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Abstract

We address for the first time the problem of correcting group discriminations within a score
function, while minimizing the individual error. Each group is described by a probability density
function on the set of profiles. We first solve the problem analytically in the case of two
populations, with a uniform bonus-malus on the zones where each population is a majority. We
then address the general case of n populations, where the entanglement of populations does not
allow a similar analytical solution. We show that an approximate solution with an arbitrarily
high level of precision can be computed with linear programming. Finally, we address the
reverse problem where the error should not go beyond a certain value and we seek to minimize
the discrimination.
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1 Introduction

As machine learning is being deployed, a growing number of cases of discriminatory behaviors is
being highlighted. In 2016, a study by ProPublica1 showed that some algorithmic assessment of
recidivism risks was significantly racially biased against black criminals. Indeed, 44.9% of sup-
posedly high-risk black criminals did not re-offend, as opposed to 23.5% of supposedly high-risk
white criminals. Conversely, 28.0% of supposedly low-risk black criminals re-offended, as opposed
to 47.7% of supposedly low-risk white criminals. Such concerns for algorithmic discrimination have
fostered a lot of work.

A major difficulty posed by new machine learning techniques is that algorithms may have learned
their biases from high-dimensional data, which ironically seems hard to handle without machine
learning. Racial inequalities in facial recognition have for instance been showed in [1]. More
disturbingly, it was discovered that the popular word2vec package [29] yields gender discriminative
relations between word representations, e.g., doctor − man + woman = nurse. In other words,
word2vec seems to infer from natural language processing that a man is to a woman what a doctor
is to a nurse. Although this is only one example out of many, it illustrates the difficulty of mitigating
algorithmic discrimination.

Many solutions have been proposed. Dwork et al. [11] introduced the concept of “fair affirmative
action”, to improve the treatment of specific groups while treating similar individuals similarly.
Some approaches consist in pre-processing data used for machine learning [10] [41] [26] [27] or
making it unbiased [12]. Some try to prevent discrimination during the learning phase [38] [34]
[17], by using causal reasoning [21], or with graphical dependency models [16]. Other approaches
try to achieve independence from specific sensitive attributes [40]. [28] considers the problem of
learning fair classifiers, and [13] tries to achieve fairness in the context of adaptive boosting, support
vector machines and logistic regression. Algorithmic discrimination was also considered in problems
of subsampling [4], voting [3], personalization [6] or ranking [5].

More recently, [35] extended the results of [16] by showing the necessary and sufficient condition
to remove discrimination while preserving an equal error rate between groups. Important negative
results on fair classifiers were highlighted in [33], e.g., removing group discrimination is only com-
patible with a single error constraint (like equal false-negatives rates across groups). [22] proposes
an approach to remove discrimination among several populations, while preserving the accuracy
of populations for which the classifier is already accurate. [8] pointed out the problem of “self-
fulfilling prophecies” (i.e. predictions affecting the outcome, and therefore future predictions), and
[30] proposed a new counterfactual criterion better adapted to this kind of situations. [31] and [37]
also studied how algorithmic predictions can interact with self-interested decision makers.

Most previous works focus on classifiers, i.e. binary decisions. Thus, even if a group fairness
criterion is satisfied, from an individual point of view, one is either discriminated “totally” or “not
at all”. So far, the fairness of real-valued functions has been discussed in the contexts of linear
regression [2], probabilistic models [14], collaborative filtering [39], dimensionality reduction [32]
and statistical independence [18]. In [16], continuous scores are considered, but in the context of
optimizing a fair binary classifier.2

In this paper, we consider a setting where a continuous score is attributed to several individuals. The
typical example would be a ML model analyzing the CV of various job applicants, and attributing
a score to each one. As many ML models are opaque and subject to biases, the recruiting company
may consider that some criteria should not have an influence within some specific categories. For

1See https://tinyurl.com/ml-bias-sentence
2[16] considers binary predictors, and tries to reach statistical independence w.r.t. sensitive attributes. It first

shows that this problem can be expressed as a linear programming problem. It then considers the particular case where
the binary prediction results from the combination of a score function and an arbitrary threshold: this additional
information on the nature of the predictor can be used to achieve a better precision. However, as stated in the paper,
this specific version of the problem cannot be solved with linear programming (yet can be “efficiently optimized
numerically using ternary search”).
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instance, among college-educated candidates with a similar technical background, the company
may consider that race or gender should not have a large statistical influence. While it may be
impossible to remove all biases in an opaque model, a reasonable objective could be that some
categories (e.g. female college-educated candidates and male college-educated candidates) have the
same average score. However, doing so may have a cost in terms of individual accuracy, that we
may want to minimize.

