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In the era when scientific results were published only on real paper, 
the compression of information was of paramount importance. 
As a consequence of limited page counts, most scientific data 

were not published. Now, we live in a digital era and a large fraction 
of our data is captured in digital form. Yet, most scientific data that 
are collected are still not published1, and the part that is often in a 
form that makes it difficult for other researchers to build on.

Scientists have also long been concerned about the reproduc-
ibility of results2,3. This has lead most funding agencies to insist on 
a commitment by researchers as to how scientific data are man-
aged (for instance in the form of a data management plan, that 
is, a clear outline of the types of data generated and used during a 
study, where and by whom they can be accessed, how and by whom 
they are protected and how and by whom they can be shared or 
published) and often to require all data to be made publicly avail-
able. Having a data management plan is important but, as we argue 
here, it does not guarantee that data will be shared in an easily find-
able, accessible, interoperable and reusable (FAIR) and ultimately 
machine-actionable, form4.

Additionally, recent advances in machine learning illustrate very 
clearly why chemistry would benefit from embracing open and 
reusable data. In chemistry, we have many problems of irreduc-
ible complexity5, such as the prediction of synthesizability, where 
complexity arises from the interaction of many diverse components 
(such as kinetics of side reactions or impurities) that are often not 
fully understood. Owing to these unknowns and complex interac-
tions, some problems seem impossible to address with the current 
theory. Here, data-intensive research might be key. For example, 
many chemists would welcome a tool that recommends reaction 
conditions. One can envision building such a recommender sys-
tem that harvests knowledge from all reactions that have been per-
formed (including the ‘failed’ ones) to recommend conditions for 
the desired reaction. Building this tool, however, will only be pos-
sible if all the data are automatically collected in an interoperable 
and reusable form, such that machines can read datasets then rather 
autonomously discover the ones that are most relevant and in turn 

make decisions. This requires machines to not only parse the data 
but also understand the data and its context — that is, data must be 
machine actionable.

Our key thesis is that, if we want to advance chemistry with 
data-intensive research and also address reproducibility issues we 
need to change how experimental data are collected and reported. 
Structured data alone is not enough; open data alone is also not 
enough. We need to have both (thesis 1 in Fig. 1), together with 
additional tools such as semantic web technologies, that allow 
chemists and their computational agents to understand the mean-
ing and intent of the data objects.

To make this feasible, we envision a platform that seamlessly 
integrates the process of data collection, data processing and data 
publication with minimal overheads for the researcher:

	(1)	 Data collection. A key component of chemistry research is the 
collection of chemical data (for example, reaction conditions 
and characterization data). Ideally, the raw6–8 (characterization) 
data are directly captured from the instrument, directly con-
verted into a standard structured form4, in which all the impor-
tant metadata are systematically added and all the field names, 
such as ‘adsorption’ or ‘pressure’, are linked to an open vocabu-
lary or ontology (which defines the meaning of the terms and 
their relation). One should not rely on individual chemists to 
manually perform such file transfer, annotation or conversion 
operations. This is not only time consuming and error prone, 
but also, more importantly, ensuring that all the data are in a 
form ready for FAIR sharing should not be an afterthought, it 
should the very first step.

	(2)	 Data processing and collaboration. Once we have converted 
our data into a standard form, we can apply the same analysis 
tools to all data types—which makes developments dramati-
cally more efficient. Research groups that use different instru-
ments could compare the data directly, and use the same analy-
sis tools. Also, as soon as all the data are stored in a structured 
form, an electronic lab notebook (ELN) can make it searchable. 
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For example, if an instrument was incorrectly calibrated, the 
ELN could allow the users to search for all the spectra that 
were measured with a specific instrument configuration at a 
specific range of time (or even automatically apply the correct 
calibration).

	(3)	 Data publishing. Data that remain locked in an ELN are not 
useful for the community. As soon as the researcher(s) are 
ready to publish a project, they could choose the relevant sam-
ples from the ELN and export them to a repository from where 
it can be used by machines, but also reimported by other ELNs.

From this viewpoint, the ELN is the central hub for all chemical 
research, from which analyses can be requested, analysed, shared, 
published and integrated with other platforms—and, also, a place 
to take notes. However, we emphasize that the most important 
functionality an ELN can provide is to automatically convert the 
data into an open, standardized and interoperable form (thesis 2 
in Fig. 1). Only in this way can we leverage web technologies that 
allow computational tools to autonomously understand data and 
hence provide more meaningful (search) results (Box 1). Note that 
this is quite different from the functionality most current ELNs 
offer. The majority of current ELNs only store data digitally as an 
attachment—they do not convert it into such a reusable form (the-
sis 2 in Fig. 1).

Over time, an ‘insane’9 number of different ELNs and laboratory 
infrastructure management systems (LIMS) have been developed. 
Many of these different ELNs have been compared in previous works 
(for example, by the Harvard Medical School, the Library of the 

University of Cambridge, LIMSWiki or peer-reviewed articles10–13). 
In this Perspective, we aim to focus on the ideas and design prin-
ciples that we think are essential to create a successful open-science 
infrastructure—for the full lifetime of data from inception, creation 
and processing to publication. As the infrastructure we propose to 
embrace is already implemented in parts, we review examples (from 
Table 1) that we think offer some key aspects of such an infrastruc-
ture to support open science. In a similar vein, we highlight exam-
ples in which chemical data have already been shared in a reusable 
form. Taking into account the many attempts to generate new data 
schema—describing the abstract structure of the data—and file for-
mats for chemical data, we propose that a more efficient route to 
open science would be for the chemistry community to embrace 
and connect existing systems instead (thesis 4 in Fig. 1).

Data capture, data processing and data publication
To be practical, the data capture step needs to be both as close as 
possible to the way chemists work and it should ensure that the 
chemical data generated can be practically reused by other research-
ers. We give examples for what ‘machine-actionable data’ means  
in Box 1.

