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Abstract

We consider the asymmetric exclusion process with a driven tagged particle on Z
which has different jump rates from other particles. When the non-tagged particles
have non-nearest-neighbor jump rates , we show that the tagged particle can have a
speed which has a different sign from the mean derived from its jump rates. We also
show the existence of some non-trivial invariant measures for the environment process
viewed from the tagged particle. Our arguments are based on coupling, martingale
methods, and analyzing currents through fixed bonds.
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1 Introduction

The exclusion process on the lattice Zd with a driven tagged particle can be formally
described as: a collection of red particles and a tagged green particle performing
continuous-time random walks on the lattice Zd with respect to the exclusion rule, i.e.
at most one particle is at each site and jumps are suppressed if the target site is already
occupied. Red particles have independent exponential clocks with rates λ =

∑
z p(z).

When a clock rings, the particle at site x jumps to a vacant site x+z with probability p(z)
λ ;

the jump is suppressed if the site x+ z is occupied. The green tagged particle follows
similar rules, but it has different jump rates q(.). In particular, for both types of particles,
the jump rates p(.) and q(.) are independent of where the particles are. We would like to
study the long-time behavior of the displacement Dt of the tagged particle.

The behavior of the tagged particle is mostly studied when p(.) = q(.). Limit theorems
for the displacement Dt were obtained by works [1, 21, 10, 12, 26, 24]. The environment
process ξt viewed from the tagged particle turns out to be a convenient tool to study: ξt
denotes the sites occupied by the red particles relative to the tagged particle. There is a
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A driven tagged particle in AEP

class of invariant and ergodic measures for ξt: Bernoulli measures µρ with parameter
ρ (0 ≤ ρ ≤ 1). As a consequence, the speed of the tagged particle can be computed
explicitly as (1− ρ)

∑
z z · q(z). For details on the exclusion process, the tagged particle

process, and their invariant measures when p(.) = q(.), see Chapter III.4 [15]. The
fluctuation of Dt in equilibrium is known to be subdiffusive when d = 1 and p(.) = q(.)

are nearest-neighbor symmetric [1], and diffusive in most other finite-range cases
[10, 12, 26, 24]. A powerful method, developed by Kipnis and Varadhan [12], is to
study the additive functionals of reversible Markov processes. It is also extended to
asymmetric models [26, 24]. The only open cases are when non-mean-zero p(.) = q(.)

is non-nearest-neighbor in dimension d = 1, and when p(.) = q(.) is non-mean-zero in
dimension d = 2.

The case where d = 1, p(.) = q(.) are nearest-neighbor is special. Particles are
trapped, and orders are preserved. The gaps between particles follow a zero-range
process [10]. The displacement Dt can be considered jointly with the current through
the bond between 0 and 1 in either the zero-range process[10], or the exclusion process
[23]. On the other hand, when jump rates p(.) are symmetric, we can use the stirring
system to construct the symmetric exclusion process, see Chapter VIII.4 [18]. With these
considerations, one can study the density fields and apply hydrodynamic limit results to
analyze the displacement Dt. Some related works are [1, 9, 23, 5, 7].

However, when jump rates p(.), q(.) are different and non-nearest-neighbor, the
asymptotic behavior of the displacement Dt is less understood. A primary difficulty
in providing rigorous proofs is the lack of explicit knowledge of invariant measures
for the environment process, which is essential in the analysis in [1, 12, 26, 24]. The
difference between p(.) and q(.) introduces asymmetry making explicit computations
of invariant measures seemingly impossible. In dimension d ≤ 2, it is unclear whether
there are multiple invariant measures for different values of density ρ, except for two
trivial ones, Bernoulli measures µ0 and µ1. In d ≥ 3, Loulakis’s result [19] provides a
partial answer when p(.) is symmetric. Also, in dimension d = 1, the orders of gaps
between particles are no longer preserved due to the non-nearest-neighbor assumption
on p(.). Meanwhile, we should notice two special cases in general one-dimensional
asymmetric models without a tagged particle: in asymmetric exclusion process, there
are stationary blocking measures [4, 6]; in the totally asymmetric simple K-exclusion
process, invariant measures are also unknown [22]. In the former model, blocking
measures are nontranslation invariant measures concentrated on configurations that are
completely occupied by particles after some point to the positive infinity and completely
empty before some point to the negative infinity. The existence of blocking measures
in principle implies the displacement Dt of a tagged particle may grow sub-linearly
because their neighbor particles often block particle jumps. For the K-exclusion process,
Seppäläinen [22] managed to show the hydrodynamic limit of the system even though
the invariant measures are unknown. His arguments are based on coupling the process
with a growth model.

Alternatively, when p(.) is different from q(.), we can view the tagged particle in the
exclusion process as a special particle driven by an external force, and consider our
model as a perturbed system of the case when p(.) equals q(.). One approach is to verify
the Einstein relation, which connects mobility and diffusivity. The mobility describes the
speed of the tagged particle in the perturbed system, while the diffusivity describes the
variance of the tagged particle in the unperturbed system. For exclusion processes, the
Einstein relation is verified in some symmetric and reversible scenarios [14, 19, 20]. In
dimension d = 1, when p(.) is symmetric and p(.), q(.) are nearest-neighbor, Landim, Olla
and Volchan, by studying the dynamics of gaps, [20] showed that the displacement Dt

grows as
√
t, and there is an Einstein relation for Dt. They further conjectured that Dt
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grows linearly in t when the mean
∑
z z · q(z) is positive, and p(.) is non-nearest-neighbor

in d = 1 or general in d ≥ 2. This conjecture is partially verified when d ≥ 3 and p(.) is
symmetric [19], and it remains open for most of the other cases. When q(.) is close to
p(.), one can show the displacement Dt grows linearly in t with a corresponding Einstein
relation [19]. However, the speed of the tagged particle is unknown because there is no
explicit formula for the invariant measures. For a mixing dynamical environment with a
positive spectral gap, Komorowski and Olla [14] obtained a full expansion of invariant
measures, and showed the explicit speed and the corresponding Einstein relation.

Another approach is to study the currents through a fixed bond in the one-dimensional
asymmetric exclusion process (AEP) with coupling arguments. The current describes the
average number of particles across a site, and it is a natural object to study especially
when

∑
z z ·p(z) is non-zero. Liggett [16, 17] computed the currents and limiting measure

in AEP explicitly for a class of general initial measures by couplings. For a more general
class of asymmetric conservative particle systems with a blockage, one can show a
hydrodynamic limit result with a coupling argument different from Liggett’s [2]. In
these systems, the current across the blockage is a key quantity in the hydrodynamic
limit because it describes the densities near the blockage. Although this second type of
couplings is different from Liggett’s [16, 17], it is available in the one-dimensional AEP
case. When jump rates p(.) satisfy certain monotonicity conditions, Ferrari, Lebowitz,
and Speer [6] showed a coupling of two AEPs and applied this coupling to prove the
existence of blocking measures. In the case of our model, when a driven tagged particle
is present, we can also consider the current across a particular site, the (moving) tagged
particle, and obtain estimates of currents by coupling different AEPs with a driven
tagged particle.

This article will consider the case where d = 1 and p(.) is non-nearest-neighbor and
asymmetric with a positive mean

∑
z · p(z) > 0. The main tools are the couplings and

martingale arguments. There are two types of couplings similar to those in [6, 16, 17].
These two types of couplings allow us to compare currents in different processes and
obtain estimates of currents. With martingale arguments, we can relate estimates of
currents to estimates of the displacement Dt and some invariant measures. In the end,
we will show that the displacement Dt grows linearly in t in three scenarios (Theorems
2.1, 2.2, 2.3). These results suggest behavior of the tagged particle depends on jump
rates p(.), q(.) and the initial measure in a nontrivial way. By characterizing some
nontrivial invariant measure, we will show that the tagged particle can have a positive
speed in AEP even when it has a negative drift,

∑
z z · q(z) < 0 (Theorem 2.3). We will

make some mild assumptions in the next section.

2 Notation and results

In this section, we first introduce the problem and describe the environment process
viewed from the tagged particle; next we describe the assumptions and introduce some
notation; and lastly we state the main results and provide an outline of the proofs.

A configuration ξ(.) on Z \ {0} indicates which sites are occupied relative to the
tagged particle: ξ(x) = 1 if site x is occupied, and ξ(x) = 0 otherwise. The collection of
all configurations X = {0, 1}Z\{0} forms a state space for the environment process ξt.

Local functions on X are functions of the form g(ξ(x1), . . . , ξ(xn)) for some finite
integer n, such that g : {0, 1}n → R. We will use C to denote the space of local functions
on Z \ {0} and M1 to denote the space of probability measures on X. Examples of local
functions are:

ξA(ξ) =
∏
x∈A

ξ(x), A is a finite subset of Z \ {0}. (2.1)
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When A = {x} for some integer x, we abuse the notation and write it as ξx. We will
always use subscript to stress that ξx is a local function. We also hope this will not cause
confusion when ξt is the configuration at time t, as we will see in a moment.

The environment process ξt with respect to the simple exclusion process is a Feller
process. Starting from any initial configuration in X, ξt is described by its generator
L = Lex + Lsh. The action of L on any local function f is given by:

Lf(ξ) =(Lex + Lsh)f(ξ)

=
∑
x,y 6=0

p(y − x)ξ(x) (1− ξ(y)) (f(ξx,y)− f(ξ))

+
∑
z 6=0

q(z) (1− ξ(z)) (f(θzξ)− f(ξ)) (2.2)

where ξx,y represents the configuration after exchanging particles at sites x and y of ξ,

ξx,y(z) =


ξ(z) if z 6= x, y

ξ(y) if z = x

ξ(x) if z = y

, (2.3)

and θzξ represents the configuration shifted by −z unit due to the jump of the tagged
particle to an empty site z,

(θzξ)(x) =

{
ξ(x+ z) if x 6= −z
ξ(z) if x = −z

. (2.4)

The generator Lex corresponds to the motion of red particles, while the generator Lsh

corresponds to the motion of the tagged particle.
Denote by Pη,q the probability measure on the space of càdlàg paths on X starting

from a deterministic configuration ξ0 = η, and let Pν0,q =
∫
Pη,q dν0(η) when the initial

configuration ξ0 is distributed according to some measure ν0 on X. We also denote by
Eν0,q the expectation with respect to Pν0,q. A special initial measure is the step measure
µ1,0, which concentrates on the configuration ξ, with ξ(x) = 1, for x < 0, and ξ(x) = 0,
for x > 0. Also, we use Pν0,0 and Eν0,0 in the case when q(.) is a zero function.

Lastly, we will denote by Dt the displacement of the green tagged particle up to
time t. Initially, D0 = 0 a.s. When q(.) is nearest-neighbor, we can represent Dt as the
difference of numbers of right and left jumps, see (3.9) in section 3. The main problem
is to investigate the long time behavior of Dt when q(.) is different from p(.).

To illustrate the result, we consider the case where red particles have positive drifts

w =
∑
z

z · p(z) > 0 (2.5)

while the tagged particle has jump rates q(.). We want p(.) to satisfy the following
assumptions:

A1 (Radially Decreasing and Range 2) p(−1) ≥ p(−2), p(1) ≥ p(2), and p(k) = 0 for all
|k| > 2.

A2 (Positive Mean) p(2) = p(−2) > 0, and p(1) > p(−1).

It turns out that these assumptions can be generalized and we can get similar results. We
will mention them and give outlines of their proofs after the proofs of the main results.
See Remark 7.1 and Remark 8.4 at the ends of sections 7, 8. For the more general cases,
we assume p(.) satisfies
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A’1 (Radially Decreasing) p(x) is increasing on (−∞,−1] and decreasing on [1,∞),

A’2 (Positive Mean) p(k) ≥ p(−k) for all k > 0, and p(k) > p(−k) for some k,

A’3 (Finite-range) there is an R > 0 such that p(x) = 0 for |x| > R.

Our main results are the ballistic behavior of a driven tagged particle in asymmetric
exclusion processes under different assumptions. The first result is the most natural one.
When the initial measure is the step measure µ1,0 and the tagged particle has only pure
left jump rates, it has a ballistic behavior towards left, i.e. Dt

t has a strictly negative
asymptotic upper bound.

Theorem 2.1. (Ballistic Behavior of a Tagged Particle in AEP with Only Left Jumps)
Consider the AEP with a driven tagged particle. Let the jump rates p(.) for the red

particles satisfy A1 and A2, and the jump rates q(.) be supported on negative axis with
q(−1) > 0. Then, starting from the step initial measure µ1,0, there exists a negative
constant c such that

lim sup
t→∞

Dt

t
≤ c < 0, Pµ1,0,q − a.s.

When the tagged particle can jump in both directions, we can also obtain ballistic
behavior. In the case when p(.) = q(.), and the initial measure is the Bernoulli measure
µρ, for some 0 < ρ < 1, the tagged particle has a speed (1−ρ)

∑
z z ·p(z), see [18]. Now, if

we change the jump rate q(.) such that the drift
∑
z z · q(z) is greater than

∑
z z · p(z), we

expect its mean displacement to have the same asymptotic lower bound, (1−ρ)
∑
z z ·p(z).

The second result confirms that under some conditions on p(.) and q(.), the displacement
Dt has an asymptotic lower bound (1− ρ)

∑
z z · p(z). For the second result, we make the

following assumptions on jump rates p(.), q(.).

A”1 (Supports) p(.) has a support on −2,−1, 1; q(.) has a support on −1, 1, 2,

A”2 (Radially decreasing) p(−1) ≥ p(−2), q(1) ≥ q(2) > 0,

A”3 (Dominance and Positive) q(1) ≥ p(1), q(−1) ≤ p(−1), w =
∑
z z · p(z) > 0.

Theorem 2.2. (Ballistic Behavior of a Fast Tagged Particle in AEP)
Consider the AEP with a driven tagged particle. Let the jump rates p(.), q(.) satisfy

assumptions A”1, A”2, and A”3. Then, starting from a Bernoulli product measure µρ with
ρ ∈ (0, 1) (on {0, 1}Z\{0}), we have

lim inf
t→∞

Dt

t
≥ (1− ρ)

∑
z

z · p(z), Pµρ,q − a.s.

The assumptions on jump rates imply that we can couple two continuous-time random
walks with jump rates p(.), q(.) such that the walk with q(.) always stays on the right of
the walk with p(.). The supports of jump rates p(.), q(.) imply red particles do not jump to
the right of the tagged particle, and the tagged particle does not jump to the left of red
particles.See Remark 8.2 in section 8 below for some discussion on these assumptions.

The final result is that a slow tagged particle in AEP can follow the general behavior
of red particles even if it has jump rates q(.) with a negative mean

∑
z z · q(z) < 0. By

slow, we mean that the size of q(.),
∑
z q(z), is sufficiently small relative to w =

∑
z z ·p(z).

Theorem 2.3. (Ballistic Behavior of a Slow Tagged Particle in AEP)
Consider the AEP with a driven tagged particle. Let the jump rates for the red

particles satisfy assumptions A1 and A2. Then, there exist nearest-neighbor jump rates
q(.) for the tagged particle and an ergodic invariant measure νe for the environment
process viewed from the tagged particle such that, under Pνe,q, we have
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a. the tagged particle has a negative drift: −q(−1) + q(1) < 0,

b. the tagged particle has a positive speed under Pνe,q, that is,

lim
t→∞

Dt

t
= m > 0, Pνe,q − a.s.

In these results, we have shown ballistic behavior of the tagged particle in AEP. With
arguments to be introduced in section 3, the ballistic behavior (with estimates) implies
the existence of some non-trivial invariant measures, measures other than µ0 or µ1, for
the environment process viewed from the tagged particle. In the driven tagged particle
problem, the invariant measure is in general impossible to compute due to the break
of symmetry. The Bernoulli product measure is no longer invariant. In principle, there
could be multiple invariant measures, which makes the behavior of the tagged particle
hard to predict.

To get these three results, we use similar ideas. The proofs of Theorem 2.1 and
Theorem 2.3 are similar, and they are in section 7. The proof of Theorem 2.2 is in section
8. We will mainly discuss the approach to Theorem 2.3. It consists of three parts.

We first start from any initial measure ν0 and obtain a candidate ν̄ for the invariant
measure in Theorem 2.3 and some estimates of the displacement Dt. Let Nt be the
number of red particles which initially start from the left of the tagged particle and move
to the right of the tagged particle by time t. By standard martingale arguments and an
algebraic identity, we can see that, up to an error of q(1)− q(−1), a multiple of Eν0,q

[
Nt
t

]
is a lower bound for Eν0,q

[
Dt
t

]
. This is done in section 3. On the other hand, we will

show that the speed of the tagged particle is Eν0,q
[
Dt
t

]
if ν0 is ergodic. This is done in

section 7.

Next, we want to prove a positive lower bound for Eν0,q
[
Nt
t

]
for some ν0, and we

use two steps. The first step is to obtain an estimate for Eν0,q [Nt] − Eν0,0 [Nt], which
allows us to consider the case where the tagged particle does not move. This estimate
indicates that the case when the tagged particle is moving slowly can be viewed as
a pertubation of the case when the tagged particle is fixed. This estimate requires a
coupling result, which is the main subject in section 4. The existence of coupling requires
mainly assumptions A’1 and A’3, and we will show it in Appendix A.

