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Abstract

The sheer size of the protein sequence space is massive: a protein of 100 residues can

have 20100 possible sequence combinations; and knowing that this exceeds the number of

atoms in the universe, the chance of randomly discovering a stable new sequence with the

desired characteristics is infinitesimally small. Therefore, computational methodologies that

can search through the sequence space and expand beyond naturally occurring functional

protein sequence variants hold enormous potential in biomedicine and nanotechnology.

My thesis work leverages machine learning, physics-based and data-driven techniques to

design new protein molecules with distinct shapes (folds) so that they can precisely interact

with other molecules to perform biological functions.

The first part of my thesis is dedicated to the design of functional proteins. The re-designed of

an anti-CRISPR protein that can be controlled via blue light (optogenetic control) to regulate

the genome editing activity of the enzyme CRISPR–Cas9 is presented. A surface-based design

of a broad-spectrum inhibitory Acr towards another natural target (SauCas9) exemplifies the

re-purposing of existing inhibitory molecules against other related targets. This ultimately

led to the development of a general surface-centric design method for generating specific

protein-protein interactions from scratch and exemplified by the successful design of novel

PD-L1 inhibitors, an immune checkpoint that can halt the immune system from attacking the

cancer cells.

The successful design of protein-protein interactions heavily relies on the underlying pro-

tein fold and structure stabilizing the functional motif in a protein. Because nature has only

evolved a small set of protein folds, generated protein-interaction motifs can rarely be incor-

porated into existing protein structures. To address this problem, the second part of my thesis

is dedicated to the development of computational de novo protein design methods for the

crafting of proteins with customized folds. To this end, the TopoBuilder framework utilizes

a large collection of native proteins to transform a literal description of a protein fold into a

physically-realistic protein. Finally, Genesis, a deep neural networks approach for the tailored
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Chapitre 0 Abstract

de novo protein design is presented. Employing both, the TopoBuilder and Genesis, proteins

completely absent from the natural repertoire were designed and experimentally validated.

My thesis sets the path to explore possibilities of jointly optimizing the protein’s shape and

its surface geometry to master biological functions. We are now at entering a new era where

newly designed protein-based drugs and materials with the potential to solve a vast array of

technical challenges and open new avenues for next-generation precision drugs and advanced

nanomaterials.

Key words: De novo protein design, protein-protein interactions, protein structure, deep

learning
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Résumé

La taille même de l’espace des séquences protéiques est énorme : une protéine de 100

résidus peut avoir 20100 combinaisons de séquences possibles ; sachant que cela dépasse le

nombre d’atomes dans l’univers, la chance de découvrir au hasard une nouvelle séquence

stable avec les caractéristiques désirées est infiniment petite. Par conséquent, les méthodolo-

gies informatiques qui peuvent rechercher dans l’espace des séquences et s’étendre au-delà

des variantes de séquences de protéines fonctionnelles naturelles présentent un énorme

potentiel en biomédecine et en nanotechnologie.

Mon travail de thèse s’appuie sur l’apprentissage automatique, les techniques basées sur la

physique et les données pour concevoir de nouvelles molécules de protéines avec des formes

distinctes (repliement) afin qu’elles puissent interagir précisément avec d’autres molécules

pour remplir des fonctions biologiques.

La première partie de ma thèse est consacrée à la conception de protéines fonctionnelles.

La re-conception d’une protéine anti-CRISPR qui peut être contrôlée via la lumière bleue

(contrôle optogénétique) pour réguler l’activité d’édition du génome de l’enzyme CRISPR-

Cas9 est présentée. Une conception basée sur la surface d’un Acr inhibiteur à large spectre

vers une autre cible naturelle (SauCas9) illustre la réaffectation de molécules inhibitrices

existantes contre d’autres cibles apparentées. Cela a finalement conduit au développement

d’une méthode de conception centrée sur la surface générale pour générer des interactions

protéine-protéine spécifiques à partir de zéro et illustrée par la conception réussie des nou-

veaux inhibiteurs PD-L1, un point de contrôle immunitaire qui peut empêcher le système

immunitaire d’attaquer les cellules cancéreuses.

La conception réussie des interactions protéine-protéine repose fortement sur le repliement

protéique sous-jacent et la structure stabilisant le motif fonctionnel dans une protéine. Parce

que la nature n’a développé qu’un petit ensemble de plis protéiques, les motifs d’interaction

protéique générés peuvent rarement être incorporés dans les structures protéiques existantes.

Pour résoudre ce problème, la deuxième partie de ma thèse est consacrée au développement
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Chapter 0 Résumé

de méthodes computationnelles de conception de protéines de novo pour la fabrication de

protéines avec des plis personnalisés. À cette fin, le cadre TopoBuilder utilise une grande

collection de protéines natives pour transformer une description littérale d’un pli protéique

en une protéine physiquement réaliste. Enfin, Genesis, une approche de réseaux de neurones

profonds pour la conception sur mesure de protéines de novo est présentée. En utilisant à la

fois le TopoBuilder et Genesis, des protéines totalement absentes du répertoire naturel ont été

conçues et validées expérimentalement.

Ma thèse ouvre la voie pour explorer les possibilités d’optimiser conjointement la forme de la

protéine et sa géométrie de surface pour maîtriser les fonctions biologiques. Nous entrons

maintenant dans une nouvelle ère où des médicaments et des matériaux à base de protéines

nouvellement conçus ont le potentiel de résoudre un vaste éventail de défis techniques et

d’ouvrir de nouvelles voies pour les médicaments de précision de nouvelle génération et les

nanomatériaux avancés.

Mots clefs : De novo conception de protéines, interactions protéine-protéine, structure des

protéines, apprentissage profond
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1 Introduction

Around 13.8 billion years ago, the Big Bang induced a quick expansion and cooling of the uni-

verse allowing for basic atomic matter as we know it to emerge. With gravity and heat, atoms

clustered together forming condensed clouds which further gave rise to stars and planets.

Our planet Earth has formed around 4.5 billion years ago, at that time only composed of sim-

ple inorganic molecules. Lucky environmental conditions triggered chemical reactions that

caused the formation of the Earth’s prebiotic soup containing the four key families of organic

molecules: lipids, carbohydrates, amino acids, and nucleic acids. The subtle interplay and

fine balance between these four ingredients ultimately fostered fantastic complex molecular

systems and the first living organisms.

—

Next to water, proteins are among the most abundant molecules in almost all of today’s

living organisms. They are of utmost importance to life — the human body, for example,

produces ten thousand different proteins orchestrating nearly all vital functions. Proteins are

encoded in the genetic material that is composed of nucleic acids (DNA) and stored in each

and every cell. For a cell to make a protein, the genetic material is decoded and transcribed

into messenger ribonucleic acid (messenger RNA, mRNA) by specialized machinery and

subsequently translated by ribosomes into proteins.

Proteins are polypeptide chains composed of organic building blocks called amino acids

(AAs) residues. The number and order of 20 chemically different natural AAs give rise to

different proteins with unique sequences. All AAs share a common backbone constructed of

four heavy atoms (Nitrogen: N, Carbon: C, Carbon: Cα, Oxygen: O) that are linked together

through peptide bonds formed by the Cα and N. From the chiral Cα atoms, different side

chains branch out which give each AA its unique physiochemical properties (hydrophobicity,

polarity, charge), size and shape. Interestingly, the 20 AA choices at each position throughout
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the AA chain lead to an exponential number of sequence possibilities. For instance, a 100 AA

sequence has 20100 (∼10130) possible sequence combinations, exceeding the approximated

count of atoms in the universe (∼1089). Despite the colossal sequence possibilities, only a

handful exist in Nature, effectively those that have functional importance to an organism [1, 2,

3].

Under standard physiological conditions, an AA sequence collapses or folds spontaneously

into a well-defined and stable three-dimensional (3D) structure. The structure is frequently

described through a set of translation- and rotation invariant (relative) coordinates. The

protein backbone can be defined by three dihedral angles (φ, ψ, ω) describing the global shape

and folding path of the sequence. The φ and ψ torsions describe the rotations around (Ci-1,

Ni, Cαi, Ci) and (Ni, Cαi, Ci, Ni+1), respectively. The ω describes the torsion around (Cαi, Ci,

Ni+1, Cαi+1) and is constrained to approximately 180 degrees (planar) due to the delocalized

electrons between the O and N of the peptide bond, giving a partial double bond character.

Therefore, the protein’s overall structural flexibility is governed by the existence of energetically

favored (φ, ψ)-pairs. Unfavorable (φ, ψ) combinations result from residues in very close 3D

proximity inducing strong steric repulsions [4]. Aside from the backbone, the side chain

conformations can be described by an additional set of torsional angles (χ1, . . . , χ4) for the

rotatable bonds.

The rough shapes of proteins are commonly categorized into four hierarchical levels (Fig. 1.1).

The protein’s AA sequence represents the “primary structure”. During the folding process, the

different portions of the sequence adopt one of the three local geometric sub-structures (i.e.

“secondary structure" elements (SSEs)), namely α-helices, β-strands, and loops or coils. α-

helices are stabilized by local hydrogen bonds (H-bonds), while β-strands arrange into β-sheets

through non-local H-bonds. Contrary, loops are either loosely structured or unordered and

generally connect SSEs within the protein. The 3D organization of SSEs composes the protein’s

“tertiary structure”, stabilized by non-local hydrophobic interactions. Despite often being

stable on their own, globular tertiary structures can assemble into “quaternary structures”

forming larger multi-domain complexes stabilized by hydrophobic interactions, H-bonds, salt

bridges, and disulfide bonds. Each domain in a complex can either function independently

of the others or the overall functioning is achieved through the cooperation of the domains.

The protein “quinary structure” refers to features of protein surfaces ensuring that proteins

interact with specific partners and thereby control and organize the cellular milieu.

The main thermodynamic driving force of the protein folding process is the hydrophobic effect.

During folding, hydrophobic side chains are pushed into the core away from the aqueous

environment reducing the hydrophobic-to-water contacts. Polar interactions are thought to

be less involved, but often help to detail the correct geometries of protein structures [5]. The

side chains in protein cores adopt low-energy conformations called rotamers [6] that induce a

dense packing resembling a 3D jigsaw puzzle (compared with more loosely folded aggregates

or molten globules) [7]. Furthermore, the SSE types have specific rotamer preferences [8, 9,

10].

2
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Figure 1.1: Orders of protein structure. The primary structure of a protein corresponds to its AA
sequence. The backbone, shown in grey is composed of four atoms (N, Cα, C, O) and the first atom of
the side chains (in wheat) is the Cβ. The secondary structure contains three different elements: helices,
β-strands and loops. The tertiary structure referst to the spatial arrangement of the SSEs. A quaternary
structure is formed upon assembling multiple protein domains.

In 1961 Anfinsen [11] discovered that the native state of a protein structure is fully defined

by its underlying sequence (at least for most small and globular proteins) and represents

the lowest Gibbs free energy state if the state is kinetically accessible. This dogma, seen

from an entropic viewpoint may seem counter-intuitive: because of the very large number of

degrees of freedom of an unfolded AA sequence, there exists an astronomically large number

of possible conformations — ∼3198 for a protein with 100 AAs, assuming 198 φ and ψ torsion

angles that can adopt 3 stable configurations [12, 13]. Folding of the sequence into a single

conformation reduces the conformational freedom leading to a large entropic cost estimated

to be around 70 kcal mol-1 for a 100-residue protein [14, 15, 16]. The entropy-balancing

forces are of thermodynamic nature including the hydrophobic effect, H-bonds, van der

Waals (vdW), and electrostatic interactions. They are individually weak, and the interplay

of many coherent interactions is needed to counter the entropic penalty and stabilize a

protein structure. For a protein structure, the change in free energyΔG between the folded –

unfolded state is relatively small of aroundΔG = 5 - 10 kcal mol-1, consequently, only a few

mutations are needed to disrupt protein stability [17, 18]. Additional aspects may further

explain the marginal stability of natural proteins. First, some proteins sacrifice stability for

function i.e., protein binding sites often contain exposed hydrophobic residues essential for

binding [19]. Second, marginal stability may be important for cell homeostasis i.e., to regulate

protein abundance [20, 21]. Lastly, the stability of proteins might be an equilibrium between

maintaining essential activities and the accumulation of mutations through evolution i.e.,

natural selection only optimizes stability if there is a gain in fitness [22, 23].

By probing the protein conformational and energy landscape through folding experiments or

simulations, one can show that natural proteins fold in a funnel-like fashion to reach the free

energy minimum [25]. The funnel structure of natural proteins is smooth and enables rapid

folding and escaping of misfolded states. The smoothness of the funnel is often explained by

evolution and backbone optimality i.e., natural proteins have a minimally frustrated backbone

structure [13].
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Figure 1.2: Data growth. The annual growth of available protein sequence and structure data. UniParc
[24] is a container for non-identical sequences from various different sources. The PDB stores solved
protein structure data. The CATH hierarchically classifies structures. Shown is the annual growth of
folds, and strikingly only a few new folds have been discovered within the last 10 years.

Taken together, we can recapitulate three general rules for protein folding: (1) hydrophobic

AAs are directed towards the core inducing a dense packing, (2) polar AAs are exposed to make

favorable interactions with the hydrophilic solvent and fine-tune the geometry, and (3) the

global conformation of the backbone is minimally frustrated exerting a smooth folding funnel.

A protein’s function arises from its exact structure; for example, scissors-like folded proteins

take part in nutrients’ digestion while tunnel-shaped ones participate in cellular nutrient up-

take and metabolic waste expulsion. Determining the structures of proteins is therefore crucial

for understanding and revealing biological mechanisms. While experimental high-throughput

sequencing techniques have enabled the discovery of full genomes of various organisms,

protein structure determination remains a manual and arduous process. To date, protein

structures are commonly solved experimentally through three main techniques: X-ray crystal-

lography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy

(cryo-EM). Decades of rigorous efforts in solving the structures of proteins collectively yielded

a database with over 150,000 structures, stored and publicly accessible in the Protein Data

Bank (PDB) [26]. Considering the wealth of the available sequence data [27, 24], one would

also expect a large variety of different protein shapes. Surprisingly, the classification of pro-

tein structures shows that nature has only evolved a limited set of 1,000 - 10,000 protein

folds depending on the definition [28, 29, 30, 31]. Two prominent protein structure classifi-

cation databases are the Structural Classification of Proteins (SCOP) [32, 33] and the Class,

Architecture, Topology, Homology (CATH) [34, 35]. Both follow a similar systematic way of

classifying protein structures. Commonly, at the top level, structures are split according to the

SSE composition (e.g., mostly α, mixed-α/β, mostly β). Then, the SSE orientations and overall

shapes are included to define protein architectures. Architectures can be classified into folds

or topologies which respect the same SSE connectivity. Lower fine-level classifications are

then mainly based on homology (common ancestor) and/or functional properties.
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It is not clear why evolution has only generated a small set of protein folds (Fig. 1.2). An

attractive hypothesis is that the evolved set of protein folds suffice any function needed for

life [2, 3, 36]. Additionally, recycling existing protein folds for a battery of functions through

gene duplication, divergence, and recombination could be a more efficient strategy than

completely evolving new folds i.e., by ab initio invention [1]. An illustrative example is the

Immunoglobulin-like (Ig-like) fold, found across numerous species as part of different protein

complexes that harbor a variety of functions including antibodies for defending the organism

against pathogens, cell surface receptors for signal recognition and transduction, and enzymes

among others [37].

In view of the enormous space of unexplored proteins and their functional potential to solve

vast arrays of bio- and nanotechnological issues, creating protein molecules with controlled

geometries for tailored functions has been and remains a grand challenge for modern-day

protein designers. Since the 1980s, scientists began to develop methods that allowed them to

create proteins beyond the set of naturally occurring sequences and folds with improved or

novel biochemical characteristics. Presently, several strategies exist, and the most important

classical and emerging protein design concepts will be reviewed in the following sections.

1.1 Manual, minimal, and rational protein design

The field of protein design originated from protein engineering and the study of protein

folding. For protein engineers, the goal is to enhance or build new functionalities such as solu-

bility, enzymatic activity, or specific molecular recognition into existing proteins rather than

creating new functional proteins from the ground up. Achieving these goals, two successful

strategies employed are (1) directed evolution [38, 39], where experimentally mutations are

induced to create a pool of variants that is screened for the desired property and (2) rational

re-design [40, 41], where residues at specific positions along the sequence are mutated based

on prior knowledge from biochemical or structural studies or physiochemical concepts. As

both approaches use an initial (natural) protein structure, the stability and dynamics of the

conformations remain limited. Importantly, protein engineering can lead to new variants that

are in close sequence and structural proximity of natural proteins but is incapable (or, at least

very inefficiently) of discovering completely novel proteins [42].

In contrast to protein engineering where the proteins’ function was the primary objective,

early protein folding studies aimed to understand the sequence-to-structure relationships and

how this affects protein folding. To study how proteins fold, protein biochemists figured that it

may be possible to understand the mechanisms by doing the inverse of protein folding [43] i.e.,

design a sequence which lowest free energy shape corresponds to a target backbone (protein

design). Examples of the first manually designed proteins were the small RNA-binding peptide

in 1979 by Bernd Gutte [44], or the β-sandwich mimicking proteins named “betadoublets” or

“betabellins” by Jane and David Richardson towards the end of the 1980s [45, 46]. These designs
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were designed based on AA propensities i.e., the preferences of AAs to adopt specific SSEs.

Nonetheless, the designed proteins came out short on solubility and tended to form aggregates

[46]. This highlighted the complexity and the importance of a deep rational understanding of

protein structures extending beyond their primary structure.

Subsequently, the first minimalistic approaches of protein design based on sequence pattering

led to the deciphering of additional physiochemical features derived from biochemical- and

empirical studies. Binary sequence patterns of polar (p) and hydrophobic (h) residues were

found to generate small amphipathic α-helices ([hhphhphhp]n) and β-strands ([hphphphp]n)

[47, 48].

Rational protein design embraces simple sequence-based rules together with the more com-

plex sequence-to-structure relationships gathered from manual and early bioinformatic in-

spections of natural proteins. All together laid the foundation of rational design rules that

could be implemented into protein design programs. At that dawn of designing proteins,

designers specified the protein backbone trace using mathematical (parametric) equations

[49, 50] and side chain repacking algorithms were applied to design the sequences [51, 52, 53].

The parametric design was extensively used for the design of helices and helical assemblies

(coiled-coils) [54]. The helical system was preferred over other folds due to its symmetries

and the design rules that could be efficiently leveraged and assisted in designing the first

coiled-coils through designing individual helices first and then associating them [55].

The first successfully computationally from scratch ("de novo") designed and verified protein

was α3D [56], a globular three-helix bundle that was extensively analyzed [57, 58, 59]. After-

ward, larger helical bundles were designed with geometries and association states previously

unencountered in nature [60].

With the first de novo proteins, it also became apparent that a sequence not only needs to sta-

bilize the target structure but should also destabilize closely related competing conformations.

To achieve this, negative design concepts complemented the current design rules to favor the

targeted structure and escape the closely related ones [49, 61, 62].

1.2 Computational protein design

With the increase of the available computational resources and sophisticated software com-

bined with the development of high-throughput and cost-effective gene synthesis, compu-

tationally designing full-atomistic protein models at scale, selecting promising candidates

and experimentally verifying them was becoming feasible. However, the core challenge of

protein design persisted i.e., how to cope with the massive sequence and structure spaces. In

fact, protein design is a very hard combinatorial problem (NP-hard i.e., there exist no known

algorithm to solve the problem in polynomial time) [63] requiring efficient algorithms in order

to explore the possibilities maximizing P(sequence|structure).
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To efficiently search over sequences and conformations, modern protein design methods use

an initial protein structure and iterate over two basic operations: (1) sampling possible side

chain configurations and backbone conformations and (2) applying simplified force fields

(energy or scoring functions) to evaluate the sequence-to-structure fitness and approximate

the energy (stability) of each model. Through these two operations, protein design methods

can traverse a vast space of sequences and conformations towards optimal or near-optimal

low-energetic solutions [64].

The sampling procedures can be either stochastic or deterministic. Sampling deterministically

guarantees that the solution found corresponds to the global minimum free energy through

searching the space exhaustively. One of the most prominent examples of a deterministic

sampling algorithm is the dead-end elimination (DEE) that identifies and prunes physically

unrealistic and suboptimal combinations of side chain and backbone conformations (“dead

ends”) without losing the global minimum energy conformation [65]. The DEE algorithm is

often combined with the A* search algorithm (DEE/A*) that starts from the pruned, pairwise

decomposed energy matrix to find low-energy models such as implemented in OSPREY [66].

Nevertheless, deterministic algorithms are extremely computational and time demanding,

especially for large and complex proteins. To overcome these drawbacks, stochastic sampling

methods incorporate a random component and search through the space randomly. Because

stochastic sampling methods do not consider the full space, they do not guarantee to return

the global minimum solution, but rather return ensembles of low energetic solutions. Two

prominent methods used are Monte Carlo (MC) sampling and genetic algorithms.

A frequently used framework for protein modeling and design is the Rosetta software [67]. The

full-atomistic energy function implemented in Rosetta is based on a weighted linear combi-

nation of energy terms that consider geometric degrees of freedom and chemical identities

to approximate the energy associated with a protein conformation [68]. The energy function

has been parameterized using a collection of small-molecule and X-ray crystal structure data

and describes (1) interactions between non-bonded atom pairs important for atomic packing,

electrostatics, and solvation, (2) empirical potentials for the modeling of H-bonds, and disul-

fide bonds, (3) statistical potentials that evaluate the backbone and side chain conformations,

and (4) additional scoring terms to capture native protein features. To sample the sequence

and conformational space, Rosetta uses MC simulated annealing [69]. The MC algorithm ran-

domly introduces mutations and small conformational movements which are then evaluated

an energy function. Simple, a change is accepted if the energy of the model decreases and

rejected if the energy increases based on the Metropolis criterion [70]. The drawback of this

rigid procedure is the poor exploration of both the sequence and conformation spaces i.e., its

“unfitness” to always sample the global minimum and remain stuck in a local minimum. To

allow the algorithm to better explore the landscape, a Boltzmann probability is introduced in-

cluding a temperature factor that enables the tuning of the criterion i.e., the algorithm accepts

bad solutions with a certain probability. The temperature factor is high at the beginning (high

acceptance and exploration) and is lowered (“cooled”) over time so that only energetically

favored changes are accepted (i.e., drilling down the found minimum). This technique allows
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the algorithm to efficiently escape from local minima traps. To date, stochastic sampling

methods are often preferred over deterministic ones thanks to their speed and modularity

that enable options to include additional design objectives such as specific rotameric libraries,

backbone flexibilities, and multistate design [71].

1.3 De novo protein design – classical methods

A longstanding goal for protein designers is to create novel protein sequences and shapes de

novo i.e., absent from the natural protein universe (Fig. 1.3). De novo design not only tests

our understanding of the underlying physicochemical principles governing protein folding

and structure, but also enables the generation of new proteins with targeted and unmatched

functions to solve current biomedical and technological problems. Because the sequence

space is very large and the main fraction is likely not viable, randomly searching for sequences

that will adopt an intended structure or integrate a certain function is quasi-impossible [72,

73, 74]. Also, the experimental determination of a protein structure is difficult, expensive, and

time-consuming, and it is therefore impossible to pursue structure determination at scale.

Finally, predicting a protein structure from a single de novo sequence remains a difficult task

[75].

To circumvent this challenge, classical de novo protein design methods start with specifying

the overall protein’s shape. This allows to drastically reduce the search to only sequence

fitting the roughly drafted shape. Then, de novo design involves two iterative steps: first,

backbones satisfying the initial shape constraints are sampled and second, low free energy

sequences are fitted onto sampled backbones. Ultimately, the method yields an ensemble

of low energetic sequences that are predicted to adopt the targeted shape. In combination

with modern experimental techniques (e.g. parallel oligonucleotide synthesis, yeast display

screening, and next-generation sequencing), de novo designs were successfully screened and

tested leading to punctual successes for fully-α-helical-, mixed-α/β- and fully-β-folds, such as

TIM-barrels [76], β-barrels [77], β-propellers [78], coiled-coils [79, 80, 60], and repeat proteins

[81].

Different strategies exist to define the overall shape of a protein backbone. For symmetric

or repetitive folds such as α-helical coiled-coils, parametric functions can be formulated de-

scribing the exact placements of the backbone atoms. A prominent example is ISAMBARD

(Intelligent System for Analysis, Model Building, and Rational Design), a software that features

the integration of less-common SSEs and generalizes parametric modeling and design [82].

Still, integrating structural irregularities found in natural SSEs into parametric frameworks

remains difficult. Such local structural irregularities include bulges in β-strands, breakpoints

in α-helices, or 310 helices. Examples of two popular methods that can introduce structural

irregularities are fragment assembly [83, 84] and SEWING (Structure Extension with Native-

substructure Graphs) [85]. Fragment assembly uses small protein fragments of sizes 3 and 9
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Figure 1.3: Computational protein design. A: Nature only sampled a tiny fraction of the possible
sequence space. B: The conformational energy landscape of a sequence is funnel-shaped and contains
multiple local minima and a global minimum corresponding to the well-folded, native structure. C:
The task of protein folding is to predict the 3D structure from the AA sequence. D: The task of protein
design is to predict sequences whose lowest energy structure corresponds to the target backbone, and
can be seen as the inverse folding problem. E: For de novo protein design, both the exact sequence and
structure are unknown. Only the overall shape of the target protein structure is specified. To search for
potential sequences obeying the drafted shape, de novo design iteratively samples backbones and fits
low-energetic sequences onto them, resulting in an conformational and sequence ensemble.

(3mers and 9mers) derived from the natural repertoire matching the target backbone locally

and stitches them together to create a protein structure. The assembling is stochastic and

guided by a scoring function to decide if the insertion is accepted or rejected. To scan the con-

formational and energetic landscape well and find low potential conformations, thousands of

fragment and structure energy minimization moves are required which is computationally ex-

pensive and time-consuming. On the other hand, the SEWING method combines natural SSEs
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with their local irregularities through their regular regions and thereby avoids computationally

expensive loop closures.

Despite the multiple triumphs, de novo design remains challenging [74, 77]. Many compu-

tationally designed proteins require multiple rounds of experimental and computer-guided

opitmizations [16, 74]. Especially mixed-α/β- and fully-β-proteins are notoriously difficult

to design [77, 86, 87, 88]. For complex protein folds, many specific and manual adjustments

to the de novo design protocol are required, depending on the targeted protein fold and the

design objective.

A major limitation is the crafting of “designable” protein backbones [89, 90, 91, 92, 93] i.e., back-

bones that are strain-less and physically realistic. For backbones to be designable, they need

optimal SSE configurations with favored tertiary structure symmetries such that a well-packed

core is realizable with the available SSEs [94, 95]. Bioinformatic studies showed that natural

protein backbones differ in terms of their designability e.g., some backbones accommodate a

much larger pool of different energetically favorable sequences than others. This has been

linked with mutational robustness increasing thermodynamic and evolutionary stability [90].

Today, the sequence capacity of a backbone is often used to quantify its designability [89, 90,

95], however this metric remains elusive and difficult to interpret physically and chemically.

Designability includes other factors that are difficult to measure such as fold specificity [89,

96], or native-like SSE arrangements [97]. Backbone designability necessitates the embedding

of the local protein structure patterns and irregularities in the global structural context. While

the local structural features have been well described [98], empirical design rules connecting

these local patterns to tertiary structure elements (such as β/β-, β/α-, and α/β-units) and

domains flourished during the last 15 years (especially for mixed-α/β and fully-β tertiary

motifs). For example, Koga and colleagues [99] formulated a first set of rules to design “ideal”

proteins. Here, ideal refers to globular proteins, without irregularities in their SSEs and small

loops as connecting elements. The rules are based on loop lengths that induce the correct

tertiary arrangements and packing. Since then, the rules have been steadily updated [100,

101] e.g., with structurally defined loops to bridge non-local motifs [100, 87], using β-strand

register shifts and β-bulges to control the curvature and to carve cavities into proteins [76, 86],

or strategically placed glycine residues that relieve backbone stress and allow the design of

β-barrels [77].

1.4 Emerging de novo design methods

Technological advancements and the exponential growth of available protein sequence and

structural data led to the development of methods capable of “learning” complex relation-

ships of underlying physicochemical characteristics. A variety of deep learning (DL) methods

borrowed from computer vision and natural language processing have substantially con-

tributed towards improved understanding of the protein sequence-to-structure relationship
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and accelerated computational protein design (Fig. 1.4) [102, 103, 104].

Usually, a DL method is composed of multiple layers of artificial neural networks, often

referred to as deep neural networks (DNNs). One can think of a single neural network layer as

an interconnected stack of nodes that act as small functions and can communicate between

themselves. When injected with data, each layer progressively integrates and propagates the

processed signal further to the next layer. The connections between nodes within a layer are

weighted and depending on the importance of the signals, the weights can be modulated. A

successful adjustment of the weights gives DNNs the ability to internally learn meaningful

representations called “embeddings”, condensed numerical descriptions that are understood

by DL methods and can be leveraged to reveal and better understand complex relationships

within the data. The adjustment of the weights is achieved through the “training” procedure

that requires a large set of diverse samples. A batch of samples is iteratively fed into the DNN

and after each iteration, the DNN calculates the error (loss) of its own prediction with respect

to a criterion. The error can be backpropagated through the DNN and used to derive the

gradients with respect to the weights, and then readjust the weights slightly in the direction

of the steepest descent. Following this scheme, the DNN iteratively minimizes the errors of

the predictions. Ultimately, successfully end-to-end trained DNNs can be utilized to solve a

particular task given new data such as predicting the protein structure from a sequence that

was not included in the training samples [105, 106, 75, 107, 108].

An exciting field of DL is deep generative modeling where DNNs are used to approximate

the underlying high-dimensional, complex distributions of the data. Specifically, generative

frameworks can be used to infer the likelihood of data and then to generate new, artificial

samples from the learned underlying distribution. Prominent examples are deep fakes that can

generate realistic appearing fake portraits of celebrity images or text with particular emotions

or humor [109].

Based on the impressive examples from computer vision and natural language processing, it

sounds appealing to use deep generative modeling for de novo protein design i.e., creating

artificial proteins based on the available protein sequence and structure data. Popular gen-

erative approaches include normalizing flows (NFs) [110], generative adversarial networks

(GANs) [111], and variational autoencoders (VAEs) [112]. The latter is of particular interest

owing to its flexibility to solve a wide range of different problems.

VAEs consists of an encoder, a decoder, and a specific loss function. The encoder is a DNN

that compresses the input data as a distribution over the DNN internal - latent representation

with the goal of losing the least information possible. The decoder then de-compresses the

latent representation back into the input as best as possible. The degree of compression is

controlled by the size of the latent space, while the compression quality is dependent on the

depth of the DNNs. In practice, the samples are encoded as Gaussian distributions defined by

a set of means (µ) and variances (σ2) that can be then used to generate latent variables and

reconstructed through the decoder to return the inputs. During training, a reconstruction
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loss is used to measure the error between the input and the prediction. Additionally, a reg-

ularization term is applied to the latent space to ensure an approximate standard Gaussian

and well-behaved latent space structure. Hence, the latent space should be continuous and

complete i.e., the µ for each of the latent variables should be “close” together with “overlap-

ping” σ2. Without any regularization, the encoder tends to predict tiny σ2 and large µ leading

to an overfitted latent space that is unable to generalize to new, unseen data. Usually, the

regularization is formulated as the Kulback-Leibler divergence between the predicted distri-

bution and a standard Gaussian, forcing the predicted distribution to have unit variance (σ2 =

1) and centered means (µ = 0). A well-trained VAE can interpolate across the continuous and

complete latent space between variables and thereby sample novel data samples.

1.4.1 Structure prediction DNNs

In December 2018, a DL-based program called AlphaFold1 (AF1) released by DeepMind

[105] won the 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP)

competition. AF1s’ rationale is that a set of evolutionarily related sequences (multiple se-

quence alignment (MSA) holds covariation statistics that can be leveraged to predict distance

distributions between atoms and subsequently used to guide the computational structure

predictions. Usually, for contact or distance predictions, the Cβ atoms are used as they are

the first atoms of the AA side chains and the Cα-Cβ vectors determine whether a residue is

pointing towards or away from the protein core [113, 114, 115, 116]. The AF1 model uses

a series of two dimensional (2D) convolutional blocks transforming an encoded sequence

and its MSA features into pairwise distance- and dihedral distributions. The distributions are

constructing a protein-specific potential of mean force [117] i.e., a function that describes the

free energy changes when the distances between two residues changes. The potential is then

minimized via gradient descent to produce low-energy structural models.

Shortly after, the transformed-restrained Rosetta (trRosetta, or short trR) [106] was developed,

an improved version of the AF1 model. Importantly, trR predicts inter-residue orientations in

addition to the distance probabilities. The pairwise orientations between two residues i and j

include three dihedral angles (ω, ψij, ψji) and two angles (φij, φji). The ω torsion is defined as

the rotation around the virtual axis connecting Cβi and Cβj (through the four atoms (Cαi, Cβi,

Cβj, Cαj)), and is symmetric. The ψ and φ orientations are asymmetric e.g., the orientation

depends on the reference frame either at residue i or j. The ψ torsion is calculated using the

atoms (Ni, Cαi, Cβ i, Cβj) and the φ angles using the atoms (Cαi, Cβi, Cβj) in the case of setting

the reference to residue i. The predicted inter-residue geometric potentials are converted into

energy-term restraints guiding the Rosetta minimization protocol. trR was shown to be able to

predict protein structures for a set of de novo designed sequences, elucidating its potential to

evaluate novel protein sequences where no or only shallow MSAs can be constructed. The

architectures of AF1 and trR are heavily inspired by DNNs from computer vision. Hence, they

rely on a grid-like data representation and require additional programs to convert their 2D
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predictions into 3D structures.

The second version of AlphaFold (AF2) [108] was revealed in the CASP14 competition and

achieved near-experimental accuracy for a majority of modeling challenges. The AF2 architec-

ture was completely revised and is fully end-to-end i.e., the DNN predicts the 3D coordinates

of all heavy atoms from an input sequence and its aligned homologs. Briefly, AF2 contains two

main transformer-based modules that are employed sequentially. The first module (termed

“Evoformer”) is based on stacked equivariant transformer-type layers and uses the raw MSAs

together with homologous structures or the self-distilled models (predicted models with high

confidence), and then returns the processed MSA embeddings (msi) and residue pair features

(zij). Importantly, the Evoformer continuously mixes and synchronizes information from the

MSA and pair representations enabling the discovery of spatial and evolutionary relationships

between sequences. The MSA features are gated by a row- and column-wise self-attention (row

acts on the sequences and columns on residues). The residue pair feature tensor is processed

through a “triangular” attention-biasing operation restraining residue triplets to fulfill the

triangular inequality. In general, the MSA features influence the pair features throughout the

module whereas the pair representation softly directs the attention to the MSA features that

distill evolutionary couplings. The second AF2 “structure” module uses the first row of the

MSA feature (mi1) which is the embedded original sequence, and the full pair embeddings

from the Evoformer to generate 3D structures. This is achieved using 8 blocks of invariant

point attention layer that predicts relative rotations- and translations for residues formatted as

rigid-body frames. The side chain conformations (χ angles and atom positions) are predicted

at the end of each block with a separate small module. Considerably, during the structure

module, the chain structure is not imposed at any time to allow simultaneous local and global

refinements. Feeding back the predicted outputs into the network (“recycling”) improves

the structure prediction accuracy. The network is supervised by a final frame-aligned point

error loss (FAPE), and several auxiliary losses (structure violation loss and side chain loss, MSA

BERT-like loss, distogram cross-entropy loss) are used at different stages during training to

force the network to learn a meaningful and geometrically correct structure within the first

few blocks of the DNN.

Taken together, the main improvements in AF2 are: (1) directly using the raw MSAs rather

than starting from MSA-derived features such as covariance-inversion or pseudolikelihood

models, (2) novel efficient attention layers throughout the model that mixes and captures

important geometric information, (3) a heavy atom 3D structure generation module and (4)

end-to-end differentiable learning with recycling iterations to refine predictions. Since AF2s

initial communication multiple groups have either implemented related frameworks such as

RoseTTAfold [107] or slightly modified AF2 to solve various biologically relevant tasks such

as for predicting protein-protein interactions and peptide-protein interactions [40, 118] and

improved X-ray and EM density model fitting [119, 120]. Furthermore, AF2 was used to predict

models for protein sequences of almost the entire human proteome (98.5% of human proteins)

[121].
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The immense success of DL in protein structure prediction from sequence raises the question

of whether these methods can also be used for the inverse task e.g., protein design, or even

for de novo protein design. Many sequence-based DL methods for protein engineering have

been developed [122, 123, 124, 125]. These methods focus on generating improved or novel

functional variants without considering structural features to discover new protein topologies

or folds.

1.4.2 Neural generation of protein backbones for fold discovery

An infinite number of representations of a protein backbone through cartesian coordinates

exists by translations and/or rotations in 3D space. Due to the enormity of the space, it would

be challenging for brute-forcing a DNN to learn all possibilities and thereof generate new ones.

Hence, for DNNs to efficiently learn protein backbone representations, coordinates invariant

to translations and rotations are needed. Two invariant representations of protein backbone

are the (1) dihedral coordinates (φ, ψ) assuming ideal bond geometry, and (2) Z-matrix where

an atom position ai is relatively described by its three previous atoms in the chain (ai-1, ai-2,

ai-3) through a distance (ai-3, ai-2), an angle (ai-3, ai-2, ai-1), and a torsion (ai-3, ai-2, ai-1, ai).

While sequential invariant encodings have been used for protein structure generation from

sequence [126, 127], they suffer from the integration error i.e., small errors along the sequence

add up and lead to large deviations downstream the chain.

To cope with the integration error, the protein backbone geometry can be arranged into 2D

representations. A frequent 2D encoding of molecules are distance matrices, and for proteins

often either Cα or Cβ atoms are considered. Additional 2D feature maps exist such as the inter-

residue orientation maps introduced in the trR framework. Not only do 2D representations

break the integration of errors along the chain, but they also allow the use of 2D convolutional

neural networks (CNNs). A 2D feature map can be thought of as an image, where its pairwise

features are color channels. Deep 2D CNNs can efficiently identify secondary and tertiary

structural patterns that are otherwise difficult to describe through conventional heuristics.

Using 2D invariant encodings, for example, GANs have been trained to in-paint protein loops

[128] or infer missing residues [129]. Similarly, VAE have been used to create protein structures

[130].

Both, 1D and 2D representations typically need an additional step to recover the 3D carte-

sian coordinates of a structure. This has been difficult due to potential errors or invalidities

within the representations. For example, cartesian coordinates can be recovered from a valid

(perfect) Euclidean distance matrix through multidimensional scaling that uses the top three

components of the Eigendecomposition of the Gram matrix [131]. However, for degenerate

and low-resolution distance matrices with systematic noise such as generated by DNNs, mul-

tidimensional scaling is often prone to fail. To circumvent the 3D recovery issue, an additional

2D to 3D translation DNN was coupled to a GAN generating protein backbones to guide the
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generation process towards valid distance maps [132]. DNNs capable of directly generating 3D

coordinates were also developed including a DNN trained on a data corpus of Ig-like domains

with specific loss functions designed to preserve geometric correctness (IG-VAE) [133]. The

IG-VAE can interpolate in the learned latent space and decode new Ig-like domains.

1.4.3 De novo sequence generation conditioned on structure information

Instead of following the standard de novo protein design framework where a backbone is first

generated and subsequently designed, DL methods simultaneously incorporate the inputted

structural information and generate sequences fulfilling the structural constraints. For exam-

ple, a GAN has been developed to generate fold-specific sequences [134]. To achieve this, the

sequence generation of the GAN is accompanied by two additional GANs, one classifies the

generated sequences to fold families and the other predicts whether the sequences are alike

sequences from the natural repertoire. The method enabled the design of diverse and novel

fold-specific sequences with good overall predicted biophysical and biological properties.

A second example is the “ProteinSolver” which uses a template fold to extract geometric

constraints and then generates sequences that accurately obey those [135]. According to

several computational metrics and experimental validations, the selected sequences adopt

the intended fold [135]. Similarly, the “Structure Transformer” uses an encoder-decoder pair

to autoregressively transform relative structure-derived node and edge features into mean-

ingful embeddings to then generate structure compatible sequences [136]. The inputs to

this framework can be relaxed to soft constraints such as a few contacts or H-bonds of the

backbone which allows certain backbone flexibility and a more diverse sequence generation.

Lastly, fitting sequences on a novel protein fold were generated through iteratively sampling

over a VAE trained 4,000 structures and their sequence homologs conditioned through a

rough topology description (SSE localization, direction, and length) [137]. The fold specific

sequences threaded onto a models’ backbone were shown to be stable for short molecular

dynamics simulations (200 ns) [137].

1.4.4 Inverting protein structure prediction nets for de novo design

DNNs predicting structure from a sequence have become state-of-the-art. Thanks to modern

graphical processing units (GPUs), these DNNs are extremely fast, enabling the prediction

of a single structure from a sequence in seconds to minutes. Interestingly, the structure

prediction engines can be “reversed” and used to design novel sequences. Several applications

have shown that such structure prediction engines learn sequence-to-structure sufficient

information to fabricate new sequences that adopt a well-folded confirmation as well as being

unrelated to the naturally occurring pool of sequences and structures.

