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Abstract

This semester project aimed at simulating two approaches for low temperature dependence
of resonance frequency of resonators. The first one consists in using AT-cut quartz as the
resonator’s material. The AT-cut quartz wafers are made using a 35° angle with respect to
the z-axis and they show very low resonance frequency shift in the temperature range [-40,
100]°C for thickness shear modes. The second approach is based on adding a Lithium Niobate
thin film on top of a silicon resonator to compensate for the resonance frequency shift (due
to temperature) of the later. Initially, the change of material properties due to temperature
were investigated through literature review and simulations on Matlab. Once those properties
were defined, more detailed simulations were carried out using COMSOL Multiphysics. The
minimum resonance frequency shift achieved for 0.35.82 (ZXZ Euler angles) rotated quartz was
0.36ppm/°C. A frequency shift of 2.7ppm/°C was obtained for a 2µm thick silicon resonator
coated with 0.5µm thick, 0.38.90 rotated (ZXZ Euler angles) Lithium Niobate.
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1 Literature research
The main goal of the literature researches was to find the temperature dependent stiffness matrices
of the AT cut quartz and silicon such that, for each term of the matrix :

Cij = C0ij · (1 + Tc
(1)
ij (T − T0) + Tc

(2)
ij (T − T0)2 + Tc

(3)
ij (T − T0)3) (1)

where Tc(1)ij , Tc(2)ij , Tc(3)ij are the first, second and third order temperature coefficients of the stiff-
ness matrix of the material, C0ij are the stiffness coefficients at reference temperature T0 (generally
25°C) and T is the temperature of the material. The matrix is 6x6 but is symmetric so there only
are 21 different coefficients.

In the case of AT-cut quartz, we also needed the relative permittivity and the piezoelectric matrices
as well as their temperature dependency.

The values retrieved from the literature and used in this project are given in A.1.

1.1 AT-cut Quartz
According to the researches conducted, there doesn’t exist any scientific paper that clearly reviews
the matrices and coefficients of the AT cut quartz (35° rotation from the z-axis). However, there
are many sources for the coefficients of non rotated quartz that all report similar results ([War], [R
D89]). In the paper that served as a source for this semester project [Bec], the authors measured
the first, second and third order temperature coefficients of the stiffness matrix of quartz and
compared their results to the existing literature. See A.1 for the coefficients. Once those values
were retrieved, they needed to be converted to AT cut quartz by rotating the different matrices.
This was done using the tensor transformation method of B.A.Auld [B A73] in which we consider
the x-convention of the Euler angles [Wei]: there are three rotation angles, φ about the initial z
axis, θ about the new x’-axis and ψ about the new z’-axis as shown in figure 1.

Figure 1: ZXZ Euler angles convention

Using this convention, the angles corresponding to the AT-cut quartz would be φ = 0°, θ = 35°
and ψ = 0°.

1.2 Silicon and Lithium Niobate
In the case of the Silicon, mainly one source was used to determine the material properties [Jaa].
In this paper, they investigate the effect of doping on the stiffness coefficients of the silicon for
different resonating modes. Given the symmetry of silicon, only three different coefficients are
necessary to determine the whole stiffness matrix (A.1): c11, c12 and c44. Those coefficients and
their 1st and 2nd order temperature dependency were retrieved from this paper for different doping
levels (A.1).

For Lithium Niobate, all of the material properties were directly given to me by Prof. Guillermo
Villanueva with 0.0.0 angles using the ZXZ Euler angles convention. Moreover, only the linear
dependency with temperature was considered such that equation 1 becomes: Cij = C0ij · (1 +

Tc
(1)
ij (T − T0)).

1
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2 Matrix rotation and optimal properties

2.1 AT-cut Quartz
2.1.1 Principle and algorithm

Once the values for the 0.0.0 quartz were determined, the angles of the ZXZ Euler angles convention
for which we obtain AT-cut quartz like behaviour (2) needed to be found. In the case of the quartz,
three resonating modes were investigated: f1 mode, f4 mode and f6 mode. The first one corresponds
to a longitudinal mode in which we observe an horizontal expansion along the x-axis. The f4 and f6
correspond to face-shear and thickness shear modes respectively. For the later modes, the displace-
ment should be mainly along the third axis (z) and the second axis (y) respectively. The matter
of displacement modes is described in more details in the Comsol simulation part (3) of this report.