The second step is to prove a positive current Eν0,0
[
Nt
t

]
for some initial measure ν0.

When the tagged particle does not move, the environment process evolves as the AEP
with a blockage at site 0. A blockage is simply a site which particles are not allowed
to jump to. We consider the case where ν0 is the step measure µ1,0 and prove that the
current is strictly positive by contradiction. The idea is to consider the limiting measure
of an invariant measure under translations {τxν̄} in the Cesàro sense. We will get an
estimate for this limiting measure by comparing this process with another process called
asymmetric exclusion process (AEP) on the half-line even though with creation and
annihilation. The analysis of the latter process requires a second coupling argument,
and follows results and ideas of Liggett, [16, 17]. The second step is done in section 5
and section 6.

We end this section with some remarks on the coupling result to be introduced in
section 4 and the current through a fixed bond.

Remark 2.4. 1. Ferrari, Lebowitz, and Speer considered a coupling in [6]. This is the
same as the couplings in section 4. We give an alternative construction in Appendix
A. See Lemma 4.2 in [6] and Theorem A.4 in Appendix A. The main improvement in
this article is the couplings of two environment processes when the tagged particle
has jump rates different from p(.).
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2. If p(2) > p(−1) + 2p(−2), we can obtain a positive lower bound for 1
tE

ν0,0 [Nt]

using couplings in section 4. However, the proof does not work with the general
assumption A1 so we will use arguments in section 5 and section 6 instead.

3. The step initial measure µ1,0 gives us the maximal value for lim supt→∞
1
tE

ν0,0 [Nt].
By Theorem 2.2 from [2] and the couplings in section 4, we can get positive lower
bounds for 1

tE
ν0,0 [Nt] for more general initial measures ν0, such as Bernoulli

measures µρ for ρ close to 0 or 1. This is indeed a hydrodynamic limit result for the
AEP with a blockage.

4. The current through a fixed bond in the AEP with a blockage is of independent
interest. The current in the usual AEP starting from a step initial measure µ1,0

is computed explicitly by Liggett [16, 17] as 1
4

∑
z · p(z). However, in the case

where there is a local perturbation, the size of current is open. Whether the value
of the current in the perturbed system is strictly smaller than 1

4

∑
z · p(z) is not

well understood, and it is known as the “Slow Bond Problem”. Recently, there
is a progress in the nearest-neighbor case by Basu, Sidoravicius and Sly [3]. In
the current article, we will show the lower bound in the perturbed case is strictly
positive in some non-nearest-neighbor cases (Theorem 5.5).

3 Invariant measure and the lower bound for the displacement of
a tagged particle

In this section, we will assume that q(.) is nearest-neighbor and p(2) = p(−2) > 0, and
assumptions A2, A1 are in force. This simplifies the computation, for some generalization,
see Remark 7.1. We construct a candidate invariant measure by using the empirical
measures. We also relate the displacement Dt of the tagged particle to the current
through bond (−1, 1). Most results in this section are shown by standard martingale
arguments.

We start with a tightness result on M1 with weak topology. Since X = {0, 1}Zd\{0}
is equipped with the product topology, it is compact. By Prokhorov’s Theorem, M1 is
precompact with the weak topology.

Define the (random) empirical measure µt for process ξt and its mean νt by their
actions on local functions:

〈µt, f〉 :=
1

t

∫ t

0

f(ξs) ds, (3.1)

and

〈νt, f〉 :=
1

t
Eν0,q[

∫ t

0

f(ξs) ds], (3.2)

for all f in C and t > 0. We also have continuity at t = 0, ν0 = limt↓0 νt. By precompact-
ness of M1, we can obtain a measure ν̄ as the weak limit of a subsequence νTn . It is an
invariant measure by Theorem B7 [15].

Let Ft := σ(ξs : s ≤ t) and let Nt be the net number of the red particles moving
from the left of the tagged particle to the right of the tagged particle up to time t (or
the integrated current through bond (-1,1)). Since the tagged particle has only nearest-
neighbor jumps, the jumps of the tagged particle do not change the value of Nt and Nt
is the difference of two numbers:

Nt := Rt − Lt =
∑
s≤t

χ{ξs=ξ−1,1
s− ,ξs(1)=1,ξs(−1)=0} −

∑
s≤t

χ{ξs=ξ−1,1
s− ,ξs(1)=0,ξs(−1)=1} (3.3)

Under Pξ,q, Rt has (varying) jump rates λ1(ξt) = p(2)(1 − ξt(1))ξt(−1), and Lt has
(varying) jump rates λ2(ξt) = p(−2)(1 − ξt(−1))ξt(1). By using Pν0,q-martingales, and
uniform integrability, we can obtain the following result:
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Lemma 3.1. Let p(.) satisfy assumptions A2 and A1. For a sequence of Tn ↑ ∞,
ν̄ = limn→∞ νTn exists, and ν̄ is an invariant measure for the environment process ξt.
We have

〈ν̄, C−1,1〉 = lim
n→∞

Eν0,q
[
NTn
Tn

]
, (3.4)

where C−1,1 = p(2)ξ−1(1 − ξ1)〉 − p(−2)ξ1(1 − ξ−1). Furthermore, if there is a C0 > 0,
such that

lim inf
t→∞

Eν0,q
[
Nt
t

]
≥ C0, (3.5)

we also have

〈ν̄, ξ−1 − ξ1〉 ≥
C0

p(2)
> 0. (3.6)

Proof. We write two Pν0,q–martingales

Mt = Rt −
∫ t

0

λ1(ξs) ds (3.7)

M̃t = Lt −
∫ t

0

λ2(ξs) ds. (3.8)

These two martingales are generalizations of the classical martingale for a Poisson
process nt with a rate λ, nt − λt. Combining them, we can get a Pν0,q− martingale,

Nt −
∫ t

0

C−1,1(ξs) ds.

For more details, see Chapter 6.2 [13]. Taking expectation with respect to Pν0,q, we
obtain

〈νTn , p(2)ξ−1(1− ξ1))− p(−2)ξ1(1− ξ−1)〉 =
1

Tn
Eν0,q[NTn ]

Passing through the weak limit, we get the equation (3.4). As Lt and Rt are both domi-

nated by a Poisson Process with rate 1, {Mt

t }t>1 and { M̃t

t }t>1 are uniformly integrable.
Using p(2) = p(−2), we get (3.6) from (3.4),(3.5).

We can also write the displacement of the tagged particle Dt as the difference of two
numbers, rt and lt, the numbers of right jumps and left jumps of the tagged particle:

Dt := rt − lt =
∑
s≤t

χ{ξs=θ1ξs−} −
∑
s≤t

χ{ξs=θ−1ξs−}. (3.9)

With a similar argument, we see the displacement Dt has a lower bound which is a
multiple of C0, up to an error (the difference of q(−1) and q(1)):

Lemma 3.2. Let jump rates p(.) satisfy assumptions A2 and A1, and q(.) be nearest-
neighbor. There is a sequence of Tn ↑ ∞ such that ν̄ = limn→∞ νTn exists and it is
invariant, and Dt has an estimate:

q(1)〈ν̄, 1− ξ1〉 − q(−1)〈ν̄, 1− ξ−1〉 = lim inf
t→∞

Eν0,q
[
Dt

t

]
. (3.10)

Furthermore, if (3.5) holds with C0 > 0, then

lim inf
t→∞

Eν0,q
[
Dt

t

]
≥ q(1)

p(2)
C0 − (q(−1)− q(1)). (3.11)
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Proof. It is almost the same as that of Lemma 3.1. We notice that, lt − q(−1)
∫ t
0
(1 −

ξs(−1)) ds and rt − q(1)
∫ t
0
(1− ξs(1)) ds are Pν0,q- martingales, and that the left hand side

of (3.10) can be rewritten as

q(1) 〈ν̄, ξ−1 − ξ1〉 − (q(−1)− q(1)) 〈ν̄, 1− ξ−1〉 .

We use lim inf in (3.10) to emphasize that the initial measure ν0 is arbitrary, and Dt

may not satisfy a law of large numbers. From the estimate (3.11) in Lemma 3.2, we can
get a positive mean for the displacement when the tagged particle has almost symmetric
jump rates, i.e. when q(−1)− q(1) is small, and C0 is positive. For the next three sections,
we will show how to get a positive C0 with (3.5) in Lemmas 3.1 and 3.2 for some ν0.

4 An error estimate and couplings of particles on Z

The main result of this section is Theorem 4.4, which gives an estimate of the error
Eν0,q [Nt] − Eν0,0 [Nt], where q(.) is nearest-neighbor (for extensions, see Remark 4.5).
This estimate allows us to consider the problem with a fixed tagged particle instead of a
moving tagged particle. The proof relies on couplings of two auxiliary processes, which
is the main tool in this section. The couplings are similar to those in [2, 6]. Under the
couplings of two auxiliary processes, we will have one auxiliary process which moves
“faster” than the other process. We will order particles in increasing order, and compare
the positions of particles in two processes in pairs. Typically, the “faster” process has
particles with larger coordinates relative to their paired particles in the “slower” process.
By coupling jumps of particles, we can preserve the relative orders of paired particles in
both processes for all time t ≥ 0. Next, we introduce some notions, and show the proof
of Theorem 4.4 at the end of this section.

4.1 Auxiliary processes

We can view the environment process ξt of the asymmetric exclusion process with
a tagged particle in another way. We can label all red particles according to the initial
configuration in an ascending order, and track their relative positions with respect to
the tagged particle.

Starting from an initial configuration ξ with infinitely many particles on both sides of
zero, we label particles with their initial positions as ~X0 = (Xi)i∈Z ∈ (Z \ {0})Z = X̃. In
particular, ~X0 satisfies

· · · < X−2 < X−1 < X0 < X1 < X2 < . . . (4.1)

and
ξ(x) = 1⇔ Xi = x, for some i.

To extend to the case when there are finitely many particles to the right or the left
of zero, it is also convenient for us to add particles at +∞ and −∞, and therefore, we
would enlarge the state space to X̂ = (Z \ {0}

⋃
{−∞,∞})Z. For example, for the step

measure µ1,0, we can label particles as:

· · · < X−2 = −3 < X−1 = −2 < X0 = −1 < X1 =∞ ≤ X2 =∞ ≤ . . .

Also, there is no particular rule for the choice of X0 with respect to the tagged particle.
For each initial configuration ~X0 satisfying (4.1), there is a Markov process ~Xt with

generator L̃ corresponding to the process ξt with initial configuration ξ. In particular, we
will introduce many re-labelings to keep ~Xt satisfying (4.1) for any t > 0. There are two
types of jumps for the auxiliary process, corresponding to jumps (2.3) and (2.4). The first
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occurs when the i-th red particle jumps to an empty target site Xi + z; the second occurs
when the tagged particle jumps to an empty target site z. Due to nearest-neighbor jump
rates q(.), a jump of the tagged particle does not result in change of labels, while a jump
of a red particle requires re-labelings of particles between the particle and its target site
so that (4.1) holds. Note that there are multiple ~X0 corresponding to ξ, so to the process
ξt there correspond multiple processes ~Xt.

Let Ti,z ~X and Θz
~X represent the configurations after these two jumps respectively.

See (4.2), (4.4), (4.6) below for their expressions. We can see two examples for these
two types of jumps in Figure 1 and Figure 2.

~X
TaggedX−3 X−2 X−1 X0

~X ′ = T−3,2 ~X

TaggedX ′−3 X ′−2 X ′−1 X ′0

Figure 1: Red Particle X−3 Jumps 2 Units

~X
TaggedX−3 X−2 X−1 X0

~X ′′ = Θ−2 ~X

TaggedX ′′−3 X ′′−2 X ′′−1 X ′′0

Figure 2: Tagged Particle Jumps -2 Units

For any z 6= 0, we have Θz
~X as,

(Θz
~X)j = Xj − z. (4.2)

For z > 0, we denote the index of the right-most particle to the left of site Xi + z by
Ii,z( ~X),

Ii,z( ~X) = max{k : Xk ≤ Xi + z}. (4.3)

When a positive jump is possible for the i-th particle, we have the new configuration
described by

(Ti,z ~X)j =


Xj if j < i or j > Ii,z( ~X)

Xj+1 if i ≤ j < Ii,z( ~X)

Xi + z if j = Ii,z( ~X)

. (4.4)

The conditions for these two types of jumps to occur are Ai,z = {Xi + z /∈ ~X ∪ {0}} and
Bz = {z /∈ ~X

⋃
{0}}, respectively. Here we also think of ~X as a subset of Z \ {0} (instead

of Z \ {0} ∪ {−∞,∞}).
For negative jumps z < 0, we can think of the dynamics by reversing the lattice Z.

That is, with a change of variable, ~Y = {Yi}i∈Z = R( ~X), we have(
R( ~X)

)
i

= Yi = −X−i (4.5)
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(Ti,z ~X) = R(T−i,−z(R( ~X)) (4.6)

Ii,z( ~X) = −I−i,−z(R( ~X)) = min{k : Xk ≥ Xi + z} (4.7)

For z = 0, we take Ti,0 as the identity map and Ii,0( ~X) = i.
Therefore, we can write down the generator L̃ for the auxiliary process ~Xt by its

action on local functions F : X̂ −→ R (i.e. F ( ~X) depends on a finite set {Xi}) as:

L̃F ( ~X) =(L̃ex + L̃sh)F ( ~X)

=
∑
i,z

p(Xi, Xi + z)1Ai,z (
~X)
[
F (Ti,z ~X)− F ( ~X)

]
+
∑
y

q(y)1By ( ~X)
[
F (Θy

~X)− F ( ~X)
]
. (4.8)

The transition rates are p(x, y) = p(y − x) if x, y 6= 0,±∞, and p(x, y) = 0 otherwise.

4.2 Shifts of labels

In the environment process, a jump of the tagged particle influences coordinates of
all red particles (and does not change labels of particles), while jumps of red particles
influence only finitely many coordinates (and change labels of particles). In order to
couple jumps of the tagged particle with jumps of red particles and preserve the order
of the two processes, we use shifts of labels to offset the global effect on coordinates
from jumps of the tagged particle.

For couplings, we also consider two other versions of auxiliary processes with shifts
of labels, which correspond to the same process ξt. Let Sz ~X represents the configuration
after shifting labels by z,

(Sz ~X)j = Xj+z. (4.9)

~X
TaggedX−3 X−2 X−1 X0

~X ′ = Θ−2 ~X

TaggedX ′−3 X ′−2 X ′−1 X ′0
~X ′′ = S−2 ◦Θ−2 ~X

TaggedX ′′−1 X ′′0 X ′′1 X ′′2

Figure 3: Tagged Particle Jumps -2 Units with Labels Shifted

In addition to shifting configurations when a tagged particle jumps, we can also shift
labels after shifting the configurations. See Figure 3. We obtain the first version by
adding a shift of labels by z after the tagged particle has a left jump with z units, that is,

L̃LF ( ~X) =(L̃ex + L̃
sh,q−
L + L̃sh,q+)F ( ~X)

=
∑
i,z

p(Xi, Xi + z)1Ai,z (
~X)
[
F (Ti,z ~X)− F ( ~X)

]
+
∑
y<0

q(y)1By ( ~X)
[
F (Sy ◦Θy

~X)− F ( ~X)
]

+
∑
y>0

q(y)1By ( ~X)
[
F (Θy

~X)− F ( ~X)
]

(4.10)
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Similarly, we can have the second version by shifting labels after the tagged particle
takes a right jump. See Figure 4 below for an example when the tagged particle has a
right jump with size 1.

L̃RF ( ~X) =(L̃ex + L̃sh,q− + L̃
sh,q+
R )F ( ~X)

=
∑
i,z

p(Xi, Xi + z)1Ai,z (
~X)
[
F (Ti,z ~X)− F ( ~X)

]
+
∑
y<0

q(y)1By ( ~X)
[
F (Θy

~X)− F ( ~X)
]

+
∑
y>0

q(y)1By ( ~X)
[
F (Sy ◦Θy

~X)− F ( ~X)
]

(4.11)

~X
TaggedX−3 X−2 X−1 X0

~X ′ = Θ1
~X

TaggedX ′−2 X ′−1 X ′0 X ′1

~X ′′ = S1 ◦Θ1
~X

TaggedX ′′−3 X ′′−2 X ′′−1 X ′′0

Figure 4: Tagged Particle Jumps 1 Unit with Labels Shifted

We will use ~Xt = ( ~X0, G, p, q) to denote the auxiliary process with ~X0 as the initial
configuration, and generator G. In particular, G is one of the forms (4.8),(4.11), and
(4.10) with p, q as parameters. And we use P( ~X0,G,p,q) or P

~Xt to denote the corresponding
probability measure on the space of càdlàg paths on X̂. ~X0 can also be random.