For instance, trR was used to hallucinate novel proteins [138]. Starting from randomly gener-
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ated sequences, they were pushed through trR to predict initial diffuse and blurry distance

and orientation maps. The predicted distributions were driven towards realistic distances

and orientations by sampling AA substitutions that would maximize the contrast between the

random (background) and the predicted maps. Similarly, trR was also utilized for fixed back-

bone design via backpropagating the errors between the predicted and the target maps to the

sequence and specifically guide the optimization in the sequence space [139]. This procedure

has the advantage of implicitly optimizing over the full sequence and structure landscape.

This means that positive and negative design are linked, and thus the method searches for the

lowest-energy sequence while maximizing the probability of the target structure relative to all

other conformations.

By combining the hallucination and fixed backbone design strategies, partially guided hal-

lucination for the stabilization of discontinues structural motifs was achieved with the trR,

RoseTTAfold, and AF2 DNNs [140, 141]. To achieve this, a composite loss was minimized

ensuring the recapitulation of the structural motif and its embedding into a hallucinated,

well-structured scaffold. Particularly AF2, as it explicitly predicts all heavy atoms, a problem-

specific coordinate loss was added to enhance the interactions with the target protein. This

includes one term ensuring that the motif is surface exposed and another term constraining

the rotamer configurations of the interacting residues of the motif.

Also AF2 can efficiently be used for fixed-backbone protein design. In a first approach, an

autoregressive generative model was trained to recover masked AA on a large set of de novo

designed sequences [142] and then AF2 was used to predict structural models for top thousand

diverse sequences. They created sequence-structure pairs were exploited to bias the initial

sequence for the AF2 based backbone design task i.e., the target backbone is compared to the

structure models from the database, the best matches are retrieved, and a starting sequence

is generated. The sequence is then optimized by iteratively mutating a couple of residues in

the sequence, prediciting an AF2 model that is compared to the target backbone, and then

either accepting or rejecting the mutations. Another similar approach uses an evolutionary

algorithm that continuously optimizes and diversifies the input sequence pool scored by AF2

through generating structural models and leveraging confidence measures as well as other

structural metrics till reaching the target structure [143]. This pipeline enabled designing

monomers of various sizes, multimers, conformational switches, and protein binders that

showed comparable quality with respect to several orthogonal computational metrics includ-

ing molecular dynamics and Rosetta folding simulations [143]. Recently, RoseTTAfold was

modified and retrained to jointly recover missing sequence and structure information [141].

This approach termed RoseTTAfold-joint (RF_joint) alleviates the need of iterating over the

predictions and enables the completion of structures with a single forward pass. However, for

RF_joint to perform properly, sufficient structural and sequence context are required a priori.

The introduced protein design methods have not only been for the generation of new se-

quences folding into a particular structure, but also to design for specific functions. Several

functional protein design frameworks will be explained in the next section.
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Figure 1.4: DL-based de novo protein design methods A: AF1 and trR are based on 2D convolutions
to predict a structure from a sequence and MSA features. B: AF2 and RoseTTAfold are transformer-
based frameworks with multiple tracks enabling storing and mixing information efficiently. Importantly,
the methods contain invariant DNNs to predict the structure/backbone from the embeddings. C: DL-
based methods that learned to generate designable protein backbones. If directly used on cartesian
coordinates, a SE(3)-invariant DNNs is needed. However, often the cartesian coordinates are converted
to translational -and rotational invariant representations and used with standard DNNs. D: DNNs
can predict sequences that fit structural prerequisites. The sequences are validated by structure
prediction tools to confirm that the encoded structure is correct. E: Sequences can be generated for
a target backbone by iterating over a structure prediction DNN and using the gradient to maximize
the probability of the sequence to fit the target backbone and simultaneously disfavor off-target
conformations. Similarly, instead of using a target backbone, random background outputs can be
used to drive the sequences to be realistic and have well-packed structures (hallucination). F: Protein
structure prediction DNNs can be modified to recover masked sequence and structure regions, and
thereby predict sequences and structures in forward pass.

1.5 Protein design for biomolecular recognition and signaling

Cells are densely packed with organic molecular matter. The packing is highly coordinated,

with molecules undergoing permanent or transient interactions that induce short- or long-
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lasting signaling cascades. These signaling networks underpin cellular activities from move-

ment to division as well as cell-to-cell recognitions. Creating synthetic proteins to specifically

perturb protein-protein interactions (PPIs) and thereby master biological activities is of signif-

icant interest to a wide range of applications in biotechnology and bioengineering.

Natural PPIs are often exquisitely specific i.e., the interactions occur at specific localized sites

on both partners’ surfaces. Inspections of native interfaces reveal a high-shape complemen-

tary and that approximately 1600 Å2 of the solvent-accessible surface area is buried upon

complexation [144, 145]. The strength (binding affinity) and length of interaction can vary

between different interacting protein pairs [146]. Both, binding affinity and duration are

dependent on the environment e.g., temperature, pH, ionic strength, or post-translational

modifications. Biophysically, the binding affinity can be formulated as the difference between

the free energy of the complex (bound state) relative to the free energies of the unbound states

(ΔΔG). Important thermodynamic contributors of binding are hydrophobic and electrostatic

interactions, H-bonds and salt-bridges [147, 148]. Also, other factors such as conformational

dynamics (induced-fit), coordinated waters along the interface, and overall entropy indirectly

affect the proteins’ binding [149].

The binding affinity can be quantified by the half-life of the complex (KD) through factoring

the association (kon) and dissociation (koff) rates. It has been seen that association rates

are more strongly influenced by electrostatic interactions [150]. In fact, the specificity is

often incorporated by electrostatic interactions which require precise geometric orientations

(Coulomb and polarizartion can be strongly directional, while H-bond are weak directional

[151]) of the involved side chains and charge complementarity. Hydrophobic interactions tend

to be less specific and more forgiving regarding the geometry. Taking into account that many

interactions occur in aqueous solution, hence the formation of H-bonds and/or salt-bridges

require a dehydration/rehydration process that involves the transitioning over energetically

unfavored states which can weaken or decelerate the binding [152].

With aforementioned computational protein design strategies at hand, multiple frameworks

have attempted to tackle the design of PPIs at scale [153, 154]. However, even state-of-the-art

computational tools lack the required precision resulting in frequent experimental failures

[153, 154]. Current scoring functions excel at positive design capturing interactions such

as vdW or H-bonds, but inherently lack negative design to avoid the myriad of off-target

conformations [155, 156, 157, 62]. Most of specific binding proteins have been fully created

or optimized through in vitro screening and selection of antibodies and specialized protein

scaffolds such as ankyrins and fibronectin domains [158, 159, 160]. The successful com-

putational design of protein binders requires tight feedback loops between experimental

optimization and screening strategies (including site-directed/site-saturation mutagenesis

and deep sequencing, yeast display, and fluorescence-activated cell sorting (FACS) technol-

ogy). The successes and failures uncovering essential concepts of PPIs show that a robust

computational protein design framework for generating PPIs remains elusive. In the following

sections, important PPIs design strategies will be introduced.
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Figure 1.5: Protein interface re-design. The re-design of a binders’ interface (purple) with predicted
point mutations (red) to increase the affinity to the target structure (grey).

A simple approach to PPI design is to re-design interfaces of existing PPIs and to thereby

enhance their binding affinity or modulate their specificity (Fig. 1.5) [161, 162]. Yet, this

strategy is based on the existing two protein partners and therefore lacks control over the size

and overall shape of the binder. Thus, it is more desirable to create binders de novo controlling

their fold and function. A successfully used de novo PPI design method is grafting the inter-

acting side chains of the natural binder with or without the underlying backbone segment

onto another protein that acts as a “stabilizer” (scaffold) [163]. However, grafting is inherently

limited to known interactions and cannot be used to target new protein sites from scratch. To

address this issue, “hotspot-centric” design methods (Fig. 1.6) have been established such

as inverse rotamers [164] or docking of disembodied side chains [165]. Interaction hotspots

[166] are residues within the interface that provide a disproportionate amount of the binding

energy and upon mutation of these hotspots to alanine, the binding affinity usually drops

by several orders of magnitude [167]. Interaction hotspots have been observed within many

PPIs and are energetically favorable and evolutionary more conserved than other residues

of the interface [168, 147, 148, 169]. Essential is the formation of conformationally restricted

hotspots through a dense interaction network involving surrounding side chains and thereby

disfavoring alternative binding modes [170].

The main idea of hotspot-centric design is as follows: (1) a high-resolution steps attempts to

create high-affinity interactions at the core of the interface by disembodied residue docking;

(2) an independent low-resolution stage docks coarse-grained proteins onto the target sites to

search for high-shape complementary conformations that can engage the site without major

steric clashes; (3) the results of the two steps are combined through transferring as many

hotspots as possible onto the docked conformations. The residues surrounding the hotspots

are refined to collectively stabilize the defined hotspot configurations and contribute to the

binding affinity.

The third step can be challenging as there is no guarantee that the backbones can well embed

the hotspots. To optimize the embedding of the hotspots, several strategies exist. An example
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Figure 1.6: Hotspot-centric de novo PPI design. Hotspot-centric design for a particular surface site
on the target (grey) starts with a high-resolution search for disembodied residues (red, hotspots) with
high shape- and electrostatic complementarity. This is achieved through methods such as rigid-body
docking or inverse rotamer searches. A low-resolution protocol docks scaffolds (green, purple) to
retrieve potential binding conformations. Finally, the clustered hotspots are grafted onto the docked
scaffolds and interface residues neighbouring the hotspots are refined and optimized (yellow). The
figure is inspired by Gainza et. al. [171].

is the folding-and-design algorithm (FunFolDes (FFD)) that optimizes the embedding of the

grafted hotspots into the scaffold and towards the target by computationally refolding and re-

designing the scaffold while keeping the hotspots fixed and thereby relieving potential clashes

or backbone strains [172]. Recently, the Rotamer Interaction Field (RIF) docking method was

proposed [77]. The RIF algorithm seeds the interface with a large ensemble of discrete AAs

that form H-bonds, hydrophobic interactions and favorable vdW contacts with the targeted

interface. Subsequently, scaffolds are docked into the AAs cloud and hierarchically searching

for favorable conformations capable of jointly harboring all necessary AA rotamers.

Despite impressive successes [154, 173], major limitations remained including: (1) the exact

surface site of the desired target needs to be specified a priori, and identifying amenable (“tar-

getable” or “druggable”) binding sites remains elusive and often evolutionary or mechanistic

insights are necessary; (2) the search for hotspot residues is challenging due to inaccuracies in

energy functions and stochastic sampling; (3) the placement of the hotspot residues onto a

scaffold is notoriously difficult, and oftentimes, there no natural scaffold that could stabilize

the placed hotspots adequately exists [174, 175].

Recently, Gainza and colleagues developed a geometric DL framework called MaSIF (molecular

surface interaction fingerprinting) to efficiently tackle the above-mentioned problematics of

PPI design [171, 176]. Instead of using an atomistic representation of proteins, MaSIF operates

on the high-level molecular surface. A proteins’ surface is traced using the contacts between

a “rolling” spherical probe over the molecule [177, 7]. Multiple discretized descriptions of

surfaces exist e.g., point clouds, voxel, or graph representations [178, 179, 176]. Geometrical-

and physiochemical features can be mapped on these representations [178, 180]. Using
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Figure 1.7: MaSIF framework and applications. A: MaSIF operates on the molecular surface
representation of proteins that show distinct geometric and chemical features “fingerprinting” each
surface regions (patches) of the surface. B: MaSIF geometric overview. First, the surface gets divided
into multiple (usually > 36) overlapping patches of 9 Å or 12 Å geodesic radii. The patches are described
geometrically through polar coordinates including the radial coordinate (geodesic radius) and an
angular coordinate (angle theta) that are “sooften” using a mulivariate Gaussian kernel with learnable
parameters (learnable soft polar grid). Chemical and shape-derived features are mapped onto the
polar grid and a geometric CNN is used to distill the information into application-specific fingerprint
descriptors (vectors). C: MaSIF-based applications include interface site prediction and ultra-fast PPI
searches that is similar to rigid-body docking. The figure is inspired by Gainza et. al. [171].

surfaces, the solvation energies of proteins, catalytic rates of enzymes, or similarities between

protein pockets shapes were studied [178, 181].
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The central hypothesis of MaSIF is that surfaces displays important chemical and geometric

features thought to prime and fingerprint interaction sites; and proteins participating in similar

interactions share similar fingerprint descriptors that are physiochemically grounded and free

from any evolutionary history (Fig. 1.7A). However, the fingerprint patterns can be difficult to

recognize, especially by eye. To distill the geometric and physiochemical information stored

in protein surfaces, MaSIF uses geometric DL (Fig. 1.7B) [182, 183]. First, MaSIF decomposes

a protein surface into multiple overlapping patches with a geodesic radius of 9 Å or 12 Å, this

is the distance “walking over the surface”. The number of patches and geodesic radius varies

depending on the needs of the specific application. For each patch a mesh is created and the

nodes are described geometrically by a polar coordinates i.e., the geodesic distance and an

angular coordinate (Θ). TheΘ-angle is calculated by scaling the 3D surface into 2D through a

multidimensional scaling and then choosing a random direction to calculate the angle. Each

set of coordinates is fed through a multivariate Gaussian with learnable parameters (µ, σ2)

yielding a learnable soft polar grid. Multiple features such as the shape index or hydropathy

are then mapped onto the soft polar grid. Because the angular coordinate has been chosen

based on a random direction, the feature-loaded polar grids are rotated and passed through

a CNN. The maximum activating rotation is chosen for each of the features and a final layer

combines the information into a single fingerprint descriptor. Note that these fingerprint

descriptors are not universal, but depend on the optimization objective towards a particular

task.

Figure 1.8: MaSIF-based de novo PPI design framework. A: The MaSIF-based de novo PPI de-
sign framework uses MaSIF-site to predicts interface sites on protein surfaces, and generates target
fingerprint descriptors. Employing a preprocessed library of protein or peptide surface fingerprint
descriptors acting as “seeds”, MaSIF-search retrieves to the target complementary seed fingerprints
and aligns them onto the target interface. Using standard grafting techniques, the seed hotspots (red)
are optimized or transferred onto larger proteins to confer stability (yellow).

Following the conceptual MaSIF framework, two deep DNNs have been trained for the PPI

design task (Fig. 1.7C): (1) A geometric DNN was trained to differentiate interface regions

from non-interface regions (MaSIF-site) for efficient identification of potential interface sites,

and (2) once interfaces are selected, a second DNN is trained to perform ultra-fast searches

22



Introduction Chapter 1

for complementary descriptors against the selected interface descriptor and return high-

complementary fragments (MaSIF-search). Combining MaSIF with established grafting meth-

ods, the found fragments could be integrated into protein scaffolds and further optimized.

MaSIF coupled with classic methods represents a comprehensive platform able to virtually

design synthetic PPIs against any protein known to date (Fig. 1.8).

Multiple groups serendipitously discovered that RoseTTAfold and AF2 are able to predict

structures of non-contiguous proteins by pseudo-multimer input (e.g. residue gap insertion

or chains joined with a flexible linker), hence enabling the prediction of protein complexes

[107, 184, 185, 186, 118, 187, 188]. Also, the AF2 system was revised to support multi-chain

features and symmetry handling during training and inference (termed AlphaFold-Multimer),

demonstrating better performance for predicting protein complexes than the previously

mentioned pseudo-multimer inputs [189].

Altogether, computational protein design methods have rapidly evolved and extensively been

further improved. The first two chapters present how established protein design methods can

be employed to design functional proteins. In the third chapter a novel computational frame-

work is introduced to design proteins binders from scratch interacting at specific locations

on the target proteins. The last two chapter describe two computational methods for the de

novo design of proteins with tailored shapes. Lastly, we discuss the impact of the scientific

findings and how the computational design methods could be used jointly opening the door

for a general computational protein design platform for the generation of functional proteins.
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1.6 Objectives

My dissertation seeks the development of protein design methods incorporating DL, physics-

based, and data-driven techniques for generating designer proteins with detailed geometrical

shapes so that they can precisely interact with other molecules, ultimately leading to biological

functions. The developed methods are relevant to the field of protein design as they (1) further

automate the de novo protein design process, (2) illustrate innovative solutions to circumvent

current de novo design challenges, and (3) can be joined with state-of-the-art interface design

strategies for the design of biologically active proteins.

1.6.1 Aim 1: Computational protein modeling frameworks for applied PPI design.

The design of biologically functional proteins has the potential to solve major current bio- and

nanotechnological challenges. In chapter 2, computational interface design is used to enhance

the inhibition and light-switching behavior of an engineered anti-CRISPR protein (Acr) called

CASANOVA. Subsequently, chapter 3 presents a surface-guided design strategy to create the

first Acr (AcrIIC1X*) that can efficiently inhibit SauCas9, an important Cas9 orthologue for in

vivo gene editing. Finally, chapter 4 introduces a MaSIF-based surface-centric de novo PPI

design framework that is coupled with computational grafting methods for the design of novel

PD-L1 inhibitors from scratch. Altogether, the first three chapters present the development

and applications of computational interface design methods ranging from the established

physics-based to recent DL strategies, accompanied by biochemical and cellular validations

of the designs’ behavior and functioning.

1.6.2 Aim 2: Hierarchical design of de novo proteins with native-like features.

De novo protein design is currently hindered by the necessity of sampling “designable” protein

backbones. In chapter 5, we present the TopoBuilder de novo design method that generates

proteins from an overall description of the targeted fold, "Sketches". An iterative, data-driven

approach that extracts important structural characteristics from tertiary motifs of natural

structures is introduced to supervise the backbone generation process and the subsequent

sequence sampling stage. Importantly, the framework greatly reduces the dependency on

hand-crafted rules and manual adjustments of the backbone. Ultimately, the de novo design of

sequences for five protein folds and extensive computational and experimental characteriza-

tions demonstrates that several sequences adopted the correct shape. Thus, the TopoBuilder

presents itself as a general-purpose de novo protein design framework and enables the custom-

building of novel protein folds to comply with predefined structures and functions.
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1.6.3 Aim 3: Tailored de novo design using DNNs to probe the “darkmatter” of the
protein universe.

Most de novo protein design methods rely on extensive backbone sampling simulations to

search for minimally frustrated conformations that are designable. In addition, recent energy

functions suffer from inaccuracies and repeatedly fail in differentiating between stable, well-

folded and unstable designs. With the advancements of DL for protein structure prediction

and design, a DNN termed Genesis is trained to render protein SSE lattice models termed

“Sketches” designable by denoising their 2D feature maps. Genesis is smoothly interfaced with

trRosetta to efficiently design sequences and bypass arduous backbone sampling in 3D space.

The Genesis framework enables extremely fast exploration of the sequence space independent

of fold-specific restraints. Essentially, Genesis alleviates the backbone designability problem

and could ultimately contribute to the de novo design of currently unexplored “darkmatter”

proteins harboring new functions.
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2.1 Abstract

Anti-CRISPR proteins are powerful tools for CRISPR–Cas9 regulation; the ability to precisely

modulate their activity could facilitate spatiotemporally confined genome perturbations and

uncover fundamental aspects of CRISPR biology. We engineered optogenetic anti-CRISPR

variants comprising hybrids of AcrIIA4, a potent Streptococcus pyogenes Cas9 inhibitor, and

the LOV2 photosensor from Avena sativa. Coexpression of these proteins with CRISPR–Cas9

effectors enabled light-mediated genome and epigenome editing, and revealed rapid Cas9

genome targeting in human cells.

2.2 Main

CRISPR–Cas9 technologies have transformed scientists’ ability to manipulate genomes and

study molecular networks, and concurrently opened novel avenues for the treatment of genetic

diseases [190]. In order to improve the accuracy of Cas9-mediated genome perturbations,

universal strategies enabling spatiotemporally confined Cas9 activation are highly desired

[191]. In the recent past, several approaches facilitating conditional Cas9 activation via

chemicals or light have been developed [191]. However, they typically limit users to specific,

modified Cas9 or single guide RNA (sgRNA) variants.

Recently, phage-derived anti-CRISPR (Acr) proteins were discovered that naturally inhibit type

II CRISPR systems, including the most widely used, S. pyogenes Cas9 [192, 193]. These CRISPR

antagonists also function when heterologously expressed in yeast [194] and mammalian cells

[195], which suggests that CRISPR inhibition could be a widely generalizable strategy for Cas9

regulation. Because of the lack of methods to easily confine Acr activity in time and space,

however, the utility of this approach is currently limited.

We sought to overcome this limitation by engineering artificial Acr proteins that can be easily

switched between a functional Cas9-inhibitory state and a nonfunctional state via a precise

external light stimulus (Fig. 2.1a).

As a sensor, we chose the small (16.5 kDa) LOV2 domain from A. sativa phototropin-1, as its

blue-light-induced Jα-helix photoswitching mechanism [196] has already been successfully

harnessed for the engineering of inducible allostery on diverse effectors [197]. Recent data

show that insertion of the LOV2 domain into selected, surface-exposed loops of mammalian

motility enzymes enables optogenetic control of enzymatic function [198]. The N and C

termini of LOV2 are in close proximity in the dark-adapted state, thereby preserving the native

enzyme conformation after LOV2 insertion. Photoexcitation, however, results in unfolding of
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Figure 2.1: Engineering and characterization of CASANOVA, an anti-CRISPR protein depen-
dent on blue light. a: Schematic of CASANOVA function. b: Structural analysis of AcrIIA4. Top: solvent
accessibility (access.) in the Cas9-bound and unbound states. Center: contact map showing residues
in close proximity (7 Å distance). Light red bars indicate Cas9-binding segments. Lower right: surface
representation of AcrIIA4 (PDB 5VW1) with Cas9-interacting segments shown in light red. L, loop.
c: Light control of luciferase reporter cleavage. HEK293T cells expressing Cas9, a luciferase reporter
(Rep), a reporter-targeting gRNA and the indicated Acr–LOV variant (Sup. Fig. 2.2) were irradiated
with blue light for 48 h or kept in the dark and then subjected to a luciferase assay. n=9 biologically
independent samples (cell cultures). Acr-2A-LOV, control construct coexpressing AcrIIA4 and LOV2
via a P2A sequence. d-f: Light-mediated indel mutation of human CCR5 (d), CFTR (e) and EMX1 (f)
loci. Cells expressing the indicated components were illuminated for 70 h or kept in the dark and then
subjected to a T7 endonuclease assay. The vector mass ratio of the Acr:Cas9 construct is indicated. WT,
wild-type; CN, CASANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, two-sided Student’s t-test (exact P values
are stated in the Methods section). d: n = 5 independent transfection and 3 independent transduction
experiments. e,f: n = 3 independent experiments. c–f: Box plots show the median (center line), first
and third quartiles (box edges), 1.5× the interquartile range (whiskers) and individual data points (blue
and gray symbols).

the LOV2 terminal helices. This locally induced disorder impairs enzyme function, provided

the LOV2 insertion loop is conformationally coupled to the enzyme’s active site [198]. Of

note, the active site of an enzyme is often highly sensitive to minor structural perturbations.

We therefore aimed to develop a similar approach for optogenetic control of nonenzymatic

proteins such as Acrs (Supplementary Discussion).

As an actuator, we chose the 87 amino acids (AA) protein AcrIIA4 derived from Listeria mono-

cytogenes prophage [192], which binds Cas9–sgRNA complexes with sub-nanomolar affinity

[199], thereby efficiently blocking Cas9 DNA binding and nuclease activity [200, 201]. To assess

the validity of the LOV2-insertion approach for the Acr target protein, we carried out detailed

computational characterization of the reported AcrIIA4 structure in complex with Cas9 and
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an sgRNA [201]. Analysis of AcrIIA4 solvent accessibility, Cas9 binding segments and residue

contacts within the AcrIIA4 structure suggested that loop L5 was a promising target site for

LOV2 insertion (Fig. 2.1b and Supplementary Note 1).

We therefore inserted the LOV2 domain (phototropin-1 residues 404–546) at all possible

positions into AcrIIA4 L5 and investigated Cas9 inhibition by the resulting Acr–LOV hybrids

in HEK293T cells, using a luciferase-reporter cleavage assay (Supplementary Note 2). In the

absence of light, the variant carrying the LOV2 domain between AcrIIA4 residues E66 and Y67

impaired Cas9 activity noticeably, although the inhibition was approximately fourfold weaker

than that by wild-type AcrIIA4 (Sup. Fig. 2.1). Cas9 activity recovered fully in the presence of

blue light, which suggests that the Acr–LOV light switch was functioning, even though room

remained for optimization (Fig. 2.1c, variant 1). We hypothesized that the ∼10 Å spacing

between the LOV2 termini in the dark state might cause undesired strain on the AcrIIA4

structure, thus perturbing Cas9 binding. Therefore, we carried out stepwise deletion of AcrIIA4

residues that directly preceded the insertion site but did not mediate critical contacts with

Cas9 [200], and optionally included linkers of variable length at the Acr–LOV boundaries (Sup.

Fig. 2.2). Indeed, several of the so-obtained Acr–LOV hybrids showed potent Cas9 inhibition

in the dark and almost full recovery of Cas9 activity after photoactivation (Fig. 2.1c, variants

2–16). As expected for a competitive inhibitor, the degree of Cas9 inhibition depended on the

dose of transfected Acr–LOV hybrid (Sup. Fig. 2.3). The most potent hybrid inhibitor (Acr–LOV

variant 4) carried a three AA deletion (ΔN64/Q65/E66) preceding the LOV domain insertion

site, and no GS linkers (Fig. 2.1c and Sup. Fig. 2.2). The deletion is likely to facilitate smooth

embedding of the LOV2 domain into the AcrIIA4 target loop without negatively affecting the

overall conformation (Sup. Fig. 2.4). In the following, we refer to Acr–LOV variant 4 or further

optimized mutants thereof as CASANOVA (for ‘CRISPR–Cas9 activity switching via a novel

optogenetic variant of AcrIIA4’).

Using transient transfection or adeno-associated-virus-mediated transduction, we coex-

pressed CASANOVA with Cas9 and sgRNAs targeting various genomic loci in HEK293T cells.

Insertion/deletion (indel) mutations were strongly light dependent (up to ∼24-fold regula-

tion) for all target loci as measured by T7 endonuclease assay (Fig. 2.1d–f, Sup. Fig. 2.5 and

Supplementary Note 3). TIDE sequencing [202] further revealed a broad range of indels in

the illuminated, but not the dark control, samples (Sup. Fig. 2.6). However, in the transfected

samples, we observed significant background editing in the dark, which suggested that Cas9

inhibition was imperfect, at least under heterogeneous expression conditions (Fig. 2.1d–f,

Supplementary Discussion). Therefore, we introduced mutations known to improve docking

of the terminal helices against the LOV core in the dark [203, 204] into the LOV2 domain of

CASANOVA. As expected, Cas9 background activity was reduced in several mutants, albeit

at the cost of a lower dynamic range in most cases (Sup. Figs. 2.7 and 2.8, Supplementary

Notes 4 and 5). We tuned the performance further by introducing mutations in the AcrIIA4

part of CASANOVA (Sup. Fig. 2.9). We screened these mutations computationally and carried

out selection by manual inspection and application of several structural metrics, aiming to

enhance Cas9 binding affinity (Methods). Two mutants obtained in this manner (CASANOVA
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Figure 2.2: Optogenetic control of gene expression and telomere labeling. a: Light-dependent
IL1RN activation. HEK293T cells expressing the indicated components were exposed to blue light
for 44 h or kept in the dark and then subjected to quantitative RT-PCR. The vector mass ratio of the
CASANOVA:dCas9–p300 constructs is indicated. Box plots show the median (center line), first and third
quartiles (box edges), 1.5× the interquartile range (whiskers) and individual data points (blue and gray
symbols). n = 3 independent experiments. b,c: Optogenetic recruitment of dCas9 to telomeres in living
cells. U2OS cells expressing dCas9–3×RFP, a telomere-targeting gRNA and CASANOVA were exposed to
blue light pulses every 30 s for 2 h. b: Representative RFP fluorescence images. Arrows point to the
first visible fluorescent dots. Dashed lines indicate the nucleus boundary. Scale bar, 20 µm; zoomed-in
views in the bottom row are magnified 3.2-fold relative to the images above. c: Quantification of labeled
telomeres over time. The line indicates a third-order polynomial fit. Data are mean ± s.e.m. b,c: n
= 3 biologically independent samples (cell cultures). d,e: Light-mediated telomere recruitment in
samples fixed after 20 h of irradiation or incubation in the dark. n = 3 independent experiments for WT
AcrIIA4 and CASANOVA samples; n = 4 independent experiments for no-Acr samples. d: Representative
fluorescence images. Scale bar, 20 µm; insets are magnified 2.2-fold relative to primary images. e:
Quantification of telomere labeling by automated image analysis (Methods). The violin plot shows the
distribution; red bars and gray dots indicate the median and individual data points, respectively. ***P <
2.2 × 1016 by two-sided Wilcoxon rank-sum test. The total number of nuclei analyzed is indicated. n.s.,
not significant.

T16F and CASANOVA S46D) showed enhanced Cas9 inhibition in the dark without noticeably

compromised light activation (Sup. Fig. 2.10). CASANOVA and several of its optimized mutants
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also conferred strong light regulation on xCas9, a recently developed protospacer-adjacent

motif–relaxed, highly specific SpyCas9 derivative [205] (Sup. Fig. 2.11).

Next, we investigated whether CASANOVA would enable light-mediated regulation of dCas9–effector

fusions. To this end, we used a previously reported dCas9 variant fused to the p300 histone

acetyltransferase core domain [206] and targeted the interleukin 1 receptor antagonist (IL1RN)

promoter, known to be strongly activated upon induced H3K27 acetylation, in HEK293T cells

via a combination of four guide RNAs (gRNAs). We titrated the transfected CASANOVA dose

and incubated cells in the dark or light for 44 h before assessing IL1RN expression by quantita-

tive RT-PCR. IL1RN transcript levels were increased up to tenfold in the illuminated samples

compared with levels in the dark controls, indicating successful control of the dCas9–p300 epi-

genetic modifier (Fig. 2.2a). IL1RN levels continued to increase with prolonged illumination

but decreased after the stimulus was withdrawn, indicating reversibility of the CASANOVA

system (Sup. Fig. 2.12 and Supplementary Discussion).

Finally, we assessed CASANOVA’s potential for studying the kinetics of Cas9 DNA targeting

in living cells. To this end, we conducted a CRISPR labeling [207] experiment in which a

dCas9–3×RFP fusion, a telomere-targeting gRNA and CASANOVA were coexpressed in U2OS

cells [208]. Twenty-four hours after transfection, we irradiated the cells with a 488-nm laser

beam, and we monitored the RFP signal over time by confocal microscopy. Strikingly, the first

visible dots appeared in the cell nucleus only 20–40 min after irradiation, and their number

and intensity increased rapidly over time, indicating dCas9–3×RFP recruitment to telomeres

(Fig. 2.2b,c).

To rule out that the observed telomere recruitment was due simply to differential expression

kinetics of the transfected components (dCas9–3×RFP, gRNA and CASANOVA) rather than

to light-induced dCas9–3×RFP release from CASANOVA, we conducted a comprehensive

control experiment. This time, we incubated transfected cells in either light or dark for 20

h, and we fixed the samples before microscopy analysis. We also included control samples

expressing wild-type AcrIIA4 instead of CASANOVA or expressing no inhibitor at all, and

analyzed telomere labeling in a fully unbiased manner using an automated image-analysis

workflow implemented in KNIME (Methods and Supplementary Data). The CASANOVA

samples showed strong telomere labeling similar to that in the positive control when incubated

in light, whereas labeling was notably decreased and similar to that in the negative control

after incubation in the dark (Fig. 2.2d,e and Sup. Fig. 2.13). The no-inhibitor and wild-type

AcrIIA4 controls showed light-independent strong and weak telomere labeling, respectively

(Fig. 2.2d,e and Sup. Fig. 2.13).

These observations suggested that dCas9 release from the CASANOVA trap occurred quickly

after photoexcitation, which we verified by monitoring the reversible, light-dependent interac-

tion of a fluorescently labeled CASANOVA variant and a plasma-membrane-targeted dCas9

(Sup. Fig. 2.14). Moreover, these data provide direct confirmation that Cas9 DNA targeting

in mammalian cells is a rapid process that takes place on a scale of minutes (Fig. 2.2b,c,

32



Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9 Chapter 2

Supplementary Discussion).

CASANOVA not only is an important add-on to the CRISPR toolbox (Supplementary Protocol),

but also conceptually advances the ability to confer light regulation on non-enzymatic proteins

(Supplementary Discussion).

2.3 Methods

2.3.1 Structure-based identification of the LOV2 insertion site

We analyzed the X-ray structure of the SpyCas9–sgRNA–AcrIIA4 [201] complex (PDB 5VW1)

with CMView [209] (version 1.1) to generate the contact map. Contacts between residues were

considered positive if their Cα atoms were less than 7 Å apart. The secondary structure of

Acr was assigned with DSSP (version 2.0.4) [210], and the binding-interface segments were

assigned by spatial proximity to the CRISPR molecule. Here, segments containing multiple

residues of less than 4.5 Å were considered the binding interface. Finally, we analyzed the

solvent-accessible surface area using the software NACCESS (version 2.1.1; http://www.bioinf.

manchester.ac.uk/naccess/) with the default settings.

2.3.2 Domain assembly

To generate the domain fusions between the LOV and Acr domains, we used the Rosetta Re-

model application (version 3.9) [211]. We used two input structures: the SpyCas9–sgRNA–AcrIIA4

[201] (PDB 5VW1) complex and the LOV2 domain from A. sativa (PDB 2V0W). The C- and

N-terminal helices of the LOV2 domain were rebuilt using loop fragments and then underwent

cyclic coordinate descent [212] and kinematic closure [213, 214] refinement. A total of 331

decoys passed the chain break filter, out of 2,500 decoys attempted. In a second step, the 331

output decoys were clustered with an root-mean-square deviation (RMSD) threshold of 10 Å

using Rosetta’s clustering tool and further minimized. The 331 structures yielded a total of

six clusters, and the best-scoring decoys of the top three populated clusters were selected to

illustrate the potential structural diversity of the Acr–LOV fusion.

2.3.3 Computational design of improved Acr–LOV mutants

We carried out interface design for the interface residues in AcrIIA4 using the RosettaScripts

application [165]. In silico saturation mutagenesis was carried out for residues in close spatial

proximity (residues 16, 18 and 33 composed set 1, and residues 19, 28 and 45 constituted set 2).

Designs with interaction energies within the same range (+2.5 Rosetta energy units) or lower

than that of the wild-type complex were manually inspected, and the best mutations were

selected for experimental characterization. Supplementary Table 2.15 presents the metrics of

the experimentally characterized mutants.
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2.3.4 General methods and cloning

A list of all constructs used and created in this study is shown in Supplementary Table 2.16.

Annotated vector sequences are provided as Supplementary Data (GenBank files). Plasmids

were created via classical restriction enzyme cloning, Golden Gate cloning [215] or Gibson

assembly (New England Biolabs). Oligonucleotides were obtained from IDT or Sigma Aldrich.

Synthetic double-stranded DNA fragments were obtained from IDT. The CMV-promoter-

driven SpyCas9 expression vector was obtained by PCR amplification of the SpyCas9 gene from

vector pSpCas9(BB)-2A-GFP (kind gift from Feng Zhang (Addgene plasmid 48138)) followed

by ligation into pcDNA3.1(–) (Thermo Fisher) via XhoI/HindIII. Adeno-associated virus (AAV)

vectors encoding SpyCas9 or a U6-promoter-driven, improved gRNA scaffold (F+E18) and

RSV-promoter-driven GFP28 were used for gRNA expression. Annealed oligonucleotides

corresponding to the target site sequence were cloned into the gRNA AAV vector via BbsI by

Golden Gate cloning. All gRNA target sites relevant to this study are shown in Supplementary

Table 2.17. The luciferase reporter for measuring SpyCas9 activity (luciferase cleavage reporter)

was developed by cloning of an H1-driven expression cassette encoding a firefly-luciferase-

targeting gRNA into pAAVpsi229. The resulting vector coencoded an SV40-promoter-driven

Renilla luciferase gene and a TK-promoter-driven firefly luciferase gene. The AcrIIA4 coding

sequence was obtained as a human-codon-optimized synthetic DNA fragment from IDT

and cloned into pcDNA3.1(–) via NheI/NotI. We created Acr–LOV hybrids by linearizing the

Acr-encoding vector by PCR and then inserting a human-codon-optimized A. sativa LOV2-

encoding fragment (IDT) via blunt-end ligation or Golden Gate cloning. GS linkers were

optionally appended to the LOV-encoding DNA fragment via PCR before ligation. Mutations

were introduced into the Acr part of the Acr–LOV hybrids by site-directed mutagenesis with

5-phosphorylated primers. Mutations were inserted into the LOV part of the Acr–LOV hybrids

by PCR amplification of the LOV2 domain with primers introducing the mutations into the

N- and C-terminal helix and cloning of the altered LOV fragment back into a PCR-linearized

parent Acr–LOV hybrid vector by Golden Gate cloning. Note that wild-type Acr and all Acr–LOV

hybrids bore an N-terminal SV40 nuclear localization signal, which we added to target the

Cas9 inhibitor to the nucleus. The xCas9 cDNA was created by Gibson assembly on the basis of

the reported SpyCas9 mutations [205] using synthetic double-stranded DNA fragments cloned

into pcDNA3.1(–). The dCas9–p300 construct was a kind gift from Charles Gersbach (Addgene

plasmid # 61357). pEJS477 - pHAGE - TO - SpydCas9_3XmCherry - sgRNA / Telomere - All-

in-one was a gift from Erik Sontheimer (Addgene plasmid # 85717). Based on this vector, we

created constructs coexpressing dCas9_3 x mCherry and CASANOVA or wild-type AcrIIA4 via

a P2A peptide by cloning a P2A-CASANOVA or P2A-AcrIIA4 cDNA (IDT) behind the SpyCas9-3

x mCherry coding sequence.

In all cloning procedures, PCR was done with Q5 Hot Start high-fidelity DNA polymerase (New

England Biolabs) or Phusion Flash high-fidelity polymerase (Thermo Fisher). Agarose gel

electrophoresis was used to analyze PCR products. Bands of the expected size were cut out

and DNA was extracted with a QIAquick gel extraction kit (Qiagen). Ligations were performed

with T4 DNA ligase (New England Biolabs) and optionally heat-inactivated at 70 °C for 5 min
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before transformation. Chemically competent Top10 cells (Thermo Fisher) were used for DNA

vector amplification. Plasmid DNA was purified with the QIAamp DNA Mini, Plasmid Plus

Midi or Plasmid Maxi kit (all from Qiagen).

2.3.5 Cell culture, transient transfection and AAV lysate production

Cells lines were cultured at 5% CO2 and 37 °C in a humidified incubator and passaged when

they reached 70–90% confluency (every 2–4 d). HEK293T (human embryonic kidney) and

U2OS (human osteosarcoma; kindly provided by Karsten Rippe, German Cancer Research

Center (DKFZ), Heidelberg) cells were maintained in phenol-red-free DMEM (Thermo Fish-

er/Gibco) supplemented with 10% (v/v) FCS (Biochrom AG), 2 mM l-glutamine, and 100 U/ml

penicillin + 100 µg/ml streptomycin (both Thermo Fisher/Gibco). The U2OS medium was

additionally supplemented with 1 mM sodium pyruvate (Gibco). Cell lines were authenticated

and tested for mycoplasma contamination before use via a commercial service (Multiplexion).

Transient transfections were performed with JetPrime (Polyplus Transfection) or Turbofect

(Thermo Fisher) according to the manufacturer’s protocols. Details are given in the corre-

sponding experimental sections below. For the production of AAV-containing cell lysates,

low-passage HEK293T cells were seeded into six-well plates (CytoOne) at a density of 350,000

cells per well. The next day, cells were triple-transfected with (i) the AAV vector plasmid, (ii) an

AAV helper plasmid carrying AAV serotype 2 rep and cap genes and (iii) an adenoviral plasmid

providing helper functions for AAV production, using 1.33 µg of each construct and 8 µl of Tur-

bofect reagent per well. The AAV vector plasmid encoded (1) Cas9 driven from an engineered,

short CMV promoter [216], (2) a U6-promoter-driven gRNA [216] (based on the improved

F+E scaffold18) and an RSV-promoter-driven GFP marker or (3) a CMV-promoter-driven

CASANOVA variant. Seventy-two hours after transfection, cells were collected in 300 µl of PBS

and subsequently subjected to five freeze–thaw cycles alternating between snap-freezing in

liquid nitrogen and 37 °C. Finally, the cell debris was removed by centrifugation at ∼18,000g

and the AAV-containing supernatant was stored at –20 °C until use.