We therefore address, for the first time, the problem of correcting group discrimination within a
score function while minimizing the individual error. We consider a score function assigning a
score to each individual. Our criterion of group fairness is the average score of a given population,
that we may want to increase, decrease or equalize.3 We propose a post-processing approach to
modify the score function, where we tolerate an individual error ϵ. This error is defined as the
maximum difference between the initial and modified score function. Our goal is to achieve group
fairness while minimizing this individual error. In this setting, individuals are only “differentially
discriminated”, with an error at most ϵ. This is the first time this problem is considered in the
literature.4

More specifically, we assume that we are given a score function f that computes a score f(x)
for each individual x. Here, the individual’s profile x ∈ S can be any sort of description of the
individual. In simple settings, it may be a collection of real-valued features, i.e. S = Rd, and the
scoring function f may be interpretable. However, as machine learning improves, rawer data are
being used to score individuals, e.g. they may be textual biographies of undetermined length. In
such cases, the scoring function f is usually constructed via machine learning, and it often has to
be regarded as some “black box”. To remove group discrimination, rather than pre-processing raw
data or modifying the learning phase, it may thus be simpler to perform some post-processing of the
score function, i.e. deriving a non-discriminative score function h from the possibly discriminative
function f .

An additional difficulty is that the individual’s profile x may not clearly determine its sensitive
features, e.g. gender or race. Nevertheless, evidently, even biographic texts may provide strong in-
dications of the individual’s likely sensitive features. A natural approach to analyze the dependency
of the score function on sensitive features is to test its scoring on profiles that are representative of a
certain gender or race. Interestingly, this approach can now be simulated using so-called generative
models [15]. These models allow to draw representative samples of subpopulations of individuals.

Thus, we assume that any population i (women, men, black, white, . . . ) can be described by some
generative model5. Formally, this corresponds to saying that the population i is represented by
a probability density function pi on S. Given pi, we can determine the average score of popula-
tion i (i.e.,

∫
x∈S pi(x)f(x)dx), which can be well approximated by sampling the generative model

associated to population i.

Contributions. For pedagogical reasons, we first study in this paper the simple case of two
populations with a different average score. The goal here is to determine a new score function h
where (a) the two populations have the same average score and (b) the individual error is minimized.
We define the individual error as the maximal difference between f and h, i.e., maxx∈S |f(x)−h(x)|
(also written ||f − h||∞).6

3To our knowledge, this is the first time this criterion is considered. Similar criteria have been considered (see
previous works on real-valued functions), but in a more probabilistic or statistical sense.

4Our claim is not that this is the first paper to consider fairness with real values (see references above), but the
first to modify a score function under constraints.

5More precisely, many generative machine-learning models, such as Generative Adversarial Networks (GANs),
precisely allow to infer a probability distribution of the features of a population (or a representative sample of this
distribution) based on a finite set of example. Arguably, the probability distribution inferred by such algorithms is
more relevant, as it avoids overfitting on a finite small set of given examples.

6Our motivation for using this norm (often called “max norm”) are the following. First, it is very simple, and
has (to our knowledge) not been considered before for this kind of problem. Second, in terms of social fairness, it
sets a clear limit to the “worst-case treatment” of one particular individual. Among other existing norms, it is often
possible to “sacrifice” a small group of individuals to reach the desired outcome (by giving them an extreme score).
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We call the problem of determining the best function h the 2-ODR (2-Optimal Discrimination
Removal) problem (“2” standing for “two populations”). We present an exact solution to the 2-ODR
problem. Roughly speaking, we consider the subsets of S where p1(x) > p2(x) and p2(x) > p1(x),
and apply a uniform bonus (or penalty) on these subsets. We show that our solution is indeed
optimal for it minimizes the individual error.

Then we turn to the more general case of n populations, which is arguably the most relevant
setting in practice. Indeed, it is for instance often considered important that a score function be
both non-racist and non-sexist. Similarly, it may be relevant to compare the scores of several races,
e.g. Black, White, Asian and Arabic. In fact, we may even demand greater granularity by also
comparing black female and white female, in addition to already comparing black and white. We
address this n-population setting by considering some desired average score yi for each population i.
This more general goal enables the modelers to describe more subtly what they consider desirable.
We call this problem the Optimal Discrimination Removal (ODR) problem.

This problem is significantly more difficult with n > 2. In fact, we conjecture that it is computa-
tionally intractable for n > 2 and combinatorially large profile sets S. Indeed, intuitively, in the
case n = 2, the general problem of removing discrimination could be fixed locally for each x ∈ S,
by determining whether x is more likely to be of population 1 or 2. Unfortunately, this no longer
seems to be the case when n > 2. To solve the ODR problem, it seems that a global solution h first
needs to be derived. But this global solution seems to require at least Ω(|S|) computation steps in
general.

