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Abstract

Let G be either a simple linear algebraic group over an algebraically closed field of characteristic £ > 0
or a quantum group at an ¢-th root of unity. The category Rep(G) of finite-dimensional G-modules is
non-semisimple. In this thesis, we develop new techniques for studying Krull-Schmidt decompositions
of tensor products of G-modules.

More specifically, we use minimal complexes of tilting modules to define a tensor ideal of singular
G-modules, and we show that, up to singular direct summands, taking tensor products of G-modules
respects the decomposition of Rep(G) into linkage classes. In analogy with the classical translation
principle, this allows us to reduce questions about tensor products of G-modules in arbitrary ¢-regular
linkage classes to questions about tensor products of G-modules in the principal block of G. We
then identify a particular non-singular indecomposable direct summand of the tensor product of two
simple G-modules in the principal block (with highest weights in two given ¢-alcoves), which we call
the generic direct summand because it appears generically in Krull-Schmidt decompositions of tensor
products of simple G-modules (with highest weights in the given ¢-alcoves). We initiate the study of
generic direct summands, and we use them to prove a necessary condition for the complete reducibility
of tensor products of simple G-modules, when G is a simple algebraic group of type A,,.

Keywords: algebraic groups, quantum groups, representation theory, tensor products, Krull-Schmidt
decomposition, tensor ideals, linkage principle, translation principle, complete reducibility

Zusammenfassung

Sei G entweder eine einfache lineare algebraische Gruppe iiber einem algebraisch abgeschlossenen
Korper von Charakteristik £ > 0 oder eine Quantengruppe an einer ¢-ten Einheitswurzel. Die Kategorie
Rep(G) der endlichdimensionalen G-Moduln ist nicht halbeinfach. In dieser Arbeit entwickeln wir neue
Techniken um Krull-Schmidt Zerlegungen von Tensorprodukten von G-Moduln zu untersuchen.

Genauer gesagt werden wir minimale Komplexe von Kippmoduln nutzen um ein Tensorideal von
singuléren G-Moduln zu definieren und wir zeigen, dass Tensorprodukte von G-Moduln — abgesehen
von singuldren direkten Summanden — die Zerlegung von Rep(G) in Verkettungsklassen respektieren.
In Analogie mit dem klassischen Translationsprinzip kénnen wir so Fragen iiber Tensorprodukte von G-
Moduln in beliebigen f-reguléiren Verkettungsklassen auf Fragen iiber Tensorprodukte von G-Moduln
im Hauptblock von G reduzieren. Weiterhin identifizieren wir einen bestimmten nicht singulédren un-
zerlegbaren direkten Summanden im Tensorprodukt zweier einfacher G-Moduln im Hauptblock (mit
hochsten Gewichten in zwei gegebenen ¢-Alkoven), und wir bezeichnen diesen als generischen direkten
Summanden, da er generisch in Krull-Schmidt Zerlegungen von Tensorprodukten einfacher G-Moduln
(mit hochsten Gewichten in den gegebenen ¢-Alkoven) vorkommt. Wir beginnen das Studium gene-
rischer direkter Summanden und benutzen diese, um eine notwendige Bedingung fiir die vollstéindige
Reduzibilitét von Tensorprodukten einfacher G-Moduln zu beweisen, wenn G eine einfache algebrai-
sche Gruppe vom Typ A,, ist.

Stichworter: algebraische Gruppen, Quantengruppen, Darstellungstheorie, Tensorprodukte, Krull-
Schmidt Zerlegung, Tensorideale, Verkettungsprinzip, Translationsprinzip, vollsténdige Reduzibilitat
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Introduction

Tensor products are ubiquitous in representation theory, and the problem of finding direct sum de-
compositions of tensor products of representations has been studied by many mathematicians and in
many different settings. A prime example is the well-known Clebsch-Gordan formula, which describes
the decomposition of a tensor product of two irreducible representations of the algebraic group SLa(C)
as a direct sum of irreducible representations. More generally, one has the Littlewood-Richardson rule,
which gives a combinatorial description of the multiplicity of an irreducible representation of GL,(C)
in a tensor product of two irreducible representations. The situation becomes more complicated when
one replaces the field C of complex numbers by a field of positive characteristic. Then, the correspond-
ing categories of representations are no longer semisimple, i.e. not every representation can be written
as a direct sum of irreducible representations. Nevertheless, a finite-dimensional representation usually
still admits an essentially unique decomposition as a direct sum of indecomposable representations,
called a Krull-Schmidt decomposition. One of the main objectives of this thesis is to develop new
techniques for studying Krull-Schmidt decompositions of tensor products of representations in certain
non-semisimple categories.

When studying representations in a non-semisimple setting, it is often helpful to decompose the
category under consideration as a direct product of subcategories called blocks, in such a way that
every indecomposable representation belongs to a unique block. One can then hope to obtain stronger
results by considering one block of the category at a time. However, this strategy is generally not well
suited for understanding the monoidal structurdﬂ of the category, because a tensor product of two
representations, each belonging to a given block, may have indecomposable direct summands in many
different blocks. Our results provide a way of partially overcoming this obstacle, for categories of
representations of simple algebraic groups (over fields of positive characteristic) and quantum groups
(at roots of unity). More precisely, we will use the theory of tilting modules and minimal complexes to
define a tensor ideal of singular modules in the representation categories. When considering represen-
tations modulo this tensor ideal, it turns out that the so-called principal block is closed under tensor
products and that the monoidal structure of the entire category is governed to a large extent by the
resulting monoidal structure on the principal block. We refer to these results as a linkage principle
and a translation principle for tensor products, in analogy with the classical results describing the
block decomposition of the categories in question (as recalled below).

The categories of (finite-dimensional) representations of simple algebraic groups and of quantum
groups have many structural properties in common. For instance, the isomorphism classes of irre-
ducible representations in either of these categories are in bijection with a certain set of dominant
weights, which also parametrizes the classes of Weyl modules, induced modules and indecomposable
tilting modules. Furthermore, the decomposition of the representation category into blocks is governed

LA category is called monoidal if it has a tensor product bifunctor that satisfies certain natural axioms.
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by the alcove geometry associated with the so-called dot action of an affine Weyl group, for simple
algebraic groups and quantum groups alike.

In the following, we refer to the representation theory of simple algebraic groups as the modular
case and to the representation theory of quantum groups as the quantum case. The aforementioned
similarities often make it possible to treat the two cases simultaneously. In order to do this in a
consistent way, we fix the following notational conventions:

The modular case Here G is a simply connected simple linear algebraic group over an al-
gebraically closed field of characteristic £ > 0. We write Rep(G) for the
category of finite-dimensional rational G-modules.

The quantum case Here G = U¢(g) is the specialization at a complex ¢-th root of unity ¢
of Lusztig’s divided powers version of the quantum group corresponding
to a complex simple Lie algebra g. We write Rep(G) for the category of
finite-dimensional G-modules of type 1.

In either of the two cases, G comes equipped with a simple root system ® and a weight lattice X. For
this introduction (and for most of this document), we suppose that £ > h, the Coxeter number of ®.
In the quantum case, we further assume that ¢ is odd (and not divisible by 3 if ® is of type G2). From
now on, we use the term G-module to refer to the objects of Rep(G); in particular, all G-modules
that we consider are implicitly assumed to be finite-dimensional.

The isomorphism classes of simple G-modules are parametrized by the set X+ of dominant weights
in X, with respect to a fixed positive system ®* C ®, and we write L()) for the simple G-module
corresponding to a dominant weight A € X*. Furthermore, we denote by A(\), V(A) and T'(\) the
Weyl module, the induced module and the indecomposable tilting module of highest weight A € X .
Let us write Wg, and Weg = Z® x Wy, for the finite Weyl group and the affine Weyl group of @,
respectively, and denote the natural embedding Z® — W,g by v+ t,. We consider the dot action of
Wag on X, defined by

tyw-A=w(A+p) —p+Lly

forv € Z®, w € Wy, and A € X, where p = % Y aca+ @ Finally, let us write Cpynq for the fundamental
l-alcove in Xp = X ®z R, with respect to the dot action (see Section , and note that Cpng N X is
non-empty because ¢ > h. The linkage principle asserts that Rep(G) admits a decomposition

Rep(G)= P Repy(G),
AeCrunaNX

where the linkage class Repy(G) of A € Cung N X is defined as the full subcategory of Rep(G) whose
objects are the G-modules all of whose composition factors have highest weight in Wg - )\E] The
linkage class Repy(G) is called the principal block of G. Furthermore, for A, i € Cpng N X, the linkage
classes of A and 1 are equivalent, via a so-called translation functor T} : Repy(G) — Rep,(G) with
quasi-inverse Tli‘. With this notation in place, we can start giving a more detailed summary of our
results.

2Not all of the linkage classes are blocks (in the usual sense that they can not be decomposed any further), but those
corresponding to weights in Cryna N X are. A precise description of the blocks of Rep(G) can be found in Section I1.7.2
of [Jan03].
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Minimal tilting complexes

Tilting modules were introduced to the representation theory of algebraic groups by S. Donkin [Don93],
following earlier work of C. Ringel in the setting of quasi-hereditary algebras [Rin91], and they have
been at the heart of some exciting new developments in this area in recent years [RW1§|. The full
subcategory Tilt(G) of tilting modules in Rep(G) is closed under tensor products, and the canonical
functor

T: K'(Tilt(G)) — D" (Rep(G))

from the bounded homotopy category of Tilt(G) to the bounded derived category of Rep(G) is an
equivalence of triangulated monoidal categories, which we call the tilting equivalence. In some respects,
the monoidal structure of Tilt(G) is better understood than that of Rep(G) (see for instance [AP95],
Ost97]), and we will follow the strategy of transporting information about tensor products from Tilt(G)
to Rep(G) via the tilting equivalence and the notion of minimal complezes.

As a consequence of the tilting equivalence, there exists for every G-module M a bounded complex
of tilting modules that is isomorphic to M when considered as an object of DP (Rep(G)), and this
complex is unique up to homotopy equivalence. Furthermore, as Tilt(G) is a Krull-Schmidt category,
every homotopy class in K (Tilt(G)) contains a complex that is minimal in a suitable sense, and
the latter is unique up to isomorphism of complexes. Combining these two observations, it follows
that there exists a unique bounded minimal complex Cpin (M) of tilting modules that is isomorphic
to M when considered as an object of D (Rep(G)), and we call Cyin (M) the minimal tilting complex
of M. The minimal tilting complex Cpin(M) is a powerful invariant of M, and it encodes important
information, such as the good filtration dimension gfd(M) and the Weyl filtration dimension wid(M).
Furthermore, minimal tilting complexes are well-behaved with respect to direct sums, short exact
sequences and tensor products of G-modules.

Singular G-modules

The definition of singular G-modules, which we will give below, serves as a good example of how
minimal tilting complexes allow us to use results about tensor products in Tilt(G) to study the
monoidal structure of Rep(G). A tilting module in Rep(G) is called negligible if it has no direct
summands of the form T'(\) with A\ € CgngNX. It is well-known that the negligible tilting modules are
a tensor ideal in Tilt(G), that is, that they form an isomorphism-closed set which is stable under direct
sums, retracts and tensor products with arbitrary tilting modules in Rep(G) (see [GM94, [AP95]).

Definition. A G-module M is called singular if all terms of Cp;y(M) are negligible. Otherwise, we
say that M is regularﬂ

Using elementary properties of minimal tilting complexes, we can show that the singular G-modules
form a tensor ideal in Rep(G). For every G-module M, we can now write

M= Msing @ Mrega

where Mg is the direct sum of all singular indecomposable direct summands of M and where Mg
is the direct sum of all regular indecomposable direct summands of M. We call Mgj,g and M;eg the
singular part and the reqular part of M, respectively.

30ur terminology is justified by the fact that, for A € X, the simple G-module L()\) is regular if and only if its
highest weight X is £-regular, i.e. if A € Wag + X for some A € Ctuna N X (see Lemma [[1.4.3| below).
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We can now state our linkage principle for tensor products, which asserts that the monoidal struc-
ture of Rep(G) is compatible with the decomposition into linkage classes, when we consider Rep(G)
modulo the tensor ideal of singular G-modules.

Theorem A. Let A € Crypna N X and let M and N be G-modules in the linkage classes of 0 and X,
respectively. Then (M & N )reg belongs to the linkage class of A.

As a consequence of T heorem the essential image of the principal block Repy(G) in the quotient
category of Rep(G) by the ideal of singular G-modules is closed under tensor products. The next
result is our translation principle for tensor products.

Theorem B. Let M and N be G-modules in Repy(G). For A\, u € Cryng N X, we have

(M @TIN),. = P T(Me N)reg™,

reg
Veofund nx

where ¢, = [T(A\) @ T(p) : T(v)]e for v € Cruna N X.

The translation functors T, 0)‘ and T' are equivalences for A, € Cpng N X, so Theorem |B| implies
that the monoidal structure of Rep(G) modulo singular G-modules is completely determined by the
monoidal structure of Repy(G) modulo singular G-modules. We point out that the coefficients cf u
are the structure constants of the so-called Verlinde algebra (i.e. the split Grothendieck group of the
quotient of Tilt(G) by the tensor ideal of negligible tilting modules) and that they can be computed
as an alternating sum of dimensions of weight spaces of the Weyl module A()) (see Section [I.9)).

Generic direct summands

We now consider the regular parts of tensor products of specific G-modules, such as Weyl modules
and simple G-modules. By Theorems[A] and [B] we can restrict our attention to tensor products of G-
modules in the principal block. Let us write W; ={z € Wug|x-0€ X*T}. Then, for x,y € W;ﬁc, we
show that the tensor product A(z-0) ® A(y-0) has a unique regular indecomposable direct summand,
which we denote by Ga(x,y) and call the generic direct summand of A(z - 0) ® A(y - 0). This name
reflects the fact that, for A\, u € Cring N X, we have

AN @Ay )= D THCalr.y)
VECrmaNX

by Theorem [B} hence the G-modules TY G (z, y) appear generically in Krull-Schmidt decompositions
of tensor products of Weyl modules with highest weights in the alcoves x + Cpyng and y » Crund-

A tensor product of simple G-modules in the principal block may generally have more than one
regular indecomposable direct summand, but there is still a unique one with maximal good filtration
dimension: For z,y € W;Ef, the tensor product L(z+0) ® L(y-0) has a unique regular indecomposable
direct summand G(z,y) with good filtration dimension ¢(z) + ¢(y), where ¢: Wog — Z>o denotes the
length function with respect to the reflections in the walls of Cpng. We call G(z,y) the generic direct
summand of L(x - 0) ® L(y - 0).

We believe that describing the structure of generic direct summands of tensor products (of Weyl
modules and of simple G-modules) is a key problem for better understanding the monoidal structure
of Rep(G). We give such descriptions for G of type A; and Ay in Chapter but the problem seems
elusive in its full generality. In order to get a grasp on it, one can try to understand families of generic

4
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direct summands G(xg,y), where xg € W;f is fixed and y € W;;f is arbitrary. The most basic example,
where xg = e is the neutral element in W,g, leads to the family of generic direct summands

G(e,y) = L(y-0)

for y € W;;f because L(e-0) = L(0) is the trivial G-module. Next we consider the case where zo = s
is the affine simple reflection in Wog. As sg is the unique element of length one in W;f, this may
be considered as the smallest non-trivial instance of our problem. For G of type A,, we can give
a detailed description of the functor L(sg - \) ® —, for certain weights A € Crpng N X, and use this
description to study the generic direct summands G(sg,y) of L(so-0) ® L(y-0), for y € W k. We will
prove the following necessary condition for the simplicity of G(sg,y):

Theorem C. Suppose that G is of type A, and let y € W;f. If the generic direct summand G(so,y)
of the tensor product L(sg+0) @ L(y - 0) is simple then y + Ctuna = Crung + £y for some v € XT.

Let us also mention that the converse of Theorem [C]is true for n > 2 in the modular case, and for
all n in the quantum case.

Complete reducibility of tensor products

Our original motivation for developing the theory of generic direct summands was to find necessary
conditions for the complete reducibility of tensor products of simple G-modules (in the modular
case). We have initiated our investigation of this problem in [Gru2l], where the main result was a
reduction theorem that allows us to restrict our attention to tensor products of simple G-modules
with (-restricted highest weights. In Chapter [V we will demonstrate how our theory of generic direct
summands can be used to make further progress on this problem. More specifically, we will prove the
following complete reducibility theorem:

Theorem D. Suppose that we are in the modular case and that G is of type A, for somen > 1. Let
A and p be (-reqular (-restricted weights. If the tensor product L(A) ® L(u) is completely reducible
then either A € Crung o7 pt € Crund -

Let us briefly explain how generic direct summands can be used to prove Theorem D] For ¢-regular
weights A, € X, there exist z,y € Wt and N, i/ € Cpyna N X such that A =z - N and pu =y - p'.
Then we have L(\) = T L(z - 0) and L(u) = Té‘,L(a: - 0), and using Theorem [B} one sees that there
exists a weight v € Cpynq N X such that T G(z,y) is a direct summand of L(A) ® L(p). In particular,
if L(A\) ® L(p) is completely reducible then G(z,y) is simple. Therefore, we can prove Theorem [D| by
establishing the non-simplicity of certain generic direct summands.

In addition to the argument given above, we will use truncation to Levi subgroups and proceed by
induction on the rank n of G. The base case is given by our examples for G of type A; and As. The
proof then essentially splits in two cases, one of which can be resolved using the necessary condition
for the simplicity of G(sg,y), for y € W;f, from Theorem |C| The second case requires a detailed study
of the composition multiplicities and the Loewy structure of certain Weyl modules, which we will
compute via the Jantzen sum formula. The results of these computations may well be of independent
interest, beyond their applications to the study of generic direct summands.
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Outlook

We conclude this introduction by discussing our results in the context of other important developments
in the representation theory of reductive algebraic groups and quantum groups.

One of the key results in modular representation theory in the past decade was G. Williamson’s
discovery of counterexamples to Lusztig’s conjecture in characteristics that are much larger than the
previously expected bound ¢ > h [Will7]. The conjecture proposes a character formula for simple G-
modules in terms of so-called Kazhdan-Lusztig polynomials for the affine Weyl group and was proven
in the quantum case by combining results of D. Kazhdan, G. Lusztig, M. Kashiwara and T. Tanisaki
[KL93, (K194l Lus94, [KT95, [KT96]. While it had long been believed that the conjecture should still
be true for ¢ > h in the modular case (under certain assumptions on the highest weight of the simple
G-module), it had only been possible to establish its validity in the case where ¢ is larger than some
non-explicit bound depending on the root system of G, by a reduction to the quantum case due
to H.H. Andersen, J.C. Jantzen and W. Soergel [AJS94]. An explicit (but enormous) bound was
later found by P. Fiebig [Fiel2]. Using geometric methods and the theory of diagrammatic Soergel
bimodules that was pioneered by M. Khovanov, B. Elias and G. Williamson in [EK10l [Eli16, [EW16],
G. Williamson was able to exhibit a sequence of counterexamples to Lusztig’s conjecture where the
characteristic ¢ grows at least exponentially in the Coxeter number h of G, thus also demonstrating
that the quantum case and the modular case are less similar than one might previously have expected.

Diagrammatic Soergel bimodules play an increasingly important role in representation theory,
especially when it comes to understanding tilting modules. In their landmark monograph [RW1§],
S. Riche and G. Williamson conjectured that the category of diagrammatic Soergel bimodules should
admit a ‘categorical action’ on the principal block Repy(G) of G in the modular case. Furthermore,
they explained how their conjecture leads to a character formula for indecomposable tilting modules
in terms of £-Kazhdan-Lusztig polynomials, which is analogous to a well-known character formula that
was found by W. Soergel in the quantum case [Soe97]. The conjecture from [RW18| was proven by
S. Riche and R. Bezrukavnikov in [BR20] and independently by J. Ciappara in [Cia21]. In view of
these results, it would be very interesting to try to use diagrammatic Soergel bimodules in order to
further study minimal tilting complexes and generic direct summands. This approach may be helpful
for finding combinatorial descriptions of generic direct summands in terms of the affine Weyl group.

Beyond the theory of generic direct summands (which only works for ¢ > h and for (-regular
weights), it may be worthwhile to use minimal tilting complexes to study tensor products of G-modules
in a broader sense. An important open conjecture (in the modular case) that may be amenable to these
techniques proposes that the tensor product of the Steinberg module with any simple G-module of
f-restricted highest weight should be a tilting module in any characteristic £ > 0. The latter conjecture
has important connections with Donkin’s tilting module conjecture and the theory of £- Weyl filtrations.
These topics present another important way of understanding the differences between the modular
case and the quantum case, and they were explored in detail in work of C.P. Bendel, T. Kildetoft,
D.K. Nakano, C. Pillen and P. Sobaje [KN15,[Sob18, [ BNPS20b]. Notably, counterexamples to Donkin’s
conjecture in small characteristics were recently found in [BNPS20a, BNPS21]. It is possible that our
techniques for studying minimal tilting complexes of tensor products can be used to gain a better
understanding of tensor products of the Steinberg module with simple G-modules of f-restricted
highest weight. In relation with this, it would be very interesting to further investigate the tensor
ideals in Tilt(G) and the minimal tilting complexes of simple G-modules in small characteristics.

Finally, our results about tensor ideals (in Section [II.3)) may be interesting from the point of view of
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support theory and tensor triangular geometry (as introduced by P. Balmer in [Bal05]). In the quantum
case, tensor ideals in the stable module category were studied in detail by B.D. Boe, J.R. Kujawa and
D.K. Nakano in [BKNI19]. Using our techniques, it may be possible to obtain similar results for the
tensor triangulated category K° (Tilt(G)). In the modular case, a new support theory and a stable
module category were recently introduced by E.M. Friedlander in [Eri21]. It would be interesting to
explore connections with our construction of tensor ideals in Rep(G) using minimal tilting complexes.

Structure of the thesis

In the following, we give a brief outline of the content of the different chapters.

Chapter [I.. We recall some important results about representations of algebraic groups and quantum
groups, and we fix the notation that will be used for the rest of the thesis.

Chapter [II. We prove our main results about regular parts and generic direct summands of tensor

products, including Theorems|A|and [B| (see Lemma [[1.4.12{and Theorem [I1.4.14]). The existence
of generic direct summands is established in Propositions [[I.5.1] and [[1.5.7]

Chapter [ITI, We determine the regular parts and the generic direct summands of tensor products
of simple G-modules and of induced G-modules for G or type A; and As.

Chapter [Vl We study generic direct summands of the form G(sg,y), for y € W.. The proof of
Theorem [C] is given in Theorem

Chapter [Vl We use generic direct summands to give a necessary condition for the complete reducibil-
ity of tensor products of simple G-modules, for G of type A,,. Sections and are devoted
to a detailed study of the composition multiplicities and the Loewy structure of certain Weyl
modules, and the proof of Theorem [D]is given in Theorem [V.6.3]

Numbering conventions. Before we start with the actual content, a few remarks are in order about
the numbering of results in this document. Our chapters are numbered with Roman numerals. Every
chapter consists of a number of sections, which are numbered with Arabic numerals, starting at 1
whenever we begin a new chapter. The theorems, lemmas, definitions etc. are numbered consecutively
within each section, so the third element in Section II1.4 would get referred to as Theorem / Lemma /
Definition I11.4.3. However, to avoid excessive numbering, we suppress the number of the chapter
from the notation, when referencing a result that belongs to the same chapter as the position of the
reference in the text. For example, when referring to Lemma I1.4.12 from within Chapter 11, we will
omit the Roman numeral and simply write Lemma 4.12.






I. Foundations

In the first chapter, we present some background material, mostly about the representation theory
of simply connected simple algebraic groups and of quantum groups at roots of unity. Let us briefly
discuss the contents of this chapter. In Section (1] we set up our notation for root systems and weight
lattices, and in Section [2| we discuss some preliminary results about affine Weyl groups and the
associated alcove geometry. We will introduce simply connected simple algebraic groups and quantum
groups at roots of unity in Section [3, and we start recalling some classical results about the categories
of finite-dimensional representations of these objects in Section The remaining sections will be
devoted to giving brief expositions to different aspects of the representation theory of algebraic groups
and quantum groups. Specifically, we will discuss good filtrations and tilting modules in Section [5] the
linkage principle and the translation principle in Section [l and the notion of good filtration dimension
in Section [7} In Section [8] we recall some results from the representation theory of Frobenius kernels
and the small quantum group, and in Section [9] we introduce the tensor ideal of negligible tilting
modules, which will play an important role in the following chapters.

1 Roots and weights

Let ® be a simple root system in a euclidean space X with scalar product (—,—). For a € ®, we
denote by oV = (02%) the coroot of a. The weight lattice of @ is

X ={\eXg|(\a")€Zforall a € d},

and the Weyl group of ® is the (finite) subgroup Wg, = (sq | @ € ®) of GL(Xgr) generated by the
reflections s,, where so(z) = z— (z,a") -« for € Xg. The index of the root lattice Z® in the weight
lattice X is finite, and the quotient X/Z® is is called the fundamental group of ®. Now fix a positive
system ®* C & corresponding to a base II of ®, and let

Xt ={eX|(\aY)>0foralla € ®t}

be the set of dominant weights with respect to ®*. We consider the partial order on X that is
defined by A > p if and only if A\ — p is a non-negative integer linear combination of positive roots.
Furthermore, we write &y, and «y, for the highest root and the highest short root in ®, respectively,
with the convention that &y = ay, (and that all roots are short) if ® is simply laced. The height of an
element v = Y .y1 Ca - @ of the root lattice is ht(y) = Y oy ca. We let p = 33 o+ a be the half
sum of all positive roots and write h = (p,ay/) + 1 for the Cozeter number of ®. The dot action of
Win on Xg is defined by

wez=w(x+p) —p

9



Chapter I. Foundations

for w € Wh, and x € Xg. The set of simple reflections Sgn = {sq | @ € II} with respect to II is a
minimal generating set of Wy, and (Whgy, San) is a Coxeter system. As Wy, is finite, there exists a
unique longest element wy € Wy, with respect to Shy.

The root system ® is determined up to isomorphism by its Dynkin diagram; a graph with vertex
set IT, where the number of edges between o € IT and 8 € I is («a, 8Y)(B,a"). If (o, ) > (3, 3) then
we decorate the edge between v and 8 with an arrow pointing from « to 5. Simple root systems come
in four infinite families of classical root systems denoted by

A, (n>1), B, (n>3), C, (n>2) and D, (n>4)
and five exceptional types
EG, E7, Eg, F4 and GQ.

In Figures and we give the Dynkin diagrams of the irreducible root systems. Whenever we
choose a numbering of the simple roots II, it will be in accordance with the labeling of these Dynkin
diagrams (which also coincides with the standard labeling from [Bou02]). For every simple root « € II,
there is a fundamental dominant weight @, € X with (s, V) =1 and (w,, 8Y) =0 for a # € 11
The fundamental dominant weights form a basis of Xg and a Z-basis of X. To be more precise, we

have
A= Z()\,av) W,
a€cll
for all A € Xg. Whenever a numbering of the simple roots I = {aq,...,ay} is given, we number the
fundamental dominant weights accordingly (that is @w; = w,, fori =1,...,n).
oo -o——eo o—o - —o—9
1 2 n—1 n 1 2 n—1 n
A, By
n—1
o —o - —06—9 o—o— -
1 2 n—1 n 1 2 n—2 n
Cy Dy,

Figure 1.1: Dynkin diagrams of classical root systems

2 Alcove geometry and the affine Weyl group

The affine Weyl group (to be defined below) is a subgroup of the group AGL(Xgr) = Xg % GL(XRg) of
invertible affine linear transformations of Xg. In order to distinguish elements of X from elements of
the translation subgroup of AGL(Xg), we write the canonical embedding Xg — AGL(XR) as z — t,.
The standard action of AGL(Xg) on Xp is given by

(tz9)(y) = g(y) + =
for z,y € Xg and g € GL(XR).

10



2. Alcove geometry and the affine Weyl group

[ J
S~ @—@ N
®
[ J
[ J
~ @—@ N

° °
1 3 5 6 1 3 5 6 7
Eg 2 E7
° ° °
1 3 4 5 6 7 8
Eg
° ——e ° —=—0
1 2 3 4 1 2
Fy Go

Figure 1.2: Dynkin diagrams of exceptional root systems

type A, B, Cn D, E¢ | Er | Eg | Fu | Go
h n+1 2n 2n 2n — 2 12 18 30 12 6

Figure 1.3: Coxeter numbers of irreducible root systems

Definition 2.1. The affine Weyl group of ® is W,g := Z® x Wy, and the extended affine Weyl group
of ®is Weyp = X X WﬁnE]

We can restrict the standard action of AGL(Xg) on Xg to an action of Wey that preserves the
weight lattice X C Xg. Analogously, the action of W,g on Xy preserves the root lattice Z& C Xg.
One easily verifies that the induced action of W,g on X/Z® is trivial, that W,g is a normal subgroup
of Wext and that Wy /Wag = X/ZD.

For 8 € ®* and m € Z, consider the affine reflection sg,, = t;,zs5 with

sgm(x) = sp(x) +mpf =z — ((,8") —m) - B
for x € Xg. The set of fixed points of sg,, in X is the hyperplane
Hpm = {2 € Xr | (2,8") = m};
we call Hy = Hg,, the reflection hyperplane of s = sg p,.
Definition 2.2. An alcove is a connected component of Xg \ (Ug,, Hgm)-

The action of Wey (and of Wyg) on Xg permutes the reflection hyperplanes, so it also permutes
the alcoves. Every reflection hyperplane Hg ,, divides X into two half spaces

Ham ={zr € Xp | (CE,,BV) >m} and Hgm ={zc Xg | (:U,BV) < m}

!Some autors define the affine Weyl group as the semidirect product of Wa, with the coroot lattice (rather than the
root lattice). The reader should note that this is the case in the book [Hum90], which we use as a reference here.

11



Chapter I. Foundations

with Xg \ Hgm = H;%Lm UH Bam> and every alcove is contained in one of these half spaces. We say
that two alcoves A, A" C Xg are separated by Hpg,, if they do not belong to the same half space with
respect to Hg,,. Furthermore, we call A and A" adjacent if they are separated by a unique reflection
hyperplane, which is then called a wall of A.

For a fixed alcove A C Xp and B € &1, we set

ng =ng(A) =max{m e Z|AC H+m},

+ - Y 3
so that A ¢ Hy ., and therefore A C Hg, .. As H, N0 Hj

ng+1 18 convex for all 3 € oF, it
follows that

A= H;fnﬁﬁH/;nBH ={zeXp|ns<(z,8Y) <ng+1forall e @t}
Bedt

Let X = {z € Xg | (v,a") >0 for all @ € *} be the dominant Weyl chamber. As

Xg\ (U&mHﬁ,m) CXg\ (U5H5=0) = |_| w(Xg),

weWgp

every alcove is contained in a unique Weyl chamber w(XI?g ) with w € Wg,. The alcoves that are
contained in the dominant Weyl chamber are called dominant alcoves; an alcove A C Xy is dominant
if and only if ng(A4) > 0 for all 8 € ®*. Note that a hyperplane Hg,, separates two alcoves A and A’
if and only if ng(A) < m < ng(A’) or ng(A’) < m < ng(A). In particular, we have m > 0 for every
hyperplane Hg ,, separating two dominant alcoves.

Example 2.3. The set Agpng = {r € Xg | 0 < (z,8Y) < 1for all 3 € ®*} is an alcove, called the
fundamental alcove. We have ng(Agpna) = 0 for all g € T, and Agypg is the unique dominant alcove
whose closure contains 0. Note that o)/ is the highest root in the dual root system ®¥, and that, for
every positive root 3 € ®T, there exists a simple root a € II with oV < 8Y. Then, for all z € Xy, we
have (z,a") < (z,8Y) < (z,q)), and it follows that

Apma = {r € Xg | 0 < (z,a") for all @ € IT and (z,qy) < 1}.
Definition 2.4. We call S = {s, | @ € II} U {sq,,1} the set of simple reflections in W,g.

In view of Example S is the set of reflections in the hyperplanes bounding Afng. We now
recall some important results from Chapter 4 in [Hum90]:

Theorem 2.5. (1) The action of Wag on Xgr permutes the set of alcoves simply transitively.
(2) For every alcove A C Xg, the closure A is a fundamental domain for the action of Wag on Xg.
(3) (Wag, S) is a Coxeter system.

Example 2.6. Let ® be of type A,, and fix a numbering II = {a1,...,a,} of the simple roots, in
accordance with the Dynkin diagram in Figure Denote by w; = w,, and s; = s,, the fundamental

dominant weight and the simple reflection corresponding to «;, for i = 1,...,n. Fori,j € {1,...,n}
with ¢ # j, we have
a+o; if |i—j] =1,
si(a) =¢ .
o otherwise ,

12



2. Alcove geometry and the affine Weyl group

and it follows that s;5;8; = S4,(a;) = Ss;(a;) = 85585 When li—j| =1, and s;s; = s;s; otherwise. Now
let us write sg = s4,,1 and note that ay, = oy + ... + o, = w1 + w,. Using this observation, it is
straightforward to see that sgs; = s;50 for 1 < ¢ < n and that sgs1s9 = s15081 and s¢SpSo = SnS0Sn-
We conclude that the Coxeter system (W,g,.S) has the Coxeter diagram given in Figure

Figure 2.1: The Coxeter diagram of (Wag, S) for @ of type A,

Let us write £: Wag — Z>q for the length function with respect to S. (Recall that ¢(w) is the
minimal length of an expression w = s1--- 8, with s1,...,8, € S. Such an expression of minimal
length is also called a reduced expression.) As for any Coxeter group, the map w — (—l)z(“’) is a group
homomorphism, called the sign representation and denoted by sign: Wog — {1, —1}. In particular,
we have ¢(xs) € {¢(x) —1,4(z) 4+ 1} for all z € Wog and s € S. For w € Weyt, we denote by L£(w) the
set of reflection hyperplanes separating Agynq and w(Agg). By Section 4.5 in [Hum90], the length
function is also given by ¢(w) = |L(w)| for w € Wag, so we can extend it to a function £: Wex — Z>o
by setting

f(w) = |£(w)

for w € Wexs. An element w € Wey satisfies £(w) = 0 if and only if w(Apmd) = Afund, S0 we have
Q== Stabyw.,, (Afund) = {w € Wext | £(w) = 0}.

As Wg acts simply transitively on the set of alcoves, there is a natural decomposition Weyy = Wag X €2,
and it follows that Q = Wy /Wag = X/Z® is finite and abelian. We write x — w, for the canonical
epimorphism Weyy — 2 with kernel Weg.

Remark 2.7. Note that for w € W,g, the alcove w(Agnq) is adjacent to Agyng if and only if
1= |L(w)] = l(w),

or equivalently, if w € S is a simple reflection. As W,g acts transitively on the set of alcoves, this
implies that an alcove A C Xp is adjacent to Agy,g if and only if A = s(Apyng) for some s € S, and
that the walls of Agynq are precisely the hyperplanes {Hq | o € II} U {Hq, 1} corresponding to the
simple reflections. The action of Q on Xg permutes the walls of Agng because € stabilizes Agng;

therefore the action of 2 on Wyog by conjugation permutes the set of simple reflections.
Next we study the set of elements of Wyt (or Wag) that send Agyng to a dominant alcove.

Definition 2.8. We write Wt := {w € Wext | w(Apuna) is dominant} and W;‘ = Wt N Wag.

ex X

Remark 2.9. As () stabilizes Agng, we have Wf(t = W;EFQ.

€

Lemma 2.10. Let w € Wgy, and © € Wiy, Then L(wz) = L(w) Uw(L(z)) and {(wz) = L(w) + {(z).

2The Cozeter diagram of a Coxeter system (W, S) has vertices labeled by S. Two simple reflections s,¢ € S are joined

by an edge if s and ¢ do not commute, and the edge is labeled by the order of st if that order is greater than 3.

13



Chapter I. Foundations

Proof. As Agng and w(Agunq) both contain 0, so does every hyperplane separating Agung and w(Agung),
and we conclude that £L(w) C {Hgo | B € ®*}. Furthermore, we have £(z) C {Hg,, | B € ®T,m > 0}
because Agna and z(Apnq) are dominant, hence w(L(z)) C {Hgm | B € ®T,m # 0} and L(w) is
disjoint from w(ﬁ(m)) For any hyperplane H € L(wx), the half space with respect to H that
contains the alcove w(Agng) cannot contain both Agynq and wx(Agng), so either H separates Aging
and w(Agna) or H separates w(Agpna) and wa(Agnd). As w(L(z)) is the set of hyperplanes separating
the alcoves w(Afna) and wz(Afng), we conclude that L(wz) C L(w) Uw(L(z)). Now let H € L(w).
By the disjointness of £(w) and w(L(x)), the alcoves w(Agna) and wa(Agma) belong to the same half
space with respect to H, and it follows that H € L(wz). Similarly, if H € £(z) then the alcoves Agina
and w(Aging) belong to the same half space with respect to w(H), and it follows that w(H) € L(wz).
We conclude that £(wz) = L(w) Uw(L(z)), and the second claim is immediate. O

Corollary 2.11. For all w € Weyy, the coset Wapw has a unique element of minimal length. Further-
more, we have
W-‘r

ot = {w € Wext | w has minimal length in Weaw}.

Proof. As Wgy, acts simply transitively on the set of Weyl chambers, every coset Wx,w with w € Wegt

contains a unique element of W:t.. Now the claim is immediate from Lemma m ]

ext*

The next two results will be important for proofs by induction on the length of an element w € W;f
in the following sections.

Lemma 2.12. Let x € W;Ef and let © = s1--- 8, be a reduced expression. Then s1---s; € W;f for
1<i<m and s1 = Sq,.1-

Proof. We prove the first claim for ¢ = m — 1, the general case then follows by descending induction.
Let us write &’ = s1 -+ 8,1, so that x = 2’s,, and £(z’) = m — 1. For w € Wy, with £(wz’) < £(a),
we have

l(wx) = l(wr'sy) < lwx') +1<l(z")+1=m={(z),

and Corollary forces w = e. Hence 2’ is the unique element of minimal length in the coset Wg,2/,
and therefore 2’/ € W;gf, again by Corollary The second claim follows from the first because sq, 1
is the only simple reflection that does not belong to Wgy,. O

Corollary 2.13. For z € Wi and s € S such that {(zs) < {(z), we have s € W .

Proof. Recall that ¢(xs) € {{(z) — 1,4(x) + 1} for all z € Wog and s € S, so the assumption implies
that ¢(xs) = £(z) — 1. Hence, if xs = $1--- s, is a reduced expression then so is x = s1 - - $ps, and
the claim follows from Lemma 2.121 O

For applications in representation theory, two partial orders, one on Wog and the other on the
set of alcoves, play an important role. The first one is the usual Bruhat order < on W,g, that can
be defined as the reflexive and transitive closure of the relation that is given by x < y if {(z) < £(y)
and y = sz, for a reflection s € W,g. Note that we could equally well ask that y = xs, because the
conjugate of a reflection is a reflection. The linkage order 1 on the set of alcoves is the reflexive and
transitive closure of the relation that is given by A 1 A’ if there exists a reflection s € W, such that
ACH;, A CH} and A’ = s(A). These partial orders are equivalent on the set of dominant alcoves,
in the following sense:
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3. Algebraic groups and quantum groups

Theorem 2.14. For xz,y € W;E, we have x <y if and only if *(Apuna) T Y(Afund)-

The proof of the theorem, based on results of J. Wang [Wan87|, is postponed to Section
where we will study the alcove geometry associated with W,g in more detail.

3 Algebraic groups and quantum groups

The root system @ is at the heart of the structure of two kinds of Lie theoretic objects whose finite-
dimensional simple modules are canonically indexed by X*: simple algebraic groups (over a field
of positive characteristic) and quantum groups (at a root of unity). The representation theory of
quantum groups parallels that of algebraic groups to a large extent, so we will often treat the two
cases simultaneously. When a distinction becomes necessary, we refer to the representation theory of
the algebraic group as the modular case and to the representation theory of the quantum group as
the quantum case.

The modular case

We follow the notational conventions from Section IL.1 in [Jan03]. Let Gz be a split simply-connected
simple algebraic group scheme over Z with split maximal torus Ty, such that the root system of Gy
with respect to Ty is isomorphic to ®. For every root o € ®, there is a root subgroup U, 7 of Gz and
a root homomorphism zo: Z — U,z (where by abuse of notation, we write Z for the additive group
scheme over Z), and the latter is unique up to a sign change. The positive system ®* C ® determines
a unipotent subgroup UZ = [loco+ Uaz and a Borel subgroup B = U%’ x Tyz. Analogously, the
negative roots —®* determine a Borel subgroup Bz = Uy x Tz. We fix an algebraically closed field
k of characteristic £ > 0 and denote by G = Gy the simply-connected simple algebraic group scheme
over k corresponding to Gy, with maximal torus T = T, Borel subgroup B = By with unipotent
radical U = Uy, and root subgroups Ug for 3 € ®.

The quantum case

The term quantum group is broadly used to refer to a class of Hopf algebras that are obtained by
deforming the universal enveloping algebra of a Lie algebra over the field of rational functions Q(q).
The quantum groups that we will be interested in admit an integral version over the ring Z[q, ¢~!]
of Laurent polynomials over the integers (due to G. Lusztig). For any ring R and unit { € R*,
there is a unique ring homomorphism Z[q,¢~!] — R with ¢ — ¢, and we can extend scalars along
this homomorphism to obtain a specialization of the quantum group at the parameter {. The most
interesting cases arise when either R has positive characteristic or ( is a root of unity. In the first
case (and when ¢ = 1), one essentially recovers the distribution algebra of a simply-connected simple
algebraic group. When ¢ € C* is a primitive ¢-th root of unity (for some ¢ > 0) and R = Q(¢) then
one obtains a Hopf algebra whose representation theory is very similar to that of the corresponding
algebraic group ‘in characteristic £’. In the discussion below, we closely follow Chapter II.H in [Jan03].
Suppose that the short roots a € ® satisfy (o, ) = 2, so that dg := (%—ﬂ) € {1,2,3} and

AB)=(\BY)-dsel
for all A € X and 3 € ®. Furthermore, let c5, = (8,a"), and write ¢, = ¢% € Q(q), for a, 8 € IL
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Chapter I. Foundations

The quantum integer associated with m € Z~¢ and ¢ is

_ 4 — 4"

[m]a 1
do — qa

and we can define quantum factorials by [m],! = [m]a - [m — 1]4! and [0], = 1.

Now let g be the complex simple Lie algebra with root system ®. The quantum group U,(g)
associated with g is the Q(q)-algebra with generators E,, F,, K, and K !, for a € II, subject to the
relations

K,K;'=1=K_'K,, K,Kp = KgK,,
KaEﬁK;1 = q(a,ﬁ) - Eg, KaFﬁK071 _ q—(a,ﬁ) . Fs,
Ko = Kq'

th_qgl ’

>, (-1 BYERED =0,
itj=l—cga

> 0 EORED -0
i+j=1—cg,a

E Fg — FgFEy = 048 -

for o, B € II, where d,4 denotes the Kronecker delta and

. E
0 _ Lo
Fa = [l @ = !

are the quantum divided powers. There is a Hopf algebra structure on Ugy(g) with comultiplication A,

antipode o and counit € defined on the generators by

A(E,) =E,®1+ K, ® E,, 0(Ey) = —K,'E,, e(Ey) =0,
(3.1) A(F,)=F, @K' +1® F,, 0(Fa) = —FoKa, e(Fa) =0,
A(K,) = Ko @ K, o(Ky) = K1, €(Ky) =1.

The Lusztig integral form of Uy(g) is the Z[q, ¢~ !]-subalgebra UqZ(g) of Uy(g) that is generated by the
elements K! along with the quantum divided powers defined above for a € I and i > 0. By taking
commutators of suitable divided powers, one sees that UqZ (g) contains the elements

<Ka;m> ﬁ Kaqgnfzﬁrl o K;1q&m+if1
i=1 qa - qC;Z

A _
for all « € II, m € Z and k € Z>¢. We write Ug(g) for the Q(g)-subalgebra of U,(g) generated by the
elements K1 and UqZ’O(g) for the Z[q, ¢~ ']-subalgebra of UqZ(g) generated by the elements KI! and
(Kf;;m), for a € II, m € Z and k € Z>.

Let ¢ > 1 be an odd integer, and further assume that ¢ is not divisible by 3 if ® is of type Go.
We fix a primitive ¢-th root of unity ¢ € C and set k = C. (One reason for the assumptions on ¢

is to ensure that (% is a primitive /-th root of unity for all & € II.) Then there is a unique ring
homomorphism Z[gq, ¢~ !] — k with ¢ — ¢, and we define

Ué(g) = UqZ(g) ®Z[q7q*1} k
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to be the specialization of UqZ(g) along this homomorphism. In Ué (g), the images of the ¢-th powers
of the generators K, are central. We will only be interested in ‘type 1’ representations where these
central elements act by the scalar 1, so we define

Ue(g) =Ulg)/(KL®@1—-1®@1|acTl).

The quantum group U¢(g) inherits a Hopf algebra structure from Uy,(g), and by abuse of notation, we
denote the images of the generators of UqZ(g) in U(g) or Uc¢(g) by the same symbols. We define two
subalgebras Ug(g) and U, (g) of Uc(g) by

UL(9) = (Ko, (") @ € m € Z,k>0)  and U (9) = (U2(g), F" | a € 1L,i > 0).

These subalgebras will later play roles similar to those that the maximal torus T and the Borel
subgroup B play in the modular case.

4 Representation categories

Throughout this thesis, we will only consider finite-dimensional representations, so whenever we talk
about modules over a group scheme or an algebra, they are implicitly assumed to be finite-dimensional.

In the modular case, we write Rep(H) for the category of (finite-dimensional) modules over a
k-group scheme H, in the sense of Section 1.2.7 in [Jan03]. By definition of G and T, there is an
isomorphism between the weight lattice X and the character group X (T) of T (i.e. the group of k-
group scheme homomorphisms from T to the multiplicative group scheme). As T is a diagonalizable
group scheme, every T-module M admits a weight space decomposition

M:EBMA.

AeX

As B = U x T, every weight A € X = X (T) gives rise to a one-dimensional B-module k,, where T
acts via A and U acts trivially.

In many cases, it will be useful to replace G-modules by modules over the distribution algebra of
G, which we will define next. By Section 1.2.3 in [Jan03], the group scheme structure of G gives rise
to a Hopf algebra structure on the coordinate algebra k|G| of G, with counit e : k[G] — k, comulti-
plication Ag: k[G] — k[G] ® k|G| and antipode og : k|G] — k[G] coming from the neutral element,
the multiplication morphism and the inversion morphism of G, respectively. The augmentation ideal
of k[G] is Ig = ker(eg), and we define the distribution algebra of G as

Dist(G) == {¥ € k[G]* | ¥(I&) = 0 for some n > 0},

with multiplication given by ¥ - ¢ = (J ® ¥') o Ag, for ¥, € Dist(G), and neutral element eg;
see Section 1.7.7 in [Jan03]. One can show that the image of Dist(G) C k[G|* under the dual of the
multiplication map k|G| ® k[G] — k[G] is contained in the naturally embedded subspace

Dist(G) ® Dist(G) C k[G]* ® k[G]* C (k]G] ® k[G])";

thus the Hopf algebra structure on k[G] gives rise to a Hopf algebra structure on Dist(G), with counit,
comultiplication and antipode denoted by €, A and o, respectively. Every G-module M is naturally a
k[G]-comodule, and the comodule map Ay;: M — M ® k[G] defines a Dist(G)-module structure on
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M via 9@m — (idpr@19)oAps(m) for 9 € Dist(G) and m € M; see Sections 1.2.8 and 1.7.11 in [Jan03].
Under our assumptions on G, the resulting functor from Rep(G) to the category of finite-dimensional
Dist(G)-modules is an equivalence of categories by Section I1.1.20 in [Jan03].

Let us give a more explicit description of Dist(G), following Sections I1.1.11 and I1.1.12 in [Jan03].
The root homomorphisms xg: Z — Ug 7, for B € @, give rise to a Chevalley basis

{Xp,Ho | B € P, €I}

of the complex simple Lie algebra g with root system &, and the divided powers

X7 H, (Hy,—1)---(H, —
Xg, = -l and H, .= ( ) ( m)

) ,',,! )

m)!

generate a Z-subalgebra Uyz(g) of the universal enveloping algebra U(g) which admits a PBW-type
basis, consisting of products of the form

H X,B,T‘B ' H Ha,ma : H XB,TB

pBe—d+ acll Bedt

with rg,my € Z>q for 8 € ® and « € II, for any fixed ordering of the roots in the product. There is
a canonical Hopf algebra structure on U(g), with comultiplication, counit and antipode given by

=1+ 1®, z—0 and T -

for all z € g, and one can show that Uz(g) is a Z-Hopf subalgebra. Furthermore, there are isomorphisms
of Hopf algebras

Dist(Gz) = Uz(g) and Dist(G) = Uz(g) @ k = Uk(g),

over Z and k, respectively. We write X, instead of X3, ® 1 and H,, instead of H,,, ® 1 for the
images of the divided powers in Uk(g).

In the quantum case, the role of the maximal torus T is played by the subalgebra U g(g), and the
role of the Borel subgroup B is played by the subalgebra UC_ (g). For every weight A € X, there is

a Q(g)-algebra homomorphism e ,: Ug(g) — Q(q) with K, — ¢M)

for all a € II, which restricts
to a Z[q, ¢~ 1]-algebra homomorphism £%: UqZ’O(g) — Z[q,q"']. By specialization of q at ¢, we obtain

a k-algebra homomorphism ¢y : Ug(g) — k. We say that a Ug(g)—module M has a weight space

M =P M,,

AeX

decomposition if

where the weight spaces are defined by
My:={meM|u-m=ex(u) -m forall uc Ug(g)}.

By Theorem 9.12 in [AKP91], every finite-dimensional U, (g)-module has a weight space decomposition.
We write Rep(Uc(g)) for the category of finite-dimensional Uc(g)-modules and Rep(Ug (g)) for the
category of finite-dimensional Ug (g)-modules that have a weight space decomposition. As in the
modular case, a weight A € X gives rise to a one-dimensional U (g)-module kj, where Ug (g) acts
via the homomorphism ¢, and all divided powers act by zero. Keeping these analogies in mind, we

introduce a notation that will allow as to treat the modular case and the quantum case simultaneously.
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4. Representation categories

Notation. In the quantum case, we write G = U¢(g), B = U, (g) and T = Ug(g).

From now on, we will not distinguish between the modular case and the quantum case any more,
except when there are significant differences. In both cases, the objects of the category Rep(G) will be
called G-modules, and we write Homg (M, N) and Extig (M, N) for the space of homomorphisms and
the Ext-groups between G-modules M and N, respectively. A G-module is called completely reducible
if it is isomorphic to a direct sum of simple G-modules, and we define the socle socg M to be the largest
completely reducible G-submodule of M. Similarly, we define the radical radg M to be the smallest
G-submodule of M such that M /radgM is completely reducible, and we call headg M = M /radg M
the head of M. We say that a G-module is uniserial if its submodules are totally ordered by inclusion,
or equivalently, if it has a unique composition series. Recall that every G-module M admits a weight

M:@M,\;

AeX
we call A € X a weight of M if My # 0. The character of M is defined as the element

space decomposition

ch M =" dim(M,) - &
reXx

of the group ring Z[X] (with a basis of formal exponentials {e* | A\ € X}, where e - e# = eM* for
A, i € X). The standard action of Wy, on X induces an action of W, on Z[X] by ring automorphisms,
and it turns out that the characters of all G-modules belong to the ring Z[X]W"fn of Wg,-fixed points
in Z[X]. For G-modules M and N, the tensor product M ® N (over k) has a canonical G-module
structure, defined in the usual way in the modular case and via the comultiplication of Uc(g) in
the quantum case. This endows Rep(G) with the structure of a braided monoidal category, i.e. a
category with a tensor product bifunctor and a natural braiding isomorphism M ® N = N ® M that
commutes with the associativity isomorphisms between triple tensor products in a suitable sense. In
the modular case, the braiding is the standard one and Rep(G) is symmetric (i.e. the square of the
braiding is the identity); in the quantum case, it is constructed in Chapter 32 in [Lusl0]. The dual
space M* = Homy (M, k) of a G-module M also carries a natural G-module structure, defined in the
usual way in the modular case and via the antipode of U¢(g) in the quantum case. Taking duals is a
contravariant autoequivalence of Rep(G), and we have ch M* = 3, dim(M)) - e~ . The natural
evaluation map and coevaluation map

evy: M@ M* — k and coevy ik — M @ M

are homomorphisms of G-modules, where k denotes the trivial G-module. For G-modules N and N,
there are natural isomorphisms (M @ N)* =2 N*®@ M* and Homg(N @ M, N') = Homg (N, N’ ® M*).
As explained in Section I1.2.13 in [Jan03| (for the modular case), there is a second duality on Rep(G)
which we call contravariant duality and denote by M +— M7. On the level of characters, we have
chM = ch M7, and we call a G-module M contravariantly self-dual if M = M7. The quantum
analogue of this duality is constructed in Section 9.20 in [Jan96] for the quantum group U,(g) (not at
a root of unity); one can check that a similar construction works for Us(g). For G-modules M and
N, there are natural isomorphisms (M ® N)” =2 N”™ @ M" and Homg (M, N) = Homg (N7, M7).

Next we recall the definitions of some important G-modules, following Chapters 1.2 and II.H in
[Jan03]. The restriction functor

res$ : Rep(G) — Rep(B)
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Chapter I. Foundations

has a right adjoint induction functor
ind§ : Rep(B) — Rep(G),

and the induction of a simple B-module k) is non-zero if and only if X is dominant. For A € X, we
call
V(A) = ind§ (ky)

the costandard module (or induced module) of highest weight A. The terminology highest weight X here
refers to the fact that the weight spaces V(\), are zero unless i < A, and that dim V(\)y = 1. The
characters x(\) := ch V() of the costandard modules are given by Weyl’s character formula, that is

Zwewﬁn det(w) - e?A+7)
Zwewﬁn det(w) - ewr ’

and they form a basis of Z[X]"fn. In fact, the formula above can be used to define x()\) € Z[X]Wsn
for any A € X (and not just for dominant weights) and one easily checks that y(w-\) = det(w) - x(\)
for all A € X and w € Wgy, and that x(\) = 0 if (\,a") = —1 for some a € II. The costandard
module V(A) has a unique simple submodule

X(A) =

L(\) :==socgV(N),

and the G-modules L(\) with A € X form a set of representatives for the isomorphism classes of
simple objects in Rep(G); see Sections 11.2.3-6 and II.LH.11 in [Jan03]. Every G-module M has a
finite composition series, and we write [M : L())] for the multiplicity of the simple module L(\) as
a composition factor of M. The existence of finite composition series also implies that Rep(G) is a
Krull-Schmidt category (in the sense of Appendix . For a G-module M and an indecomposable
G-module N, we write [M : Nlg for the multiplicity of N in a Krull-Schmidt decomposition of M.
The dual of a simple G-module is simple, and as ch L(A)* = >_ . x dim(L(A),) - ™" and —woA is the
unique dominant weight in the Wg,-orbit of —\, for all A € Xt we have L(\)* = L(—wA). Similarly,
we see that L(A\)™ = L()), for all A\ € X*+. The standard module (or Weyl module) of highest weight
A is defined as
A(N) = V(—woA)* = V(\);

it has a unique maximal submodule radgA(A) and A(X)/radgA(N) = L(N).

Remark 4.1. The standard modules and costandard modules satisfy the following important Ext-
vanishing property:

(4.1) EX’GE(A()\),V(M)) ~ {k ifi=0and A = p,

0 otherwise.

More generally, if M is a G-module and A € X+ such that Extl (M, V()\)) = 0 for some ¢ > 0 then M
has a weight p with 4 > X\ and ht(x — A) > 4. In the modular case, this is derived as a consequence of
Kempf’s vanishing theorem; see Propositions 11.4.5 and 11.4.13 in [Jan03|]. The quantum analogue of
Kempf’s vanishing theorem was proven (in its most general form) in [RHO3b], and then follows
as in the modular case.

Using the preceding remark about Ext-vanishing, we can prove the following well-known universal
property of Weyl modules:
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4. Representation categories

Lemma 4.2. Let A € X and let M be a G-module with headgM = L(\) and such that X\ is mazimal
among the weights of M. Then there is a surjective homomorphism A(X) — M.

Proof. First observe that the maximality of A among the weights of M implies that
Extg (A(N), radg M) = Extg ((radgM)™, V() =0,
by Remark Thus, the short exact sequence
0 —radgM — M — L(\) — 0

gives rise to a short exact sequence
0 — Homg (A(A),radgM) — Homg (A(X), M) — Homg (A(N), L(\)) — 0.

It follows that there exists a homomorphism ¢: A(X) — M such that the composition of ¢ with the
epimorphism M — L(A) with kernel radg M is non-zero. In particular, the image of ¢ is not contained
in the unique maximal submodule radgM of M, and we conclude that ¢ is surjective. O

Let us conclude this section with some remarks about truncation to Levi subgroups.

Remark 4.3. Suppose that we are in the modular case. For a subset I C II, we consider the root
system ®; = ZI N ®, and write Ly for the derived subgroup of the Levi subgroup (T, Ug | 8 € ®r)
of G corresponding to I. The weight lattice of L; can be identified with X; = €p acl Lwa, and for
A€ X, we call

A= Z(A, aY) - w,

acl

the truncation of X to X;. For p € Xy N X™, let us write L;(u) and V(i) for the simple L;-module
and the costandard Lj-module of highest weight u, respectively. The truncation of a G-module M to
L; at a weight A € X is defined as the direct sum of weight spaces

TeY M = @ My_,.
’YEZ':I)I

By Sections I1.2.10 and I1.2.11 in [Jan03], we have
Li(A\) 2 Tr)L(A)  and V(A1) 2 TrpV(N)

forall A € X*. For \, u € X such that A\—p € Z®y, it follows that [V(X\) : L(u)] = [V1(Ar) @ Lr(pr)]-
Furthermore, we have

Li(Ar) @ Li(pur) = T} L(A) @ Tef L) = Tey ™ (L(A) ® L))

for all \,u € X™T; in particular, Ly(A\;) ® L;(us) is completely reducible whenever L(\) ® L(u) is
completely reducible. (This observation will be important in Chapter ) Similar results apply in the
quantum case (see for instance Section 4.2 in [GGNISE|), but they will not be needed here.
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Chapter I. Foundations

5 Good filtrations and tilting modules

A good filtration of a G-module M is a sequence of submodules
O=MyCM C---CM, =M

such that either M; = M; 1 or M;/M;_1 = V();) for some \; € X, for i = 1,...,r. The following
proposition is sometimes referred to as Donkin’s cohomological criterion for the existence of good
filtrations. See Proposition 4.16 in [Jan03] for a proof in the modular case, the quantum case is
analogous.

Proposition 5.1. For a G-module M, the following are equivalent:

(1) M has a good filtration;

(2) Extg(A(

AX),M) =0 for all X € Xt and i > 0;
(3) Extg(AN),M) =0 forall X € X*.
.. C

If0=M, C-- M, = M is a good filtration with M;/M;_1 =V (X\;) fori=1,...,r then

I{i | \i = A}| = dim Homg (A(X), M)
foralle X+,

The last statement of the proposition tells us that the multiplicity of a costandard module in a
good filtration is independent of the chosen filtration. For a G-module M admitting a good filtration
and for A € X, we write

[M : V(N)]v = dim Homg (A(X), M)

for this multiplicity. The direct sum M ® N of two G-modules M and N admits a good filtration if
and only if M and N do, since
Extg (A(A), M & N) 2 Extg (A()), M) @ Extg (A(X), N)

for all A € X* and @ > 0. As is pointed out in Remark 4 after Proposition 11.4.16 in [Jan03], a
G-module M admitting a good filtration always admits a good filtration 0 C My C --- C M, = M
with quotients M;/M;_1 = V(\;), such that ¢ < j whenever \; < ;.

A key property of good filtrations is that they are preserved under tensor products. In the modular
case, this was proven in type A, by J. Wang [Wan82| and, for almost all primes and root systems,
by S. Donkin [Don85]. A uniform proof for all primes and root systems was given by O. Mathieu in
[Mat90] using Frobenius splitting; the quantum analogue is treated in [Par94] using crystal bases.

Theorem 5.2. If M and N are G-modules admitting a good filtration then so is M ® N.
A Weyl filtration of a G-module M is a sequence of submodules
0=MyC M C--CMy =M

such that either M; = M;_1 or M;/M; 1 = A()\;) for some \; € X T, fori = 1,...,7. As the dual
(or the contravariant dual) of a standard module is a costandard module, we see that M has a Weyl
filtration if and only if M* (or M7) has a good filtration. By taking duals, it is straightforward to
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5. Good filtrations and tilting modules

obtain analogues of Proposition and Theorem for modules that admit a Weyl filtration. We
refrain from spelling this out in detail and only mention that, for a G-module M admitting a Weyl
filtration 0 = My C --- C M, = M with M;/M;_1 = A()\;), we have

[M : A(N)]a = dimHomg (M, V(X)) = [{i | Ai = A}

for A € XT. Here, one may assume that i < j whenever \; > \;

A G-module is called a tilting module if it admits a good filtration and a Weyl filtration, and we
write Tilt(G) for the full subcategory of tilting modules in Rep(G). By the results about G-modules
admitting a good filtration, the category Tilt(G) is closed under forming direct sums and tensor
products, and under taking direct summands. In particular, every tilting module is isomorphic to a
direct sum of indecomposable tilting modules. As was first pointed out by C.M. Ringel [Rin91] and
S. Donkin [Don93|, the indecomposable tilting modules are classified by their highest weight in X .

Proposition 5.3. For every A\ € X, there exists a tilting module T(\), unique up to isomorphism,
with AimT'(\)y = 1 and dimT'(\), = 0 unless pn < . Every indecomposable tilting module is isomor-
phic to T(\) for some A € XT.

The characterization of the tilting module T'(\) in terms of its weight spaces implies that

and that
[T(A) : V()]v =0=[T'(A) : A(p)]a

unless ©1 < A. By the above discussion, a good filtration 0 = My C --- C M, = T'(\) of T(\) can
be chosen in such a way that M, /M,_; = V()\), so there exists an epimorphism T'(\) — V(\) whose
kernel has a good filtration. Similarly, we can find a Weyl filtration of 7'(\) that starts with A(\),
giving rise to a monomorphism A(A) — T'(A) whose cokernel has a Weyl filtration. Further weight
considerations show that T'(\)* = T'(—wpA) and T'(\)” = T'(A), and it follows that

[TV : V(e = [T(N) : Alw)la

for all p e XT.

The Ext-vanishing property implies that ExtiG(M ,N) =0, for all tilting modules M and N
and all ¢ > 0. Combining this observation with the fact that every simple G-module can be realized
as a subquotient of a tilting module, one can prove that the canonical functor from the bounded
homotopy category K°(Tilt(G)) of Tilt(G) to the bounded derived category D°(Rep(G)) of Rep(G)
is an equivalence of (triangulated monoidal) categories. This statement is well-known to experts in
the field; we refer to it as the tilting equivalence. It was proven (in a different context) in [BBMO04],
some variations of the result were certainly known earlier (see Lemma II1.2.1 in [Hap88|). We include
a sketch of a proof here, for the reader’s convenience. For some background on homotopy categories
and derived categories, see Appendix

Proposition 5.4. The canonical functor
T: K°(Tilt(G)) — D"(Rep(G))
s an equivalence of categories.
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Proof. For the sake of convenience, let us write K = K°(Tilt(G)) and D = D°(Rep(G)). The functor
T sends a complex of tilting modules to itself, and a homotopy class of chain maps to its equivalence
class in the derived category. By a standard result from category theory, it suffices to prove that ¥
is fully faithful and essentially surjectiveﬁ First let M and N be tilting G-modules and consider the
corresponding one-term complexes. For ¢ < 0, we have

Homp(M, Ni]) = 0 = Homy (M, Ni}),
and for ¢ > 0, we get
Homp(M, N[i]) = Extig (M, N) = 0 = Homy (M, N[i])
by the above discussion. Finally, we have
Homp(M, N) = Homg (M, N) = Homy (M, N),

so Homp (M, Ni]) = Homy (M, Ni]) for all i € Z, and the isomorphism is induced by ¥. For bounded
non-zero complexes M = (M,,d}) and N = (N,, dYY) of tilting modules, we can choose r € Z maximal
with the property that M, # 0. With

M == M_9—M_1—0—--) and M'=(+—=0—=>M —0—--),
there is a distinguished triangle
M — M" — M — M'[1]
(in both K and D). Applying the cohomological functors
Homy(—, N) and Homp(—, N)

yields a commutative diagram

Homy (M"[1], N) —— Homy(M'[1], N) —— Homy (M, N) ——— Homy(M", N) ——— Homy(M', N)

| | | |

Homp(M"[1], N) —— Homp(M'[1], N) —— Homp (M, N) ——— Homp(M", N) ———— Homp(M’, N)

with exact rows, and where the vertical arrows are induced by €. Now the five lemma implies that the
third vertical arrow is an isomorphism if all the other vertical arrows are isomorphisms, so we can use
induction on the number of non-zero terms in M to reduce to the case where M is a (possibly shifted)
one-term complex. Similarly, we can use induction on the number of non-zero terms in N to reduce
to the case where N is also a (shifted) one-term complex. In this case, we have already shown that ¥
induces isomorphisms between the Hom-spaces in K and D, so it follows that T is fully faithful.

It remains to show that T is essentially surjective, i.e. that every bounded complex M = (M,,d)
of G-modules is isomorphic to a bounded complex of tilting G-modules in D. If M fits into a
distinguished triangle

VA VI VN Vi

3This means that T induces bijections between the Hom-spaces in the categories K and D and that every object in D
is isomorphic to TX for some object X of K. See Theorem IV.4.1 in [ML9S].
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6. Linkage and translation

then M = cone(f), and using the fact that T preserves distinguished triangles, we can once again
reduce to the case where M is a one-term complex. As every short exact sequence in Rep(G) gives
rise to a distinguished triangle, we can further reduce to the case where M = L(\) is a simple G-
module, viewed as a complex with a single non-zero term in degree zero. Then the claim follows by
induction on the number of dominant weights below A: If there are no dominant weights below A then
L(X) = T(X), and the one-term complex with 7'()\) in degree zero certainly belongs to the essential
image of T. In general, we can write L(\) as a subquotient of T'(\), and all the other composition
factors of T'(\) are of the form L(u) with p < A, so the claim follows by induction. O

6 Linkage and translation
The (¢-dilated) dot action of the extended affine Weyl group Wey on Xg is defined by
tyw -z =w(x+p) + Ly —p,

for v € Xg, v € X and w € Wg,. The linkage principle describes the decomposition of Rep(QG)
into linkage classes that arise from this action, and the translation principle relates the different
linkage classes via translation functors. Before recalling these results, we need to introduce some more
notation, describing the alcove geometry with respect to the dot action.

