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Abstract 10 

Bile acids (BAs) are amphipathic steroids whose production and diversity depend on both 11 

host and microbial metabolism. These metabolites have emerged as biologically active 12 

signaling molecules informing organs of nutrient availability. Their actions, through 13 

activation of the dedicated BA receptors, FXR and TGR5, control the body’s integrated 14 

physiological metabolic responses. Alterations in BA abundance or signaling are associated 15 

with multiple metabolic diseases including obesity, type 2 diabetes, non-alcoholic 16 

steatohepatitis, and atherosclerosis. Consequently, modulation of the BA pool could be a 17 

valid therapeutic approach, as demonstrated in preclinical and clinical models. Here we 18 

provide a historical summary of the discovery of BAs and their receptors, as well as on the 19 

role of BA signaling in the control of energy homeostasis. 20 

 21 

History of bile and bile acids: from bodily fluids to hormones 22 
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Bile — the fluid in which bile acids (BAs) are stored — has been studied for centuries for its 23 

unique beneficial properties. While the first written record depicting bile as a therapeutic 24 

dates back to the ancient Egyptian period (Ebers Papyrus, 1550 B.C.)
1
, it came to prominence 25 

with Hippocrates (460-377 B.C.), who postulated bile as one of the four bodily fluids, the 26 

―humours‖. Humoral imbalances were the basis of all diseases and harmonizing the four 27 

humors was the main therapeutic approach of the time and one of the cornerstones of 28 

traditional Chinese medicine, which proposed the extraction of bile from different animals to 29 

treat multiple diseases
2
. However, the biochemical and molecular basis by which BAs govern 30 

health and disease was only addressed in the last 150 years (extensively reviewed elsewhere
3–

31 

5
) (Figure 1). BAs were isolated and purified in the second half of the 19

th
 century, but the 32 

greatest achievements in the BA field were obtained in the 20
th

 century. In the early 1930s, 33 

several laboratories began to elucidate the chemical structure of BAs. In the following years, 34 

other breakthroughs followed, including the development of the chromatographic separation 35 

of BAs, the discovery of cholesterol as substrate for primary BA synthesis in the liver, and 36 

the identification of secondary BAs as intestinal derivatives from primary BAs in both rats 37 

and humans. These studies were instrumental in the identification of the key intermediates, 38 

enzymes and mechanisms controlling BA biosynthesis
3–5

. Moreover, they considerably 39 

advanced our knowledge on BA diversity and BA recirculation, two processes that are 40 

described in the next sections. 41 

In the last three decades, several discoveries have led to a better understanding of the 42 

mechanisms of action of BAs. In 1999, three different research groups cloned and identified 43 

farnesoid X receptor (FXR; NR1H4) as the chief nuclear receptor responsive to BAs
6–8

. 44 

Shortly after, BAs were described as agonists of the G protein-coupled receptor (GPCR) 45 

Takeda G-protein receptor 5 (TGR5; GPBAR1)
9,10

. Another major advance involved the 46 

chemical modification of natural BAs into semi-synthetic analogs with enhanced selectivity 47 
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for a specific BA receptor
11–14

. These receptor-tailored molecules have moved the field 48 

forward, not only because of their utility as research tools to dissect the functions of FXR and 49 

TGR5, but also because they laid the foundation for biomedical discoveries and therapeutic 50 

opportunities. Among all the semi-synthetic BA derivatives, obeticholic acid was the first to 51 

reach the clinic as an FDA-approved FXR agonist for the treatment of primary biliary 52 

cholangitis in patients who are unresponsive to the hydrophilic BA specimen, 53 

ursodeoxycholic acid
15

. Of note, these semi-synthetic molecules, as well as BAs per se, can 54 

also trigger non-receptor-mediated effects
16

, which due to space constraints will not be 55 

described here. 56 

 57 

Biology of BAs 58 

BAs are the main constituents of bile, which also contains cholesterol, phospholipids, 59 

bilirubin, fatty acids, vitamins and minerals
17

. Originally identified as amphipathic steroid 60 

metabolites facilitating intestinal absorption of lipids and fat-soluble vitamins, they are now 61 

recognized as true hormones capable of reaching virtually every organ of our body to fine-62 

tune metabolic functions. BAs are initially synthesized from cholesterol in hepatocytes 63 

through two different well-characterized metabolic pathways, comprised of multiple enzymes 64 

