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We explored a computational model of astrocytic energy metabolism and demonstrated the theoretical
plausibility that this type of pathway might be capable of coding information about stimuli in addition to
its known functions in cellular energy and carbon budgets. Simulation results indicate that glycogenolytic
glycolysis triggered by activation of adrenergic receptors can capture the intensity and duration features
of a neuromodulator waveform and can respond in a dose-dependent manner, including non-linear state
changes that are analogous to action potentials. We show how this metabolic pathway can translate
information about external stimuli to production profiles of energy-carrying molecules such as lactate
with a precision beyond simple signal transduction or non-linear amplification. The results suggest the
operation of a metabolic state-machine from the spatially discontiguous yet interdependent metabolite
elements. Such metabolic pathways might be well-positioned to code an additional level of salient infor-
mation about a cell’s environmental demands to impact its function. Our hypothesis has implications for
the computational power and energy efficiency of the brain.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The designs of brains reflect the challenges of processing and
transmitting information in a way that is efficient in terms of infor-
mation content and energy costs (Harris et al., 2015). This opti-
mization has occurred at both the cellular and circuit levels as
life has evolved from single cells to complex multicellular organ-
isms, with more recent evolutionary processes built upon previous
innovations. Even human intelligence, therefore, has deep roots in
the computational history of rudimentary single-celled life
(Dussutour et al., 2010; Schenz et al., 2019).

Although much work has already been done characterizing the
considerable computational capabilities of single cells (e.g., Koch
and Segev, 2000; Levin et al., 2011; Sterling and Laughlin, 2015),
we believe that there could remain cellular features capable of pro-
cessing information whose complexity and subtlety have thus far
eluded full characterization. The focus of this paper is the predic-
tion and theoretical exploration of a new way to represent infor-
mation in a computational model of a metabolic energy pathway
that could give single cells an expanded tool set for adaptation
and decision making. This information coding would have been
present from the dawn of cellular evolution since energy related
pathways must have been present from the beginning and would
have been a good substrate for beta-testing this kind of informa-
tion processing techniques in enzymatic pathways.

The importance of information processing in single cells is
widely acknowledged (Bhalla, 2014; Cardelli et al., 2017;
Hernansaiz-Ballesteros et al., 2018; Jetka et al., 2019; Levin et al.,
2011; Sterling and Laughlin, 2015). And even across species and
deep into evolutionary history there are recurring themes of
single-cell decision making (Balázsi et al., 2011; Boisseau et al.,
2016). Because it is difficult to measure the spatiotemporal proper-
ties of biochemical fluxes, some theoretical guidance from compu-
tational models can be useful as they can be used as a tool to
observe the behavior of new possible mechanisms in intracellular
function (Ferrell et al., 2011).

The primary role of metabolism is the processing and regulation
of a cell’s energy and building supplies. The flux of matter through
these pathways involves handing-off metabolite- products from
one enzyme-catalyzed reaction to the next in the chain. Our results
suggest that these pathways can also represent and transmit quan-
titative information about stimuli from neuromodulator binding to
energy metabolite production and exhibit excitability states with
concentration-dependent thresholds for non-linear response tran-
sitions (Coggan et al., 2020).

In this proof of concept, we make use of noradrenergic volume
transmission onto an astrocyte that triggers a catabolic pathway
involved in the recruitment of more energy production in the
neuro-glia-vasculature (NGV) oligocellular unit to support
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increased activity in neighboring neurons through a process called
the astrocyte-to-neuron lactate shuttle (ANLS) (Coggan et al.,
2018a; Foote et al., 1983; Magistretti, 1994; Pellerin and
Magistretti, 2012). This glycogenolysis-initiated glycolytic path-
way captured the amplitude and duration of a range of input sig-
nals and delivered that information quantitatively to end product
formation, with the option of responding to signals with non-
linear state changes that are analogous to APs. The representation
of both the intensity and duration of a stimulus, as well as the
option of a non-linear response threshold, fulfil some of the basic
requirements one would want if a metabolic pathway could quan-
titatively code information about the external environment. As we
search for explanations for the energetic efficiency of the human
brain, we suggest that the answer is likely to include expanded
computational contributions from individual neurons.
2. Methods