4.3 Couplings of auxiliary processes and error estimates

There is a natural partial order on the set X̂:

~X ≥ ~Y ⇔ Xi ≥ Yi, for all i. (4.12)

With this partial order,we can define that two auxiliary processes ~Xt = ( ~X0, G, p, q) and
~Yt = (~Y0, G

′, p′, q′) are coupled by stochastic ordering.

Definition 4.1. We denote ~Xt � ~Yt, if two auxiliary processes ~Xt and ~Yt can be coupled:
that is, there exists a joint process ~Zt = ( ~Wt, ~Vt), with a joint generator Ω on the space
of local functions F : X̃× X̃ 7→ R, such that

1. ~Wt ≥ ~Vt,P
~Zt − a.s.

2. ~Zt has marginals as ~Xt and ~Yt. That is, for any local functions F1( ~X, ~Y ) = H1( ~X),
and F2( ~X, ~Y ) = H2(~Y ), we have,

ΩF1( ~X, ~Y ) = GH1( ~X)

ΩF2( ~X, ~Y ) = G′H2(~Y )

~W0
d
= ~X0, ~V0

d
= ~Y0.

Our main step towards Theorem 4.4 is the existence of couplings of auxiliary pro-
cesses. The construction of the couplings is done in Appendix A.
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Theorem 4.2. Let p(.) satisfy assumption A1 and two initial configurations satisfy
~X0 ≥ ~Y0. For any q(.), we can couple below two pairs of auxiliary processes:

( ~X0, L̃R, p, q) � (~Y0, L̃, p, 0) (4.13)

( ~X0, L̃, p, 0) � (~Y0, L̃L, p, q). (4.14)

Proof. See Theorem A.4 in Appendix A.

Remark 4.3. The couplings (4.13), (4.14) are valid for more general jump rates p(.), see
Theorem A.4. We can also extend Theorems 2.2, 2.1, and 2.3 when couplings 4.13 and
4.14 are valid for more general jump rates p(.), q(.). For details, see Remarks 7.1 and
8.4.

Above two couplings provide a lower bound and an upper bound of the error
Eν0,q [Nt] − Eν0,0 [Nt] respectively, and we can estimate the error by the number of
jumps of the tagged particle.

Theorem 4.4. Let p(.) satisfy assumption A1, and the tagged particle take nearest-
neighbor jumps, with rates q(−1), q(1). For any (deterministic) initial configuration ξ,
and any t ≥ 0, ∣∣Eξ,q [Nt]− Eξ,0 [Nt]

∣∣ ≤ t · (q(1) + q(−1)). (4.15)

Proof. To get (4.15), we will use couplings from Theorem 4.2 to obtain two inequalities,

Eξ,q [Nt]− Eξ,0 [Nt] ≥ −Eξ,q [rt] , (4.16)

Eξ,q [Nt]− Eξ,0 [Nt] ≤ Eξ,q [lt] . (4.17)

With the fact that lt − q(−1)
∫ t
0
(1 − ξs(−1)) ds and rt − q(1)

∫ t
0
(1 − ξs(1)) ds are Pν0,q-

martingales, we derive (4.15) from (4.16) and (4.17).
To get (4.16) and (4.17), we can consider the following. For any non-zero configura-

tion ξ in X, we can label the particles as ~X0 = {Xi}i∈Z,

· · · ≤ X−2 ≤ X−1 ≤ X0 < 0 < X1 ≤ X2 ≤ . . .

and equality occurs if both sides are∞ or −∞. By Theorem 4.2, from the same initial
configuration ξ, we have two couplings with ~X0 = ~Y0 = ~Z0,

~Xt = ( ~X0, L̃R, p, q) � ( ~X0, L̃, p, 0) = ~Yt

~Yt = ( ~X0, L̃, p, 0) � ( ~X0, L̃L, p, q) = ~Zt. (4.18)

Consider a function F : X̂ → Z, F ( ~X) = max{i : Xi ≤ −1}. It is decreasing in ~X, that
is, if ~X ≥ ~Y

F ( ~X) ≤ F (~Y ) (4.19)

Therefore, we get, under two joint distributions (one for the coupling ~Xt � ~Yt, and
the other for the coupling ~Yt � ~Zt) and ~X0 = ~Y0 = ~Z0,

F ( ~X0)− F ( ~Xt) ≥ F ( ~Y0)− F (~Yt), a.s., (4.20)

F (~Y0)− F (~Yt) ≥ F ( ~Z0)− F (~Zt), a.s.. (4.21)

Notice that the derivation of (4.20) and (4.21) does not require q(.) to be nearest-
neighbor.

On the other hand, when q(.) is nearest-neighbor, jumps of the tagged particle do not
move particles between positive and negative axes, but they may shift labels. See Figure
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4. For ~Xt, we can use a decomposition similar to those in (3.3) and (3.9), and see that
the change in the label of the right-most particle on the negative axis by time t comes
from three sources: jumps of red particles through bond (−1, 1) (N ~X(t)), right jumps of
the tagged particle (r ~X(t)) and left jumps of the tagged particle (l ~X(t)). In particular,
each first type of jump contributes 1 to the change, each second type of jump contributes
1 to the change, and each third type of jump contributes 0 to the change. Therefore, we
obtain

F ( ~X0)− F ( ~Xt) = N ~X(t) + r ~X(t), (4.22)

where N ~X(t), r ~X(t) are the same as Nt, rt for the corresponding environment process ξt.

Similarly, we obtain two identities for processes ~Yt, ~Zt,

F (~Y0)− F (~Yt) = N~Y (t), (4.23)

F (~Z0)− F (~Zt) = N~Z(t)− l~Z(t), (4.24)

where l~Z(t) is the same as lt for process ~Z(t).
Taking expectations on (4.20) rewritten in terms of (4.22) and (4.23), we get

Eξ,q [Nt] + Eξ,q [rt] ≥ Eξ,0 [Nt] ,

which implies (4.16); taking expectations of (4.21), rewritten in terms of (4.23) and
(4.24), we get (4.17).

Remark 4.5. We can obtain further results with similar proofs of Theorem 4.4. We will
assume that p(·) satisfies assumption A1 so that couplings in Theorem 4.2 are possible.
We mention these results without giving detailed proofs.

1. When q(.) is non-nearest-neighbor and finite-range, we can find an estimate similar
to (4.15): there is a CR′ > 0 depending on the range R′ of q(.) such that,∣∣Eν0,q [Nt]− Eν0,0 [Nt]

∣∣ ≤ CR′∑
z

q(z) · t. (4.25)

We outline the proof of (4.25): we can first obtain couplings (4.18) by Theorem
4.2. Then, we can apply couplings (4.18) to the decreasing function F ( ~X) =

max{i : Xi ≤ −1} and get (4.20) and (4.21). Each side of (4.20) is the same as the
integrated current Nt through the bond (−1, 1) for the corresponding environment
process ξt up to a term corresponding to the shift of labels. For example, we can
take the auxiliary process ~Xt = ( ~X0, L̃R, p, q). Every jump changing the value of the
integrated current Nt also changes the value F ( ~Xt) by the same amount, except
for right jumps of the tagged particle. A right jump of size z decreases F ( ~Xt) by an
additional amount z, so we can get (4.22)

F ( ~X0)− F ( ~Xt) = N ~X(t) + r ~X(t),

by interpreting N ~X(t) as the integrated current Nt through the bond (−1, 1) for its
corresponding environment process, and r ~X(t) as the sum of right jump sizes of the
tagged particle. Similarly, we can derive (4.23) and (4.24) with new interpretations.
Therefore, we can get (4.25) by taking expectations and the fact that

max
{
E
[
r ~X(t)

]
,E
[
l ~X(t)

]}
≤ R

∑
z

q(z) · t.
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2. From the coupling, we can use Kingman Subadditive Ergodic Theorem to show
the convergence of Nt

t when the initial measure is the step measure µ1,0, and the
tagged particle does not move, q = 0:

lim
t→∞

Nt
t

= lim
t→∞

1

t
Eµ1,0,0 [Nt] , Pµ1,0,0 − a.s. (4.26)

See Remark 2.4 and Lemma 4.8 in [2], or see (7.6) in the proof of Theorem 2.1.

5 Current in AEP with a blockage

In this section, we will show the current in AEP with a blockage at the origin has a
positive lower bound (Theorem 5.5).The existence of a positive lower bound helps us to
show that the tagged particle has a positive speed under Pνe,q, for some small q(.) and
some ergodic measure νe for the environment process.

5.1 Currents and densities in equilibrium

In sections 5, 6, we make the following assumptions on p(., .). Let p(., .) be jump rates
for a continuous-time random walk on Z with the following conditions:

1. p(., .) is translation invariant: p(x, y) = p(y − x).

2. p(x, x+ k) = p(k) ≥ p(−k) = p(x+ k, x) for all k > 0, and a strict inequality holds
for some k.

3. p(., .) has a finite jump range R > 1: p(k) = 0, |k| > R. Assume further p(R) > 0.

Notice that the assumptions A1, A2 are sufficient for the above assumptions, but not
necessary. Also, we don’t need A1 or A’1, which is the main condition for the existence
of couplings in section 4; instead, the second assumption above is the main condition
for this section. It enables us to construct an increasing sequence Gi, which will be
important in the proof of Lemma 5.3.

We will consider a process, the AEP on lattice Z with a blockage at the origin, i.e.,
the AEP with a tagged particle when q = 0, and quantities Cx,y that are currents through
bond (x, y).

The AEP on lattice Z with a blockage at the origin has a generator L defined by its
action on a local function f ,

Lf(η) =
∑
x,y 6=0

p(x, y)η(x) (1− η(y)) (f(ηx,y)− f(η)) , (5.1)

which is the same as (2.2) when q = 0. Assume the initial configuration is the step
measure µ1,0 for the rest of this section. Recall that C−1,1 was defined in Lemma 3.1. In
general, for any x < y, we can define the current Cx,y through bond (x, y) as:

Cx,y =
∑

i≤x,y≤j,
i,j 6=0

(p(i, j)ηi(1− ηj)− p(j, i)ηj(1− ηi)) . (5.2)

Theorem 5.5 is the main result for the next two sections. Before its statement and
proof, we shall see three lemmas on invariant measures with respect to L, and currents
Cx,y. The first two lemmas are direct consequences of translation invariance and finite
range of p(., .) and they are standard. In the third lemma, we will need the second
condition on p(., .). The first lemma says the mean of current Cx,x+1 is constant in x with
respect to an invariant measure.
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Lemma 5.1. For an invariant measure ν̄ with respect to the generator L defined in (5.1),
we have, for any x 6= −1, 0,

〈ν̄, Cx,x+1〉 = 〈ν̄, C−1,1〉. (5.3)

Proof. The change of density at site x is due to the difference between currents through
bonds (x− 1, x) and (x, x+ 1). Computing Lηx for x 6= −1, 0, 1, we get

Lηx = Cx−1,x − Cx,x+1,

Lη−1 = C−2,−1 − C−1,1,
Lη1 = C−1,1 − C1,2.

We show the first one, and the next two are similar: for any x 6= −1, 0, 1, we have

Lηx =
∑
i,j 6=0

p(i, j)ηi (1− ηj)
(
ηi,jx − ηx

)
=
∑
i6=0,x

p(i, x)ηi (1− ηx)−
∑
j 6=0,x

p(x, j)ηx (1− ηj)

=
∑
i6=0,x

(p(i, x)ηi (1− ηx)− p(x, i)ηx (1− ηi)) .

On the other hand, we can check pairs (i, j) contributing to the difference Cx−1,x−Cx,x+1

Cx−1,x − Cx,x+1 =
∑

i≤x−1,x≤j,
i,j 6=0

(p(i, j)ηi(1− ηj)− p(j, i)ηj(1− ηi))

−
∑

i≤x,x+1≤j,
i,j 6=0

(p(i, j)ηi(1− ηj)− p(j, i)ηj(1− ηi))

=
∑

i≤x−1,x=j,
i,j 6=0

(p(i, j)ηi(1− ηj)− p(j, i)ηj(1− ηi))

−
∑

i=x,x+1≤j,
i,j 6=0

(p(i, j)ηi(1− ηj)− p(j, i)ηj(1− ηi))

=
∑

i≤x−1,
i 6=0

(p(i, x)ηi(1− ηx)− p(x, i)ηx(1− ηi))

+
∑

x+1≤i,
i6=0

(p(i, x)ηi(1− ηx)− p(x, i)ηx(1− ηi)) = Lηx,

where interchanging i and j in the third last line results in a change of sign.
Taking expectation with respect to the invariant measure ν̄, we get (5.3).

Consider translation operators τi on the state space X′ = {0, 1}Z, for i, j ∈ Z,

(τiη)(j) = η(j + i).

We define translations on local functions f and on measures ν by

τif(η) = f(τiη), (5.4)

〈τiν, f〉 = 〈ν, τif〉 (5.5)

In particular, we have that τiηj = ηi+j , 〈τiν, ηj〉 = 〈ν, ηi+j〉.
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The second lemma says that any weak limit ν∗ of the Cesàro means of ν̄ under
translation is a mixture of Bernoulli measures µρ, 0 ≤ ρ ≤ 1. This is because ν∗ is
translation invariant and invariant with respect to the generator L0 for AEP. Recall that
the generator L0 acts on a local function f by, see [11],

L0f(η) =
∑
x,y∈Z

p(y − x)η(x) (1− η(y)) (f(ηx,y)− f(η)) . (5.6)

Lemma 5.2. Let ν̄ be an invariant measure with respect to the generator L. Any weak
limit ν∗ of the Cesàro means of ν̄ under translation:

ν∗ = lim
k→∞

ν∗nk = lim
k→∞

1

nk

nk∑
i=1

τiν̄, (5.7)

is translation invariant and invariant with respect to the generator L0 for AEP. That is,
for any local function f ,

〈ν∗, τxf〉 =〈ν∗, f〉, (5.8)

〈ν∗,L0f〉 =0, (5.9)

where L0 is translation invariant. In particular, there is a probability measure wρ on
[0, 1], such that

ν∗ =

∫
µρdwρ. (5.10)

Proof. By Theorem VIII.3.9 [18], we only need to show translation invariance and
invariance ((5.8), (5.9)) to get (5.10). The proofs for both are similar.

For any local function f , which is a bounded function on {0, 1}Z depending on finitely
many ξx,

〈ν∗nk , τ1f〉 =
1

nk

nk∑
i=1

〈τiν̄, τ1f〉

=
1

nk

nk∑
i=1

〈τi+1ν̄, f〉

=〈ν∗nk , f〉+Of

(
1

nk

)
.

Also, as ν̄ is invariant with respect to L and L0τi = τiL0, we can compare (5.1) with
(5.6) and get,

〈ν∗nk ,L0f〉 =
1

nk

nk∑
i=1

〈τiν̄,L0f〉

=
1

nk

nk∑
i=1

〈ν̄,L0(τif)〉

=
1

nk

nk∑
i=1

〈ν̄,L(τif)〉+
1

nk

nk∑
i=1

〈ν̄, (L0 − L)(τif)〉

=Of

(
1

nk

)
.

In the last line, since f is local, (L0 − L)(τif) is non-zero for finitely many i. Taking limits
as nk →∞, we get (5.8) and (5.9).
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The third lemma says if an invariant measure ν̄ has a current with a zero mean and
some weak limit ν∗ of its Cesàro means under translation is a Bernoulli measure µ0 with
density 0, the densities of positive sites are identically 0 for ν̄.

Lemma 5.3. Let ν̄ be an invariant measure with respect to the generator L, and ν∗ be
a weak limit of its Cesàro means defined in (5.7). If 〈ν̄, C−1,1〉 = 0 and 〈ν∗, ηx〉 = 0 for
some x (which implies for all x since ν∗ is translation invariant), we have 〈ν̄, ηx〉 = 0 for
all x > 0.

Proof. We will divide the proof into 3 steps.

S1. Define a quantity Gi:

With identities p(y, x) = p(x, y)+p(y, x)−p(x, y) and ηx(1−ηy)−ηy(1−ηx) = ηx−ηy,
from (5.2), we get

〈ν̄, Ci,i+1〉 =〈ν̄,
∑

x≤i,i+1≤y

p(y − x)(ηx − ηy)〉

+〈ν̄,
∑

x≤i,i+1≤y

(p(y − x)− p(x− y))ηy(1− ηx)〉.

Therefore, by Lemma 5.1, we have, for i ≥ R, 〈ν̄, Ci,i+1〉 = 0, and∑
x≤i,i+1≤y

p(y − x)〈ν̄, ηy − ηx〉

=
∑

x≤i,i+1≤y

(p(y − x)− p(x− y))〈ν̄, ηy(1− ηx)〉. (5.11)

The choice for i ≥ R is to avoid x, y = 0 for any term inside the sum.