(Figure 3)
18

. BAs can be synthesized through two distinct pathways. Under physiological 65 

conditions, the bulk of primary BAs is produced by the classical pathway initiated by 66 

cholesterol 7-hydroxylase (CYP7A1). The alternative branch of BA production, which is 67 

dependent on sterol 27-hydroxylase (CYP27A1), contributes to BA synthesis to a minor 68 

extent, but becomes important in response to environmental stresses to mediate adaptive 69 

responses
19

. Together, these pathways contribute to the hepatic abundance of the primary 70 

BAs, chenodeoxycholic acid (CDCA) and cholic acid (CA), with oxysterol 12-hydroxylase 71 

(CYP8B1) being the enzyme that determines the abundance of CA versus CDCA (Figure 3). 72 
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In rodents, CDCA is rapidly converted to the more hydrophilic muricholic acids (MCAs). 73 

Primary BAs are then conjugated in the liver to either taurine or glycine, mainly in mice and 74 

humans respectively, secreted into bile and released into the intestinal lumen after food 75 

ingestion. Once in the gut, BAs are bio-transformed into secondary BAs (deoxycholic acid 76 

(DCA), lithocholic acid (LCA), MCA, and hyodeoxycholic acid (HDCA)) by the intestinal 77 

microbiota through different reactions including deconjugation, 7-dehydroxylation, 6-78 

hydroxylation and epimerization
20

. When BAs reach the distal part of the small intestine, 79 

only a minor fraction transits through the colon and is excreted in the feces. The bulk of BAs 80 

is reabsorbed by the gut epithelium and returns to the liver via the enterohepatic circulation. 81 

During this process, BAs can spill over into the systemic circulation and signal energy 82 

availability to almost all organs through the binding and activation of dedicated BA receptors.  83 

 84 

BA receptors 85 

BA receptors trigger genomic and non-genomic adaptive responses in target tissues following 86 

changes in BA pool size and/or composition. While several BA receptors have been 87 

identified over the last 3 decades
21

, FXR and TGR5 have been particularly well studied for 88 

their regulatory role in metabolic health and disease
21–28

, and their characterization has led to 89 

the notion that BA species bind to and activate receptors with distinct potencies in vitro. 90 

However, it is important to emphasize that the extent of receptor activation in vivo is largely 91 

determined by the total BA pool composition, composed of weak and strong agonists and 92 

antagonists. 93 

FXR is abundant in the liver and intestine but also found in other metabolic tissues. 94 

Originally discovered as a farnesol receptor
29

, FXR represents the first nuclear receptor that 95 

confers BA responsiveness
6–8

. CDCA is a potent natural agonist for FXR and binding to the 96 

FXR-retinoic acid receptor  (RXR) complex activates the transcription of its target 97 
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genes
23

. This process is further modulated by the association of coregulators of the FXR-98 

RXR complex and by post-translational modifications of FXR itself, as described 99 

elsewhere
30,31

. 100 

While FXR coordinates many of the transcriptional programs elicited by BAs, TGR5 101 

mediates the rapid non-genomic effects. TGR5 is a member of the Rhodopsin-like subfamily 102 

of GPCRs and is modestly expressed in almost every tissue, with the exception of the 103 

gallbladder epithelium where it is highly abundant
32

. Secondary BAs are the most potent 104 

agonists for TGR5 and their conjugation to taurine or glycine further increases their potency
9
. 105 

Binding of BAs to TGR5 triggers a Gs-adenylate cyclase-cAMP signaling cascade resulting 106 

in the activation of multiple downstream targets
21

.  107 

BAs are thus dual agonists for FXR and TGR5 and their relative abundance, along with their 108 

different spatial expression pattern, will ultimately determine receptor activity and biological 109 

response. As such, TGR5 and FXR often complement each other in multiple organs and are 110 

required to orchestrate whole-body metabolism, as described in the following sections. 111 