Interestingly though, we show that an approximate solution (with an arbitrarily high level of pre-
cision) can be obtained with linear programming [9]. Linear programming problems are expressed
in terms of a set of inequalities involving linear combinations of variables. These problems have
been extensively studied, and a lot of algorithms have been proposed to solve them [19] [24] [36]
[20]. Here, we show that this abundant literature of algorithms can also be leveraged to solve
discrimination problems.

We proceed incrementally through 6 steps. We first show that the ODR problem is reducible to the
simpler (to express) Optimal Bonus-Malus (OBM) problem, where each desired average score is 0.
We then define an approximate version of OBM, which we denote AOBM. We consider an arbitrary
partition (S1, . . . , Sm) of S, as well as a set of functions Z which are “flat” on each subset Sj . The
AOBM problem consists in approximating a solution to the OBM problem with a function u ∈ Z.
The larger m, the more precise the solution. We show that the AOBM problem is equivalent to
a linear programming problem with 2m + 1 variables and m + 2n inequalities7. We use the fact
that the functions of Z can only take a finite number of values, to transform the continuous OBM
problem into a discrete problem.

We finally also address the reverse problem, where the individual error is not allowed to be greater
than ϵ. Here, the goal is to be as close as possible to the desired score of each population. We
proceed in an analogous way through 6 steps.

The case of two populations is treated in Section 2, the general case in Section 3, and the reverse
case in Section 4. We conclude in Section 5.

The max norm is a simple way to avoid this, as well as a clear and easily understandable guarantee.
7Excluding the inequalities requiring each variable to be positive (which are included in the canonical form of a

linear programming problem).
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2 The Case of Two Populations

Let S be a set of profiles8. Let f be a function from S to R associating a score to each profile. Let
p1 and p2 be any two probability density functions9 on S, representing two populations 1 and 2.

Let X be the set of functions g from S to R such that
∫
x∈S p1(x)g(x)dx =

∫
x∈S p2(x)g(x)dx (i.e.

population 1 and 2 have the same average score).

For any function g from S to R, let ||g||∞ = maxx∈S |g(x)|.
The 2-ODR (2-Optimal Discrimination Removal) problem consists in finding a function h ∈
argming∈X ||g − f ||∞, i.e., a function minimizing the individual error.

Solution. For x ∈ S, let u(x) = 1 if p1(x) > p2(x) and −1 otherwise. Let A =
∫
x∈S(p1(x) −

p2(x))u(x)dx, B =
∫
x∈S(p1(x)− p2(x))f(x)dx and k = −B/A.

We define h by h(x) = f(x) + ku(x).

Theorem 1. Function h above solves the 2-ODR problem.

Proof. By construction, ||h− f ||∞ = |k|. If k = 0, h indeed minimizes ||h− f ||∞. We now suppose
that k ̸= 0.

The proof is by contradiction. Suppose the opposite of the claim: there exists a function h′ ∈ X such
that ||h′ − f ||∞ < |k|. Then, h′(x) = f(x) + v(x), with |v(x)| < |k|. Let D =

∫
x∈S p1(x)h

′(x)dx−∫
x∈S p2(x)h

′(x)dx. Then, D =
∫
x∈S(p1(x)− p2(x))f(x)dx+

∫
x∈S(p1(x)− p2(x))v(x)dx.

By definition, k = −B/A, with A =
∫
x∈S(p1(x)−p2(x))u(x)dx and B =

∫
x∈S(p1(x)−p2(x))f(x)dx.

Thus, B = −kA, andD = −k
∫
x∈S(p1(x)−p2(x))u(x)dx+

∫
x∈S(p1(x)−p2(x))v(x)dx =

∫
x∈S(p1(x)−

p2(x))(v(x)− ku(x))dx.

Let S1 (resp. S2) be the subset of S such that, ∀x ∈ S1 (resp. S2), p1(x) > p2(x) (resp. p2(x) ≤
p1(x)). Then, D = D1 +D2, where Di =

∫
x∈Si

(p1(x)− p2(x))(v(x)− ku(x))dx.

We define function s as follows: s(x) = 1 if x > 0 and −1 otherwise.

If p1(x) > p2(x) (resp. p2(x) ≤ p1(x)), u(x) = 1 (resp. u(x) = −1). Then, as |v(x)| < |k|, we have
s(v(x)− ku(x)) = −s(k) (resp. s(k)). Thus, s(D1) = s(D2) = −s(k), and D = D1 +D2 ̸= 0.

Therefore,
∫
x∈S p1(x)h

′(x)dx ̸=
∫
x∈S p2(x)h

′(x)dx, and h′ /∈ X: contradiction. Hence, our result.

3 The Case of Many Populations

We now consider the case of n populations. This problem when n ≥ 2 is significantly harder than
the problem above due to the entanglement of several probability density functions. We show that
an approximate solution of this problem can be obtained with linear programming. We proceed
incrementally through 6 steps.