Notice that there is some symmetry on the left hand side of (5.11), which allows us
to rewrite (5.11) as a backward difference for some sequence (Gi)i≥R∑

x≤i,i+1≤y

p(y − x)〈ν̄, ηy − ηx〉 = Gi+1 −Gi. (5.12)

We will prove (5.12). Indeed, we can expand the left hand side of (5.11), and
rearrange terms according to 〈ν̄, ηi+j〉, for j = −(R − 1),−(R − 2), . . . , R. We will
get 2R terms with coefficients bj ,

∑
x≤i,i+1≤y

p(y − x)〈ν̄, ηy − ηx〉 =

R∑
j=−(R−1)

bj〈ν̄, ηi+j〉,

where bj can be computed explicitly as

bj =

{∑R
k=j p(k) , for j ≥ 1

−
∑j−1
k=−R p(−k) , for j ≤ 0

. (5.13)

The coefficients bj are “odd” in the sense that

b−(j−1) = −bj , for j = 1, . . . , R. (5.14)

From (5.14), we can find 2R + 1 “even” numbers with boundary conditions aR =

a−R = 0,

a−j = aj , for j = 0, 1, . . . , R, (5.15)
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and rewrite bj as a (negative) forward difference

bj = aj−1 − aj , for j = −(R− 1), . . . , R. (5.16)

We can also express aj in terms of p(.) explicitly as

aj =

R∑
k=|j|+1

(k − |j|) p(k)., for |j| = 0, 1, . . . , R. (5.17)

One can see (5.16) by working on an example. For example, when R = 2, we have
4 “odd” terms,

−b2,−b1, b1, b2,
and we can find 5 “even terms” 0, b2, b2 + b1, b2, 0 and write the 4 odd terms as

0− b2, b2 − (b2 + b1), (b2 + b1)− b2, b2 − 0.

In fact, (5.16) is a direct consequence of the symmetry (5.14), and it does not rely
on the explicit expressions (5.13), (5.17). From (5.16), we can apply the summation
by parts formula to the left hand side of (5.11) and get (5.12),

R∑
j=−(R−1)

bj〈ν̄, ηi+j〉 =

R∑
j=−(R−1)

(aj−1 − aj)〈ν̄, ηi+j〉

=

R−1∑
j=−(R−1)

aj〈ν̄, ηi+1+j〉 −
R−1∑

j=−(R−1)

aj〈ν̄, ηi+j〉

=Gi+1 −Gi, (5.18)

for all i ≥ R, which is the forward difference of a sequence (Gi). The sequence (Gi)

is unique up to a constant, and we can use the last equality of (5.18) and express
Gi in the matrix form,

Gi =
∑

j:|j|≤R−1

aj〈ν̄, ηi+j〉 = Avi, (5.19)

where A is a row vector with 2R − 1 positive entries aj =
∑R
k=|j|+1 (k − |j|) p(k),

for |j| ≤ R− 1, and vi is a column vector with 2R− 1 nonnegative entries 〈ν̄, ηi+j〉,
for |j| ≤ R− 1.

S2. Convergence of (Gi)i≥R:

By the assumption p(k) ≥ p(−k) for k > 0, we have the right hand side of (5.11) is
positive. Also, (5.19) implies that Gi is bounded uniformly for i ≥ R. Therefore, we
get the monotone convergence of (Gi)i≥R:

Gi ↑ c, as i ↑ ∞. (5.20)

S3. From 〈ν∗, ηx〉 = 0 to 〈ν̄, ηx〉 = 0:

As the Cesáro limit of a sequence is the same as its limit when both limits exist,
by the definition (5.7) of ν∗, (5.19), and (5.20), we get c = 0 from linearity. With
strictly positive entries in A, we get, for i ≥ R,

Gi = Avi = 0,

and all entries in vi are 0. In particular, 〈ν̄, ηi+j〉 = 0, for all indices i + j with
i+ j ≥ R− (R− 1) = 1.

We should notice that to write Gi in forms of (5.19), we need i ≥ R. It is because we
don’t want terms involving p(0, x) or p(x, 0). This condition holds for sites sufficiently
right to the origin. We will see similar conditions in Theorem 5.4 and Lemma 6.1 involved.
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5.2 Proof of positive currents in AEP with a blockage

The theorem below will be proved in section 6.3. It says, if the initial configuration
has no particles after some point x > 0, ν∗ is dominated by µ 1

2
, in the sense of (5.21).

Let’s recall from section 3 that the mean of empirical measures νt is defined by its action

on local functions 〈νt, f〉 = 1
tE

ν0,0
[∫ t

0
f(ηs) ds

]
for some initial measure ν0.

Theorem 5.4. Consider the AEP on lattice Z with a blockage at the origin and p(.) has
a positive mean

∑
z · p(z) > 0. Let ν̄ be a weak limit of the mean of empirical measures

ν̄Tn , and ν∗ be defined via a subsequence mentioned in (5.7). If there is an x > R such
that 〈ν0, ηy〉 = 0 for all y ≥ x, we will have, for any finite set A ⊂ Z,

〈ν∗,
∏
x∈A

ηx〉 ≤ 〈µ 1
2
,
∏
x∈A

ηx〉 = 2−|A|. (5.21)

Proof. See Corollary 6.4.

Theorem 5.5 is the main result of sections 5, 6. It says the current through bond
(−1, 1) is strictly positive for the AEP on Z when the initial measure is the step measure
µ1,0. We will prove it by contradiction.

Theorem 5.5. Suppose p(., .) satisfy assumptions at the beginning of subsection 5.1.
For the AEP on lattice Z with a blockage at the origin, there is a lower bound C1 > 0 for
the current through bond (−1, 1),

lim inf
t→∞

1

t
Eµ1,0,0 [Nt] = lim inf

t→∞
〈νt, C−1,1〉 = C1 > 0. (5.22)

Proof. Let Nt be the (net) number of particles jumping through bond (−1, 1) by time t,
which is the same as (3.3) when the tagged particle is not moving. Under the initial
measure µ1,0, there are no particles on the positive axis, we can see that Nt is the same
as the number of particles on the positive axis at time t, and therefore Nt ≥ 0. Together
with the fact that Nt −

∫ t
0
C−1,1(ηs) ds is a Pµ1,0,0- martingale (see Chapter 6.2 [13]), we

get that

C1 = lim inf
t→∞

〈νt, C−1,1〉 = lim inf
t→∞

1

t
Eµ1,0,0 [Nt] ≥ 0.

Suppose C1 = 0. By tightness, there is an invariant measure ν̄ with a zero current
〈ν̄, C−1,1〉 = 0. By Lemma 5.1, 〈ν̄, Cx,x+1〉 = 0, for x ≥ R. We have

〈ν∗nk , CR,R+1〉 =
1

nk

nk∑
i=1

〈τiν̄, CR,R+1〉

=
1

nk

nk∑
i=1

〈ν̄, CR+i,R+i+1〉 = 0.

Then, for any weak limit ν∗ = limk→∞ ν∗nk = limk→∞
1
nk

∑nk
i=1 τiν̄,

〈ν∗, CR,R+1〉 = 0. (5.23)

On the other hand, by Lemma 5.2, ν∗ is a mixture of Bernoulli measures (on {0, 1}Z),
that is, ν∗ =

∫
µρdwρ for some probability measure wρ. A computation shows

〈µρ, CR,R+1〉 = ρ(1− ρ)
∑

i≤R,j≥R+1

(p(i, j)− p(j, i)) = ρ(1− ρ)w, (5.24)
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where w is the mean drift for p(., .)

w =
∑

i≤R,j≥R+1

(p(i, j)− p(j, i)) =
∑
k

k · p(k). (5.25)

By assumption 2 for p(., .), this sum (5.24) is strictly positive unless ρ = 0 or 1. As a
consequence, ν∗ is a convex combination of µ0 and µ1

ν∗ = c0µ0 + c1µ1, (5.26)

with c0 + c1 = 1.
By Theorem 5.4, we have c1 ≤ 2−|A|, for any finite set A ⊂ Z. This implies c1 = 0 and

c0 = 1. Then, by Lemma 5.3, we have, for x > 0,

〈ν∗, ηx〉 = 0, and 〈ν̄, ηx〉 = 0. (5.27)

By the particle-hole duality, (i.e. viewing holes as particles, viewing particles as holes,
and reversing Z \ {0}, we can get the dynamics of holes the same as the dynamic of
particles in the AEP with a blockage at site 0), we get a result like (5.27): for x < 0,

〈ν̄, ηx〉 = 1. (5.28)

(5.27) and (5.28) imply the current 〈ν̄, C−1,1〉 is strictly positive, which is a contradiction.

6 AEP on half-line with creation and annihilation

To show Theorem 5.4, we will consider an auxiliary process: the AEP on the half-line
with creation and annihilation. This model has a long history and was studied by Liggett
in [16] and [17]. We will use some results from [16] and [17] to show the estimate (5.21)
in Theorem 5.4.

6.1 Comparison between AEP on half-line with creation and AEP with a block-
age

We first describe the AEP on the half-line with only creation formally as follows.
Particles move according to asymmetric exclusion process on half-line [1,∞) with jump
rates p(x, y) = p(y − x). If a positive site y > 0 is vacant, a particle is created at y with a
rate

∑
x≤0 p(y − x). Also, no particles are allowed to jump out of the positive half-line.

Alternatively, if we consider the AEP on Z with an immediate creation of particles on
(−∞, 0] when sites are vacant, the dynamic restricted to the positive axis is the same as
the dynamic of the AEP on the half-line with creation.

The first lemma connects the AEP with a blockage at site 0 with the AEP on the
half-line with creation. Denote by ηt the AEP with a blockage at site 0, which has a
probability measure P ; denote by ζt the AEP on the half-line with creation, which has a
probability measure Q.

Lemma 6.1. Suppose AEP with a blockage at site 0 starts from the initial measure
µ1,0 and the AEP on the half-line with creation starts from the Bernoulli measure µ0 on
positive axis. Then, for any finite subset A ⊂ Z+, and any t ≥ 0,

P (ηt(x+R) = 1, for all x ∈ A) ≤ Q(ζt(x) = 1, for all x ∈ A), (6.1)

where R is the range of jump rates p(.) as defined at the beginning of section 5. We use
R to avoid sites too close to the origin.
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Proof. In the AEP with a blockage, we use independent exponential clocks with rates
p(x, x+ z) to indicate times of potential jumps from a site x to a site x+ z. These clocks
also help us to interpret movements of holes. When a potential jump from site x to x+ z

occurs, a hole at site x can interchange with another hole at site x+ z (even though the
interchanging doesn’t affect the configuration), but its jump to a site x+ z occupied by
a particle is suppressed. Then, we can obtain an intermediate process φt by labeling
holes and particles in the AEP with a blockage as different classes of “particles” and
suppressing certain jumps. In this intermediate process, there are three classes of
particles, we label each class by 1, 2, or 3. Holes and particles in the AEP with a blockage
are labeled according to the following rules:

a. a particle in the AEP with a blockage is always a first-class particles and labeled “1”
in the intermediate process;

b. a hole in the AEP with a blockage at any time is either a second-class particle or a
third-class particle;

c. a hole becomes a second-class particle once it visits or starts from a site on (−∞, R],
and its label becomes ”2”;

d. a hole is always a third-class particle if it never visits or starts from a site on
(−∞, R], and its label stays ”3”.

We will also suppress a jump from site x to x+ z (in addition to those jumps suppressed
due to the target site x+ z already occupied by a particle in the P -process)

if x has a third-class particle and x+ z has a second-class or third-class particle.
(6.2)

(6.2) does not affect the P -process because both the second-class and third-class “parti-
cles” are holes, but under (6.2), only jumps from a site with a particle of a larger label to
a site with a particle of a smaller label is allowed. We will denote by P̃ the probability
measure corresponding to φt.

See Figure 5 for an example. φt0 is the a configuration at time t0 > 0 with a specific
labeling of three classes of particles. In particular, the hole at the site 4 is labeled a
second-class particle. φt1 is the configuration after a (first-class) particle jumps from −1

to 1, a (second-class) particle jumps from 2 to 3, and a (second-class) particle jumps from
4 to 6 in φt0 ; φt2 is a configuration at a general time t2.

φt0
Blockage 3 3 32 2 2

R = 2

1 1

φt1
Blockage 3 311 2 2 2 2

φt2
Blockage 31 1 11 12 2

Figure 5: The AEP with a Blockage and 3 Classes of Particles

The intermediate process φt connects both the P -process and Q-process. On one
hand, it follows from the rules that the first-class particles in φt correspond to particles
in the P -process. We have that for any finite subset A ⊂ Z+, t ≥ 0

P̃ (φt(x) = 1, for all x ∈ A+R) = P (ηt(x) = 1, for all x ∈ A+R). (6.3)
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On the other hand, the dynamics of the third-class particles (on (R,∞)) in φt are identical
to the dynamics of holes in the Q-process (on (0,∞)) when the Q-process has an initial
measure µ0. We can see this because a third-class particle is not created; a third-class
particle is affected by either being moved from a site y > R to a new site x > R, when
the site x is occupied previously by a non-third-class particle and a potential jump from
x to y occurs, or being removed from the system due to a jump from a site x ≤ R to y.
This is the same as a hole at a site y −R in the Q-process: a hole at site y −R is affected
by either being moved to a new site x− R > 0, when the site x is occupied previously
by a particle, and a jump from site x−R to y −R occurs, or a hole is affected by being
removed from the system due to a jump from a site x−R ≤ 0 to y. Therefore, together
with the initial measure µ1,0 for the P -process, we can get that for any finite subset
A ⊂ Z+, t ≥ 0

P̃ (φt(x) 6= 3, for all x ∈ A+R) = Q(ζt(x) 6= 0, for all x ∈ A). (6.4)

As a consequence of (6.3) and (6.4),

P (ηt(x) = 1, for all x ∈ A+R) ≤P̃ (φt(x) = 1 or 2, for all x ∈ A+R)

=Q(ζt(x) = 1, for all x ∈ A).

6.2 Couplings in the AEP with creation and annihilation

By the above lemma, we can study the asymptotic behavior of the AEP on half-line
with only creation. The main theorem of this section is Theorem 6.3. The proof of
Theorem 6.3 can be derived from results in [17], with stochastic orderings (couplings).
We start with some notion and results from [16] and [17].

Consider a subset Dm,n = {m,m+ 1, . . . , n} ⊂ Z, for m ≤ n ≤ ∞, the configuration
space on Dm,n is Xm,n = {0, 1}Dm,n , and a probability measure vm,n on Xm,n. We can
extend vm,n to a measure onX−∞,∞ = {0, 1}Z by taking product measure: let λ, ρ ∈ [0, 1],
we can have

vm,n;λ,ρ =µ−∞,m−1λ ⊗ vm,n ⊗ µn+1,∞
ρ , (6.5)

vm,∞;λ =µ−∞,m−1λ ⊗ vm,∞, (6.6)

where µ−∞,m−1λ is a Bernoulli measure with density λ on X−∞,m−1 = {0, 1}{i:i<m} and
µn+1,∞
ρ is a Bernoulli measure with density ρ on Xn+1,∞ = {0, 1}{i:i>n}. With this

extension, we can compare measures on different Xm,n with partial orders on the space
of measures on X−∞,∞.

We first define partial orders on the space of configurations X−∞,∞

η ≥ ξ ⇔ η(x) ≥ ξ(x) for all x ∈ Z. (6.7)

Then we can define partial orders on the space of probability measures via stochastic
ordering:

ν ≥ µ⇔ 〈ν, f〉 ≥ 〈µ, f〉for all f increasing (with respect to (6.7)). (6.8)

We will consider the AEP with creation and annihilation on both a finite system and an
infinite system. The former is a process on Xm,n with a generator Ωλ,ρm,n and a semigroup
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Sλ,ρm,n. Ωλ,ρm,n acts on a local function f by

Ωλ,ρm,nf(η) =
∑

x<m,y∈Dm,n

(p(x, y)λ (1− η(y)) + p(y, x)(1− λ)η(y)) (f(ηy)− f(η))

+
∑

x∈Dm,n,y>n
(p(x, y)η(x)(1− ρ) + p(y, x)ρ (1− η(x))) (f(ηx)− f(η))

+
∑

x,y∈Dm,n

p(x, y)η(x) (1− η(y)) (f(ηx,y)− f(η)) , (6.9)

where

ηx(z) =

{
1− η(x) , if z = x

η(z) , otherwise
.

And the latter is a process on Xm,∞ with a generator Ωλm,∞ and a semigroup Sλm,∞.
Ωλm,∞ acts on a local function f by

Ωλm,∞f(η) =
∑

x<m,y≥m

(p(x, y)λ (1− η(y)) + p(y, x)(1− λ)η(y)) (f(ηy)− f(η))

+
∑
x,y≥m

p(x, y)η(x) (1− η(y)) (f(ηx,y)− f(η)) . (6.10)

6.3 Liggett’s results and their consequences

Below are results from [16] and [17]. Particularly, the monotonicity in the first part
of Lemma 6.2 guarantees interchanging of limits. Recall µm,nρ is a Bernoulli measure on
Xm,n with density ρ.