In chemistry, most samples in the lab are produced with a chemi-
cal reaction. Trying to predict the conditions at which a reaction can 
take place optimally is still one of the major challenges in chemistry. 
Machine-learning methods are expected to help us in this area14. 
However, for this to work we need to report data in a format that 
can be used in machine learning, and also report ‘failed’ experi-
ments15,16. One can easily see the dilemma here; if an experiment—
after 99 ‘failed’ attempts—finally works, there is little motivation, if 
any, for a researcher to spend 1% of their time in reporting the one 
successful experiment and the remaining 99% of the time on the 
‘failed’ ones.

Capturing synthetic data. In chemistry, the number of possible 
steps and combinations of steps is nearly infinite. For example, the 
order in which the reagents are added can clearly decide whether 
a reaction will be successful or not17,18—and any machine-learning 
efforts will fail if such information is not reported correctly. This 
is exactly what is missing in many of the existing databases. For 
example, by mining the patent literature19 one can obtain a wealth 
of information on which chemicals can be synthesized20. However, 
the actual procedure of the syntheses cannot be mined systemati-
cally: the order of addition, the heating, the stirring and, of course, 
the workup and purification. And the situation is even more dire for 
inorganic chemistry21. Similarly, all the databases contain no infor-
mation about the attempts that did not work and are biased towards 
certain reaction types22–24. This lack of reports on ‘failed’ reactions 
adds to other factors that lead to certain types of reactions being 
more prominent than others—for example, looking into the most 
used reactions in medicinal chemistry, Brown and Boström found 
that amide formation was mentioned at least once in about half of 
the selected set of manuscripts published in the Journal of Medicinal 
Chemistry in 2014 (ref. 25).

Ideally, to capture synthesis information we need to find a bal-
ance between the flexibility of a sheet of paper, on which chemists 
can record anything they want in any format they like26, and impos-
ing a structure such that the captured data can be easily reused for 
machine-learning applications. The flexibility is key to ensure chem-
ists will widely adopt the tool10,27, whereas from a data-management 
perspective a highly structured database (for example, filled via a 
long form) would be much easier to use. In high-throughput experi-
mentation settings the latter might clearly be a natural approach, 
but for many manually created, small datasets1, this might not be 
a feasible approach, as to capture all the possible scenarios would 
result in such a gigantic form that chemists would need special 
training to navigate it.
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needs machine-actionable FAIR data;

‘Nullius in verba’

ELN should automatically
make all data

machine-actionable

Data should not remain
locked in an ELN

An open science infrastructure
needs to be modular

and open source

Continuously inventing 
new standards

will not make chemistry FAIR.
Existing systems

should be made interoperable

Fig. 1 | The five core theses of this perspective. Machine learning has 
fundamentally changed the way that data can be used in chemistry, which 
in turn requires a change in how it is reported. In addition, raw data are also 
needed to verify any conclusions presented in scientific publications—as 
stated with the ‘Nullius in verba’ principle (take nobody’s word for it)—as 
the results presented in a paper are always a compression of the original 
research record6. Only a few groups creating and sharing FAIR data is 
not sufficient, it needs to be embraced by all chemists. Importantly, 
this can only happen if there are little or no overheads in publishing all 
the data in a FAIR, machine-actionable form. For this reason, the most 
crucial functionality an ELN can provide is to assist chemists in doing 
so; it is essential to avoid that chemical data become an afterthought in 
the publication process. Following this logic, developers of ELNs need to 
work together towards this goal of machine-actionable open science. We 
can only expect this to be widely adopted if ELNs implement a common 
standard for data representation and exchange, also with computational 
tools69, and allow the integration of reusable plugins that can be used to 
create a custom data management infrastructure that is interoperable 
with other solutions. Clearly, there will not be one perfect solution that 
works for all subfields of chemistry. However, we can start by reusing the 
many existing parts, making them interoperable and ensuring the code is 
open source, and in this way create a practical solution that works today. 
This seems more effective than to aim for large-scale, all-encompassing 
and overcomplicated solutions. Importantly, the development of new data 
formats (alone) will also not lead us towards the goal of FAIR chemical data.
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Box 1 | Machine-actionable data in chemistry

Data structured in standardized ways can make information find-
able and interpretable by chemists and their machines and thus 
can enable humans, as well as their computational agents, to per-
form actions based on interpretation of the data.

If we perform web searches, major search engines display 
meaningful information (sometimes even formatted in infoboxes 
with tables that allow for easy comparison) and can show related 
content instead of just a list of hyperlinks. For instance, search 
engines will show, when queried for ‘old fashioned pancakes’, a 
compilation of recipes from different sites—similar to that shown 
in our example (see left panel in the figure). This is possible 
because the websites embed the information into the website in 
a standardized form using in-page mark-up, typically Schema.org 
(as in the code snippet on the right-hand side of our example). In 
summary, the recipe data are reported in a standard, open format, 
using linked vocabularies, described with metadata and accessible 
under URIs.

Similar mark-ups are used to encode COVID-19 
announcements on some websites (including those from the 
US federal government72), such as special opening hours or 
prevention measures; those can then be highlighted by search 
engines73. Readers can find such mark-ups by using the ‘inspect’ 
or ‘view page source’ tools of their browser (which can typically 
be accessed with a right-click on the page) and then searching for 
‘schema.org’.

If similar metadata were embedded in, for example, all 
published spectra (such as from NMR, infrared, Raman and 
X-ray photoelectron spectroscopy), we could simply use a web 
search to find all the spectra published for a particular compound 
in a particular time period. With proper semantic annotation, 
we could, for instance, also specifically query for ‘vibrational 
spectroscopy’ to receive infrared, Raman and sum frequency 
generation spectra. Clearly, we can also envision the use of such 
standardized structured data for synthesis ‘recipes’. This might 
facilitate a comparison of different synthetic conditions and also 
incorporate the feedback of other chemists. The Bioschemas70 and 
Material Schemas efforts attempt to move the life and materials 
sciences closer to this ideal.