The resonance frequency of a resonator with given dimensions can be approximated as fres =
1

2W ·
√

E
ρ were W is either the thickness or the pitch of the resonator (depending on the resonating

mode), E is the Young’s modulus of the material and ρ the density. This expression is derived
from the speed v of the acoustical wave going through a resonator v = λf =

√
E
ρ where λ = 2W

is the wavelength of the wave.
For the mathematical simulations carried out on MATLAB, the resonance frequencies of the three
different modes were approximated by applying to each particular case the aforementioned approx-
imation such that:

f1 =
1

√
ρ · 2W

·

√
c11 −

c213
c33

(2)

f4 =
1

2W
·
√
c44
ρ

(3)

f6 =
1

2W
·
√
c66
ρ

(4)

where the coefficients cij are the values of the stiffness matrix corresponding to the indexes. Those
coefficients vary depending on the temperature and on how the matrix is rotated.
The change in resonance frequency in ppm at a temperature T with respect to a reference temper-
ature T0 can then be computed as :

∆fi =
fi(T )− fi(T0)

fi(T0)
· 106, i = 1, 4, 6. (5)

where T0 is equal to 25°C for all of the simulations.

The principle of the first iteration of the MATLAB algorithm is the following:

• Input the 0.0.0 stiffness matrix and temperature dependence matrices of 1st, 2nd and 3rd
order.

• Sweep the angle θ and the in-plane angle (ψ) of the ZXZ Euler angles convention (1) between
-90 and 90 degrees.

• For each angle, the matrices are rotated separately using the algorithm provided by Silvan
Stettler and then summed up for each temperature of the temperature range [-40, 100]°C.

• The parameter we look to minimise is the norm of the ∆fi previously defined over the
temperature range.

• Once the θ angle that minimises the norm is found, the norm is plotted against the in-plane
angle to determine manually which one is the best.

This first iteration wasn’t successful since even the smallest variation found was of the order of
2850ppm over a temperature range of 140°C. (4).

The mistake made in that previous algorithm was that the stiffness matrix and its temperature
variations coefficients matrices were rotated separately and then summed up for each temperature.
In the second iteration (3), the matrices are added for each temperature before applying the
different rotations. The rest of the algorithm is similar to the first iteration.

2
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Figure 2: Typical frequency shift with temperature of AT-cut quartz

Figure 3: Extract of the MATLAB code for the 2nd iteration of the algorithm (the full MATLAB
code can be found in A.2)

3
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2.1.2 Results

Here is a plot of the smallest ∆fi vs Temperature for the first iteration of the algorithm:

Figure 4: Plot of ∆f4 against the temperature for a rotation of 0.75.31. (1)

As we can see, this correspond to a variation of roughly 20.36 ppm/°C which is much more than
the results found in literature for AT cut Quartz. Moreover, the angles 0.75.31 are far from any
AT-cut defined in literature.

In the case of the second iteration of the algorithm, three theta angles (one for each mode) min-
imising the norm were obtained : 35° for f6 mode, -56° for f4 mode and 39° for f1 mode. The
in-plane angles (ψ) for which the norm is minimal were measured from figure 5 for each case. The
three optimised sets of angles are thus : 0.35.82, 0.-56.85 and 0.39.3. The corresponding ∆f vs T
plots were then compared to the expected AT-cut quartz behaviour (2). As we can see in figure 6,
the f1 mode is the less interesting one as it has no inflexion point (which is expected for AT-cut)
and varies more than the other ones. The f4 and f6 modes both look correct but the f4 increases
significantly around 100°C and doesn’t correspond to the expected θ = 35° angle of the AT-cut
Quartz. Thus, the mode that seemed the more promising for further simulations in Comsol is the
f6 mode with Euler angles 0.35.82.

Once the set of angles was chosen, the piezoelectric and relative permittivity tensors as well as
their first temperature coefficients were rotated similarly.