Lemma 6.2. Assume 1 ≥ λ ≥ ρ ≥ 0, and m ≤ n ≤ ∞. Let νλ,ρm,n(t) := µ−∞,m−1λ ⊗(
µm,nρ Sλ,ρm,n(t)

)
⊗ µn+1,∞

ρ . Then we have,

1. In the sense of (6.8), the probability measure νλ,ρm,n(t) is increasing in parameters
m,n, t, λ and ρ.

2. Let ν̄m,n;λ,ρ = limt↑∞ νλ,ρm,n(t). ν̄m,n;λ,ρ converges to a unique limit ν̄m;λ,ρ as n goes

to∞. And ν̄m;λ,ρ = limt↑∞ µ−∞,m−1λ ⊗
(
µm,∞ρ Sλm,∞(t)

)
.

3. For n−m > 2R, the current in Dm,n has two lower bounds:

〈ν̄m,n;λ,ρ, Cx,x+1〉 ≥ w ·max{λ(1− λ), ρ(1− ρ)} (6.11)

where w =
∑
|k|≤R kp(k),see (2.5).

Proof. The first part of Lemma 6.2 is proved in Theorems 2.4, 2.13 in [16]. The second
part is a consequence of the monotonicity in parameters from the first part and the
Trotter Theorem, see Proposition 2.2 in [16]. We only show the last equality:

lim
t↑∞

µ−∞,m−1λ ⊗
(
µm,∞ρ Sλm,∞(t)

)
= lim
t↑∞

µ−∞,m−1λ ⊗
(

lim
n↑∞

(
µm,nρ Sλ,ρm,n(t)

)
⊗ µn+1,∞

ρ

)
= lim
t↑∞

lim
n↑∞

µ−∞,m−1λ ⊗
(
µm,nρ Sλ,ρm,n(t)

)
⊗ µn+1,∞

ρ

= lim
t↑∞

lim
n↑∞

νλ,ρm,n(t)

= lim
n↑∞

lim
t↑∞

νλ,ρm,n(t) = ν̄m;λ,ρ.

In particular, the first line is by Proposition 2.2 [16], and the interchanging of limits in
the fourth line is by the monotonicity in parameters n, t from the first part. The third
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part of Lemma 6.2 is by the proof of Proposition 2.6 in [17]. It is a consequence of the
monotonicity of ν̄m,n;λ,ρ in m,n and a direct computation of currents at two boundaries
Cm−1,m and Cn,n+1. Indeed, we can compute 〈ν̄m,n;λ,ρ, Cm−1,m〉,

〈ν̄m,n;λ,ρ, Cm−1,m〉 =
∑

x<m≤y

(p(x, y)λ〈ν̄m,n;λ,ρ, 1− ηy〉 − p(y, x)(1− λ)〈ν̄m,n;λ,ρ, ηy〉)

≥
∑

x<m≤y

(p(x, y)λ〈ν̄y+1,n;λ,ρ, 1− ηy〉 − p(y, x)(1− λ)〈ν̄y+1,n;λ,ρ, ηy〉)

=λ(1− λ)
∑

x<m≤y

(p(x, y)− p(y, x)) = w · λ(1− λ),

where we use that ν̄m,n;λ,ρ and ν̄y+1,n;λ,ρ are product measures in the first line and the
third line, we use that ν̄m,n;λ,ρ is increasing in m,n in the second line, and we use (2.5)
to get the last equality. Repeating this for 〈ν̄m,n;λ,ρ, Cn,n+1〉 we get

〈ν̄m,n;λ,ρ, Cn,n+1〉 =
∑

x<n+1≤y

(p(x, y)(1− ρ)〈ν̄m,n;λ,ρ, ηx〉 − p(y, x)ρ〈ν̄m,n;λ,ρ, 1− ηx〉)

≥
∑

x<n+1≤y

(p(x, y)(1− ρ)〈ν̄m,x−1;λ,ρ, ηx〉 − p(y, x)ρ〈ν̄m,x−1;λ,ρ, 1− ηx〉)

=w · ρ(1− ρ).

Then, we can use the same argument as Lemma 5.1. From a direct computation, we get
that for x = m, . . . , n,

Ωλ,ρm,nηx = Cx−1,x − Cx,x+1.

From the first point, ν̄m,n;λ,ρ is the limiting measure ν̄m,n;λ,ρ = limt↑∞ νλ,ρm,n(t), and
therefore it is invariant with respect to Ωλ,ρm,n. Taking expectation, we obtain that the
expected values of currents are constant for all x = m− 1, . . . , n

〈ν̄m,n;λ,ρ, Cx,x+1〉 = 〈ν̄m,n;λ,ρ, Cm−1,m〉,

which implies (6.11) from the lower bounds.

The main theorem of this section says the AEP on half-line with creation has a limiting
measure. When translated along the positive direction, the limiting measure converges
to the Bernoulli measure µ 1

2
in the Cesàro sense. This corresponds to the limiting

measure of usual AEP being the Bernoulli measure µ 1
2

when the initial measure is the
step measure µ1,0.

Theorem 6.3. Assume the AEP on half-line with creation has the initial configuration
with only holes in positive sites. Let mt be measures on {0, 1}Z+ with 〈mt,

∏
x∈A ηx〉 =

Q(ζt(x) = 1, for all x ∈ A) for any finite subset A ⊂ Z+. Then we have the following,

lim
t→∞

mt = m̄ exists (6.12)

lim
N→∞

1

N

N∑
i=1

〈m̄,
∏

x∈A+i

ηx〉 = 2−|A|. (6.13)

Proof. Assume λ ≥ ρ, from Lemma 6.2, ν̄m;λ,ρ is the limiting measure of νλ,ρm,n(t) as t, n go
to∞. It is also increasing in m,λ, ρ. Therefore, we can define a unique limiting measure
µ(λ, ρ), which is also increasing in λ and ρ,

µ(λ, ρ) = lim
m→∞

ν̄−m;λ,ρ. (6.14)
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It is also the same as the limit of the Cesàro means of ν̄m;λ,ρ under translation:

τiν̄m;λ,ρ = lim
n→∞

τiν̄m,n;λ,ρ = lim
n→∞

ν̄m−i,n−i;λ,ρ = ν̄m−i;λ,ρ,

µ(λ, ρ) = lim
N→∞

τN ν̄m;λ,ρ = lim
N→∞

1

N

N∑
i=1

τiν̄m;λ,ρ.

On the other hand, we see that the limit µ(λ, ρ) is translation invariant (due to Cesàro
mean) and invariant with respect to L0, following similar arguments in Lemma 5.2.
Indeed, for any local function f on {0, 1}Z (Ωλm,∞τi)f is well-defined and

(Ωλm,∞τi)f = (L0τi)f

for i ≥ C(m, f) > 0. Then, we get for i large,

〈ν̄m−i;λ,ρ,L0f〉 =〈τiν̄m;λ,ρ,L0f〉 = 〈ν̄m;λ,ρ, (L0τi)f〉
=〈ν̄m;λ,ρ, (Ω

λ
m,∞τi)f〉 = 〈ν̄m;λ,ρ,Ω

λ
m,∞(τif)〉 = 0.

where the last equality is a consequence of the point 2 in Lemma 6.2: we see that ν̄m;λ,ρ

is the limiting measure, and therefore it is invariant with respect to Ωλm,∞ by Theorem B7,
[15]. Taking limit as i goes to∞, we get 〈µ(λ, ρ),L0f〉 = 0. Therefore, µ(λ, ρ) is a mixture
of Bernoulli measures. For any Bernoulli measure µρ, by (5.24), 〈µρ, CR,R+1〉 = wρ(1− ρ).
As a consequence, we get an upper bound, for any λ ≥ ρ,

〈µ(λ, ρ), CR,R+1〉 ≤
1

4
w, (6.15)

and equality holds if and only if µ(λ, ρ) = µ 1
2
.

The lower bound (6.11) in Lemma 6.2 indicates 〈µ
(
1
2 , 0
)
, CR,R+1〉 ≥ 1

4w, 〈µ
(
1, 12
)
,

CR,R+1〉 ≥ 1
4w. We see that µ

(
1
2 , 0
)

and µ
(
1, 12
)

are Bernoulli measures with the same
density 1

2 ,

µ

(
1

2
, 0

)
= µ

(
1,

1

2

)
= µ 1

2
.

Together with monotonicity in λ, ρ, we get for λ ≥ 1
2 ≥ ρ,

µ 1
2

= µ

(
1

2
, 0

)
≤ µ(λ, ρ) ≤ µ

(
1,

1

2

)
= µ 1

2
. (6.16)

We can conclude the proof by letting λ = 1, ρ = 0, and identifying mt as the restriction
of ν1,00,∞(t) on X0,∞. Taking weak limits (again by Lemma 6.2), we get (6.13)

lim
N→∞

1

N

N∑
i=1

〈m̄,
∏

x∈A+i

ηx〉 = 〈µ(1, 0),
∏
x∈A

ηx〉 = 2−|A|.

We give the proof of Theorem 5.4 as a corollary of Theorem 6.3.

Corollary 6.4. (proof of Theorem 5.4) Let ν̄ be a weak limit of the mean of empirical
measures ν̄Tn , and ν∗ be a weak limit of the Cesàro means of ν̄ under translation (5.7).
Then for any finite set A ⊂ Z,

〈ν∗,
∏
x∈A

ηx〉 ≤ 2−|A|. (6.17)
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Proof. Consider some weak limit ν̄ of the means of the empirical measure for the P-
process defined by (3.2) along some sequence (tn). By (6.1) and (6.12), we have that, for
any A ⊂ Z+

〈ν̄,
∏
x∈A

ηx+R〉 = lim
n→∞

1

tn

∫ tn

0

P (ηs(x+R) = 1, for all x ∈ A) ds

≤ lim
n→∞

1

tn

∫ tn

0

Q(ηs(x) = 1, for all x ∈ A) ds

= lim
n→∞

1

tn

∫ tn

0

〈ms,
∏
x∈A

ηx〉 ds = 〈m̄,

∏
x∈A

ηx〉.

Then, for i > 0,

〈τiν̄,
∏
x∈A

ηx+R〉 = 〈ν̄,
∏
x∈A

ηx+R+i〉 ≤ 〈m̄,

∏
x∈A

ηx+i〉.

Therefore, by (6.13) and (5.7), the definition of ν∗,

〈ν∗,
∏
x∈A

ηx+R〉 ≤ lim
Nk→∞

1

Nk

Nk∑
i=1

〈m̄,
∏
x∈A

ηx+i〉 = 2−|A|.

We can extend the inequality to any subset A of Z since ν∗ is translation invariant by
Lemma 5.2.

7 Proofs of Theorem 2.1 and Theorem 2.3

In this section, we prove Theorems 2.1 and 2.3. Let’s start with the proof of Theorem
2.3, and we will see that the proof of Theorem 2.1 follows similar arguments.

Proof. (Theorem 2.3) We divide the proof into two steps.

Step1. Existence of q(.) and ergodic measure νe for the environment process ξt:

By Theorem 5.5, we can define C1 := lim inft→∞
1
tE

µ1,0,0 [Nt] > 0. Then by Theorem 4.4,
for any nearest-neighbor q(.), we have C0 := C1 − (q(1) + q(−1)), such that

lim inf
t→∞

1

t
Eµ1,0,q [Nt] ≥ C0.

As a consequence, by Lemma 3.2, there is an invariant measure ν̄ for the environment
process ξt, such that

lim inf
t→∞

Eµ1,0,q

[
Dt

t

]
= 〈ν̄, f〉 ≥ q(1)

p(2)
C0 − (q(−1)− q(1)), (7.1)

where

f(ξ) = q(1)(1− ξ1)− q(−1)(1− ξ−1).

We can choose q(−1) > q(1), to obtain a strict positive lower bound for (7.1).

On the other hand, the collection of invariant measures satisfying (7.1) forms a
nonempty closed convex compact set by tightness. Then, there is an extremal point νe,
which is ergodic for the environment process ξt, and νe also satisfies (7.1)

〈νe, f〉 ≥
q(1)

p(2)
C0 − (q(−1)− q(1)) > 0. (7.2)
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Step2. The positive speed of the tagged particle:

We can use Pνe,q− martingales,(see (3.7),(3.8))

Mt = Dt −
∫ t

0

f(ξs) ds,

where Mt is a martingale with quadratic variance of order t. As νe is invariant and
ergodic for the environment process ξt, we apply Ergodic Theorem, and get

lim
t→∞

Dt

t
= 〈νe, f〉 > 0, Pνe,q − a.s. (7.3)

In the case when the tagged particle only has pure left jumps, following arguments
in Step 2 of the above proof, we only need to show that lim inft→∞

1
t

∫
0
tf(ξs) ds ≤ c for

some c < 0.

Proof. (Theorem 2.1) We first use arguments similar to the proof of Theorem 4.4. Since
jump rates p(.) satisfy A1, we can use Theorem 4.2 to get a coupling

~Xt = ( ~X0, L̃R, p, q) � ( ~X0, L̃, p, 0) = ~Yt.

Then under some joint distribution, we have (4.20)

F ( ~X0)− F ( ~Xt) ≥ F ( ~Y0)− F (~Yt) , a.s.

for the decreasing function F ( ~X) = max{i : Xi ≤ −1}. When the tagged particle does
not jump to the right, each side of (4.20) is identical to the number of red particles
through bond (−1, 1) by time t (integrated current through bond (-1,1)). The above
inequality (4.20) is equivalent to

N ~X(t) ≥ N~Y (t) a.s., (7.4)

which implies that

lim inf
t→∞

1

t
N ~X(t) ≥ lim inf

t→∞

1

t
N~Y (t) ,a.s. (7.5)

It is worth noting that due to non-nearest-neighbor jumps of the tagged particle, N ~X(t)

in (7.4) is different from the N ~X(t) described before (4.22) because a left jump of the
tagged particle can increase N ~X(t) when there is a red particle between the tagged
particle and its target site (see Figure 3 for instance). For more details on N ~X(t), see
point 1 in Remark 4.5.

We can use the the Kingman Subadditive Ergodic Theorem and Theorem 5.5 to get
that the right hand side of (7.5) is a positive constant C1,

lim inf
t→∞

1

t
N~Y (t) = lim

t→∞

1

t
N~Y (t) = lim inf

t→∞

1

t
Eµ1,0,0 [Nt] =: C1 > 0. (7.6)

Indeed, due to the step initial measure µ1,0, we can label particles initially as ~Y0 = (Yi)i∈Z,
where

Yi =

{
i− 1 if i ≤ 0

+∞ if i > 0
.

At any fixed time t, we can get a new (random) configuration ~Y ′t ≥ ~Yt from ~Yt by
“increasing” all the red particles in ~Yt that are on the positive axis to +∞, and “increasing”
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all the other red particles to fill the “rightmost” holes on the negative axis. More precisely,
in view of N~Y (t) = F (~Y0)− F (~Yt) ≥ 0, the new configuration ~Y ′t = (Y ′i (t))i∈Z is

Y ′i (t) =

{
i− 1 +N~Y (t) if i ≤ −N~Y (t)

+∞ if i > −N~Y (t)
,

which dominates ~Yt = (Yi(t))i∈Z because for each i ≤ −N~Y (t) = −max{i : Yi(t) ≤ −1},

Yi(t) =
(
Yi(t)− YN~Y (t)(t)

)
+ YN~Y (t)(t)

≤
(
i−N~Y (t)

)
+ (−1) = Y ′i (t),

and for each i > −N~Y (t),
Yi(t) ≤ +∞ = Y ′i (t).

It is also immediate that ~Y ′t is identical to the initial configuration ~Y0 = (Yi)i∈Z, but with
N~Y (t) (random) shifts of labels. Hence, we have

SN~Y (t)
~Y0 = ~Y ′t ≥ ~Yt. (7.7)

Then by Theorem 4.2, we can couple two auxiliary processes ~Zs, ~Yt+s with initial configu-
rations ~Y ′t , ~Yt,

~Zs =
(
SN~Y (t)

~Y0, L̃, p, 0
)
�
(
~Yt, L̃, p, 0

)
= ~Yt+s. (7.8)

Applying the argument for (7.4), we can get the subadditivity for N~Y , for any s > 0,

N~Z(s) ≥ N~Y (t+ s)−N~Y (t) a.s., (7.9)

where N~Z(s) has the same distribution as N~Y (s) because ~Z0 and ~Yt are the same up
to N~Y (t) (random) shifts of labels, and N~Z(s), N~Y (s) are differences of labels, see
arguments before (7.4). From (7.8) and (7.9), we can apply the Kingman Subadditive
Ergodic Theorem to get the convergence in (7.6), and identify the limit by Theorem 5.5.
This is also a proof for the second point in Remark 2.4.