Same concrete steps, and questions chemists can ask themselves 
to check their data objects for reusability and reliability74, are the 
following.
•	 Data should be structured using standard, open conventions: 

can others (humans and machines) easily use my data objects 

with their tools? In practice, this means that an open format 
is always preferred over a proprietary one. Standard formats 
(JSON, XML, JCAMP-DX) ensure that others can use stand-
ard tools to read the data objects.

•	 Entries in a data object should use a controlled vocabulary 
and ideally reference an ontology: can others (humans and 
machines) easily understand the meaning and format of all the 
fields in the data object? Ontologies explain the meaning and 
relation of the fields. For example, when reporting a bandgap, 
one needs to ensure that the field ‘bandgap’ can be correctly 
interpreted (as it might refer to the optical gap, fundamental 
gap or transport gap). A key challenge is that the documenta-
tion for the dataset is often transported ‘out of band’ if the data 
are, for example, described in the supplementary information 
of a paper, instead of directly ‘in band’ with the data object. 
JSON-LD75 (Extended Data Fig. 2) and CSV-LD76 are great 
ways of providing the context ‘in band’ with the data.

•	 Data should be annotated with metadata, and ideally indicate 
the provenance of the data: do others (humans and machines) 
understand where the data came from and the context within 
which they were produced? This information can, for exam-
ple, be important when issues with the data arise. For exam-
ple, metadata might help us to find that the reason for all 
the reactions being unsuccessful is that a batch of the (com-
mercial) starting material was impure or that the humid-
ity or temperature in the room was too high. In chemistry, 
there is no widely used standard for recording basic metadata 
of ELN entries, even though proposals such as the elnItem-
Manifest, which builds on the Dublin Core scheme, have  
been made77.

•	 Data should also be uniquely identifiable, and citable, using a 
stable, and indexed, URI: can others (machines and humans) 
rely on finding the data in a stable form, see any change his-
tory, and do they know the usage conditions? If the aim is for 
data to be reused, it should be accompanied by a license that 
allows this (for example, a creative commons license such 
as a CC0, donation to the public domain or a CC-BY, which 
also requires attribution of the originator). Using a URL that 
points to a GitHub repository or personal web page is hereby 
not enough—the problem is that the content of such URLs can 
easily change, for example, by deleting a repository on GitHub 
(a phenomenon called link rot). For this reason, data should be 
shared via data repositories where it is assigned a stable identi-
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how data are stored in a data format, and metadata, which describe 
datasets, are not the typical focus of a chemist. However, a lot of 
chemical data is currently stored in a wide variety of proprietary 
files (Supplementary Table 2). In the short term, this might not look 
like a real problem, but in the long term, this is not sustainable. For 
example, one can lose access to all the files once the software license 
associated with particular equipment expires; or collaborators in 
another institute that want to use the data do not have access to the 
same software. Also, a hodgepodge of inconsistent formats clearly 
hampers data mining efforts.

Requiring all individual researchers to manually convert all their 
spectra into a standard format will be a large, potentially insur-
mountable and non-scalable burden on the researchers. Therefore, 
an essential step in progressing towards such an open platform is 
to convert the data into a standardized structured form before it 
even enters the ELN (thesis 2 in Fig. 1). This is an essential ser-
vice an ELN must provide to a user. That is, the ELN will take the 
data as they are provided by the spectrometer, and convert it into 
a standardized form. The cheminfo implementation, for example, 
uses JCAMP-DX files (Joint Committee on Atomic and Molecular 
Physical Data Exchange format; see Extended Data Fig. 1 for an 
example) as a standard representation for most spectra. This for-
mat has been recommended by IUPAC (International Union of 
Pure and Applied Chemistry) for many spectra together with rec-
ommended vocabulary28, and is also recommended by the chemo-
tion ELN, and used in the Open Spectral Database29. However, in 

Among the different ELNs no consensus has been reached 
about this design point. Some allow complete flexibility and 
have the look and feel of a typical note-taking app, whereby one 
needs natural-language processing to make the information 
machine-readable which, unavoidably, leads to information loss. At 
the other end of the spectrum are those that have a lot of structure 
with the design of a new form for every eventuality, which might be 
ideal for machine learning but poses a burden to use for non-routine 
chemistry.

A possible solution to these challenges, which is implemented in 
the chemotion and the cheminfo ELNs (Table 1), is to stick to the 
text-based form chemists are used to, but to combine it with tem-
plates to structure the text. This hybrid approach is described in Box 
2. In practice, we found that some free text fields are always required 
to give chemists the necessary flexibility to express their motivation, 
thought process and interpretation). Parts of this can be captured 
via specific fields, for instance, the related literature, or spectral 
annotations. For many other parts, the free, potentially unstruc-
tured, thought process is exactly what one would like to capture (for 
example, to annotate when an experiment failed for an unexpected 
reason, such as a beam drop at the synchrotron).

Characterization data formats and metadata. After a sample has 
been synthesized, it needs to be characterized. Thereby, we want to 
ensure that researchers all over the world, as well as their computa-
tional agents, can use the data. Clearly, data models, which describe 

Table 1 | Examples for some infrastructure management system ELN systems

System Key feature

Chemotion ELN60 Chemistry-centred user interface, integration with some databases like SciFinder. Can perform basic sanity checks/quality 
control, for example, checking peak assignments using simulations61—that is, small tools that simplify the life of chemists, tightly 
integrated with the chemotion repository37.

openBIS62 Modularity via plugins, integration of Jupyter notebooks (computational environments that allow for literate programming, that 
is, the combination of text and visualization with code, which have become a standard across sciences) for custom data analysis. 
Can be used as a metadata repository for large files that can be linked and stored in other locations.

cheminfo ELN63 Large ecosystem of data analysis and conversion packages centred around one common data object, modular architecture. FAIR 
data are the centre of all operations, a chemistry-centred interface.

LabTrove64 The ELN can be a form of a blog that allows for open notebook science (that is, making the full research record openly available 
on the web)—as popularized via ‘Open Source Malaria’43,65—which highlights the social components of research and allows for 
new forms of collaboration.

eLabFTW66 Trusted timestamps that can be used as legal ‘proof of discovery’ to defend a patent.