1. We define the general Optimal Discrimination Removal (ODR) problem, corresponding to
the case n ≥ 2.

2. We define a simpler (to express) problem, the Optimal Bonus-Malus (OBM) problem.

3. We show that solving OBM provides an immediate solution to ODR.

8Here, a profile can be any set of information describing an individual. The precise nature of these profiles has no
importance here, since the function f is considered as a “black box”.

9For the reasons to assume that such probability density functions are available: see the introduction.
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4. We define an approximate version of the OBM problem (AOBM), where we restrict ourselves
to functions which are “flat” on an arbitrarily large number of subsets of S.

5. We define a Linear Programming problem, that we simply call LP for convenience.

6. We show that LP also solves AOBM.

Note that this problem is not, strictly speaking, a generalization of Section 2.10

Step 1: The Optimal Discrimination Removal (ODR) Problem

Let (p1, p2, . . . , pn) be n probability density functions on S, each one representing a population.
Let (y1, y2, . . . , yn) be n arbitrary values. Let Ω0 be the set of functions g from S to R such that,
∀i ∈ {1, . . . , n},

∫
x∈S pi(x)g(x)dx = yi (i.e. the mean score of population i is yi). If Ω0 ̸= ∅, the

ODR problem consists in finding a function h ∈ argming∈Ω0 ||g − f ||∞.

Step 2: The Optimal Bonus-Malus (OBM) Problem

∀i ∈ {1, . . . , n}, let bi = yi −
∫
x∈S pi(x)f(x)dx. Let Ω be the set of functions g from S to R such

that, ∀i ∈ {1, . . . , n},
∫
x∈S pi(x)g(x)dx = bi. If Ω ̸= ∅, the OBM problem consists in finding a

function u ∈ argming∈Ω ||g||∞.

Step 3: Reducing ODR to OBM

Theorem 2 below says that a solution to the OBM problem provides an immediate solution to the
ODR problem.

Theorem 2. If u solves the OBM problem, then h = f + u solves the ODR problem.

Proof. As u solves the OBM problem, we have the following: ∀g ∈ Ω, ||u||∞ ≤ ||g||∞.

Note that, if g ∈ Ω0, then g−f ∈ Ω. Indeed, if g ∈ Ω0, then ∀i ∈ {1, . . . , n},
∫
x∈S pi(x)g(x)dx = yi.

Thus, ∀i ∈ {1, . . . , n},
∫
x∈S pi(x)(g(x)− f(x))dx = yi −

∫
x∈S pi(x)f(x)dx = bi. Thus, g − f ∈ Ω.

Therefore, ∀g ∈ Ω0, ||u||∞ ≤ ||g − f ||∞. As u = h− f , we have: ∀g ∈ Ω0, ||h− f ||∞ ≤ ||g − f ||∞.
Thus, h ∈ argming∈Ω0 ||g − f ||∞. Thus, the result.

Step 4: The Approximate OBM (AOBM) Problem

Since the OBM problem may be intractable, we restrict the space of solutions to a specific family
of functions. We partition S into several subsets, and consider the set Z of functions with a
constant value on each of these subsets, then restrict our minimization problem to Z. Note that,
as the partitioning is arbitrary, a function of Z can approximate the real solution with an arbitrary
precision (like a picture with an arbitrarily large number of pixels).

Let (S1, . . . , Sm) be a partition of S: S1 ∪ S2 ∪ · · · ∪ Sm = S, and ∀{i, j} ∈ {1, . . . ,m}, Si ∩ Sj = ∅.
Let Z be the set of functions z from S to R such that, ∀i ∈ {1, . . . ,m}, ∀x ∈ Si and ∀x′ ∈ Si,
z(x) = z(x′) (i.e. z is “flat” on each subset Si).

If Ω ∩ Z ̸= ∅, the AOBM problem consists in finding a function u ∈ argming∈Ω∩Z ||g||∞.

10The 2-ODR problem of Section 2 consists in making two average scores equal. The ODR problem of Section 3
consists in making n scores equal to n arbitrary values yi. The reason for this difference is the following: the
problem defined is Section 2 is more fit for a theoretical proof, and the problem defined in Section 3 is more fit for
an approximate solution with linear programming. Besides, overall, we think that having arbitrary “goal values” yi
gives much more liberty to the user.
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At this point, one may wonder which properties a partitioning (S1, . . . , Sm) should ideally have.
While there is no definitive answer to this question, let us give an example of such properties. The
intuitive idea here is that, on any subset Sk, no relevant quantity (i.e., the function f and the
probability density functions (p1, p2, . . . , pn)) should vary too much. If this property is satisfied,
there is no reason to keep subdividing Sk: should we do so, the correction applied to each resulting
part would be almost the same.