On the other hand, for the environment process of AEP with a driven tagged particle,
we can compute Lξ−1 by (2.2) and the fact that p(.) is supported on [−2, 2], and q(.) is
supported on the negative axis. We can bound it above by

Lξ−1 =(1− ξ−1)
∑

z 6=0,−1

p(z)ξ−1−z − ξ−1
∑
z 6=0,1

p(z)(1− ξ−1+z)

+
∑
z<0

q(z)(1− ξz) (ξ−1+z − ξ−1)

≤ (1− ξ−1)

 ∑
z 6=0,−1

p(z) + q(−1)

+
∑
z<−1

q(z)(1− ξz)

− ξ−1
∑
z>1

p(z)(1− ξ−1+z) (7.10)

Also, we can compute Ĉ−1,1 by adding an extra term to (5.2), which corresponds to the
jump of the tagged particle,

Ĉ−1,1 =p(2)ξ−1(1− ξ1)− p(−2)ξ1(1− ξ−1) +
∑
z

q(z)(1− ξz)

( ∑
z<z′<0

ξz′

)
≤p(2)ξ−1(1− ξ1) +

∑
z<−1

q(z)(1− ξz)(−z − 1). (7.11)
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Notice that the negative term in the last inequality of (7.10) is the same as the first
term p(2)ξ−1(1− ξ1) on the right hand side of (7.11). Therefore, we can bound the sum
Lξ−1 + Ĉ−1,1 by summing the other positive terms in (7.10), (7.11), and bound the sum
by a multiple of f =

∑
z<0 z · q(z) (1− ξz) ,

Lξ−1 + Ĉ−1,1 ≤(1− ξ−1)

(∑
z

p(z) + q(−1)

)
+
∑
z<−1

q(z)(1− ξz)

≤−
∑
z p(z)

q(−1)
f−f = − C4

q(−1)
f, (7.12)

where C4 = q(−1) +
∑
z p(z).

We can use three Pµ1,0,q− martingales, (see (3.7), (3.8), and Chapter 6.2 [13])

N ~X(t)−
∫ t

0

Ĉ−1,1(ξs) ds, ξt(−1)−
∫ t

0

Lξ−1(ξs) ds, Dt −
∫ t

0

f(ξs) ds, (7.13)

which all have quadratic variance of order t. Dividing by t and taking limits, we see
from (7.5) and |ξt(−1)| ≤ 1 that, Pµ1,0,q-a.s.,

lim inf
t→∞

1

t

∫ t

0

Ĉ−1,1(ξs) ds= lim inf
t→∞

1

t
N ~X(t) ≥ C1,

lim
t→∞

1

t

∫ t

0

Lξ−1(ξs) ds = lim
t→∞

1

t
(ξt(−1)− ξ0(−1)) = 0.

Together with (7.12), we get Pµ1,0,q − a.s.

lim sup
t→∞

1

t

∫ t

0

f(ξs) ds ≤ −
q(−1)

C4
lim inf
t→∞

1

t

∫ t

0

(
Lξ−1 + Ĉ−1,1

)
ds ≤ −q(−1)C1

C4
, (7.14)

Choosing c := −C1
q(−1)

q(−1)+
∑
z p(z)

< 0, we obtain

lim sup
t→∞

Dt

t
= lim sup

t→∞

1

t

∫ t

0

f(ξs) ds ≤ c < 0, Pµ1,0,q − a.s. (7.15)

We can extend Theorem 2.1 and Theorem 2.3 to the case with more general jump
rates p(.), q(.).

Remark 7.1. We can have more general p(.) and q(.). We assume that p(.) satisfies
assumptions A’1, and A’3, so that couplings in Theorem 4.2 are still possible by Theorem
A.4.

1. To generalize Theorem 2.1, p(.) satisfies additional assumption A’2, and q(.) is
supported only on the negative axis with q(z) > 0 for all 0 < −z < R, where [−R,R]

contains the support of p(.). Then the displacement Dt satisfies (7.15) for some
c < 0.

The proof is similar to that of Theorem 2.1. Once we’ve shown (7.5) (by the same
argument), we can use an inequality similar to (7.12), see (7.20) below, to get
(7.15). Indeed, we will have three Pµ1,0,q− martingales similar to (7.13),

N ~X(t)−
∫ t

0

Ĉ−1,1(ξs) ds,
∑

0<z<R

ξt(−z)−
∫ t

0

L

( ∑
0<z<R

ξ−z

)
(ξs) ds,

Dt −
∫ t

0

f(ξs) ds, (7.16)
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where Ĉ−1,1 is almost the same as C−1,1 from (5.2), except for an extra term due to
left jumps of the tagged particle,

Ĉ−1,1 = C−1,1 +
∑

z<z′≤−1

(q(z)(1− ξz)ξz′) , (7.17)

and f(ξ) =
∑
z q(z)z (1− ξz). We can write C−1,1 as a difference

C−1,1 =
∑

x<0<y

p(y − x)ξx (1− ξy)−
∑

x<0<y

p(x− y)ξy (1− ξx) , (7.18)

and compute L
(∑

0<z<R ξ−z
)

by different jumps due to the tagged particle and red
particle,

L

( ∑
0<z<R

ξ−z

)
=
∑
k<0

q(k) (1− ξk)

( ∑
0<z<R

ξ−z+k −
∑

0<z<R

ξ−z

)

+
∑

0<z<R

(1− ξ−z)

∑
k 6=−z

p(k)ξ−z−k


−

∑
0<z<R

ξ−z

∑
k 6=z

p(k)(1− ξ−z+k)

 . (7.19)

By comparing the positive terms of (7.18) and the last negative term in (7.19), we
can bound the positive terms of C−1,1 by the negative terms of L

(∑
0<z<R ξ−z

)
in

absolute value. Therefore, Ĉ−1,1 +L
(∑

0<z<R ξ−z
)

is bounded above by the sum of
the positive terms in (7.17) and (7.19),

Ĉ−1,1 + L

( ∑
0<z<R

ξ−z

)

≤
∑

z<z′≤−1

(q(z)(1− ξz)ξz′) +
∑
z<0

q(z) (1− ξz)

( ∑
0<k<R

ξ−k+z

)

+
∑

0<z<R

(1− ξ−z)

∑
k 6=−z

p(k)ξ−z−k

 .

Since
∑
z<z′≤−1 ξz′ ≤ R− 2, and

∑
0<k<R ξ−k+z ≤ R − 1 for all −R <z ≤ −1, we

can get an upper bound for the above inequality

Ĉ−1,1 + L

( ∑
0<z<R

ξ−z

)
≤
∑

0<z<R

(1− ξ−z)

(
(2R− 3) · q(−z) +

∑
k

p(k)

)

≤C5

∑
0<z<R

(1− ξ−z) ≤ −
C5

min−R<z<0 q(z)
f, (7.20)

where C5 = (2R− 3) ·maxz q(z) +
∑
k p(k). (7.20) is an analogue of (7.12), and we

can use a similar argument as (7.14) to get (7.15) for some c < 0.

2. To generalize Theorem 2.3, p(.) are under additional assumption that p(−k) = p(k)

for 2 ≤ k ≤ R, and p(1) > p(−1). Then there exists jump rates q(.) with a negative
drift

∑
z q(z) < 0 and an ergodic measure νe, such that the speed of the tagged

particle is positive under Pνe,q.
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The proof is also similar to the proof of Theorem 2.3 and we outline it below in a
different order. Due to the assumptions on the jump rates p(.), we can use Theorem
5.5 to get a positive lower bound for

lim inf
t→∞

1

t
Eµ1,0,0 [Nt] = C1 > 0.

Then we will choose R′ = R−1, and construct jump rates q(.) supported on [−R′, R′].
We can observe the following facts:

(a) When
∑
z q(z) is small enough, we can use (4.25) in the first point of Remark

4.5 to get a positive lower bound for

lim inf
t→∞

1

t
Eµ1,0,q [Nt] = C1 − CR′

∑
z

q(z) > 0.

By using a Pµ1,0,q-martingale Nt −
∫ t
0
Ĉ−1,1(ξs) ds, we can get a lower bound

for

lim inf
t→∞

1

t

∫ t

0

Eµ1,0,q [C−1,1(ξs)] ds = C1 − 2CR′
∑
z

q(z) > 0, (7.21)

where C−1,1 is the current through bond (−1, 1) given by formula (5.2), and
C−1,1 differs from Ĉ−1,1 by a term of size at most CR′

∑
z q(z).

(b) As p(k) = p(−k) for k ≥ 2, the current C−1,1 through bond (−1, 1) is a linear
combination of (1− ηi) with “odd coefficients” (bi)0<|i|≤R−1,

C−1,1 =

R−1∑
i=1

bi(1− ηi)−
R−1∑
i=1

bi(1− η−i), (7.22)

where by “odd” we mean b−i = −bi, which is differnt from (5.14).

(c) When q(.) is the sum of a multiple of
(
bz
z

)
z

and an error term (e(z))z, for
1 ≤ |z| ≤ R′

q(z) = c · bz
z

+ e(z) (7.23)

for some positive c > 0, by (7.22), the function f =
∑
z zq(z) (1− ηz) is cC−1,1

up to an error of size at most

|f − cC−1,1| ≤
∑
z

|ze(z)| , (7.24)

and the drift for jump rates q(.) is∑
z

z · q(z) =
∑
z

z · e(z) (7.25)

Therefore, by (7.21),(7.24),(7.25), we can choose positive c, (e(z))z with
∑
z z·e(z) <

0 so that q(.) of the form (7.23) has a negative drift w =
∑
z z · q(z) =

∑
z z · e(z),

and there is an invariant measure ν̄ for the environment process ξt, such that

〈ν̄, f〉 = lim inf
n→∞

1

tn

∫ tn

0

Eµ1,0,q [f(ξs)] ds ≥ c

(
C1 − 2CR′

∑
z

q(z)

)
−
∑
z

|ze(z)| > 0.

(7.26)
The invariant measure ν̄ can be obtained as the weak limit of the mean νtn of the
empirical measure,see (3.2), along some sequence (tn). We can also obtain an
ergodic measure νe which also satisfies (7.26). Then, by the step 2 of the proof of
Theorem 2.3, we get that under Pνe,q, the tagged particle has a positive speed.
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8 Ballistic behavior of a fast tagged particle in AEP

In this section, we will prove Theorem 2.2. In this case, both the green tagged
particle and red particles have non-nearest-neighbor jump rates and the means of jump
rates are positive. This is a scenario different from Theorem 2.3. In particular, the jump
rate β =

∑
z q(z) of the tagged particle can be larger than the jump rate λ =

∑
z p(z) of

red particles.
We briefly discuss the steps of the proof. We will modify the auxiliary process

introduced in section 4. Instead of labeling red particles and considering their positions
relative to the tagged particle, we will also label the tagged particle, and keep track
of its label (see (8.1)). With this modified auxiliary process, we can couple the ordered
particles (including the tagged particle) in the AEP with the ordered particles in the
usual AEP. By investigating the change in labels of tagged particles in both processes,
we can compare their positions. We obtain a lower bound for the driven tagged particle
in AEP by estimates from the usual AEP.

8.1 Assumptions and labels of the tagged particle

Let’s recall assumptions A”1,A”2, and A”3 on jump rates p(.), q(.).

A”1 (Supports) p(.) has a support on −2,−1, 1; q(.) has a support on −1, 1, 2,

A”2 (Radially decreasing) p(−1) ≥ p(−2), q(1) ≥ q(2) > 0,

A”3 (Dominance and Positive) q(1) ≥ p(1), q(−1) ≤ p(−1), w =
∑
z z · p(z) > 0.

These conditions imply that the tagged particle moves “faster” than a red particle,
and that red particles starting from the left of the tagged particle always remain to
the left of the tagged particle. We will explain their roles in Remark 8.2. Consider
an AEP with a driven tagged particle, we label particles in an ascending order and
also keep track of the label It of tagged particle. We get a modified auxiliary process
( ~Xt, It) = ( ~X0, p, q, It) =

(
(Xi(t))i∈Z , It

)
. Its generator L̂p,q is given by its action on a

local function F ,

L̂p,qF ( ~X, I) =
∑

i 6=I,z∈Z

p(z)1Ai,z (
~X)
[
F (Ti,z ~X, Îi,z( ~X, I))− F ( ~X, I)

]
+
∑
z

q(z)1AI,z (
~X)
[
F (TI,z ~X, II,z( ~X))− F ( ~X, I)

]
(8.1)

where Ti,z ~X is defined by (4.4),(4.6), and Îi,z( ~X, I) is defined as

Îi,z( ~X, I) =


I − 1, if Xi < XI < Xi + z

I + 1, if Xi + z < XI < Xi

Ii,z( ~X), if i = I

I, else.

(8.2)

For an AEP with a usual tagged particle,i.e., p(.) = q(.), we get a second auxiliary
process (~Yt, it) = (~Y0, p, p, it) with a generator L̂p,p. For convenience, we let initial
configuration be the same for both processes, and label the tagged particles with 0, ie.

I0 = i0 = 0 (8.3)

The first lemma says that we can couple two modified auxiliary processes ( ~Xt, It) and
(~Yt, it) in the sense similar to Definition 4.1., for all t ≥ 0,

Xi(t) ≥ Yi(t), for all i in Z. (8.4)
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Lemma 8.1. Suppose p(.), q(.) satisfy A”1, A”2 and A”3. For two modified auxiliary
processes ( ~Xt, It) and (~Yt, it) with generators L̂p,q and L̂p,p, there is a joint Ω, such that
if (8.4) holds for t = 0, we have (8.4) holds for all t > 0, and the marginal condition holds

ΩF1

(
~X, I, ~Y , i

)
= L̂p,qH1

(
~X, I

)
,

ΩF2

(
~X, I, ~Y , i

)
= L̂p,pH2

(
~Y , i
)
,

for any local functions F1

(
~X, I, ~Y , i

)
= H1

(
~X, I

)
and F2

(
~X, I, ~Y , i

)
= H2

(
~Y , i
)

.

Proof. This is proved in Corollary A.5. In this case, we have R = 2.

Remark 8.2. A special case is when both processes have exactly one tagged particle
and no red particles. This is a degenerate case because the tagged particles follow
continuous time random walks with jump rates p(.), q(.), and It = it = 0 for all t ≥ 0.
Assumptions A”2, and A”3 guarantee that we can couple these two random walks with
X0(t) ≥ Y0(t), for any t ≥ 0 (without Lemma 8.1). These two assumptions also allow us
to generalize the coupling of random walks to other cases described by Lemma 8.1, so
that (8.4) holds for all t ≥ 0. However, (8.4) is only useful if we know the labels It, it of
the tagged particles or their differences It − it. The assumption A”1 does not affect the
couplings of two modified auxiliary processes; instead, this assumption implies that It is
increasing in time t. Together with a law of large number for it, we can get the Lemma
8.3 below which implies the signs of the It − it asymptotically.

The second lemma gives estimates of It and it with respect to the Bernoulli initial
measure µρ.

Lemma 8.3. Suppose p(.), q(.) satisfy A”1, A”2 and A”3. Let I0 = i0 = 0, and ~X0 corre-
spond to the initial Bernoulli product measure µρ. The labels It, it of the tagged particles
in the modified processes ( ~Xt, It) = ( ~X0, p, q, It) and (~Yt, it) = ( ~X0, p, p, it) satisfy,

lim inf
t→∞

It
t
≥ 0, Pµρ,q − a.s.

and

lim
t→∞

it
t

= 0, Pµρ,p − a.s.

Proof. Notice that it is identical to the integrated current −Nt through bond (−1, 1) in
the environment process ξt. For a general jump rate q̂(.) supported on [−2, 2], we can
obtain the current Ĉ−1,1 by considering the jumps of the red and the tagged particles,
and modifying (5.2). Notice that a jump of the tagged particle to the site −2 (relative to
the tagged particle) increases the integrated currents Nt by one if there is a particle at
the site −1 (relative to the tagged particle), and that a jump to the site 2 decreases Nt
by one if there is a particle at the site 1. Therefore, Ĉ−1,1 is

Ĉ−1,1 = −p(−2)ξ1(1− ξ−1) + p(2)ξ−1(1− ξ1) + q̂(−2)ξ−1(1− ξ−2) +−q̂(2)ξ1(1− ξ2), (8.5)

which is the compensator of the integrated current Nt. Similar to (3.7) and (3.8),
Nt −

∫ t
0
Ĉ−1,1(ξs) ds is a Pµρ,q̂- martingale, and we can obtain

Eµρ,q̂
[
it
t

]
= Eµρ,q̂

[
−Nt
t

]
=

1

t

∫ t

0

Eµρ,q̂
[
−Ĉ−1,1(ξs)

]
ds.

When we take q̂(.) = p(.), the Bernoulli measure µρ is ergodic for ξt, and by (8.5), the
expectation in the last integral is 0. Therefore, we have that

lim
t→∞

it
t

= Eµρ,p
[
it
t

]
= 0, Pµρ,p − a.s.
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For It, since q(−k) = 0 for all k ≥ 2, the tagged particle cannot jump from the right
side of a red particle to its left side, and It does not decrease due to jumps of the tagged
particle. Also, that p(k) = 0 for all k ≥ 2 implies that no red particle can jump from the
left side of the tagged particle to its right side, which also means, It does not decrease
due to jumps of the red particles. Therefore, we have that It is increasing in time t,

It = −Nt ≥ 0. (8.6)

8.2 Proof of Theorem 2.2

Now we can prove Theorem 2.2.

Proof. (Theorem 2.2) By Lemma 8.1, there is a joint distribution P, and we have ~Xt ≥
~Yt, P− a.s. In particular, XIt ≥ YIt , P− a.s.