Sciformation ELN67 Integration of chemical libraries (for instance, to fill in basic data such as molar masses) and support for analytical requests 
to a central service, definition of workflows (for instance, for the sequence of steps for sample preparation) and audit trial 
functionality. Successor of the open enventory.

Kadi4Mat68 Integrates (to some extent) a data repository with an ELN, with flexible user-definable metadata schema. Allows defining 
workflows that perform a sequence of tasks, such as extraction and processing, on the data.

Note that we only list open-source solutions as we believe that successful solutions must be developed from reusable building blocks given that the requirements for data management in chemistry are so 
diverse.

fier (such as a DOI) that is guaranteed to point to the content. 
Also, repositories will make sure that the metadata and identi-
fier are indexed and hence can be found. For organic chemis-
try, a domain specific repository is the chemotion repository37. 
Also for identifiers (for example for samples, instruments) 
it is best to use hypertext URIs such that they can be easily 
looked up by others, humans and machines. Additionally, oth-
ers should be able to find out the history of changes of the data 
and if they are still maintained. Most repositories can provide 
this functionality in the form of ‘versions’ of the dataset.

•	 Data should be linked to other data: can others (humans and 
machines) easily find related data (for example, computational 
work that supports experimental measurements)? Linking 
data provides context and lets users discover related datasets. 
From our recipe example we can imagine that related content 
can give us useful information, for example, direct us to the 
recipe the original author was inspired by. In the chemistry 
context, we should link together, for instance, computational 
and experimental aspects of a study, or crystal structures 
deposited in different databases.

Box 1 | Machine-actionable data in chemistry (continued)
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a ‘unified data model’ for compound synthesis and testing, or the 
‘Allotrope data format’, which tries to collect the full data life cycle 
in one file. Some, like the autoprotocol or XDL30, even try to cap-
ture the link between hardware (such as reaction vessels) and syn-
thesis steps in a way that can be understood (and executed) by both 
robots and humans.

principle, any other format (Supplementary Table 4) can be used 
as long as it is standardized and openly documented. Indeed, some 
newer formats have a native support for advanced features, such 
as linking to standardized vocabularies, and might be preferable 
(see Extended Data Fig. 2 for an example). For example, there were 
efforts (spearheaded by the pharmaceutical industry) to develop 

Box 2 | Capturing the reaction process

A paper notebook (panel a) would typically read:
… we added 10 mg of chemical A (batch 4, see page 25), 5 mg 

of chemical B (batch 5, see page 61 of notebook 6 of colleague 
Y), 5 mg of chemical C (Chem-R-Us) in a 50% DMF/50% water 
mixture and put the solution in oven Y for 11 h at 70 °C.

It can envisioned that this is a simple step in a complex 
synthesis in which we are trying to find the optimal conditions 
for a particular reaction. The question is now how to convert such 
chemical data into a format that can be practically mined and 
possibly used for machine-learning studies and yet maintain a 
level of flexibility that is essential for chemists.

The idea of such a workflow is to find a compromise between 
being able to easily extract process variables (such as the heating 
time and temperature) and still provide the chemist with a natural 
interface of a text and structure editor such that the structure of the 
ELN remains similar to that of paper-based notebooks (panel b). 
In this scenario, research groups—or, ideally, consortia of research 
groups—can define predefined sentences (with fillable fields) for 
common operations, such as heating to reflux and filtering, that 
can be inserted with a shortcut such that the outcome is:

… we added R1 (xR1 g), R2 (xR2 g), R3 (xR3 g), in a y%R4/
(100 – y)%R5 mixture and put the solution in oven y for t h at  
T °C ...

in which all the bold elements resolve to some URI. If, behind 
the scenes, the predefined sentences map to a well-defined set of 
concepts (in standard vocabularies), the description also becomes 
independent of the language it is written in.

The real advantages of this approach become clear if we look 
at the different shortcuts. Each reagent (which can be a previously 
produced sample or one from a manufacturer catalogue) can be 
referred to via the hyperlink. Following these links, the researcher 
has direct access to all the information about the provenance of 
the reactants, and from the order of the links one can extract 
the order of the synthesis procedure which is typically described 
sequentially. At the same time, this approach reduces the time 
needed to record experiments as most of the usual operations can 
be inserted with tab completion, and observations such as ‘the 
solution turned blue’ can be seamlessly integrated.

In this context it is important to realize that the ways in which 
observations are typically reported in chemistry are inadequate71. 
For example, colours are usually reported as colour names 
(such as ‘dull blue’) in papers and databases, which are subject 
to perceptive spread and which therefore can limit the utility of 
such observations for replication studies or machine-learning 
approaches. In the case of colours, for example, we recommend 
images be recorded with colour calibration cards, from which a 
numerical colour value can be easily extracted. At the same time, 
the image also gives information about the morphology of the 
material.

Another promising approach is lab automation, as proposed by 
the company labforward, which, for example, allows us to connect 
balances, rotary evaporators or vacuum pumps to an ELN and, in 
this way, capture (automatically) more data in a structured and 
objective way78.

a b
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machine interpretable on a global scale (global because the terms are 
standardized and shared via uniform resource identifiers (URIs)). 
In practice, however, ontologies (and related semantic web technol-
ogies) remain underused. The main reasons are probably that the 
diversity of the ontologies is too large and that existing ones are not 
well integrated31. Clearly, we cannot expect chemists to manually 
annotate their data using an ontology. This is something an ELN 
needs to do automatically in the background. However, for this to 
be practical, ELN developers need to connect with other initiatives 
to register, standardize, link32 and adopt ontologies.

