomG

(
L(z · ν),M

)
→ HomG

(
L(z · ν), L(y · ν)

)
for all z ∈W+

aff . Therefore, it suffices to show that HomG

(
L(y · ν),M

)
= 0.

Indeed, if there is a non-zero homomorphism h : L(y · ν) → M then im(h) ∼= L(y · ν) intersects

trivially with ker(b) = im(a) ∼= ∇(x · ν) because x 6= y. This implies that b ◦ h is a non-zero

endomorphism of L(y · ν). Using Schur’s lemma, it follows that b ◦ h is an automorphism of L(y · ν),

contradicting the assumption that the above short exact sequence is non-split.

Proposition 5.10. Let x, y ∈ W+
aff and i ∈ {0, . . . , n} with x(Afund) ↑ xsi(Afund). Furthermore,

suppose that y 6= xsi and that there exists a non-split extension M of L(y · 0) by ∇(x · 0). If (ϑi)∇(x·0)

is injective then so is (ϑi)L(y·0).

Proof. By applying the snake lemma to the commutative diagram

0 ∇(x · λ) T λ0 M L(y · λ) 0

0 Θi∇(x · 0) ΘiM ΘiL(y · 0) 0

(ϑi)∇(x·0) (ϑi)M (ϑi)L(y·0)

,

we obtain an exact sequence

0→ ker
(
(ϑi)∇(x·0)

)
→ ker

(
(ϑi)M

)
→ ker

(
(ϑi)L(y·0)

)
→ cok

(
(ϑi)∇(x·0)

)
.

By Lemma 5.9, we have socG
(
T λ0 M

) ∼= T λ0 socGM ∼= L(x · λ), and it follows that socG(T λ0 M) is

contained in the image of ∇(x · λ) in T λ0 M . Now suppose that (ϑi)∇(x·0) is injective. Then the

restriction of (ϑi)M to socG
(
T λ0 M

)
is injective, and by Lemma 5.7, we have ker

(
(ϑi)M

)
= 0. Thus,

the above exact sequence reduces to

0→ ker
(
(ϑi)L(y·0)

)
→ cok

(
(ϑi)∇(x·0)

)
.

We claim that cok
(
(ϑi)∇(x·0)

) ∼= ∇(xsi · λ). Indeed, part (3) of Lemma I.7.4, applied to the short

exact sequence

0 −→ ∇(x · λ) −→ Θi∇(x · 0) −→ cok
(
(ϑi)∇(x·0)

)
−→ 0,

implies that cok
(
(ϑi)∇(x·0)

)
has a good filtration. Furthermore, we have

ch
(
cok
(
(ϑi)∇(x·0)

))
= ch

(
Θi∇(x · 0)

)
− ch

(
∇(x · λ)

)
= ch

(
∇(xsi · λ)

)
by Corollary 4.9, and it follows that cok

(
(ϑi)∇(x·0)

) ∼= ∇(xsi · λ), as claimed. Now ker
(
(ϑi)L(y·0)

)
is

a submodule of L(y · λ) and embeds into cok
(
(ϑi)∇(x·0)

) ∼= ∇(xsi · λ). As y 6= xsi by assumption, we

conclude that ker
(
(ϑi)L(y·0)

)
= 0, as required.
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The existence of a non-split extension of L(y · λ) by ∇(x · λ), in the setting described above

Lemma 5.7, is guaranteed by a result of S. Ryom-Hansen; see Theorem 2.4 in [RH03a].

Theorem 5.11. Let ν ∈ Cfund ∩X and x, y ∈W+
aff such that x(Afund) ↑ y(Afund). Then

Ext
d(y)−d(x)
G

(
L(y · ν),∇(x · ν)

) ∼= k.

Corollary 5.12. Let i ∈ {0, . . . , n} and x, y ∈W+
aff with d(y) = d(x) + 1 and such that

x(Afund) ↑ y(Afund) ↑ ysi(Afund) and x(Afund) ↑ xsi(Afund).

If (ϑi)L(x·0) 6= 0 then (ϑi)L(y·0) 6= 0.

Proof. If (ϑi)L(x·0) 6= 0 then (ϑi)∇(x·0) is injective by Lemma 5.8. By Theorem 5.11, we have

Ext1
G

(
L(y · 0),∇(x · 0)

) ∼= k,

so there exists a non-split extension of L(y · 0) by ∇(x · 0). Furthermore, we have y 6= xsi as

x(Afund) ↑ xsi(Afund) and y(Afund) ↑ ysi(Afund),

and the claim follows from Proposition 5.10.

Recall from Corollary 4.8 that for all x ∈W+
aff and i ∈ {0, . . . , n} such that xsi(Afund) ↑ Afund, we

have ΘiL(x · 0) = 0 and therefore (ϑi)L(x·0) = 0. We can now prove the strongest possible converse of

this statement.

Theorem 5.13. For i ∈ {0, . . . , n} and x ∈W+
aff , the following are equivalent:

(1) (ϑi)L(x·0) 6= 0;

(2) ΘiL(x · 0) 6= 0;

(3) x(Afund) ↑ xsi(Afund).

Proof. First observe that (1) implies (2) because (ϑi)L(x·0) is a homomorphism from T λ0 L(x · 0) to

ΘiL(x · 0) and that (2) implies (3) by Corollary 4.8. Now suppose that x(Afund) ↑ xsi(Afund). By

Corollary 1.35, there exist δ ∈ X and x0, . . . , xr ∈Waff with

Afund + δ = x0(Afund) ↑ x1(Afund) ↑ · · · ↑ xr(Afund) = x(Afund)

and such that xj(Afund) ↑ xjsi(Afund) and d(xj) = d(tδ) + j for j = 0, . . . , r. We can choose γ ∈ ZΦ

such that yj := tγxj ∈W+
aff for j = 0, . . . , r (we could take γ = 2aρ for a ∈ Z≥0 sufficiently large), and

it is straightforward to see that

Afund + γ + δ = y0(Afund) ↑ y1(Afund) ↑ · · · ↑ yr(Afund) = tγx(Afund),

where for j = 0, . . . , r, we have

yj(Afund) = xj(Afund) + γ ↑ xjsi(Afund) + γ = yjsi(Afund)

because xj(Afund) ↑ xjsi(Afund), and

d(yj)− d(tγ+δ) = d(tγxj)− d(tγtδ) = d(xj)− d(tδ) = j.

As y0(Afund) = Afund + γ + δ, we have (ϑi)L(y0·0) 6= 0 by Lemma 5.1, and using Corollary 5.12 and

induction on j, it follows that (ϑi)L(yj ·0) 6= 0 for j = 0, . . . , r. In particular, we have (ϑi)L(tγx·0) 6= 0

and therefore (ϑi)L(x·0) 6= 0 by Corollary 5.6. Hence (3) implies (1), as required.
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6 Conclusions

In this section, we explain how the results from Sections 3, 4 and 5 can be used to describe the structure

of the G-modules prλ
(
L(s0 ·λ)⊗L(x · 0)

)
and to study the generic direct summands G(s0ω, x) of the

tensor products L(s0ω · 0)⊗ L(x · 0), for x ∈W+
aff . Let us start by recalling some of the notation and

the key results from Sections 3, 4 and 5.

We set ω = t$1s1 · · · sn ∈ Ω and λ = ω · 0 = (`−n− 1) ·$1 ∈ Cfund ∩X (see Lemmas 3.3 and 3.4)

and consider the functor

Ψ = prλ
(
T (s0 · λ)⊗−

)
: Rep0(G) −→ Repλ(G).

By Lemma 3.1, the minimal tilting complex of L(s0 · λ) is given by

Cmin

(
L(s0 · λ)

)
=
(

0→ T (λ)→ T (s0 · λ)→ T (λ)→ 0
)
,

and as explained after Proposition 3.5, this complex gives rise to natural transformations

ϑ : T λ0 =⇒ Ψ and π : Ψ =⇒ T λ0

such that, for every G-module M in Rep0(G), we have im(ϑM ) ⊆ ker(πM ) and

im(πM )/ ker(ϑM ) ∼= L(s0 · λ)⊗M.

Furthermore, the functor Ψ decomposes as a direct sum

Ψ ∼= Θ0 ⊕Θ1 ⊕ · · ·Θn,

and we write pri : Ψ =⇒ Θi for the natural transformations that project onto the direct summands.

In many ways, the functor Θi, for i = 0, . . . , n, behaves like an ‘si-wall crossing functor’. For instance,

for x ∈W+
aff , we have ΘiL(x · 0) 6= 0 if and only if x(Afund) ↑ xsi(Afund), and in that case, there exists

a weight δi ∈ C fund ∩X with StabWaff
(δi) = {e, si} (i.e. in the si-wall of Cfund) such that

ΘiL(x · 0) ∼= T λδiL(x · δi);

see Proposition 4.10. Now Proposition I.6.10 gives a (partial) description of the structure of ΘiL(x ·0):

For x ∈ W+
aff with x(Afund) ↑ xsi(Afund), the G-module ΘiL(x · 0) is indecomposable, with simple

socle and head

socGΘiL(x · 0) ∼= headGΘiL(x · 0) ∼= L(x · λ),

and for y ∈W+
aff with y 6= x and [ΘiL(x · 0) : L(y · λ)] 6= 0, we have

ysi(Afund) ↑ y(Afund) ↑ xsi(Afund).

In particular, ΨL(x · 0) has L(x · λ)-isotypical socle (and head), for all x ∈ W+
aff , and the number

of simple direct summands L(x · 0) of the socle (or the head) coincides with the number of simple

reflections s ∈ S such that x(Afund) ↑ xs(Afund). Finally, by Theorem 5.13, the component (ϑi)L(x·0)

of the natural transformation

ϑi = pri ◦ ϑ : T λ0 =⇒ Θi

at L(x · 0) is non-zero if and only if x(Afund) ↑ xsi(Afund); hence the embedding

ϑL(x·0) : L(x · λ) ∼= T λ0 L(x · 0) −→ ΨL(x · 0) ∼= Θ0L(x · 0)⊕ · · · ⊕ΘnL(x · 0)
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induces an embedding

(ϑi)L(x·0) : L(x · λ) ∼= T λ0 L(x · 0) −→ ΘiL(x · 0)

whenever ΘiL(x · 0) 6= 0. In this way, we can consider the image of ϑL(x·0) as being embedded

‘diagonally’ into the direct sum of the non-zero ΘiL(x · 0), all of which have simple socle isomorphic

to L(x · λ). Analogously, one can show that the epimorphism

πL(x·0) : ΨL(x · 0) −→ T λ0 L(x · 0) ∼= L(x · λ)

induces an epimorphism

(πi)L(x·0) : ΘiL(x · 0) −→ T λ0 L(x · 0) ∼= L(x · λ)

whenever ΘiL(x · 0) 6= 0. Loosely speaking, this means that we can obtain the G-module

prλ
(
L(s0 · λ)⊗ L(x · 0)

) ∼= ker
(
πL(x·0)

)/
im
(
ϑL(x·0)

)
from the direct sum

ΨL(x · 0) ∼= Θ0L(x · 0)⊕ · · · ⊕ΘnL(x · 0)

by gluing together the various non-zero ΘiL(x · 0) along their socles and along their heads, which

are all isomorphic to L(x · λ). Let us illustrate this by an example for G of type A2. We warn the

reader that the following is not a rigorous mathematical discussion, but it may still be helpful in

understanding and unraveling the results that we discussed above.

Example 6.1. Suppose that G is of type A2. By the above discussion, we have

Θ0L(s0 · 0) = 0 and ΘiL(s0 · 0) ∼= T λδiL(s0 · δi) for i = 1, 2,

for certain weights δi ∈ C fund ∩X with StabWaff
(δi) = {e, si}. As in Remark 3.2, one sees that

ΘiL(s0 · 0) ∼= T λδiL(s0 · δi) ∼= T λδiT (s0 · δi) ∼= T (s0si · λ)

for i = 1, 2. The submodule structure of these tilting modules has been determined in Theorem B of

[BDM15]; it can be described by the Alperin diagrams below (where as before, we replace a simple

G-module L(x · λ) by the label x ∈W+
aff).

(6.1) Θ1L(x · 0) =

s0

s0s1 e

s0

and Θ2L(x · 0) =

s0

s0s2 e

s0

By Theorem II.4.14 and Lemma III.2.3, we have
(
L(s0 · λ)⊗ L(s0 · 0)

)
reg
∼= M(λ)⊕ L(λ), where the

Alperin diagram of M(λ) is as follows:

M(λ) =

s0

s0s1 e s0s2

s0

One sees that the diagram for M(λ) is obtained from the diagrams for Θ1L(x · 0) and Θ2L(x · 0)

by identifying with each other the two bottom nodes and the two top nodes of the diagrams in (6.1)

and by discarding one of the nodes labeled by e in the middle layer. The discarded node corresponds

to the simple direct summand L(λ) of
(
L(s0 · λ) ⊗ L(s0 · 0)

)
reg

, which appears because both of the

diagrams in (6.1) have a node labeled by e in the middle layer.
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In order to give an example of how our description of the G-modules prλ
(
L(s0 · λ)⊗L(x · 0)

)
, for

x ∈W+
aff , can be used to study the generic direct summands G(s0ω, x), we give a classification of the

elements x ∈ W+
aff such that G(s0ω, x) is simple. The key tool for this classification is the following

proposition.

Proposition 6.2. Let x, y ∈W+
aff with y 6= x and suppose that there exists a non-zero homomorphism

L(y · λ) −→ prλ
(
L(s0 · λ)⊗ L(x · 0)

)
.

For all i ∈ {0, . . . , n} with x(Afund) ↑ xsi(Afund), we have

ysi(Afund) ↑ y(Afund) ↑ xsi(Afund).

Proof. Let i ∈ {0, . . . , n} such that x(Afund) ↑ xsi(Afund), and recall from Proposition 4.10 that there

exists a weight δ ∈ C fund ∩ X with StabWaff
(δ) = {e, si} such that ΘiL(x · 0) ∼= T λδ L(x · δ). By

Proposition I.6.10, every element z ∈W+
aff with z 6= x and

0 6= [T λδ L(x · δ) : L(z · λ)] = [ΘiL(x · 0) : L(z · λ)]

satisfies zsi · λ ↑` z · λ ↑` xsi · λ. Therefore, it suffices to prove that L(y · λ) appears as a composition

factor of ΘiL(x · 0).

As explained in Section 3, we have

prλ
(
L(s0 · λ)⊗ L(x · 0)

) ∼= ker
(
πL(x·0)

)/
im
(
ϑL(x·0)

)
,

where ϑ : T λ0 =⇒ Ψ and π : Ψ =⇒ T λ0 are natural transformations, and

Ψ ∼= Θ0 ⊕Θ1 ⊕ · · · ⊕Θn,

with natural transformations pri : Ψ =⇒ Θi projecting onto the direct summands. By Theorem 5.13,

the component (ϑi)L(x·0) of the natural transformation ϑi = pri ◦ ϑ at L(x · 0) is non-zero, hence

injective because T λ0 L(x · 0) ∼= L(x · λ) is simple. Therefore, by applying the snake lemma to the

commutative diagram

0 T λ0 L(x · 0) T λ0 L(x · 0) 0

0 ker
(
(pri)L(x·0)

)
ΨL(x · 0) ΘiL(x · 0) 0

(pri)L(x·0)

ϑL(x·0) (ϑi)L(x·0)

with exact rows, we obtain a short exact sequence

0 −→ ker
(
(pri)L(x·0)

)
−→ cok

(
ϑL(x·0)

)
−→ cok

(
(ϑi)L(x·0)

)
−→ 0.

We claim that the socle of ker
(
(pri)L(x·0)

)
is L(x · λ)-isotypical. Indeed, we have

ker
(
(pri)L(x·0)

) ∼= ⊕
j 6=i

ΘjL(x · 0)
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by definition of pri. For j ∈ {0, . . . , n}, we further have ΘjL(x·0) = 0 unless x(Afund) ↑ xsj(Afund) (see

Corollary 4.8). If x(Afund) ↑ xsj(Afund) then, by Proposition 4.10, there exists a weight ν ∈ C fund ∩X
with StabWaff

(ν) = {e, sj} such that ΘjL(x · 0) ∼= T λν L(x · ν), and by Proposition I.6.10, we have

socGΘjL(x · 0) ∼= socGT
λ
ν L(x · ν) ∼= L(x · λ).

We conclude that the socle of ker
(
(pri)L(x·0)

)
is L(x · λ)-isotypical, as claimed.

Now observe that

prλ
(
L(s0 · λ)⊗ L(x · 0)

) ∼= ker
(
πL(x·0)

)/
im
(
ϑL(x·0)

)
,

naturally embeds into cok
(
ϑL(x·0)

)
= ΨL(x ·0)

/
im
(
ϑL(x·0)

)
. As y 6= x, there is no non-zero homomor-

phism from L(y · λ) to ker
(
(pri)L(x·0)

)
, and using the short exact sequence

0 −→ ker
(
(pri)L(x·0)

)
−→ cok

(
ϑL(x·0)

)
−→ cok

(
(ϑi)L(x·0)

)
−→ 0,

it follows that the non-zero homomorphism

L(y · λ) −→ prλ
(
L(s0 · λ)⊗ L(x · 0)

)
−→ cok

(
ϑL(x·0)

)
affords a non-zero homomorphism L(y · λ)→ cok

(
(ϑi)L(x·0)

)
. In particular, L(y · λ) is a composition

factor of ΘiL(x · 0), as required.

The first part of the aforementioned classification result is given by the following theorem:

Theorem 6.3. For x ∈W+
aff , the generic direct summand G(s0, x) of L(s0 ·0)⊗L(x ·0) is non-simple

unless x(Afund) = Afund + γ for some γ ∈ X+.

Proof. Suppose that G(s0, x) is simple. As G(s0, x) has good filtration dimension `(x)+`(s0) = `(x)+1

and belongs to the linkage class of 0, Corollary II.2.7 implies that G(s0, x) ∼= L(y ·0) for some y ∈W+
aff

with `(y) = `(x) + 1 = d(x) + 1. By Lemma II.5.10, we have

G(s0ω, x) ∼= TωG(s0, x) ∼= TωL(y · 0) ∼= L(yω · 0) = L(y · λ),

and it follows that there is a split embedding

L(y · λ) ∼= G(s0ω, x) −→ prλ
(
L(s0 · λ)⊗ L(x · 0)

)
.

By Lemma 1.36, there exists i ∈ {0, . . . , n} such that x(Afund) ↑ xsi(Afund), and by Proposition 6.2, it

follows that y(Afund) ↑ xsi(Afund). Furthermore, we have d(xsi) = d(x) + 1 by Lemmas 1.17 and 1.29,

so d(xsi) = `(y) = d(y) and xsi = y by Corollary 1.18. In particular, i is uniquely determined by x

and y, and we conclude that xsj(Afund) ↑ x(Afund) for all j ∈ {0, . . . , n} with j 6= i. As s0, . . . , sn are

precisely the reflections in the walls of Afund (see Remark I.2.7), we conclude that there is a unique

wall H of x(Afund) with x(Afund) ↑ sHx(Afund). Now Lemma 1.36 shows that x(Afund) = Afund + γ

for some γ ∈ X, and as x ∈W+
aff , we further have γ ∈ X+.

In the following lemma, we show that the converse of Theorem 6.3 is true when n ≥ 2. For G of

type A1, the converse of Theorem 6.3 is also true in the quantum case (by Lemma III.1.7), but not in

the modular case: By Lemmas II.5.10 and III.1.11, we have

G(s0, t`−1) ∼= TωG(t1, t`−1) ∼= TωJ(`, 0, . . .)[1] ∼= TωT (`)[1],

and T (`)[1] is non-simple by Lemma III.1.2.
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Lemma 6.4. Suppose that n ≥ 2 and let x ∈W+
ext such that x(Afund) = Afund + γ for some γ ∈ X+.

Then G(s0, x) is simple.

Proof. As x(Afund) = Afund + γ, we have ω′ := t−γx ∈ StabWext(Afund) = Ω, and Lemma II.5.10 yields

G(s0, x) = G(s0, tγω
′) ∼= Tω

′
G(s0, tγ).

Since s0 · 0 is `-restricted (recall that n ≥ 2), we have

L(s0 · 0)⊗ L(tγ · 0) = L(s0 · 0)⊗ L(`γ) ∼= L(s0 · 0 + `γ) = L(tγs0 · 0)

by the Steinberg-Lusztig tensor product theorem, and it follows that G(s0, tγ) ∼= L(tγs0 · 0) and

G(s0, x) ∼= Tω
′
G(s0, tγ) ∼= Tω

′
L(tγs0 · 0) ∼= L(tγs0ω

′ · 0)

are simple, as required.
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The main objective of this chapter is to prove the following theorem, which was our original motivation

for developing the theory of generic direct summands.

Complete reducibility theorem. Suppose that we are in the modular case, that G is of type An

and that ` ≥ n+ 1. Let λ, µ ∈ X+ be `-restricted and `-regular, and further suppose that L(λ)⊗L(µ)

is completely reducible. Then either λ ∈ Cfund or µ ∈ Cfund.

Let us briefly explain our strategy for proving the theorem. For x, y ∈Waff such that λ ∈ x ·Cfund

and µ ∈ y ·Cfund, the theory developed in Chapter II tells us that there exists a weight ν ∈ Cfund ∩X
such that T ν0 G(x, y) is a direct summand of L(λ)⊗ L(µ). In particular, if L(λ)⊗ L(µ) is completely

reducible then G(x, y) is simple. Therefore, the theorem would follow if we could prove that, for any

two elements x, y ∈ W+
aff such that the `-alcoves x · Cfund and y · Cfund contain `-restricted weights,

the generic direct summand G(x, y) of L(x · 0)⊗ L(y · 0) is non-simple, unless x = e or y = e.

Unfortunately, the last statement still seems to be intractable, with the tools that are available at

present (though we are not aware of any counterexamples in type An). We can overcome this problem

by combining our initial approach with the classical technique of truncation to Levi subgroups, which

allows us to give an inductive argument. For G of type An, there are two Levi subgroups of type An−1,

and if L(λ)⊗ L(µ) is completely reducible then so is the truncation of L(λ)⊗ L(µ) to either of these

Levi subgroups. Supposing that the statement of the theorem is true for groups of type An−1, it

follows that, for each of the two Levi subgroups, a suitable truncation of one of the weights λ and µ

belongs to the fundamental `-alcove (with respect to the Levi subgroup). This allows us to impose

certain conditions on λ and µ, and we can thus drastically reduce the number of pairs of elements

x, y ∈W+
aff that we need to consider.

Essentially, the restrictions on λ and µ that we obtain leave open two cases. In the first case, we

have x = sαh,1
and the element y ∈W+

aff is arbitrary. This situation was studied in detail in Chapter IV.

In the second case, the conditions on λ and µ allow us to explicitly determine a (reasonably small)

subset X ⊆ W+
aff that contains x and y, and we will show in Section 5 of this chapter that G(x, y) is

non-simple, for the pairs of elements x, y ∈ X that the conditions allow.

The proof of the non-simplicity of G(x, y), for x, y ∈ X as above, relies on a detailed study of the

composition multiplicities and the Loewy structure of the Weyl modules with highest weights in the

`-alcoves z · Cfund for z ∈ X, and these results take up the first four sections of this chapter. We first

explain in Section 1 how the composition multiplicities of certain Weyl modules can be computed via

the Jantzen sum formula and a so-called recursion formula from [Gru22]. In Section 2, we establish

some preliminary combinatorial results about the set X, and in Section 3, we use these results and the

recursion formula to compute composition multiplicities in certain Weyl modules with highest weights

in z · Cfund, for z ∈ X. We then determine the socle filtrations and the radical filtrations for some

(but not all) of these Weyl modules in Section 4. Let us remark that the results of the computations

131



Chapter V. Further results in type An

in Sections 3 and 4 may be of independent interest, beyond the applications that we give here. In

Section 5, we can finally prove the non-simplicity of G(x, y), for the pairs of elements x, y ∈ X that

we consider, by combining results from the previous sections with extensive computations of certain

maximal vectors in tensor products, using the distribution algebra Dist(G) of G.1 The proof of the

complete reducibility theorem is given in Section 6.

1 The Jantzen sum formula

As explained in the introduction, our proof of the complete reducibility theorem relies on a detailed

study of the submodule structure of certain Weyl modules. The main tool in our investigation of these

Weyl modules will be the Jantzen filtration and the Jantzen sum formula, which we will compute via

the recursion formula from [Gru22] (see equation (1.2) below).

For λ ∈ X+, the Jantzen filtration of ∆(λ), as defined in Section II.8.19 in [Jan03], is an exhaustive

descending filtration

∆(λ) ⊇ ∆(λ)1 ⊇ ∆(λ)2 ⊇ · · ·

such that ∆(λ)/∆(λ)1 ∼= L(λ). Partial information about the layers ∆(λ)i/∆(λ)i+1 of this filtration

can be obtained from the Jantzen sum formula∑
i>0

ch ∆(λ)i =
∑
α∈Φ+

∑
0<m`<(λ+ρ,α∨)

ν`(m`) · χ(sα,m · λ),

where ν` denotes the `-adic evaluation in the modular case and where ν` is the constant function with

value 1 in the quantum case (see Proposition II.8.19 in [Jan03] and Theorem 6.3 in [AK08]). Note that

the weight sα,m ·λ on the right hand side of the Jantzen sum formula may be non-dominant. Therefore,

computing the sum formula in concrete examples often involves finding the dominant Wfin-conjugates

of many non-dominant weights. (Recall that χ(w ·µ) = det(w) ·χ(µ) for µ ∈ X and w ∈Wfin.) When

the weight λ is `-regular, we can avoid these computations by considering the Jantzen sum formula as

an element of the anti-spherical module over the integral group ring Z[Waff ] of the affine Weyl group,

as we explain below.

First, let us denote by [Rep(G)] the Grothendieck group of Rep(G), i.e. the quotient of the free Z-

module with basis the isomorphism classes of G-modules by the submodule generated by the elements

of the form [A] − [B] + [C], for all short exact sequences 0 → A → B → C → 0 in Rep(G). For any

G-module M , we denote by [M ] the image in [Rep(G)] of the isomorphism class of M . We can define

a Z-module homomorphism [Rep(G)] → Z[X]Wfin with [M ] 7→ chM for every G-module M , and as

the characters ch ∆(µ) = χ(µ), for µ ∈ X+, form a basis of Z[X]Wfin , it follows that the classes [∆(µ)],

for µ ∈ X+, form a basis of [Rep(G)]. Similarly, for ν ∈ C fund∩X, the Grothendieck group [Repν(G)]

of the linkage class Repν(G) has a basis given by the classes of the Weyl modules in Repν(G).

Next consider the anti-spherical Z[Waff ]-module

Masph := sign⊗Z[Wfin] Z[Waff ],

where sign denotes the sign representation of Wfin, and for all x ∈Waff , let Nx := 1⊗ x be the image

of x in Masph. For w ∈Wfin and x, y ∈Waff , we have

Nwx = sign(w) ·Nx and Nxy = Nx · y,
1Our usage of Dist(G) for this part of the proof is the main reason why we only get the complete reducibility theorem

in the modular case. We were not able to find an approach that bypasses this computational argument.
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and as W+
aff is a set of Wfin-coset representatives in Waff , the elements Nx with x ∈W+

aff form a Z-basis

of Masph. The action of the simple reflections in Waff on this basis is given by

(1.1) Nx · s =

{
Nxs if xs ∈W+

aff ,

−Nx if xs /∈W+
aff

for x ∈W+
aff and s ∈ S because xs /∈W+

aff if and only if xsx−1 ∈Wfin.

Now suppose that ` ≥ h and fix a weight λ ∈ Cfund ∩ X. By the above discussion, there is a

canonical Z-module isomorphism

ψλ : Masph −→ [Repλ(G)]

with Nx 7→ [∆(x · λ)] for all x ∈W+
aff .

Remark 1.1. For every simple reflection s ∈ S, let us fix µs ∈ C fund ∩X with StabWaff
(µs) = {e, s}

and consider the s-wall crossing functor Θs := T λµs ◦ T
µs
λ . We can endow [Repλ(G)] with a right

Z[Waff ]-module structure via

[M ] · (s+ 1) := [ΘsM ],

for every G-module M in Repλ(G) and every simple reflection s ∈ S. Using equation (1.1) and

Propositions I.6.8 and I.6.9, it is straightforward to see that ψλ : Masph → [Repλ(G)] is an isomorphism

of Z[Waff ]-modules.

For x ∈W+
aff , we define elements JSFλx ∈ [Repλ(G)] and JSFx ∈Masph by

JSFλx :=
∑
i>0

[∆(x · λ)i] and JSFx := ψ−1
λ (JSFλx).

Using the Jantzen sum formula and the translation principle, it is straightforward to see that JSFx
does not depend on the choice of λ ∈ Cfund ∩X. The elements JSFx ∈ Masph can now be computed

inductively via the following simple recursion formula; see Theorem 4.1 in [Gru22].

Recursion formula. Let x ∈W+
aff and s ∈ S such that x < xs and xs ∈W+

aff . Write xsx−1 = sβ,m
for some m > 0 and β ∈ Φ+. Then

(1.2) JSFxs = ν`(m`) ·Nx + JSFx · s.

2 Alcove combinatorics

From now on and for the rest of this chapter, suppose that G is of type An for some n ≥ 3 and

that ` ≥ h = n + 1. As in Chapter IV, we fix a numbering Π = {α1, . . . , αn} of the simple roots,

in accordance with the Dynkin diagram in Figure I.1.1, and denote by $i = $αi and si = sαi
the fundamental dominant weight and the simple reflection corresponding to αi, for i = 1, . . . , n.