 112 

Regulation of BA production and flow 113 

Despite the multiple benefits of BAs described below, levels need to be maintained in place 114 

to avoid BA accumulation and toxicity. FXR is the master regulator of BA homeostasis and 115 

controls BA levels by acting on multiple target genes in enterohepatic organs. For instance, 116 

hepatic BA synthesis is controlled by feedback mechanisms involving the FXR-mediated 117 

induction of Fibroblast Growth Factor 15/19 (FGF15/19) in the small intestine
33

 and the 118 

orphan nuclear receptor/transcriptional corepressor small heterodimer partner (SHP; 119 

NR0B2)
34,35

 in the liver. In addition, FXR regulates the expression of dedicated BA 120 

transporters, thereby controlling bile formation and BA recycling
36

. A further level of 121 

complexity is given by the TGR5-dependent regulation of bile secretion and flow in 122 
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cholangiocytes and gallbladder epithelium
37

. Disruption of these control mechanisms results 123 

in altered BA size and composition, and can lead to the development of metabolic 124 

diseases
23,24,38

 and cancer
38

.  125 

 126 

BAs and microbiome 127 

BA homeostasis is tightly controlled by the gut microbiome through a complex interaction 128 

that leads to modulation of whole-body metabolism, as extensively described elsewhere
39,40

. 129 

As a direct consequence of their detergent properties, BAs act as antimicrobial molecules 130 

capable of altering the microbial ecology of the gut. Conversely, microbial metabolism of 131 

BAs increases the diversity of the BA pool
41

, as demonstrated by enrichment of primary 132 

conjugated BAs in germ-free (GF) and antibiotic-treated mice. These changes in BA 133 

composition impact FXR and TGR5 activation. For example, the absence of microbiota in 134 

GF mice has been associated with an increase in BAs acting as FXR antagonists, such as 135 

tauro-MCA (TMCA)
42

. Diet and pharmacological interventions also regulate FXR 136 

activation by modulating the levels of Lactobacillus, a bacterial strain expressing bile salt 137 

hydrolase, which catalyzes the deconjugation of BAs, including TMCA
24

. More recently, 138 

the gut microbiome has been shown to be required for the production of low abundant 139 

phenylalanine- and tyrosine-conjugated CA derivatives, which were proposed to act as FXR 140 

agonists
43

. Further studies are warranted to explore the physiological relevance of this subset 141 

of conjugated BAs in humans.  142 

The role of the gut microbiome in the generation of TGR5 agonists has been well explored. 143 

In particular, 7-dehydroxylating bacteria transform the primary BAs CA and CDCA into 144 

DCA and LCA respectively
44,45

. Diet composition (fat and protein amount) and 145 

pharmacological interventions (antibiotics) strongly influence the availability of TGR5 146 

endogenous agonists, in part by modulating the proportion of intestinal 7-dehydroxylating 147 
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bacteria
46–49

. A recent study also reported that a decrease in Bacteroides vulgatus and an 148 

increase in Ruminococcus torques abundance induces DCA
50

. Thus, changes in the activity or 149 

quantity of these bacterial species could greatly influence host metabolism via TGR5. While 150 

these studies are promising, further research will be needed to fully understand the metabolic 151 

benefits of microbiome therapeutics in the context of TGR5 and FXR signaling. 152 

 153 

Metabolic actions of BA signaling 154 

Food intake is the main trigger for intestinal BA release, recirculation, and spillover into the 155 

systemic circulation. Consequently, BAs have emerged as postprandial messengers that fine-156 

tune whole-body metabolism through the coordinated activation of FXR and TGR5 in 157 

multiple organs (Figure 2), as extensively reviewed elsewhere
21,23,28

. In addition to its role in 158 

maintaining BA homeostasis, FXR regulates the expression of multiple genes involved in 159 

hepatic lipid, glucose and amino acid metabolism, thereby orchestrating the postprandial 160 

hepatic response. BAs also modulate whole-body glucose homeostasis, for instance by 161 