The set of fixed points of a reflection s = sg ,,, with respect to the dot action is the affine hyperplane

Hf = Hém ={r e Xg|(xz+p BY)=1Im},

and the (-alcoves are the connected components of Xg \ Uz, Hé’m. A weight A € X is called /-
singular if it lies on at least one of the hyperplanes H g,m, and /-reqular if it lies in an f-alcove. Recall
that we write Hg,, for the hyperplane of fixed points of the affine reflection sg ,, with respect to the
standard action. We have

Hgym:{é-:c—p]er/g,m},

so the map A+ ¢ - A — p is a bijection between the set of alcoves (in the sense of Section [2)) and the
set of f-alcoves. Using this bijection, we can translate the results from Section [2] into results about
l-alcoves, and we generally use the notation which was introduced in Section [2] for f-alcoves as well.
For instance, we call

Crand =¥ Apund —p={2 € Xg |0 < (x+p,BY) < L for all B € &1}

the fundamental £-alcove; its closure is a fundamental domain for the dot action of Wy on Xg. In
order to distinguish between ¢-alcoves and alcoves, we usually label the former by the letter C' and
the latter by the letter A (as we did with Cgpg and Aggng). As in Section 2 an f-alcove C' C Xp is
determined by a collection of integers ng(C'), for 8 € ®*, such that

C={zeXp|ng(C) < (x+ppBY)<(ng(C)+1)-Lforall Bedt}
and we set d(C') = > 3np(C). For all A € X and B € ®F, we can choose ng()\) € Z such that
ng(A) - € < (A +p,8Y) < (ng(A) +1) - £,

and we set d(\) = > 5ng(A). The linkage order T4 on X is the reflexive and transitive closure of the
relation given by pu T¢ A if u < A and there exists a reflection s € Wog with A = s+ u. Using the
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bijection between alcoves and f-alcoves, the linkage order 1 from Section |2 induces a partial order 1y
on the set of f-alcoves. For f-alcoves C and Cy with C; 1, Cy and a weight A\ € C1, there is a unique
weight X € Wag - AN Co, and we have A 1, ).

Now we are ready to give the key results establishing the linkage principle; see Sections I11.6.13-20
in [Jan03| for the modular case. The quantum analogues were first established in [AKP91] under the
assumption that ¢ is an odd prime power, but this restriction was subsequently removed, as is pointed
out in [And94].

Proposition 6.1 (The strong linkage principle). If A\, u € Xt such that
V) : L) # 0
then 1y A
Corollary 6.2 (The weak linkage principle). If \,u € X+ such that
Extis (L), (1) #0
for some © > 0 then p € Wyg + A.
Proposition 6.3. If \,u € X+ and i > 0 such that
Extg (L(A), V(1) #0  or  Extg(V(N),V(n) #0
then p e A and i < d(X\) — d(p).

The strong linkage principle has an analogue for Weyl filtration multiplicities in indecomposable
tilting modules; see the remarks after Lemma II.E.3 in [Jan03].

Proposition 6.4. If A\, € X+ such that
T : Adu)]a £0
then p Tp A.
As an immediate consequence of Propositions [6.1] and [6.4] we obtain that
LO) = A(N) = V(A = T(N)

for all A € Cuna N X T,

For it € Ciuna N X, the linkage class Rep,(G) of w is the full subcategory of Rep(G) whose objects
are the G-modules all of whose composition factors are of the form L(x - p), for some x € W,g. We
call the linkage class Rep,,(G) (-regular if p € Cpuna, and £-singular if p € Ctund \ Crund. According
to Corollary every G-module M admits a decomposition

M = EB pr, M,
Neéfund nx

4This is a slightly weaker version of what is called the strong linkage principle in [Jan03]. The version that is given
there also takes into account the G-modules R®ind$ (ky), arising from the derived functors of ind§.
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where pr, M denotes the unique largest submodule of M that belongs to Rep M(G). Furthermore, there
cannot be any non-zero homomorphisms between G-modules that belong to different linkage classes,
so we obtain a decomposition
Rep(G)= @D  Rep,(G)
HECrHunaNX
with projection functors pr,: Rep(G) — Rep,(G). The linkage class Repy(G) containing the trivial
G-module L(0) = k is called the principal block of G, and we call

Repa.o(G) = €D Repy(G
AEQ-0

the extended principal block, where Q = Stabyy., (Crund) as in Section

Now fix A, ¢t € Cung N X and let v be the unique dominant weight in the Ws,-orbit of yr — A. The
translation functor from Rep,(G) to Rep,(G) is defined as

T} = pr,(L(v) ® =) : Repy(G) — Rep,,(G).

The results about translation functors that we list below can all be found in Chapter I1.7 in [Jan03]
for the modular case, the proofs in the quantum case are analogous.

First note that T/’\‘ is an exact functor. As —wgv is the unique dominant weight in the Wy,-orbit
of A — p and as L(—wyr) = L(v)*, the functor Tj is both left and right adjoint to T%}'. Furthermore,
we have

(TYM)" =T{M" and (T{M)* = T_zfoo)’fM*
for every G-module M in Rep,(G). In the remarks in Sections I1.7.6-7 in [Jan03], it is explained that
the simple module L(v) in the definition of T} can be replaced by any G-module of highest weight v,
such as V(v), A(v) or T(v), without changing T} (up to a natural isomorphism). In particular,
translation functors preserve the subcategories of modules with good filtrations or Weyl filtrations,
and the subcategory of tilting modules. On the level of characters, the action of translation functors
is described by the following proposition:

Proposition 6.5. Let M be a G-module in Repy(G) and write chM = > - az - x(x - A), for
certain a, € Z such that ay = 0 for all but finitely many x € Wag. Then

h(T4M) = > axe zy - ),

iUeWaff
where y runs over a system of representatives for Stabw,; (\)/(Stabyy,, (X) N Staby,, (1)).
As a consequence, we can determine the multiplicities in a good filtration of T{'V(z - X).

Proposition 6.6. Let © € Wag such that z - X € X Then T{'V(x - \) has a good filtration with
subquotients V(zw + ) for w € Staby,; () such that zw - p € X+, with each weight xw - pu appearing
precisely once.

In order to discuss the properties of translation functors in more detail, we need a refinement of the
notion of f-alcoves: A subset I C Xp is called an /-facet if there exist a decomposition & = @ar U q)f
and integers ng for § € T such that

F:{xeXR‘(m—l—p,ﬂv):ng%forﬁe(bg and ng - £ < (z+p,BY) < (ng+1)- L for B € O }.
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The upper closure of F' is defined as
F = {reXp|(@+pBY)=ng-LforBed®f andng £ < (x+p,8") < (ng+1) -£for B cdf}.

We will sometimes write & = ®f (F), ] = ®](F) and ng = ng(F), for 3 € ®*. Note that the
{-alcoves are precisely the ¢-facets F' with ‘Dar (F) = @. Every element © € Xg belongs to a unique
{-facet, which we denote by F.

The translation functor Tf is particularly well-behaved when A and u belong to the same facet.

Proposition 6.7. Suppose that F\ = F),. Then
T{: Repy(G) — Rep,(G)
1$ an equivalence of categories, with quasi-inverse Tﬁ\.

Under slightly weaker assumtions, it is still possible to describe the action of Tf\‘ on costandard
modules and on simple G-modules.

Proposition 6.8. Suppose that . € Fy and let + € Wg such that x - X € X+. Then

V(z-p) ifr-peXt,

0 otherwise

TfV(x-)\)%{

and R
L(x-p) ifx-p€ Fypy,

0 otherwise.

T{L(z - \) = {

We conclude this section with some results about translation from a wall, that is, about the
translation functor T/j when A\ € Chypg and Staby, (1) = {e, s} for some s € S. By Section 11.6.2
in [Jan03], we have Crng N X € X+, and Cpynqg N X is non-empty if and only if £ > h (the Coxeter
number of ®). Observe that for A € CppnaNX and # € W, we have -\ € X if and only if z € W;f.
Furthermore, if £ > h then there exists, for every s € S, a weight 15 € Cuna N X such that

Stabuw,q (1s) = {e, s};

see Section I1.6.3 in [Jan03]. The following result, describing the translation from a wall of a costandard
module, is taken from Proposition I1.7.19 in [Jan03].

Proposition 6.9. Suppose that A\ € Cyyna and Stabyy,, (1) = {e, s} for some s € S, and let x € Wag
withx - A€ XT andx - X< xs-\. Thenz-pu € X+ and Tj‘V(m - 1) 1s indecomposable, with simple
socle

soca (T:‘V(x cp)) = Lz - N).
Furthermore, there is a (non-split) short exact sequence
0— V(z-A) —TV(z-p) — V(zs-A) — 0.

As usual, there is an analogue of Proposition where costandard modules are replaced by stan-
dard modules; we leave the details to the reader. By Lemma I1.7.20 in [Jan03], the translation from
a wall of a simple G-module admits the following description:
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Proposition 6.10. Suppose that A € Crng and Staby, ., (1) = {e, s} for some s € S, and let x € Wag
withz - AN€ XT andx- X <xs-\. Thenz-p € X and TQL(:JJ - ) 1is indecomposable, with simple
head and socle

headg (le\L(x - 1)) = socg (T:L(a: p) = Lz - \).

Furthermore, we have
[T L(z-p): L{ws-\)] =1 and  [T)L(z-p): L(z - \)] = 2.
For any y € Wt with y # = and [Tli‘L(ac-u) : L(y - \)] #0, we have ys+ A Tpy - AT xs- .

Proof. Most of the statements of the proposition are proven in Lemma I1.7.20 in [Jan03]; it only
remains to show that y - A 1, s+ A for all y € W with [Tl;\L(x - ) = L(y - A)] # 0. This follows from
Proposition the strong linkage principle and the fact that T;‘L((L‘ - 1) embeds into le\V(x -p). O

Under the assumptions of Propositions and it is also shown in Proposition I1.7.19 in
[Jan03] that
dim Extg (L(zs-A),V(z-A)) =dim Extg (V(zs- ), V(z-N)) = 1.

In particular le\V(x - p) is the unique non-split extension of V(zs - A) by V(z - ). Furthermore, we
have the following result, which is very useful for the computation of composition multiplicities in
costandard modules (see Proposition I1.7.18 in [Jan03]).

Proposition 6.11. Suppose that A € Crung and let x,y € W;f and s € S such that y - X < ys - A.
If xs € W;f then
V(- A) ¢ Ly - V)] = [V(@s - A) : L(y - V)]

7 Good filtration dimension

The good filtration dimension of a G-module M is an invariant which was introduced by E.M. Fried-
lander and B.J. Parshall in order to study the cohomology of Lie algebras and algebraic groups [FP86].
Their results can easily be generalized to the quantum case.

Definition 7.1. The good filtration dimension of a G-module M is

gfd(M) := max {d | Ext& (A(u), M) # 0 for some p € X}
The Weyl filtration dimension of M is

wid(M) := max {d | Ext& (M, V(1)) # 0 for some p € Xt}

The good filtration dimension and Weyl filtration dimension are well-defined by the Ext-vanishing
property in Remark By Donkin’s cohomological criterion, a G-module M satisfies gfd(M) = 0
if and only if M has a good filtration. More generally, E.M. Friedlander and B.J. Parshall showed in
Proposition 3.4 in [FP86] that M satisfies gfd(M) < d if and only if there exists a coresolution

0—-M—My—---— My;—0,

where My, ..., My are G-modules admitting good filtrations. We call such a coresolution a costandard
coresolution. Similarly, we have wfd(M) < d if and only if there exists a resolution

0> Myg—---— My— M —0,
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where My, ..., Mg admit Weyl filtrations, and we call such a resolution a standard resolution. The
following lemma is also due to E.M. Friedlander and B.J. Parshall, see Proposition 3.4 in [FP86]. The
restrictions on the characteristic ¢ in [FP86] can be removed in view of [Mat90]. The third part of the
lemma will play an important role later, so we include a proof for the sake of completeness.

Lemma 7.2. Let M and M’ be G-modules. Then
gfd(M) = wid(M™) = wfd(M7),
gfd(M & M") = max{gfd(M), gfd(M")},
efd(M ® M') < gfd(M) + gfd(M").

Proof. The first and the second equality are straightforward from the definitions. Now let d = gfd(M)
and d’ = gfd(M"), and fix costandard coresolutions

0—-M-—My—-+—Myg—0 and 00— M — Mj—---— M) —0.

Note that the tensor product M; ® M]’ admits a good filtration for all 0 < i < dand 0 < j < d’
by Theorem Using the tensor product of complexes from Appendix we obtain a costandard
coresolution

O—>M®M/—>N0—>'-‘—)Nd+d/—>0

with N = @ M; @ M for k=0,...,d+d’, and it follows that gfd(M ® M') < d +d". O

i+j=k
Remark 7.3. Let A\, it € Cpyna N X and let M be a G-module in Repy(G). As T¥'M is a direct
summand of M ®T for some tilting module T', we have gfd (T{' M) < gfd(M) and wid(T{'M) < wid(M)

by Lemma

Next we discuss how the good filtration dimension and Weyl filtration dimension interact with
short exact sequences of G-modules.

Lemma 7.4. Consider a short exact sequence 0 - A — B — C — 0 of G-modules. We have
(1) gfd(A) < max{gfd(B),gfd(C) + 1} with equality if gfd(B) # gfd(C);

(2) efd(B

< max{gfd(A), gfd(C)} with equality if gfd(A) # gfd(C) + 1;
A)

(3) gfd(C) < max{gfd(A) — 1,gfd(B)} with equality if gfd(A) # gfd(B);

(4) wid(A) < max{wid(B), wfd(C) — 1} with equality if wid(B) # wfd(C);
(5) wid(B) < max{wfd(A), wfd(C)} with equality if wid(C) # wfd(A) + 1;
(6) wid(C) < max{wfd(B),wid(A) + 1} with equality if wid(A) # wid(B).

Proof. We only prove (1), the proofs of (2) and (3) are completely analogous and (4)-(6) follow by
taking duals. For 4 > 0 and x4 € X, the short exact sequence 0 —+ A — B — C' — 0 gives rise to an
exact sequence

Extg (A(p), B) = Extg (A(u),C) — Exté'l (A(w),A) — Exté'l (A(w),B) — Extd ! (A(p), C).

If i + 1 > max{gfd(B), gfd(C) + 1} then Exti (A(1),C) = 0 and Extg ' (A(u), B) =0 for all € X,
and we conclude that Extd*(A(u), A) = 0 for all u € X, hence

gfd(A) < max{gfd(B),gfd(C) + 1}.
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If gfd(B) < gfd(C) = d then Extd (A(u),C) # 0 for some u € X+, and as Extd (A(u), B) = 0, the
Ext-group Ext& (A(u), C) embeds into Exté“(A(,u) A). This implies that Exth(A(,u), A) # 0 and
therefore gfd(A) = d + 1. Analogously, if gfd(C) < gfd(B) =: d’ then Ext&(A(y), B) # 0 for some
weight 1 € X, and Ext& (A(u), A) surjects onto EXté(A(,U,) B) because Ext&(A(n),C) = 0. A
before, we conclude that Ext& (A(u), A) # 0 and gfd(A) = d'. O

[0}

Corollary 7.5. Let M be a G-module. Then
gfd(M) < max {gfd(L(6)) | 6 € X with [M : L(5)] # 0}

and

wid(M) < max {wfd(L(0)) | 6 € X with [M : L(5)] # 0}.
Proof. This follows from parts (2) and (5) of Lemma/[7.4] by induction on the composition length. [J

By Proposition we have gfd(L(\)) < d()) and gfd(A(X)) < d(A) for all X € XT. These
inequalities become equalities when A is an f-regular weight, as was shown by A. Parker in [Par03].
We will rederive her results in Section [[I.2] using different methods.

8 Infinitesimal theory

In the modular case, the group scheme G admits a Frobenius endomorphism Fr: G — G that fixes
the Borel subgroup B and the maximal torus T; see Section I1.3.1 in [Jan03]. The Frobenius kernels
G, = ker(Fr") for > 0 are infinitesimal subgroup schemes (in the sense of Section 1.8.1 in [Jan03])
and play an important role in the representation theory of G. In this section, we will discuss some
results related to the representation theory of the subgroup schemes G, and G, T for » > 0, and to
the Frobenius twist functors M +— MUl on Rep(G), which arise by composing the action of G on a
G-module M with the powers Fr" of the Frobenius endomorphism.

In the quantum case, the analogue of the Frobenius morphism was constructed by G. Lusztig in
[Lus89], but it is no longer an endomorphism of G = U¢(G). Instead, G. Lusztig defined a surjective
Hopf algebra homomorphism Fr: Us(g) — U(g) from U¢(g) to the universal enveloping algebra U(g)
of the complex simple Lie algebra g. Again, this gives rise to an exact and monoidal Frobenius twist
functor M +— MU this time from the (semisimple) category Rep(g) of finite-dimensional g-modules to
Rep(G). The kernel of Fr is generated by a finite-dimensional normal Hopf subalgebra u(g) of U (g),
called the small quantum group. The representation theory of the small quantum group is similar to
that of the first Frobenius kernel G in the modular case, but there are no quantum analogues of
the higher Frobenius kernels and Frobenius twist functors (because it does not make sense to take
powers of the quantum Frobenius morphism). Because of these (and other) differences between the
infinitesimal representation theory in the modular case and in the quantum case, we temporarily
deviate from our strategy of treating the two cases simultaneously.

The modular case

For r > 0, we write Rep(G,) for the category of (finite-dimensional) G,-modules, and Homg, (M, N)
for the space of homomorphisms between G,-modules M and N. As G, is a normal subgroup scheme
of G, there is a natural restriction functor reSG Rep(G) — Rep(G,), and for every G-module M,
the G,-fixed points MG+ form a G-submodule of M. By Lemma I1.3.3 in [Jan03], the distribution
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algebra Dist(G,) of G, can be identified with the finite-dimensional subalgebra of Uk(g) with basis
given by the products of the form

II Xsuo I Hame - 11 Xorss

Be—at a€ell Bedt

with 0 < rg,mq < " for f € ® and « € II, and the category Rep(G,) is equivalent to the category
of Dist(G,)-modules because G, is infinitesimal; see Sections 1.8.4, 1.8.6 and 1.9.6 in [Jan03]. The
Frobenius endomorphism Fr: G — G induces a Hopf algebra endomorphism

Dist(Fr): Dist(G) — Dist(QG)

with

X if ¢ |7,
Xﬁ,r'—>{ B/t 1 I and Hym—

Hoa,m/Z if ¢ | m,
0 otherwise 7

0 otherwise,

for r,m > 0, and the action of Dist(G) on the Frobenius twist M (] of a G-module M is obtained by
composing the Dist(G)-action on M with Dist(Fr). Let us denote by

X, ={ e XT|(\aY) </ forall ac I}

the set of " -restricted weights, and observe that every weight A € X can be uniquely written in the
form A = Ao+ £" - Ay, with \p € X, and A\; € X (where A € X if and only if \y € XT). According
to Section I1.3.15 in [JanO3|, the restriction to G, of a simple G-module L(\) with A € X, affords
a simple G,-module, which we denote by L,()), and the different L,(\), for A € X, form a set of
representatives for the isomorphism classes of simple G,-modules.

Note that, for a G-module M, the restriction to G, of the Frobenius twist M is a direct sum of
copies of the trivial one-dimensional G,-module. Conversely, if NV is a G-module whose restriction to
G, is a direct sum of copies of the trivial one-dimensional G,-module then there exists a G-module
M, uniquely determined by N, with N = M "], and we write M = NI="l, For G-modules M and N,
the identification Homg, (M, N) = (N @ M*)Gr gives rise to a G-module structure on Homg, (M, N).
The G,-socle socg, M of M is a G-submodule of M, and there is an isomorphism of G-modules

socg, M = @5 L(A) @ Homg, (L()), M).
)\EX'I‘

Applying these observations to a simple G-module yields the following important result; see Section
I1.3.16 in [Jan03].

Theorem 8.1 (Steinberg’s tensor product theorem). Let A € X and write A = \g + £" - Ay with
X € X, and \; € XT. Then
L(A) = L(X\) ® LA,

In Section below, it will be important to have an indecomposability criterion for twisted tensor
products M @ N of G-modules. The following result of S. Donkin will be very useful; see the lemma
in Section 2 of [Don80].

Lemma 8.2. Let V and W be G-modules such that V is indecomposable as a Gi-module, W is
indecomposable as a Gp-module for some r > 0 and resglw is a direct sum of copies of the trivial
one-dimensional G1-module. Then V ® W is indecomposable as a G,-module.
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Some remarks are in order about the preceding lemma. First, note that the condition that resg1 w
is a direct sum of copies of the trivial one-dimensional Gq-module implies that W = MU for the
G-module M = WU defined above. Furthermore, W being indecomposable as a (G,-module is
equivalent to M being indecomposable as a G,_j-module, because Dist(Fr) restricts to a surjective
algebra homomorphism Dist(G,) — Dist(G,_1). Therefore, we can reformulate the lemma as follows:

Corollary 8.3. Let V and M be G-modules such that V is indecomposable as a G1-module and M is
indecomposable as a G.-module, for some r > 0. Then V @ MW is indecomposable as a G, 41-module.

Recall that by assumption, all G-modules (and G,-modules) we consider are finite-dimensional.
Therefore, one can use the Fitting lemma to show that a G-module (or G,-module) is indecomposable
if and only if its endomorphism algebra is local.

Lemma 8.4. Let M be a G-module. Then M is indecomposable as a G-module if and only if M 1is
indecomposable as a G, module for some r > 0.

Proof. As G, is a subgroup scheme of G for all » > 0, every G-module that is indecomposable as
a G,-module is also indecomposable as a G-module. Now suppose that M is indecomposable as a
G-module. By point (6) in Section 1.9.8 in [Jan03|, there is an n > 0 with Endg (M) = Endg, (M)
for all » > n. Thus Endg, (M) is local and M is indecomposable as a G,-module for all such . [

Equipped with the preceding lemma, we can prove two more corollaries of S. Donkin’s lemma.

Corollary 8.5. Let V and M be G-modules such that V is indecomposable as a Gi-module and M
is indecomposable as a G-module. Then V @ MW is indecomposable as a G-module.

Proof. By Lemma M is indecomposable as a G,.-module for some r > 0, and by Corollary
this implies that V' @ MM is indecomposable as a G, 1-module. Again by Lemma we conclude
that V @ M is indecomposable as a G-module. O

Corollary 8.6. Let My,..., M, be G-modules such that My, ..., M._1 are indecomposable as G-
modules and M, is indecomposable as a G-module. Then the tensor product My ® Ml[l] K- My]
1s indecomposable as a G-module.

Proof. Note that My ® Mlm Q@ M~ Moy ® (M1 R ® M,[T_”)m. Using this observation, the
claim follows from Corollary by induction on 7. O

For applications in Chapter [[V] we also need to discuss some results about representations of the
subgroup schemes G, T of G for r > 0; see Chapter I1.9 in [Jan03] for references. As for G and G,
we denote the category of (finite-dimensional) G, T-modules by Rep(G, T) and write Homg, 1 (M, N)
for the space of G,T-module homomorphisms between G,T-modules M and N. By Proposition
I1.9.6 in [Jan03], the isomorphism classes of simple G, T-modules are naturally in bijection with the
weight lattice X, and we write Er()\) for the simple G, T-module corresponding to A € X. The simple
G, T-modules of the form L, (¢"X) are one-dimensional, with T acting via ¢" A and G, acting trivially,
and we simplify notation by writing Er(ﬂ”)\) = {")\. For a G-module M, the restriction to G, T of the
Frobenius twist Ml decomposes as a direct sum of one-dimensional simple G, T-modules 0" for the
different weights p of M, each occurring dim M, times. For A = A\g + ¢" A1 with A\g € X, we have

LN =L) @A\ and  Ly(\o) = res& rL( ).
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The quantum case

Recall from the beginning of this section that the quantum Frobenius morphism, constructed by
G. Lusztig in [Lus89], is a surjective Hopf algebra homomorphism Fr: G = U¢(g) — U(g), which gives
rise to an exact and monoidal Frobenius twist functor M — M from Rep(g) to Rep(G). For A € X,
let us write L¢ (M) for the simple g-module of highest weight A. Recall from above the notation

Xi={ e X" |(\aY)</lforal aell}

for the set of f-restricted weights. We have the following quantum analogue, due to G. Lusztig, of
Steinberg’s tensor product theorem; see Section I1.H.10 in [Jan03].

Theorem 8.7 (Lusztig’s tensor product theorem). Let A € X+ and write A = \g + {\1 with Ao € X3
and \; € Xt. Then
L(X\) = L(Xo) ® L(¢\1)

and L(£X\1) =2 Le(M)M.

Let us write G1 = wuc(g) for the small quantum group, that is, the subalgebra of G = U¢(g)
generated by the elements E,, F, and K ffl for « € TI. (We will mostly use the notation G; when we
want to emphasize analogies with the representation theory of Frobenius kernels, and u¢(g) when we
discuss the algebra structure.) As before, we write Rep(G1) for the category of (finite-dimensional)
Gi-modules and Homg, (M, N) for the space of Gj-module homomorphisms between Gj-modules
M and N. Similarly to the modular case, the restriction to Gj of a simple G-module L(\) with
l-restricted highest weight A € X; affords a simple Gi-module which we denote by Lj(\), and the
different Li()\), with A\ € X, form a set of representatives for the isomorphism classes of simple G-
modules; see Section I1.H.13 in [Jan03]. The algebra u¢(g) is a finite-dimensional Hopf subalgebra of
U¢(g), and we write uy for the augmentation ideal of u¢(g) (i.e. the kernel of the restriction to u¢(g)
of the counit € of Us(g)). It was shown by G. Lusztig that the two-sided ideal U¢(g) - uy = u - U¢(g)
of Ue¢(g) is precisely the kernel of Fr; see Section 8.16 of [Lus90]. This implies that every G-module
M whose restriction to Gq is isomorphic to a direct sum of copies of the trivial one-dimensional G-
module (or equivalently, that is annihilated by u.) is also annihilated by ker(Fr), and it follows that
M = N for a (uniquely determined) g-module N = M=), As in the modular case, the G1-fixed
points MG of a G-module M, defined as the subspace of M of elements that are annihilated by the
augmentation ideal u4, form a G-submodule of M. Similarly, the Gi-socle socg, M is a G-submodule
of M, and as before, there is an isomorphism of G-modules

socg, M = @5 L()) @ Homg, (L()), M)
AEX
(see Section 3.4 in [AKP92]), where the G-module structure on Homg, (L(\), M) comes from the

identification

Homg, (L()), M) 2 (M @ L(3)*) .

Note that Lusztig’s tensor product theorem, together with the above observation about ‘untwisting’
G-modules on which Gy acts trivially and the fact that Rep(g) is a semisimple category, implies that
socg, M is completely reducible as a G-module, whence socg, M = socgM.

Next we establish a quantum analogue of the indecomposability criterion for twisted tensor prod-
ucts from Corollary Note that the hypotheses in the following lemma are stronger than those
that we imposed in the modular case. We do not know if a direct analogue of Corollary holds in
the quantum case.
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Lemma 8.8. Let V be a G-module that has simple socle as a Gi-module, and let L be a simple
g-module. Then V & LW is an indecomposable G-module.

Proof. By the assumption, there exists a weight A € X; such that dim Homg, (L()\), V) =1, and as
G acts trivially on LIV, there are isomorphisms of G-modules

Homg, (L()\), V® L[l]) = Homg, (L()\), V) ® L~ i

Suppose for a contradiction that there is a non-trivial direct sum decomposition V & LI 2 My @ Ms.
As Gi-modules, both M; and My are isomorphic to (non-empty) direct sums of copies of V, so we
obtain a non-trivial direct sum decomposition (as G-modules)

L = Homg, (L(\), V @ L) =2 Homg, (L(\), Mi) ® Homg, (L(\), M2),
contradicting the simplicity of L. O

To conclude this section, let us discuss some topics that are analogous to the theory of G, T-
modules which we discussed in the modular case. See Section II.H.13 in [Jan03] for an overview with
further references. We set G1T = u¢(g)- Ug (g) (which is consistent with the notations Gi = u¢(g) and
T = Ug(g) defined earlier), denote by Rep(G1T) the category of (finite-dimensional) G;T-modules
and write Homg, (M, N) for the space of G;T-module homomorphisms between G;T-modules M
and N. As in the modular case, the isomorphism classes of simple G1T-modules are naturally in
bijection with X, and we write El(k) for the irreducible G;T-module corresponding to A € X. Still as
in the modular case, the simple G;T-modules of the form L (¢X) are one-dimensional, and we write
El (¢X) = £X. For a G-module M, the restriction to G1T of the Frobenius twist M ' decomposes
as a direct sum of one-dimensional simple GjT-modules ¢y for the different weights p of M, each
occurring dim M, times. Furthermore, for A = A\g 4 £A1 with \g € X1, we have

LiN) 2 Li(h) @0 and  Li(A\o) =res§ pL(\o).

Linkage and translation for G, T-modules

For applications in Chapter we briefly discuss some ‘infinitesimal analogues’ of the results about
linkage classes and translation functors from Section [6] We return to our strategy of treating the
modular case and the quantum case simultaneously. The results that we will outline below can be
found in Section 9.22 of [Jan03| in the modular case; the proofs in the quantum case are analogous.

Let us fix » > 0 in the modular case and r = 1 in the quantum case. For p € Crpg N X, we
define the linkage class Rep,(G,T) of i as the full subcategoiy of Rep(G,T) whose objects are the
G, T-modules all of whose composition factors are of the form L,(x- ), for some x € Weg. In analogy
with the situation in Section @ there is a projection functor pr,: Rep(G,T) — Rep,(G,T) and we
obtain a decomposition

Rep(G,T) = @ Rep, (G, T).
1E€CnaNX

Furthermore, the functors pr, on Rep(G) (from Section @ and on Rep(G1T) (described above) are
intertwined by the restriction functor resng: Rep(G) — Rep(G1T), that is

G _ G
pI'M @) I'eSGlT = reSGqT e} pI'M.
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This justifies using the same symbol for these functors. For all ¥ € Z® and A € Cpyng N X, the weights
A and A + 7 lie in the same W,g-orbit, and it follows that pry o (fy® —) = (/y ® —) opry. Using the
same definition as in Section@ we can define translation functors T from Rep,(G1T) to Rep,(G1T),
for A\, 1 € Cqyna N X, such that

resG o T} = T§ ores§ .

If X and g belong to the same (-facet then T} is an equivalence of categories, with quasi-inverse T[L\,
and we have T{'Ly(z - \) = Ly (x - p) for all z € Wg.

9 Negligible modules and the fusion category

Tensor ideals are a natural generalization of the notion of ideals in rings to the setting of monoidal
categories. We will be particularly interested in one specific tensor ideal in Tilt(G), namely the ideal
of negligible tilting modules, which will be defined below. We start with some general definitions.

Definition 9.1. Let A be an additive braided monoidal category. A thick tensor ideal in A is an
isomorphism-closed collection J of objects of A that is stable under direct sums and retracts, and
under tensor products with arbitrary objects of A.

More specifically, this means that, for any pair of objects M and N of A, we have

1) f M e Jand M = N then N € J;

3

(1)

(2) if M€ Jand N € J then M @ N € J;
(3) f M@ N e Jthen MeJand N e J;
(4)

4) ftMeJthen M@N € J.

Given a thick tensor ideal J in A and objects M and N of A, we define
J(M,N) = {f € Homu(M,N) ‘ f factors through an object in 7 }.

The subgroups J (M, N) C Homyu (M, N) form a tensor ideal of morphisms in A, i.e. they are stable
under composition from the left and the right and under tensor products with arbitrary morphisms
in A. Thus the quotient category A/J, with the same objects as A and homomorphisms given by

HomA/J(Aa B) = HOH’IA(A, B)/j(Aa B)7

has a natural monoidal structure, and the quotient functor A — A/J, that sends an object to itself
and a homomorphism to its residue class, is monoidal. If A has split idempotents then an object M
of A belongs to J if and only if its image under the quotient functor is isomorphic to the zero object
in A/J (see Appendix [A)).

By Theorem the category Tilt(G) is a braided monoidal subcategory of Rep(G), so it makes
sense to ask about its thick tensor ideals. Under the assumption that £ > h, these thick tensor ideals
were classified by V. Ostrik in the quantum case, using anti-spherical Kazhdan-Lusztig cells [Ost97].
His results were extended to the modular case by P. Achar, W. Hardesty and S. Riche in Section 7
of [AHR19|, using /¢-cells instead of Kazhdan-Lusztig cells. We are only interested in one particular
tensor ideal, which had already been studied (in both cases) by H.H. Andersen and J. Pardowski
[AP95] before the work of V. Ostrik: Even under the slightly weaker assumption that ¢ > h, the set
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9. Negligible modules and the fusion category

N of tilting G-modules T with [T : T'(\)]g = 0 for all A € Cgynq N X forms a thick tensor ideal, which
we call the ideal of negligible tilting modulesﬁ The quotient category F = Tilt(G)/N is a semisimple
tensor category; it is called the fusion category or the semisimplification of Tilt(G)H The tilting
modules T'(A) with A € Crypnq N X are called (indecomposable) fusion modules; they are precisely the
indecomposable tilting modules whose image under the quotient functor Tilt(G) — F is non-zero. We
also call fusion module any tilting module that is isomorphic to a direct sum of indecomposable fusion
modules. The split Grothendieck group [F|g of the fusion category is called the Verlinde algebra; it is
a free Z-algebra with basis {[T'(\)] | A € Crna N X } the classes of the indecomposable fusion modules
and multiplication given by

[TV - [T =T TWl= Y, &, [T
VECrmaNX

where ¢ | = [T(A) @ T(n) : T(v)]e for A\, p,v € Cpuna N X. The structure constants c§ , of the
Verlinde algebra can also be computed as

&= [T ©T() : T(W)]s
= 3 D AN) @A) Al v

IEW;;f

= > (=1 dim ANz s

ceEW,Lg

see Proposition II.E.12 in [Jan03]. For later use, we need to establish two elementary properties of these
structure constants. We first prove that they are invariant under the action of Q = Staby,_, (Ctyna)
on Ctyng, in the following sense:

Lemma 9.2. Let A\, i, v € Cryna N X and w € 2. Then

T @ T(w- 1) : T(wv)]e = [T) © T(n) : T(0)]e.
In particular, we have T(A\) @ T(w+0) ZT(w+ ) in F.
Proof. As conjugation by w is an automorphism of W,g, we have

TN @T(w-p):T = Y dm AN = > dm AN wrpwop
ZEGWaﬁf -'EeWaff

Writing w = t,w with v € X and w € Wy, it is straightforward to see that
wrev—w-p=w(x- -v— L
and therefore dim A(X)wp.p—w.p = dim A(X)z.,—,. We conclude that

TN @T(w-p): T = > dmAWNgw—p = [TN) @ T(1) : T(V)]a,
W, g

as claimed. 0

®One can use the braided monoidal structure of Tilt(G) to define a notion of ‘dimension’ that takes values in the
ground field k, and it turns out that the negligible tilting modules are precisely those where the ‘dimension’ of all
indecomposable direct summands is zero. In the modular case, the ‘dimension’ is just the usual dimension modulo ¢. In
the quantum case, it is the so-called quantum dimension.

®The semisimplification of monoidal categories has been studied in detail by P. Etingof and V. Ostrik in [EO1S§].
Similar ideas can already be found in D. Benson and J. Carlson’s article [BC86].
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Chapter I. Foundations

Lemma 9.3. Let A\, u € Crung N X and denote by v be the unique dominant weight in the Wegy-orbit
of woA+ . Then v € Cina N X and CKM # 0.

Proof. Recall that T'(§) = V(§) = L(J) for all weights 0 € CrngNX. As —wpv is the unique dominant
weight in the Why-orbit of —wgA — p, the remarks above Proposition [6.5] imply that the translation
functor 77, “0* is naturally isomorphic to pr_,,, (T'(—wor) ® —). By Proposition we have

T(~woA) 2 V(~wo)) = T, "V (1) = pr_y,, (T(~wor) @ V(1)) = pr_ygs (T(~wor) @ T(w)),
so T'(—woA) is a direct summand of T'(—wov) @ T'(1). Analogously, we see that
T(0) 2= V(0) = TRV(A) = pro(T(~wod) @ V(X)) = pro (T(—wod) @ T(N)),

whence T'(0) is a direct summand of T'(—wo\) ® T'(\) and of T'(—wov) @ T'(u) ® T'(N). Hence there
exists a weight v/ € X such that T(/) is a direct summand of T'(1) ® T(\) and T'(0) is a direct
summand of T'(—wor) ® T(v'). Now T'(0) is non-negligible, and as the negligible tilting modules form
a thick tensor ideal in Tilt(G), it follows that T'(v') is non-negligible and ' € Cgyq N X. Furthermore,
the existence of a non-zero homomorphism from the trivial G-module 7'(0) to the tensor product
T(—wov) @ T(V') = L(—wov) @ L(V') implies that L(v') & L(—wov)* = L(v) by Schur’s lemma. We
conclude that v =1/, so T'(v) is a direct summand of T'(\) ® T'(u), as claimed. O
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II. Generic direct summands

In this chapter, we develop the theory of singular G-modules and of generic direct summands of tensor
products. The main idea is to use the tilting equivalence

T: K*(Tilt(G)) — D"(Rep(G))

from Proposition to associate to every G-module a minimal tilting complex and to study tensor
products of G-modules via these complexes. For instance, we can use minimal tilting complexes to
define a map from the set of thick tensor ideals in Tilt(G) to the set of thick tensor ideals in Rep(G),
and the tensor ideal of singular G-modules in Rep(G) arises as the image of the tensor ideal of
negligible tilting modules from Section under this map.

A large part of this chapter is devoted to a detailed investigation of the tensor ideal of singular
G-modules and of the corresponding quotient category. Among other things, we prove two results that
we consider as a ‘linkage principle’ and a ‘translation principle’ for tensor products of G-modules. The
linkage principle for tensor products asserts that the monoidal structure of Rep(G) is compatible with
the decomposition into linkage classes when considering Rep(G) modulo the tensor ideal of singular
G-modules, in the sense that the essential images of the principal block Repy(G) and the extended
principal block Repgq.o(G) are closed under tensor products in the quotient category. The translation
principle for tensor products allows us to describe the monoidal structure of the entire quotient category
in terms of the monoidal structure on the principal block (modulo singular G-modules), via translation
functors. It also shows that the multiplicities in Krull-Schmidt decompositions of tensor products of
G-modules are governed to a large extent by the Verlinde algebra from Section After establishing
these general results, we turn to tensor products of specific G-modules, such as Weyl modules and
simple G-modules. We will show that a tensor product of two Weyl modules in the extended principal
block has a unique regular indecomposable direct summand and that a tensor product of two simple
G-modules in the extended principal block has a unique regular indecomposable direct summand of
maximal good filtration dimension. These are the generic direct summands from the title.

The content of this chapter is organized as follows: We start by discussing the theory of minimal
complexes over an arbitrary Krull-Schmidt category in Section In Section [2| we define minimal
tilting complexes and study their properties, and in Section we use minimal tilting complexes
to construct tensor ideals in Rep(G) from tensor ideals in Tilt(G). Our results about singular G-
modules, including the ‘linkage principle’ and the ‘translation principle’ for tensor products, will be
proven in Section {4}, and the existence of generic direct summands is established in Section [5| Finally,
in Section [6] we explain how the Steinberg-Lusztig tensor product theorem can be used to describe
generic direct summands of tensor products of arbitrary simple G-modules in terms of generic direct
summands of tensor products of simple G-modules with f-restricted highest weights.
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Chapter II. Generic direct summands

1 Minimal complexes

In order to transport information from Tilt(G) to Rep(G) using the tilting equivalence
T: K°(Tilt(G)) — D"(Rep(G))

from Proposition it will be helpful to choose a unique representative from every homotopy class
in K (Tilt(G)) that is minimal in a suitable sense. One way to achieve this is via the theory of
minimal complexes which we explain below. Some of the ideas in this section stem from Lemma 4.2
in [BNO7] and from Section 2.10 in [EHIT].

Let A be an additive category. As in Appendix Bl we write C®(A) for the category of bounded
(cochain) complexes over A and K°(A) for the bounded homotopy category of A. The unbounded
versions of these categories are denoted by C(A) and K(A).

Definition 1.1. The radical of A is the ideal rad4 with
rad4(A, B) = {f € Hom4(A, B) |bo foa € J(End4(C)) for all a: C — A and b: B — C},
for all objects A and B of A, where J(End4(C)) denotes the Jacobson radical of the ring End 4(C).

Definition 1.2. A complex

d—2 d—l do d1

A T4 4, A

over A is called minimal if d; € rad 4(A;, Ai1) for all i € Z.

We first prove two results that show that every homotopy class in K(A) contains at most one

minimal complex.
Lemma 1.3. Let C and C’' be complezes over A, and let f: C — C’ be a morphism of complezes.

(1) If C is a minimal complex and f is a split monomorphism in K(A) then f is also a split
monomorphism in C(A).

(2) If C" is a minimal complex and f is a split epimorphism in K(A) then f is also a split epimor-
phism in C(A).

Proof. Let us write C' = (As,de) and suppose that d; € rad4(A;, Aiy1) for all i € Z. If f is a split
monomorphism in the homotopy category K (A) then there exist a morphism of complexes g: C' — C'
and a homotopy equivalence h = (h;);ez from go f to idec, so

ida, —gio fi=hiz10d; +d;i—10h;

for all i € Z. Now h;110d; +d;—10h; € rady(A;, A;) C J(EndA(Ai)), and it follows that @; :== g; o f;
is invertible. Then ¢’ = (gpi*l o g;)icz is a morphism of complexes, and ¢’ o f = id¢, so f is a split
monomorphism in C(A). The second claim can be proven analogously. O

Corollary 1.4. Let C and C' be minimal complexes over A, and let f: C — C’ be a morphism of

complexes. If f is an isomorphism in K(A) then f is an isomorphism in C(A).

Proof. By Lemma f has a left inverse and a right inverse in C'(A). It is straightforward to check
that these must coincide, so f is invertible, as claimed. O
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1. Minimal complexes

From now on, suppose that A is a Krull-Schmidt category (as defined in Appendix . Then we
can give an alternative characterization of the radical of A as follows:

Lemma 1.5. Let A and B be objects of A and f € Homu(A, B). The following are equivalent:
(1) [ €rada(4, B);

(2) mno isomorphism between non-zero objects of A factors through f;

(8) mo isomorphism between indecomposable objects of A factors through f.

Proof. 1f some isomorphism g: C' — D between non-zero objects of A factors through f then so does
idc = g~ ! og, so we can write idc = bo f oa for certain morphisms a: C — A and b: B — C. As id¢
does not belong to the Jacobson radical of End 4(C), we conclude that f ¢ rad(A, B) and that (1)
implies (2). It is obvious that (2) implies (3).

Now assume (3), let C' be an object of A with homomorphisms a: C — A and b: B — C and
write f':=bo foa. We need to show that ide — z o f' oy is invertible for all z,y € End4(C). Note
that x o f/ oy factors through f, hence no isomorphism between indecomposable objects of A factors
through = o f’ o y. Therefore, it suffices to show that idc — ¢ is invertible for all g € End 4(C) with
the property that no isomorphism between indecomposable objects of A factors through ¢g. If C is
indecomposable then this is clear from the fact that End 4(C) is local, so now suppose that we have
C = (1 & Oy, for certain objects Cq #£ 0 and Cs # 0 of A, and write

g = gin 912 with gij € HOmA(Cj,Ci).
921 g22

Then g;; factors through g for all 4,5 € {1,2}, so no isomorphism between indecomposable objects

of A can factor through g¢;;. By induction on the number of indecomposable direct summands in a

Krull-Schmidt decomposition, the endomorphism ¢ = id¢, — g22 of Cs is invertible, and we can write

ide — g= idol —g11 —9g12 _ idC1 —(g12 © gp_l . ¢ 0 . idcl 0
—9g21 © 0 idg, 0 ¢ —plogy ideg, )’

1

where ¢ = id¢, —g11 —g1209 7 0g21. Again using the fact that endomorphism rings of indecomposable

objects are local, we see that no isomorphism between indecomposable objects of A factors through the

Lo g1 of C1, and again by induction on the number of indecomposable

endomorphism g11 + g12 0 ¢~
direct summands in a Krull-Schmidt decomposition, we get that 1 is invertible. Hence idg — g is

invertible, as required. ]

Next we show that every bounded complex over a Krull-Schmidt category is homotopy equivalent
to a unique minimal complex. The proof is based on ideas from Lemma 4.2 in [BNOT].

Lemma 1.6. Every bounded complex C over A is homotopy equivalent to a minimal complexr Chin,
and Cuin s unique up to isomorphism in the category of complexes C°(A). Furthermore, Cpin is a

direct summand of C' in C°(A).

Proof. The uniqueness statement is clear from Corollary If C is minimal then there is nothing to
show, so now write C' = (A,, ds) and suppose that d; ¢ rad 4(4;, A;41) for some i € Z. By Lemma[L.5]
there exists an indecomposable object M of A such that idy,s factors through d;, so idy; = bod; oa for
some a: M — A; and b: A;11 — M. Then a is a split monomorphism and b is a split epimorphism,
so A; = B; ® M and A;+1 = Bi+1 ® M for certain objects B; and B;y; of A. Consequently, we can
write C' as
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Chapter II. Generic direct summands

d d
<d; idi) (91 92)

By ® M

A BioM

Ai+2 cee

and arguing as in the proof of Lemma we see that C' is isomorphic to a complex of the form

o (4) (5 ) (n 0)

- —— A B,oM Biyie M Aiyg — -+
Indeed, with ¥ = dy1 — dy2 © d21, an isomorphism of complexes is given by
fi di1 di2
f2 do1  idnm (91 g2)
Ai—l BZ@M Bi+1@M it ——
| | | |
. ids, 0 idp,,, —di .
A ( da1 idM> ( 0 idy > A
| ! ! |
Ai Bi® M Bi+1 e M Ai+2 —_—

[ ey e

where the left square and the right square commute because C' is a complex and the middle square
commutes by direct computation. Now the complex in (1.1)) is isomorphic to the direct sum of the
complexes

' --~—>Az;1—f—1—>Bii>B¢+1—g—1—>Ai+2—>'-' and " i 0 M- M-—0—---

(with M in degrees i and i+ 1). As C” is homotopy equivalent to the zero complex, we conclude that
C is homotopy equivalent to C’. Now the existence of Cyi, easily follows by induction on the sum of
the numbers of indecomposable direct summands of the terms in C'. The final claim is a consequence
of the construction, since C’ is a direct summand of C in C®(A). Alternatively, we can just note that
a homotopy equivalence between Ciy, and C' is a split monomorphism in K b(A), and thus also a split
monomorphism in C?(A) by Lemma O

Definition 1.7. Let C be a bounded complex over A and let Ciyi, be the unique minimal complex
in the homotopy class of C. We say that C\i, is the minimal complex of C.

Corollary 1.8. Let C be a bounded complex over A, with minimal complex Cuin, and let M be an
indecomposable object of A. Write C and Cipin as

e — Ay — Ajpg — - and v — B — By — -+,
respectively. Then
[Ai : M]g > [B;i : Ml > [Ai : M]g — [Aim1 : M]g — [Ai1 : Mg
for alli € Z.
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2. Minimal complexes of tilting modules

Proof. By the uniqueness of minimal complexes and by the proof of Lemma [1.6] we can obtain Chyin
from C by successively removing pairs of isomorphic indecomposable direct summands from two
adjacent terms A; and A;y; of C. The maximum number of times that an indecomposable direct
summand isomorphic to M can be removed from A; in this fashion is [4;_1 : Mg + [Aiy1 : Mg, and
the claim follows. O

2 Minimal complexes of tilting modules

As Tilt(GQ) is a Krull-Schmidt category, the theory of minimal complexes explained in the previous
section can be applied. Let M be a G-module. We can view M as a one-term complex, concentrated in
degree 0, in the derived category DP (Rep(G)), and the latter corresponds to a unique homotopy class
in K (Tilt(G)) under the tilting equivalence (see Proposition . By Lemma this homotopy
class contains a unique minimal complex, up to isomorphism in C® (Tilt(G)), which we denote by
Chin (M) and call the minimal tilting complex of M. By construction, Cpi, (M) is the unique bounded
minimal complex of tilting modules with Cynin(M) = M in D’(Rep(G)), or equivalently, with

M ifi=0,

0  otherwise.

H'(Crnin(M)) = {

Note that taking the cohomology of a complex over Tilt(G) makes sense because Tilt(G) is a sub-
category of the abelian category Rep(G). We start by listing some elementary properties of minimal
tilting complexes.

Lemma 2.1. Let M, My and M> be G-modules.
(1) If M is a tilting module then Cyin(M) = M, viewed as a one-term complex with M in degree 0.
(2) We have Cmin(Ml D MQ) = Cmin(Ml) & Cmin(MQ) m Cb(Tﬂt(G)).

(3) If C is a bounded complex of tilting modules with C = M in D°(Rep(G)) then Crin(M) is the
minimal complex of C' and there is a split monomorphism Cupin(M) — C in C? (Tilt(G)).

(4) Cuin(My1 ® My) is the minimal complez of Cin(M1) @ Cinin(Ms). In particular, there is a split
monomorphism Cuin(My @ Ma) — Crpin(M1) ® Cuin(Ma) in C° (Tilt(G)).

Proof. The first claim is obvious since M (viewed as a complex with M in degree 0) is a minimal
complex, and the second claim follows from the observation that a direct sum of minimal complexes
is minimal. If C is a bounded complex of tilting modules with C' =~ M in D’(Rep(G)) then we also
have C' = Cpin(M) in Db (Rep(G)). Using the tilting equivalence from Proposition it follows
that C' 22 Cppin(M) in K° (Tilt(G)), whence Chyin(M) is the minimal complex of C. By Lemma
any homotopy equivalence from Cyin(M) to C is a split monomorphism in C? (Tﬂt(G)). Finally, we
have

. My M, ifi=0,
HZ(Cmm(Ml)@cmm(Mz))g{ Lo B

otherwise

by the Kiinneth formula (see Appendix , hence the tensor product complex Cin(M7) @ Cryin(M2)
is isomorphic to M; ® My in D° (Rep(G)), and the fourth claim follows from the third. O
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Chapter II. Generic direct summands

Lemma 2.2. Let A € Cyna N X and let M be a G-module in Repy(G). Then all terms of Ciin(M)
belong to Repy(G).

Proof. As M belongs to Rep,(G) and the projection functor pry: Rep(G) — Rep,(G) is exact, we

have M = pryM = pryCpin(M) in D?(Rep(G)). By part (3) of Lemma Chin(M) admits a split
monomorphism into pryCmin(M) in C°(Tilt(G)), and the claim follows. O

Next we observe that the good filtration dimension and the Weyl filtration dimension of a G-
module can be read off from its minimal tilting complex.

Lemma 2.3. Let M be a G-module and write Cpin(M) as

d_2 d—1 do

e —— T To d1

Ty

Then gfd(M) = max{i | T; # 0} and wid(M) = —min{i | T; # 0}.

Proof. As M = H°(Ciin(M)) = ker(dy)/im(d_1), there is a short exact sequence
0 — im(d_q) — ker(dy) — M — 0,

and we claim that gfd(im(d_;)) = 0. Indeed, as Cin(M) is exact in all non-zero degrees, there are
short exact sequences
0 — im(d;—1) — T; — im(d;) — 0

for all ¢ < —1, and using part (3) of Lemma it follows that
gfd(im(di)) < max {gfd(im(di_ﬂ) -1, 0} < gfd(im(di_l)).
Furthermore, as Cpin (M) is bounded, we have im(d;) = T} for some j < —1, and we conclude that
0 = gfd(im(d;)) = gfd (im(dj31)) = - - - = gfd (im(d_1)),
as claimed. By applying part (3) of Lemma to our first short exact sequence, it now follows that
gfd(M) = gfd (Ker(do)),

so it suffices to prove that ker(dp) has good filtration dimension r := max{i | T; # 0}.
If 7 = 0 then ker(dp) = Tp is a tilting module and gfd(ker(dp)) = 0, so now suppose that r > 0.
For all 7+ > 0, there is a short exact sequence

0 — ker(d;) — T; — ker(d;+1) — 0,
and part (1) of Lemma [[.7.4] yields
gfd(ker(d;)) < gfd(ker(di+1)) + 1,

with equality whenever gfd(ker(d;y1)) > 0. Observe that ker(d,) = T is a tilting module and that
the minimal tilting complex of ker(d,_1) is given by

0—1T—qy —T, —0,

with 7;_1 in homological degree zero. By part (1) of Lemma[2.1] ker(d,_1) is not a tilting module, and
as wid (ker(dy_1)) = 0 by part (4) of Lemma it follows that gfd(ker(d,—1)) = 1. Now induction
on i yields gfd(ker(d,—;)) =i for i = 0,...,r and therefore gfd(M) = gfd(ker(dy)) = r, as required.
The claim about wfd(M) follows by taking duals. O
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2. Minimal complexes of tilting modules

53]
Let us introduce an additional piece of notation: For G-modules M and N, we write M C N if
there exists a split monomorphism from M into V.

Lemma 2.4. Let 0 - A — B — C — 0 be a short exact sequence of G-modules. Then

(S)

Cmin(A)i C Cmin(B)i @ Cmin(c)iflv
5]

Cmin(B)i g Cmin(A)i ©® Cmin(c)iy
(S

Cmin(c)i g Cmin(A)i—‘,-l @ Cmin(B)i

for alli € Z. For an indecomposable tilting module M and i € Z, we have

[Cmin(A)i—i-l : M]@ - [Cmin(A)i : M]@ - [Cmin(A)i—‘rQ : M]EB

+ [Cuin(B)i : M)y — [Crnin(B)i—1: M] ;= [Cmin(B)it1 : M.

Proof. The short exact sequence gives rise to a distinguished triangle A — B — C — A[l] in the
derived category DY (Rep(G)), and via the tilting equivalence, to a distinguished triangle
Cmin(A) — Cmin(B) — Cmin(C) — Cmin<A)[1]

in the homotopy category K® (Tilt(G)). Let us write f: Chpin(A) — Cupin(B) for the leftmost chain
map in this distinguished triangle. By the definition of distinguished triangles in K® (Tilt(G)) (see
Appendix , the complexes Chin (C') and cone(f) are homotopy equivalent, whence Chin(C) is the
minimal complex of cone(f). Now Lemma applied to a homotopy equivalence between Cpin(C)
and cone(f), implies that Cpin(C) admits a split monomorphism into cone(f); in particular

Cunin(C)i € cone(f); = Crnin(A)i1 © Cuin( B);
for all ¢ € Z. Furthermore, we have
[Cunin(A)it1 : M] + [Cuin(B)i : M, = [cone(f); : M] > [Crnin(C)i : M]
> [eone(f); : M], — [cone(f)ir : M],, — [cone(f)irs : M],
— [Cunin(A)i = M, — [Cunin(A)isz = M]
+ [Cuin(B)i : M] g — [Crnin(B)i—1 : M] g — [Cmin(B)it1 : M]

2]

Mg
M]

for all ¢ € Z, by Corollary By triangle rotation, there are also distinguished triangles
Cmin(C)[—l] — Cmin(A) — Cmin(B) — Cmin(C)
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Chapter II. Generic direct summands

and
Cmin(B)[—l} — Cmin(C)[—l] — Cmin(A) — Cmin(B)

in K (Tilt(G)), and the remaining claims follow from Lemma and Corollary as before. O

Now we proceed to study the minimal complexes of some specific G-modules. Let us assume until
the end of the section that £ > h, the Coxeter number of G, and recall that we write z — w, for the
canonical epimorphism Wy = Wag x Q — Q, where Q = Stabyy._, (Afund)-

Proposition 2.5. Let x € W

ex

¢ and X € Crng N X, and write Cryin (A(:v . )\)) as

d1

T
Then

(1) T; =0 for alli <0 and all i > {(z);

(2) ifve X" andi € Z such that [T; : T(v)]e # 0 then v = yw, + X for some y € W;{_f with

0< i< tx)— y):

(3) To=T(x-N) and Tyy) = T(we - N);
(4) T; is negligible for all i # ¢(x).

Proof. For ' := zwy !, we have 2’ € Wi and ¢(2") = {(z) because z(Afuna) = =’ (Afuna). Hence, after
replacing z by 2’ and A by w, + A € Cpyng N X, we may (and shall) assume that x € W;;f and w, = e.

We prove the claims by induction on ¢(x). If ¢(z) = 0 then x = e and A(\) = T'(\), so A(\) has
minimal tilting complex 0 — T'(\) — 0 and all claims are satisfied. Now suppose that ¢(z) > 0 and
that the proposition holds for all y € W5 with ¢(y) < {(z). For a simple reflection s € S such that
rs < x, we have xs € W;f by Corollary and s+ A < x+ A by Theorem Let it € Crana N X
with Staby, ., (1) = {e, s}, and consider the short exact sequence

0—)A(3§‘°)\)—)le‘A(.%',u)—)A(l‘S')\)—)O,

which is obtained from the short exact sequence in Proposition by taking duals. Furthermore,
let us write

Coin(T)A(z - p)) = (Ae,dd)  and  Cuin(A(ws - \)) = (B, d?),

and observe that T; is a direct summand of C; = A; & B;_1 for all i € Z, by Lemma [2.4] By the
induction hypothesis, we may assume that B; = 0 for ¢ < 0 and i > f(xs) = ¢(x) — 1, that B; is
negligible for i # £(x) — 1, that By, = T(\) and that all weights v € X* with [B; : T(v)]g # 0 for
some ¢ € Z are of the form y - A for some y € W with 0 < i < (xs) — ((y). By Proposition we
have

Az - p) = A(zs - p) = TEA(zs - A),

and it follows that Tﬁ‘A(:r - 1) is isomorphic to the complex Tlf‘T)‘fC’min (A(zs - A)) in D°(Rep(G)).
Using Lemma we conclude that A; is a direct summand of Tli‘T 1'B; for all i € Z, and it follows
that A; = 0 for i <0 and i > ¢(z) — 1. Further note that all tilting modules in Rep,(G) are negligible
because p ¢ Crng and that the translation functor Tlf‘ sends negligible tilting modules to negligible
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tilting modules, because negligible tilting modules form a thick tensor ideal in Tilt(G). It follows
that the functor Tj o T/’\L sends all tilting modules to negligible tilting modules, so T :‘Tf\‘ B; and A;
are negligible for all i € Z. We conclude that C; = A; @ B;_; = 0 for i < 0 and i > {(x), that C; is
negligible for all i # ¢(x) and that

Cow) = Age) @ Byay-1 = T(N).

As T; is a direct summand of C; for all i € Z, this implies that T; = 0 for ¢ < 0 and ¢ > ¢(z) and that
T; is negligible for all ¢ # ¢(x). Furthermore, Lemma yields

1=[Cya): TN)a = [Tya) : TN)]e 2 [Cowy : TN)]e — [Crzy—1 : T(N)]e — [Cozy+1 : T(N)]e =1

because Cy(,)—; is negligible and Cy(;),1 = 0, and we conclude that Ty,) = T'()).

Now suppose that v € X such that [4; : T(v)]g # 0 for some i € Z. Then Homg (A(v), A;) # 0
and therefore Homg (A(v), T;;\Tf B;) # 0. This implies that v = y- A for some y € W,k by the linkage
principle, and as T} and T:‘ are mutually left and right adjoint, we have

0 # Homg (A(y - \), T)TY B;) = Homg (TR TEA(y - A), B).

By Proposition m, this implies that y+p € X and T{'A(y - X) = A(y - 1), and by Proposition
the G-module le\Tf\LA(y - A) has a Weyl filtration with subquotients A(y - A) and A(ys- ). Hence, at
least one of the Hom-spaces Homg (A(y - A), Bi) and Homg (A(ys - A), BZ-) is non-zero, and it follows
that there exists a weight v/ € X such that [B; : T(')]g # 0 and at least one of the multiplicities
[T(V):V(y- Ny and [T(V') : V(ys+ A)]v is non-zero. By Proposition we have either y -\ 1y v/
or ys+A ¢ v/, and it follows that v/ = y/- A for some y' € Wk with £(y') > min{/(y), £(ys)} > £(y) — 1.
By our initial observations about Cin(A(zs + \)), the condition [B; : T(y - A)]g # 0 implies that

0<i<l(ws)—L(y) =L(x) —1-Ly) < l(x) — L(y).

We conclude that any weight v € X* with [A4; : T(v)]e # 0 for some i € Z is of the form y - A for
some y € W;ff with 0 <i < /l(x) — £(y). As T; is a direct summand of C; = A; @ B;_ for all 1 € Z, it
is straightforward to see that this statement remains true when we replace A; by T;.

It remains to show that Ty = T'(x - \). Recall that there is a short exact sequence

0—A(x-A) —T(@x-\) — M —0,

where M is a G-module admitting a Weyl filtration. By Lemma we have Cpyin(M); = 0 for ¢ < 0,
and Lemma [2.4] yields

S
To C Cmin (T(LL’ . )\))0 D Cmin(M)—l = T(a: . )\),
whence Ty = T'(x - ), as required. O

Proposition 2.6. Let x € W, and A € Cryna N X, and write Ciin (L(l‘ . )\)) as

€

dy

d—2 d_1 do
—

T 4 To Ty

Then
(1) T; =T, for alli € Z;
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(2) T; =0 for all i € Z with |i| > {(z);

(3) ifp€ Xt andi € Z with [T} : T(p)]e # 0 then i = ywyX for somey € Wk with |i| < £(z)—L(y);
(4) [To:T(x-N]e =1 and Ty =T y) = T(ws - A);

(5) Tya)—1 = Ty is negligible.

Proof. As in the proof of Proposition we can replace x by zw; ! € W;;f and A by wg - A € CranaN X,
so we will henceforth assume that « € W,:;f and w, = e. As L(x - \) is contravariantly self-dual, the
complex

dz dr, dr,

Ty Ty T, b

is a minimal tilting complex of L(x - A), and by uniqueness, we have T; = T7, = T_; for all i. (Recall
that all tilting modules are contravariantly self-dual.) We prove the remaining claims by induction
on /(x). If £(z) = 0 then x = e and L(\) = T'(\), so L(\) has minimal tilting complex 0 — T'(A\) — 0
and all claims are satisfied. Now suppose that £(z) > 0 and that the proposition holds for all y € W;&
with ¢(y) < ¢(x). Consider the short exact sequence

0 —radgA(z-\) — A(x-A) — L(x-A) — 0
and the minimal tilting complexes
Cuin(radgA(z - V) = (Ae,dZ)  and  Crin(A(z - X)) = (B.,d?),

and observe that T; is a direct summand of C; == A;41 & B; for all ¢ € Z, by Lemma [2.4. By the
induction hypothesis and the linkage principle, we may assume that (1)—(5) are satisfied for the minimal
tilting complexes of all composition factors of radgA(z - A). Using Lemma and induction on the
length of a composition series of radgA(z - \), we see that every weight u € X+ with [A; : T'(11)]e # 0
for some i € Z is of the form y - A, for some y € W with |i| < {(z) — {(y) — 1. In particular, we
have A; = 0 for all i € Z with [i| > ¢(z). Now recall from Proposition that B; is negligible for
all i # £(x), that By) = T(\) and that every weight u € X T with [B; : T(u)]e # 0 for some i € Z
is of the form y - A, for some y € W with |i| < ¢(z) — £(y). As C; = A;j41 & B; for all i € Z, we
conclude that every weight u € X+ with [C; : T(u)]g # 0 for some i € Z is of the form y - A, for some
y € Wt with |i| < ¢(z) — £(y). Furthermore, we have A; 11 = 0 for i > {(z) — 1, so Cozy—1 = Biz)—1
is negligible and Cy(,) = By(y) = T'(A). The claims (2), (3) and (5) are now immediate because T; is a
direct summand of C; for all i € Z. The first part of claim (4) follows from Lemma [2.4] because

[C() : T(x . /\)]@ = [Al : T(m . )\)]@ + [B() : T(l‘ . )\)]@ =1
and [C_1 : T(z - N)]g =0=[C1 : T(x - \)]e, and therefore
1= [C() . T(IL’ . A)]@ Z [T() . T(:IZ . A)]@ Z [C() . T(JI . )\)]@ - [0_1 : T(IL’ . )\)]@ - [Cl . T({L’ . A)]EB =1.

Analogously, we have Cy,y = T(\) and [Cygy—1 : T(A)] = 0 = [Cyz)+1 : T(N)] because Cyy_y is
negligible and Cj(;);1 = 0. Using Lemma again, it follows that Tj,) = T'(A). O

As an immediate consequence of Propositions|2.5|and we can reprove A. Parker’s results about
the good filtration dimension of Weyl modules and simple G-modules from [Par03].
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Corollary 2.7. Let x € We';t and A € Crana N X. Then
gfd(A(z - \)) = U(z) and gfd(L(z - \)) = wid(L(z - X)) = {().
Proof. By Lemma [2.3] we have
gfd(M) = max{i | Cun(M); #0}  and  wid(M) = —min{i | Cin(M); # 0}

for every G-module M, and the claim follows from the description of the minimal tilting complexes
of A(z - A\) and L(z - \) in Propositions and O

3 Tensor ideals in Rep(G)

In this section, we explain how minimal tilting complexes can be used to construct thick tensor ideals
in Rep(G) from thick tensor ideals in Tilt(G). Later, we will mainly be interested in the thick tensor
ideal in Rep(G) that corresponds to the ideal N of negligible tilting modules from Section but
our construction works in greater generality. The thick tensor ideals in Rep(G) which are obtained
from arbitrary thick tensor ideals in Tilt(G) may be useful for other applications than those that are
considered here. All of the thick tensor ideals in Rep(G) that can be obtained by our construction
will have the following property:

Definition 3.1. Let J be a thick tensor ideal in Rep(G). We say that J has the 2/3-property (or
two-out-of-three property) if for any short exact sequence 0 -+ A — B — C — 0 of G-modules such
that two of the G-modules A, B and C belong to 7, the third also belongs to 7.

Definition 3.2. For any thick tensor ideal Z in Tilt(G), we call
(I) = {M € Rep(G) ‘ all terms of Crnin(M) belong to Z}
the extension of Z to Rep(G).

Lemma 3.3. Let Z be a thick tensor ideal in Tilt(G). Then (I) is a thick tensor ideal in Rep(G)
and (Z) has the 2/3-property.