More formally, let δf and δp be two arbitrarily small positive constants. The goal is then to find a
partitioning (S1, . . . , Sm) such that, ∀k ∈ {1, . . . ,m}, the two following properties are satisfied:

1. maxx∈Sk
f(x)−minx∈Sk

f(x) ≤ δf

2. ∀i ∈ {1, . . . , n}, maxx∈Sk
pi(x)−minx∈Sk

pi(x) ≤ δp

Step 5: The Linear Programming (LP) Problem

Let N and M be two integers. Let (x1, . . . , xN ) be N variables. Let L and (L1, . . . , LM ) be M +1
linear combinations of the variables (x1, . . . , xN ). Let (c1, . . . , cM ) be M constant terms.

A linear programming problem consists in finding values of (x1, . . . , xN ) maximizing L while veri-
fying the following inequalities:

� ∀k ∈ {1, . . . , N}, xk ≥ 0

� ∀k ∈ {1, . . . ,M}, Lk ≤ ck

In the following, we define a specific linear programming problem, that we simply call LP problem
for convenience.

∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . ,m}, let v(i, j) =
∫
x∈Sj

pi(x)dx.

Let (α1, . . . , αm), (β1, . . . , βm) and γ be 2m+ 1 variables.

Consider the following inequalities:

1. γ ≥ 0, and ∀j ∈ {1, . . . ,m}, αj ≥ 0 and βj ≥ 0.

2. ∀j ∈ {1, . . . ,m}, αj − γ ≤ 0 and βj − γ ≤ 0.

3. ∀i ∈ {1, . . . , n}, Σj=m
j=1 αjv(i, j)− Σj=m

j=1 βjv(i, j) ≤ bi

4. ∀i ∈ {1, . . . , n}, Σj=m
j=1 βjv(i, j)− Σj=m

j=1 αjv(i, j) ≤ −bi

The LP problem consists in finding values of (α1, . . . , αm), (β1, . . . , βm) and γ maximizing −γ while
satisfying the aforementioned inequalities.

Step 6: Reducing AOBM to LP

Let (α1, . . . , αm), (β1, . . . , βm) and γ be a solution to the LP problem. ∀x ∈ S, let λ(x) be the
integer j such that x ∈ Sj . Let u be the function from S to R such that, ∀x ∈ S, u(x) = αλ(x)−βλ(x).

Theorem 3 below says that u solves the AOBM problem. We first prove some lemmas.

Lemma 1. ||u||∞ ≥ max(α∗, β∗), where α∗ = maxj∈{1,...,m} αj and β∗ = maxj∈{1,...,m} βj.

Proof. Suppose the opposite: ||u||∞ < max(α∗, β∗). According to inequalities 2, γ ≥ max(α∗, β∗).
Thus, γ > ||u||∞.

∀j ∈ {1, . . . ,m}, we define (α′
1, . . . , α

′
m) and (β′

1, . . . , β
′
m) as follows:
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� If αj ≥ βj , α
′
j = αj − βj and β′

j = 0.

� Otherwise, α′
j = 0 and β′

j = βj − αj .

Let γ′ = ||u||∞ < γ.

∀j ∈ {1, . . . ,m}, α′
j ≤ max(αj , βj) and β′

j ≤ max(αj , βj). Thus, α
′
j ≤ γ′ and β′

j ≤ γ′.

We now show that (α′
1, . . . , α

′
m), (β′

1, . . . , β
′
m) and γ′ satisfy the inequalities of the LP problem.

Inequalities 1 are satisfied by definition. ∀j ∈ {1, . . . ,m}, α′
j ≤ γ′ and β′

j ≤ γ′. Thus, α′
j − γ′ ≤ 0

and β′
j − γ′ ≤ 0, and inequalities 2 are satisfied.

Inequalities 3 and 4 are equivalent to: ∀i ∈ {1, . . . , n}, Σj=m
j=1 αjv(i, j) − Σj=m

j=1 βjv(i, j) = bi. ∀j ∈
{1, . . . ,m}:

� If αj ≥ βj , α
′
j − β′

j = (αj − βj)− 0 = αj − βj .

� Otherwise, α′
j − β′

j = 0− (βj − αj) = αj − βj .

Thus, ∀j ∈ {1, . . . ,m}, α′
j − β′

j = αj − βj . Thus, Σj=m
j=1 α′

jv(i, j) − Σj=m
j=1 β′

jv(i, j) = Σj=m
j=1 (α′

j −
β′
j)v(i, j) = Σj=m

j=1 (αj − βj)v(i, j) = Σj=m
j=1 αjv(i, j)− Σj=m

j=1 βjv(i, j) = bi. Thus, inequalities 3 and 4
are satisfied.

Thus, there exists (α′
1, . . . , α

′
m), (β′

1, . . . , β
′
m) and γ′ satisfying the inequalities of the LP problem

with −γ′ > −γ. Thus, (α1, . . . , αm), (β1, . . . , βm) and γ do not solve the LP problem: contradiction.
Thus, the result.

Lemma 2. ||u||∞ = γ.