controlling the secretion of intestinal enteroendocrine hormones, including the insulinotropic 162 

and satiety-inducing hormone Glucagon-Like Peptide-1 (GLP-1). Furthermore, intestinal BA 163 

signaling is essential for nutrient and cholesterol absorption, as well as for maintaining 164 

intestinal integrity, regeneration and motility. Any alterations in these homeostatic control 165 

mechanisms may result in profound metabolic dysfunctions. Due to space constraints, this 166 

review will hereafter focus on the peripheral and central role of receptor-mediated BA 167 

signaling in energy homeostasis. 168 

 169 

BA signaling and energy homeostasis 170 

The regulation of energy expenditure and food intake is a tightly controlled biological event, 171 

but can be compromised by chronic high-fat diet (HFD) feeding or by excess caloric intake. 172 
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Energy homeostasis involves complex inter-cellular and intra-organ communication between 173 

peripheral tissues and the central nervous system. BAs are established key regulators of the 174 

energy balance during diet-induced obesity (DIO) and orchestrate both peripheral and central 175 

responses by modulating TGR5 and FXR activity (Figure 3), as described in the next 176 

paragraphs.  177 

 178 

BA-TGR5 signaling in peripheral organs. BAs have been identified as metabolites with 179 

potent body weight-reducing properties. In 2006, Watanabe et al. showed that 180 

supplementation of CA to a HFD prevented diet-induced increase in adipose mass, and 181 

reversed weight gain after obesity was already established
51

. This phenotype was proposed to 182 

result from the activation of the TGR5-deiodinase 2 (DIO2) pathway in murine brown 183 

adipose tissue (BAT) and in human skeletal muscle myoblasts
51

. The enzyme DIO2 is 184 

involved in the cellular production of bioactive thyroid hormone, and increased DIO2 activity 185 

has been associated with enhanced mitochondrial function, adaptive thermogenesis and 186 

energy expenditure
52

. Like for CA, feeding mice with CDCA also induced body weight 187 

loss
53,54

, and enhanced Uncoupling Protein 1 (UCP-1)
54

, one of the best studied mitochondrial 188 

uncouplers, and DIO2
53

 expression in BAT. A similar CDCA-DIO2 mechanism was shown 189 

to increase energy expenditure in humans
55

. The use of TGR5-selective agonists and 190 

genetically modified mouse models further established that these anti-obesogenic effects are 191 

at least partially dependent on TGR5 activation
14,32,51,53,56–61

. While some studies have 192 

corroborated these findings and observed increased energy expenditure after BA 193 

administration or TGR5 activation
14,51,55,59,61

, others, on the contrary, did not
54,62

. Similarly, 194 

while some studies report that BAs are not associated with energy metabolism in humans
63,64

, 195 

others support this association
55,65

. Differences in the experimental interventions, 196 

environment and genetics could explain these discrepancies. Indeed, the genetic background 197 
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and the endogenous BA pool size have been proposed as factors that likely contribute to the 198 

efficacy of the response
62

. These findings underscore the complexity of BAs in coordinating 199 

the energy balance and urge for additional studies to comprehensively evaluate the 200 

contribution of genetics and diet to this phenotype. Finally, other uncharacterized 201 

mechanisms may also contribute to the BA-mediated body weight maintenance and further 202 

research is needed to clarify this point in both mice and humans.  203 

Separately,  recent studies have also supported the role of BA-TGR5 signaling in inducing 204 

muscle cell differentiation and hypertrophy, thereby improving muscle function
66

 and 205 

increasing glucose utilization without affecting energy expenditure or physical activity
67

. On 206 

the other hand, endurance exercise was recently demonstrated to increase the circulating 207 

levels of LCA and DCA, which has been proposed to contribute to the increased energy 208 

expenditure that is seen through TGR5 activation
68

.  209 

In addition to their function in BAT and muscle, three independent studies demonstrated that 210 

TGR5 activators are potent triggers of beiging in subcutaneous fat (Figure 3)
56,57,69