Proof. First note that (Z) is closed under direct sums and retracts because
C'min(]\4l &b M2) - C1min(]\4l) ©® Cmin(MZ)

for all G-modules M; and Ma, by part (2) of Lemma If My € (Z) then all terms of the tensor
product complex Cipin(M1) ® Cin(Ms) belong to Z because Z is a tensor ideal. As Chin(M; ® Ms)
is a direct summand of Cyyin(M1) ® Cuin(M2) in C*(Tilt(G)) by part (4) of Lemma and as Z is
closed under retracts, we conclude that M; ® My € (Z). Finally, for a short exact sequence

0—-A—-B—-C—=0

of G-modules, we have

D

Cmin(A)i C len(B)l ) Cmin(c)iflv
D

Cmin(B)i g Cmin(A)i ©® Cmin(c)i7
D

Cmin(c)i g Cmin(A)i—i—l S¥ Cmin(B)i

for all i € Z, by Lemma As T is closed under retracts, we conclude that (Z) has the 2/3-
property. O
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The following Lemma justifies the notation (Z) for the extension of a thick tensor ideal Z in Tilt(G)
to Rep(G).

Lemma 3.4. Let Z be a thick tensor ideal in Tilt(G). Then (I) is the smallest thick tensor ideal with
the 2/3-property in Rep(G) that contains Z.

Proof. The inclusion Z C (Z) follows from the fact that Cumin(M) = M for every tilting module M;
see part (1) of the Lemma Now let J be a thick tensor ideal with the 2/3-property in Rep(G)
such that Z C 7, and let M be a G-module in (Z). We claim that M belongs to J. Writing Cpin (M)

as
d_2 d—1 do

—— T T d

Ty e

we have M = ker(dp)/im(d_1), so there is a short exact sequence
0 — im(d_1) — ker(dp) — M — 0.

As J has the 2/3-property, it suffices to show that im(d_1) and ker(dy) belong to J. As Cin(M) is
exact in all degrees except zero, there are short exact sequences

0 — ker(d;) — T; — ker(d;11) — 0

for all ¢ > 0, where T; € Z C 7, and using the 2/3-property, we see that ker(d;) belongs to J if and
only if ker(d;;+1) belongs to J. Now Cpin(M) is bounded, so T; = 0 for some i > 0, and we conclude
that ker(dp) belongs to J. Analogously, we see that im(d_1) belongs to 7, and the claim follows. [

For a thick tensor ideal J in Rep(G), it is straightforward to see that 7 NTilt(G) (the set of tilting
modules in 7) is a thick tensor ideal in Tilt(G). The next result shows that the map J — J NTilt(G)
is a section to the map Z — (Z) from the set of thick tensor ideals in Tilt(G) to the set of thick tensor
ideals with the 2/3-property in Rep(G).

Lemma 3.5. Let T be a thick tensor ideal in Tilt(G). Then (Z) N Tilt(G) =T.

Proof. For a tilting G-module M, we have Crin(M) = M by part (1) of Lemma and it follows
that M belongs to Z if and only if all terms of Cp,in (M) belong to Z. O

Remark 3.6. In the quantum case, the map Z — (Z) from the set of thick tensor ideals in Tilt(GQ)
to the set of thick tensor ideals in Rep(G) with the 2/3-property is actually a bijection, when ¢ > h.
We give an outline of a proof of this fact; a more detailed account will appear elsewhere.

Let us call a proper thick tensor ideal P in Rep(G) a prime ideal if M @ N € P implies that either
M € P or N € P, for G-modules M and N. As in Lemma 4.2 in [Bal05], one can adapt standard
techniques from commutative algebra to show that the intersection of all prime thick tensor ideals with
the 2/3-property in Rep(G) containing a given thick tensor ideal 7 with the 2/3-property in Rep(G)
is the radical of 7, i.e. the set of G-modules M such that M®" € J for some n > 0. Now as every
G-module M admits a dual M* and as M is a direct summand of M ® M* ® M, we can show that
the ideal J coincides with its radical (see Remark 4.3 and Proposition 4.4 in [Bal05]). In particular,
we have J = ();cpP. By Theorem 8.2.1 in [BKNI9], every prime thick tensor ideal P with the
2/3-property in Rep(G) is generated by some tilting module, and it follows that P = (P N Tilt(G)).
We conclude that

J=(P=)(PNTiKG)) =< N PﬂTilt(G)>,

JCP JCP JCP
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4. The ideal of singular G-modules

where the last equality follows from the definition of the extension of a thick tensor ideal from Tilt(G)
to Rep(G). This implies that the map Z — (Z) is surjective, and it is also injective by Lemma

We remark that the existence of a bijection between the set of thick tensor ideals in Tilt(G) and
the set of thick tensor ideals in Rep(G) with the 2/3-property can also be deduced by combining
Corollary 7.7.2 and Theorem 8.1.1 in [BKN19|. However, it is not clear from the results in [BKN19]
that this bijection can be described in terms of minimal tilting complexes, as we have done here.

Let us also point out that the analogous statement is not true in the modular case: Using Proposi-
tion[2.6] one sees that there is no proper thick tensor ideal Z in Tilt(G) such that the simple G-module

L::L(f-(g_l).p) QL((E—l)-p)[l]

belongs to (Z) (because Crin(L) has a non-negligible term in degree £(t(,_1).,) and N is maximal
among the thick tensor ideals in Tilt(G)). On the other hand, Theorem 2.4 in [Nak95|] provides an
upper bound on the complezity of L over the second Frobenius kernel Go, which can be used to show
that L generates a proper thick tensor ideal with the 2/3-property in Rep(G). In particular, this
tensor ideal is not of the form (Z) for any thick tensor ideal Z in Tilt(G). Again, the details will be
presented elsewhere.

4 The ideal of singular G-modules

From now on and for the rest of this chapter, we suppose that ¢ > h, the Coxeter number of G.
Recall from Section [[.9 that we write N for the thick tensor ideal of negligible tilting modules. In this
section, we study the extension (N') of N to Rep(G), as defined in the Section

Definition 4.1. We call (N) the ideal of singular G-modules and say that a G-module is regular if
it does not belong to (NV'). We refer to the quotient category Rep(G) := Rep(G)/(N) as the regular
quotient of Rep(G) and write ¢: Rep(G) — Rep(G) for the quotient functor.

Note that a G-module M is regular if and only if ¢(M) is non-zero in the regular quotient Rep(G);
see the material on quotient categories in Appendix [A] We first prove two results that justify our
terminology.

Lemma 4.2. The ideal (N') of singular G-modules is the smallest thick tensor ideal in Rep(G) with
the 2/3-property that contains all (-singular linkage classes.

Proof. Recall that a linkage class Rep,(G) is called (-singular if 1 € Ctund \ Crund. For a G-module
M in an (-singular linkage class Rep,(G), all terms of the minimal complex Cyin(M) are negligible
because they belong to Rep,(G) by Lemma so M € (N).

Now let Z be a thick tensor ideal with the 2/3-property that contains all /-singular linkage classes.
In order to show that Z contains (N), it suffices to verify that Z contains N, by Lemma All
indecomposable tilting modules of /-singular highest weight belong to Z by assumption, so now consider
a negligible tilting module T'(z - \) of f-regular highest weight, where A\ € Cgpng N X and z € W;gf
with x # e. For a simple reflection s € S with xs < x, we have zs € W;gf by Corollary and
xs+ A < x -+ A by Theorem We can choose a weight p € Cyna N X with Stabyw, . (1) = {e, s},
and using Proposition and weight considerations, it is straightforward to see that T'(x - \) is a
direct summand of Tlf‘T(a: - ). (In fact, we have Tlf‘T(:U -p) = T(x - \) by Section IL.E.11 in [Jan03].)
As T'(x - p) belongs to Z and as T/f‘T(:): - i) is a direct summand of T'(z - ) ® T'(v), for v the unique
dominant weight in the Wgy-orbit of A — u, we conclude that T'(z - A) belongs to Z, as required. [

51



Chapter II. Generic direct summands

Lemma 4.3. For A € X, the following are equivalent:
(1) A(XN) is reqular;

(2) L()\) is regular;

(8) A is £-regular.

Proof. Suppose first that \ is f-regular and write A = x - \’ for some z € VV;Ef and N € Cpng N X. By
Propositions and the minimal tilting complexes of both A(\) and L(\) have the non-negligible
tilting module T'()\') as their term in degree £(z), and it follows that A(\) ¢ (N) and L(\) ¢ (N).
Conversely, if X is ¢-singular then the linkage class containing A(\) and L(\) is contained in (N') by
Lemma [4.2] and it follows that A(X) € (M) and L(X) € (N). O

Our next goal is to prove two results that we consider as a ‘linkage principle’ and a ‘translation
principle’ for tensor products. (See Remarkbelow for an explanation of this terminology.) The first
one (Corollary asserts that the principal block (and the extended principal block) are closed under
tensor products in the regular quotient. The second one (Theorem shows that the Krull-Schmidt
decomposition of any tensor product in Rep(G) can be determined by looking at the Krull-Schmidt
decomposition of (the projection to Repy(G) of) a tensor product of G-modules in Repy(G) and that
the multiplicities of indecomposable direct summands are governed by the Verlinde algebra. Our main
tool for proving these results will be the following lemma.

Lemma 4.4. Let A € CypngNX and w € Q. For G-modules M and N in the linkage classes Repy(G)
and Rep,,.q(G), respectively, the canonical embedding

pr (M ®N) — M@ N

and the canonical projection
M &N — pry\ (M ®N)

descend to isomorphisms in Rep(QG).

Proof. By the linkage principle, we have

MoN= @ pr,(MeN),
l/EéfundﬂX

and the lemma is equivalent to the statement that pr, (M QN ) 2 (0 in the regular quotient Rep(G),
for all weights v € Cpung N X with v # w -+ A. Observe that all terms of Cpin(M) belong to Rep, (G)
and all terms of Cyin(IV) belong to Rep,,.o(G) by Lemma As Cin (pr, (M ® N)) admits a split
monomorphism into the complex pr, (Cmin(M ) ® Crin (N )) by part (4) of Lemma it suffices to
prove that pr, (T(z - ) ® T(yw - 0)) is negligible for all z,y € W and v € Cyna N X with v # w -+ A,
If  # e or y # e then T'(x - A) ® T'(yw - 0) is negligible, because the negligible tilting modules form a
thick tensor ideal in Tilt(G). For x = y = e, we have T'(A\) ® T'(w+0) = T'(w - A) in the fusion category
Tilt(G)/N by Lemma and it follows that pr, (T(\) @ T(w-0)) is negligible for all v € Cpypa N X
with v # w - A, as required. O

For A € Cryna N X, let us write Rep, (G) for the essential image of the linkage class Rep, (G) under
the quotient functor ¢: Rep(G) — Rep(G), i.e. the full subcategory of Rep(G) whose objects are the
G-modules that are isomorphic to a G-module in Rep,(G), when considered as objects in Rep(G).
We also write Repq.o(G) for the essential image of the extended principal block Repg.o(G) in Rep(G).
As a consequence of Lemma [4.4] we obtain our ‘linkage principle’ for tensor products.
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Corollary 4.5. The subcategories Repy(G) and Repq.o(G) are closed under tensor products.

Proof. For w,w’ € Q and G-modules M and N in the linkage classes of w -0 and «’ - 0, respectively,
we have M @ N = pr,,,.o(M @ N) in Rep(G) by Lemma[4.4] so M ® N belongs to Rep,,.o(G). The
claim about Rep,(G) follows by setting w = w’ = e. O

As a further consequence of Lemma [4.4] we prove that a translation functor with source in the
extended principal block descends in the regular quotient to tensoring with a tilting module.

Corollary 4.6. Let A € CrnaNX and w € Q. Then X is the unique dominant weight in the Wgy-orbit
of w+A—w-0, and the canonical natural transformations

TS5 =pren(TMe-) = (TWe-) = pr., (TN e-) =177
of functors from Rep,.o(G) to Rep(G) give rise to an isomorphism of functors
qoT5g =qo (TN @ -).

Proof. Writing w = t,w with v € X and w € Wy, it is straightforward to see that w+-A—w-0 = w(X),
so A is indeed the unique dominant weight in the Wgp-orbit of w + A — w - 0. By Lemma [£.4] the
component at a G-module N in Rep,,.,(G) of either of the two natural transformations descends to
an isomorphism in Rep(G), and the claim follows. O

We are now ready to establish our ‘translation principle’ for tensor products.

Theorem 4.7. For A\, i € Cryna N X and w,w’ € Q, there is a natural transformation of bifunctors

V(5 )@ (Tod - )= @ (T8 o prawo(— @ -)) %
VECtunaNX

from Rep,.o(G) x Rep,r.o(G) to Rep(G), where § , = [T'(A\) @ T(n) : T(v)]e, such that qV¥ is an
isomorphism of bifunctors.

Proof. We construct the natural transformation in several steps.

(1) By Corollary the natural embedding
(763 =) @ (157 =) = Prua (TN @ =) @ pry, (T() © =) = (TN © -) @ (T() © -)
induces an isomorphism of functors upon passage to the regular quotient Rep(G).
(2) The braiding on Rep(G) gives rise to a natural isomorphism
(TN @-)@ (T(p) @) = (TN @T(1) ® (- —).
(3) The canonical projection to the linkage class of ww’ - 0 gives rise to a natural transformation
(—® =) = pryw.o(—®-)

of bifunctors from Rep,,.o(G) X Rep,,.o(G) to Rep(G), which descends to a natural isomorphism
in Rep(G) by Lemma Tensoring with T'(\) ® T'(x) yields a natural transformation

(T @T() © (=@ =) = (T(A) @ T(11)) @ Pryyr.ol—® —),

which again descends to a natural isomorphism in Rep(G).
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(4) The tensor product T'(\) ® T'(p) can be decomposed as a direct sum

TNeTw=Ne @ T
Vecfunde

of its fusion part and a negligible tilting module N. This decomposition gives rise to a natural

isomorphism

Y @ 4
(T()‘)@)T(/J’)) ®prww/-0(7®7) = (N®prww’-0(7®7)) @ @ (T(V)®prww’-0(7®7)) C)\’H'
VECrumaNX
As N is negligible, the essential image of the bifunctor N ® pr,,.o(— ® —) is contained in (N),
and it follows that g o (N ® pr,,.o(— ® —)) = 0. Therefore, the projection onto the fusion part
gives rise to a natural transformation

(T ©T() @ Prurg(-© =) = D (1) @ Prowro(~ © ) T,
VECrnaNX

which descends to an isomorphism of functors in Rep(G).

(5) Again by Corollary the canonical natural transformation

D (T @pra(-2) N = D (L oprua(-©-)
VECHnaNX VECrnaNX

induces an isomorphism of functors upon passage to the regular quotient.

All of the natural transformations in (1)-(5) give rise to natural isomorphisms upon passage to the
regular quotient Rep(G). Therefore, their composition is a natural transformation

V(TS ) o (Tog —) = D (T o prawn(- @ )%
Vecfunde

such that qW is a natural isomorphism. O

Remark 4.8. The statement of Theorem becomes more readable (but also slightly less general)
if we set w = w’' =e: For \, u € Cpuna N X, there is a natural transformation of bifunctors

W (T(j\ — ) ® (TéL — ) = @ (Té’ o pro(— ® —))EBCK”‘
vECrumaNX

from Repy(G) x Repy(G) to Rep(G), such that ¢V is an isomorphism of bifunctors. Taking the action
of 2 into account complicates our notation here, but it will be very useful in the following chapters.

Remark 4.9. Let us briefly explain why we think of Corollary and Theorem as a ‘linkage
principle’ and a ‘translation principle’ for tensor products. The usual linkage principle asserts that
the category Rep(G) decomposes into linkage classes, and the usual translation principle establishes
equivalences between the different /-regular linkage classes. Thus, many questions about the structure
of the category Rep(G) can be reduced to questions about the principal block Repy(G). However,
this strategy fails for two reasons when one tries to take the monoidal structure of Rep(G) into
account. Firstly, the principal block is not closed under tensor products. In fact, the tensor product
of two G-modules in Repy(G) can have non-zero indecomposable direct summands in many different
linkage classes, including ¢-singular ones. Secondly, it is a priori not clear how structural information
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4. The ideal of singular G-modules

about tensor products of G-modules in the principal block can be used to deduce (precise) structural
information about tensor products of G-modules in arbitrary ¢-regular linkage classes.

The preceding results show that both of these obstacles can be partially resolved by passing to
the regular quotient. Indeed, Corollary tells us that the essential image Repy(G) of the principal
block in the regular quotient is closed under tensor products; hence, the decomposition of Rep(G) into
linkage classes is, to some extent, compatible with the monoidal strucure of Rep(G). Furthermore,
Theorem enables us to describe (the regular parts of) tensor products of G-modules in arbitrary ¢-
regular linkage classes, once we know the structure of (the components in Repy(G) of) tensor products
of G-modules in Repy(G). The reader should note, however, that all information about singular direct
summands is lost in the process.

In the following, we present a second approach to the ‘linkage principle’ and the ‘translation
principle’ for tensor products, which largely bypasses the quotient category Rep(G), but also loses
the functoriality of Theorem [£.7] When studying tensor product of specific G-modules, rather than
categorical properties of Rep(G), this second approach will turn out to be more convenient.

Definition 4.10. For a G-module M, we write M = Mgpng ® Mo, where for a fixed Krull-Schmidt
decomposition of M, we define M, to be the direct sum of the singular indecomposable direct
summands of M and M, to be the direct sum of the regular indecomposable direct summands of M.
We call Mging the singular part of M and M,e, the regular part of M.

Note that the decomposition M = Mgne @ Myes in the previous definition is neither canonical
nor functorial. Nevertheless, the singular part and the regular part are uniquely determined up to
isomorphism by the Krull-Schmidt decomposition of M.

Lemma 4.11. For G-modules M and N, we have

Myeg @ Nyeg = (Mo N)reg and (M ® N)reg = (Mreg & Nreg)

reg’

Proof. The first isomorphism is straightforward to see from the definition. The second one follows
from the direct sum decomposition

M ® N = (Mreg ® Msing) ® (Nreg ©® Nsing)
= (Mreg ® Nreg) & (Mreg ® Nsing) ©® (Msing ® Nreg) ©® (Msing & Nsing)
and the fact that singular G-modules form a thick tensor ideal. O
The following lemma can be seen as another version of the ‘linkage principle’ for tensor products.

Lemma 4.12. Let A € Cpypnga N X and w € Q) and let M and N be G-modules such that Mg belongs
to Repy(G) and Nyeg belongs to Rep,.o(G). Then (M @ N)eg belongs to Rep,,.,(G).

Proof. By Lemma and the linkage principle, we have

(M @ N)reg = (Mreg ® Nreg) = @ (pru(Mreg ® Nreg))

reg
VEC tunaNX

reg’

and it suffices to show that pr,(Meg ® Nyeg) is singular for all v € Cyng N X with v # w+ A. This was
already observed in the proof of Lemma for arbitrary G-modules in the linkage classes Rep, (G)
and Rep,,.o(G). O
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Chapter II. Generic direct summands

Next we give a reformulation of Corollary in terms of regular parts of G-modules.
Corollary 4.13. Let A € Cypng N X and w € Q, and let M be a G-module in Rep,,.o(G). Then
(T(X\) @ M)
Proof. Recall from Corollary that A is the unique dominant weight in the Wgy,-orbit of w- A —w -0,
so T8 = pry,., (T'(A) ® —). Using Lemma we obtain

(T()\) ® M)reg = Pr,. ((T(A) ® M)reg) = (prw-)\ (T()‘) ® M)) = (T:IJ'.OAM)reg’

reg

reg = (TUZJ"U)\M)reg'

as required. O

The following result is a non-functorial version of the ‘translation principle’ for tensor products
from Theorem (.71

Theorem 4.14. Let A\, pi € CrynaNX and let M and N be G-modules in the linkage classes Rep,,.o(G)
and Rep,,.o(G), respectively, for certain w,w’ € Q. Then

(M ETIIN), = @ (T © N>

reg ww’-0
vECrnaNX

Proof. By Lemma and Corollary we have
A ! ~Y A
(T M @ TSYN),,, = (T2 )

@ (T4N) )

(T @ M), @ (T() @ N)
(T(A) @ M ®@T(u) ® N)

(T @ T(W),o,© (M@ N),,)

reg

12

reg) reg

I

reg

1%

reg

Now
(TN ®T

~~

W = D TE)TH
VEChumaNX
and (M ® N);eg belongs to the linkage class Rep,,,..0(G) by Lemma[1.12] Again using Corollary
we obtain
(T(1) @ (M & N)reg) oy = (1555 (M @ Nreg) o, = Tt (M @ N)reg

for all v € Cryng N X, and we conclude that

(TEMOTLHN) = D (T0) @ (M Nreg) o

reg reg
Vecfunde
ww' v ®cy
= P (TEHM S N)eg) “r,
VECrHnaNX
as claimed. ]

For applications in the following chapters, let us briefly explain how the action of {2 can be used
to compare the regular parts of tensor products of G-modules with constituents belonging to different
linkage classes in the extended principal block Repg.(G). For w € Q, consider the auto-equivalence

™= 177

AEQ-0
of Repq.o(G).
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4. The ideal of singular G-modules

Lemma 4.15. Let M and N be G-modules in Repg.o(G) and let w,w’ € Q. Then
(T*M@TYN),, = T (M & N)reg.

Proof. We could deduce this as a special case of Theorem [£.14] where A and p belong to - 0, but to
avoid excessive indexing, we prefer to prove the claim directly. (The reader will note that the proof is
also just a special case of the proof of Theorem ) By Lemma and Corollary we have

IIZ

I
—~

(T“M @ T“'N ) (T M)rog @ (T N)yeg)

reg

(T(w-0)2 M), & (T(w’-O)@N)reg>reg

1

Tw-0)@M®T(w -0)®N)

reg

I

((Tw 0)® T(w' - 0)), g@(M@N)reg)reg,

where (T'(w-0) ® T(w - 0))reg ~ T(ww'+0) by Lemma [1.9.2, Again using Corollary we obtain
(T(ww' - 0) ® (M & N)reg) o, = (T (M ® N)rog) o = = T (M ® N)reg,
and the claim follows. O

For certain applications, it will be important to decide if the tensor product M ® N of two regular
G-modules M and N is regular. Though we are not aware of any examples where this is not the case,
we were not able to prove it in general (but see Remark below). To overcome this problem, we
introduce the notion of strong regularity.

Definition 4.16. A G-module M with gfd(M) = d is called strongly reqular if Cpin(M)g—1 is negli-
gible and Chin(M)4 is non-negligible.

Remark 4.17. Observe that, for # € W, and A € Cgyua N X, the Weyl module A(x - \) and the
simple G-module L(x - \) are both strongly regular. Indeed, by the description of the minimal tilting
complexes of A(z-\) and L(x+\) in Propositions |[2.5{and ﬁ the tilting modules Cryin (A(z - /\))z(w)_1
and Chyin (L(x . /\))

((z)—1 AT€ negligible and we have
Croin (A(z - /\))E(I) >~ Crin (L(z - )\))e(x) = T(wg + A,
where ((z) = gfd(A(z - X)) = gfd(L(z - A)) by Corollary
Our interest in strongly regular G-modules is founded in the following result:
Lemma 4.18. Let M and N be strongly reqular G-modules. Then M ® N is strongly regular and

gfd(M ® N) = gfd(M) + gfd(N).

Proof. Set d = gfd(M) and d’ = gfd(N) and note that by Lemma [2.3] we have Cyin(M); = 0 for i > d
and Cpin(N); = 0 for ¢ > d'. By the definition of strong regularity, there exist v, € Crypng N X such
that

[Cmin(M)d . T(l/)]@ 7§ 0 and [Cmin(N>d’ . T(V/)]EB 7& 0.
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Chapter II. Generic direct summands

By Lemma m there exists 6 € Cpna N X with [T'(v) ® T(V) : T((S)]eB # 0, so T(0) appears as a
direct summand of the tensor product Chin(M)g ® Ciin (N )g, which is the degree d 4+ d’ term of the
tensor product complex Chin (M) ® Chyin (V). Furthermore, the degree d +d' — 1 term

(Cmin(M)dfl ® Cmin(N)d’) @ (Cmin(M)d ® Cmin(N)d’—l)

of the tensor product complex is negligible, and the terms in degree i > d + d’ of the tensor product
complex are zero. Now Chin (M ® N) is the minimal complex of Cpin(M) @ Ciin(N) by part(4) of
Lemma hence Cryin(M & N)gyqa—1 is negligible and Cryin(M @ N); = 0 for i > d+d'. As the terms
of the tensor product complex Chin(M) @ Cpin(N) in degrees d + d' — 1 and d + d' + 1 are negligible
or zero, respectively, Corollary implies that

0 7& [ mln( )d & Crnin(N)d’ : T((S)]@ = [Cmin(M & N)d—i—d/ : T<5)]€B
Finally, Lemma yields gfd(M ® N) =d + d’, and it follows that M ® N is strongly regular. O

Remark 4.19. In the quantum case, we claim that the tensor product M ® N of two regular G-
modules M and N is always regular, if £ > h. Observe that the claim is equivalent to the statement
that singular G-modules form a prime ideal, i.e. that the tensor product M ® N of two G-modules
M and N is singular only if at least one of M and N is singular. As in Remark we have

= () P= () (PNTit(G)),

(NYCP (NYCP

where the intersection runs over the prime thick tensor ideals P in Rep(G) with the 2/3-property such
that (N) C P. For any such tensor ideal P, we have N’ C P N Tilt(G), and as N is maximal among
the proper thick tensor ideals in Tilt(G) (by Lemma , it follows that N' =P N Tilt(G) and

(N) =(PNTilt(G)) =P
is prime, as required. We do not know if the analogous statement is true in the modular case.

The fact that strongly regular G-modules M and N satisfy gfd(M @ N) = gfd(M)+gfd(N) (rather
than just the inequality from Lemma is a very convenient additional feature of strong regularity.
It allows us to prove the following generalization to tensor products of A. Parker’s results from [Par03]
about the good filtration dimension of Weyl modules and simple G-modules (see Corollary .

Theorem 4.20. Let x1,...,Tm,Y1s...,Yn € W woand A, ..o, A, 1o, iy € Crana N X Then the
tensor product

Axy - A) @+ @ AT+ Am) @ L(y1 + p11) @ -+ @ L(yn + pin)

is strongly regular and has good filtration dimension €(x1) + -+ €(xm) + L(y1) + -+ + L(yn).

Proof. For 1 <i <m and 1 < j <n, the G-modules A(z; - \;) and L(y; - p;) are strongly regular by
Remark and their good filtration dimensions are given by

gfd(A(zi - \y)) = () and  gfd(L(y; - \j)) = L(y;)
according to Corollary The claim follows from Lemma by induction on m + n. O
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4. The ideal of singular G-modules

We conclude this section by giving a further application of the tensor ideal (N) of singular G-
modules, which may be of independent interest. We prove that the composition of two translation
functors between f-regular linkage classes is naturally isomorphic to a translation functor. This state-
ment should not be very surprising to experts in the field, but the author is not aware of a proof in
the literature.

Proposition 4.21. Let A\, 4,0 € Cranga N X. Then there is an isomorphism of functors TgL ~ Tf o T(;)‘.

Proof. First suppose that § = 0 and recall that
Ty = pry (V) ® —), 1§ = pr,(V(p) © —) and T} =pr,(V(v)®-),
where v is the unique dominant weight in the Wsy-orbit of p — A. Consider the functor
W =pr, (V)@ V(A) @ —),

and note that the canonical embedding of functors Tj = (V(/\) ® —) gives rise to a natural trans-
formation T} o Ty = . Furthermore, we have

V() = TLV(N) = pr, (V(r) © V(V))

by Proposition and the canonical projection V(v) ® V(A) — V(u) affords a natural transforma-
tion ¥ = Té* . We claim that the composition of these natural transformations

9 T o Ty = ¥ = T}

is a natural isomorphism.
Let N be a complement of V(1) = pr, (V(v)® V(})) in V(A) ® V(v), and observe that pr,N = 0.
For a G-module M in Repy(G), we have

(M ® N)reg = @ (M ® pryN)reg
Vecfunde

by the linkage principle and Lemma and as (M ® pr,N);eg belongs to Rep,(G) by Lemma
we conclude that
pr, (M ® N)reg = (M pruN)reg

for all v € Cpyna N X. In particular, the functor pr,(N ® —) maps every G-module in Rep,(G) into
the tensor ideal (N) of singular G-modules. As ¥ decomposes as the direct sum of the functors T}’
and pr,, (N ® —), this implies that all components of the natural transformation ¥ = T| o descend to
isomorphisms in the regular quotient Rep(G). Similarly, the embedding of functors

Ty = (V)@ -) = (T(\) ® )

descends to a natural isomorphism in Rep(G) by Corollary and it follows that the same is true
for the natural transformation

T{ o Ty = pr, (V)@ —) o (VIN) ® =) = U.

In particular, the component of ¢ at any simple G-module L(z-0) with x € W;f affords an isomorphism
in Rep(G). Now L(z - 0) is non-zero in Rep(G) by Lemma whence the endomorphism algebra
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Chapter II. Generic direct summands

of L(z - 0) in Rep(G) is also non-zero. Since the latter endomorphism algebra is a quotient of the
endomorphism algebra of L(z - 0) in Rep(G), we conclude that the component of ¥ at L(z - 0) is
non-zero; hence it affords an isomorphism between 74Ty L(z - 0) = L(z - 1) and T§'L(x - 0) = L(z - ),
by Schur’s Lemma. Using the snake Lemma and induction on the length of a composition series, one
easily deduces that the component of ¥ at every G-module in Repy(G) is an isomorphism, so ¢ is a
natural isomorphism, as claimed.

Now since T(j\OTQ is isomorphic to the identity functor on Rep, (G), we further obtain isomorphisms
of functors

TV =Tl oTg o TY 2 TY o TY.

For arbitrary 6 € Crung N X, we conclude that
TooTy 2T§oT) 0T o Ty 2 T3 o Ty = T¥,

as required. O

5 Generic direct summands

In this section, we study the regular indecomposable direct summands of tensor products of specific
G-modules (such as Weyl modules and simple modules). Our knowledge about the minimal tilting
complexes of these G-modules allows us to show that (certain) regular indecomposable direct sum-
mands of the corresponding tensor products are essentially unique. Recall that we write z — w, for
the canonical epimorphism Wey = Wag X Q — Q with kernel Wog and that we assume ¢ > h.

Proposition 5.1. Let x,y € W.,. Then the tensor product A(x+0) ® A(y - 0) has a unique reqular
indecomposable direct summand Ga(x,y). Furthermore, Ga(x,y) belongs to the linkage class of wyy 0
and satisfies

gfd(Ga(x,y)) = €(x) + L(y).

Proof. Recall from Lemma that Cuin (A(z - 0) ® A(y - 0)) is the minimal complex of the tensor
product complex Ciin (A(x . O)) ® Cinin (A(y . O)) By Proposition the terms Chin (A(m . O))l of
the minimal tilting complex of A(z - 0) are negligible for ¢ < ¢(x) and zero for i > ¢(x), and we have

Chnin (A(:U . 0)) >~ T(wg - 0).

(z)

Analogously, we have
Crnin (A(y - O))e(y) = T(wy - 0),

and Croin (A(y - 0))1 is negligible for i < ¢(y) and zero for i > {(y).

Combining the above observations, we see that the terms Cryin (A(z-0) ® A(y - 0))1 of the minimal
tilting complex of A(x - 0) ® A(y - 0) are negligible for i < ¢(x) + ¢(y) and zero for i > {(z) + £(y).
Furthermore, the term in degree ¢(z) + ¢(y) is a direct summand of the tensor product of tilting
modules

Chin (A(x . 0))é($) ® Chin (A(y . 0))é(y) = T(wg + 0) ® T'(wy + 0),
which is isomorphic to T'(wgwy - 0) = T'(wsy - 0) in the fusion category Tilt(G)/A by Lemmal[[.9.2] As
the terms of the tensor product complex Ciin (A(z + 0)) ® Crin (A(y - 0)) in degrees £(z) + £(y) — 1
and ¢(x) + ¢(y) + 1 are negligible or zero, respectively, Corollary implies that

[Cmin (A(ZE 0) @Ay - 0))g(a¢)+[(y) T (way - 0)]@ =1,
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and T'(wzy - 0) is the unique non-negligible indecomposable direct summand of the degree £(x) + £(y)
term of Ciin (A(z - 0) ® A(y - 0)).
Now fix a Krull-Schmidt decomposition

Alz-0)@Ay-0) =M @ --- D M,

and note that
Clnin (A(2 - 0) @ Ay + 0)) 2 Crpin (M) @ -+ ® Clin (M,).

Hence there exists a unique k € {1,...,7} with [Cuin(Mg)e(z)1e(y) : T(Way + 0)]e # 0, and all of the
terms Cpin(M;); of the minimal tilting complexes Ciin(M;) are negligible for @ # k (or ¢ = k and
Jj < {(z)+£(y)) and zero for j > ¢(x) + ¢(y). In particular, M} is the unique regular indecomposable
direct summand of A(z -0) ® A(y - 0), M, belongs to the linkage class of wyy + 0 by Lemma and
we have gfd(My) = ¢(x) + £(y) by Lemma O

Remark 5.2. For x,y € W

ext’

one can show as in Proposition [5.1{that V(z-0)® V(y-0) has a unique
regular indecomposable direct summand Gv(z,y). Furthermore, Gy (z,y) satisfies

wid(Gv (z,y)) = () + ((y)

and belongs to the linkage class of wy, - 0. In the following, we will mostly restrict our attention to one
of the classes of modules Ga(x,y) or Gy (z,y), which is justified by the fact that Gy (z,y) = Ga(x,y)".
Indeed, Ga(z,y)" is a direct summand of

(A(z-0)®@A(y-0))" 2 V(z-0)@ V(y-0),
and Ga(x,y)” is regular since Cin (GA(w,y)T)i 2~ Choin (GA(l‘,y))_Z. for all ¢ € Z.

Definition 5.3. For z,y € W..,, we call the G-module Ga(z,y) from Proposition the generic

direct summand of A(xz-0)® A(y-0). Analogously, we call the G-module Gy(z,y) from Remark
the generic direct summand of V(z-0) ® V(y - 0).

Remark 5.4. The term generic direct summand is justified by the fact that translates of Ga(z,y)
appear ‘generically’ in Krull-Schmidt decompositions of tensor products of Weyl modules with highest
weights in the alcoves  « Crypng and y + Cryng: For A\, pu € Cryng and z,y € W;ﬁ, we have

(A2 @ AW- ), = (TPA@E-0) & TYA(y - 0),,,

=~ P WAE-0)AY-0)
VECrumaNX

~ HcX
= @ T(S/ GA (‘T’ y) Do
VECrumaNX

by Theorem and Proposition [5.1
The following elementary lemma is an immediate consequence of Lemma

Lemma 5.5. Let z,y € W, and w,0’ € Q. Then

Ga(zw,yw') =2 T Gz, y) and Gy (zw, yw') = T Gy (, ).
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Proof. First note that A(zw - 0) = T¥A(z - 0) and A(yw’ - 0) = T A(y - 0). By Proposition and
Lemma [4.15, we have

Galaw,yw') = (A(zw - 0) ® A(yw' - 0))
= (TYA(z - 0) @ T Ay - 0))
= 7% (A(z - 0) @ Ay - 0))
= 7Gx, y),

reg

reg

as claimed. The isomorphism Gy (2w, yw') = T Gy (z, ) can be proven analogously. O

Remark 5.6. Observe that the proof of Proposition [5.1] implies that

[C’min (GA(a:,y))g(x)H(y) t T (wey - 0)}69 =1
for all z,y € We'f(t. Now suppose that z,y € W,:, so that A(x - 0) and A(y - 0) belong to Repy(G).

Then we have Cryin (A(z - 0))5 o = T(0) and Cryin (A(y - 0))€(y) = T'(0) by Proposition Arguing
as in the proof of Proposition we see that

(2)+(y)

not only in the fusion category but as actual G-modules, and that

Conin (G (2, 9)) oy 40y = T(0)-

Note that this argument also shows that Ga(x,y) is the unique indecomposable direct summand of
the tensor product A(x - 0) ® A(y - 0) with good filtration dimension £(x) + £(y). For z,y € W, it
follows from Lemma [5.5] that

Chin (GA ($> y))g($)+g(y) = T(Wﬂcy : O)

The regular indecomposable direct summands of tensor products of simple G-modules in the
extended principal block are in general not unique. To get uniqueness, we need to impose a condition
on the good filtration dimension.

Proposition 5.7. Let z,y € W

ext*

Then the tensor product L(x - 0) @ L(y - 0) has a unique regular
indecomposable direct summand G(z,y) with gfd(G(:z:, y)) ={l(x)+L(y). Furthermore, G(x,y) belongs
to the linkage class of wyy - 0.

Proof. First suppose that x,y € W;f. Recall from Proposition that the terms Chin (L(x . 0))Z of
the minimal tilting complex of L(x - 0) are zero for i > £(z) and negligible for i = ¢(x) — 1, and that

Crin (L(z - 0)) ., = T(0).

()
Analogously, we have

Chin (L(y : 0))g(y) = T(O)v

and Ciyin (L(y - 0)), is zero for i > £(y) and negligible for i = £(x) — 1. Hence the degree £(z) + £(y) — 1
term of the tensor product complex Cpin (L(:J; . O)) ® Cmin (L(y . 0)) is the negligible tilting module

(Cmin (L(l‘ : 0)) ® Cmin (L(y ) 0)))£(x)+€(y)*1

= (Cmin (L(CC . 0))2(1)71 ® C1rnin (L(y . 0))@@)) ©® (Cmin (L(IE . 0))@(@ ® Cmin (L(y . 0))f(y)71>’
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the degree £(z) + £(y) term of Ciin(L(z - 0)) @ Crin (L(y - 0)) is

and the terms of Cryin(L(2 + 0)) ® Crin (L(y - 0)) in degree i > ¢(z) + {(y) are all zero. By part (4)
of Lemma Chin (L(x -0)® L(y - 0)) is the minimal complex of Ciuin (L(m . 0)) ® Cmin (L(y . O)),
and using Corollary we conclude that Ciyin (L(z - 0) @ L(y - O))é(z)+e(y) > T(0). This implies that
there is a unique indecomposable direct summand G(z,y) of L(x-0) ® L(y - 0) whose minimal tilting
complex has a non-zero term in degree ¢(z) + £(y), and the latter satisfies

Cmin (G(CU, y))ﬁ(x)—i—f(y) = T(O)

In particular, G(z,y) is regular and belongs to the linkage class of 0 by Lemma and G(z,y) is the
unique indecomposable direct summand of L(x+0)® L(y-0) with good filtration dimension ¢(z)+¢(y)
by Lemma

For arbitrary elements x,y € Wt

we can write z = ’w, and y = ¢y'w, with 2/,y' € W, and the
ext? Y=Yywy 'Y aff?

claim follows from the previous case because

(Lla-0)® L(y-0),,, = (T L' -0) @ TL{y -0)),, = T (L(a'-0) & L(y/ - )

reg reg reg

by Lemmam (and because the translation functor T%#v preserves the good filtration dimension). [

Remark 5.8. For z,y € W,

ext»

one can show as in Proposition [5.7|that L(z-0)® L(y-0) has a unique
regular indecomposable direct summand G'(z,y) with wid(G'(z,y)) = £(z) + £(y). In the following,
we will only study the modules G(x,y), which is justified by the fact that G’ (x,y) = G(x,y)". Indeed,
G(z,y)" is a direct summand of (L(z-0) ® L(y - 0))" = L(z - 0) ® L(y - 0) with

whd(G(z,y)") = gfd(G(z,y)) = () + ((y),
and G(x,y)” is regular since Cipin (G(a:,y)T)i = Chin (G(2,y)) _, for all i € Z.

Definition 5.9. For z,y € W;r{t, we call the indecomposable G-module G(z,y) from Proposition

the generic direct summand of L(x - 0) ® L(y - 0).

Lemma has an obvious analogue for generic direct summands of tensor products of simple
G-modules.

Lemma 5.10. Let z,y € Wi, and w,w’ € Q. Then
Glzw, yu') = T G(x, ).

Proof. We can essentially copy the proof of Lemma [5.5] replacing Weyl modules by simple modules.
The only additional fact that one needs to use is that the translation functor 7% preserves the good
filtration dimension. O

Remark 5.11. Observe that the proof of Proposition implies that
Chin (G(xa y))g(x)+g(y) = T(way - 0)

for all z,y € W;(t. Furthermore, if z,y € W;f then G(zx,y) is the unique indecomposable direct

summand of the tensor product L(x - 0) ® L(y - 0) with good filtration dimension ¢(z) + £(y).
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Remark 5.12. The G-modules G(z,y) and Ga(z,y), for z,y € WS, are not only regular but
strongly regular. Indeed, by Remark and Lemma the tensor products L(z-0)® L(y-0) and
Az +0)® A(y - 0) are both strongly regular of good filtration dimension ¢(x) 4 ¢(y). Therefore, there
exist strongly regular indecomposable direct summands M of L(z-0)®L(y-0) and N of A(z-0)®A(y-0)
with gfd(M) = gfd(N) = ¢(z) +¢(y), and the uniqueness statements in Propositions 5.1/ and [5.7| imply
that G(z,y) = M and Ga(x,y) = N are strongly regular. We point out that the strong regularity of

the G-modules G(x,y) and Ga(z,y) is also implicit in the proofs of Propositions and

Remark 5.13. In principle, there is no reason why one would need to restrict one’s attention to the
study of regular indecomposable direct summands of tensor products of G-modules that belong to
the same ‘class’ of modules (such as Weyl modules or simple modules). For z,y € W;(t, the proof of
Proposition can easily be adapted to show that a tensor product of the form A(z -0) ® V(y - 0)
has a unique regular indecomposable direct summand Ga v(z,y), and the latter satisfies

: T(wgy - 0)] . = 1.

[Cmin (GA,V(xa y))g(x)_f( @

Y)

Similarly, we can adapt the proof of Proposition to show that L(z-0)®A(y-0) has a unique regular
indecomposable direct summand with good filtration dimension ¢(x) 4 ¢(y) and that L(x-0) ® V(y-0)
has a unique regular indecomposable direct summand with Weyl filtration dimension ¢(z) + £(y).

Remark 5.14. For the most part of this manuscript, we have been (and will be) restricting our
attention to tensor products of two G-modules, but one may also ask about regular indecomposable

direct summands of iterated tensor products with more than two constituents. For z1,...,x, € W;'(t,

one can use the techniques from the proofs of Propositions and to show that the iterated tensor
product
Alz1:0)®--- @ A(zy + 0)

has a unique regular indecomposable direct summand Ga(z1,...,z,) (which has good filtration di-
mension £(z1) + - -+ + ¢(x,)) and that the iterated tensor product

L(z1+0)® - @ L(zp - 0)
has a unique regular indecomposable direct summand G(z1,...,x,) that satisfies

In analogy with the results from Section |4] we can also prove a translation principle for iterated tensor
products, where the structure constants of the Verlinde algebra are replaced by multiplicities of basis
elements in iterated products.

6 The Steinberg-Lusztig tensor product theorem

Recall from Section that every dominant weight A € X' can be uniquely written as A = \g + £\1
with \g € X7 an f-restricted weight and \; € X . Then, by Steinberg’s and Lusztig’s tensor product
theorems, the simple module L(\) admits a tensor product decomposition

L(A) = L(Xo) ® L(EA1),

where L(¢A;) = L(A)W in the modular case and L(£\;) = Le(A)!Y in the quantum case. Further
recall that we assume that ¢ > h, the Coxeter number of G. It is straightforward to see that the
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6. The Steinberg-Lusztig tensor product theorem

weight A = Ao + €)1 is f-regular if and only if Ay is f-regular, and that ¢\ is always f-regular. For
{-regular dominant weights A = A\g + ¢\ and p = po + 1, our goal in this section is to describe the
regular indecomposable direct summands of the tensor product L(A) ® L(u) in terms of the regular
indecomposable direct summands of L(A\g) ® L(uo) and L(A)M @ L(u1)M (in the modular case) or
of L(Ao) ® L(po) and L()\l)([cl} ® Le(p)M (in the quantum case). Note that by Theorem we can
restrict our attention to the case where A and p belong to W, - 0. The main results from this section
will be crucial for the description of the regular indecomposable direct summands of tensor products
of simple G-modules in small rank cases, which will be given in Chapter [T]]

Because of the connection between the good filtration dimension of simple modules and the length
function on the (extended) affine Weyl group (see Corollary , we start by proving some elementary
properties of this length function. The following result is taken from Proposition 1.23 in [IM65]:

Proposition 6.1. Let v € X and w € Wgy,. Then

(tyw) = Y Ja)l+ D l(ae?) -1,
acdt acdt
wl(a)edt wHa)gdt

Recall that we write p for the half-sum of all positive roots in ®. Analogously, we define p" to be
the half-sum of all positive coroots, that is

1
v 1 v
Pt Y oY,
acdt
Using this notation, the length function on W, takes a very simple form.

Corollary 6.2. For v € X and w € Wy, such that tyw € Wi, we have

ext’

Utyw) = 2 (v.p") — {(uw).
Proof. For o € @1 and = € Apnq, we have
0 < (tyw(z),a”) = (y,0") + (z,w Ha)),

where 0 < (z,w !(a)") < 1if w(a) € @ and -1 < (z,w ' (a)") < 0 if w(a) ¢ ®F, and
where (7, ") is an integer. This implies that (y,a") > 0 for all « € ®T with w™!(a) € ®T and that
(7,aY) > 1 for all @ € & with w™!(a) ¢ ®T, whence we can omit the absolute values from the length
formula in Proposition [6.1] More precisely, we have

(tw)= > o)+ > l(raY) -1

aed™ acd™
wl(a)edt wHa)gdT
= Z (77 aV) + Z ((’%av) - 1)
acdt acdt
w’1506©+ w’150¢©+

=2-(v,p) = [{a € @™ | w (o) ¢ ot}

and the claim follows from the well-known fact that £(w) = ¢(w™!) equals the number of positive roots
that are sent to negative roots by w™!, again by Proposition O

Corollary 6.3. For x € W.t, and A € X, we have £(tyz) = £(t)) + {(z).
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Chapter II. Generic direct summands

Proof. Let us write z = tyw with v € X and w € Why, so {(z) =2+ (v, p"¥) — {(w) by Corollary
Analogously, we have £(t)) =2 - (X, p") and

Utra) = trpyw) = 2+ (A +7,p%) = £w) =2+ (A, ") +2- (7,p") — £w) = £(tx) + £(x),
as claimed. 0

Next we prove two results that compare the canonical order on X induced by ®* with the linkage
order and the Bruhat order.

Lemma 6.4. For A\, € X with X < p1, we have t)\(Agmnd) T tu(Afund)-

Proof. Recall that A < pu means that g — A is a non-zero non-negative integral linear combination of
simple roots. Hence it suffices to prove that t(Agnd) T tara(Afmd) for @ € @, Weset r = (A, V) +1
and claim that

tx(Afund) T Sartr(Afund) = Sar+1ta+a(Afund) T tr+a(Afund)-

Indeed, it is straightforward to see that for x € Agq, we have (A+z, ") < rand (A\+a+z,a") > r+1,
80 tA(Afund) € H,, and tyio(Afnd) € H 41> as required. O

Corollary 6.5. For A\, € X1 with X < p, we have ty <t, and ((ty) < ((t,).

Proof. This follows from Lemma 4] and the fact that the linkage order is equivalent to the Bruhat

order on W;f, see Theorem ]

Equipped with the above results about the length function, we can prove our results relating
generic direct summands with the tensor product theorems of R. Steinberg and G. Lusztig. We start
with the quantum case and then proceed to study the modular case.

The quantum case

Suppose until otherwise stated that we are in the quantum case. Until the end of the section, we fix
two elements z,y € Wt and write

0=\ +/0) and y-0=p +lu
with X,/ € X7 and \, u € X . Furthermore, we set
To = t_\x and Yo =t_py.
Observe that 7o+ 0=z -0 — ¢A = X, whence o € W, and
U(z) = L(trzo) = L(tx) + L(wo)

by Corollary and similarly ¢(y) = £(t,) + £(yo). As Rep(g) is a semisimple category, the tensor
product of the simple g-modules L¢(A) and Lo () decomposes as a direct sum

Le(N) @ Le(p) = €D Le(v S
veXt

of simple g-modules, for certain multiplicities d¥ u € Z>q.
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6. The Steinberg-Lusztig tensor product theorem

Lemma 6.6. There is an isomorphism

(L 0) @ L(y-0)),, = P ((Elwo-0)@ L(yo-0),, @ Lc(y)m)@dx’“

re
veXt &

Proof. By Lusztig’s tensor product theorem, we have
L(z+0) = L(zg- 0) @ Le(W! and  L(y+0) = L(yo - 0) ® Le ()",
and using Lemma [£.11], we obtain

(L 0) @ L(y - 0)),, = ((Llwo - 0) @ Llyo - 0),,, @ (LeW @ Le()V),.,)

reg )

Now
LeW! @ Le(n) = (Le() © Le(w) " = @ (Le()) ™,
veXt
and the claim follows since LC(V)[” =~ [(fv) is regular for all v € X, by Lemma O

Lemma 6.7. The G-module G(z,y) is a direct summand of G(zo,y0) ® Lo\ + ).

Proof. Recall that by definition, G(z,y) is the unique regular indecomposable direct summand of the
tensor product L(z-0) ® L(y - 0) that attains the maximal good filtration dimension

gfd(G(x,y)) = () + £(y) = L(x0) + L(yo) + £(tx) + £(t,.)-

For v € X1 with dK’# > 0, we have v < A+ p and by Corollaries and we get

gl (Le(n)V) = gl (L)) = 6(t,) < tas) = £ta) + (L),

with equality precisely when v = X\ 4+ u. As G(z,yo) is the unique regular indecomposable direct
summand of L(xg-0) ® L(yo - 0) that attains the maximal good filtration dimension ¢(zg) + ¢(yo), we
conclude (using Lemmas and [6.6) that G(x,y) is a direct summand of G(zo,yo) ® Le(X + p)lH,
as claimed. O

Corollary 6.8. If G(xo,yo) has simple socle as a Gy-module then G(z,y) = G(xo,y0) @ Le (X + ).

Proof. The assumption implies that G(xo,y0) @ Le(A 4 )Y is indecomposable by Lemma and
the claim is immediate since G(z, y) is a direct summand of G (g, 7o) ® Lc (A + )1 by Lemma, O

In order to discuss other regular indecomposable direct summands of tensor products of simple
modules, we will use the following lemma:

Lemma 6.9. Let M be a reqular G-module. Then M ® L(C(V)[l] is reqular for allv € X,

Proof. Note that Lc(—wov) is dual to Le(v), hence the trivial one-dimensional g-module L¢(0) is a
direct summand of L¢(v) @ Le(—wgr), and the trivial one-dimensional G-module L(0) 2 Le(0)Y is
a direct summand of L¢(v)! @ Le(—wor). This implies that M = M ® L(0) is a direct summand
of the tensor product M ® L@(V)m ® Lc(—w(ﬂ/)m, and the claim follows because singular G-modules
form a thick tensor ideal (see Lemma . O

67



Chapter II. Generic direct summands

Corollary 6.10. Let M be a regular indecomposable direct summand of L(zg +0) ® L(yo - 0) and let
ve Xt with di,u > 0. Then M' = M ® L(c(V)[l] s reqular, and every regular indecomposable direct
summand of M' is a regular indecomposable direct summand of L(x - 0) ® L(y - 0). If M has simple
socle as a Gi-module then M’ is a regular indecomposable direct summand of L(z - 0) ® L(y - 0).

Proof. The tensor product M’ = M @ L(v)!!] is regular by Lemma Every regular indecomposable
direct summand of M’ is also a regular indecomposable direct summand of L(x - 0) ® L(y - 0) by
Lemma whence the first claim. If M has simple socle as a Gi-module then M’ is indecomposable
as a G-module by Lemma [[.8.8] O

Corollary 6.11. Suppose that all reqular indecomposable direct summands of L(xg-0)® L(yo-0) have
simple socle as G1-modules. Then

(L 0) @ Ly-0)),,, = D ((Ezo-0)® Liyo - 0)),,, ® LC(V)[”)%’“.
veX+

Proof. By Lemma [6.6] we have

(L0 @ Liy-0),, = @ ((Lao-0)® Li-0),,, ® L))

re
veXt &

and the claim follows because all indecomposable direct summands of (L(zo-A)® L(yo ~)\))reg®L(c(l/)[1]

are regular by Corollary O

The modular case

Suppose until the end of the section that we are in the modular case. We would like to establish
modular analogues of the results that were proven above for the quantum case. One key argument in
Lemma was that the (quantum) Frobenius twist of a g-module is always regular, because it is a
direct sum of simple U¢(g)-modules of /-regular highest weight. Since in the modular case, the domain
of the Frobenius twist functor is the non-semisimple category Rep(G), we will need to replace this
argument by the following result:

Proposition 6.12. Let M be a G-module in Rep, (G), for some v € Ctund N X. Then the Frobenius
twist MW is strongly reqular. More precisely, define

d=dy =max{2-(v,p") | v € X with [M : L(y)] # 0},
and let v € X with [M : L(v)] #0 and 2 - (v, p") = d. Then Ciyin (Mm)d is a fusion module with
[Coin(M11), Tt -0)], 0.
Furthermore, we have Crin (M[l])i =0 fori>d and Cpin (Mm)d_1 is negligible.
Proof. Note that the composition factors of MU are of the form L(~/)! = L(¢4'), for 4/ € X+ such
that [M : L(v")] # 0. By Corollaries [2.7| and we have

gfd(L(ty')) = L(ty) =2 (+/,p") < d,

SO gfd(Mm) < d by Corollary and Chin (M[l])i =0 for all ¢ > d by Lemma We prove the
remaining claims by induction on the composition length of M.
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6. The Steinberg-Lusztig tensor product theorem

If M = L(y) is simple then M = L(¢y) = L(t, - 0) and £(t,) = 2 (v, p") = d by Corollary
so the claim follows from Proposition Now suppose that M has at least two composition factors
and fix a short exact sequence

0—L—->M-—>N-—=0

with L and N non-zero. By induction, we may assume that the proposition holds for L and N.

Note that by assumption, both L and N belong to the linkage class Rep,(G). In particular, all
highest weights of composition factors of L and of N belong to the same Z®-coset in X. As (8, p") € Z
for all 8 € @, it follows that dj, and dx have the same parity. Furthermore, by applying Lemma [2.4]
to the short exact sequence

0— LM — a5 NI g,

we see that .
C1min (M[l])z c C1min (L[l])Z ® C1min (Nm) = C’L

’L'_'

for all i € Z. Tt is straightforward to see that d = dp; = max{dy,dy}, and we distinguish three cases:

(1) Suppose that d = d;, > dy. Then L(y) is a composition factor of L with d, = 2 (v, p").
Furthermore, we have dy < d;, — 2 = d — 2 because d;, and dy have the same parity, and it
follows that Cpin (N [1}) =0 for ¢ > d — 2. In particular, we have

%

8 Crnin (L[l]) and Cmin (M[l])d 8 Crnin (L[l])

Crnin (Mm) d—1

d—1 d’

whence Chin (M [1]) de1 is negligible and Chyin (M [1]) d is a fusion module. Finally, the assumption
on L and Lemma 2.4 imply that

0 # [Cunin (LM) ;= T(wi, - 0)] = [Conin (MM, : Ty, - 0)]

because Cyj_1 = Ciin (L[ll) is negligible and Cyz;1 = 0.

d—1

(2) Suppose that d = dy > dr. Then L(y) is a composition factor of N with dy = 2 - (v,p").
Furthermore, we have di, < dy — 2 = d — 2 because dj, and dy have the same parity. Now the
claim follows precisely as in case (1), with the roles of L and N interchanged.

(3) Suppose that d = dy, = dy. Then Cpp (Mm) is negligible because

d—1

C11’nin (M[l]) 8 C(min (L[l])dfl D Cmin (N[l])

d—1 d—1’

and Chin (M [1]) is a fusion module because

d
C’rnin (Mm ) d 8 C’min (L[l])d ® Cmin (N[l])d

Furthermore, the simple G-module L() is a composition factor of at least one of the G-modules
L and N, and we have 2- (v, p¥) = d = dy. Using again the assumptions on L and N together
with Lemma [2.4] we obtain

0 # [Cunin (LM) ;= T(wi, + 0)] g + [Conin (NI, T, - 0)] ) = [Conin (M) = T, - 0)]

is negligible and Cyz;1 = 0. O

because the Cyq_1 = Cryin (L), | & Conin (N1 ,_,
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Now we are ready to give a modular analogue of Lemma Recall that we fix z,y € Wef(t and
write x -0 = XN + /4N and y -0 = ¢/ + fu with X, ' € X7 and A\, u € X . As before, we set xg = t_,x
and yo ==t_,y.

Lemma 6.13. Fiz a Krull-Schmidt decomposition L(N\) @ L(pu) = My @ --- @ M,. Then there is an
isomorphism

(L(z+0)® L(y - 0)),, = g? ((L(xo *0) @ L(y0+ 0)) 0 ® Mi[1]>reg

Proof. As in the proof of Lemma (replacing Lusztig’s tensor product theorem by Steinberg’s tensor
product theorem), we see that

(L(z-0)® L(y-0)),,, = ((L(xo +0)® L(yo - 0)),o, © (LA ® L(u)[”)reg>

reg '

Now
L) L= (Lo L) =M e o MY,
and the claim follows since Mi[l] is regular for ¢ = 1,...,r by Proposition O

In order to formulate an analogue of Lemma [6.7], we need the following definition:

Definition 6.14. Let M (), u) be the unique indecomposable direct summand of L(\) ® L(u) with a
non-zero A + p-weight space.

Note that M(\, p) is well-defined since the A + p-weight space of L(A\) ® L(u) is one-dimensional.
We could alternatively define M (A, u) as the unique indecomposable direct summand of the tensor
product L(A) ® L(p) that has L(A + u) as a composition factor.

Lemma 6.15. The G-module G(x,y) is a direct summand of G(zo,y) @ M\, ).

Proof. Recall that ¢(x) = ¢(xg) + ¢(ty) and £(y) = £(yo) + £(t,) by Corollary and that G(z,y) is
the unique regular indecomposable direct summand of L(x - 0) ® L(y - 0) that attains the maximal
good filtration dimension

gfd (G(z,y)) = U(x) + Uy) = €(zo) + L(yo) + L(tx) + £(t,)-

By Lemma G(z,y) is a direct summand of M ® N, for some regular indecomposable direct
summand M of L(xg-0) ® L(yo -0) and some indecomposable direct summand N of L(\) ® L(u), and
it suffices to show that M = G(x9,yp) and N = M (A, u).

By Lemma [[.7.2] and Corollary we have

gfd(M) < gfd(L(zo - 0) ® L(yo - 0)) < gfd(L(zg - 0)) + gfd(L(yo - 0)) = £(x0) + £(yo)
and similarly
gfd(N) < gfd (L)Y @ L)) = gfd (L) @ L(p)) < £(ty) + €(t,).
Again using Lemma we see that
0(w0) + L(yo) + £(t) + £(t,) = gfd (G (z,y)) < gfd(M @ N < gfd(M) + gfd (N1,
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and it follows that gfd(M) = £(zo) + £(yo) and gfd(NU) = £(t)) + £(t,). As G(20,10) is the unique
regular indecomposable direct summand of L(zg + 0) ® L(yo - 0) that has good filtration dimension
l(x0) + £(yo0), we conclude that M = G(zo, yo)-

Next note that N has a composition factor L(y) with

gfd(L(7)) = gfd(NW) = £(t2) + €(t.) = E(tasn),

by Corollaries and and that v = ¢4/ for some ' € X+ with [N : L(y/)] # 0. As N is a direct
summand of L(\) ® L(u), it follows that 7' < A+, whence t., < ty;, by Corollary Furthermore,
we have

Utrry) < gfd(L(y)) = gfd(L(&y)) = £(t)

by Corollary whence t, = ty;, and v/ = A 4+ p. We conclude that L(X + p) is a composition
factor of N, hence N = M (), ), as required. O

Corollary 6.16. If G(zo, o) is indecomposable as a Gi-module then G(z,y) = G(z0,y0) @ M (X, ).

Proof. The assumption implies that G(zg,y0) ® M (X, )l is indecomposable by Lemma and the
claim is immediate since G(z,y) is a direct summand of G(zg, yo) ® M (A, 1)) by Lemma O

The weights A\ and p can be written as A = Zz‘zo 0o\ and p = Zizo 0 - i with A, p; € X for
all 4 > 0. By iterating Steinberg’s tensor product theorem, we obtain tensor product decompositions

L) =Q@LO)T  and  L(p) = Q) L(u).

>0 1>0

In many cases, this allows us to describe M (A, ) as a tensor product of Frobenius twists of the

different M (A, ;).

Lemma 6.17. Suppose that M (\;, ;) is indecomposable as a Gi-module for all i > 0. Then

M (X, ) 2= Q) M (N, i)
>0

Proof. Since M(\;, ;) is a direct summand of L(\;) ® L(y;), the tensor product M = &, M (\;, ;)
is a direct summand of '
L) ® L) = &) (L) @ L) ™.
i>0
Furthermore, the A + u-weight space of M is non-zero because the \; + p; weight space of M (\;, u;) is
non-zero for all i, so it remains to show that M is indecomposable. This follows from Corollary
by our assumption on the G-modules M (\;, ;). O

As in the quantum case, we would like to discuss other regular indecomposable direct summands of
tensor products of simple modules as well. Unfortunately, there is no modular analogue of Lemma[6.9]
that suits our purpose. We will solve this problem using the notion of strong regularity which was
introduced in Section [l

Lemma 6.18. Let M and N be G-modules such that M is strongly reqular and N is indecomposable
as a G-module. Then M @ NW is strongly reqular. If M is indecomposable as a Gi-module then
M @ N s indecomposable as a G-module.
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Proof. The Frobenius twist N [l is strongly regular by Proposition 6.12, so Lemma implies that
the tensor product M ® N is strongly regular. If M is indecomposable as a Gi-module then M @ N1
is indecomposable as a G-module by Corollary O

Corollary 6.19. Let M be a strongly reqular indecomposable direct summand of L(x¢-0)®L(yo-0), and
let N be an indecomposable direct summand of L(\) ® L(p). Then M’ := M @ N is strongly regular,
and every regular indecomposable direct summand of M’ is a reqular indecomposable direct summand
of L(z - 0) ® L(y - 0). If M is indecomposable as a Gi-module then M’ is a regular indecomposable
direct summand of L(x -0) ® L(y - 0).

Proof. The tensor product M’ = M @ NW is strongly regular by Lemma and every regular
indecomposable direct summand of M’ is also a regular indecomposable direct summand of the tensor
product L(z - 0) ® L(y - 0) by Lemma whence the first claim. If M is indecomposable as a
Gi-module then M’ is indecomposable as a G-module, again by Lemma O

Corollary 6.20. Fiz a Krull-Schmidt decomposition L(A)@L(u) = M ®---®M,, and suppose that all
regular indecomposable direct summands of L(xy+0)® L(yo-0) are strongly reqular and indecomposable
as Gi-modules. Then

T

(L(z-0)@ Ly -0)),., = P (L(z0 - 0) @ L(yo - 0)),,, © .
i=1

Proof. By Lemma [6.13] we have

T

(L 0) @ L(y-0)),,, = D (Lo 0) @ L(yo - 0)),,, ® M}”)reg,
i=1
and the claim follows because all indecomposable direct summands of (L(zo+A) ® L(yo-\)). @ M, g

reg ?

are regular for i = 1,...,r, by Corollary [6.19 O
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III. Results in small rank

In this chapter, we compute examples of generic direct summands for G of type A and As. In each of
the two cases, we consider first the generic direct summands G(z, y) of tensor products L(z-0)® L(y-0)
of simple G-modules, and then turn our attention to the generic direct summands Gy (z,y) of tensor
products V(z - 0) ® V(y - 0) of induced modules, for z,y € W, .

1 Type A;

In this section, we suppose (unless otherwise stated) that G is of type A;. Then ®* =11 = {a},} and
we write a = ay, for the unique positive root. The weight lattice X is the free Z-module of rank 1,
spanned by the fundamental dominant weight w,, and we can identify X with Z via w, — 1. Under
this identification, the unique positive root « is mapped to 2, p = % -« is mapped to 1 and the scalar
product (—,—) on the euclidean space Xp = X ®z R = R corresponds to the multiplication of real
numbers. Furthermore, the set X+ of dominant weights is identified with the set Z>( of non-negative
integers. Accordingly, we denote the G-modules L(aw,), V(aw,), Alaw,) and T(aw,) by L(a),
V(a), A(a) and T'(a), respectively, for a € Z>y.

The representation theory of G in type A; has been studied extensively, including results about
tensor products of simple modules [DHO05] and of induced modules [Cav1i] (both in the modular case).
Nevertheless, we choose to present an approach that is largely self-contained, allowing us to treat the
quantum case and the modular case simultaneously.

Simple modules

Our first aim is to determine the regular indecomposable direct summands of tensor products of
simple G-modules. In view of the results from Section we should start by trying to understand
tensor products of simple G-modules with f-restricted highest weights. In a second step, we can
describe the regular indecomposable direct summands of a tensor product of two simple G-modules
with arbitrary highest weights as tensor products of different Frobenius twists of the indecomposable
direct summands of restricted tensor products.

Note that under our identification of X with Z, the set of f-restricted weights X; = {0,...,{—1}is
contained in CpyqNX = {—1,0,...,¢—1}. In particular, the fundamental /-alcove Cfypq is the unique
(-alcove containing (-restricted weights. By Theorem [[1.4.14] the observation that L(0)® L(0) = L(0),
and therefore G(e,e) = (L(0) ® L(O))reg >~ L(0), completely determines the regular parts of all
tensor products of simple G-modules with /-restricted f-regular highest weight. However, in order to
determine the regular indecomposable direct summands of tensor products of simple G-modules with
arbitrary ¢-regular highest weights (in the modular case), we also need some information about possibly
non-regular indecomposable direct summands of tensor products of simple modules with possibly ¢-
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singular highest weights (see Lemma . Therefore, we will compute in Lemma below the
complete Krull-Schmidt decomposition of a tensor product of simple G-modules with f-restricted
highest weights. We first need to establish some preliminary (and mostly well-known) results.

Note that since X7 C Cpyna, we have L(a) 2 V(a) = T'(a) for all a € X7, by the linkage principle.
Using Theorem and weight considerations, we obtain the following elementary lemma:

Lemma 1.1. All indecomposable direct summands of a tensor product L(a) ® L(b), with a,b € X3,
are of the form T(c) for some ¢ < 20 — 2.

As explained above, we have T'(c) = V(c) = L(c) for all ¢ < ¢ — 1. In the following well-known
lemma, we describe the submodule structure of the tilting modules T'(¢) with £ < ¢ < 20 — 2.