Furthermore, we adopt the convention that $0 = 0 and $n+1 = 0, and we write s0 = sαh,1 for the

affine simple reflection in Waff . The positive roots in Φ are given by Φ+ = {βi,j | 1 ≤ i ≤ j ≤ n},
where

βi,j = αi + · · ·+ αj = −$i−1 +$i +$j −$j+1,

and we have αh = β1,n = $1 +$n.
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For 0 ≤ i < n and 0 ≤ j ≤ n, we define

x(i, j) := s0s1 · · · sisnsn−1 · · · sn−j+1,

with the convention that x(i, 0) = s0s1 · · · si. Furthermore, we set

X := {x(i, j) | 0 ≤ i < n, 0 ≤ j ≤ n} ∪ {e}.

In this section, we carry out some preliminary computations which will enable us to compute the

Jantzen sum formula JSFx for all x ∈ X. More precisely, we describe the action by right multiplication

of the simple reflections s1, . . . , sn on X and compute the integers nα(x ·Cfund) for x ∈ X and α ∈ Φ+.

We start by showing that x(i, j) ∈ W+
aff for 0 ≤ i < n and 0 ≤ j ≤ n by explicitly computing the

weights x(i, j) · 0.

Lemma 2.1. For 0 ≤ i < n and 0 ≤ j ≤ n, we have

x(i, j) · 0 =

{
(`− n− 1 + j) ·$1 +$i+1 +$n−j + (`− n− 1 + i) ·$n if i+ j < n,

(`− n− 1 + j) ·$1 +$n−j+1 +$i+1 + (`− n+ i) ·$n if i+ j ≥ n.

In particular, we have x(i, j) ∈W+
aff .

Proof. If j > 0 then

sn−j+1 · 0 = −αn−j+1 = $n−j − 2$n−j+1 +$n−j+2,

and it is straightforward to see by induction on k that

sn−j+k · · · sn−j+2sn−j+1 · 0 = $n−j − (k + 1) ·$n−j+k + k ·$n−j+k+1

for k = 1, . . . , j, that is sn · · · sn−j+1 · 0 = $n−j − (j + 1) ·$n (even when j = 0). First suppose that

i+ j < n, so that i < n− j. Then (sn · · · sn−j+1 · 0, α∨i ) = 0 and

sisn · · · sn−j+1 · 0 = sn · · · sn−j+1 · 0− αi = $i−1 − 2$i +$i+1 +$n−j − (j + 1) ·$n.

Again, an easy induction argument yields

si−k · · · si−1sisn · · · sn−j+1 · 0 = (k + 1) ·$i−k−1 − (k + 2) ·$i−k +$i+1 +$n−j − (j + 1) ·$n

for k = 0, . . . , i− 1, and we conclude that

s1 · · · sisn · · · sn−j+1 · 0 = −(i+ 1) ·$1 +$i+1 +$n−j − (j + 1) ·$n.

It follows that (s1 · · · sisn · · · sn−j+1 · 0 + ρ, α∨h ) = n− i− j and therefore

s0s1 · · · sisn · · · sn−j+1 · 0 = s1 · · · sisn · · · sn−j+1 · 0 + (`− n+ i+ j) · αh

= (`− n− 1 + j) ·$1 +$i+1 +$n−j + (`− n− 1 + i) ·$n,

as claimed. Now suppose that i+ j ≥ n. If i > n− j then as before (sn · · · sn−j+1 · 0, α∨i ) = 0, so

sisn · · · sn−j+1 · 0 = sn · · · sn−j+1 · 0− αi = $n−j +$i−1 − 2$i +$i+1 − (j + 1) ·$n

134



2. Alcove combinatorics

and induction yields

si−k · · · si−1sisn · · · sn−j+1 · 0 = $n−j + (k + 1) ·$i−k−1 − (k + 2) ·$i−k +$i+1 − (j + 1) ·$n

for k = 0, . . . , i+ j − n− 1. In particular, we have

sn−j+1 · · ·si−1sisn · · · sn−j+1 · 0

= $n−j + (i+ j − n) ·$n−j − (i+ j − n+ 1) ·$n−j+1 +$i+1 − (j + 1) ·$n

= (i+ j − n+ 1) ·$n−j − (i+ j − n+ 1) ·$n−j+1 +$i+1 − (j + 1) ·$n

and

sn−jsn−j+1 · · ·si−1sisn · · · sn−j+1 · 0 = sn−j+1 · · · si−1sisn · · · sn−j+1 · 0− (i+ j − n+ 2) · αn−j
= (i+ j − n+ 2) ·$n−j−1 − (i+ j − n+ 3) ·$n−j +$n−j+1 +$i+1 − (j + 1) ·$n.

Observe that the last equality is also satisfied when i = n− j. As before, induction yields

sn−j−k · · · sn−j−1sn−jsn−j+1 · · · si−1sisn · · · sn−j+1 · 0

= (i+ j − n+ k + 2) ·$n−j−k−1 − (i+ j − n+ k + 3) ·$n−j−k +$n−j+1 +$i+1 − (j + 1) ·$n

for k = 0, . . . , n− j − 1 and therefore

s1 · · · sisn · · · sn−j+1 = −(i+ 2) ·$1 +$n−j+1 +$i+1 − (j + 1) ·$n.

We conclude that (s1 · · · sisn · · · sn−j+1 · 0 + ρ, α∨h ) = n− i− j − 1 and

s0s1 · · · sisn · · · sn−j+1 · 0 = s1 · · · sisn · · · sn−j+1 · 0 + (`− n+ i+ j + 1) · αh

= (`− n− 1 + j) ·$1 +$n−j+1 +$i+1 + (`− n+ i) ·$n,

as claimed.

Corollary 2.2. Let 0 ≤ i < n, 0 ≤ j ≤ n and 1 ≤ u ≤ v ≤ n. If i+ j < n then

nβu,v
(
x(i, j) · Cfund

)
=

{
1 if u = 1 and v ≥ n− j or v = n and u ≤ i+ 1,

0 otherwise,

and if i+ j ≥ n then

nβu,v
(
x(i, j) · Cfund

)
=


2 if u = 1 and v = n,

1 if u = 1 and n > v ≥ n− j + 1 or v = n and 1 < u ≤ i+ 1,

0 otherwise.

Proof. The integers nβu,v
(
x(i, j) · Cfund

)
are uniquely determined by the inequalities

nβu,v
(
x(i, j) · Cfund

)
· ` <

(
x(i, j) · 0 + ρ, β∨u,v

)
<
(
nβu,v

(
x(i, j) · Cfund

)
+ 1
)
· `,

and the claim is easily verified using Lemma 2.1.
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Observe that all elements of X belong to the coset s0Wfin in Waff . In order to apply the recursion

formula (1.2) to recursively compute the Jantzen sum formula JSFx for the Weyl modules ∆(x · λ)

with x ∈ X and λ ∈ Cfund ∩X, we need to describe the action of the simple reflections s ∈ S ∩Wfin

on the basis elements Nx ∈ Masph with x ∈ X. By equation (1.1), it suffices to describe the action of

these reflections on the elements of X themselves, under right multiplication.

Lemma 2.3. Let 0 ≤ i < n, 0 ≤ j ≤ n and 1 ≤ k ≤ n. Then

x(i, j)sk ∈W+
aff ⇔

{
k ∈ {i, i+ 1, n− j, n− j + 1} if i+ j < n,

k ∈ {i+ 1, i+ 2, n− j, n− j + 1} if i+ j ≥ n.

More precisely, we have x(i, j)sn−j = x(i, j + 1) (if j < n) and x(i, j)sn−j+1 = x(i, j − 1) (if j > 0).

If i+ j < n then x(i, j)si = x(i− 1, j) (if i > 0) and

x(i, j)si+1 =

{
x(i+ 1, j) if i+ j < n− 1,

x(i, j + 1) if i+ j = n− 1,

and if i+ j ≥ n then x(i, j)si+2 = x(i+ 1, j) (if i < n− 1) and

x(i, j)si+1 =

{
x(i− 1, j) if i+ j > n,

x(i, j − 1) if i+ j = n.

Proof. Recall from Example I.2.6 that we have sasbsa = sbsasb for all a, b ∈ {0, . . . , n} such that either

|a − b| = 1 or {a, b} = {0, n} and that sa commutes with sb if |a − b| 6= 1 and {a, b} 6= {0, n}. First

suppose that i+ j < n. If i+ 1 < k < n− j then x(i, j)sk = skx(i, j) /∈W+
aff because x(i, j) ∈W+

aff by

Lemma 2.1. If k > n− j + 1 then

x(i, j)sk = s0 · · · sisn · · · sk+1sksk−1sksk−2 · · · sn−j+1

= s0 · · · sisn · · · sk+1sk−1sksk−1sk−2 · · · sn−j+1 = sk−1x(i, j),

and if k < i then

x(i, j)sk = s0 · · · sk−1sksk+1sk · · · sisn · · · sn−j+1

= s0 · · · sk−1sk+1sksk+1 · · · sisn · · · sn−j+1 = sk+1x(i, j).

In both cases, it follows that x(i, j)sk /∈W+
aff . It is straightforward to see from the definition of x(i, j)

that we have x(i, j)sn−j = x(i, j + 1) (if j < n) and x(i, j)sn−j+1 = x(i, j − 1) (if j > 0). If i > 0 then

si commutes with sn−j+1, . . . , sn and we have x(i, j)si = x(i− 1, j). Finally, if i+ j < n− 1 then si+1

commutes with sn−j+1, . . . , sn and x(i, j)si+1 = x(i+ 1, j), and if i+ j = n− 1 then i+ 1 = n− j and

x(i, j)si+1 = x(i, j + 1), as observed before.

Now suppose that i+ j ≥ n. If k < n− j ≤ i then

x(i, j)sk = s0 · · · sk−1sksk+1sksk+2 · · · sisn · · · sn−j+1

= s0 · · · sk−1sk+1sksk+1sk+2 · · · sisn · · · sn−j+1 = sk+1x(i, j),

and if k > i+ 2 ≥ n− j + 2 then

x(i, j)sk = s0 · · · sisn · · · sk+1sksk−1sksk−2 · · · sn−j+1

= s0 · · · sisn · · · sk+1sk−1sksk−1sk−2 · · · sn−j+1 = sk−1x(i, j).
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In both cases, we conclude that x(i, j)sk /∈W+
aff . If n− j + 1 < k < i+ 1 then

x(i, j)sk = s0 · · · sisn · · · sk+1sksk−1sksk−2 · · · sn−j+1

= s0 · · · sisn · · · sk+1sk−1sksk−1sk−2 · · · sn−j+1

= s0 · · · sk−2sk−1sksk−1sk+1 · · · sisn · · · sk+1sksk−1sk−2 · · · sn−j+1

= s0 · · · sk−2sksk−1sksk+1sisn · · · sn−j+1

= skx(i, j) /∈W+
aff .

As before, we have x(i, j)sn−j = x(i, j + 1) (if j < n) and x(i, j)sn−j+1 = x(i, j − 1) (if j > 0). As

i+ j ≥ n, we have i+ 2 > n− j + 1, and for i < n− 1, it follows that

x(i, j)si+2 = s0 · · · sisn · · · si+3si+2si+1si+2si · · · sn−j+1

= s0 · · · sisn · · · si+3si+1si+2si+1si · · · sn−j+1

= s0 · · · sisi+1sn · · · si+3si+2si+1si · · · sn−j+1

= x(i+ 1, j).

Finally, if i+ j > n then

x(i, j)si+1 = s0 · · · sisn · · · si+2si+1sisi+1si−1 · · · sn−j+1

= s0 · · · sisn · · · si+2sisi+1sisi−1 · · · sn−j+1

= s0 · · · si−1sn · · · si+2si+1sisi−1 · · · sn−j+1

= x(i− 1, j),

and if i+ j = n then i+ 1 = n− j + 1 and x(i, j)si+1 = x(i, j − 1).

Corollary 2.4. Let 0 ≤ i < n, 0 ≤ j ≤ n and 1 ≤ k ≤ n. If i+ j < n then

Nx(i,j) · sk =

{
Nx(i,j)sk if k ∈ {i, i+ 1, n− j, n− j + 1},
−Nx(i,j) otherwise,

and if i+ j ≥ n then

Nx(i,j) · sk =

{
Nx(i,j)sk if k ∈ {i+ 1, i+ 2, n− j, n− j + 1},
−Nx(i,j) otherwise.

Proof. This is straightforward to see from equation (1.1) and Lemma 2.3.

Remark 2.5. Let 0 ≤ i < n and 0 ≤ j ≤ n. Using Corollary 2.2, it is straightforward to see that

`
(
x(i, j)

)
= d
(
x(i, j)

)
=
∑
β∈Φ+

nβ
(
x(i, j) · Cfund

)
= i+ j + 1.

If j < n then x(i, j+ 1) = x(i, j)sn−j and it follows that x(i, j) < x(i, j+ 1). Analogously, if i < n− 1

then x(i+ 1, j) = x(i, j)s, where

s =


si+1 if i+ j < n− 1,

si+1si+2si+1 if i+ j = n− 1,

si+2 if i+ j ≥ n

by Lemma 2.3, and we conclude that x(i, j) < x(i+ 1, j). Furthermore, we can use Lemma 2.1 to see

that x(i, j) · 0 < x(i, j + 1) · 0 if j < n and x(i, j) · 0 < x(i+ 1, j) · 0 if i < n− 1.
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e

x(0, 0)
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x(4, 4) x(3, 5)

x(4, 5)

0

1 5

2 5 1 4

3 5 2 4 1 3

4 5 3 4 2 3 1 2

5 4 3 2 1

4 5 3 4 2 3 1 2

3 5 2 4 1 3

2 5 1 4

1 5

Figure 2.1: The Bruhat graph of X for n = 5.

In Figure 2.1, we give the Bruhat graph of the set X ⊆W+
aff for n = 5, i.e. the graph with vertices

labeled by X, where two elements x, y ∈ X are joined by an edge if |`(x) − `(y)| = 1 and y = xs for

a reflection s ∈ Waff . An edge labeled by i stands for right multiplication by the simple reflection si.

The dotted line indicates where braid relations are visible in the graph, and the gray lines correspond

to multiplication by non-simple reflections.

3 Composition series of Weyl modules

In this section, we use the recursive version of the Jantzen sum formula from Section 1 and the alcove

combinatorics established in Section 2 to compute JSFx in the anti-spherical module, for all x ∈ X.

Throughout this section, we fix λ ∈ Cfund∩X and write ∆x = ∆(x·λ), ∇x = ∇(x·λ) and Lx = L(x·λ),

for x ∈W+
ext. Recall that we assume that ` ≥ h = n+ 1.

For 0 ≤ i < n and 0 ≤ j ≤ n with i+ j ≤ n, the Jantzen sum formula will allow us to compute all

composition multiplicities in the Weyl module ∆x(i,j). When i+ j > n, there remains some ambiguity

about the multiplicity of the simple module Le in ∆x(i,j), but we can still determine the multiplicities

of the simple G-modules Ly for y ∈ X\{e}. In order to better understand the ‘patterns’ of composition

factors in ∆x(i,j) that we will establish below, we encourage the reader to visualize them using the

Bruhat graph from Figure 2.1.

The following observation will be very useful for reducing the amount of computations that is

necessary to compute the composition multiplicities in the Weyl modules ∆x(i,j) (which is considerable

nevertheless).

Remark 3.1. For x ∈Wext with x = tγw for some γ ∈ X and w ∈Wfin, we define

x− := t−γw and x∗ := w0 · x− · w−1
0 = t−w0(γ)w0ww

−1
0 ,
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3. Composition series of Weyl modules

where w0 denotes the longest element of Wfin. Note that the maps x 7→ x− and x 7→ x∗ are automor-

phisms of Wext and preserve the subgroup Waff . For x = tγw ∈W+
ext, the dual of the simple G-module

Lx is simple of highest weight

−w0

(
x · λ

)
= −w0

(
w(λ+ ρ) + `γ − ρ

)
= w0ww

−1
0

(
− w0(λ) + ρ

)
− ` · w0(γ)− ρ = x∗ ·

(
− w0(λ)

)
,

where −w0(λ) ∈ Cfund ∩ X, and the dual of the Weyl module ∆x is the induced module of highest

weight x∗ ·
(
− w0(λ)

)
. By the translation principle, it follows that

[∆x : Ly] = [∆∗x : L∗y] = [∇x∗ : Ly∗ ] = [∆x∗ : Ly∗ ]

for all x, y ∈W+
ext.

Let us now describe the action of the automorphism x 7→ x∗ on the set X. As G is of type An,

we have w0(αh) = −αh and w0(αi) = −αn+1−i for i = 1, . . . , n, so s∗0 = s0 and s∗i = sn+1−i for

i = 1, . . . , n. We can use Lemma 2.3 and induction on i+ j to see that

x(i, j)∗ =

{
x(j, i) if i+ j < n,

x(j − 1, i+ 1) if i+ j ≥ n

for 0 ≤ i < n and 0 ≤ j ≤ n.

We first compute the composition multiplicities in the Weyl modules ∆x(i,j) with i + j < n. The

Jantzen sum formula for these Weyl modules is given in the following result.

Proposition 3.2. For 0 ≤ i < n and 0 ≤ j < n with i+ j < n, we have

JSFx(i,j) = (−1)i+j ·Ne +
i∑

k=1

(−1)k−1 ·Nx(i−k,j) +

j∑
k=1

(−1)k−1 ·Nx(i,j−k).

Proof. We prove the claim by induction on i+ j. If i+ j = 0 then i = j = 0 and

JSFx(0,0) = JSFs0 = Ne + JSFe · s0 = Ne

by the recursion formula (1.2), where JSFe = 0 because ∆e = Le.

Now suppose that i+j > 0 and that the proposition holds for all i′ and j′ with i′+j′ < i+j. Then

either i > 0 or j > 0, and by Remark 3.1, we may assume that i > 0. By the induction hypothesis,

we have

JSFx(i−1,j) = (−1)i+j−1 ·Ne +
i−1∑
k=1

(−1)k−1 ·Nx(i−1−k,j) +

j∑
k=1

(−1)k−1 ·Nx(i−1,j−k).

Now x(i − 1, j) < x(i, j) = x(i − 1, j)si by Remark 2.5, and using Lemma 2.3, Corollary 2.4 and the

recursion formula (1.2), we obtain

JSFx(i,j) = Nx(i−1,j) + JSFx(i− 1, j) · si

= Nx(i−1,j) + (−1)i+j−1 ·Ne · si +

i−1∑
k=1

(−1)k−1 ·Nx(i−1−k,j) · si +

j∑
k=1

(−1)k−1 ·Nx(i−1,j−k) · si

= Nx(i−1,j) + (−1)i+j ·Ne +
i−1∑
k=1

(−1)k ·Nx(i−1−k,j) +

j∑
k=1

(−1)k−1 ·Nx(i,j−k)
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= (−1)i+j ·Ne +
i∑

k=1

(−1)k−1 ·Nx(i−k,j) +

j∑
k=1

(−1)k−1 ·Nx(i,j−k),

as claimed.

Recall from Section 1 that we have an isomorphism ψλ : Masph → [Repλ(G)] such that

ψλ(Nx) = [∆x] and ψλ(JSFx) = JSFλx =
∑
i>0

[∆i
x]

for all x ∈W+
aff .

Lemma 3.3. For 0 < i < n, we have JSFλx(i,0) = [Lx(i−1,0)] and JSFλx(0,0) = [Le]. In particular,

[∆x(i,0)] = [Lx(i,0)] + [Lx(i−1,0)] and [∆x(0,0)] = [Lx(0,0)] + [Le].

Proof. We prove the claim by induction on i. By Proposition 3.2, we have

JSFλx(0,0) = ψλ(JSFx(0,0)) = ψλ(Ne) = [∆e] = [Le],

hence ∆1
x(0,0)

∼= Le and [∆x(0,0)] = [Lx(0,0)]+[Le], as claimed. For i > 0, Proposition 3.2 and induction

on i yield

JSFλx(i,0) = (−1)i · [∆e] +
i∑

k=1

(−1)k−1 · [∆x(i−k,0)]

= (−1)i · [Le] + (−1)i−1 ·
(
[Lx(0,0)] + [Le]

)
+

i−1∑
k=1

(−1)k−1 ·
(
[Lx(i−k,0)] + [Lx(i−k−1,0)]

= [Lx(i−1,0)],

so ∆1
x(i,0)

∼= Lx(i−1,0) and [∆x(i,0)] = [Lx(i,0)] + [Lx(i−1,0)], as claimed.

Remark 3.4. From the character formulas in Lemma 3.3, it follows that the Weyl modules ∆x(0,0)

and ∆x(i,0) are uniserial of composition length 2, with socG∆x(0,0)
∼= Le and socG∆x(i,0)

∼= Lx(i−1,0),

for 0 < i < n. By taking duals (see Remark 3.1), we see that the Weyl module ∆x(0,j) is uniserial

of composition length 2, with socG∆x(0,j)
∼= Lx(0,j−1), for 0 < j < n. We can depict the structure of

these Weyl modules in the following diagrams:

∆x(0,0) =
Lx(0,0)

Le
∆x(i,0) =

Lx(i,0)

Lx(i−1,0)

∆x(0,j) =
Lx(0,j)

Lx(0,j−1)

Lemma 3.5. Let 0 < i < n and 0 < j < n such that i+ j < n. Then

[∆x(i,j)] = [Lx(i,j)] + [Lx(i−1,j)] + [Lx(i,j−1)] + [Lx(i−1,j−1)] + δi,j · [Le].

Proof. We prove the claim by induction on i+ j. Recall from Proposition 3.2 that

JSFλx(i,j) = ψλ(JSFx(i,j)) = (−1)i+j · [∆e] +
i∑

k=1

(−1)k−1 · [∆x(i−k,j)] +

j∑
k=1

(−1)k−1 · [∆x(i,j−k)],

so

JSFλx(1,1) = [∆x(1,0)] + [∆x(0,1)] + [∆e] = [Lx(1,0)] + [Lx(0,1)] + 2 · [Lx(0,0)] + [Le]
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by Lemma 3.3. This implies that each of the simple G-modules Lx(1,0), Lx(0,1) and Le appears with

multiplicity one as a composition factor of ∆x(1,1). By Proposition I.6.11 and Lemma 3.3, we further

have

[∆x(1,1) : Lx(0,0)] = [∆x(0,1) : Lx(0,0)] = 1

because x(0, 0) · 0 < x(1, 0) · 0 = x(0, 0)s1 · 0 and x(0, 1)s1 = x(1, 1). Now suppose that i+ j > 2, and

that the lemma holds for all i′, j′ > 0 with i′ + j′ < i+ j. Possibly after taking duals, we may further

assume that i ≥ j (see Remark 3.1), and Lemma 3.3 and the induction hypothesis yield

j∑
k=1

(−1)k−1 · [∆x(i,j−k)] = (−1)j−1 · [∆x(i,0)] +

j−1∑
k=1

(−1)k−1 · [∆x(i,j−k)]

= (−1)j−1 ·
(
[Lx(i,0)] + [Lx(i−1,0)]

)
+

j−1∑
k=1

(−1)k−1 ·
(
[Lx(i,j−k)] + [Lx(i−1,j−k)] + [Lx(i,j−k−1)] + [Lx(i−1,j−k−1)]

)
= (−1)j−1 ·

(
[Lx(i,0)] + [Lx(i−1,0)]

)
+

j−1∑
k=1

(−1)k−1 ·
(
[Lx(i,j−k)] + [Lx(i−1,j−k)]

)
+

j−1∑
k=1

(−1)k−1 ·
(
[Lx(i,j−k−1)] + [Lx(i−1,j−k−1)]

)
=

j∑
k=1

(−1)k−1 ·
(
[Lx(i,j−k)] + [Lx(i−1,j−k)]

)
+

j∑
k=2

(−1)k−2 ·
(
[Lx(i,j−k)] + [Lx(i−1,j−k)]

)
= [Lx(i,j−1)] + [Lx(i−1,j−1)],

hence

(3.1)

j∑
k=1

(−1)k−1 · [∆x(i,j−k)] = [Lx(i,j−1)] + [Lx(i−1,j−1)].

Analogously, we compute that

(3.2)
i∑

k=1

(−1)k−1 · [∆x(i−k,j)] =

{
[Lx(i−1,j)] + [Lx(i−1,j−1)] if i = j,

[Lx(i−1,j)] + [Lx(i−1,j−1)] + (−1)i−j−1 · [Le] if i > j,

where the summand corresponding to k = i − j on the left hand side contributes (−1)i−j−1 · [Le] on

the right hand side in the case i > j by the induction hypothesis. We conclude that

JSFλx(i,j) = (−1)i+j · [∆e] +
i∑

k=1

(−1)k−1 · [∆x(i−k,j)] +

j∑
k=1

(−1)k−1 · [∆x(i,j−k)]

= (−1)i+j · [Le] + [Lx(i−1,j)] + [Lx(i−1,j−1)] + (1− δi,j) · (−1)i−j−1 · [Le]
+ [Lx(i,j−1)] + [Lx(i−1,j−1)]

= [Lx(i−1,j)] + [Lx(i,j−1)] + 2 · [Lx(i−1,j−1)] + δi,j · [Le],
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whence Lx(i−1,j) and Lx(i,j−1) appear with multiplicity one as composition factors of ∆x(i,j), and Le
appears as a composition factor of ∆(i, j) (with multiplicity one) if and only if i = j. Furthermore,

Proposition I.6.11 and the induction hypothesis (or Lemma 3.3, if j = 1) yield

[∆x(i,j) : Lx(i−1,j−1)] = [∆x(i,j−1) : Lx(i−1,j−1)] = 1

because x(i− 1, j − 1) · 0 < x(i− 1, j) · 0 = x(i− 1, j − 1)sn−j+1 · 0 and x(i, j)sn−j+1 = x(i, j − 1); see

Remark 2.5. This completes the proof.

For later use, we note the following consequence of the proof of Lemma 3.5.

Lemma 3.6. Let 0 < i < n and 0 < j < n such that i+ j ≤ n. Then

j∑
k=1

(−1)k−1 · [∆x(i,j−k)] =

{
[Lx(i,j−1)] + [Lx(i−1,j−1)] if i ≥ j,
[Lx(i,j−1)] + [Lx(i−1,j−1)] + (−1)j−i−1 · [Le] if i < j

and
i∑

k=1

(−1)k−1 · [∆x(i−k,j)] =

{
[Lx(i−1,j)] + [Lx(i−1,j−1)] if i ≤ j,
[Lx(i−1,j)] + [Lx(i−1,j−1)] + (−1)i−j−1 · [Le] if i > j.

Proof. This was shown in the proof of Lemma 3.5 under the assumptions that i+ j < n and i ≥ j, see

equations (3.1) and (3.2). It is straightforward to verify that the condition i + j < n can be relaxed

to i+ j ≤ n, and for i ≤ j, the formulas are obtained by taking duals (see Remark 3.1).

In Lemmas 3.3 and 3.5, the composition multiplicities of the Weyl modules ∆x(i,j) were computed

for all 0 ≤ i < n and 0 ≤ j < n such that i + j < n. Now we turn to the Weyl modules ∆x(i,j) with

i+ j ≥ n. As before, we first determine the Jantzen sum formula for these Weyl modules. For ease of

notation, we define

y(i, j) :=

{
x(i, j) if i+ j ≥ n
x(i+ 1, j − 1) if i+ j < n

for 0 ≤ i < n and 0 < j ≤ n. Observe that by Lemma 2.3 and Corollary 2.4, we have

Ny(i−1,j) · si+1 = Ny(i,j)

for 1 ≤ i ≤ n− 1. If i+ j ≥ n then the elements y(i, j − k) ∈ X, for 0 ≤ k < j, lie on a line pointing

southwest from x(i, j) = y(i, j) in the Bruhat graph from Figure 2.1, whereas the elements x(i− k, j),
for 0 ≤ k ≤ i, lie on a line pointing southeast.

Proposition 3.7. Let 0 ≤ i < n and 1 ≤ j ≤ n such that i+ j ≥ n. Then

JSFx(i,j) = (−1)i+j ·Ne +Nx(n−j,n−i−1) +
i∑

k=1

(−1)k−1 ·Nx(i−k,j) +

j−1∑
k=1

(−1)k−1 ·Ny(i,j−k).

Proof. We prove the claim by induction on i + j. First suppose that i + j = n, and recall from

Proposition 3.2 that

JSFx(i,j−1) = (−1)i+j−1 ·Ne +
i∑

k=1

(−1)k−1 ·Nx(i−k,j−1) +

j−1∑
k=1

(−1)k−1 ·Nx(i,j−1−k).
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By Remark 2.5, we have x(i, j − 1) < x(i, j) = x(i, j − 1)sn−j+1, and as i = n − j, the recursion

formula (1.2) and Corollary 2.4 yield

JSFx(i,j) = Nx(i,j−1) + JSFx(i,j−1) · sn−j+1

= Nx(i,j−1) + (−1)i+j−1 ·Ne · sn−j+1 +
i∑

k=1

(−1)k−1 ·Nx(i−k,j−1) · sn−j+1

+

j−1∑
k=1

(−1)k−1 ·Nx(i,j−1−k) · sn−j+1

= Nx(i,j−1) + (−1)i+j ·Ne +
i∑

k=1

(−1)k−1 ·Nx(i−k,j) +

j−1∑
k=1

(−1)k−1 ·Nx(i+1,j−1−k)

= Nx(n−j,n−i−1) + (−1)i+j ·Ne +
i∑

k=1

(−1)k−1 ·Nx(i−k,j) +

j−1∑
k=1

(−1)k−1 ·Ny(i,j−k),

as required. Now suppose that i+ j > n. Then i > 0 and by induction, we may assume that

JSFx(i−1,j) = (−1)i+j−1 ·Ne +Nx(n−j,n−i) +

i−1∑
k=1

(−1)k−1 ·Nx(i−1−k,j) +

j−1∑
k=1

(−1)k−1 ·Ny(i−1,j−k).