. Although 211 

the contribution of this mechanism to the regulation of whole-body energy homeostasis is 212 

still under debate, activation of TGR5 enhanced lipolysis as well as mitochondrial biogenesis 213 

and function in DIO mice
56,69

. Interestingly, this TGR5-mediated adipocyte reprogramming is 214 

also triggered by cold exposure and is independent of adrenergic stimulation
69

, one of the 215 

common signaling pathways for beiging. It will be interesting to investigate whether 216 

physiological or pathological fluctuations in endogenous BAs are sufficiently potent to 217 

modulate the white-to-brown conversion of adipocytes. 218 

Cold exposure, a well-established approach to increase energy homeostasis, not only boosts 219 

mitochondrial activity, but also reshapes microbiota composition
70

. Transplantation of cold-220 

remodeled microbiota to GF mice improved both energy and glucose homeostasis
70

 and was 221 

at least in part dependent on changes in the BA pool size and composition
71,72

. Cold exposure 222 
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stimulated the expression of genes related to BA synthesis, mainly of the alternative 223 

pathway
71

, and increased the production of tauro-conjugated BAs
71,72

 including the FXR 224 

antagonist TMCA
42

. On the other hand, deletion of TGR5 in the adipose tissue blunted cold-225 

induced beiging of subcutaneous WAT
69

. Altogether, these changes in BA pool 226 

size/composition and their differential impact on TGR5 (upregulation) and FXR 227 

(downregulation) activity seem essential for adjusting whole-body energy homeostasis to 228 

sustained cold. 229 

 230 

BA-TGR5 signaling in the control of central energy homeostasis. Although BAs emerged 231 

as satiety-inducing factors in 1968
73

, the physiological relevance and mechanisms underlying 232 

this action remained unexplored for decades. Several recent studies have provided insight 233 

into these aspects (Figure 3). While studying the brain regions that control food intake, Perino 234 

et al. discovered that BAs spike in the hypothalamus shortly after feeding to prime the onset 235 

of satiety by turning off the hypothalamic orexigenic Agouti-Related Peptide/Neuropeptide Y 236 

(AgRP/NPY) neurons
74

. BAs acutely prevent the release of hunger-stimulating AgRP and 237 

NPY neuropeptides during the first minutes following binding of TGR5 through 238 

Rho/ROCK/actin-remodeling, but then further sustain the repression by blunting their 239 

expression
74

. In line with previous studies conducted in mice fed a normal chow diet 240 

(CD)
14,32,58

, these homeostatic mechanisms coordinate the physiological transition between 241 

fasting and feeding.  242 

During HFD feeding, compensatory neuronal circuits are recruited to counteract DIO. In this 243 

context of obesity, another report revealed that chronic activation of central BA-TGR5 244 

signaling not only led to reduced food intake, but also to increased energy expenditure
75

 245 

(Figure 3), adding an additional layer of complexity to the established knowledge of 246 

peripheral TGR5 activation
14,51,69,76–79

. Mechanistically, chronic selective central TGR5 247 
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activation increased energy expenditure by engaging the sympathetic nervous system
75

. Of 248 

note, the enhanced sympathetic tone was not observed in genetic models of obesity
75

, 249 

suggesting that dietary lipid-induced stress, rather than obesity itself, activates these 250 

peripheral neuronal circuits. Several possibilities may account for this diet-specific 251 

phenotype. HFD feeding triggers significant alterations in hypothalamic structure and 252 

function, including hypothalamic inflammation
80

 and endoplasmic reticulum stress
81

, and 253 

may even lead to partial damage of the neuronal projections
80

. However, HFD feeding also 254 

profoundly alters the size and composition of the BA pool
49,82,83

, which in turn may modulate 255 

hypothalamic BA signaling. More studies are needed to fully address these possibilities.  256 

The central anorexigenic action of BAs can be further enhanced by the regulation of fat 257 

preference in lingual taste bud cells
59

. These findings, which were shown to be TGR5-258 

dependent, may point to an additional mechanism to prevent obesity. TGR5 is also expressed 259 

in vagal afferent neurons and colocalizes with cholecystokinin A-receptor (CCK-AR)
84