The NGV computational model used in this report has been pre-
viously published and described (Coggan et al., 2020), the only dif-
ference here being the stimuli chosen. The glycogen module for
this model was derived from (Xu et al., 2011), while the rest is
based on (Jolivet et al., 2015) and also used in (Coggan et al.,
2020, 2018b). Both the Matlab and NEURON code has now been
open-sourced and can be found at this public repository: https://
github.com/BlueBrain/Dynamical-State-Cell-Signaling-Simulator.
In order to not repeat previously published schematics, the sche-
matic overview in this paper focuses on pathway specifically
examined, including the neuromodulator norepinephrine (NE)
binding to its cognate beta-2 adrenergic receptor (b2R), which trig-
gers a cAMP-dependent mobilization of glucose from glycogen to
feed into glycolysis and resulting in the production of the
energy-carrying products lactate (LAC), ATP and NADH (Fig. 1A).
Computationally, there are about 40 state variables involved and
we refer the reader to the previous paper for additional schematic
details beyond those provided in this paper (Coggan et al., 2020).
We use glycolysis as the metabolic pathway test case because that
is our laboratory’s default subject of study. This pathway contains
no cycles or allosteric features. The only branch point is at PYR,
which can be converted to LAC or shuttled to the mitochondrion
But the results and principles revealed by this model could be
applied to any ligand-product chain-linked biomolecular network.

Three groups of NE waveforms were used as model stimuli in
order to test the effects of 1) amplitude modulation, 2) time mod-
ulation and 3) both amplitude and time modulation combined. For
each of these 3 categories of NE stimuli, 5 unique waveforms were
generated from pairs of rise and decay time constants, sr and sd,
respectively (Fig. 1B). The sr and sd values for all three groups of
NE stimuli are listed in appendix 3, and the pairwise combinations
can be assumed to be sequential.

The 5 concentrations of cAMP corresponding to stimulation
states 1–5 for the ligand pulse (LP) analysis were obtained by set-
ting � = 0.000009, 0.00002, 0.00005, 0.00008, or 0.00011 in equa-
tion 36 in appendix 1, where � is an arbitrary adenylate cyclase
(AC) amplification factor covering the dose response span of the
system (cf. (Coggan et al., 2020). Each colored plot (cyan, blue,
green, red, and black) represents a different ‘‘state” of the meta-
bolic cascade and came from an independent simulation with the
correspondingly different concentration of cAMP generated by �
(see Fig. 5). In this paper, downstream metabolite concentration
trajectory shape changes observed for each cAMP-dependent level,
as seen in plots of d[metabolite]/dt vs. [metabolite], are referred to
as ‘‘state changes” and are similar to plots of dV/dt vs. V as tradi-
tionally used in neurophysiology to describe the non-linear
dynamical features in phase plots of APs (e.g., Coggan et al.,
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2020; Yu et al., 2008). In the hysteresis curves for plots of [metabo-
lite A] vs. [metabolite B], trajectory changes can also be observed at
higher cAMP levels and these changes are also referred to as state
changes that offer a view of the relative, mutual, non-linear
dynamical variations of two different (usually but not necessarily
tandem) metabolites in a cascade, in contrast to traditional deriva-
tive phase plots that only convey information about one metabo-
lite. We posit that this novel way of looking at a metabolic
pathway also communicates important information about the
state of the cell’s metabolic network and information processing
bandwidth (Coggan et al., 2020). Although intractable for a single
plot, the reader can imagine that all the metabolites in biochemical
cascade or network varying in relation to each other would contain
even more information.

All ligand-receptor dynamic simulations were performed in
Matlab (R2016a, 64 bit) and the metabolic cascade was simulated
in NEURON using a fixed time step of 3 ls with Euler integration.
Matlab simulations were executed on an Intel i5 single-core laptop
CPU running Ubuntu with 4 GB RAM, and the NEURON metabolic
cascade simulations were conducted on an HPE supercomputer,
the Blue Brain Project’s BB5, hosted at the Swiss National Super-
computing Center (CSCS) in Lugano. Parameters and equations
for the NEURON simulation environment model are listed in
appendices 1 (Governing equations), 2 (Rates, transports and cur-
rents), and 3 (Parameters).
3. Results

3.1. Model and motivation

A computational model of neurmodulator-stimulated metabolic
pathway transduction in an astrocyte, based on a previous study
(Coggan et al., 2020, 2018b), was used to examine in finer detail
the relationship between stimulus concentration waveforms (am-
plitude and duration characteristics), the affinity of the receptor,
and the behavior of the metabolic pathway to the point of the pro-
duction of a metabolite of interest.