Now x(i− 1, j) < x(i, j) = x(i− 1, j)si+1 by Remark 2.5, and again using the recursion formula (1.2),

Lemma 2.3 and Corollary 2.4, it follows that

JSFx(i,j) = Nx(i−1,j) + JSFx(i−1,j) · si+1

= Nx(i−1,j) + (−1)i+j−1 ·Ne · si+1 +Nx(n−j,n−i) · si+1

+

i−1∑
k=1

(−1)k−1 ·Nx(i−1−k,j) · si+1 +

j−1∑
k=1

(−1)k−1 ·Ny(i−1,j−k) · si+1

= Nx(i−1,j) + (−1)i+j ·Ne +Nx(n−j,n−i−1)

+
i−1∑
k=1

(−1)k ·Nx(i−1−k,j) +

j−1∑
k=1

(−1)k−1 ·Ny(i,j−k)

= (−1)i+j ·Ne +Nx(n−j,n−i−1) +
i∑

k=1

(−1)k−1 ·Nx(i−k,j) +

j−1∑
k=1

(−1)k−1 ·Ny(i,j−k),

as claimed.

In the next two lemmas, we compute the composition multiplicities in the Weyl modules ∆x(i,j),

for 0 ≤ i < n and 1 ≤ j ≤ n such that i+ j = n.

Lemma 3.8. Let 1 ≤ i < n− 1 and 2 ≤ j < n such that i+ j = n. Then

[∆x(i,j)] = [Lx(i,j)] + [Lx(i+1,j−2)] + [Lx(i,j−1)] + [Lx(i−1,j)]

+ [Lx(i−1,j−1)] + [Lx(i,j−2)] + [Lx(i−1,j−2)] + (δi,j + δi,j−2) · [Le].

Proof. Recall from Proposition 3.7 that

JSFλx(i,j) = (−1)i+j · [∆e] + [∆x(n−j,n−i−1)] +

i∑
k=1

(−1)k−1 · [∆x(i−k,j)] +

j−1∑
k=1

(−1)k−1 · [∆y(i,j−k)].
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By Lemma 3.6, we have

i∑
k=1

(−1)k−1 · [∆x(i−k,j)] =

{
[Lx(i−1,j)] + [Lx(i−1,j−1)] if i ≤ j,
[Lx(i−1,j)] + [Lx(i−1,j−1)] + (−1)i−j−1 · [Le] if i > j

and

j−1∑
k=1

(−1)k−1 · [∆y(i,j−k)] =

j−1∑
k=1

(−1)k−1 · [∆x(i+1,j−1−k)]

=

{
[Lx(i+1,j−2)] + [Lx(i,j−2)] if i+ 1 ≥ j − 1,

[Lx(i+1,j−2)] + [Lx(i,j−2)] + (−1)j−i−3 · [Le] if i+ 1 < j − 1.

For i > j, we obtain (using Lemma 3.5 in the last step)

JSFλx(i,j) = (−1)i+j · [Le] + [∆x(n−j,n−i−1)] + [Lx(i+1,j−2)] + [Lx(i,j−2)]

+ [Lx(i−1,j)] + [Lx(i−1,j−1)] + (−1)i−j−1 · [Le]
= [∆x(i,j−1)] + [Lx(i+1,j−2)] + [Lx(i,j−2)] + [Lx(i−1,j)] + [Lx(i−1,j−1)]

= [Lx(i,j−1)] + [Lx(i+1,j−2)] + [Lx(i−1,j)] + [Lx(i−1,j−2)] + 2 ·
(
[Lx(i−1,j−1)] + [Lx(i,j−2)]

)
,

and analogously, for j > i+ 2, we have

JSFλx(i,j) = (−1)i+j · [Le] + [∆x(n−j,n−i−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)]

+ [Lx(i+1,j−2)] + [Lx(i,j−2)] + (−1)j−i−3 · [Le]
= [∆x(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(i+1,j−2)] + [Lx(i,j−2)]

= [Lx(i,j−1)] + [Lx(i+1,j−2)] + [Lx(i−1,j)] + [Lx(i−1,j−2)] + 2 ·
(
[Lx(i−1,j−1)] + [Lx(i,j−2)]

)
.

If i ∈ {j, j − 2} then

JSFλx(i,j) = (−1)i+j · [Le] + [∆x(n−j,n−i−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(i+1,j−2)] + [Lx(i,j−2)]

= [Le] + [∆x(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(i+1,j−2)] + [Lx(i,j−2)]

= [Le] + [Lx(i,j−1)] + [Lx(i+1,j−2)] + [Lx(i−1,j)] + [Lx(i−1,j−2)]

+ 2 ·
(
[Lx(i−1,j−1)] + [Lx(i,j−2)]

)
,

and if i = j − 1 then

JSFλx(i,j) = (−1)i+j · [Le] + [∆x(n−j,n−i−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(i+1,j−2)] + [Lx(i,j−2)]

= −[Le] + [∆x(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(i+1,j−2)] + [Lx(i,j−2)]

= [Lx(i,j−1)] + [Lx(i+1,j−2)] + [Lx(i−1,j)] + [Lx(i−1,j−2)] + 2 ·
(
[Lx(i−1,j−1)] + [Lx(i,j−2)]

)
because [∆x(i,j−1) : Le] = 1 by Lemma 3.5. In all cases, it remains to show that

[∆x(i,j) : Lx(i−1,j−1)] = 1 = [∆x(i,j) : Lx(i,j−2)].

Note that we have x(i, j) = x(i, j − 1)sn−j+1 and x(i− 1, j − 1)sn−j+1 = x(i− 1, j) > x(i− 1, j − 1)

by Remark 2.5, so Proposition I.6.11 and Lemma 3.5 yield

[∆x(i,j) : Lx(i−1,j−1)] = [∆x(i,j−1) : Lx(i−1,j−1)] = 1.
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Analogously, we have x(i, j − 2)sn−j+1 = x(i, j − 2)si+1 = x(i+ 1, j − 2) > x(i, j − 2) by Remark 2.5,

and as before, it follows that

[∆x(i,j) : Lx(i,j−2)] = [∆x(i,j−1) : Lx(i,j−2)] = 1,

as required.

Lemma 3.9. We have

[∆x(n−1,1)] = [Lx(n−1,1)] + [Lx(n−1,0)] + [Lx(n−2,1)] + [Lx(n−2,0)]

and

[∆x(0,n)] = [Lx(0,n)] + [Lx(0,n−1)] + [Lx(1,n−2)] + [Lx(0,n−2)].

Proof. We prove the character formula for ∆x(n−1,1); the formula for ∆x(0,n) follows by taking duals

(see Remark 3.1). By Proposition 3.7, we have

JSFλx(n−1,1) = (−1)n · [Le] + [∆x(n−1,0)] +
n−1∑
k=1

(−1)k−1 · [∆x(n−1−k,1)],

where [∆x(n−1,0)] = [Lx(n−1,0)] + [Lx(n−2,0)] by Lemma 3.3 and

n−1∑
k=1

(−1)k−1 · [∆x(n−1−k,1)] = [Lx(n−2,1)] + [Lx(n−2,0)] + (−1)n−3 · [Le]

by Lemma 3.6. We conclude that

JSFλx(n−1,1) = [Lx(n−1,0)] + [Lx(n−2,1)] + 2 · [Lx(n−2,0)].

Now x(n− 1, 1) = x(n− 1, 0)sn and x(n− 2, 0)sn = x(n− 2, 1) > x(n− 2, 0) by Remark 2.5, so

[∆x(n−1,1) : Lx(n−2,0)] = [∆x(n−1,0) : Lx(n−2,0)] = 1

by Proposition I.6.11 and Lemma 3.3, and the claim follows.

In Lemmas 3.8 and 3.9, the composition multiplicities in the Weyl modules ∆x(i,j) were computed

for all 0 ≤ i < n and 1 ≤ j ≤ n such that i+ j = n. Now we turn to the Weyl modules ∆x(i,j) where

i + j > n. Here, our methods will not be sufficient to determine the composition multiplicities of all

simple G-modules. Indeed, when computing the Jantzen sum formula, there remains some ambiguity

about the multiplicity [∆x(i,j) : Le] of the simple G-module with highest weight in Cfund, but all the

remaining multiplicities can be determined. For the sake of notational simplicity, we define

ci,j := [∆x(i,j) : Le]

for 0 ≤ i < n and 0 ≤ j ≤ n, so ci,j = δi,j when i + j < n and ci,j = δi,j + δi,j−2 when i + j = n

(see Lemmas 3.5 and 3.8). Furthermore, we write c′i,j := [∆y(i,j) : Le] (recall the notation introduced

before Proposition 3.7) and denote by di,j the multiplicity of [Le] in JSFλx(i,j).

Lemma 3.10. Let 2 ≤ i < n− 1 and 3 ≤ j < n such that i+ j = n+ 1. Then

[∆x(i,j)] = [Lx(i,j)] + [Lx(i−1,j)] + [Lx(i,j−1)] + [Lx(i−1,j−1)] + [Lx(i,j−2)] + [Lx(i−1,j−2)]

+ [Lx(i−2,j−2)] + [Lx(i−1,j−3)] + [Lx(i−2,j−3)] + ci,j · [Le],

where ci,j = 1 if j ∈ {i, i+ 2}, ci,j ∈ {1, 2} if j = i+ 1 and ci,j = 0 otherwise.
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Proof. Recall from Proposition 3.7 that

JSFλx(i,j) = (−1)i+j · [∆e] + [∆x(n−j,n−i−1)] +

i∑
k=1

(−1)k−1 · [∆x(i−k,j)] +

j−1∑
k=1

(−1)k−1 · [∆y(i,j−k)]

= (−1)n+1 · [Le] + [∆x(i−1,j−2)] + [∆x(i−1,j)] + [∆x(i,j−1)]

−
i−1∑
k=1

(−1)k−1 · [∆x(i−1−k,j)]−
j−2∑
k=1

(−1)k−1 · [∆y(i,j−1−k)].

By Lemma 3.6, we have

i−1∑
k=1

(−1)k−1 · [∆x(i−1−k,j)] =

{
[Lx(i−2,j)] + [Lx(i−2,j−1)] if i− 1 ≤ j,
[Lx(i−2,j)] + [Lx(i−2,j−1)] + (−1)i−j−2 · [Le] if i− 1 > j

and
j−2∑
k=1

(−1)k−1·[∆y(i,j−1−k)] =

j−2∑
k=1

(−1)k−1 · [∆x(i+1,j−2−k)]

=

{
[Lx(i+1,j−3)] + [Lx(i,j−3)] if i+ 1 ≥ j − 2,

[Lx(i+1,j−3)] + [Lx(i,j−3)] + (−1)j−i−4 · [Le] if i+ 1 < j − 2.

Furthermore, we know from Lemma 3.8 that

[∆x(i−1,j)] = [Lx(i−1,j)] + [Lx(i,j−2)] + [Lx(i−1,j−1)] + [Lx(i−2,j)]

+ [Lx(i−2,j−1)] + [Lx(i−1,j−2)] + [Lx(i−2,j−2)] + (δi−1,j + δi,j−1) · [Le]

and

[∆x(i,j−1)] = [Lx(i,j−1)] + [Lx(i+1,j−3)] + [Lx(i,j−2)] + [Lx(i−1,j−1)]

+ [Lx(i−1,j−2)] + [Lx(i,j−3)] + [Lx(i−1,j−3)] + (δi,j−1 + δi,j−3) · [Le]

and from Lemma 3.5 that

[∆x(i−1,j−2)] = [Lx(i−1,j−2)] + [Lx(i−2,j−2)] + [Lx(i−1,j−3)] + [Lx(i−2,j−3)] + δi−1,j−2 · [Le].

We conclude that

JSFλx(i,j) − di,j · [Le] =
(
(−1)n+1 − di,j

)
· [Le] + [∆x(i−1,j−2)] + [∆x(i−1,j)] + [∆x(i,j−1)]

−
i−1∑
k=1

(−1)k−1 · [∆x(i−1−k,j)]−
j−2∑
k=1

(−1)k−1 · [∆y(i,j−1−k)]

=
(
[Lx(i−1,j−2)] + [Lx(i−2,j−2)] + [Lx(i−1,j−3)] + [Lx(i−2,j−3)]

)
+
(
[Lx(i−1,j)] + [Lx(i,j−2)] + [Lx(i−1,j−1)] + [Lx(i−2,j)]

+ [Lx(i−2,j−1)] + [Lx(i−1,j−2)] + [Lx(i−2,j−2)]
)

+
(
[Lx(i,j−1)] + [Lx(i+1,j−3)] + [Lx(i,j−2)] + [Lx(i−1,j−1)]

+ [Lx(i−1,j−2)] + [Lx(i,j−3)] + [Lx(i−1,j−3)]
)

−
(
[Lx(i−2,j)] + [Lx(i−2,j−1)]

)
−
(
[Lx(i+1,j−3)] + [Lx(i,j−3)]

)
= [Lx(i−1,j)] + [Lx(i,j−1)] + 2 ·

(
[Lx(i−1,j−1)] + [Lx(i,j−2)]

)
+ 3 · [Lx(i−1,j−2)] + 2 ·

(
[Lx(i−2,j−2)] + [Lx(i−1,j−3)]

)
+ [Lx(i−2,j−3)].
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Furthermore, we have

di,j = (−1)n+1 + ci−1,j−2 + ci−1,j + ci,j−1 −
i−1∑
k=1

(−1)k−1 · ci−1−k,j −
j−2∑
k=1

(−1)k−1 · c′i,j−1−k

= (−1)n+1 + δi−1,j−2 + δi−1,j + δi−1,j−2 + δi,j−1 + δi,j−3

−
i−1∑
k=1

(−1)k−1 · δi−1−k,j −
j−2∑
k=1

(−1)k−1 · δi+1,j−2−k

= (−1)n+1 + 3 · δi,j−1 +
i−1∑
k=0

(−1)k · δi−1−k,j +

j−2∑
k=0

(−1)k · δi+1,j−2−k,

and as i+ j = n+ 1, it follows that

di,j =


2 if i = j − 1,

1 if i = j − 2 or i = j,

0 otherwise.

In all cases, it is straightforward to see that the value of ci,j is as claimed above, and it remains to

show that the simple G-modules Lx(i−1,j−1), Lx(i,j−2), Lx(i−1,j−2), Lx(i−2,j−2) and Lx(i−1,j−3) appear

with multiplicity one as composition factors of ∆x(i,j).

Indeed, we have

x(i, j) = x(i, j − 1)sn−j+1 = x(i− 1, j)si+1

by Lemma 2.3, and as x(i − 1, j − 1)sn−j+1 = x(i − 1, j) > x(i − 1, j − 1), Proposition I.6.11 and

Lemma 3.8 yield

[∆x(i,j) : Lx(i−1,j−1)] = [∆x(i,j−1) : Lx(i−1,j−1)] = 1.

Analogously, we have x(i, j − 2)si+1 = x(i, j − 2)sn−j+2 = x(i, j − 1) > x(i, j − 2) and therefore

[∆x(i,j) : Lx(i,j−2)] = [∆x(i−1,j) : Lx(i,j−2)] = 1

and x(i− 1, j − 2)si+1 = x(i− 1, j − 2)sn−j+2 = x(i− 1, j − 1) > x(i− 1, j − 2), so

[∆x(i,j) : Lx(i−1,j−2)] = [∆x(i−1,j) : Lx(i−1,j−2)] = 1.

Finally, we have x(i− 2, j − 2)si+1 = x(i− 2, j − 2)sn−j+2 = x(i− 2, j − 1) > x(i− 2, j − 2), so

[∆x(i,j) : Lx(i−2,j−2)] = [∆x(i−1,j) : Lx(i−2,j−2)] = 1,

and x(i− 1, j − 3)sn−j+1 = x(i− 1, j − 3)si = x(i, j − 3) > x(i− 1, j − 3), so

[∆x(i,j) : Lx(i−1,j−3)] = [∆x(i,j−1) : Lx(i−1,j−3)] = 1,

as required.

Lemma 3.11. We have

[∆x(n−1,2)] = [Lx(n−1,2)] + [Lx(n−1,1)] + [Lx(n−2,2)] + [Lx(n−1,0)] + [Lx(n−2,1)]

+ [Lx(n−2,0)] + [Lx(n−3,0)] + δn,3 · [Le]

and

[∆x(1,n)] = [Lx(1,n)] + [Lx(0,n)] + [Lx(1,n−1)] + [Lx(0,n−1)] + [Lx(1,n−2)]

+ [Lx(0,n−2)] + [Lx(0,n−3)] + δn,3 · [Le].
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Proof. We prove the first character formula, the second one follows from the first by taking duals (see

Remark 3.1). By Proposition 3.7, we have

JSFλx(n−1,2) = (−1)n+1 · [∆e] + [∆x(n−2,0)] + [∆x(n−1,1)] + [∆x(n−2,2)]−
n−2∑
k=1

(−1)k−1 · [∆x(n−2−k,2)].

If n > 4 then Lemma 3.6 gives

n−2∑
k=1

(−1)k−1 · [∆x(n−2−k,2)] = [Lx(n−3,2)] + [Lx(n−3,1)] + (−1)n−5 · [Le],

and using Lemmas 3.3, 3.8 and 3.9, it follows that

JSFλx(n−1,2) = (−1)n+1 · [Le] +
(
[Lx(n−2,0)] + [Lx(n−3,0)]

)
+
(
[Lx(n−1,1)] + [Lx(n−2,1)] + [Lx(n−1,0)] + [Lx(n−2,0)]

)
+
(
[Lx(n−2,2)] + [Lx(n−1,0)] + [Lx(n−2,1)] + [Lx(n−3,2)]

+ [Lx(n−2,0)] + [Lx(n−3,1)] + [Lx(n−3,0)]
)

−
(
[Lx(n−3,2)] + [Lx(n−3,1)] + (−1)n+5 · [Le]

)
= [Lx(n−1,1)] + [Lx(n−2,2)] + 2 ·

(
[Lx(n−1,0)] + [Lx(n−2,1)]

)
+ 3 · [Lx(n−2,0)] + 2 · [Lx(n−3,0)].

As before, we can use Lemma 2.3, Remark 2.5 and Proposition I.6.11 to see that each of the simple

G-modules Lx(n−1,0), Lx(n−2,1), Lx(n−2,0) and Lx(n−3,0) appears with multiplicity one as a composition

factor of ∆x(i,j), as claimed. If n = 3 then [∆x(2,2) : Le] = 1 because

n−2∑
k=1

(−1)k−1 · [∆x(n−2−k,2)] = [∆x(0,2)] = [Lx(0,2)] + [Lx(0,1)],

and the rest of the proof is as in the case n > 4. If n = 4 then

n−2∑
k=1

(−1)k−1 · [∆x(n−2−k,2)] = [∆x(1,2)]− [∆x(0,2)] = [Lx(1,2)] + [Lx(1,1)]

and [∆x(2,2) : Le] = 1 by Lemma 3.8, hence [∆x(3,2) : Le] = 0. Again, the rest of the proof is as in the

case n > 4.

It remains to consider the Weyl modules ∆x(i,j) for 0 ≤ i < n and 0 ≤ j ≤ n such that i+j > n+1.

We first assume that i < n− 1 and j < n, and we start with the case i+ j = n+ 2.

Lemma 3.12. Let 3 ≤ i < n− 1 and 4 ≤ j < n such that i+ j = n+ 2. Then

[∆x(i,j)] = [Lx(i,j)] + [Lx(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)]

+ [Lx(i−2,j−3)] + [Lx(i−3,j−3)] + [Lx(i−2,j−4)] + [Lx(i−3,j−4)]

+ ci,j · [Le],

where ci,j ∈ {1, 2} if i ≤ j ≤ i+ 2 and ci,j = 0 otherwise.
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Proof. By Proposition 3.7, we have

JSFλx(i,j) = (−1)i+j · [∆e] + [∆x(n−j,n−i−1)]

+ [∆x(i−1,j)]− [∆x(i−2,j)] +

i∑
k=3

(−1)k−1 · [∆x(i−k,j)]

+ [∆x(i,j−1)]− [∆x(i,j−2)] +

j−1∑
k=3

(−1)k−1 · [∆y(i,j−k)],

where [∆x(n−j,n−i−1)] = [∆x(i−2,j−3)], and by Lemma 3.6, we have

i∑
k=3

(−1)k−1 · [∆x(i−k,j)] =

{
[Lx(i−3,j)] + [Lx(i−3,j−1)] if i− 2 ≤ j
[Lx(i−3,j)] + [Lx(i−3,j−1)] + (−1)i−j−3 · [Le] if i− 2 > j

and

j−1∑
k=3

(−1)k−1 · [∆y(i,j−k)] =

{
[Lx(i+1,j−4)] + [Lx(i,j−4)] if i+ 1 ≥ j − 3

[Lx(i+1,j−4)] + [Lx(i,j−4)] + (−1)j−i−5 · [Le] if i+ 1 < j − 3.

Using Lemmas 3.5, 3.8 and 3.10, we obtain

JSFλx(i,j) − di,j · [Le] =
(
[Lx(i−2,j−3)] + [Lx(i−3,j−3)] + [Lx(i−2,j−4)] + [Lx(i−3,j−4)]

)
+
(
[Lx(i−1,j)] + [Lx(i−2,j)] + [Lx(i−1,j−1)] + [Lx(i−2,j−1)] + [Lx(i−1,j−2)]

+ [Lx(i−2,j−2)] + [Lx(i−3,j−2)] + [Lx(i−2,j−3)] + [Lx(i−3,j−3)]
)

−
(
[Lx(i−2,j)] + [Lx(i−2,j−1)] + [Lx(i−1,j−2)] + [Lx(i−3,j)]

+ [Lx(i−3,j−1)] + [Lx(i−2,j−2)] + [Lx(i−3,j−2)]
)

+
(
[Lx(i−3,j)] + [Lx(i−3,j−1)]

)
+
(
[Lx(i,j−1)] + [Lx(i−1,j−1)] + [Lx(i,j−2)] + [Lx(i−1,j−2)] + [Lx(i,j−3)]

+ [Lx(i−1,j−3)] + [Lx(i−2,j−3)] + [Lx(i−1,j−4)] + [Lx(i−2,j−4)]
)

−
(
[Lx(i,j−2)] + [Lx(i,j−3)] + [Lx(i+1,j−4)] + [Lx(i−1,j−2)]

+ [Lx(i,j−4)] + [Lx(i−1,j−3)] + [Lx(i−1,j−4)]
)

+
(
[Lx(i+1,j−4)] + [Lx(i,j−4)]

)
= [Lx(i−1,j)] + [Lx(i,j−1)] + [Lx(i−3,j−4)]

+ 2 ·
(
[Lx(i−1,j−1)] + [Lx(i−2,j−4)] + [Lx(i−3,j−3)]

)
+ 3 · [Lx(i−2,j−3)].

As before, Proposition I.6.11 yields

[∆x(i,j) : Lx(i−2,j−3)] = [∆x(i−1,j) : Lx(i−2,j−3)] = 1,

and analogously, we see that the simple G-modules Lx(i−1,j−1), Lx(i−2,j−4), and Lx(i−3,j−3) appear

with multiplicity 1 as composition factors of ∆x(i,j). It remains to determine the multiplicity of Le as
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a composition factor of ∆x(i,j). We have

di,j = (−1)i+j + cn−j,n−i−1 + ci−1,j + ci,j−1 − ci−2,j − ci,j−2

+

i∑
k=3

(−1)k−1 · ci−k,j +

j−1∑
k=3

(−1)k−1 · c′i,j−k

= (−1)i+j + δn−j,n−i−1 + ci−1,j + ci,j−1 − δi−2,j − δi−2,j−2 − δi,j−2 − δi,j−4

+
i∑

k=3

(−1)k−1 · δi−k,j +

j−1∑
k=3

(−1)k−1 · δi+1,j−1−k,

where ci−1,j = δi−1,j + δi+1,j unless i = j and ci,j−1 = δi+1,j + δi,j−3 unless i = j−2. For i /∈ {j−2, j},
it follows that

di,j = (−1)i+j + 3 · δi+1,j −
i∑

k=0

(−1)k · δi−k,j −
j−1∑
k=0

(−1)k · δi+1,j−1−k,

and therefore di,j = ci,j = 0 for i < j− 2 and for i > j. For i = j− 1, we obtain di,j = 2 and therefore

ci,j ∈ {1, 2}. Finally, if i = j then di,j = ci−1,j and if i = j − 2 then di,j = ci,j−1, and in both cases, it

follows that ci,j ∈ {1, 2}.

Lemma 3.13. Let 3 ≤ i < n− 1 and 4 ≤ j < n such that i+ j ≥ n+ 2. Then

[∆x(i,j)] = [Lx(i,j)] + [Lx(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)] + ci,j · [Le]
+ [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)] + [Lx(n−j,n−i−2)] + [Lx(n−j−1,n−i−2)],

where ci,j = 0 if n > 2j or n > 2i+ 2.

Proof. We prove the claim by induction on r := i + j − (n + 2). The case r = 0 is Lemma 3.12, so

now assume that r ≥ 1. By Proposition 3.7, we have

JSFλx(i,j) = (−1)i+j · [∆e] + [∆x(n−j,n−i−1)] +
i∑

k=1

(−1)k−1 · [∆x(i−k,j)] +

j−1∑
k=1

(−1)k−1 · [∆y(i,j−k)].

Note that we can write

i∑
k=1

(−1)k−1 · [∆x(i−k,j)] =

i+j−(n+2)∑
k=1

(−1)k−1 · [∆x(i−k,j)]

+ (−1)i+j−n−2 ·
(
[∆x(n+1−j,j)]− [∆x(n−j,j)]

)
+ (−1)i+j−n ·

n−j∑
k=1

(−1)k−1 · [∆x(n−j−k,j)]

and that the characters of all the Weyl modules in this sum are known, either by induction or by our

previous results. By Lemma 3.6, we have

(3.3)

n−j∑
k=1

(−1)k−1 · [∆x(n−j−k,j)] =

{
[Lx(n−j−1,j)] + [Lx(n−j−1,j−1)] if n ≤ 2j,

[Lx(n−j−1,j)] + [Lx(n−j−1,j−1)] + (−1)n−1 · [Le] if n > 2j,
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and by Lemmas 3.8 and 3.10, we have

∆x(n−j+1,j) −∆x(n−j,j) = [Lx(n−j+1,j)] + [Lx(n−j,j)] + [Lx(n−j+1,j−1)] + [Lx(n−j,j−1)] + [Lx(n−j+1,j−2)]

+ [Lx(n−j,j−2)] + [Lx(n−j−1,j−2)] + [Lx(n−j,j−3)] + [Lx(n−j−1,j−3)]

− [Lx(n−j,j)]− [Lx(n−j+1,j−2)]− [Lx(n−j−1,j)]− [Lx(n−j,j−1)]

− [Lx(n−j−1,j−1)]− [Lx(n−j,j−2)]− [Lx(n−j−1,j−2)]

+ (cn−j+1,j − cn−j,j) · [Le]
= [Lx(n−j+1,j)] + [Lx(n−j+1,j−1)] + [Lx(n−j,j−3)] + [Lx(n−j−1,j−3)]

− [Lx(n−j−1,j)]− [Lx(n−j−1,j−1)] + (cn−j+1,j − cn−j,j) · [Le].

Furthermore, induction yields

i+j−(n+2)∑
k=1

(−1)k−1 · [∆x(i−k,j)]

=

i+j−(n+2)∑
k=1

(−1)k−1 ·
(

[Lx(i−k,j)] + [Lx(i−k−1,j)] + [Lx(i−k,j−1)] + [Lx(i−k−1,j−1)]

+ [Lx(n−j,n−i+k−1)] + [Lx(n−j−1,n−i+k−1)]

+ [Lx(n−j,n−i+k−2)] + [Lx(n−j−1,n−i+k−2)] + ci−k,j · [Le]
)

= [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)]

+ (−1)i+j−n−3 ·
(

[Lx(n+1−j,j)] + [Lx(n+1−j,j−1)]

+ [Lx(n−j,j−3)] + [Lx(n−j−1,j−3)]
)

+

( i+j−(n+2)∑
k=1

(−1)k−1 · ci−k,j
)
· [Le],

and we conclude that

i∑
k=1

(−1)k−1 · [∆x(i−k,j)] =

i+j−(n+2)∑
k=1

(−1)k−1 · [∆x(i−k,j)]

+ (−1)i+j−n−2 ·
(
[∆x(n+1−j,j)]− [∆x(n−j,j)]

)
+ (−1)i+j−n ·

n−j∑
k=1

(−1)k−1 · [∆x(n−j−k,j)]

= [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)]

+

( i∑
k=1

(−1)k−1 · ci−k,j
)
· [Le].