2.3.6 Blue light setup

For blue light illumination of samples in the cell culture incubator, we used a custom-made

blue light setup comprising six blue light high-power LEDs (type CREE XP-E D5-15; emission

peak ∼460 nm; emission angle ∼130°; LED-TECH.DE) powered by a Switching Mode Power

Supply (Manson; HCS-3102). We used a Raspberry Pi running a custom Python script to

control the power supply. We irradiated samples from below, through the transparent bottom

of the culture dishes or well plates, by positioning them on an acrylic glass table installed in

the incubator with the LEDs located underneath the table. We used a pulsatile illumination

regime (5 s on, 10 s off) for sample irradiation. The light intensity was ∼3 W/m2 as measured

with a LI-COR LI-250A light meter, unless indicated otherwise below.
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2.3.7 Luciferase reporter assays

HEK293T cells were seeded into black, clear-bottom 96-well plates (Corning) at a density of

∼12,500 cells per well. The next day, cells were cotransfected with 33 ng of a Cas9 or xCas9

expression vector, 33 ng of a construct coexpressing firefly and Renilla luciferase as well as

an H1 promoter-driven gRNA targeting the firefly luciferase cDNA, and, in most cases, 33

ng of the CMV-promoter-driven Acr–LOV hybrid with 0.2 µl of JetPrime (amounts are per

well). For the titration experiment in Sup. Fig. 2.3, 3, 10 or 33 ng of Acr–LOV hybrid was

cotransfected with 30, 23 or 0 ng of an irrelevant DNA to vary the vector mass ratio of Cas9

and Acr–LOV construct between 10:1 and 1:1. For the experiment shown in Sup. Fig. 2.7a,

8.25 ng of Acr–LOV constructs and 24.75 ng of an irrelevant DNA were used. Six hours after

transfection, the medium was exchanged and cells were exposed to blue light for 48 h or kept

in the dark as a control (Supplementary Note 6). For the titration experiment shown in Sup.

Fig. 2.3, the irradiation time was 30 h and the light intensity was ∼2.5 W/m2. Subsequently, a

Dual-Glo luciferase assay system (Promega) was applied to quantify luciferase activity. In brief,

cells were collected into the supplied lysis buffer, and firefly and Renilla luciferase activities

were measured with a GLOMAX Discover or GLOMAX 96 microplate luminometer (both from

Promega). The integration time was 10 s, and the delay time between automated substrate

injection and measurement was 2 s. Firefly photon counts were normalized to Renilla photon

counts, and the resulting values were further normalized to the positive control.

2.3.8 T7 endonuclease assay and TIDE sequencing

Cells were seeded into black, clear-bottom 96-well plates (Corning) at a density of 12,500 cells

per well for transfection-based experiments or 3,500 cells per well for AAV transduction-based

experiments. Transfections were performed with JetPrime using 0.3 µl of JetPrime reagent

and 200 ng of total DNA per well, comprising one of the following mixes: 33 ng each of the

gRNA, Cas9 and CASANOVA expression vectors, and 100 ng of an irrelevant DNA (1:1 ratio

Cas9:CASANOVA); or 33 ng of gRNA, 33 ng of Cas9 and 133 ng of CASANOVA expression vector

(1:4 ratio Cas9:CASANOVA). For AAV-based experiments, cells were cotransduced with 7 µl

each of the Cas9, gRNA and CASANOVA AAV lysates on two subsequent days when the CCR5

locus was being targeted. For all other loci, 33 µl of the Cas9 and gRNA AAV lysate were used in

combination with 20 µl (for CFTR gRNA2, CFTR gRNA3, mir-122 and VEGFA) or 33 µl (for CFTR

and EMX1) of CASANOVA lysate. After transfection or transduction, cells were irradiated with

blue light for 70 h or kept in the dark as a control (Supplementary Note 6). Cells were washed

with PBS and collected in DirectPCR lysis reagent (Peqlab) supplemented with proteinase K

(Sigma). The genomic CRISPR–Cas9 target locus was PCR-amplified with primers flanking

the target site (Supplementary Table 4) using Q5 Hot Start high-fidelity DNA polymerase

(New England Biolabs). For TIDE sequencing analysis [217], the amplicon was purified by

gel electrophoresis followed by gel extraction with the QIAquick gel extraction kit (Qiagen)

and by Sanger sequencing (GATC). Data analysis was carried out with the TIDE web tool

(version 2.0.1; https://tide.deskgen.com/). To assess the indel frequency by T7 assay, we used
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a rapid T7 protocol [216]. We diluted 10 µl of the target locus amplicons 1:4 in 1× NEB buffer 2,

heated the mixture to 95 °C, and then slowly cooled it to allow reannealing and formation of

heteroduplexes using a nexus GSX1 Mastercycler (Eppendorf) and the following program: 95

°C/5 min, 95–85 °C at –2 °C per second, 85–25 °C at –0.1 °C per second. Subsequently, 0.5 µl of

T7 endonuclease (New England Biolabs) was added, and samples were mixed and incubated

at 37 °C for 15 min and then analyzed on a 2% Tris-borate-EDTA agarose gel. The Gel iX20

system equipped with a 2.8-megapixel/14-bit scientific-grade CCD (charge-coupled device)

camera (Intas) was used for gel documentation. To calculate the indel percentages from the

gel images, we subtracted the background from each lane and quantified T7 bands with the

ImageJ (version 1.51n; http://imagej.nih.gov/ij/) gel analysis tool. Peak areas were measured

and percentages of insertions and deletions (indel(%)) were calculated using the formula

Indel(%) = 100× (1–(1–Fraction cleaved)×0.5), where

Fraction cleaved =

∑
Cleavage product bands∑

Cleavage product bands + PCR input band

We calculated the reported fold changes in editing efficiency by dividing the mean indel(%)

of an illuminated sample by the mean indel(%) of its corresponding dark control sample.

Full-length gel images are shown in Supplementary Note 7.

2.3.9 Quantitative RT-PCR

HEK293T cells were seeded into transparent six-well plates (CytoOne) at 250,000 cells per well.

The next day, cells were cotransfected with (i) 750 ng of IL1RN gRNA construct mix17 (187.5 ng

per vector); (ii) 500 ng of a construct encoding dCas9–p300–P2A–CASANOVA (or an irrelevant

DNA as control); (iii) 250, 500 or 750 ng of CASANOVA-encoding vector (corresponding to

vector mass ratios of 3:2, 4:2 and 5:2 as indicated in Fig. 2a); and (iv) 500, 250 or 0 ng of

irrelevant stuffer DNA, using 6 µl of JetPrime reagent (all amounts are per well). The medium

was replaced 4 h after transfection, and cells were irradiated with blue light pulses for 44 h

or kept in the dark as a control (Supplementary Note 6). For the experiment shown in Sup.

Fig. 2.12, we used the 4:2 vector mass ratio and no stuffer DNA. Furthermore, after the 44-h

illumination period, samples were split into two separate six-well plates and illumination was

continued for another 3 d, or cells were kept in the dark as controls.

Subsequently, cells were lysed with QIAzol lysis reagent (Qiagen) according to the manufac-

turer’s instructions. Reverse transcription was performed with the RevertAid first strand cDNA

synthesis kit (Thermo Fisher) and equal amounts of input RNA for each experiment. Real-time

PCR reactions were set up with 2 µl of cDNA mix (25 ng/µl), 1.4 µl of each 10 µM primer (IL1RN

forward or GAPDH forward and IL1RN reverse or GAPDH reverse; Supplementary Table 2.18),

10 µl of PowerSYBR Green PCR master mix (Thermo Fisher) and 5.2 µl of water. A StepOne Plus

real-time PCR system (Applied Biosystems) was used with the following cycling conditions:
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95 °C for 10 min for initial denaturation followed by 45 cycles of (95 °C for 15 s, 58 °C for 60 s).

Fold changes in IL1RN transcript levels were then calculated via theΔΔCt method [218].

2.3.10 Telomere labeling experiments

U2OS cells were seeded into four-compartment CELLview cell culture dishes (Greiner Bio-

One) at a density of 30,000 cells per compartment. The next day, cells were transfected with

vectors encoding (i) CMV-promoter-driven dCas9–3×RFP–P2A–CASANOVA and U6-promoter-

driven telomere-targeting gRNA, (ii) a telomere-targeting gRNA and GFP transfection marker,

and (iii) CMV-promoter-driven CASANOVA in a ratio of 20:6:3 using 362.5 ng of total DNA

and 1.5 µl of JetPrime for transfection (per compartment). Four hours after transfection, the

medium was changed.

For experiments shown in Fig. 2.2b,c, samples were kept in the dark for 24 h. Subsequently,

imaging was done with a Leica SP8 confocal laser scanning microscope equipped with au-

tomated CO2 and temperature control; UV, argon and solid-state lasers; and an HC PL APO

40×/1.3-NA (numerical aperture) oil objective. RFP fluorescence was recorded every 5 min for

2 h using the 552-nm laser line for excitation (1% laser power). The detection wavelength was

set to 578–789 nm. In parallel, the field of view was scanned with a 488-nm laser beam (2%

laser power) every 30 s. We analyzed images manually by counting RFP fluorescent spots (i.e.,

labeled telomeres) in the nucleus. Four people assessed the images independently, and their

results were averaged for each nucleus at each time point.

For the experiments described in Fig. 2.2d,e, additional control samples were included. In the

positive control samples, vector i was replaced by a vector encoding dCas9–3×RFP (without

the P2A–CASANOVA) and a U6-promoter-driven telomere-targeting RNA, and vector iii was

replaced by an irrelevant DNA. In the negative control samples, the CASANOVA in vectors

i and iii was replaced by wild-type AcrIIA4. Four hours after transfection, cells were either

irradiated with blue light pulses for 20 h or kept in the dark (Supplementary Note 6), after

which samples were fixed with 4% PFA. SlowFade Diamond antifade mountant with DAPI

(Invitrogen) was added and imaging was carried out with the aforementioned microscopy

setup and the following excitation/detection settings: 405 nm (1% laser power)/410–490 nm

for DAPI, 488 nm (2% laser power)/493–578 nm for GFP, or 552 nm (1% laser power)/578–789

nm for RFP. RFP fluorescent spots (i.e., labeled telomeres) were then detected and quantified

via a fully automated image-analysis pipeline (described below).

2.3.11 Automated image analysis for telomere labeling in KNIME

We used the ImageJ2 (beta) Integration in KNIME Version 3.5.2 (KNIME AG) to create an

automated image-processing and analysis pipeline for the quantification of labeled telomeres.

The fully annotated workflow is provided as Supplementary Data. All images were analyzed

with an identical workflow configuration, apart from the configuration of data input and
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output nodes. In brief, raw image stacks (.lif files) were imported into KNIME, and then the

three fluorescence channels were split (DAPI, nuclear marker; GFP, a transfection marker

coencoded on the gRNA vector; and RFP, corresponding to dCas9–3×mCherry). Nuclei were

segmented on the basis of the DAPI signal. GFP– nuclear segments (i.e., negative for the

telomere-targeting gRNA construct) were excluded from the analysis. Furthermore, nuclear

segments with a mean RFP signal higher than 170 (as images were 8-bit, this corresponds

to two-thirds of the maximum) were also excluded from the analysis, as the very high RFP

background fluorescence impaired reliable spot detection. The Spot Detection node was used

to identify and segment fluorescent spots in the RFP channel. All spots lying outside of the

nuclear segments were excluded, and random fluorescence fluctuations were filtered out by

selection for spots with an average fluorescence at least 1.7-fold higher than the RFP back-

ground fluorescence in the corresponding nuclear segment. The workflow output comprised

a CSV table listing the nuclear segments and corresponding spots detected in each image.

Subsequent data visualization and statistical analysis were done in R version 3.3.2.

2.3.12 Membrane recruitment experiments

HEK293T cells were seeded into four-compartment CELLview cell culture dishes (Greiner

Bio-One) at a density of 60,000 cells per compartment. The next day, cells were cotransfected

with (i) 900 ng of a vector encoding the Rosa26-1 gRNA31, which does not have a target site

in human cells, (ii) 100 ng of a vector expressing dCas9–mVenus fused to the myristoylation

palmitoylation domain from lyn kinase, and (iii) 5 ng of Acr–LOV hybrid 5 C-terminally fused

to mCherry with 1 µl of JetPrime (amounts are per compartment). The medium was exchanged

4 h after transfection, and samples were kept in the dark for 24 h. For the experiments in

Supplementary Fig. 14c, cells were seeded into one-compartment CELLview cell culture

dishes (Greiner Bio-One) at a density of 360,000 cells per dish. Identical amounts of the

aforementioned vectors and 2 µl of JetPrime reagent were used for transfection (amounts

are per single dish). The aforementioned Leica SP8 microscopy setup was used for live-cell

recruitment experiments. We irradiated cells with blue light pulses by scanning the field of

view with a 488-nm laser beam (2% laser power) every 30 s. mVenus and mCherry signals were

recorded in parallel every 5 min. Excitation/detection settings were as follows: 514 nm (0.5%

laser power)/493–519 nm for mVenus, or 552 nm (1% laser power)/580–789 nm for mCherry.

To quantify the ratio of membrane to cytoplasmic mCherry fluorescence, we segmented cells

manually by drawing regions of interest (ROIs) around the plasma membrane of the cell (to

calculate the total cell fluorescence) and inside the cell close to but not touching the plasma

membrane (to calculate the cytoplasmic fluorescence) in ImageJ. The integrated fluorescence

signal was measured for each ROI and at each time point, and the ratio of plasma membrane to

cytoplasmic fluorescence was calculated from the obtained values via the following formula:

membrane/cytoplasmic fluorescence =
total cell fluorescence−cytoplasmatic fluorescence

cytoplasmatic fluorescence
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Finally, the resulting values were normalized to the corresponding value at time point 0 for

each cell.

2.3.13 Statistical analysis

All box plots show the median (center line), first and third quartiles (box edges), and mini-

mum/maximum values within 1.5× the interquartile range (whiskers). Uncertainties in the

reported mean values are indicated as s.e.m. Statistical significance in reported differences

was tested by two-sided Student’s t-test. A two-sided Wilcoxon rank-sum test was applied for

non-normally distributed data. P values < 0.05 were considered statistically significant. Statis-

tical analysis was performed in R (version 3.1.0) and Microsoft Excel (version 14.0.7208.5000).

Figure 1d: *P=0.0229, **P=0.0025, ***P=9.96×105. Figure 1e: *P=0.0128 (transfection, 1:1),

*P=0.0299 (transfection, 1:4), *P=0.0142 (transduction). Figure 1f: *P=0.0137, **P=0.0045,

***P=0.0002.
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2.4 Supplementary information

Supplementary Figure 2.1: Sampling of LOV2 insertion sites in AcrIIA4 loop 5. a: Acr–LOV
hybrid generation. The Avena sativa LOV2 domain coding sequence from phototropin-1 was inserted
at different positions in AcrIIA4 loop 5. NLS, SV40 nuclear localization signal. CMV, cytomegalovirus
promoter. b: Luciferase reporter cleavage assay measuring Cas9 inhibition by different Acr–LOV hybrids.
HEK293T cells were co-transfected with vectors encoding (i) the Acr–LOV hybrid, (ii) Cas9 and (iii) a
luciferase reporter as well as a gRNA targeting the luciferase gene. Luciferase activity was assessed 48 h
post-transfection. The AcrIIA4 residue behind which the LOV2 domain was inserted is indicated. Box
plots show the median (center line), first and third quartiles (box edges), 1.5× the interquartile range
(whiskers) and individual data points (circles). n=3 biologically independent samples (cell cultures). Wt,
wild-type. Acr-2A-LOV2, control construct co-expressing wild-type AcrIIA4 and the LOV2 domain via a
P2A sequence. ***P = 0.0004 (no Acr), ***P = 3.63 × 10–5 (wt Acr) and ***P = 8.87 × 10–5 (Acr-P2A-LOV2)
by two-sided Student’s t-test.

Supplementary Figure 2.2: Schematic and sequences of Acr–LOV hybrids. NLS, SV40 nuclear
localization signal.
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Supplementary Figure 2.3: Cas9 inhibition is dose dependent. HEK293T cells were co-transfected
with plasmids encoding (i) Acr–LOV hybrid, (ii) Cas9 and (iii) a luciferase reporter as well as a gRNA
targeting the luciferase gene. The vector mass ratio of the transfected Cas9 and Acr–LOV construct
was varied between 10:1 and 1:1, as indicated. Six hours post-transfection, cells were irradiated with
pulsatile blue light (5 s ON, 10 s OFF; 2.5 W per m2) for 30 h or kept in the dark as control before
assessing luciferase activity. Box plots show the median (center line) and first and third quartiles (box
edges), 1.5× the interquartile range (whiskers) and individual data points (circles). n = 9 biologically
independent samples (cell cultures) for the Acr–LOV hybrid 8 (1:1) and n = 12 biologically independent
samples (cell cultures) for all other conditions.

Supplementary Figure 2.4: CASANOVA computational model. Structural model of CASANOVA
bound to a Cas9–gRNA complex (left). The three most populated clusters of CASANOVA conformations
obtained through domain assembly simulations (Methods) are displayed on the right.
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Supplementary Figure 2.5: Photoactivatable genome editing with CASANOVA. Light-mediated
indel mutation of human CFTR locus ((a,b) with two different gRNAs), mir-122 locus (c) and VEGFA
locus (d). HEK293T cells were co-transduced with AAV vectors encoding CASANOVA, Cas9 and the
indicated gRNA and exposed to blue light for 70 h or kept in the dark as control. The target locus was
then PCR amplified with primers flanking the estimated break point and the amplicon was denatured
and re-annealed in a thermocycler to allow heteroduplex formation. Following digestion with T7
endonuclease, samples were analyzed on a 2% agarose gel (see Methods for details). Representative
gel images and corresponding quantifications of editing frequencies are shown. Wt, wild-type. Box
plots show the median (center line) and first and third quartiles (box edges), 1.5× the interquartile
range (whiskers) and individual data points (circles). n = 3 independent experiments. All statistics by
two-sided Student’s t-test. (a) ***P = 5.83 × 10–5 (b) **P = 0.0039 (c) ***P = 2.85 × 10–5 (d) ***P = 2.01 ×
10–5.
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Supplementary Figure 2.6: TIDE sequencing analysis of light-mediated indel mutation.
HEK293T cells were co-transduced with AAV vectors expressing the Cas9, CASANOVA and a gRNA
targeting the CCR5 a or EMX1 b locus. Cells were exposed to blue light for 70 h or kept in the dark as
control, followed by TIDE sequencing1. The target locus was PCR-amplified with primers flanking
the expected breakpoint followed by Sanger sequencing of the amplicon. Total editing efficiencies
and frequencies of individual insertions or deletions were then calculated by decomposition of the
sequencing chromatogram using the TIDE web tool (https://www.deskgen.com/landing/tide.html).
TIDE sequencing revealed a broad range of different insertions and deletions in the light, but not in the
dark control samples. Data represent a single experiment.
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Supplementary Figure 2.7: Cas9 inhibition can be modulated via mutations that affect docking
of the LOV2 terminal helices. a: Light-dependent luciferase reporter cleavage mediated by different
Acr–LOV hybrid mutants. HEK293T cells were co-transfected with plasmids encoding (i) the indicated
Acr—LOV hybrid variant, (ii) Cas9 and (iii) a luciferase reporter as well as a gRNA targeting the luciferase
gene. Six hours post-transfection, cells were irradiated with pulsatile blue light for 48 h or kept in
the dark as control before assessing luciferase activity. Box plots show the median (center line) and
first and third quartiles (box edges), 1.5× the interquartile range (whiskers) and individual data points
(circles). n = 3 biologically independent samples (cell cultures). b: T7 endonuclease assays and c:
corresponding quantification of light-mediated indel mutation of the human CCR5 locus. HEK293T
cells were co-transfected with constructs expressing the Cas9, the CCR5-locus-targeting gRNA and the
indicated Acr–LOV hybrid variant. During transfection, the vector mass ratio of Acr–LOV:Cas9 construct
was varied as indicated. Subsequently, cells were exposed to blue light for 70 h or kept in the dark as
control. The target locus was then PCR-amplified with primers flanking the estimated break point
and the amplicon was denatured and re-annealed in a thermocycler to allow heteroduplex formation.
Following digestion with T7 endonuclease, samples were analyzed on a 2% agarose gel (see Methods
for details). c Data are means and dots indicate individual data points. n = 2 independent experiments.
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Supplementary Figure 2.8: Acr–LOV hybrids carrying a C450A LOV2 pseudodark mutation
are still light responsive. a: Light-dependent luciferase reporter cleavage mediated by different
Acr–LOV hybrid pseudodark mutants. HEK293T cells were co-transfected with plasmids encoding (i)
the indicated Acr–LOV hybrid variant, (ii) Cas9 and (iii) a luciferase reporter as well as a gRNA targeting
the luciferase gene. Six hours post-transfection, cells were irradiated with pulsatile blue light for 48 h
or kept in the dark as control before assessing luciferase activity. Box plots show the median (center
line) and first and third quartiles (box edges), 1.5× the interquartile range (whiskers) and individual
data points (circles). n = 6 biologically independent samples (cell cultures). b: T7 endonuclease
assays and c: corresponding quantification of light-mediated indel mutation of the human CCR5 locus.
HEK293T cells were co-transfected with constructs expressing Cas9, CCR5-locus-targeting gRNA and
the indicated Acr–LOV hybrid variant and exposed to blue light for 70 h or kept in the dark as control.
During transfection, the vector mass ratio of Acr–LOV:Cas9 construct was varied as indicated. n.d., not
determined. b,c: Data correspond to a single experiment.
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Supplementary Figure 2.9: In silico docking analysis reveals Acr mutations that improve
CASANOVA performance. a: Light-dependent luciferase reporter cleavage mediated by different
Acr–LOV hybrid mutants. HEK293T cells were co-transfected with vectors encoding (i) the indicated
Acr–LOV hybrid variant, (ii) Cas9 and (iii) a luciferase reporter as well as a gRNA targeting the luciferase
gene. Six hours post-transfection, cells were irradiated with pulsatile blue light for 48 h or kept in the
dark as control before assessing the luciferase activity. Box plots show the median (center line) and
first and third quartiles (box edges), 1.5× the interquartile range (whiskers) and individual data points
(circles). n = 3 biologically independent samples (cell cultures). b: T7 endonuclease assays and c:
corresponding quantification of light-mediated indel mutation of the human CCR5 locus. HEK293T
cells were co-transfected with constructs expressing Cas9, the CCR5-locus-targeting gRNA and the
indicated Acr–LOV hybrid variant and exposed to blue light for 70 h or kept in the dark as control.
During transfection, the vector mass ratio of Acr–LOV:Cas9 construct was varied as indicated. Data
represent a single experiment. n.d., not determined.
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Supplementary Figure 2.10: Comparison of light-dependent indel mutation by CASANOVA
and its corresponding S46D and T16F mutants. HEK293T cells were co-transfected with constructs
expressing Cas9, a gRNA and the indicated CASANOVA variant and exposed to blue light for 70 h or
kept in the dark as control. During transfection, the vector mass ratio of Acr–LOV:Cas9 construct
was varied as indicated. Editing frequencies were evaluated by mismatch-sensitive T7 endonuclease
assay. a: Indel mutation of CCR5 locus and b: indel mutation of EMX1 locus. a,b: Box plots show the
median (center line) and first and third quartiles (box edges), 1.5× the interquartile range (whiskers)
and individual data points (circles). n = 4 independent experiments.

Supplementary Figure 2.11: Optogenetic control of xCas9. Light-dependent luciferase reporter
cleavage mediated by different Acr–LOV hybrid mutants. HEK293T cells were co-transfected with
vectors encoding (i) the indicated Acr–LOV hybrid variant, (ii) xCas9 and (iii) a luciferase reporter as
well as a gRNA targeting the luciferase gene. Six hours post-transfection, cells were irradiated with
pulsatile blue light for 48 h or kept in the dark as control before assessing luciferase activity. Box plots
show the median (center line) and first and third quartiles (box edges), 1.5× the interquartile range
(whiskers) and individual data points (circles). n = 6 biologically independent samples (cell cultures) for
CASANOVA (S46D) and n = 9 biologically independent samples (cell cultures) for all other conditions.
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Supplementary Figure 2.12: CASANOVA-mediated IL1RN gene activation is reversible. Light-
dependent IL1RN gene activation in HEK293T cells expressing CASANOVA and a dCas9–p300 fusion
targeted to the IL1RN promoter via a combination of four gRNAs (triangles) or the gRNA mix only
(round dots; control). Cells were exposed to blue light or kept in the dark as indicated in the figure, and
IL1RN expression was assessed by quantitative RT-PCR at the indicated time points. Gene activation
in the light-induced CASANOVA sample (day 2) continues to rise when prolonging illumination, but
decreases upon withdrawal of the light stimulus. Data are means ± s.e.m. n = 7 biologically independent
samples (cell cultures).

Supplementary Figure 2.13: Fluorescence signal of single labeled telomeres increased after
CASANOVA activation. We calculated telomere fluorescence by multiplying the area of the fluorescent
spot with its mean fluorescence intensity. Box plots show the median (center line) and first and third
quartiles (box edges), 1.5× the interquartile range (whiskers) and individual data points (dots). Data
correspond to the experiment described in Fig. 2 d,e. The total number of telomeres analyzed is
indicated. ***P < 2.2 × 10–16 by a two-sided Wilcoxon rank-sum test.
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Supplementary Figure 2.14: Reversible recruitment of Acr–LOV hybrid 5 to a plasma-
membrane-targeted dCas9–gRNA complex. a: Light-inducible recruitment of a LOV–Acr hybrid
fused to mCherry to a plasma-membrane-targeted dCas9–mVenus. b: Representative fluorescence
images of HEK293T cells expressing LOV–Acr hybrid 5 fused to mCherry and an mVenus–dCas9 fu-
sion targeted to the plasma membrane. Cells were irradiated with blue light pulses every 30 s using
a 488-nm laser for 20 min, followed by 20 min dark recovery. mVenus and mCherry fluorescence
images were recorded every 5 min. Dashed lines indicate the nucleus boundary. Yellow boxes in the
Acr–LOV–mCherry images correspond to plasma membrane close-up views shown below the images.
Scale bar, 20 µm. c: Quantification of the plasma membrane to cytoplasmic mCherry fluorescence ratio
over time. Data are means ± s.e.m. n = 4 cells from biologically independent samples (cell cultures).

Supplementary Figure 2.15: CASANOVA mutants selected for experimental characterization.
ddG indicates the predicted change in free energy upon binding to the Cas9/gRNA complex. The
dHbond_gain_overall shows the number of additionally formed buried hydrogen bonds of the designs
compared to the wild-type (baseline).
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Supplementary Figure 2.16: List of constructs created and used in this study. ITR, inverted
terminal repeat. TK, thymidine kinase. FF, Firefly. Ren, Renilla. MTS, membrane-targeting sequence.
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Supplementary Figure 2.17: gRNA target sites. Sequences are in 5’ to 3’ direction; the PAM sequence
is indicated in bold. References indicate the publications originally reporting the corresponding gRNAs.

Supplementary Figure 2.18: Primers used for genomic PCRs and quantitative RT-PCR. Se-
quences are in 5’ to 3’ direction.
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2.4.1 Supplementary Note 1

Solvent accessibility analysis of the AcrIIA4-Cas9 complex suggested that the most C-terminal

loop segment of AcrIIA4 (L5 in Fig. 2.1b) was the only insertion site amenable to LOV2 domain

fusion, since all the other insertion points would cause steric clashes with Cas9. Detailed

analysis of residue contacts (Online Methods) within the AcrIIA4 structure further consolidated

this choice. The secondary structure elements bridged by L5 have a network of non-local

contacts that, when destabilized, will impose structural distortions to the Cas9-binding surface

of AcrIIA4. In turn, these would very likely result in a decrease in affinity to Cas9 (Fig. 2.1b).

Finally, several residues in L5 (Y67, D69 and E70) mediate direct and critical contacts with

Cas9 [202]. We thus speculated that LOV2 insertion in proximity to this functional site would

offer an efficient means to control Cas9 binding.

2.4.2 Supplementary Note 2: Considerations for luciferase reporter cleavage assay
data interpretation

For the luciferase reporter cleavage assay, we used a vector expressing (i) Firefly luciferase, (ii)

a gRNA targeting the Firefly luciferase gene and, additionally, (iii) Renilla luciferase, which is

employed for normalization purposes (Online methods). In this assay, the Cas9-targeted locus

is supplied as a plasmid, many copies of which will enter a cell upon efficient transfection.

Importantly, cells transfected not at all or only inefficiently are effectively excluded in this assay,

as they will express low amounts of the luciferase reporters and will therefore contribute much

less to the measurement outcome. In contrast, the very efficiently transfected cells (which will

typically strongly express all required components (Cas9, gRNA, luciferase reporter, Acr-LOV2

hybrid)) contribute most to the measurement outcome. This renders the luciferase reporter

cleavage assay extremely robust, even under the heterogeneous condition of a transient

transfection.

2.4.3 Supplementary Note 3: Considerations for T7 assay data interpretation

In contrast to the luciferase reporter assay (see Supplementary Note 2 above), the T7 endonu-

clease assay measures the indel frequency for an endogenous locus targeted by Cas9. Unless

some type of selection is applied to enrich transfected cells, which we did not do, all cells will

equally contribute to the T7 assay result, regardless of whether they express the Cas9, gRNA

and Acr-LOV transgenes strongly, weakly or not at all. Moderately transfected cells often show

heterogeneity in transgene expression, i.e. the stoichiometry of Cas9-gRNA complexes and

Acr-LOV hybrids present will highly vary between cells. This can lead to unintended Cas9

leakiness or – on the contrary - overly strong Cas9 inhibition in individual cells. Still, these

cells will eventually contribute as much to the measurement outcome, as the most efficiently

transfected ones.
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2.4.4 Supplementary Note 4

Numerous mutations have been reported that improve docking of the AsLOV2 terminal helices

against the LOV core in the dark [204, 203, 219, 220, 221]. It is important to note, however, that

the effect they have on the performance of a particular optogenetic tool is difficult to predict

a priori. To this end, we performed a systematic mutational study using sets of well-studied

mutations: The T406-7A double mutation improving docking of the Aα helix [203] and two

different mutations within the Jα helix, i.e., the I532A single mutation or G528A/N538E double

mutation [204]. We tested the effects of each individual mutation (or double mutation) as well

as the impact of their combinations on the performance of CASANOVA as well as LOV2-Acr

hybrid 15. We observed that Cas9 background activity in the dark was reduced in several

mutants, albeit this improvement came at the cost of a reduced dynamic range in most cases

(Sup. Fig. 2.7). We and others have observed this trade-off between “leakiness” in the dark

and dynamic range of activation before for several of the tested mutations in the context of

unrelated optogenetic tools [203, 222]. Importantly, the effects of the tested mutations were

similar for CASANOVA and Acr-LOV hybrid 15, i.e., mutations that caused a strong background

activity in one Acr-LOV hybrid, for instance, did the same in the context of the other (Sup. Fig.

2.7).

2.4.5 Supplementary Note 5

The LOV2 cysteine 450 forms a covalent adduct with the flavin mononucleotide chromophore

upon blue light excitation [217, 217], which is a key step in the LOV2 photocycle and triggers

unfolding of the LOV2 terminal helices [196, 223, 224, 225]. Mutants of the C450 to alanine,

methionine and serine are known to lock the LOV2 in a dark state-like conformation [226,

227] (pseudodark state) and are thus often employed as negative control when developing

optogenetic constructs [228, 198, 229]. In the context of engineered, LOV2-dependent split

inteins, it has recently been found that pseudodark mutants can still be excited upon irradia-

tion for several hours and, strikingly, may even enhance the performance of an optogenetic

tool [230]. Provided the experimental timing tolerates the slow activation kinetics (which is,

however, often not the case for optogenetic experiments), pseudodark mutants are therefore

an unconventional, but interesting resource for improving LOV2-based optogenetic tools.

To test this concept in the context of our light-dependent Cas9 inhibitor, we introduced the

C450A mutation into the LOV2 part of CASANOVA as well as five other Acr-LOV hybrids. Re-

markably, all variants still showed strong, light-dependent Cas9 inhibition (Sup. Fig. 2.8). The

CASANOVA C450A even outperformed the wild-type construct regarding its ability to inhibit

Cas9 in the dark, albeit light-activation was markedly reduced (Sup. Fig. 2.8c).

2.4.6 Supplementary Note 6: Comment on the used experimental timings

For the telomere labeling experiment, we adapted the experimental timing from the study

by Pawluk et al. [208], as we employed their optimized dCas9-3xRFP vector, the identical cell
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line (U2OS) and a similar experimental setup. Pawluk and co-workers performed microscopy

analysis 24 h post-transfection. We started illumination 4 h post transfection and performed

microcopy after 20 h of light induction (or 20 h of incubation in the dark), which sums up to

the identical 24 h used by Pawluk and colleagues. This rather short time from transfection to

measurement was further chosen as in this particular experiment, maximum expression (i.e.

high dCas9-3xRFP levels) is not desired. This is because only a certain amount of dCas9-3xRFP

molecules can bind to telomeres. Consequently, once the telomeres are efficiently occupied,

any additional molecules will mainly result in nuclear background fluorescence and therefore

lower the signal-to-background ratio. To enable robust, automated image analysis, however, a

high signal-to-background ratio was critical.

For the T7 assays, the scenario is fundamentally different because here, efficient expression

of Cas9 is crucial to enable efficient editing. Furthermore, only loci that have been repaired

via non-homologous end-joining (NHEJ) following editing and thus carry mutations (mostly

indels) will be detected in this assay. However, this repair requires additional time. Therefore,

in transfection-based genome editing experiments, the incubation time used is typically 72 h

or more. We used 70 h, which is largely congruent with the extensive CRISPR literature and

also comparable to the timing (72 h) in the CRISPR landmark paper by Cong et al. [231].

For the luciferase reporter, which was newly developed by us, the timing is generally less critical

as this assay is rather robust and thus tolerates fluctuations in transfection efficiencies or total

expression levels (see Supplementary Note 2 above). Furthermore, this assay is independent

of NHEJ. Therefore, since the experimental timing is overall less of a concern, we used 48

h of illumination (i.e. 48 h of incubation after transfection) in most cases, as expression of

all components should have peaked at this time point. An exception is Sup. Fig. 2.3, where

we used 30 h of illumination instead of 48 h. This, however, had no noticeable influence on

the general performance of the assay, further evidencing its inherent robustness. Finally, for

the gene activation experiments, we chose the 48 h incubation time (4 h incubation in the

dark followed by 44 h in the light (or dark)) based on previous reports on Cas9-mediated gene

activation [232, 233, 234] as well as a recent report [235] of a chemically inducible dCas9-p300

fusion. Notably, the fold induction in IL1RN expression we observed upon blue light induction

(∼7,000-fold; Fig. 2a) precisely corresponds to what Hilton et al. also reported as maximum

activation of the same gene by dCas9-p300, namely, ∼6,000 – 10,000-fold induction [206].

2.4.7 Supplementary Note 7

The full-length gel images corresponding to Sup. Figs. 2.5, 2.7, 2.8 and 2.9 are shown in Sup.

Fig. 2.19 below.
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2.4.8 Supplementary Discussion

We developed CASANOVA, an engineered, light-inducible SpyCas9 inhibitory protein and

demonstrated its utility for controlling genome editing as well as recruitment of dCas9-effector

fusions to selected genomic loci in human cells. Due to its small size of only 27.8 kDa (similar

to GFP), CASANOVA can be easily expressed from plasmids or viral vectors to achieve robust

and efficient Cas9 regulation. Interestingly, the tightness and dynamic range of genome

editing control was generally higher when using AAV transduction for delivery as compared to

transient transfection (Fig. 1d-f). The reason could be the stronger heterogeneity in expression

of the different components upon transient transfection, likely resulting in unintended Cas9

activity in the dark in cells expressing high Cas9/gRNA, but rather low CASANOVA levels (see

Supplementary Notes 2 and 3 above).

A particularly notable feature of CASANOVA is its versatility. Without any modification,

CASANOVA allowed light-mediated control of SpyCas9, xCas9 [205] as well as SpydCas9-

effector fusions, as exemplified for a Cas9-p300 epigenetic modifier. Remarkably, CASANOVA

also enabled us to directly monitor the light-induced recruitment of dCas9-RFP fusions to

telomeres, thereby confirming Cas9 initial binding to be a rapid process in human cells (Fig.

2.2b,c). Our data thereby complement previous live-cell studies, that investigated the replace-

ment of dCas9 molecules bound to on and off-target loci via FRAP and spectroscopy [236, 237,

238], but not the binding of Cas9 to previously unbound loci. We note that in the telomere

labeling experiments, we observed heterogeneity in dCas9-3xRFP nucleocytoplasmic localiza-

tion in all samples. This is likely attributed to the large size of dCas9-3xRFP (∼ 250 kDa), which

renders this fusion protein a rather difficult target for nuclear import. Nevertheless, robust

telomere labeling was observed in the positive control samples and in the CASANOVA sample

induced with blue light. The fact that the CASANOVA dark control sample or wild-type AcrIIA4

controls showed hardly any telomere labeling, as expected, indicates that the heterogeneity in

dCas9-3xRFP localization had no negative impact on assay performance (Fig. 2.2b-e).

Another important feature of CASANOVA that should benefit numerous applications is its

reversibility. We showed that CASANOVA rapidly releases Cas9 upon blue light stimulation

and re-binds Cas9 when stopping light induction (Sup. Fig. 2.14), thereby regaining Cas9

inhibition (Sup. Fig. 2.12). To estimate the kinetics of CASANOVA reversibility, however, it is

essential to realize that they do not solely depend on the kinetics of CASANOVA conformational

change and consecutive binding of/release from Cas9-gRNA complexes. Akin to its parent

anti-CRISPR protein AcrIIA4, CASANOVA acts as competitive inhibitor, i.e., it competes with

the target DNA for free (d)Cas9-gRNA complexes [200, 199, 201, 239]. Very importantly, while

AcrIIA4 binds free (d)Cas9-gRNA complexes with high affinity, it is unable to actively displace

(d)Cas9-gRNA from bound DNA target loci [239]. Consequently, dark-state CASANOVA will

most likely not be able to actively resolve (d)Cas9-gRNA:DNA ternary complexes that formed,

e.g., during a preceding illumination phase. Notably, the half-life of the dCas9-gRNA:DNA

complexes is in the range of several hours, at least for perfect target sites31. We thus expect

the release of (d)Cas9-gRNA from the DNA target locus to bethe rate-limiting step during
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dark-state adaptation of the CASANOVA system upon withdrawal of the light trigger.

Apart from CASANOVA’s manifold applications, this work also expands our ability to confer

light regulation on selected proteins via LOV2-mediated, inducible disorder. When engi-

neering CASANOVA, the choice of Acr surface sites amenable for LOV2 insertion was highly

restricted by the small size, compact structure and limited solvent accessibility of AcrIIA4

when in complex with Cas9. The insertion site in AcrIIA4 loop 5 finally chosen based on

our computational analysis directly precedes several, functional residues (Y67, D69, E70)

mediating critical contacts with Cas9 [200, 201]. Importantly, in previous work by Dagliyan et

al. on controlling mammalian enzymes [198], LOV2 domain insertion in close proximity to the

enzyme’s active site was purposely avoided, as even minor structural perturbations at such

sites are likely to strongly impair enzymatic function. Concurrently, we observed that inserting

the LOV2 domain into AcrIIA4 loop 5 resulted in a markedly impaired Cas9 inhibition even

in the dark. However, we were able to restore close to wild-type inhibitor activity by carefully

“embedding” the LOV2 domain into the target protein structure via systematic deletions of

residues preceding the insertion site. Thereby, the proximity of the fused LOV2 domain to the

AcrIIA4 functional site, initially imposed by the target protein structure, suddenly turned into

an advantage, as the conformational change of the LOV2 was now directly coupled to AcrIIA4

functional residues. The robustness of CASANOVA performance under different experimental

conditions suggests that this unconventional design could be an interesting blueprint for the

optogenetic regulation of diverse Acrs and, potentially, many other proteins of interest.
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Supplementary Figure 2.19: Full-length gel images. The ladder is the Gene Ruler DNA Ladder Mix
(Thermo Fisher).
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3.1 Abstract

Anti-CRISPR (Acr) proteins are powerful tools to control CRISPR–Cas technologies. How-

ever, the available Acr repertoire is limited to naturally occurring variants. Here, we applied

structure-based design on AcrIIC1, a broad-spectrum CRISPR–Cas9 inhibitor, to improve its

efficacy on different targets. We first show that inserting exogenous protein domains into

a selected AcrIIC1 surface site dramatically enhances inhibition of Neisseria meningitidis

(Nme)Cas9. Then, applying structure-guided design to the Cas9-binding surface, we con-

verted AcrIIC1 into AcrIIC1X, a potent inhibitor of the Staphylococcus aureus (Sau)Cas9, an

orthologue widely applied for in vivo genome editing. Finally, to demonstrate the utility

of AcrIIC1X for genome engineering applications, we implemented a hepatocyte-specific

SauCas9 ON-switch by placing AcrIIC1X expression under regulation of microRNA-122. Our

work introduces designer Acrs as important biotechnological tools and provides an innovative

strategy to safeguard CRISPR technologies.

3.2 Main

The detailed characterization of bacterial CRISPR–Cas systems [240] and their adaptation

for precise genome engineering in mammalian cells [233, 231] has revolutionized the life

sciences and enabled novel applications in biotechnology and medicine. The recent discovery

of Acr proteins [241, 242, 243], that is, potent inhibitors of Cas effectors, provides a shut-off

mechanism that can keep this powerful technology in check [194] and enhance the precision

at which genome perturbations can be made [162, 244, 245, 239, 246]. Acrs originate from the

coevolution of prokaryotes and phages. Bacteria employ the CRISPR adaptive immune system

to destroy invading nucleic acids. Phages, on the other hand, circumvent the CRISPR defense

by suppressing the activity of essential CRISPR components via Acrs. Mining of sequence

databases and screening of phage libraries proved to be powerful strategies to discover Acrs

that target CRISPR–Cas orthologues from various species [242, 243, 192, 247, 248, 249, 250,

251, 252]. However, these approaches are inherently limited to the naturally occurring protein

repertoire. Moreover, for various Cas effectors of major biotechnological interest, nature might

be lacking (efficient) Acr counterparts.