. Both 260 

BAs and CCK are released after a meal, and inhibit food intake and body weight through 261 

activation of Pro-opiomelanocortin/Cocaine- and Amphetamine-Regulated Transcript 262 

(POMC/CART) hypothalamic neurons
84

, a well-established satiety-inducing neuronal 263 

population
85

. In addition, BA-TGR5 signaling coordinates enteroendocrine cell 264 

differentiation
83,86,87

 and function, in particular in L cells, for which BAs and TGR5-specific 265 

BA derivatives act as secretagogues of GLP-1 and other incretin hormones
14,88,89

. Of note, 266 

GLP-1 is a well-established regulator of energy homeostasis
90

 and likely acts, together with 267 

the above described mechanisms, as an integrated response to amplify BA-induced satiety 268 

(Figure 3).  269 

 270 

BA-FXR signaling in peripheral organs. Several groups have investigated the role of BA-271 

FXR signaling in obesity and reported that FXR deficiency decreased body weight gain and 272 
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fat mass in both genetic and DIO mouse models (Figure 3)
91,92

. Deletion of intestinal FXR 273 

was sufficient to prevent weight gain
93–95

. In contrast, liver-specific FXR knockout mice were 274 

not protected against DIO
91

. Despite the general consensus that FXR loss-of-function protects 275 

against obesity, the effects of its selective modulation by BAs or synthetic molecules are 276 

more controversial. Both FXR antagonists and agonists were recently shown to act as anti-277 

obesity molecules. In agreement with the phenotype observed in intestine-specific FXR 278 

knockout mice, selective inhibition of FXR signaling by administration of the synthetic Gly-279 

MCA
94

 or the natural TMCA
93,95

 protects against DIO by reducing ceramide levels and 280 

increasing beiging. However, administration of the gut-restricted agonist fexaramine also 281 

attenuates DIO in mice by increasing the thermogenic response in BAT and WAT
96

. In 282 

contrast, the function of the synthetic FXR agonist GW4064 in obese mice is less clear and 283 

findings diverge, most likely due to different experimental procedures
51,97–99

. The changes in 284 

microbiome and BA composition and/or the existence of off-target effects may also explain 285 

some of the discrepancies. Of interest, the gut microbiota controls weight gain in an FXR-286 

dependent manner
100

 and changes in the level of secondary BAs, as was described with 287 

fexaramine administration
96,101

, could activate TGR5 and contribute to differential 288 

modulation of whole-body energy metabolism. In addition, FXR activation induces Tgr5 289 

expression in the intestine
102

, which could also contribute to the complexity of BA signaling. 290 

In line with these findings, dual FXR/TGR5 agonists, such as INT-767, significantly prevent 291 

the development of obesity in wildtype mice
79

. However, other unknown factors may also 292 

weigh in, and further studies will be needed to clarify the apparent controversial actions of 293 

FXR-modulating molecules.   294 

 295 

BA-FXR signaling in the control of central energy homeostasis. Although FXR 296 

expression has been reported in the brain and hypothalamus
103

, its exact function remains ill-297 
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defined. Until recently, the direct role of FXR in the brain was thought to be marginal, as 298 

central activation of FXR by intracerebroventricular (icv) administration of GW4064 did not 299 

modulate energy metabolism
104

. Instead, the central action of FXR would indirectly depend 300 

on the induction of FGF15/19 in the intestine (Figure 3). Consistent with these findings, 301 

FGF19 can cross the blood brain barrier
105

 and FGF receptors and -Klotho, the obligate co-302 

receptor mediating FGF15/19 signaling, are expressed in the hypothalamus
106

, supporting a 303 

central action of FGF15/19. Accordingly, activation of central FGF15/19 signaling reduces 304 

body weight
107–109

 and food intake
108,109

 in animal models of obesity. A recent report, 305 

however, showed that icv delivery of FXR agonists in the hypothalamus can decrease 306 

sympathetic tone and energy expenditure in chow diet-fed mice
110

. It will be interesting to 307 

evaluate the relative importance of each of these pathways in the context of whole-body 308 