Analogously (or by taking duals), we see that

j−1∑
k=1

(−1)k−1 · [∆y(i,j−k)] = [Lx(i,j−1)] + [Lx(i−1,j−1)] + [Lx(n−j,n−i−1)] + [Lx(n−j,n−i−2)]

+

( j−1∑
k=1

(−1)k−1 · c′i,j−k
)
· [Le]
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(recall that c′i,j−k = [∆y(i,j−k) : Le]), and as

[∆x(n−j,n−i−1)] = [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)] + [Lx(n−j,n−i−2)] + [Lx(n−j−1,n−i−2)] + δj,i+1 · [Le]

by Lemma 3.5, it follows that

JSFλx(i,j) − di,j · [Le] = [Lx(i−1,j)] + [Lx(i−1,j−1)] + [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)]

+ [Lx(i,j−1)] + [Lx(i−1,j−1)] + [Lx(n−j,n−i−1)] + [Lx(n−j,n−i−2)]

+ [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)]

+ [Lx(n−j,n−i−2)] + [Lx(n−j−1,n−i−2)]

= [Lx(i−1,j)] + [Lx(i,j−1)] + [Lx(n−j−1,n−i−2)] + 3 · [Lx(n−j,n−i−1)]

+ 2 ·
(
[Lx(i−1,j−1)] + [Lx(n−j−1,n−i−1)] + [Lx(n−j,n−i−2)]

)
.

As before, we can use Proposition I.6.11 to see that the simple G-modules Lx(i−1,j−1), Lx(n−j−1,n−i−1),

Lx(n−j,n−i−2) and Lx(n−j,n−i−1) appear with multiplicity one in a composition series of ∆x(i,j), and it

remains to prove that ci,j = 0 if n > 2j or n > 2i+ 2.

First assume that n > 2j, and observe that

di,j = (−1)i+j + δj,i+1 +

i∑
k=1

(−1)k−1 · ci−k,j +

j−1∑
k=1

(−1)k−1 · c′i,j−k.

By induction, we have ci−k,j = 0 and c′i,j−k = ci,j−k = 0 for all k > 0 with i + j − k ≥ n + 2.

Furthermore, Lemmas 3.8 and 3.10 imply that cn−j+1,j = cn−j,j = 0, and by equation (3.3) (see also

Lemma 3.6), we have
n−j∑
k=1

(−1)k−1 · cn−j−k,j = (−1)n−1.

As i + j ≥ n + 2, the assumption that n > 2j implies that i ≥ j + 3 and n ≤ 2i − 5, and it is

straightforward to see that c′i,n−i+1 = ci,n−i+1 = 0 and c′i,n−i = ci,n−i = 0. Finally, by Lemma 3.5, we

have c′i,j−k = ci+1,j−1−k = 0 for i+ j − n < k ≤ j − 1 because i+ 1 > j − 1− k, and we conclude that

di,j = (−1)i+j + (−1)i+j−n · (−1)n−1 = 0,

whence ci,j = 0. Similarly (or by taking duals), we see that ci,j = 0 when n > 2i+ 2, as claimed.

Finally, we turn to the Weyl modules ∆x(i,n) and ∆x(n−1,j) for i ≥ 2 and j ≥ 3.

Lemma 3.14. For 2 ≤ i < n− 1 and 3 ≤ j < n, we have

[∆x(n−1,j)] = [Lx(n−1,j)] + [Lx(n−1,j−1)] + [Lx(n−2,j)] + [Lx(n−2,j−1)]

+ [Lx(n−j,0)] + [Lx(n−j−1,0)] + cn−1,j · [Le],

with cn−1,j = 0 if n > 2j, and

[∆x(i,n)] = [Lx(i,n)] + [Lx(i,n−1)] + [Lx(i−1,n)] + [Lx(i−1,n−1)]

+ [Lx(0,n−i−1)] + [Lx(0,n−i−2)] + ci,n · [Le],

with ci,n = 0 if n > 2i+ 2. Furthermore, we have

[∆x(n−1,n)] = [Lx(n−1,n)] + [Lx(n−1,n−1)] + [Lx(n−2,n)] + [Lx(n−2,n−1)]

+ [Lx(0,0)] + cn−1,n · [Le].
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Proof. We prove the first character formula by induction on j. By Proposition 3.7, we have

JSFλx(n−1,j) = (−1)n−1+j · [∆e] + [∆x(n−j,0)]

+
n−1∑
k=1

(−1)k−1 · [∆x(n−1−k,j)] +

j−1∑
k=1

(−1)k−1 · [∆y(n−1,j−k)],

and as in the proof of Lemma 3.13, we see that

n−1∑
k=1

(−1)k−1 · [∆x(n−1−k,j)] = [Lx(n−2,j)] + [Lx(n−2,j−1)] + [Lx(n−j,0)] + [Lx(n−j−1,0)]

+

( n−1∑
k=1

(−1)k−1 · cn−1−k,j

)
· [Le].

Furthermore, we have

j−1∑
k=1

(−1)k−1 · [∆y(n−1,j−k)] =

j−3∑
k=1

(−1)k−1 · [∆y(n−1,j−k)] + (−1)j−3 ·
(
[∆y(n−1,2)]− [∆y(n−1,1)]

)
,

where

[∆y(n−1,2)]− [∆y(n−1,1)] = [∆x(n−1,2)]− [∆x(n−1,1)]

= [Lx(n−1,2)] + [Lx(n−1,1)] + [Lx(n−2,2)] + [Lx(n−1,0)]

+ [Lx(n−2,1)] + [Lx(n−2,0)] + [Lx(n−3,0)]

− [Lx(n−1,1)]− [Lx(n−1,0)]− [Lx(n−2,1)]− [Lx(n−2,0)]

= [Lx(n−1,2)] + [Lx(n−2,2)] + [Lx(n−3,0)]

by Lemmas 3.9 and 3.11 (recall that n > j ≥ 3), and

[∆x(n−j,0)] = [Lx(n−j,0)] + [Lx(n−j−1,0)]

by Lemma 3.3. For j = 3, it follows that

JSFλx(n−1,3) − dn−1,3 · [Le] = [Lx(n−2,3)] + [Lx(n−2,2)] + [Lx(n−3,0)] + [Lx(n−4,0)]

+ [Lx(n−1,2)] + [Lx(n−2,2)] + [Lx(n−3,0)]

+ [Lx(n−3,0)] + [Lx(n−4,0)]

= [Lx(n−2,3)] + [Lx(n−1,2)]

+ 2 ·
(
[Lx(n−2,2)] + [Lx(n−4,0)]

)
+ 3 · [Lx(n−3,0)],

and as before, we can use Proposition I.6.11 to see that the simple G-modules [Lx(n−2,2)], [Lx(n−4,0)]

and [Lx(n−3,0)] appear with multiplicity one in a composition series of ∆x(n−1,3). Furthermore, we can

argue as in the proof of Lemma 3.13 to see that dn−1,3 = cn−1,3 = 0 if n > 6.

Now suppose that j > 3. Then induction yields

j−3∑
k=1

(−1)k−1 · [∆y(n−1,j−k)] =

j−3∑
k=1

(−1)k−1 · [∆x(n−1,j−k)]
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=

j−3∑
k=1

(−1)k−1
(
[Lx(n−1,j−k)] + [Lx(n−1,j−k−1)] + [Lx(n−2,j−k)] + [Lx(n−2,j−k−1)]

+ [Lx(n−j+k,0)] + [Lx(n−j+k−1,0)] + cn−1,j−k · [Le]
)

= [Lx(n−1,j−1)] + [Lx(n−2,j−1)] + [Lx(n−j,0)]

+ (−1)j−4 ·
(
[Lx(n−1,2)] + [Lx(n−2,2)] + [Lx(n−3,0)]

)
+
( j−3∑
k=1

(−1)k−1 · cn−1,j−k

)
· [Le],

and we conclude that

j−1∑
k=1

(−1)k−1 · [∆y(n−1,j−k)] = [Lx(n−1,j−1)] + [Lx(n−2,j−1)] + [Lx(n−j,0)]

+
( j−1∑
k=1

(−1)k−1 · cn−1,j−k

)
· [Le].

As in the case j = 3, we obtain

JSFλx(n−1,j) − dn−1,j · [Le] = [Lx(n−2,j)] + [Lx(n−2,j−1)] + [Lx(n−j,0)] + [Lx(n−j−1,0)]

+ [Lx(n−1,j−1)] + [Lx(n−2,j−1)] + [Lx(n−j,0)]

+ [Lx(n−j,0)] + [Lx(n−j−1,0)]

= [Lx(n−2,j)] + [Lx(n−1,j−1)]

+ 2 ·
(
[Lx(n−2,j−1)] + [Lx(n−j−1,0)]

)
+ 3 · [Lx(n−j,0)],

and we can use Proposition I.6.11 to see that each of the simple G-modules Lx(n−2,j−1), Lx(n−j−1,0)

and Lx(n−j,0) appears with multiplicity one in a composition series of ∆x(n−1,j). Furthermore, we can

argue as in the proof of Lemma 3.13 to see that dn−1,j = cn−1,j = 0 if n > 2j.

The second character formula follows from the first by taking duals (see Remark 3.1), so it remains

to compute the composition multiplicities in ∆x(n−1,n). Again by Proposition 3.7, we have

JSFλx(n−1,n) = (−1) · [∆e] + [∆x(0,0)] +
n−1∑
k=1

(−1)k−1 · [∆x(n−k−1,n)] +
n−1∑
k=1

(−1)k−1 · [∆y(n−1,n−k)],

and as before, we see that

n−1∑
k=1

(−1)k−1 · [∆y(n−1,n−k)] = [Lx(n−1,n−1)] + [Lx(n−2,n−1)] + [Lx(0,0)] +
( n−1∑
k=1

(−1)k−1 · cn−1,n−k

)
· [Le]

and (by dualizing)

n−1∑
k=1

(−1)k−1 · [∆x(n−k−1,n)] = [Lx(n−2,n)] + [Lx(n−2,n−1)] + [Lx(0,0)] +
( n−1∑
k=1

(−1)k−1 · cn−k−1,n

)
· [Le].

As [∆x(0,0)] = [Lx(0,0)] + [Le] by Lemma 3.3, we conclude that

JSFλx(n−1,n) − dn−1,n · [Le] = [Lx(0,0)] + [Lx(n−1,n−1)] + [Lx(n−2,n−1)] + [Lx(0,0)]

+ [Lx(n−2,n)] + [Lx(n−2,n−1)] + [Lx(0,0)]
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= [Lx(n−1,n−1)] + [Lx(n−2,n)] + 2 · [Lx(n−2,n−1)] + 3 · [Lx(0,0)],

and as before, we can use Proposition I.6.11 to see that the simple G-modules Lx(n−2,n−1) and Lx(0,0)

appear with multiplicity one in a composition series of ∆x(n−1,n).

4 Loewy structure of Weyl modules

The socle filtration of a G-module M is defined inductively by soc0
GM = 0 and

sockGM/sock−1
G M = socG

(
M/sock−1

G M
)

for k > 0. Analogously, the radical filtration is defined by rad0
GM = M and

radkGM = radG

(
radk−1

G M
)

for k > 0. By construction, the successive quotients (called layers) of both the socle and the radical

filtration are completely reducible, and if 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mr = M is a filtration of M by

G-submodules such that the successive quotients Mi/Mi−1 are completely reducible then

Mi ⊆ sociGM and radiGM ⊆Mr−i

for i = 0, . . . , r. Consequently, we have

m := min
{
k ≥ 0

∣∣ sockGM = M
}

= min
{
k ≥ 0

∣∣ radkGM = 0
}

and radm−iG M ⊆ sociGM for i = 0, . . . , r. The integer m is called the Loewy length of M , and M is

called rigid if radm−iG M = sociGM for i = 0, . . . ,m. The data of socle and radical filtration is loosely

referred to as the Loewy structure of M .

In this section, we use the results about composition series and Jantzen filtrations from the previous

section to examine the Loewy structure of the Weyl modules ∆x for x ∈ X. We keep the notation and

assumptions from Sections 2 and 3. In the cases where the multiplicities of all composition factors

of the Weyl module ∆x can be computed, it turns out that ∆x is rigid, with socle filtration and

radical filtration equal to the Jantzen filtration. When x = x(i, j) for 0 ≤ i < n and 0 ≤ j ≤ n

with i + j > n then there is some ambiguity about the multiplicity of the simple G-module Le in a

composition series of ∆x(i,j) (see Lemma 3.13), and it is unclear if the layers of the Jantzen filtration are

completely reducible. Nevertheless, we can compute the socle of ∆x(i,j) using translation arguments.

Generalities

We start with some general observations about the Jantzen filtration and complete reducibility. First,

we give a sufficient condition for the complete reducibility of a contravariantly self-dual G-module.

(Recall that a G-module M is called contravariantly self-dual if M τ ∼= M ; see Section I.4.)

Definition 4.1. A G-module M is called multiplicity free if [M : L(λ)] ≤ 1 for all λ ∈ X+.

A special case of the following lemma was already given as Lemma 4.12 in [Gru21]; the proof is

essentially the same.

Lemma 4.2. Let M be a contravariantly self-dual G-module. If M is multiplicity free then M is

completely reducible.
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Proof. Suppose that M is not completely reducible, so radGM 6= 0 and socG(radGM) 6= 0. As M is

contravariantly self-dual, we have socGM ∼= M/radGM and therefore

0 6= socG(radGM) ⊆ socGM ∼= M/radGM.

It follows that radGM and M/radGM have a composition factor in common; hence M is not multi-

plicity free.

Recall that we fix a weight λ ∈ Cfund ∩X and write ∆x = ∆(x ·λ) and Lx = L(x ·λ) for x ∈W+
ext.

For k > 0, we further denote by ∆x,k := ∆k
x/∆

k+1
x the k-th layer of the Jantzen filtration of ∆x. By

Remark 1 in Section II.8.19 in [Jan03], the G-modules ∆x,k are contravariantly self-dual for x ∈W+
ext

and k > 0. Therefore, the following corollary is an immediate consequence of Lemma 4.2.

Corollary 4.3. Let x ∈ W+
ext and k > 0 such that ∆x,k is multiplicity-free. Then ∆x,k is completely

reducible.

Whenever we are able to determine all composition multiplicities of the Weyl module ∆x, for x ∈ X

as in the previous section, this module is in fact multiplicity free, and it follows that all layers ∆x,k of

the Jantzen filtration of ∆x are completely reducible. Furthermore, we can use the following lemma

to determine these layers precisely.

Lemma 4.4. Let x ∈W+
aff such that ∆x is multiplicity free and write

JSFλx =
∑

y∈W+
aff

ay · [Ly].

Then the layers of the Jantzen filtration of ∆x are given by

∆x,k
∼=
⊕
y∈W+

aff
ay=k

Ly

for k > 0.

Proof. Recall from Section 1 that we have

JSFλx =
∑
k>0

[∆k
x] =

∑
k>0

k · [∆x,k].

As ∆x is multiplicity free, so are the layers ∆x,k for k > 0, and furthermore, no two layers have

a composition factor in common. By linear independence of the classes [Ly], for y ∈ W+
aff , in the

Grothendieck group [Rep(G)], we conclude that

[∆x,k] =
∑

y∈W+
aff

ay=k

[Ly].

Now the claim follows from Corollary 4.3.

The preceding Lemma shows that the layers of the Jantzen filtration are completely reducible and

can be uniquely determined from the Jantzen sum formula for every multiplicity free Weyl module. In

order to show that the Jantzen filtration coincides with the socle filtration and the radical filtration
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for the Weyl modules ∆x, for certain (but not all) x ∈ X, we use translation arguments, as will be

explained in the following.

Recall from Proposition I.6.8 that, for µ ∈ C fund ∩X and x ∈W+
aff , we have Tµλ ∆x 6= 0 if and only

if x · µ ∈ X+ and TµλLx 6= 0 if and only if x · µ belongs to the upper closure of x · Cfund (because the

`-alcove x · Cfund is the unique `-facet containing x · λ). We now reformulate the conditions for the

non-vanishing of Tµλ ∆x and TµλLx purely in terms of x and StabWaff
(µ).

Lemma 4.5. For µ ∈ C fund ∩X and x ∈W+
aff , we have Tµλ ∆x 6= 0 if and only if xStabWaff

(µ) ⊆W+
aff .

In that case, we further have Tµλ ∆x
∼= ∆(x · µ).

Proof. By Proposition I.6.8 (see also the discussion above), it suffices to prove that x · µ ∈ X+ if and

only if xStabWaff
(µ) ⊆W+

aff . An analogous statement was proven in Lemma IV.1.22, for the standard

action of Waff on XR rather than the `-dilated dot action, and we can essentially copy the proof of

that lemma.

First suppose that x · µ ∈ X+ and let w ∈ StabWaff
(µ). Then x · µ = xw · µ ∈ xw · C fund, so

0 < (x · µ+ ρ, α∨) ≤
(
nα(xw · Cfund) + 1

)
· `

for all α ∈ Φ+, and it follows that nα(xw · Cfund) ≥ 0 and xw ∈W+
aff .

Now suppose that xStabWaff
(µ) ⊆W+

aff and let α ∈ Π. Then x ·(x−1sαx) = sαx /∈W+
aff as x ∈W+

aff ,

so x−1sαx /∈ StabWaff
(µ) and sα /∈ StabWaff

(x · µ). This implies that (x · µ, α∨) 6= −1, and as

0 ≤ nα(x · Cfund) · ` ≤ (x · µ+ ρ, α∨) = (x · µ, α∨) + 1,

we conclude that (x · µ, α∨) ≥ 0 and x · µ ∈ X+, as required.

Remark 4.6. Let µ ∈ C fund ∩X and x ∈Waff such that x · µ ∈ X+. Then xStabWaff
(µ) ⊆W+

aff (see

the proof of Lemma 4.5), and by Proposition I.6.6, the G-module T λµ∆(x·µ) has a Weyl filtration with

subquotients the Weyl modules ∆y with y ∈ xStabWaff
(µ), each occurring precisely once. Writing

xStabWaff
(µ) = {y1, . . . , yr}

with i < j whenever yj · Cfund ↑` yi · Cfund, we can choose a Weyl filtration

0 = M0 ⊆ · · · ⊆Mr = T λµ∆(x · µ)

with Mi/Mi−1
∼= ∆yi for i = 0, . . . , r, as explained in Section I.5. In particular there exists an

embedding ∆y1 → T λµ∆(x · µ).

Lemma 4.7. For µ ∈ C fund∩X and x ∈W+
aff , we have TµλLx 6= 0 if and only if xs ∈W+

aff and x < xs

for all s ∈ S ∩ StabWaff
(µ). In that case, we further have TµλLx

∼= L(x · µ).

Proof. By Proposition I.6.8 (see also the discussion above Lemma 4.5), it suffices to prove that the

weight x · µ belongs to the upper closure of x · Cfund if and only if xs ∈ W+
aff and x < xs for all

simple reflections s ∈ S∩StabWaff
(µ). Recall from Lemma IV.1.24 that the weight x ·µ belongs to the

upper closure of x · Cfund if and only if x(Afund) ↑ xs(Afund) for all s ∈ S ∩ StabWaff
(µ). As x ∈ W+

aff ,

we have xs(Afund) ↑ x(Afund) for all s ∈ S with xs /∈ W+
aff , and for xs ∈ W+

aff , we have x < xs if

and only if x(Afund) ↑ xs(Afund) by Theorem IV.1.20. Combining these observations, we see that

x(Afund) ↑ xs(Afund) if and only if xs ∈W+
aff and x < xs, for all s ∈ S, and the claim follows.
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Now we are ready to employ translation functors in order to study the Loewy structure of Weyl

modules.

Lemma 4.8. Let x, y ∈W+
aff and suppose that Lx is isomorphic to a submodule of ∆y. For any s ∈ S

such that ys < y, we have xs ∈W+
aff and x < xs.

Proof. Let µ ∈ C fund ∩ X with StabWaff
(µ) = {e, s}. By Corollary I.2.13, we have ys ∈ W+

aff and

therefore yStabWaff
(µ) = {y, ys} ⊆W+

aff , and it follows that y · µ ∈ X+ (see the proof of Lemma 4.5).

As ys < y, we have ys · Cfund ↑` y · Cfund by Theorem IV.1.20, and using Remark 4.6, we see that

there is an embedding ∆y → T λµ∆(y · µ). By assumption, we have HomG(Lx,∆y) 6= 0 and therefore

0 6= HomG

(
Lx, T

λ
µ∆(y · µ)

) ∼= HomG

(
TµλLx,∆(y · µ)

)
.

It follows that TµλLx 6= 0, and Lemma 4.7 implies that xs ∈W+
aff and x < xs.

Lemma 4.9. Let x ∈ W+
aff and let 0 = M0 ⊆ · · · ⊆ Mr = ∆x be a filtration such that the successive

quotients Mi/Mi−1 are completely reducible. Further, let s ∈ S such that xs ∈ W+
aff , and let j ∈ Z>0

be maximal with the property that Mj/Mj−1 has a composition factor Ly with ys ∈ W+
aff and y < ys.

Then one of the simple G-modules Lx and Lxs is a composition factor of Mj/Mj−1, and if w ∈ W+
aff

with ws ∈W+
aff and w < ws such that Lw is a composition factor of Mj/Mj−1 then w ∈ {x, xs}.

Proof. Fix µ ∈ C fund∩X with StabWaff
(µ) = {e, s}. We first observe that j as in the statement of the

lemma exists: The assumption that {x, xs} ⊆W+
aff implies that

Tµλ ∆x
∼= ∆(x · µ) 6= 0

by Lemma 4.5, and it follows that Tµλ (Mi/Mi−1) 6= 0 for some i ∈ {1, . . . , r}. Then Mi/Mi−1 has a

composition factor Ly with TµλLy 6= 0, and using Lemma 4.7, we conclude that ys ∈W+
aff and y < ys.

The submodules TµλMi of Tµλ ∆x afford a filtration whose successive quotients are completely re-

ducible, and again by Lemma 4.7, j is maximal with the property that

TµλMj/T
µ
λMj−1

∼= Tµλ (Mj/Mj−1) 6= 0.

Hence Tµλ (Mj/Mj−1) is a non-zero and completely reducible quotient of Tµλ ∆x
∼= ∆(x · µ), and we

conclude that Tµλ (Mj/Mj−1) ∼= L(x · µ). Now let w ∈ W+
aff with ws ∈ W+

aff and w < ws, and suppose

that Lw is a composition factor of Mj/Mj−1. By Lemma 4.7, we have TµλLw
∼= L(w ·µ), and it follows

that L(w · µ) is a composition factor of Tµλ (Mj/Mj−1) ∼= L(x · µ). This implies that x · µ = w · µ and

therefore w ∈ xStabWaff
(µ) = {x, xs}, as claimed.

Now we are ready to determine the Loewy structures (or in some cases, only the socles) of the Weyl

modules ∆x for x ∈ X. We do this over the course of the four following subsections, distinguishing

the four cases i+ j < n, i+ j = n, i+ j = n+ 1 and i+ j > n+ 1.

The case i + j < n

Let 0 ≤ i < n and 0 ≤ j < n such that i + j < n. By Remark 3.4, the Weyl modules ∆x(i,0), ∆x(0,j)

and ∆x(0,0) are uniserial, and their Loewy structure can be depicted in the following diagrams:

(4.1) ∆x(i,0) =
Lx(i,0)

Lx(i−1,0)

∆x(0,j) =
Lx(0,j)

Lx(0,j−1)

∆x(0,0) =
Lx(0,0)

Le
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Now suppose that i > 0 and j > 0. By Lemma 3.5 and its proof, we have

[∆x(i,j)] = [Lx(i,j)] + [Lx(i−1,j)] + [Lx(i,j−1)] + [Lx(i−1,j−1)] + δi,j · [Le]

and

JSFλx(i,j) = [Lx(i−1,j)] + [Lx(i,j−1)] + 2 · [Lx(i−1,j−1)] + δi,j · [Le],

and if i 6= j then Lemma 4.4 implies that

∆x(i,j),1
∼= Lx(i−1,j) ⊕ Lx(i,j−1) and ∆x(i,j),2

∼= Lx(i−1,j−1),

so ∆x(i,j) has Loewy length at most 3. Furthermore, we have

x(i, j)si = x(i− 1, j) < x(i, j) and x(i, j − 1)si = x(i− 1, j − 1) < x(i, j − 1),

whence Lx(i,j−1) is not contained in socG∆x(i,j) by Lemma 4.8. Analogously, we see that Lx(i−1,j) is

not contained in socG∆x(i,j), and it follows that socG∆x(i,j) = ∆2
x(i,j)

∼= Lx(i−1,j−1). As

radG∆x(i,j) = ∆1
x(i,j) ) ∆2

x(i,j) = socG∆x(i,j),

the submodule radG∆x(i,j) of ∆x(i,j) is not completely reducible, and we conclude that ∆x(i,j) has

Loewy length 3. Now the fact that

0 6= rad2
G∆x(i,j) ⊆ socG∆x(i,j)

forces that rad2
G∆x(i,j) = socG∆x(i,j), and as radG∆x(i,j) is the unique maximal submodule of ∆x(i,j)

and

radG∆x(i,j) ⊆ soc2
G∆x(i,j) ( ∆x(i,j),

we further have radG∆x(i,j) = soc2
G∆x(i,j). We conclude that ∆x(i,j) is rigid.

If i = j then Lemma 4.4 yields

∆x(i,i),1
∼= Lx(i−1,i) ⊕ Lx(i,i−1) ⊕ Le and ∆x(i,i),2

∼= Lx(i−1,i−1),

and as before, the simple G-modules Lx(i−1,i) and Lx(i,i−1) do not belong to socG∆x(i,i). Furthermore,

we have x(i, i)si = x(i − 1, i) < x(i, i) and si /∈ W+
aff , whence Le does not belong to socG∆x(i,i) by

Lemma 4.8, and we conclude that socG∆x(i,i)
∼= Lx(i−1,i−1). Arguing as in the case i 6= j, we see

that the Weyl module ∆x(i,i) is rigid of Loewy length 3 and that the socle filtration and the radical

filtration both coincide with the Jantzen filtration.

We depict the Loewy structure of the Weyl module ∆x(i,j) (for i, j > 0) in the following diagrams,

for i 6= j on the left and for i = j on the right.

(4.2) ∆x(i,j) =

Lx(i,j)

Lx(i−1,j) ⊕ Lx(i,j−1)

Lx(i−1,j−1)

∆x(i,i) =

Lx(i,i)

Lx(i−1,i) ⊕ Le ⊕ Lx(i,i−1)

Lx(i−1,i−1)
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The case i + j = n

Let 0 ≤ i < n and 0 ≤ j ≤ n such that i+ j = n. If j = 1 then

[∆x(n−1,1)] = [Lx(n−1,1)] + [Lx(n−1,0)] + [Lx(n−2,1)] + [Lx(n−2,0)]

and

JSFλx(n−1,1) = [Lx(n−1,0)] + [Lx(n−2,1)] + 2 · [Lx(n−2,0)],

by Lemma 3.9 and its proof, so Lemma 4.4 yields

∆x(n−1,1),1
∼= Lx(n−1,0) ⊕ Lx(n−2,1) and ∆x(n−1,1),2

∼= Lx(n−2,0).

As in the previous subsection, we can use Lemma 4.8 to see that the simple G-module Lx(n−2,1) does

not belong to socG∆x(n−1,1). Furthermore, as

x(n− 1, 1)sn = x(n− 1, 0) < x(n− 1, 1) and x(n− 2, 0)sn = x(n− 2, 1) > x(n− 2, 0),

Lemma 4.9 implies that the simple G-modules Lx(n−1,0) and Lx(n−2,0) cannot belong to the same

socle layer of ∆x(n−1,1). We conclude that socG∆x(n−1,1)
∼= Lx(n−2,0), and arguing as in the previous

subsection, it follows that ∆x(n−1,1) is rigid of Loewy length 3, with socle filtration and radical filtration

both equal to the Jantzen filtration. Analogously, if i = 0 then

∆x(0,n),1
∼= Lx(0,n−1) ⊕ Lx(1,n−2) and ∆x(0,n),2

∼= Lx(0,n−2),

and ∆x(0,n) is rigid of Loewy length 3, with socle filtration and radical filtration equal to the Jantzen

filtration. Below, we depict the Loewy structure of the Weyl modules ∆x(n−1,1) and ∆x(0,n).

(4.3) ∆x(n−1,1) =

Lx(n−1,1)

Lx(n−1,0) ⊕ Lx(n−2,1)

Lx(n−2,0)

∆x(0,n) =

Lx(0,n)

Lx(0,n−1) ⊕ Lx(1,n−2)

Lx(0,n−2)

Now suppose that i > 0 and j > 1. Then

[∆x(i,j)] = [Lx(i,j)] + [Lx(i+1,j−2)] + [Lx(i,j−1)] + [Lx(i−1,j)]

+ [Lx(i−1,j−1)] + [Lx(i,j−2)] + [Lx(i−1,j−2)] + (δi,j + δi,j−2) · [Le]

and

JSFλx(i,j) = [Lx(i+1,j−2)] + [Lx(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−2)]

+ 2 · [Lx(i−1,j−1)] + 2 · [Lx(i,j−2)] + (δi,j + δi,j−2) · [Le],

by Lemma 3.8 and its proof. If j /∈ {i, i+ 2} then Lemma 4.4 yields

∆x(i,j),1
∼= Lx(i+1,j−2) ⊕ Lx(i,j−1) ⊕ Lx(i−1,j) ⊕ Lx(i−1,j−2),

∆x(i,j),2
∼= Lx(i−1,j−1) ⊕ Lx(i,j−2);

in particular, ∆x(i,j) has Loewy length at most 3 and ∆2
x(i,j) ⊆ socG∆x(i,j). As before, we can use

Lemma 4.8 to see that none of the simple G-modules Lx(i+1,j−2), Lx(i−1,j) and Lx(i−1,j−2) belongs to

the socle of ∆x(i,j); hence

socG∆x(i,j) ( ∆1
x(i,j) = radG∆x(i,j),

160



4. Loewy structure of Weyl modules

and it follows that ∆x(i,j) has Loewy length 3. This implies that

radG∆x(i,j) ⊆ soc2
G∆x(i,j) ( ∆x(i,j),

and as radG∆x(i,j) is the unique maximal submodule of ∆x(i,j), we obtain radG∆x(i,j) = soc2
G∆x(i,j).