In this work, we applied protein engineering to design artificial Acrs that exhibit enhanced
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Figure 3.1: Improving the efficacy of Acr proteins by protein engineering. Domain insertion into
AcrIIC1 loop 5 yields chimeric inhibitors showing improved inhibition of NmeCas9, while structure-
based engineering of its HNH-binding interface results in a potent SauCas9 inhibitor (PDB 4ZIN, 5VGB,
5F9R and 5CZZ).

inhibition potency on different Cas9 orthologues (Fig. 3.1). As starting point, we used AcrIIC1

(ref. [208]), a broad-spectrum inhibitor targeting various type II-C Cas9s (ref. [253]), including

those from Neisseria meningitidis, Geobacillus stearothermophilus and Campylobacter jejuni.

We show that domain insertion into a selected AcrIIC1 surface site dramatically enhances

inhibition of Neisseria meningitidis (Nme)Cas9. On top, re-designing the Cas9-binding surface

yielded AcrIIC1X, a potent Staphylococcus aureus (Sau)Cas9 inhibitor. Our work complements

the discovery of natural Acrs by providing engineering strategies to improve Acr function for

biotechnological applications.

3.3 Results

3.3.1 Domain insertion into AcrIIC1 boosts NmeCas9 inhibition

AcrIIC1 binds the conserved catalytic HNH domain and locks Cas9 in a DNA binding-competent

but catalytically inactive state. This unique inhibitory mechanism might explain why AcrIIC1

is a rather weak inhibitor [248] compared with its related proteins AcrIIC3, -C4 and -C5, which

either interfere with Cas9 DNA binding [248, 253] or mediate cleavage of the Cas9-loaded

single guide (sg)RNA20. Importantly, biochemical assays suggest tight binding of AcrIIC1 to

the NmeCas9 HNH domain [253]. We hypothesized that inserting an exogenous domain into

AcrIIC1 could perturb the conformational freedom and/or stability of the components in the

Cas9–sgRNA complex. This, in turn, could enhance Cas9 inhibition, provided the inhibitor

would still bind tightly to the HNH domain (Fig. 3.1, left). To test this hypothesis, we first

investigated the structure of the AcrIIC1–HNH domain complex for AcrIIC1 surface sites that

could be amenable for domain insertion. AcrIIC1 loop 5 appeared to be an ideal candidate

(Sup. Fig. 3.1), as this loop is surface exposed and distal from the HNH-interacting surface

necessary for the activity that we wished to preserve. We then created 11 different AcrIIC1

domain fusions that carry an mCherry (∼27 kDa), Avena sativa LOV2 (∼17 kDa) or PDZ domain

(∼9 kDa) in loop 5 and optional, flanking GS-linkers or short deletions (Sup. Fig. 3.2a). These

chimeric Acrs were screened for their ability to inhibit NmeCas9 cleavage of the IL2RG locus
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in HEK 293T cells (Sup. Fig. 3.2b).

Figure 3.2: Domain insertion into AcrIIC1 yields a highly potent NmeCas9 inhibitor. a: HEK
293T cells were cotransfected with plasmids expressing NmeCas9, an sgRNA targeting the indicated
locus as well as the indicated Acr. The vector mass ratio used during transfection was Acr/Cas9 = 1:4.
At 72 h post-transfection, indel frequencies were analyzed by TIDE sequencing [202]. Lines in the
plots indicate means, dots individual data points for n = 3 independent experiments. Neg, negative
control (Cas9 only); Pos, positive control (Cas9 + sgRNA); Ch., AcrIIC1-mCherry chimera. **P < 0.01,
***P < 0.001 by one-way ANOVA with Bonferroni correction. b: AcrIIC1-mCherry chimeras outperform
wild-type AcrIIC1 and AcrIIC3. Cells were cotransfected with vectors encoding NmeCas9, a firefly
luciferase reporter and corresponding reporter-targeting sgRNA as well as the indicated Acr followed
by luciferase assay. Bars indicate means, error bars the s.d. for n = 3 independent experiments. a,b:
N, negative (Cas9 only (a) or reporter only (b) control (Ctrl.)); P, positive control (Cas9 + sgRNA (a)
or reporter + Cas9 (b)). *P < 0.05, **P < 0.01, by one-way ANOVA with Bonferroni correction. AAVS1,
adeno-associated virus integration site 1; F8, Factor VIII gene.

To measure Cas9 inhibition, we employed tracking of indels by decomposition (TIDE) sequenc-

ing [202], which is a quantitative assay previously shown to correlate well with next-generation

sequencing (NGS) data of indel measurements [254]. Complementarily, we also used T7

endonuclease I assay, which has been shown to have a rather limited correlation to NGS data

[254] and was thus only used for qualitative assessment of Cas9 inhibition.

Remarkably, several AcrIIC1-LOV2 and AcrIIC1-mCherry chimeras mediated highly potent

NmeCas9 inhibition, largely exceeding that of the parent AcrIIC1, as indicated by TIDE (Fig.

3.2a) and qualitatively confirmed by T7 endonuclease assay (Sup. Figs. 3.2b–3.4).
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Of note, the chimera containing the PDZ domain showed reduced inhibition compared with

wild-type AcrIIC1 (Sup. Figs. 3.1b and 3.3a). The AcrIIC1-mCherry chimera no. 10 (Sup. Fig.

3.2a) showed a particularly strong improvement in NmeCas9 inhibition in comparison with

wild-type AcrIIC1 on the tested loci (Fig. 3.2a and Sup. Fig. 3.3). Moreover, this chimera

was also superior to wild-type AcrIIC1 when tested on Nme2Cas9 (Sup. Fig. 3.5), which, in

contrast to the four-nucleotide NmeCas9 protospacer adjacent motif (PAM), only requires a

dinucleotide PAM [255].

To further characterize the gain in inhibition, we employed a reporter assay in which NmeCas9

cleaves a firefly luciferase transgene, thereby resulting in luciferase knockout. We cotransfected

cells with the reporter, NmeCas9 and either the parent AcrIIC1 or different, engineered AcrIIC1-

mCherry chimeras. As a benchmark, we also included AcrIIC3 (Fig. 2b), so far the most potent

NmeCas9 inhibitor in mammalian cells [208]. During transfection, we varied the Acr/Cas9

vector ratios from 3:1 to 1:20. The chimeric inhibitors outperformed both wild-type AcrIIC1 as

well as AcrIIC3 and showed potent Cas9 inhibition even at very low Acr/Cas9 vector ratios (Fig.

3.2b). Together, these experiments demonstrate that domain insertion can yield Acr proteins

with superior inhibition potency than that of natural Acrs, thereby enabling extremely tight

control of Cas9 activity.

3.3.2 Mechanistic insights into effects of domain insertion

To investigate the reasons behind this gain in inhibition potency, we first explored the in-

hibitory mechanism of AcrIIC1-mCherry. Electro mobility shift assays and complementary in

vitro DNA cleavage with purified protein showed that, similar to wild-type AcrIIC1 (ref. [253]),

AcrIIC1-mCherry chimera no. 10 blocks Cas9 catalytic function, but does not interfere with

DNA binding (Fig. 3.3a,b). Of note, we observed that both AcrIIC1 and AcrIIC1-mCherry were

able to impair DNA cleavage only upon pre-incubation of Acr with Cas9 before the addition

of sgRNA, but not when the Acr was added to pre-assembled Cas9–sgRNA complexes (Fig.

3.3b and see Discussion). Importantly, AcrIIC1-mCherry was able to efficiently block Cas9-

mediated DNA cleavage at lower Acr/Cas9 molar ratios as compared with wild-type AcrIIC1

(Fig. 3.3b), showing that the chimera is more potent in impairing cleavage activity. Next, we

performed western blot experiments to assess the impact of domain insertion on Acr protein

levels in cells. The chimeric inhibitor was expressed at higher levels compared with wild-type

AcrIIC1, which likely contributes to the particularly potent inhibition observed in vivo (Fig.

3.3c).

These data indicate that AcrIIC1-mCherry retains the same inhibitory mechanism of wild-

type AcrIIC1 but does so with increased inhibitory potency of the Cas9 catalytic activity, and

abundance of the chimeric Acr in cells (Fig. 3.3c).

Finally, we also assessed the impact of the Acrs on NmeCas9 protein levels. We found that

NmeCas9 levels were strongly reduced (>2-fold) in presence of both AcrIIC1 and AcrIIC1-

mCherry, but not in presence of AcrIIA4 (an Acr specific to Streptococcus pyogenes (Spy)Cas9,
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Figure 3.3: Enhanced potency of the AcrIIC1-mCherry chimeric inhibitor arises from multiple
factors. a: Cy3-labeled targeting strand and 5-Cy5-labeled NTS were annealed and incubated with
NmeCas9, sgRNA and varying amounts of the indicated Acr. Cas9 DNA binding was analyzed on a
native gel using Cy5 as readout. b: In vitro DNA cleavage assays conducted in presence of AcrIIC1
or AcrIIC1-mCherry chimera 10. The sgRNA was added to NmeCas9 either before the Acr (top) or
afterwards (bottom). a,b: Data correspond to a single experiment. c:, Analysis of Acr expression in HEK
293T cells by western blot 2 d post-transfection. Full-length gel image is shown in Sup. Fig. 3.18. d:
Constructs encoding HA-tagged NmeCas9 and (untagged) Acrs were cotransfected in a vector mass
ratio of 1:1. NmeCas9 protein levels were analyzed by western blot 2 d post-transfection. c,d: Top,
lines in plots indicate means, dots individual data points, n = 3 independent experiments. Bottom,
representative western blot image. Chim., chimera.
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used as control) or GFP (control) (Fig. 3.3d). This suggests that on top of preventing Cas9

from taking on a cleavage-competent conformation, the presence of AcrIIC1-mCherry as well

as wild-type AcrIIC1 reduces Cas9 protein levels, indicating that these Acrs might limit Cas9

expression and/or stability (see Discussion).

3.3.3 Computational design yields a potent SauCas9 inhibitor

The Cas9 from S. aureus is a type II-A CRISPR effector widely employed for in vivo genome

editing [256]. Due to its favorable, small size (3.2 kb), SauCas9 can easily be packaged into

Adeno-associated virus (AAV) particles [256], which are prime vector candidates for thera-

peutic CRISPR applications [216, 257]. We speculated that AcrIIC1 might represent an ideal

starting point to engineer an artificial SauCas9 inhibitor (Fig. 3.1, right), as the overall structure

of the SauCas9 HNH domain is similar to that of NmeCas9 (ref. [253]), although substantial

differences exist at the sequence level (sequence identity is only 33.7%; Sup. Fig. 3.6). Recent

data indicate that AcrIIC1 can inhibit SauCas9 function, albeit incompletely [252]. To indepen-

dently confirm SauCas9 inhibition by AcrIIC1 in human cells, we coexpressed AcrIIC1 in HEK

293T together with SauCas9 and sgRNAs targeting different loci, and then performed T7 en-

donuclease assays. Editing was still observed in presence of AcrIIC1, albeit lower as compared

with the positive control (Sup. Fig. 3.7). This suggested that AcrIIC1 can also bind the SauCas9

HNH domain, though likely with a compromised affinity. This functional observation was

further confirmed by surface plasmon resonance affinity measurements of recombinantly

expressed and purified AcrIIC1 and the HNH domains of SauCas9 and NmeCas9. We observed

a striking difference when comparing the affinities of AcrIIC1 to NmeCas9 HNH (KD = 0.95

nM) and SauCas9 HNH (KD = 370 nM) (Sup. Fig. 3.12i,k), explaining the low efficacy of AcrIIC1

on the SauCas9 target. To rationalize the affinity difference, we generated a structural model

of the SauCas9 HNH domain in complex with AcrIIC1 and investigated the AcrIIC1 interacting

surface as compared with the NmeCas9 HNH domain (Fig. 3.4a). Two regions in SauCas9 HNH

domain showed suboptimal contacts to corresponding AcrIIC1 residues (Fig. 3.4a). To screen

for residue variants that could optimize the interfacial contacts in these two regions, we per-

formed in silico mutagenesis using Rosetta design [258] followed by manual inspection, which

suggested ten AcrIIC1 candidate mutations predicted to improve binding to the SauCas9 HNH

domain (Sup. Figs. 3.8 and 3.9). We tested these mutants, first individually, in genome editing

experiments targeting the EMX1 locus and then iteratively combined the most promising

variants in subsequent screening rounds (Sup. Fig. 3.10). Of note, we decreased the Acr/Cas9

ratio with each screening round to better resolve the performance of improved candidates.

After only three rounds, we arrived at a triple mutant referred to as AcrIIC1X (N3F, D15Q, A48I),

which achieved a near-complete blockage of EMX1 editing (Sup. Fig. 3.10). According to our

structural model, these point mutants improved the shape and chemical complementarity of

the Cas9-interacting surface, providing a rational basis for the enhanced activity (Fig. 3.4b,c

and Sup. Fig. 3.11). Importantly, similar to AcrIIC1, AcrIIC1X was monomeric (Sup. Fig.

3.12a–d) and well folded in solution according to circular dichroism spectroscopy (Sup. Fig.

3.12e–h). In line with our design hypothesis, AcrIIC1X exhibited improved affinity to the
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SauCas9 HNH domain (KD = 53 nM) as compared with wild-type AcrIIC1 (KD = 370 nM) (Sup.

Fig. 3.12k,l). While affinity of AcrIIC1X to the NmeCas9 HNH domain was likewise reduced, it

was still in the low nanomolar range (KD = 6.9 nM; Sup. Fig. 3.12j).

Figure 3.4: Structure-guided design of AcrIIC1X, an Acr protein targeting SauCas9. a Structure
showing AcrIIC1 binding to the NmeCas9 HNH domain surface. Red patches indicate regions at
which the SauCas9 HNH surface displays deviations of at least 1 Å as compared with the NmeCas9
HNH surface, highlighting the most important sites to target by mutagenesis. b,c: Comparison of
wild-type AcrIIC1 residues (D15 (b), N3 and A48 (c)) binding to the NmeCas9 HNH surface with the
corresponding, engineered residues (15Q (b), 3F and 48I (c)) binding to the SauCas9 HNH surface.
The designed mutants exhibited improved shape and chemical complementarity to SauCas9 HNH,
providing a structural rationale for enhancements in binding affinity.

Next, we characterized AcrIIC1X performance in detail by targeting SauCas9 to different

loci (Fig. 3.5a). AcrIIC1X efficiently suppressed SauCas9 genome editing at all tested loci,

showing highly improved inhibition as compared with the parental AcrIIC1 according to TIDE

measurements (Fig. 3.5b) and qualitatively confirmed by T7 endonuclease assays (Sup. Fig.

3.14a). Akin to wild-type AcrIIC1, AcrIIC1X was unable to fully inhibit NmeCas9-mediated

editing (Sup. Fig. 3.15). Fusion of an mCherry domain to AcrX loop 5 gave rise to a chimera

(AcrIIC1X*), which was able to block NmeCas9-mediated editing, while likewise maintaining

SauCas9 inhibition (Sup. Fig. 3.15).

Subsequently, to test the performance of AcrIIC1X in different mammalian cell lines and upon

viral delivery, we packaged (1) AcrIIC1X as well as (2) SauCas9 and sgRNAs targeting the EMX1,

Grin2B or CXCR4 locus into AAV serotype 2. We then transduced HEK 293T (human embryonic

kidney), U2OS (human osteosarcoma) or U87 (human primary glioblastoma) cells with these

vectors and found that indel formation was reduced to undetectable levels in practically all

samples that received AcrIIC1X (Fig. 3.5c and Sup. Fig. 3.14b).
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Figure 3.5: Characterization of AcrIIC1X, a designer SauCas9 inhibitor. a: Schematics of vectors
and experimental setup. b: HEK 293T cells were cotransfected with plasmids expressing SauCas9; an
sgRNA targeting the EMX1, GRIN2B or HBB locus; and either AcrIIC1 or AcrIIC1X, followed by TIDE
sequencing [202]. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by one-way ANOVA with Bonferroni
correction. c: Cells were cotransduced with AAV vectors expressing (1) SauCas9 and an sgRNA targeting
the indicated loci and (2) AcrIIC1X, followed by TIDE sequencing. b,c: Lines in the plots indicate means,
dots individual data points for n = 3 independent experiments. ITR, inverted terminal repeat.

3.3.4 A hepatocyte-specific SauCas9 ON-switch

Finally, to demonstrate the great potential of AcrIIC1X for genome engineering applications,

we aimed at employing AcrIIC1X to confine SauCas9 activity to selected cell types. To this

end, we build on an approach we refer to as Cas-ON, which was previously developed by us

[244] and others [259, 260]. Cas-ON harnesses cell-specific microRNAs (miRNAs), such as

miR-122 which is solely expressed in hepatocytes, to de-target Acr expression from selected

cell types [244]. To this end, binding sites for a given miRNA are inserted into the 3 UTR of an

Acr transgene. Upon codelivery of the miRNA-dependent Acr transgene, Cas9 and an sgRNA,

Acr expression is knocked down by RNA interference specifically in the target cell type, thereby

permitting Cas9 to be active. In any off-target cell type lacking the miRNA trigger, the Acr is

expressed and Cas9 is thus blocked. Importantly, the Cas-ON approach can be applied to

cultured cells [244, 259, 260] and was recently demonstrated to function in mice as well [259].

Thus far, the Cas-ON strategy was only implemented for SpyCas9 and NmeCas9 using AcrIIA4,

AcrIIC1 and AcrIIC3 (refs. [244, 259, 260]).

We hypothesized that AcrIIC1X should facilitate adapting the Cas-ON approach to SauCas9,

which holds enormous potential for in vivo genome editing applications [256]. To this end,

we inserted target sites for miR-122 into the 3 UTR of the AcrIIC1X transgene (or AcrIIC1). As

control we employed Acr constructs with a 3 UTR of identical length, but lacking the miR-122

target sites (scaffold).

To assess whether the miR-dependent AcrIIC1X enables release of SauCas9 activity selectively

in the presence of miR-122, we first cotransfected plasmids encoding SauCas9, an sgRNA

targeting the EMX1 locus and the Acr transgenes into HEK 293T cells, which naturally do not
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express miR-122. We also artificially overexpressed miR-122 or a control miRNA (miR-155)

and investigated indel formation at the target locus. In samples transfected with the miR-122-

dependent AcrIIC1X construct, editing was efficiently suppressed in the absence of miR-122

(OFF state), but released almost to the levels of the positive control in the presence of miR-122

(ON state; Sup. Fig. 3.16a,b). In contrast, the miR-122-dependent AcrIIC1 showed substantial

editing even in the absence of miR-122 (Sup. Fig. 3.16a,b), indicating that the OFF state of the

Cas-ON switch is highly leaky when using AcrIIC1.

Finally, to investigate whether the miR-122-dependent AcrIIC1X facilitates cell type-specific

editing, we packaged the different components of our Cas-ON system (AcrIIC1X or AcrIIC1

either with or without mir-122 target sites, SauCas9 and an sgRNA targeting EMX1) into

AAV serotype 2. We then cotransduced Huh-7 cells, a hepatocyte-derived cell line naturally

expressing high miR-122 levels [244], or HEK 293T cells (control cells) with these vectors and

qualitatively measured genome editing efficiency in the presence of the different Acr variants

by T7 endonuclease assay. In the Huh-7 samples, editing was observed in the presence of

both the miR-122-dependent AcrIIC1 as well as AcrIIC1X (Sup. Fig. 3.16c). Very importantly,

however, only the miR-122-dependent AcrIIC1X, but not AcrIIC1, potently inhibited editing in

the off-target cell line (HEK 293T; Sup. Fig. 3.16d). These data demonstrate that AcrIIC1X, but

not AcrIIC1, enables the implementation of the Cas-ON switch for SauCas9, showcasing the

importance of highly potent Acrs in the context of biological applications.

3.4 Discussion

In this work, we applied protein engineering to improve the inhibition potency of AcrIIC1

for two different Cas9 orthologues, namely NmeCas9 and SauCas9. By inserting exogenous

protein domains into a computationally selected surface site on AcrIIC1, we first created

chimeric Acrs most of which showed enhanced efficacy on the NmeCas9 target (Fig. 3.2). The

improvement in inhibition could be allocated to two synergistic effects. On the one hand, in

vitro DNA cleavage assays showed that AcrIIC1-mCherry is more potent than wild-type AcrIIC1

in blocking Cas9 catalytic activity (Fig. 3.3b). This suggests that the fused mCherry domain

improves the AcrIIC1 inhibitory mechanism, potentially by perturbing the Cas9 conformation.

On the other hand, western blots indicated elevated protein levels for the chimeric inhibitor

(Fig. 3.3c), which is likely to contribute to the observed improvement of inhibition in cells.

Apart from these particularly notable differences, we also made two interesting mechanistic

observations that apply to both the chimeric Acrs and the parental AcrIIC1. First, we found

that both efficiently block Cas9-mediated DNA cleavage in vitro only when pre-incubated with

apo-Cas9 (that is, before adding the sgRNA). When applied to pre-assembled NmeCas9–sgRNA

complexes, however, AcrIIC1 can hardly block DNA cleavage (Fig. 3.3b). This suggests that the

HNH domain is less accessible to the Acr in the sgRNA-bound Cas9 state, while upon addition

of the Acr, the sgRNA can still bind. We speculate that this might be due to certain HNH domain

conformations or orientations in the sgRNA-bound and -unbound states. Secondly, we found
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that the presence of AcrIIC1-mCherry as well as wild-type AcrIIC1 reduces Cas9 protein

levels in cells, indicating that these Acrs might perturb Cas9 expression or stability. Of note,

Cas9 degradation has very recently also been proposed as a mechanism underlying Listeria

monocytogenes Cas9 inhibition by AcrIIA1 in bacteria [261]. This is particularly interesting as,

similar to AcrIIC1, AcrIIA1 targets the Cas9 HNH domain.

We note that the Acr chimera bearing the smallest domain (PDZ) was weaker as compared with

the parent AcrIIC1 (Sup. Fig. 3.2b). While we did not explore the reason behind the reduced

efficacy in this single case, we speculate that the presence of the PDZ domain might slightly

distort the AcrIIC1 structure or sterically clash with Cas9, resulting in decreased binding

affinity.

When re-designing AcrIIC1 toward improved inhibition of SauCas9, it was interesting to see

that although affinity to NmeCas9 HNH domain dropped considerably (Sup. Fig. 3.12i,j), it

remained sufficient as to facilitate NmeCas9 inhibition in human cells (Sup. Fig. 3.15). Akin

to its parent (AcrIIC1), NmeCas9 inhibition by AcrIIC1X could also be further improved by

domain insertion (AcrIIC1X*). Thus, apart from blocking SauCas9 function, AcrIIC1X and, in

particular, AcrIIC1X* are also well suited for applications requiring simultaneous blockage of

both Nme- and SauCas9. The promiscuity of AcrIIC1X/AcrIIC1X* can, however, also present

a limitation; for example, when the aim is to independently control SauCas9 and NmeCas9

function via multiple inhibitors. For such multiplexing applications, orthogonality would be

desired.

Generally, we reason that the domain insertion approach presented here might be well suited

for Acrs that already bind a given Cas orthologue with high affinity, but do not fully block

Cas function. The engineering success will then mainly depend on the presence of a surface

site on the Acr that (1) is amenable to domain insertion and (2) can interfere structurally

with Cas regions whose accessibility or conformational freedom is critical for Cas function.

Re-design of the binding surface, on the other hand, could aid in cases where the low binding

affinity of a natural Acr would fail to potently inhibit the Cas orthologue of interest. We reason

that surface re-design could be a promising approach for inhibitors that have considerable

broad-spectrum activity [262, 251, 253] and already some residual inhibitory effect on the

Cas orthologue of interest (as was the case for AcrIIC1 on SauCas9). Generally, this cross-

reactivity is due to similarities at the structural level in the region targeted by the inhibitors.

In the case of NmeCas9 and SauCas9, the structure of the AcrIIC1-targeted HNH domain is

indeed very similar (root-mean-square deviation (RMSD) of 1.06 Å (ref. [253])). In addition,

we speculate that it should also be possible to re-design the Cas9 binding surface of AcrIIC1

towards structurally more distal orthologues such as SpyCas9 (HNH domain structure RMSD

of 3.0 Å (ref. [253])). However, this would likely require the computational and experimental

sampling of a larger protein structural and sequence space.

Apart from re-designing natural Acrs, we note with excitement the rapid progress in the

protein engineering field, in particular with respect to the in silico design of protein–protein
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interactions [174]. This suggests that, in the future, it might also be possible to create fully

synthetic Acrs targeting selected Cas orthologues from scratch.

Recent reports show that SauCas9 can be inhibited by AcrIIA5 (refs. [252, 263, 264]) and

AcrIIA13-15 (ref. [262]). Very importantly, our work is not to be seen as a potential replacement

for the exploration of the natural Acr repertoires. On the contrary, we believe that structure-

guided protein engineering will greatly complement these efforts by providing rational means

to customize and improve CRISPR inhibitors beyond the limits of natural evolution. The

resulting designer Acrs may find wide application in the context of biotechnology and CRISPR-

based therapies [194, 162, 244, 245], and also provide an innovative strategy to safeguard

CRISPR technology.

3.5 Methods

3.5.1 Modeling of AcrIIC1-mCherry fusions

We used the Rosetta remodel application [211] to generate the AcrIIC1-mCherry chimeras

based on the structures for AcrIIC1 (PDB 5VGB) and mCherry (PDB 4ZIN). The N and C termini

of mCherry were absent in the crystal structure and were rebuilt using fragment insertion

together with cyclic coordinate descent [212] and kinematic closure [213, 214] with default

values. For the designed chimera with a two-residue deletion, approximately 1,500 decoys

were generated and subsequently clustered with an RMSD threshold of 5 Å into 27 clusters.

For the chimera with additional GSG-linkers at the N and C termini, approximately 1,200

structures were clustered in 100 clusters with the same parameters. Representative examples of

the three most populated clusters, which also have the lowest energies, are shown to illustrate

the potential structural diversity of the AcrIIC1-mCherry chimeras (Sup. Fig. 3.4). Analyses of

the Rosetta outputs, structural models and the biochemical data were performed using the

rstoolbox [265].

3.5.2 AcrIIC1 interface design

To screen in silico for mutations that could enhance the affinity of AcrIIC1 to SauCas9, we

modeled a complex of AcrIIC1 (originally crystalized with the HNH domain of NmeCas9, PDB

5VGB) with the SauCas9 HNH domain (PDB 5CZZ). A first structural alignment was performed

between the Nme- and SauCas9 domains using TM-align [266], revealing an RMSD of 2.32 Å

and several structurally and sequence-conserved interface regions. These conserved interface

regions were then used to refine the alignment, using the PyMOL (v.2.3.1) superposition

function, to obtain the modeled complex used for the design simulations. We then analyzed

the interfaces of both orthologues to pinpoint hotspots that could be designed in AcrIIC1 to

enhance its interaction with SauCas9. These hotspots were visualized with surface point-wise

distances between the two surfaces that were computed with a custom script. For each point

on the reference surface (Nme), the distance to the closest point on the other surface (Sau)
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was calculated. In the visualizations, these distances were binarized by setting a cutoff of 1 Å

(Fig. 3.4).

Next, we used RosettaScripts [267] to perform a single-site in silico mutagenesis, thereby

allowing subsets of amino acids (AAs) for each of the selected residues on AcrIIC1. From our

interface analysis we selected the following residues in AcrIIC1 for in silico mutagenesis: N3,

D15, R36, D43, D45, D46, K47, A48 and M77. The design protocol consisted of two rounds of

packing and minimization with fixed backbone. We generated a total of 51 designs and com-

puted their change in binding free energyΔΔG (ddG), number of hydrogen bonds (H-bonds)

across the interface, change in hydrophobic solvent-accessible surface area and interface

shape complementarity with the target SauCas9 HNH domain. Designs with improvedΔΔGs

compared with that of the AcrIIC1–SauCas9 complex (22 Rosetta energy units), increased

hydrogen bonds across the interface, improvements in solvent-accessible surface area and

shape complementarity were manually inspected. A total of ten substitutions on eight sites

were selected for experimental validation. Mutations N3F, N3Y and A48I were designed to

increase interface packing and π-stacking with the complementary hydrophobic patches on

SauCas9. D43F and D45F were generated to fill voids within the interface boundaries and

increase the hydrophobic packing. D15Q, R36D, D46E, K47Q and M77S were introduced to

balance the underlying charge distribution on SauCas9 within the respective region. The

overall design workflow is shown in Sup. Fig. 3.8.

After experimental validation and combination of the proposed mutations, the final AcrIIC1X

(AcrIIC1 with N3F, D15Q, A48I) was modeled following the same protocol. Electrostatic

properties for AcrIIC1, AcrIIC1X as well as the NmeCas9 and the SauCas9 HNH domains were

computed using the adaptive Poisson Boltzmann solver (APBS) plugin in PyMOL (Sup. Fig.

3.11). The mutation D15Q results in a less-negative potential, to optimize the interaction

with a patch of the interface in SauCas9 that has a lower positive potential as compared with

NmeCas9.

3.5.3 Protein expression and purification

DNA sequences of the designs were purchased from Twist Bioscience. For bacterial expression,

the DNA fragments were cloned via Gibson cloning [268] into a pET21b vector encoding a

peptide sequence containing a tobacco etch virus (TEV) protease cleavage site followed by a

terminal His-tag and transformed into Escherichia coli BL21(DE3). Expression was conducted

in Terrific Broth supplemented with ampicillin (100 µg ml1). Cultures were inoculated at an

optical density (OD)600 of 0.1 from an overnight culture and incubated in a shaker at 37 °C

and 220 r.p.m. After reaching an OD600 of 0.6, expression was induced by the addition of

0.4 mM IPTG and cells were further incubated overnight at 20 °C. Cells were harvested by

centrifugation and pellets were resuspended in lysis buffer (50 mM TRIS, pH 7.5, 500 mM

NaCl, 5% glycerol, 1 mg ml-1 lysozyme, 1 mM PMSF, 4 µg ml-1 DNase). Resuspended cells

were sonicated and clarified by centrifugation. Ni-NTA purification of sterile-filtered (0.22
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µm) supernatant was performed using a 5-ml His-Trap FF column on an ÄKTA pure system

(GE Healthcare). Bound proteins were eluted using an imidazole concentration of 300 mM.

Concentrated proteins were further purified by size exclusion chromatography on a Hiload

16/600 Superdex 75 pg column (GE Healthcare) using PBS buffer (pH 7.4) as mobile phase.

3.5.4 Circular dichroism

Far-UV circular dichroism spectra of AcrIIC1 and AcrIIC1X were collected between wave-

lengths of 190 and 250 nm on a Jasco J-815 circular dichroism spectrometer in a 1-mm path-

length quartz cuvette. Proteins were dissolved in 10 mM phosphate buffer at concentrations

between 20 and 40 µM. Wavelength spectra were averaged from two scans with a scanning

speed of 20 nm min1 and a response time of 0.125 s. The thermal denaturation curves were

collected by measuring the change in ellipticity at 220 nm from 20 to 90 °C with 2 or 5 °C

increments.

3.5.5 Size-exclusion chromatography combined with multi-angle light scattering

Multi-angle light scattering was used to assess the monodispersity and molecular weight of the

proteins. Samples containing 50–100 µg of protein in PBS buffer (pH 7.4) were injected into a

Superdex 75 10/300 GL column (GE Healthcare) using an HPLC system (Ultimate 3000, Thermo

Scientific) at a flow rate of 0.5 ml min-1 coupled in-line to a multi-angle light-scattering device

(miniDAWN TREOS, Wyatt). Static light-scattering signal was recorded from three different

scattering angles. The scatter data were analyzed by ASTRA software (version 6.1, Wyatt).

3.5.6 Affinity measurements

Surface plasmon resonance was used to determine the dissociation constants of the Acr

designs to the SauCas9 and NmeCas9 HNH domains. Experiments were performed on a

Biacore 8K at room temperature with HBS-EP+ running buffer (10 mM HEPES pH 7.4, 150

mM NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20) (GE Healthcare). Approximately 2,800

response units of SauCas9 HNH domain and 320 response units of NmeCas9 HNH domain

were immobilized via amine coupling on the methyl-carboxyl dextran surface of a CM5 chip

(GE Healthcare). Varying protein concentrations were injected over the surface at a flow rate of

30 µl min1 with a contact time of 120 s and a following-dissociation period of 600 s. Following

each injection cycle, ligand regeneration was performed using 10 mM glycine pH 2.5 (GE

Healthcare). Data analysis was performed using bivalent analyte kinetic fits within the Biacore

evaluation software (GE Healthcare).
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3.5.7 Mammalian expression construct design and cloning

Constructs used in this study are listed in Supplementary Table 2.15. Sequences for all plasmids

created in this study are provided as GenBank files in the Supplementary Data 1. The following

constructs were generated via classical restriction enzyme cloning or Golden Gate assembly

[269]. Oligonucleotides and synthetic double-stranded DNAs were obtained from IDT. PCRs

were performed either with Q5 Hot Start high-fidelity DNA polymerase (New England Biolabs)

or Phusion Flash high-fidelity polymerase (Thermo Fisher Scientific). After separating PCR

products or restriction digest products on agarose gels, bands of the desired size were cut out

and the DNA was extracted using the QIAquick gel extraction kit (Qiagen). Restriction enzymes

and T4 DNA ligase were obtained from Thermo Fisher Scientific. Constructs were transformed

into chemical-competent Top10 cells (Thermo Fisher Scientific). DNA was purified using the

QIAamp DNA Mini, Plasmid Plus Midi or Plasmid Maxi kit (all from Qiagen).

The plasmids pEJS654 All-in-One AAV-sgRNA-hNmeCas9 and Nme2Cas9_AAV co-encoding

NmeCas9 or Nme2Cas9 and a corresponding sgRNA expression cassette were kind gifts from

Erik Sontheimer (Addgene no. 112139 and no. 119924). The plasmid pX601-AAV-CMV::NLS-

SaCas9-NLS-3xHA-bGHpA;U6::BsaI-sgRNA co-encoding SauCas9 and a corresponding sgRNA

expression cassette were kind gifts from Feng Zhang (Addgene no. 61591). The luciferase

reporter plasmid was previously reported by us [162] and modified as follows: an VEGFA target

site (NTS33) [270] was inserted behind the firefly luciferase start codon and in frame with

the luciferase gene; an NTS33-targeting sgRNA was subsequently inserted into the modified

reporter. Vectors encoding AcrIIC1, AcrIIC3 and AcrIIA4 were previously reported by us

[162, 244]. AsLOV2-, PDZ- and mCherry-encoding sequences were obtained from IDT as

human-codon-optimized synthetic DNA fragments (gBlocks). AcrIIC1 chimeras were created

by Golden Gate cloning as follows: the plasmid encoding AcrIIC1 was first linearized at a

selected position in the AcrIIC1 coding sequence via around-the-horn PCR; LOV2-, PDZ- and

mCherry-coding sequences were then amplified by matching primers introducing optional GS-

linker-encoding sequences and ligated into the linearized vector backbone; point mutations

and protein tags were introduced via around-the-horn PCR via the primer overhangs. An

AcrIIC1-encoding vector bearing a cloning scaffold for the insertion of miRNA-binding sites

within the 3 UTR was previously reported by us [244] (Addgene no. 120300). A corresponding

construct for AcrIIC1X was generated by Golden Gate cloning. The miR-122-binding sites

were introduced into these vectors as annealed oligonucleotides, also by Golden Gate cloning.

Annealed oligonucleotides corresponding to the target site sequence were cloned into the

hybrid Cas9–sgRNA vectors via SapI (NmeCas9 and Nme2Cas9) or BsaI (SauCas9) restriction

sites as described previously [256, 270].

3.5.8 Cell culture and AAV lysate production

HEK 293T (human embryonic kidney), U87 (human primary glioblastoma; kindly provided

by Kathleen Börner, Heidelberg University Clinics) and U2OS (human osteosarcoma; kindly
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provided by Karsten Rippe, German Cancer Research Center (DKFZ), Heidelberg) were cul-

tured at 5% CO2 and 37 °C in a humidified incubator and maintained in phenol red-free

DMEM (Thermo Fisher/GIBCO) supplemented with 10% (v/v) fetal calf serum (Biochrom AG),

2 mM l-glutamine, and 100 U ml1 penicillin and 100 µg ml1 streptomycin (both Thermo Fish-

er/GIBCO). The U2OS medium was additionally supplemented with 1 mM sodium pyruvate

(GIBCO). Cell lines were free of mycoplasma contamination and authenticated before usage

(Multiplexion).

AAV-containing cell lysates were produced by seeding HEK 293T cells into six-well plates

(Corning) at a density of 350,000 cells per well. On the next day, cells were cotransfected

using 8 µl of Turbofect reagent (Thermo Fisher Scientific) per well and 1,333 ng of each of

the following plasmids: (1) an AAV vector plasmid carrying the transgenes to be delivered

flanked by inverted terminal repeats; (2) an AAV helper plasmid carrying rep and cap genes of

AAV serotype 2; and (3) an adenoviral helper plasmid providing the required helper functions

[271]. The AAV vector plasmid encoded (1) a dual transgene cassette expressing SauCas9

driven from a CMV promoter and sgRNA driven from a shortened U6 promoter, targeting

the EMX1, Grin2B or CXCR4 locus, in a single-stranded AAV context; (2) the same SauCas9

cassette but together with an empty sgRNA expression cassette (negative control); or (3) a

CMV promoter-driven AcrIIC1X transgene in a double-stranded AAV context. At 3 d after

transfection, cells were collected in 300 µl of PBS and lysed by subjection to five alternating

freeze-thaw cycles in liquid nitrogen and in a 37 °C water bath. Cell debris was separated by

centrifugation and the supernatant containing the AAVs was stored at 4 °C (for a maximum of

2 weeks) before usage.

3.5.9 Large-scale AAV production, purification and titration

For each AAV construct, HEK 293T cells were seeded in five 14-cm petri dishes at a density

of 4 × 106 cells per dish. After 2 d, cells were cotransfected with 14.7 µg per dish of each

of the following plasmids: (1) a plasmid encoding the transgene flanked by AAV inverted

terminal repeats; (2) a plasmid providing AAV rep and cap (from serotype 2); and (3) a plasmid

providing the adenoviral helper functions. Therefore, the plasmid DNA (73.5 µg of each,

plasmid 1, 2 and 3) was mixed with 6 ml of H2O, 7.9 ml of 300 mM NaCl (Sigma-Aldrich) and

1.75 ml of polyethylenimine (Polyscience). Mixes were incubated for 10 min and 3.2 ml was

added dropwise to each plate. Then, 3 d later, cells were collected and resuspended in 5 ml of

Benzonase buffer (50 mM Tris-HCl, 150 mM NaCl, 2 mM MgCl2, pH 8.5). Remaining plasmid

DNA was digested by the addition of 1 µl of highly concentrated Benzonase (Merck Millipore)

and 1 h incubation at 37 °C. Subsequently, cells were lysed by subjecting them to five freeze

and thaw cycles and AAVs were collected with the supernatant after centrifugation at 4,000g

and 4 °C for 15 min. The AAVs were purified using an iodixanol gradient as described by

Börner et al. [272]. Therefore, the supernatant was placed in ultracentrifugation tubes (Seton

Scientific) and underlaid with 1.5 ml of 15%, 25%, 40% and 60% iodixanol phases using a

Pasteur pipet. The gradients were centrifuged at 50,000 r.p.m. at 4 °C for 2 h (Beckman Coulter)
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and subsequently the interface between the 40% and 60% iodixanol phase, containing the

purified AAVs, was collected using a needle, aliquoted and stored at 80 °C.

To quantify AAV vector yields, quantitative PCR (qPCR) was performed using the RotorGene

6000 (QIAGEN), the SensimixII Probe kit (Bioline), primers (forward: 5-AACGCCAATAGGGACTTTCC;

and reverse: 5-GGGCGTACTTGGCATATGAT) and probe (5-FAM-CGGTAAACTGCCCACTTGGCAGT-

BHQ1) directed against the CMV promoter. RT–qPCR was performed using the following

program: 10 min at 95 °C, followed by 40 cycles of heating at 95 °C for 10 s and elongation at 60

°C for 20 s. After the run, samples and standard curve (based on a dilution of a plasmid with

known number of molecules) were analyzed with the accompanying RotorGene 6000 Series

Software 1.7.

3.5.10 Luciferase reporter assays

HEK 293T cells were seeded into 96-well plates at a density of 12,500 cells per well. For titration

experiments employing the chimeric Acrs (Fig. 3.2b), the cells were cotransfected on the

following day with (1) 33 ng of a dual luciferase reporter plasmid encoding a firefly and Renilla

luciferase gene and an sgRNA targeting the NTS33 site in the firefly reporter gene; (2) 33 ng of

a vector coexpressing NmeCas9 and an sgRNA targeting the NTS33 site; (3) 99, 33, 16.5, 6.6,

3.3 or 1.65 ng of Acr vector; and (4) 0, 66, 82.5, 92.4, 95.7 or 97.35 ng of an irrelevant stuffer

plasmid (pBluescript), respectively. The stuffer plasmid was added to keep the total amount of

DNA transfected constant in all samples. Transfections were performed using Lipofectamine

3000 reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol.