For this case study, we used the neuromodulator nore-
pinephrine (NE) as a stimulus ligand paired with the beta-2 adren-
ergic receptor (b2R) to simulate neurotransmitter – receptor
interactions. For the downstream metabolic pathway, we used
the cAMP-dependent stimulation of glycogenolysis through glycol-
ysis to the production of three energy transport molecules that
form from pyruvate: lactate (LAC), ATP and NADH, with a particu-
lar interest in LAC which can be exported to the neighboring neu-
ron in a process called ANLS (Pellerin and Magistretti, 2012). We
focus on these aspects or products of the pathway to illustrate fun-
damental points involving the relationship between the waveform
of a stimulating extracellular ligand and its cognate receptor affin-
ity, and how information from this relationship can be transduced
throughmetabolism to an end product (e.g., glycolysis and the pro-
duction of energy carrying molecules) as a way of internally coding
information about a cell’s external environment, including
demands for energy production.

NE ! b2R ! cAMP ! . . . PYR ! LAC; ATP; NADHf g
A schematic model of the metabolic pathway highlights the

steps of interest (Fig. 1A), but this diagram only represents part
of the larger model that includes neuron metabolism (details not
shown) as previously described (Coggan et al., 2020, 2018b;
Jolivet et al., 2015). These extra model capabilities do not affect this
paper’s focus. A range of NE waveforms were produced by modify-
ing the rise and decay time constants (sr and sd, respectively, see
Appendix A) in order to test the effects of amplitude, duration
and combined amplitude and time variations (Fig. 1B).

https://github.com/BlueBrain/Dynamical-State-Cell-Signaling-Simulator
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Fig. 1. Overview of key model elements, metabolites of interest and stimuli. A) Modeled metabolic pathway highlighting the neurotransmitter norepinephrine (NE) binding
to the beta-adrenergic receptor (b2R) on the surface of an astrocyte, triggering an AC amplification dependent, cAMP-triggered metabolic pathway involving the liberation of
glucose from glycogen to enter glycolysis, the formation of its endpoint pyruvate (PYR) and downstream product alternatives lactate (LAC) in the cytosol, which can be
exported to the extracellular space, or the energy currency molecules ATP and NADH derived from PYR transported to the mitochondrion. purple metabolites = emphasized
metabolites in model results. Enumerated steps descriptions: 1) b2R activation causes production of cAMP according to 5 different pre-programmed AC amplification factors
(see methods for details), 2) chain of events from cAMP activating the catalytic subunits of protein kinase A (PKA), activation of protein phosphorylase 1 (PP1), activation of
glycogen phosphorylase (GPa), production of glucose-6-phosphate (G6P) (see methods and appendices for details), 3) conversion rate for glyceraldehyde-3-phosphate (GAP)
from 2 condensed enzymatic reactions, 4) condensed rate for phosphoenolpyruvate (PEP) from 3 sequential enzymatic reactions, 5) pyruvate kinase (PK) 6) lactate
dehydrogenase (LDH), 7) transport of PYR to mitochondrion for oxidative metabolism to produce NADH (see methods and appendices for condensed formula) 8) production
of �32 ATP from ADP in mitochondrion (see methods and appendices) B) The neurotransmitter (NE) waveforms with amplitude (left panel), duration (middle panel) and
combined amplitude and time variations (right panel). Direction-of-arrows symbols embedded in each panel will be used henceforth to indicate simulations involving
modulation of amplitude, time or both.
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3.2. Ligand-Receptor dynamics

The relationship between receptor affinities and neuromodulator
waveforms. We probed the ability of a range of receptor Kds (an
inverse measure of affinity) to capture the amplitude and duration
features of the neuromodulator waveform. Capture efficacies were
assessed for all three categories of NE release shapes displayed in
Fig. 1. Five ligand stimuli were generated from 5 different rise time
constants (sr1 – black, sr2 - red, sr3 - green, sr4 - blue, sr5 – cyan;
see Appendix C for values), which were applied to b2Rs of 5 differ-
ent Kds (Fig. 2A; columns Kd5 through Kd1, highest to lowest, for
exact values see Appendix C). The Kd-dependent time capture
was assessed for each of the three waveform types (top row - ver-
tical arrows signifying amplitude modulation, middle row - hori-
zontal arrows signifying time modulation, and bottom
3

row - crossed arrows signifying both amplitude and time modula-
tion). The final column (Kd1, scaled) contains the same data as the
penultimate column (Kd1), but is re-scaled to show how the wave-
form information is exactly captured by the lowest Kd receptor.