Finally, we have

x(i, j)si+1 = x(i, j − 1) < x(i, j),

x(i, j − 2)si+1 = x(i+ 1, j − 2) > x(i, j − 2),

x(i− 1, j − 1)si+1 = x(i− 1, j) > x(i− 1, j − 1)

by Remark 2.5, and Lemma 4.9 implies that Lx(i,j−1) cannot belong to the same radical layer or socle

layer as either of the simple G-modules Lx(i−1,j−1) or Lx(i,j−2). We conclude that

rad2
G∆x(i,j) = socG∆x(i,j) = ∆2

x(i,j);

hence ∆x(i,j) is rigid, and the Loewy structure is as follows:

(4.4) ∆x(i,j) =

Lx(i,j)

Lx(i+1,j−2) ⊕ Lx(i,j−1) ⊕ Lx(i−1,j−2) ⊕ Lx(i−1,j)

Lx(i,j−2) ⊕ Lx(i−1,j−1)

If j ∈ {i, i+ 2} then

∆x(i,j),1
∼= Lx(i+1,j−2) ⊕ Lx(i,j−1) ⊕ Lx(i−1,j) ⊕ Lx(i−1,j−2) ⊕ Le,

∆x(i,j),2
∼= Lx(i−1,j−1) ⊕ Lx(i,j−2),

and arguing as above, we see that ∆x(i,j) is rigid of Loewy length 3. Both the socle filtration and the

radical filtration coincide with the Jantzen filtration, and the Loewy structure is displayed below, for

the cases j = i and j = i+ 2, respectively.

(4.5)

∆x(i,i) =

Lx(i,i)

Lx(i+1,i−2) ⊕ Lx(i,i−1) ⊕ Le ⊕ Lx(i−1,i−2) ⊕ Lx(i−1,i)

Lx(i,i−2) ⊕ Lx(i−1,i−1)

∆x(i,i+2) =

Lx(i,i+2)

Lx(i+1,i) ⊕ Lx(i,i+1) ⊕ Le ⊕ Lx(i−1,i) ⊕ Lx(i−1,i+2)

Lx(i,i) ⊕ Lx(i−1,i+1)

The case i + j = n + 1

Let 0 ≤ i < n and 0 ≤ j ≤ n such that i+ j = n+ 1 and suppose first that i ≥ 2 and j ≥ 3. Then, by

Lemma 3.10 and its proof, we have

[∆x(i,j)] = [Lx(i,j)] + [Lx(i−1,j)] + [Lx(i,j−1)] + [Lx(i−1,j−1)] + [Lx(i,j−2)] + [Lx(i−1,j−2)]

+ [Lx(i−2,j−2)] + [Lx(i−1,j−3)] + [Lx(i−2,j−3)] + ci,j · [Le]

and

JSFλx(i,j) = [Lx(i−1,j)] + [Lx(i,j−1)] + 2 · [Lx(i−1,j−1)] + 2 · [Lx(i,j−2)] + 3 · [Lx(i−1,j−2)]

+ 2 · [Lx(i−2,j−2)] + 2 · [Lx(i−1,j−3)] + [Lx(i−2,j−3)] + di,j · [Le],
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where ci,j = di,j = 0 unless i ≤ j ≤ i+2. For i ≤ j ≤ i+2, we have ci,j , di,j ∈ {1, 2} and ci,j = di,j = 1

for j ∈ {i, i+ 2}. If j < i or j > i+ 2 then Lemma 4.4 yields

∆x(i,j),1
∼= Lx(i−1,j) ⊕ Lx(i,j−1) ⊕ Lx(i−2,j−3),

∆x(i,j),2
∼= Lx(i−1,j−1) ⊕ Lx(i,j−2) ⊕ Lx(i−2,j−2) ⊕ Lx(i−1,j−3),

∆x(i,j),3
∼= Lx(i−1,j−2),

so ∆x(i,j) has Loewy length at most 4. As

x(i, j)si = x(i, j − 1) < x(i, j) and x(i, j)si+1 = x(i− 1, j) < x(i, j),

any element y ∈W+
aff such that Ly is isomorphic to a submodule of ∆x(i,j) satisfies y < ysi ∈W+

aff and

y < ysi+1 ∈W+
aff by Lemma 4.8, and using Lemma 2.3 and Remark 2.5, it follows that

socG∆x(i,j) = ∆3
x(i,j)

∼= Lx(i−1,j−2).

Furthermore, we have

x(i, j − 1)si = x(i, j) > x(i, j − 1) and x(i− 1, j − 1)si = x(i− 1, j) > x(i− 1, j − 1),

and both of the simple G-modules Lx(i,j−1) and Lx(i−1,j−1) are composition factors of

radG∆x(i,j)/socG∆x(i,j) = ∆1
x(i,j)/∆

3
x(i,j).

Now Lemma 4.9 implies that radG∆x(i,j)/socG∆x(i,j) is not completely reducible, and we conclude

that ∆x(i,j) has Loewy length 4. As before, we have soc3
G∆x(i,j) = radG∆x(i,j) because radG∆x(i,j) is

the unique maximal submodule of ∆x(i,j), and

0 6= rad3
G∆x(i,j) ⊆ socG∆x(i,j)

∼= Lx(i−1,j−2),

whence rad3
G∆x(i,j) = socG∆x(i,j). Applying Lemma 4.9 again (with the reflections si and si+1,

respectively), we see that neither of the simple G-modules Lx(i−1,j−3) and Lx(i−1,j−1) can belong to

the same radical layer as Lx(i,j−1) and that neither of the simple G-modules Lx(i−2,j−2) and Lx(i,j−2)

can belong to the same radical layer as Lx(i−1,j); hence rad2
G∆(i, j) = ∆2

x(i,j). Analogously, neither of

the simple G-modules Lx(i−1,j) and Lx(i,j−1) can belong to the second socle layer of ∆x(i,j). In order

to show that ∆x(i,j) is rigid, it remains to see that Lx(i−2,j−3) belongs to the third socle layer. Suppose

for a contradiction that Lx(i−2,j−3) belongs to the second socle layer of ∆x(i,j). Then there exists a

non-split extension of Lx(i−2,j−3) by Lx(i−1,j−2)
∼= socG∆(i, j). By Remark I.4.1, we have

ExtiG
(
∆x(i−1,j−2), Lx(i−2,j−3)

) ∼= ExtiG
(
Lx(i−2,j−3),∇x(i−1,j−2)

)
= 0

for all i ≥ 0, and as all simple G-modules are contravariantly self-dual, it follows that

0 6= Ext1
G

(
Lx(i−2,j−3), Lx(i−1,j−2)

) ∼= Ext1
G

(
Lx(i−1,j−2), Lx(i−2,j−3)

)
∼= HomG

(
radG∆x(i−1,j−2), Lx(i−2,j−3)

)
.

This contradicts the fact that the simple G-module Lx(i−2,j−3) belongs to the third radical layer of

the Weyl module ∆x(i−1,j−2); see the diagrams in (4.2). We conclude that Lx(i−2,j−3) belongs to the

third socle layer of ∆x(i,j), so

soc2
G∆x(i,j) = rad2

G∆x(i,j) = ∆2
x(i,j)
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and ∆x(i,j) is rigid, with socle filtration and radical filtration equal to the Jantzen filtration. The

Loewy structure can be depicted as follows:

(4.6) ∆x(i,j) =

Lx(i,j)

Lx(i,j−1) ⊕ Lx(i−2,j−3) ⊕ Lx(i−1,j)

Lx(i−1,j−3) ⊕ Lx(i,j−2) ⊕ Lx(i−1,j−1) ⊕ Lx(i−2,j−2)

Lx(i−1,j−2)

If j ∈ {i, i+ 2} then

∆x(i,j),1
∼= Lx(i−1,j) ⊕ Lx(i,j−1) ⊕ Lx(i−2,j−3) ⊕ Le,

∆x(i,j),2
∼= Lx(i−1,j−1) ⊕ Lx(i,j−2) ⊕ Lx(i−2,j−2) ⊕ Lx(i−1,j−3),

∆x(i,j),3
∼= Lx(i−1,j−2),

and arguing as before, we see that ∆x(i,j) is rigid of Loewy length 4, with socle filtration and radical

filtration both equal to the Jantzen filtration. Below, we depict the Loewy structure in the cases j = i

and j = i+ 2, respectively.

(4.7)

∆x(i,i) =

Lx(i,i)

Lx(i,i−1) ⊕ Lx(i−2,i−3) ⊕ Lx(i−1,i) ⊕ Le
Lx(i−1,i−3) ⊕ Lx(i,i−2) ⊕ Lx(i−1,i−1) ⊕ Lx(i−2,i−2)

Lx(i−1,i−2)

∆x(i,i+2) =

Lx(i,i+2)

Lx(i,i+1) ⊕ Lx(i−2,i−1) ⊕ Lx(i−1,i+2) ⊕ Le
Lx(i−1,i−1) ⊕ Lx(i,i) ⊕ Lx(i−1,i+1) ⊕ Lx(i−2,i)

Lx(i−1,i)

In the case j = i+ 1, we cannot determine the the Loewy structure of ∆x(i,j) because we do not know

the multiplicity of Le in a composition series of ∆x(i,i+1). Nevertheless, we can use Lemma 4.8, as

before, to show that

(4.8) socG∆x(i,i+1)
∼= Lx(i−1,i−1).

Now suppose that j = 2, so

[∆x(n−1,2)] = [Lx(n−1,2)] + [Lx(n−1,1)] + [Lx(n−2,2)] + [Lx(n−1,0)] + [Lx(n−2,1)]

+ [Lx(n−2,0)] + [Lx(n−3,0)] + δn,3 · [Le]

and

JSFλx(n−1,2) = [Lx(n−1,1)] + [Lx(n−2,2)] + 2 · [Lx(n−1,0)] + 2 · [Lx(n−2,1)]

+ 2 · [Lx(n−3,0)] + 3 · [Lx(n−2,0)] + δn,3 · [Le]

by Lemma 3.11 and its proof. If n 6= 3 then Lemma 4.4 yields

∆x(n−1,2),1
∼= Lx(n−1,1) ⊕ Lx(n−2,2),

∆x(n−1,2),2
∼= Lx(n−1,0) ⊕ Lx(n−2,1) ⊕ Lx(n−3,0),

∆x(n−1,2),3
∼= Lx(n−2,0),
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and using the same arguments as before, we see that ∆x(n−1,2) is rigid of Loewy length 4 and that

the socle filtration and the radical filtration both coincide with the Jantzen filtration. Analogously,

we see that the layers of the Jantzen filtration of ∆x(1,n) (for n 6= 3) are given by

∆x(1,n),1
∼= Lx(0,n) ⊕ Lx(1,n−1),

∆x(1,n),2
∼= Lx(0,n−1) ⊕ Lx(1,n−2) ⊕ Lx(0,n−3),

∆x(1,n),3
∼= Lx(0,n−2)

and that ∆x(1,n) is rigid of Loewy length 4, with socle filtration and radical filtration equal to the

Jantzen filtration. The Loewy structure of the Weyl modules ∆x(n−1,2) and ∆x(1,n) is given below.

(4.9)

∆x(n−1,2) =

Lx(n−1,2)

Lx(n−1,1) ⊕ Lx(n−2,2)

Lx(n−1,0) ⊕ Lx(n−3,0) ⊕ Lx(n−2,1)

Lx(n−2,0)

∆x(1,n) =

Lx(1,n)

Lx(1,n−1) ⊕ Lx(0,n)

Lx(0,n−1) ⊕ Lx(0,n−3) ⊕ Lx(1,n−2)

Lx(0,n−2)

If n = 3 then the Loewy structure of the Weyl modules ∆x(2,2) and ∆x(1,3) is as depicted above, but

with an additional composition factor Le in the second radical layer.

The case i + j > n + 1

Let 0 ≤ i < n and 0 ≤ j ≤ n such that i+ j > n+ 1. First suppose that i < n− 1 and j < n, so that

[∆x(i,j)] = [Lx(i,j)] + [Lx(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)]

+ [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)] + [Lx(n−j,n−i−2)] + [Lx(n−j−1,n−i−2)]

+ ci,j · [Le]

and

JSFλx(i,j) = [Lx(i−1,j)] + [Lx(i,j−1)] + [Lx(n−j−1,n−i−2)]

+ 2 · [Lx(i−1,j−1)] + 2 · [Lx(n−j−1,n−i−1)] + 2 · [Lx(n−j,n−i−2)]

+ 3 · [Lx(n−j,n−i−1)] + di,j · [Le]

by Lemma 3.13 and its proof. If n > 2j or n > 2i+ 2 then ci,j = di,j = 0 and Lemma 4.4 yields

∆x(i,j),1
∼= Lx(i−1,j) ⊕ Lx(i,j−1) ⊕ Lx(n−j−1,n−i−2),

∆x(i,j),2
∼= Lx(i−1,j−1) ⊕ Lx(n−j−1,n−i−1) ⊕ Lx(n−j,n−i−2),

∆x(i,j),3
∼= Lx(n−j,n−i−1).

As before, we can use Lemma 4.8 to see that none of the simple G-modules

Lx(i−1,j), Lx(i,j−1), Lx(n−j−1,n−i−2), Lx(n−j−1,n−i−1) and Lx(n−j,n−i−2)
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belong to the socle of ∆x(i,j). However, Lemma 4.8 does not rule out the possibility that Lx(i−1,j−1)

belongs to the socle of ∆x(i,j). We will give a more subtle argument to show that

socG∆x(i,j)
∼= Lx(n−j,n−i−1),

even when n ≤ 2j and n ≤ 2i+ 2, and also when i = n−1 or j = n. Our strategy is to use translation

arguments as in the proofs of Lemmas 4.8 and 4.9, but contrary to the proofs of these lemmas, we will

use translation functors Tµλ and T λµ for weights µ ∈ C fund ∩X such that StabWaff
(µ) is generated by

two simple reflections (rather than just one).

Proposition 4.10. Let 0 ≤ i < n and 0 ≤ j ≤ n such that i+ j > n+ 1. Then

socG∆x(i,j)
∼= Lx(n−j,n−i−1).

Proof. Recall from Lemmas 3.13 and 3.14 that

[∆x(i,j)] = [Lx(i,j)] + [Lx(i,j−1)] + [Lx(i−1,j)] + [Lx(i−1,j−1)]

+ [Lx(n−j,n−i−1)] + [Lx(n−j−1,n−i−1)] + [Lx(n−j,n−i−2)] + [Lx(n−j−1,n−i−2)]

+ ci,j · [Le],

with the convention that [Lx(a,b)] = 0 if a < 0 or b < 0. Using Lemma 4.8, it is straightforward to

see that Lx(i−1,j−1) and Lx(n−j,n−i−1) are the only simple G-modules that could appear in the socle

of ∆x(i,j). Therefore, it suffices to prove that Lx(i−1,j−1) does not appear in the socle of ∆x(i,j).

Consider the weight µ := −$i+1 −$n−j+1 ∈ C fund ∩X and observe that

StabWaff
(µ) = 〈si+1, sn−j+1〉 = {e, si+1, sn−j+1, si+1sn−j+1}

by Lemma IV.1.21 and Example I.2.6. Using Lemma 2.3, it is straightforward to see that

x(i, j)StabWaff
(µ) = {x(i, j), x(i− 1, j), x(i, j − 1), x(i− 1, j − 1)} ⊆W+

aff ,

and Lemma 4.5 implies that 0 6= Tµλ ∆x(i,j)
∼= ∆

(
x(i, j) · µ

)
. Now Tµλ is exact and takes simple G-

modules in Repλ(G) to simple G-modules in Repµ(G) or to zero (see Lemma 4.7), so we obtain a

composition series of ∆
(
x(i, j) ·µ

)
by applying Tµλ to all composition factors of ∆x(i,j) (and forgetting

about those simple G-modules which are mapped to zero). For y ∈ W+
aff , we have TµλLy 6= 0 if and

only if y < ysi+1 ∈ W+
aff and y < ysn−j+1 ∈ W+

aff (again by Lemma 4.7), and using Lemma 2.3 and

Remark 2.5, it is straightforward to see that Lx(i−1,j−1) and Lx(n−j,n−i−1) are the only composition

factors of ∆x(i,j) that are not mapped to zero by Tµλ . We conclude that ∆
(
x(i, j) · µ

)
is uniserial of

composition length 2, with

headG∆
(
x(i, j) · µ

) ∼= TµλLx(i−1,j−1)
∼= L

(
x(i− 1, j − 1) · µ

)
= L

(
x(i, j) · µ

)
and

socG∆
(
x(i, j) · µ

) ∼= TµλLx(n−j,n−i−1)
∼= L

(
x(n− j, n− i− 1) · µ

)
.

Now suppose for a contradiction that Lx(i−1,j−1) appears in the socle of ∆x(i,j). Then the simple

G-module TµλLx(i−1,j−1)
∼= L

(
x(i, j) · µ

)
appears in the socle of Tµλ ∆x(i,j)

∼= ∆
(
x(i, j) · µ

)
; hence

x(i, j) · µ = x(n− j, n− i− 1) · µ,
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and we arrive at the contradiction x(n− j, n− i− 1) ∈ x(i, j)StabWaff
(µ). Therefore, Lx(i−1,j−1) does

not appear in the socle of ∆x(i,j), and we conclude that

socG∆x(i,j)
∼= Lx(n−j,n−i−1),

as required.

Now let us return to the Loewy structure of the Weyl module ∆x(i,j) for i < n− 1 and j < n such

that i+ j > n+ 1 and either n > 2j or n > 2i+ 2. Recall that by Lemma 4.4, we have

∆x(i,j),1
∼= Lx(i−1,j) ⊕ Lx(i,j−1) ⊕ Lx(n−j−1,n−i−2),

∆x(i,j),2
∼= Lx(i−1,j−1) ⊕ Lx(n−j−1,n−i−1) ⊕ Lx(n−j,n−i−2),

∆x(i,j),3
∼= Lx(n−j,n−i−1),

where ∆3
x(i,j) = socG∆x(i,j) by Proposition 4.10. Arguing as in the previous subsection, we see that

the Weyl module ∆x(i,j) is rigid of Loewy length 4, with socle filtration and radical filtration equal to

the Jantzen filtration. The Loewy structure of ∆x(i,j) is depicted in the following diagram.

∆x(i,j) =

Lx(i,j)

Lx(i−1,j) ⊕ Lx(n−j−1,n−i−2) ⊕ Lx(i,j−1)

Lx(n−j−1,n−i−1) ⊕ Lx(i−1,j−1) ⊕ Lx(n−j,n−i−2)

Lx(n−j,n−i−1)

Now suppose that 2 ≤ i < n − 1 and 3 ≤ j < n with n > 2i + 2 and n > 2j. As before, one can

show that the Weyl modules ∆x(i,n) and ∆x(n−1,j) are rigid of Loewy length 4, and that their socle

filtrations and radical filtrations coincide with the respective Jantzen filtrations. The Loewy structure

of these Weyl modules is depicted below.

∆x(i,n) =

Lx(i,n)

Lx(i−1,n) ⊕ Lx(i,n−1)

Lx(i−1,n−1) ⊕ Lx(0,n−i−2)

Lx(0,n−i−1)

∆x(n−1,j) =

Lx(n−1,j)

Lx(n−2,j) ⊕ Lx(n−1,j−1)

Lx(n−j−1,0) ⊕ Lx(n−2,j−1)

Lx(n−j,0)

We conclude this section by recalling the information we have obtained about the socles of the

Weyl modules ∆x for x ∈ X.

Remark 4.11. Let 0 ≤ i < n and 0 ≤ j ≤ n. For j < n, we have

socG∆x(0,0)
∼= Le, socG∆x(i,0)

∼= Lx(i−1,0), socG∆x(0,j)
∼= Lx(0,j−1)

by equation (4.1), and if i > 0, j > 0 and i+ j < n then

socG∆x(i,j)
∼= Lx(i−1,j−1)

by equation (4.2). Furthermore, we have

socG∆x(n−1,1)
∼= Lx(n−2,0) and socG∆x(0,n)

∼= Lx(0,n−2)

by equation (4.3), and if i > 0, j > 1 and i+ j = n then

socG∆x(i,j)
∼= Lx(i−1,j−1) ⊕ Lx(i,j−2)

166



5. Non-simplicity of generic direct summands

by equations (4.4) and (4.5). Finally, if i+ j = n+ 1 then

socG∆x(i,j)
∼= Lx(i−1,j−2)

by equations (4.6), (4.7), (4.8) and (4.9), and if i+ j > n+ 1 then

socG∆x(i,j)
∼= Lx(n−j,n−i−1)

by Proposition 4.10. Observe that for 0 ≤ a < n and 0 ≤ b ≤ n such that Lx(a,b) is isomorphic to a

submodule of ∆x(i,j), we have a+ b ≤ n− 2, and Corollary II.2.7 and Remark 2.5 yield

gfd
(
Lx(a,b)

)
= `
(
x(a, b)

)
= a+ b+ 1 ≤ n− 1.

Hence the good filtration dimension of any simple G-module in the socle of ∆x(i,j) is at most n− 1.

5 Non-simplicity of generic direct summands

In this section, we apply the results from the previous sections to study tensor products of simple

G-modules. As before, we assume that G is of type An and that ` ≥ h = n + 1, and we adopt the

notation and conventions from Section 2. In particular, we consider the set

X := {x(i, j) | 0 ≤ i < n, 0 ≤ j ≤ n} ∪ {e} ⊆W+
aff ,

where for 0 ≤ i < n and 0 ≤ j ≤ n, we have

x(i, j) = s0s1 · · · sisnsn−1 · · · sn−j+1.

Our aim is to show that, in the modular case, the generic direct summand G
(
x(i, 0), x(0, j)

)
of the

tensor product L
(
x(i, 0) · 0

)
⊗ L

(
x(0, j) · 0

)
is non-simple, for all 0 ≤ i < n− 1 and 0 ≤ j < n− 1.

As in Chapter IV, we will fix an element ω ∈ Ω = StabWext(Afund) and make use of the fact that

G
(
x(i, 0)ω−1, x(0, j)ω

) ∼= G
(
x(i, 0), x(0, j)

)
;

see Lemma II.5.10. Then, in order to prove the non-simplicity of G
(
x(i, 0), x(0, j)

)
, we will distinguish

two cases:

When i+ j ≥ n− 2, we can use an embedding

L
(
x(i, 0)ω−1 · 0

)
⊗ L

(
x(0, j)ω · 0

)
−→ ∆

(
x(i+ 1, 0)ω−1 · 0

)
⊗∆

(
x(0, j + 1)ω · 0

)
and the information about the socles of the Weyl modules ∆(x · 0) for x ∈ X, established in the

previous section, to see that L
(
x(i, 0)ω−1 · 0

)
⊗ L

(
x(0, j)ω · 0

)
has no simple submodule belonging to

the linkage class of 0 and having good filtration dimension `
(
x(i, 0)

)
+ `
(
x(0, j)

)
= i+ j + 2.

When i + j < n − 2, we will use the distribution algebra of G to show that certain maximal

vectors in the tensor product L
(
x(i, 0)ω−1 · 0

)
⊗L

(
x(0, j)ω · 0

)
generate non-simple submodules, and

the non-simplicity of G
(
x(i, 0), x(0, j)

)
will follow by weight considerations. This is the only part of

the proof (of the aim formulated above and of the complete reducibility theorem on page 131) where

it is necessary to assume that we are in the modular case. We believe that the complete reducibility

theorem should still hold in the quantum case, but we were not able to find a proof that bypasses the

direct computation of maximal vectors, which is feasible only in the modular case.
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Before we start dealing with the two cases outlined above, let us fix some more notation. As in

Section IV.3, we define

ω := t$1s1s2 · · · sn ∈ Ω,

so that ω · 0 = (`− n− 1) ·$1 (see Lemmas IV.3.3 and IV.3.4). Furthermore, for x ∈W+
ext, we write

∆x = ∆(x · 0) and Lx = L(x · 0).

The highest weights of the simple G-modules Lx(i,0)ω−1 and Lx(0,j)ω, whose tensor product we want

to study below, are made explicit in the following lemma:

Lemma 5.1. Let 0 ≤ i, j < n. Then

x(i, 0)ω−1 · 0 = $i+1 + (`− n+ i) ·$n and x(0, j)ω · 0 = (`− n+ j) ·$1 +$n−j .

Proof. Recall from Lemma IV.3.4 that we have ω · 0 = (`− n− 1) ·$1. It is straightforward to see by

induction on k that

sn−j+ksn−j+k−1 · · · sn−j+1ω · 0 = (`− n− 1) ·$1 +$n−j − (k + 1) ·$n−j+k + k ·$n−j+k+1

for k = 1, . . . , j, and in particular

snsn−1 · · · sn−j+1ω · 0 = (`− n− 1) ·$1 +$n−j − (j + 1) ·$n.

It follows that
(
snsn−1 · · · sn−j+1ω · 0 + ρ, α∨h

)
= `− (j + 1) and

x(0, j)ω · 0 = s0sn · · · sn−j+1ω · 0 = sn · · · sn−j+1ω · 0 + (j + 1) · αh = (`− n+ j) ·$1 +$n−j ,

as claimed. Next observe that we have x(i, 0) = x(0, i)∗ and

ω−1 = snsn−1 · · · s1t−$1 = t$nsnsn−1 · · · s1 = ω∗;

see Remark 3.1. Using the preceding case and again Remark 3.1, we conclude that

x(i, 0)ω−1 · 0 = x(0, i)∗ω∗ · 0 = −w0

(
x(0, i)ω · 0

)
= −w0

(
(`− n+ i) ·$1 +$n−i

)
= $i+1 + (`− n+ i) ·$n,

as required.

The case i + j ≥ n− 2

As explained in the introduction to this section, we want to prove that G
(
x(i, 0), x(0, j)

)
is non-simple,

in the case i + j ≥ n − 2, by first showing that G
(
x(i, 0), x(0, j)

)
can be embedded into the tensor

product ∆x(i+1,0)ω−1 ⊗∆x(0,j+1)ω and then arguing that the latter tensor product does not have any

simple submodule that belongs to Rep0(G) and has good filtration dimension

`
(
x(i, 0)

)
+ `
(
x(0, j)

)
= gfd

(
G
(
x(i, 0), x(0, j)

))
.

For the second step, we will need the following lemma, which gives us some control over the highest

weights of the Weyl modules appearing in a Weyl filtration of ∆x(i,0)ω−1 ⊗∆x(0,j)ω.
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Lemma 5.2. Let 0 ≤ i, j ≤ n− 1 and let δ ∈ X+ such that ∆(δ) appears as a subquotient in a Weyl

filtration of ∆x(i,0)ω−1 ⊗∆x(0,j)ω. Then δ ∈ x · C fund for some x ∈ X.

Proof. Recall from Lemma 5.1 that we have

x(i, 0)ω−1 · 0 = $i+1 + (`− n+ i) ·$n and x(0, j)ω · 0 = (`− n+ j) ·$1 +$n−j .

It is straightforward to see by weight considerations that the Weyl modules ∆x(i,0)ω−1 and ∆x(0,j)ω

appear as subquotients in Weyl filtrations of the tensor products

∆
(
(`− n+ i) ·$n

)
⊗∆($i+1) and ∆

(
(`− n+ j) ·$1

)
⊗∆($n−j),

respectively, so ∆(δ) appears as a subquotient in a Weyl filtration of

∆
(
(`− n+ i) ·$n

)
⊗∆

(
(`− n+ j) ·$1

)
⊗∆($i+1)⊗∆($n−j).

We claim that the highest weights of the Weyl modules appearing in a Weyl filtration of the tensor

product ∆
(
(`− n+ i) ·$n

)
⊗∆

(
(`− n+ j) ·$1

)
are all of the form

δk := (`− n+ j − k) ·$1 + (`− n+ i− k) ·$n,

for 0 ≤ k ≤ min{`−n+ i, `−n+ j}. Indeed, as the characters of the Weyl modules form a basis of the

character lattice Z[X]Wfin , it suffices to show that the character of the tensor product above can be

written as a linear combination of the characters of the Weyl modules with highest weights δk. This

can easily be verified, using the well-known Pieri rule; see Proposition 15.25 in [FH91]. It follows that

∆(δ) appears in a Weyl filtration of a tensor product of the form ∆(δk) ⊗∆($i+1) ⊗∆($n−j), and

by Propositions I.6.6 and IV.2.5, we can write δ = δk + ν1 + ν2, where ν1 and ν2 are Wfin-conjugate

to the minuscule weights $i+1 and $n−j , respectively. In particular, the weight ν := ν1 + ν2 = δ − δk
satisfies (ν, α∨) ≤ 2 for all α ∈ Φ+. We conclude that

(δ + ρ, α∨h ) = (δk, α
∨
h ) + (ν, α∨h ) + (ρ, α∨h ) ≤ 2 · (`− n− k) + i+ j + 2 + n < 3`,

(δ + ρ, β∨2,n−1) = (δk, β
∨
2,n−1) + (ν, β∨2,n−1) + (ρ, β∨2,n−1) ≤ 2 + n− 2 < `,

(δ + ρ, β∨2,n) = (δk, β
∨
2,n) + (ν, β∨2,n) + (ρ, β∨2,n) ≤ `− n+ i− k + 2 + n− 1 < 2`,

(δ + ρ, β∨1,n−1) = (δk, β
∨
1,n−1) + (ν, β∨1,n−1) + (ρ, β∨1,n−1) ≤ `− n+ j − k + 2 + n− 1 < 2`,

and the claim follows from Corollary 2.2.