At 2 d post-transfection, the cells were washed with 1x PBS and lysed with 30 µl of passive

lysis buffer (Promega) for 30 min, while being shaken on a thermomixer (Eppendorf) at 500

r.p.m. and at room temperature. Finally, luciferase activity was analyzed using the Dual-

Glo luciferase assay system (Promega). In short, 10 µl of lysate was transferred to a white

sample plate and photo counts were measured with a GLOMAX 96 microplate luminometer

(Promega). Integration time was 10 s with a delay of 2 s between substrate injection and

measurement. To calculate the reported luciferase activity values, firefly luciferase photon

counts were normalized to those obtained for Renilla luciferase.

3.5.11 T7 endonuclease assay and TIDE sequencing

Genomic target sites relevant for T7 and TIDE experiments are listed in Supplementary Table

2.16.

For transfection-based experiments, HEK 293T cells were seeded in 96-well plates (Eppendorf)

at a density of 12,500 cells per well. For AAV transduction-based experiments, HEK 293T, U2OS

and U87 cells were seeded at a density of 3,500, 3,000 and 3,000 cells per well, respectively. For

experiments with SauCas9, transfections were performed with JetPrime using 0.3 µl of JetPrime

reagent per well, except for the experiment shown in Sup. Fig. 3.15, in which Lipofectamine

75



Chapter 3 Computational design of anti-CRISPR proteins with improved inhibition potency

3000 was employed for transfection of all samples including those with SauCas9. Note that

the CXCR4 target site in Sup. Fig. 3.14a is the CXCR4-1 site in Supplementary Table 2.16. For

NmeCas9 and Nme2Cas9 experiments (Fig. 3.2a and Sup. Figs. 3.3 and 3.5), transfections

were conducted with Lipofectamine 3000 using 0.2 µl of Lipofectamine reagent, 0.4 µl of p3000

and 200 ng of total DNA per well. Cells were cotransfected with 100, 133 or 160 ng of Acr

vector and 100, 67 or 40 ng of all-in-one Cas9/sgRNA vector, corresponding to Acr/Cas9 vector

ratios of 1:1, 2:1 and 4:1, respectively, as indicated in Fig. 3.2a and Sup. Figs. 3.3, 3.5 and

3.15. Transfections for the initial screen of the chimeric AcrIIC1 variants (Sup. Fig. 3.2b) were

performed with only 100 ng of total DNA per well, using a 1:1 ratio of Cas9/sgRNA and Acr

vectors. For the miRNA overexpression experiment (Sup. Fig. 3.16a,b), 30 ng of SauCas9, 120

ng of AcrIIC1X (or AcrIIC1) and 80 ng of the miRNA-overexpressing plasmid were cotransfected

using 0.2 µl of Lipofectamine 3000 and 0.4 µl of p3000 per well.

For AAV-based experiments (Fig. 3.5c), cells were cotransduced with 50 µl of AcrIIC1X and 50

µl of Cas9/sgRNA AAV lysates on 2 subsequent days. As negative and positive controls, cells

were transduced with 50 µl of Cas9-only AAV lysate or Cas9/sgRNA AAV lysate, respectively,

topped up to 100 µl with PBS (to keep the transduction volume identical in all samples). Note,

the CXCR4 target site in Sup. Fig. 3.14b is the CXCR4-2 site in Supplementary Table 2.16.

For the miRNA-122-dependent editing experiments (Sup. Fig. 3.16c,d), HEK 293T cells or

Huh-7 cells were cotransduced with titrated AAVs encoding SauCas9, an EMX1-targeting

sgRNA and the respective Acrs on 2 subsequent days. The multiplicity of infection was 105 for

SauCas9 and 5 × 104 for the inhibitors. Cells were lysed 2 d after the second transduction.

At 3 d post-transfection or post-(initial) transduction, cells were harvested in DirectPCR

Lysis Reagent (Peqlab) supplemented with Proteinase K (Sigma) and incubated at 55 °C for

at least 6 h, followed by Proteinase K inactivation at 85 °C for 45 min. The CRISPR–Cas9-

targeted genomic loci were then amplified via PCR with appropriate primers (Supplementary

Table 2.17) using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs). Indel

frequencies were assessed by T7 endonuclease assay or TIDE sequencing [202].

For T7 assays, 5 µl of the target amplicons was diluted 1:4 in 1x NEB buffer 2 and subsequently

denatured at 95 °C for 5 min and re-annealed by applying a ramp rate of 2 °C s1 at 95 to 85

°C and 0.1 °C s1 at 85 to 25 °C using a nexus GSX1 Mastercycler (Eppendorf). Subsequently,

0.5 µl of T7 endonuclease (New England Biolabs) was added, and samples were incubated

at 37 °C for 15 min, followed by analysis on a 2% TBE agarose gel. The PCR input and T7

cleavage fragment bands were then quantified using the gel analysis tool in ImageJ [273, 274]

(http://imagej.nih.gov/ij/). The frequency of insertions and deletions was calculated using

the formula: Indel(%) = 100× (1–(1–Fraction cleaved)×0.5), whereas the fraction cleaved is

calculated as

Fraction cleaved =

∑
Cleavage product bands∑

Cleavage product bands + PCR input band
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Full-length gel images are shown in Sup. Fig. 3.18.

For TIDE sequencing analysis, the target locus PCR amplicon was purified from a 1% agarose

gel using the QIAquick Gel Extraction Kit (Qiagen). The DNA concentration was determined

using a nano-photometer (Nanodrop, Thermo Fisher Scientific) and DNA was diluted to a final

concentration of 75 ng µl1 and sent for Sanger sequencing (Eurofins). Percentages of modified

sequences were then quantified using the TIDE web tool (https://tide.deskgen.com/).

3.5.12 Western blot

HEK 293T cells were seeded in six-well plates with 4.5 × 105 cells per well. On the following

day, 1,000 ng of total DNA was transfected using the Lipofectamine 3000 Transfection kit

(Thermo Fisher Scientific). To investigate the effect of AcrIIC1, the chimera 10, AcrIIA4 or

a GFP control construct on NmeCas9 expression, 500 ng of the respective construct was

cotransfected with 500 ng of a construct coexpressing HA-NmeCas9 and a nontargeting sgRNA.

To quantify expression levels of AcrIIC3, AcrIIC1, chimera 10 and AcrIIC1X, an N- and C-

terminal flagged version of the respective inhibitor was created and 1,000 ng of corresponding

DNA was transfected per well as follows. A DNA mix containing 125 µl of Optimem and 5 µl of

P3000 and a Lipofectamine mix comprising 5 µl of Lipofectamine 3000 and 125 µl of Optimem

were prepared according to the manufacturer’s protocol. Subsequently, the Lipofectamine

and DNA mixes were combined and incubated for 10 min and then added dropwise to the

cells. Then, 2 d later, cells were collected in 150 µl of RIPA buffer (50 mM Tris (Roth) pH

8.0, 150 mM NaCl, 1 mM EDTA (GRÜSSING GmbH), 1% Triton (Merck), 0.1% SDS (SERVA

Electrophoresis GmbH), 0.5% sodium deoxycholate (Merck), Protease Inhibitor (cOmplete,

Roche)) per well and incubated on ice for 10 min. Subsequently, samples were centrifuged

at 13,000 r.p.m. at 4 °C and the supernatant was collected. Protein concentration in the

supernatant was measured using the BCA Protein Assay Kit (Thermo Scientific) and Laemmli

Sample Buffer (BioRad) with 1:10 diluted β-mercaptoethanol (Sigma-Aldrich) was added to

400 µg of protein. For the NmeCas9 experiment, 100 µg of protein was loaded on a 4–15%,

ten-well precast gel (BioRad), as were the prestained protein ladder (Thermo Scientific) and

the MagicMark ladder (Thermo Scientific) that is stained by the secondary antibody. For the

inhibitor experiment, a 17.5% acrylamide gel was prepared using 2.65 ml of H2O, 2.2 ml of

40% acrylamide (Roth), 1.3 ml of 1.5 M Tris (pH 8.8), 50 µl of 10% SDS, 50 µl of APS and 6

µl of TEMED. The samples were transferred to a nitrocellulose membrane using a semi-dry

transfer system (BioRad) and the membrane was blocked using 5% milk powder (Roth) in

tris-buffered saline buffer (TBS) (ChemCruz) with 1% Tween (Roth) for 1 h. For the NmeCas9

experiment, the membrane was cut into two pieces at around 80 kDa. The upper part was

incubated with the primary antibody against the HA-tag (Santa Cruz, sc-7392, 1:1,000) and

the lower part with the primary antibody against Hsp60 (Santa Cruz, sc-1052, 1:1,000) in

5% milk powder in TBS supplemented with Tween 20 (TBS-T) overnight. On the following

day, the upper part of the membrane was treated with a secondary antibody against mouse

IgG (Jackson Immuno Research, 115-035-068, 1:5,000) and the lower part of the membrane
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with a secondary antibody against goat IgG (Santa Cruz, sc-2768, 1:5,000) for 1 h. For the

inhibitor experiment, the membrane was first incubated with a primary antibody against the

Flag-tag (Sigma, F1804, 1:1,000) overnight and subsequently with the secondary antibody

against mouse IgG for 1 h before it was imaged. In a second round, the membrane was first

washed with TBS-T for 6 h and incubated with the primary antibody against Hsp60 overnight,

followed by incubation with the secondary antibody against goat IgG. The image was obtained

by using a two-component chemiluminescence substrate for the secondary antibody-coupled

horseradish peroxidase (Biozym).

3.5.13 In vitro DNA cleavage assay

The target DNA for the in vitro cleavage assay was cloned into pUC19 and linearized by the

ScaI restriction enzyme before use. A 10-µl reaction of 100 nM RNP-Acr protein mix and 300

ng of target DNA was set up in reaction buffer (20 mM Tris pH 7.5, 100 mM KCl, 5 mM MgCl2,

1 mM DTT, 5% glycerol) as follows (samples were kept on ice if not indicated otherwise).

NmeCas9 and the sgRNA were either pre-mixed in reaction buffer, then the mix incubated

on ice for 15 min (to allow RNP formation) and then the Acr added followed by incubation

for another 15 min; or the Acr and NmeCas9 were mixed first, then incubated on ice for 15

min followed by addition of the sgRNA and incubation for another 15 min (as indicated in

Fig. 3.3b). An NmeCas9/sgRNA ratio of 1:1.1 was used. Ratios of RNP/Acr were as indicated in

Fig. 3.3b. Final reaction mixes were incubated at 37 °C for 10 min. Subsequently, the reaction

was stopped by adding 2 µl of 6× loading dye and target DNA cleavage was analyzed on a 1%

agarose gel. Sup. Fig. 3.19 shows the Coomassie staining of the purified proteins used for the

in vitro DNA cleavage assay.

3.5.14 Electrophoretic mobility shift assay

Binding substrates were prepared by mixing equal volumes of 4 µM 5-Cy3-labeled 53-nucleotide

targeting strand (TS) with 4 µM 5-Cy5-labeled 53-nucleotide nontargeting strand (NTS), fol-

lowed by incubation at 95 °C for 10 min and strand annealing at room temperature. Forked

double-strand DNA with the protospacer region not complementary was used to facilitate

DNA binding to NmeCas9. Then, 6 µl of reaction buffer (20 mM Tris pH 7.5, 150 mM NaCl)

was incubated on ice with 1 µl of 2 µM NmeCas9 and 1 µl of 1, 2, 8 or 20 µM Acr for 15 min.

Next, 1 µl of 2 µM sgRNA was added and incubated on ice for 30 min. Finally, 1 µl of 2 µM

dsDNA-53-32M was added, followed by incubation for another 30 min on ice. Cas9 DNA

binding was analyzed by running a 5% native gel followed by detection of the NTS signal with a

FluorChem system (the Cy3 signal was not used for analysis, as Cy3 exhibits a strong cross-talk

with the mCherry part of AcrIIC1-mCherry).
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3.5.15 Statistical analysis

Individual data points correspond to independent experiments with cells that were seeded and

transfected/transduced independently and on different days. Each data point shown for the

luciferase experiments further represents the mean of three technical replicates, that is, cell

cultures in different wells that were transfected and treated in parallel. Reported differences

between groups were analyzed for statistical significance by one-way analysis of variance

(ANOVA) and Bonferroni’s corrected post-hoc test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P <

0.0001. P < 0.05 was considered statistically significant.
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3.6 Supplementary information

Supplementary Figure 3.1: Identification of a loop amenable to domain insertion. Loop 5 (in
red) is located on the opposite site of the HNH-domain binding interface. It connects an α-helix and a
β-sheet via two residues (Tyrosine 70, Alanine 71). Structures shown correspond to PDB 5VGB.

Supplementary Figure 3.2: Screening of AcrIIC1 domain insertion variants. a: Schematic
of chimeric Acrs. The chimeras comprise AcrIIC1 bearing an Avena sativa LOV2, mCherry or PDZ
domain inserted into loop 5. The constructs carry optional GS linkers flanking the inserted domain
(black residues) or deletions in loop 5. AcrIIC1 residue L65 is indicated. b: Screen of chimeric Acrs in
HEK 293T cells. Cells were co-transfected with vectors expressing NmeCas9, the indicated Acr and a
sgRNA targeting the IL2RG locus followed by T7 endonuclease assay. The Acr:Cas9 vector ratio during
transfection was 1:1. Bars indicate means, error bars the SD and dots individual data points for n = 3
independent experiments. Numbers correspond to the constructs shown in a. Neg, negative control
(Cas9 only). Pos, positive control (Cas9 + sgRNA).
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Supplementary Figure 3.3: T7 endonuclease assay analysis of N. meningitides Cas9 inhibition
by AcrIIC1 chimeras. a,b: HEK 293T cells were co-transfected with vectors expressing NmeCas9, the
indicated Acr and sgRNAs targeting different genomic loci followed by T7 endonuclease assay. In a,
Acr:NmeCas9 vector ratio used during transfection was 1:1, while in b, the indicated, low Acr:NmeCas9
vector ratios were used. Representative T7 gel images and corresponding quantification of indel
frequencies are shown. Lines in plots show means, dots are individual data points for n = 4 (DHFR,
AAVS1 and IL2RG locus) or n = 3 (F8 locus) independent experiments. Chim., AcrIIC1-mCherry
chimeras in Sup. Fig. 3.2a. In., input band. T7, T7 cleavage fragments. N, negative Cas 9 only control. P,
positive control Cas9 + sgRNA. Full-length gel images are shown in Sup. Fig. 3.18.
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Supplementary Figure 3.4: Acr-mCherry chimera conformations. For the shown chimera, the
mCherry was inserted after residue Q69 and before Y72. Residues Y70 and A71 were deleted. Represen-
tative examples of the three most populated clusters are shown, aligned to the structure of AcrIIC1 in
complex with the NmeCas9 HNH domain. a Side view. b Top view. The models are based on PDB 5VGB
and 4ZIN.

Supplementary Figure 3.5: AcrIIC1 chimeras show improved inhibition of Nme2Cas9. HEK
293T cells were co-transfected with vectors encoding NmeCas9, the indicated Acr and sgRNAs targeting
the VEGFA or FANCJ loci followed by T7 endonuclease assay. An Acr:Nme2Cas9 vector mass ratio of
1:1 was used during transfection. Representative T7 gel images and corresponding quantification of
indel frequencies are shown. Lines in plots show means, dots represent individual data points for n =
3 independent experiments. Ch., AcrIIC1-mCherry chimeras. In., input band. T7 frag., T7 cleavage
fragments. Neg, negative control. Pos, positive control. Full-length gel images are shown in Sup. Fig.
3.18.
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Supplementary Figure 3.6: Alignment of the Sau- and NmeCas9 HNH domains. Conserved
residues within the AcrIIC1-binding interface are in red. Bold characters indicate residues that were
used to align the interfaces.

Supplementary Figure 3.7: AcrIIC1 is able to partially inhibit genome editing by S. aureus
Cas9. HEK 293T cells were co-transfected with vectors expressing SauCas9, a sgRNA targeting the
EMX1 or Grin2B locus and AcrIIC1 followed by T7 endonuclease assay. The Acr:Cas9 vector ratio used
during transfection is indicated. Lines in the plots indicate means, dots individual data points for n = 3
independent experiments. In., input band. T7 frag., T7 cleavage fragments. Neg, negative control (Cas9
only). Pos, positive control (Cas9 + sgRNA). Full-length gel images are shown in Sup. Fig. 3.18.
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Supplementary Figure 3.8: Computational interface design. a: After generating the SauCas9 HNH
– AcrIIC1 model by structural alignment of the NmeCas9 and SauCas9 HNH domains and analysis of
the interfaces, conserved and critical residues to be kept or mutated were determined. Single-site in
silico mutation experiments were performed and top-scoring variants were experimentally validated
after manual inspection. b: Sequence alignment of AcrIIC1 and AcrIIC1X. Mutations are marked in
bold red characters.
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Supplementary Figure 3.9: Rosetta scores of single site mutants. Heatmaps of the computed
structural metrics for the generated designs. Black boxes refer to the wild-type (AcrIIC1) scores per
position, while green boxes indicate scores of selected designs for experimental validation.
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Supplementary Figure 3.10: Screening and iterative optimization of computationally designed
AcrIIC1 mutants. HEK 293T cells were co-transfected with vectors expressing SauCas9, a sgRNA tar-
geting the EMX1 locus and either wild-type (wt) AcrIIC1 or the indicated AcrIIC1 mutant followed by T7
endonuclease assay. The Acr:Cas9 vector ratio (indicated) used during transfection was decreased with
every iteration. Representative T7 gel images and corresponding quantifications of indel frequencies
are shown. Dotted lines indicate the editing frequency in the presence of wild-type AcrIIC1. In., input
band. T7 frag., T7 cleavage fragments. Neg, negative control (Cas9 only). Pos, positive control (Cas9 +
sgRNA). Full-length gel images are shown in Sup. Fig. 3.18.
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Supplementary Figure 3.11: Electrostatic potential of HNH domain and AcrIIC1 surfaces.
Potentials were calculated using the Adaptive Poisson-Boltzmann Solver. a: The NmeCas9 HNH
domain has a strong positive potential close to residue 15 of AcrIIC1 in bound state. b: AcrIIC1 has a
similarly strong negative potential in the Cas-binding site. Residue 15 is at the border of this negative
patch. c: The SauCas9 HNH domain shows reduced positive potential around AcrIIC1 residue 15 as
compared to NmeCas9. d: Mutation of residue 15 from aspartic acid to glutamine reduces the negative
potential of AcrIIC1 in this position (PDB 5VGB). c,d: AcrIIC1X is the AcrIIC1 N3F, D15Q, A48I triple
mutant.
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Supplementary Figure 3.12: Biochemical analysis of AcrIIC1 and AcrIIC1X. a,b: Structure of
AcrIIC1 and model of AcrIIC1X. Shown in blue are the three points mutations differentiating AcrIIC1
from AcrIIC1X. c,d: SEC-MALS for AcrIIC1 and AcrIIC1X showing mainly monomeric forms and a small
fraction of dimer species present in case of AcrIIC1X. e,f: CD spectra for AcrIIC1 and AcrIIC1X. Spectra
for AcrIIC1 and AcrIIC1X show a minimum at around 207 nm, typical of mixed-αand βsecondary
structures. g,h: Thermal melting CD spectra for AcrIIC1 and AcrIIC1X are shown. Both proteins have a
melting point (Tm) of around 66 °C. i,j: Binding affinity determined by SPR for AcrIIC1 and AcrIIC1X
to NmeCas9 HNH domain. AcrIIC1 shows a KD of 0.95 nM while AcrIIC1X shows a higher KD of 6.92
nM. Experimental sensorgrams are shown in black and the fitted curves in red. k,l: Binding affinity
determined by SPR for AcrIIC1 and AcrIIC1X to SauCas9 HNH domain. AcrIIC1 shows a KD of 370
nM; AcrIIC1X shows a lower KD of 53 nM. Experimental sensorgrams are shown in black and the fitted
curves in red.
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Supplementary Figure 3.13: T7 endonuclease assays of S. aureus Cas9 inhibition by AcrIIC1X. a:
HEK 293T cells were co-transfected with vectors expressing (i) the indicated Acr and (ii) SauCas9 and a
sgRNA targeting the indicated locus followed by T7 endonuclease assay. The Acr:Cas9 vector ratio used
during transfection is indicated. P denotes a T7 cleavage band which is due to a polymorphism in the
CCR5 gene (Sup. Fig. 3.17). In., input band. T7 frag., T7 cleavage fragments. b: AAV-mediated delivery
of AcrIIC1X results in potent SauCas9 inhibition in different cell lines. Cells were co-transduced with
AAV2 vectors expressing (i) SauCas9 and a sgRNA targeting the indicated loci and (ii) AcrIIC1X followed
by T7 endonuclease assay. Red triangles point to T7 cleavage fragments. a,b: Representative T7 gel
images and corresponding quantification of indel frequencies are shown. Lines in the plots indicate
means, dots individual data points for n = 5 (a) or n = 3 (b) independent experiments. Neg, negative
control (Cas9 only). Pos, positive control (Cas9 + sgRNA). Full-length gel images are shown in Sup. Fig.
3.18.
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Supplementary Figure 3.14: T7 endonuclease assays of S. aureus Cas9 inhibition by AcrIIC1X. a:
HEK 293T cells were co-transfected with vectors expressing (i) the indicated Acr and (ii) SauCas9 and a
sgRNA targeting the indicated locus followed by T7 endonuclease assay. The Acr:Cas9 vector ratio used
during transfection is indicated. P denotes a T7 cleavage band which is due to a polymorphism in the
CCR5 gene (Sup. Fig. 3.17). In., input band. T7 frag., T7 cleavage fragments. b: AAV-mediated delivery
of AcrIIC1X results in potent SauCas9 inhibition in different cell lines. Cells were co-transduced with
AAV2 vectors expressing (i) SauCas9 and a sgRNA targeting the indicated loci and (ii) AcrIIC1X followed
by T7 endonuclease assay. Red triangles point to T7 cleavage fragments. a,b: Representative T7 gel
images and corresponding quantification of indel frequencies are shown. Lines in the plots indicate
means, dots individual data points for n = 5 (a) or n = 3 (b) independent experiments. Neg, negative
control (Cas9 only). Pos, positive control (Cas9 + sgRNA). Full-length gel images are shown in Sup. Fig.
3.18.
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Supplementary Figure 3.15: AcrIIC1X inhibits NmeCas9 function, which can be further im-
proved by domain insertion. HEK 293T cells were co-transfected with vectors expressing (i) NmeCas9
or SauCas9, (ii) a sgRNA targeting the indicated locus as well as the indicated Acr variant followed by
T7 endonuclease assay. The Acr:Cas9 vector ratio used during transfection was 1:1 for the NmeCas9
and 2:1 for the SauCas9 samples. Representative T7 gel images and corresponding quantification of
indel frequencies are shown. Lines in the plots indicate means, dots individual data points for n =
3 independent experiments. In., input band. T7 frag., T7 cleavage fragments. Neg, negative control
(Cas9 only). Pos, positive control (Cas9 + sgRNA). P denotes a T7 cleavage band which is due to a
polymorphism in the CCR5 gene (Sup. Fig. 3.17). Ch. 10, Acr chimera no. 10 in Sup. Fig. 3.2. AcrIIC1X*,
AcrIIC1X-mCherry chimera. Full-length gel images are shown in Sup. Fig. 3.1.
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Supplementary Figure 3.16: AcrIIC1X can be harnessed for cell type-specific, miRNA-
dependent inhibition of SauCas9. a,b: HEK 293T cells were co-transfected with vectors encoding
SauCas9, an EMX1-targeting sgRNA, the indicated Acr variant alongside constructs overexpressing
miR-122 (red) or miR-155 (blue), followed by TIDE sequencing (a) or T7 endonuclease assay (b). The
Acrs were carrying either two miR-122 binding site in their 3’-UTR (miR-122) or contained a 3’ UTR
of identical length, but lacking the miRNA binding sites (scaffold). The SauCas9:Acr:miRNA vector
mass ratio used during transfection was 1:4:2.7. Lines in the plots indicate means, dots individual data
points for n = 3 independent experiments. Neg, negative control (Cas9 only). Pos, positive control
(Cas9 + sgRNA). n.s., not significant; ***P < 0.001 by one-way ANOVA with Bonferroni correction. In
b, representative T7 gel images are shown below the quantification of indel frequencies. In., input
band. T7 frag., T7 cleavage fragments. c,d: Huh7 or HEK 293Tcells were co-transduced with AAV
vectors encoding SauCas9, an EMX1 targeting sgRNA and the indicated Acrs carrying miRNA-122
binding sites in their 3’-UTR or not. MOIs of 105 for SauCas9 and 5x104 for the Acrs were used during
transduction. Editing outcomes were analyzed by T7 endonuclease assay. Representative T7 gel images
and corresponding quantification of indel frequencies are shown. Lines in the plots indicate means,
dots individual data points for n = 3 independent experiments. In., input band. T7 frag., T7 cleavage
fragments. Neg, negative control (Cas9 only). Pos, positive control (Cas9 + sgRNA). b,d: Full-length gel
images are shown in Sup. Fig. 3.18.
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Supplementary Figure 3.17: Polymorphism in the CCR5 gene. Sanger sequencing confirms a
polymorphism within the primer-flanked region in CCR5 (genomic DNA is derived from untreated
HEK 293T cells).

Supplementary Figure 3.18: Gel images and western blots. The ladder is the Gene Ruler DNA
Ladder Mix (Thermo Fisher).
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Supplementary Figure 3.19: Coomassie staining of PAGE loaded with purified proteins. Data
corresponds to a single experiment.

Supplementary Figure 3.20: List of constructs. NLS, nuclear localization signal; HA, Human
influenza hemagglutinin.
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Supplementary Figure 3.21: Genomic target sites. The sgRNA-complementary part is underlined.
The PAM is shown in bold. Note, the HBB sgRNA contains a 5’ G which is not part of the genomic target
site.

Supplementary Figure 3.22: Primers for genomic PCRs. Fw, forward primer; rv, reverse primer.
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4 De novo design of site-specific protein
binders using learned surface finger-
prints

...

This chapter is based on ongoing work towards a more generic platform for the de novo

design of site-specific PPIs exploiting learned surface fingerprint descriptors by MaSIF. An

extensive protein design effort for the generation of novel protein binders is presented to target

the PD-L1 at a specific location. Beyond the deepened understanding of the fundamental

principles governing PPIs, this section also paves the way for an improved computer-driven

PPI generation enabling the fast-track development of protein-based therapeutics and the

targeting of sites previously thought to be “undruggable”. A manuscript based on this work is

currently in preparation.
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4.1 Abstract

Protein-protein interactions (PPIs) play a crucial role in virtually all living processes. The

de novo design of PPIs stands as a strict assessment to the understanding of the underly-

ing principles driving molecular recognition and opens possibilities for the development of

protein-based therapeutics to target specific sites on protein molecules previously thought of

as “undruggable”. PPIs emerge between proteins that display highly complementary chem-

ical and geometric molecular surfaces, forming buried interfaces with a large number of

contacts. Here, we hypothesize that the key ingredients for the design novel, site-specific

PPIs is to (1) identify surface regions on the target with a high propensity to become buried

and then (2) identify complementary surfaces that can optimally complement the identified

regions. We introduce a de novo PPI design platform based on learned surface fingerprints

calculated through a geometric DNN. The fingerprint descriptors are thought to efficiently

capture features that are important determinants for molecular recognition. Based on the

surface fingerprints, we selected peptide-binding fragments to engage a defined site on PD-L1,

and subsequently grafted them onto protein scaffolds to confer stability and refined them to

add additional contacts. We designed helical binders that engage a region that overlaps with

the PD1 binding site. The two experimentally improved binders showed a high affinity for

PD-L1(KDs in the range of 100-50 nM). The solved crystallographic structure of the protein

complexes and site saturation mutagenesis experiments on the binding interface revealed ex-

cellent agreements to the computational models. The binding motifs unveiled by our method

display completely novel interaction motifs currently unobserved in nature. Ultimately, this

work presents a surface-centric perspective to understand molecular recognition and presents

a robust route for the de novo design of PPIs to generate targeted diagnostics and therapeutics.

4.2 Main

Designing novel protein-protein interactions (PPIs) remains a fundamental challenge in

computational protein design, with broad basic and translational applications [161, 149,

275, 173]. De novo PPI design consists in generating protein amino acid (AA) sequences

that can engage a site on a target protein and thereby form a de novo quaternary complex.

Fundamentally, the problem tests our understanding of the forces that drive biomolecular

interactions and our capacity for structure-based PPIs prediction. Also, de novo PPI design has

a tremendous biomedical importance as it could be utilized to rapidly and affordably engineer

protein-based therapeutics with tailored biophysical properties only difficult to achieve with

conventional screening platforms [276].
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Despite recent advances in rational PPI design [165, 277, 278] and PPI prediction driven by

AlphaFold2 (AF2) [108], designing novel protein binders against specific targets remains a

challenge, particularly when no structural elements from preexisting binders are used. Current

state-of-the-art methods for de novo PPI design [279, 280, 154], in particular hotspot-centric

approaches [281] and rotamer information fields (RIF) [77], rely on placing key interaction

residues (hotspots) [166] on the interface followed by transplantation of these onto protein

structures acting as scaffolds to optimally present them in an energetically-favored confor-

mation. However, the main challenges current methods face include (1) the identification

hotspot residues and (2) the placement of the hotspots onto a protein scaffold while designing

for a well-packed protein interface around them. In fact, hotspot residues are often found

in deep hydrophobic pockets [168], thus the challenge is amplified when targeting "flat"

macromolecular interfaces with shallow pockets.

A long-standing model of molecular recognition proposes that PPIs form between proteins

with geometric and chemical complementary molecular surfaces [282, 145]. Proteins in

their apo state populate ensembles of low-energy conformations [283]. When two proteins

with partially complementary conformations encounter each other [284], binding is induced

through the formation an interface with a well-packed buried and hydrophobic core that

is often surrounded by a polar rim region [166, 148]. Hence, a requirement for successfully

creating novel protein complexes is the sculpting of high shape complementary and well-

packed buried interfaces upon complexation.

Multiple success of rationally designed PPIs have led to protein-based therapeutics such as

antibodies and inhibitors, vaccine design, and more [172, 285, 286]. However, more methods

are needed for designing PPIs to various surface types and protein sites [287]. Here, we

introduce a novel design approach based on learned surface fingerprints which we hypothesise

to more efficiently capture features that are determinant for molecular recognition. We use this

method on an impactful and therapeutically relevant target: PD-L1. The use of this target as

test case for our method highlight the relevance of such methods and the need for continuous

development of new approaches.

4.3 Results

4.3.1 Design of de novo PPIs using learned surface fingerprints

Previously, we have introduced a geometric deep learning (DL) framework termed MaSIF

(molecular surface interaction fingerprinting) [171], to extract fingerprints from protein sur-

faces that can leveraged to learn deterministic patterns of interactions of proteins with other

biomolecules. The fingerprints summarize the information present in the molecular surfaces

and can concomitantly be used to identify patterns in the surfaces, such as the propensity of

molecular surface regions to form buried interfaces [171].

Having shown that MaSIF had robust performances in prediction tasks, we sought to test
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whether we could leverage this framework for the design of novel PPIs by targeting defined

sites in other proteins only using structurally-derived information from the target binder.

We approached the de novo PPI design problem by devising an approach that relies on two

objectives: (1) the prediction of surface sites with high binding propensity using the MaSIF-site

predictor [171] and (2) employing surface fingerprints, a surface-centric search (MaSIF-seed-

search) for short binding peptide motifs referred to as binding “seeds” that display the required

features to engage the predicted site, and ultimately template for the design of a productive

binding interaction.

For the seed search, we reasoned that a viable approach is to first identify seeds that display

complementary surfaces with respect to the target surface, and use the structural fragment

from the seed forming this complementary surface as a starting point to generate viable

PPIs (Fig. 4.1a,b). We hypothesized that seeds can be found within the vast number of

structural fragments available in known structures (Fig. 4.1a). Once identified, the atomic

elements that form the seed are transferred to a protein scaffold to confer stability and form

additional favorable contacts with the target protein (Fig. 4.1c) using established motif grafting

techniques [163].

Figure 4.1: Surface-centric design of protein interactions. a: Protein binding sites are spatially
embedded as fingerprints. Protein surfaces are decomposed into overlapping radial patches. A DNN
learns to embed the complementary fingerprints within close regions of space. Here we used t-SNE
[288] to visualize a sub-sample of the fingerprint space. A green box shows the location in space
of complementary fingerprints. b: Protocol to identify new binding fragments. A target patch is
automatically identified based on the propensity to form buried interfaces. A fingerprint is then
computed on this patch and all complementary fingerprints in a large database (∼140M patches) are
compared. A short list of patches is selected, and the fingerprints are used to align and re-score patches.
c: Transfer fragment and design. The selected fragment is transferred to a protein scaffold and the rest
of the interface is designed. The designed protein is then tested experimentally.

The identification of binding motifs that can mediate high-affinity interactions remains diffi-
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cult because the space of possible conformations is extremely diverse and sensitive to minor

atomic-level changes. For example, misplaced methyl groups or incompatible charges can

render the binding motifs incapable of sustaining a productive binding interaction. Therefore,

a remaining challenge in computational protein design is to accurately identify viable binding

motifs can effectively be recycled as seeds for the de novo design of PPIs.

MaSIF can search large libraries of potential binding seeds with remarkable speed relying on

learned surface features instead of handcrafted descriptors, which may potentially increase

the accuracy of seed identification. To perform binding seed searches, we developed a MaSIF-

based de novo PPI generation platform called MaSIF-seed-search. The MaSIF-seed-search

protocol can search a large database of seeds for potential interactions to a defined target

surface. To achieve this, the protein molecular surfaces are first decomposed into overlapping

radial patches with a radius of 12 Å (Sup. Fig. 4.1a) capturing enough buried surface area.

For each point within the patch, we computed chemical and geometric features inputted

into a deep neural network (DNN) that is trained to output fingerprints that are comple-

mentary between interacting pairs and dissimilar between non-interacting pairs [171]. This

approach — when applied to patches centered at the core of buried interfaces— results in

good discrimination between interacting and non-interacting pairs (Sup. Fig. 4.1e).

We sought to design de novo protein binders to engage an important and challenging pro-

tein target of biological relevance. For this, we computationally designed and experimen-

tally validated protein binders against the PD-L1 protein, an important target in the field of

immuno-oncology.

4.3.2 Fingerprint-based de novo design of protein-binders against PD-L1

PD-L1 is an all-βprotein adopting an Immunoglobulin (Ig)-like fold. Importantly, no known

helical binders have been discovered for PD-L1. PD-L1 displays a rather flat interface (Sup.

Fig. 4.2) and classifies as a notoriously “hard-to-drug” target using small molecules [289]. We

selected the structure of PD-L1 co-crystallized with nanobody VHH [290] (PDB id: 5JDS) as

our target. We compared the buried interface of PD-L1 in this crystal structure with the buried

interfaces of 1,380 transient PPIs and found it to be among in the 99th percentile in terms of

surface flatness (ranked #7 among 1,380 interfaces) (Sup. Fig. 4.2).

We computed the fingerprint for the patch in the center of the interface and compared it to

our database of fingerprints. Fragments with similar fingerprints were selected for alignment

and scoring (Fig. 4.1b, bottom), and re-ranked. We noticed that among the top results, helices

clustered in orientations anti-parallel to the β-sheets of PD-L1 (Fig. 4.2a,b and Sup. Fig. 4.3a).

Among the most populated cluster, we noticed a convergence of AA for a twelve-residue

fragment (Fig. 4.2a,b).

Next, we used the MotifGraft program in Rosetta [163] to search for scaffolds that could

display this fragment while having favorable steric interactions with the target, and then use
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Figure 4.2: Seed-based design of PD-L1 binders. a: Clustering of top-ranking binding seeds (12
residues in length) from the most populated cluster. PD-L1 is shown in blue and the predicted buried
interface is shown in red. b: Heat map (frequencies) of the amino acid identities of each position in
the clustered binding seeds. The selected residue is outlined in green. c: Top and side view of the
consensus helix. d: Model of the seed grafted onto the three-helix scaffold with PDB id: 3ONJ. e: Model
of the seed grafted onto the helical scaffold with PDB id: 3S0D. f-g: Comparison of the binding seed
with two known binders of PD-L1, the natural binder PD-1 (PDB id: 4ZQK) and a high affinity nanobody
(PDB id: 5JDS).

RosettaDesign program [291] to optimize the contacts in the interface. Twenty-four designs

were tested in yeast and two designs showed a binding signal above background noise. We

selected these two designs for further optimization. One design was based on an odorant-

binding protein from Apis mellifera (PDB 3S0D) and the other one on a SNARE protein found

in yeast (PDB 3ONJ) (Fig. 4.2c,d,e). Both designs showed weak binding to PD-L1 when
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displayed on yeast. The binding signals were low but distinctly higher than binding signals of

the wildtype protein controls. Soluble expression in Escherichia coli (E. coli) and mammalian

cells failed for both proteins, hence we optimized binding affinity and solubility/stability of

the proteins by designing computer-guided combinatorial libraries and sorting using yeast

display.

Figure 4.3: Design and optimization of the two PD-L1 binder designs. a: Both designs share the
same seed (blue) with two leucines and one isoleucine as hotspot residues (red). b: Library generation
and affinity sorting of the 3S0D-based design enabled the formation of an additional H-bonds between
Q53 of the design and E58 of PD-L1. The other mutations maintain bond formations. The design binds
to PD-L1 with an affinity of 2 µM. c: Affinity sorting of the 3ONJ-based design resulted in the formation
of three additional salt bridges yielding an affinity of 374 nM. d and e: SSM library sorting and deep
sequencing was conducted for both designs. The results confirm the high importance of the three
hotspot residues and revealed potential positions to improve binding affinity. d: After introducing three
mutations in the binding interface according to the SSM results (blue), the affinity of the 3SOD-based
design improved to 265 nM. e: Mutation of three residues in the interface improved the affinity of
the 3ONJ-based design to 23 nM. The SSM data also showed that the glutamate at position 35 was
suboptimal. However, mutation of this position (purple) resulted in a loss of soluble expression.

The stability issues of the 3S0D protein mainly resulted from a large void in its core. To keep
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the library complexity in a feasible scope, we decided to optimize the affinity and the stability

of the protein in two consecutive libraries. Mutations of the affinity-directed library were

mainly conducted on the helix bearing the selected seed. A few positions potentially allowing

additional contacts to PD-L1 without modifying the hotspot residues were selected. Yeasts

were sorted with decreasing PD-L1 concentrations and sequencing performed after the third

sort. The obtained mutations were mild but distinctly enriched. The mutations allowed for

the new formation or improvement of hydrogen bonds (H-bonds) with PD-L1 increasing its

binding affinity considerably on the surface of yeast. The most substantial change occurred

at position 53, the mutation of alanine to glutamine allows for the formation of a new H-

bond with the glutamate 58 in PD-L1. The mutation of aspartate to glutamate at position 20

maintains the formation of a salt bridge with arginine 113 in PD-L1 (Fig. 4.3a,b). However,

the glutamate is beneficial for binding since no other amino acid mutation was found at this

position after the third sort. Also, mutation to a small nonpolar residue, like alanine, or a

bulky positively charged residue, like arginine, decreased the binding affinity significantly

indicating the importance of this salt bridge for binding. As the protein was still not expressing

in the soluble fraction in E. coli or mammalian cells, we designed a second library targeting

the core residues of the protein. The allowed mutations aimed to increase the size of the

core residues and thereby decrease the void in the core to stabilize the protein. The enriched

mutations allowed for the soluble expression of the protein in mammalian cells. Binding

affinity measurements of the soluble protein resulted in a binding affinity of 2 µM (Fig. 4.3d)

which is comparable to binding of wildtype PD1 (KD = 8.4 µM). Also, the binding kinetics of

the protein with its fast on and off-rate is comparable to wildtype PD1.

The inability to express the 3ONJ protein was likely resulting from the large hydrophobic

interface introduced during the design procedure. By targeting residues to increase the affinity

as well as hydrophobic residues not directly being involved in binding would make the protein

more hydrophilic. The library increased the affinity considerably on yeast. The enriched

mutations not only increased the binding affinity but also improved the overall hydrophilicity

of the protein and therefore enabled the soluble expression in E. coli. Most important for

binding are the mutations at position 23, 35 and 42. All three mutations allow for the formation

of additional salt bridges with PD-L1, increasing the binding affinity of the design (Fig. 4.3a,c).

The protein was also monomeric, α-helical, and thermally stable. The affinity of soluble

protein to PD-L1 yielded a KD of 374 nM (Fig. 4.3d), more than ten-times higher than the

affinity of wildtype PD1.