We then looked at Kd-dependent amplitude capture with the
same procedure as for time, except here only the peaks of the
responses are plotted in bar-graph form (Fig. 2B). The final column
(Kd1, scaled) contains the same data as the penultimate column
(Kd1), but is re-scaled to show how the amplitude information is
exactly captured by the lowest Kd receptor. The results of these
simulations and analysis suggest that low affinity receptors are
always best for both amplitude and duration information capture
and that high affinity receptors act as high-pass filters, which could
be useful for coincidence detection. It was also observed that high
affinity receptors spread the time responsiveness (see Fig. 2A,



Fig. 2. Effects of receptor Kd on ligand waveform feature capture efficacy. A) Kd-dependent time recovery, for each of the three waveform types (top row - vertical arrows
signifying amplitude modulation, middle row - horizontal arrows signifying time modulation, and bottom row - crossed arrows signifying both amplitude and time
modulation), 5 ligand stimuli were generated from 5 different rise time constants (sr1 – black, sr2 - red, sr3 - green, sr4 - blue, sr5 - cyan), which were applied to b2Rs of 5
different Kds (columns Kd5 through Kd1, highest to lowest, for exact values see Methods). The final column (Kd1, scaled) contains the same data as the penultimate column
(Kd1), but is re-scaled to show how the waveform information is exactly recovered by this low Kd receptor. B) Kd-dependent amplitude recovery. Same procedure as in (A)
except here only the peaks of the responses are plotted in bar-graph form. The final column (Kd1, scaled) contains the same data as the penultimate column (Kd1), but is re-
scaled to show how the amplitude information is exactly recovered by this low Kd receptor.
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middle and lower rows). Another observation was that the ampli-
tude capture for mixed responses Fig. 2B lower row, for example
column Kd2, was different than for amplitude modulation alone
(upper row, column Kd2).
4

We further explored the aforementioned ‘‘capture interference”
observation: when time domain changes interfere with the capture
of amplitude information. The peak b2R amplitudes for each sr
were plotted against each Kd for each of the 3 waveform groups,
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A) amplitude modulation, B) time modulation, C) both (Fig. 3). In
these plots we see that the range of amplitude responses for the
mixed stimuli were less than that for amplitude only, suggesting
that when time-domain variations were introduced to the stimuli,
the ability of the receptor to faithfully capture amplitudes was
compromised. This phenomenon was confirmed when we took
the standard deviations for the range of response amplitudes for
each group and plotted against the Kds. While the standard devia-
tions for the peak amplitudes of the time modulation responses
were the lowest as expected, the standard deviations for the mixed
group (diamond icon, dashed line) were not as large as for ampli-
tude alone. This observation indicates that it is not possible to fully
recover stimulus amplitude and duration simultaneously without a
loss of information. In short, we predict the inability of a receptor
to completely capture both the amplitude and duration character-
istics of a stimulus, leading to some uncertainty about either or
both measures of the signal (is there a ligand-receptor uncertainty
principle?).

Ligand-receptor dynamics and receptor binding fraction. We cre-
ated 6 ligand-receptor (L-R) pair types from 2 affinities (the lowest
and the highest Kds) and 3 waveforms that represented a broad
range of srs and sds in order to examine the effects of neuromodu-
lator dynamics and receptor affinity on b2R binding fraction
(Fig. 4A). Low affinity receptors produced very low receptor bind-
ing fractions, but provided an interesting result in so far as the sr of
the stimulus was capable of increasing the binding fraction over
the previous, slower sr, in one case as much as more than 60-
fold (arrow in bar graph at L-R pair 3, Fig. 4B). This could be a sig-
nificant regulatory point, even if in these extreme, proof-of-
concept conditions the binding fractions at low affinity receptors
were a fraction of those of high affinity receptors, where the sr
was largely irrelevant. Thus, faster neurotransmitter dynamics
can somewhat compensate for very low-affinity receptors to
increase binding fraction, whereas high affinity receptors are obliv-
ious to waveform dynamics due to saturation (L-R pairs 4,5 and 6,
Fig. 4B).
3.3. Metabolic pathways can communicate L-R dynamics via linear
responses or non-linear state-changes