Let us now assume the ideal situation that most chemists have 
settled on a standard data reporting form (for the most important 
characterization techniques in a subdomain, such as gas adsorption 
isotherms, X-ray adsorption spectroscopy and cyclic voltammetry), 
and also accept that open science should not be an afterthought. 
This implies that the ELN must take the file in whatever form it 
comes from the instrument, convert into a standard form and per-
manently connect it to the chemical that was characterized (Fig. 2). 
Such conversion tools (see Supplementary Table 2 for examples) can 
be developed independently of each other and reused in all ELNs. 
For instance, the chemotion ELN reuses some of the libraries that we 
have been developing for the cheminfo ELN (cheminfo.github.io).  

One can argue that some existing formats and data schema are 
old-fashioned and that we should develop new ones. However, any-
one proposing a new format should realize that if a characterization 
method has N formats provided by the instrument manufactur-
ers and M ‘standard’ formats are invented, we need to write and 
maintain N × M conversion programs and M2 programs to be able 
to compare the different ‘standard’ formats. This indicates that it 
can be more productive to update existing solutions and make them 
interoperable compared with creating new ones (thesis 5 in Fig. 1).

It is important to note that data become much more useful, and 
interoperable, if they are linked and described using a controlled, 
hierarchical vocabulary, that is, an ontology. Using a formal ontol-
ogy allows us to infer information from the context encoded in the 
vocabulary. For example, we might have Raman and infrared spec-
tra, as well as the cities of the measurement stored in our database. 
The ontology will not only remove ambiguities in spelling of the cit-
ies, but it will also tell us which cities to include if we search for, say, 
all organic samples with vibrational spectra measured in a particu-
lar country. At the technical level, this is enabled by the fact that the 
ontology will encode that both infrared and Raman spectroscopy 
are forms of vibrational spectroscopy and that cities are located 
in countries. That is, it allows us to go from machine-readable to 

Box 3 | Example of the online chemical processing of data

A common operation in materials science and inorganic chem-
istry is to characterize a material with powder X-ray diffraction. 
One then typically compares the measured spectrum with some 
reference, which might be a predicted pattern, a single-crystal 
structure, an entry from a reference database or a pattern from the 
past, for example, with a pattern that has been measured by a stu-
dent that left the group. In the worst case, the latter is completely 
lost or only findable as an image in some publication.

In the cheminfo ELN, the same interface can be used to 
compute an X-ray diffraction pattern based on any crystal 
structure in the database, overlay it with experimental patterns 
measured in the past in the research group or deposited 
in CoRE MOF (computation-ready, experimental metal−
organic framework)79 or the crystallographic open database80,81 
(screenshot). A typical question in this context is whether a 
structure is a distorted analogue of a known structure. When 

our experimental partners approached us with this question, 
we extended the toolbox in the ELN to allow the calculation of 
X-ray diffraction patterns for distorted cells of reference crystal 
structures—we see this collaboration with experimentalists as 
a key for the success of an ELN platform. In a similar vein, one 
can link computational infrastructure to give experimentalists 
easy access to ‘routine’ simulations70. Again, the tools are reusable 
by other researchers—in the form of the source code and a web 
service that exposes a REST API that can be queried from other 
systems, such as other ELNs. We envision that web services such as 
this can be an important part of a platform in which the chemical 
processing of data happens online. Indeed, different web services 
can be developed and maintained by research groups in their field 
of expertise (and in an appropriate programming language) and 
reused by the chemistry community on any platform with any 
programming language.
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chemists have to switch between different, often proprietary, soft-
ware to carry out this analysis. They might rely on the software 
provided by the instrument manufacturer to perform peak pick-
ing or baseline correction, and then use another plotting tool to 
overlay the data. In an open-science vision, one would like to 
ensure that one can not only access data, but, equally important, 
can also reproduce the subsequent analyses. Likewise, if the chem-
istry community embraced the view that the ELN converted data 
into a commonly agreed standard form, the analysis tools become 
independent of a particular instrument or even characterization 
technique (Box 3).

If we design the platform with a common interface, ensure a 
modular architecture and ensure a reusability of the key compo-
nents, we have the first step towards an ecosystem in which librar-
ies are developed for specific tools that accelerate the workflow of 
chemists (thesis 4 in Fig. 1 and Box 3). The modular nature would 
allow that experts in one technique, for example, NMR spectroscopy 
develop tools that can then be reused by other ELNs. An example 
for this is the NMRium project33, which is a reusable web compo-
nent that can, with three lines of code, be plugged into another ELN 
system. To make this work, it is important that the components can 
talk with each other via standardized protocols.

Having such common conversion tools would also create the incen-
tive to adopt a common schema.

Provenance of data. One crucial step in this process is to match the 
spectrum with the correct sample. A URI system (can be printed as 
barcodes) can help to avoid mistakes in this step. For instance, in the 
cheminfo ELN, scanning the barcode will create the upload infor-
mation for automatic importation from the computers to which 
the spectrometers are connected. From there, the system can take 
the file from the computer, convert it into the standard form and 
store it as an attachment to a sample that has been created in the 
ELN (for example, as the product of some reaction). This automatic 
importation not only makes it much easier, and less error-prone, 
for the chemist to store the data in the ELN, but also it allows us to 
automatically record a lot of metadata—for example, the importa-
tion workflow can fill in information about the instrument (such as 
the manufacturer, serial number, humidity and temperature of the 
room) that is not always recorded in the output files of the measure-
ments (see Extended Figs. 1 and 2 for examples).