Proof. ||u||∞ = maxx∈S |u(x)| = maxj∈{1,...,m} |αj − βj |. ∀j ∈ {1, . . . ,m}, αj ≤ γ and βj ≤ γ.
Thus, |αj − βj | ≤ γ, and ||u||∞ ≤ γ.

We now show that γ ≤ ||u||∞. Suppose the opposite: γ > ||u||∞. As the LP problem consists in
maximizing−γ (and thus, minimizing γ), this implies that the inequalities of the LP problem are not
compatible with γ ≤ ||u||∞. Variable γ only appears in inequalities 1 and 2, and these inequalities
impose to have γ ≥ 0, γ ≥ maxj∈{1,...,m} αj and γ ≥ maxj∈{1,...,m} βj . Thus, γ = max(a∗, b∗), where
α∗ = maxj∈{1,...,m} αj and β∗ = maxj∈{1,...,m} βj . Thus, according to Lemma 1, ||u||∞ ≥ γ.

Therefore, ||u||∞ = γ.

Theorem 3. Function u solves the AOBM problem.

Proof. By definition, u ∈ Z.

Inequalities 3 and 4 of the LP problem are equivalent to: ∀i ∈ {1, . . . , n}, Σj=m
j=1 αjv(i, j)−Σj=m

j=1 βjv(i, j) =

bi. Thus, ∀i ∈ {1, . . . , n}, bi = Σj=m
j=1 (αj−βj)v(i, j) = Σj=m

j=1 (αj−βj)
∫
x∈Sj

pi(x)dx = Σj=m
j=1

∫
x∈Sj

u(x)pi(x)dx =∫
x∈S pi(x)u(x)dx. Thus, u ∈ Ω.

Therefore, u ∈ Ω ∩ Z. Now, suppose the opposite of the claim: u /∈ argming∈Ω∩Z ||g||∞. Let
w ∈ argming∈Ω∩Z ||g||∞. Thus, ||w||∞ < ||u||∞.

Let (w1, . . . , wm) be such that, ∀x ∈ Sj , w(x) = wj . Let γ′ = ||w||∞. ∀j ∈ {1, . . . ,m}, we define
(α′

1, . . . , α
′
m) and (β′

1, . . . , β
′
m) as follows:

� If wj ≥ 0, α′
j = wj and β′

j = 0.

� Otherwise, α′
j = 0 and β′

j = −wj .
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Thus, inequalities 1 are satisfied.

As γ′ = ||w||∞, ∀j ∈ {1, . . . ,m}, γ′ ≥ |wj | ≥ max(α′
j , β

′
j). Thus, inequalities 2 are satisfied.

As w ∈ Ω, ∀i ∈ {1, . . . , n},
∫
x∈Sj

pi(x)w(x)dx = bi. Thus, ∀i ∈ {1, . . . , n}, bi = Σj=m
j=1

∫
x∈Sj

pi(x)w(x)dx

= Σj=m
j=1 wj

∫
x∈Sj

pi(x)dx = Σj=m
j=1 wjv(i, j) = Σj=m

j=1 α′
jv(i, j)−Σj=m

j=1 β′
jv(i, j) ≤ bi. Thus, inequalities

3 and 4 are satisfied.

According to Lemma 2, ||u||∞ = γ. Thus, as ||w||∞ < ||u||∞, γ′ < γ. Therefore, there exists
(α′

1, . . . , α
′
m), (β′

1, . . . , β
′
m) and γ′ satisfying the inequalities of the LP problem with −γ′ > −γ.

Thus, (α1, . . . , αm), (β1, . . . , βm) and γ do not solve the LP problem: contradiction. Thus, the
result.

4 The Reverse Case

In the previous section, we showed how to reach the desired scores for each population with a
minimal individual error. However, even when minimized, the individual error may still be very
high, and sometimes not acceptable.

In this section, we consider the reverse problem: assuming that we can accept an individual error
which is at most ϵ, how can we reach a score which is as close as possible from the desired scores
of each population? We call this problem the reverse ODR (R-ODR) problem.

We again proceed in 6 steps, following the same outline as the 6 steps of Section 3.

Step 1: The Reverse ODR (R-ODR) Problem

Let ϵ ≥ 0. Let Φ0 be the set of functions g from S to R such that ||g − f ||∞ ≤ ϵ (i.e., functions for
which the individual error remains acceptable).

Let g be a function from S to R. ∀i ∈ {1, . . . , n}, let µi(g) = |
∫
x∈S pi(x)g(x)dx − yi| (i.e., the

distance between the average score of population i and its desired average score yi). Let µ(g) =
maxi∈{1,...,n} µi(g) (i.e., the upper bound of these distances).

The R-ODR problem consists in finding a function h ∈ argming∈Φ0 µ(g).