Changes in the relative concentrations of ligands in an enzy-
matic cascade contain information about the stimulus amplitude
and duration (Coggan et al., 2020; Tyson and Novak, 2001). These
trajectories can be seen in the hysteresis plots of pairs of metabo-
lites, tandem or otherwise. Supra-linear metabolite hysteresis
curve changes are observed after a threshold has been passed. As
in the preceding study, the cAMP-stimulated glycogenolytic glycol-
ysis pathway was stimulated with 5 incremental AC amplification
factors after NE- binding into 5 states (Fig. 5), represented in color
Fig. 3. Capture interference: when time domain changes interfere with the capture of am
Kd in each of the 3 waveform groups, A) amplitude modulation, B) time modulation, C) bo
were plotted against the Kds. While the standard deviations for the peak amplitudes of th
for the mixed group (diamond icon, dashed line) were not as large as for amplitude al
amplitude information and time information together.
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codes black (cyclase factor 1), red (cyclase factor 2), green (cyclase
factor 3), blue (cyclase factor 4) and cyan (cyclase factor 5). The
precise amplification parameter values can be found in Appendix
3. The fastest and slowest neurotransmitter waveforms were cou-
pled with the lowest and highest receptor affinities in order to
investigate whether L-R dynamics can be expressed downstream
in the responses of the glycolytic pathway, including ligand pulses
(LPs) which are the representation of the non-linear state change
observed in hysteresis plots that are similar to the transition from
EPSPs to APs in embedding phase plots (Coggan et al., 2020). Pyru-
vate (PYR) was plotted against lactate (LAC, upper row), NADH
(middle row) and ATP (lower row). For low affinity receptors
(Fig. 5A) there is a clear difference in the LPs for fast and slow
NE stimuli in the case of all three metabolic pairs, but for high-
affinity receptors (Fig. 5B) there was no observable difference, sug-
gesting that only low affinity receptors can be used to convey accu-
rate intensity and time information about L-R dynamical
properties through cascade states.

Phase plots (d[metabolite]/dt)/[metabolite]) of the derivatives
of metabolite concentrations vs the self-same concentrations also
reveal a non-linear state transition (LP) and these dynamics are
reminiscent of the transition from excitatory postsynaptic poten-
tials (EPSPs) to action potentials (APs). These non-linear dynamical
embeddings suggest a new aspect of an intracellular language that
expands previously narrow definitions of excitability and would
increase the already formidable information processing capability
of single cells from prokaryotes through higher metazoans.

Capturing stimulus duration with pathway states. After determin-
ing that LPs can reflect L-R dynamics for the speed of the stimulus,
the next step was to assess whether information reflecting stimu-
lus durations is similarly coded (Fig. 6). Once again, the slowest
and fastest NE waveforms were coupled with the highest and low-
est receptor affinities to form 4 test groups. An NE stimulation
duration of � (in this case 20 msec) produces a transient cAMP
response for each group along with an accompanying downstream
PYR LP (essentially a PYR action potential) (Fig. 6A). We repeated
this simulation with the same design as in (A) but with a 5x NE
duration (now 100 msec) (Fig. 6B). For the low affinity receptors
there is a clear state change in the LP between � and 5x stimuli
(highlighted by dashed green boxes) but there was no difference
for high-affinity receptors (highlighted by solid green boxes) sug-
gesting that only low affinity receptors transmit information about
stimulus duration to downstream metabolites.
3.4. Effector-site consequences of LRP dynamics

The next stage in the information transduction chain for a
cell is the effect of the state dynamics on an output measure,
or the effector at the end of the intracellular signalling; the
plitude information. The peak b2R amplitudes for each sr were plotted against each
th. D) The standard deviations for the range of response amplitudes in for each group
e time modulation responses were the lowest as expected, the standard deviations
one, indicating a loss of information transfer when an attempt is made to recover



Fig. 4. Neurotransmitter dynamics and receptor affinity. A) Three diverse ligand waveforms (accounting for slow rise and slow decay, slow rise and fast decay, as well as fast
rise and fast decay) together with two receptor affinities (Kds) (the fastest and slowest in the study) were selected to examine the interaction of sr and Kd at the level of
fractional b2R binding, forming 6 ligand-receptor (L-R) pair types. B) Faster neurotransmitter dynamics can only slightly compensate for very low-affinity receptors to
increase binding fraction. Arrow in bar graph points to response (L-R pair 3) where the fastest NE waveform can increase fractional binding at the low affinity receptor
(compared to L-Rs 1 and 2), whereas the high affinity receptor is oblivious to waveform dynamics (L-R pairs 4,5 and 6).
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dynamical messaging system acronym thus becoming LRPE (E
for effector). As a case in point, we examined the downstream
consequence of several LRP dynamical states at the level of
LAC exportation from the astrocyte, a well-known component
of the ANLS that has been described experimentally and com-
putationally (Coggan et al., 2018b; Jolivet et al., 2015; Pellerin
and Magistretti, 2012).