Lemma 1.2. Let £ < c <20 —2 and set ¢ := 20 — 2 — c. Then there is a short exact sequence
0— V() — T(c) = V(c)— 0.
Furthermore, T(c) is uniserial and of composition length 3, with
socgT'(c) = L(c), headgT'(c) = L(c) and radgT(c)/socgT(c) = L(c).

Proof. Let t = sq,1 € Wag and note that t - =20 —2 —z for all € Z, so t - ¢ = . Furthermore, it
is straightforward to see that Stabyy,, (¢ — 1) = {e,t} and T(¢ —1) = V(£ — 1). Now Proposition [[.6.9]
shows that there is a short exact sequence

0 V()= TE Tl —1) = V() =0

and that socgTy | T(f — 1) = L(¢'). In particular, T§ ,T(¢ — 1) is indecomposable, and as translation

functors preserve tilting modules, we conclude that TECLIT(K —1) 2 T(c). The final claim follows from
Proposition [[.6.10] because T'(¢ — 1) = L(£ — 1). O

The final result that we need in order to determine the Krull-Schmidt decomposition of a tensor
product of simple G-modules with /-restricted highest weight is the following ‘Clebsch-Gordan rule’:

Lemma 1.3. Let a,b € Z>o and suppose that a > b. Then V(a) @ V(b) has a good filtration
0=MyC M C---C My, C Myy1 =V(a)®V(b)
with M1 /M; =V (a—b+2i) fori=0,...,b.

Proof. Recall from Theorem that the tensor product V(a)®V(b) has a good filtration. By Weyl’s
character formula, we have
ec—l—l o e—c—l
Chv(c):7_12604‘66_24‘"'4-62_04-6_6
e—e
for all ¢ € Z>¢, and it is straightforward to verify that

b
ch (V(a) ® V(b)) = ch V(a) - chV(b) = Y chV(a—b+ 2i).
=0
As the characters of the induced modules V(c), for ¢ € Z>q, form a basis of Z[X]"» it follows that
V(a) ® V(b) has a good filtration with subquotients V(a — b + 2i), for i = 0,...,b, each appearing
with multiplicity one. By the remarks after Proposition we can choose a good filtration

0=MyC M C---C M, C My =V(a)®V(b)
with M;y1/M; 2 V(a—b+2i) for i =0,...,b, as claimed. O
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Remark 1.4. The ‘classical’ Clebsch-Gordan rule for g = sly(C) states that

b

Le(a) @ Le(b) = €D Le(a — b+ 2i)
i=0

for all a,b € Z>o with a > b. Just as Lemma this can be proven by comparing characters.

Definition 1.5. For a,b € Z>(, we set
CG(a,b) = {la—b|+2i|i=0,..., min{a,b}}

and
CGy(a,b) = CG(a,b) \ {2 —2—c| c € CG(a,b) with ¢ > ¢}.

The following result also appears as Lemma 1.3 in [DHO5| in the modular case; the proof in the
quantum case is completely analogous. Note that the set CGy(a,b) is denoted by W (a,b) in [DHO5].

Lemma 1.6. For a,b € X1, we have

LaoLb) = @ Tl

c€CGy(a,b)

Proof. Recall from Lemma that L(a) ® L(b) is a direct sum of indecomposable tilting modules.
As the characters chT'(c), for ¢ € Z>q, form a basis of Z[X]"an_ it suffices to prove that the tensor
product on the left hand side has the same good filtration multiplicities as the direct sum on the right

hand side. This is straightforward to see, using Lemmas [I.2] and O

Before we return to generic direct sumands, let us say some words about the (extended) affine
Weyl group of G and its (dot) action on X = Z. The finite Weyl group Wg, is cyclic of order 2,
generated by the reflection s := s,, which acts on Xg = R via s(z) = —z for z € R. The root lattice
Z® C X identifies with the set 2Z of even integers, and it follows that Q = X/Z® = 7, /27 is also cyclic
of order 2. The non trivial element of €2 is w := t;s (where ¢; denotes the translation z — z 41 on R,
according to our identification of Xg with R), and its (dot) action on R is given by w-z=0—2 — z,
for z € R. For © = t,s° € Weyt, with a € Z and € € {0, 1}, we have

0=ty -0=la—2c=0-(a—¢e)+e-({—2)=ts_cw®-0,

and it follows that, for all x € Wy, we can choose an integer b € Z and and element w € 2 such
that z « 0 = tpw - 0. Furthermore, b and w are unique with this property if £ > 2, and we have b > 0
whenever z € W,

In the quantum case, the classical Clebsch-Gordan rule already allows us to determine all regular
indecomposable direct summands of tensor products of simple G-modules with highest weights in

arbitrary f-alcoves.

Lemma 1.7. Suppose that we are in the quantum case. For x,y € W', let a,b € Z>o and w,w’ €

ext’
such that x + 0 =t,w -0 and y -0 = tpw' - 0. Then

(L(z-0)® L(y - 0))]reg = @ T4 L(lc)
ceCG(a,b)

and G(z,y) 2T L(¢- (a+b)).
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Proof. As L(z+0) = T¥L(t, - 0) and L(y - 0) = T% L(ty, - 0) by Proposition and

(L(z-0) @ Ly - 0)),,, = (T¥L(ta - 0) @ T¥'L(ty - 0)),,,, = T (L(ta - 0) ® L(ty - 0)),.,

by Theorem it suffices to prove that

(L(ta - 0) ® L(ty - 0)) ., = B Lw).

ceCG(a,b)
Observe that L(t, - 0) = L(fa) = Le(a)™ and L(ty, - 0) = L(¢b) = Le (b)Y, and therefore

L(ta-0) ® Lty 0) = (Le(@) @ Le()V = @ Le(o)l
ceCG(a,b)

by Remark Now the first claim follows since L (c)l!] 2 L(fc) is regular for all ¢ € CG(a,b), by
Lemma Using Corollary [I1.2.7] we see that T° w”/L(ﬁ . (a—l—b)) is the unique regular indecomposable
direct summand of L(z - 0) ® L(y - 0) of good filtration dimension ¢(t,4p) = a +b = €(z) + £(y), and
we conclude that G(z,y) = T‘”“’/L(E- (a+b)). O

From now on until Lemma (included), suppose that we are in the modular case.

Definition 1.8. For a sequence u = (ug, uy,...) € ZY with 0 < u; < 2¢ —2 for all i and u; = 0 for all
but finitely many i, let

J(u) = )T (u;)l.

i>0

Lemma 1.9. For any sequence u = (ug,u1,...) € ZN with 0 < u; < 20— 2 for all i and u; = 0 for all
but finitely many i, the G-module J(u) is indecomposable.

Proof. By Lemma it suffices to prove that the tilting module T'(a) is indecomposable as a G-
module for all 0 < a < 2¢—2. If a < ¢ then T'(a) = L(a) affords the simple Gi-module Li(a), so
now suppose that a > ¢, and recall from Lemma that T'(a) (considered as a G-module) is uniserial
and of composition length 3, with simple head and socle isomorphic to L(2¢ — 2 — a). As explained in
Section there is an isomorphism of G-modules

/-1

socg, T'(a) = @ L(b) ® Homg, (L(b)7 T(a))a
b=0

and as socg,T'(a) is a G-submodule of T'(a), the fact that socgT (a) = L(2¢ — 2 — a) implies that
socg, T(a) = L(20 — 2 — a) ® Homg, (L(20 — 2 — a), T(a)).

Now weight considerations show that Homg, (L(2¢ — 2 — a),T(a)) = L(0) is the trivial G-module,
whence socg,T(a) = L(2¢ — 2 — a) and T'(a) is indecomposable as a Gi-module. O

Lemma 1.10. Let a,b € Z>¢ and writea =), a;l" and b = > bil' with 0 < a;,b; < £ for all i. Then
the Krull-Schmidt decomposition of L(a) @ L(b) is given by

L(a)® L(b) = €D J(u),
where the direct sum runs over all sequences u = (ug, u1,...) with u; € CGy(a;,b;) for alli.

76



1. Type A;

Proof. By Steinberg’s tensor product theorem, we have L(a) = &), L(a;)!! and L(b) = ®, L(b:)1Y, and
it follows that

L) ® L(b) = @) (L(a:) @ L(b:) ",

>0

Furthermore, we have

La)®Lb)= @ T

u€CGy(ai,b;)

for all i« > 0 by Lemma [I.6] and by distributivity of tensor products and direct sums, we obtain the

claimed direct sum decomposition
L(a) ® L(b) = @5 J(u).
u
This is a Krull-Schmidt decomposition because J(u) is indecomposable for all u, by Lemma ]
ot let a,b € Z>p and w,w’ €

such that x + 0 = t,w -0 and y - 0 = tpw’ -+ 0. Furthermore, write a = > a;l* and b = > b l* with
0<a;<?land0<b; </l for alli. Then

Lemma 1.11. Suppose that we are in the modular case. For x,y € W

(L(z-0) @ L(y - 0)),,, = P T,

u

where the direct sum runs over all sequences u = (ug, u1,...) with u; € CGy(a;, b;) for all i. Further-
more, with a = (ag + bo, a1 + b1,...), we have and G(x,y) = T J(a)ll.

Proof. As in the proof of Lemma [1.7] we have

(L(z-0)® L(y - 0)),,, = (T*L(ta - 0) @ T L(ty - 0)), =T (L(t, - 0) @ L(ty - 0))

reg reg’

and it suffices to prove that

(L(ta0) @ Lty - 0)),,, = @ J ().

Observe that L(t, - 0) = L(fa) = L(a)!Y and L(t; - 0) = L(¢b) = L(b)V), and therefore

L(ta - 0) ® Lty - 0) = (L(a) ® L(b))" = @ J(u)l!

by Lemma Now the first claim follows since J(u)!! is regular for all u by Proposition

Furthermore, it is straightforward to see that J(a) = M/(a,b) is the unique indecomposable direct
summand of L(a) ® L(b) with a non-zero a + b-weight space. As G(e,e) = L(0) is indecomposable as
a Gi-module, Lemmas [[T.5.10] and [[T.6.16] yield

G(z,y) = Gtow, tyw') = T G(tq, ty) = T M(a, b)) = 79 J(a)lV],
as claimed. 0
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Costandard modules

Instead of computing the generic direct summands of tensor products of costandard modules directly
for G of type A1, we are going to prove a much more general result about tensor products of costandard
modules whose highest weights are multiples of the first fundamental dominant weight wi, for G of
type A, and n > 1. It will be necessary to temporarily leave the realm of simple algebraic group
schemes (or quantum groups corresponding to simple Lie algebras) and work with G= GLy41(k) or
G = Uc(9!,41(C)) instead of SLy41(k) or Ue(sly41(C)), in the modular case or the quantum case,
respectively. Furthermore, the Schur algebras corresponding to the (quantum) general linear group
will play an important role. More specifically, we will show that the unique indecomposable direct
summand of the tensor product V(aw;) ® V(bw) with a non-zero (a + b) - wi-weight space is the
injective hull of a simple module of the form L((a +0b) wy — cozl) over a Schur algebra S(n +1,a+ b),
for a,b > 0. We start with the modular case and then discuss the changes one needs to make to obtain
a quantum analogue.

The modular case. Suppose that we are in the modular case and that ® is of type A,, for some n > 1.
Then G = SLy+1(k) and we can choose T as the subgroup of diagonal matrices in G and B as the
subgroup of lower triangular matrices in G. We fix a numbering of the simple roots IT = {ay, ..., o}
according to the Dynkin diagram in Figure and define G = GLp11(k).

Following Sections I1.1.21 and 11.2.15 in [Jan03] (up to an index shift), the weight lattice X of G,
with respect to the maximal torus of diagonal matrices in G, is a free Z-module of rank n + 1 with
basis €g, ..., &n, given by the weights of the canonical basis vectors ey, ..., e, of the natural G-module
E = k"1, A base of the root system ® = {ei—¢;10<4,5 <n,i#j}of G, corresponding to the
Borel subgroup of upper triangular matrices, is given by I = {egi-1 —€i | 1 < i < n}, and the set of
dominant weights in X with respect to I is

Xt = {Zn:)\iai
i=0

For A\ € XT, we write L(\), A()\), V(\) and T()\) for the simple module, the Weyl module, the
induced module and the indecomposable tilting module of highest weight \ over G, respectively. It is

)\02...2)\n}_

straightforward to see that
E = V(e) = Lieo),

and as in Section I1.2.16 in [Jan03], one can show that S®E 2 V(aeo) for all a > 0, where S®E denotes
the a-th symmetric power of the natural G-module E.

There is a surjective homomorphism of Z-modules XX (coming from restriction to the maximal
torus T of G) with

n

(11) A= zn:)\léz — )\, = Z()\i_l — )\Z) - Wi,

=0 i=1

and it is straightforward to verify that the latter maps IT to IT and X+ onto X . By Section I1.2.10
in [Jan03], we have resgﬁ()\) >~ [,(X), for all A € X+, and similarly, one sees that resgﬁ()\) ~ V(N).

As for simply-connected simple algebraic groups, let us write Rep(é) for the category of (finite-
dimensional) G-modules. For any subset 1 C Xt we denote by Rep(G, ) the truncated subcategory

of Rep(G) corresponding to 7, that is, the full subcategory whose objects are the G-modules M such
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that for A € X, we have [M : L(\)] = 0 unless \ € m. We say that 7 is saturated if u 1ty A and A\ € 7
implies that p € 7, for all A\, u € X*. Analogously, we write Rep(é, 7) for the truncated subcategory
of Rep(G) corresponding to m C e T, and we say that 7 is saturated if © 1, A and X\ € & implies that
p € 7, for all A\, u € X+. Note that for # C Xt and 7 C X+ with N € « for all A € #, the restriction
functor resg: Rep(G) — Rep(G) gives rise to a restriction functor Rep(G,7) — Rep(G, ).

Now let # C X+ be finite and saturated, and note that every G-module has a natural Dist(é)—
module structure, as for simply-connected simple algebraic groups. We define the Schur algebra of G
with respect to 7 as the quotient

Se(#) = Dist(G) /I (%)

of Dist(G) by the two-sided ideal I () of elements of Dist(G) that annihilate all G-modules in the
truncated category Rep(G7 7). Analogously, we define the Schur algebra of G with respect to m C X
(finite and saturated) as the quotient

Sa(m) = Dist(G)/Ig(m)

of Dist(G) by the two-sided ideal Ig(7) of elements of Dist(G) that annihilate all G-modules in the
truncated category Rep(G, ﬂ)ﬂ By Sections II.A.15 and I1.A.16 in [Jan03], the Schur algebras S¢ (7)
and S () are finite-dimensional. More precisely, we have

dimSg(7) = Y (dimAN)*  and  dimSg(r) =Y (dimA(N))™.
AET AET

Note that by definition, every G-module in Rep(G,#) has a natural S¢ (7)-module structure and
every G-module in Rep(G, 7) has a natural Sg(m)-module structure. According to Section II.A.17 in
[Tan03], this gives rise to an equivalence between Rep(G,#) and the category of (finite-dimensional)
S¢ (7)-modules, and between Rep(G, ) and the category of (finite-dimensional) Sg (7)-modules.

By point (3) in Section 1.7.2 in [Jan03|, the embedding of G into G gives rise to an embedding of
Dist(G) into Dist(G). For # € XT and 7 C X* with X' € « for all X € 7, it is straightforward to see
that the latter affords a homomorphism Sg(7) — Sg (7).

Lemma 1.12. Let # C X+ and # C X+ be finite and saturated, and suppose that the map \ — N
induces a bijection between © and w. Then the canonical homomorphism Sg(m) — Sg(7) is an
isomorphism.

Proof. By Weyl’s character formula, we have dim A(\) = dim A(X) for all A € X, and it follows
that

dim Sg (7) = dim S (7).

Hence it suffices to prove that the homomorphism is injective, or in other words, that an element of
Dist(G) which annihilates the restriction to G of every G-module in Rep(G,#) also annihilates all
G-modules in Rep(G, 7). So let ¥ € Dist(G) and suppose that ¥ annihilates the restriction to G of
all G-modules in Rep(G, #). By Section ILE.7 in [Jan03], the restriction to G of an indecomposable
tilting G-module T'(\) with A € # is isomorphic to T'(X), hence ¢ annihilates all indecomposable
tilting G-modules T'(u) with p € 7.

!The definition of Schur algebras in Section II.A of [Jan96] is a different one, but the two definitions are equivalent
by Proposition II.A.16 in [Jan03].
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For an arbitrary G-module M in Rep(G, ), we claim that all terms of Cpin(M), the minimal
tilting complex of M, belong to Rep(G, ). Indeed, as

Extiep(a.m (Vs W) = Extg(V, W)

for all G-modules V' and W in Rep(G,7) (see Proposition II.A.10 in [Jan03]), we can show as in
Proposition that the natural functor

Tp: K°(Tilt(G, 7)) — D" (Rep(G, 7)),

from the bounded homotopy category of the full subcategory Tilt(G, ) of tilting modules in Rep(G, 7)
to the bounded derived category of Rep(G, 7), is an equivalence of categories. Therefore, we can choose
the minimal tilting complex of M with terms in Tilt(G,7), as claimed. As ¢ annihilates all tilting
modules in Rep(G, ), this implies that ¢ annihilates M, as required. ]

Now for d > 0, let us fix

#(d) ={\e X | X <de}
:{a0€0+---+an£n‘aoz--~2an20andao+-~+an:d}

and

m(d) ={N e X | X < dw}
:{Z,biwi bi,...,bp, >0 and d—z,ibi:(n+1)-aforsomea€ZZO}.

Note that 7(d) and 7(d) satisfy the hypothesis of Lemma so

Sa(m(d)) = Sg(7(d)) = S(n+1,d).

By Section II.A.18 in [Jan03], the algebra S(n + 1,d) coincides with the classical Schur algebra (as
introduced in Section 2.3 of [Gre(7]), defined as the dual algebra of a certain finite-dimensional sub-

coalgebra A(n + 1,d) of the coordinate ring k[G]. The main reason for our interest in Schur algebras
is the following result of S. Donkin:

Proposition 1.13. Let a = apeg+ - -+ anen € X with ag,...,an > 0 and setr =ag—+---+a,. The
tensor product of symmetric powers

SE =8S"E®---8S"E
belongs to Rep(é,fr(r)). Furthermore, for every G-module M in Rep(G,fr(r)), we have
Homg(, 41,0 (M, SYE) = M,
the a-weight space of M, and S“E is an injective S(n + 1,7)-module.

Proof. The first claim is straightforward to verify by weight considerations. The remaining claims are
proven in Section 2.1(8) of [Don98| for the so-called g-Schur algebra Sq(n + 1,r). For ¢ = 1, this is
just the classical Schur algebra S(n + 1,7). O
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Let again m C X be saturated. By Section II.A.6 in [Jan03], every simple G-module L()\) with
highest weight A\ € 7 has an injective hull I:(\) in Rep(G, 7), and the latter has a good filtration with

(1.2) [x(N) : V(w)]g = [V(1) : L(V)]
for all © € 7. In view of Proposition a tensor product of the form
V(aw) ® V(bw) = S°E ® S°E,

for a,b > 0, (where we omit the restriction functor from G to G) decomposes as a direct sum of injective
indecomposable S(n+1,a+ b) = Sg(7(a + b))-modules, and for 1 € 7(a + b), the multiplicity of the
injective hull I (44 4) () of L(p) in such a direct sum decomposition is

[V(aw1) @ V(bw1) : Ln(ain) ()] o, = dim Homgp 41 q40) (L), S“E ® S’E)
(13) - dimL(M)(an-ﬁ-bEl)/
= dim L(p“)(a—b)-w1+bw2'

In addition to this observation, we will need the following well-known lemma about composition
multiplicities in induced modules for G of type Aj:

Lemma 1.14. Suppose that G is of type A1. Let a,b € Z>0 and write b = ZiZO bil' with 0 < b; </
for alli > 0. Then
[V(a): L(b)] <1,

and [V(a) : L(b)] = 1 if and only if there exist a; € Z>¢, with a; € {b;,20 — b; — 2} for all i > 0, such
that a =3} a;l’.

Proof. The first statement follows from the fact that V(a) has one-dimensional weight spaces. The
second one can be found in Theorem 2.1 in [HenO1]. O

Now let us return to G of type A, for some n > 1. Before discussing generic direct summands, we
determine the unique indecomposable direct summand with a non-zero (a + b) - w;-weight space in a
tensor product of the form V(aw;) ® V(bwy).

Proposition 1.15. Let a,b € Z>q and write a = Zizo a;l* and b = Zizo bl with 0 < a;,b; < £ for
all i > 0. Furthermore, define

{ai—i—b,-—(ﬁ—l) ifai+b;>0—1,
C; ‘=

0 otherwise,

for alli >0, and ¢ = c(a,b) == Y ;5o cil’. Then Irqip)((a+b) w1 —can) is the unique indecomposable
direct summand of V(aw;) ® V(bw) with a non-zero (a + b) - w1 -weight space.

Proof. By weight considerations, it is straightforward to see that V(aw;) ® V(bwi) has a unique
indecomposable direct summand that has a non zero (a + b) - wi-weight space. Note that

a—i—b—QC:Z(ai—i—bi—?cZ-)-ﬁi
i>0
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with 0 < a; + b; — 2¢; < £ and
(Ll'—FbiE{ai—{—bi—261',25—((11'4-()1'—261')—2}

for all i > 0, by definition of the ¢;. For G of type A1, we have [V(a +b) : L(a +b—2c)] =1 by
Lemma Using truncation to the Levi subgroup corresponding to the subset {a;} C II and the
reciprocity formula (|1.2)), we conclude (for G of type A,, with n > 1) that

1=[V(a+b): Lla+b—20c)]
= [V((a+b) @) : L((a+b) @ —cai)]
= [Ln(asp)((a+b) -1 —con) : V((a+b) - wl)]V’
In particular, Ir(q4p) ((a+b) - @1 — coq) has a non-zero (a + b) - wi-weight space.
By equation ([1.3]), it now suffices to prove that the weight space L((a +b) w — coa)(a_b).wﬁbw2

is non-zero. As before, we can truncate to the Levi subgroup corresponding to {a;} C IT and consider
the weight space L(a + b — 2¢),_p of the simple SLa(k)-module L(a + b — 2¢) instead. Recall that

a+b—2c:2(ai+bi—20i) i
i>0

where 0 < a; + b; — 2¢; < £ for all © > 0, and note that

a—b:Z(ai—bi)-Ei.

i>0

By Steinberg’s tensor product theorem, it suffices to prove that a; — b; is a weight of L(a; + b; — 2¢;)
for all ¢. If a; +b; < ¢ —1 then ¢; = 0 and a; — b; belongs to the set {a; + b;,a; +b; —2,...,—a; — b;}
of weights of L(a; + b;). Otherwise, we have

ai—l—bi—2ci:2'(5—1)—(0,1'—{—1)1') > |a¢—bi]
since a;,b; < ¢ — 1, and again, it follows that a; — b; is a weight of L(a; + b; — 2¢;). O
The following corollary is also proved in Proposition 4.8.(12) in [Don98].

Corollary 1.16. Let a,b € Z>¢ and write a = Zizo a;il’ and b= Zizo bilt with 0 < a;,b; < £ for all
i > 0. Then V((a+b)-w@) is a direct summand of V(aw) @ V(bw) if and only if a; +b; < £ —1
for alli > 0.

Proof. With ¢ = ¢(a,b) as in Proposition the unique indecomposable direct summand of the ten-
sor product V(awi)® V (bw) with a non-zero (a+0b) - wi-weight space is the injective indecomposable
S(n+1,a+ b)-module Iy, ((a+b) - @1 — cor). In particular, V((a +b) - 1) is a direct summand
of V(aw1) ® V(bw) if and only if I 44y ((a +b) - @1 — car) = V((a+b) - w1). By the reciprocity
formula and the fact that (a 4+ b) - @ is maximal in 7(a + b), we have

V((a+b) - @1) = Ly ((a+b) - @1),

and it follows that V((a 4 b) - @) is a direct summand of V(aw) ® V(bwy) if and only if ¢ = 0, or
equivalently, if a; + b; < £ —1 for all ¢ > 0. O

From the preceding corollary, we can also get some information about generic direct summands.
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Corollary 1.17. Suppose that { > h = n+1. Leta,b € Z>( and write a = Zizo ail’ andb = Zizo bl
with 0 < a;,b; < € for alli > 0. Ifa;+b; < £—1 for alli > 0 then Gv(taw, s thw, ) = V(€~ (a+0b) -wl).

Proof. By Corollary the assumption implies that V(f (a+0)- wl) is a direct summand of
V(law,) @ V(lbwi) = V(taw, + 0) ® V(tpw, - 0),
and the claim is immediate because V(¢ - (a + b) - @y ) is regular (see Lemma [I1.4.3)). O

Now let us return to G = SLa(k). Using Proposition we can determine the generic direct
summands of tensor products of induced modules.

Lemma 1.18. Forz,y € W, let a,b € Z>o and w,w’ € Q such that -0 = t,w-0 and y-0 = t,w' - 0.

Define ¢ = c(a,b) as in Proposition[1.15 Then
Gv (CC, y) = Tww,[ﬂ(£~(a+b)) (f ’ (a’ +b— 20))
Proof. By Lemma [I1.5.5] we have Gy (x,y) = T Gy (tq, tp), so it suffices to prove that

Gy (tasts) = L(e.(ats)) (£ - (@ +b—2¢)).

Let us write M = I (p.(ayb)) (€ (a+b-— 26)), and recall from Proposition that M is the unique
indecomposable direct summand of V(¢,-0)®@V (t,-0) = V(fa) @V (¢b) with a non-zero ¢-(a+b)-weight
space. As Gvy(tq,tp) has Weyl filtration dimension £(t,) + ¢(t;) = a + b and belongs to the linkage
class of wy,¢, + 0 = wy, w0 05t suffices to prove that every indecomposable direct summand M’ %2 M
of V(€a) ® V(£b) that belongs to the linkage class of w;, ., - 0 satisfies wfd(M') < a +b. By weight
considerations, every composition factor of M’ has highest weight in an f-alcove t4 + Cryngq for some
d € Z>o with d < a+ b, and using Corollaries [[.7.5| and [I1.2.7, we conclude that wid(M') < a+b. O

We complete our discussion of the modular case by the determination of the good filtration muti-

plicities of the generic direct summands Gy (x,y) for =,y € W, (and G of type Ay).

ext

Corollary 1.19. Let a,b,d € Z>o and write a = Zizo a;l* and b = Zizo bilt with 0 < a;,b; < ¢ for
all i > 0. Furthermore, define a_1 =b_1 =0. Then

[Gv(ta;ty) : V(d)]v <1,
and |Gy (ta,ty) : V(d)]y = 1 if and only if there exist
d; € {aj—1 +bi—1,20 — (aj—1 +bi—1) — 2},
for i € Z>q, such that d = Zizo d;0* and dj < aj_1+bj_1 if j is mazimal with dj # aj—1 +bj_1.
Proof. Recall from Lemma that Gy (ta, t6) = L. (a+b)) (¢-(a+b—2c)), where ¢ = >0 ¢l and
a;+b—(—-1) ifa;+b>0-1,
“ {O otherwise

for all 4 > 0. Let us also set ¢_1 = 0, and note that we can write

l- (CL +b— 20) = Z(az’_l + bi_1 — 201'_1) . gi,
i>0
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where 0 < a;_1 +b;_1 —2¢;_1 < £ for all i > 0. By Lemma and the reciprocity formula (1.2)), the
good filtration multiplicities in Gy (t4,t,) are bounded by 1. Furthermore, an induced module V(d),
for d > 0, appears in a good filtration of Gy (4, ) if and only if d € 7(¢- (a + b)) and d = ;5 dilt,
where

di € {ai—1 +bi—1 — 2¢i—1,20 — (a;—1 + bi—1 — 2¢i—1) — 2} = {ai—1 + bi—1,20 — (ai—1 + bi—1) — 2}

for all « > 0. It is straightforward to see that the condition d € 7(¢ - (a 4+ b)) is equivalent to the
requirement that d; < a;_; + bj_1 if j is maximal with d; # a;_1 + bj_1. O

The quantum case. Let us start by introducing the ‘quantum version’ of GL,,41(k) that is suitable
for our purpose. As before, we denote by X the free Z-module with basis g, . . ., £,. We consider the
scalar product (—,—) on Xr = X ®z R with (€i,€5) = 045, for 0 <3, j < n, and the root system

d={e;—¢;|0<i,j<n,i+#j}

with base
ﬂ={€i_1—€i‘1§i§n}.

The quantized enveloping algebra of the reductive Lie algebra g = gl,,,1(C) is the Q(g)-algebra Ug(g)
with generators E,, F, and K; for a € II and 0 <1 < n, subject to the relations

KiKi_l =1= Ki_lKi) KZK'L’ = KiKZ‘/,
KiEaKi_l — q(Ei,a) .EO“ KiFaKi_l _ qf(si,a) . Fa’
Ko, — K !

q—q*

S 1 BB
j+k:1—ca7ﬁ

S (-1 FORFER =0
j+k=1-cg o

EoFs — F3Ey = 00 -

for a, B € I and 0 < 7,7 < n, where cap = (o, B) and K, = K, 1K, ' if a =¢,_1 — &, and where

J J
Ea 4 o) — Fa
[7]a!

E(gj) —

[7]a! “
are the quantum divided powers, as in Section There is a Hopf algebra structure on Uy(g) with
comultiplication, antipode and counit defined as in ([.3.1]), with K, replaced by K; in the third line
(but not in the first and the second line). The Lusztig integral form U(IZ(Q) of U,(g) is the Z[q,q -
subalgebra generated by the quantum divided powers along with the elements KijEl and

(Ki§m> ﬁ Kigm i+t — g lgm+i-l

ro ) ¢ —q77 ’

j=1

for 0 <i <n and m,r > 0. We define
Ué(@) = qu<g) ®Z[q,q*1] C
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to be the specialization of UqZ(@) along the ring homomorphism Z[g,q~!] — C with ¢ — (. As
before, we will only be interested in ‘type 1’ representations on which the central elements Kf ® 1, for
0 <1 < n, act trivially, so we further define

G =Uc(8) = UL@)/(Ki®1-1©1]|0<i<n).

By abuse of notation, we denote the images of the generators of UqZ(@) in U/(g) or U¢(g) by the same
symbols. With these conventions, the quantum group Ué(g) corresponding to the simple Lie algebra
g = sl,+1(C) is isomorphic to the subalgebra of Ué(@) generated by the elements K and the divided
powers of the elements E, and F,, for o € II, and there is a natural homomorphism from G = U¢(g)
to G = U¢(g). For all A € X+, we can define the simple module L()), the costandard module V()
and the Weyl module A()\) over G, just as we did for G. As in the modular case, we have

resSLO) 2 L(N),  1esSAN) 2AN)  and  resSV()N) = V),

where X\ — X is as in . One way of seeing this for the Weyl modules is to note that resgA()\) and
A(XN) have the same character and that resgA(/\) is generated by a maximal vector of weight \'. The
claim for induced modules follows by taking duals. Finally, any non-zero homomorphism of G-modules
A(\) = V() affords a non-zero homomorphism of G-modules A()N) — V()), and the statement
about simple modules follows because L()) is the image of the former homomorphism, while L(\') is
the image of the latter homomorphism.

The natural Uy(g)-module is the Q(g)-vector space E; with basis eg, ..., e,, on which the action
of the generators is given, for a =¢;_1 —¢; € IT and 0 < J k< n, by

6.
Eq - er = 0; pep—1, Fy e = 0i—1 kery1 and  Kj-ep = q""* - ep.

The Z[q, ¢~ !]-submodule EqZ spanned by e, ..., e, is stable under UqZ(@), so it specializes to a Ué(@)—
module E = EqZ ®z[q,q-1] ®C, which naturally desceI}ds to aAUC(@)—module (denoted again by E),
because K acts trivially for 0 < i < n. We have E = L(gg) = V(eo).

For r > 0, the tensor space E®" is naturally a U/(g)-module and a U¢(g)-module (via the Hopf
algebra structure inherited from U,(g)) and we define the (-Schur algebra S¢(n + 1,7) as the image
of either of U/(g) or U¢(g) in Endc(E®"). Alternatively, as in the modular case, S¢(n + 1,r) can be
defined as the dual algebra of a coalgebra A¢(n+1,7) as in Section 0.20 of [Don98]. The two definitions
coincide because in both cases, one finds that S¢(n+1,7) can be identified with the full centralizer in
Endc(E®") of the action of the Hecke algebra of the symmetric group S,; see Theorem 3.6 in [Du95]
and Section 4.1.3 in [Don98|. The category of finite-dimensional S¢(n + 1,7)-modules is naturally
equivalent to the category of finite-dimensional G-modules that are annihilated by the kernel of the
representation G — Endc (E®"). Recall from the modular case that we write

#(r)y={re XT | X <re}
:{a060+'--+an6n’ao2--'ZanZOandao+~--+an:r}.

By Sections 0.22 and 2.1.(7) in [Don98], every S¢(n + 1,7)-module M admits a ‘weight space decom-
position’ M = @, M) with weights in the set

Wen(r) = {aoeo + - -+ + anén | ag, ..., an, >0 and ag + - - + a, = r}.
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Furthermore, again by Section 0.22 in [Don98|, the isomorphism classes of simple S¢(n+ 1, 7)-modules
are in bijection with the set 7 (r), and by weight considerations, one sees that the simple S¢(n +1,7)-
modules afford precisely the simple G-modules L()\) with A € #(r). Another important example of

an S¢(n + 1,r)-module is the quantum symmetric power
STE = V(rey),

which can be defined as a quotient of E®" (see Section 2.1.(15) and the introduction to Section 2.1 in
[Don9g| ) More generally, for a = apeg + - - - + anen € X+ with 7 = ag + - - - + an, the tensor product
of symmetric powers

SE=8S"E®---®S"FE

is in a natural way an S¢(n+1,7)-module. The reason for our interest in these modules is the following
result from Section 2.1.(8) in [Don9g].

Proposition 1.20. Let a = apeg+---+anen € X with ag,...,an > 0 and setr =ag+---+a,. Then
SE is an injective S¢(n + 1,7)-module. For any finite-dimensional S¢(n + 1,r)-module M, we have

HomSC(TL-Fl,T‘) (M7 SOZE) = MOL7
the a-weight space of M.

Now for A\ € 7(r), let us denote by I.(\) the injective hull of the simple S¢(n + 1,7)-module L(N).
As pointed out in Section 2.1.(13) in [Don98], the algebra S¢(n + 1,7) is quasi-hereditary, so the
injective indecomposable S¢(n + 1,7)-module I,.()\) has a good filtration with multiplicities

[N : V()]e = [V(i) : L]

for p € 7t(r); see Proposition A2.2 in [Don9g].
The following result is a quantum analogue of Proposition [1.15

Proposition 1.21. Let a,b € Z>¢ and write a = ag + fay and b = by + by with 0 < ag,by < ¢.
Furthermore, let
{ao+b0—(f—1) ifag+bo >0 —1,
c =

0 otherwise.

Then Ia+b((a +0b)-e0—c-(g0— 51)) is the unique indecomposable direct summand of S®E ® S°E with
a non-zero (a + b) - e9-weight space.

Proof. Let us first show that Ia+b((a +b)-eg—c- (0 — 51)) has a non-zero (a + b) - p-weight space.
By the above discussion, we have

[Tots((a+b)-e0—c- (g0 —€1)) : ﬁ((a—i— b) -60)]V = [@((a +b) - o) : f)((a—i— b) g0 —c- (0 —€1))]

and it suffices to prove that the composition multiplicity on the right hand side is non-zero. Using the
Schur algebra analogue of truncation to a Levi subgroup from Section 4.2.(5) in [Don9§|, it further
suffices to do this in the case n = 1, i.e. for the (-Schur algebra S¢(2,a + b). It is straightforward to
see that the composition multiplicity in question is non-zero if ¢ = 0, so now assume that ag + bg > £.

2The existence of symmetric powers of representations is not obvious in the quantum case because the braiding on
the category of G-modules is not the standard one.
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Then we can write a + b= (a; + b1 + 1) - £+ (ap + by — £), with 0 < ag + by — ¢ < £, and as explained
in Section 3.4 in [Don98], the S¢(2,a + b)-module @((a +b) - £9) has a composition factor of highest
weight

(a+b)~60—(a0+bo—€+1)'(50—81)=(a+b)-50—0'(€0—51),

as required.
It remains to show that I, 4((a+b) g9 —c- (g0 — 1)) is a direct summand of SE ® S’E. Recall
from Proposition m that S*E ® S°F is an injective S¢(n + 1,a + b)-module and that

Homg, (41,015 (M, 5*E ® S"E) & Macy1be,

for every finite-dimensional S¢(n+1, a+b)-module M. Therefore, it suffices to prove that the agg+beq-
weight space of the simple module f}((a +b) g0 —c- (e0 — €1)) is non-zero. (Compare with the proof
of Proposition [1.15]) As before, we can use Section 4.2.(5) in [Don98| to reduce to the case n = 1,
and the claim follows exactly as in Proposition [1.15] using the version of Steinberg’s tensor product
theorem from Section 3.2.(5) in [Don9§]. O

The preceding result allows us to determine the generic direct summands Gv (t4ew, , the, ) Of tensor
products of induced modules V(tyw, + 0) ® V(tpe, + 0) for all a,b € Z>(. Suppose that £ > h =n+ 1.

Theorem 1.22. For a,b € Z>o, we have Gy (taw, : tow,) = V (fatb)w; * 0) = V(€ (a+b) - w1).

Proof. As Gv(taw, s thw, ) is the unique regular indecomposable direct summand of the tensor product
V(taw, +0) ® V(tpe, - 0) and as the costandard module V(f(q4p).0, - 0) is regular by Lemma [I1.4.3} it
suffices to prove that V(f(q4t).c0, - 0) is a direct summand of V(taw, + 0) ® V(tpew, - 0). Recall that we
have

V(rw;) = resg@(reo) = resgSrE,

for all » € Z>¢; hence it further suffices to prove that St(atb) B ig a direct summand of S““E @ S?E.
Note that the G-module $¢(@+0) F =~ V(- (a+b)-eo) is injective as an S¢(n+1,¢- (a+b))-module
by Proposition and that it has simple socle ﬁ(ﬁ (a+0)- 60). Therefore, we have

and Proposition implies that S(@*t0) E is a direct summand of S“E @ S®FE, as required. O

Finally, let us return to the case n =1 and G = U (sl2(C)).

Corollary 1.23. Forz,y € W}

oty let a,b € Z>g and w,w’ € Q such that -0 = t,w-0 and y-0 = tpw'-0.
Then

Gy(z,y) =TV (C- (a+1)).
Proof. By Lemma and Theorem [1.22] we have
Gy(z,y) = T Gy(ta,ty) TV (0 (a+1b)),
as required. 0
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Figure 2.1: Alcoves for G of type As. For some elements x € W,g, we have labeled z - Cryng by z.
The gray-colored region is the set of dominant alcoves.

2 Type Ay

In this Section, we consider the case where G is of type Ay and ¢ > 3. Our discussion of regular
indecomposable direct summands (and generic direct summands) of tensor products of G-modules
strongly relies on the two articles [BDM15] (by C. Bowman, S. Doty and S. Martin) and [CW15] (by
X. Chan and J. Wang), whose contents we will briefly discuss here. The main result of [BDMI15] is a
description of the set of indecomposable G-modules that arise as direct summands of tensor products
of simple G-modules with ¢-restricted highest weights. Strictly speaking, the article only covers the
modular case, but none of its methods are specific to that case, and the results that we will use hold in
the quantum case as well. The analogous problem (of finding the indecomposable direct summands of
tensor products) for costandard modules with ¢-restricted highest weights was considered in [CW15].
Again, the authors discuss only the modular case, but the results are valid in the quantum case as
well (as is pointed out at the end of the introduction of that article). We can combine the results of
[BDM15] with the techniques developed in Section to give a complete description of the generic
direct summands of tensor products of simple G-modules with arbitrary f-regular (not necessarily
(-restricted) highest weights. For costandard modules, there is (at present) no method for reducing
the study of generic direct summands to the case of f-restricted highest weights, so we do not go
any further than to point out which of the indecomposable G-modules from [CW15] are the generic
direct summands. Note however that for some specific highest weights, the generic direct summands
of tensor products of costandard modules can be determined using Corollary and Theorem [1.22]

Before we go into any more detail, let us fix some notation. According to the conventions from
Section we have Il = {a1, a2} and & = {a, a9, an} with a = a3 + as. The weight lattice
X =2 72 is spanned by the fundamental dominant weights w; and w», and the affine Weyl group Wag
is generated by the simple reflections S = {s,¢,u}, where s = sq,, t = 54, and u = s4, 1. Recall that
Wi is in bijection with the set of alcoves (or f-alcoves) in Xg via  — x(Agfnq) (or z — 2+ Cpypg)- In
Figure we display some alcoves for G, and we label some of them by the corresponding elements
of Wag. The only f-alcoves containing f-restricted weights are Cryng and u » Crund-
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Simple modules

Let us start by recalling the results of C. Bowman, S. Doty and S. Martin in more detail. According to
Section 8.5 in [BDMI15], the tilting module T'(ust - v), for v € Cgynqg N X, has a unique contravariantly
self-dual submodule M (v) (denoted there by M (u - v)) with

ch M(v) =ch L(us-v) +ch L(ut - v) + 2 - ch L(u - v) + ch L(v),

and the latter has simple head and socle isomorphic to L(u-v). Furthermore, the quotient of radg M (v)
by socg M (v) is completely reducible; more precisely, we have

radgM (v)/socaM (v) = L(us - v) & L(ut - v) & L(v).

Observe that the definition of M(v) implies that T)M (v) = M(X) for all A € Crynq N X. Following
the conventions of [BDMI15], we can depict the structure of M (v) in an ‘Alperin diagram’, where we
replace a simple module L(z - v) by the label z € W k.

N

V) =

With this notation in place, a simplified version of the main result of [BDMI15] can be stated as follows:

Theorem 2.1. Let A\, u € X; and let M be an indecomposable direct summand of L(\) ® L(p). Then
either M is a tilting module or M = L(u-v) or M = M(v), for some v € Cgynga N X. The third case
M = M(v) can occur only if A,y € u + Cpynd-

Remark 2.2. It is pointed out at the end of Section 3 (below Theorem B) in [BDMI5] that an
indecomposable direct summand M of L(\) ® L(u) as in the preceding theorem has simple socle with
l-restricted highest weight as a G1T-module, unless possibly when

M = T(ustus - v) or M = T(utsut - v)

for some v € Cpyng N X. As the G T-socle of a G-module coincides with its Gi-socle (see Remark 1
in Section I1.9.6 of [Jan03]), this implies that M is indecomposable as a Gi-module (with the same
exceptions).

Lemma 2.3. We have G(u,u) = M(0) and
(L(u-0)® L(u- 0))reg =~ M(0) & L(0)

Proof. Recall that G(u,u) belongs to the linkage class of 0 and that gfd(G(u, u)) = €(u) + (u) = 2;
see Proposition By Theorem all indecomposable direct summands of L(u+0)® L(u-0) that
are not of the form M (v), for some v € Cgyng N X, have good filtration dimension either zero (because
they are tilting modules) or one (by Corollary because {(u) = 1), and it follows that

G(u,u) = M(0).
In particular, M (v) = Ty M(0) is regular for all v € Crypg N X.
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By Section 8.6 in [BDMI5], there exist A, i, v € Cgyng N X such that
pr, (L(u-A) ® L(u - p)) = M(v) ® L(v).
Since M (v) and L(v) are both regular, Theorem [[I.4.14] yields

T§ (M(0) @ L(0)) = M(v) & L(v) = pr, (L(u- A) ® L(u- p)),.. = Tg (L(uw-0) @ L(u - O))@:K’“,

reg reg
and we conclude that ¢§ , =1 and (L(u-0) ® L(u - ()))reg =~ M(0) @ L(0). O
Also note that we have
Gle,e) = L(0) = (L(0) ® L(O))reg and  G(u,e) =2 L(u-0) = (L(u-0)® L(O))reg.

As Cruna and u - Crypng are the only f-alcoves containing f-restricted weights, this gives a complete
description of the regular parts (and the generic direct summands) of tensor products of simple G-
modules with f-regular f-restricted highest weights. Furthermore, all regular indecomposable direct
summands of such tensor products are strongly regular (because simple G-modules with /-regular
highest weights and generic direct summands of tensor products of simple G-modules are strongly

regular, by Remarks [I1.4.17] and [II.5.12)) and indecomposable (with simple socle) as Gj-modules by
Remark (These are important observations in view of Corollaries [I1.6.10| and [I1.6.19])
Now as in Section let us fix 2,y € Wt and write

x:0=x9-044A and y-0=19y0-0+4+74u

with A\, p € Xt and zg,y0 € WXt such that zg+ 0,500 € X1. As Ciyng and u - Ciyng are the only {-
alcoves containing f-restricted weights, we have g, yo € QUuS2, and we write xg = uw and yo = u® "W

with e, € {0,1} and w,w’ € Q. Note that by Lemma [I1.4.15] we have
(L(gjo . 0) X L(yo . 0)) >~ (TWL(UE R 0) ® Tw’L(ug’ . 0))reg >~ Tww’ (L(u&‘ . 0) ® L(ug’ . O))I‘eg'

In the quantum case, we get the following complete desccription of regular parts and generic direct
summands of tensor products of simple G-modules, from Corollaries [[T.6.8], [IT.6.10] and [[T.6.11]

reg

Theorem 2.4. Suppose that we are in the quantum case and write
Le(N) @ Le(p EB Lo(v)®%u,
veX+
(1) Ife =¢ =0 then

(Lz-0)© L(y-0)) ., = P (Llww'-0) @ Le(w)) ¥
vexXt

= @ L(ww 0 4 fv) 5

veX+
is a Krull-Schmidt decomposition and G(z,y) = L(ww' - 0) @ Le (A4 p)M 22 L(ww’ - 0+ LA+ £p).
(2) Ife+e =1 then

(L(z-0) @ Ly~ 0)),., = P (L{uws'-0) @ Le(w)M) "o
veXt

= @ Luww' - 0 + )R
veX+

is a Krull-Schmidt decomposition and G(z,y) = L(uww’-0)® Le(A )M 22 L(uww - 042X+ Lp).
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(3) Ife=¢ =1 then

(Lz-0)@L(y-0),, = P (Mw'-0)® Le@))* & @ Liww -0+ ) S

reg
veX+t veXt

is a Krull-Schmidt decomposition and G(z,y) = M(ww' - 0) @ Le(A 4 ).

Recall that in the modular case, we write M (A, ) for the unique indecomposable direct summand
of L(A) ® L(p) with a non-zero X\ + u-weight space. The modular analogue of the preceding theorem

follows from Corollaries [IT.6.16] [[T.6.19] and [IT.6.20]

Theorem 2.5. Suppose that we are in the modular case and fix o Krull-Schmidt decomposition
L)@ L(p) XM & - & M,.

(1) Ife =¢ =0 then

r

(L(:I:'O) ®L(y-0)) = @L(ww'-()) ®M-[1]

reg )
=1

is a Krull-Schmidt decomposition and G(z,y) = L(ww' - 0) @ M(\, p)1.
(2) Ife+¢€ =1 then

T

(L@ 0) @ L(y - 0)) o = D Llusr - 0) & M
=1

is a Krull-Schmidt decomposition and G(z,y) = L(uww' - 0) @ M(\, p)1.

(3) Ife=¢" =1 then

T

(L(z-0)® L(y - 0)) ciQgﬂa@m/-ongd”e;é@zxwwh0)®ﬂd”

reg
i=1 =1

is a Krull-Schmidt decomposition and G(z,y) = M(ww' - 0) @ M (X, u)!M.

For the rest of this section, suppose that we are in the modular case. Let us write A = Y., Y
and p =Y.l g, with A, p; € Xy for all ¢ > 0. Our next goal is to show that M (A, p) is a tensor
product of Frobenius twists of the G-modules M (Nis i13), for 2 > 0, as in Lemma We start by
determining the module M (X, u'), for N, i/ € X1, more explicitly.

Lemma 2.6. Let X, u' € X;. We have
M, i) = LN + i)

whenever X + 1’ € u+ Cpung and either X € u + Cruna or i’ € u - Crung, and
M, 1) =T\ + 1)

in all other cases.
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Proof. First suppose that neither of A’ and z/ belongs to %+ Cgyna. As N, 1t/ € X1 C Cruna Ut + Crund,
this implies that X, i’ € Cpung or that at least one of X and y/ is f-singular. If X, i/ € Cpung then

LX) ® L() =2 T(N) @ T(1)

is a tilting module and it follows that M (N, ') = T(N + u/). If either of the weights A or u' is
¢-singular then one of the simple modules L(\') and L(y') is singular by Lemma and M (N, i)
is singular because singular modules form a thick tensor ideal. On the other hand, L(u - v) is regular
for all v € Cpyna N X (again by Lemma [[1.4.3), and Theorem implies that M (X, ') is a tilting
module, so M (N, ') 2T (N + u/).

By symmetry, we may now suppose that A’ € u-Cpnq and that p is l-regular. If N 4+ p/ € u - Crung
then p’ is the unique dominant weight in the Wyy-orbit of w+ (N + p) —u- N = s, (1), and it follows
that

LN + ') = T L) = pry. ey (LX) @ L)),

whence M(N, /) = LN + /). If 4/ € Cpyng and N + 1/ ¢ w - Cpypg then M (N, 1) is singular because
the regular part

(L) ® L)) o = (T3 L(u - 0) @ TY L(0)),.,

@ T(;/ (L(U . O) ® L(O))i;z.)\lﬂu/
v€CnaNX

B (TyLu-0) ™%

vECrnaNX

= @ L(u- V)@CZ'A/M’

vECrunaNX

12

I

is a direct sum of simple G-modules with highest weights in « + Cpyna; see Theorem [[1.4.14] As before,
Theorem [2.1| implies that M (X, i) is a tilting module and therefore M (N, ') =2 T (N + u').
Finally, suppose that i’ € u - Cqung. By Lemma and Theorem [[1.4.14] we have
(L) ® L)) o = (T3 L+ 0) © Ty L(u - 0))

reg

= @ T(I)/ (L(u . O) X L(u . 0))16-222')\/’”'#,
vECnaNX

=~ P (TM(0) @ THL(0))“ur s’
VECfunde

= @ (M(V) &) L(V))@CZ-A/,u.H/7
llecfunde

and all singular indecomposable direct summands of L(\) ® L(y) are tilting modules by Theorem
On the other hand, we have (X' + 1/ + p, o)) > 20 because (N +p, o)) > €+ 1 and (¢ +p, o)) > € +1,
hence

)‘, + :u’/ §é C’fund Uu - C(fund Uus - Cfund Uut - C'fund

and L(N + 1) is not a composition factor of M (v) or L(v), for any v € Cpg N X. We conclude that
M(N, i) is a tilting module, so M (N, ') 2 T (N + i'). O

Corollary 2.7. Let N,/ € X1. Then M(N, ) is indecomposable as a Gy-module.
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Proof. By Lemma we have either
M, @/)=TN +u)  or MW, p)= LN +4).

In the second case, we further have X' 4y € u+ CrpngNX C X7 and it follows that L(\ + ) is simple
as a Gi-module. As X,/ € X1, we have

N+ 6{7€X+‘ v, aY <2€—2f0ralla€ﬂ}

This set of weights is disjoint from ustus - Cpng and utsut » Cpunq (see Figure , so Remark
implies that T'(N + ') is indecomposable as a Gi-module. O

Recall that we write A = Zizo i) and = Zizo O, with A\, pu; € Xy for all i > 0.
Corollary 2.8. We have M (X, 1) = @);>¢ M (N, ).

Proof. The G-modules M (\;, i1;), for @ > 0, are indecomposable as Gi-modules by Corollary and
the claim follows from Lemma [[1.6.17 O

Finally, let us point out that not all of the indecomposable direct summands of L(A) ® L(u) can be
obtained as tensor products of Frobenius twists of indecomposable direct summands of L(\;) ® L(u;),
for i > 0. Indeed, for A= ({ —1)-p and = (20 — 1) - w; + 2ww2, we have

L(Xo) ® L(po) =L((0—=1)-p) @ L(({ = 1) w1 +2w02) XT(({—1)-p) @T((( — 1) - @1 + 2c02)

by the linkage principle, and it is straightforward to see (by weight considerations) that the tilting
module T'(¢ww1 + (€ — 1) - p) is a direct summand of L(Ao) ® L(uo). Observe that, again by the linkage
principle and by Steinberg’s tensor product theorem, the tilting module T° (Ewl +({-1)- ,0) has a
tensor product decomposition

T (b + (0 —1)-p) = L(lw + (L —1)-p) Z L(({ — 1) - p) @ L(coy) V.

Furthermore, we have A\ = 0 and p1 = w;; so L(w;) is the unique indecomposable direct summand
of L(A1) ® L(u1). Now the tensor product

T(tw1 + (€ =1) - p) @ L) = L((€ = 1) - p) @ (L(@1) @ L(wn))"!

is decomposable because L(w;) ® L(wi) = L(2w;) ® L(ws) is decomposable (since ¢ > h = 3), and
the simple module
L(20wy + (6 —1) - p) = L((£ —1)p) ® L(2wy)Y

is an indecomposable direct summand of L()\) ® L(u). Now suppose for a contradiction that
L(20w + (€ —1)-p) 2 M @ NI,

for indecomposable direct summands M and N of L(Ag)® L(uo) and L(A1)® L(u1 ), respectively. Then
M and N are simple and, as observed above, we must have N = L(w). By weight considerations, it
follows that

M= L(lwy +(6=1)-p) =T (lwr + (€~ 1) p)

and we arrive at the contradiction that M ® NI is decomposable.
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Costandard modules

Let us once again start by recalling the main results of X. Chan and J. Wang in more detail. We
return to our strategy of discussing the modular case and the quantum case at the same time.

According to Theorem 2.1(3) in [CW15], there is, for every v € Cpyng N X, a unique indecomposable
G-module My (v) (denoted there by Q(u - v)) that admits a short exact sequence

0—V(u-v) = My(v) = V(us-v) ® V(ut-v) — 0.

See also Lemma 3.1 in [CW15| and the computation thereafter. Furthermore, the G-module My (v)
is isomorphic to the injective hull I (u - v) of the simple G-module L(u - v) in the truncated category
Rep(G, ) corresponding to the set of weights 7 = {v,u -+ v,us - v,ut - v}. Now (a shortened version
of) Theorem 2.1 in [CW15] is as follows:

Theorem 2.9. Let A\, it € Cryng N X.
(1) The tensor product V() @ V(u) is a direct sum of indecomposable tilting modules.

(2) The tensor product V(u-X\)®@V (u) is a direct sum of induced modules V (u-v), with v € CgnaNX,
and of negligible tilting modules.

(8) The tensor product V(u+\) @ V(u - p) is a direct sum of G-modules of the form My (v), with
v € Crma N X, and of negligible tilting modules.

Using the preceding theorem, it is straightforward to work out the generic direct summands of
tensor products of induced modules with ¢-restricted ¢-regular highest weights. First note that

V(0) = V(0) ® V(0) = (V(0) @ V(0)) = Gy(ee)

reg

and similarly

V(u-0)=V(u-0)® V()= (V(u-0)®V(0)), g = Gv(u,e),

€

even without using the theorem. The generic direct summand Gy (u,u) of V(u-0) ® V(u-0) is regular
and belongs to Repy(G), so part (3) of Theorem [2.9| implies that

Gv(U, u) = MV(O)'

Remark 2.10. In Corollary 3.15 in [CW15], it is shown that, for A, i, v € Cgyng N X, the multiplicity
of My (v) in a Krull-Schmidt decomposition of V(u - \) ® V(u - 1) is given by the structure constant
e u of the Verlinde algebra. The idea that these structure constants should govern the multiplicities
of regular indecomposable direct summands in tensor products (as in Theorem arose when the
author was studying this result, but the proof from [CWI5|] does not carry over to our more general
setting. A similar argument to X. Chan and J. Wang’s proof can, however, be used to show that cx. 18
the multiplicity of T¢ Gy (z, y) in a Krull-Schmidt decomposition of V(z+A) @ V(y- ), for z,y € Wk,
(In our setting, this follows from Remarks [I1.5.2] and [I1.5.4])
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IV. The second alcove

The most basic example of generic direct summands is given by the observation that
G(e,z) = L(z - 0) and Gv(e,z) = V(zx-0)

for all z € Wi, because L(0) = V(0) is the trivial G-module. In this chapter, we study the family

ext

of generic direct summands G(sq, 1,2), for x € W, under the assumption that G is of type A,,.

ext?
Note that this can be considered as the smallest non-trivial example of such a family of generic direct

summands because sq, 1 is the unique element of length one in W;{} (see Lemma [[.2.12). We loosely
refer to sq, 1 * Crund s the second alcove (Cpyng being the first).
Let us briefly outline our strategy. We first observe that

Crain (L(Say,1+0)) = ( 0= T(0) = T(Sap1+0) = T(0) =0 ).
This minimal complex gives rise to natural transfomations
e: idRep(G) = (T(O) ® —) = (T(sah,l -0)® —)

and
p: (T(sap1-0)®@—) = (T(0)® —) = idRep(q)

such that the components ey; and pys of e and p at any G-module M satisfy im(eps) C ker(pys) and
ker(par)/im(par) = L(say,,1 - 0) @ M.

Therefore, we could try to understand tensor products of the form L(sq, 1-0)® L(x-0), for x € W,
via a detailed study of the functor (T'(sq,,1-0) ® —) and the natural transformations e and p. We will
simplify this task in two ways:

Firstly, we denote by w € 2 the image of the translation by the first fundamental dominant weight
under the epimorphism Wey — € and consider the tilting module T'(sq, 1w« 0) instead of T'(sq,,,1+0).

By the translation principle, we have
Crnin (L(Sapw - 0)) = ( 0= T(w-0) = T(sa,,1w-0) = T(w-0) =0 ),
so we replace the natural transformations e and p by a pair of natural transformations
(T(w-0)®—) = (T(sapaw+0)® —) = (T(w-0) ® —).

The advantage is that the tilting module T'(sq,, 1w +0) is much easier to compute with than T'(sq,, 1+0)
because the weight s, 1w+ 0 lies ‘just above’ the hyperplane H, fzh,l separating Crynd and sq, 1 * Crund-
Furthermore, we do not lose any information about generic direct summands when replacing the
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Chapter IV. The second alcove

simple G-module L(8q, 1+ 0) by L(sq, 1w + 0) because G (Say 1w, 7) = TG (80,1, 2) for all € Wi,
by Lemma

Secondly, the G-module G(sq, 1w, ) belongs to the linkage class of w - 0 for all z € W; , SO we
can project to this linkage class and consider the pair of natural transformations

T50 = pro.o(T(w - 0) ® =) = pry,.o(T(sap1w - 0) ® =) = pr.o(T(w-0) ® —) = Tg"°

of functors from Repy(G) to Rep,.o(G). It turns out that the functor ¥ = pr,,.o(T(say 1w + 0) @ —)
decomposes as a direct sum of functors Wy, for s € .S, which behave in many ways like the wall crosing
functors ©4 = T!‘;’S'OT“S7 for j1s € Ciyna N X with Stabyw,; (1ts) = {e, s}. By projecting onto the direct
summands ¥, we obtain natural transformations

Te0 = Uy = T3,

for s € S, and these will be our main objects of study in Sections [f] and 5] Before that, we need to
establish some additional results about the affine Weyl group and the associated alcove geometry (see
Section [I) and about quasi-translation functors of the form

T4 = pr,, (V(6) ® —) : Repy(G) — Rep,,(G),

for A\, ;1 € Crana N X and § € X, not necessarily Wyy-conjugate to o — A (see Section . The details
of the strategy which was explained above will be discussed in Section [3| and in Section [6] we use the
results from Sections 4| and [5[ to study the G-modules pr,,.o(L(Sa, 1w+ 0) ® L(z - 0)) and G(sq, 1w, x)
for z € W ;. While the description that we can give for pr,,.o(L(Sa, 1w+ 0) @ L(z+0)) is fairly explicit,
the structure of G(sq, 1w, ) remains somewhat elusive. Nevertheless, we achieve a classification of
the elements z € W5 such that G(sq, 1w, z) is simple.

1 More alcove geometry

A number of proofs in the following sections rely on intricate properties of the alcove geometry asso-
ciated with the affine Weyl group W,g (see Section [[.2)). The aim of this section is to establish these
properties. We start by introducing some new tools, namely the notion of a minimal gallery connect-
ing two alcoves and the corresponding distance function, and by proving some of their elementary
properties. Recall that two alcoves A, A’ C Xy are called adjacent if they are separated by a unique
reflection hyperplane H. In that case, we have A’ = sy (A) by Remark and the fact that W,g
acts transitively on the set of alcoves; see Theorem [[.2.5]

Definition 1.1. Let A, A’ C Xg be alcoves. A gallery from A to A’ of length d is a sequence of alcoves
A=Ag Ay, .. Ag=A

such that A; 1 and A; are adjacent for ¢ = 1,...,d. The gallery is called minimal if there exists no
gallery of smaller length from A to A’. The distance d(A, A’) between A and A’ is the length of a
minimal gallery from A to A’.

A priori, it is not clear that the distance between alcoves A and A’ is well-defined (because there
might not exist any gallery from A to A’). The following remark shows that every pair of alcoves
is connected by a gallery. Once well-definedness is established, it is straightforward to see that the
distance defines a W g-invariant metric on the set of alcoves.
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1. More alcove geometry

Remark 1.2. For alcoves A, A’ C X, we can choose x,y € Wag with 2(Afung) = A and y(Agunq) = A’
and write 2 'y = 51 ---sq with s1,...,50 € S. Let zg =e and z; = s1---s; fori =1,...,d. We claim
that

A = 2(Atund), 21 (Afund); - - -, 2Tq(Agana) = A’

is a gallery from A to A’. Indeed, for i = 1,...,d, the alcoves Ag;q and s;(Apnq) are adjacent by
Remark and it follows that zz;_1(Afmq) is adjacent to xx;—15;(Apund) = i (Afund)-

The following lemma and corollary will be extremely useful when working with galleries and the
distance function.

Lemma 1.3. Let A, A’ C Xg be alcoves with A # A’ and let H be a hyperplane separating A and A’.
Then d(A,sp(A")) < d(A, A').

Proof. Let A = Ag, Aq,..., A3 = A’ be a minimal gallery from A to A’. As H separates A and A’,
there exists ¢ € {1,...,d} such that H separates A;_1 and A;. Then A, ; = sy(A4;) because A;_; is
adjacent to A;, and there is a gallery

A=A, A1, A = s (A),sa(Aitr), -, sa(Ag) = su(A)
of length d — 1 from A to sy (A’). Hence d(4, sp(A")) < d = d(A, A"). O

Corollary 1.4. Let A, A’ C Xy be alcoves and let H be a reflection hyperplane. Then H separates A
and A’ if and only if d(A,sg(A")) < d(A, A').

Proof. If H separates A and A’ then d(A, sy (A’)) < d(A, A’) by Lemma [1.3] If H does not separate
A and A’ then H separates A and sy (A’). Again by Lemma [1.3] we get

d(A, A" =d(A, sgsp(A") < d(A,sg(A))
and the claim follows. O

Definition 1.5. The number of times a gallery Ag,...,Aq crosses a reflection hyperplane H is the
cardinality of the set {i | 1 < i < dand A; = sg(A;_1)}. We say that a gallery crosses H if it
crosses H at least once.

Remark 1.6. Let A, A’ C X be alcoves and let A = Ag,...,A; = A’ be a gallery from A to A’. It
is straightforward to see that a hyperplane H separates A and A’ if and only if A = Ag,...,Ag=A’
crosses H an odd number of times.

Lemma 1.7. A minimal gallery crosses any given reflection hyperplane at most once.

Proof. Let A, A’ C Xg be alcoves and let A = Ag,..., Ay = A’ be a gallery which crosses a given
reflection hyperplane H at least twice. Let 1 <14 < j < dsuch that A; = sy (A;—1) and Aj = sp(A;_1).
Then A;—1 = sg(A;), and there is a gallery

A= A(), .. '7Ai—1 = SH(Ai),SH(AZ'J,_l), ceey SH(Aj—l) = Aj, e ,Ad = A/
of length d — 2 from A to A’. Hence A = Ay, ..., Aq = A’ is not minimal. O

Corollary 1.8. Let A, A" C Xgr be alcoves and let A = Aq,...,Aq = A’ be a minimal gallery. A
hyperplane H separates A and A’ if and only if A= Aq,...,Ag= A’ crosses H.
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Proof. Tt is clear that the gallery A = Ag,..., Ay = A’ crosses every hyperplane that separates the

alcoves A and A’. Conversely, if A = Ag,...,Ag = A’ crosses H then A = Aq,...,Ag = A’ crosses H
exactly once by Lemma and it follows that H separates A and A’. O

Recall that for § € @ and an alcove A C Xg, we write ng(A) = max{m € Z | A C Hgm}

Corollary 1.9. Let A, A’ C Xy be alcoves. Then d(A, A") equals the number of reflection hyperplanes
that separate A and A’. In particular, we have

d(A, A" = Y [ng(A) — ng(A)].

Bedt

Proof. By Corollary the set of hyperplanes that are crossed by a minimal gallery from A to A’
is precisely the set of hyperplanes that separate A and A’. As a minimal gallery crosses any given
reflection hyperplane at most once by Lemma we conclude that the length d(A, A") of a minimal
gallery from A to A’ equals the number of reflection hyperplanes that separate A and A’. The second
claim follows from the observation that, for all 8 € ®* and m € Z, the hyperplane Hg,, separates A
and A’ if and only if ng(A) < m < ng(A") or ng(A’) <m < ng(A). O

In Section [4] we will need to verify that a certain set A of alcoves that satisfies a specific symmetry
property around an alcove A is of the form {4, s(A)}, for some reflection s = sy in a wall H of A. In
Lemma below, we show that this follows once we know that s(A) is the unique alcove in A that
is adjacent to A. We first define the symmetry property we want to consider.

Definition 1.10. A non-empty set A of alcoves is centered at an alcove A C Xy if, for every alcove
A" € A and every reflection hyperplane H separating A and A’, we have sy (A4’) € A.

Lemma 1.11. Let A be a set of alcoves centered at an alcove A C Xg and let A’ € A. For any
minimal gallery A = Ao, ..., Aqg = A’, we have A; € A for i =0,...,d. In particular A € A.

Proof. If H is the hyperplane separating A’ = Ay and Ay_; then H also separates Ay and A by
Corollary so Ag—1 =sm(Aq) € A as Ais centered at A. The claim follows by induction on d. [

Corollary 1.12. Let A be a set of alcoves centered at an alcove A C Xg and let A’ € A. For any
wall H of A that separates A and A’, we have sg(A) € A.