Note that in the previous case, we considered the set of functions for which each population has
exactly the desired average score, and tried to minimize the individual error. Here, however, we
cannot start with the assumption that ϵ = 0, otherwise no change would be possible (by definition).
Thus, we have to consider ϵ > 0.

Step 2: The Reverse OBM (R-OBM) Problem

Let Φ be the set of functions g from S to R such that ||g||∞ ≤ ϵ.

∀i ∈ {1, . . . , n}, let ∆i(g) = |
∫
x∈S pi(x)g(x)dx− bi|. Let ∆(g) = maxi∈{1,...,n}∆i(g).

The R-OBM problem consists in finding a function u ∈ argming∈Φ∆(g).

Step 3: Reducing R-ODR to R-OBM

In Theorem 4, we show that a solution to the R-OBM problem provides an immediate solution to
the R-ODR problem.

Theorem 4. If u solves the R-OBM problem, then u+ f solves the R-ODR problem.
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Proof. Let g be a function from S to R. ∀i ∈ {1, . . . , n}, ∆(u) = |
∫
x∈S pi(x)g(x)dx − bi| =

|
∫
x∈S pi(x) g(x)dx+

∫
x∈S pi(x)f(x)dx−

∫
x∈S pi(x)f(x)dx−bi| = |

∫
x∈S pi(x) (g(x)+f(x))dx−yi| =

µi(g + f). Thus, ∆(g) = µ(g + f), and argming∈Φ∆(g) = argming∈Φ0 µ(g + f).

Therefore, if u ∈ argming∈Φ∆(g), then u+ f ∈ argming∈Φ0 µ(g). Thus, the result.

Step 4: The Reverse AOBM (R-AOBM) Problem

The R-AOBM problem consists in finding a function u ∈ argming∈Φ∩Z ∆(g).

Step 5: The Reverse LP (R-LP) Problem

Let (α1, . . . , αm), (β1, . . . , βm) and γ be 2m+ 1 variables.

Consider the following inequalities:

1. γ ≥ 0, and ∀j ∈ {1, . . . ,m}, αj ≥ 0 and βj ≥ 0.

2. ∀j ∈ {1, . . . ,m}, αj ≤ ϵ and βj ≤ ϵ.

3. ∀i ∈ {1, . . . , n}, Σj=m
j=1 αjv(i, j)− Σj=m

j=1 βjv(i, j)− bi ≤ γ

4. ∀i ∈ {1, . . . , n}, Σj=m
j=1 βjv(i, j)− Σj=m

j=1 αjv(i, j) + bi ≤ γ

The R-LP problem consists in finding values of (α1, . . . , αm), (β1, . . . , βm) and γ maximizing −γ
while satisfying the aforementioned inequalities.

Step 6: Reducing R-AOBM to R-LP

Let (α1, . . . , αm), (β1, . . . , βm) and γ be a solution to the R-LP problem. Let u be the function
from S to R such that, ∀x ∈ S, u(x) = αλ(x) − βλ(x).

In Theorem 5, we show that u solves the R-AOBM problem.

Lemma 3. ∆(u) ≤ γ.

Proof. ∀i ∈ {1, . . . , n}, ∆i(u) = |
∫
x∈S pi(x)u(x)dx−bi| = |Σj=m

j=1

∫
x∈Sj

pi(x)u(x)dx−bi| = |Σj=m
j=1 (αj−

βj)v(i, j)dx−bi| = |Σj=m
j=1 αjv(i, j)−Σj=m

j=1 βjv(i, j)−bi| ≤ γ, according to inequalities 3 and 4. Thus,
∆(u) = maxi∈{1,...,n}∆i(u) ≤ γ.

Lemma 4. ∆(u) ≥ γ.

Proof. Suppose the opposite: ∆(u) < γ. Let γ′ = ∆(u). ∀i ∈ {1, . . . , n}, ∆i(u) = |
∫
x∈S pi(x)u(x)dx−

bi| = |Σj=m
j=1 αjv(i, j)−Σj=m

j=1 βjv(i, j)− bi| ≤ ∆(u). Thus, as γ′ = ∆(u), inequalities 3 and 4 are still
satisfied if we replace γ by γ′. Thus, as γ′ < γ, (α1, . . . , αm), (β1, . . . , βm) and γ do not solve the
R-LP problem: contradiction. Thus, the result.

Theorem 5. The function u solves the R-AOBM problem.

Proof. By definition, u ∈ Z. According to inequalities 2, u ∈ Φ. Thus, u ∈ Φ ∩ Z. Now, suppose
the opposite of the claim: u /∈ argming∈Φ∩Z ∆(g).

Let w ∈ argming∈Φ∩Z ∆(g). Let (w1, . . . , wm) be such that, ∀x ∈ Sj , w(x) = wj . Let γ′ = ∆(w).
∀j ∈ {1, . . . ,m}, we define (α′

1, . . . , α
′
m) and (β′

1, . . . , β
′
m) as follows:

� If wj ≥ 0, α′
j = wj and β′

j = 0.
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� Otherwise, α′
j = 0 and β′

j = −wj .