On the other hand, by Lemma 8.3, under the joint distribution P, which has marginal
distributions Pµρ,q and Pµρ,p,

lim inf
t→∞

It − it
t
≥ 0, P− a.s. (8.7)

Therefore, for any fixed δ > 0, It ≥ bit − δ · tc for large t, so YIt ≥ Ybit−δ·tc. Consider
Yit − Ybit−δ·tc. Since the Bernoulli product measure µρ is an ergodic measure for the
environment process, Yit − Ybit−δ·tc is dominated by the sum of dδ · te independent
geometric random variables with parameter ρ. For each fixed k > 0, we can get a
sequence (tn,k)n = ( n

2k
)n with

lim sup
n→∞

Yitn,k − Ybitn,k−δ·tnc
tn,k

≤ δ

ρ
, P− a.s.

Then, we can use a standard interpolation argument to replace “tn,k ↑ ∞” by “t ↑ ∞”.
With the law of large numbers for the displacement of a tagged particle in the usual

AEP , i.e., when q(.) = p(.), limt→∞
Yit
t = w · (1− ρ). We also have

lim inf
t→∞

YIt
t
≥ lim inf

t→∞

Ybit−δ·tc

t
≥ w · (1− ρ)− δ

ρ
, P− a.s.

where w =
∑
z z · p(z) > 0. This is sufficient to get Theorem 2.2 since XIt ≥ YIt .

We can also extend Theorem 2.2 to the case with more general jump rates p(.), q(.).

Remark 8.4. To generalize Theorem 2.2, p(.) satisfies assumptions A’1, A’3 and an
additional assumption that for all k ≥ 2,

p(k) = 0, q(−k) = 0. (8.8)

It is immediate that under (8.8), red particles starting from the left of the tagged particle
always remain to the left of the tagged particle. The proof will be almost the same:
we can replace Lemma 8.1 by Corollary A.5 to obtain a coupling because p(.) satisfies
assumptions A’1, A’3, and under the assumption (8.8), (A.23) is immediate. Therefore,
(8.7) also holds. Because the Bernoulli measure µρ is ergodic for the environment
process, under which the term Ĉ−1,1 has a zero expectation, we get that

lim
t→∞

it
t

= 0.

On the other hand, (8.8) on jump rates p(.), q(.) ensures that (8.6) holds, so we get

lim inf
t→∞

It − it
t
≥ 0.

The rest of the proof follows the same arguments after (8.7).
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A Appendix

The generator for the coupled process in Theorem 4.2 is long and consists of several
parts. The first lemma allows us to consider different parts separately, and then combine
them to get the joint generator. The second lemma provides us some convenient
inequalities. The last lemma, Lemma A.3, provides us most parts of the generator, and it
is the building block for the construction of the coupling.

Firstly, we observe that these are jump processes. Because the generators are sums
of terms corresponding to different jumps for the same type of G = L̃, L̃L, or L̃R, we
can combine two pairs of coupled processes, in the sense of adding their generators, to
obtain a new pair of coupled processes. The main requirement is that couplings exist for
any ordered deterministic initial configurations.

Lemma A.1. Let Ω1, Ω2 be two joint generators for two pairs of auxiliary processes.
Suppose that these two pairs of auxiliary processes are coupled via Ω1, Ω2 (see Definition
4.1) for any (deterministic) ~W0 ≥ ~X0. That is,

~Wt � ~Xt, ~Yt � ~Zt,

where
~Wt = ( ~W0, G, p1, q1), ~Xt = ( ~X0, G

′, p2, q2)

and
~Yt = ( ~W0, G, p

′
1, q
′
1), ~Zt = ( ~X0, G

′, p′2, q
′
2).

Then, the combined auxiliary processes ~Ut and ~Vt, starting from ~W0 ≥ ~X0,

~Ut = ( ~W0, G, p1 + p′1, q1 + q′1), ~Vt = ( ~X0, G
′, p2 + p′2, q2 + q′2),

are also coupled via the joint generator Ω = Ω1 + Ω2. That is,

~Ut � ~Vt.

We can use either p(.) or p(., .) in this context, and generators G, G′ can be the same.

Proof. By assumption, the condition for the marginals is immediate from the forms of
the generators (4.8) (4.11) and (4.10). We need to check the first condition.

By arguments in the proof of Theorem 2.5.2 [11], to show ~Ut ≥ ~Vt, we need to show
the closed set F0 = {(~U, ~V ) : ~U ≥ ~V } is an absorbing set, which can be checked via
showing:

Ω1F0
≥ 0. (A.1)

Indeed, by martingale 1F0
(~Ut, ~Vt)−

∫ t
0

Ω1F0
(~Us, ~Vs) ds, we get from (A.1), for any t ≥ 0

P (~Ut ≥ ~Vt) = E
[
1F0

(~Ut, ~Vt)
]
≥ E

[
1F0

(~U0, ~V0)
]

= 1.

Usual interpolation arguments allow us to get P (Figure3~Ut ≥ ~Vt, for all t) = 1.
Lastly, by the assumption that two pairs of auxiliary processes are coupled via Ω1,Ω2

for any ~W0 ≥ ~X0, we get that (without any computation)

Ω11F0( ~W0, ~X0) ≥ 0, and Ω21F0( ~W0, ~X0) ≥ 0,

which is sufficient for (A.1). Indeed, if ~W0 � ~X0,

1F0( ~W0, ~X0) = 0,

and Ω1F0
( ~W0, ~X0) is a sum of differences, which have the same sign as

1F0
( ~W ′, ~X ′)− 1F0

( ~W0, ~X0) ≥ 0.
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Secondly, we observe four monotone functions on the configuration space by compar-
ing the configurations before and after the tagged particle jump with shifts of labels or
not. See Fig. 2,3 for examples.

Lemma A.2. Let z>0. If a jump of the tagged particles by z or −z is possible, we have

Θ−z ~X ≥ ~X, Sz ◦Θz
~X ≥ ~X (A.2)

Θz
~X ≤ ~X, S−z ◦Θ−z ~X ≤ ~X (A.3)

As a consequence, there are two generators Ω0,R and Ω0,L, such that for any ~X0 ≥ ~Y0,
we can couple ~Xt = ( ~X0, L̃R, 0, q) � ~Yt = (~Y0, L̃R, 0, 0) via Ω0,R, and couple ~Wt =

( ~X0, L̃, 0, 0) � ~Zt = (~Y0, L̃R, 0, q) via Ω0,L.

Proof. We will prove equations (A.2) and define Ω0,R, via which we can couple two
auxiliary processes ~Xt = ( ~X0, L̃R, 0, q) � ~Yt = (~Y0, L̃R, 0, 0) for any initial ~X0 ≥ ~Y0. The
other case is similar.

By (4.2) and (4.9), we check coordinates,

(Θ−z ~X)i = Xi + z ≥ Xi

(Sz ◦Θz
~X)i = Xi+z − z ≥ Xi (A.4)

Then it is immediate to see that the generator Ω0,R defined below works, since under
this generator, ~Xt is increasing in t while ~Yt is constant in t,

Ω0,RF ( ~X, ~Y ) =L̃RF (., ~Y )
[
~X
]

=
∑
y<0

q(y)1By ( ~X)
[
F (Θy

~X, ~Y )− F ( ~X, ~Y )
]

+
∑
y>0

q(y)1By ( ~X)
[
F (Sy ◦Θy

~X, ~Y )− F ( ~X, ~Y )
]
. (A.5)

Thirdly, we see that given ~X ≥ ~Y , whenever the i-th particle in ~Y jumps by z > 0, we
can move the i-th particle in ~X by z′ ≥ 0, such that ordering is preserved after relabeling,
Ti,z′ ~X ≥ Ti,z ~Y . This is the primary step for constructing couplings in Theorem A.4,and
we will prove this in the next lemma. Once we can couple positive jumps of the i-th
particle in the slower process by positive jumps of its corresponding particle in the
faster process, we only need to assign jump rates according to different pairs z, z′. The
assignment is possible by Assumptions A’1,A’3.. See (A.17),(A.18) in Theorem A.4 for
assignment in detail.

Lemma A.3. Assume ~X ≥ ~Y , and i is fixed. For every z in (0, R], if ~Y ∈ Ai,z , then there is
a z′ ≥ 0 depending on ~X, ~Y , i,and z, such that max{Yi+z,Xi} ≥ Xi+z′ ≥ min{Yi+z,Xi}
and

~X ′ = Ti,z′ ~X ≥ Ti,z ~Y = ~Y ′. (A.6)

The choice of z′ can be made so that every nonzero z′ corresponds to a unique z in (0, R]

satisfying ~Y ∈ Ai,z.

Proof. We first describe how to find z′, and then we show (A.6) by considering a simple
case and the general case. Without losing generality, we assume that i = 0 in figures
below. Suppose there are exactly k holes in ~Y between Yi and Yi + R: H1, . . . ,Hk. We
label them in a descending order:

Yi < Hk = Yi + zk < Hk−1 = Yi + zk−1 < · · · < H1 = Yi + z1 ≤ Yi +R (A.7)
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Step1. Define z′l, l = 1, 2, . . . , k inductively by,

z′1 =

{
max{z′ > 0 : Xi + z′ ≤ Yi + z1, ~X ∈ Ai,z′} , if exists

0 , otherwise
(A.8)

z′l+1 =

{
max{z′l > z′ > 0 : Xi + z′ ≤ Yi + zl+1, ~X ∈ Ai,z′} , if exists

0 , otherwise.
(A.9)

That is, for l > 1, if z′l > 0, H ′l = Xi + z′l is the right-most hole in ~X which is to the left
of both H ′l−1 in ~X and Hl in ~Y . (H ′l might equal Hl, but H ′l < H ′l−1.) See Figure 6 for an
example. In this example, i = 0, R = 8, z′1 = 7, z′2 = 3, z′3 = 1, z′4 = 0.

~Y
Y0 Y1 Y2 Y3 Y4 H1H2H3H4

~X
X0 X1 X2 X3 H ′1H ′2H ′3

Figure 6: Target Sites z′ for X0

Step2. We consider a simple case first. We assume that Xi = Yi and the numbers of
particles on the fixed interval [Xi, Xi +R] in both ~X, ~Y are identical. In view of (4.3),
and let

I1 := Ii,R

(
~Y
)

= max{s : Ys ≤ Yi +R} and I2 := Ii,R

(
~X
)

= max{s : Xs ≤ Xi +R},

we have
I1 − i+ 1 = I2 − i+ 1. (A.10)

Then, it is immediate to see that the numbers of holes on [Xi, Xi +R] in both ~X and ~Y

are the same as k = R − I1 + i. Following (A.7), (A.8), (A.9), we actually label all the
holes in ~X in the descending order,

H ′k = Xi + z′k ≤ H ′k−1 = Xi + z′k−1 ≤ · · · ≤ H ′1 = Xi + z′1

and pair holes in ~X, ~Y with

H ′l ≤ Hl, for l = 1, . . . , k. (A.11)

We emphasize that, when the numbers of particles on [Xi, Xi + R] in ~X, ~Y are the
same, because ~X ≥ ~Y , (A.11) is equivalent to “holes are paired via a vertical line or a
southwest line”, and (A.11) is also equivalent to Xj ≤ Yj for all Xj , Yj on [Xi, Xi +R].
See Figure 7. In this example, R = 8, i = 0, I1 = I2 = 5.

After a jump, there is a relabeling of holes according to the previous rule. Hence (A.11)
is preserved. Indeed, after the jumps to Yi + z and Xi + z′, we delete a line connecting
Yi + z and Xi + z′, and add a vertical line connecting the initial positions of Xi and Yi,
see Figure 7. Since only particles on [Xi, Xi + R] are affected by the jumps, and the
number of particles on [Xi, Xi +R] are the same for Ti,z ~Y , Ti,z′ ~X, we can conclude that
Ti,z ~Y ≤ Ti,z′ ~X from the “new” (A.11).

Step3. For the general case, we can assume that Xi ≤ Yi +R. Otherwise, if Yi +R < Xi,
we can easily find that z′ = 0 and Ti,z ~Y ≤ ~X = Ti,0 ~X.
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~Y
Y0 Y1 Y2 Y3 Y4 Y5H3 H2 H1

~X
X0 X1 X2 X3 X4 X5H ′1H ′2H ′3

~Y ′ = T0,z2
~Y

Y ′0 Y ′1 Y ′2 Y ′3 Y ′4 Y ′5 H1H2H3

~X ′ = T0,z′2
~X

X ′0 X ′1 X ′2 X ′3 X ′4 X ′5H ′1H ′2H ′3

Figure 7: Configurations before and after Jumps z2, z′2

This situation is similar to the simple case. We first compare the number of particles in
~Y on the interval [Yi, Yi +R] with the number of particles ~X on the interval [Xi, Yi +R].
The right end point is always Yi +R. Let

I1 := Ii,R(~Y ), and I2 := max{s : Xs ≤ Yi +R}.

We get from ~Y ≤ ~X that

I2 = max{s : Xs ≤ Yi +R} ≤ max{s : Ys ≤ Yi +R} = I1. (A.12)

Since Xi + z′ ≤ Yi + z ≤ Yi + R, we see that only particles in ~Y on [Yi, Yi + R] and
particles in ~X on [Xi, Yi + R] are affected by the jumps z and z′. Therefore, we only
need to show that for every pair z, z′,

X ′j = (Ti,z′ ~X)j ≥ Y ′j = (Ti,z ~Y )j , for all i ≤ j ≤ I1. (A.13)

For all I2 < j ≤ I1, (A.13) is immediate since

X ′j = Xj > Yi +R ≥ Y ′j .

To get (A.13) for all i ≤ j ≤ I2, we can add artificial particles and holes on [Yi, Yi +R+

I1 − I2] for ~X and ~Y as follows to get two new configurations ~X ′′ and ~Y ′′ (restricted to
this interval) with the same number of particles.

(a) Replace all particles on [Yi, Xi) in ~X with holes. Move the i-th particle in ~X from
Xi to Yi.

(b) Replace all holes on (Yi +R, Yi +R+ I1 − I2] with particles for ~X.

(c) Replace all particles on (Yi +R, Yi +R+ I1 − I2] with holes for ~Y .

See Figure 8 for an example. In this example, R = 8, I1 = 6, I2 = 4.

The new configurations on [Yi, Yi +R+ I1− I2] have the same numbers of holes, too. We
can pair holes in ~X ′′ and ~Y ′′ in the descending order (uniquely). Holes on (Yi+R,Xi+R]

in ~Y ′′ are the only additional holes added to ~Y , and they are added to match the number
of holes in ~X ′′ and ~Y ′′. We don’t need to consider these additional holes and their
corresponding holes in ~X ′′, and therefore, we can keep the labels of the original holes in
~Y and label the additional holes as j-th holes, with non-positive indices 0 ≥ j ≥ I2−I1+1.
We denote by H ′′j = Yi + z′′j the j-th corresponding hole in ~X ′′, including the ones with
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~Y
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7H2 H1

~X
X0 X1 X2 X3 X4 X5H ′1

~Y ′′

Y ′′0 Y ′′1 Y ′′2 Y ′′3 Y ′′4 Y ′′5 Y ′′6H1H2 H0 H−1

~X ′′

X ′′0 X ′′1 X ′′2 X ′′3 X ′′4 X ′′5 X ′′6H ′′1H ′′2 H ′′0 H ′′−1

Figure 8: Add artificial particles and holes

non-positive indices. On one hand, we can use the same argument for the simple case
to get that, after jumps z and z′′, (restricted on [Yi, Yi +R+ I1 − I2])

Ti,z′′ ~X ′′ ≥ Ti,z ~Y ′′. (A.14)

On the other hand, if z′j > 0, H ′j is the right-most hole to the left of Hj and H ′j−1. We
can see that the target sites for the particles at Xi and X ′′i satisfy

Xi + z′j = H ′j ≥ H ′′j = Yi + z′′j (A.15)

from induction, (A.8) and (A.9). And if z′j = 0, the target sites for the particles at Xi and
X ′′i also satisfy (A.15),

Xi + z′j = H ′j = Xi ≥ H ′′j = Yi + z′′j .

On [Yi, Yi +R+ I1 − I2], we can get Ti,z′ ~X by moving the i-th particle in ~X ′′ to the site
H ′ = Xi + z′ and relabeling. We can also get Ti,z′′ ~X ′′ by moving the i-th particle in
~X ′′ to the site H ′′ = Yi + z′′ and relabeling. Therefore, from (A.15), we get that for
i ≤ j ≤ I2, H ′ − Yi ≥ z′′ and

(Ti,z′ ~X)j = (Ti,H′−Yi
~X ′′)j ≥ (Ti,z′′ ~X ′′)j , (A.16)

where the last inequality is due to monotonicity in z for Ti,z ~X ′′ when the jump z is
possible. (Indeed, if jumps z′ ≥ z′′ are possible, with relabeling, we can get Ti,z′ ~X ′′ by
first move the i-th particle to X ′′i + z′′, and then move the particle at X ′′i + z′′ to Xi + z′.
With these two operation, we can derive that Ti,z′ ~X ≥ Ti,z′′ ~X ′′.)
By comparing particles with indices from i to I2, and using (A.14) and (A.16), we get

X ′j = (Ti,z′ ~X)j ≥ (Ti,z′′ ~X
′′)j ≥ (Ti,z ~Y

′′)j = Y ′j

for all i ≤ j ≤ I2.