Proof. Note that A and sy (A) are adjacent and that d(sp(A), A’) < d(A, A’) by Lemma This
implies that a minimal gallery sy (A) = Ag,..., A3 = A’ from sy(A) to A’ can be completed to a
minimal gallery A, sy(A) = Ay, ..., A3 = A’ from A to A’. Now Lemma yields sg(A) € A, O

Lemma 1.13. Let A be a set of alcoves centered at an alcove A C Xgr, and suppose that there exists
a unique wall H of A with sg(A) € A. Then A={A,suy(A)}.

Proof. First note that A € A by Lemma For an alcove A’ € A with A’ # A and a wall H' of A
that separates A and A’, we have sg/(A) € A by Corollary By the assumption on A, it follows
that H' = H. Now H does not separate the alcoves A and sy (A’), and as before, we see that no wall
H" of A with H" # H separates A and sy (A’) either. As no wall of A separates A and sy (A’), we
conclude that A = sy (A") and A" = sy (A). O

Recall from Theorem that the closure A of every alcove A C Xp is a fundamental domain for
the action of W,g on Xg, so every Wag-orbit in X intersects with A in a unique point.
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Definition 1.14. For € Xg and A C Xy an alcove, denote by ()4 the unique element of A lying
in the Wg-orbit of x.

For a subset S C Xg, we denote by conv(S) the convex hull of S. The situation in which we want
to apply Lemma in Section [ is the following.

Lemma 1.15. Let x,y,z € Xgr and consider the set
A(z,y,2) = {AC Xr | A is an alcove and (y)a — = € conv(Wsn(2)) }.
If A(z,y, 2) is non-empty and A is an alcove with x € A then A(w,y, z) is centered at A.

Proof. Let A" € A(z,y,z) with A’ # A and let H = Hg,, be a hyperplane separating A and A’.
Suppose that A C H~ and A’ C H* and set ¢ := (y)ar, so (v, 8Y) > m > (z,8Y). We have

Wspan = =85my) —x =y —z—((y,8") —m) - 5,
and if (y/, 8Y) = m then it follows that
(Wspany —x =y —x = (y)a — z € conv(Wan(2)),
so sg(A) € A(z,y,2). If (v, B8Y) >m > (x,8") then

Wspany —z =y —x—((y,8)—m) -8

— (o — (y',8Y) —m Y
=/ —a) = S W ) 8
(v, BY)—m

=y —x)+ m (55(@/ —x)— (¢ —93))

is an element of conv{y’ — z,s3(y' — z)}. Now y' — x € conv(Wsn(z)) because A’ € A(z,y,z) by
assumption, and sg(y’ — x) € conv(Wsn(z)) because conv(Wiy(2)) is Way-invariant. We conclude
that

(Y)sp(any — 2 € conv{y —x,s3(y —x)} C conv(Wia(z)),
so sy(A") € A(z,vy, z) as required. The case A C H' and A’ C H™ is analogous. O

Recall that the linkage order T on the set of alcoves is the reflexive and transitive closure of the
relation that is given by A 1 A’ if there exists a reflection s € Wog with A C H; and A’ € H} such
that A" = s(A). For our further study of the linkage order, the following function on the set of alcoves
will be of central importance.

Definition 1.16. For an alcove A C X, let d(A) =3 54+ np(A).
Note that for v € X and alcoves A, A’ C Xg, we have A1 A’ if and only if A+~ 1 A"+, and
d(A" +7) —d(A+~) =d(A") — d(A).
Furthermore, if A C Xy is a dominant alcove then ng(A) > 0 for all 8 € ®* and therefore

d(A) = Y ng(A) = Ing(A)| = d(Aguma; A)

Bedt Bedt

by Corollary and Example The connection between the function d and the linkage order
comes from the following lemma, which is proven in Section I1.6.6 in [Jan03].
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Lemma 1.17. Let A C Xg be an alcove and let s € W,g be a reflection. Then A1 s(A) if and only
if d(A) < d(s(A)).

The two following results are immediate consequences of Lemma [[.17] and the definition of the
linkage order.

Corollary 1.18. Let A, A’ C X be alcoves with A 1 A’. Then d(A) < d(A’), with equality if and
only if A=A’

Corollary 1.19. Let A, A" C Xgr be alcoves with A + A" and d(A") = d(A) + 1. Then there is a
reflection s € Wog with A" = s(A).

We are now ready to show that the linkage order on the set of dominant alcoves is equivalent to
the Bruhat order on W, with the help of some results from [BB05] and [Wan87]. This was already
stated in Theorem but the proof was postponed to this section. The article [Wan87] has been
published only in Chinese, but a translation of the main result into English is available as an appendix
to [GHS1S].

Theorem 1.20. For xz,y € W;f, we have © <y if and only if ©(Apund) T ¥(Afund)-

Proof. First suppose that x < y. By Theorem 2.5.5 in [BB05], there exist elements x, ..., x, € W;;f
with
T=0< 1< - <Tr=YY

and such that
g(x) +i= E("L’Z) = d(Afunda xi(Afund)) = d(xi(Afund))
for i = 1,...,r, where the second equality follows from Corollary and the third equality holds

because z;(Afund) is a dominant alcove. As z;_1 < z; and £(z;) — l(x;—1) = 1, for i = 1,...,r, there
exists a reflection s; € Wyg with z; = x;_1s;. Furthermore, as

d(wi—18i(Afuna)) = d(@i(Aund)) > d(zi—1(Afund)),

we have ;1 (Afund) T Ti—15i(Afund) = Ti(Arand) by Lemmam (applied to the reflection xi_lsixi__ll),
fori=1,...,r, and we conclude that x(Afmd) T ¥(Afund)-

Now suppose that x(Agmd) T ¥(Afand). By Theorem A.1.1 in [GHS18], there exists a sequence of
dominant alcoves

T(Atana) = Ao T A1 T--- T Ar = y(Afuna)

such that d(A4;) —d(A;—1) =1for i =0,...,7. As Wyg acts (simply) transitively on the set of alcoves
(see Theorem , there exist xq,...,x, € W;ﬁ with z;(Agmq) = 4; for ¢ = 0,...,r. Furthermore,
by Corollary there exist reflections s1,...,s, € Wag with A; = s;(4;-1) for i = 1,...,r, and it
follows that x; = s;x;—1. Now as x;_1,x; € W;Cf, we have

U(z;) = d(wi(Afuna)) = d(A;) = d(Ai—1) + 1 = d(@i—1(Apuna)) + 1 = L(wiz1) +1 > L(zi-1)
fori=1,...,r, and we conclude that r =zg < z1 < - <z, = ¥. O

The next result describes the stabilizer of a point x € Xg in terms of the walls of an alcove A C Xy
with 2 € 4; see Section 6.3 in [Jan03].
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Lemma 1.21. Let © € Xy and let A C Xy be an alcove with x € A. Then Stabyw,, (z) is generated
by the reflections in the walls H of A with x € H, that is

Staby,, (x) = (sg | H is a wall of A with x € H).
In particular, we have Stabyy, . (x) = {e} if and only if x € A.

For applications in Chapter [V} we prove some further results about stabilizers in W,g. Recall that
we write Xg = {z € Xg | (z,a") > 0 for all &« € ®*} for the dominant Weyl chamber.

Lemma 1.22. For z € Agng and w € Wag, we have w(z) € Xg if and only if wStabw,, (z) C Wk.

Proof. Suppose that w(z) € Xy and let w’ € Stabw,,(z). Then w(z) = ww'(z) € ww'(Ana), s0
0 < (w(z),a") < na(ww (Amna)) + 1

for all « € ®*, and it follows that ng (ww’(Afund)) >0 and ww' € W;ﬁ
Now suppose that wStabyy,, (z) C W;H. For any simple root a € II, we have

w(w sqw) = sqw ¢ Wk

because w € W, and it follows that w™'sqw ¢ Stabw,, (2) and s ¢ Stabyw,, (w(x)). This implies
that (w(z),a") # 0, and as
0< Ng (w(Afund)) < (’LU(LL’), av)a

we conclude that w(z) € X7, as required. O
We can also characterize the upper closure of an alcove in terms of stabilizers.

Definition 1.23. The upper closure of an alcove A C Xp is the set
A= {z € Xp | na(4) < (z,0") <na(A)+1 forall a € 2T}

It is straightforward to see that, for every point x € Xg, there is a unique alcove A C Xg such
that = € A.

Lemma 1.24. Let © € Apynq and w € Wag. Then the following are equivalent:
(1) w(x) belongs to the upper closure of w(Apmd);
(2) w(Agpuna) is minimal (in the linkage order) among the alcoves whose closure contains w(x);

(3) w(Apma) T ws(Aguna) for all s € SN Stabyy,, ().

Proof. Suppose first that w(z) belongs to the upper closure of w(Agunq), and let A C Xg be an alcove
with w(z) € A. If A # w(Apna) then there exists a reflection hyperplane H = Hpg,, separating
w(Afmq) and A, that is

ng(w(Anma)) +1<m <ng(4)  or  ng(A)+1<m < ng(w(Apna)).
As w(zx) belongs to the upper closure of w(Agng) and to the closure of A, we have
ng(w(Afnd)) < (w(z), BY) < ng(A) +1
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and

and we conclude that
m=ng (w(Afund)) +1= nﬁ(A) = (w(m),ﬁv)

This implies that sgm,(A) T A and that sg,, € Stabw,, (w(z)), so w(z) € sgm(A). By induction on
the distance between w(Agnq) and A (see Corollary , we conclude that

w(Afund) T Sﬂ,m(A) T A,

so (1) implies (2). It is straightforward to see that (2) implies (3).

We proceed to prove that (3) implies (1), so now suppose that w(Agmnq) T ws(Agung) for all simple
reflections s € S N Stabyy, (). Let A C Xﬂ'{ be the unique alcove whose upper closure contains w(z),
and suppose for a contradiction that A # w(Agung). Then there exists a simple reflection s € S such
that the wall w(Hs) = H, 4,1 of w(Agmng) separates w(Agnq) and A. Since w(z) belongs to the
closures of both of the alcoves w(Agnq) and A, we also have

w(z) € AN w(Aguna) C w(Hs)

1

and it follows that s € Staby,,(z). Now let us write wsw™' = sg,,, for some 8 € &+ and m € Z,

and note that we have m = (w(:n), ﬁv) because wsw~! € Staby, . (w(m)) As z belongs to the upper
closure of A, we further have

ng(A) < (w(z), ") < ng(A) + 1

and it follows that ng(A) +1=m and A C Hy . Finally, as Hg,,, = H,,~1 separates the alcoves
w(Afund) and A, we conclude that w(Agpng) C Hgm and ws(Agund) T w(Afund), contradicting the
assumption. ]

Next, for an alcove A C Xy and reflections s,t € W, we want to investigate the linkage relation
between s(A) and ts(A).

Lemma 1.25. Let A C Xg be an alcove and let H be a wall of A with corresponding reflection s = sy .
For any reflection t € Wyag with t # s and A1 t(A), we have s(A) 1 ts(A).

Proof. Note that the alcoves A and s(A) are adjacent and that H = Hg is the unique reflection
hyperplane separating them. Now the assumption A 1 ¢(A) implies that A C H, . As ¢ # s, the
hyperplane H; does not separate A and s(A), whence s(A) C H; and s(A) 1 ts(A). O

Corollary 1.26. Let A C Xy be an alcove and let H be a wall of A with corresponding reflection
s = sy. For any reflection t € Wyg with t # s and d(A) < d(t(A)), we have d(s(A)) < d(ts(A)).

Proof. This is immediate from Lemmas and O

As W,g is in bijection with the set of of alcoves (via x — 2(Agung), see Theorem , we can also
consider d as a function on Wg.

Definition 1.27. For z € W, let d(z) = d(x(Afund)).

Note that for = € WE;E, we have d(z) = d (Afund, x(Afund)) = {(z). The following result is only a
reformulation of Corollary in terms of elements of Wog.
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Corollary 1.28. Let x € Wug and s € S. For any reflection t € Wag with t # s and d(z) < d(xt),
we have d(zs) < d(xts).

Proof. Apply Corollary to the alcove z(Afuq) and the reflections zsz~! and ztz~!. O
Lemma 1.29. For x € Wag and s € S, we have d(zs) € {d(z) + 1,d(z) — 1}.

Proof. As the alcoves Agyng and s(Agng) are adjacent (by Remark , 80 are x(Agund) and xs(Agund)-
Now Corollary [I.9] implies that

1 = d(z(Afuna); 25(Afuna)) Z |ns(2(Asund)) — ng(25(Anna))| »
ped+

from which the claim is immediate. O

Lemma 1.30. Let x € W;f with © # e and let s € S with xs < x. Then
xs € Wi, 25(Afund) T (Afund) and  d(xzs)=d(x) —
Proof. We have xs € W;f by Corollary and therefore
d(zs) =Ll(xs) =L(x) — 1 =d(z) — 1 < d(x).
Now Lemma applied to z5(Agng) and the reflection zsz !, implies that zs(Agnd) T 2(Afuna). O

Let € Wag and s € S with 2(Apna) T 28(Afung). For applications in Section |5 it will be
important to consider sequences of elements x, ..., gy € Wyg with

xO(Afund) T xl(Afund) T T T $d(Afund) = :U(Afund)

and such that d(x;) = d(zo) +i and z;(Apund) T 2iS(Afang) for i = 0,...,d. In the following, we denote
by S0 = Sa,,1 the unique simple reflection with Agyna 1 S0(Afund)-

Proposition 1.31. Let x € W,og such that xsy € W;H and ©(Agand) T 80(Afuna). Then there exist
Yo, - -+ Yr € Wag with yg EWﬂc and

Yo (Afund) T e T y'r(Afund) - x(Afund)
such that d(y;) = d(yo) + %, ¥i(Apund) T ¥iSo(Afund) and y;So € W;;f fori=0,...,r

Proof. We prove the claim by induction on d = d(zsg). Note that since xsq € W > we have

d=d(zsp) = d(Afund, a:so(Afund)) = {l(zsp).

If d = 0 then zsy = e and & = sp, contradicting the assumption that x(Agng) T xs0(Afund)- Ifd =1
then zso(Afung) is adjacent to Agyng, so sp = s for some s € S. As s, ¢ Wa"’;f for all o € II, we
conclude that zsy = sy and = = e, and the claim follows with r = 0.

Now suppose that d > 2 and that the claim is true for all y € Wog with d(ysp) < d that satisfy the
hypotheses of the proposition. If x € W;f then the claim follows with r = 0, so let us further assume
that = ¢ W_k. We have d(zs9) = d(z) + 1 by Lemmas and Furthermore, as d(xsg) = d > 0,
we have xsg # e and there exists s € S with xsgs < xsg, whence

189S € W;f, 2508(Afund) T 250(Afund) and d(zsps) = d(xsp) — 1
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by Lemma Note that we have s # sy because xsysg = = ¢ W;;f. As d(zsos) < d(zsp) = d(xspss),
Corollary yields

d(xspssg) < d(zsosssg) = d(z) = d(xzsg) — 1 = d(zsps),
and using Lemma we conclude that d(zspsso) = d(zsps) — 1 = d(z) — 1. Now Lemma [1.17] yields

250550(Afund) T (Agund) and 250550(Atund) T £505(Afund) = (£50550)50(Afund )

and as (rsgssp)so = TSps € Wa";f, the element wxsgssg satisfies the hypothesis of the proposition.
Furthermore, we have d((zsgsso)so) = d(zs0s) < d(zs9) = d, and by the induction hypothesis, there
exist yo, ...y € Wag with yo € W;ff and

Yo(Agund) T+ T Yr(Afund) = 50550(Afund)

such that d(y;) = d(yo) + i, ¥i(Afund) T ¥iSo(Afund) and y;so € W;f for i =0,...,r. Then the chain

Yo(Apund) T+ T Yr(Afund) = £50550(Afund) T 2 (Afund)

has the required properties. O

For the following result, we suppose that ® is of type A,. By Example this ensures that, for
all s,t € S, we have either st = ts or sts = tst. Recall that we write so = sq, 1.

Proposition 1.32. Suppose that ® is of type A,. Let x € W;f such that x(Apmd) T xs0(Afnd) and
set d = d(x). Then there exist xg,...,xq € Wag with

Atund = 20(Afund) T 21(Afund) T+ T Ta(Afund) = 2(Atund)
and such that x;(Apma) T 2iSo(Apuna) and d(x;) =i fori=0,...,d.

Proof. We prove the claim by induction on d = d(x) = d(Afund,m(Afund)). If d =0 then x = e and
the claim follows with o = e. Now suppose that d > 0 and that the claim is true for all y € W;f such
that d(y) < d and y(Afund) T ¥so(Afund). As d(z) = d > 0, we have x # e and there exists a simple
reflection s € S with xs < z. Then Lemma [I.30] implies that

rs € W;;f, 8(Apund) T 2(Agund) and d(zs) =d(x) — 1.

Also note that d(zsg) = d(x) + 1 =d + 1 by Lemmas and in particular s # sg.
If 28(Afund) T £850(Afund) then, by induction, there exist xg,...,x4_1 € Wag with

Apind = 20(Afund) T 21(Afund) T+ T Zd—1(Afumd) = £5(Aguna)

and such that z;(Apmd) T 2iS0(Afmd) and d(z;) =i for i = 0,...,d — 1. In this case, the claim follows
with x4 = . Now suppose that xsso(Afund) T £5(Afnd) and therefore d(zssg) = d(xs) — 1 = d(z) — 2
by Lemmas and If s and syp commute then

d(xzssy) = d(xsgs) > d(xsg) — 1 =d(x) > d(xs)

by Lemma and therefore xs(Agnd) T £550(Afund) by Lemma a contradiction. Hence s does
not commute with sp, and it follows that ssps = spssp (see Example [[.2.6). Applying Lemma m
three times, we obtain

d(z) — 1 =d(zssg) + 1 > d(xzssps) = d(xsosso) > d(zsps) — 1 > d(xsp) — 2 =d(x) — 1,
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and therefore
d(z) —1=d(zsso) + 1 =d(xssps) = d(xsps) — 1.

Now Lemma [1.17] yields

wSSO(Afund) T xSSOS(Afund) T x(Afund) and xSSOS(Afund) T mSOS(Afund) = (xSSOS)SO(Afund)-

Recall that zs € W;ﬁ and that zsso(Afnd) T 8(Afund) = (£580)S0(Afund) by assumption. By Propo-
sition m (applied to xssg), there exist yo,...,yr € Wag with yg € W;;f and

yO(Afund) RN yr(Afund) = xSSO(Afund)

such that y;(Afund) T ¥iS0(Afund) and d(y;) = d(yo) + i for i = 0,...,r. Then d(yo) < d(zsso) < d(x),
and by the induction hypothesis, there exist xq, ...,z € Wyg with

Afund = X0 (Afund) T tee T l'r’(Afund) = %Yo (Afund)

and such that x;(Agung) T 2iS0(Afund) and d(z;) =i for i = 0,...,7’. Now the chain

Atund = T0(Afund) T+ T 2 (Afund)
= yO(Afund) IEEEN) yT(Afund) = xSSO(Afund) ) wssOS(Afund) ) x(Afund)

has the required properties. O

Chains of alcoves as in the preceding proposition will also be of interest if we replace so = sq, .1 by
an arbitrary simple reflection s € S (and the fundamental alcove Agng by Agung + v for some vy € X).
Before stating a corollary of the proposition that establishes the existence of such chains, we need to
discuss the notion of extremal points of the fundamental alcove.

Remark 1.33. Recall from Remark that {Hao | @« € II} U {Hqy, 1} is the set of walls of Appng.
A point that lies in the intersection of all but one wall of Agnq is called an extremal point of Agng.
It is straightforward to see that 0 is the unique extremal point of Agng that does not lie on H,, 1.
Furthermore, for each simple root « € II, the unique extremal point of Agng that does not lie on the
wall Hy, is given by é - Wa, where ¢ = (wa, ).

As the action of 2 = Stabyy,, (Afng) on Xg permutes the walls of Ag,g, it also permutes the set
of extremal points of Agng. Furthermore, the only affine linear transformation of X that fixes all
of the extremal points is the identity; hence the action of 2 on the set of extremal points of Agng is
faithful. This implies that the action of €2 on Xy faithfully permutes the walls of Agnq and that the
action of 2 on Wyg by conjugation faithfully permutes the simple reflections.

Example 1.34. Suppose that ® is of type A,,. Then oy =" ;" and by Remark the set of
extremal points of Apnq is given by {w, | @ € II} U {0}. Note that all extremal points belong to X
(which may not be true for other types of root systems).

Conjugation by w € €2 is an automorphism of W,g which permutes the simple reflections, hence it
induces a graph automorphism of the Coxeter diagram of W,g. As the action of

O X/Z =7/ (n+ 1)Z

by conjugation on the set S of simple reflections is faithful (again by Remark|1.33)) and as the Coxeter
diagram of W,g (for ® of type A,) is a cycle of length n + 1 (see Example [[.2.6]), the action of {2 on
S by conjugation is transitive.
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Corollary 1.35. Suppose that ® is of type A,,. Let x € Wog and s € S such that x(Aguna) T z5(Afund)-
Then there exist v € X and xg,...,xq € Wag with

Afund + Y= xO(Afund) T xl(Afund) T v T xd(Afund) = x(Afund)
and such that x;(Apmnd) T is(Afuna) and d(z;) = d(t,) +i fori=0,...,d.

Proof. The action of €2 on S by conjugation is transitive by Example solet w € Q with s = wsqw ™!

1

and write 2’ = w™ 2w and w = t,y with p € X and y € Wygy. Observe that we have

xs(Afund) = st()w_l(Afund) = stO(Afund) = wx/SO(Afund) = yx,SO(Afund) +u

and

x(Afund> - xw(Afund) - wwl(Afund) = yw/(Afund) + M,

SO

yx/(Afund) + H = x(Afund) T xS(Afund) = yx/80<Afund) + H,

and it follows that yz/(Agund) T y2's0(Afuna)- Let us fix v € Z® with ¢,yz’ € Wk, and note that
tl/y:E/(Afund) = yx/(Afund) +v T yx,SO(Afund) +v= tl/y:E/SO(Afund)-
By Proposition there exist yo, ..., yq € Wag with
Afund = yO(Afund) T Y1 (Afund) T to T yd(Afund) = tl/yx,(Afund)
and such that d(y;) =i and y;(Afand) T ¥iS0(Afung) for i = 0,...,d. We define v := p — v and
R P S e -1 Ny, —1
i =tyyiw T =ttt opyiw T = w(y t*l/yz)w € Wag
fori =0,...,d, so that z;(Afund) = ¥i(Afund) + . Thus

Afund +7 = 20(Afund) T+ T Za(Afund) = toy2’ (Afuna) + 7 = ¥2' (Afuna) + # = 2(Afuna)

and
d(xz) - d(t’y) = d(yi(Afund) + 7) - d(Afund + ’7) = d(yl) =1
for : =0,...,d. Furthermore, we have
2i(Afund) = Yi(Afand) +7 T ¥i80(Afund) +7 = tyyiw ™ - wsow ™ (Afund) = i5(Afund)
for i =1,...,d, so the elements xg, ...,xq € Wag have the required properties. O

We conclude this section with another result that is only valid for ® of type A,; it will be needed
in Section 6l

Lemma 1.36. Suppose that ® is of type A,. For every alcove A C X, there is a wall H of A such
that A1 sg(A). If there is a unique wall H of A with A1 sg(A) then A = Aggng + for some v € X.
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Proof. Suppose that there are (at least) n walls Hy, ..., H, of Asuch that sg,(A) T Afori=1,...,n
and let w € Weg such that w(A) = Apypng. Then w(Hy),...,w(H,) are walls of Agq and there is an
extremal point § of Appg such that (), w(H;) = {6}. By Example we have 0 € X (recall that ¢ is
of type A,), so v :==w 1(§) € X and {y} =), H;- Thus A — v is an alcove whose closure contains 0,
and the hyperplanes H; — v, for i = 1,...,n, are precisely the walls of A —~ containing 0. As Agnq is
the unique dominant alcove whose closure contains 0, we have A — v = w'(Agynq) for some w’ € Wyy,.

If w' = e then A = Agng + 7, as required. Suppose for a contradiction that w’ # e, and choose
a simple root a € II such that w'(a) € —®T. As H,p is a wall of Agpq (see Remark , the
hyperplane H = H_,y(4)0 = w'(Ha) is a wall of the alcove A — v = w'(Afyna), and as 0 € H, we
conclude that H = H; —  for some i € {1,...,n}. Furthermore, we have

sg(A—7)=su,~(A—7)=su,(A) =7 1T A-7,

because sg,(A) T A. However, for v € A — v = w'(Afmd), there exists y € Agpng such that z = w'(y)
and we have

(:E? _w/(a)\/) = (U),(y), _w/(a)\/) = _(y’a\/) < Oa
that is A—~ C H™, a contradiction. Hence w’ = e and A — = Aguna. The first claim follows because
the hyperplane H' := H,, 1+ is a wall of A = Agynq + with A 1 sp/(A). O

2 Quasi-translation functors

In the following sections, we will be concerned with functors of the form
0
TV = pr,(V(0) ® —): Rep)(G) — Rep,(G),

for A\, 1 € Cruna N X and 6 € X T not necessarily Ws,-conjugate to u — A. We call such functors quasi-
translation functors, because of their similarity with the translation functors T)‘f from Section
The purpose of this section is to discuss some properties of quasi-translation functors. We rely on
the following result from Lemma II.7.5 in [Jan03|, which we will use to describe the action of quasi-
translation functors on the level of characters.

Lemma 2.1. Let M be a G-module in Rep,(G), for some X\ € Cyuna N X, and write

(M) = 3 au x(w ),

weWLg

with ay € Z for all w € Wag and ay, = 0 for all but finitely many w. For any G-module V and any
weight 1 € Crung N X, we have

ch (er(V®M)) = Z aw-ZdimVl,-X(w- ()\—1—1/)),

’LUEWaff v

where we sum over allv € X with A\+v € Wyg - p.

Now let us consider a quasi-translation functor
1
T,/\L’ = pr;},(v((s) ® _): Rep)\(G) — Repu(G)a
for A\, € Crana N X and 6 € XT. By the character formula in Lemma we have

ch T{*V(x - A) = chpr,(V(6) @ V(z - A)) = > dim V(8), - x(z - (A +v))
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for all x € Wog with - A € X, where we sum over all v € X such that A\ +v € Wug - u. The
summand corresponding to v € X contributes a non-zero term to this sum only if v is a weight of the
costandard module V(§); hence, setting

AN p,6) ={reX ‘ A+ v € Wag - p and v is a weight if V(6)},
we have

(2.1) hT{'V(z-N)= Y  dimV(®), x(z-(A+v)).
veA(\u,d)

Now for v € X and an f-alcove C' C Xp, let us write (7)¢ for the unique W,g-conjugate of v in the
closure of C (cf. Definition [1.14)), with respect to the ¢-dilated dot action. Furthermore, let us define

C(\, p,6) = {C C Xg | C is an f-alcove and ()¢ — A is a weight of V() }.

Lemma 2.2. We have
A p,0) = {()e = A | C eCA\p,d)}

and
C(\ p,0) ={C C Xg | C is an l-alcove with (u)c — A € A(\, 1, 6) }.

In particular, A\, p,0) is non-empty if and only if C(\, u,d) is non-empty.

Proof. For v € A(\, i1,0) and C C Xg an f-alcove with A +v € C, we have (u)c = A+ v and it follows
that C' € C(\, u,0). Conversely, for C € C(A\, p,6) and v == (u)c — A, we have v + X\ € Wg - u and v
is a weight of V(4), so v € A(A, p, 9). O

Note that A(A, p,0) is empty unless 0 lies in the same Z®-coset as x -y — A for some (and hence all)
z € Wag. Using the well-known fact that the set of weights of V(§) equals conv(Wsn(8)) N (6 + Z®),
it follows that

C(\ p,0) = {C C Xg | C is an f-alcove and (u)c — A € conv(Win(6)) },
whenever C(\, i, ) is non-empty.
Lemma 2.3. If C(\, p,0) is non-empty then C(X, u,d) is centered at Cpyng and Crng € C(A, 1, 9).

Proof. Suppose that C(\, u,0) is non-empty, so that
C(\,p,6) ={C C Xg | C is an f-alcove and (u)c — A € conv(Wiy(6)) }

by the above discussion. As explained in Section we have a correspondence between alcoves and
{-alcoves in Xg, which sends an alcove A C Xp to the f-alcove £ - A — p. Let us define

v=A+p)/l,  y=(@+p)/l and z=6/l
and consider the set of alcoves
A(z,y,z) = {A C Xg | Ais an alcove and (y)4 — z € conv(Wsn(2)) },
which is either empty or centered at Agnq by Lemma because A € Cyypg and thus
= (A+p)/l € (Cruna + p)/l = Aguna.
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Now it is straightforward to see that

C(\, p,6) = {C C Xg | C is an f-alcove and (u)c — A € conv (Wi (6)) }
={¢-A—p|AC Xg is an alcove and (y)4 — = € conv(Ws,(2))}
={l-A-p|Ac Alz,y,2)}

is centered at £ - Afund — P = Chund, as claimed. The second claim follows from Lemma [1.11 O
Corollary 2.4. If T/‘\“s is non-zero then p — X\ is a weight of V(J).

Proof. If T} * is non-zero then A(\, i, d) is non-empty by equation (2.1)), so C(A, u,0) is non-empty
by Lemma and Crynq € C(A, i1, 0) by Lemma By the definition of C(\, u,d), this means that
= A= (1)cpnq — A is a weight of V(6), as claimed. O

An immediate application of the preceding corollary is the following result, which will be very
useful later on.

Proposition 2.5. Let M be a G-module in Repy(G) and let V' be a minuscule G-module. Then

VoMM,
v

where we sum over all v € Cyna N X such that v — X is a weight of V.

Proof. Recall that a G-module is called minuscule if all of its weights belong to the same Wgy,-orbit
and that the minuscule G-module V' is of the form V = [(w) = V(w) for a minuscule weight @ € X,
that is, a dominant weight @ with (@, /) = 1. By the linkage principle, we have

VoaM= P p,(VeM= H Ty7M,
VGéfundﬂX VGéfundﬂX

where Ty M = 0 if v — X is not a weight of V, by Corollary If v — X\ is a weight of V then v — \
is Whp-conjugate to the highest weight @w of V' because V' is minuscule, so

TY"M = pr, (V(w) @ M) 2 TYM

and the claim follows. O

3 The setup

From now on until the end of this chapter, we suppose that G is of type A, and that £ > n + 1.

We fix a numbering of the simple roots II = {a1,...,a,}, in accordance with the Dynkin diagram in
Figure and denote by w; = @,, and s; = s,, the fundamental dominant weight and the simple
reflection corresponding to oy, for ¢« = 1,...,n. Furthermore, we write so = 4,1 and adopt the

convention that wp = 0 and w41 = 0. The positive roots in ¢ are given by
T ={Bi;|1<i<j<n}

where
,31'7]' =0+ toj =wi—1 +w; + W — W+,
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Chapter IV. The second alcove

and we have ay, = f1, = w1 + @y,

Recall from the introduction to the chapter (see page that we want to study the generic direct
summand G(sow, z) of L(sow +0) ® L(z - 0), for z € W, and a certain fixed element w € Q (to be
specified below), by realizing L(sow - 0) as a subquotient of the tilting module T'(sow - 0) and giving a
detailed description of the functor

pry.0(T (50w - 0) ® =) : Repy(G) — Rep,.o(G).

The starting point for our strategy is the following elementary lemma (which does not yet require the
hypothesis that G is of type A,):

Lemma 3.1. For A € Cgyng N X, the minimal tilting complex of L(sg - A) is of the form
Crmin(L(so+N)) =( 0=>T\) = T(so-A) = T(\) =0 ),
with the tilting module T'(so - A) in homological degree 0.

Proof. This follows from Proposition [[1.2.6| because ¢(sp) = 1 and because e and sy are the only
elements of W;gf of length at most 1 (by Lemma [[.2.12]). O

Remark 3.2. Let us explain another way of computing the minimal complex from Lemma [3.1} For
a weight p € Cruna N X with Stabyy, . (1) = {e, so}, we have L(u) = T(u) by the linkage principle, and
it follows that TQ\L(,u) is a tilting module. Now Tﬁ\L(,u) is indecomposable with simple head and socle
SOCGT;\L(,U) = head(;Tli‘L(,u) =~ L(N)
and with
radgT/;\L(u)/socGTﬁ\L(u) > L(so-A)

by Proposition By weight considerations, we conclude that T li‘L(u) =~ T(sg+ ). Furthermore,
the monomorphism T'(A) = L(\) — T'(so - A) and the epimorphism T'(sp - \) — L(A\) = T'(\) give rise
to a complex

C=( 0T\ = T(so-A) =T\ =0 ),

where T'(sg - \) is in homological degree zero, with H°(C') = L(so - \) and H*(C) = 0 for i # 0. It is
straightforward to see that C' is minimal, and we conclude that C' = Cpn (L(so . /\))

As mentioned before, we will apply Lemma [3.1] in the case where A = w - 0 for an element w € €,
which we define in the following lemma:

Lemma 3.3. We have w :=tx5,5152- -5 € ().

Proof. Note that we have s,8,—1---s1(a1) = —ay, and spsp—1---s1(a;) = a;—1 for 1 < i < n. For
1 <i,j <n, we further have

(w(wi)va}/) = (8182 coesp () + WLO@V) = (Wz’, SnSn—1-"" Sl(a}/)) + 01,5,
and for j = 1, it follows that (w(wi)7a\{) = —(wi,aﬁ) +1=0. For j > 1, we obtain
(w(wi)aa}/) = (wiva}/—l) = 6i:j*1’

and we conclude that w(w,) = 0 and w(w;) = w;41 for 1 <i < n. Furthermore, we have w(0) = w1,
so w permutes the set {0,c1,...,w,} of extremal points of Agng (see Example [1.34)), and it follows
that w(Afund) = Afuna and w € Stabyy,,, (Afuna) = ©, as claimed. d
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For the remainder of this chapter, we fix
W=tz 51525 € (2 and A=w-0€ Crna N X.
Lemma 3.4. We have \=w-0=({(—n—1) w;.

Proof. 1t is straightforward to see, by induction on i, that

Sp—iSn—itl - Sp+0=—an —20p1—--=(i+1)-api=(+1) - wpi1— (I +2) @y
fori =0,...,n—1, with the convention that wy = 0. In particular, we have s1s9 -+ $,-0 = —(n+1)-w
and w-0 =tz 5152 -8, -0=({ —n—1)-wi, as claimed. O

One advantage of working with T'(sg + A\) = T'(sow - 0), rather than T'(sg - 0), is that we have a
tensor product decomposition of the former tilting module.

Proposition 3.5. We have s+ A = ({ —n) - w; + w, and
T(so+A) =2 V(wn) @ V(L —n)-@).
Proof. By Lemma we have A = ({ —n — 1) - wy, and it is straightforward to compute that
s0 - A=A—(A+p)-ap+Llay =X+ ap = ({—n)- wm + @,

Now the G-module V(w,,) is minuscule with set of weights {wy,, —wi1} U{wi—1 —w; | 1 < i < n}.
Furthermore, we have p == (¢ —n) - @1 € Ctunq and using Proposition it follows that

V(wn) ® V(n) = P TV (),

where we sum over all v € Cyypqg N X such that v — u is a weight of V(zw,,).

For 1 < i < n, the weight §; == pu+w;_1 —w; is non-dominant and we have and §; € FM C Crund, SO
Proposition implies that T giV(u) =0. As 1+ @, & Crung and gt — @1 = A € Cpung, we conclude
that

V(wn) ® V(i) = TpV(p).

Now V(u) = T(u) by the linkage principle (because p € Cynq) and it follows that T;‘V(u) = T}Q\T(,u)
is a tilting module. Furthermore, as sg is the only simple reflection that stabilizes p, Lemma [1.21
implies that Staby, (1) = {e,so}. By Proposition the G-module T}V (u) is indecomposable
and has a good filtration with subquotients V(\) and V(sg - A). We conclude that

V(wn) ® V(i) 2 TpV (i) = T(so - A),
as claimed. O

Now let us consider the functor
U = pry(T(s0-A) ® —): Repy(G) — Repy(G).
By Lemma |3.1] we can choose a monomorphism
e: T(A) — T(so-A)
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and an epimorphism
:T(s0+0) — T(N)

p
such that im(e) C ker(p) and ker(p)/im(e) = L(sp - \), and as A € Cgypg, these homomorphisms give

rise to natural transformations
¥ =pry(e® —): Tg‘ = prA(T(/\) ® —) — pr)\(T(so ‘A ® —) =
and
T=pra(p®—): V=pry(T(s0-A)®—) = pry(T(\) ® —) =T
For every G-module M in Repy(G), the components of ¥ and m at M satisfy im(Jys) C ker(mys) and

ker(mar)/im(dpy) = pr)\((ker(p)/im(e)) ® M> =~ pry(L(so - \) ® M),

by the construction of ¥ and .
Next, let us set = (¢ —n) - @y and fix an isomorphism

f:T(s0+A) — V(wn) @ V(p),

as given by Proposition [3.5] Then f and the associativity of tensor products give rise to a natural
isomorphism
U =pry(T(s0+0)® =) = pry(V(wn) ® =) o (V(n) ® —),

where we view (V(u) ® —) as a functor from Repy(G) to Rep(G) and pry(V(w,) ® —) as a functor
from Rep(G) to Rep,(G). By the linkage principle, we have an isomorphism of functors

(Vwe-)= @ . (Vwe-),
v€CunaNX

and by composing with the functor pry (V(wn) ® —), we obtain
U = pry (V(wy) ® —) o (V(p) ® )
> B (Vi) ®-)opr,(V(n e -)

v€CrunaNX

— Ayw v,
= & ozt
Veéfundmx

Recall from Corollary that T,"™" is zero unless A — v is a weight of V(wy,) and from the proof of
Proposition that V(cw,) is minuscule with set of weights {cw,, —wi} U{wi-1 —w; | 1 <i < n}.
Let us define

o :=A+w; =l —n) w =pu,
pp=A— (w1 —wa) =Ll —n—2) w) +ws =p—aq,
i =A—(wi—wiz1) =l —n—1) w1 —w; + wig1 = 1 — Pr for 2 <1 <n,

and note that u; € Crung N X for 0 < i < n. By construction, {juo, i1, ..., in} is precisely the set of
weights v € Cpunq N X such that A\ — v is a weight of V(zw,,), and it follows that

n n
~ A, Hisfb A 12N
\Il_@TM "oty _@TMOTO ’
i=0 1=0
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4. Properties of ©;

where T,f‘i’w” = Tlfi because A — u; is Wsn-conjugate to w,, for i =0,...,n. We write
pr;: ¥ = T};\i o T = ©,

for the natural transformation that projects onto a direct summand in the above direct sum decom-
position of ¥ and consider the natural transformations

¥ == pr; o ¥: T(j\ = 0O,
for : =0,...,n. In the following sections, we will show that

(1) the functor ©; = Tﬁ\i o T} behaves essentially like the wall crossing functor Tﬁ‘i o T§" corre-
sponding to the simple reflection s; (with some adjustments in the case i = 1);

(2) the component (9;) .0y of ¥; at a simple G-module L(z - 0), for # € W%, is non-zero if and
only if x(Afund) T ws; (Afund)'

This will enable us to give a description of the generic direct summands G(sow, z) for all z € W;gf.

4 Properties of O,

We keep the notation and assumptions from Section [3| Recall that we consider the functors
©; =T}, o T§""
fori=0,...,n, where \=w-0={—-n—1) -wi, p=(—n) w; and
po=A+w = —n) w =pu,
1 =A— (w1 —wa) =l —n—2)-w; + wa,
i =A— (w; —wip1) =l —n—1) w1 — w; + wit1 for 2 < i < n.
Note that for i # 1, we have Staby, (1) = {e,s;} because s; is the unique simple reflection that

stabilizes p; (see Lemma |1.21). For ¢ = 1, we still have Staby, (1) = {e,s1} in case £ = n + 1,
but for ¢ > n + 1, the weight p; is f-regular (so that Tﬁ\1 is an equivalence by Proposition .
<

In either case, the translation functors Tj‘i are well-understood by the results from Section see

in particular Propositions [I.6.9] and [[.6.10]), so we will focus on understanding the quasi-translation

functors T3"". For i = 0, we have p9o = p and therefore T)** = T} = T}'. Our first aim will be to

show that for ¢ > 2, the quasi-translation functor Té‘ “l acts like the translation functor Té‘ “ on the

level of characters. (We do not know if there exists a natural isomorphism between these functors.)
Recall from equation that we have

(4.1) TPV (z-0)= > dimV(u), - x(z-v)
vEA(0,pi,p)
for all z € W;ff, where
A0, i, ) = {V eX ‘ v € Wag - ; and v is a weight of V(u)}.
Furthermore, we have A(0, u;, 1) = {(1i)c | C € C(0, i, ) }, where
C(0, pi, ) = {C C Xgr | C is an l-alcove and (u;)¢ is a weight of V(u)},

and the set C(0, p1;, p) is centered at Cyng (or empty); see Lemmas[2.2]and In order to describe the
action of the functors 73" on the level of characters, we first compute the sets of ¢-alcoves C(0, p;, j1).
This will be achieved in Corollary below, but we start with some weight considerations.
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Chapter IV. The second alcove

Lemma 4.1. Fori=0,...,n, we have dimV(u),, = 1.

7

Proof. For i = 0, the claim is obvious because pg = u, and for ¢ = 1, it follows by truncation to
to the Levi subgroup corresponding to the subset {a1} C II, since p3 = p — 3. For i > 1, it is
straightforward to see that p;—1 = s;(u;) and therefore

dimV(u)u, =dimV(p)y, , = =dimV(u1),, =1,
as claimed. 0
Lemma 4.2. Leti,j € {1,...,n}. Then p— P1,;+ o is a weight of V(p) if and only if i = j.
Proof. If j > i then p — 31, + oj % p and if j < ¢ then
SBjt1, (= Bri+aj)=p—Prj1+ Birii f Wy

with the convention that 319 = 0. In both cases, it follows that  — 51 ; + ¢ is not a weight of V(u).
If ©+ = j then we have

p—PBrit+o;=p—Pri-1= i1
for i > 1 and p — B1,1 + o1 = p, so the claim follows from Lemma O
Proposition 4.3. For i =0,...,n and s € S, we have s - Cgyng € C(0, w4, p) if and only if s = s;.

Proof. First note that we have (;)s.cpq = S fi for all s € S because p; € Ctunda. Therefore, our
claim is equivalent to proving that s - p; is a weight of V(u) if and only if s = s;. For i # 1, we have
si » pti = p1i (as observed before) and dim V (1), = 1 by Lemma For i = 1, we have

s1-p1 =s1(p1) — a1 = s1(p1 + 1) = s1(p)

and dim V(M)SI(M)
First suppose that j = 0. We have

= dim V(p), = 1. It remains to show that s; - p1; is not a weight of V() for j # 1.

S0 i = pi +an = p+ Biv1n > p

for 1 <i<nand
80 * fin = pn + 200 = g+ op > 1,
and it follows that sg - p; is not a weight of V(u) for i # 0.
Now suppose that j > 1 and note that s; -z = s;(z) — aj = s;(x + o) for all x € Xg. For i =0,
it follows that s; - 1o = s;(p + ;) is not a weight of V(i) because p+ «; > p. For 1 <i < n, we find
that

sj+ i = 85(pi + o) = sj(p — Bri + ay)
is a weight of V(u) if and only if ¢ = j by Lemma O

Corollary 4.4. Fori=0,...,n, we have C(0, p;, tt) = {Ctund, Si * Ctund }-

Proof. Recall from Proposition that s; is the unique simple reflection with s; + Crynq € C(0, g4, )
and from Lemma that the set C(0, u;, pt) is centered at Chrynq. As the walls of Cpyng are precisely
the reflection hyperplanes corresponding to the simple reflections (see Remark [[.2.7]), the claim follows

from Lemma [LL13 ]
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Now we are ready to prove that the quasi-translation functors T3 act like translation functors
on the level of chatacters, first for ¢ # 1 and then for ¢ = 1.

Proposition 4.5. Let M be a G-module in Repy(G) and let i € {0,...,n}. Furthermore, suppose
that either i #1 or { =n+ 1. Then we have

ch (T§"*M) = ch (T§"M).

Proof. If £ =n+1 then y; = —w; + w11 is Way-conjugate to u = wy for i =0,...,n, so T)"" = T4"
and the claim is immediate. Now suppose that i # 1 and £ > n + 1. As the characters of the induced
modules form a basis of Z[X]Wan it suffices to prove the claim in the case where M = V(x - 0) for
some z € Wk. As Staby,,(0) = {e}, Proposition yields

ch (T} (z - 0)) = x(z + ).
Furthermore, we have C(0, 1, tt) = {Cfund, Si * Ctuna} by Corollary and

A0, 1, 1) = { (1) Crunas (1) s5-Cruna t = {Htis Si+ i} = {i},

by Lemma and using equation (4.1)), we conclude that

ch (T)""V (z - 0)) = Z dim V(p)y - x(z - v) = dim V (), - x(@ + p5)-
vEN(0,u;,10)

Now the claim follows because dim V(11),, = 1 by Lemma [4.1] O

Proposition 4.6. Suppose that ¢ > n+1 and let M be a G-module in Repy(G). Then, for any weight
§ € Cyna N X with Staby, . (6) = {e, s1}, we have

ch (Ty' M) = ch (T{T{ M)

Proof. As in the proof of Proposition it suffices to prove the claim in the case where M = V(z-0)
for some x € W;;f. By Proposition we have

ch (TgV(x-O)) = x(x+9) and ch (Tg“TgV(ac-O)) = x(x )+ x(zs1 - p1)
because Stabyy,, (0) = {e} = Stabw,,(u1) and Staby,,(0) = {e, s1}. Furthermore, we have
A0, i, 1) = {(11) Crana> (11)51-Crana } = {1551+ 1}
by Lemma and Corollary and equation yields

ch (Tf""V(z - 0)) = Z dim V(p), - x(z - v)
vEA(0,pu1,10)

=dim V(@) - x (@« p1) + dim V() sy - x (251 + p1)-

The claim follows because dim V(x),,, = 1 (by Lemma[d.1)) and dim V(p)s,.., = 1 (since s1-p1 = s1(p),
as computed in the proof of Proposition . O

For i # 1, we can now explicitly determine 7}V (z - 0) and T}""L(z - 0) for x € W 5.
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Corollary 4.7. Let x € Wé;% and i € {0,...,n}. Furthermore, suppose that eitheri # 1 or{ =n+1.

Then we have
V(z-p) ifx-p € X,
0 otherwise

TV (- 0) {

and
L(x ‘ Mz) wa * Cfund TZ TSi C'fund7

0 otherwise.

T L (x - 0) {

Proof. Note that T}"*V (z-0) = pr,, (V(1)®V(z-0)) has a good filtration and that the multiplicity of
an induced module as a subquotient in a good filtration is determined by the character of T}V (z-0).
Analogously, the multiplicity of a simple G-module in a composition series of T} L(x-0) is determined
by the character of T§'"*L(z - 0). As

ch (T§"*V(z-0)) =ch (T§"V(z-0))  and  ch(T§""L(z-0)) = ch (T}"L(z - 0))

by Proposition the claim follows from Proposition and the observation that z - ; belongs to
the upper closure of 2 - Cpypnq if and only if = + Cryng T¢ 28 + Crung (see Lemma [1.24)). O

Let us conclude this Section with some observations about the functors ©; = le‘i o TH'"", which
will be important later on.

Corollary 4.8. For x € W;Ef and 1 € {0,...,n} with xs;(Afund) T (Afund), we have O;L(x - 0) = 0.

Proof. It i # 1 or £ = n+ 1 then TJ"*L(z - 0) = 0 by Corollary and it follows that ©;L(z-0) = 0.
Now suppose that i = 1 and £ > n + 1, and let § € Cgynq N X such that Staby, . (6) = {e,s1}. By
Proposition 4.6, we have

ch (T§"" Lz - 0)) = ch (T T Lz - 0)).

As x51(Afund) T 2 (Agund), the weight z - § does not belong to the upper closure of the alcove z - Cpypng
by Lemma so Proposition implies that T9L(x - 0) = 0 and the claim follows. O

Corollary 4.9. For x € W;f and i € {0,...,n} such that x(Apmd) T 8i(Afund), there is a non-split

short exact sequence
0— V(z:A\) — 6;V(z-0) — V(zs;+\) — 0.

Proof. 1f i # 1 or £ = n+1 then Stabyy,, (i) = {e, s;} and the assumption that z(Agna) T i (Afund)
implies that z-p; € X . Now Corollaryyields Ty 4V (2+0) =2 V(z- p17), s0 O;V (2+0) 2 T V(- p17)
and the claim follows from Proposition

Now suppose that i = 1 and £ > n + 1, and note that 7"V (z - 0) = pr, (V(1) ® V(2 - 0)) has a
good filtration. Furthermore, for § € Cyng N X with Staby, . (d) = {e, s1}, we have

ch (T§"*V (- 0)) = ch (T TV (x - 0))

by Proposition Using Propositions and we see that T9V(z - 0) = V(z - §) and that
there is a short exact sequence

00— V(x-pu)— T('SungV(ZE -0) — V(asy - pu1) — 0.
In particular, we have
ch (T§""V (- 0)) = ch (T TV (2 - 0)) = ch V(2 - p1) + ch V(wsy » 1)
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and it follows that T} "*V (z:-0) has a good filtration with subquotients V(z - u1) and V(21 - 1), both
appearing with multiplicity one. As - p; < s - 11, the good filtration can be chosen with V(z - ;)
as a submodule and V(zs1 - 11) as a quotient of T3 *'V(z-0) (see the remarks after Proposition,
so there is a short exact sequence

0— V(z-m)—Ty""V(z-0) — V(zsy - p1) — 0.

Note that p is ¢-singular, so V(u) is a singular G-module by Lemma As singular G-modules
form a thick tensor ideal, it follows that T)""*V(x - 0) is singular. In particular, as V(z - u1) is regular
by Lemma (and taking duals), the above short exact sequence is non-split. Now the claim follows
by applying the translation functor Tﬁ\l to this short exact sequence. O

Proposition 4.10. Let x € W;& andi € {0,...,n} such that ©(Agung) T ©8i(Afunq). Then there exists
a weight § € Cryna N X with Stabyw,,(8) = {e, s;} such that ©;L(x - 0) 2 T{L(x - 6).
Proof. If i # 1 or £ = n+ 1 then Stabw (1) = {e, s;} and by Corollary we have

T HL(x - 0) = L(x - p5).

This implies that ©;L(x - 0) = T!;\Z,L(x - 1) and the claim follows with § = p;. Now suppose that ¢ =1
and £ > n + 1, and choose any weight § € Cyna N X with Staby . (§) = {e, s1}. By Proposition
there is a non-split short exact sequence

0— V(z-\) — T{V(z-6) — V(zsy - A) — 0
and we have socgT3V(z+8) & L(z-\). Furthermore, the G-module T3V (x - ) is the unique non-split
extension of V(xs; + A) by V(x - \), as remarked after Proposition [[.6.10l Now by Corollary there
is a non-split short exact sequence
0—V(x:-A) —60V(x-0) — V(zs;-A) — 0
and it follows that ©1V(z - 0) 2 TRV (z - §). As Oy is exact, there is an embedding
©1L(z - 0) — ©V(z-0) = T}V (z - 0),

and in particular, we have either socg®1L(z - 0) = L(x - \) or ©1L(z - 0) = 0. We claim that the
above embedding factors through an embedding of ©1L(z - 0) into T3 L(x - §).
First observe that we have

ch©1L(z - 0) = ch (T T{* TY L(x - 0)) = ch T L(x - 6)

1

by Propositions and and that T, g\L(x - 0) is non-zero by Proposition Furthermore, we
have V(i) = L(p) because p € Cung, 50 O1L(z+0) = T;i\1 T§" " L(z - 0) is contravariantly self-dual and
it follows that

headg®1L(z - 0) = socg©O1L(z - 0) = L(z - \).

By Propositions [.6.10/ and [I.6.11} we have [T} L(x « §) : L(x - A)] = 2 and
[V(zsi«A): L(z-N)]=[V(z-A): Lx-\)] =1,

so [T{V(x+6) : L(z - \)] = 2 by our first short exact sequence. This implies that L(z - \) is not a
composition factor of the quotient @ of TV (z « §) by the naturally embedded submodule T{L(z - 6).
As headg©1L(z - 0) = L(x - A\), there is no non-zero homomorphism from ©1L(z - 0) to @), and we
conclude that the embedding ©1L(z+0) — T3V (z - §) factors through T L(z - §), as claimed. Finally,
as the characters of ©1L(z - 0) and T L(x - §) coincide, it follows that ©1L(z - 0) X TP L(x - §). O
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5 Properties of 9;

We keep the notation and assumptions from Section [3| Recall that we consider the functor
W =pry(T(s0-A) @ —),
which decomposes as a direct sum
UV>20yd0,6---d0O,
of the functors ©; studied in Section ] Furthermore, the fixed homomorphisms
e: T(\) — T(sp+A) and  p:T(sop-A) — T(N)
give rise to natural transformations
V=pry(e® —): Ty = ¥ and T=pr\(p® —): ¥ = T3

such that, for every G-module M in Repy(G), we have ker(mar)/im(dar) = pry (L(so - A) @ M).
For x € W;;f, we have

VL(x-0)=0¢L(zx-0)®---®O,L(x-0),

and each of the G-modules ©;L(z - 0) is either zero or admits a description as the ‘translation from
an s;-wall’ Tg\iL(:L‘ - 6;) of a simple G-module L(x - §;), for §; € Cyna N X with Staby._.(6;) = {e, s;}
(see Corollary and Proposition [4.10). The component at L(zx - 0) of the natural transformation
gives an embedding

Vp0): L(x+A) 2 TgL(x - X) — WL(z - 0),
which induces homomorphisms L(z - A) — ©;L(x - 0) for i = 0,...,n by composition with the projec-

tions onto the direct summands. In order to describe the subquotient

ker (WL(Q;.O)) /im(ﬁL(w.g)) = pry (L(so ‘A ® L(x - 0)),

we need to understand precisely which of the homomorphisms L(z - \) — ©;L(x - 0) are non-zero.
This requires a detailed analysis of the natural transformations

¥; =pr;00: TOA — 0O

(where pr;: ¥ = O, denotes the canonical projection), which will be carried out in this section. We
start by giving a sufficient condition for the non-vanishing of the component (9;),(,.0) of ¥; at a simple
G-module L(z - 0).

Lemma 5.1. Letz € W;;E and i € {0,...,n} such that x(Aguna) T 28i(Apund)- If 2(Apund) = Apand +7y
for some v € X then (9;)(z.0) # 0.

Proof. As observed before, the alcove Agnq has a unique wall H = H,, 1 with Agna T sa(Afund),
hence x(Afund) = Afund + 7 has a unique wall H' = H + ~ with 2(Agmd) T sg@(Agung). This implies
that s; is the unique simple reflection with z(Afuna) T 25i(Afund), 50 £5;j(Afund) T ©(Apma) for j # i
and ©;L(z - 0) = 0 by Corollary In particular, we have (9;)r(;.0) = 0 for j # 4, and the claim
follows because

Vp(e0y: L(x - A) 2 T3 L(z - 0) — UL(z - 0)

is injective (hence non-zero) and ¥ = ¥g @ - - - B J,,. O
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Our next goal is to show that the non-vanishing of (1J;) L(z-0) 18 ‘invariant under translation by the
root lattice’. More precisely, we want to establish that, for x € W;;f and v € Z® such that t,x € W,;f,
we have (9;) 1.0y # 0 if and only if (9;) 1, 2.0) # 0. To that end, we will consider analogues of ©; and
¥; for G1T-modules (rather than G-modules) and use the fact that tensoring with the one-dimensional
G1T-module v is an equivalence with (y® Ly (- \) El(t,yx - A) (see Section . Our goal will then
be achieved by a comparison of ©; and ¥; with their G;T-versions. In order to carry out this strategy,
we will need some more notation for functors and natural transformations, which we introduce in the
following remark.

Remark 5.2. Let C and D be categories and let F} and F5 be functors from C to D. As before, for
a natural transformation ¢: F; — Fy and M an object of C, we write ¢ps: F1(M) — Fo(M) for the
component of ¢ at M. For a category £ and a functor F': D — £, we have a natural transformation

Fi:FoF, » FoF

with component (F )y = F(Ypr): F o Fy(M) — Fo Fo(M) at an object M of C. Analogously, for a
category B and a functor F’: B — C, there is a natural transformation

wFliFloF/%FQOF/

with component (¢ F')y = ¥pr(n): FLoF'(N) — FyoF'(N) at an object N of B. For another functor
F3: C — D and a natural transformation ¢: Fo — F3, we have

F(pop)=FpoFy and  (poy)) F'=pF oy F,
and it is straightforward to see that F o F' == (F¢) F' = F (¢ F').
Recall that from Section [3| that the functor ©;: Repy(G) — Rep,(G) is defined by
©; =Ty o T} = pry(V(@1) ® =) o pr,, (V(n) © —),
for i € {0,...,n}. Furthermore, the natural transformation 9;: T — ©; is the composition of
pry((foe)®—): T =pry(T(N) @ =) = pry(V(w1) @ V(i) ® —)
with
pry (V(w) @ =) pry,, (V(p)@—): pry(V(w)@V(p)@—) = pry(V(w)®—)opr, o (V(p)@—),

where e: T(A) — T(so - A) and f: T'(sp - A) — V(w1) ® V(u) are the fixed homomorphisms from
Section |3} Here, by abuse of notation, we consider pr,,, as a natural transformation from the identity
functor on Rep(G) to the projection functor pr,,,, whose component at a G-module M is the natural
projection M — pr, M. Thus pry (V(wl) ® —) pry, (V(u) ® —) is indeed a natural transformation
from the functor
pry (V(w1) ® V() ® =) = pry (V(w1) ® —) oidgepa) © (V(1) © —)
to the functor pry (V(w1) ® —) o pr,, © (V(1) ® —); see Remark
Now let us simplify notation by writing r = resng and define

O, = pr, (rV(w1) ® =) opr,, (rV(u) ® —): Repy(GiT) — Repy(G1T),
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Chapter IV. The second alcove

for i = 0,...,n. Furthermore, we define natural transformations 1/9\1 TOA == (:)Z by

~

;= (pm (rV(w1) @ =) pr,, (rV(u) @ —)) opry(r(foe)®—);

see the last paragraph of Section [[.§] for a discussion of translation functors for GiT-modules. By
construction, we have equalities of functors r o ©; = @ or and of natural transformations r1; = 19 r
(from 70Ty =T or toro®; = Qo0 r). This allows us to relate the non-vanishing of the components
of 1¥; and 1/9\1 at simple G-modules and simple G;T-modules, respectively.

Lemma 5.3. Forz € W and i € {0,...,n}, we have (9; )L(z-0) 7 0 if and only zf( ) (2-0) #0.

Proof. Let us write x - 0 = A\g + ¢\ with A\g € X3 and set L = L(\) or L = L¢ (A1), in the modular
case or in the quantum case, respectively. As explained in Section we have

Li(z-0) = Li(A\)®6A  and  L(z-0) 2 L(X\) ® LIV,

where El()\o) >~ rL()\g). Furthermore, the restriction to GT of the Frobenius twist LIl decomposes
as a direct sum of one-dimensional GiT-modules v for the different weights v of L, each occurring
dim L, times; hence there exists an embedding of G;T-modules £\ — rLO. Tt is straightforward to
see that the latter induces an embedding of G1T-modules

v: Ly(z - 0) — rL(z - 0).

By the above discussion, we have a commutative diagram

T3 O
rL(z- ) _ O L(z - 0)
(ﬂi)rL(a:-O)
where ©;7L(x - 0) = rO;L(z - 0) and ( )rLz0) = 7 (U 0))- If (93) (3.0 is non-zero then (9;) (. 0)
is injective because L(z - \) is simple, hence r((¢ ) L(z- ) o T)‘/, is injective. It follows that (J; )7 T1(a-0) 1
injective and therefore non-zero. Conversely, if (@ )E ) 1s non-zero then ©;.0 (79 )E1(a:-0) is non-zero
because @Zw is injective by exactness of @i; hence (¥; ) (2-0) 18 mon-zero, as claimed. O

Now recall that for v € Z®, tensoring with the one-dimensional simple G1T-module ¢~ = El(ffy)
gives rise to an auto-equivalence of Rep(G1T) with pr,o(fy®—) = (fy®—)opr, for all v € Crpa N X.
Any fixed choice of isomorphisms of G1T-modules

(5.1) rV(wi) @ by = by @ rV(w) and rV(p) @ by =2 by @1V (n)

gives rise to a commutative diagram of functors and natural transformations
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pry(rV(w@w1) @ rV(p) ® ¢y @ —)

pry (rV(w1) ® —) opr,, o (rV(u) @ fy® —)

pra(rV(w1) @ by @ 1V (u) @ —)

prA(rV(wl) ® —) opr,, o (ﬂ’y ®RrV(p) ® —)

pry (rV(w) © by @ rV(u) @ )

prA(rV(wl) Ry ® —) opr,, o (T‘V(,u) ® —)

pry (by @ 1V (@1) @ 1V (1) ® —) ——— pry(fy @ rV(w1) ® —) o pr,,, o (rV(p) ® —)

by @ pry (rV(wm) @ rV(p) @ —) ty @ pry(rV(w1) ® —) opr,, o (rV(p) ® —)

for i = 0,...,n, where the vertical arrows are natural isomorphisms, induced by the isomorphisms

from (5.1)) and the equalities
pryo((y®—)=(y@—)opr,  and  pryo(fy®—)=(ly®—)opr,

and where the horizontal arrows are obtained, like ¢;, by considering pr,,; as a natural transformation
from the identity functor on Rep(G;T) to the projection functor pr,,. Furthermore, the isomorphisms
from (|5.1) give rise to an isomorphism

V(@) @ rV(p) @ by 2 rV(w) @ by @rV(p) = by @ rV(w) @ rV(u),

and we claim that the latter induces an isomorphism rT(\) ® ¢y = ¢y @rT(\), such that the following
diagram commutes:

oe)RY
T @ty — L2V E ) @ V() ® O

V4 o
Iy @rT(N) nertfed) ly@rV(w) @rV(w)

Indeed, T'(A\) = L(\) is isomorphic to the unique simple submodule of V(wi) ® V() = T'(sp - )
by Remark and arguing as in the proof of Lemma [[I1.1.9] we see that rT'(A) = L;()) is in fact
isomorphic to the unique simple G1T-submodule of 7V (w;) ® rV(u). Hence the isomorphism

rV(w1) @ rV(p) @ by = by @ rV(w1) @ rV(u)
identifies the image of r(f oe) ® ¢ with the image of £y ®r(f oe); therefore it induces an isomorphism
TT(A) @ by Z by @ T(N)
that makes the diagram commute, as claimed.
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Remark 5.4. In the modular case, we could of course choose the isomorphisms in (5.1) to be the
canonical ones (arising from the standard braiding). Then the canonical isomorphism

rT(\) @ £y = 6y @ T(N)

would make the diagram commute. In the quantum case, we could give a similar argument if we
were given a braiding on the monoidal category Rep(G1T), or just a natural isomorphism between
the functors (/v ® —) and (— ® ¢7), respecting the associativity of tensor products. The existence of
a braiding on Rep(G1T) seems to be widely accepted, but we were not able to find an explicit proof
in the literature. This is the reason why we have chosen the direct approach above.

Now the commutative diagram (5.2 affords a commutative diagram of functors and natural trans-
formations

pry (FrT(\) @ by @ —) pra(rV(w1) @ rV(u) @ty @ -)

pry(6y @ 1T(A) © =) ——— pry\(ty © rV(w1) @ 1V (p) © —)

ly @ pry (rT(\) ® —)

by @ pry (rV(wm) @ rV(p) @ —)

where the vertical arrows are natural isomorphisms and the horizontal arrows are induced by r(f oe).
By combining the two commutative diagrams of functors and natural transformations above, we see
that, for i =0, ..., n, there are natural isomorphisms

py: Too(ty® =) =pry(rTN) @ty @ =) = ly@pr,(rT(\)® —) = ((y® —) o Ty
and
Py ©;0 (fy® —) = pry, (rV(w1) ® =) opr,, o (rV(p) @ty ® —)
— (Y@ pry(rV(@1) @) opr, o (rV(p) @) = (ty® =) 0 &,

such that the following diagram commutes:

P (by ® —) ~
T3 o (by® —) ©;0 (ly® —)
(5.3) 0 W,
(ty®—) Vs ~
(ty@ =)o Ty (ty® —) 0 ©;

Using this observation, we can now prove that ‘translation by the root lattice’ does not affect the non-
vanishing of the components of ¥; or ¥; at a simple G;T-module or a simple G-module, respectively.

Lemma 5.5. Forxz € Wyg, v € Z® and i € {0,...,n}, we have
)iy woy 20 if and only if — (9i)g,, .0 # O-
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Proof. We have El(th 0)=Ly(z-0+0y) 20y ® Ly(z-0) and

wl‘%@il(z-o) © (‘P“/)El(x.o)

Il
—~
)
-~
—~
53
-2
®
S~—
SN—
Iy
8
S
o
—~
S
)
N~—
=)
ot
0
=

by the commutative diagram ([5.3). Now the claim follows because (¢/y ® —) is an equivalence and ¢
and 1, are natural isomorphisms. O

Corollary 5.6. Let x € W:ﬁc and v € ZP such that t,x € W;H. Forie€{0,...,n}, we have

(Wi)L@o) #0  if and only if  (9i)L(t,a-0) # O
Proof. This is immediate from Lemmas and O

We continue to examine the non-vanishing of (9;)r,4.0) for = € Wik, Our next goal is to show
that, for any pair of elements z,y € W:ﬂc with d(y) = d(z) + 1 and such that

T(Afund) T Y(Afuna) T ysi(Afna)  and  2(Agand) T 25i(Asund),

the non-vanishing (9;) 1.0y # 0 implies that (J;)r.0) # 0. This will be achieved by a comparison
of the components (9;)r(,.0) and (J;)v(,.0) and by an application of the snake lemma to a non-split
extension of L(y+ ) by V(x - \). We will need the following elementary lemma:

Lemma 5.7. Let M and N be G-modules and let o: M — N be a homomorphism. If the restriction
of p to soceM is injective then o is injective.

Proof. If the restriction of ¢ to socgM is injective then

socg ker(¢) C socg (M) Nker(p) =0
and therefore ker(p) = 0, as claimed. O
Lemma 5.8. For z € W, we have (Vi) L(z-0) # 0 if and only if (V;)v(s-0) is injective.