4
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Figure 5: The three plots represent the variation of the norm of ∆fi over a temperature range
[-40,100]°C with respect to the in-plane rotation angle. On the upper left: f4 mode with θ = -56°.
On the upper right: f1 mode with θ = 39°. At the bottom: f6 mode with θ = 35°.

5
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Figure 6: ∆fi over a temperature range [-40,100]°C for optimised angles. On the upper left: ∆f4
with 0.-56.85. On the upper right: ∆f1 with 0.39.3. At the bottom: ∆f6 with 0.35.82.

2.2 Silicon

The silicon optimisation was quite straightforward: the goal was to compare the variations in res-
onance frequency for the different doping levels (which correspond to different stiffness coefficients
and temperature dependence of those coefficients) used in the paper "Determination of Doping
and Temperature-Dependent Elastic Constants of Degenerately Doped Silicon From MEMS Res-
onators" (1.2) and determine which one is the most appropriate one knowing that it will be
compensated by Lithium Niobate (see 2.3). The mode we consider is the f1 mode as defined in 2
except that, for silicon, c33 = c11.
The ∆f1 curves for each doping level were plotted on Matlab over the temperature range [-
40,100]°C. We want the resonance frequency to increase when the temperature increases because
the Lithium Niobate shows opposite behaviour (this way the two material variations will compen-
sate). As can be seen on figure 7, the most appropriate doping level for our application is the
phosphorus doping of carrier concentration 7.5 ·1019cm−3. It is interesting to note that the carrier
concentration investigated are only the ones from the paper. However, we can clearly see that,
for As and P dopants, the more we increase the carrier concentration, the more the shape of the
curve tends to have a positive slope. Thus, we can infer that using even higher carrier concentra-
tion would be an even better solution as the curve would probably be increasing over the whole
temperature range instead of diminishing back around 80°C.

6
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Figure 7: ∆fi over a temperature range [-40,100]°C for doped silicon with different carrier concen-
trations.

2.3 Lithium Niobate

For the rotation angles of the Lithium Niobate, two simple sets proposed by Prof. Guillermo
Villanueva were explored: 0.38.90 and 0.-90.0. The algorithm used to make those rotations is the
same as in 2.1.1 although there is no need for sweeping this time as we already know the Euler
angles to use. As the Silicon and the Lithium Niobate will form one beam, we consider the same
mode as for silicon: f1. The resulting ∆f1 obtained for the two sets of angles are shown in figure
8. As the variation for the angles 0.-90.0 seems orders of magnitude too small (roughly 10−2 ppm
over the whole temperature range) to compensate for the variations of the silicon layer, the logical
choice is to select the other set of angles (0.38.90) for which the variation in resonance frequency is
of the same order of magnitude as for Si. The computed material properties matrices are available
in A.3.

7
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Figure 8: ∆fi of Lithium Niobate over the temperature range [-40,100]°C for 2 sets of angles. On
the left: ∆f1 with 0.-90.0. On the right: ∆f1 with 0.38.90

2.4 Retrieving the material properties
In the 2nd iteration of the algorithm, we obtained one 6 by 6 matrix (for the stiffness) for each
temperature T (141 different temperatures in this case). For each matrix, the coefficients are
determined according to the equation 1. The matrices are then all rotated and we thus don’t have
separated matrices for the stiffness coefficients and for the temperature dependence coefficients.
This means that the first, second and third order temperature dependence coefficients must be
estimated from the coefficients of the 141 rotated matrices. Practically, for each term Cij of the 6
by 6 matrix, we need to approximate the coefficients p1, p2, p3 and p4 such that :

Cij = p1 · T 3 + p2 · T 2 + p3 · T + p4 (6)

This is done using the MATLAB function fit() as can be seen in figure 9. An example of the fitted
curve obtained through this method is given in A.3 for the C66 coefficient of the 0.35.82 rotated
Quartz.

Figure 9: Code used to approximate the stiffness matrix terms

This method was used to retrieve the stiffness, piezoelectric and permittivity matrices and their
temperature dependence coefficients after rotation for Quartz and Lithium Niobate as can be seen
in the code in A.2.

8
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3 Comsol simulations

Only 2D Comsol simulations were carried out during this semester project for which the axis were
defined similarly to the ZXZ Euler angles convention described previously: the x-axis towards the
right, the z-axis up (perpendicular to the plane of the resonator) and the y-axis as the out-of-plane
axis (coming out of the screen).