Data processing. After data have been produced and imported 
into the ELN, they usually need to be further analysed. At present,  

Instrument 
(e.g., IR spectrometer)

Database

ELN frontend

File in folder connected 
to instrument computer

Instrument
(e.g., GCMS)

Importation via
drag and drop

conversion
in browser

Access via
API

Automatic
importation

and conversion

Fig. 2 | Overview of a possible importation procedure of the ELN. If an instrument is coupled to the network one can, through scanning the barcode on 
the sample, upload the analysis result directly into a database. Alternatively, one can upload files via drag and drop through a web interface (front end). 
In both cases, the ELN ensures that the data are converted into a standard form such that anyone with a web browser can visualize and further analyse it. 
Other parties can access the data, for example, using an access token mechanism70, via a representational state transfer (REST) application programming 
interface (API) or published on a repository. Importantly, all the steps can take place from a different location, and hence enable collaboration. This data 
infrastructure is implemented in the open-source cheminfo ELN. Folder icon reproduced from image designed using resources from Flaticon.com; laptop 
photo by Scott Graham on Unsplash.
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In the open-science platform we propose, the publication of the 
scientific data is simply seen as one of the applications of the ELN. 
The users can select the samples which they want to publish and 
create an entry on a repository that contains all the relevant raw 
data (Fig. 3). The application ensures that data are reported in a 
form that can be easily reused by other researchers as well as by 
machines. For the chemists writing a publication, this means that 
they can provide a DOI (digital object identifier) to supplementary 
material and augment every figure with a link at which readers can 
interact with the raw data or download it for follow-up studies. Both 
the chemotion and cheminfo ELNs implement parts of this func-
tionality. The cheminfo ELN exports data to the general-purpose 
Zenodo36 repository whereas the chemotion ELN can export data 
to the chemotion repository37, which focuses on chemical synthesis 
and characterization data).

In a similar vein, an ELN might also allow importing entries from 
a repository. This means that researchers might import the entire 
lab notebook used to produce the published results. Importantly, 
as the characterization data are also provided in the repository, 
researchers also have access to the original characterization data 
and might overlay them with their new results. To our knowledge, 
at the moment no ELN fully implements this automatic reimporta-
tion procedure.

Discussion and outlook
The open-science platform we propose in this Perspective provides 
a central hub for all the synthetic or analytical work of a chemist 
or materials scientist. Underpinning this platform are two common 
principles we feel are essential to make it truly open science, such 
that it can benefit data-intensive research and address reproduc-
ibility problems (thesis 1 in Fig. 1). First, FAIR data should be at 
the core; all data that enter the platform need to be converted into 
an open, structured and standardized form with the appropriate 
linked metadata—this is the main functionality that an ELN should 
provide (thesis 2). Second, open science also implies ensuring that 
other researchers can reproduce and build on the results. Therefore, 
the platform should be able to export the data in a form that is 
machine-readable and interpretable and that can easily be reused by 
other groups (thesis 3). In addition, in an open-science vision the 
tools used to analyse the data should be made available to anyone 
in the world who might be interested in reproducing the results or 
reinterpreting the data. This leads to the notion that such a plat-
form is ideally developed as a modular open-source infrastructure 
in which the analysis code can be scrutinized, reused and improved 
by the community (thesis 4).

In an open-science vision, the code for these components should 
be open. One of the concerns regarding open-source software is the 
danger that a project might ‘die out’ if one maintainer leaves the 
project, whereas a successful commercial software might seem to 
have the promise of continuity. However, there are many successful 
examples (such as Linux and Python) of open-source projects are 
maintained by the community, yet leave many options for commer-
cial initiatives (for instance, support contracts and maintenance of a 
custom installation). Similarly, at universities a common analytical 
infrastructure (such as the routine NMR service) is often supported 
using institutional funding—a similar model might also be appro-
priate for a digital infrastructure. Importantly, open-source code 
has the advantage that the underlying assumptions and equations 
for any analysis are documented and everyone can verify, replicate 
or even improve the analysis. Also, in contrast to closed-source 
(commercial) tools that are discontinued because of a change in 
business interests, the development can be reanimated at any time, 
as the code is openly accessible and reusable.

Publication of reusable and machine-actionable data. The work of 
a scientist is not completed when all the materials are synthesized and 
characterized. An essential part of the scientific process is the dissem-
ination of the results to make sure that others can build on top of one’s 
work. Typically, we are used to thinking of ‘others’ as other scientists 
in the same field. However, science is increasingly multidisciplinary, 
and hence non-specialists might also need to understand the data. 
Additionally, the move towards open science is a logical consequence 
of the notion that if the taxpayer paid for the research, the ownership 
of the research data should be the public at large, which can empower 
citizen (data) science34,35. We have a glimpse of the power of the reuse 
of data with the discoveries of Don Swanson, an information scien-
tist without formal training in medicine who analysed literature from 
the Medline database and found previously undiscovered knowledge, 
such as links between magnesium deficiency and migraine35. Clearly, 
there is nothing fundamental about chemistry that prohibits us from 
leveraging such approaches to science.

Usually, however, in contrast to the publication of an article, the 
publication of all the scientific data on which the article is based is 
reduced to an afterthought. Most of us have still been educated with 
the idea that we need to be selective about which data to publish, 
instead of embracing the idea that all the scientific data we gener-
ate is an integral part of the science we do: data are typically only 
published to fulfil the requirements of journal policy or data man-
agement plan—without reuse in mind. This probably explains why 
many ELNs do not feature an option to export data to a repository.

All raw data in standardized
and structured form on Zenodo

Can be interactively visualized
reusing the tools from the ELN

Zenodo app can be used to
select samples to export

a b c

Fig. 3 | Example of the flow of data from an ELN to an interactive visualization for the reader of a paper. Once all the chemicals for which the synthesis 
and characterization data needs to be published are selected, the ELN compiles the data and uploads it to a repository (in this case Zenodo36). These data 
are not only machine-readable, but also can be accessed through a browser, and a human reader can also use the same visualization tools as the authors 
of the article71. The implementation sketched in this figure is implemented in the open-source cheminfo ELN. Panel b screenshot reproduced from Zenodo 
under a Creative Commons license CC BY 4.0.
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provide data in support to their papers has proven to be poten-
tially culture-changing, as has been the case in crystallography”31. 
What we can also learn from crystallography is that once some 
standards are adopted, automatic checks (such as checkCIF) can be 
implemented.