One can see from the proof of Lemma A.3 that we have more than one way to assign
z′ to ensure (A.6). We take a convenient one, which helps us to obtain the coupling for
Theorem 4.2.

Let C+ be the class of jump rates p(., .) with the following properties:

A*1 (Positive) p(x, y) ≥ 0, if y > x; otherwise, p(x, y) = 0,
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A*2 (Finite-range) there is an R > 0, such that p(x, y) = 0, for all y − x > R,

A*3 (Radially Decreasing) for x, y 6= 0 and x < y, p(x, y) is increasing in x, and decreas-
ing in y,

A*4 (A Blockage at 0) p(x, y) = 0 if x = 0 or y = 0.

Notice that the value of p(0, y) can be any non-negative number as long as p(x, 0) = 0

for all x and no particle is at the site 0 initially, since no particles can jump to the
site 0. Jump rates p(., .) from the class C+ correspond to jumps along the positive
direction. To get jumps towards both directions, we combine two jump rates to get
pc(x, y) = p+(x, y) + p−(y, x) where both p+, p− are from the class C+. We shall denote
the collection of pc as C.

The main result in the following theorem is the first part, which says we can couple
two AEPs with a blockage ~Xt = ( ~X0, L̃, p, 0) � ~Yt = (~Y0, L̃, p+, 0) when they have the
same jump rates p+ from the class C+. With (4.5), (4.6), (4.7), and Lemma A.1, we can
replace p+ from C+ by pc from C. Lastly, we can use Lemmas A.1, A.2 to replace zero
jump rates q(.) in either ~Xt or ~Yt by a nonzero q(.).

Theorem A.4. Suppose jump rates p+(., .), p−(., .) are from the class C+.

1. There is a joint generator Ω+, such that for any ~X0 ≥ ~Y0, we can couple the pair of
auxiliary processes ~Xt = ( ~X0, L̃, p+, 0) � ~Yt = (~Y0, L̃, p+, 0) via Ω+.

2. For combined jump rates pc(x, y) = p+(x, y) + p−(y, x), there is a joint generator
Ω, such that for any ~X0 ≥ ~Y0, we can couple the pair of auxiliary processes
~Xt = ( ~X0, L̃, pc, 0) � ~Yt = (~Y0, L̃, pc, 0) via Ω.

3. (Theorem 4.2) Let q(.) : Z \ {0} → R≥0, and pc(x, y) = p+(x, y) + p−(y, x). There
are generators ΩR, and ΩL, such that for any ~X0 ≥ ~Y0, we can couple ~Xt =

( ~X0, L̃R, pc, q) � ~Yt = (~Y0, L̃, pc, 0) via ΩR, and ~Wt = ( ~X0, L̃, pc, 0) � ~Zt = (~Y0, L̃L, pc,

q) via ΩL.

Proof. 1. By Lemma A.3, for any ~X ≥ ~Y and 0 < z ≤ R, we can find a z′ =

C( ~X, ~Y , i, R, z) ≥ 0, such that

Ti,z′ ~X ≥ Ti,z ~Y .

(One choice for C( ~X, ~Y , i, R, z) is the function constructed inductively in the proof
of Lemma A.3.) Therefore, we can assign the jump rates for the i-th particles by
following functions:

pi,s,z( ~X, ~Y ) :=

{
1Ai,z (

~Y ) · p(Yi, Yi + z) , if s = C( ~X, ~Y , i, R, z), and ~X ≥ ~Y ,

0 , else ,

(A.17)

pi,s,0( ~X, ~Y ) :=

{
1Ai,s(

~X)
(
p(Xi, Xi + s)−

∑
0<z≤R pi,s,z(

~X, ~Y )
)

, if s > 0

0 , if s = 0.

(A.18)

In particular, by (A.17), at most one term in the sum of (A.18) is positive with value
p(Yi, Yi + z) for some z ≤ R. By Lemma A.3, we get Xi ≥ Yi, Xi + s ≤ Yi + z, which
implies pi,s,0 ≥ 0 by Assumption A*3.
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Then we define the generator Ω+ by its action on a local function F by: if ~X ≥ ~Y ,

Ω+F ( ~X, ~Y ) =
∑

i,0<z≤R,0≤s≤R

pi,s,z( ~X, ~Y )
[
F (Ti,s ~X, Ti,z ~Y )− F ( ~X, ~Y )

]
(A.19)

+
∑

i,0<s≤R

pi,s,0( ~X, ~Y )
[
F (Ti,s ~X, ~Y )− F ( ~X, ~Y )

]
, (A.20)

if ~X � ~Y ,

Ω+F ( ~X, ~Y ) =
∑

i,0<z≤R

1Ai,z (
~Y )p(Yi, Yi + z)

[
F ( ~X, Ti,z ~Y )− F ( ~X, ~Y )

]
(A.21)

+
∑

i,0<s≤R

1Ai,s(
~X)p(Xi, Xi + s)

[
F (Ti,s ~X, ~Y )− F ( ~X, ~Y )

]
(A.22)

(A.19) corresponds to the case in Lemma A.3 when both of the i-th particles in
~X and ~Y jump, while (A.20) corresponds to the case where only the i-th particle
in ~X jumps; (A.21),(A.22) correspond to the case where particles in ~X, ~Y jump
independently. The rest is to check Ω+ satisfies Definition 4.1. This is standard:

The initial configuration can always be chosen with ~W ≥ ~V almost surely and
~W

d
= ~X0, ~V

d
= ~Y0. (See Theorem B9[15])

To show ~Wt ≥ ~Vt almost surely, use the same arguments in the proof of Lemma
A.1. We want to show the closed set F0 = {( ~X, ~Y ) : ~X ≥ ~Y } is an absorbing set by
checking Ω+1F0

( ~X, ~Y ) ≥ 0 :

(a) for ~X ≥ ~Y , by Lemma A.3 and pi,s,z( ~X, ~Y ) ≥ 0

Ω+1F0
( ~X, ~Y ) =

∑
i∈Z,0<z≤R,

0≤s≤R

pi,s,z( ~X, ~Y )
[
1F0

(Ti,s ~X, Ti,z ~Y )− 1F0
( ~X, ~Y )

]

+
∑

i∈Z,0<s≤R

pi,s,0( ~X, ~Y )
[
1F0(Ti,s ~X, ~Y )− 1F0( ~X, ~Y )

]
= 0.

(b) for ~X � ~Y , it’s obvious that Ω+1F0( ~X, ~Y ) ≥ 0 since each term is nonnegative.
We only need to show the sum is finite. Notice that only finitely many terms in
(A.22) are positive. Since Ti,s changes finitely many Xi, if one term Ti,s ~X ≥ ~Y

holds while ~X � ~Y , Ti′,s′ ~X ≥ ~Y holds for finitely many pairs i′, s′. Similarly,

only finitely many terms in (A.21) are positive. Therefore, Ω+1F0
( ~X, ~Y ) ≥ 0.

To show the marginal conditions, we will check for F2( ~X, ~Y ) = H2(~Y ), and the other
follows directly from Ti,0 ~X = ~X, (A.17) and (A.18). On F c0 = {( ~X, ~Y ) : ~X � ~Y )},

EJP 27 (2022), paper 40.
Page 42/46

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP760
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A driven tagged particle in AEP

clearly Ω+H2( ~X, ~Y ) = L̃H2(~Y ). We only need for every ~X ≥ ~Y ,

Ω+F2( ~X, ~Y ) =
∑

i∈Z,0<z≤R,0≤s≤R

pi,s,z( ~X, ~Y )
[
H2(Ti,z ~Y )−H2(~Y )

]
+

∑
i∈Z,0<s≤R

pi,s,0( ~X, ~Y )
[
H2(~Y )−H2(~Y )

]
=

∑
i∈Z,0<z≤R,0≤s≤R

pi,s,z( ~X, ~Y )
[
H2(Ti,z ~Y )−H2(~Y )

]

=
∑

i∈Z,0<z≤R

 ∑
0≤s≤R

1{s=C( ~X,~Y ,i,R,z)}


· 1Ai,z (~Y )p(Yi, Yi + z)

[
H2(Ti,z ~Y )−H2(~Y )

]
=

∑
i∈Z,0<z≤R

1Ai,z (
~Y )p(Yi, Yi + z)

[
H2(Ti,z ~Y )−H2(~Y )

]
= L̃H2(~Y ).

The fourth equality is due to Lemma A.3, which implies that there is exactly one s
in [0, R] such that s = C( ~X, ~Y , i, R, z).

2. The second part is an application of Lemma A.1, the change of variable argument
in (4.5), (4.6), (4.7),and the first part.

Let ~X−,t = (R( ~X0), L̃, p̃−, 0), where p̃−(x, y) = p−(y, x). Then, R( ~X−,t) = ( ~X0, L̃, p−,

0). As R(.) is a map reversing ordering,

~X ≥ ~Y ⇔ R( ~X) ≤ R(~Y ).

By the first part of Theorem A.4, we can couple ~X−,t = (R( ~X0), L̃, p̃−, 0) � (R(~Y0), L̃,

p̃−, 0) = ~Y−,t for any ~X0 ≥ ~Y0 via a generator. Therefore, there is a generator Ω−,
via which we can couple R( ~X−,t) = ( ~X0, L̃, p−, 0) � R(~Y−,t) = (~Y0, L̃, p−, 0) for any
~X0 ≥ ~Y0. Then by Lemma A.1, we get the joint generator Ω = Ω+ + Ω−.

3. This is a consequence of the second part, Lemma A.1 and Lemma A.2. Take
ΩR = Ω0,R + Ω, and ΩL = Ω0,L + Ω. We will show the first case, and the other is
similar:

By the second part of Theorem A.4, we have a generator Ω, via which we can
couple auxiliary processes

~Xt = ( ~X0, L̃, pc, 0) � (~Y0, L̃, pc, 0) = ~Yt,

for any ~X0 ≥ ~Y0. By Lemma A.2, we can also find a generator Ω0,R to couple
auxiliary processes

~Wt = ( ~X0, L̃R, 0, q) � (~Y0, L̃, 0, 0) = ~Zt,

for any ~X0 ≥ ~Y0. Notice that ~Xt is also ( ~X0, L̃R, pc, 0). By Lemma A.1, we can use
generator ΩR = Ω0,R + Ω to couple

~Ut = ( ~X0, L̃R, pc, q) � (~Y0, L̃R, pc, 0) = ~Vt

for any ~X0 ≥ ~Y0.

In the proof of the first part of Theorem A.4, we see pi,s,z and pi,s,0 defined by (A.17)
and (A.18) are important in constructing the joint generator Ω+ defined by (A.20)-(A.22).
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They require Lemma A.2 and assumption A*3. The Lemma A.2 depends on the finite
range R and ~X ≥ ~Y , while the latter is an assumption on the jump rates. We can easily
modify pi,s,z, pi,s,0 and Ω+ to couple two modified auxiliary processes defined in section
8.

Corollary A.5. Let p(.) satisfy assumption A’1, A’3, and q(.) be of range R with an extra
condition {

q(k) ≥ p(k), if k > 0,

q(k) ≤ p(k), if k < 0,
(A.23)

Then we can find a joint generator Ω̃ to couple modified auxiliary processes ( ~Xt, It) =

( ~X0, p, q, It) and (~Yt, it) = (~Y0, p, p, it) for any initial condition ~X0 ≥ ~Y0, in the sense

~Xt ≥ ~Yt, for all t ≥ 0,

Ω̃F1

(
~X, I, ~Y , i

)
=L̂p,qH1

(
~X, I

)
,

Ω̃F2

(
~X, I, ~Y , i

)
=L̂p,pH2

(
~Y , i
)
,

for any local functions F1

(
~X, I, ~Y , i

)
= H1

(
~X, I

)
and F2

(
~X, I, ~Y , i

)
= H2

(
~Y , i
)

.

Proof. We will give the joint generator Ω̃ = Ω̃+ + Ω̃− by writing out Ω̃+ and Ω̃−, which
will have the same form in terms of pj,s,z. The rest is to check conditions, which follows
almost the same arguments as those in the first part of Theorem A.4, and we will omit it.

We first define the modified Ω̃+ by modifying pj,s,z, pj,s,0 from (A.17) and (A.18):
For R ≥ z > 0, R ≥ s ≥ 0,

p̃j,s,z

(
~X, I, ~Y , i

)
:=

{
1Aj,z (

~Y ) · p(z) , if s = C( ~X, ~Y , j, R, z), and ~X ≥ ~Y

0 , else
(A.24)

p̃j,s,0

(
~X, I, ~Y , i

)
:=

1Aj,s( ~X)
(
p(s)−

∑
0<z≤R p̃j,s,z

(
~X, I, ~Y , i

))
, if j 6= I

1Aj,s(
~X)
(
q(s)−

∑
0<z≤R p̃I,s,z

(
~X, I, ~Y , i

))
, if j = I

(A.25)

where C( ~X, ~Y , j, R, z) is the function constructed in Lemma A.3. If we replace q by p,
(A.25) is the same as (A.18). Therefore, it is nonnegative by condition (A.23). Then the
generator Ω̃+ acts on F is given by: if ~X ≥ ~Y ,

Ω̃+F
(
~X, I, ~Y , i

)
=

∑
j∈Z,0≤z≤R,

0≤s≤R

p̃j,s,z

(
~X, I, ~Y , i

)[
F
(
Tj,s ~X, Îj,s

(
~X, I

)
, Tj,z ~Y , Îj,z

(
~Y , i
))

− F
(
~X, I, ~Y , i

)]
,

and if ~X � ~Y ,

Ω̃+F
(
~X, I, ~Y , i

)
=

∑
j∈Z,0<z≤R

1Aj,z (
~Y ) · p(z)

[
F
(
~X, I, Ti,z ~Y , Îj,z

(
~Y , i
))
− F

(
~X, I, ~Y , i

)]
+

∑
j 6=I,0<s≤R

1Aj,s(
~X) · p(s)

[
F
(
Ti,s ~X, Îj,s( ~X, I), ~Y , i

)
− F

(
~X, I, ~Y , i

)]
+
∑

0<s≤R

1AI,s(
~X) · q(s)

[
F
(
Ti,s ~X, II,s( ~X), ~Y , i

)
− F

(
~X, I, ~Y , i

)]
,
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where Îj,z
(
~X, I

)
is defined by (8.2), which is the same as II,z( ~X) when j = I. On the

other hand, we can also define Ω̃− in a similar way:
For R ≥ −s > 0, R ≥ −z ≥ 0,

p̃j,s,z

(
~X, I, ~Y , i

)
:=


1Ai,z (

~Y ) · q(s) , ifj = i, z = −C(R(~Y ), R( ~X),−i, R,−s), and ~X ≥ ~Y

1Aj,z (
~Y ) · p(s) , ifj 6= i, z = −C(R(~Y ), R( ~X),−j, R,−s), and ~X ≥ ~Y

0 , else

(A.26)

p̃j,0,z

(
~X, I, ~Y , i

)
:= 1Aj,z (

~X)

p(z)− ∑
0<−s≤R

p̃j,s,z

(
~X, I, ~Y , i

) , (A.27)

where R( ~X) is defined via (4.5). Also, by replacing q by p in (A.26) and using condition
(A.23), we see both (A.26) and (A.27) are nonnegative. The generator Ω̃− acts on F is
given by: if ~X ≥ ~Y ,

Ω̃−F
(
~X, I, ~Y , i

)
=

∑
j,0≤−s≤R,
0≤−z≤R

p̃j,s,z

(
~X, I, ~Y , i

)[
F
(
Tj,s ~X, Îj,s

(
~X, I

)
, Tj,z ~Y , Îj,z

(
~Y , i
))

− F
(
~X, I, ~Y , i

)]
,

and if ~X � ~Y ,

Ω̃−F
(
~X, I, ~Y , i

)
=

∑
j∈Z,0<−z≤R

1Aj,z (
~Y ) · p(z)

[
F
(
~X, I, Ti,z ~Y , Îj,z

(
~Y , i
))
− F

(
~X, I, ~Y , i

)]
+

∑
j 6=I,0<−s≤R

1Aj,s(
~X) · p(s)

[
F
(
Ti,s ~X, Îj,s( ~X, I), ~Y , i

)
− F

(
~X, I, ~Y , i

)]
+

∑
0<−s≤R

1AI,s(
~X) · q(s)

[
F
(
TI,s ~X, II,s( ~X), ~Y , i

)
− F

(
~X, I, ~Y , i

)]
.

We can see both Ω̃+ and Ω̃− have the same form in terms of p̃j,s,z. Then, we obtain Ω̃ by
Ω̃ = Ω̃+ + Ω̃−.
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