3.1 Quartz

3.1.1 Geometry

Once the material properties were computed, they could then be inserted into Comsol as a new
material for further simulations. The geometry of the set-up for the simulation was determined
by looking at the coupling (piezoelectric) matrix at reference temperature (25°C). Since we are
looking to excite the thickness-shear mode f6, we choose the larger coefficient of the 6th column of
the 3x6 matrix which is e16 according to figure 10.

Figure 10: Values of the coupling matrix of 0.35.82 rotated quartz at reference temperature of
25°C

Considering this e16 coefficient, a longitudinal voltage along the x-axis of the chosen coordinate
system need to be applied to have the largest thickness-shear frequency response for this quartz
resonator. This electric potential is applied using the geometry of figure 11 in which the two sides
electrodes and the middle one are at a 1V potential and the two other electrodes are connected
to the ground. Of course, in Comsol we could simply apply a potential on the right side of the
resonator and put the left side to the ground but this isn’t a realistic approach as at least one of this
side would be clamped in reality. Moreover, in practice 1-port configurations are more sensitive to
parasitic noise.
The dimensions chosen for the Quartz simulation are the following: a length of 60um, a thickness
of 0.5um, a width (out-of-plane) of 150um and a pitch of 15um between the electrodes.

Figure 11: Geometry of the quartz resonator for the Comsol simulation

3.1.2 Simulation and results

Once the geometry of the simulation had been defined, the mechanical and electrical boundary
conditions were chosen. A condition that is worth mentioning is the fact that all boundaries are

9
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defined as mechanically free in order to simplify the simulations.
In order to determine around which frequency the simulation should be computed, a resonance
frequency estimation needs to be done by hand using equation 4 with the following parameters:
c66(T0) = 31.2116 GPa, W = 15um and ρ = 2648 kg

m3 . The estimated resonance frequency ob-
tained is f6 = 114, 44MHz. A large frequency domain study was thus done in the range [100MHz,
500MHz] with a step size of 0.05MHz yielding the absolute impedance graph depicted in figure 12.

Figure 12: Absolute admittance of Quartz from Comsol simulation. On the left: 100MHz to
500MHz. On the right: zoom onto the 112MHz resonance frequency

A clear frequency peak can be observed at 112MHz which corresponds closely to the 114.44MHz
estimation. This let us suppose that this indeed corresponds to the f6 mode. When looking at
the displacement field in each direction (figure 13), a clear displacement can be observed along the
x-axis and the z-axis for which the amplitude of the displacement is approximately one order of
magnitude larger than along x. Indeed, the maximum displacements along x and z are 4.12·10−11m
and 3.88 · 10−10m respectively. A maximum displacement of 1.34 · 10−12m can also be observed
along the y-axis but it is negligible.
The axis along which the maximum displacement was expected is the y-axis (out-of-plane axis as
defined at the beginning of this section) as it should correspond to the thickness shear f6 mode. A
possible explanation for the fact that Comsol shows a maximum displacement along the so-called
"Z component" instead of "Y component" is that it actually refers to the default coordinate sys-
tem of Comsol for which the y and x axes are inverted compared to the coordinate system defined
previously. This statement was verified by using the same geometry but changing the coupling
matrix so that only the e16 coefficient is different than 0. This change allows to make sure that
only the f6 mode is excited. The displacement fields obtained from this verifying simulation are as
expected: similar to the previous simulation with complete coupling matrix (results are shown in
A). Thus, the resonance frequency of 112MHz does correspond to the f6 mode.