We simulated low and high affinity receptors (Kds 14 and
3.6 � 10�5, respectively) with fast NE stimuli at short (20 msec)
and long (100 msec) durations for each of the 5 (AC) amplifica-
tion factors, color-coded as in previous figures (Fig. 7). The LAC
LP (dLAC/dt vs [LAC]) changes considerably with the change in
duration at the low-affinity receptor (Fig. 7A, upper panels) as
do the corresponding LAC export transients (Fig. 7A, vertically
associated lower panels). The amplitude of the exported LAC
reaches the response ceiling for the three highest cyclase ampli-
fication factors (green, red, black). At high-affinity receptors,
there is only a subtle difference in the LAC LPs between short
and long duration NE stimuli (observed at the lowest cyclase
amplification, Fig. 7B, upper panels). This effect is reflected in
the associated LAC exported amplitude change (Fig. 7B, lower
panels). One also observes that after all transients corresponding
to all cyclase amplifications reach the response ceiling ampli-
tude, a secondary response characterized by a prolongation of
the LAC export occurs (arrows in Fig. 7B, lower panels). This
phenomenon conforms with the observations of the behaviour
of response envelopes previously reported (Coggan et al.,
2020), in that one dimension reaches a maximum before other
or orthogonal dimensions can grow. Altogether, the differences
in LAC transients as might be measured experimentally corre-
spond to features in their associated LPs.
6

3.5. Ligand-Receptor-Pathway-Effector dynamics as a dose- and state-
dependent system

The LRPE information transduction theory schematic diagram
shows that cellular information is expressed in the coupled
dynamics of the LRPE and that this constitutes the theoretical basis
for a new kind of cellular information representing external stimuli
that may have been overlooked due the difficulty in measuring it
experimentally (Fig. 8). The corresponding specific case study com-
ponents used in this study appear below the schematic diagram
with: ligand is NE, receptor is b2R at 5 different affinities (Kd1 ?
Kd5), the metabolic pathway is cAMP- and state-dependent glyco-
genolytic glycogenolysis, and the effector was the production and
export of the energy rich molecule lactate (LAC) for participation
in the ANLS.
4. Discussion

The fields of biology and computing are mutually informative.
Frequent measures of biological computing at both circuit and cel-
lular levels include amplification, bistability, oscillations, covalent
switches, state machines, feedback loops, intrinsic plasticity and
other phenomena (Azeloglu and Iyengar, 2015; Bhalla, 2014;
Goaillard and Marder, 2021; Koch and Segev, 2000; Miller, 2016;
Tyson et al., 2008). But this extensive repertoire of tools is not
likely complete. In single cells, from ligand-receptor binding to cell
excitability, pathways stimulation, and the expression of gene
products or other effector sites, there are many steps that provide
opportunities for regulation and learning (Metallo and Vander
Heiden, 2013). Many of these ideas are treated and studied in man-



Fig. 5. Ligand-receptor pair types communicate information intracellularly through state-dependent LPs. The fastest and slowest neurotransmitter waveforms were coupled
with the highest (solid lined NE) and lowest (dashed lined NE) receptor affinities in order to investigate whether L-R dynamics can be expressed downstream in LPs. PYR was
plotted against LAC (upper row), NADH (middle row) ATP (lower row). For low affinity receptors (A, left columns) there is a clear difference in the LPs for fast and slow NE
stimuli in the case of all three metabolic pairs, but for high-affinity receptors (B) there was no observable difference.
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ageable experiments, but computational biology gives us the
opportunity to explore new theoretical constructs (e.g.,
Beniaguev et al., 2021). What we show with our model is that
metabolic pathways, which are primarily means of extracting
energy and building block molecules from glucose and other sub-
strates, might also be capable of coding detailed information about
neuromodulators that stimulate increases in energy consumption.