The importance of the hydrophobic seed residues for binding was shown with single point

mutations. Exchanging valine 12 or leucine 16 with an arginine knocked out binding almost

entirely. Mutating leucine 16 to an alanine had a weaker influence on affinity, due to its

chemical and geometrical characteristics that are more similar to one and another. To further

improve the affinity of the proteins and to learn more about their binding modes and potential

shortcomings of our designs, we constructed a site saturation mutagenesis (SSM) library,

targeting 24 residues in the binding interface of the 3S0D protein. The non-combinatorial

character of the SSM library allows screening of many more positions and residues. A binding
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and a non-binding population of the library was sorted and analysed using next generation

sequencing (NGS). The analysis showed that the three hotspot residues are crucial for binding,

and that almost all mutations at these positions impair the binding to PD-L1. The data further

revealed that the tryptophan at position 8 was sub-optimal and that a smaller residue at

this position could improve binding. Also, the glutamate at position 4 and the glutamine at

position 18 showed up as potential targets to improve the binding affinity. Different additional

single mutants and combinations were tested for their binding affinity to PD-L1. Most of the

mutations were able to improve the binding affinity. A combination of three mutations (E4T,

W9N, Q19R) resulted in a ten-fold increase of the binding affinity, giving a KD of 256 nM (Fig.

4.3d).

Since both designs shared the same seed we decided to apply the SSM mutations of the 3S0D

design also to the 3ONJ design. The insertion of three mutations (E4T, W8G, V12I) improved

the KD to 120 nM. However, a more profound analysis of this protein binding mode was

still crucial. Therefore, we again constructed an SSM library targeting 24 residues in the

binding interface. The data confirmed the importance of the hotspot residues for PD-L1

binding, as mutations in these positions decreased the affinity of the protein. Some of the

improvable positions that were already seen in the 3S0D design SSM library were also seen in

the SSM library specific to 3ONJ design. Strikingly, the data revealed new positions that could

potentially increase binding. The combination of three mutations (T4R, G8H, K23H) were

able to improve the binding affinity by almost ten-fold to a KD of 23 nM (Fig. 4.3d). Position

35 showed the most potential to improve binding affinity. However, mutating this position to

threonine or isoleucine resulted in the inability to express the protein. Therefore, this position

has a strong impact on solubility of the protein.

The SSM data of both designs revealed a high importance of the polar serine residues in the

surrounding of the interface. To validate the binding mode, we co-crystallized the designs

with PD-L1. The structures (Fig. 4.4) showed excellent agreement with our computational

models. Our experimental data validates the accuracy of the selected seed as a PD-L1 binder

and demonstrates the importance of the hotspot residues to confer for a specific binding

interaction.

4.4 Discussion

Long-living PPIs are formed between proteins with complementary molecular surfaces. Here

we build on this concept to propose that de novo PPI design benefits from a surface-centric

approach, particularly when designing the buried surface areas of the interface. Molecular

surfaces are highly diverse, but at the same time they are difficult to model, interpret, or

even compare. In this work, we proposed a new method based on the geometric DL tool

MaSIF, to overcome this limitation and both identify patches with a high propensity to form

buried surfaces as well as to scan for binding seeds with complementary binding surfaces.

The discovered binding seeds were then used as an interface core to design novel binding
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Figure 4.4: Structural validation of designs. a and b: Structural validation of designs, shown by
aligning the computational model (lighter color) with the experimental structure (darker color). The
inset shows the alignment of the residues in the binding seed. a: 3ONJ model. b: 3S0D model.

proteins against the PD-L1 protein, one of the flattest protein interfaces known.

MaSIF learns representations of patches in molecular surfaces that are involved in PPIs. By

embedding our molecular surfaces as fingerprints, we overcome a technical challenge: how to

rapidly identify surface fragments that can engage a specific target. We showed that the method

is highly sensitive to small surface deviations, and thus able to scan for the correct patches

in a set of benchmark helical-binding proteins among hundreds of millions of patches from

helical fragments. In other words, in the absence of protein flexibility a single surface patch

captures enough information to distinguish elements from highly similar motifs containing

the same underlying secondary structure.

To our knowledge the PD-L1 protein does not form interactions with helical domains. We

transferred the top found seed to a helical protein and redesigned the interface. Our designed

binders showed exquisite agreements between experiment and structure, with an root-mean-
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square deviation (RMSD) at or below 1.0 Å. One limitation that arose from our work is that our

initial computational designs showed binding in yeast display barely above background. We

optimized the affinity with computationally-guided libraries, diversifying the polar residues

surrounding the binding seed. After optimizing these designs and evaluating the top designs

with SSM, we noticed that the main improvements resulted from the solubility of the designs

(and thus, help with expression), and also from polar AAs (serine, glutamine) that are atypical

hotspot residues. This highlights the need for improvements of current computational inter-

face design for polar interactions, which has also been observed by other authors [148, 292].

We believe that the precision in terms of complex alignment that our method provides, along

with the large amounts of data becoming available, and progress in the field of geometric DL

will allow us to achieve this.

A second limitation arose from our reliance on natural proteins to serve as scaffolds for our

identified fragments. Natural proteins are known to be marginally stable [293] and introducing

mutations can result in proteins that do not express or express poorly. Other authors have

also noticed this problem with natural proteins and moved altogether to highly stable de novo

proteins which express at high level even in the presence of many surface mutations [294,

153].

A final limitation arises from our reliance on helical fragments to form the initial binding seed.

We selected these because they are ubiquitous in nature, because they are relatively stable,

and there is a long history of successful design efforts to transfer helical fragments to novel

scaffolds. However, it is unlikely that all proteins can be targeted by a helical binding seed. So

far, we have been unable to successfully apply our method differently structured seeds that are

more diverse, unstable and difficult to transfer onto protein scaffolds. We believe this requires

further methodological advances.

In this work we scanned large databases of protein fragments to identify complementary

binding seeds. We envision that in the future, generative DNNs will be able to simultaneously

process the fingerprint of the target and generate a complementary protein fragment. In

parallel, current efforts to generate (or hallucinate) protein folds will also be applicable to

generate scaffolds that will ideally support the generated binding seeds [138, 140, 141].

4.5 Methods

4.5.1 Computational grafting and interface optimizations

We used the Rosetta MotifGraft method [163] to search for potential scaffolds able to ac-

commodate the hotpsot residues of the helical seed over a database of globular, medium

sized (sizes 50 – 140 residues) proteins. We selected the top 20 grafts by RMSD between the

hotspots on the seed and on the graft. Importantly, we verified that the grafts were reported

monomeric and soluble. Next, we used fixed backbone interface design using Rosetta [291]

on the non-hotspot residues to optimize interactions across the interface. We restricted the
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design to several AA types based on the underlying electrostatic potentials calculated with the

Adaptive Poisson-Boltzmann Solver (APBS). We generated a set of 200 sequences and selected

the top candidates by surface complementarity (> 0.6) andΔΔG (ddG) score for experimental

validation.

108



De novo design of site-specific protein binders using learned surface fingerprints Chapter 4

4.6 Supplementary information

Supplementary Figure 4.1: Modeling buried surfaces as radial patches a: Histogram of the area
of the buried surface area on 1380 dimeric PPIs. We note that areas are computed for only one of
the proteins (i.e. each subunit in a PPI is computed separately). b: Size of the maximum inscribed
radial patch for the 1,380 proteins. Patch area for the patches used here (12 A), for a set of 30,000
randomly selected patches. c: Histogram of the patch areas of thousands of randomly selected protein
patches with a fixed radius of 12 Å. d: Example of the buried interface area for two well known, high
affinity binders, Immunity Protein IM9 (PDB id: 1EMV) and the protein Barnase (PDB id: 1BRS). The
buried interface of each protein when bound to its partner is shown in red. The maximum inscribed
radial patch’s circumference is shown in black, and the circumference of a patch with radius 12 Å is
shown in green. e: Histogram of similarities between MaSIF-seed-searches: (blue) pairs of patches that
are co-crystallized from transient PPIs, with the fingerprint computed for the patch centered on the
largest inscribed radial patch, and (orange) pairs of patches where one was taken from the center of the
interface of a random PPI and the other was taken from a random patch surface.
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Supplementary Figure 4.2: Planarity of the PD-L1 interface in structure with PDB id: 5JDS.
y-axis: error in multidimensional scaling when flattening the patch from 3D to 2D. x-axis:
ranking of each protein. The PD-L1 interface used here is marked with a blue X.
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Supplementary Figure 4.3: Clusters of binding seeds docked on the PD-L1 surface (PDB id:
5JDS). 140 million patches from ∼250,000 helices extracted from the PDB were compared and
docked to the predicted interface in PD-L1 using MaSIF-seed-search. The top scoring seeds
were selected for further processing. 12-residue fragments of these seeds that occupied the
largest buried surface were then clustered using metric multi-dimensional scaling (MSD) of
all pairwise RMSDs between all seeds. a: Histogram of clusters, showing the prevalence of each
orientation. b: Plot of the clusters in the MDS. A box is drawn around the center of each cluster and the
picture shows the selected helix orientation for all points inside the box. A star shows the location of
the PD-L1 seed used for the designs.
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This chapter describes the improvements and implementation of a hierarchical de novo

protein design method termed "TopoBuilder". The code is available under https://github.

com/LPDI-EPFL/topobuilder and the scripts and examples can be downloaded from https:

//github.com/LPDI-EPFL/tbpipeline. A manuscript is currently being finalized.
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5.1 Abstract

De novo protein design enables the exploration of novel sequences and structures absent from

the natural protein universe. De novo design also stands as a stringent test to our understand-

ing of the underlying physical principles of protein folding and may lead to the development
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of proteins with unmatched functional characteristics. The first fundamental challenge of de

novo design is to devise “designable” structural templates leading to sequences that will adopt

the predicted fold. Here, we built on the TopoBuilder de novo design method, to automati-

cally assemble structural templates with native-like features starting from string descriptors

that capture the overall topology of proteins. Our framework eliminates the dependency of

hand-crafted and fold-specific rules through an iterative, data-driven approach that extracts

geometrical parameters from structural tertiary motifs. We evaluated the TopoBuilder frame-

work by designing sequences for a set of five protein folds and experimental characterization

revealed that several sequences were folded and stable in solution. The TopoBuilder de novo

design framework will be broadly useful to guide the generation of artificial proteins with

customized geometries, enabling the exploration of the protein universe.

5.2 Main

Evolution has only explored a small subset of all possible amino acids (AA) sequences and

structures [42]. The space of viable protein sequences, e.g. sequences that have a global free

energy minimum representing a well-folded native state is small. Such a notion has been

supported by several experimental studies showing that many random AA sequences have

a rough energy landscape with multiple local minima representing aggregated or misfolded

states [72, 73, 74, 153].

De novo design strategies stand as an essential tool to aid the exploration of the sequence

space and thereby enabling the creation of new protein structures and functions. Classical

de novo protein design generally entails two iterative steps: first, target folds are modeled

(backbone generation); second, an AA sequence that stabilizes the lowest free energy state of

the target backbone conformation is searched (sequence design). Despite multiple successes

[295, 60, 296, 85], de novo design remains a challenging problem for protein designers given

that it stands as a stringent test to our understanding of the principles that govern protein

structures.

Successful structure-based de novo design largely relies on the crafting of “designable” protein

backbones, meaning physically realistic and strainless backbones that are compatible with

sequences that will yield a protein fold with a well-defined energy minimum [89, 92, 91,

297, 298, 93]. The designability of a protein backbone is generally proxied by the number of

sequences that it can support [89, 90, 95]. For example, some natural protein structures can

accommodate more sequences than the average and are thought to be more robust against

random mutations, and therefore thermodynamically more stable which favors evolutionary

stability [90]. Generating designable backbones is important as one would like to a priori

limit the sampling space to engineer only reasonable shapes with inherent structure-to-

sequence compatibility and discard presumptive non-viable structures. Many de novo design

approaches are likely to fail due to the lack of designability of the starting structural templates,

requiring multiple iterative rounds of human-guided and experimental optimizations [74,
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153].

Quantifying the designability of protein backbones is difficult [94, 299]. Even recent energy

functions fail to reliably capture global designability aspects of protein backbones but excel

in assessing high-resolution details such as van der Waals (vdW) forces, steric repulsion,

electrostatic interactions, and hydrogen bonds (H-bonds) [97, 281]. To facilitate the design

process at early stages, it would be necessary to have low-resolution energy functions that

could accurately capture the physicochemical determinants of realistic structures at the

backbone level [300].

There has been considerable progress in developing parametric functions and general princi-

ples for describing ideal and less symmetric protein structures [95, 99, 301]. Often secondary

structure elements (SSEs) are connected to create tertiary structural topologies by packing

α-helices on paired β-strands through the control of the loop length and ABEGO residue

structure. This approach made it possible to design a set of ideal protein structures, including

TIM-barrels [76], β-barrels [77, 302], jelly-rolls [87], and Immunoglobulin-like domains [88].

Nonetheless, parametric definitions are often specifically framed for distinct protein classes

or architecture types and cannot be generalized to other architectural configurations i.e. the

Crick coiled-coil generating equations [80] or descriptive parametric models of β-barrels [303,

304].

In this work, we greatly enhanced the capabilities of the TopoBuilder framework by intro-

ducing a data-driven correction module to generate native-like backbones from a simplified

description of a protein topology that we term “Sketch” (Fig. 5.1A and Sup. Fig. 5.1). This

module is applicable to any protein topology that can be described by arranging ideal SSEs in

layers [174, 175]. The correction module generates parametric refinements that geometrically

optimize the SSEs of protein backbones towards native-like configurations, rendering them

more designable. The set of corrections includes translational and rotational parameters

jointly capturing key geometric features such as distances and angles of native tertiary mo-

tifs. To further aid the topology assembly step, we utilize structural fragments from naturally

occurring loops to connect two subsequent SSEs. We evaluated the general framework by

de novo designing five different folds and found that even a minimal set of corrections to

the protein backbones are sufficient to improve sequence sampling and achieve a better

sequence-to-structure compatibility and sequence quality overall according to a variety of

computational metrics. Finally, we experimentally characterized 54 designs and obtained

multiple sequences that were folded and stable in solution, including topologies that have

been particularly hard for computational design such as all-β structures.

5.3 Results

Evolution proceeds incrementally through random and sparse sampling of the possible se-

quence space which in turn populates the protein structure space. However, nature seems to

show a tendency to reuse the same protein structures repeatedly based on the observation that
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Figure 5.1: Form parametrization for protein structures. A: Form parametrization for a Ubiquitin-
like fold (PDB 1PGX). A 3D abstraction of the structure is created that is encoded into a layered 2D
lattice diagram where the sheet is assigned as layer A and the helix as layer B (layer assignment is
arbitrary). The SSEs on a layer are dispersed on the x-axis, and layers are stacked onto each other
following the z-axis. The lattice representation is summarized into a Form descriptor as shown on the
top. The Form describes each SSE by the layer, relative position in the layer, and secondary structure
type separated by a dot (N- to C-terminal sequence order is preserved). B: A multi-Form string created
by assigning some SSE as mandatory and others as optional. The flexibility allows the sampling of a
range of architectures and topologies. C: Comparing the exploratory capacity between a simple Form
(five SSEs), a multi-Form (a minimum of five and a maximum of ten SSEs) and the known space of
protein folds (as classified by CATH). The simple Form nearly samples as many existing topologies as
known, while the multi-Form greatly generates more topologies than what can be found in nature.

the discovery of new protein folds has become rare [2, 3, 1]. In some regards, the mapping of

structural space poses a number of challenges since it depends on the structural definition and

coarseness of the structures. For a more systematical exploration of the structural space, Taylor

and colleagues defined an idealized SSE lattice representation that can easily be captured

through a simple string descriptor called Forms [305, 3] (Fig. 5.1A). The Form parametrization

describes proteins as layered topologies, with each layer being composed of a defined number

of either α-helices or hydrogen-bonded (H-bond) β-strands (Fig. 5.1A). Although constrained

by its grid-like tabular system, a wide range of structural configurations can systematically be

defined, potentially allowing to fully explore a protein topological space at orders of magnitude

larger than the natural space currently characterized (Fig. 5.1B, C). Although Forms are well

suited for protein topology comparison and classification [306], using them for de novo design

is challenging due to the loss of crucial structural and sequence features, including native

tertiary configurations of SSEs and side chain representations.
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5.3.1 Sketching native-like protein backbones from Forms

Given the Form description, the TopoBuilder starts by placing ideal SSEs at their respective

relative positions as specified by the Form description, creating a three-dimensional (3D)

backbone object containing only SSEs, which we refer to as “Sketch”. We define the layer

stacking along the z-axis, with inter-layer separations of 8 Å for β-sheets, 10 Å - 11 Å for α-

helices, and mixed α/β structures [307]. The y-axis aligns along the direction of the SSEs i.e.,

following the sequence directions of the α-helices and β-strands. The intra-layer spacing

between adjacent SSEs is therefore along the x-axis and typically of 10 Å for α-helices and 4.85

Å for β-strands (Fig. 5.1A) [308].

The Sketch representation does not contain loops connecting the SSEs and has no sequence

information. Furthermore, the naive SSE assembly shows a rather non-native configuration

of the protein structure strongly hinting towards structures that present non-designable

configurations. Fine-grained structural details at the secondary structure and tertiary levels

such as β-sheet pleatings and curvatures, and α-helical packing are absent. These features are

difficult to sample automatically and correctly even with low resolution scoring functions.

Figure 5.2: Set-up for geometric parametric correction and test examples. A: Example of
four possible geometrical correction parameters calculated from the matches found by MASTER and
exemplified on a Sketch. B: The correction module can be modulated, such as specifying the SSE
lengths, specifically engineering databases for the MASTER searches, specifying corrections to be
applied, and selecting the RMSD bin. C: Four known example protein structures and a de novo protein
fold with their corresponding Form covering a variety of structural complexities.
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We hypothesized that grosso modo parametric corrections per SSE could incorporate global

native structural features and improve the Sketchs’ designability (Fig. 5.2A). To do so, we

implemented a module that calculates per SSE geometrical statistical corrections from native

structures on-the-fly (see Methods). Briefly, the Sketch is first divided into two-layer compo-

nents based on adjacent layers. These sub-structures are then iteratively matched against a

database of natural protein structures using the software MASTER [309, 310] and structural

geometry statistics are retrieved from the returned matches and used to correct the relative

positioning of the SSEs in the Sketch. This results in a hierarchical refining procedure i.e. once

a substructure is corrected, its improved geometry contextualizes the correction of the next

sub-substructure.

A minimal set of parametric corrections include two rotational parameters and one transla-

tional parameter per SSE (Fig. 5.2A and Sup. Fig. 5.2). We compute the twist angle (ζ) which

is the angle between the vector pointing along the length of the SSE to the plane spanned

by the layer. Between two adjacent layers, we express the angle (ε) as the shear between

the layer planes, and the inter-layer distance (dz) is the distance from one layer to the next

one. The three parameters jointly shift the SSEs from a naive configuration towards a native

arrangement. For example, a β-sheet is completely “flat” because the initial SSEs placed in

the Sketch are fully ideal and aligned next to each other. The natural occurring twist within

β-sheets can be approximated by twist angles ζ. Similarly, for small helical bundles, the twist

angle ζand the shear angle εcan roughly approximate a coiled-coil [311]. Hence, the geometric

corrections attempt to optimize the global arrangement of the SSEs and generate topologies

with native-like features. Note that our framework allows choosing the set of parametric

corrections together with other settings (Fig. 5.2B).

5.3.2 Backbone assembly and sequence design of native-like Sketches

Upon initial Sketch generation and the optimization stage that improves the native features of

the SSE placements, several additional steps are necessary to obtain a well designed structure:

(1) the building of loops connecting the SSEs; (2) structural diversification starting from the

initial native-like Sketch; (3) sequence sampling and selection of best scoring designs. All

these steps were performed using tools in the Rosetta software suite, and more details are

given below and in the Methods section (Sup. Fig. 5.1A-G).

To fully compose the Sketchs’ structural description, we query native loop segments that

can bridge the gaps between the SSEs (see Methods). We avoid computational intensive and

time-consuming loop closure algorithms by generating structural fragments (3-mers and 9-

mers) using the structural information (ABEGO torsions) gathered from native loops and their

anchored SSEs. We use Rosetta [67] to generate backbone conformation and perform sequence

design under mid and long-range distance restraints (distances between Cα-atoms from

different SSEs). Additionally, secondary structure assignments are extracted from the native-

like Sketch input to the previously developed Rosetta FunFolDes (FFD) [172, 312] protocol to
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assemble an initial set of poly-valine backbone candidates. The structural fragments induce

native backbone signatures at the local level, while the SSE arrangement is tightly controlled by

the distance restraints. We modified the Rosetta energy function at every stage of the folding

simulation to include H-bonds and SSE pairing terms to favor the correct pairing between

β-strand [312]. Each assembled backbone is fitted with a set of optimal sequences via the

Rosetta FastDesign protocol. During this stage, AA sampling restrictions per position were

added, such as layer definitions (core, surface, or boundary, profiles from structural fragments)

[211, 265], and secondary structure type (α-helix, loop, or β-strand) assignments. A bonus

term enhancing SSE formation at defined positions was included in the energy function to

enhance secondary structure formation at the desired positions [313].

5.3.3 De novo design of five protein folds

To showcase the TopoBuilder de novo design framework and assess its qualitative performance,

we attempt to de novo design five different folds of variable structural complexities (Fig. 5.2C).

We selected four native folds: a two-layered α/βUiquitin-like fold, a two-layered β-sandwich

Ig-like fold, a two-layered β-sandwich Jelly-roll, and a three-layered α/β/α Rossmann-like fold.

In order to investigate the generalization capability of the framework to the space of novel

folds, we include a two-layered α/β top7-like fold. Of note, the top7 structure (PDB 1QYS) was

excluded from all databases used during the correction searches in order to avoid any biases

coming from the solved structure. The Ubiquitin-like fold is built of a α-helix packed onto a

four-stranded β-sheet. Both terminal β-strands pair in a parallel direction and are located in

the center of the sheet making non-local H-bonds contacts, while the edge strands form a

β-α-β-motif. The Jelly-roll and the Ig-like have both non-local β-β-motifs. Our drafted Jelly-roll

has three β-arcade motifs and the Ig-like fold is made from a β-arcade on one and a long β-arch

on the other side. The architecture of the intended Rossmann fold contains a four-stranded

central β-sheet that is flanked by two helices on the top and two helices at the bottom and

can be decomposed into three interlocked β-α-β-motifs. Lastly, the top7 fold is defined by

two interlocked β-α-β-motifs with two additional terminal core strands. Each of the folds has

its unique complexity with specific tertiary motifs that need to be arranged realistically with

the correct geometries. Especially non-local interactions and connections have been difficult

to build and design, and multiple detailed analyses were needed to discover effective design

rules for single folds and domains [77, 87, 88, 314, 101].

For the generation of the backbones, we used default SSE lengths of 5 - 8 residues for β-

strands, 17 residues for long α-helices, and 13 residues for short α-helices. Thus, we did not

employ SSE lengths of specific native examples but rather used these as a rough guide for the

overall topology. To probe the impact and contribution of the parametric corrections, we first

performed baseline design simulations guided only by an uncorrected Sketch that we refer

to as “naive Sketch”. We then corrected the Sketch using several combinations of parameters

(termed “native-like Sketch”) in order to assess the interplay between them and find a minimal

and optimal parameter mix. In the first scenario, we solely used the twist angle ζ-correction.
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The second scenario consisted of the corrections ζ, dz, and the third scenario simulated with

ζ, dz. ε. For each of the different scenarios, a total of 1,000 decoys was generated.

Figure 5.3: Geometric corrections. A: The native-like Sketches of the selected example folds with
three of the geometric parameters indicated. B, C, D: The ζ-, ε-, and dz-correction parameter calculated
from the matches found by MASTER. The native geometry distributions are shown in grey. In yellow,
the output of a simulation (1,000 decoys) using a naive sketch without adaptation of the SSEs, which
tends to result in flat β-sheets and helical packing. In green simulations (1,000 decoys) derived from a
native-like Sketch where the outputs follow the native distributions.

5.3.4 Corrections induce native features in idealized folds

For the native folds, the corrections are derived from a set of ∼15 - 25 structurally distinct

proteins (Sup. Fig. 5.3). The top7 fold-derived Sketch has a lower number of matches (9 distinct

structures) that are extracted from larger protein domains with similar SSE dispositions and

connectivities. We compared the native-like to the naive decoys for each of the five selected

folds (Fig. 5.3A,B and Sup. Fig. 5.4). The ζ-angle (Fig. 5.3C) shows that the native-like decoys

have distributions inducing a twist in β-strands and native side-to-side configurations for

α-helices while the distributions of the naive decoys do not follow the ζ-angle geometry of

natural protein structures. Rather, their ζ-angle remains around 0° indicating that no twisting

has been induced during the folding and relaxation simulations. Similarly, the ε-angle (Fig.

5.3D) and the dz distance (Fig. 5.3E) that capture the layer packing geometry follow the natural
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distributions for the native-like decoys, while for the naive decoys the distributions remain

similar to those of the naive sketches showing that fragment insertion protocols are insufficient

to correct these overall topological features. Importantly, a relaxation without restraints after

the folding and design simulations did not yield decoys with native geometries, suggesting

that geometric corrections from the native-like sketches led to the generation of models and

sequences that favored native-like backbone configurations.

5.3.5 Assessing designability by approximating the inherent sequence-to-structure
compatibility

To assess the difference between sequences from the naively constructed and the native-like

derived backbones, we first used BLASTp [315] to search for close sequence matches. However,

the few hits (E-value < 0.01) found did not correspond to the intended fold based on the

available AlphaFold2 (AF2) models, requiring methods with higher sequence-to-structure sen-

sibilities to uncover the subtle differences (Sup. Fig. 5.5). Therefore, we used two orthogonal

deep learning (DL) protein structure prediction engines trRosetta (trR) [106] and the recent

AlphaFold2 AF2 [108] to predict structural models for all designed sequences (without MSA

generation, i.e. in single-sequence input mode). The main advantages of trR and AF2 are their

speed and accuracy in predicting structural models from their sequences (in the range of a

couple of min./sequence), enabling the prediction of structural models for 1,000 sequences in

a few hours using a computer cluster. We calculated the template modeling (TM)-scores and

root-mean-square deviations (RMSDs) between our designed TopoBuilder (TB) decoy models

and the trR and AF2 models (Fig 5.4A, B, Sup. Fig. 5.6). We hypothesized that, if our native-like

backbones have improved designability, they could lead to sequences with stronger signatures

for the respective fold and consequently lead to more accurate structure predictions with

respect to the target folds in contrast to the naive Sketch-derived designs.

For the naive Sketch-derived designs, we observe low RMSDs at around ∼2 Å for trR and

∼1.8 Å for AF2 while simulations with the best combination of corrections achieve RMSDs

of ∼1.5 Å and ∼1.2 Å for trR and AF2, respectively (Sup. Fig. 5.7C,D). We observe stronger

pronounced tendencies for the corresponding fold-sensitive TM-scores (Sup. Fig. 5.7A,B).

For the sequences and models generated with naive Sketches, the TM-scores peak around

0.7 for trR and 0.8 for AF2. The simulations with the best combination of corrections tend to

TM-score one unit higher (TM-score ∼0.8 for trR and ∼0.9 for AF2).

Comparing the naive- and native-like derived sequences based on two metrics shows pop-

ulation differences (Fig. 5.4). We compare the AF2 predicted local Distance Difference Test

(plDDT) versus the TM-score between the TB and the trR models (TM-score(TB,trR)). To

gather the top double positive population, we set the plDDT threshold to a minimum of 60

and adjust the TM-score(TB,trR) gate. Analyzing the population difference of the double

positives e.g., sequences with plDDT > 60 and high TM-score(TB,trR) shows an enrichment of

the native-like derived populations of 9× for the Ubiquitin-like designs, 4× for the Rossmann
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Figure 5.4: Computational assessment of sequence quality. Boost in quality for native-like derived
sequences with N× more sequences in the upper right field (double positives). A: The plDDT scores
versus the TM-scores calculated from the TB models aligned onto the predicted trR models. The plDDT
threshold is fixed to 60, while the TM-score is gated in order to evaluate the double-positive populations.
B: The plDDT scores versus the TM-scores calculated from the TB models aligned onto the predicted
models from AF2. The plDDT is fixed again to 60 and the TM-score is used to select the respective
populations. C: Comparing the TM-scores calculated between the TB models and the AF2 models or
trR models. The AF2-based TM-score is fixed to 0.5 and the trR-based TM-score is changing depending
on the fold to analyze the respective fractions of double-positive populations. D: Examples of designs
of native-like designs. In color the AF2 model according to its confidence and in grey the TB model.
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designs, 9× for the Ig-like designs, 12× for the Jelly-roll designs and 8× for the top7 designs

(Fig. 5.4A). Similarly, we then compared the plDDT against the TM-score between the TB and

the AF2 models (TM-score(TB,AF2)) and observed similar enrichments ranging from 1.5×

for the Rossmann designs to 9× for the Ubiquitin-like designs (Fig. 5.4B). Lastly, we compare

the TM-score(TB,AF2) versus the TM-score(TB,trR) fixing the TM-score(TB,AF2) threshold

to 0.5 and adjusting the TM-score(TB,trR) gate. We see a clear boost of the native-derived

double positives ranging from 3× for the Rossmann designs to 9× for the top7 designs (Fig.

5.4C). To assess the increased performance induced through the corrections, we projected the

score-pairs onto their respective diagonal and calculated the receiver operating characteristic

(ROC)-curve and the area under the curve (AUC) (Sup. Fig. 5.8). The ROC-AUC indicates the

degree of separation between the naive- and native-derived projected distributions. Most

ROC-AUC values are in the range of 0.63 - 0.70 across the three different score pairs additionally

showing that our corrections improve the de novo design of proteins.

We argue that the better agreements between the native-like TB models and the predicted

models together with high AF2 confidences result from an improved sequence-to-structure

agreement that emerges from more designable backbones.

5.3.6 Experimental validation of novel sequences

We next sought to experimentally test whether the “topobuilt” proteins are folded and stable

in solution. For each of the examples, we investigated the top 25 trR models by TM-score,

obtained the synthetic genes for 54 designs, and expressed and purified them from Escherichia

coli (E. coli) (see Methods). A total of three Ubiquitin-like, four Rossmann-like, three Ig-like,

one Jelly-roll type, and two top7 like fold proteins expressed soluble (models of the designs

show in Fig. 5.5A). All three Ubiquitin-like designs, two Ig-like fold designs, and the two

top7 like folds had size exclusion chromatography (SEC-MALS) peaks (Sup. Fig. 5.9B) with

the apparent molecular weights of the monomer or small oligomeric species. The peaks

corresponding to the monomeric or small oligomeric species were examined by circular

dichroism (CD) spectroscopy (Fig 5.5E). In all cases, the CD spectra were consistent with the

respective target structures, with the characteristic profiles of α/β proteins. Most of the designs

were thermostable, two of them with apparent melting temperatures above 50 °C and the

remaining above 90 °C (Fig. 5.5E, Sup. Fig. 5.9C).

We compare the successfully expressed and characterized designs with their respective trR (Fig.

5.5A) and AF (Fig. 5.5B) models and perceive that two Rossmann, two Ig-like, and two top7

designs recapitulate the intended structures accurately, strongly indicating that our designs

folded into the target shape. To evaluate the structural similarity to the natural repertoire, we

searched within the PDB (Fig. 5.5C) and the AF2 (Fig. 5.5D) database for the closest protein

structures. While for both, the two Rossmann-like and the two Ig-like designs we found first

hits around ∼4 Å RMSD, the two top7 designs are far away from any natural protein folds with

the first hit ∼5.5 Å RMSD.
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Figure 5.5: Experimental results. A: TB and trR models superimposed. B: TB and AF2 models
superimposed. C, D: Fast RMSD-based structure search using MASTER on the PDB and AF2 databases.
E: The far-UV CD spectra during thermal denaturation with the melting temperatures TM obtained by
fitting to the denaturation curves shown in 5.9

To reveal potential sequence families, we performed pairwise alignments, calculated BLO-

SUM62 distances for each alignment (i.e. the sum of each individual BLOSUM62 score), and

clustered them hierarchically (Sup. Fig. 5.10A and Sup. Fig. 5.11A). Similarly, to categorize the

conformations we calculated pairwise RMSDs followed by hierarchical clustering (Sup. Fig.

124



A generic framework for hierarchical de novo protein design Chapter 5

5.10B and Sup. Fig. 5.11B). Our designs are generally well integrated within the hierarchical

cluster trees showing native compatibility. To search for close members in sequence and

structure jointly, we gathered the sequence and structure features and projected the data

into two dimensions through a principal component analysis (PCA) (Sup. Fig. 5.10C and

Sup. Fig. 5.11C). We observe that our designs are close to native clusters, further indicating

their sequence and structure nativeness. For the native folds, the matches are of the same

fold family. Interestingly, des_rssmnn_113 has a de novo designed Rossmann fold (PDB 2LV8)

and natural Rossmann domains (PDB 1MZP and 4IZ6) as cluster members, hence the design

likely incorporated general native sequence and structure features. The des_tr7_30 based on

the top7 de novo designed fold has native cluster members that structurally fit well, but have

different connectivities (e.g. PDB 6NR1, 4QTP or 4QDJ).

Taken together, the data indicate that a total of six designs across three different folds adopt

stable monomeric or dimeric structures with the predicted secondary structure content and

correct AF2 predictions.

5.4 Discussion

The TopoBuilder de novo design method enables the generation of artificial proteins from a

minimal Form description. The Form drafts the overall target topology and enables a fast and

systematic fold-space exploration. Combined with the TopoBuilder de novo design framework,

virtually any protein Form description can be constructed and designed.

Our computational and experimental assessments show that geometrical corrections inferred

from existing layered native structural sub-motifs that compose the folds capture enough

information to adapt and improve the designability of protein backbones. Minimal sets of

geometric corrections lead to improved designs that have pre-defined folds and native-like

characteristics [175]. When analyzing our designed sequences with state-of-the-art structure

prediction tools, we identify a larger fraction of successfully recovered folds from sequences

derived from corrected backbones than for sequences originating from naive backbones. The

experimental characterization of multiple designs additionally shows that the TopoBuilder de

novo design framework generates realistic designs that fold as modeled.

Ultimately, our analysis shows that the current scoring functions and fragment assembly

are insufficient for the generation of designable backbones without the guidance of global

correctly arranged SSEs. Recent work has focused on the discovery of fold or protein domain-

specific rules through arduous analysis of natively available folds [76, 302, 312, 172], but these

findings are difficult to translate to new folds. Additionally, most of the rules rely on the

design of structured loops to guide the SSEs’ placements. Here, we present an alternative

and complementary solution that is fully automatic. Instead of focusing on structured loops,

we optimize and correct the global placements of SSEs and thereby implicitly guide the loop

geometries.
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Our proposed strategy should enable de novo design to non-experts, improve and streamline

future protein design efforts. The insights we gained from the parameters for a variety of

complex fold examples can be harnessed and support the future discovery and understanding

of protein architectural principles. Our work opens up a set of large avenues for computational

protein architects and designers e.g., the scaffolding of functional proteins via incorporating

known or predicted functional sites, or large complex protein machinery by assembling single

de novo designed domains.

5.5 Methods

5.5.1 Correction module (InteractiveMaster)

We process each single MASTER match by first fitting a vector along each SSE (Sup. Fig.

5.2A,B,C). To do so, we perform a Principal Component Analysis (PCA, for more details, see

[316]) overall Cα atoms within the SSE selection. Naturally, for SSE such as β-strands and

α-helices, their first major eigenvector is returned by the PCA points along the SSE length,

while the second is sideways and the third perpendicular.

For each full layer (including all SSE) we calculate the first three eigenvectors (Sup. Fig. 5.2D,E).

This will result in a local coordinate system for the specific layer where the first eigenvector

(ideally) is along the y-axis (along the lengths of the SSE), the second eigenvector the x-axis

(towards the side), and the third eigenvector the z-axis. After, the first eigenplane can be

interpreted as the layer (1-2) plane that is spanned by the first and second eigenvector. The

1-3 plane generated by the first and third eigenvector would splice the layer in the middle

along the length of the SSE. Lastly, the 2-3 plane that can be calculated using the second and

third eigenvector would half the layer roughly along the center of each SSE.

Having abstracted from atoms to simple geometric objects such as vectors and planes, mul-

tiple parameters can efficiently be calculated. Considering two adjacent layers, one can

calculate various different geometric characteristics. Here, we use the ζ-angles, which are

the angles between the first SSE eigenvectors and the layer (1-2) plane. The ε-angles, which

are the shear angles between the two layers, can be calculated as the mean across all first

SSE eigenvectors with the corresponding 1-3 eigenplane. The interlayer distance dz can be

computed as the mean across all SSE center distances to adjacent layers. Lastly, the sheer

distances are calculated as the distances between the 2-3 planes to the SSE centers.

5.5.2 Loop creation (LoopMaster)

Using MASTER, we search for natural loops that can bridge the gap regions between consecu-

tive SSEs in the sketch. For each gap, we perform independent searches with their correspond-

ing SSE elements. The algorithm starts by iteratively matching two consecutive SSEs against a

database of protein structures. For each gap, the matches are clustered based on their loop
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lengths, and the most populated cluster is selected (the maximum length allowed is 7 residues).

Subsequently, the remaining loops are filtered with respect to their ABEGO torsion profile.

Loops displaying the same classified ABEGO dihedral angles for each residue are dropped,

leaving a single loop per ABEGO profile. We do not perform loop closure sampling to add the

loops on the sketch as this would require computationally expensive structural sampling and

is not guaranteed to effectively find a solution to close the gap effectively. Instead, directly

protein structure fragments of sizes 3 and 9 (3mers and 9mers) are generated. By including

their pre- and post-SSEs, we generate protein structure fragments of sizes 3 and 9 (3mers and

9mers) for the full native-like sketch, bypassing the need for sampling fragments for the SSE at

a later stage.

5.5.3 The number of architectures and topologies from (multi-)Forms

To approximate the number of architectures and topologies from a Form, we assume that all

SSEs elements are of the same type. Thus, if a topology consists of five SSE elements (n = 5), we

do not differ between architectural and topological variations on the number of α-helical (H)

and β-strand (E). The complete number of possible architectures A from a Form containing n

SSEs can be calculated by enumerating all possible SSE placements on l layers (l ≤ n). Given

the largest lattice (n × n), we would have a total of
(

n2

n placement options. Unfortunately, this

approach would first lead to many unrealistic configurations, such as low compactness and

disembodied SSE elements, and second overcounts the number of architectures as it does not

take into account rotational and translational variations. A more accurate prediction can be

made by relating layered architectures to free polyominos (or square animals) without holes

for with n cells (A000104, can be found under https://oeis.org/A000104). This enables us to

simply and extremely fast look up the number of architectures for a Form with n SSE elements.

The total number of topologies for one architecture can be calculated through n!. This will

give all different ways of arranging n distinct SSEs into a sequence.

5.5.4 Protein Expression and Purification

DNA sequences of the designs were purchased from Twist Bioscience. For bacterial expression,

the DNA fragments were cloned via Gibson cloning into a pET11b followed by a terminal

His-tag and transformed into E. coli BL21(DE3). Expression was conducted in Terrific Broth

supplemented with ampicillin (100 µg ml1). Cultures were inoculated at an optical density

(OD) 600 of 0.1 from an overnight culture and incubated in a shaker at 37 °C and 220 r.p.m..

After reaching an OD600 of 0.6, expression was induced by the addition of 0.4 mM IPTG and

cells were further incubated overnight at 20 °C. Cells were harvested by centrifugation and

pellets were resuspended in lysis buffer (50 mM TRIS, pH 7.5, 500 mM NaCl, 5% glycerol, 1 mg

ml-1 lysozyme, 1 mM PMSF, 4 µg ml1 DNase). Resuspended cells were sonicated and clarified

by centrifugation. Ni-NTA purification of sterile-filtered (0.22 µm) supernatant was performed

using a 5-ml His-Trap FF column on an ÄKTA pure system (GE Healthcare). Bound proteins

were eluted using an imidazole concentration of 500 mM. Concentrated proteins were further
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purified by size exclusion chromatography on a Hiload 16/600 Superdex 75 pg column (GE

Healthcare) using PBS buffer (pH 7.4) as mobile phase.

5.5.5 Circular dichroism spectroscopy

Far-UV circular dichroism spectra were collected between wavelengths of 190 and 250 nm on

a Jasco J-815 circular dichroism spectrometer in a 1-mm path-length quartz cuvette. Proteins

were diluted in 10 mM Phosphate-buffered saline (PBS) at concentrations between 20 and 40

µM. Wavelength spectra were averaged from two scans with a scanning speed of 20 nm min-1

and a response time of 0.125 s. The thermal denaturation curves were collected by measuring

the change in ellipticity at 220 nm from 20 to 90 °C with 2 or 5 °C increments.

5.5.6 Size-exclusion chromatography combined with multi-angle light scattering

Multi-angle light scattering was used to assess the monodispersity and molecular weight of the

proteins. Samples containing 80–100 µg of protein in PBS buffer (pH 7.4) were injected into a

Superdex 75 10/300 GL column (GE Healthcare) using an HPLC system (Ultimate 3000, Thermo

Scientific) at a flow rate of 0.5 ml min-1 coupled in-line to a multi-angle light-scattering device

(miniDAWN TREOS, Wyatt). Static light-scattering signal was recorded from three different

scattering angles. The scatter data were analyzed by ASTRA software (version 6.1, Wyatt).
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5.6 Supplementary information

5.6.1 Supplementary methods

MASTER matching

We use the MASTER software to rapidly search for matches within a specified RMSD cutoff

over the large protein structure databases. The method returns multiple alignments within

the RMSD threshold where we only use the best alignment per protein structure for the

calculations of the parametric corrections. We also use MASTER to search for potential loops

between by using the segment feature of the MASTER software.