Using the results about socles of Weyl modules from Section 4, we are now ready to prove the

non-simplicity of G
(
x(i, 0), x(0, j)

)
for i+ j ≥ n− 2.

Proposition 5.3. Let 0 ≤ i < n − 1 and 0 ≤ j < n − 1 such that i + j ≥ n − 2. Then the generic

direct summand G
(
x(i, 0), x(0, j)

)
of Lx(i,0) ⊗ Lx(0,j) is non-simple.

Proof. First observe that we have G
(
x(i, 0), x(0, j)

) ∼= G
(
x(i, 0)ω−1, x(0, j)ω

)
by Lemma II.5.10. Fur-

thermore, by Remark 4.11, we have

Lx(i,0)ω−1
∼= socG∆x(i+1,0)ω−1 and Lx(0,j)ω

∼= socG∆x(0,j+1)ω;

hence there exists an embedding

G
(
x(i, 0), x(0, j)

)
−→ Lx(i,0)ω−1 ⊗ Lx(0,j)ω −→ ∆x(i+1,0)ω−1 ⊗∆x(0,j+1)ω.
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Now suppose for a contradiction that G
(
x(i, 0), x(0, j)

)
is simple, so that G

(
x(i, 0), x(0, j)

) ∼= Ly for

some y ∈W+
aff with

gfd(Ly) = `
(
x(i, 0)

)
+ `
(
x(0, j)

)
= i+ j + 2 ≥ n;

see Proposition II.5.7. The tensor product ∆x(i+1,0)ω−1 ⊗∆x(0,j+1)ω has a Weyl filtration, and as

HomG(Ly,∆x(i+1,0)ω−1 ⊗∆x(0,j+1)ω) 6= 0,

there exists an element x ∈ W+
aff such that HomG(Ly,∆x) 6= 0 and the multiplicity of ∆x in a Weyl

filtration of ∆x(i+1,0)ω−1 ⊗∆x(0,j+1)ω is non-zero. By Lemma 5.2, we have either x = e or x = x(a, b)

for some 0 ≤ a < n and 0 ≤ b ≤ n, and by Remark 4.11, every simple G-module in the socle of ∆x

has good filtration dimension at most n− 1. This contradicts the observation that gfd(Ly) ≥ n, and

we conclude that G
(
x(i, 0), x(0, j)

)
is non-simple.

The case i + j < n− 2

For the rest of this chapter, we make the following assumption:

Suppose that we are in the modular case.

When i+ j < n− 2, our proof of the non-simplicity of the generic direct summand G
(
x(i, 0), x(0, j)

)
involves an explicit computation of certain maximal vectors which generate non-simple submodules in

the tensor product Lx(i,0)ω−1 ⊗Lx(0,j)ω.2 By a detailed study of these maximal vectors and by weight

considerations, we will be able show that Lx(i,0)ω−1 ⊗ Lx(0,j)ω does not have any simple submodule

that belongs to Rep0(G) and has good filtration dimension

`
(
x(i, 0)

)
+ `
(
x(0, j)

)
= gfd

(
G
(
x(i, 0), x(0, j)

))
.

We start with two basic lemmas about the highest weights of composition factors of Lx(i,0)ω−1⊗Lx(0,j)ω.

Lemma 5.4. Let i, j ≥ 1 with i+ j < n− 2 and let 0 ≤ a < n and 0 ≤ b ≤ n such that

x(a, b) · 0 ≤ x(i, 0)ω−1 · 0 + x(0, j)ω · 0.

Then either a+ b ≤ i+ j or (a, b) is one of the pairs (i+ 1, j) or (i, j + 1).

Proof. Let us set γ := x(i, 0)ω−1 · 0 + x(0, j)ω · 0 and observe that by Lemma 5.1, we have

γ = (`− n+ j) ·$1 +$i+1 +$n−j + (`− n+ i) ·$n

and therefore (
x(a, b) · 0 , α∨h

)
≤
(
γ , α∨h

)
= 2 · (`− n) + i+ j + 2.

If a+ b ≥ n then x(a, b) · 0 = (`− n− 1 + b) ·$1 +$n−b+1 +$a+1 + (`− n+ a) ·$n by Lemma 2.1,

and it follows that(
x(a, b) · 0, α∨h

)
= 2 · (`− n) + a+ b+ 1 > 2 · (`− n) + n > 2 · (`− n) + i+ j + 2,

a contradiction. Hence a+ b < n and

x(a, b) · 0 = (`− n− 1 + b) ·$1 +$a+1 +$n−b + (`− n− 1 + a) ·$n,

2This computation will be carried out using the distribution algebra of G, which is the reason our argument does not

work in the quantum case.
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again by Lemma 2.1. Thus 2 · (`−n) + i+ j+ 2 ≥
(
x(a, b) ·0 , α∨h

)
= 2 · (`−n) +a+ b and we conclude

that a+ b ≤ i+ j + 2. Now let us write

γ − x(a, b) · 0 =
n∑
k=1

ck · αk,

with c1, . . . , cn ∈ Z≥0, so that

i+ j + 2− (a+ b) =
(
γ − x(a, b) · 0 , α∨h

)
= c1 + cn.

If a+ b = i+ j + 2 then c1 = cn = 0 and therefore

`− n+ i = (γ , α∨n) =
(
x(a, b) · 0 , α∨n

)
+

n−1∑
k=2

ck · (αk , α∨n)

=
(
x(a, b) · 0 , α∨n

)
− cn−1 ≤

(
x(a, b) · 0 , α∨n

)
= `− n− 1 + a,

that is a ≥ i+ 1, and analogously b ≥ j + 1. Now this forces that a = i+ 1 and b = j + 1, so

γ − x(a, b) · 0 = $i+1 −$i+2 −$n−j−1 +$n−j = −βi+2,n−j−1,

contradicting the assumption that x(a, b) · 0 ≤ γ.

Next suppose that a+ b = i+ j + 1, so that c1 + cn = 1. If c1 = 1 and cn = 0 then, as before, we

obtain a ≥ i+ 1 and

`− n+ j = (γ , α∨1 ) =
(
x(a, b) · 0 , α∨1

)
+

n−1∑
k=1

ck · (αk , α∨1 )

=
(
x(a, b) · 0 , α∨1

)
+ 2− c2 ≤

(
x(a, b) · 0 , α∨1

)
+ 2 = `− n+ 1 + b,

that is b ≥ j − 1. If a = i+ 2 and b = j − 1 then

γ − x(a, b) · 0 = 2$1 +$i+1 −$i+3 +$n−j −$n−j+1 −$n = β1,i+1 + β1,i+2 − βn−j+1,n,

contradicting the assumption that x(a, b)·0 ≤ γ, so we conclude that a = i+1 and b = j. Analogously,

the case c1 = 0 and cn = 1 leads to a = i and b = j + 1, and the claim follows.

Lemma 5.5. Let 0 < i, j ≤ n with i+ j < n−2, and let x ∈W+
aff such that Lx is a composition factor

of the tensor product Lx(i,0)ω−1 ⊗Lx(0,j)ω. If x 6= e then x = x(a, b), for 0 ≤ a < n and 0 ≤ b < n such

that either a+ b ≤ i+ j or (a, b) is one of the pairs (i+ 1, j) or (i, j + 1).

Proof. As Lx(i,0)ω−1 ⊗ Lx(0,j)ω is isomorphic to a quotient of ∆x(i,0)ω−1 ⊗∆x(0,j)ω, Lemma 5.2 implies

that Lx is a composition factor of a Weyl module ∆y with y ∈ X, and using the results about

composition series of Weyl modules from Section 3, it follows that x ∈ X. Furthermore, we have

x · 0 ≤ x(i, 0)ω−1 · 0 + x(0, j)ω · 0

and the claim follows from Lemma 5.4.

Our key tool for establishing the non-simplicity of G
(
x(i, 0), x(0, j)

)
is the following proposition,

which will be proven by an explicit computation of certain maximal vectors in Lx(i,0)ω−1 ⊗ Lx(0,j)ω,

using the distribution algebra Dist(G) of G.
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Proposition 5.6. Let i, j ≥ 1 such that i + j < n − 2, and let a, b ≥ 1 such that (a, b) is one of the

pairs (i+ 1, j) or (i, j + 1). Then

dim HomG

(
∆x(a,b), Lx(i,0)ω−1 ⊗ Lx(0,j)ω

)
= 1,

and the restriction to radG∆x(a,b) of any non-zero homomorphism from ∆x(a,b) to Lx(i,0)ω−1 ⊗Lx(0,j)ω

is non-zero.

For the sake of readability, we postpone the proof of Proposition 5.6 to the end of this section (see

Proposition 5.17) and directly jump to the main result.

Proposition 5.7. Let i, j ≥ 1 such that i+ j < n− 2. Then G
(
x(i, 0), x(0, j)

)
is non-simple.

Proof. Suppose for a contradiction that G
(
x(i, 0), x(0, j)

)
is simple, so G

(
x(i, 0), x(0, j)

) ∼= Ly for

some y ∈W+
aff with

`(y) = gfd(Ly) = gfd
(
G
(
x(i, 0), x(0, j)

))
= `
(
x(i, 0)

)
+ `
(
x(0, j)

)
= i+ j + 2,

where the first equality follows from Corollary II.2.7. By Lemma II.5.10, we have

G
(
x(i, 0), x(0, j)

) ∼= G
(
x(i, 0)ω−1, x(0, j)ω

)
,

and it follows that there is an embedding

Ly ∼= G
(
x(i, 0), x(0, j)

)
−→ Lx(i,0)ω−1 ⊗ Lx(0,j)ω.

In particular, Ly is a composition factor of Lx(i,0)ω−1⊗Lx(0,j)ω, and by Lemma 5.5, we have y = x(a, b)

for some a, b ≥ 0, where either a+ b ≤ i+ j or (a, b) is one of the pairs (i+ 1, j) or (i, j + 1). As

i+ j + 2 = `(y) = `
(
x(a, b)

)
= a+ b+ 1,

we conclude that (a, b) is one of the pairs (i+ 1, j) or (i, j + 1).

Now let us write M := Lx(i,0)ω−1 ⊗ Lx(0,j)ω, and observe that the short exact sequence

0 −→ radG∆y −→ ∆y −→ Ly −→ 0

gives rise to an exact sequence

0 −→ HomG

(
Ly,M

)
−→ HomG

(
∆y,M

)
−→ HomG

(
radG∆y,M

)
.

By Proposition 5.6, the middle term in this exact sequence is one-dimensional, and the map from the

middle term to the rightmost term is non-zero. This implies that

HomG

(
Ly, Lx(i,0)ω−1 ⊗ Lx(0,j)ω

)
= 0,

contradicting the observation that there is an embedding of Ly into Lx(i,0)ω−1 ⊗ Lx(0,j)ω.

The remainder of this section is devoted to proving Proposition 5.6. As was mentioned before,

we will do this by an explicit computation, using the distribution algebra Dist(G) of G. Recall from

Section I.4 that a choice of root homomorphisms xβ : Z→ Uβ,Z for the group scheme GZ over Z gives

rise to a Chevalley basis {Xβ, Hα | β ∈ Φ, α ∈ Π} of the complex simple Lie algebra g with root
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system Φ and that this Chevalley basis affords divided powers Xβ,r and Hα,m in Dist(G), for β ∈ Φ,

α ∈ Π and r,m ≥ 0. For a G-module M and v ∈Mλ for some λ ∈ X, we have

Xβ,r ·Mλ ⊆Mλ+rβ and Hα,m · v =

(
(λ, α∨)

m

)
· v

by Section II.1.19 in [Jan03]. Furthermore, Dist(G) admits a PBW-type basis, consisting of products

of the form ∏
β∈−Φ+

Xβ,rβ ·
∏
α∈Π

Hα,mα ·
∏
β∈Φ+

Xβ,rβ ,

with rβ,mα ∈ Z≥0 for β ∈ Φ and α ∈ Π, for any fixed ordering of the roots in the product. Since we

assume G to be of type An, the canonical choice of root homomorphisms gives rise to the standard

Chevalley basis of g = sln+1(C), which satisfies the commutator relations

[Xβi,j , Xβa,b ] =


Xβi,b if a = j + 1,

−Xβa,j if i = b+ 1,

0 otherwise,

[Xβi,j , X−βa,b ] =



Xβi,a−1
if j = b and i < a,

X−βa,i−1
if j = b and a < i,

−Xβb+1,j
if i = a and b < j,

−X−βj+1,b
if i = a and j < b,

Hβi,j if i = a and j = b,

0 otherwise,

[X−βi,j , X−βa,b ] =


−X−βi,b if a = j + 1,

X−βa,j if i = b+ 1,

0 otherwise

for 1 ≤ i ≤ j ≤ n and 1 ≤ a ≤ b ≤ n, where Hβi,j := Hαi + · · · + Hαj . For the remainder of the

section, we fix this Chevalley basis and the corresponding divided powers in Dist(G).

Next, let us make some observations about maximal vectors.

Definition 5.8. A maximal vector of weight λ ∈ X+ in a G-module M is a non-zero vector v+ ∈Mλ

such that Xβ,r · v+ = 0 for all β ∈ Φ+ and r > 0.

For λ ∈ X+, it is straightforward to see that any non-zero vector in L(λ)λ is a maximal vector in

L(λ) and that any non-zero vector in ∆(λ)λ is a maximal vector in ∆(λ). Furthermore, as ∆(λ) has a

unique maximal submodule radG∆(λ) and as the latter does not contain the weight space ∆(λ)λ, any

maximal vector in ∆(λ)λ generates ∆(λ) over Dist(G). Now let M be an arbitrary G-module and

suppose that there is a maximal vector w+ ∈Mλ of weight λ. Using the PBW-type basis of Dist(G),

one sees that λ is maximal among the weights of the submodule M ′ := Dist(G) · w+ of M generated

by w+ and that M ′ has simple head headGM
′ ∼= L(λ). In particular, by Lemma I.4.2, there exists a

homomorphism ϕ : ∆(λ)→M such that, for some maximal vector v+ ∈ ∆(λ)λ, we have ϕ(v+) = w+.

Furthermore, ϕ is unique with this property because v+ generates ∆(λ).

With the above notation and conventions in place, we can now start proving some preliminary

results which will be needed for the proof of Proposition 5.6. We first compute bases for some specific

weight spaces of certain Weyl modules in terms of their maximal vectors.
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Lemma 5.9. Let a, b ≥ 1 and let v+ ∈ ∆(a$1 + b$n)a$1+b$n be a maximal vector. Then the set

B := {X−β1,i
X−βi+1,n

· v+ | 1 ≤ i < n} ∪ {X−β1,n · v+}

is a basis of the weight space ∆(a$1 + b$n)a$1+b$n−β1,n.

Proof. By Weyl’s character formula, we have dim ∆(a$1+b$n)a$1+b$n−β1,n = n, so it suffices to show

that the weight space ∆(a$1+b$n)a$1+b$n−β1,n is spanned by B. Consider the total order on Φ+ that

is defined by βi,j ≺ βi′,j′ if and only if i < i′ or i = i′ and j < j′. As the Weyl module ∆(a$1 + b$n) is

generated by the maximal vector v+ over Dist(G), we can use the PBW-type basis of Dist(G) to see

that the weight space ∆(a$1+b$n)a$1+b$n is spanned by vectors of the form w := X
(r1)
−γ1
· · ·X(rm)

−γm ·v
+,

with γ1 ≺ · · · ≺ γm and
∑

k rkγk = β1,n. This implies that r1 = · · · = rm = 1, and by the definition

of ≺, there exist integers 0 = a0 < a1 < · · · < am = n such that γk = βak−1+1,ak for k = 1, . . . ,m. If

m ≤ 2 then w belongs to B, so now suppose that m ≥ 3. For 1 < i ≤ j < n, we have X−βi,j · v+ = 0

by weight considerations and therefore

X−βi,jX−βj+1,n
· v+ = [X−βi,j , X−βj+1,n

] · v+ +X−βj+1,n
X−βi,j · v

+ = −X−βi,n · v
+.

By induction on m, we see that X−γ2 · · ·X−γm · v+ is a scalar multiple of X−βa1+1,n , so w is a scalar

multiple of X−β1,a1
X−βa1+1,n · v+ ∈ B. We conclude that B spans ∆(a$1 + b$n)a$1+b$n−β1,n and the

claim follows.

Corollary 5.10. Let a, b ≥ 1 and 1 < k < n, and let v+ ∈ ∆(a$k + b$n)a$k+b$n be a maximal

vector. Then the set

B := {X−β1,i
X−βi+1,n

· v+ | k ≤ i < n} ∪ {X−β1,n · v+}

is a basis of the weight space ∆(a$k + b$n)a$k+b$n−β1,n.

Proof. First observe that we have sβ1,k−1
(a$k + b$n − β1,n) = a$k + b$n − βk,n. By truncation to

the Levi subgroup corresponding to {αk, . . . , αn} ⊆ Π, it is straightforward to see that

dim ∆(a$k + b$n)a$k+b$n−β1,n = dim ∆(a$k + b$n)a$k+b$n−βk,n = n− k + 1,

hence it suffices to prove that B spans the weight space ∆(a$k + b$n)a$k+b$n−β1,n . As in the proof

of Lemma 5.9, we see that ∆(a$k + b$n)a$k+b$n−β1,n is spanned by vectors of the form

w := X−γ1 · · ·X−γm · v+,

where for certain integers 0 = a0 < a1 < · · · < am = n, we have γi = βai−1+1,ai for i = 1, . . . ,m. We

will show that w is a scalar multiple of an element of B.

If m = 1 then w ∈ B, so now suppose that m ≥ 2. By weight considerations, we have X−βi,j ·v+ = 0

for k < i ≤ j < n, and it follows that

X−βi,jX−βj+1,n
· v+ = [X−βi,j , X−βj+1,n

] · v+ = −X−βi,n · v
+.

Therefore, if r := min{i | ai ≥ k} < m then X−γr+1 · · ·X−γm · v+ is a scalar multiple of X−βar+1,n · v+.

Furthermore, for 1 ≤ i ≤ j < k, we have X−βi,jX−βar+1,n · v+ = 0 by weight considerations and

therefore

X−βi,jX−βj+1,ar
X−βar+1,n · v+ = [X−βi,jX−βj+1,ar

]X−βar+1,n · v+ = −X−βi,arX−βar+1,n · v+.
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It follows that X−γ1 · · ·X−γrX−βar+1,n ·v+ is a scalar multiple of the vector X−β1,ar
X−βar+1,n ·v+ ∈ B,

hence so is w. If r = m then am−1 < k, so

X−βi,jX−βj+1,n
· v+ = [X−βi,jX−βj+1,n

] · v+ = −X−βi,n · v
+

for all 1 ≤ i ≤ j ≤ am−1, and we conclude that w is a scalar multiple of the vector X−β1,n ·v+ ∈ B.

Next, we use the distribution algebra of G to explicitly construct a maximal vector in a tensor

product of two Weyl modules.

Lemma 5.11. Let a, b > 0 and let v+ ∈ ∆(a$1)a$1 and w+ ∈ ∆(b$n)b$n be maximal vectors. Then

x := a · v+ ⊗X−β1,nw
+ − b ·X−β1,nv

+ ⊗ w+ +
n−1∑
k=1

X−β1,k
v+ ⊗X−βk+1,n

w+

is a maximal vector of weight a$1 + b$n − αh in ∆(a$1)⊗∆(b$n).

Proof. Using the PBW-type basis of Dist(G) (as in the proof of Lemma 5.9), it is straightforward to

see that the vectors X−β1,1 · v+ and X−β2,n · w+ are non-zero, and as(
∆(a$1)⊗∆(b$n)

)
a$1+b$n−αh

=
⊕
γ∈ZΦ

∆(a$1)a$1−γ ⊗∆(b$n)b$n−αh+γ ,

it follows that x 6= 0. It remains to show that Xβ,r · x = 0 for all β ∈ Φ+ and r ≥ 1. By weight

considerations, we have Xβ,r · x = 0 for all r > 1, and as Xβi,j = [Xαi , Xβi+1,j
] for i < j, it suffices to

verify that Xαi · x = 0 for i = 1, . . . , n. We have

Xαi · x = a ·Xαiv
+ ⊗X−β1,nw

+ − b ·XαiX−β1,nv
+ ⊗ w+ +

n−1∑
k=1

XαiX−β1,k
v+ ⊗X−βk+1,n

w+

+ a · v+ ⊗XαiX−β1,nw
+ − b ·X−β1,nv

+ ⊗Xαiw
+ +

n−1∑
k=1

X−β1,k
v+ ⊗XαiX−βk+1,n

w+

= −b ·XαiX−β1,nv
+ ⊗ w+ +

n−1∑
k=1

XαiX−β1,k
v+ ⊗X−βk+1,n

w+

+ a · v+ ⊗XαiX−β1,nw
+ +

n−1∑
k=1

X−β1,k
v+ ⊗XαiX−βk+1,n

w+.

If 1 < i < n then [Xαi , X−β1,n ] = 0, so XαiX−β1,nv
+ = 0 and XαiX−β1,nw

+ = 0, and

[Xαi , X−β1,k
] =

{
X−β1,i−1

if k = i,

0 otherwise
and [Xαi , X−βk+1,n

] =

{
−X−βi+1,n

if k = i− 1,

0 otherwise

for 1 ≤ k ≤ n− 1, so that

XαiX−β1,k
v+ =

{
X−β1,i−1

v+ if k = i,

0 otherwise

and

XαiX−βk+1,n
w+ =

{
−X−βi+1,n

w+ if k = i− 1,

0 otherwise.

175



Chapter V. Further results in type An

We conclude that

Xαi · x = X−β1,i−1
v+ ⊗X−βi+1,n

w+ −X−β1,i−1
v+ ⊗X−βi+1,n

w+ = 0,

as required. For i = 1 and 1 ≤ k ≤ n, we have

[Xα1 , X−β1,k
] =

{
Hα1 if k = 1,

−X−β2,k
otherwise

and therefore

Xα1X−β1,k
v+ =

{
Hα1v

+ = a · v+ if k = 1,

−X−β2,k
v+ = 0 otherwise,

where the second equality in the first case uses the fact that (a$1, α
∨
1 ) = a and the second equality in

the second case follows from the observation that a$1−β2,k = sβ2,k
(a$1 +β2,k) and a$1 +β2,k > a$1.

Furthermore, we have Xα1X−β1,nw
+ = −X−β2,nw

+ and Xα1X−βk+1,n
w+ = 0 for 1 ≤ k < n because

Xα1 commutes with X−βk+1,n
, and we conclude that

Xα1 · x = a · v+ ⊗X−β2,nw
+ − a · v+ ⊗X−β2,nw

+ = 0.

Analogously, we obtain

Xαn · x = −b ·X−β1,n−1v
+ ⊗ w+ + b ·X−β1,n−1v

+ ⊗ w+ = 0,

and the claim follows.

Corollary 5.12. Let a, b > 0 such that a+ b+ n ≡ 1 mod `, and let x+ ∈ ∆(a$1 + b$n)a$1+b$n be

a maximal vector. Then

x := −b ·X−β1,n · x+ +

n−1∑
i=1

X−β1,i
X−βi+1,n

· x+

is a maximal vector of weight a$1 + b$n − αh in ∆(a$1 + b$n).

Proof. Let v+ ∈ ∆(a$1)a$1 and w+ ∈ ∆(b$n)b$n be maximal vectors. As a$1 + b$n is maximal

among the highest weights of Weyl modules appearing in a Weyl filtration of ∆(a$1)⊗∆(b$n), there

is an embedding of G-modules ϕ : ∆(a$1 + b$n)→ ∆(a$1)⊗∆(b$n), and as the a$1 + b$n-weight

space of ∆(a$1) ⊗ ∆(b$n) is one-dimensional, we may assume that ϕ(x+) = v+ ⊗ w+, possibly

after replacing x+ by a scalar multiple. We will show that ϕ(x) coincides with the maximal vector

constructed in Lemma 5.11. Note that we have

X−β1,n · (v+ ⊗ w+) = v+ ⊗X−β1,nw
+ +X−β1,nv

+ ⊗ w+

and

X−β1,i
X−βi+1,n

· (v+ ⊗ w+) = X−β1,i
v+ ⊗X−βi+1,n

w+ + v+ ⊗X−β1,i
X−βi+1,n

w+

= X−β1,i
v+ ⊗X−βi+1,n

w+ − v+ ⊗X−β1,nw
+

for 1 ≤ i < n because X−βi+1,n
v+ = 0, X−β1,i

w+ = 0 and [X−β1,i
, X−βi+1,n

] = −X−β1,n . It follows

that

ϕ(x) = −b ·X−β1,n · (v+ ⊗ w+) +

n−1∑
i=1

X−β1,i
X−βi+1,n

· (v+ ⊗ w+)

176



5. Non-simplicity of generic direct summands

= −b · v+ ⊗X−β1,nw
+ − b ·X−β1,nv

+ ⊗ w+ +

n−1∑
i=1

(
X−β1,i

v+ ⊗X−βi+1,n
w+ − v+ ⊗X−β1,nw

+
)

= (−b− n+ 1) · v+ ⊗X−β1,nw
+ − b ·X−β1,nv

+ ⊗ w+ +

n−1∑
i=1

X−β1,i
v+ ⊗X−βi+1,n

w+

= a · v+ ⊗X−β1,nw
+ − b ·X−β1,nv

+ ⊗ w+ +
n−1∑
i=1

(
X−β1,i

v+ ⊗X−βi+1,n
w+
)

because k has characteristic ` and a+ b+ n ≡ 1 mod `. Now ϕ(x) is a maximal vector in the tensor

product ∆(a$1)⊗∆(b$n) by Lemma 5.11, and we conclude that x is a maximal vector.

Now we combine our results about maximal vectors and about bases of weight spaces in Weyl

modules in order to find a basis of a weight space in the simple G-module Lx(i,0)ω−1 .

Lemma 5.13. Let 1 < i < n, set λ = x(i, 0)ω−1 · 0 and let w+ ∈ L(λ)λ be a maximal vector. Then

(`− n+ i) ·X−β1,n · w+ −
n−1∑
k=i+1

X−β1,k
X−βk+1,n

· w+ = 0

and the set

{X−β1,k
X−βk+1,n

· w+ | i+ 1 ≤ k < n}

is a basis of the weight space L(λ)λ−αh
.

Proof. Let ŵ+ ∈ ∆(λ)λ be a maximal vector and fix an epimorphism

ϕ : ∆(λ) −→ L(λ)

such that ϕ(ŵ+) = w+. By Lemma 3.3, the Weyl module ∆(λ) is uniserial, with two composition

factors L(λ) and L(λ′), where

λ = x(i, 0)ω−1 · 0 = $i+1 + (`− n+ i) ·$n and λ′ = x(i− 1, 0)ω−1 · 0 = λ− βi+1,n;

see Lemma 5.1. By Corollary 5.12 and truncation to the Levi subgroup of type An−i corresponding

to the set of simple roots {αi+1, . . . , αn} ⊆ Π, we see that a maximal vector that generates a simple

submodule M ∼= L(λ′) in ∆(λ) is given by

x := −(`− n+ i) ·X−βi+1,n
· ŵ+ +

n−1∑
k=i+1

X−βi+1,k
X−βk+1,n

· ŵ+.

Since X−β1,i
· ŵ+ = 0 (by weight considerations) and [X−β1,i

, X−βi+1,k
] = −X−β1,k

for i+ 1 ≤ k ≤ n,

it is straightforward to see that

x′ := X−β1,i
· x = (`− n+ i) ·X−β1,n · ŵ+ −

n−1∑
k=i+1

X−β1,k
X−βk+1,n

· ŵ+,

and as M equals the kernel of ϕ, we conclude that

0 = ϕ(x′) = (`− n+ i) ·X−β1,n · w+ −
n−1∑
k=i+1

X−β1,k
X−βk+1,n

· w+.
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Combining this equality with Corollary 5.10 (and the fact that ϕ is surjective), we see that the set

{X−β1,k
X−βk+1,n

· w+ | i+ 1 ≤ k < n}

spans the weight space L(λ)λ−αh
. Furthermore, we have

dimL(λ)λ−αh
= dim ∆(λ)λ−αh

− dimL(λ′)λ−αh
,

where dim ∆(λ)λ−αh
= n− i by Corollary 5.10 and dimL(λ′)λ−αh

= 1 because λ− αh = sβ1,i
(λ′). We

conclude that dimL(λ)λ−αh
= n− i− 1 and the second claim follows.

In the following proposition, we construct a maximal vector in a tensor product involving the Weyl

module ∆($1). Observe that the weight $1 is minuscule and that {−$i−1 + $i | 1 ≤ i ≤ n + 1} is

the set of weights of ∆($1) ∼= L($1). Let us fix a maximal vector v1 ∈ ∆($1)$1 and define

vi := X−β1,i−1
· v1

for i = 2, . . . , n + 1. Using the PBW-type basis of Dist(G) (as in the proof of Lemma 5.9), it is

straightforward to see that v1, . . . , vn+1 is a basis of ∆($1), with vi of weight −$i−1 +$i, and that

Xαr · vi =

{
vi−1 if i = r + 1,

0 otherwise

for 1 ≤ i ≤ n+ 1 and 1 ≤ r ≤ n. We call v1, . . . , vn+1 a standard basis of ∆($1) (for any fixed choice

of v1).