By construction, inequalities 1 are satisfied.

As w ∈ Φ, ∀j ∈ {1, . . . ,m}, |wj | ≤ ϵ. Thus, ∀j ∈ {1, . . . ,m}, α′
j ≤ |wj | ≤ ϵ and β′

j ≤ |wj | ≤ ϵ.
Therefore, inequalities 2 are satisfied.

As γ = ∆(w), ∀i ∈ {1, . . . , n}, |
∫
x∈S pi(x)w(x)dx − bi| = |Σj=m

j=1 α′
jv(i, j) − Σj=m

j=1 β′
jv(i, j) − bi| ≤

∆(w) = γ′. Thus, inequalities 3 and 4 are satisfied.

As w ∈ argming∈Φ∩Z ∆(g) and u /∈ argming∈Φ∩Z ∆(g), we have ∆(w) < ∆(u). We have ∆(w) = γ′,
and according to Lemma 3 and Lemma 4, ∆(u) = γ. Thus, γ′ < γ. Thus, (α1, . . . , αm), (β1, . . . , βm)
and γ do not solve the R-LP problem: contradiction. Thus, the result.

5 Conclusion and limitations

We consider the problem of removing algorithmic discrimination between several populations with a
minimal individual error. We first describe an analytical solution to this problem in the case of two
populations. We then show that the general case (with n populations) can be solved approximately
with linear programming. We also consider the reverse problem where an upper bound on the error
is fixed and we seek to minimize the discrimination.

A major challenge would be to either find an analytical solution to the general case with n popula-
tions or prove that it is indeed intractable. We conjecture the latter. Another interesting question
would be to determine how to optimally choose the subsets (S1, . . . , Sm) used for the approximate
solution.

Limitations. Finally, we make several clarifications on the scope of our approach, to avoid some
misunderstandings.

1. We are “agnostic” w.r.t. the desirability of removing group discriminations. Such concerns
are complex topics subject to many controversies, and are out of the scope of this paper. Our
approach is the following: assuming that people want to remove group discriminations, we
address the problem of doing this with a minimal error.

2. We do not pretend that any difference of score between two groups is problematic. These
groups have to be carefully chosen by the user in order to be relevant. For instance, for a
hiring process, comparing two groups of different ethnic origins but with the same education
level may be more relevant than simply comparing two ethnic groups.11

3. The error considered is relative to the score function, not to the “ground truth” (which of
course we do not have access to). The score function represents the best approximation we
have of the ground truth.

4. The goal here is to adjust average scores with a minimal cost in terms of individual error.
The decisions made with this score are out of the scope of this paper. However, we would
like to underline the fact that this is not necessarily a binary decision. One could imagine
(for instance) a set of job positions which “value” are proportional to the score. Replacing
the score function with a binary function would be a different problem, but could be solved
with a similar approach.

5. Finally, it is important to point out that solutions aiming to improve fairness may have
unintended negative consequences. For instance, [25] shows that, in some temporal models,
common fairness criteria may eventually cause more harm than good, due to feedback loops.

11This example is only here to illustrate, and is not meant to be a prescription.
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The results of [23] suggest that some key notions of fairness are incompatible with each other,
resulting in inherent trade-offs. In the case of recidivism, [7] shows that a recently-applied
criterion of fairness may lead to considerable disparate impact when recidivism prevalence
differs across groups.

Acknowledgements: While doing this research work, the authors were paid by EPFL and UM6P.
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Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
3156–3164. PMLR, 2018.

[26] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard S. Zemel. The variational
fair autoencoder. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[27] Kristian Lum and James E. Johndrow. A statistical framework for fair predictive algorithms.
CoRR, abs/1610.08077, 2016.

[28] Aditya Krishna Menon and Robert C. Williamson. The cost of fairness in binary classification.
In Conference on Fairness, Accountability and Transparency, FAT 2018, 23-24 February 2018,
New York, NY, USA, pages 107–118, 2018.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[30] Alan Mishler, Edward H. Kennedy, and Alexandra Chouldechova. Fairness in risk assessment
instruments: Post-processing to achieve counterfactual equalized odds. In Madeleine Clare
Elish, William Isaac, and Richard S. Zemel, editors, FAccT ’21: 2021 ACM Conference on
Fairness, Accountability, and Transparency, Virtual Event / Toronto, Canada, March 3-10,
2021, pages 386–400. ACM, 2021.

[31] Juan C. Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performa-
tive prediction. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 7599–7609. PMLR, 2020.

[32] Adrián Pérez-Suay, Valero Laparra, Gonzalo Mateo-Garcia, Jordi Muñoz-Maŕı, Luis Gómez-
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