Protein-protein alignment by TM-align

For each alignment, TM-align optimizes and reports TM-score, a measure of the distance

between Cα carbons of aligned residues in target and template, normalized by protein length.

The optimization algorithm used by TM-align results in alignments where the superposition

of segments with similar local structures is optimized over the superposition of segments with

disparate local structures.

5.6.2 Supplementary figures
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Supplementary Figure 5.1: Overview of the modules in the TopoBuilder de novo design frame-
work. The TopoBuilder de novo design framework can easily be extended and modified by adding
custom modules with the provided template coded in Python. A: The generic pipeline takes a Form
string as input and generates a 3D expansion of the architecture or topology sketch. B: If the topology is
not specified, all possible topologies are generated for the user to select a single topology from. C: At the
heart of the pipeline, the correciton module (InteractiveMaster) protocol searches a database of natural
protein structures for simple geometric features to recover a native-like configuration of the sketch.
D: A provided module enables the incorporation of structural motifs. E: The loops are reconstructed
implicitly via first searching for natural loops that are roughly capable of bridging the gap and secondly
creating structure fragments from the found SSE and their loops. F: Finally, the structural model is
built via Rosetta fragment assembly (FFD) and designed using the FastDesign method. G: The generic
TopoBuilder pipeline starting from a Form that expands into a naive Sketch, which is then corrected
into a native-like Sketch. Loops are searched able to connect the SSEs and fragments of size 3 and 9 are
created (3mers and 9mers). Using the fragments and distance constraints form the native-like Sketch,
N poly-valine backbones are assembled and NxM sequences designed.
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Supplementary Figure 5.2: Ubiquitin-like fold geometric analysis. A: The eigenvectors calculated
for a single β-strand of the PDB 1PGX structure. The major eigenvector will always point along the
length of the SSE. B: The eigenvectors calculated for a single α-helix of the 1PGX structure. The major
eigenvector is along with the helical pitch. C: All major eigenvectors for each of the SSE of the 1PGX
structure. The positions and directions of the SSE can be described by the major eigenvectors. D: The
set of the eigenplanes calculated for the β-sheet (layer A) 1PGX structure. E: The major-side planes for
the sheet and the helix of the 1PGX structure.
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Supplementary Figure 5.3: Counts and examples for the correction search. A: Counts of the
retrieved matches per RMSD-bin for the first layer only (first step corrections). As only a single layer is
searched more matches are retrieved. B: Counts of the retrieved matches per RMSD-bin for the second
layer (second step corrections). Here, two layers are included making the matching more stringent and
less structures were retrieved. C: Examples of retrieved matches (second step corrections) to derive the
geometrical corrections.
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Supplementary Figure 5.4: Comparisons of naive and native-like Sketches. A front-view of naive
and native-like Sketches. A, B, C, D, E: The naive Sketches (top row) with their respective Form element
labeled for each of the five folds. The lower row shows the native-like Sketches with corrected SSE.
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Supplementary Figure 5.5: BLAST search against SwissProt. A: Best E-values of the BLAST searches
against the SwissProt database for each design from a target fold. B: Available AF2 models (colored) or
solved structures (grey). None of the models or structures represents the target fold.

134



A generic framework for hierarchical de novo protein design Chapter 5

Supplementary Figure 5.6: TopoBuilder de novo design pipelines. A: The TopoBuilder de novo
design pipeline including the feature search (corrections) rendering a naively created Sketch more
native-like and designable. A full atomistic model is generated through the Rosetta fragment assembly
protocol (FFD) and sequences are designed using the Rosetta FastDesign method. To evaluate if our
sequences encode the necessary fold determining signatures strongly enough, we use state-of-the-art
protein structure prediction engines (trR and AF2) to computationally predict a model structure that
we then structurally compare to our TB model by calculating the TM-score. B: The TopoBuilder de novo
design pipeline where the feature search module has been ablated.
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Supplementary Figure 5.7: Computational assessment of sequence quality. Th A: Pairwise
TM-scores calculated between the TB and the trR or AF models (single sequence input without MSA)
for each set of simulations. The black dots represent the 25 lowest scoring decoys by Rosetta energy.
The red star indicates the best scoring decoy (either by TM-score or RMSD) for each of the simulations.
B: RMSD using the best superposition and residue coverage between the TB and the trR or AF models.
C, D: The mean plDDT and pTM-scores predicted by AF for each decoy.
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Supplementary Figure 5.8: ROC curves and ROC-AUCs. The double-positive scores are projected
onto the diagonal. The distributions are shown on the left, and the ROC curve and the ROC-AUC are
shown on the right indicating the strength of separation between the naive- and native-derived decoys.
A: Projection onto diagonal of the TM-score(TB,AF), TM-score(TB,trR) scores. B: Projection onto
diagonal of the TM-score(TB,AF), plDDT scores. C: Projection onto diagonal of the TM-score(TB,trR),
plDDT scores.
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Supplementary Figure 5.9: SEC-MALS and thermal meltings for the designs. A: Models of the
designs (rainbow) with their corresponding AF2 predictions (black). B: SEC-MALS profiles for the
designs show that both des_igl_44 and des_igl_155 are mostly monomeric, while the other designs
show signals and molecular weights (MW) indicating oligomeric species (2mers, 3mers, and 4mers).
C: Thermal denaturation curves at 220 nm for des_rssmnn_113, des_rssmnn_169, des_tp7_30 and
des_tp7_80 and at 218 nm for des_igl_44 and des_igl_155 are shown. D: CD spectra collected with 5 mM
of the reductant tris(2-carboxyethyl)phosphine (TCEP, green) and 4 M of the chemical denaturation
guanidinium hydrochloride (GdnHCl, red) for des_igl44anddes_i g l155.
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Supplementary Figure 5.10: Sequence and structure similarities to the PDB. A: Global pairwise
sequence alignments scored with a BLOSUM62 distance (sum of the individual BLOSUM62 scores).
B: Pairwise structure RMSDs. C: Principal component analysis (PCA) of the combined sequence
(BLOSUM62 distance) and structure (RMSDs) features. Models of the designs (rainbow) with their
cluster members.
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Supplementary Figure 5.11: Sequence and structure similarities to the AF database. A: Global
pairwise sequence alignments scored with a BLOSUM62 distance (sum of the individual BLOSUM62
scores). B: Pairwise structure RMSDs. C: Principal component analysis (PCA) of the combined sequence
(BLOSUM62 distance) and structure (RMSDs) features. Models of the designs (rainbow) with their
cluster members.
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6 Tailored de novo protein design with
deep neural networks

...

This chapter describes ongoing work for a de novo protein design method employing deep

neural network (DNN) modules. As described in chapter 5, we use idealized drafts of protein

folds and train a DNN termed "Genesis" to generate "designable" structural constraints

thereof. trRosetta is used to design sequences obeying the predicted constraints. Together,

the Genesis-trRosetta framework circumvents the creation of backbones in 3D space, and

compared to the TopoBuilder, Genesis-trRosetta can be used to virtually design any protein

fold while being orders of magnitudes faster. A manuscript based on this work is currently in

preparation.
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6.1 Abstract

De novo protein design aims to explore uncharted areas of the global protein structure and

sequence spaces. Despite recent advances, the success of de novo design remains limited.

One of the main challenges is defining the set of “designable” structural protein backbone

templates which could in turn help to solve the sequence sampling stages. Many protein

backbone design approaches suffer from inaccuracies in both energy functions and sampling

algorithms, which often leads to a convergence in sequence space with a few similar sequence

variants that frequently fail experimentally. To address these limitations, we build on recent

advancements in protein structure prediction and design using deep neural networks. We

train a convolutional variational autoencoder called Genesis that is trained to improve protein

secondary structure lattice models termed Sketches by denoising their 2D feature maps.

Genesis interfaces with the recent neural sequence design framework trRosetta to jointly

optimize the protein sequence and structure in a higher dimensional feature space, thereby

bypassing the arduous and time-consuming step of crafting designable backbones and fitting

sequences in 3D space. We used Genesis-trRosetta to design large pools of diverse sequences

for a set of protein folds and found that the framework is capable of sampling native-like

features maps for known and novel protein topologies. The Genesis framework enables the

exploration of the protein sequence and fold space within minutes and is not bound to specific

protein topologies. Essentially, our method addresses the backbone designability problem

and could ultimately contribute to the de novo design of proteins with new functions.

6.2 Main

Evolution is a slow and gradual process that has only sampled a tiny fraction of the possible

protein amino acid (AA) sequence space [317, 318]. Natural sequences collapse into structures

that can be clustered into a small set of protein shapes (folds). In order to explore new

sequences that fold into well-defined 3-dimensional (3D) conformations outside the natural

repertoire and are amenable to tailored functionalities, de novo protein design strategies have

been developed [42, 319, 291, 320]. Currently, de novo protein design is an iterative process

where (1) the protein shape is outlined and corresponding backbones are sampled, and (2) low

energy AA sequences are fitted onto the generated backbones. Despite numerous successes

[295, 60, 296, 85, 76], de novo design is hindered by inaccuracies in current energy functions

and the heuristics within most sampling methods, often leading to experimental failures [321,

77, 74].

Many designed proteins fail due to having physically unrealistic backbones that are not “des-

ignable” in the first place. Designable backbones are strain-less and have optimal secondary

structure configurations with favored tertiary structure symmetries such that they are realiz-

able with the 20 natural AA and induce packed conformations [94, 89, 90, 95, 92]. Furthermore,

it has been observed that highly designable backbones can accommodate a large variety

of energetically favorable sequences [92, 94]. Large sequence capacity has been linked to
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mutational robustness which favors thermodynamic and evolutionary stability [322, 323].

Capturing designability quantitatively is challenging as it includes properties that are difficult

to measure, such as fold specificity [89, 298], or native-like structural arrangements [97].

Multiple empirically derived principles have been formulated to encode strong sequence-

to-structure relationships for protein structures and to alleviate the designability problem

to a certain extent. For highly symmetric and repetitive folds such as α-helical bundles,

parametric equations describe the shapes with a minimal number of variables [324, 303]. Koga

and colleagues [99] formulated the first set of rules that, together with fragment assembly

protocols [84], led to the design of “ideal” protein folds, this is with small loops and regular

secondary structure elements (SSEs). The rules are based on loop lengths that embed the

packing of local tertiary motifs such as β/β-, β/α-, and α/β-units to SSEs. These rules have

been steadily updated. For instance, loops can be structurally defined to bridge non-local

motifs [100, 87], cavities can be created by inducing strong curvatures into β-strands through

controlling resisters shifts between- and β-bulges in -strands [76, 86], and strategically placed

stress-relieving glycine residues allow the design of β-barrels [77]. Furthermore, methods

that automatically identify fold-specific statistics from structural data have been shown to

improve the design process [77, 64]. The structure extension with native-substructure graphs

(SEWING) [85] method enables designing proteins with non-ideal SSE, where natural SSE with

all their irregularities are pieced together.

Recent advances within deep neural networks (DNNs) combined with the availability of large-

scale protein structure data in the protein data bank (PDB) have enabled highly accurate

structure prediction from sequence [107, 108] (Fig. 6.1A). Interestingly, the trained structure

prediction DNN can be “reversed” for the protein design task. A good example is the transform-

restrained Rosetta (trRosetta) neural network [106] that was used to hallucinate novel proteins

by using a specific loss that maximizes the contrast between random (background) and native

distance predictions [138]. trRosetta can also be employed for fixed backbone design via

backpropagating gradients from the target structure to the sequence, which has the effect

of implicitly optimizing over the full sequence and structure landscape [139] (Fig. 6.1B). In

the latter case, the method searches for the lowest-energy sequence while maximizing the

probability of the target structure relative to all other conformations. Encouragingly, the

trRosetta design framework is able to design new sequences for a target structure within min-

utes on modern graphical processing units (GPUs), enabling multi-state and high-throughput

sampling of the design space.

Inspired by these recent advances, this work puts forth the hypothesis that trRosetta can

also facilitate tailored de novo design, where the shape and SSE composition is controlled

(Fig. 6.1C). To achieve this, we implemented a framework that uses a simple string descrip-

tion of a protein fold (termed “Form” [305]) and auto-generates realistic designed proteins.

The framework first creates a 3D representation of the Form termed “Sketch”. We trained

a variational autoencoder (VAE) termed Genesis to encode the distances and orientations

of a Sketch to a latent representation, sampled and then decoded close-native distance and
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Figure 6.1: Genesis neural de novo protein design pipeline. A: The general trRosetta sequence to
structure prediction pipeline. B: The trRosetta framework used for fixed backbone design maximizing
the predicted probabilities towards the given target contacts. C: Our Genesis-trRosetta framework for
de novo protein design. We use the trRosetta fixed backbone design strategy to design a sequence for
the refined contacts from the roughly sketched contact of a protein fold through the Genesis DNN.

orientation probabilities from this representation ready for the trRosetta sequence design task.

Our approach circumvents the need to create designable 3D backbones and the backbone

generation task is, unlike conventional de novo design methods, not directly based on energy

functions. This allows the de novo design process to be fast and efficient.

6.3 Results

6.3.1 Sketching protein drafts from native backbones

We delineate the shape of a protein through a string specifying the SSE types, lengths, and

relative positions on a lattice, termed Form [305]. In a Form, each level or layer of the lattice

can be populated by an arbitrary number of SSEs. The layers are equally spaced from each

other by 8 Å for β-β-strand layers and 10 Å - 11 Å for α-α-helix or α-helix-β-layers [307]. A

Form can be expanded into a 3D representation that we call a “Sketch”. A Sketch is a rough

3D approximation of a native protein structure albeit lacking loops, native-like irregularities

within SSEs, and side chains (or sequence).

We have previously described the TopoBuilder [174, 175], a method that can design de novo

protein models and sequences given a Form or a Sketch using Rosetta FunFolDes (FFD) [312]

and FastDesign with derived Cα-Cα distance restraints from the SSEs of the Sketch. This

method yielded several successes [174, 175], although two major limitations remain: (1) the

inherent non-designability of the Sketches and hence the imprecisely derived Cα-Cα restraints

often guide the simulations towards incorrect solutions, and (2) the number of designs that are
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needed to be sampled (∼2,000 - 10,000 sequences) in order to sufficiently probe the sequence

landscape and be able to select potential low energy solutions is extremely high and therefore

time and resource consuming.

Figure 6.2: Network architecture and data engineering. A: Examples of Sketches (red) and a
corresponding native structure (grey) for the major protein structure classes (HH_H: 3-helix bundle,
H_EEE: mixed-α/β-sandwich, EEE_EEE: β-sandwich). B: Similarities between the Sketches and their
corresponding native structures based on best-fit root-mean-squared deviation (RMSD) and the TM-
score for major protein structure classes. C: The number of native structures that can be represented
by an individual Sketch across the three major protein structure classes. D: Loops on the Sketch and
corrupted structure are approximated by adding backbone residue atoms with random torsions along
the shortest path between two consecutive SSEs. E: Comparison of the different feature maps (Sketch,
corrupted Structures, and native Structure).

To alleviate these limitations, we employ a DNN to automatically learn to decipher important

structural features and incorporate native-like patterns into the Sketches. The DNN takes the

form of a VAE that is trained to transform a large dataset of Sketches into their respective native

structures. The dataset was built by generating different sets of “mini-Sketches” and mapping

them to their native counterparts (Fig. 6.2A). The sets encompass many 2- and 3-layer fully-β-,
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α- and mixed-α/β topologies and capture a large scope of possible folds (see Methods). The

mini-Sketches have small idealized SSEs (5 residues for β-strands and 9 residues for α-helices),

no sequence information, and dummy backbone residues along the shortest path between

end- and starting points of the SSEs representing the loops. The loops were modeled in this

way because we do not have information about potential loop conformations (Fig. 6.2D). We

also note that, though mini-Sketches can fit onto multiple native counterparts, the majority

only map to 1 or 2 conformations (Fig. 6.2C).

Since not all protein domains can be formulated as a Form (e.g., β-barrels), we augment our

data set by adding corrupted backbone structures, where the loops are replaced by dummy

residues as done on the mini-Sketches (Fig. 6.2D). The corrupted backbones add architectural

and structural diversity to our data set by retaining tertiary motif dispositions and secondary

structure irregularities, respectively (Fig. 6.2E). We split our dataset into a series of training and

test sets with different structural properties based on the Structural Classification of Proteins

— extended (SCOPe) scheme. We then optimize Genesis for a training set consisting of a

particular type of structure and test the validity of its predictions on proteins with increasingly

different structural properties (see Methods). Our evaluation procedure quantitatively assesses

the extent to which our framework generalizes beyond the distribution induced by a given

training set. We argue that any method that facilitates de novo design should generalize to

unknown subsets of the protein space.

6.3.2 De novo design through collaborative deep neural networks

We developed a convolutional VAE that operates on distance and orientation maps rather than

atomistic coordinates (Fig. 6.3A) (See Methods for implementation details and data encoding).

Importantly, distances and orientations are invariant with respect to translation and rotation

which ensures stable and predictable performance in the presence of transformations of the

data input under the special Euclidean group. Our VAE is conditioned on the real-valued

distances and orientations of the mini-Sketches, and from the latent conditional distribution

predicts distance- and orientation probabilities of native-like conformations.

We train the VAE in a supervised manner by minimizing the 1st Wasserstein distance between

the true feature maps and the distribution predicted by the VAE (see Methods). In contrast

to the previously utilized cross-entropy loss [105, 106], the Wasserstein distance enables

weighting individual errors between the distributions, i.e., penalizing large differences between

the true and predicted distributions more than small differences. We follow a standard pre-

train - fine-tune regimen. We pre-train the VAE on the corrupted structures with a learning

rate set to 0.001 over 300 epochs and subsequently fine-tune the VAE for 500 epochs on the

mini-Sketches. The pre-training slightly improves the performance on the test set when

compared to directly training the VAE on the mini-Sketches (Fig. 6.2D).

We couple our fine-tuned VAE (called “Genesis”) with the trRosetta framework. We use the tr-

Rosetta fixed backbone design method to optimize sequences for our generated distance- and
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orientation probabilities [139]. We subsequently use the generated sequences and constraints

from trRosetta to minimize the energy with gradient descent and generate 3D models using

PyRosetta [325] (see Methods). In summary, the Genesis-trRosetta de novo design framework

uses a Form to build a Sketch that is then refined by Genesis, designed through trRosetta, and

finally assembled and minimized with a full atomistic energy function in Pyrosetta (Sup. Fig.

6.1).

Our ablation studies demonstrate the importance of both the Genesis and trRosetta modules.

First, we remove the trRosetta design module by gathering structural restraints directly from

the Genesis distance- and orientation probabilities and using a poly-valine AA sequence. We

see a low performance with the template modeling (TM) score [266] median being below 0.5

and the root-mean-squared-deviations (RMSDs) median around 4 Å between the predicted

3D model and the native structure on the training and test set examples across all major

classes (Fig. 6.3B). Second, we removed Genesis resulting in a framework where trRosetta

is challenged to directly design sequences for a given Sketch. On the training examples, we

measure a good TM-score median around 0.6 and an RMSD median around 2 Å for the three-

helical architectures, while for the fully-β and mixed-α/β architectures the results are rather

bad with a median TM-score around 0.4 and the median RMSD around 3.5 Å. The few selected

test examples follow the same trend as the train examples: Genesis alone is not sufficient

to build native-like poly-valine backbones, and simply using trRosetta to design sequences

for Sketch results in a poor performance with sequences and constraints not recapitulating

the intended shape of the Sketch. Thus, our experiments support the interpretation that,

though Genesis cannot solve the backbone design problem by itself, its predicted features can

guide trRosetta towards the sequences that correspond to specific folds. On the other hand, a

Sketch alone lacks native-like features that could be identified by trRosetta to use and design

fold-specific sequences.

We assess the performance of different variants of the Genesis pipeline. Using the basic

framework "Sketch → Genesis → trRosetta → Rosetta", we achieve a TM-score of 0.8 and a

median RMSD of 2 Å for fully-α-helical proteins, a median TM-score of ∼0.55 and median

RMSD ∼3.5 Å for fully-β proteins, and a median TM-score of ∼0.5 with a median RMSD ∼4

Å for mixed-α/β proteins. We see an improvement when adding a simple relaxation with

favoring secondary structure pairing and packing after the gradient descent minimization

with median TM-scores of approximately 0.8, 0.6, 0.55 and RMSDs of 2 Å, 3 Å, 3.5 Å for alpha-,

beta- and mixed-α/β proteins from the training set respectively. Importantly, adding a loss

controlling the AA composition of the generating sequences within trRosetta resulted in a

small performance drop.

We also tested the pipeline using the trRosetta hybrid-design protocol, where, instead of

optimizing for a single sequence, the algorithm optimizes for multiple sequences from which

a position-specific scoring matrix (PSSM) is generated and used to guide the sequence design

task. The results were comparable to the standard pipeline in terms of TM-scores and RMSDs

(Sup. Fig. 6.2).
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Figure 6.3: Pipeline performances. A: General architecture and training scheme of the Genesis
module used. Genesis is first pre-trained with corrupted feature maps and subsequently fine-tuned
with Sketch feature maps. B: Different pipelines and their performances for the different classes of
proteins (“H”: fully-α-helical, “E”: fully-β, and “HE”: mixed-α/β). The number of optimization steps is
101 if not differently indicated. “Sketch” represents the input feature maps from the Sketch, “Genesis”
is the Genesis module to optimize the feature maps, “trR” is the trRosetta design module and “PyR”
is the PyRosetta script to generate 3D models from the generated features and sequence. The first
pipeline is an ablation of the trRosetta module, where restraints are derived directly from the Genesis
generated feature maps using a poly-valine AA chain for the 3D model generation. The second pipeline
is an ablation of the Genesis module where the trRosetta module is directly used to optimize the Sketch
feature maps. The three subsequent pipelines are variations of the full pipeline, including additional
relaxation steps (PyR_relax) and an adding AA composition loss with 301 optimization steps to the
trRosetta module (trR_AAcomp_301x). C: Comparison between the Sketch maps - trRosetta / 3D
model (3DModel) maps and the Genesis refined maps - trRosetta / 3D model (3DModel) using the 11st

Wasserstein distance. D: Performance of the standard Genesis pipeline across different difficulty levels
according to the SCOPe structure classification.
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In order to evaluate the generalization power of Genesis, we train and test Genesis on the series

of training and test splits given by SCOPe (Fig. 6.3D) (see Methods). The SCOPe hierarchically

classifies proteins based on structural similarities: The top level ("Class") divides proteins

into major classes: fully-α, fully-β and mixed-α/β. The next lower level ("Fold") arranges the

structures according to secondary structure disposition and connectivity. Two important

additional lower levels exist ("Superfamily" and "Family") which take fine-grained structural

and functional features into account.

For α-helical proteins, the TM-scores and RMSDs are around 0.6 and 3 Å, respectively, whereas

for fully-β and mixed-α/β proteins, a degradation in performance is observed. At the superfam-

ily level two out of 25 test proteins cross the critical 0.5 TM-score threshold for fully-β structures.

One level higher (fold level) solely one out of the 75 test proteins crosses the 0.5 TM-threshold.

For mixed-α/β proteins, around three test proteins are predicted with a TM-score above 0.5 for

both superfamily and fold levels. These results indicate that Genesis is capable of generalizing

across families quite well, while proteins with different connectivities and structural features

are more difficult to generate successfully.

To showcase the Genesis-trRosetta de novo design framework, we conditionally sample five

different folds. We sample a two-layer mixed-α/β Ubiquitin-like fold, where four strands

are packed against a helix, and a three-layer mixed-α/β Rossmann fold with a central four

stranded β-sheet and two exterior packing α-helices on both sides. We additionally challenge

the framework by generating two different two-layer β-sandwiches, an Immunoglobulin (Ig)

-like fold and a Jelly-roll fold. Finally, we design sequences that adopt the Top7 fold [326], a

novel fold not observed in the natural repertoire and representing a generalization test to our

method.

As we do not have prior knowledge about SSEs and loop lengths, we sample over 20 to 30

combinations (see Methods). For each combination, we refine three different feature maps

using Genesis and for each design a set of 1,000 sequences through trRosetta. With the

predicted sequence library we create a PSSM and use it together with the distance- and

orientation restraints to design two low energy sequences and 3D models.

We realign each of the 3D models back to the input Sketch and collect all 3D models and

sequences that have a TM-score above 0.5. A 3D model with the correct connectivity should

have a TM-score around 0.5 to the Sketch (to be the same fold) (Fig. 6.4A). For the Rossmann-,

Jelly-roll- and Top7 folds, over 50% of the designs passed the 0.5 TM-score threshold and

were collected, while for the Ig-like and Ubiquitin-like folds, approximately 25% passed the

TM-score threshold.

We use AlphaFold2 (AF2) to predict a model from the collected sequences and realign the AF2

model to the Genesis model (Fig. 6.4B). We observe that around 50% of the sequences have

the expected fold (TM-score > 0.5) and the median RMSDs in the range of 3 Å to 4 Å.
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Figure 6.4: Computational results of the sampled native folds. A: The TM-scores and RMSDs
between the sampled designs and the initial Sketch (input) for the native folds. B: The TM-scores
and RMSDs between the select designs (TM-score > 0.5 design to Sketch) and their AlphaFold2 (AF2)
predictions (without MSA input). C: Examples of sampled models (rainbow) and the corresponding AF2
models. D: The distance feature matrix of the Sketch, Genesis, trRosetta, and the 3D model generated
using PyRosetta.

6.3.3 Probing "dark matter" protein folds

The ultimate goal of de novo protein design methods is to generate protein shapes not existent

in nature. We asked the question if our framework based on DNNs and trained on natural

derived structure data is capable of (besides the Top7 fold) generalizing outside the distribution

of natural folds e.g., if our framework is able to generate out-of-distribution.

To this end, we sought to sample protein folds not included in the training set, nor observed in

nature. Previously, Taylor and colleagues [306] computationally analyzed possibly unexplored

regions of the three-layer mixed-α/β fold space through Cα-traces that obey constraints of

natural protein structures, such as handedness of connection and loop-crossing. We further

reduced the set by discarding Cα-traces that have mixed secondary structure types on the
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same layer, disembodied SSEs (unpacked) or nearly crossing loops. We selected three distinct

folds to design with the Genesis-trRosetta method.

Figure 6.5: Computational results of dark matter folds. A: Form descriptions and 2D lattice
diagram of the selected dark matter folds. B: The TM-scores and RMSDs between the select designs
(TM-score > 0.5 design to Sketch) and their AF2 predictions (without MSA input). C: Examples of
sampled models (rainbow) and the corresponding AF2 models. D: The distance feature matrix of the
Sketch, Genesis, trRosetta, and the 3D model generated using PyRosetta.

The first novel fold (drk_31.81840) has a three-stranded central β-sheet with two helices on

both sides. The top helices are connected through the middle and the side strand, and the

bottom helices are connected through the other side strand (Fig. 6.5A top). The second novel

fold (drk_33.45278 and drk_34.46280) is also a three-layer fold with a four stranded β-sheet

in the middle and two helices on each side. This fold is similar to the first novel fold, but

connects the top helices with two β-strands on one side and the two lower helices with the two

β-strands on the other side (Fig. 6.5A middle). The third novel fold (drk_31.82782) consists of

a five-stranded β-sheet sandwiched with three helices on top and a single helix on the bottom.

This fold is “rolled” between the four consecutive strands and the three top helices and the

last strand connects the lower helix that bases the full β-sheet (Fig. 6.5A bottom).

We used the Genesis-trRosetta framework to sample sequences using as input different Forms

varying in the loop and SSE lengths. We collected the sequences with a TM-score above 0.5

between the 3D models and the Taylor Cα-trace to ensure the correct overall fold. We found

that many of the collected 3D models often had single distorted helices or unpaired strands

likely due to high resolution constraints and potentially suboptimal sequences sampled from

the PSSMs. We therefore picked the two to five best generated 3D model backbones and their

PSSM generated by trRosetta and additionally sampled 200 sequences and 3D models for each
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of the three novel folds.

All sampled sequences then were fed into AF2 (single-sequence prediction) and the AF2-

predictions aligned to the initial 3D model (Fig. 6.5B). Interestingly, for the three novel folds

the median TM-score was around 0.5 or higher and median RMSDs 3.7 Å or lower. Thus more

than half of the sampled sequences have trRosetta models have folds that agree with their

corresponding AF2 models.

6.4 Discussion

We show that a specialized VAE termed Genesis is able to encode representations of idealized

protein folds and decode native-like conformations. By basing ourselves on distance- and

orientation representations, we are able to alleviate the need of generating designable protein

backbones in 3D space with fold-specific restraints and energy functions, and thereby also by-

passing the need for designable backbones. We couple Genesis to the trRosetta design engine

to generate multiple sequences for the sampled distance- and orientation representations for

a set of known and novel folds.

Our results demonstrate that the Genesis-trRosetta framework is capable of designing new

proteins adopting known folds and novel folds non-existent in nature. By changing sec-

ondary structure and loop lengths the overall size can be adjusted and different conformations

sampled. The generalization capability of Genesis is significant and can very well drive the

trRosetta-Rosetta hybrid design method to sequences with strong fold signatures. Using AF2

as an orthogonal test shows that many of these sequences adopt the intended target shape.

Additionally, our framework is considerably fast, within minutes to generate a sequence and

a 3D model for a given target protein shape even on a central processing unit (CPU). This

demonstrates the usage of DNNs can leverage the automated generation of proteins normally

only accessible through large-scale simulations [74, 153].

Our work opens exciting new horizons for de novo protein design where control over the

shape is desired. For example, our method could be harvested to generate custom protein

backbones such that they fit onto non-canonically structured protein interfaces. Often times,

nanomaterials exhibit highly regular patterns, and could therefore be engaged by secondary

structures that are placed respecting the regularity constraints. Another example where our

method could be used is for the design of larger molecular assemblies that are constructed

from smaller protein domains. Often, the overall shape of the assembly is controlled by

the shape of the individual subunits. Hence, we expect that the versatility and speed of the

Genesis-trRosetta method together with other potential DNN tools for protein design and

engineering to explore the protein universe should be broadly useful.
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6.5 Methods

6.5.1 Dataset generation

We created two distinct datasets from the SCOPe (v2.07 stable) [327] domains of medium sizes

(40 - 128 residues). (1) The pre-training data set was created by corrupting existing protein

structures by removing the loops based on the DSSP (hydrogen bond estimation algorithm)

[210] assignments. We remodel the loops as done in a Sketch, e.g. we add dummy residues (N,

C, Cα, O backbone atoms with randomized torsion angles) along the shortest path between the

two endpoints Cα atoms of the consecutive SSEs. We add as many dummy residues as in the

native structure, hence the corrupted structure has the same length as its native counterpart.

This procedure leaves the native secondary structures dispositions that may incorporate

important native structural features for the pre-training. In total, we created a total of 40,726

pairs. (2) We developed a program that creates small fold Sketches obeying simple topological

rules such as non-crossing loops and loop distance restraints from the architecture types:

EE_EEE, EEE_EEE, H_EEE, H_EEEE, H_EEE_H, HH_EE, HH_EEE, HH_EE_H, HHH, HHH_EE

(where “_” represents a layer separation and E: β-strand and H: α-helix). We searched the

SCOPe domains for partial structural matches within 3 Å RMSD using MASTER [309, 310] for

each of the generated mini-Sketches. Importantly, a mini-Sketch can partially match onto a

native domain. We crop the overlapping regions of the native domain at the first and the last

residue of the matching Sketch. Secondary structures within the cropped domain that do not

map to secondary structures in the Sketch are assigned as loops. Furthermore, we remove

domains larger than 128 residues and identical matches for the mapping to the same Sketch.

This resulted in a total of 35,435 Sketch - native domain pairs.

6.5.2 Data splits

Within SCOPe, protein structures are hierarchically classified into groups where the "Class"

groups proteins based on secondary structure content and organization (fully-α, fully-β, mixed-

α/β), "Fold" divides them based on SSE disposition and connectivity, "Superfamily" is based

on structural features and "Family" contains the structures with similar sequences.

We pick protein families that represent compact structures with small loops for our family

test set. The test set includes the SCOPe families b.1.22.1, b.11.1.6, b.69.2.3, b.70.2.1, b.82.1.22,

b.114.1.1, a.7.2.0, a.7.2.1, a.7.8.2, a.7.12.1, a.8.11.1, a.24.10.3, a.24.13.1, a.60.9.0, a.160.1.2,

c.2.1.7, c.25.1.2, c.118.1.0, c.93.1.0, c.56.5.6, d.110.4.3, e.51.1.1, c.97.1.5, d.17.1.5, d.58.3.2,

d.58.10.0, d.58.23.1, d.92.1.13, d.230.1.1, d.240.1.0. We generate higher-level test sets (fold and

superfamily) by removing all corresponding groups from the picked structures in the Family

test set, e.g. for the family b.1.22.1 the superfamily is b.1.22 and the Fold is b.1.. Importantly,

identical structures and mini-Sketches in the training set were removed in order to avoid any

biases during testing.

153



Chapter 6 Tailored de novo protein design with deep neural networks

6.5.3 Data encoding

The coordinates of the Sketches and their native counterparts are encoded into a total of four

2D distance- and orientation feature maps as done by trRosetta. Briefly, the first feature map

is all-against-all Cβ distances. The second feature map is the dihedral “ω” that measures the

rotation along the virtual axis of two connecting Cβ residues. The distances and ω-angles are

symmetric, e.g. measuring from residue i to residue j will give the same result as measuring

from residue j to residue i. The third and fourth feature map are the “θ” dihedrals and the “φ”

angles specifying the direction of Cβ of residue i with respect to residue j. Both, θ and φ are

asymmetric metrics. Together the four feature maps fully define a protein backbone in 3D

space.

While we use real valued feature maps as input to Genesis, we bin the true feature maps

according to the trRosetta scheme. The distances from 2 to 20 Å are binned into 36 equally

spaced segments (0.5 Å each) and a 37th bin to indicate that pairs are not in contact. The

dihedral (ω, θ) and angular (φ) features are binned into 15° segments yielding 24, 24, and 12

with an additional bin indicating no contact, respectively. Therefore, we have encoded the

true feature maps into tensors of shape 128x128x1x37 for the distances, 128x128x1x25 for the

dihedrals and 128x128x1x13 for the angles. Thus, at each “pixel” (each residue pair) we have

an additional dimension that can be seen as a dirac distribution with a score of one for the bin

with the distance and zero everywhere else.

6.5.4 Genesis architecture

The VAE includes an encoder, a decoder and a loss function. The input Sketch x feature

maps (real-valued) of shapes 128x128x4 are processed by the encoder, a sequence of four

convolutional blocks. A single block includes a 2D convolution, an instance norm and ELU

activation followed by a 40% dropout. From the compressed data representation, we use two

multilayer perceptrons (MLPs) to predict a normal distribution over the latent space p(z|x)

through predict means and covariances two vectors of size 128. Using the reparametrization

trick, we sample a latent variable z from p(z|x). The decoder q(y |z) passes z through three

blocks of 2D deconvolution, instance norm, ELU activation and 40% dropout to create a

decompressed representation. The final layer of the decoder branches into four different

heads. Each head is a convolutional block with a final softmax activation over each pixel

yielding distance outputs of shape 128x128x1x37, two dihedral outputs of sizes 128x128x1x25

and an angular output of shape 128x128x1x13.

6.5.5 Loss function

Our loss function is composed of five individual losses (four reconstruction losses, and a loss

on the latent space).

We use the Wasserstein distance (for details see [328]) as reconstruction loss. Let us define x P
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and y Q and the corresponding densities as p and q , respectively. We assume that (x, y) ∈Rd

. Additionally, let us denote J (P,Q) all joint distributions J for (x, y) that have marginals P

and Q. Then the general Wasserstein distance can be written as

Wp (P ,Q) =

(
inf

J∈J (P ,Q)

∫ ∥∥x − y
∥∥p d J (x, y)

)1/p

(6.1)

In the discrete case, when P and Q are distributions (x1, . . . , xn) and (y1, . . . , yn) the formulation

becomes

Wp (P ,Q) =

(
n∑

i =1

∥∥xi − yi
∥∥p

)1/p

(6.2)

In the case of 1D discrete distributions (p = 1), the 1-Wasserstein (W1) distance is also called

Earth mover’s distance (EMD) and is efficiently computable. The main advantage of the

1-Wasserstein distance compared to other measures such as the binary cross-entropy and the

Kullback-Leibler (KL) divergence is that it takes into account the metric space. This means

that larger deviations from the predicted to the true distributions are more penalized while

small errors are less penalized.

We define the reconstruction loss as the sum over the 1-Wasserstein distances between the

predicted distributions (D̂) and the true distributions (D) of each pixel normalized by the

length of the protein (NAA). Each pixel is defined as (i , j ) where i = 1, . . . ,nw and j = 1, . . . ,nh

with nw being the width and nh the height.

Lrec =
1

NAA

nw∑
i =1

nh∑
j =1

W1(Di , j ,D̂i , j ) (6.3)

Note that the true distribution is modeled as a Dirac distribution supported by the true values,

whereas the predicted distribution (D̂) is parametrized by the VAE decoder. We additionally use

the Kullback-Leibler (KL) divergence on the latent space normalized by the length of the pro-

tein to penalize latent vectors not following a Normal distribution KLD = 1
NAA

KL(p(z|x)∥p(z)),

with p(z) Normal(0,1). Thus the final loss is defined as
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6.6 Supplementary information

Supplementary Figure 6.1: Sampling strategy We sample several combinations of SSE and loop
sizes yielding different sized Sketches and different refined feature maps by Genesis. Using trRosetta,
we design multiple sequences for each of the feature maps. Then, using PyRosetta, we generate multiple
potential structural models per sequence including the distance- and orientation restraints from the
feature maps.
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Supplementary Figure 6.2: Pipeline performances with MSA design A: Training set: different
pipelines and their performances for the different classes of proteins (“H”: fully-α-helical, “E”: fully-β,
and “HE”: mixed-α/β) using the hybrid trRosetta design approach. The number of optimization steps is
101 if not differently indicated. B: Test set performances over different protein classes using the hybrid
trRosetta design approach. C: Performance of the Genesis pipeline using the hybrid trRosetta design
across different difficulty levels according to the SCOPe structure classification.
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7 Conclusions & Perspectives

This dissertation presented the development of novel computational protein design platforms

for automated de novo design of protein folds and PPIs. Since the start of my Ph.D. in October

2017, the field of de novo protein design has remarkably advanced; and each of the presented

methods have (1) contributed to the field’s scientific progress and (2) helped to answer or

deepen our current understanding of of important problems related to de novo design of

proteins and PPIs. In the following section, I will recapitulate our findings and then try to give

future perspectives from what we have learned in the context of the overall scientific progress.

7.1 Orchestrating PPIs and beyond

The computational design of novel PPIs remains a challenging biological problem. In chapters

2 and 3, computational protein interface design strategies were employed to efficiently predict

a set of potential point mutations that could increase the binding affinity to a specific target.

Specifically, in chapter 2, a small protein that binds tightly to the SpyCas9–sgRNA complex

and inhibits DNA editing was engineered by fusing a light-sensitive domain LOV2 of A. sativa

phototropin-1 to AcrIIA4. When blue light interacts with the LOV2 domain, a conformational

change (i.e. partial unfolding) is prompted. In the case where the LOV2 domain is fused to

another protein, the induced conformational change gets propagated and can disrupt the

activity of the fused partner. The light-induced disruption strategy is generally applicable

for engineering switches where the function of the partner protein depends on the subtle

spatial organization of its atoms. For example, for enzymes to function, their catalytic site

requires precisely coordinated residues; and for proteins to interact specifically, they require a

geometric and electrostatic complementary interface with respect to their target site. Initial

experimental testing of the switching behavior of the generated LOV2-AcrIIA4 hybrid was

accompanied by significant inhibitory leakage i.e., the DNA-editing off-switching behaviour of

the hybrid was incomplete. Although the hybrid was able to inhibit SpyCas9, significant DNA
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editing was still observed. This could result from the fusion procedure disrupting the AcrIIA4

structure and its binding activity. This activity disruption after fusing two proteins together is

frequently observed [329, 198]. To fully recover the inhibitory activity of the engineered hy-

brids, a computational single-sided interface design protocol was developed. This permitted

the screening of a large set of potential mutations at the interface between the hybrid and the

enzyme complex to increase the binding affinity and thereby reduce DNA-editing leaks. The

calculations pointed towards two mutations that showed full recovery of the LOV2-AcrIIA4

hybrid inhibitory activity while retaining full switch-reversibility. The results highlight: (1)

small conformational deformations can efficiently be corrected by few mutations restoring

the initial activity, and (2) fast, simple modeling simulations enabled the screening of vast

search space that is experimentally unattainable. The developed strategy’s extends beyond

switchable Cas9 inhibitors, for example to design improved protein binders or light-sensitive

enzymes.