From the Structural Genomics Consortium and related initia-
tives (for example, Open Source Malaria43 and COVID Moonshot44) 
we can learn that openness can also be enforced at the level of a 
consortium, for example, by requesting that members openly pub-
lish the protein structures and not file patents for the research out-
puts. This public–private partnership model seems to be successful 
because the private sector, which provides the funding and ‘chemi-
cal probes’ (potent inhibitors of protein function), can guide the 
research—that is, prioritize structures that should be solved—with-
out disclosing the companies research and development priorities 
as the consortium anonymizes the ‘wish lists’45. The utility of such 
a consortium can best be seen at the precompetitive stage (that is, 
the early stages of drug discovery) during which it can share risks, 
enhance collective learning and avoid duplication in new areas of 
(basic) science46. This is particularly interesting in the case of ‘chem-
ical probes’, which are best produced by experienced industrial 
medicinal chemists. However, industry would profit enormously if 
academia could use such probes to validate drug targets47. For this 
reason, the Structural Genomics Consortium makes them available 
as ‘open access’ reagents—under the conditions that the research 
outputs are made available in the public domain. A similar ‘physi-
cal open access’ approach is pursued by the Molecule Archive of 
the Compound Platform at the Karlsruhe Institute of Technology, 
which acts as a mediator for compound exchange: synthetic chem-
ists can ‘archive’ their compounds (which increases their visibility), 
which can then be requested for biological screenings48.

Beyond these measures, we need to change incentive structures 
by creating better ways to give researchers credit for curating data. 
ELNs could help in this regard by storing the ‘credit’ chain when 
data are imported and automatically append the citation when data-
sets are prepared for publication.

Beyond that, the adaption of this data-centric approach to chem-
istry requires changes in the curriculum at universities to raise the 
awareness of such new developments, as well as the need for, and 
the promises of, data curation. Ideally, open-science solutions, such 
as the infrastructure we describe here, should already be intro-
duced in the undergraduate curriculum. Students can record the 
results of their labs in ELNs, harvest the data in machine-learning 
classes, predict the infrared spectrum they just measured in com-
putational chemistry classes49 and use open notebooks to comment 
on and improve each other’s work. Towards this goal, we define 
commonly used technical terms in a glossary in the Supplementary 
Information.

The question that might still be open at this point is how realistic 
the widespread adoption of such an open-data platform across the 
chemistry community is. We argue that we have all the basic tools 
and technology in place. For many of the key design aspects, here we 
use examples from our own work, which is openly available, can be 
tried out by the community and can be reused in other implemen-
tations. There are also several initiatives (Supplementary Table 3) 
that work on some of the aspects we emphasize in this Perspective. 
One example is the German NFDI4Chem consortium50,51, which 
is embedded in the larger German initiative for the creation of 
National Research Data Management Infrastructures (which also 
includes NFDI4Cat52 for catalysis research and NFDI4Ing for the 
engineering sciences), and aims to ‘FAIRify’ the full data life cycle 
in chemistry. However, we, as a community, also have to realize that 
we are in a phase in which there are an insane number of initia-
tives, proposed data schema and ELNs. The task we as a community 
face is to embrace and connect the efforts. Only if we succeed in 
making these tools interoperable we will be able to leverage the full 

If such a platform becomes widely used and supported by the 
community, the possibilities are unlimited. The way we assess scien-
tific work and credit scientific outputs has the potential to change. 
Trusted time stamps can provide unique proofs of discovery, going 
beyond the compressed and delayed priority claim that preprints 
can provide38, and peers can continuously provide feedback about 
the raw data, the analyses and the conclusions. An interesting form 
of making the full research record public, and hence open for feed-
back, has already been proposed in the context of open notebook 
science39. If this information is shared with the community, one can 
build a community-driven version of the Organic Syntheses journal 
in which the verification of the results is done continuously by the 
community and not (only) in a lab of one of the members of the 
editorial board. Importantly, this version would also contain infor-
mation about the attempts that did not work and in this way docu-
ment the process, and the learnings, that led to the final result. If 
data are available in digital form, the peer-review process can be 
supported with automated checks, for example, to verify the con-
sistency of NMR assignments, and so highlight potential issues for 
peer reviewers.

The most important reason for embracing the approach 
described in this Perspective is that it can change the way we do 
chemistry. Many of us were educated before the digital era, with 
the idea that if we publish all the data that we generate, any human 
being will become lost in the sheer volume of data. Data-intensive 
science, however, fundamentally changed this point of view. With 
machine learning, we have the tools to analyse orders of magnitude 
more data than human being can process, discover correlations in 
millions of data points and build predictive models40. For example, 
if we aim to synthesize a compound, a simple query in the collec-
tive ELN database might show that for one synthesis route there 
are 100 ‘failed’ reactions and two successful ones, whereas another 
route shows 90 successful and ten ‘failed’ attempts—which clearly 
indicates which synthesis route should be tried first. Undoubtedly, 
a very experienced chemist might have very good intuitions about 
what works and what does not. However, for a new student in the 
field, this collective knowledge now becomes accessible. Clearly, we 
can go beyond this simple search and try to harvest the collective 
knowledge generated by all chemists, using machine-learning tech-
niques to capture subtle correlations across the chemical space of 
the millions of reactions that have been carried out in the world. In 
this respect, machine learning is not different from the experienced 
chemist; most probably, it can learn even more from ‘failed’ and par-
tially successful experiments as from the successful ones. However, 
in contrast with the chemist, it typically needs large amounts of 
structured data—which we could easily generate in chemistry.

Another issue that the chemistry community faces with open 
data is that everyone agrees that there are benefits in making data 
reusable and in reporting ‘failed’ experiments, but often there is 
hesitation from individual researchers to adopt this behaviour until 
all members of the community do so. The social sciences give us a 
range of possible solutions to this problem setting35,41. One approach 
is some kind of compulsion. For example, the fact that the submis-
sion of DNA sequences is a condition for publication in the lead-
ing scientific journals of the field is seen as one of the reasons for 
the success of the GenBank database42. This, in turn, opened many 
doors for bioinformatics research. We also witnessed that for small 
groups, which include leaders of the field, agreements such as the 
‘Bermuda Principles’, which require that DNA sequence data are 
automatically released in publicly accessible databases directly after 
the measurement, can be achieved. In chemistry, we have observed 
similar dynamics in crystallography, in which crystallographic 
information files must be deposited with the Cambridge Structural 
Database, where they are made freely accessible (and search-
able) on publication. This led the European Commission to con-
clude that “the requirement from academic journals that authors  
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and plan to couple the lab courses with data analysis exercises in 
the ELN. This also implies that our institutions need to provide 
faculties with appropriate support, for instance, via the campus 
library59.