Proof. Note that (9;)r(5.0) # 0 if and only if (9;)(5.0) is injective because TRL(z - 0) & L(x - \) is
simple. As ¥; is a natural transformation, the canonical embedding ¢: L(z-0) — V(z -0) gives rise to

a commutative diagram
A

L(z-)\)

V(z-N)

(Vi) L(z-0) h h (Yi)v (z-0)

@iL($ . 0) e @@V(SL' . 0)

@Z‘L
where Tg\t and ©;¢ are injective by exactness of Ty and ©;. This implies that (vJ;) L(z-0) 1S injective
whenever (9;)v(y.0) is injective. Conversely, if (9;)1(,.0) is injective then (¥;)y(s.0) is injective by

Lemma [5.7| because L(z - A) = socgV(x - \). O
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In order to apply Lemma to a non-split extension of a simple G-module L(y - \) by an induced
module V(z - \), for z,y € W;Ef, we make the following observation:

Lemma 5.9. Let z,y € W;ﬁ and v € Cing N X, and suppose that there is a non-split extension M
of L(y - v) by V(x - v). Then soceM = L(x - v).

Proof. The existence of M implies that = # y because Extg (L(:E -v),V(x- 1/)) = 0 by Remark
By assumption, there is a non-split short exact sequence
0—V(z-v) M -2 L(y-v) — 0,
and the latter gives rise to an exact sequence
0 — Homg (L(z - v),V(z - v)) — Homg (L(z - v), M) — Homg (L(z - v), L(y - v))

for all z € W k. Therefore, it suffices to show that Homg (L(y - v), M) = 0.

Indeed, if there is a non-zero homomorphism h: L(y + v) — M then im(h) = L(y - v) intersects
trivially with ker(b) = im(a) = V(z - v) because x # y. This implies that b o h is a non-zero
endomorphism of L(y - v). Using Schur’s lemma, it follows that b o h is an automorphism of L(y - v),
contradicting the assumption that the above short exact sequence is non-split. O

Proposition 5.10. Let x,y € W;;f and i € {0,...,n} with ©(Apma) T ©Si(Afuna). Furthermore,
suppose that y # xs; and that there exists a non-split extension M of L(y-0) by V(z-0). If (¥;)v(z.0)
is injective then so is (Vi) 1,y.0)-

Proof. By applying the snake lemma to the commutative diagram

0 —— V(z-\) oM Ly-\)——0
(Di)v (2-0) (Vi) m (i) L(y-0)
0 — O;V(z-0) ;M ©;L(y-0) — 0

)

we obtain an exact sequence

0 — ker ((ﬂl)V(a:O)) — ker ((’191)]\/[) — ker ((ﬁz)L(yO)) — COk((ﬁi)v($,0)).
By Lemma we have socg (TgM) = TgsocgM = L(z - A), and it follows that socg(TgM) is
contained in the image of V(x - \) in T3 M. Now suppose that (¥i)v(z-0) is injective. Then the
restriction of (9;)a to socg (I3 M) is injective, and by Lemma we have ker ((¢;)a) = 0. Thus,
the above exact sequence reduces to

0 — ker ((ﬁZ)L(yO)) — COk((ﬁi)v(gE,o)).

We claim that cok((z?i)v(m.o)) > V(zs; » \). Indeed, part (3) of Lemma applied to the short
exact sequence
0— V(l’ . )\) — @ZV(J} . 0) — COk((ﬁi)v(I.o)) — 0,

implies that cok((ﬁi)v(m,o)) has a good filtration. Furthermore, we have
ch (cok((95)v(z0))) = ch (8;V(z - 0)) — ch (V(x - X)) = ch (V(zs; - \))

by Corollary and it follows that cok((¢;)v(s.0)) = V(2s; - A), as claimed. Now ker ((ﬁi)L(y.o)) is
a submodule of L(y - A\) and embeds into cok(('ﬂi)v(x_o)) >~ V(xs;+ N\). As y # xs; by assumption, we
conclude that ker ((9;)1,(y.0)) = 0, as required. O

124



5. Properties of 9;

The existence of a non-split extension of L(y - \) by V(z - A), in the setting described above
Lemma is guaranteed by a result of S. Ryom-Hansen; see Theorem 2.4 in [RHO03a].

Theorem 5.11. Let v € Crynga N X and z,y € W;f such that x(Afnd) T Y(Afuna)- Then
Extcéy)fd(x) (Ly-v),V(z-v)) =k
Corollary 5.12. Leti € {0,...,n} and x,y € W5 with d(y) = d(z) + 1 and such that
2(Afuna) T Y(Afuna) T ysi(Aruna)  and  2(Afana) T 25i(Auna)-
If (9i) L(w-0) # O then (9:)p(y.0) # 0.
Proof. If (9;)(z.0) # 0 then (¥;)y(s.0) is injective by Lemma By Theorem we have
Extg (L(y - 0), V(z - 0)) 2k,
so there exists a non-split extension of L(y - 0) by V(z - 0). Furthermore, we have y # zs; as
z(Afuna) T 28i(Afund)  and  y(Aguna) T ysi(Asuna),

and the claim follows from Proposition [5.10 O

Recall from Corollary H that for all z € W;f and i € {0,...,n} such that zs;(Agmnd) T Afund, We
have ©;L(x - 0) = 0 and therefore (J;)(,.0) = 0. We can now prove the strongest possible converse of
this statement.

Theorem 5.13. Fori € {0,...,n} and x € W;;f, the following are equivalent:
(1) (9i)p@0) # 0;

(2) ©;L(x-0)#0;

(3) x(Apund) T 28i(Atuna)-

Proof. First observe that (1) implies (2) because (¥;),(;.0) is @ homomorphism from T3 L(z - 0) to
©;L(x - 0) and that (2) implies (3) by Corollary Now suppose that z(Agng) T 8i(Afund). By
Corollary there exist § € X and x, ..., x, € Wog with

Afund + 0= xO(Afund) T xl(Afund) T e T x’r(Afund) = x(Afund)

and such that z;(Apmd) T 2j5i(Afuna) and d(x;) = d(ts) + j for j = 0,...,7. We can choose v € Z®
such that y; = t,x; € Wk for j =0,...,r (we could take v = 2ap for a € Z> sufficiently large), and
it is straightforward to see that

Afund +7 + 0 = yo(Atund) T ¥1(Asund) T+ T Yr(Afund) = ty@(Afuna)s
where for j =0,...,r, we have
Y (Afund) = 2 (Afund) +7 T 2;8i(Afund) + 7 = ¥;Si(Afund)
because xj(Afund) T 2j5i(Asund), and
d(yj) - d(t'7+5) = d(tvxj) - d(twté) = d(fvj) —d(ts) = j.

As Y0(Afund) = Atund +7 + J, we have (Vi) 1,(yo.0) # 0 by Lemma and using Corollary and
induction on j, it follows that (;)ry,.0) # 0 for j = 0,...,r. In particular, we have (J;)r(,z.0) # 0
and therefore () ,(z.0) # 0 by Corollary [5.61 Hence (3) implies (1), as required. O
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6 Conclusions

In this section, we explain how the results from Sections and[5| can be used to describe the structure
of the G-modules pr) (L(so “A)®L(z- O)) and to study the generic direct summands G(sow, ) of the
tensor products L(sow +0) ® L(x - 0), for z € W;f. Let us start by recalling some of the notation and
the key results from Sections [3} ] and [F]

Weset w =1ty 81 $p € Qand A\ =w-0=(l—-n—1) -w; € Crunga N X (see Lemmasand
and consider the functor

U = pry(T(s0-A) @ —): Repy(G) — Repy(G).
By Lemma the minimal tilting complex of L(sg - A) is given by
Crmin(L(so+N) = ( 0=T(\) > T(so-A) =T(A\) =0 ),
and as explained after Proposition this complex gives rise to natural transformations
9 Ty =T and U= Ty

such that, for every G-module M in Repy(G), we have im(d,7) C ker(mas) and

im(mpr)/ ker(Ppr) = L(sg -+ A) @ M.
Furthermore, the functor ¥ decomposes as a direct sum

V=20yP0O;d -0,

and we write pr;: ¥ = 0, for the natural transformations that project onto the direct summands.
In many ways, the functor ©;, for i = 0, ..., n, behaves like an ‘s;-wall crossing functor’. For instance,
for x € W: , we have ©;L(x-0) # 0 if and only if z(Afund) T 28i(Afund), and in that case, there exists
a weight ; € Cng N X with Stabyy,,(6;) = {e,s;} (i.e. in the s;-wall of Cgynq) such that

@Z‘L(CC . 0) = T(;);L(.%' . (51),

see Proposition[4.10] Now Proposition[[.6.10|gives a (partial) description of the structure of ©;L(z-0):
For =z ¢ W:;f with 2(Afund) T ©8i(Afand), the G-module ©;L(x - 0) is indecomposable, with simple
socle and head

socgO;L(x - 0) = headg®;L(x - 0) = L(x - \),

and for y € W with y # z and [6;L(z - 0) : L(y - A)] # 0, we have

ysi(Afund) T y(Afund) T xsi(Afund>-

In particular, WL(z - 0) has L(z - \)-isotypical socle (and head), for all x € W, and the number
of simple direct summands L(z - 0) of the socle (or the head) coincides with the number of simple
reflections s € S such that z(Apna) T ©5(Afund). Finally, by Theorem the component () (5.0
of the natural transformation

¥; =pr; 0 0: TO)‘ — 0,

at L(x +0) is non-zero if and only if x(Agng) T ©si(Afuna); hence the embedding

Vpgeoy: L@+ A) 2 TgL(z - 0) — UL(z - 0) 2 OgL(z-0) & -+ & Oy L(z - 0)
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induces an embedding

whenever ©;L(z - 0) # 0. In this way, we can consider the image of ¥1,.) as being embedded
‘diagonally’ into the direct sum of the non-zero ©;L(x - 0), all of which have simple socle isomorphic
to L(x - \). Analogously, one can show that the epimorphism

Tr0): YL(z - 0) — TgL(z - 0) = Lz - A)
induces an epimorphism
() L0yt OiL(x - 0) — Tg'L(z - 0) = L(x - A)
whenever ©;L(x - 0) # 0. Loosely speaking, this means that we can obtain the G-module

pra(L(so - A) ® L(x - 0)) = ker (71, (z.0)) /i (V20 )
from the direct sum
UL(x:0)=O0oL(x-0)®- - -®0O,L(x-0)

by gluing together the various non-zero ©;L(x - 0) along their socles and along their heads, which
are all isomorphic to L(x - \). Let us illustrate this by an example for G of type As. We warn the
reader that the following is not a rigorous mathematical discussion, but it may still be helpful in
understanding and unraveling the results that we discussed above.

Example 6.1. Suppose that G is of type As. By the above discussion, we have
©oL(so+0)=0 and  ©;L(so-0) =Ty L(so-d;) fori=1,2,
for certain weights &; € Cna N X with Staby,,(6;) = {e, s;}. As in Remark one sees that
@iL(SO . 0) = TQL(SO . 51) = T(;);T(So . 51) = T(SoSi . )\)
for ¢ = 1,2. The submodule structure of these tilting modules has been determined in Theorem B of
[BDM15]; it can be described by the Alperin diagrams below (where as before, we replace a simple
G-module L(z - \) by the label z € W k).
S0 S0
RN /N
(6.1) ©1L(z-0) = sos1 e and O2L(z - 0) = sos2 e
NS N S
S0 S0

By Theorem [I1.4.14| and Lemma [[11.2.3] we have (L(so+ ) ® L(so - 0))reg =~ M(X) @ L(\), where the
Alperin diagram of M (\) is as follows:

50
N
(A) = s0s1 e s0s2

\s\ /

One sees that the diagram for M ()) is obtained from the diagrams for ©1L(x - 0) and ©2L(x - 0)
by identifying with each other the two bottom nodes and the two top nodes of the diagrams in
and by discarding one of the nodes labeled by e in the middle layer. The discarded node corresponds
to the simple direct summand L(A) of (L(so - A) @ L(so 0))reg, which appears because both of the
diagrams in have a node labeled by e in the middle layer.
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Chapter IV. The second alcove

In order to give an example of how our description of the G-modules pry (L(so -\ ® L(x - 0))7 for
T € W;Zf, can be used to study the generic direct summands G(sow, x), we give a classification of the
elements = € W;;f such that G(sow, ) is simple. The key tool for this classification is the following
proposition.

Proposition 6.2. Let x,y € W;f with y # x and suppose that there exists a non-zero homomorphism
L(y - X) — pry(L(so - ) ® L(z - 0)).
For alli € {0,...,n} with x(Aguna) T 8i(Apund), we have

ysi(Afund) T y(Afund) T xsi(Afund>'

Proof. Let i € {0,...,n} such that z(Agmna) T 28i(Afnd), and recall from Proposition that there
exists a weight 6 € Cpyna N X with Staby,,(6) = {e,s;} such that ©;L(x - 0) = T{L(z - §). By
Proposition [[.6.10} every element z € W;& with z # z and

0# [T9L(z-0): L(z+\)] = [©;L(x - 0) : L(z - \)]

satisfies zs; + A Ty 2« A 1y xs; - A. Therefore, it suffices to prove that L(y - A) appears as a composition
factor of ©;L(x - 0).
As explained in Section [3] we have

pry(L(so+ A) @ L(x - 0)) = ker (m1(p.0)) /im (01 (20))
where ¥: T, (j\ = Vand 7: ¥V = TOA are natural transformations, and
‘1’290@9169-“@@7“

with natural transformations pr;: ¥ = ©; projecting onto the direct summands. By Theorem
the component (J;)r,(z.0) of the natural transformation 1; = pr; o at L(z - 0) is non-zero, hence
injective because T5'L(z - 0) = L(z - \) is simple. Therefore, by applying the snake lemma to the
commutative diagram

0 T3 L(z - 0)

‘ﬁL(z-o) h (¥4) L(2-0)

UL(z-0)

ToL(z - 0) ———— 0

0 — ker ((pri)L(a:-O)) @zL(J,‘ . O) —0

(Pr;) L(2-0)
with exact rows, we obtain a short exact sequence
0 — ker ((pr;) (2-0)) — €0k (¥ 1(3.0)) — cok((¥s) (z-0)) — 0.

We claim that the socle of ker ((pr;)r(;.0)) is L(x + A)-isotypical. Indeed, we have

ker ((pr;)(-0)) = @D ©;L(z - 0)
J#i
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by definition of pr;. For j € {0,...,n}, we further have ©;L(x-0) = 0 unless x(Afuna) T 5;(Afund) (see
Corollary . If 2(Apuna) T 25j(Afuna) then, by Proposition m there exists a weight v € Cryng N X
with Stabyw, . (v) = {e, s;} such that ©;L(z - 0) = T} L(x - v), and by Proposition [[.6.10, we have

socg®;L(z - 0) =2 socgT) Lz - v) = L(x - \).

We conclude that the socle of ker ((pr;) L(x~0)) is L(z - M)-isotypical, as claimed.

Now observe that

pry (L(so ‘A ® L(x - 0)) = ker (wL(x,o))/im(ﬁL(x,o)),

naturally embeds into cok(91(;.0)) = WL(2+0)/im (01 (5.0)). As y # x, there is no non-zero homomor-

]

0
phism from L(y - \) to ker ((pr») L(x-O)): and using the short exact sequence

0 — ker ((pr-)L(x_O)) — cok(vﬁ‘L(x,O)) — cok((z?i)L(x_o)) — 0,

(2

it follows that the non-zero homomorphism
L(y-\) — pry (L(so ‘A L(x - 0)) — cok(ﬁL(x.o))

affords a non-zero homomorphism L(y - A) — cok((;) L(x-o))~ In particular, L(y - A) is a composition
factor of ©;L(x - 0), as required. O

The first part of the aforementioned classification result is given by the following theorem:

Theorem 6.3. For z € W, the generic direct summand G(so, ) of L(so+0)® L(x-0) is non-simple
unless T(Agund) = Afuna + v for some v € XT.

Proof. Suppose that G(sg, z) is simple. As G(so, ) has good filtration dimension ¢(x)+£(sg) = ¢(z)+1
and belongs to the linkage class of 0, Corollary |I1.2.7|implies that G(sg,x) = L(y-0) for some y € W;gf
with ¢(y) = ¢(x) + 1 = d(z) + 1. By Lemma [I1.5.10] we have

G(sow, ) = TG (s0,2) = T¥L(y - 0) = L(yw - 0) = L(y - A),
and it follows that there is a split embedding
L(y - A) = G(sow,z) — pry(L(so - A\) ® L(z - 0)).

By Lemma there exists ¢ € {0,...,n} such that z(Aguna) T 28i(Afund), and by Proposition it
follows that y(Agund) T 8i(Afund). Furthermore, we have d(xs;) = d(x) + 1 by Lemmas and
so d(xzs;) = l(y) = d(y) and zs; = y by Corollary In particular, 7 is uniquely determined by x
and y, and we conclude that zs;(Afna) T 2(Aguna) for all j € {0,...,n} with j #i. As sg,...,s, are
precisely the reflections in the walls of Afq (see Remark , we conclude that there is a unique
wall H of z(Agung) with x(Apmq) T sgx(Afund). Now Lemma shows that z(Afnd) = Afund + 7
for some v € X, and as x € W;ﬁ, we further have v € X+, O

In the following lemma, we show that the converse of Theorem is true when n > 2. For G of
type A1, the converse of Theorem is also true in the quantum case (by Lemma [III.1.7]), but not in
the modular case: By Lemmas [[1.5.10] and [[TL.T.11], we have

G(s0,ti—1) TGty t_1) =T J(L,0,.. )M =7l
and T'(¢)[V is non-simple by Lemma
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Chapter IV. The second alcove

Lemma 6.4. Suppose that n > 2 and let x € Wef(t such that ©(Aguna) = Afuna + 7 for some vy € XT.
Then G(so,x) is simple.

Proof. As x(Afund) = Afund + 77, we have ' :=t_,x € Stabw,, (Afunda) = 2, and Lemma yields
G(s0,x) = G(s0,t,w') = T G(s0, t).
Since s - 0 is ¢-restricted (recall that n > 2), we have
L(so+0)® L(ty+0) = L(so+0) ® L({y) = L(so - 0+ ¢v) = L(tys0 - 0)
by the Steinberg-Lusztig tensor product theorem, and it follows that G(sg,ty) = L(t,so - 0) and
G(s0,x) =2 T G(s0,t,) = T L(t50 - 0) & L(t, 500 - 0)

are simple, as required. ]
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The main objective of this chapter is to prove the following theorem, which was our original motivation
for developing the theory of generic direct summands.

Complete reducibility theorem. Suppose that we are in the modular case, that G is of type A,
and that £ > n+1. Let \,u € Xt be (-restricted and {-reqular, and further suppose that L(\) @ L(p)
is completely reducible. Then either A € Cryng o7 b € Crung-

Let us briefly explain our strategy for proving the theorem. For =,y € Wog such that A € =+ Crung
and p € y » Crung, the theory developed in Chapter [[ tells us that there exists a weight v € Cryng N X
such that TYG(z,y) is a direct summand of L(\) ® L(x). In particular, if L(\) ® L(u) is completely
reducible then G(z,y) is simple. Therefore, the theorem would follow if we could prove that, for any
two elements x,y € W,;f such that the f-alcoves x - Crung and y + Crung contain f-restricted weights,
the generic direct summand G(z,y) of L(z - 0) ® L(y - 0) is non-simple, unless x = e or y = e.

Unfortunately, the last statement still seems to be intractable, with the tools that are available at
present (though we are not aware of any counterexamples in type A, ). We can overcome this problem
by combining our initial approach with the classical technique of truncation to Levi subgroups, which
allows us to give an inductive argument. For G of type A,,, there are two Levi subgroups of type A, _1,
and if L(\) ® L(u) is completely reducible then so is the truncation of L(A) ® L(u) to either of these
Levi subgroups. Supposing that the statement of the theorem is true for groups of type A,_1, it
follows that, for each of the two Levi subgroups, a suitable truncation of one of the weights A and p
belongs to the fundamental f-alcove (with respect to the Levi subgroup). This allows us to impose
certain conditions on A and p, and we can thus drastically reduce the number of pairs of elements
T,y € W;ﬁ« that we need to consider.

Essentially, the restrictions on A and u that we obtain leave open two cases. In the first case, we
have z = s,, ; and the element y € W is arbitrary. This situation was studied in detail in Chapter
In the second case, the conditions on A and p allow us to explicitly determine a (reasonably small)
subset X C W;ﬂ“ that contains = and y, and we will show in Section |5/ of this chapter that G(z,y) is
non-simple, for the pairs of elements x,y € X that the conditions allow.

The proof of the non-simplicity of G(z,y), for x,y € X as above, relies on a detailed study of the
composition multiplicities and the Loewy structure of the Weyl modules with highest weights in the
f-alcoves z - Crung for z € X, and these results take up the first four sections of this chapter. We first
explain in Section [I| how the composition multiplicities of certain Weyl modules can be computed via
the Jantzen sum formula and a so-called recursion formula from |Gru22]. In Section [2| we establish
some preliminary combinatorial results about the set X, and in Section [3], we use these results and the
recursion formula to compute composition multiplicities in certain Weyl modules with highest weights
in z - Cgung, for z € X. We then determine the socle filtrations and the radical filtrations for some
(but not all) of these Weyl modules in Section [4] Let us remark that the results of the computations
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in Sections [3| and [4] may be of independent interest, beyond the applications that we give here. In
Section 5| we can finally prove the non-simplicity of G(x,y), for the pairs of elements x,y € X that
we consider, by combining results from the previous sections with extensive computations of certain
maximal vectors in tensor products, using the distribution algebra Dist(G) of GD The proof of the
complete reducibility theorem is given in Section [6]

1 The Jantzen sum formula

As explained in the introduction, our proof of the complete reducibility theorem relies on a detailed
study of the submodule structure of certain Weyl modules. The main tool in our investigation of these
Weyl modules will be the Jantzen filtration and the Jantzen sum formula, which we will compute via
the recursion formula from |[Gru22| (see equation below).
For A € X, the Jantzen filtration of A()), as defined in Section I1.8.19 in [Jan03], is an exhaustive
descending filtration
AN D AN D AN

such that A(X)/A(M! 22 L()\). Partial information about the layers A(X)/A(N)i*! of this filtration

can be obtained from the Jantzen sum formula

> chAN = ) S v(ml) - x(sam - N,

>0 acedt 0<ml<(A+p,aV)

where v, denotes the f-adic evaluation in the modular case and where vy is the constant function with
value 1 in the quantum case (see Proposition I1.8.19 in [Jan03] and Theorem 6.3 in [AKO08]). Note that
the weight s, 1+ A on the right hand side of the Jantzen sum formula may be non-dominant. Therefore,
computing the sum formula in concrete examples often involves finding the dominant Wgy,-conjugates
of many non-dominant weights. (Recall that y(w-u) = det(w) - x(u) for p € X and w € Ws,.) When
the weight A is f-regular, we can avoid these computations by considering the Jantzen sum formula as
an element of the anti-spherical module over the integral group ring Z[W,g] of the affine Weyl group,
as we explain below.

First, let us denote by [Rep(G)] the Grothendieck group of Rep(G), i.e. the quotient of the free Z-
module with basis the isomorphism classes of G-modules by the submodule generated by the elements
of the form [A] — [B] + [C], for all short exact sequences 0 -+ A — B — C' — 0 in Rep(G). For any
G-module M, we denote by [M] the image in [Rep(G)] of the isomorphism class of M. We can define
a Z-module homomorphism [Rep(G)] — Z[X]|Win with [M] + ch M for every G-module M, and as
the characters ch A(u) = x(u), for u € X+, form a basis of Z[X]"n it follows that the classes [A(u)],
for p € X, form a basis of [Rep(G)]. Similarly, for v € CgungN X, the Grothendieck group [Rep, (G)]
of the linkage class Rep, (G) has a basis given by the classes of the Weyl modules in Rep, (G).

Next consider the anti-spherical Z[W,g]-module

Masph = sign QZ[ W] Z[Wag],

where sign denotes the sign representation of Wyy,, and for all € W,g, let N, =1 ® x be the image
of x in Mygpn. For w € Wy, and z,y € Wag, we have

Nyo = sign(w) - Ny and Nyy =Ny -y,

1Our usage of Dist(G) for this part of the proof is the main reason why we only get the complete reducibility theorem
in the modular case. We were not able to find an approach that bypasses this computational argument.
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and as W;;f is a set of Why-coset representatives in Wy, the elements N, with z € W;;f form a Z-basis
of Muspn- The action of the simple reflections in Wg on this basis is given by

N, ifxse Wt
(1.1) N, -s= s aff
—N, ifazs¢ Wh

for x € W;;f and s € S because xs ¢ W;;f if and only if zsz™! € Why.
Now suppose that ¢ > h and fix a weight A € Cring N X. By the above discussion, there is a
canonical Z-module isomorphism

@Z))\: Masph — [Rep)\(G)]
with N, — [A(z - A)] for all 2 € W E.

Remark 1.1. For every simple reflection s € S, let us fix pus € Cyna N X with Staby. . (us) = {e, s}
and consider the s-wall crossing functor Oy = Tli\s o T{*. We can endow [Repy(G)] with a right
Z|Wg]-module structure via

[M] - (s +1) = [©:M],

for every G-module M in Rep,(G) and every simple reflection s € S. Using equation (|1.1)) and
Propositions and it is straightforward to see that ¥ : M,spn — [Repy(G)] is an isomorphism
of Z[W,g]-modules.

For x € W, we define elements JSF) € [Rep,(G)] and JSF, € Maspn by

JSFy =Y [A(z-A)]  and  JSF, = ;' (JSF)).
i>0
Using the Jantzen sum formula and the translation principle, it is straightforward to see that JSF,

does not depend on the choice of A € Cpyng N X. The elements JSF, € Mg, can now be computed
inductively via the following simple recursion formula; see Theorem 4.1 in [Gru22].

Recursion formula. Let x € W;ﬁ and s € S such that x < xs and xs € W;ﬁ. Write xsx ™! = 58,m
for some m >0 and B € ®T. Then

(1.2) JSFys = vy(ml) - Ny + JSF, - s.

2 Alcove combinatorics

From now on and for the rest of this chapter, suppose that G is of type A, for some n > 3 and
that £ > h = n+ 1. As in Chapter we fix a numbering IT = {a1,...,a,} of the simple roots,
in accordance with the Dynkin diagram in Figure and denote by w@; = w,, and s; = sq,
the fundamental dominant weight and the simple reflection corresponding to «;, for i = 1,...,n.
Furthermore, we adopt the convention that wg = 0 and w,4+1 = 0, and we write sg = 54,1 for the
affine simple reflection in Wag. The positive roots in ® are given by ®* = {3, | 1 <i < j < n},
where

Bij=ait - +a;=—wi1+w@+ @ — Wjt1,

and we have ay, = f1, = w1 + @y,
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For 0 <i<nand 0 <j <n, we define
x(1,) == 5051 8iSnSn—1" " Sn—j+1,
with the convention that x(i,0) = sgs1 - - - ;. Furthermore, we set
X ={x(i,j) | 0<i<n,0<j<n}U{e}.

In this section, we carry out some preliminary computations which will enable us to compute the
Jantzen sum formula JSF, for all x € X. More precisely, we describe the action by right multiplication
of the simple reflections s, ..., s, on X and compute the integers nq (- Cpynq) for x € X and o € T,
We start by showing that x(i,7) € W;;f for 0 < ¢ <mnand 0 < j < n by explicitly computing the
weights z(i, j) - 0.

Lemma 2.1. For 0 <i<n and 0 < j <n, we have

(i) -0 = l—n—-14+j) o +wip1+wp—j+l—n—-14+1) -w, ifi+j<n,
l—n—-1+j) wi+wp_jpr1+wit1 + U —n+i)-w, ifi+j>n.

In particular, we have z(i,7) € W;;f.
Proof. If 7 > 0 then
Sn—j+1+ 0= —Qn_j41 = Wp—j — 2Wp—j41 + Wn—j+2,
and it is straightforward to see by induction on k that
Sn—jtk*** Sn—jt+25n—jt+1° 0 =n_j — (kK + 1) @Wn_jir + k- Tp_jirt

for k=1,...,4, thatis s,,- -~ $p—j41+0 =wy—; — (j + 1) - @, (even when j = 0). First suppose that
i+ j <mn,sothat i <n—j. Then (sp---$p—j+1-0,0;) =0 and

$iSp Sp—jtr1*0=58p - Sp_jr1:-0— 0y =wi—1 — 2w + wip1 + wn—j — (J + 1) - wp.
Again, an easy induction argument yields
Sick - Si—18iSn - Sp—jr1 0= (k+1) - @i_p—1 — (k+2) @i + @iy1 + Wn—j — (j + 1) -y,
for k=0,...,7—1, and we conclude that
$1-++8iSn - Sp_jr1+0=—(i+ 1) w1 + @ix1 + wWp—j — (J + 1) - wy.
It follows that (s1---8isp - Sn—jt1+ 0+ p,y)) =n — i — j and therefore

5081 8iSp Sp—jt1-0=51-8i8p - Sp—jy1 -0+ (L —n+i+j) - ay
=(l-n—-14j) w +wiy1 +@wpn—j + ({ —n—1+1) - wy,

as claimed. Now suppose that ¢ + j > n. If i > n — j then as before (s, - $p—j41-0,¢;") =0, so
8iSn - Sp—jr1 0 =58p - Sp_jy1:0— 0y = wp_j + wi—1 — 2w; + wip1 — (J+1) - @y
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and induction yields
Si—k " 8i—15iSn " Sp—j+1 * 0= TWn—j + (k‘ + 1) CWi——1 — (k + 2) CWi—k + Wit1 — (] =+ 1) - Tn
for k=0,...,i4+j —n— 1. In particular, we have

Sp—j+1"""8i—18i8n """ Sp—j+1 -0
:wn_j—i-(i—f—j—n)-wn_j—(i—i—j—n+1)-wn_j+1+wi+1—(j+1)-wn
=(@+j-—n+1)-wpj—(i+j—n+1) - wpjp1+w@wiy1—(G+1) @n

and

Sp—jSn—j+1 " Si—18iSn - Sn—jt1* 0 = Sp_jp1 - 8i—15Sn - Sp—jr1 - 0— (I +j—n+2) op_j

=(@+j-—n+2)-wpj1—(i+j—n+3) @nj+ @nji1+ @it1— (J+1) @n
Observe that the last equality is also satisfied when i = n — j. As before, induction yields

Sn—j—k """ Sn—j—18n—jSn—j+1 """ 8i—18iSn " Sp—j+1 0
=(@+j-—n+k+2) - wpjp1—(+j—n+k+3) W jr+to@njir1tw@ir—(G+1) wn

for k=0,...,n—j — 1 and therefore
81+ 8iSn+ Sn—jt1 = —(i +2) @1 + @p—j+1 + @Wit1 — (§ + 1) - @n.
We conclude that (s1-+-8;8p -+ Sp—jr1:-0+p,ap)) =n—i—j—1and

8081 8iSp - Sn—ji1 0 =818+ Spjr1 -0+ (L —n+i+j+1) oy

=({l—-n—-1+4+j) w +wp—jt1 + @wix1 +  —n+1i) - wy,
as claimed. ]
Corollary 2.2. Let0<i<n, 0<j<nandl1 <u<v<n. Ifi+j<n then

1 ifu=1landv>n—jorv=nandu<i+1,

"B (:E(Z’]) ° C1fund) = {

0 otherwise,
and if 1 + j > n then

2 ifu=1andv=n,
nﬁu’v(x(i,j)'Cfund): 1 fu=landn>v>2n—j+lorv=nandl <u<i+1,

0 otheruise.
Proof. The integers ng, , (az(z, j) - Cfund) are uniquely determined by the inequalities
18, (€(6,5) * Ctana) - € < (2(i,4) - 0+ p, Byp) < (3, (2(i,5) + Cruna) +1) - £,
and the claim is easily verified using Lemma [2.1 O
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Observe that all elements of X belong to the coset soWgy, in Wog. In order to apply the recursion
formula to recursively compute the Jantzen sum formula JSF, for the Weyl modules A(x - \)
with z € X and A € Cping N X, we need to describe the action of the simple reflections s € S N Whxy
on the basis elements N, € M, with 2 € X. By equation , it suffices to describe the action of
these reflections on the elements of X themselves, under right multiplication.

Lemma 2.3. Let0<i<n,0<j<nandl1 <k<n. Then

z(i,j)sp e WEH &
aff keli+li+t2,n—jn—j+1} ifi+j>n.

More precisely, we have x(i,j)sn—; = x(i,j + 1) (if j <n) and x(i,5)sn—jq1 = x(i,j — 1) (if 5 > 0).
Ifi+j <n then x(i,j)s; = (i — 1,7) (if i > 0) and

z(i+1,7) ifi+j<n-—1,
z(i,j+1) ifi+j=n—1,

(i, J)siy1 = {

and if i +j > n then x(i,j)si2 = z(i + 1,7) (ifi <n—1) and

T(i,g)sier =94 L
x(i,7—1) ifi+j5=n.

Proof. Recall from Examplethat we have s,8p8, = SpSasp for all a,b € {0, ..., n} such that either
la —b] =1 or {a,b} = {0,n} and that s, commutes with s if |a — b| # 1 and {a,b} # {0,n}. First
suppose that i +j <n. If i+1 < k <n— j then x(i, j)sx, = sgx(i,j) ¢ W, because z(i, j) € Wk by
Lemma[2.1] If k >n —j+1 then

x(i,J)Sk = 50" 8iSn "+ Sk15kSk—15kSk—2 """ Sn—j+1

=80 ""5Sn " Sk+1Sk—1SkSk—15k—2 """ Sn—j+1 = Skfll’(i,j),

and if £ < 7 then

(i, )8k = 50+ Sk—15kSk+15k """ SiSn """ Sn—j+1
=80 Sk—18k+15kSk+1 " SiSn """ Sn—jt+1 = Skp+17(1, J).
In both cases, it follows that z(i, j)s; & W It is straightforward to see from the definition of z(i, )
that we have 2 (4, j)sp—; = x(i,j + 1) (if j <n) and (4, j)sp—j4+1 = x(i,j — 1) (if j > 0). If i > 0 then
s; commutes with s,_j1,..., s, and we have x(7,j)s; = (¢ — 1, 7). Finally, if i +j <n —1 then s,
commutes with s,—j11,...,5, and x(7,5)si41 = z(i+1,j),and if i+ j=n—1theni+1=n—j and
x(%,j)siy1 = x(i,5 + 1), as observed before.
Now suppose that ¢ +j >n. If k <n —j <4 then

x(i,J)Sk = 50 - Sk—15kSk+15kSk+2 """ 5iSn " Sn—jt1

= 50" Sk—15k+15kSk+15k+2 " - SiSn *** Sn—jt1 = Sk+12(1,7),

and if k >i+2>n—j+ 2 then

x(i,5)SK = 80" 8iSn - Sk 1S5kSk—15kSk—2 """ Sp—j+1

= 50" SiSn """ Sk415k—15kSk—15k—2" " Sn—j+1 = Sp—12(%,7).
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2. Alcove combinatorics

In both cases, we conclude that x(i,j)s; ¢ Wh. If n —j+1 <k <i+ 1 then

x(1,7)Sk = S0 SiSn -+ * Skt15kSk—15kSk—2 " ** Sn—j+1
=80 SiSn " Sk4+1Sk—15kSk—15k—2 * " * Sn—j+1
=80 Sk—2Sk—1SkSk—1Sk+1 """ SiSn " Sk415kSk—1Sk—2 """ Sn—j+1
= 80" Sk—25kSk—15kSk+1SiSn ** * Sn—j+1
= spa(i, j) ¢ Wi
As before, we have z(i,j)sp—; = z(i,j + 1) (if j < n) and x(¢,5)sp—j41 = (3,5 — 1) (if j > 0). As
i+ j>n,wehave i+2 >n—j+1, and for i <n — 1, it follows that

x(1,7)Si42 = 50 SiSn - Si438i428i4151425i *** Sn—jt1

= 50" 8iSn " Si4+35i+15i425i+15i " Sn—j+1

=80 8iSi+18n """ Si435i428i+15i " " " Sn—j+1
=z(i+ 1,).

Finally, if i + j > n then

w(4,7)8i41 = S0 8iSn *** $i428i+18iSi+18i—1 """ Sn—j+1
= 50" 8iSp " 8i425i5i415iSi—1 """ Sp—j+1
=380 8i—-15n """ Si+28i+15iSi—1" " Sn—j+1
=z(i—1,j),
andif i +j=ntheni+1=n—j+1and z(i,5)si41 = (i, j — 1). O
Corollary 2.4. Let0<i<n,0<j<nand 1 <k <n. Ifi+j<n then

Nyoe ifke{ii+1l,n—jn—j+1},
N i) - s, = { (4,5) Sk f { J J }

; —Ny@ij) otherwise,

and if i + 35 > n then

Nagij) - sk =

—Ny@ij) otherwise.
Proof. This is straightforward to see from equation and Lemma O
Remark 2.5. Let 0 < i <n and 0 < j < n. Using Corollary it is straightforward to see that
(i, §)) = d(z(i,5)) = Y ng(2(i,5)  Crma) =i+ 5+ 1.
Bed+t

If j < nthen x(i,j+1) = x(4,j)sn—; and it follows that x(4,j) < z(i,j +1). Analogously, if i <n—1
then x(i + 1,7) = x(i,7)s, where

Si+1 ifi+j<n—1,
5§ =4 8it18i428:41 ifi+j=n—1,
Si+2 ifi+j5>n

by Lemma and we conclude that z(i,7) < z(i + 1, 7). Furthermore, we can use Lemma [2.1] to see
that z(i,7) -0 < z(i,j+1)-0if j <nand z(4,5) -0 < z(i +1,5)-0if i <n — 1.
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x(4,5)
/l 5\
x(4,4) z(3,5)
P Y U TN
x(4,3) x(3,4) z(2,5)
R S N N
z(4,2) z(3,3) z(2,4) z(1,5)
x(4,1) x(3,2) (2,3) x(1,4) 2(0,5)
5 4 3 2 1
x(4,0) z(3,1) z(2,2) x(1,3) 2(0,4)
P N N S Y
z(3,0) z(2,1) z(1,2) z(0,3)
z(2,0) z(1,1) 2(0,2)
™ N
5

Figure 2.1: The Bruhat graph of X for n = 5.

In Figure we give the Bruhat graph of the set X C W;f for n = 5, i.e. the graph with vertices
labeled by X, where two elements z,y € X are joined by an edge if |{(z) — ¢(y)| = 1 and y = zs for
a reflection s € Wog. An edge labeled by 4 stands for right multiplication by the simple reflection s;.
The dotted line indicates where braid relations are visible in the graph, and the gray lines correspond
to multiplication by non-simple reflections.

3 Composition series of Weyl modules

In this section, we use the recursive version of the Jantzen sum formula from Section [I| and the alcove
combinatorics established in Section [2| to compute JSF, in the anti-spherical module, for all x € X.
Throughout this section, we fix A € CrngNX and write A, = A(z-\), V, = V(z:A) and L, = L(z- ),
for z € WJ1,. Recall that we assume that £ > h =n + 1.

For 0 <i<mnand0<j<n with i+ j < n, the Jantzen sum formula will allow us to compute all

composition multiplicities in the Weyl module A . When ¢+ j > n, there remains some ambiguity

(4,
about the multiplicity of the simple module L. in(Ai(m), but we can still determine the multiplicities
of the simple G-modules L, for y € X\{e}. In order to better understand the ‘patterns’ of composition
factors in A, (; ;) that we will establish below, we encourage the reader to visualize them using the
Bruhat graph from Figure

The following observation will be very useful for reducing the amount of computations that is
necessary to compute the composition multiplicities in the Weyl modules A, ; ;) (which is considerable

nevertheless).

Remark 3.1. For o € Wey with x = t,w for some v € X and w € Wy, we define
T =t oqw and ¥ = wy T_ - wo_l = t,wo(v)wowwo_l,
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3. Composition series of Weyl modules

where wq denotes the longest element of Wg,. Note that the maps x — x_ and z — z* are automor-
phisms of Wey; and preserve the subgroup W,g. For z = t,w € Wi

ext?

the dual of the simple G-module
L, is simple of highest weight
—wo(z - A) = —wo(w(A+ p) + Ly — p) = wgwwal( —wo(A) +p) — - wo(y) —p =2+ (—wo(N)),
where —wg(\) € Cping N X, and the dual of the Weyl module A, is the induced module of highest
weight z* - ( - wo()\)). By the translation principle, it follows that
[Ag: Ly = [A7 : L] = [Var : Lys] = [Age ¢ Lye]

for all z,y € W

ext:®
Let us now describe the action of the automorphism x — z* on the set X. As G is of type A,,

we have wp(ay) = —ap and wo(a;) = —apy1—; for ¢ = 1,...,n, so s§ = so and s} = sp41-; for
i=1,...,n. We can use Lemma and induction on i + j to see that
o z(j,1) ifi4+j<n,
w(i,j)" =4 7 e
x(j—1,i+1) ifi+j5j>n
for0<i<nand 0 <j<n.

We first compute the composition multiplicities in the Weyl modules A with i + 7 < n. The

z(4,5)
Jantzen sum formula for these Weyl modules is given in the following result.

Proposition 3.2. For 0 <i<n and 0 < j <n with i+ j < n, we have
. . ,L j
ISFq(ig) = (=1 Ne+ Y (=1 Nogogy + (=DM Nogigony.
k=1
Proof. We prove the claim by induction on ¢+ j. If ¢+ 5 =0 then ¢ = 7 = 0 and
JSF:C(O’(]) = JSFSO = Ne + JSFe + S0 = Ne

by the recursion formula (1.2)), where JSF, = 0 because A, = L.

Now suppose that i+ j > 0 and that the proposition holds for all 7 and j’ with i’ 4+ j’ < i+j. Then
either ¢+ > 0 or j > 0, and by Remark we may assume that ¢ > 0. By the induction hypothesis,
we have

-1 j
JSF:L"(ifl,j) = (_1)Z+j71 “Ne + Z(_ kol Nx (i—1—k,j) + Z k ! Nx (i—1,j—k)-
= =1

Now z(i — 1,j) < z(i,5) = (i — 1,7)s; by Remark and using Lemma Corollary and the
recursion formula ((1.2)), we obtain

JSFI(i’j) = Nx(ifl,j) + JSFJ;(Z -1 j) -1

= Nx(ifl,j) + (_1)i+j71 "8+ Z k ! Nx (i—1—Fk,j) * Si + Z Nz(ifl,jfk) i
k=1

- j
= Nygi—15) + (=1)"7 - N + Z(—l)k “Ne(i—1-k,j) + Z(—l)k_l “Na(ij—k)
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Chapter V. Further results in type A,

7 J
:(_1)Z+]‘Ne+2(_ k—1 N +Z k 1 N (k)
k=1

as claimed. n

Recall from Section [I] that we have an isomorphism ¢ : Maspn — [Repy(G)] such that

UA(No) =[A,]  and 9y (JSF,) = JSF) = ) [A}]
>0

for all z € W;Zf.
Lemma 3.3. For 0 < i < n, we have JSF;‘(LO) = [Ly(i—1,0)] and JSF;‘(O,O) = [L¢]. In particular,
[Asiio)] = [Lao)) + [Laa-1,0]  and  [Ag0)] = [Lo0)] + [Lel.
Proof. We prove the claim by induction on i. By Proposition we have
JSF0.0) = ¥a(JSFa(0,0) = ¥a(Ne) = [Ac] = [Le],
hence Aslc(o,o) =~ L and [Am(O,O)] = [Lz(o,o)] +[Le], as claimed. For i > 0, Propositionand induction

on 7 yield

JSF?(z‘,o) = (1" [A + Z(*l)k_l [Agii—k,0)]

k=1
i—1
= (—1)" - [Le] 4+ (1) - ([La(o,0)] + [Le)) +Z(—1)k_1 ([Latiro)] + [Lagiok-1.0)]
k=1
= [La(i—1,0));
S0 A:11:(i,0) = Lai-1,0) and [Ay0)] = [Lagi0)] + [La(i—1,0)]; as claimed. ]

Remark 3.4. From the character formulas in Lemma it follows that the Weyl modules A )
and A, ;o) are uniserial of composition length 2, with socgAyg,0) = Le and socgAy 0y = Ly(i—1,0)s
for 0 < 7 < n. By taking duals (see Remark (3.1), we see that the Weyl module A, ;) is uniserial
of composition length 2, with socgAy (g ;) = Lyo,j—1), for 0 < j < n. We can depict the structure of
these Weyl modules in the following diagrams:

Lao) Avio) = (3.0) _ (0.)

Ag(o0) = Balog) =
2(0,0) Le Lyi-1,0) 07 La(0j-1)

Lemma 3.5. Let 0 <i<mn and 0 < j <n such that i+ j <n. Then

[Azig)] = [Lag ] + [Loti—1,5)] + [Lagj—1)] + [Lag-1,-1)] + 0ij - [Lel-
Proof. We prove the claim by induction on i 4+ j. Recall from Proposition that

% J
JSFm(zg ¢>\(JSFSE(17])) = (_1)Z+] ’ [Ae] + Z(_l)kil ,]) + Z : z(i,jfk)}v
k=1 k=1

)
JSFi(l,l) = [Az1,0)] + [As0,1)] + [Ae] = [La,0)] + [La,1)] + 2+ [La(o,0)] + [Le]
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3. Composition series of Weyl modules

by Lemma This implies that each of the simple G-modules L, gy, Ly(0,1) and L. appears with
multiplicity one as a composition factor of A, ;). By Proposition and Lemma we further
have

[Az1,1) t Le(o,0)) = [Az(0,1)  La(on)) =1
because z(0,0) -0 < x(1,0) - 0 = x(0,0)s; - 0 and x(0,1)s; = x(1,1). Now suppose that i +j > 2, and
that the lemma holds for all ¢/, 7/ > 0 with i’ + j* < i+ j. Possibly after taking duals, we may further
assume that i > j (see Remark , and Lemma and the induction hypothesis yield

J Jj—1
> (-1 ii-m] = (1 Aol + > (=DF T (Ao
k=1 k=1

=(-1)". ([Lzi,0)] + [La(i-1,0)])

+) (—1)Ft ([Lx(i,jfk)] + [Lai-1,j-k)] + Laj—k—1)] + [Lz(ifl,jfkfl)])

<

=1
j—1
= (=1 (L)) + [Lai-1.0)]) + Z(—l)k_l (Lt j—ry) + L1,k
k=1
j—1
) D ([ goren) + Lagi—1,j—k-1)])
=1
J
=> (U ([Logon) + Lai-1,j-1))

hence

(3.1)

Mw
,_.
L
?r
N
—
~
8
=
&
—
=
+
—
~
~
i
—
S
—_
=
=

Analogously, we compute that

i {[Lz(i—l,j)] + [La(i-1,j-1)] if i = j,

(3.2) (DR [Agiorg] = o 7
; ’ [Lati—1.5)] + [Lagi—1,-1)) + (=1)"777 - [L] if i > 4,

where the summand corresponding to k = i — j on the left hand side contributes (—1)7~!.[L.] on
the right hand side in the case ¢ > j by the induction hypothesis. We conclude that

J
JSFm('L i) ( H_] + Z ) I(Z + Z (4,5— k)]

k=1
= (-1 - [Le] + [Lz(iq,j)] + [Lyio1j-1) + (L= 6 j) - (=177 [L]
+ [Lagij—1)) + [La(iz1,-1)]
= [Lo(i-1,)] + [Laij—1)] + 2 [Lag-1,j-1)] + i - [Lel,
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Chapter V. Further results in type A,

whence L ;1 j) and Ly ;1) appear with multiplicity one as composition factors of A, ;), and L.

appears as a composition factor of A(é,j) (with multiplicity one) if and only if i« = j. Furthermore,
Proposition [[.6.11| and the induction hypothesis (or Lemma if j = 1) yield

[Asiig) : Lag-1,-1)] = [Daqj—1) * Lat—1j-1] =1

because z(1 — 1,7 —1)-0< (i —1,7)-0=x(i — 1,5 — 1)sp—j4+1 - 0 and (i, j)sp—j4+1 = z(i,j — 1); see
Remark This completes the proof. O

For later use, we note the following consequence of the proof of Lemma [3.5

Lemma 3.6. Let 0 <t <n and 0 < j <n such that i +j <n. Then

i(_l)k_l (Buyn) = {[Lx(i,j—l)] + [Le(i-1,j-1)] ifi > 7,

(4,5 — i e .

k=1 [Laij-1)) + [Lag-1-1)) + (=1) VL) difi<y
and ‘

- (—1)F1.[A k) = {[Lx(i—l,j)] + [La(iz1,j-1)] if i <,

"'E z_ 7] i_ ‘_ . . .

k=1 [Logi-1,7) + [Lag—1j-1] + (1)1 [L] ifi> .

Proof. This was shown in the proof of Lemma (3.5l under the assumptions that i +j < n and ¢ > j, see
equations (3.1]) and (3.2)). It is straightforward to verify that the condition i + j < n can be relaxed
to i+ j < n, and for i < j, the formulas are obtained by taking duals (see Remark (3.1]). O

In Lemmas @ and the composition multiplicities of the Weyl modules A,; j) were computed
for all 0 <4 < n and 0 < j < n such that i +j < n. Now we turn to the Weyl modules A,; ; with
i+ 7 > n. As before, we first determine the Jantzen sum formula for these Weyl modules. For ease of
notation, we define

) ifitj=n
y.g)=q o
z(i+1,7—-1) ifi+j<n
for 0 <i < nand 0 < j <n. Observe that by Lemma [2.3] and Corollary we have

Ny(i=1,5) - Si+1 = Ny(j)

for 1 <i<mn-—1.If i+ 7 > n then the elements y(i,j — k) € X, for 0 < k < j, lie on a line pointing
southwest from z(i, j) = y(4, ) in the Bruhat graph from Figure whereas the elements z(i — k, j),
for 0 < k <4, lie on a line pointing southeast.

Proposition 3.7. Let 0 <i<n and 1 < j <n such thati+ j > n. Then

7 Jj—1
ISFa(ig) = (=)™ Ne + Nognjm-ii) + ) (=D Noopgy + (=D Nygigop.
k=1 k=1

Proof. We prove the claim by induction on ¢ + j. First suppose that ¢ + j = n, and recall from
Proposition [3.2] that

i -1
JSFqi o1y = (=1)"7 71 N + Z(—l)k_l “Ny(i-kj-1) + Z(—l)k_l Ny(ij-1-k)-
k=1 k=1
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3. Composition series of Weyl modules

By Remark we have z(i,j — 1) < x(¢,j) = (4,5 — 1)Sp—j4+1, and as ¢ = n — j, the recursion
formula (L.2) and Corollary [2.4] yield

JSFui5) = Naij—1) T ISFa@j—1) - Sn—j+1

= NyGij-1) + (=17 Ne - sy ]+1+Z k1) " Sn—jt1
Jj—1
+ (i,j—1—k) * Sn—j+1
k;:l
j-1
= Ny + (=1)"F7 N+Z (k) T DD Ny o1
=1

1
= Nyn—jm—i-1) + (=1)""7 - Ne + Z(—l)k_l Nagiorgy + > (D Ny,
1

<.

T

as required. Now suppose that ¢ + 5 > n. Then ¢ > 0 and by induction, we may assume that

i—1
JSF (i—1,5) = (=) N+ Netn—jn—i) + Z(—l)kfl “Ny(i—1-kj) + Z(_l)kfl “Ny(i—1,j—k)-
k=1
Now x(i —1,7) < z(i,j) = x(i — 1, j)si+1 by Remark and again using the recursion formula (1.2)),
Lemma [2.3] and Corollary 2-4] it follows that

ISFu(ij) = Na(i-1,5) + ISFa(-1,5) - sita
= Nm(i—l,j) + (_1)Z+J_1 . Ne © Si41 + Nx(n—j,n—i) © 8541

i-1
+ Z(—l)k_l “Na(i-1-kyj) - Si+1 + Z(—l)k_l “Ny(i-1,j-k) - Si+1
k=1
= Va(i— 1,])+( 1)Z+JN+N(71 j”il)
i—1
+ (_1)k :vzlk] +Z kl N (4,7—k)
k=1
= (_1)i+j ’ Ne + Nx(nfj,nfifl) + Z(_l) o z(z k.j) + Z (i,5—k)>
k=1
as claimed. O
In the next two lemmas, we compute the composition multiplicities in the Weyl modules A j),
for 0 <i<mnand1l<j<nsuchthat i+ j=n.
Lemma 3.8. Let 1 <i<n—1and2 <j <n such thati+j=n. Then
[Azip] = [Lagg] + [Lagir1,j—2)] + [Lagj—1)] + [Lag-1,))
+ [La(i=1,j—1)] + [Lagi,j—2)] + [La(i-1,j—2)] + (9ij + dij—2) - [Le]-
Proof. Recall from Proposition [3.7] that
i j—1
JSFi(z‘,j) = (=17 - [Ad + [Apnjn—i-1)] + Z(—l)k_l [Agimk )] + Z(—l)k_l Ay -k
k=1 k=1
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By Lemma |3.6, we have

i(_l)k—l MBogiiy) = {[La:(il,j)] + [La(i-1,j-1)] o le < ]:7
k=1 (Loi—1,)] + [Lagi—1,j-p)] + (1) 7 - [Le] ifi>j
and
-1 j-1
Z(—l)k_l [Ay—m] = Z(—l)k_l Azt j—1-k))
k=1 k=1

_ {[L:v(i+1,j—2)] + [La(i j—2)] ifi+1>j5-1,
[Logis1,j—2)] + [Lagj—o)] + (=1)7773  [Le] ifi+1<j—1.

For i > j, we obtain (using Lemma in the last step)

ISF 5 = (=D - [Le] + [Aa(njim—i—n)] + La(is1,j-2)] + [Lagi j-2)]
+ [Lati—1,5)) + [Lag-1,j-1)) + (—1)"7 71 L]
= [Asij—1)] + Lait1,-2)) + [Lagj—2)] + [Lai—1,5)] + [Lai—1,j—1)]

= [Lugj-1)] + Lagrrj-2)] + La-1,)] + La-15-2] + 2 (La-1-0] + Lagi-2)])

and analogously, for j > ¢ 4+ 2, we have

(1) - [Le] + [Agnejn—i—1)] + [Lai—1.5)] + [Lai-1,-1)]
+ [Lagit1,j-2)] + [Lagj—2)] + (17772 - [L]
= [Ag(ij—1)] + [Loi-1,5)] + [Lai-1,j-1)] + [La(it1,j-2)] + [Lo(ij—2)]
= [Lyij—1)) + [Lagit1,j-2)) + [Lag—1,5)] + [Lai-1,-2)] + 2 ([Lagi-1,j-1)] + [Lagij—2)])-

If i € {j,j — 2} then

A

ISF2 ) = (1™ - [Le] + [Appn—jm—i-1)] + [Lai-1)] + [Lag-1,j-1)] + [Lagis1,j-2)] + [Lagj-2)]
= [Le] + [Asij—1)] + Lai-1.5)) + La-1-0)] + [Lair1,j-2)] + [Lagij—2)]
= [Le] + [Lo(ij—1)] + [La(it,j—2)] + [La(i-1,5)] + [La(i-1,j-2)]
+ 2 ([Lagi—1,5-1)) + [La@j—2)])»
and if i = j — 1 then

JSF;\(i,j) = (-1)"" - [Le] + [Azn—jn—i-1)) + [Lai=1,)] + [Lat—1,-1)] T [La(it1,j—2)] + [Lag,j—2)]
= —[Le] + [Asij—1)] + [Lati—1,5)) + [Lai=1,j-1)) + [La(it1,j—2)) + [Lagj—2)]

= (Lot j—1)] + [Lagi+1,j-2)) + [Lag—1,5)] + [Lagi-1,j-2)) + 2 - ([La(im1,j-1)] + [Lai,j—2)])
because [Ay(; j—1) : Le] = 1 by Lemma In all cases, it remains to show that
[As(ig) * Lati—1-1)] = 1= [Ag(iy) * Lagij—2))-

Note that we have z(i,j) = z(i,j — 1)sp—j41 and (i — 1,5 — 1)sp—jp1 = x(i — 1,7) > x(i — 1,5 — 1)
by Remark so Proposition and Lemma [3.5] yield

[Asiig) * Lati—1-1)] = [Da@,j—1) * La—1,j-1)] = 1.
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3. Composition series of Weyl modules

Analogously, we have (i, j — 2)sp—jr1 = (i, j — 2)sip1 = 2(i+ 1,5 — 2) > (i, j — 2) by Remark [2.5]
and as before, it follows that

[Asiig) : Lagij—2)) = [Dagij-1) * Laij-2)] =1,
as required. ]
Lemma 3.9. We have
[Az—1,1)] = [Lam-1,1)] + [Lam-1,0] + [Laom-21)] + [La(n—20)]

and
[Ax((),n)] = [Lx((),n)] + [Lx((),n—l)] + [Lx(l,n—Q)] + [Lx(O,n—Q)]'

Proof. We prove the character formula for A, ,_11); the formula for A, follows by taking duals
(see Remark [3.1)). By Proposition we have

n—1
JSF?E(n—u) = (=1)" - [Le] + [Agn-1,0)] + Z(—l)k_l [Agtn—1-k1));
k=1
where [Am(n—l,O)] = [Lx(n—l,())] + [Lx(n—Q,O)] by Lemma and
n—1
Z(_l)k_l : [Aaz(n—l—k,l)] = [La:(n—Q,l)] + [La:(n—Q,O)] + (_1)71—3 : [Le]
k=1

by Lemma We conclude that
JSFé(n—m) = [Lotm-1,0)] + [Latm-21)] + 2 [Lotn—2,0)]-
Now z(n —1,1) = z(n — 1,0)s,, and z(n — 2,0)s,, = z(n —2,1) > z(n — 2,0) by Remark so
[Asn-1,1) * Lan-20)] = [As(n-1,0) : Lan—-20)] =1
by Proposition and Lemma [3.3] and the claim follows. O

In Lemmas @ and @, the composition multiplicities in the Weyl modules A,; ;) were computed
for all 0 <4 <nand 1 <j <n such that i + j = n. Now we turn to the Weyl modules A ; ;
i+ j > n. Here, our methods will not be sufficient to determine the composition multiplicities of all

) where

simple G-modules. Indeed, when computing the Jantzen sum formula, there remains some ambiguity
about the multiplicity [Ax(m) : L] of the simple G-module with highest weight in Cfyng, but all the
remaining multiplicities can be determined. For the sake of notational simplicity, we define

Cij = [Ax( Le]

inj) *
for 0 <i<mnand 0<j<mn s0¢; =20; wheni+j <nandc¢; =0+ 2 wheni+j=mn
(see Lemmas and [3.8). Furthermore, we write ¢ ; := [Ay(; j) : Le] (recall the notation introduced
before Proposition ) and denote by d; ; the multiplicity of [Lc] in J SFi‘(i, i)

Lemma 3.10. Let2<i<n—1and 3 <j <n such thati+j=mn-+1. Then

[Asiig) = Lot ] + [La—1,5)] + Lagj—1)] + [Lai-1,-1)] + La@j—2)] + [Laii=1,j-2)]
+ [Lo(i—2,j-2)) + [La(i-1,j-3)) T [La(i—2,-3)) + ¢ij - [Lel,

where ¢; ;s =1 if j € {i,i4+ 2}, ¢;; € {1,2} if j =i+ 1 and ¢; ; = 0 otherwise.
J J J
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Proof. Recall from Proposition [3.7] that

i j-1
JSF;\(i,j) = (=)™ - [Ad + [Apn—jn—i-1)] + Z(—l)kfl [Ag(imkg)) + Z(—l)kfl Ay -r)
k=1 k=1
= (=)™ [Le] + [Aggo1j-2)] + [Da-15)] + [Dagij1)
i1 j—2
- Z(—l)k_l [Ag—1—k )] — Z(—l)k_l Ay j—1-k)]-
k=1 k=1

By Lemma |3.6] we have

1—1 . {[Lm(7,2,])] + [LI(i*Q,jfl)] ifi—1 S j,
[La(i-2,5)] + [La(i-2-1)] + (1) 772 [L] ifi—1>

k=1
and
j—2 Jj—2
Z(_l)kil'[Ay(i,jflfk)] = Z(—l)k_l [As(it1,j—2—k)]
k=1 k=1
_ {[Lx(i+1,j—3)] + [Laij—3)] ifi+1>75-2,
[Logit1,j-3)] + [Lagij—s)) + (=17 774 [Le] ifi+1<j—2.

Furthermore, we know from Lemma [3.8] that
[Asii—1,)] = [Lagi—1,5)] + [Lagj—2)] + [La-1,j-1)] + [Laii—2,5)]
+ [Lai=2,j-1)] + [La(i=1,j-2)] + [La(i—2,j—2)] + (8i-15 + dij—1) - [Le]
and
[Asiij—1)] = [Lagij—1)] + [Lagir1,j-3)] + [Lagj—2)] + [Lagi-1,-1)]
+ [La(i-1,j-2)] + [La(ij-3)] T [Lai-1,-3)] + (0ij—1 + i j—3) - [Le]
and from Lemma [3.5] that
[As(i-1,j-2)) = [La(i-1,j-2)) T [La(i-2,j-2)) + [La(i-1,j-3)] + [Lagi-2,-3)) + dim1,j—2 - [Le].
We conclude that
JSFi(z‘,j) —dij-[Le] = ((‘Unﬂ —dij) - [Le] + [Ag(iz1,j—2)] +

Agiim1,j)] + [Dagij—1)]

[\

.

i—1
- Z(—l)kfl [Agim1—kj)] — (—1)F [Ayiij—1-k)]
k=1

ST

= ([Lz(z'—l,j—2)] + [La(i-2,j—2)] + [Lagi-1,j—3)] + | z(i—2,j—3)])
+ ([Lx(zel,j)] + [Lagij—2)] + [Lai=1,-1)) + [La(i—2,5)]
+ [La(i-2,j-1)] + [La(i=1,j-2)] + [L(i—2,-2))
+ ([Lz(i,jfl)] + [La(it1,j-3)) + [Lagij—2)] + [Lai—1,-1)]
+ [La(iz1,j-2)] + [Lagij-3)] + [Lx(z‘—Lj—s)])
— ([Lagim2,5)) + [Lag—2,-1)]) = (Lagt1,j-3)] + [La@j—3)])
= [Lagi-1.5)) + [Laj-1)) + 2 ([Lx(i—l,j—l)] + [Lx(i,j—2)])
+ 3 [Lyi—1,-2)] +2- ([L:v(i—2,j—2)] + [Lx(i—l,j—S)D + [La(i-2,j—3)]-
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Furthermore, we have

i1 j—2
dij= (1"t iz eimg +eigo— Y (D ey = ) (DML
k=1 k=1
= (=)™ 4012+ 61y + 012+ Gijo1 + 6ijos
i1 j—2
- Z(_l)k_l 01—k — Z(—l)k_l i1 -2k
k=1 k=1
i—1 j—2
= (1" 43650+ > (“DF Gk + Y (=D Gk
k=0 k=0
and as i+ 5 = n + 1, it follows that
2 ifi=75-1,

dij=14q1 ifi=j—2o0ri=j,

0 otherwise.

In all cases, it is straightforward to see that the value of ¢;; is as claimed above, and it remains to
show that the simple G-modules L1 -1y, Lo(ij—2), La(i-1,j-2), La(i-2,j—2) and Lg;_1 ;_3) appear
with multiplicity one as composition factors of A ;.

Indeed, we have

2(i,7) = 2(i, — 1)spn—jy1 = 2(i — 1,7)si41
by Lemma and as z(i — 1,j — 1)sp—jp1 = x(i — 1,5) > x(i — 1,5 — 1), Proposition [.6.11] and
Lemma [3.8] yield
[Asiigy : Lagi-15-1)] = [Ba@j-1) : Le-15-1] = 1.
Analogously, we have z(i,j — 2)sit1 = x(4,§ — 2)Sn—j42 = (4,5 — 1) > x(i,j — 2) and therefore
[Am(z’,j) : Lw(i,j—2)] = [Am(i—l,j) : Lm(i,j—2)] =1
and z(i —1,j — 2)sj1 = (i — 1, —2)sp—jpo =a(i— 1,5 —1) > z(i— 1,5 — 2), so
[Asii) * Lati=1-2)] = [Dag-1,) * Lagi-1,j-2)] = 1.
Finally, we have x(i — 2,j — 2)s;41 = (1 — 2,j — 2)sp—jpo =2(i — 2,5 — 1) > 2(i — 2,5 — 2), so
[Agiig) * Lagi—2-2)] = [Daq-1,) * Lai—2,j—2)] = 1,
and z(i —1,j — 3)sp—jp1 =2(i— 1,5 —3)s; = x(¢,j —3) > x(i — 1,7 — 3), so
[Asii) * Lati=1-3)) = [Da@j-1) * Lagi—1,j-3)] = 1,
as required. O
Lemma 3.11. We have
[Ax(n—1,2)] = [Lx(n—l,Q)] + [Lx(n—l,l)] + [Laz(n—2,2)] + [Lm(n—l,o)] + [Lz(n—2,1)]
+ [Lx(n72,0)] + [Lx(n73,0)] —+ 5n,3 : [Le]
and

Az = [Len)] + [Laom) T [Le@n-1)] + [Len-1)] + [Le1,n-2)]
+ [Lx(O,an)] + [Lx(O,nf?;)] + 671,3 : [Le]'
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Proof. We prove the first character formula, the second one follows from the first by taking duals (see
Remark [3.1). By Proposition we have

n—2
JSF;:\(n—l,Q) = (_1)n+1 : [Ae] + [A$(n—2,0)] + [A$(n—1,1)] + [Aw(n—2,2)] - Z(_l)k_l : [Aa:(n—Q—k,Q)]'
k=1
If n > 4 then Lemma gives
n—2
Z(_l)k_l ) [A$(n—2—k,2)] = [L:c(n—3,2)] + [Lw(n—3,1)] + (_1)n—5 : [Le]a
k=1

and using Lemmas and it follows that

JSFQ(nq,z) = (=)™ [Le] + ([Lyn-20)] + Lam-30))
+ ([Log-1,0)] + [Lomn-2.1)] + [Lamn-1,0)] + [Lamn-20)])
+ ([Latm—22)] + [Lam-1,0] + [Lam—21)] + [Lan—32)]
+ [Lamn—-2,0)] + [Lam—31] + [Lam-30 ])
— ([Lon-32)] + [Lam-3,1)] + (=1)"° - [Le])
= [Lotm—1,1)] + [Latm—22)) + 2 - ([Lam-1,0)] + [Latn—2,1)])
+ 3 [Lamn-20)] + 2 [Lamn-30)]

As before, we can use Lemma [2.3] Remark [2.5] and Proposition [[.6.11] to see that each of the simple
G-modules Ly (;,—1,0), Lan-2,1)s Lz(n—2,0) and Ly, _30) appears with multiplicity one as a composition

factor of A as claimed. If n = 3 then [A,9) : Le] = 1 because

(i,5)

n—2

Z(—l)k_l [Azmn—2-£,2)] = [Az0,2)] = [La(0,2)] + [La(0,1)]s
k=1

and the rest of the proof is as in the case n > 4. If n = 4 then

n—2

S DR A ea—k2)] = [Auaz)] — [Auo2)] = [Lag2)] + Lo,
k=1

and [Ag22) : Le] = 1 by Lemma hence [Ay(39) : Le] = 0. Again, the rest of the proof is as in the
case n > 4. O

It remains to consider the Weyl modules A, ; ;) for 0 <7 <n and 0 < j < n such that i+j > n+1.
We first assume that ¢ <n —1 and j < n, and we start with the case i +j =n + 2.