10
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Figure 13: Displacement field in the x (top right), y (top left) and z (bottom) directions - Quartz
Comsol simulation

A second frequency domain study was carried out over the temperature range [-50, 100]°C to
determine the resonance frequency shift with temperature. Ideally, the frequency shift should
be similar to the approximated one shown in figure 6. The resulting frequency shift over the
temperature range is represented in figure 14. It is clear that it doesn’t correspond to the expected
behaviour as the resonance frequency is linearly increasing with a shift of 11.3ppm/°C.
This is probably due to the fact that, when simulating with Matlab, the f6 mode is approximated as
depending only on the c66 coefficient of the stiffness matrix of quartz but in Comsol, all coefficients
are taken into account and thus we don’t have a pure f6 mode. Other simulations where thus
conducted to determine which other mode is interfering. All the temperature coefficients (1st, 2nd
and 3rd degree) of one stiffness coefficient of the Quartz was set to 0 for each simulation (except
c66) in order to find out which were influencing the displacement at 112MHz. It was found that the
coefficients responsible for the interference are: c11, c14, c15, c16, c36 and c46. If the temperature
coefficients of those indexes are set to 0, the results obtained are much closer to the Matlab
approximation as can be seen in figure 15. The maximum frequency shift from the resonance
frequency at reference temperature (25°C) is then |f(25C)−f(75C)

f(25C) · 106 = |f(25C)−f(−25C)
f(25C) · 106 =

17.86ppm which corresponds to 0.36ppm/°C.

11
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Figure 14: Resonance frequency shift 0.35.82 rotated Quartz - first simulation

Figure 15: Resonance frequency shift 0.35.82 rotated Quartz without interfering modes

3.2 Silicon

3.2.1 Geometry

The geometry of the silicon simulation was defined similarly as for the quartz. According to the
coupling matrix of the Lithium Niobate at reference temperature (figure 16), the larger coefficient
that can be used to excite the f1 mode is e11 = 4.5333 C/m2. Consequently, the placement of the
electrodes on the Lithium Niobate layer is the same as for Quartz (see figure 17).
The dimensions chosen for the Quartz simulation are the following: a length of 60um, a thickness
of 0.5um for the Lithium Niobate layer, a width (out-of-plane) of 150um and a pitch of 15um
between the electrodes. For the thickness of the Silicon layer, different values were tried in order
to determine which one gave the best frequency shift compensation: 1um, 2um and 5um.

12
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Figure 16: Values of the coupling matrix of 0.38.90 rotated LiNb at reference temperature of 25°C

Figure 17: Geometry of the silicon resonator for a silicon thickness of 5um

3.2.2 Simulation and results

The goals of the simulations for each silicon thickness were to:

• Determine the resonance frequency at which we can observe the f1 mode.

• Compute the coupling coefficient at this resonance frequency.

• Sweep over the temperature range [-50, 100]°C to observe the frequency shift with respect to
temperature.

As the geometry is a bit more complex since we have 2 layers of different materials, it was not
possible to calculate by hand an estimation of the resonance frequency using the equations of section
2.1.1 as for Quartz. The mode shape of several resonance frequencies were thus investigated to
determine which one corresponded the best to the f1 mode.
The coupling coefficient k2T can be calculated using the equation:

k2T =
π2

4
· |fres − fanti−res|

fres
(7)

where fres and fanti−res are the resonance frequency and anti-resonance frequency respectively
and the result is a percentage of electrical energy converted into mechanical energy.

The impedance graph representing the f1 mode resonance frequency as well as the corresponding
displacement field in x for each silicon thickness are shown in figure 18. In each case, the mode
shape (displacement field in x, y and z) of several resonance frequencies were studied before finding
the appropriate resonance frequency: a dominating lateral displacement along the x axis with min-
imum displacement in the two other directions. Practically, for the frequencies depicted in figure
18, the maximum displacement along the x axis is 10 times larger than along the y axis and there
is no displacement along the z axis.

The frequency domain study were done over the temperature range [-50, 100]°C with a step of 25°C
meaning that the simulation was run for 7 different temperatures. The frequency shift with respect
to temperature for each of the three thicknesses are represented in 19. Using the values from this
graph as well as the following equation : ∆f = fmax−fmin

fmax)
· 106 which is similar to equation 5, the

13
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Figure 18: Resonance frequency of the f1 mode with corresponding displacement field in x for each
silicon layer thickness.

maximum change in resonance frequency in ppm over the temperature range can be calculated as
well as the corresponding change of resonance frequency per temperature unit.
For each Si thickness, the resonance frequency at which we observe the same f1 mode, the coupling
coefficient, the maximum change in resonance frequency and the change of resonance frequency
per temperature unit are summed up in table 1.