Proposition 5.14. Suppose that ` > n+ 1 and consider the weight δ := $k + a$n for 1 ≤ a < `− n
and 1 < k < n. Denote by v1, . . . , vn+1 a standard basis of ∆($1) and let v+ ∈ ∆(δ)δ be a maximal

vector. Then

y :=
k∑
i=1

(
− a · vi ⊗X−βi,nv

+ +
n−k∑
j=1

vi ⊗X−βi,k+j−1
X−βk+j,n

v+
)

−
n∑

i=k+1

(a+ 1 + n− k) · vi ⊗X−βi,nv
+ + a · (a+ 1 + n− k) · vn+1 ⊗ v+

is a maximal vector of weight δ +$1 − αh in ∆($1)⊗∆(δ).

Proof. Observe that y is non-zero because a < `− n < ` and a+ 1 + n− k < `+ 1− k < `. As in the

proof of Lemma 5.11, it suffices to show that Xαr · y = 0 for r = 1, . . . , n. First note that

Xαr · y =
k∑
i=1

(
− a ·Xαrvi ⊗X−βi,nv

+ +
n−k∑
j=1

Xαrvi ⊗X−βi,k+j−1
X−βk+j,n

v+
)

−
n∑

i=k+1

(a+ 1 + n− k) ·Xαrvi ⊗X−βi,nv
+ + a · (a+ 1 + n− k) ·Xαrvn+1 ⊗ v+

+
k∑
i=1

(
− a · vi ⊗XαrX−βi,nv

+ +

n−k∑
j=1

vi ⊗XαrX−βi,k+j−1
X−βk+j,n

v+
)

−
n∑

i=k+1

(a+ 1 + n− k) · vi ⊗XαrX−βi,nv
+ + a · (a+ 1 + n− k) · vn+1 ⊗Xαrv

+.

178



5. Non-simplicity of generic direct summands

In the above equation, we have

Xαrvi =

{
vi−1 if i = r + 1,

0 otherwise,

as observed before, and

XαrX−βi,jv
+ = [Xαr , X−βi,j ] · v

+ +X−βi,jXαrv
+ = [Xαr , X−βi,j ] · v

+,

where

[Xαr , X−βi,j ] =


−X−βr+1,j

if r = i < j,

X−βi,r−1
if r = j > i,

Hαr if r = i = j,

0 otherwise

for i ≤ j. As v+ is a maximal vector, it follows that

XαrX−βi,nv
+ = [Xαr , X−βi,n ] · v+ =


−X−βr+1,n · v+ if r = i < n,

X−βi,n−1
· v+ if r = n > i,

Hαn · v+ = a · v+ if r = i = n,

0 otherwise.

If r < k then we further have

XαrX−βi,k+j−1
X−βk+j,n

v+ =

{
−X−βr+1,k+j−1

X−βk+j,n
v+ if r = i,

0 otherwise

for 1 ≤ i ≤ k and 1 ≤ j ≤ n− k, and we conclude that

Xαr · y = −a · vr ⊗X−βr+1,nv
+ +

n−k∑
j=1

vr ⊗X−βr+1,k+j−1
X−βk+j,n

v+

+ a · vr ⊗X−βr+1,nv
+ −

n−k∑
j=1

vr ⊗X−βr+1,k+j−1
X−βk+j,n

v+

= 0.

If r = k then

XαkX−βi,k+j−1
X−βk+j,n

v+ =


−X−βk+1,k+j−1

X−βk+j,n
v+ if i = k and j > 1,

HαkX−βk+1,n
v+ = 2 ·X−βk+1,n

v+ if i = k and j = 1,

X−βi,k−1
X−βk+1,n

v+ = 0 if i < k and j = 1,

0 otherwise

for 1 ≤ i ≤ k and 1 ≤ j ≤ n−k, where the second equality in the second case follows from the equality

(δ − βk+1,n, α
∨
k ) = 2 and the second equality in the third case follows from the fact that X−βi,k−1

commutes with X−βk+1,n
combined with weight considerations. Furthermore, we have

[X−βk+1,k+j−1
X−βk+j,n

] = −X−βk+1,n

179



Chapter V. Further results in type An

for j > 1 and X−βk+1,k+j−1
v+ = 0 by weight considerations, hence

−X−βk+1,k+j−1
X−βk+j,n

v+ = X−βk+1,n
v+.

We conclude that

Xαk · y = −(a+ 1 + n− k) · vk ⊗X−βk+1,n
v+

+ a · vk ⊗X−βk+1,n
v+ + 2 · vk ⊗X−βk+1,n

v+ +
n−k∑
j=2

−vk ⊗X−βk+1,k+j−1
X−βk+j,n

v+

= −(a+ 1 + n− k) · vk ⊗X−βk+1,n
v+

+ a · vk ⊗X−βk+1,n
v+ + 2 · vk ⊗X−βk+1,n

v+ +
n−k∑
j=2

vk ⊗X−βk+1,n
v+

= 0.

If k < r < n then

Xαr ·X−βi,k+j−1
X−βk+j,n

v+ =


X−βi,r−1

X−βr+1,nv
+ if j = r − k + 1,

−X−βi,r−1
X−βr+1,nv

+ if j = r − k,
0 otherwise

for 1 ≤ i ≤ k and 1 ≤ j ≤ n− k and therefore

Xαr · y = −(a+ 1 + n− k) · vr ⊗X−βr+1,nv
+

+

k∑
i=1

(
− vi ⊗X−βi,r−1

X−βr+1,nv
+ + vi ⊗X−βi,r−1

X−βr+1,nv
+
)

+ (a+ 1 + n− k) · vr ⊗X−βr+1,nv
+

= 0.

Finally, for r = n we have

XαnX−βi,k+j−1
X−βk+j,n

v+ =

{
X−βi,n−1

Hαnv
+ = a ·X−βi,n−1

v+ if j = n− k,
X−βi,k+j−1

X−βk+j,n−1
v+ = 0 otherwise

for 1 ≤ i ≤ k and 1 ≤ j ≤ n − k, where the second equality in the second case follows from weight

considerations. For k < i ≤ n − 1, we have X−βi,n−1
v+ = 0, again by weight considerations, and it

follows that

Xαn · y = a · (a+ 1 + n− k) · vn ⊗ v+

+

k∑
i=1

(
− a · vi ⊗X−βi,n−1

v+ + a · vi ⊗X−βi,n−1
v+
)

−
n−1∑
i=k+1

(a+ 1 + n− k) · vi ⊗X−βi,n−1
v+ − a · (a+ 1 + n− k) · vn ⊗ v+

= 0,

as required.
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Corollary 5.15. Suppose that ` > n+ 1, consider the weight δ := $1 +$k + (`−n− 1) ·$n for some

1 < k < n and let x+ ∈ ∆(δ)δ be a maximal vector. Then

y :=
k∑
i=2

(
− (`− n− 1) ·X−β1,i−1

X−βi,n · x
+ +

n−k∑
j=1

X−β1,i−1
X−βi,k+j−1

X−βk+j,n
· x+

)
−

n∑
i=k+1

(`− k) ·X−β1,i−1
X−βi,n · x

+ + (`− n− 1)(`− k) ·X−β1,n · x+

is a maximal vector of weight δ − αh in ∆(δ).

Proof. Set δ′ = $k + (`− n− 1) ·$n, let v+ ∈ ∆(δ′)δ′ be a maximal vector and let v1, . . . , vn+1 be a

standard basis of ∆($1), as defined above Proposition 5.14. As in the proof of Corollary 5.12, we can

choose an embedding of G-modules ϕ : ∆(δ) → ∆($1) ⊗∆(δ′) with ϕ(x+) = v1 ⊗ v+. We will show

that ϕ(y) coincides with the maximal vector in ∆($1)⊗∆(δ′) constructed in Proposition 5.14. Note

that we have

X−β1,n · (v1 ⊗ v+) = v1 ⊗X−β1,nv
+ + vn+1 ⊗ v+

and

X−β1,i−1
X−βi,n · (v1 ⊗ v+) = v1 ⊗X−β1,i−1

X−βi,nv
+ + vi ⊗X−βi,nv

+

for 1 < i ≤ n as X−βi,nv1 = 0. For 1 < i ≤ k, we further have X−β1,i−1
v+ = 0 by weight considerations

and therefore

X−β1,i−1
X−βi,nv

+ = [X−β1,i−1
, X−βi,n ] · v+ = −X−β1,nv

+

and

X−β1,i−1
X−βi,n · (v1 ⊗ v+) = −v1 ⊗X−β1,nv

+ + vi ⊗X−βi,nv
+.

Analogously, we see that

X−β1,i−1
X−βi,k+j−1

X−βk+j,n
· (v1 ⊗ v+) = −v1 ⊗X−β1,k+j−1

X−βk+j,n
v+ + vi ⊗X−βi,k+j−1

X−βk+j,n
v+

for 1 < i ≤ k and 1 ≤ j ≤ n− k. It follows that

ϕ(y) =
k∑
i=2

(
− (`− n− 1) ·X−β1,i−1

X−βi,n · (v1 ⊗ v+) +
n−k∑
j=1

X−β1,i−1
X−βi,k+j−1

X−βk+j,n
· (v1 ⊗ v+)

)
−

n∑
i=k+1

(`− k) ·X−β1,i−1
X−βi,n · (v1 ⊗ v+)

+ (`− n− 1)(`− k) ·X−β1,n · (v1 ⊗ v+)

=
k∑
i=2

(
(`− n− 1) · v1 ⊗X−β1,nv

+ − (`− n− 1) · vi ⊗X−βi,nv
+

+

n−k∑
j=1

(
− v1 ⊗X−β1,k+j−1

X−βk+j,n
v+ + vi ⊗X−βi,k+j−1

X−βk+j,n
v+
))

−
n∑

i=k+1

(
(`− k) · v1 ⊗X−β1,i−1

X−βi,nv
+ + (`− k) · vi ⊗X−βi,nv

+
)

+ (`− n− 1)(`− k) ·
(
v1 ⊗X−β1,nv

+ + vn+1 ⊗ v+
)
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=
k∑
i=2

(
− (`− n− 1) · vi ⊗X−βi,nv

+ +
n−k∑
j=1

vi ⊗X−βi,k+j−1
X−βk+j,n

v+
)

+
k∑
i=2

(
(`− n− 1) · v1 ⊗X−β1,nv

+ +
n−k∑
j=1

−v1 ⊗X−β1,k+j−1
X−βk+j,n

v+
)

−
n∑

i=k+1

(`− k) · vi ⊗X−βi,nv
+ + (`− n− 1)(`− k) · vn+1 ⊗ v+

−
n∑

i=k+1

(`− k) · v1 ⊗X−β1,i−1
X−βi,nv

+ + (`− n− 1)(`− k) · v1 ⊗X−β1,nv
+

=

k∑
i=2

(
− (`− n− 1) · vi ⊗X−βi,nv

+ +

n−k∑
j=1

vi ⊗X−βi,k+j−1
X−βk+j,n

v+
)

+ (k − 1) ·
(

(`− n− 1) · v1 ⊗X−β1,nv
+ +

n−k∑
j=1

−v1 ⊗X−β1,k+j−1
X−βk+j,n

v+
)

−
n∑

i=k+1

(`− k) · vi ⊗X−βi,nv
+ + (`− n− 1)(`− k) · vn+1 ⊗ v+

+ (`− k) ·
(

(`− n− 1) · v1 ⊗X−β1,nv
+ +

n−k∑
j=1

−v1 ⊗X−β1,k+j−1
X−βk+j,n

v+
)

=
k∑
i=1

(
− (`− n− 1) · vi ⊗X−βi,nv

+ +
n−k∑
j=1

vi ⊗X−βi,k+j−1
X−βk+j,n

v+
)

−
n∑

i=k+1

(`− k) · vi ⊗X−βi,nv
+ + (`− n− 1)(`− k) · vn+1 ⊗ v+,

where the last equality follows from the fact that (k − 1) + (` − k) = ` − 1 = −1 in k, because k
has characteristic `. Now ϕ(y) is a maximal vector by Proposition 5.14, and we conclude that y is a

maximal vector.

The final result that we need in order to prove Proposition 5.6 is the following lemma, which

compares the actions of different elements of Dist(G) on maximal vectors in certain simple G-modules.

Lemma 5.16. For integers c > 0 and 1 < k < n, set µ = $k + c$n and let v+ ∈ L(µ)µ be a maximal

vector. Then, for all k + 1 ≤ a ≤ n− 1 and a+ 1 ≤ b ≤ n− 1, we have

X−βk+1,n
X−β1,k

· v+ = X−β1,n · v+ +X−β1,k
X−βk+1,n

· v+,

X−βk+1,a
X−βa+1,nX−β1,k

· v+ = X−β1,aX−βa+1,n · v+ −X−β1,k
X−βk+1,n

· v+,

X−βk+1,a
X−βa+1,b

X−βb+1,n
X−β1,k

· v+ = −X−β1,aX−βa+1,n · v+ +X−β1,k
X−βk+1,n

· v+.

Proof. We have [X−βk+1,n
, X−β1,k

] = X−β1,n , from which the first equality is immediate. For the

second equality, note that X−β1,k
commutes with X−βa+1,n and that [X−βk+1,a

, X−β1,k
] = X−β1,a , so

X−βk+1,a
X−βa+1,nX−β1,k

· v+ = X−β1,aX−βa+1,n · v+ +X−β1,k
X−βk+1,a

X−βa+1,n · v+.

Furthermore, we have [X−βk+1,a
, X−βa+1,n ] = −X−βk+1,n

andX−βk+1,a
·v+ = 0 by weight considerations.

This implies that X−βk+1,a
X−βa+1,n · v+ = −X−βk+1,n

· v+, and we conclude that

X−βk+1,a
X−βa+1,nX−β1,k

· v+ = X−β1,aX−βa+1,n · v+ −X−β1,k
X−βk+1,n

· v+,
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as claimed. The proof of the third equality is analogous.

Equipped with the results about maximal vectors and bases of weight spaces which we established

above, we can now give the proof of Proposition 5.6. Let us recall the statement of that proposition:

Proposition 5.17. Let i, j ≥ 1 such that i+ j < n− 2, and let a, b ≥ 1 such that (a, b) is one of the

pairs (i+ 1, j) or (i, j + 1). Then

dim HomG

(
∆x(a,b), Lx(i,0)ω−1 ⊗ Lx(0,j)ω

)
= 1,

and the restriction to radG∆x(a,b) of any non-zero homomorphism from ∆x(a,b) to Lx(i,0)ω−1 ⊗Lx(0,j)ω

is non-zero.

Proof. We prove the claim for (a, b) = (i + 1, j); the case where (a, b) = (i, j + 1) is analogous. By

Lemmas 5.1 and 2.1, the highest weights of the simple G-modules Lx(i,0)ω−1 and Lx(0,j)ω are given by

x(i, 0)ω−1 · 0 = $i+1 + (`− n+ i) ·$n and x(0, j)ω · 0 = (`− n+ j) ·$1 +$n−j ,

respectively, and the highest weight of ∆x(i+1,j) is

x(i+ 1, j) · 0 = (`− n− 1 + j) ·$1 +$i+2 +$n−j + (`− n+ i) ·$n.

Observe that we have x(i+ 1, j) · 0 = x(i, 0)ω−1 · 0 + x(0, j)ω · 0− β1,i+1. By truncation to the Levi

subgroup corresponding to {α1, . . . , αi+1} ⊆ Π, it is straightforward to see that Lx(i+1,j) appears with

multiplicity one as a composition factor of the tensor product Lx(i,0)ω−1 ⊗Lx(0,j)ω, and it follows that

dim HomG

(
∆x(i+1,j), Lx(i,0)ω−1 ⊗ Lx(0,j)ω

)
≤ 1.

Let us write λ := x(i, 0)ω−1 · 0 and µ := x(0, j)ω · 0 for the highest weights of the simple G-modules

Lx(i,0)ω−1 and Lx(0,j)ω, and fix maximal vectors v+ ∈ L(λ)λ and w+ ∈ L(µ)µ. Using Lemma 5.11 and

truncation to the Levi subgroup corresponding to {α1, . . . , αi+1} ⊆ Π, we see that the vector

x+ := (`− n+ j) ·X−β1,i+1
v+ ⊗ w+ − v+ ⊗X−β1,i+1

w+ +

i∑
k=1

X−βk+1,i+1
v+ ⊗X−β1,k

w+

is a maximal vector of weight λ+ µ− β1,i+1 = x(i+ 1, j) · 0 in L(λ)⊗ L(µ). In particular, we have

dim HomG

(
∆x(i+1,j), Lx(i,0)ω−1 ⊗ Lx(0,j)ω

)
= 1,

as claimed. Now let x̂+ be a maximal vector of weight x(i+ 1, j) · 0 in ∆x(i+1,j), and let

ϕ : ∆x(i+1,j) −→ Lx(i,0)ω−1 ⊗ Lx(0,j)ω

be the unique homomorphism with ϕ(x̂+) = x+. By Corollary 5.15 and truncation to the Levi

subgroup of type An−i−1 corresponding to {αi+2, . . . , αn} ⊆ Π, the vector

ŷ+ :=

n−j∑
k=i+3

(
− (`− n+ i) ·X−βi+2,k−1

X−βk,n · x̂
+ +

j∑
r=1

X−βi+2,k−1
X−βk,n−j+r−1

X−βn−j+r,n · x̂
+
)

−
n∑

k=n−j+1

(`− n+ i+ j + 1) ·X−βi+2,k−1
X−βk,n · x̂

+

+ (`− n+ i)(`− n+ i+ j + 1) ·X−βi+2,n
· x̂+
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is a maximal vector of weight x(i+1, j) ·0−βi+2,n = λ+µ−αh = x(i, j) ·0 in ∆x(i+1,j). In particular,

ŷ+ generates a proper submodule of ∆x(i+1,j) and we have ŷ+ ∈ radG∆x(i+1,j). In order to complete

the proof of the proposition, it suffices to verify that y+ := ϕ(ŷ+) 6= 0.

Observe that (
L(λ)⊗ L(µ)

)
λ+µ−αh

=
⊕
γ∈ZΦ

L(λ)λ−αh+γ ⊗ L(µ)µ−γ ,

and denote by p0 the linear projection onto the tensor product of weight spaces L(λ)λ−αh
⊗ L(µ)µ.

We consider the vector y0 := p0(y+). Let us write x+ = x+ x′, with

x = (`− n+ j) ·X−β1,i+1
v+ ⊗ w+ and x′ = x+ − x ∈

⊕
0<γ∈ZΦ

L(λ)λ−β1,i+1+γ ⊗ L(µ)µ−γ .

As ϕ(x̂+) = x+ and ϕ(ŷ+) = y+, we have

y+ =

n−j∑
k=i+3

(
− (`− n+ i) ·X−βi+2,k−1

X−βk,n · x
+ +

j∑
r=1

X−βi+2,k−1
X−βk,n−j+r−1

X−βn−j+r,n · x
+
)

−
n∑

k=n−j+1

(`− n+ i+ j + 1) ·X−βi+2,k−1
X−βk,n · x

+

+ (`− n+ i)(`− n+ i+ j + 1) ·X−βi+2,n
· x+,

by the definition of ŷ+. Using the observation that

(5.1) Xγ ·
(
L(λ)δ ⊗ L(µ)ν

)
⊆
(
L(λ)δ+γ ⊗ L(µ)ν

)
⊕
(
L(λ)δ ⊗ L(µ)ν+γ

)
for all γ ∈ Φ and δ, ν ∈ X, it follows that x′ does not contribute to y0, that is, that y0 = p0(y+) = p0(z)

with

z :=

n−j∑
k=i+3

(
− (`− n+ i) ·X−βi+2,k−1

X−βk,n · x+

j∑
r=1

X−βi+2,k−1
X−βk,n−j+r−1

X−βn−j+r,n · x
)

−
n∑

k=n−j+1

(`− n+ i+ j + 1) ·X−βi+2,k−1
X−βk,n · x

+ (`− n+ i)(`− n+ i+ j + 1) ·X−βi+2,n
· x.

Next observe that `−n+j is invertible in k, so after replacing x+ by a scalar multiple, we may assume

that x = X−β1,i+1
v+ ⊗ w+. Then, again by (5.1), we have

y0 =

n−j∑
k=i+3

(
− (`− n+ i) ·X−βi+2,k−1

X−βk,nX−β1,i+1
v+ ⊗ w+

+

j∑
r=1

X−βi+2,k−1
X−βk,n−j+r−1

X−βn−j+r,nX−β1,i+1
v+ ⊗ w+

)
−

n∑
k=n−j+1

(`− n+ i+ j + 1) ·X−βi+2,k−1
X−βk,nX−β1,i+1

v+ ⊗ w+

+ (`− n+ i)(`− n+ i+ j + 1) ·X−βi+2,n
X−β1,i+1

v+ ⊗ w+,
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and we can write y0 = v0 ⊗ w+, where v0 ∈ L(λ)λ−αh
is defined by

v0 :=

n−j∑
k=i+3

(
− (`− n+ i) ·X−βi+2,k−1

X−βk,nX−β1,i+1
v+

+

j∑
r=1

X−βi+2,k−1
X−βk,n−j+r−1

X−βn−j+r,nX−β1,i+1
v+
)

−
n∑

k=n−j+1

(`− n+ i+ j + 1) ·X−βi+2,k−1
X−βk,nX−β1,i+1

v+

+ (`− n+ i)(`− n+ i+ j + 1) ·X−βi+2,n
X−β1,i+1

v+.

By Lemma 5.16, we have

X−βi+2,n
X−β1,i+1

v+ = X−β1,nv
+ +X−β1,i+1

X−βi+2,n
v+,

X−βi+2,k−1
X−βk,nX−β1,i+1

v+ = X−β1,k−1
X−βk,nv

+ −X−β1,i+1
X−βi+2,n

v+,

X−βi+2,k−1
X−βk,n−j+r−1

X−βn−j+r,nX−β1,i+1
v+ = −X−β1,k−1

X−βk,nv
+ +X−β1,i+1

X−βi+2,n
v+

for all i+ 3 ≤ k ≤ n and 1 ≤ r ≤ j (and k ≤ n− j in the third equation). Using these equations, we

can rewrite the vector v0 as

v0 =

n−j∑
k=i+3

(
− (`− n+ i) ·

(
X−β1,k−1

X−βk,nv
+ −X−β1,i+1

X−βi+2,n
v+
)

+

j∑
r=1

(
−X−β1,k−1

X−βk,nv
+ +X−β1,i+1

X−βi+2,n
v+
))

−
n∑

k=n−j+1

(`− n+ i+ j + 1) ·
(
X−β1,k−1

X−βk,nv
+ −X−β1,i+1

X−βi+2,n
v+
)

+ (`− n+ i)(`− n+ i+ j + 1) ·
(
X−β1,nv

+ +X−β1,i+1
X−βi+2,n

v+
)

=

n−j∑
k=i+3

−(`− n+ i+ j) ·
(
X−β1,k−1

X−βk,nv
+ −X−β1,i+1

X−βi+2,n
v+
)

−
n∑

k=n−j+1

(`− n+ i+ j + 1) ·
(
X−β1,k−1

X−βk,nv
+ −X−β1,i+1

X−βi+2,n
v+
)

+ (`− n+ i)(`− n+ i+ j + 1) ·
(
X−β1,nv

+ +X−β1,i+1
X−βi+2,n

v+
)

= −(`− n+ i+ j) ·
n−j∑
k=i+3

X−β1,k−1
X−βk,nv

+ − (`− n+ i+ j + 1) ·
n∑

k=n−j+1

X−β1,k−1
X−βk,nv

+

+ (`− n+ i)(`− n+ i+ j + 1) ·X−β1,nv
+

+ c ·X−β1,i+1
X−βi+2,n

v+,

where the scalar c ∈ k is given by

c = (n− i− j − 2) · (`− n+ i+ j) + j · (`− n+ i+ j + 1) + (`− n+ i) · (`− n+ i+ j + 1)

= (n− i− j − 2) · (−n+ i+ j) + j · (−n+ i+ j + 1) + (−n+ i) · (−n+ i+ j + 1)
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= (n− i− j − 2) · (−n+ i+ j) + (−n+ i+ j) · (−n+ i+ j + 1)

= −(−n+ i+ j)

= −(`− n+ i+ j)

because k is of characteristic `. As c coincides with the coefficient of the vectors X−β1,k−1
X−βk,nv

+,

for i+ 3 ≤ k ≤ n− j, in the preceding formula for v0, we obtain

v0 = −(`− n+ i+ j) ·
n−j∑
k=i+2

X−β1,k−1
X−βk,nv

+ − (`− n+ i+ j + 1) ·
n∑

k=n−j+1

X−β1,k−1
X−βk,nv

+

+ (`− n+ i)(`− n+ i+ j + 1) ·X−β1,nv
+

= (`− n+ i+ j + 1) ·
(

(`− n+ i) ·X−β1,nv
+ −

n∑
k=i+2

X−β1,k−1
X−βk,nv

+
)

+

n−j∑
k=i+2

X−β1,k−1
X−βk,nv

+.

By Lemma 5.13, we have

(`− n+ i) ·X−β1,nv
+ −

n∑
k=i+2

X−β1,k−1
X−βk,nv

+ = 0,

and it follows that

v0 =

n−j∑
k=i+2

X−β1,k−1
X−βk,nv

+.

The vectors X−β1,k−1
X−βk,nv

+, for i + 2 ≤ k ≤ n, form a basis of the weight space L(λ)λ−αh
(again

by Lemma 5.13), and we conclude that v0 6= 0. This implies that p0(y+) = y0 = v0 ⊗ w+ 6= 0 and

therefore ϕ(ŷ+) = y+ 6= 0, as required.

6 The complete reducibility theorem

Before we can prove the complete reducibility theorem from the introduction to this chapter, we need

two more lemmas about weights.

Lemma 6.1. Let n ≥ 2, let λ ∈ X+ be `-regular and suppose that

(λ+ ρ, β∨1,n−1) < ` and (λ+ ρ, β∨2,n) < `.

Then either λ ∈ Cfund or λ ∈ s0 · Cfund.

Proof. Let C be the `-alcove with λ ∈ C. For 1 ≤ i ≤ j ≤ n− 1, we have

nβi,j (C) · ` < (λ+ ρ, β∨i,j) ≤ (λ+ ρ, β∨1,n−1) < `

and it follows that nβi,j (C) = 0. Analogously, we can use the inequality (λ + ρ, β∨2,n) < ` to see that

nβi,j (C) = 0 for 2 ≤ i ≤ j ≤ n. Furthermore, we have

nβ1,n(C) · ` < (λ+ ρ, β∨1,n) ≤ (λ+ ρ, β∨1,n−1) + (λ+ ρ, β∨2,n) < 2`
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and it follows that nβ1,n(C) ∈ {0, 1}. Now the claim follows because C is uniquely determined by the

integers nβ(C), for β ∈ Φ+, and because nβ(Cfund) = 0 and

nβ(s0 · Cfund) = nβ
(
x(0, 0) · Cfund

)
=

{
1 if β = β1,n,

0 otherwise

for all β ∈ Φ+, by Corollary 2.2.

Lemma 6.2. Let n ≥ 2, let λ ∈ X+ be `-regular and `-restricted and suppose that (λ+ ρ, β1,n−1) < `.

Then either λ ∈ Cfund or λ ∈ x(i, 0) ·Cfund for some 0 ≤ i < n−1. Analogously, if µ ∈ X+ is `-regular

and `-restricted with (µ+ ρ, β2,n) < ` then µ ∈ Cfund or µ ∈ x(0, j) · Cfund for some 0 ≤ j < n− 1.

Proof. Let C be the `-alcove with λ ∈ C and observe that, for 1 ≤ i ≤ j ≤ n, we have

nβi,j (C) · ` < (λ+ ρ, β∨i,j) ≤ (λ+ ρ, β∨1,n−1) + (λ+ ρ, α∨n) < 2`

because λ is `-restricted, and therefore nβi,j (C) ∈ {0, 1}. Furthermore, if j < n then nβi,j (C) = 0,

as in the proof of Lemma 6.1. If nβ2,n(C) = 0 then (λ + ρ, β∨2,n) < ` and the claim follows from

Lemma 6.1. Now suppose that nβ2,n(C) = 1 and let i ∈ {1, . . . , n− 1} be maximal with the property

that nβi+1,n
(C) = 1. As λ is `-restricted, we have nβn,n(C) = nαn(C) = 0 and therefore i < n− 1. It

is straightforward to see that nβk,n(C) ≤ nβj,n(C) for 1 ≤ j ≤ k ≤ n, and it follows that

nβj,k(C) =

{
1 if j ≤ i+ 1 and k = n,

0 otherwise.

By Corollary 2.2, we have nβ(C) = nβ
(
x(i, 0)·Cfund

)
for all β ∈ Φ+, and as C is uniquely determined by

the integers nβ(C), we conclude that C = x(i, 0)·Cfund. The proof of the second claim is analogous.

Now we are ready to prove the complete reducibility theorem.

Theorem 6.3. Suppose that we are in the modular case, that G is of type An for some n ≥ 1 and that

` ≥ n+ 1. Let λ, µ ∈ X+ be `-restricted and `-regular. If the tensor product L(λ)⊗L(µ) is completely

reducible then either λ ∈ Cfund or µ ∈ Cfund.

Proof. We prove the claim by induction on n. For n = 1, there is nothing to show because all

`-restricted `-regular weights belong to Cfund (see Section III.1).