Lemma 3.12. Let3<i<n—1and4 <j<n such thati+j=mn-+2. Then

Az = [Lagig) + Lot j—)] + [La-1,5)] + [Lagi-1,-1)]
+ [La(i=2,j-3)] + [Lai=3,-3)] + [La(i—2,j—1)] + [Lo(i=3j—1)]
+ cij - [Lel,

where ¢; j € {1,2} if i < j <i+2 and ¢; j =0 otherwise.
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3. Composition series of Weyl modules

Proof. By Proposition we have

JSF i = (=)™ - [Ad] + [Aynjnio)]

M@.

+ [Asii—1.5)] — [Ag(i—2,5)] + (=1t [Ag(imk, )]

(S
=W

+[Azii—1)] = [Azi,j—2)] + (—1)Ft. Ay i)

=
Il
w

where [A,—jn—i—1)] = [Az@i—2,j—3)], and by Lemma we have

Zi:(—l)kl NAp(i—k ) = {[Lx(i_:”’j)] + La(i-s,j-1)] ifi-2<j

m 17 ’J Z'_ ‘_ . . .
k=3 [Lagi—3j)] + [Lag—3,j-1)] + (=1)"7 BoLe] ifi—2>
and

i1 . .

]Z<—1>k—1 By ] = {[meﬂ [ Laij-a) fitl2j-3

y(ij— i e .
e [Lo(is1j—a)) + [Lagj—ay) + (=1)7772 [Le] ifi+1<j—3.

Using Lemmas and we obtain

JSF 5y — dij - [Le] = ([Lag—2-3)] + [Lati=3,j—3)] + [La(i=2,j-1)] + [La(i—s,j-4))

+ ([Lagi-1,5)] + [Lag-2.5)] + [La-1,j-1)] + [Lag-2j-1)] + [Lagi-1,j-2)]
+ [Lai—2,j—2)) + [Lai=3,-2)] + [Laii—2,-3)] + [Lx(i—S,j—S)])
([Lagi—2,)] + [Lai—2,j—1)] + [La—1,j-2)] + [Lai—s,)]
+ [Lai-3,j-1)] + [La@i—2,-2)] + [Lm(ifS,jf2)])
+ ([Lyi—3.5)] + [Lai—34-1)])
+ ([Lagij-1)] + [Lag-15-1)] + [Latj-2)] + [Lati-1,j-2)] + [La(ij-3)]
+ [Lai-1,j-3)) + [Lai=2,j-3)] + [Lai=1j-4)] + [Lx(i—z,j—4)])
(ILyij—2)) + [Lagij—3)] + [Lagis1,j—0)] + [Lai-1,-2)]

+ [Lagij—a)] + [Logi-1,j-3)] + [Lagi-1,j—1)])
+ ([Lx(i+1,j—4)] + [Lw(i,j—4)])

= [Logi—1.5)] + [Lagij—1)] + [Lagi—3,j-1)]
+ 2 ([Lai—1-1)) + [Lag—2,j-1)] + [Lagi-3j-3)]) + 3 - [Lai-2,-3))-

As before, Proposition yields

[Asij)  Lai—2,j-3)] = [Ani-1) * La@—2,j-3)] = 1,

and analogously, we see that the simple G-modules L ;1 ; 1), Ly(i—2j-4), and Ly;_3j_3) appear

with multiplicity 1 as composition factors of A,; ;). It remains to determine the multiplicity of L. as
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a composition factor of A,(; ;). We have

_ i+j
dij = (=1)""7 + enjn—i—1 + Ci15 + Cij—1 — Cz’—2,j — Ci,j—2

+Z " Ci— ka+2 ’Jk

= (—1)"™ + 5n—j,n—z‘—1 + ci—1,j + Cijo1 — 51‘—23‘ — 0i—2,j—2 — 0i,j—2 — 0ij—4
i
+ D (D) Gy +Z Oit1,j—1—k;
k=3

where ¢;_1; = 0j—1,j + ;41 unless i = j and ¢; j—1 = 0;41,;+0; j—3 unless i = j—2. Fori ¢ {j —2,j},
it follows that

i j-1
dij = (=1)"7 4+ 38415 — Z(‘l)k ik — Z(—l)k “0it1j-1—k;
k=0 k=0

and therefore d; j = ¢; ; = 0 for i < j — 2 and for ¢ > j. For ¢ = j — 1, we obtain d; ; = 2 and therefore
¢i,j € {1,2}. Finally, if i = j then d; ; = ¢;—1 j and if i = j — 2 then d; ; = ¢; j—1, and in both cases, it
follows that ¢; ; € {1,2}. O

Lemma 3.13. Let3<i<n—1and4<j<n such thati+j>n+2. Then

[Asiip] = Lot ] + [Lagj—)] + Lagi-1,5)] + [La-1,-1)] + cij - [Le]
+ [Lan—jm—i-1)] + [Lam—j—1,n—i—1)] + [Lam—jn—i-2)] + [Lam—j-1n—i-2)];

where ¢; ; =0 if n > 25 orn > 2i+ 2.

Proof. We prove the claim by induction on r := i+ j — (n 4+ 2). The case r = 0 is Lemma S0
now assume that » > 1. By Proposition we have

7—1

JSFa)c\(i,j) = (=1)"7 - [A] + [Ag(n—jn—i—1)] + Z(—l)k_l [Ag(i—kg)] + Z(—l)k_l Ay k)]
- k=1

Note that we can write

i i+j—(n+2)
Z(—l)kfl [Ag(i—k )] = Z (—1)Ft. [Ag(i—k, )]
k=1 k=1

+ (=172 ([Agnr1—g)] — [Bam—ip))
-

DS DR (Ao

k=

3

—_

and that the characters of all the Weyl modules in this sum are known, either by induction or by our
previous results. By Lemma we have

n—j Lo o 1 Lot o 4. if n <2j
(33) YD gy = {[ stnmg=19) + [Latumyor ) ifn <2

= [Latn—j—1,5)] + [Lan-j-1,j-p)] + (=1)" 7"~ [L¢] if n > 27,
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3. Composition series of Weyl modules

and by Lemmas [3.8 and [3.10] we have

[Lx(n ]+1,])] + [Lm(n ]j)] + [Lz(nfj#l,jfl)] + [Lx(nfj,jfl)] + [Lx(nfj+1,jf2)]

Apn—jt+1,j) — Ban—jg) =

+ [Latn—j,j—2)] + Lam—j—1,j—2)] + [Lam—jj—3)] + [Lom—j-1,-3)]
[Lz(n ],])] [ x(n—j+1,j—2)] - [Lx(n—j—l,j)] - [Lx(n—j,j—l)}
[Lx(n j—1,7— 1)] [ x(nfj,jfZ)] - [Lx(nfjfl,ij)]

+(cn—jt1j — en—jj) - [Le
= [Lotm—j+1,5)) + Lam—jt1,j—0)] + Lam—jj—3)] + [Lam—j-1,;-3)]

— [Latm—j—1.5)] = Lamn—j-1,j-1)] + (cn—jr1j — cn—jj) - [Lel-

Furthermore, induction yields

itj—(n+2)
> D Ak
k=1
i+j—(n+2)
= e <[Lx(zek,j)] + [Lati—r—1,)] + Lati—k,j—1)] + [La(i—k—1,-1)]
k=1

+ [Le(n—jn—itk—1)] + [Lo(mn—j-1,n—itk—1)]
+ [Lon—jn—ith—2)) T [Lan—j—1n—itk—2)) T Ciokyj - [Le]>
= [Lai-1.5)) + [La-15-0)] + [Lam—jn-i—1)] + [Lemn—j-1,n—i-1)]
+ (1) ([Lx(nﬂ_j,j)] + [La(ms1-j5-1)]
+ [Lan—jj—3)] + [Lx(n—j—l,j—?))])

i+j— (n+2
+ < cCi— k,]) : [Le]7
k=1

i i+j—(n+2)

Z(—l)’%l [Ag(i—k )] = Z (—1F [Ag(i—k )]

and we conclude that

=1 =
+ (D)2 (A1) — [Bansip))
n—j
D DR (Do)
k=1

= [Layi—1,p] + [La—1,-1)] + [Latm—jm—i—)] + [Lon—j—1,n—i-1)]

# (S0 ) I8

k=1

Analogousl (or by taking duals), we see that

-1

M

(-1 [A (ij—k)] = [Laij—1)] + [Lati-1-1)] + [Lam—jn—i-1)] T [Lo(n—jn—i-2)]

+ (jz:l(—l)k_l 'C;,jk) [ Le]

k=1

k=1
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(vecall that ¢} ; ;. = [Aygj—r) : Le]), and as

[Astn—jn—i-1)) = [Laen—jn—i-1))] T [Lam—j—1,n—i-1)) T [Lam-jn—i—2)] + [Lamn—j—1,n—i—2)] + ji+1 - [Le]
by Lemma it follows that

JSF;‘(@]‘) —d;j - [Le] = [Lai-1,5)] + [Lai=1,-1)] + Lam—jn—i-1)] + [Lamn—j—1,n—i-1)]
+ [La(ij—1)) + [Lagi-1,-1)] + [Laotm—jmn—i—0)] + [Lo(n—jn—i-2)]
+ [Le(n—jn—i-1)] + [Letn—j-1,n—i-1)]
+ [Lan—jn—i-2)) T [Lan—j-1,n—i—2)]
= [Laii—1,5)] + [Latij—1)] + Lam—j—1,n—i—2)] T3 [Lam—jn—i-1)]
+ 2 ([Log-1,j-1)) + [Latn—j—1,n-i-1)] + [Lam—jn—i-2)])-
As before, we can use Proposition to see that the simple G-modules L ;1 1), Lo(n—j—1,n—i-1),
Lyn—jn—i—2) and Ly(u—jn—i—1) appear with multiplicity one in a composition series of Ay (; ), and it
remains to prove that ¢; ; = 0 if n > 2j or n > 2i + 2.
First assume that n > 25, and observe that

i j—1
dij = (1" 46501+ (D e+ Y (=D
k=1 k=1

/

By induction, we have c¢;_r; = 0 and Cij—k = Cij—k = 0 for all £k > 0O with ¢ +j — k > n + 2.

Furthermore, Lemmas and imply that ¢,—jt1,; = ¢n—jj = 0, and by equation (3.3)) (see also
Lemma , we have

n—j

YD ey = ()"

k=1
As i+ j > n + 2, the assumption that n > 2j implies that ¢ > j + 3 and n < 2¢ — 5, and it is
straightforward to see that Cé,n—i—i—l = Cipn—i+1 = 0 and Cé,n—i = ¢jn—; = 0. Finally, by Lemma we

have c;’j_k = Cit1,j—1—k =0 fori+j—n <k < j—1because i +1 > j —1—k, and we conclude that
dijj = (1) 4+ (1) (1) =0,
whence ¢; ; = 0. Similarly (or by taking duals), we see that ¢; ; = 0 when n > 2i + 2, as claimed. [J
Finally, we turn to the Weyl modules A, ; ,y and Ay, ;) for i > 2 and j > 3.

Lemma 3.14. For2<i:<n—1 and 3 < j <n, we have

[Asn—1,5)] = [Laotm-1,)] + Lamn-1,j-1)] + [Lam—2.)] + [Laem-2,j-1)]
+ [Lan—j0)] + [Lam—j—1,0] + ca—1,5 - [Le],
with c,—1,; = 0 if n > 27, and
[Asim)] = [Lagin)] + [Lain—1)] + [La—1,m)] + [Lagi-1,n—1)]
+ [Laon—i-1)] + [Laon—i-2)] + Cin - [Le],
with ¢;n, = 0 if n > 2i + 2. Furthermore, we have

[Ax(n—l,n)] = [La:(n—l,n)] + [Lr(n—l,n—l)} + [Lz(n—2,n)] + [Lm(n—2,n—1)]
+ [Lx(o,o)] + Cn-1n [Le]-
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3. Composition series of Weyl modules

Proof. We prove the first character formula by induction on j. By Proposition we have

JSF?L’\(n 1,5) — ( )n el [ ] [ z(n— ]0)]

n—1 j—1
Z a: n— 1—k,j)] + Z(_l)k_l ' [Ay(n—l,j—k)L
k= k=1

and as in the proof of Lemma [3.13] we see that

n—1

Z(_l)k_l : [A;r(n—l—k,j)] = [Lac(n—Q,j)] + [Lac(n—Z,j—l)] + [Lz(n—j,O)] + [La:(n—j—l,O)]

k=1
-1

+ <:1(—1)’“1 'Cnliw’) [Lel-

Furthermore, we have

j—1 7—3
Z(_l)k_l : [ (n—1,5— k (n—1,5— k)] + (_1)]_3 ' ([Ay(nfl,Q)] - [Ay(nfl,l)])y
k=1 k:l

where

[Aymn-12)] = [Bym-10] = [Ben-12)] = [Bem-11)]
= [Lan-1,2)) T [Lam-1,1)] + [Lotm-22)] + [Lan-1,0)
+ [Lam—2,1)] + [Lam-2,0)] + [Lan-30)]
— [Lan-1,0] = [Lamn-1,0)] = [Lam-2,1)] = [Lan-2,0)]
= [Lotm-1,2)] + [Latm—2.2)] + [La(n—30)]

by Lemmas and (recall that n > j > 3), and

[Ax(n—jﬁ)] = [L:c(n—j,O)] + [Lx(n—j—l,())]

by Lemma For j = 3, it follows that

JSFQ( 13) — dn-13 - [Le = [Lan-2,3)] + [Lan-22)] + [Lam-30)] + [Lan-10)]
+ [Lom-12)] + [Lon—22)] + [Lan-30)]
+ [Lan—30)] + [Lan-1,0)]
= [Le(n-23)] + [Lamn-1,2)]
+ 2 ([Lymn—22)] + [Lom-10)]) + 3 [Lam—30))

and as before, we can use Proposition to see that the simple G-modules [Ly(,—2 2], [Lan—4,0)]
and [Ly,—3,0)] appear with multiplicity one in a composition series of A,(;,,_; 3). Furthermore, we can
argue as in the proof of Lemma to see that d,,—13 =c,—13=0if n > 6.

Now suppose that j > 3. Then induction yields

j—3
(_1)k_1 ’ [Ay(n—l,j—k)] = (_1)k_1 ’ [A:L’(n—l,j—k)]

.
w
)

=
Il
—
B
Il
—
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<
|
w

(—1)’971([1/9:(7171,3'71{)] + [Lam—-1,j—k—)] + Lam-2,j-1)] + [Lam—2,j—k—1)]

e
Il
—

+ [Lo(n—jtr,0)] + [Latn—jtr—1,0)] + Cn-1,j—k - [Le])
= [Lx(n—l,j—l)] + [Lr(n—27j—1)] + [Lx(n—j,O)]
+ (=17 (Lom-1,2)] + [Lan-22)] + [Lan—30))

+ ( ?)(—l)k_1 . Cn—l,j—k:> [ Lel,

<

=1
and we conclude that
j—1
S DR Ay 1j-n) = Lago1,j-1)] + Lam-2,-1)] + [Lam—j0)]
k=1
j—1
+ (Y0 ey - L
=1

As in the case j = 3, we obtain

ISF 1) = dn1j - [Le] = [Lon—2.)] + [Lam—2,j-1)] + [Lam-j0)] + [Lam—j-1.0)
+ [Lon-1,-1)] + [Lem-2,-1)] + [Lam—j0)]
+ [Lan—j0)] + [Lan—j—1,0)
= [Lytm-2,)] + [Lamn-1,j-1)]
+2- ([Lm(nfljfl)} + [Lx(nqu,o)]) + 3 [Lam—jo0l
and we can use Proposition to see that each of the simple G-modules Ly(,—2-1), Ly(n—j—1,0)
and Ly ,_; 0y appears with multiplicity one in a composition series of A,(;,,_; ;). Furthermore, we can

argue as in the proof of Lemma to see that d,,_1; = ¢,—1,; = 0 if n > 2.
The second character formula follows from the first by taking duals (see Remark [3.1), so it remains

)
)

to compute the composition multiplicities in A, (;,—1 ). Again by Proposition we have

n—1 n—1
JSF;\(n—l,n) = (*1) : [Ae] + [Am(O,O)] + Z(*l)k_l : [Aﬂc(n—k—l,n)] + Z(*l)k_l : [Ay(n—l,n—k)]7

k=1 k=1

and as before, we see that

n—1 n—1

Z(_l)k_l [Ay(n—l,n—k)] = [Lm(n—l,n—l)] + [Lm(n—2,n—1)} + [Lm(O,O)] + ( (_1)k_1 : Cn—l,n—k) : [Le]

k=1 k=1

and (by dualizing)

n—1 n—1

Z(_l)k_l : [Am(n—k—l,n)] = [Lm(n—Q,n)] + [Lm(n—Q,n—l)] + [Lx(O,O)} + ( (_1)k_1 : Cn—k—l,n) : [Le]-
k=1 1

As [Ay0,0)] = [La0,0)] + [Le] by Lemma we conclude that

i

JSFa)c\(n—l,n) —dp—1n - [Le] = [La0,0)] + [Latn-1,n-1)] + [Lam—2n-1)] + [La(0,0)]
+ [Lx(n—2,n)] + [Lx(n—Z,n—l)] + [Lx(O,O)]
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4. Loewy structure of Weyl modules

= [Latn-1,n-1)) + [Lam-2m)] + 2 [Letm-2n-1)] + 3 [La0,0));

and as before, we can use Proposition to see that the simple G-modules L;;,—2,-1) and Ly )
appear with multiplicity one in a composition series of A, (;,_1 y). O

4 Loewy structure of Weyl modules

The socle filtration of a G-module M is defined inductively by SOC%M =0 and
socléM/soc]é_lM = socg (M/soc]a_lM)
for k> 0. Analogously, the radical filtration is defined by radg M = M and
radf; M = radg (rad’éﬁlM )

for £ > 0. By construction, the successive quotients (called layers) of both the socle and the radical
filtration are completely reducible, and if 0 = My C M; C --- C M, = M is a filtration of M by
G-submodules such that the successive quotients M;/M;_1 are completely reducible then

M,; C sociGM and radé;M C M,_;
for i =0,...,r. Consequently, we have
m :=min {k >0 ‘ socg M = M} =min{k >0 ‘ rad]éM:O}

and rad’gfiM C sociGM for i = 0,...,7. The integer m is called the Loewy length of M, and M is
called rigid if rad’aniM = sociGrM for i =0,...,m. The data of socle and radical filtration is loosely
referred to as the Loewy structure of M.

In this section, we use the results about composition series and Jantzen filtrations from the previous
section to examine the Loewy structure of the Weyl modules A, for z € X. We keep the notation and
assumptions from Sections [2| and In the cases where the multiplicities of all composition factors
of the Weyl module A, can be computed, it turns out that A, is rigid, with socle filtration and
radical filtration equal to the Jantzen filtration. When z = z(i,75) for 0 < i <mnand 0 < j < n
with ¢ 4 j > n then there is some ambiguity about the multiplicity of the simple G-module L, in a
composition series of A, ; ;) (see Lemma, and it is unclear if the layers of the Jantzen filtration are

completely reducible. Nevertheless, we can compute the socle of A using translation arguments.

z(i,5)
Generalities

We start with some general observations about the Jantzen filtration and complete reducibility. First,
we give a sufficient condition for the complete reducibility of a contravariantly self-dual G-module.
(Recall that a G-module M is called contravariantly self-dual if M7 = M; see Section [L.4])

Definition 4.1. A G-module M is called multiplicity free if [M : L(\)] <1 for all A € X+,

A special case of the following lemma was already given as Lemma 4.12 in |Gru2l]; the proof is

essentially the same.

Lemma 4.2. Let M be a contravariantly self-dual G-module. If M is multiplicity free then M is
completely reducible.
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Chapter V. Further results in type A,

Proof. Suppose that M is not completely reducible, so radgM # 0 and socg(radgM) # 0. As M is
contravariantly self-dual, we have socqM = M /radgM and therefore

0 # socg(radg M) C soceM = M /radg M.

It follows that radgM and M /radgM have a composition factor in common; hence M is not multi-
plicity free. O

Recall that we fix a weight A € Cpung N X and write A, = A(z-\) and L, = L(x - \) for z € W[

ext”

For k > 0, we further denote by A,y = A%/AF1 the k-th layer of the Jantzen filtration of A,. By
Remark 1 in Section 11.8.19 in [Jan03], the G-modules A, j are contravariantly self-dual for € W

ext
and k > 0. Therefore, the following corollary is an immediate consequence of Lemma [4.2)

Corollary 4.3. Let x € We'f(t and k > 0 such that A, i is multiplicity-free. Then Ay is completely
reducible.

Whenever we are able to determine all composition multiplicities of the Weyl module A, for x € X
as in the previous section, this module is in fact multiplicity free, and it follows that all layers A, 5, of
the Jantzen filtration of A, are completely reducible. Furthermore, we can use the following lemma
to determine these layers precisely.

Lemma 4.4. Let x € W,:;f such that A, is multiplicity free and write
ISFy = > ay - [Ly).
yEW(:;f
Then the layers of the Jantzen filtration of A, are given by

Am,kg @ Ly

yGW;;f
ay=k

for k> 0.

Proof. Recall from Section [1] that we have

ISEY = Y IAY = k- (A

k>0 k>0

As A, is multiplicity free, so are the layers A, for & > 0, and furthermore, no two layers have
a composition factor in common. By linear independence of the classes [L,], for y € W;Ef, in the
Grothendieck group [Rep(G)], we conclude that

[A;r,k] = Z [Ly]

yEW;:f
ay=k

Now the claim follows from Corollary O

The preceding Lemma shows that the layers of the Jantzen filtration are completely reducible and
can be uniquely determined from the Jantzen sum formula for every multiplicity free Weyl module. In
order to show that the Jantzen filtration coincides with the socle filtration and the radical filtration

156



4. Loewy structure of Weyl modules

for the Weyl modules A, for certain (but not all) z € X, we use translation arguments, as will be
explained in the following.

Recall from Proposition that, for 4 € CrunaN X and = € W; , we have T;f A, # 0 if and only
if x-p€ Xt and Tf L, # 0 if and only if x - u belongs to the upper closure of x + Crynq (because the
l-alcove x « Crypnq is the unique f-facet containing z - ). We now reformulate the conditions for the
non-vanishing of T{'A, and T} L, purely in terms of « and Stabyy,, (u).

Lemma 4.5. For pi € Cryna N X and x € W, we have T{' A, # 0 if and only if xStabw,, (1) C Wik
In that case, we further have T\' A, = Az - p).

Proof. By Proposition m (see also the discussion above), it suffices to prove that z -y € X if and
only if zStabyy, (1) C W;Ef. An analogous statement was proven in Lemma for the standard
action of Wog on Xy rather than the ¢-dilated dot action, and we can essentially copy the proof of
that lemma.

First suppose that - € X' and let w € Staby, ., (1). Then - p=zw - p € zw - Clund, SO

0<(z-p+pa’)< (na(:vw - Ctuna) + 1) -l

for all & € ®*, and it follows that ng(zw - Cpung) > 0 and zw € W;f.
Now suppose that 2Staby,, (1) C Wi and let o € II. Then z- (27 sq2) = sz ¢ Wk asz € Wk,
so 17 1sqx ¢ Staby, . (1) and s, ¢ Stabyy . (z - p). This implies that (x - u,a") # —1, and as

0<na(Chna) L < (@-p+p,a’)=(z-pa)+1,
we conclude that (z - p, ") >0 and z - u € X, as required. O

Remark 4.6. Let p € Cung N X and @ € W,g such that - 4 € XT. Then xStabyy, (1) C W;;f (see
the proof of Lemma, and by Proposition m the G-module Tﬁ\A(x - 1) has a Weyl filtration with
subquotients the Weyl modules A, with y € xStabyy,, (1), each occurring precisely once. Writing

xStabw, . (1) = {y1,.-.,yr}

with ¢ < 7 whenever y; + Cynd T¢ ¥i * Crund, We can choose a Weyl filtration
0=MyC - C M =T)A(x-p)

with M;/M;— = A, for i = 0,...,r, as explained in Section In particular there exists an
embedding A,, — Tﬁ\A(x - ).

Lemma 4.7. For i € CpnaNX and x € W;f, we have T/’\‘Lz # 0 if and only if xs € W;;f and x < xs
for all s € SN Staby,, (n). In that case, we further have T\ Ly = L(x « ).

Proof. By Proposition m (see also the discussion above Lemma , it suffices to prove that the
weight x - u belongs to the upper closure of x - Chypnq if and only if zs € W;Ef and z < zxs for all
simple reflections s € SN Stabyy,, (1). Recall from Lemma that the weight x - u belongs to the
upper closure of z + Cpynq if and only if 2(Agnd) T 25(Aguna) for all s € S N Stabw, (1). As z € W;ﬁc,
we have x8(Afund) T ©(Afunq) for all s € S with xs ¢ W;;f, and for xs € W:;f, we have v < xs if
and only if x(Afynd) T 28(Afuna) by Theorem Combining these observations, we see that
(Afund) T 8(Agung) if and only if xs € W;;f and x < xs, for all s € S, and the claim follows. d
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Chapter V. Further results in type A,

Now we are ready to employ translation functors in order to study the Loewy structure of Weyl
modules.

Lemma 4.8. Let x,y € W;;f and suppose that L, is isomorphic to a submodule of Ay. For any s € S
such that ys < y, we have xs € W;;f and T < xs.

Proof. Let p € Cryna N X with Stabw,, (1) = {e,s}. By Corollary [[.2.13] we have ys € W and
therefore yStabyw,, (1) = {y,ys} C Wk, and it follows that y - 4 € X (see the proof of Lemma .

As ys < y, we have ys + Cruna ¢ ¥ * Cruna by Theorem and using Remark we see that
there is an embedding A, — T:‘A(y - 1) By assumption, we have Homg (L, Ay) # 0 and therefore

0 # Homg (Lo, T Ay - 1)) = Homeg (T Le, Ay - ).
t tollows that z , and Lemma 4.7 implies that xs € and r < rs.
It follows that T{'L, # 0, and L [4.7] implies th Wk and m

Lemma 4.9. Let z € W;;f and let 0 = My C --- C M, = A, be a filtration such that the successive
quotients M;/M;_1 are completely reducible. Further, let s € S such that xs € W;;f, and let j € Z~o
be mazimal with the property that M;/M;_1 has a composition factor L, with ys € W;ﬁ@ and y < ys.
Then one of the simple G-modules L, and Ly is a composition factor of M;/M;_1, and if w € W;gf
with ws € W;ff and w < ws such that Ly, is a composition factor of M;j/M;_y then w € {x,zs}.

Proof. Fix p € Cyna N X with Staby, . (1) = {e, s}. We first observe that j as in the statement of the
lemma exists: The assumption that {z,xs} C W;;f implies that

THA, = A(x-p) #0

by Lemma and it follows that T} (M;/M;—1) # 0 for some i € {1,...,r}. Then M;/M;_; has a
composition factor L, with T’ )’f L, # 0, and using Lemma we conclude that ys € W;ﬁn and y < ys.

The submodules T/‘\‘ M; of T)‘f A, afford a filtration whose successive quotients are completely re-
ducible, and again by Lemma [4.7] j is maximal with the property that

TYM;/TY M1 = T (M;/Mj—1) # 0.

Hence T} (M;/M;_1) is a non-zero and completely reducible quotient of T{'A, = A(x - p), and we
conclude that T%'(M;/M;_1) = L(z - p). Now let w € Wk with ws € W and w < ws, and suppose
that L,, is a composition factor of M;/M;_;. By Lemma we have T} Ly, = L(w - 1), and it follows
that L(w - p) is a composition factor of T} (M;/M;_1) = L(x - ). This implies that 2 - 4 = w - p and
therefore w € xStabyw,, (1) = {x, xs}, as claimed. O

Now we are ready to determine the Loewy structures (or in some cases, only the socles) of the Weyl
modules A, for x € X. We do this over the course of the four following subsections, distinguishing
the four cases i +j <n,i+j=n,i+j=n+landi+j>n+ 1.

The case i +j <n
Let 0 <i <mnand 0 <j < n such that i + j < n. By Remark the Weyl modules A, ; 0, Az0,5)

and Ay gy are uniserial, and their Loewy structure can be depicted in the following diagrams:

L0,0)
L.

Lm 0,5
g= ——2od Ag(0,0) =

L, 4,0)
(4.1) Ay = =) Az
La0,j-1)

Lm(ifl,O)
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4. Loewy structure of Weyl modules

Now suppose that ¢ > 0 and j > 0. By Lemma [3.5 and its proof, we have

[Asii )] = [Lagi] + [La-1,)] + [Lagj—1)] + [Lati—1,j-1)] + 05 - [Le]

and

JSF?B\UJ) = [Lai—1,)] + [Lagij—1)] + 2 [Lai—1,-1)] + 05 - [Lel,

and if ¢ # j then Lemma [4.4] implies that
Apiy1 = Lagi-15) ® Laj-1)  and  Dgij)2 = Ly-1,5-1),
so Ay, j) has Loewy length at most 3. Furthermore, we have
x(i,7)si =z(i —1,75) < x(i,5) and x(i,j—)si=x(i—1,7—1) < x(i,j — 1),

whence L (; ;1) is not contained in socgA,(; ;) by Lemma Analogously, we see that L,y j) is

not contained in socgA,(; ), and it follows that socc Ay ;) = Ai(i ) & Lyi—1,j-1)- As

1 2
radgA, ) = Aa;(i,j) 2 Aac(i,j) = 80CG Ay ),

the submodule radgA,(; ;) of Ay j)
Loewy length 3. Now the fact that

is not completely reducible, and we conclude that A, ;) has

0 # radéAm(i,j) c SOCGAx(i,j)

forces that radg A
and

2(ij) = 80€G A4 ), and as radgA,; ;) is the unique maximal submodule of A j)

I'a,dGAz(i,j) Q SOC2GAI(’£,_]') g ALL’(Z,]))

we further have radgA,; ;) = SOCéAx(iJ). We conclude that A, ; is rigid.
If ¢ = j then Lemma [4.4] yields

Apiiing = Lai—1,5) © Lygii—1) ® Le  and Ay 0 = Lyg—1,i-1);

and as before, the simple G-modules L,(;_1 ;) and L,; ;1) do not belong to socgA; 4. Furthermore,
we have x(i,i)s; = x(i — 1,i) < x(i,i) and s; ¢ W, whence L, does not belong to socgA, ;) by
Lemma and we conclude that socgAy; ) = Lyi—1,i—1)- Arguing as in the case i # j, we see
that the Weyl module A,; ;) is rigid of Loewy length 3 and that the socle filtration and the radical
filtration both coincide with the Jantzen filtration.

We depict the Loewy structure of the Weyl module A
for ¢ # j on the left and for ¢ = j on the right.

(i,j) (for 4,5 > 0) in the following diagrams,

Ly g Ly
(4.2) Avijy = La@-14) © Lagj—1) Ariiy = La-14) ® Le ® Ly i—1)
Lygi-1-1 Lygi-1,i-1)
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The case i +j =n

Let 0 <i<nand 0 <j <nsuchthat i+ j=n. If j =1 then

[Am(n—l,l)] = [Lr(n—l,l)] + [Lm(n—l,O)] + [Lm(n—2,1)] + [Lm(n—2,0)]

and
JSF;‘(n—Ll) = [Lyn—1,0)] + [Latn—2)] + 2 [Lamn—20)],

by Lemma and its proof, so Lemma [1.4] yields
Avin-11)1 = Latn-1,0) ® Lan—21)  and  App11)2 = Lym-2,0)-

As in the previous subsection, we can use Lemma @ to see that the simple G-module L,_5 1) does

not belong to socgAy(,—1,1)- Furthermore, as
z(n—1,1)sp =2(n—1,0) <z(n—1,1) and z(n—2,0)s, =x(n—2,1) > z(n — 2,0),

Lemma @ implies that the simple G-modules L,(,—10) and Ly,_20) cannot belong to the same
socle layer of A, ;,_1,1). We conclude that socgAyn—1,1) = Lyn—2,0), and arguing as in the previous
subsection, it follows that A, 1) is rigid of Loewy length 3, with socle filtration and radical filtration
both equal to the Jantzen filtration. Analogously, if ¢ = 0 then

A;t(O,n),l = Lm(O,n—l) D Lm(l,n—Q) and Am(O,n),2 = Lac(O,n—2)7

and A, ) is rigid of Loewy length 3, with socle filtration and radical filtration equal to the Jantzen
filtration. Below, we depict the Loewy structure of the Weyl modules A,(;,,—1 1) and Ay g p)-

Lytn-1,) Lao.n)
(43) Aac(n—l,l) = Lz(n—l,O) D Lx(n—2,1) Am(O,n) = Lm(O,n—l) D Lx(l,n—2)
L:p(nf2,0) L:E(O,TL*Q)

Now suppose that ¢ > 0 and j > 1. Then

[Asiijy] = [Lagij] + [Las1,j-2)] + [Lagij—1)] + [Lai-1,5)]
+ [Lo(i—1,j—1)] + [Lagij—2)] + [La(i=1,j—2)] + (0ij + 6ij—2) - [Le]

and

ISF25) = [Lai+1,-2)] + [Laig-n)] + [Lag-19)] + [Lag-1-2)]
+ 2 [Lygi—1,-1)] + 2 [Laj—2)] + (i + dij—2) - [Lel,

by Lemma and its proof. If j ¢ {i,i + 2} then Lemma yields

Az = Lagvi,j—2) D Lagij—1) ® La@-15) © Lagi—1,j-2);
Asiig2 = La-1,-1) @ La(ij—2);

in particular, A, ;) has Loewy length at most 3 and Ai(. ) C socg Ay As before, we can use

1,7 i,5)"
Lemma to see that none of the simple G-modules L (11 j_2), Ly(i—1,5) and Ly;_1 j_o) belongs to

the socle of Ay ; ;); hence

1

socaAy(ig) © Bagiy

) = radGAI(i7]’),
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4. Loewy structure of Weyl modules

and it follows that A, (; ;) has Loewy length 3. This implies that

rad(;Am(m-) g SOCéAz(i,j) g Az(i,j)>

and as radgA,(; ;) is the unique maximal submodule of A ; ;y, we obtain radgA,; j) = SOCéAm(iﬂ-).

Finally, we have
x(i7j)si+1 = l'(Z,_j - 1) < IIZ(Z,]),
l’(Z,j - 2)S’i+1 = l'(l + 1a] - 2) > 1:(Z>] - 2)a
.'IZ(Z -1,5- 1)3i+1 = .T(Z - 17]) > ZII(’Z —-1,7— 1)
by Remark and Lemma [4.9) implies that L,; ;_1) cannot belong to the same radical layer or socle
layer as either of the simple G-modules L, ;_1_1) or Ly(; j_2). We conclude that

radQGAx(i,j) =80cGAy(i,j) = Ai(m.);
hence A, (; ;) is rigid, and the Loewy structure is as follows:

Loig)
(4.4) Apiig) = Lagit1,-2) © Legij—1) ® Lai—1,j—2) © Lagi—1)
Lyij—2) ® Lagi-1,5-1)

If j € {i,i+ 2} then
A = Lagivt,j—2) © Lagij—1) © La@—1,5) © Lagi—1,-2) © Le,
Asiige = Lagi-1,j—1) © La(ij—2)s

and arguing as above, we see that A, ; ;) is rigid of Loewy length 3. Both the socle filtration and the
radical filtration coincide with the Jantzen filtration, and the Loewy structure is displayed below, for
the cases j = ¢ and j = i + 2, respectively.

)
Ay = Lair1i-2) D Lagii—1) ® Le ® Lyi—1,i-2) ® Lai—1,9)
(4.5) Lyii—2) ® La(i-1,i-1)
Ly it2)
Agiiv2) = Lair1,) © Lagiiv1) © Le @ Loi—1,) ® Loi—1,i42)

Lyii) © Lai-1,i41)

The case i +j=n+1

Let 0 <i<mnand0<j<n such that i+ j = n+ 1 and suppose first that ¢ > 2 and j > 3. Then, by
Lemma and its proof, we have

[Asi )] = Latigy] + [La-1.)] + [Lagj—1)) + La-1,j—1)] + [Laqj—2)] + [Lai-1,-2)]
+ [Lai=2,j-2)] + [La(i=1,j-3)] T [La(i=2,j—3)] + Cij - [Le]

and

JSF;\(i,j) = [Laii—1,5)] + [Lagij—1)] + 2 [Lai—1,-1)) + 2 [Logj—2)] + 3 - [Lai—1,;-2)]
+ 2 [Lygi—2,j-2)l + 2 [Lagi—1,j-3)] + [La@i-2,j-3)] + dijj - [Le],
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where ¢; j =d;j; =0unless i < j <i+2. Fori < j <i+2, wehavec¢;;,d;i; € {1,2}and ¢;; =d;j =1
for j € {i,i+2}. If j < i or j > i+ 2 then Lemma [4.4] yields

Aai = Lai-15) © La(ij-1) © La(i-2,j-3)
A2 S Lag-1-1) © La(ij—2) ® La@i—2,j—2) ® La(i—1,j-3)s
Asiig)3 = Lagi-1,j-2),

so Ay ;) has Loewy length at most 4. As
$(Z,])Sl:$(2,j—l)<l‘(l,]) and l’(i,j)$i+1:$(i—1,j)<l’(i,j),

any element y € W;;f such that L, is isomorphic to a submodule of A, ; ;) satisfies y < ys; € Wa} and
Yy < Ysi+1 € W;f by Lemma and using Lemma and Remark it follows that

socGAx(i’j) = Ai(m) &~ Lx(i,Lj,Q).
Furthermore, we have
x(i,5— 1)s; = x(i,j) > x(i,7 — 1) and z(i—1,j—-1)s;=2(—1,5) >z(i —1,57 — 1),
and both of the simple G-modules L,(; j_1) and L,;_; j_1) are composition factors of
radc;Am(m)/socGAm(i,j) = Ai(i,j)/Ai(m).

Now Lemma implies that radgA,(; (irj)
that A, ;) has Loewy length 4. As before, we have socéAx(i,j) =radgA,(; ) because radgA

) /socgA is not completely reducible, and we conclude

x(i,g) 18

the unique maximal submodule of A and

x(i,3)>
0# rad%}Az(i,j) C socgAyij) = Lai-1,j-2),

whence rad?éAw(i’j) = socgQ, (i ). Applying Lemma again (with the reflections s; and s;41,
respectively), we see that neither of the simple G-modules L,(;_; ;_3) and Ly;_; j_1) can belong to
the same radical layer as L,(; j_1) and that neither of the simple G-modules L,;_o ;o) and L; j_2)
can belong to the same radical layer as L, (;_ ;); hence rad%;A(z’, j) = A?c(m.). Analogously, neither of
the simple G-modules L;(;_; j) and Ly(; j_1) can belong to the second socle layer of A, (; ;). In order
to show that A, ; ;) is rigid, it remains to see that L,(;_» j_3) belongs to the third socle layer. Suppose

for a contradiction that L,;_5 ;_3) belongs to the second socle layer of A, Then there exists a

i,5)"
non-split extension of Ly ;s j_3) by Lyi_1j—2) = socgA(i,j). By Remark we have

Extg (Apii—1,j-2)> Lu(i-2,j-3)) = Extg(Lyi-2,-3) Va(i-1,-2)) =0

for all © > 0, and as all simple G-modules are contravariantly self-dual, it follows that

0 # Bxtg (Lay(i—2,-3) La(i—1,j-2)) = Bxtg (Lagi-1,-2)» La(i-2,j-3))
=~ Homg (radg Ay (i—1,j-2)> La(i—2,j—3))-
This contradicts the fact that the simple G-module L,(;_» ;j_3) belongs to the third radical layer of

the Weyl module Ay ;1 j_2); see the diagrams in (4.2). We conclude that Ly (i—2,-3) belongs to the
third socle layer of A, ; ;), so

2

2 2
socg Ay g) = radg e ) = Ay )
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4. Loewy structure of Weyl modules

and A, ;) is rigid, with socle filtration and radical filtration equal to the Jantzen filtration. The
Loewy structure can be depicted as follows:

Le(ig)
Loyiij—1) ® Lai—2,-3) D Lyi-1,)

(4.6) A

wlid) = Lyi—1-3)® Ly j—2) ® Lyi—1,j-1) D Lyi—2,j—2)

La(i-1,-2)

If j € {4,i+ 2} then

Au(ig)r = Lati-15) © La(ij—1) © Laii-2,-3) © Le,
Aa(ig)2 = Lagi-1-1) © Lagij-2) ® Lati-25-2) D Lagi-1,-3),
Aa(ig)s = La(i-15-2),
and arguing as before, we see that A, ;) is rigid of Loewy length 4, with socle filtration and radical
filtration both equal to the Jantzen filtration. Below, we depict the Loewy structure in the cases j = i
and j =1 + 2, respectively.
)
Logi—1)® Lyi—24-3) ® La—1,i) D Le
Loyi—1,i-3) D Loi—2) ® La-1,i-1) ® Lyi—2,4-2)

(1,3)

L1,
(4.7) (=1,i-2)

Lyiiv2)
Logiv1) ® Lai—2,-1) D Lagi—1,i12) D Le
Lyi—1,i-1) D Le(ii) © Lai-1i41) D Lai—2,)
Lz(i—l,i)

Ayiiive) =

In the case j =i+ 1, we cannot determine the the Loewy structure of A, ; ;) because we do not know

x(i,j
the multiplicity of L. in a composition series of A, ;y1). Nevertheless, we can use Lemma as
before, to show that

Y

(4.8) 80cGAz(i,i4+1) = La(i-1,i-1)-

Now suppose that j = 2, so

[Ax(n—1,2)] = [Lx(n—l,Q)] + [Lx(n—l,l)] + [Lac(n—2,2)] + [Lﬂc(n—l,o)] + [Lx(n—2,1)]
+ [Lx(n72,0)] + [Lx(n73,0)] + 5n,3 : [Le]

and

ISFL (12 = Lam-1,0)) + Lam-22)] +2 - [Lam-1,0] + 2 - [Lan-2,1)]
+2- [Lx(n73,0)] +3- [Lx(an,O)] + 571,3 : [Le]

by Lemma and its proof. If n # 3 then Lemma [£.4] yields

Arin-1,2)1 = Latn—1,1) ® Lamn—22),
A513(71—1,2),2 = Lx(n—l,O) S Lx(n—?,l) S L:c(n—?»,O)?

Arn-1,2)3 = Lan—2,0);
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Chapter V. Further results in type A,

and using the same arguments as before, we see that A, (,_; 2 is rigid of Loewy length 4 and that
the socle filtration and the radical filtration both coincide with the Jantzen filtration. Analogously,
we see that the layers of the Jantzen filtration of A, ) (for n # 3) are given by

Aazt(l,n),l = Lm(O,n) D Lx(l,n—l)u
Aaz(l,n),? = L:L‘(O,n—l) D Laz(l,n—?) ¥ Lx(O,n—?))v
A17(1,77,),3 = Lx(O,n—2)

and that Ay ) is rigid of Loewy length 4, with socle filtration and radical filtration equal to the
Jantzen filtration. The Loewy structure of the Weyl modules Ay, 1 2) and Ay ;) is given below.

Lx(n71,2)
Lw(n—l,l) D Lx(n—2,2)
Lytn—1,0) ® Lyn—3,0 © Lyn—21)
L:p(n—2,0)

Az(n—l,?) =

(4.9)
Lx(l,n)

Aviin = Loin-1) ® Lz(on)
7 Lm(O,n—l) D L:B(O,n—?)) D Lx(l,n—Q)
Lm(O,n—2)

If n = 3 then the Loewy structure of the Weyl modules A, 52y and A,y 3) is as depicted above, but
with an additional composition factor L. in the second radical layer.

The case i +j>n+1

Let 0 <i<nand 0 <j <nsuch that : 4+ j > n+ 1. First suppose that i <n —1 and j < n, so that

Az )] = [Lagi ] + Lai,j—0)] + [La—1,5)] + [Lai-1,j-1)]
+ Lamn—jm—i-1)] + Lam—j—1,n—i—1)] + [Lam—jn—i—2)] + [Lan—j-1,n—i-2)]
+ ¢y - [Le]

and

JSFQ(W-) = [Lygi—1,)] + [Lagj—)] + Lamn—j—1,n—i-2)]
+ 2 [Lyi—1j-0)] + 2 [Lam—j—1n—i—0)] + 2 [Lam—jn—i—2)]
+3- [Lm(nfj,nfifl)] + di,j : [Le]

by Lemma [3.13| and its proof. If n > 2j or n > 2i 4 2 then ¢; ; = d; ; = 0 and Lemma [4.4] yields

Az(ig)1 = La(i-15) ® Lai,j—1) © Lan—j-1,n—i-2);
A2 = La-1,-1) @ Laotn—j—1,n—i—1) ® La(n—jn—i-2),

Ay 3 = Lanjn—i-1)-
As before, we can use Lemma to see that none of the simple G-modules
Lx(zel,j)a Lx(i,jfl)a La:(nfjfl,nfifQ)a Lx(nfjfl,nfifl) and Lx(nfj,n7i72)
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4. Loewy structure of Weyl modules

belong to the socle of A,; ;). However, Lemma does not rule out the possibility that L,;_1 ;1)
belongs to the socle of A,(; ;). We will give a more subtle argument to show that

SOCGAa;(i,j) = Lm(n—j,n—i—l)?

even when n < 2j and n < 2¢+2, and also when ¢ =n —1 or j = n. Our strategy is to use translation
arguments as in the proofs of Lemmas [£.8 and [£.9] but contrary to the proofs of these lemmas, we will
use translation functors T} and Tﬁ for weights 1 € Cruna N X such that Staby, (1) is generated by
two simple reflections (rather than just one).

Proposition 4.10. Let 0 <i<n and 0 < j <n such thati+j5 >n+1. Then

80cGA(i,j) = Lan—jm—i-1)-

Proof. Recall from Lemmas and [3.14] that

[Azi] = [Lagig] + Lot j—)] + [La-1,5)] + [Lag-1,-1)]
+ [Le(n—jn—i-1)] T [Letm—j-1,n—i—1)] + [Le(n—jn—i-2)] + [Letmn—j-1,n—i-2)]
+ cijj - [Lel,

with the convention that [L,,5)] = 0 if a < 0 or b < 0. Using Lemma it is straightforward to
see that L,;_1;-1) and Ly(n_jn—i—1) are the only simple G-modules that could appear in the socle

of Ay i) Therefore, it suffices to prove that Lx(z:lvj—l) does not appear in the socle of A, .

Consider the weight p1 '= —w;11 — @p—j41 € Crana N X and observe that

StabWaff (H) = <31;+17 Snfj+1> = {6, Si+1,Sn—j+1, 5i+15nfj+1}

by Lemma [[V.1.2T] and Example [.2.6] Using Lemma [2.3] it is straightforward to see that

x(i7j)StabWaﬁ(M) = {l‘(l,]),l'(’b - 1,j),$’(’i,j - 1)?'%'(1. - 17j - 1)} - Wz:f—f’

and Lemma implies that 0 # T{'A,; 5 = A(x(i,j) - u). Now T} is exact and takes simple G-
modules in Repy(G) to simple G-modules in Rep,(G) or to zero (see Lemma |4.7), so we obtain a
composition series of A(m(i, E u) by applying T/’\‘ to all composition factors of A,; ;y (and forgetting
about those simple G-modules which are mapped to zero). For y € W; , we have T)‘\‘ L, # 0 if and
only if y < ys;11 € W;f and y < ysp—jt+1 € W;;f (again by Lemma , and using Lemma and
Remark it is straightforward to see that L,;_1;-1) and Ly(,—j,—;—1) are the only composition
factors of A, (; ;) that are not mapped to zero by TY{". We conclude that A(a:(z', NE ,u) is uniserial of
composition length 2, with

head A (2(i,5) * 1) 2 T{ Lygi1 1) = L(w(i = 1,5 — 1) - p) = L(a(i, ) - p)

and
socgA(x(i,j) ) = TN Ly jn—i—1) = L{x(n — j,n —i—1) - p).

Now suppose for a contradiction that L,;_1 j_1) appears in the socle of A,; ;). Then the simple
G-module T{'L,(;_1 ;1) = L(x(i,j) - ) appears in the socle of T{'A,; i) = A(x(i, ) - p); hence

z(i,j)-p=xz(n—jn—i—1)-pu,
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Chapter V. Further results in type A,

and we arrive at the contradiction x(n — j,n —i — 1) € x(4, j)Stabw,, (). Therefore, L;_1 j_1) does
not appear in the socle of A,; j), and we conclude that

SOCGAx(i,j) = Lx(n—j,n—i—l)?
as required. O

Now let us return to the Loewy structure of the Weyl module A ; ;) for i <n —1 and j < n such
that ¢ + j > n + 1 and either n > 2j or n > 2i + 2. Recall that by Lemma [£.4] we have

Aa(ig)1 = La(i-15) D Lai,j—1) © La(n—j—1,n—i-2);
Ariige & La-1-1) @ Lo(n—j—1,n—i-1) ® La(n—jn—i—2),
Aa(ij)3 = Lan—jn—i-1),
where Ai Gj) = socgA, (i) by Proposition Arguing as in the previous subsection, we see that

the Weyl module A ; ;)
the Jantzen filtration. The Loewy structure of A,; ;) is depicted in the following diagram.

is rigid of Loewy length 4, with socle filtration and radical filtration equal to

La(i g
Loti-1,4) ® Lam—j-1,n-i-2) D La(ij-1)
Lom—j—1n-i-1) ® La-1,j-1) ® La(n—jn—i-2)

z(i,5)

Lx(n—j,n—i—l)

Now suppose that 2 < i <n—1and 3 < j < n withn > 2i4+ 2 and n > 2j. As before, one can
show that the Weyl modules A, ;) and A,,_; ;) are rigid of Loewy length 4, and that their socle
filtrations and radical filtrations coincide with the respective Jantzen filtrations. The Loewy structure
of these Weyl modules is depicted below.

Lyim) La(n-14)
Ax(m) _ . La:(i—lm) D Lz(i,n—n Am(n—l,j) _ Lx(n—Q,j) ® Lx(n—Lj—l)
2(i—1,n—1) D Lx(o,n—z‘—z) Lm(n—j—l,O) & Lw(n—2,j—1)
Lyon—i-1) La(n—j.0)

We conclude this section by recalling the information we have obtained about the socles of the
Weyl modules A, for z € X.

Remark 4.11. Let 0 < ¢ <nand 0 < j < n. For j < n, we have
socgAz0,0) = Le, socGAy(i,0) = Ly(i—1,0)s soccAz0,5) = La(0,j-1)
by equation , and if i > 0, j > 0 and i + j < n then
s0cGAy(ij) = Lai-1,5-1)
by equation . Furthermore, we have
s0cGAzm—1,1) = Lymn-2,0) and 80¢GAz0,n) = La(0,n—2)
by equation , and if i >0, 5 > 1 and i+ 5 = n then
s0cGA(ij) = La(i-1,-1) ® Lu(ij-2)
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5. Non-simplicity of generic direct summands

by equations (4.4) and (4.5)). Finally, if i + j = n + 1 then

socGAz(ij) = La(i-1,-2)

by equations (4.6)), (4.7), (4.8) and (4.9), and if i + 5 > n + 1 then
50cGAu(ij) = La(n—jn—i-1)

by Proposition Observe that for 0 < a < n and 0 < b < n such that L,y is isomorphic to a
submodule of A, j), we have a + b < n — 2, and Corollary and Remark [2.5] yield

gfd(Ly(ap) = €(z(a,b)) =a+b+1<n-1

Hence the good filtration dimension of any simple G-module in the socle of A is at most n — 1.

z(i,5)

5 Non-simplicity of generic direct summands

In this section, we apply the results from the previous sections to study tensor products of simple
G-modules. As before, we assume that G is of type A,, and that £ > h = n + 1, and we adopt the
notation and conventions from Section [2| In particular, we consider the set

X ={2(i,j) |0<i<n, 0<j<n}uUfe} CWS,
where for 0 < i <n and 0 < j < n, we have
x(i,7) = S081 -+ SiSnSn—1""* Sn—j+1-

Our aim is to show that, in the modular case, the generic direct summand G (m(z, 0), z(0, ])) of the
tensor product L(x(z', 0) - 0) ® L(w(O,j) . 0) is non-simple, for all 0 <i<n—1land 0<j <n—1.
As in Chapter we will fix an element w € = Stabyy,_, (Afnd) and make use of the fact that

G(z(i,0)w™ !, 2(0, j)w) = G(2(i,0),z(0,7));

see Lemma [[1.5.10} Then, in order to prove the non-simplicity of G (x(z, 0),z(0,j )), we will distinguish
two cases:

When ¢ + j > n — 2, we can use an embedding
L(z(i,0)w™"+0) ® L(z(0, j)w - 0) — A(z(i +1,0)w™" - 0) @ A(z(0,7 + 1)w - 0)

and the information about the socles of the Weyl modules A(x - 0) for z € X, established in the
previous section, to see that L(a;(z', 0wt 0) ® L(x(O,j)w . 0) has no simple submodule belonging to
the linkage class of 0 and having good filtration dimension £(z(,0)) 4+ £(z(0,5)) =i+ j + 2.

When i + j < n — 2, we will use the distribution algebra of G to show that certain maximal
vectors in the tensor product L(:U(i, 0wt 0) ® L(m((), Jw - 0) generate non-simple submodules, and
the non-simplicity of G(m(i, 0),z(0,j )) will follow by weight considerations. This is the only part of
the proof (of the aim formulated above and of the complete reducibility theorem on page where
it is necessary to assume that we are in the modular case. We believe that the complete reducibility
theorem should still hold in the quantum case, but we were not able to find a proof that bypasses the
direct computation of maximal vectors, which is feasible only in the modular case.
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Chapter V. Further results in type A,

Before we start dealing with the two cases outlined above, let us fix some more notation. As in

Section we define

W=ty 5152 Sp € €1,

so that w+0= ({ —n —1)-w; (see Lemmas[IV.3.3[and [IV.3.4). Furthermore, for z € W, we write

ext?’

Ay = Az -0) and L, =L(x-0).

The highest weights of the simple G-modules L, ; g),~1 and L (g j)., Whose tensor product we want
to study below, are made explicit in the following lemma:

Lemma 5.1. Let 0 <¢,5 <n. Then
2(1,0)w 0 =wiy1 + (L —n+1i)-w, and (0, j)w-0=(l—n+j) @+ wnj.

Proof. Recall from Lemma [[V.3.4] that we have w-0 = ({ —n —1)-w;. It is straightforward to see by
induction on k that

Sn—jt+kSn—jth—1"" Sn—jr1iw 0= —n—1) w1+ wp_j — (k+ 1) @p_jrr + k- Tp—jir+1
for k=1,...,7, and in particular
SpSn—1+ Sp—jpiw0=L—-—n—1) -wi +wyp—j — (j+ 1) - wp.
It follows that (snsn,l < Sp—jpiw - 0+ p, 0‘}\1/) =/—(j+1)and
2(0,7)w 0 =508y Sp—jpiw-0=5p - Sp_jpiw-0+(j+1)-on =L —n+j) w1+ wp_j,
as claimed. Next observe that we have x(i,0) = 2(0,7)* and
wl=s,8,1- Sit—m = tw, SnSn—1-- 51 = wW";
see Remark Using the preceding case and again Remark we conclude that

z(4,0)w™" - 0 = 2(0,7)*w* - 0 = —wp (z(0,7)w - 0)

=—wo(({ —n+1) @+ @nei) = @ip1 + ({ —n+1i) - @y,

as required. O

The case i +j > n — 2

As explained in the introduction to this section, we want to prove that G (;U(z, 0),z(0,7 )) is non-simple,
in the case i + j > n — 2, by first showing that G(z(i,0),z(0,)) can be embedded into the tensor
product Az ;41,0)w-1 @ Ag(,j+1)w and then arguing that the latter tensor product does not have any
simple submodule that belongs to Rep(G) and has good filtration dimension

0(z(i,0)) + £(2(0,5)) = gfd(G(z(4,0),z(0,4))).

For the second step, we will need the following lemma, which gives us some control over the highest
weights of the Weyl modules appearing in a Weyl filtration of A ; gy,-1 ® Ay(0,j)w-
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5. Non-simplicity of generic direct summands

Lemma 5.2. Let 0 <i,5 <n—1 and let 6 € X1 such that A(S) appears as a subquotient in a Weyl
filtration of Ay o)1 ® Ag(o,j)w- Then d € - Ciund for some x € X.

Proof. Recall from Lemma [5.1] that we have
2(i,0)w 0=t 1+ (L —n+i) @, and (0, ))w-0=({ —n+j) wi + wnj.

It is straightforward to see by weight considerations that the Weyl modules A ; g),-1 and Ay e
appear as subquotients in Weyl filtrations of the tensor products

A((l—n+1i) @n) @ Alwiv) and A((l=n+j) =) ® Alwn—j),
respectively, so A(J) appears as a subquotient in a Weyl filtration of
A((=n+i) m) @A((L—n+ ) =) ® Almir) @ Alwaj).

We claim that the highest weights of the Weyl modules appearing in a Weyl filtration of the tensor
product A((€ —n+1i) - w@,) @ A(({ —n+ j)- @) are all of the form

k=U—-—n+j—k) - w+{—n+i—k) wpy,

for 0 < k < min{{—n+i,{—n+j}. Indeed, as the characters of the Weyl modules form a basis of the
character lattice Z[X]"n it suffices to show that the character of the tensor product above can be
written as a linear combination of the characters of the Weyl modules with highest weights d;. This
can easily be verified, using the well-known Pieri rule; see Proposition 15.25 in [FHII]. It follows that
A(6) appears in a Weyl filtration of a tensor product of the form A(d;) ® A(wit1) @ A(wn—j), and
by Propositions [[.6.6] and [V.2.5] we can write § = d; + v1 + 1o, where v; and v are Wx,-conjugate
to the minuscule weights w; 1 and w,_;, respectively. In particular, the weight v := vy + 19 = — 0y,
satisfies (v,a") < 2 for all « € ®+. We conclude that

S +pay)=On, )+ W, af) + (o) <2- (b —n—k)+i+j+2+n<3C,
(0 + s B 1) = Oks Bon1) + (¥, B3 1) + (0, B3p1) <241 =2 <Y,
(64, By) = (Oks Bap) + (V. 83) + (0, Boy) Sl —n+i—k+2+n—-1<2,
0+, B n-1) = O 1) + (0, Bl 1) + (0, Blp1) Sl—n+j—k+2+n—-1<2,

and the claim follows from Corollary O

Using the results about socles of Weyl modules from Section [} we are now ready to prove the
non-simplicity of G(J:(z',O), x(O,j)) fori+j>n-—2.

Proposition 5.3. Let 0 < i <n—1and 0 < j <n—1 such that i+ 35 > n — 2. Then the generic
direct summand G(z(i,0),z(0,5)) of Ly (i0) ® Lyo,5) 18 non-simple.

Proof. First observe that we have G(x(i,0),2(0,5)) = G(z(i,0)w™ !, 2(0, j)w) by Lemma|lL.5.10, Fur-
thermore, by Remark we have

Lygiojw—1 =s0caDyir10w-1  and Ly jw = 80€GAL(0,j+1)w;
hence there exists an embedding
G(x(l, 0), .:U(O, j)) — Lx(i,O)w* ® Lx(O,j)w — Az(i—i—l,o)w*l () Am(O,j+1)w-
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Now suppose for a contradiction that G(w(i,O),x(O,j)) is simple, so that G(m(i,O), x(O,j)) = L, for
some y € W,;f with
gfd(Ly) = £(z(i,0)) + £(z(0,5)) =i+ j+2 > n;

see Proposition The tensor product Ay 41,0001 @ Ag(oj+1)w has a Weyl filtration, and as
Homg (Ly, Ax(i-l—l,O)w*l ® Aaz(O,j+1)w) # 0,

there exists an element x € W;ﬁc such that Homg(Ly, A;) # 0 and the multiplicity of A, in a Weyl
filtration of Ay ;11,0)w—1 ® Ag(o,j+1)w 18 Non-zero. By Lemma we have either x = e or x = z(a,b)
for some 0 < a < n and 0 < b < n, and by Remark every simple G-module in the socle of A,
has good filtration dimension at most n — 1. This contradicts the observation that gfd(L,) > n, and
we conclude that G(z(i,0),z(0,)) is non-simple. O

The case i + 7 <n —2

For the rest of this chapter, we make the following assumption:

Suppose that we are in the modular case.

When i + j < n — 2, our proof of the non-simplicity of the generic direct summand G(z(i,0), z(0, 7))
involves an explicit computation of certain maximal vectors which generate non-simple submodules in
the tensor product Ly ; g),—1 @ Laz((),j)w-ﬂ By a detailed study of these maximal vectors and by weight
considerations, we will be able show that L, g),—1 ® Ly(o,j), does not have any simple submodule
that belongs to Repy(G) and has good filtration dimension

0(2(,0)) + £(2(0,5)) = gfd(G(z(i,0), (0, 5))).
We start with two basic lemmas about the highest weights of composition factors of L, ; g),—1 ® Lz (0,j)w-
Lemma 5.4. Leti,j > 1 withi+j<n—2andlet0<a<n and 0 <b<n such that
z(a,b) -0 < z(i,0)w '+ 0+ (0, 5)w - 0.
Then either a+b < i+ j or (a,b) is one of the pairs (i +1,5) or (i,j +1).
Proof. Let us set v := x(i,0)w™! - 0+ 2(0, j)w - 0 and observe that by Lemma we have
y=U-n+j) w +wip1 +wn—j + L —n+1i) w,

and therefore
(z(a,b) - 0,0p)) < (v,ap)=2-(L—n)+i+j+2.

If a+b>nthen z(a,b)- 0= —n—1+b) w1 +w@y_p+1 + @Tay1 + ({ —n+a) - @, by Lemma [2.1]
and it follows that

(z(a,b)-0,a) =2-(L—n)+a+b+1>2-((—n)+n>2-({—n)+i+j+2,
a contradiction. Hence a + b < n and

z(a,b)-0=l—-n—14+b) w1+ w1 +wpp+l —n—1+a)- oy,

2This computation will be carried out using the distribution algebra of G, which is the reason our argument does not
work in the quantum case.
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again by Lemma Thus 2-({—n)+i+j+2 > (2(a,b)-0,a)) =2-({—n)+a+b and we conclude
that a +b < i+ 5+ 2. Now let us write

n
J—alab) 0= o,
k=1

with ¢1,..., ¢y € Z>, so that
itz (ahh) = (- 2(ab)-0,0) = 1+ en

Ifa+b=1i4j+ 2 then ¢; = ¢, = 0 and therefore

n—1
C—nti=(y,ay) = (z(a,b)-0,07) + Y e (ar,a
k=2
= (2(a,b) - 0,0) — o1 < (2(a,b) < 0,0y) =l —n—1+a,
that is @ > 7 + 1, and analogously b > j + 1. Now this forces that a =i+ 1 and b=j+ 1, so
v —x(a,b) 0= w1 — Wit2 — Wnj-1+ @Tnj = —Bit2n—j-1,

contradicting the assumption that x(a,b) - 0 < .
Next suppose that a+b =149+ j + 1, so that ¢; + ¢, = 1. If ¢; = 1 and ¢, = 0 then, as before, we
obtain ¢ > 7+ 1 and

-1
l—n+j=(v,af)=(z(a,b)-0,a)) —i-nz:ck (ar,ay)
=1
:(m(a,b) 0,a))+2—c2 < (2(a,b)-0,a))+2=C0—n+1+b,
thatisb>j—1. If a=4i+4+ 2 and b = j — 1 then
v —x(a,b) -0 =2w1 + @Wi1 — Wit3 + Tn—j — Tn—jt1l — @n = Briv1 + Brit2 — Bajtims

contradicting the assumption that x(a,b)-0 < -, so we conclude that a = i+1 and b = j. Analogously,
the case ¢ =0 and ¢, = 1 leads to a =i and b = j 4+ 1, and the claim follows. O

Lemma 5.5. Let 0 <i,j <nwithi+j <n—2, and let x € W+ such that Ly is a composition factor
of the tensor product Ly ; 0),-1 ® Ly(oj)w- If © # € then x = x(a b), for0<a<n and0<b<n such
that either a+b < i+ j or (a,b) is one of the pairs (i +1,7) or (i,j +1).

Proof. As Ly 0)w-1 @ Ly (o, 4)w is isomorphic to a quotient of Ay ; g)-1 @ Ay j)w, Lemma implies
that L, is a composition factor of a Weyl module A, with y € X, and using the results about
composition series of Weyl modules from Section [3] it follows that = € X. Furthermore, we have

-0 < 2(i,0)w 0+ 2(0,j)w-0
and the claim follows from Lemma [5.4] O

Our key tool for establishing the non-simplicity of G(z(i,0),2(0, 7)) is the following proposition,
which will be proven by an explicit computation of certain maximal vectors in Ly g)w-1 @ Ly(0,j)w>
using the distribution algebra Dist(G) of G.
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Proposition 5.6. Let i,j > 1 such thati+j < n —2, and let a,b > 1 such that (a,b) is one of the
pairs (i+1,7) or (i,j+1). Then

dim Homa (Ag(a,6) Lai0)w-1 @ La(o,j)w) = 1,

and the restriction to radgAyqp) of any non-zero homomorphism from Ay qp) 10 Ly 0)w-1 @ L0, j)w
18 non-zero.

For the sake of readability, we postpone the proof of Proposition to the end of this section (see
Proposition [5.17)) and directly jump to the main result.

Proposition 5.7. Let i,5 > 1 such that i+ j <n — 2. Then G(:c(i,O),x(O,j)) is non-simple.