energy homeostasis. 309 

 310 

BA metabolism and genetics in obesity 311 

Decades of preclinical research have revealed how BAs counteract several processes that 312 

contribute to the onset of obesity and its associated comorbidities, and have led to the concept 313 

that BAs could be used as biomarkers for human disease progression. Lessons from mice 314 

should nevertheless be taken with caution, as BA metabolism is not perfectly conserved in 315 

evolution. For instance, humans lack enzymes that transform secondary back to primary BAs 316 

upon return to the liver, and cannot synthesize the endogenous FXR antagonist TMCA, two 317 

features that fundamentally impact TGR5 and FXR signaling.  318 

Monitoring BA levels in patients with obesity is important to understand how patients with 319 

metabolic syndrome could benefit from BA-based therapies. Although findings diverge 320 

across studies, fasting circulating BAs tend to augment, while the post-prandial increase of 321 

BAs seems to be blunted during obesity
23,111

. BAs are known to show large inter-individual 322 
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variations. This is not surprising as they represent several dozens of species, each with unique 323 

turn-over and properties. These aspects, together with their multi-compartment physiology 324 

and complex regulation by diet, genetics, microbiome and disease, render their investigation 325 

highly challenging. For long, human studies have failed to establish solid correlations 326 

between changes in BA entities and disease development. A major limitation has been the 327 

relatively small sample size of patients, since plasma BA concentrations and composition are 328 

notoriously known for their high inter-individual variability. Recent GWAS studies are 329 

starting to provide crucial insights into the contribution of genetics and the microbiome to 330 

individual BA species in human
112,113

 and murine
114

 obesity. With the identification of 331 

hundreds of quantitative trait loci, these in silico studies open up an exciting area of research 332 

in which the rigorous validation of these genetic correlations could reveal meaningful 333 

causality, and ideally lead to personalized therapeutic perspectives to modulate BA levels 334 

and, consequently, whole-body metabolism. 335 

 336 

BAs and bariatric surgery 337 

To date, the most promising clinical approach for severe obesity is bariatric surgery (BS), 338 

including Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG) and bile 339 

diversion to the ileum (GB-IL). Following these surgical interventions, patients show 340 

elevated levels of BAs and incretin hormones in the systemic circulation, as well as gut 341 

microbial changes, factors that have been proposed to contribute to the metabolic benefits of 342 

BS
115

. The earliest report linking body weight loss to increased BA levels in BS patients dates 343 

back to 2009
116

, and more recent studies showed that this BA phenotype is sustainable up to 344 

at least 5 years after BS
117

. Others confirmed elevation in BA levels after RYGB but found 345 

no correlation with weight
118

. Interestingly, the BS-dependent increase in circulating BAs 346 

was independent from caloric restriction
119

. Despite the large number of clinical and 347 
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preclinical studies, there is still no unequivocal consensus on the molecular mechanisms 348 

underlying BS-induced body weight loss, especially in the context of BA signaling. For 349 

instance, a functional FXR signaling is required to maintain the VSG-mediated weight loss in 350 

obese mice
120

, but the beneficial effects of VSG were preserved when FXR was selectively 351 

deleted in the intestine or liver
121

, suggesting that FXR inactivation and VSG may enhance 352 

energy metabolism through yet uncharacterized mechanisms. Recent literature proposed that 353 

intestinal FGF15/19 is an important component of the metabolic responses to VSG
122

. In 354 

contrast, intestinal FXR appears to be sufficient to support GB-IL-dependent weight loss in 355 

obese mice
123

, whereas FXR signaling seems to be dispensable in RYGB
124

. Similarly, the 356 

role of TGR5 signaling in regulating energy metabolism after BS is debated. While some 357 

studies demonstrated that intact TGR5 signaling is required for weight loss after RYGB
125