To conclude, we emphasize that the technology is here not only 
to facilitate the process of publishing data in a FAIR format to satisfy 
the sponsors, but also to ensure that the combination of chemical 
data, FAIR principles and openness gives scientists the possibility 
to harvest all data so that all chemists can have access to the collec-
tive knowledge of everybody’s successful, partly successful and even 
‘failed’ experiments.
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potential of data and the digital age. One promising way forward is 
the formation of data communities53, in which experimentalists and 
ELN developers work together to develop a domain-specific (for 
example, porous materials or batteries) open-science infrastructure 
by combining, extending and polishing the existing building blocks.

From our perspective, there are a concrete few steps that need to 
be implemented to reach this goal:

•	 The chemistry community should embrace their own existing 
standards and solutions. We will only be able to make progress 
as a community if we start to connect and use existing solu-
tions. The feedback can then be used to improve the tools. If 
we as community do not move beyond the stage of just pro-
posing new formats or implementations—instead of using them 
in practice—we will not make any progress. Clearly, this also 
requires that the existing tools are made reusable (that is, pack-
ages are extracted from monolithic code bases and augmented 
with documentation) and shared on platforms such as GitHub.

•	 Where community standards exist, journals need to make the 
deposition of reusable raw data mandatory. This is motivated 
by the success of the Bermuda agreement and the deposition 
of crystallographic information files, and is needed to address 
the collective-action problem. Just using ELNs does not solve 
the problem. We also need to open our ELNs. Notably, this does 
not mean that data should be provided as PDFs, but in a stand-
ard machine-actionable form. Where community standards 
exist or are emerging, for example, as is happening in the field 
of gas adsorption54, journals should start to embrace such for-
mats by requesting the deposition in a community repository53. 
The same holds for the basic characterization of organic com-
pounds (NMR, infrared and mass spectroscopy), for which the 
chemotion repository already offers tools and curation that are 
reminiscent of the Cambridge Structural Database. Importantly, 
often disconnected pieces of data in different repositories can 
only practically be used if they are linked. Therefore, for instance, 
the gas adsorption data in one community repository (such as 
the NIST/ARPA-E database of Novel and Emerging Adsorbent 
Materials55) needs to be linked, ideally using hyperlinks, to the 
crystal structure in the Cambridge Structural Database56.

•	 We need to embrace the publication of ‘failed’ experiments. 
With a digital infrastructure this can be easily done to tell the 
story of how the final result was reached. It also requires that we 
as a community realize that the outcome of an experiment is not 
a binary ‘is this a breakthrough or not’, but simply an observa-
tion that is valuable and can be reported. For this to be success-
ful we must take care to properly acknowledge such datasets, for 
example, when we use them for data-mining exercises or they 
helped us to avoid some costly experiments.

•	 ELNs that do not allow the export of all data into an open 
machine-actionable form should be avoided. This reflects the 
core of thesis 2: the most important service an ELN can provide 
is to remove the hassle from making data FAIR. This is not only 
to avoid losing access to the data if a licence expires or being 
unable to build on previous work as it was in the ‘old ELN’ for-
mat, but also it is about being able to collaborate and share data 
with groups independent of the ELN. ELNs that just store data 
as provided, and might not even allow the export of this data, 
do not bring us closer to the goal of reusable data in chemistry.

•	 Data-intensive research must enter our curricula. ‘Open science’ 
is gaining momentum in the chemistry community and increas-
ing numbers of researchers are engaging with it (to various 
extents). We need to raise the awareness of these new develop-
ments at the undergraduate level, use ELNs for our lab courses 
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Extended Data Fig. 1 | Fragment of a NMR spectrum serialized to a classic standard format. This is an example of a JCAMP-DX file. This format is 
a widely used IUPAC-recommended format for spectra that is, for example, supported by the cheminfo and chemotion ELNs. Also, spectra in many 
databases such as the NIST webbook or the Infrared & Raman Users Group (IRUG) Spectral Database can be downloaded in JCAMP-DX format. 
A JCAMP-DX file can contain multiple blocks of labelled data records (LDR). That is, one can store multiple related spectra (such as repeated 
measurements) in the same file. All data blocks must contain a CORE header with basic metadata such as OWNER, DATATYPE. The IUPAC working 
group also provides a vocabulary of further global labels such as for the temperature/pressure/CAS-number. Data can also be compressed using various 
compression schemes. Note that the JCAMP-DX format is only one, old standard, and many others have been proposed. The JCAMP-DX format, however, 
does allow for the addition of an unlimited number of private labels by using the ##$ prefix, which allows every system to tailor the format to its own 
needs. Drawbacks of this format are, however, that it does not come with native, standardised, support for semantic web features (such as linking to a 
vocabulary) and, in contrast to formats like xml, csv, or json, that it is not natively supported by many general purpose tools.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Fragment of a NMR spectrum serialized to a modern standard format. We show another NMR dataset (taken from the SciData 
website from the Chalk Group at the University of North Florida) serialized to JSON-LD using the SciData data model82. One important part on the 
JSON-LD file is the @context field. The values in this field links to the vocabularies that are used for naming things in this datafile. For instance, for 
units, the vocabularies provided by qudt are used, whereas the method is described using the chemical methods ontology (from which it is clear that, 
for instance, NMR spectroscopy is—similar to electron spin resonance spectroscopy–a magnetic resonance method). Importantly, almost all modern 
programming languages provide support for reading such json files. The @type field can describe the format of the data, for instance, to let a computer 
now that it can expect a list of doubles. Different parts of the file (such as methodology, the dataset) can be access by their own address.
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