Proof. Suppose for a contradiction that G(x(i,O),x(O,j)) is simple, so G(m(i,O),w(O,j)) = L, for
some y € W;f with

l(y) = gfd(Ly) = gfd(G(x(i, 0),3:(0,]'))) = E(x(i, 0)) + E(:U(O,j)) =147+ 2,
where the first equality follows from Corollary By Lemma we have
G(2(4,0),2(0,7)) = G(z(i,0)w™ ", 2(0, jw),
and it follows that there is an embedding
Ly = G(2(i,0),2(0,5)) — Lyi0w—1 @ Ly(o,j)w-

In particular, Ly is a composition factor of L, ; g),-1 ® Ly(0,j)w, and by Lemma we have y = z(a, b)
for some a,b > 0, where either a +b < i+ j or (a,b) is one of the pairs (i + 1,7) or (i,j + 1). As

it+j+2=10y) =Ll(x(a,b) =a+b+]1,

we conclude that (a,b) is one of the pairs (i + 1,j) or (i,5 + 1).
Now let us write M := L ; 0),-1 ® Lz(0,j)w, and observe that the short exact sequence

0 — radgQdAy — Ay — L, — 0
gives rise to an exact sequence
0 — Homg (Ly, M) — Homg (Ay, M) — Homg (radgAy, M)

By Proposition the middle term in this exact sequence is one-dimensional, and the map from the
middle term to the rightmost term is non-zero. This implies that

Homg (Ly, Ly(i,0y-1 ® La(o,j)w) = 0,

contradicting the observation that there is an embedding of Ly into L, g),—1 ® Ly O

Jw:

The remainder of this section is devoted to proving Proposition As was mentioned before,
we will do this by an explicit computation, using the distribution algebra Dist(G) of G. Recall from
Section |[.4] that a choice of root homomorphisms xg: Z — Upg 7 for the group scheme Gz over Z gives
rise to a Chevalley basis {X3,H, | f € ®,« € II} of the complex simple Lie algebra g with root
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system ® and that this Chevalley basis affords divided powers X3, and H,,, in Dist(G), for g € @,
a €Il and r,m > 0. For a G-module M and v € M) for some A € X, we have

by Y
XBJ”'M)\QM)\-H“B and Ha7m'U: <( ' )> v
m

by Section I1.1.19 in [Jan03]. Furthermore, Dist(G) admits a PBW-type basis, consisting of products

of the form
H Xﬁ’TB ' H Ha7m0é ’ H X67TB’
Be—d+t acll Bedt

with rg, my € Z>o for § € ® and « € II, for any fixed ordering of the roots in the product. Since we
assume G to be of type A, the canonical choice of root homomorphisms gives rise to the standard
Chevalley basis of g = sl,,11(C), which satisfies the commutator relations

X8 ifa=j4+1,
[Xﬁi,j7XBa,b] = _Xﬁa,j ifi=0b+ 1,

0 otherwise,

XBian if j=bandi<a,
X Baia if j=band a <1,

-X - ifi=aand b < j,
[Xﬂi,j ) X*Ba,b] = Potrs !

—X_p,.,, ii=aandj<b,
Hpg, . ifi=aand j=0b,
0 otherwise,

—X_ g, ifa=j+1,
[X*Bi,ij*Ba,b] =y X-8., ifi=>b+1,

0 otherwise

for1<i<j<mnand1l<a<b<n, where Hg,, == Hy, + -+ H,,. For the remainder of the
section, we fix this Chevalley basis and the corresponding divided powers in Dist(G).
Next, let us make some observations about mazimal vectors.

Definition 5.8. A mazimal vector of weight A\ € X in a G-module M is a non-zero vector v+ € M)
such that Xg, - vt =0 for all € & and r > 0.

For A\ € X, it is straightforward to see that any non-zero vector in L()\), is a maximal vector in
L(\) and that any non-zero vector in A(\)y is a maximal vector in A(\). Furthermore, as A()) has a
unique maximal submodule radgA()\) and as the latter does not contain the weight space A(\)y, any
maximal vector in A(\)y generates A(\) over Dist(G). Now let M be an arbitrary G-module and
suppose that there is a maximal vector w™ € M), of weight \. Using the PBW-type basis of Dist(G),
one sees that A is maximal among the weights of the submodule M’ := Dist(G) - wt of M generated
by w™ and that M’ has simple head headg M’ = L()). In particular, by Lemma there exists a
homomorphism ¢: A(\) — M such that, for some maximal vector v € A(\)y, we have p(v1) = wt.
Furthermore, ¢ is unique with this property because v+ generates A(\).

With the above notation and conventions in place, we can now start proving some preliminary
results which will be needed for the proof of Proposition We first compute bases for some specific
weight spaces of certain Weyl modules in terms of their maximal vectors.
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Lemma 5.9. Let a,b > 1 and let vT € A(aw) + b@n)aw, +bw, be a mazimal vector. Then the set
B = {X*ﬁl,iX*ﬁiﬂ,n ot ’ 1<i< n} U {X*ﬁl,n 'U+}
is a basis of the weight space A(aww1 + b%n)aw, +bw, B -

Proof. By Weyl’s character formula, we have dim A(aw1 +bwy)aw; +bw, g1, = 7, 50 it suffices to show
that the weight space A(aw1+bwy,)aw, +bw,—5:., 1S spanned by B. Consider the total order on ®* that
is defined by 3;; < By ;+ if and only if i < ¢’ or i =4’ and j < 5. As the Weyl module A(aw +bwy,) is
generated by the maximal vector v+ over Dist(G), we can use the PBW-type basis of Dist(G) to see

that the weight space A(aw1+bwy)aw, +bw,, 18 Spanned by vectors of the form w = x0 o x ) o+

-7 —Tm ’
with v1 < -+ < 4y, and ), vk = S1,n. This implies that ry = --- = 7, = 1, and by the definition
of <, there exist integers 0 = ag < a1 < --- < a;, = n such that v, = B4, 41,4, for k=1,...,m. If

m < 2 then w belongs to B, so now suppose that m > 3. For 1 <14 < j <n, we have X_g, . T =0
by weight considerations and therefore

+_ + +_ +
X*ﬁi,ijﬂjH,n v = [Xfﬁz‘,ﬁX*ﬁjH,n} A X*ﬁj+1,nX*5¢,j v = _Xfﬁi,n v

By induction on m, we see that X_,, --- X_,, o™ is a scalar multiple of X _Ba 410 SO W is a scalar

multiple of X g, , X 5, ., -v" € B. We conclude that B spans A(awi +b@n)am, +bw, 6, and the
claim follows. ]

Corollary 5.10. Let a,b > 1 and 1 < k < n, and let vt € Aawy + b)) acoy+bw, be a mazimal
vector. Then the set

B = {X*ﬁLiX*ﬁiH,n vt ’ k<i< n} U {Xfﬁl,n 'U+}
is a basis of the weight space A(awy 4 bWn)acw, +bwon—Bi.n -

Proof. First observe that we have sg, , , (awy + bwp — B1,,) = awy + bwy, — By n. By truncation to
the Levi subgroup corresponding to {ay, ..., a,} C I, it is straightforward to see that

dim A(awy + b%n) awy +bwn— 1., = AM A(awg + b )awy+bwn ., =7 — k + 1,

hence it suffices to prove that B spans the weight space A(awy, + bwn)aw), +bw,—p1.,- As in the proof
of Lemma, we see that A(awy + bwn)awﬁbwn—ﬁl,n is spanned by vectors of the form

wi=X_n Xy 0T,
where for certain integers 0 = ag < a1 < --- < a,, = n, we have v; = B4, 41,4, for i =1,...,m. We
will show that w is a scalar multiple of an element of B.
If m =1 then w € B, so now suppose that m > 2. By weight considerations, we have X_g, . ot =0
for k <i < j < n, and it follows that

X*ﬂi,jX*,BjH,n ot = [X*ﬁi,]WX*ﬁjJrl,n] ot = _X*ﬁi,n ot
Therefore, if 7 := min{i | a; > k} <m then X_,  ---X_, -0 is a scalar multiple of X_g, .,  -v".
Furthermore, for 1 < i < j < k, we have X_5, X g5, ., . -vt = 0 by weight considerations and
therefore

X*ﬁz‘,jX*ﬂjﬂ,aTX*ﬁa,.H,n vt = [X*Bi,ijﬁjJﬁl,ar]Xfﬁa’,»-&-l,n ot = _X*,Bi,arXfﬁa’,»-ﬁ—l,n ot
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It follows that X ., --- X_, X_g ., -v% is ascalar multiple of the vector X_g, , X_g, ., -v" € B,
hence so is w. If r = m then a,,_1 < k, so

+_ +_ +
X_Bi,jX—6j+1,n v = [X_Bi,jX_Bj+1,n] v = _X—ﬁz‘,n v

forall 1 <7< j < am—1, and we conclude that w is a scalar multiple of the vector X B, wteB. O

Next, we use the distribution algebra of G to explicitly construct a maximal vector in a tensor
product of two Weyl modules.

Lemma 5.11. Let a,b > 0 and let vt € A(aw))aw, and wh € A(bwy)bw, be mazimal vectors. Then

n—1
ri=a-v"® Xv*ﬁmlwJr —b- X*Bl,anr @wt + Z ‘Xfﬁucv+ @ )(*5lc+1,nw+
k=1

is a mazximal vector of weight atoy + bwo, — oy in A(awr) @ A(bwy,).

Proof. Using the PBW-type basis of Dist(G) (as in the proof of Lemma [5.9)), it is straightforward to
see that the vectors X_g | - vt and X_g, , - w™ are non-zero, and as

(Aaw1) @ Ab®n)) 4o b, = P Alaw1)am—y ® AbTn)beo,—ap+7»
YEZD
it follows that = # 0. It remains to show that Xg, -2 = 0 for all 2 € ®* and r > 1. By weight
considerations, we have Xz, -z =0 for all r > 1, and as Xp, ; = [Xai7X5i+1,j] for ¢ < j, it suffices to
verify that X,, -z =0for¢=1,...,n. We have

n—1
Xo;rx=a- XOéiU+ ® X—,31,nw+ —b- XaiX—ﬁ1,nU+ ®uw' + Z XaiX—ﬁl,kv+ ® X—/Bk+1,nw+
k=1
n—1
ta-vt® XaiX—BanJr —b- X—ﬁl,nv+ ® Xow" + Z X_Bl,kv+ ® XaiX—ﬁkJrl,anr
k=1
n—1
=—b- XaiX_ﬁl,nU+ ® w” + Z XaiX_/Bl,kU+ ® X—5k+1,nw+
k=1
n—1
+a-vt® XaiX—Bl,nw+ + Z X—IBMUJF ® XOéz‘X—ﬂkH,anr'
k=1

If 1 <i<nthen [Xq, X 3, ,] =050 Xo,X_p, 0" =0and Xo, X_5 wt =0, and

X g, ifk=i,

0 otherwise

X g, fh=i-1,
[(Xais X, ,] = { and [Xags X—ppps ] = { +1,

0 otherwise
for 1 <k <n-—1, so that
X_g . vt ifk=1,
XaiX_/Bl kv+ = P
' 0 otherwise

and

Xa X pyppy 0’ = {_X5i+1,nw+ ifk=1i-1,
Qi “*—Pk41,n -

0 otherwise.
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We conclude that
Xoy = X*51,i—1v+ ® X*ﬁ¢+1,nw+ - *)(**51,1'—1er ® X*Bi+1,nw+ =0,

as required. For 2 =1 and 1 < k < n, we have

 (Ha, it k=1,
[Xocle—ﬂl,k] -

-X_ Bok otherwise
and therefore

Hy vt =a-vt ifk=1,
XmX—617kU+ = { !

—X_p,, v =0 otherwise,
where the second equality in the first case uses the fact that (awi, @) = a and the second equality in
the second case follows from the observation that awy — B2 = sp, , (a1 + Pa1) and awy + f2 ;> aw;.

Furthermore, we have Xo, X 5, w" = —=X_p, w® and Xo, X g, w® =0 for 1 <k < n because
Xa, commutes with X_g, , , and we conclude that

Xo z=a-v"@X g, wh—a-v"®@X_g, wh=0.
Analogously, we obtain
Xa, x=—b- X—B1,n71v+ @wt +b- X—,31,n71v+ ®@wt =0,
and the claim follows. O

Corollary 5.12. Let a,b > 0 such that a+b+n =1 mod ¢, and let 2 € A(aw1 + bwy)aw, +bw, e
a maximal vector. Then

n—1
x:=—b- X—ﬁ1,n ~xt + Z X—Bl,z’X—IBH-l,n Ea
=1

is a mazimal vector of weight atoy + bwo, — ay, in A(aw; + bwy,).

Proof. Let vt € A(awi)aw, and wt € A(bwy,)pw, be maximal vectors. As aw; + bw,, is maximal
among the highest weights of Weyl modules appearing in a Weyl filtration of A(aco;) ® A(bwy,), there
is an embedding of G-modules ¢: A(aw + bwy,) — A(awy) ® A(bw,), and as the aw; + bww,-weight
space of A(awi) ® A(bw,) is one-dimensional, we may assume that p(z7) = vt ® w™, possibly
after replacing 1 by a scalar multiple. We will show that ¢(z) coincides with the maximal vector
constructed in Lemma [5.11l Note that we have

X*Bl,n ) (’U+ ® w+) =t ® *X*Bl,nw+ + )(*51@1}Jr @w’
and
X*ﬁl,iX*ﬁiﬂ,n : (U+ ® w+) = X*ﬁl,iv—‘r ® X*5i+1,nw+ + vt ® X*ﬁl,iX*/BiJrl,nw—’_
= X—Bl,iv+ ® X_/Bi+1,nw+ —v" ® X—ﬁl,nw+

for 1 < i < n because X_g,,., v" =0, X_g ,wt =0and [X_p ,, X 5., ] =—-X_p, . It follows
that
n—1
p(z) =—b- X B (v ®@wh) + ZX—ﬁl,iX—ﬁiH,n (T @w)

=1
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n—1
= _b : U+ ® XﬁBl,anr - b : X751,7LU+ ® w+ + Z ()(7181,2'/0+ ® )(75757‘»1,77.1'0+ - 'U+ ® Xﬁﬁl,nw+)
i=1
n—1
= (_b —n+ 1) ot ® X—B1,nw+ —b- X—B1,nv+ ® wt + Z X—/Bl,iv+ ® X—5i+1,nw+
i=1
n—1
=a-v"® X*51,nw+ —b- X*51,nv+ ®wh + Z (X*ﬁl,iv—‘r ® X*5i+1,nw+)
i=1
because k has characteristic £ and a +b+n =1 mod ¢. Now ¢(x) is a maximal vector in the tensor
product A(awi) ® A(bwy,) by Lemma and we conclude that z is a maximal vector. O

Now we combine our results about maximal vectors and about bases of weight spaces in Weyl
modules in order to find a basis of a weight space in the simple G-module Ly ; gy,,—1-

Lemma 5.13. Let 1 <i <mn, set A = 2(i,0)w™" - 0 and let w* € L(\)y be a mazimal vector. Then

n—1
(L —n+i)- X_/Bl,n wh - Z X—,31,kX—5k+1,n wt =0
k=i+1

and the set
{X_ﬁl,kX_ﬁk+1,n cw’ | i+1<k< n}

is a basis of the weight space L(A)x_qy,-

Proof. Let @™ € A()\), be a maximal vector and fix an epimorphism
©: A(X) — L(N)

such that (") = w™. By Lemma the Weyl module A()) is uniserial, with two composition
factors L(\) and L()\'), where

A=z(i,0)w  0=wi1 + (L —n+i) @y and N=z(i—-1,0wt 0=\ Birin;

see Lemma By Corollary and truncation to the Levi subgroup of type A,_; corresponding
to the set of simple roots {a;1,...,a,} C II, we see that a maximal vector that generates a simple
submodule M = L()\) in A()) is given by

n—1
ri=—(—-n+i)- X—5i+1,n -t + Z X_ﬁi+l,kX_,8k+l,n A
k=it1

Since X_g,, - wt = 0 (by weight considerations) and [X_g, ,, X 5., ,]=—-X_p,, fori+1<k<n,
it is straightforward to see that

n—1
= X—ﬁl,i T = (E —n+ l) 'X—,31,n st — Z X—51,kX—ﬁk+1,n -1Z)+,
k=i+1
and as M equals the kernel of ¢, we conclude that
n—1
0=¢p()=(—n+i) X B wt - Z X1k X Brsim - w'.
k=i+1
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Combining this equality with Corollary (and the fact that ¢ is surjective), we see that the set
X 8 X Briim cwt i+ 1<k <n}
spans the weight space L(\)y_q, . Furthermore, we have
dim L(A\)x—q,, = dim A(N)x—q, — dim L(N)r—qy

where dim A(X)y_q, = n — i by Corollary and dim L(X)x_q, = 1 because A — oy, = sp, ,(\'). We
conclude that dim L(A)y_q, =n — i — 1 and the second claim follows. O

In the following proposition, we construct a maximal vector in a tensor product involving the Weyl
module A(w;). Observe that the weight w; is minuscule and that {—w;—1 +w; | 1 <i <n+1}is
the set of weights of A(w;) = L(w;). Let us fix a maximal vector v € A(w)e, and define

Vi = X_/Bl,ifl " U1

for i = 2,...,n + 1. Using the PBW-type basis of Dist(G) (as in the proof of Lemma , it is

straightforward to see that vi,...,v,41 is a basis of A(w), with v; of weight —w;_; + w;, and that
v ifi=r+41,
XaT vy = i—1
0 otherwise
for1<i<mn+4+1land1l<r<n. Wecall vy,...,v,41 a standard basis of A(w) (for any fixed choice
of vy).

Proposition 5.14. Suppose that £ > n + 1 and consider the weight § = wy + aw, forl <a </l —n

and 1 < k < n. Denote by v1,...,va4+1 a standard basis of A(wy) and let v € A(6)s be a mazimal
vector. Then
n—k
Y= Z ( v X*ﬁz‘,rﬂﬁ + Z Vi & X*ﬂi,k+j71X*5k+jv"v+>
=1 j=1

n
- Z (a+1+n—k)-v;®X g v 4+a-(a+1+n—k) vpp@v"
i=k+1

is a mazximal vector of weight 6 + w1 — ay, in A(wi) @ A(6).

Proof. Observe that y is non-zero because a </ —n <fanda+14+n—k<l+1—k < /. Asin the
proof of Lemma [5.11}] it suffices to show that X, -y =0 for r =1,...,n. First note that

k n—k
Xo, Yy = Z ( —a- X, v ® X*ﬁi,nUJr + Z Xo,vi @ X*ﬂi,k+j71X*ﬁk+J‘,nU+>
i=1 j=1

n
- Z (a+14+n—k) Xovi®X_ g vi+a - (a+1+n—k) Xovns1 ®v"

i=k+1
k n—k
+ Z ( —eu® XarX—ﬁi,nv+ + Z Ui ® XarX—ﬁi,k+j—1X—5k+jvnv+)
i=1 j=1

n
- Z (a+14+n—k) v;®Xe, X 5 v +a - (a+14+n—k) vy @ Xq, 0"
i=k+1
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In the above equation, we have

vip ifi=r+1,
Xarvi _ i—1
0 otherwise,

as observed before, and

Xo, X_pg vt =[Xa,, X_p ] vT + X g, Xo, 0" =[Xo,,X_p,,] 0",

where
—X 8,11, if r=1<j,
X_g5;,_ ifr=j5>1i,
[Xar7X_/Bi,j] = Piara . . .
H,, if r=1i=yj,
0 otherwise

for i < j. As v' is a maximal vector, it follows that

if r =1 <mn,

. . ifr=n>1
XaT‘X_ﬁianr = [XaT7X_Bin] "U+ = T . . ,
’ ’ H,, vt =a-vt ifr=i=mn,

0 otherwise.

If r < k then we further have

+ . o
X, X 8 o 1 X By vt = "X Brsrprs 1 X Pyt T =
" it Fran 0 otherwise
for1 <i<kand1l<j<n-—k, and we conclude that
n—k
Xa, y=—a-v, ® X_/BT+1,TL/U+ + Z Ur @ X—5r+1,k+j—1X—ﬂk+j,nU+
j=1
n—k
ta-v® X*5r+1,nv+ - Z Ur & X*ﬁr+1,k+g‘71X*5k+j,nv+
j=1
= 0.
If r = k then
_X75k+1,k+j71X7ﬁk+j,n,U+ ifi=Fkand j>1,
H, X_ vt =2-X_ vt ifi=kandj=1,
XakX—6¢ k+j—1X—5k+j nUJr — (o3 Brk+1,n Bk+1,n J
’ ’ X g X g vt =0 ifi<kandj=1,
0 otherwise

for1 <i<kandl<j<n—k, where the second equality in the second case follows from the equality
(6 — Bkt+1m,@)) = 2 and the second equality in the third case follows from the fact that X Bin
commutes with X_g, , ~ combined with weight considerations. Furthermore, we have

[X*ﬁk+l,k+j71X*/3k+j,n] = _X75k+1,n
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for j > 1 and X*5k+1,k+j—1v+ = 0 by weight considerations, hence

+_ +
_X*BkJrl,kij—lX*BkJrj,nv _X*Bkﬂ,nv

We conclude that

Xop - y=—(a+14+n—-k) ® X—ﬁk+1,nv+

n—k
ta-v® X*ﬂk+1,nv+ +2 - ® X*ﬁk+1,nv+ + Z —Up ® X*ﬁk+1,k+j—1X*5k+j,nv+
=2
—(a+14n—Fk) vy ® X_5k+mv+
n—k
ta v ®@X g, 0T +2 00X g v+ Y n@X g vT
=2

= 0.
If E <r <n then
Xﬁﬁi,r—leﬁ’r%*l,nv_‘_ lfj =Tr—= k + 17
Xa”" ’ XﬁBik‘F]’*lXiﬁk"r]’v”er = _X_ﬁi,'r'le_ﬁrul—l,n/UJr lf ] =Tr—= k’

0 otherwise
for1 <i<kand1l<j<n—Fk and therefore

Xo, y=—(a+14+n—k) - v,®X_g  v*

_UZ®X/BZ’I‘ IX ,Br+1nv +UZ®X ,Bzr 1X ,BrJrln +)

|M?r

( ]‘ + n— ) UT ® X_Br+1,nv+
= 0.

Finally, for » = n we have

X g Hovt =a-X_ g, 0t ifj=n—k,

X nX—,Bi - X—,B _nqﬂ' =
a Jej—1 k4, X—ﬁ,-,k+j_1X—Bk+j,n—1”+ =0 otherwise

for 1 <i<kand1l<j<n—k, where the second equality in the second case follows from weight
considerations. For k < i < n —1, we have X_g, _ v* = 0, again by weight considerations, and it
follows that

Xop y=a-(a+14+n—k) v, @v"

k
+Z —a- ,U/L®X ﬁzn lv +a U1®Xﬁznl+)
i=1

n—1
- (a+14+n—k)-v;®@X g, vt —a-(a+1+n—k) v, ®@v"
i=k+1

as required.
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5. Non-simplicity of generic direct summands

Corollary 5.15. Suppose that ¢ > n+ 1, consider the weight 6 = wy + wy, + ({ —n—1) - w, for some
1<k <n andlet xt € A(d)s be a mazimal vector. Then

k n—k
Yy = Z ( - (£ —n- 1) : X_ﬂl,ile_,Bi,n cxt + Z X_ﬁl,ile_/Bi,k+j71X_/Bk+j,n : x+)
i=2 j=1

C N (k) X X (- D)= ) X, at
i=k+1

is a mazximal vector of weight 6 — ay, in A(J).

Proof. Set 8' = wy + (L —n—1) - w@,, let v € A(d')s be a maximal vector and let vq,...,v,41 be a
standard basis of A(w), as defined above Proposition As in the proof of Corollary we can
choose an embedding of G-modules ¢: A(§) = A(wr) ® A(§) with p(zT) = v1 @ vT. We will show
that ¢(y) coincides with the maximal vector in A(w;) ® A(d’) constructed in Proposition Note
that we have

X g, (o) =v0X g vM+uo,1 0"

and
X_Bl,i—lX_Bi,n ) (Ul ® U+) =11 ® X_Bl,i—lX_Bi,nv+ +v; ® X—ﬁi,nv+

for1 <i<masX_g, v =0.Forl<i<k, we further have X_g , ;v = 0 by weight considerations
and therefore
X—51,¢—1X—5i,nv+ = [X_Bl,i—l7X_,8i,n] ot = _X—ﬁl,anr

and
X_Bl,ile_/Bi,n : (Ul @ U+) =-1n® X—ﬁl,nv+ +v; ® X_/Bi,nv—‘r'

Analogously, we see that

+y + +
X*Bl,iflX*Bi,k+j71X*5k+j,n : (vl ®v ) =101 ® X*51,k+j71X*5k+j,nv + v & X*Bi,k+j71X*Bk+j,nU

forl<i<kandl<j<n-—k. Itfollows that

k n—k
= Z ( —(l-n-1)- X_Bl,i—lX_Bi,n (1 ® v+) + Z X_Bl,i—lX—Bi,kJrjle_Bkij,n (11 ® U+))
i—2 =1
o Z (6 - k) ’ X*/D’Lz‘lefﬁi,n ) (Ul ® U+)
i=k+1

+(l—n—1){l—k)-X_g, (rn®v")

k
= ((-n 1) v ® X vt — (1)@ X, vt

=2
n—k
+ Z ( -1 ® X—B1,k+j—1X—5k+j,nU+ +v;® X—ﬁi,k+j—1X—ﬂk+J‘,nv+))
j=1
- Z Ul®X 511 1X ﬂznv +(€_k)vz®X_5z,nv+)

i=k+1
+(l—n—-1)l—k) (1 ®X_g 0" +vny1@0")
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k n—k
- Z ( —(l=n-1)-vue X—ﬁi,nv+ + Z Vi ® X_/Bi,k+j—lX—ﬁk+j,nv+)
=2 =1
k n—k
+ Z ((f —n—1)-un® ‘X—ﬁanjL + Z —v1 ® X—ﬁl,k+j71X_ﬁk+j,nv+)
i=2 =1
n

(l—k)-vi®@X_ g v +{l—n—1)(—k) vy @v"

- (6 - k) Y X*Bl,i—lX*ﬁi,nv+ + (ﬁ -—n- 1)(6 - k) Y ‘X*ﬁl,nv+

i=k+1
k n—k
- Z ( —(=n-1)-0;@X 45 v+ Z Ui & X_Bi,k+j—lX_/Bk+ja"U+)
=2 j=1
n—k
+(k—1)- ((E -n—1)-n® X—ﬁl,nUJr + Z —n® X—ﬁl,kqtjle—BkH,”UJr)
j=1

— Z (l—k)-vi®@X_ g v +(l—n—-1)(—k) vy @v"

i=k+1
n—k
+ (0 —k)- ((5 —n—1)-1® X—,Bl,nlﬁ_ + Z —U1 ® X_/317k+j_1X_5k+ij+>
j=1
n—k
= Z ( —(l=-n-1)-v® X_Bi,nv+ + Z v & X—ﬁi,k+j71X—Bk+j,nU+>
i=1 j=1

n
=Y k)X 5 0"+ (C-n-1)l—k) vpp @0,
i=k+1
where the last equality follows from the fact that (k — 1)+ ({ — k) = £ —1 = —1 in k, because k
has characteristic /. Now ¢(y) is a maximal vector by Proposition and we conclude that y is a
maximal vector. O

The final result that we need in order to prove Proposition [5.6] is the following lemma, which
compares the actions of different elements of Dist(G) on maximal vectors in certain simple G-modules.

Lemma 5.16. For integers ¢ > 0 and 1 < k < n, set p = wy + cwy, and let vt € L(p), be a mazimal
vector. Then, forallk+1<a<n—-1anda+1<b<n-—1, we have
X*5k+1,nX*/3’1,k vt = X*ﬁl,n ot X*ﬁl,kX*ﬁkH,n ) v+>
X—5k+1,aX—ﬁa+1,nX—ﬁ1,k wt = X_Bl,aX_Ba+1,n ot — X—,31,kX—5k+1,n : U+7
X*ﬁkﬂ,aX*5a+1,bX*f3b+1,nX*B1,k ot = _X*BI,aX*IBa+1,n ot X*ﬁl,kX*ﬁkH,n vt

Proof. We have [X g, ., ,X 5 ,] = X g, ,, from which the first equality is immediate. For the
second equality, note that X _g, , commutes with X g, , ~and that [X_g,, ,X 5, ,]=X_p,,,s0

X—5k+1,aX—5a+1,nX—ﬁ1,k ot = X—ﬁl,aX—ﬁaH,n ot + X—ﬁl,kX—BkH,aX—BaH,n ot
Furthermore, we have [X 5, , X pg,.,.]=—-X g, and X g -v" =0 by weight considerations.
This implies that X g, X g, -v"=-X_g., -v", and we conclude that

X*ﬁkﬂ,aX*ﬁaH,nX*ﬁl,k ot = X*[h,aX*ﬁa-H,n ot — X*ﬁLkX*ﬁkH,n : U+7
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5. Non-simplicity of generic direct summands

as claimed. The proof of the third equality is analogous. O

Equipped with the results about maximal vectors and bases of weight spaces which we established
above, we can now give the proof of Proposition Let us recall the statement of that proposition:

Proposition 5.17. Let i,j > 1 such that i+ j <n — 2, and let a,b > 1 such that (a,b) is one of the
pairs (i +1,7) or (i,j+1). Then

dim Homg (Am(a,b)a Lx(i,O)w*1 & Lx(O,j)w) =1,

and the restriction to radgAyqp) of any non-zero homomorphism from Ay qp) t0 Ly 01w-1 @ Le(o,j)w
18 Non-zero.

Proof. We prove the claim for (a,b) = (i + 1, j); the case where (a,b) = (i,j + 1) is analogous. By
Lemmas [5.1] and the highest weights of the simple G-modules L; o),,-1 and Ly ;). are given by

z(i,0)w ™ 0=wiy1 + (L —n+1i)-w, and (0, j)w-0=({ —n+j) wi + wnj,
respectively, and the highest weight of Ay ) is
z(i+1,7)- 0=l —-—n—1+j) w1 +wit2 +w@wn_j+({l —n+1i)- w,.

Observe that we have z(i + 1,75) - 0 = 2(i,0)w™ + 0 + (0, j)w - 0 — B14+1. By truncation to the Levi
subgroup corresponding to {av,...,a;4+1} C II, it is straightforward to see that Ly (iv1,5) appears with
multiplicity one as a composition factor of the tensor product Ly ; 0)w-1 ® Ly 5)w, and it follows that

dim Homg (A4 (i11,5) L0011 @ Ly jw) < 1.

Let us write A :== x(i,0)w™! - 0 and p = (0, j)w - 0 for the highest weights of the simple G-modules
Ly i0)w—1 and Lyq jy,, and fix maximal vectors v € L(A)y and w™ € L(u),. Using Lemma and
truncation to the Levi subgroup corresponding to {aq,...,a;+1} C II, we see that the vector

7
at = (E —n-+ ]) ) X*ﬁ1,¢+1v+ Quwr —vt® X*51,i+1w+ + Z X*5k+1,i+1v+ ® X*Bl,kw-i_
k=1

is a maximal vector of weight A+ — 8141 =z(i +1,7) - 0 in L(A\) ® L(p). In particular, we have
dim Homa (A (i11.5)» La(i,000-1 © La(o,j)w) = 1,
as claimed. Now let £ be a maximal vector of weight x(i + 1,75) -0 in Ay(it1,5), and let
01 Agiit1,j) — La(io)w—1 @ La©,j)w

be the unique homomorphism with p(27) = x*. By Corollary and truncation to the Levi

subgroup of type A,_;_1 corresponding to {42, ...,a,} CII, the vector
n—j J
At ; -t ot
y+ " Z ( —(l—n+1)- X—5i+2,k—1X—5k,n T+ Z X_/Bi+2,k’—lX_6kz,n—j+'r—1X_anjﬁ»r,n IR )
k=i+3 r=1

n
o Z (Z_n+i+j+1)'X—5i+2,k—1X_Bk,n a
k=n—j+1

—l—(f—n—l—i)(ﬂ—n—l—i—i—j—i—l)'X_EH_M':L’+
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is a maximal vector of weight z(i+1,j) -0~ Bit2, = A+ p—an = 2(i,7) -0 in Ay;4q 5. In particular,
9 generates a proper submodule of Ay (it1,5) and we have g € radgAy(i+1,5)- In order to complete
the proof of the proposition, it suffices to verify that y™ := ¢(§7) # 0.
Observe that
(L()\) ® L(N)))\Jrufah = @ L(A)A—cxh-&-’y ® L(/’L)M—’W
YELZD

and denote by pg the linear projection onto the tensor product of weight spaces L(A)x—q, ® L(1)u-
We consider the vector yo := po(y™+). Let us write z+ = x + 2/, with

r=(l-n+j)- X—ﬁl,i+1v+ ®wh and a'=at —ae GB L(A))\—/Bl,i+l+7 ® L(p) -

0<yEZD
As @(#%) = 2 and @(j*) =y, we have
n—j J
y+ = Z ( —(l—n+1i)- X—/Bi+2,k—1X_/8k,n o+ Z X—ﬁi+2,k—1X—5k,n—j+r—1X_B"*J””*" . x+>
k=i+3 r=1
n
o Z (E_n—l—i+j+1) 'X—ﬁ,'+2,k—1X—ﬁk,n ca

k=n—j+1
+(l—n+i)(l—n+i+j+1)-X_ 5., cxT,

by the definition of §*. Using the observation that
(5.1) Xy (LN @ L)) S (L(N)s1y @ L)) © (L(N)s @ L)1)

for all v € ® and 4, v € X, it follows that 2’ does not contribute to yg, that is, that yog = po(y™) = po(2)
with

n—j J
z= Z ( —(l—n+ Z) : X*5i+2,k71X*Bk,n T+ Z X*Biﬂ,kle*Bk,nfjJrrflX*'B”*j“’” . x)
k=i+3 r=1
n
Y Wentitit) Xop,,  Xop, w
k=n—j+1

+(Ul—n+i)l—-—n+i+j+1)-X g, -z

Next observe that £ —mn+j is invertible in k, so after replacing ™ by a scalar multiple, we may assume
that 2 = X_3, .., v" @ w". Then, again by (5.1]), we have

n—j
Yo = Z < - (E —n+ 2) ’ X*ﬁi+2,k71X*/Bk,nX*ﬁl,iJrl’U—‘r ®w™
k=i+3
J
-
+ Z X*/Bi+2,k—1X*/Bk,n—j+r—1X*Bn—jJr'r,nX*/Bl,ileU ®w )

r=1
n

- Z (E —n+i+j+ 1) : X—5i+2,k—1X—l3k,nX—51,i+1U+ ® w”
k=n—j+1

+ (E —-n+ Z)(E -—n+i+j+ 1) ) X—ﬁi+2,nX—51,i+1U+ X w+7

184



5. Non-simplicity of generic direct summands

and we can write yo = vg ® w, where vy € L(A)\_q, is defined by

n—j

Vo = Z ( —(l—n+i): X_ﬁi+2,k71X_ﬁk,nX—ﬁl,i+lv+
k=i+3

J
Jr
+ Z X_Bi+2,k71X_ﬂk,nfj+r71X_ﬁn—j+r,nX_Bl,i+1v )

r=1
n

- Z (l—n+i+j+1)- X*/Bi+2,k71X*ﬁk,nX*/BI,i+1U+
k=n—j+1

+(l—n+i)l-—n+it+j+1)- X_ﬁM’nX_BMHW.

By Lemma we have

+_ + +
X—5i+2,nX—51,i+1U - X_Bl,nv + X—51,i+1X—5z‘+2,nU )
+_ + +
X*Bi+2,k71X*ﬁk,nX*/BLiJrlv = X*/Bl,k—lX*/Bk,nU - X*51,¢+1X*ﬁ¢+2,nv

9

+_ + +
X—ﬂi+2,k—1X—Bk,n—j+r—1X—ﬁn—j+r,nX—51,i+1v - _X—B1,k—1X—,3k,nv + X—ﬁl,i+1X—ﬁi+2,nv

foralli+3<k<nand1<r <j(and kK <n— 7 in the third equation). Using these equations, we
can rewrite the vector vy as

n—j
Yo = Z (_ (6—n+1)- (X—51,k—1X—ﬁk,nU+ - X—Bl,i+1X—5i+2,nv+)
k=i+3
J
+ Z ( - X—ﬁ1,k—1X—ﬁk,nv+ + X—ﬁl,i+1X—ﬁz‘+2,nU+))
r=1
n

- Z l—n+it+j+1): (X—51,k—1X—Bk,nv+ - X—ﬁl,i+1X—Bi+2,nv+)
k=n—j+1

+U—n+i)l—n+i+j+1): (Xfﬁl,anr + X*51,i+1X*52‘+2,nv+)

n—j
- Z —(l=n+i+j)- (Xfﬁl,kle*ﬁk,nv+ - X*51,¢+1X*5i+2,nv+)
k=i+3
n

o Z (—n+i+tj+1)- (X*B1,kf1Xﬂ3k,nv+ - X*ﬁl,i+1X*/gi+2,nv+)
k=n—j+1

+ (K —-n+ Z)(é —n+it+j+ 1) : (X—Bl,nv+ + X_/Bl,i+1X_6i+2,7Lv+)

n—j n
=—({l—n+i+j): Z X—ﬁl,k—lX—ﬁk,nU+ —(l=n+i+j+1)- Z X—51,k—1X—5k,nU+

k=i+3 k=n—j+1

+U—n+i)(l—n+i+j+1) - X_g v"
tc- X*51,¢+1X*ﬁi+2,nv+7

where the scalar ¢ € k is given by

c=n—i—j—=2)-l—n+i+j)+j-C—n+i+j+1)+{L—n+i)-—n+i+j+1)
=n—i—j—=2)-(—n+i+j)+j-(—n+i+j+1)+(—n+i)-(-n+i+j+1)
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=(n—i—j—=2)-(-n+it+j)+(-n+i+j)-(-n+i+j+1)
=—(—n+i+j)
=—({L—-n+i+j)

because k is of characteristic £. As ¢ coincides with the coefficient of the vectors X_g, k—lX*ﬁk,nU+7
for i +3 < k < n — j, in the preceding formula for vy, we obtain

n—j n
vo=—(—n+i+j)- Z X—ﬁl,k—lX—ﬁk,nU+ —(l=n+i+j+1)- Z X—51,k—1X—5k,nU+
k=i+2 k=n-j+1

+U—n+i)(l—n+i+j+1) - X_g v"

n
={l—-n+i+j+1): ((z —nti) X g ot = Y X—Bl,kle—ﬁk,nW)
k=i+2
n—j

+
+ Z X_Bl,kle_Bk,nv :
k=i+2

By Lemma [5.13] we have

n
(6 —n+i)- X*ﬁ1,nv+ - Z X*51,k71X*ﬂk,n’U+ =0,

k=i+2
and it follows that .
n—j
_ +
vo = Z X*BI,I@71X*BI<;,TLU :
k=i+2

The vectors X*ﬂl,k—leﬁk,vler? for i +2 < k < n, form a basis of the weight space L(\)x_q, (again
by Lemma [5.13)), and we conclude that vy # 0. This implies that po(y™) = yo = vo ® wt # 0 and
therefore p(§) = y* # 0, as required. O

6 The complete reducibility theorem

Before we can prove the complete reducibility theorem from the introduction to this chapter, we need
two more lemmas about weights.

Lemma 6.1. Let n > 2, let A\ € X be {-reqular and suppose that
A+p B 1) <€ and (A +p,By,) <L
Then either A € Cryng 01 X € S0 * Crund -

Proof. Let C be the f-alcove with A € C. For 1 <i < j <n—1, we have
g, ;(C) - £ < (A4 p,8;) < (A +p, B py) <t

and it follows that ng, .(C') = 0. Analogously, we can use the inequality (A + p, @/7 n) < ¢ to see that
ngm.(C) =0 for 2 < i < j < n. Furthermore, we have

ng, (C) €< N+p,BY0) <A +p, B 1)+ (A+p,By,) <20
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and it follows that ng,  (C) € {0,1}. Now the claim follows because C' is uniquely determined by the
integers ng(C), for § € T, and because ng(Cryna) = 0 and

L if = Bin,

0 otherwise

nB(SO ) Cfund) =ng (‘T(()? O) : C(fund) = {

for all 8 € T, by Corollary O

Lemma 6.2. Letn > 2, let A\ € X be (-reqular and (-restricted and suppose that (A + p, B1,n-1) < L.
Then either X € Crang or A € 2(4,0) + Crang for some 0 < i < n—1. Analogously, if p € X is £-reqular
and L-restricted with (p+ p, Ba.n) < £ then p € Cryna or o € 2(0,7) + Cpuna for some 0 < j <n — 1.

Proof. Let C be the f-alcove with A € C' and observe that, for 1 <14 < j < n, we have
g, (C) L < (A +p,875) < (A +p, Bl 1) + (A +pyay) <20

because A is (-restricted, and therefore ng, .(C) € {0,1}. Furthermore, if j < n then ng, .(C) = 0,
as in the proof of Lemma If ng,,,(C) = 0 then (A + p,By,) < £ and the claim follows from
Lemma Now suppose that ng, ,(C) =1 and let i € {1,...,n — 1} be maximal with the property
that ng,,, ,(C) = 1. As X is f-restricted, we have ng, , (C) = n,, (C) = 0 and therefore i <n — 1. Tt
is straightforward to see that ng,  (C) <ng,  (C) for 1 < j <k <n, and it follows that

1 ifj<i+1and k=n,

ng,  (C) =
ﬁ]’k( ) {0 otherwise.

By Corollary we have ng(C) = ng (l‘(l, 0) 'Cfund) forall 3 € ®*, and as C is uniquely determined by
the integers ng(C'), we conclude that C' = (7, 0)-Cgng. The proof of the second claim is analogous. [

Now we are ready to prove the complete reducibility theorem.

Theorem 6.3. Suppose that we are in the modular case, that G is of type A,, for somen > 1 and that
¢>n+1. Let \,;p € X be l-restricted and (-reqular. If the tensor product L(\) @ L(p) is completely
reducible then either A € Cgyng or pt € Crung-

Proof. We prove the claim by induction on n. For n = 1, there is nothing to show because all
l-restricted f-regular weights belong to Chynq (see Section [[I1.1)).
Now suppose that n > 2, and let x,y € W;H and X, ' € Cpyng such that A=z - XN and p=y- 1.
By Proposition and Theorem we have
~Y / ! ~Y @ Vl /
(L) @ L)),y = (To Lz - 0) @ T Ly -0),,, = D T (L(x-0) @ Ly - 0)) o,

reg reg
vECHRaNX
and by Lemma @ there exists a weight v € Cpuna N X such that ¢, , # 0. As the generic direct
summand G(z,y) of L(z - 0) ® L(y - 0) is regular (see Proposition [[L.5.7)), we conclude that T¢ G(z, y)
is a direct summand of L(A\) ® L(u). In particular, if L(\) ® L(u) is completely reducible then G(z, y)
is simple (because Ty is an equivalence).
For n = 2, the only ¢-alcoves containing ¢-restricted weights are Cgyng and so - Crung (as observed in
Section [[IT.2)), and we have G(so, so) = M (0) by Lemma where M (0) denotes the non-simple
G-module defined on page Hence the statement of the theorem is true for G of type As.
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Now let n > 3 and suppose that the statement of the theorem is true for groups of type A, _1.
Consider the set of simple roots I = {ay,...,a,—1} C II and let L; be the derived subgroup of the
corresponding Levi subgroup (see Remark . Then L; = SL, (k) is of type A,_1, and L; has
weight lattice X; = @ael Zw,, root system ®; = ZI N ® and positive roots <I>}“ = ®&; NPT with
respect to the base I. Let A\, u € X be f-regular and (-restricted, and suppose that L(\) ® L(u) is
completely reducible. It is straightforward to see that the weights

Ar = Z()‘v aV) " Wa and Hr = Z(N7 a\/) * Wa
ael ael
are {-regular and (-restricted, and again by Remark the tensor product L(Ar)® Ly(ur) of simple
L;-modules is completely reducible. By the induction hypothesis, this implies that at least one of the
weights A\; and iy belongs to the fundamental alcove with respect to Ly, and as 1,1 € CID;F, it follows
that
A+ B 1)<l or  (utpfia) <t

Analogously, by considering the derived subgroup of the Levi subgroup of G corresponding to the set
of simple roots {aa, ..., a,} CII, we see that either

A+p,B3,) <l or  (u+p,Bs,) <L

Possibly after interchanging A and p, we may assume that (A + p, 8y,, ;) < £, and we consider the
two possibilities (X + p, 85,,) < £ and (u+ p, 85,,) < £ in turn,

First suppose that (A + p, ﬁg/’ n) < {. Then we have either A\ € Cypnq, as required, or A € sg * Crund
by Lemma Suppose that A € sg + Crung, and let y € W;Ef such that pu € y - Crng- As observed
above, the complete reducibility of L(\) ® L(u) forces that G(sp,y) is simple. Now Theorem
implies that y(Afnd) = Afuna + 7y for some v € X+, and as p € y » Cunq = Crung + £ is l-restricted,
it follows that v =0 and p € Ciyng-

Now suppose that (u + p, 62V7 ) < L. If neither of A and p belongs to Cryng then, by Lemma
we have A € x(7,0) » Cyng and p € x(0,5) - Cpyng for some 0 < i <n—1and 0 < j <n —1. By the
previous case, we may further assume that ¢ > 0 and j > 0 (because x(0,0) = sp). Then the generic
direct summand G(z(i,0),2(0, j)) of L(z(i,0)-0) ® L(z(0,;) - 0) is non-simple by Propositions
and contradicting the complete reducibility of L(\) ® L(u). O
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A Additive categories and ideals

In this section, we discuss the notion of ideals (of morphisms) in categories and prove some properties
of quotient categories. We start with the most basic definitions.

Definition. A preadditive category is a category in which all Hom-sets are abelian groups and com-
position of morphisms is bilinear. An additive category is a preadditive category that admits finite
direct sums.

Note that the definition of an additive category includes the empty direct sum, which is both an
initial and a final object, called the zero object.

Definition. An additive functor between additive categories A and B is a functor F': A — B such
that the maps
F(A,A"): Homy(A, A") — Homg(F(A), F(A"))

are group homomorphisms for all pairs of objects A and A’ of A.

Additive categories can be thought of as a generalization of rings, where multiplication is spread
out over multiple objects. Accordingly, we can define a notion of ideals and quotient categories.

Definition. An ideal (of morphisms) Z in A is a collection of subgroups Z(A, B) C Hom4(A, B), for
every pair of objects A and B of A, that is stable under composition. More specifically, this means
that bo foa € Z(A', B') for all a € Hom4(A’, A), b € Hom4(B, B’) and f € Z(A, B).

Definition. Let Z be an ideal of morphisms in A. The quotient category A/Z has the same objects
as A and Hom-sets
Hom 4,7(A, B) = Homy(A, B)/Z(A, B).

Composition of morphisms in 4/Z is induced by the composition law in A.

Note that the composition of morphisms in the quotient category is well-defined because Z is
stable under composition. It is straightforward to check that A/Z is an additive category and that the
quotient functor A — A/Z, sending an object to itself and a morphism to its residue class, is additive.

Definition. A Krull-Schmidt category is an additive category where every object is isomorphic to a
finite direct sum of objects having local endomorphism rings.

Note that an object whose endomorphism ring is local is a fortiori indecomposable, i.e. it does
not admit a non-trivial direct sum decomposition. In a Krull-Schmidt category, the converse of this
statement is also true, that is, the endomorphism rings of all indecomposable objects are local. The
name Krull-Schmidt category is justified by the fact that a version of the Krull-Schmidt theorem holds
in such categories; see Theorem 4.2 in [Kral5].
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Theorem A.1. Let A be a Krull-Schmidt category and let A be an object of A with two decompositions
A@®- DA ZAZB & D Bs

as a direct sum of objects with local endomorphism rings. Then r = s and there exists a permutation
T such that B; = A,y for 1 <i <.

A direct sum decomposition as in the preceding theorem is called a Krull-Schmidt decomposition.
Let us cite another result about Krull-Schmidt categories from Corollary 4.4 in [Kral5].

Lemma A.2. A Krull-Schmidt category A has split idempotents, that is, for every idempotent e = e?

in the endomorphism ring of an object A of A, there exist an object B of A and morphisms f: B — A
and g: A — B such that fog=e and go f =idp.

Next we show that Krull-Schmidt categories are well-behaved with respect to taking quotients by
ideals of morphisms.

Lemma A.3. Let A be a Krull-Schmidt category and let T be an ideal of morphisms in A. Then A/T
is a Krull-Schmidt category.

Proof. For any object A of A, the endomorphism ring End 4,7(4) is a quotient of End4(A) by a two-
sided ideal, so End 4,7(A) is local or zero whenever End4(A) is local. Now the endomorphism ring
of an object in an additive category is zero if and only if the object is isomorphic to the zero object.
Hence a decomposition of an object of A as a finite direct sum of objects with local endomorphism
rings gives rise to such a decomposition in A/Z, by omitting the objects whose endomorphism rings
in the quotient are zero. ]

Corollary A.4. Let A be a Krull-Schmidt category and let T be an ideal of morphisms in A. Fur-
thermore, let A be an object of A and fiz a Krull-Schmidt decomposition

A=A @ 9A SB & ® By
of A in A such that A; 20 in A/T for 1 <i<r and B; 20 in A/T for 1 <i<s. Then
A2 A& B A,
is a Krull-Schmidt decomposition of A in AJT.
Proof. This follows from the proof of Lemma O

Example A.5. Let A be an additive category and let J be a non-empty set of objects of A such
that A@ B € J for all A, B € J. Then J defines an ideal of morphisms via

J(A,B) = {f € Hom 4 (A, B) ‘ f factors through an object in J}.

Indeed, stability under composition is obvious and the sum of two morphisms f,g € J(A, B) that
factor through objects C' and C’ in 7, respectively, factors though the direct sum C & C”.

Now suppose that A is a Krull-Schmidt category and that J is closed under retracts, i.e. that
A® B € J implies that A € J and B € J. Then an object of A is isomorphic to the zero object in
the quotient category A/J if and only if it belongs to J. Indeed, an object A of A is isomorphic to
the zero object in A/J if and only if id4 € J(A, A), and if id4 factors through an object in J then
A € J because A has split idempotents and 7 is closed under retracts.
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B Homological algebra

This section serves as a reminder on some important constructions in homological algebra. Namely,
we will recall homotopy categories and derived categories and discuss their triangulated structure. For
a more detailed overview of these topics with further references, see [Kra(O7]. Throughout the section,
we fix an additive category A (which we will later assume to be abelian).

A complex A = (A,,d2) over A is a sequence of objects (4;);ez of A with morphisms

d* € Homu(A;, Aiy1)

such that df‘H odf =0 for all i € Z. We call A; the term in homological degree i and di* the i-th
differential of A. The complex A is called bounded if all but finitely many terms are zero. For two
complexes A and B, a chain map (or homomorphism of complexes) f = (fo): A — B is a sequence
of morphisms f; € Hom4(A;, B;) such that d® o fi = fiy1 0 d for all i € Z. The category C(A) of
complexes over A has objects the complexes over A and morphisms the chain maps. We write Cb(A)
for the full subcategory of bounded complexes.

Remark. What we call a complex here is often referred to as a cochain complex in the literature. In
some situations, it is useful to distinguish between cochain complexes and chain complezes, where the
latter have differentials going in the ‘opposite direction’, i.e. from degree ¢ to degree i — 1. It should
also be noted that many authors write cochain complexes with indices as superscripts (like A® or de)
and chain complexes with indices as subscripts. As all complexes that will be considered here are
cochain complexes, we can ignore this distinction.

Note that the additive structure on A induces an additive structure on C'(A). Next we discuss
some important constructions related to complexes. For j € Z, the j-th homological shift A[j] of a
complex A = (A,,d) is the complex with terms A[j]; :== A;;; and differentials df‘m = (=1)7 - ditj.
Given a chain map f: A — B, the cone of f is the complex C' = cone(f) with terms C; = A;11 ® B;

and differentials
df = —dfy 0
! fiyn dP )’

acting as though on column vectors. Note that the inclusions B; — C; and the projections C; — A;41
define canonical chain maps
B — cone(f) — A[1].

We say that two chain maps f,g: A — B are homotopic if there exists a homotopy h = (he) from f
to g, i.e. a sequence of morphisms h; € Hom 4(A4;, B;—1) such that f; — g; = d?_l ohi+ hijy10 d{‘. A
chain map is called nullhomotopic if it is homotopic to the zero chain map. The nullhomotopic chain
maps form an ideal in the category C(A), that is, the nullhomotopic chain maps f: A — B form a
subgroup of Homg(4)(4, B) and if f: A — B is nullhomotopic then so are z o f and f oy for any
chain maps z: B — B’ and y: A" — A. Therefore, we can define the homotopy category K(A) of A
as the quotient of C'(A) by the ideal of nullhomotopic chain maps: The objects of K(A) are just the
complexes over A, and the morphisms from A to B are defined as the quotient of Home (4 (A, B) by
the subgroup of nullhomotopic chain maps. Two complexes that are isomorphic in K(A) are called
homotopy equivalent, and a chain map that becomes an isomorphism in K(A) is called a homotopy
equivalence. Note that K(A) inherits the additive structure from C(A). We write K°(A) for the
bounded homotopy category of A, i.e. the full subcategory of K(A) whose objects are the bounded
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complexes. The categories K°(A) and K(A) admit the structure of triangulated categories, that
is, they are additive categories with a shift functor (denoted on objects by A — A[l]) and a class
of distinguished triangles A — B — C — A[l] satisfying certain axioms (which will not be recalled
here). In the present case, the shift functor is the homological shift of complexes and the distinguished
triangles are those that are isomorphic to a triangle of the form

AL, cone(f) — A[l],

where the chain maps B — cone(f) — A[l] are those that were discussed above. One important
consequence of this definition is that for any distinguished triangle

ALy 2oty oap,

the triangle
B2y a2 gy

is also distinguished. We refer to this property as triangle rotation.

Now suppose that A is an abelian category. For a complex A over A, the condition that d{‘od;“_ 1=0
means that the image of diA_l is contained in the kernel of df‘, and we define the i-th cohomology of A
as

HY(A) = ker(d) /im(d ).

A complex is called exact in degree i if its i-th cohomology is zero and exact if it is exact in all
degrees. We also say exact sequence for a bounded exact complex and short exact sequence for an
exact sequence with at most three non-zero terms. A chain map f: A — B induces homomorphisms

HI(f): Hi(A) — H'(B)

for all i € Z, and we call f a quasi-isomorphism if all H*(f) are isomorphisms. The derived category
D(A) of A is defined as the localization of K(A) at the class of quasi-isomorphisms. Its objects are
the complexes over A and its morphisms can be constructed as certain equivalence classes of ‘roofs’
of chain maps A + M — B where A < M is a quasi-isomorphism. As before, we write D’(A) for
the bounded derived category of A, i.e. the full subcategory whose objects are the bounded complexes.
The categories D(A) and D°(A) inherit from K (A) the structure of triangulated categories, where as
before, the shift functor is the homological shift and the distinguished triangles are those that arise
from cones of chain maps. Thus the natural functor K(A) — D(A) that sends a complex to itself
and a homotopy class of chain maps to its equivalence class in D(A) is a triangulated functor, i.e. it
commutes with the shift functors and takes distinguished triangles to distinguished triangles. Every
object of A can be viewed as a complex with a single non-zero term in degree zero, so there also is a
natural functor A — D®(A) which turns out to be fully faithful, i.e. it induces isomorphisms between
the respective homomorphism groups. If A is a complex over A with H*(A) = 0 for all i # 0 then A
is isomorphic to the one-term complex with H°(A) in degree zero, as an object of D’(A). Moreover,
if f: A — B is a monomorphism in 4 then the cone of f is isomorphic to the cokernel of f (viewed
as a complex) in D’(A). In particular, any short exact sequence 0 — A — B — C' — 0 in A gives
rise to a distinguished triangle A — B — C — A[1] in D*(A). Another important property of derived
categories (or triangulated categories in general) is that Hom-functors are cohomological: For any
complex D, applying the functors

Homp (D, —) and Homp4)(—, D)
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to a distinguished triangle A — B — C' — A[1] gives rise to exact sequences

-+ = Homp4)(D, Al]) — Homp4)(D, Bi]) — Homp (D, Cl[i])
— HOHID(A)(D, A[Z + 1]) — HOHID(_A)(D, B[Z + 1]) — HOIHD(A)(D, C[Z + 1]) — e

and

-++ = Homp4)(Cli], D) — Homp4) (B[], D) = Homp4)(Ali], D)
— HOmD(A)(C[i — 1], D) — HOmD(A)(B[i — 1], D) — HOInD(_A)(A[i — 1],D) — e,
respectivelyﬂ Yet another example of a cohomological functor is the degree zero cohomology H(—).

As H°(D[i]) = HY(D) for all i € Z and for any complex D over A, this implies that a distinguished
triangle A — B — C — A[1] affords an exact sequence

o= HTYC) - HY(A) - H(B) - HY(C) - H(A) — - .
For objects A and B of A, we define
Ext’y(A, B) := Homp4)(4, Bli])
for i € Z, viewing A and B as one-term complexes as before. We note that
Ext% (A, B) = Hom (A, B)

and Exty(A,B) = 0 for i < 0. As a special case of the exact sequences of Hom-groups in D(A)
discussed above, we see that any short exact sequence 0 - A — B — C' — 0 gives rise to exact
sequences

0 — Hom (D, A) — Hom4 (D, B) — Hom(D,C) — Ext4 (D, A) — ---
and

0 — Hom4(C, D) — Homy(B, D) — Hom4(A, D) — ExtY(C, D) — --- |

for any object D of A.

If the category A is additive monoidal (i.e. if A has a bi-additive tensor product bifunctor ®,
subject to some axioms which we do not recall here) then we can define a tensor product M ® N of
bounded complexes M = (M,,d}) and N = (N,, d)Y) as follows: The terms of M ® N are defined by

(MeN),= P MeN,
i+j=k
and the k-th differential dé\/l ®N can be written as a matrix with entries

(:9),,7)
for i+ j =4k and ¢ + 5 = k + 1, where

d}' @ idn; if (¢/,5) = (i +1,7),
(d"® )(i,j),(if,jf) =4 () -ida @ dY i () = (1,5 + 1),
0 otherwise.

*To be more precise, one should say that Homp(a)(—, D) is a cohomological functor from D(A) to the opposite
category of the category of abelian groups.
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Thus the category of bounded complexes C*(A) inherits a monoidal structure from A, which descends
to K°(A) and D°(A). If A is abelian and the tensor product bifunctor is exact in both components
then the cohomology of the tensor product complex M ® N can be computed by the Kiinneth formula:

HY(M®N)= @ H(M)® H(N)
i+j=k

This is a special case of the main theorem of [Big07]. We give a sketch of a proof for the reader’s
convenience. First note that the claim is certainly true if all differentials of IV are trivial, and in that
case H/(N) = Nj for all j. In general, we have short exact sequences

O—>ker(dN) — N —>1m(dN) —0

for all j and we consider the complexes K = (K,,dX) and I = (I,,dl) with trivial differentials and
terms K; = ker(dﬁy ) and I; = im(dj.v ). Then there is a short exact sequence of complexes

00— MRK—MN —MI —0,
and the latter gives rise to an exact sequence
s HYY M@ N) s H (Mol - H¥(M® K) - HY(M @ N) - HY(M @ 1) —
via the snake lemma. By the initial observation, we have

H ' Mol @ HM) @im(d),) and H(MeK)= P H(M)ker(d))
i+j=k i+j=k

for all k, and one can check that the homomorphism from H*~1(M ® I) to H*(M ® K) restricts to
the tensor product of the identity on H*(M) with the embedding of im(dj»v_ 1) into ker(dév ), on the
different components of the direct sum. Now the claim follows since H7(N) = ker(dév )/ im(dé-v_ 1)
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additive category, [189
adjacent alcoves,

affine Weyl group, [11]
alcove,

anti-spherical module, [132]

Bruhat order, [I4]

centered at an alcove,

character of a G-module,
completely reducible G-module,
contravariant dual,

Coxeter number, [9]

crossing a hyperplane, [97]

derived category, [192
distance between alcoves,
distribution algebra,
dominant alcove,
dominant weight, [9]

dot action,

dual of a G-module,
Dynkin diagram, [10]

extended affine Weyl group,
extended principal block,
extremal point, [T05]

Frobenius kernel,
Frobenius morphism,
Frobenius twist, [31]
fundamental alcove,
fundamental group, [9]
fusion category, [37]
fusion module,

gallery,
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generic direct summand,
good filtration,
good filtration dimension,

head of a G-module,
homotopy category,

ideal of morphisms, [189
Jantzen sum formula, [132]

Krull-Schmidt category, [189
Krull-Schmidt decomposition, [190
Kiinneth formula,

(-alcove, 25|
(-facet,
f-regular
linkage class,
weight, [25]
{"-restricted weight,
{-singular
linkage class,
weight,
linkage class,
linkage order,
linkage principle,
Loewy length, [I55]

maximal vector,

minimal complex, @l
minimal complex of C, [42]

minimal gallery,
minimal tilting complex, [43]

multiplicity free,

negligible tilting module,
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principal block,

quasi-translation functor,
quotient category, [36] [I89]

radical

filtration, [I55]

of a G-module,

of an additive category, [40]
recursion formula, [133]
reduced expression,
reflection hyperplane,
regular

G-module,
part, [55]

quotient, [51]
rigid G-module, [155]

saturated set of weights,
Schur algebra, [79]
separated by a hyperplane,
simple reflection,
singular

G-module,

part, [59]
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small quantum group,
socle

filtration, [155)

of a G-module, [I9]
standard action,

tensor product of complexes, [193
thick tensor ideal,

tilting equivalence,

tilting module, 23]

translation functor, [27]

truncated subcategory,
truncation to a Levi subgroup,

uniserial G-module,
upper closure
of an (-facet,

of an alcove, [101
Verlinde algebra,

wall of an alcove,

weight space decomposition,
Weyl filtration,

Weyl filtration dimension,
Weyl’s character fomula,



List of notations

: A(A)]a: Weyl filtration multiplicity,

: L(A)]: composition multiplicity,

: N]g: Krull-Schmidt multiplicity,

: V(A)]v: good filtration multiplicity,

|: the class of M in [Rep(G)], 132

ep(GQ)]: Grothendieck group of Rep(G), (132
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[
[
[
[
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[

Agung: the fundamental alcove,
A: upper closure of an alcove, [101
ay: the highest short root in @, [9]
&y the highest root in @, [

4: the linkage order on alcoves,
T¢: the linkage order on f-alcoves,

B = By in the modular case, [T5]
B=U; (g) in the quantum case,

C(A): the category of complexes over A,
C®(A): bounded complexes over A,
Chung: the fundamental /-alcove,

X(A) = ch V(}),

ch M: the character of M,

&, = [T & T() : T,
Crmin(M): minimal tilting complex of M,

D(A): the derived category of A,

(4) = Y gear na(A),

(A, A"): the distance between A and A’,
(.%') = d( (Afund))7

5(A): bounded derived category of A,
(\) = V(—wo))",

A(N)F: term in the Jantzen filtration, m

A, it layer of the Jantzen filtration of A,
Dist(G): the distribution algebra of G,

QU QU

> b g

F: upper closure of an ¢-facet,
Fy: the (-facet containing \,
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Fr: the Frobenius morphism,

G = G in the modular case,

G = U¢(g) in the quantum case,

G(x,y): a generic direct summand,

Ga(z,y): a generic direct summand,

Gv(x,y): a generic direct summand,

G1: the first Frobenius kernel or the small
quantum group, [34]

gfd(M): good filtration dimension of M,

G,: a Frobenius kernel of G,

H ﬁ m: hyperplane of fixed points of sg ,,
m={l-x—p|zeHypn} 25

H+m positive half space w.r.t. Hg,y,,

Hgm: negative half space w.r.t. Hg ,
headg M = M /radgM: the head of M, |19
H(A): i-th cohomology of a complex A,

J(u) = Qi>o T(uy)l?, for G of type Ay,
JSF,, = 9 H(JSF}) € Masph,
JSF2 =", o[A(z - N)] € [Rep(G)], [L33

K(A): the homotopy category of A,
K*(A): bounded homotopy category of A,

¢ = char(k) in the modular case,
¢ = ord(() in the quantum case,

L(\) =socgV(N),

L(w): set of hyperplanes separating Ag,,q and

w(Afund)a
L(w): the length of w € Wy,

)
L,(A\): a simple G,-module,
L,(\): a simple G, T-module,
M (X, p): direct summand of L(A\) ® L(p),
M(v), for G of type Aa,



List of notations

Masph: the anti-spherical Z[W,g]-module, m
MU: the r-th Frobenius twist of M,
M,eg: the regular part of M,

Mging: the singular part of M,

M*: the dual of M,

MT: the contravariant dual of M,

N negligible tilting modules,
V(A) = ind§ (k»),

ng(A), for an alcove A,
ng(C), for an f-alcove C,

N, = 1®$€Maspha@

Q= StabWext (Afund),
wye: image of x € Wyt under Weyy — €,

®: a simple root system, []
®*: a positive system in @, [9]
II: a base of ®,[9

pr,: Rep(G) — Rep,(G),

radgM: the radical of M,

radf; M: term in the radical filtration,
Rep(G), in the modular case,

Rep(G), in the quantum case,

Rep, (G): the linkage class of A,
Repg.o(G): the extended principal block,
Rep(G) = Rep(G)/(\),

Rep(G,m): a truncated subcategory,

_ 1
pP= §Za€(1>+ a,

S: simple reflections in W,
$8,m = tmpsa: an affine reflection,
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socgM: the socle of M,
soc’aM: term in the socle filtration, @

T = Ty in the modular case,

T = Ug(g) in the quantum case,

T(A\): an indecomposable tilting module,
Tilt(G): tilting modules in Rep(G),

TY: a translation functor,

T/’\L 9 a quasi-translation functor,

T° = Dreqo T

U,(9): quantum group over Q(q),
UZ(g): integral form of Uy(g),

(0) =Ulle)/(Ki@1—1@1]a )17
(9) = UZ(9) @z1,9-11 K,

wo € Whn: the longest element,

Wag = 2P x Wy, the affine Weyl group,
W;f ={w € Wag | w(Agnq) is dominant },
Wext = X X Wyy: extended aff. Weyl group,
Wit = {w € Wext | w(Apuna) is dominant},
wid(M): Weyl filtration dimension of M,
Whp: the (finite) Weyl group of @, |§|

Ue
U¢

X: the weight lattice, [9]

X*: the dominant weights, [9)
X={z(i,j) | 0<i<n,0<j<n}uU{e} [134
x(1,7) = S0S1 - - SiSnSn—1 " Sp—j+1, [134

X, ={Ae XT|(\aY) < forall a € 11}, 32
Xﬂ‘{ : the dominant Weyl chamber,

(: a primitive ¢-th root of unity,
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