Thickness of Si layer 1um 2um 5um
Resonance frequency at T0 [MHz] 286.8 295.3 301.5
Anti-resonance frequency [MHz] 291.95 299.25 303.17
Coupling coefficient (in %) 44.3 33 13.7
Maximum change in resonance frequency [ppm] 488 203 961.7
Change of resonance frequency per °C [ppm/°C] 4.88 2.7 6.4

Table 1: Results of the Comsol simulations of Si/LiNbO3

As can be observed from the results, the thickness for which the change of resonance frequency
(295.3 MHZ at reference temperature) is minimal is 2um: only -2.7ppm/°C over the temperature
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Figure 19: Geometry of the quartz resonator for the Comsol simulation

range [25, 100]°C and +2.7ppm/°C over the temperature range [-50, 25]°C. Moreover, the coupling
coefficient of 33% ensures a good energy conversion with limited losses.
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4 Conclusion
In the case of the Quartz, it was found in this semester project that the rotation angles that
minimise the resonance frequency shift due to temperature change are: φ = 0°, θ = 35° and
ψ = 82° following the x-convention of the Euler angles. Using the properties of this rotated quartz
for the Comsol simulation, a minimum frequency shift of 0.36ppm/°C over the temperature range [-
50, 100]°C was found for an f6 actuation mode (thickness shear at 112MHz - reference temperature)
without considering the stiffness matrix coefficients responsible for interfering modes. However, it
will be necessary to find a solution to get rid of those interfering modes if this piezoelectric actuator
is to be fabricated in reality. For the hybrid Silicon/Lithium Niobate resonator, a resonance
frequency shift of less than 2.7ppm/°C was obtained for a 2um thick Silicon layer actuated via a
0.5um thick piezoelectric Lithium Niobate layer with rotation 0.38.90 (Euler angles). This result
corresponds to an f1 actuation mode (longitudinal) of resonance frequency of 295.3 MHz at 25°C.
The resonance frequency shift obtained for silicon is correct but it could be even lower if the optimal
silicon thickness was used instead of picking the best thickness between 3 possibilities (1um, 2um
and 5um). Moreover, taking into account the 2nd order temperature coefficients of the stiffness
matrix of Lithium Niobate (instead of just the linear coefficients) could result in a much better
shift compensation between the two materials.
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A Appendix

A.1 Material properties

Figure 20: Quartz stiffness matrix 0.0.0 (units: Pa)

Figure 21: Stiffness coefficients of non-rotated quartz and its temperature coefficients retrieved
from [Bec]

Figure 22: Quartz permittivity matrix and its first order temperature coefficients
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Figure 23: Quartz piezoelectric matrix and its first order temperature coefficients

Figure 24: Structure of Silicon’s stiffness matrix

Figure 25: Silicon’s stiffness coefficients (c11, c12 and c44) and their 1st and 2nd order temperature
coefficients for different doping levels (extracted from [Jaa])
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A.2 MATLAB code

Figure 26: MATLAB code p1
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Figure 27: MATLAB code p2
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Figure 28: MATLAB code p3
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Figure 29: MATLAB code p4
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Figure 30: MATLAB code p5
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Figure 31: MATLAB code p6
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Figure 32: MATLAB code p7
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Figure 33: MATLAB code p8
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Figure 34: MATLAB code p9

A.3 MATLAB results

Figure 35: Stiffness matrix (with 1st order temperature coefficients) of the 0.38.90 rotated Lithium
Niobate
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Figure 36: Piezoelectric matrix of the 0.38.90 rotated Lithium Niobate

Figure 37: Fitted curve obtained using MATLAB function fit() for the c66 coefficient of the 0.35.82
rotated quartz

A.4 COMSOL results

Figure 38: Displacement fields in x (left) and z (right) directions for the verifying simulation of
axis orientation in Comsol
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Figure 39: Impedance of the Silicon/Lithium Niobate frequency domain study for 7 different
temperatures - 1um thick Si

Figure 40: Impedance of the Silicon/Lithium Niobate frequency domain study for 7 different
temperatures - 2um thick Si
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Figure 41: Impedance of the Silicon/Lithium Niobate frequency domain study for 7 different
temperatures - 5um thick Si
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