4.1. Cellular computation implications

The hysteresis curves for tandemmetabolite trajectories resem-
ble the A vs B rotational dynamics plots (when B lags behind A in a
time series) used in neuronal network analysis (Elsayed and
Cunningham, 2017), suggesting metabolic pathways could operate
similarly, but within a single cell. In these curves we observed the
non-linear state change between the second and third stimulus
level (Fig. 5, e.g, PYR vs. LAC), suggesting the ability of metabolic
pathways to provide a kind of information similar to the transition
between EPSPs and APs in neurons.
7

Themutualdependencies of themetabolites in apathway, poten-
tially provide a new dimension for communication in cells. Many
metabolite concentrations are obligatorily connected for any given
level of activation, this situation resembles the inner workings of
an allosteric protein receptor except that the parts in the case of
thebiochemical pathwayarediscontiguous. In spite of their physical
separation within the cell, they influence each other via concentra-
tion changes in a predictable way which seems to be similar to the
state machine properties of receptors (Sterling and Laughlin,
2015). But within any metabolic network, enzymes and their prod-
ucts can be co-regulated by a number ofmechanisms such as energy
or substrate availability and anaplerotic portals, which together
with the metabolite concentration-dependencies, significantly
increase the number of possible system states metabolic pathways
might assume, as well as their uncertainty, and therefore the num-
ber of bits they might store (Levin et al., 2011; Sterling and
Laughlin, 2015). This dynamic would probably conform to well-
known relationships between entropy and probability as formu-
lated by Boltzmann with regard to molecular states and Shannon



Fig. 6. Information reflecting stimulus durations is transmitted through cascade metabolite dynamics. The slowest and fastest NE waveforms are coupled with the highest
(solid line) and lowest (dashed line) receptor affinities to form 4 test groups. A) An NE stimulation duration of � (in this case 20 msec) produces a transient cAMP response for
each group along with an accompanying downstream pyruvate (PYR) LP. B) Same simulation design as in (A) but with a 5x NE duration (in this case 100 msec). For the low
affinity receptors there is a clear state change in the LP between � and 5x stimuli but there is no difference for high-affinity receptors, suggesting that only low affinity
receptors transmit information about stimulus duration to downstream metabolites.
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(Shannon, 1948) with regard to information states, which equates
the Gibbs entropy of a system with the number of bits needed to
describe its constituent parts (Jaynes, 1965).

Fast information transmission is often accomplished with APs
and evidence supports the existence of this capability in the LECA
(Brunet and Arendt, 2016). While APs are considered faster than
chemical diffusion, it is intriguing to consider whether the LP could
8

fill an energy efficient information storage niche between a slower
biochemical signal and evolution of a voltage-dependent AP
(Liebeskind et al., 2011). A biochemical pathway already operating
this way could respond rapidly and capture all the essential prop-
erties of stimuli changes beyond reaction–diffusion of metabolites
(Bhalla, 2017; Bisegna et al., 2008). LPs are nearly identical to and
APs based on their phase space embedding profiles (Coggan et al.,



Fig. 7. Effector consequences of LRP dynamics. The downstream consequence of several LRP dynamical states at the level of LAC exportation from the astrocyte were
examined. Low-affinity (A) and high-affinity (B) receptors (14 and 3.6 � 10�5, respectively) were exposed to fast NE stimuli at short (20 msec) and long (100 msec) durations
for each of the 5 AC amplification factors, color-coded as (cyclase 1 – black, cyclase 2 - red, cyclase 3 - green, cyclase 4 - blue, cyclase 5 - cyan). The LAC LP (dLAC/dt vs [LAC])
changes considerably with the change in duration at the low-affinity receptor (A, upper panels) as do the corresponding LAC export transients (vertically associated lower
panels). The amplitude of the exported LAC reaches the response ceiling for the three highest cyclase amplification factors (green, red, black). At high-affinity receptors (B),
there is only a subtle difference in the LAC LPs between short and long duration NE stimuli (observed at the lowest cyclase amplification, upper panels). This effect is reflected
in the associated LAC exported amplitude change (lower panels). One also observes that after all transients corresponding to all cyclase amplifications reach the response
ceiling amplitude, a secondary response characterized by a prolongation of the LAC export occurs (arrows in Fig. 7B, lower panels).

Fig. 8. Ligand-Receptor-Pathway(state)-Effector (LRPE) intracellular information processing theory. A) Schematic diagram shows that cellular information is contained the
group dynamics of ligand, receptor, metabolic pathway state and effector site. B) the corresponding specific case study components used in this study: ligand is NE, receptor is
b2R at 5 different affinities (Kd1? Kd5), the metabolic pathway is cAMP- and state-dependent, and the effector was the production and export of the energy rich molecule LAC
for participation in the ANLS.
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2020; Takens, 1981; Yu et al., 2008). These features could be
exploited to convey information about a stimulus engram-style
in a metabolic pathway (Coggan et al., 2020; Pignatelli et al., 2019).