 358 

and VSG
78

, others have suggested that RYGB and GB-IL decreased body weight 359 

independently of TGR5
123,126

. Altogether, these studies suggest divergent molecular 360 

mechanisms following different bariatric interventions.  361 

 362 

Conclusion and future perspectives 363 

BAs are peripheral and central regulators of energy homeostasis, and alterations in the BA 364 

pool size and composition, or in their biological actions, may shift the balance toward 365 

obesity. Despite the extensive characterization of the functions of BAs and their receptors in 366 

both preclinical models and patients, multiple aspects of BA signaling remain unknown, and 367 

BA analogs or drugs targeting BA signaling are not yet available in the clinic for the 368 

treatment of obesity and eating disorders. Studies aimed at increasing the accessibility of BAs 369 

to the brain could open up exciting therapeutic perspectives. In addition, modulating the size 370 

and composition of the peripheral BA pool by altering the gut microbiota through a change in 371 

diet, exercise, cold exposure, antibiotics, probiotics or fecal transplantation could be a 372 
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promising strategy to modulate energy homeostasis. More studies, especially in humans, will 373 

be needed to validate these preclinical findings into effective therapies.  374 

  375 
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Figure legends 376 

Figure 1. Timeline of major discoveries in the BA field. The beneficial effects of bile in 377 

the treatment of multiple diseases were already known in ancient times, but the discovery of 378 

the chemistry and mechanisms of action of BAs have only been elucidated in the last 150 379 

years, as illustrated in this timeline. B.C., before Christ; BAs, bile acids; UDCA, 380 

ursodeoxycholic acid; CDCA, chenodeoxycholic acid; PBC, primary biliary cholangitis; 381 

FXR, farnesoid X receptor; TGR5, Takeda G-protein receptor 5; FDA, food and drug 382 

administration. 383 

Figure 2. Target tissues and biological activity of BAs. TGR5 and FXR coordinate the BA-384 

mediated whole-body metabolic response by acting in multiple organs. The biological 385 

functions listed in this figure are non-exhaustive and the receptor indicated in parentheses 386 

represents the most studied one. Most observations on the biological action of the BA-TGR5 387 

signaling have been made in mice, but are supported by in vitro studies in human cells and/or 388 

by clinical data. TGR5, Takeda G-protein receptor 5; HFD, high-fat diet; FXR, farnesoid X 389 

receptor. 390 

Figure 3. BA signaling controls whole-body energy homeostasis through direct and 391 

indirect mechanisms. a) Genetic deletion of FXR (Nr1h4) or TGR5 (Gpbar1) in obese mice 392 

is sufficient to alter body weight gain. b) BAs activate FXR and TGR5 in enterocytes and 393 

enteroendocrine cells to indirectly modulate food intake through increased secretion of 394 

FGF15/19 and GLP-1, respectively. c) Primary BAs are produced in the liver through the 395 

classical or alternative pathways (main enzymes are illustrated in the box) and converted to 396 

secondary BAs in the intestine by the gut microbiome. Dashed arrow: not fully defined 397 

reaction as deduced from
127

. d) BAs reach peripheral organs via the systemic circulation and 398 

orchestrate whole-body energy homeostasis by directly activating TGR5 in the brain, BAT 399 
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and WAT. Primary (yellow) and secondary (red) BAs can activate both TGR5 and FXR but 400 

with different potency (higher potency = more BAs of a color near the receptor). This figure 401 

represents an overview and is not exhaustive. Nr1h4, nuclear receptor subfamily 1 group H 402 

member 4; Gpbar1, G protein-coupled bile acid receptor 1; FXR, farnesoid X receptor; KO, 403 

knockout; TGR5, Takeda G-protein receptor 5; FGF15/19, fibroblast Growth Factor-15/19; 404 

EEC, enteroendocrine cell; GLP-1, glucagon-like peptide 1; BA, bile acid; CYP7A1, 405 

cholesterol 7-hydroxylase; CYP8B1, sterol 12-hydroxylase; CYP27A1, sterol 27-406 

hydroxylase; CYP7B1, oxysterol 7-hydroxylase; CA, cholic acid; CDCA, 407 

chenodeoxycholic acid; MCA, muricholic acids; BAT, brown adipose tissue; WAT, white 408 

adipose tissue. Created with BioRender.com. 409 
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