Now suppose that n ≥ 2, and let x, y ∈W+
aff and λ′, µ′ ∈ Cfund such that λ = x · λ′ and µ = y · µ′.

By Proposition I.6.8 and Theorem II.4.14, we have(
L(λ)⊗ L(µ)

)
reg
∼=
(
T λ
′

0 L(x · 0)⊗ Tµ
′

0 L(y · 0)
)

reg
∼=

⊕
ν∈Cfund∩X

T ν0
(
L(x · 0)⊗ L(y · 0)

)⊕cν
λ′,µ′

reg
,

and by Lemma I.9.3, there exists a weight ν ∈ Cfund ∩X such that cνλ′,µ′ 6= 0. As the generic direct

summand G(x, y) of L(x · 0)⊗ L(y · 0) is regular (see Proposition II.5.7), we conclude that T ν0 G(x, y)

is a direct summand of L(λ)⊗L(µ). In particular, if L(λ)⊗L(µ) is completely reducible then G(x, y)

is simple (because T ν0 is an equivalence).

For n = 2, the only `-alcoves containing `-restricted weights are Cfund and s0 ·Cfund (as observed in

Section III.2), and we have G(s0, s0) ∼= M(0) by Lemma III.2.3, where M(0) denotes the non-simple

G-module defined on page 89. Hence the statement of the theorem is true for G of type A2.
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Now let n ≥ 3 and suppose that the statement of the theorem is true for groups of type An−1.

Consider the set of simple roots I = {α1, . . . , αn−1} ⊆ Π and let LI be the derived subgroup of the

corresponding Levi subgroup (see Remark I.4.3). Then LI ∼= SLn(k) is of type An−1, and LI has

weight lattice XI =
⊕

α∈I Z$α, root system ΦI = ZI ∩ Φ and positive roots Φ+
I = ΦI ∩ Φ+ with

respect to the base I. Let λ, µ ∈ X+ be `-regular and `-restricted, and suppose that L(λ) ⊗ L(µ) is

completely reducible. It is straightforward to see that the weights

λI =
∑
α∈I

(λ, α∨) ·$α and µI =
∑
α∈I

(µ, α∨) ·$α

are `-regular and `-restricted, and again by Remark I.4.3, the tensor product LI(λI)⊗LI(µI) of simple

LI -modules is completely reducible. By the induction hypothesis, this implies that at least one of the

weights λI and µI belongs to the fundamental alcove with respect to LI , and as β1,n−1 ∈ Φ+
I , it follows

that

(λ+ ρ, β∨1,n−1) < ` or (µ+ ρ, β∨1,n−1) < `.

Analogously, by considering the derived subgroup of the Levi subgroup of G corresponding to the set

of simple roots {α2, . . . , αn} ⊆ Π, we see that either

(λ+ ρ, β∨2,n) < ` or (µ+ ρ, β∨2,n) < `.

Possibly after interchanging λ and µ, we may assume that (λ + ρ, β∨1,n−1) < `, and we consider the

two possibilities (λ+ ρ, β∨2,n) < ` and (µ+ ρ, β∨2,n) < ` in turn.

First suppose that (λ+ ρ, β∨2,n) < `. Then we have either λ ∈ Cfund, as required, or λ ∈ s0 · Cfund

by Lemma 6.1. Suppose that λ ∈ s0 · Cfund, and let y ∈ W+
aff such that µ ∈ y · Cfund. As observed

above, the complete reducibility of L(λ) ⊗ L(µ) forces that G(s0, y) is simple. Now Theorem IV.6.3

implies that y(Afund) = Afund + γ for some γ ∈ X+, and as µ ∈ y · Cfund = Cfund + `γ is `-restricted,

it follows that γ = 0 and µ ∈ Cfund.

Now suppose that (µ + ρ, β∨2,n) < `. If neither of λ and µ belongs to Cfund then, by Lemma 6.2,

we have λ ∈ x(i, 0) · Cfund and µ ∈ x(0, j) · Cfund for some 0 ≤ i < n − 1 and 0 ≤ j < n − 1. By the

previous case, we may further assume that i > 0 and j > 0 (because x(0, 0) = s0). Then the generic

direct summand G
(
x(i, 0), x(0, j)

)
of L

(
x(i, 0) · 0

)
⊗ L

(
x(0, j) · 0

)
is non-simple by Propositions 5.3

and 5.7, contradicting the complete reducibility of L(λ)⊗ L(µ).
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Appendices

A Additive categories and ideals

In this section, we discuss the notion of ideals (of morphisms) in categories and prove some properties

of quotient categories. We start with the most basic definitions.

Definition. A preadditive category is a category in which all Hom-sets are abelian groups and com-

position of morphisms is bilinear. An additive category is a preadditive category that admits finite

direct sums.

Note that the definition of an additive category includes the empty direct sum, which is both an

initial and a final object, called the zero object.

Definition. An additive functor between additive categories A and B is a functor F : A → B such

that the maps

F (A,A′) : HomA(A,A′)→ HomB
(
F (A), F (A′)

)
are group homomorphisms for all pairs of objects A and A′ of A.

Additive categories can be thought of as a generalization of rings, where multiplication is spread

out over multiple objects. Accordingly, we can define a notion of ideals and quotient categories.

Definition. An ideal (of morphisms) I in A is a collection of subgroups I(A,B) ⊆ HomA(A,B), for

every pair of objects A and B of A, that is stable under composition. More specifically, this means

that b ◦ f ◦ a ∈ I(A′, B′) for all a ∈ HomA(A′, A), b ∈ HomA(B,B′) and f ∈ I(A,B).

Definition. Let I be an ideal of morphisms in A. The quotient category A/I has the same objects

as A and Hom-sets

HomA/I(A,B) := HomA(A,B)/I(A,B).

Composition of morphisms in A/I is induced by the composition law in A.

Note that the composition of morphisms in the quotient category is well-defined because I is

stable under composition. It is straightforward to check that A/I is an additive category and that the

quotient functor A → A/I, sending an object to itself and a morphism to its residue class, is additive.

Definition. A Krull-Schmidt category is an additive category where every object is isomorphic to a

finite direct sum of objects having local endomorphism rings.

Note that an object whose endomorphism ring is local is a fortiori indecomposable, i.e. it does

not admit a non-trivial direct sum decomposition. In a Krull-Schmidt category, the converse of this

statement is also true, that is, the endomorphism rings of all indecomposable objects are local. The

name Krull-Schmidt category is justified by the fact that a version of the Krull-Schmidt theorem holds

in such categories; see Theorem 4.2 in [Kra15].
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Theorem A.1. Let A be a Krull-Schmidt category and let A be an object of A with two decompositions

A1 ⊕ · · · ⊕Ar ∼= A ∼= B1 ⊕ · · · ⊕Bs

as a direct sum of objects with local endomorphism rings. Then r = s and there exists a permutation

τ such that Bi ∼= Aτ(i) for 1 ≤ i ≤ r.

A direct sum decomposition as in the preceding theorem is called a Krull-Schmidt decomposition.

Let us cite another result about Krull-Schmidt categories from Corollary 4.4 in [Kra15].

Lemma A.2. A Krull-Schmidt category A has split idempotents, that is, for every idempotent e = e2

in the endomorphism ring of an object A of A, there exist an object B of A and morphisms f : B → A

and g : A→ B such that f ◦ g = e and g ◦ f = idB.

Next we show that Krull-Schmidt categories are well-behaved with respect to taking quotients by

ideals of morphisms.

Lemma A.3. Let A be a Krull-Schmidt category and let I be an ideal of morphisms in A. Then A/I
is a Krull-Schmidt category.

Proof. For any object A of A, the endomorphism ring EndA/I(A) is a quotient of EndA(A) by a two-

sided ideal, so EndA/I(A) is local or zero whenever EndA(A) is local. Now the endomorphism ring

of an object in an additive category is zero if and only if the object is isomorphic to the zero object.

Hence a decomposition of an object of A as a finite direct sum of objects with local endomorphism

rings gives rise to such a decomposition in A/I, by omitting the objects whose endomorphism rings

in the quotient are zero.

Corollary A.4. Let A be a Krull-Schmidt category and let I be an ideal of morphisms in A. Fur-

thermore, let A be an object of A and fix a Krull-Schmidt decomposition

A ∼= A1 ⊕ · · · ⊕Ar ⊕B1 ⊕ · · · ⊕Bs

of A in A such that Ai � 0 in A/I for 1 ≤ i ≤ r and Bi ∼= 0 in A/I for 1 ≤ i ≤ s. Then

A ∼= A1 ⊕ · · · ⊕Ar

is a Krull-Schmidt decomposition of A in A/I.

Proof. This follows from the proof of Lemma A.3.

Example A.5. Let A be an additive category and let J be a non-empty set of objects of A such

that A⊕B ∈ J for all A,B ∈ J . Then J defines an ideal of morphisms via

J (A,B) :=
{
f ∈ HomA(A,B)

∣∣ f factors through an object in J
}
.

Indeed, stability under composition is obvious and the sum of two morphisms f, g ∈ J (A,B) that

factor through objects C and C ′ in J , respectively, factors though the direct sum C ⊕ C ′.
Now suppose that A is a Krull-Schmidt category and that J is closed under retracts, i.e. that

A⊕ B ∈ J implies that A ∈ J and B ∈ J . Then an object of A is isomorphic to the zero object in

the quotient category A/J if and only if it belongs to J . Indeed, an object A of A is isomorphic to

the zero object in A/J if and only if idA ∈ J (A,A), and if idA factors through an object in J then

A ∈ J because A has split idempotents and J is closed under retracts.
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B Homological algebra

This section serves as a reminder on some important constructions in homological algebra. Namely,

we will recall homotopy categories and derived categories and discuss their triangulated structure. For

a more detailed overview of these topics with further references, see [Kra07]. Throughout the section,

we fix an additive category A (which we will later assume to be abelian).

A complex A = (A•, d
A
• ) over A is a sequence of objects (Ai)i∈Z of A with morphisms

dAi ∈ HomA(Ai, Ai+1)

such that dAi+1 ◦ dAi = 0 for all i ∈ Z. We call Ai the term in homological degree i and dAi the i-th

differential of A. The complex A is called bounded if all but finitely many terms are zero. For two

complexes A and B, a chain map (or homomorphism of complexes) f = (f•) : A → B is a sequence

of morphisms fi ∈ HomA(Ai, Bi) such that dBi ◦ fi = fi+1 ◦ dAi for all i ∈ Z. The category C(A) of

complexes over A has objects the complexes over A and morphisms the chain maps. We write Cb(A)

for the full subcategory of bounded complexes.

Remark. What we call a complex here is often referred to as a cochain complex in the literature. In

some situations, it is useful to distinguish between cochain complexes and chain complexes, where the

latter have differentials going in the ‘opposite direction’, i.e. from degree i to degree i − 1. It should

also be noted that many authors write cochain complexes with indices as superscripts (like Ai or diA)

and chain complexes with indices as subscripts. As all complexes that will be considered here are

cochain complexes, we can ignore this distinction.

Note that the additive structure on A induces an additive structure on C(A). Next we discuss

some important constructions related to complexes. For j ∈ Z, the j-th homological shift A[j] of a

complex A = (A•, d
A
• ) is the complex with terms A[j]i := Ai+j and differentials d

A[j]
i := (−1)j · di+j .

Given a chain map f : A→ B, the cone of f is the complex C = cone(f) with terms Ci = Ai+1 ⊕Bi
and differentials

dCi =

(
−dAi+1 0

fi+1 dBi

)
,

acting as though on column vectors. Note that the inclusions Bi → Ci and the projections Ci → Ai+1

define canonical chain maps

B −→ cone(f) −→ A[1].

We say that two chain maps f, g : A → B are homotopic if there exists a homotopy h = (h•) from f

to g, i.e. a sequence of morphisms hi ∈ HomA(Ai, Bi−1) such that fi − gi = dBi−1 ◦ hi + hi+1 ◦ dAi . A

chain map is called nullhomotopic if it is homotopic to the zero chain map. The nullhomotopic chain

maps form an ideal in the category C(A), that is, the nullhomotopic chain maps f : A → B form a

subgroup of HomC(A)(A,B) and if f : A → B is nullhomotopic then so are x ◦ f and f ◦ y for any

chain maps x : B → B′ and y : A′ → A. Therefore, we can define the homotopy category K(A) of A
as the quotient of C(A) by the ideal of nullhomotopic chain maps: The objects of K(A) are just the

complexes over A, and the morphisms from A to B are defined as the quotient of HomC(A)(A,B) by

the subgroup of nullhomotopic chain maps. Two complexes that are isomorphic in K(A) are called

homotopy equivalent, and a chain map that becomes an isomorphism in K(A) is called a homotopy

equivalence. Note that K(A) inherits the additive structure from C(A). We write Kb(A) for the

bounded homotopy category of A, i.e. the full subcategory of K(A) whose objects are the bounded
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complexes. The categories Kb(A) and K(A) admit the structure of triangulated categories, that

is, they are additive categories with a shift functor (denoted on objects by A 7→ A[1]) and a class

of distinguished triangles A → B → C → A[1] satisfying certain axioms (which will not be recalled

here). In the present case, the shift functor is the homological shift of complexes and the distinguished

triangles are those that are isomorphic to a triangle of the form

A
f−−→ B −→ cone(f) −→ A[1],

where the chain maps B → cone(f) → A[1] are those that were discussed above. One important

consequence of this definition is that for any distinguished triangle

A
f−−→ B

g−−→ C
h−−→ A[1],

the triangle

B
g−−→ C

h−−→ A[1]
−f [1]−−−→ B[1]

is also distinguished. We refer to this property as triangle rotation.

Now suppose thatA is an abelian category. For a complex A overA, the condition that dAi ◦dAi−1 = 0

means that the image of dAi−1 is contained in the kernel of dAi , and we define the i-th cohomology of A

as

H i(A) := ker(dAi )/im(dAi−1).

A complex is called exact in degree i if its i-th cohomology is zero and exact if it is exact in all

degrees. We also say exact sequence for a bounded exact complex and short exact sequence for an

exact sequence with at most three non-zero terms. A chain map f : A→ B induces homomorphisms

H i(f) : H i(A)→ H i(B)

for all i ∈ Z, and we call f a quasi-isomorphism if all H i(f) are isomorphisms. The derived category

D(A) of A is defined as the localization of K(A) at the class of quasi-isomorphisms. Its objects are

the complexes over A and its morphisms can be constructed as certain equivalence classes of ‘roofs’

of chain maps A ← M → B where A ← M is a quasi-isomorphism. As before, we write Db(A) for

the bounded derived category of A, i.e. the full subcategory whose objects are the bounded complexes.

The categories D(A) and Db(A) inherit from K(A) the structure of triangulated categories, where as

before, the shift functor is the homological shift and the distinguished triangles are those that arise

from cones of chain maps. Thus the natural functor K(A) → D(A) that sends a complex to itself

and a homotopy class of chain maps to its equivalence class in D(A) is a triangulated functor, i.e. it

commutes with the shift functors and takes distinguished triangles to distinguished triangles. Every

object of A can be viewed as a complex with a single non-zero term in degree zero, so there also is a

natural functor A → Db(A) which turns out to be fully faithful, i.e. it induces isomorphisms between

the respective homomorphism groups. If A is a complex over A with H i(A) = 0 for all i 6= 0 then A

is isomorphic to the one-term complex with H0(A) in degree zero, as an object of Db(A). Moreover,

if f : A → B is a monomorphism in A then the cone of f is isomorphic to the cokernel of f (viewed

as a complex) in Db(A). In particular, any short exact sequence 0 → A → B → C → 0 in A gives

rise to a distinguished triangle A→ B → C → A[1] in Db(A). Another important property of derived

categories (or triangulated categories in general) is that Hom-functors are cohomological : For any

complex D, applying the functors

HomD(A)(D,−) and HomD(A)(−, D)
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to a distinguished triangle A→ B → C → A[1] gives rise to exact sequences

· · · → HomD(A)(D,A[i])→ HomD(A)(D,B[i])→ HomD(A)(D,C[i])

→ HomD(A)(D,A[i+ 1])→ HomD(A)(D,B[i+ 1])→ HomD(A)(D,C[i+ 1])→ · · ·

and

· · · → HomD(A)(C[i], D)→ HomD(A)(B[i], D)→ HomD(A)(A[i], D)

→ HomD(A)(C[i− 1], D)→ HomD(A)(B[i− 1], D)→ HomD(A)(A[i− 1], D)→ · · · ,

respectively.3 Yet another example of a cohomological functor is the degree zero cohomology H0(−).

As H0(D[i]) = H i(D) for all i ∈ Z and for any complex D over A, this implies that a distinguished

triangle A→ B → C → A[1] affords an exact sequence

· · · → H i−1(C)→ H i(A)→ H i(B)→ H i(C)→ H i+1(A)→ · · · .

For objects A and B of A, we define

ExtiA(A,B) := HomD(A)(A,B[i])

for i ∈ Z, viewing A and B as one-term complexes as before. We note that

Ext0
A(A,B) ∼= HomA(A,B)

and ExtiA(A,B) = 0 for i < 0. As a special case of the exact sequences of Hom-groups in D(A)

discussed above, we see that any short exact sequence 0 → A → B → C → 0 gives rise to exact

sequences

0→ HomA(D,A)→ HomA(D,B)→ HomA(D,C)→ Ext1
A(D,A)→ · · ·

and

0→ HomA(C,D)→ HomA(B,D)→ HomA(A,D)→ Ext1
A(C,D)→ · · · ,

for any object D of A.

If the category A is additive monoidal (i.e. if A has a bi-additive tensor product bifunctor ⊗,

subject to some axioms which we do not recall here) then we can define a tensor product M ⊗N of

bounded complexes M = (M•, d
M
• ) and N = (N•, d

N
• ) as follows: The terms of M ⊗N are defined by

(M ⊗N)k =
⊕
i+j=k

Mi ⊗Nj ,

and the k-th differential dM⊗Nk can be written as a matrix with entries(
dM⊗Nk

)
(i,j),(i′,j′)

: Mi ⊗Mj −→Mi′ ⊗Mj′

for i+ j = k and i′ + j′ = k + 1, where

(
dM⊗Nk

)
(i,j),(i′,j′)

=


dMi ⊗ idNj if (i′, j′) = (i+ 1, j),

(−1)i · idMi ⊗ dNj if (i′, j′) = (i, j + 1),

0 otherwise.

3To be more precise, one should say that HomD(A)(−, D) is a cohomological functor from D(A) to the opposite

category of the category of abelian groups.
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Thus the category of bounded complexes Cb(A) inherits a monoidal structure from A, which descends

to Kb(A) and Db(A). If A is abelian and the tensor product bifunctor is exact in both components

then the cohomology of the tensor product complex M⊗N can be computed by the Künneth formula:

Hk(M ⊗N) ∼=
⊕
i+j=k

H i(M)⊗Hj(N)

This is a special case of the main theorem of [Big07]. We give a sketch of a proof for the reader’s

convenience. First note that the claim is certainly true if all differentials of N are trivial, and in that

case Hj(N) ∼= Nj for all j. In general, we have short exact sequences

0 −→ ker(dNj ) −→ Nj −→ im(dNj ) −→ 0

for all j and we consider the complexes K = (K•, d
K
• ) and I = (I•, d

I
•) with trivial differentials and

terms Kj = ker(dNj ) and Ij = im(dNj ). Then there is a short exact sequence of complexes

0 −→M ⊗K −→M ⊗N −→M ⊗ I −→ 0,

and the latter gives rise to an exact sequence

· · · → Hk−1(M ⊗N)→ Hk−1(M ⊗ I)→ Hk(M ⊗K)→ Hk(M ⊗N)→ Hk(M ⊗ I)→ · · ·

via the snake lemma. By the initial observation, we have

Hk−1(M ⊗ I) ∼=
⊕
i+j=k

H i(M)⊗ im(dNj−1) and Hk(M ⊗K) ∼=
⊕
i+j=k

H i(M)⊗ ker(dNj )

for all k, and one can check that the homomorphism from Hk−1(M ⊗ I) to Hk(M ⊗K) restricts to

the tensor product of the identity on H i(M) with the embedding of im(dNj−1) into ker(dNj ), on the

different components of the direct sum. Now the claim follows since Hj(N) = ker(dNj )/im(dNj−1).
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Frobenius morphism, 31
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good filtration, 22
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Krull-Schmidt decomposition, 190

Künneth formula, 194
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`r-restricted weight, 32

`-singular
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saturated set of weights, 79

Schur algebra, 79, 85

separated by a hyperplane, 12

simple reflection, 12

singular

G-module, 51

part, 55

small quantum group, 34

socle

filtration, 155

of a G-module, 19

standard action, 10

tensor product of complexes, 193

thick tensor ideal, 36

tilting equivalence, 23

tilting module, 23

translation functor, 27

truncated subcategory, 78

truncation to a Levi subgroup, 21

uniserial G-module, 19

upper closure

of an `-facet, 28
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Verlinde algebra, 37

wall of an alcove, 12

weight space decomposition, 17, 18

Weyl filtration, 22

Weyl filtration dimension, 29

Weyl’s character fomula, 20
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[M : ∆(λ)]∆: Weyl filtration multiplicity, 23

[M : L(λ)]: composition multiplicity, 20

[M : N ]⊕: Krull-Schmidt multiplicity, 20

[M : ∇(λ)]∇: good filtration multiplicity, 22

[M ]: the class of M in [Rep(G)], 132

[Rep(G)]: Grothendieck group of Rep(G), 132

Afund: the fundamental alcove, 12

Â: upper closure of an alcove, 101

αh: the highest short root in Φ, 9

α̃h: the highest root in Φ, 9

↑: the linkage order on alcoves, 14

↑`: the linkage order on `-alcoves, 25

B = Bk in the modular case, 15

B = U−ζ (g) in the quantum case, 19

C(A): the category of complexes over A, 191

Cb(A): bounded complexes over A, 191

Cfund: the fundamental `-alcove, 25

χ(λ) = ch∇(λ), 20

chM : the character of M , 19

cνλ,µ = [T (λ)⊗ T (µ) : T (ν)]⊕, 37

Cmin(M): minimal tilting complex of M , 43

D(A): the derived category of A, 192

d(A) =
∑

β∈Φ+ nβ(A), 99

d(A,A′): the distance between A and A′, 96

d(x) = d
(
x(Afund)

)
, 102

Db(A): bounded derived category of A, 192

∆(λ) = ∇(−w0λ)∗, 20

∆(λ)k: term in the Jantzen filtration, 132

∆x,k: layer of the Jantzen filtration of ∆x, 156

Dist(G): the distribution algebra of G, 17

F̂ : upper closure of an `-facet, 28

Fλ: the `-facet containing λ, 28

Fr: the Frobenius morphism, 31

G = Gk in the modular case, 15

G = Uζ(g) in the quantum case, 19

G(x, y): a generic direct summand, 63

G∆(x, y): a generic direct summand, 61

G∇(x, y): a generic direct summand, 61

G1: the first Frobenius kernel or the small

quantum group, 34

gfd(M): good filtration dimension of M , 29

Gr: a Frobenius kernel of G, 31

Hβ,m: hyperplane of fixed points of sβ,m, 11

H`
β,m = {` · x− ρ | x ∈ Hβ,m}, 25

H+
β,m: positive half space w.r.t. Hβ,m, 12

H−β,m: negative half space w.r.t. Hβ,m, 12

headGM = M/radGM : the head of M , 19

H i(A): i-th cohomology of a complex A, 192

J(u) =
⊗

i≥0 T (ui)
[i], for G of type A1, 76

JSFx = ψ−1
λ (JSFλx) ∈Masph, 133

JSFλx =
∑

i>0[∆(x · λ)i] ∈ [Rep(G)], 133

K(A): the homotopy category of A, 191

Kb(A): bounded homotopy category of A, 191

` = char(k) in the modular case, 15

` = ord(ζ) in the quantum case, 16

L(λ) = socG∇(λ), 20

L(w): set of hyperplanes separating Afund and

w(Afund), 13

`(w): the length of w ∈Wext, 13

Lr(λ): a simple Gr-module, 32

L̂r(λ): a simple GrT-module, 33

M(λ, µ): direct summand of L(λ)⊗ L(µ), 70

M(ν), for G of type A2, 89
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Masph: the anti-spherical Z[Waff ]-module, 132

M [r]: the r-th Frobenius twist of M , 31

Mreg: the regular part of M , 55

Msing: the singular part of M , 55

M∗: the dual of M , 19

M τ : the contravariant dual of M , 19

N : negligible tilting modules, 37

∇(λ) = indG
B(kλ), 20

nβ(A), for an alcove A, 12

nβ(C), for an `-alcove C, 25

Nx = 1⊗ x ∈Masph, 132

Ω = StabWext(Afund), 13

ωx: image of x ∈Wext under Wext → Ω, 13

Φ: a simple root system, 9

Φ+: a positive system in Φ, 9

Π: a base of Φ, 9

prµ : Rep(G)→ Repµ(G), 27

radGM : the radical of M , 19

radkGM : term in the radical filtration, 155

Rep(G), in the modular case, 17

Rep(G), in the quantum case, 18

Repλ(G): the linkage class of λ, 26

RepΩ·0(G): the extended principal block, 27

Rep(G) = Rep(G)/〈N〉, 51

Rep(G, π): a truncated subcategory, 78

ρ = 1
2

∑
α∈Φ+ α, 9

S: simple reflections in Waff , 12

sβ,m = tmβsβ: an affine reflection, 11

socGM : the socle of M , 19

sockGM : term in the socle filtration, 155

T = Tk in the modular case, 15

T = U0
ζ (g) in the quantum case, 19

T (λ): an indecomposable tilting module, 23

Tilt(G): tilting modules in Rep(G), 23

Tµλ : a translation functor, 27

Tµ,δλ : a quasi-translation functor, 107

Tω =
⊕

λ∈Ω·0 T
ω·λ
λ , 56

Uq(g): quantum group over Q(q), 16

UZq (g): integral form of Uq(g), 16

Uζ(g) = U ′ζ(g)
/〈
K`
α ⊗ 1− 1⊗ 1

∣∣ α ∈ Π
〉
, 17

U ′ζ(g) = UZq (g)⊗Z[q,q−1] k, 17

w0 ∈Wfin: the longest element, 10

Waff = ZΦoWfin: the affine Weyl group, 11

W+
aff = {w ∈Waff | w(Afund) is dominant}, 13

Wext = X oWfin: extended aff. Weyl group, 11

W+
ext = {w ∈Wext | w(Afund) is dominant}, 13

wfd(M): Weyl filtration dimension of M , 29

Wfin: the (finite) Weyl group of Φ, 9

X: the weight lattice, 9

X+: the dominant weights, 9

X = {x(i, j) | 0 ≤ i < n, 0 ≤ j ≤ n} ∪ {e}, 134

x(i, j) = s0s1 · · · sisnsn−1 · · · sn−j+1, 134

Xr = {λ ∈ X+ | (λ, α∨) < `r for all α ∈ Π}, 32

X+
R : the dominant Weyl chamber, 12

ζ: a primitive `-th root of unity, 16
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1990.

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate

Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

202



Bibliography

[Nak95] Daniel K. Nakano. A bound on the complexity for GrT modules. Proc. Amer. Math. Soc.,

123(2):335–341, 1995.

[Ost97] Victor Ostrik. Tensor ideals in the category of tilting modules. Transform. Groups,

2(3):279–287, 1997.

[Par94] Jan Paradowski. Filtrations of modules over the quantum algebra. In Algebraic groups

and their generalizations: quantum and infinite-dimensional methods (University Park,

PA, 1991), volume 56 of Proc. Sympos. Pure Math., pages 93–108. Amer. Math. Soc.,

Providence, RI, 1994.

[Par03] Alison E. Parker. On the good filtration dimension of Weyl modules for a linear algebraic

group. J. Reine Angew. Math., 562:5–21, 2003.

[RH03a] Steen Ryom-Hansen. Appendix. Some remarks on Ext groups: “On the good filtration

dimension of Weyl modules for a linear algebraic group” [J. Reine Angew. Math. 562

(2003), 5–21; mr2011328] by A. E. Parker. J. Reine Angew. Math., 562:23–26, 2003.

[RH03b] Steen Ryom-Hansen. A q-analogue of Kempf’s vanishing theorem. Mosc. Math. J.,

3(1):173–187, 260, 2003.

[Rin91] Claus M. Ringel. The category of modules with good filtrations over a quasi-hereditary

algebra has almost split sequences. Math. Z., 208(2):209–223, 1991.

[RW18] Simon Riche and Geordie Williamson. Tilting modules and the p-canonical basis. Aster-

isque, 397, 2018.

[Sob18] Paul Sobaje. On (p, r)-filtrations and tilting modules. Proc. Amer. Math. Soc.,

146(5):1951–1961, 2018.

[Soe97] Wolfgang Soergel. Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren. Rep-

resent. Theory, 1:115–132, 1997.

[Wan82] Jianpan Wang. Sheaf cohomology on G/B and tensor products of Weyl modules. J.

Algebra, 77(1):162–185, 1982.

[Wan87] Jianpan Wang. Partial orderings on affine Weyl groups. J. East China Norm. Univ.

Natur. Sci. Ed., (4):15–25, 1987.

[Wil17] Geordie Williamson. Schubert calculus and torsion explosion. J. Amer. Math. Soc.,

30(4):1023–1046, 2017. With a joint appendix with Alex Kontorovich and Peter J. Mc-

Namara.

203



Curriculum vitae

Personal Data

Name: Jonathan Gruber

Date of Birth: 30 January 1997

Nationality: German

Education

2018-2022 PhD in Mathematics,
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