Receptor-affinity dependence. For low affinity receptors (Fig. 5A)
there is a clear difference in the LPs for fast and slow NE stimuli in
9

the case of all three metabolic pairs, but for high-affinity receptors
there was no observable difference (Fig. 5B). There is lower
dynamic range for LAC and NADH for slow sr at low affinity recep-
tors since these responses are smaller due to a combination of the
lack of responsiveness of the low affinity receptors and the forward
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rates of their corresponding enzymes downstream from the initial
stimulus. These results suggested that metabolic pathways can
faithfully transduced information about L-R dynamics to the intra-
cellular milieu only through low affinity receptors. High affinity
receptors still communicate L-R information, but these effects are
high-pass filtered. We propose that one of the reasons only low-
affinity receptors can be used for high fidelity information transfer
is that rise-times matter more than durations in terms of receptor
activation (Fig. 4). This effect is similar to the observation that the
fastest currents participating in voltage-dependent AP initiation
and propagation are the most important for generating basic firing
patterns in an axon (Coggan et al., 2010). Subcellular compartmen-
talization will very likely factor in the organization of information
in any cell and will accordingly add another level of complexity
(Bock et al., 2020; Jackson, 2020; Zhang et al., 2020).

4.2. Evolution implications

Much scientific inquiry explores the functions and evolution of
single-celled organisms from prokaryotes to the more sophisti-
cated eukaryotes (Wan and Jékely, 2021). In prokaryotes the spa-
tial organization of the proteome is less defined than in
eukaryotes. For example, oxidative metabolic reactions in prokary-
otes may occur both in the cytosolic fluid and at the cell mem-
brane, whereas they are largely confined to mitochondria in
eukaryotes (Cloutier and Wellstead, 2010). Prokaryotes exhibit
rudimentary stimulus-triggered AP-like activity that is less well-
regulated than in eukaryotes, but similarly involved in information
storage (Bruni et al., 2017; Yang et al., 2020). Whichever type of
single-cell organism it is, it is clear they all possess considerable
information processing powers. The metabolic pathway informa-
tion transduction system we describe would have imbued these
early life forms with even more enhanced computational capabili-
ties. In this paper we have demonstrated that a metabolic pathway
can code the amplitude and duration of a stimulus, while offering
dose-dependent, non-linear state transitions (Figs. 6-8).

Although we use glucose metabolism to make these points, we
do not see any reason why energy producing pathways should be
treated any differently than other pathways. Given that the very
earliest non-photosynthetic micro-organisms must have come
equipped with chemical energy extracting mechanisms, it is not
a stretch to imagine that strategies to process information about
input signals using enzymatic cascades were worked-out with
energy metabolism (Levin, 2006). For example, cyclic nucleotides
play a central role in the transduction of external stimuli to various
cellular consequences (Moya-Beltrán et al., 2019). Likewise, in our
mammalian NGV system, a cyclic nucleotide mediates the request
for more energy during brain activity as signaled by noradrenergic
neuromodulation (Magistretti, 1994).

4.3. Synthetic biology

The principles uncovered by our computational approach might
be applied to synthetic biology, a field on the cusp of changing biol-
ogy (El Karoui et al., 2019). Much of the emphasis is on genetic,
transcriptomic or proteomic manipulations to yield desired prod-
ucts (Casini et al., 2018; Collins, 2018). Synthetic biological circuits
can be ‘‘programmed” at this level (Ausländer et al., 2012). But
what determines output of a given input might very well include
more intermediary processes before the nucleus knows what’s
happening, such as the signal amplitudes, concentration changes,
biochemical switches, all of which might inform the ‘‘state” of a
cell. These decision points may affect everything from the flow of
energy, metabolic status or readout at the level of transcriptome
products (Dusad et al., 2020). Even if it turns out that our LRPE
pathway information theory is not used by evolved cells, it is pos-
10
sible that such molecular systems designs could find a place in syn-
thetic biology.

5. Conclusion

Although much is already known about how single cells think
or respond to their environment, they likely still have some undis-
covered tricks. Our simulations of neuromodulator-stimulated glu-
cose metabolism in an astrocyte suggest that metabolic pathways
could be capable of more information processing than previously
realized. These systems exhibit dose-dependent responses and
states than can accurately capture the amplitude and duration
properties of signals from L-R surface binding through metabolite
fluxes and finally to a molecular product. They can also produce
threshold-triggered state transitions with embedding features that
resemble the transition from EPSPs to APs. Considering how many
metabolic pathways are active simultaneously, these mechanisms
could significantly increase the computational capabilities of neu-
rons and help explain the efficient energy usage of brains.
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