In chapter 3, improvements of the computer-guided interface design protocol led to the re-

purposing of AcrIIC1, a broad-spectrum inhibitor of various Cas9s towards a newly designed

Acr with superior inhibition potency against Staphylococcus aureus (Sau)Cas9. This Cas9

orthologue is of substantial importance for in vivo genome editing due to its small size and

efficient packaging into adenovirus-associated viral vectors (AAVs). No other rationally de-

signed Acr inhibitor against SauCas9 exits, and only shortly after the project a natural inhibitor

was discovered [262]. To create a SauCas9 specific Acr variant, a computational search for

amino acid (AA) substitutions in the binding region of AcrIIC1 that must increase its shape and

electrostatic complementarity to the SauCas9 structure was performed. From the simulations,

ten mutations were proposed, three of which combined (N3F, D15Q, A48I) yielded AcrIIC1X: a

potent (Sau)Cas9 inhibitor supported by experimental validation. Our methods provide the

first rational basis for an engineering strategy to improve and redirect Acr functioning. It ex-

emplifies that by minimal, but detailed optimization of the interface it is possible to (re)design

for tight binding. Interestingly, no mutation within the center of the interface of AcrIIC1 was

proposed to be beneficial by the computer simulations. This strengthens the hypothesis that

the often-hydrophobic residues within the center of the interface aid non-specific binding,

while the outer polar ring around the interface delineates the specificities. This concept also

underlies the hotspot-centric design methods i.e., certain hotspot residues substantially power

the interaction whereas the remaining interactions contribute little on their own but have a

substantial additive effects [166, 281].

In chapters 2 and 3, we took advantage of known protein-protein binding sites and natural

binders to extract hotspot residues and transplant them onto other protein structures. How-

ever, structures and interfaces are often times unknown or not readily available. In chapter

4, MaSIF applications were integrated into a de novo PPI design platform that allows for the

design of new, site-specific interactions that can sustain a PPI. This platform is significant

as it is the first method that is guided by learned surface fingerprint descriptors that can

effectively be leveraged to create of novel PPIs. The surface-centric PPI design strategy allows

160



Conclusions & Perspectives Chapter 7

for an ultra-fast search of complementary surfaces that can optimally complement the identi-

fied target region. This is difficult to achieve with current state-of-the-art. Hotspot-centric

methods rely on computational docking of disembodied side chains to identify clusters of

hotspot residues that could contribute to the mediation of high-affinity interactions. [281,

154]. However, they are limited due to the potential impossibilities to precisely integrate the

gathered hotspots simultaneously and forming dense, target-complementary interaction sur-

faces thereof. Thanks to MaSIFs sensitivity to conformational changes, it makes the framework

identify seeds containing hotspot residues with the exact side chain conformations needed for

inducing realistic and specific PPIs.

The MaSIF-based de novo PPI design framework was employed to design completely new

PD-L1 inhibitors, an immune checkpoint receptor. Besides being clinically revelant, the PD-L1

represents a very challenging target for designing specific PPIs for. It’s surface lacks deep

hydrophobic grooves that can serve as "anker" spot for large hydrophobic residues, and hence

make it difficult to design specific and strong molecular interactions with hotspot-centric

methods. Furthermore, only monoclonal antibodies (mAbs) targeting PD-L1 were successfully

developed [330] and small molecule inhibitors are in early drug development stages [289].

Employing MaSIF’s surface-based design strategy, the PD1 binding site of PD-L1 was targeted

by searching for complementary surfaces. The fragments used were α-helical because (1) no

known α-helical binder against PD-L1 exists to the best of our knowledge, and (2) α-helical

fragments can readily be transferred to larger protein scaffolds to confer stability and further

optimize the enlarge interface. Our lead designs showed nanomolar binding affinity to PD-L1,

comparable to the natural antibody-antigen binding. The complex crystal structure solved by

collaborators demonstrates that the optimized design - PD-L1 complex showing bound PD-L1

at the desired site with high atomic accuracy (RMSD = 1 Å).

Taken together, the MaSIF de novo design framework opens possibilities to target interfaces

previously thought to be “undruggable”, as seen by the SAS-6 and PD-L1 designs. These

results highlight the framework’s potential to target any protein by crafting protein binders

from the ground up without relying on native interactions. By operating on the molecular

surfaces rather than the atomistic representation, this unlocks exciting possiblities to target

modified proteins e.g., glycosylated, or post-translationally modified. This also extends to

large protein assemblies such as amyloid fibrils and even beyond biological molecules to target

structured nanoscale materials. Furthermore, MaSIFs’ sensibility to small changes within

the surface representations could effectively be used to decipher dynamic or neo-interfaces

emerging from quaternary complexes. This could open possibilities to target PPIs during

specific dynamic states that may not be observed with an atomistic representation.
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7.2 Probing the protein universe with designer proteins

The precise structure of a protein dictates its function. Different protein structures can

perform different functions, depending the specific atomic positions in 3D space. Thus,

creating proteins with certain shapes and functions represents major aims for the field. A

fundamental challenge is that not all AA sequences successfully fold into a protein and finding

a viable sequence by randomly sampling through the sequence space is extremely unlikely.

Instead of searching for new proteins at the sequence level, established de novo protein design

methods start by defining the overall shape of the protein that one would like to create and

thereby limit the sequence space to only sequences that could potential fit the predefined

shape. Then, backbones of the shape are sampled, and for each of the sampled backbone

conformations an AA sequence with a low free energy is fitted. Albeit remarkable successes in

designing novel proteins [76, 77, 60], this method is far from optimal.

De novo protein design approaches face various hurdles. The sampling methods used are

heuristic and the best conformation could be missed. Also, the current scoring functions

approximating the stability of a protein are not accurate enough and can lead to many false

positives i.e., low free energy sequences for a target backbone that do not fold experimentally.

Furthermore, while excelling at quantifying low-resolution terms, energy functions lack a

quantitative metric to evaluate whether a protein shape is realizable in 3D with the available

set of AAs i.e., the designability. Lastly, classic protein design methods often converge in

sequence space i.e., generating uniform or highly similar sequences rather than predicting a

set of distinct variants. In a previous project [331], sequence optimization for a selection of

protein structures starting from different sequence initializations were performed, however

all simulations converged. The sequences were not identified by the standard bioinformatics

tools (e.g., Hmmer [332] and BLAST [315]) to belong to the targeted structure. This high-

lighted the intrinsic inaccuracy of the scoring functions that drift their calculations towards

sequences lacking identifiable natural sequence signatures. To address this problem, a genetic

algorithm was developed that biases the sequence search towards the natural sequence pat-

terns and allows for designing sequences with native-like features. A few of the designs were

experimentally validated and found to fold into the targeted shape in addition to being ther-

modynamically stable. This highlights the inaccuracies of scoring functions and the sampling

issues and proposes an alternative solution. To improve the performance of scoring functions

an additional term estimating the “native-likeness” should be integrated i.e., with DL-based

models such as transformers that have learned from massive amounts of sequences [103, 333].

The merge of DL-based terms would represent a first step towards a general, full-atomistic

learned molecular scoring function with improved speed and accuracy.

In chapter 5, an enhanced version of the TopoBuilder to hierarchically construct protein

architectures and folds was presented. A major hindrance for the de novo design of novel

proteins is that many models are not designable due to the lack of native-like structural details

insufficiently captured throughout the modeling calculations. Handling this issue, a new

method that incorporates overall structural features from natural tertiary motifs rendering
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towards more native-like designs was developed. Concretely, the relative orientations of

the SSE in the global context of the protein was automatically optimized. Our results show

that with a minimal set of geometric corrections from native tertiary motifs that compose

the folds capture enough information to adapt and improve the designability of protein

backbones. Additionally, the fine-tuning interventions led to a designability boost of the

backbones, indicating their importance and that current fragment insertion methods do not

capture global fold determining features. Previous methods [99, 64] focused on empirical

rules to design ideal structured loops that would force the SSE placements. The TopoBuilder

represents an alternative and complementary solution that is largely automatic. Rather than

focusing on structured loops, the global placements of SSEs is optimised and corrected and

thereby implicitly guide the loop geometries. Eventually, the TopoBuilder lays the foundations

for generating proteins with controlled folds that can be harvested to scaffold functional sites

or create larger complex protein machinery by assembling single de novo designed domains.

Despite the qualitative improvements, the TopoBuilder is computationally demanding, requir-

ing specialized cluster hardware and time-consuming simulations. In the last chapter, a novel

and holistic approach Genesis to model and refine protein folds independent from scoring

functions and computationally intensive calculations was proposed. Particularly, a variational

autoencoder (VAE) was developed and trained on a large dataset of protein Sketches - protein

structures. Genesis is able to convert protein descriptions into globally coherent structural

models representations without the need of operating in 3D and the use of energy functions.

Our results show that Genesis can encode representations of simple topological description of

proteins and can readily decode native-like structure representations. Importantly, we avoid

the need for sampling and scoring in 3D, hence bypassing the need for crafting designable

backbones. By sampling novel topologies, we show that Genesis effectively learned to generate

structure representations that, when coupled to trRosetta yielded sequences that are predicted

to adopt the intended fold. This method’s generalization capabilities and prediction speed

contribute to a new tendency for de novo protein design, i.e., “neural de novo protein design”.

A potential next step could be to interface Genesis with AlphaFold2 (AF2) and its full-atom

predictions. Not only could this improve the sequence design quality of the framework, but

also extend Genesis’s ability to also denoise side chain conformations. Hence, this would

enable the control over backbone and side chain configurations simultaneously, and could

therefore be of great importance for multiple design tasks where highly accurate side chain

geometries are required e.g., enzymatic sites, channels and cavities within proteins or PPIs.

In the long run, the presented work, the reported results and discovered design principles con-

tribute to the shift towards a universal platform for generating de novo designed proteins and

could be leveraged to tackle currently unsolved computational design problems. For example,

MaSIFs sensitivity may enable the design of synthetic enzymes or epitope-stabilized vaccines,

both requiring the exact display of the motif surfaces. Then, Genesis could be adapted for

generating protein scaffolds that are able to stabilize very specific motif surfaces. Adding
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dynamics to the Genesis and MaSIF frameworks may help to better understand and control

specific surface conformations and required fold configurations. Alltogether, the methods

could jointly be used for larger biomolecular assemblies and machineries with specific incor-

porated dynamic behaviours to tightly control biological signals.

...

The coming years promise exciting new avenues for de novo design i.e., to study the funda-

mentals of biological systems or address unmet biomedical needs.
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A.1 Abstract

Large-scale datasets of protein structures and sequences are becoming ubiquitous in many

domains of biological research. Experimental approaches and computational modelling

methods are generating biological data at an unprecedented rate. The detailed analysis of

structure-sequence relationships is critical to unveil governing principles of protein folding,

stability and function. Computational protein design (CPD) has emerged as an important

structure-based approach to engineer proteins for novel functions. Generally, CPD workflows

rely on the generation of large numbers of structural models to search for the optimal structure-

sequence configurations. As such, an important step of the CPD process is the selection of

a small subset of sequences to be experimentally characterized. Given the limitations of
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current CPD scoring functions, multi-step design protocols and elaborated analysis of the

decoy populations have become essential for the selection of sequences for experimental

characterization and the success of CPD strategies.

Here, we present the rstoolbox, a Python library for the analysis of large-scale structural data

tailored for CPD applications. rstoolbox is oriented towards both CPD software users and

developers, being easily integrated in analysis workflows. For users, it offers the ability to

profile and select decoy sets, which may guide multi-step design protocols or for follow-up

experimental characterization. rstoolbox provides intuitive solutions for the visualization of

large sequence/structure datasets (e.g. logo plots and heatmaps) and facilitates the analy-

sis of experimental data obtained through traditional biochemical techniques (e.g. circular

dichroism and surface plasmon resonance) and high-throughput sequencing. For CPD soft-

ware developers, it provides a framework to easily benchmark and compare different CPD

approaches. Here, we showcase the rstoolbox in both types of applications.

rstoolbox is a library for the evaluation of protein structures datasets tailored for CPD data.

It provides interactive access through seamless integration with IPython, while still being

suitable for high-performance computing. In addition to its functionalities for data analysis

and graphical representation, the inclusion of rstoolbox in protein design pipelines will allow

to easily standardize the selection of design candidates, as well as, to improve the overall

reproducibility and robustness of CPD selection processes.

A.2 Background

The fast-increasing amounts of biomolecular structural data are enabling an unprecedented

level of analysis to unveil the principles that govern structure-function relationships in bi-

ological macromolecules. This wealth of structural data has catalysed the development of

computational protein design (CPD) methods, which has become a popular tool for the

structure-based design of proteins with novel functions and optimized properties [334]. Due

to the extremely large size of the sequence-structure space [306], CPD is an NP-hard problem

[63]. Two different approaches have been tried to address this problem: deterministic and

heuristic algorithms.

Deterministic algorithms are aimed towards the search of a single-best solution. The OSPREY

design suite, which combines Dead-End Elimination theorems combined with A* search

(DEE/A*) [335], is one of the most used software relying on this approach. By definition,

deterministic algorithms provide a sorted, continuous list of results. This means that, accord-

ing to their energy function, one will find the best possible solution for a design problem.

Nevertheless, as energy functions are not perfect, the selection of multiple decoys for experi-

mental validation is necessary [336, 337]. Despite notable successes [338, 53, 339], the time

requirements for deterministic design algorithms when working with large proteins or de novo

design approaches limits their applicability, prompting the need for alternative approaches

for CPD.

166



RosettaSilentToolbox Chapter A

Heuristic algorithms, such as those based on Monte Carlo (MC) sampling [340], use stochas-

tic sampling methods together with scoring functions to guide the structure and sequence

exploration towards an optimized score. These algorithms have the advantage of sampling

the sequence-structure space within more reasonable time spans, however, they do not guar-

antee that the final solutions reached the global minimum [341]. Heuristic CPD workflows

address this shortcoming in two ways: I) extensive sampling generating large decoy sets; II)

sophisticated ranking and filtering schemes to discriminate and identify the best solutions.

This general approach is used by the Rosetta modelling suite [68], one of the most widespread

CPD tools.

For Rosetta, as with other similar approaches, the amount of sampling necessary scales with

the degrees of freedom (conformational and sequence) of a particular CPD task. Structure

prediction simulations such as ab initio or docking may require to generate up to 106 decoys

to find acceptable solutions [97, 342]. Similarly, for different design problems the sampling

scale has been estimated. Sequence design using static protein backbones (fixed backbone

design) [297] may reach sufficient sampling within hundreds of decoys. Protocols that allow

even limited backbone flexibility, dramatically increase the search space, requiring 104 to 106

decoys, depending on the number of residues for which sequence design will be performed.

Due to the large decoy sets generated in the search for the best design solution, as well as the

specificities of each design case, researchers tend to either generate one-time-use scripts or

analysis scripts provided by third parties. In the first case, these solutions are not standardized

and its logic can be difficult to follow. In the second case, these scripts can be updated over

time without proper back-compatibility control. As such, generalized tools to facilitate the

management and analysis of the generated data are essential to CPD pipelines.

Here, we present rstoolbox, a Python library to manage and analyse designed decoy sets.

The library presents a variety of functions to produce multi-parameter scoring schemes and

compare the performance of different CPD protocols. The library can be accessed by users

within three levels of expertise: a collection of executables for designers with limited coding

experience, interactive interfaces such as Ipython [343] for designers with basic experience in

data analysis (i.e. pandas [344]), and a full-fledge API to be used by developers to benchmark

and optimize new CPD protocols. This library was developed for direct processing of Rosetta

output files, but its general architecture makes it easily adaptable to other CPD software.

The applicability of the tools developed expands beyond the analysis of CPD data making

it suitable for general structural bioinformatics problems (see extended_example notebook

in the code’s repository). Thus, we foresee that rstoolbox may provide a number of useful

functionalities for the broad structural bioinformatics community.

A.3 Implementation

rstoolbox has been implemented extending from pandas [344], one of the most established

Python libraries for high-performance data analysis. The rstoolbox library architecture is
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composed of 4 functional modules (Fig. A.1): I) rstoolbox.io - provides read/write functions

for multiple data types, including computational design simulations and experimental data,

in a variety of formats; II) rstoolbox.analysis - provides functions for sequence and structural

analysis of designed decoys; III) rstoolbox.plot – plotting functionalities that include multiple

graphical representations for protein sequence and structure features, such as logo plots [345],

Ramachandran distributions [346], sequence heatmaps and other general plotting functions

useful for the analysis of CPD data; IV) rstoolbox.utils – helper functions for data manipulation

and conversion, comparison of designs with native proteins and the creation of amino acid

profiles to inform further iterations of the design process.

Figure A.1: rstoolbox library architecture. The io module contains functions for parsing the input
data. The input functions in io generate one of the three data containers defined in the components
module: DesignFrame for decoy populations, SequenceFrame for per-position amino acid frequencies
and FragmentFrame for Rosetta’s fragments. The other three modules analysis, utils and plot, provide
all the functions to manipulate, process and visualize the data stored in the different components.

Additionally, rstoolbox contains 3 table-like data containers defined in the rstoolbox.components

module (Fig. A.1): I) DesignFrame - each row is a designed decoy and the columns represent

decoy properties, such as, structural and energetic scores, sequence, secondary structure,
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Figure A.2: Sample code for the evaluation of protein backbone dihedral angles and fragment
quality.

residues of interest among others; II) SequenceFrame - similar to a position-specific scoring

matrix (PSSM), obtained from the DesignFrame can be used for sequence and secondary

structure enrichment analysis; III) FragmentFrame - stores fragment sets, a key element in

Rosetta’s ab initio folding and loop closure protocols. Derived from pandas.DataFrame [344],

all these objects can be casted from and to standard data frames, making them compatible

with libraries built for data frame analysis and visualization.

The DesignFrame is the most general data structure of the library. It allows fast sorting and

selection of decoys through different scores and evaluation of sequence and structural features.

It can be filled with any tabulated, csv or table-like data file. Any table-formatted data can

be readily input, as the generation of parsers and integration into the rstoolbox framework

is effortless, providing easy compatibility with other CPD software packages, in addition to

Rosetta. Currently, rstoolbox provides parsers for FASTA files, CLUSTALW [347] and HMMER

[348] outputs, Rosetta’s json and silent files (Fig. A.1).

The components of the library can directly interact with most of the commonly used Python

plotting libraries such as matplotlib [349] or seaborn [350]. Additional plotting functions,

such as logo and Ramachandran plots, are also present to facilitate specific analysis of CPD

data. As mentioned, this library has been developed primarily to handle Rosetta outputs

and thus, rstoolbox accesses Rosetta functions to extract structural features from designed
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decoys (e.g. backbone dihedral angles). Nevertheless, many of the rstoolbox’s functionalities

are independent of a local installation of Rosetta. rstoolbox is configured with a continuous

integration system to guarantee a robust performance upon the addition of new input formats

and functionalities. Testing covers more than 80% of the library’s code, excluding functions

that have external dependencies from programs like Rosetta [67], HMMER [348] or CLUSTALW

[347]. To simplify its general usage, the library has a full API documentation with examples of

common applications and can be directly installed with PyPI (pip install rstoolbox).

A.4 Results

A.4.1 Analysis of protein backbone features

A typical metric to assess the quality of protein backbone conformations is by comparison

of the backbone dihedral angles with those of the Ramachandran distributions [346]. Such

evaluation is more relevant in CPD strategies that utilize flexible backbone sampling, which

have become increasingly used in the field (e.g. loop modelling [351], de novo design [326]).

A culprit often observed in designs generated using flexible backbone sampling is that the

modelled backbones present dihedral angles in disallowed regions of the Ramachandran

distributions, meaning that such conformations are likely to be unrealistic. To identify these

problematic structures, rstoolbox provides functions to analyse the dihedral angles of decoy

sets and represent them in Ramachandran plots (Table A.2, Fig. A.3a).

Furthermore, structural prediction has also become an integral part of many CPD workflows

[86]. Here, one evaluates if the designed sequences have energetic propensity to adopt the

desired structural conformations. A typical example where prediction is recurrently used as a

criterion to select the best designed sequences is on de novo design. To assess the ability of

novel sequences to refold to the target structures, the Rosetta ab initio protocol is typically

used [97]. Importantly, the quality of the predictions is critically dependent on the fragment

sets provided as input as they are used as local building blocks to assemble the folded three-

dimensional structures. The local structural similarity of the fragments to the target structure

largely determines the quality of the sampling of the ab initio predictions. rstoolbox provides

analysis and plotting tools to evaluate the similarity of fragment sets to a target structure (Fig.

A.3b). In Fig. A.3c the impact of distinct fragment sets in ab initio predictions is shown where

a clear folding funnel is visible for fragments with high structural similarity. This tool can also

be useful for structural prediction applications to profile the quality of different fragment sets.

A.4.2 Guiding iterative CPD workflows

Many CPD workflows rely on iterative approaches in which multiple rounds of design are

performed and each generation of designs is used to guide the next one.

The rstoolbox presents a diversity of functions that aid this process and perform tasks from se-
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Figure A.3: Ramachandran plots and fragment quality profiles. Assessment of fragments gener-
ated using distinct input data and their effect on Rosetta ab initio simulations. With the exception of
the panel identifiers, the image was created with the code presented in Table A.2. a: Ramachandran
distribution of a query structure. b: Fragment quality comparison between sequence- and structure-
based fragments. The plot shows a particular region of the protein for which sequence-based fragments
present much larger structural deviations than structure-based fragments in comparison with the
query protein. c: Rosetta ab initio simulations performed with sequence- (left) or structure-based
(right) fragments. Fragments with a better structural mimicry relative to the query structure present an
improved folding funnel.

lecting decoys with specific mutations of interest, to those that define residue sets for instance

based in position weight matrices (generate_mutants_from_matrix()). When redesigning

naturally occurring proteins, it also presents a function to generate reversions to wild-type

residues (generate_wt_reversions()) to generate the best possible design with the minimal

number of mutations. These functions will directly execute Rosetta, if installed in the system,

but can also be used to create input files to run the simulations in different software suits.

Code example for these functionalities is shown in Table A.5. The result of the code is depicted

on Fig. A.4.

rstoolbox allows the user to exploit the data obtained from the analysis of designed populations

in order to bias following design rounds. When using rstoolbox, this process is technically

simple and clear to other users, which will improve the comprehension and reproducibility of

iterative design pipelines.
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Figure A.4: Guiding iterative design pipelines. Information retrieved from decoy populations
can be used to guide following generations of designs. With the exception of the panel identifiers,
the image was directly created with the code presented in Table A.5. a: Mutant enrichment from
comparison of the design on top 5% by score and the overall population. Positions 34, 35, 46 and
47 present a 20% enrichment of certain residue types over the whole population and are selected as
positions of interest. b: Residue types for the positions of interest in the decoy selected as template
of the second generation. c: Upon guided mutagenesis, we obtain a total of 16 decoys including the
second-generation template. We can observe that the overrepresented residues shown in A are now
present in the designed population. Upper x axis shows the original residue types of the template. d:
Combinatorial targeted mutagenesis yields 16 new designs, three of which showed an improved total
score relative to the second-generation template (mutant_count_A is 0). e: The three best scoring
variants show mutations such as P46G which seem to be clearly favorable for the overall score of the
designs. Upper x axis shows the original residue types of the template.

A.4.3 Evaluation of designed proteins

Recently, we developed the Rosetta FunFolDes protocol, which was devised to couple confor-

mational folding and sequence design [312]. FunFolDes was developed to insert functional

sites into protein scaffolds and allow for full-backbone flexibility to enhance sequence sam-

pling. As a demonstration of its performance, we designed a new protein to serve as an

epitope-scaffold for the Respiratory Syncytial Virus site II (PDB ID: 3IXT [352]), using as scaf-

fold the A6 protein of the Antennal Chemosensory system from Mamestra brassicae (PDB ID:

1KX8 [353]). The designs were obtained in a two-stage protocol, with the second generation be-

ing based on the optimization of a small subset of first-generation decoys. The code presented

in Table A.7 shows how to process and compare the data of both generations. Extra plotting
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Figure A.5: Sample code to guide iterative CPD workflows.

functions to represent experimental data obtained from the biochemical characterization of

the designed proteins is also shown. The result of this code is represented in Fig. A.6.

A.4.4 Benchmarking design protocols

One of the main novelties of FunFolDes was the ability to include a binding partner during

the folding-design simulations. This feature allows to bias the design simulations towards

productive configurations capable of properly displaying the functional motif transplanted to

the scaffold. To assess this new feature, we used as a benchmark test the previously computa-

tionally designed protein BINDI, a 3-helix bundle that binds to BHRF1 [285]. We performed

simulations under four different conditions: no-target (binding-target absent), static (binding-

target without conformational freedom), pack (binding-target with side-chain repacking)

and packmin (binding-target with side chain repacking and backbone minimization) and

evaluated the performance of each simulation. Specifically, we analysed how the design

populations performed regarding energetic sampling (Fig. A.8a) and the mimicry of BINDI’s

conformational shift from the original scaffold (Fig. A.8a). In addition, we quantified the

sequence recovery relative to the experimentally characterized BINDI sequence (Fig. A.8b
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Figure A.6: Multi-stage design. Comparison with native proteins and representation of experimental
data for 1kx8-based epitope-scaffold. Analysis of the two-step design pipeline, followed by a com-
parison of the distributions obtained for native proteins and the designs and plotting of biochemical
experimental data. With the exception of the panel identifiers, the image was directly created with
the code presented in Table A.7. a: Comparison between the first (orange) and the second (blue)
generation of designs. score – shows the Rosetta energy score; hbond_bb_sc – quantifies the hydrogen
bonds between backbone and side chain atoms; hbond_sc - quantifies the hydrogen bonds occur-
ring between side chain atoms; RMSD – root mean square deviation relative to the original template.
Second-generation designs showed minor improvements on backbone hydrogen bonding and a sub-
stantial improvement in overall Rosetta Energy. b: Score and cavity volume for the selected decoys
in comparison with structures of CATH [34] domains of similar size. The vertical dashed black line
represents the score and cavity volume of the original 1kx8 after minimization, highlighting the im-
provements relative to the original scaffold. c: Circular Dichroism and Surface Plasmon Resonance
data for the best design shows a well folded helical protein that binds with high affinity to the expected
target.

and c). Table A.9 exemplifies how to easily load and combine the generated data and create a

publication-ready comparative profile between the four different approaches (Fig. A.8).

A.5 Discussion

The analysis of protein structures is an important approach to enable the understanding

of fundamental biological processes, as well as, to guide design endeavours where one can

alter and improve the activity and stability of newly engineered proteins for a number of
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Figure A.7: Sample code for the evaluation of a multistep design pipeline.

important applications. In the age of massive datasets, structural data is also quickly growing

both through innovative experimental approaches and more powerful computational tools.

To deal with fast-growing amounts of structural data, new analysis tools accessible to users

with beginner-level coding experience are urgently needed. Such tools are also enabling

for applications in CPD, where large amounts of structural and sequence data are routinely

generated. Here, we describe and exemplify the usage of rstoolbox to analyse CPD data

illustrating how these tools can be used to distil large structural datasets and produce intuitive

graphical representations.

CPD approaches are becoming more popular and achieving important milestones in gen-

erating proteins with novel functions [334]. However, CPD pipelines remain technically

challenging with multiple design and selection stages which are different for every design

problem and thus often require user intervention. Within the applications of rstoolbox, several

functionalities can aid in this process, by providing an easy programmatic interface to per-

form selections, comparisons with native proteins, graphical representations and informing

follow-up rounds of design in iterative, multi-step protocols. The tools presented here were

devised for Rosetta CPD calculations, nevertheless the table-like data structure used allows for

the easy creation of parsers for other protein modelling and design tools. This is especially

relevant in other modelling protocols that require large sampling such as protein docking

[354]. Importantly, rstoolbox can also be useful for structural bioinformatics and the analysis

of structural features which have become more enlightening with the growth of different

structural databases (e.g. PDB [26], SCOP [355], CATH [34]).
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Figure A.8: Comparison and benchmarking of different design protocols. Representation of
the results obtained using four different design protocols. With the exception of the panel identifiers,
the image was directly created with the code presented in Table A.9. a: Representation of four scoring
metrics in the design of a new protein binder. score – shows the overall Rosetta score; RMSD – root
mean square deviation relative to BINDI; ddG –Rosetta energy for the interaction between two proteins;
bb_clash - quantifies the backbone clashes between the binder and the target protein; b: BLOSUM62
positional sequence score for the top design of the no_target (blue) and pack (green) design populations
showcases how to analyse and compare individual decoys. The higher the value, the more likely two
residue types (design vs. BINDI) are to interchange within evolutionary related proteins. Special regions
of interest can be easily highlighted, as for instance the binding region (highlighted in salmon). c:
Population-wide analysis of the sequence recovery of the binding motif region for no_target and pack
simulations. Darker shades of blue indicate a higher frequency and green frames indicate the reference
residue type (BINDI sequence). This representation shows that the pack population explores more
frequently residue types found in the BINDI design in the region of the binding motif.

A.6 Conclusions

Here, we present the rstoolbox, a Python library for the analysis of large-scale structural data

tailored for CPD applications and adapted to a wide variety of user expertise. We endowed

rstoolbox with an extensive documentation and a continuous integration setup to ensure

code stability. Thus, rstoolbox can be accessed and expanded by users with beginner’s level

programming experience guaranteeing backward compatibility. The inclusion of rstoolbox

in design, protocol development and structural bioinformatics pipelines will aid in the com-

prehension of the human-guided decisions and actions taken during the processing of large

structural datasets, helping to ensure their reproducibility.
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Figure A.9: Sample code for the comparison between 4 different decoy populations.
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...

Main sequences of chapter 4.

Name Sequence

3onja_9.1_computational SLLESYEWSFIVQLILAKLELAYAPSQPLSQRNEQLKRVEQQQDQLFDLLDQMDVEVNNSIGDASERATYKAKLREWKKTIQSDIKRPLQSLVDSG
3onja_9.1_SSM NLLTSYEGSFKIQLILAKLELAKAPSQPLSQRNEELKRVEQRQDRLFDLLDQMDVEVNNSIGDASERATYKAKLREWKKTIQSDIKRPLQSLVDSG
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Selected sequences for experimental characterization of chapter 5.

Name Sequence

srch1PGX_117 TKIQIHHEQRNQTINISEDDEEKAKREAHELIKKLQVKVEEEQNESREEVHIKNKLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch1PGX_125 YSMRIQNNSRNEEIRIEDDDKEKLKKLAEEYLRRIKLEYEEHEEEKHDRIEIRIKLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch1PGX_156 VTLEIKTEQENQETEWRDTDEEKLKRKAKEYVERKQMETEQHENESENRYELRLRLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch1PGX_66 VEVHLENERHNEKQTYHTTDAERLKRKFEEIYQKKKFDRKEEEENKDEEKVKVRFRLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch1PGX_8 VQVQIRNEKHNEEINITFGPNQLEEAKKMAKEILKKLQVKQEHEENEDHEELRIRIQLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS

srch2N75_113 SFVLVLSNNDDEIKEYMKAFSTLVLHFTLMKDNDYKRIVEEAMKHLSELLIILVTEDEDLLKTWQKAAKKYHNNVEMVQTSTLEEAKKITKK
srch2N75_169 KIIILFVMNKTDEELKELMEKYTKLFFQFTYDPKKDEAKKAIKKAMEIAKKYADNLFIVILTDDETYIRWIEEWMKQMQVNTQLYVTKDWKLVKEVIEK
srch2N75_176 VLIWILLQGYEDEELKKVMRKEEKEVVHFKFSDDEDEVRKVMEKALKEAKKVQSEFLLFIYRLDETAKRIAEELAKRAWDNIQIYTTEDWKEWQKVMEK
srch2N75_18 TYIIVFSTSSDKIHEAWKKAASNLFFFEEKDKSKLEQMIKEAMKLYTEFVFILITEDDDMKRLVREAVKKMQPELRLVETEDPKLAEEYIRK
srch2N75_59 TVVLILMHPTDHWKEIYKKLGEILLMISMTDKEKYIKKAMELLQKYNDELIIIILTEDEDLKKKFEKWVRIIKGEQKLIKISTPEQAEQHLRK

srch3SD2_116 WHLTKDGLTMKVQLSKGDTIHMETTDEQLEYRAEGDSMNVEVRIPKPLTFKVEIKQNGQQLSTEIRLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch3SD2_155 QVSIEDKTKIRIQLSPDTRIEITINGQNHTFQADKTSRVELQMERPVEIRIKIEEGDKEEHLRVELEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch3SD2_2 QIQFEDKKRLRIEVTQGVEVHIELNGQQLHFKANTNYQIEIQLTNFEEIHVTLRTEENEYHYTLKLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch3SD2_44 SIEVKDRTHMELEMRKNWEVRVEINGDQREHKGTENDKLEIHIDDPRFIKMKVNEDGKEIEVRVHLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch3SD2_73 SVEIRDKTNLHITVSKGITVQIEISGTQLRYEAKDDNFNVHVHIEPGLEMRVRIEEGDKEIRIKVKLEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch3SD2_75 EITYRNRSEIEIQLETGMTIEITLNGKELRFQGTDHKDKVEIHDPTMRNIELRVKLPDKHRKYRIELEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS
srch3SD2_8 EIKMEDKTKIHLTFSKGVKLEIQINGRKFEYRATDNINIHMQLSHPAELRVKIEEGSKEIRVKLELEGSGSGSGSGSGSGSWGSGSGSGSGSGSGS

srch6E5C_136 ETVKFELTEPREVEFRIKLTKKIQINVEPGMKMHLRVNDGQVHLEPDESKRLEYTIEDGNEVKIKMETRNIKVTIEE
srch6E5C_150 TTQEIRVTGDNEYTVTVNLTKRIEIEVSKDLTMHVTVNGVEIKFQLGSNVNMEIQLNTEININIQVSRGEVTIKIHD
srch6E5C_26 REYTIEMNEPTRIEVHIKVDDEAPLEIEVRVHYEKVQIKINISGQKFELHAKTENVELRIEFDVLGEITIEVEVPYKVEVHVKM
srch6E5C_62 ETWHMNMSEPTTITLKITMSSEDSITIHLEFTEDVNVEVRVNNINYEFKITRNLKMQVNIETPGEVEIHINYKFSKVTVKI
srch6E5C_77 MSKEMNMKDGSNLEIRYEVKKDGPVEIHIEVEQDLEVHVHISGDQREVHPGPNKKITVKVNVGSNIRIELKYNYITIKVQE
srch6E5C_94 KTWKWNYNDSSTVEFESRITEPGEIEIRITINADNVNVQVSHSSDSVSVSGGTKNMNYEIHKGDSTNFKITVKVQGKVHVELHL

srch1QYS02_2_0006 SLTIRLEIDGFTVEINIEGSDELIEELLKKLLEKLLKLTTVKLTLEVEDTEKIKELFEELAKALKKEGIVTSLESRTKDGKFEFHLHS
srch1QYS02_30_0008 QITVSLEVKGKTETISIERDDEIMEEIIKKLKEELKKDKDVKLTINVEGSDKVAELLKELARALVAEKKGITISFKKKDGKVELHLHF
srch1QYS02_66_0005 TLHLEIKVGDKRVEINIEEDKRSARELVEKLKEELKQGKIKNITINIDGDDEIQELVKELAEEIKKSLDDLTLEIRKKDGKVEIRLHM
srch1QYS02_77_0007 TYTLSLELKKETLEINLEDDDKIAEQLYEELKERLDTSVEIRLTISVELDDRIEELVKELAEELKKEKDEMSLEIRKTKDSLEIRLRF
srch1QYS02_80_0010 SYTISITSNGTTLEINLSESDEIQEEIIERLKELLKQGKIKEFTFESEDNDKLAELIKELAKALAKSGSGSSLSIQKNKDSVRIELHI
srch1QYS02_82_0010 TIQIRLESDDETIEINIEDSPELLEELLERLKELLKKGKLKKITLNVSDSDKVEEIARELYKAARDLVNAKTIESRTNGDRVEVHIHF
srch1QYS02_83_0008 SLTIEIRSKDETVEINVEESPELAEEYLRRAEELLRKFDNVEVRINTNGDDEIEELIKELIKALEKELNVSEQRTEKHGDKSSFEIHM
srch1QYS02_98_0003 TLRIEIQTKDERIEINLEDDDEKLEELMERLKELIKKGKVKELRFNFEDTDKIIELLRELAEALKKIGDLKTVSEETSDDKTHVEIRL
srch1QYS02_9_0007 EITIRLETSDKTLEINISSSDEILEELVERLKELLKEVTTLRLSITINSDDKAERLFRELLKAILKRLNGSNVRIETHGDEVHFQLHS

srch3SD202_10_0005 KLTVTYNKETRRLEITVSPGVKITVELNGKKLTYTIDKDARVRLEITTPGDDLKFRLEFTLDGKTYTYSWE
srch3SD202_126_0005 NTNLKINKDTNEIELSITKGVTITIELEGGKFTVSADPREEVTVKLSSELASAKIRLEVEVPDQTITLEVE
srch3SD202_142_0005 DITVTYNKEEKKLEIKVEPGVKVTLENNGRKTTVEFDPGEEIRIEITDSTGDLKIRIEITIGDKTFTIRIE
srch3SD202_148_0004 KVTIKYNKEENKLEIRLEPGVTITVEINGKKLTYSASSSSEVTIEITDKDPSAKIRLEITVGDKTITIEWE
srch3SD202_163_0006 NVTVKYNKETKTLEIRLEPNVTVTLTFKGKKLEFSVNSSSEFRLTVTLEDDELKLRVEITIGDKTFTWRFE
srch3SD202_177_0004 NITITYNKETNRLEITISPGVKVTLTFNGKKFEFTGTKGDEIHITVSSELASLKIRIEITINGKTITIEME
srch3SD202_17_0004 NVTVTYNKERNKLEINISPGVKVQIEINDKKLTFSGDDSSEIRIEIQLDDPSAKIKLRIEKGDKTITIRIE
srch3SD202_197_0002 NVTLKLNKEENRVEVSLSKDVTLRIELNGVKFEYSGSSGTEVTVEVSSEAAKDKIKVEVTVPDKTITVTLE
srch3SD202_197_0007 EVTLTINKEENRIEITVSKDVTITIELSGKKFTYSGTSGSEVRVEVSSEAAKDTIKLEVTLPDKTFRYEVQ
srch3SD202_1_0005 NVTVTYNEETKTLEIRLKPDSKLTLEFSNGKFEFEFPPGTEVRIEISSSLASAKINIKVTEGDKTITIRME
srch3SD202_1_0006 DVTVTYNEETNELTIKVEPKSSVTIEFENGKFTFTVTPGTELRLEFSKDLASAKITIKVTEGDKTITIRMK
srch3SD202_2_0002 HVTITYNEETNRLELTFEPGMTIKLELKGGKFTVKVDTDQEIRIEVSSELVKLKISLRVEEEDSTKTFRIE
srch3SD202_3_0008 NVTITYNKETNELEISISPGVKITLTFNGKKFEYTVPPGQEFHLKISSDLVKLKIEIEITIPDKTFTWRFE
srch3SD202_44_0010 NVTVTYNKETNTLEIRVEPDTKITIELNGKKITVSGDKEREVRIKIQNEIPDPKIRIEFTTKDKTITIRIE
srch3SD202_53_0010 KYSLTVNKDTKTLELTLEPGFKVTVEISGKKLTYTGSKDEEVRVRVEDEGGKGTIKLEVTVGDETITVRWE
srch3SD202_88_0008 NITVTYNEETNTLEISLSPGVKITIEINGKKLEFSKDGSENLRLRLEESPPDIKLRLEFTVNGKTITIRFE

srch6E5C02_104_0008 TNITVTISEDEEVTVRIEVQKPSKIEIHITKDATVNSRDSSNVTLSTNTTITLSTNLGPSLTITIKKGKLKVTIHL
srch6E5C02_14_0005 TNLTFTLEPNSEITLEISPGKDVSIRLEVTKDATVELRDSDNTTTSSKSTIQLHKPANDSITQTLKEGELKLTLHM
srch6E5C02_156_0009 INVNVSLSKDQTLHMRVSPSTEVSITVTVSKGATMRVTTPDNLTVSGNESFTLTYKKDVEVTISITDGKLKVTITL
srch6E5C02_163_0001 KNLTFNLKESSKVTVKISPFDEIRVTLTLTEDGTVELRTSDNITFSAKESLTLHFHGPVEITVTLKEGSSVLTVSV
srch6E5C02_166_0002 SNFTFELKPGSEYTITLSPGKPISITIEIKSDATVESRLSNNTTVSDKSTITITSTLNDSVQITVKVGEVKITVTI
srch6E5C02_173_0005 TNLEFEIKKGEEITVQLEGGKPISVTLHITGSGTLEFRTEDNITVTSNSTVTFSSNPNATVTLTVKKGEVKITLTH
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Main sequences of of chapter 6.

Name Sequence

native_1 IVHVFFLRPNDEDIEKRLREELERHQKGGGDKFEIWWLTVNGSEFEEKAKKLLKKLKQYGLVIFIILGDSEIQKAAKKVEELAKEVQVFILQINVDGDPSIAEKV
EKEAKKKIH

native_2 IRIELHEHGSHVTVKVELEPGLQLKLEVTSDPGNKVSSSSLDKGTSSYEVTVSGTTLEIEIHNPRHQETIRQEY
native_3 EVEVHLHKHGDKIEVEVEIQLKTDNQEIRFEFQSSSDGASTSYYSIQLGKGGKLTIRIEFGDHVPITIKLSETGPAGEQLSTTQIQ
native_4 RVQLYKNEDKLKLTVELDGTEVTIHIKIEGLSSQSVTDSTGGSVTLEISSGLKGSVTVTIHGKNETIHLK
native_5 ILFIFYSDETEKLFEEIKKKSQKEKQFEFHKFEFTSSEEAKKIIKEIIKRWGEEEIIVIVITHDPRQEEAAKEAAKEVPAQKVIVVKVDGNDEKWKEKIKELIEK
native_6 TWYLILTEVNKKYLEEIIKKTQKHKEIHIIEIRVSSNEELEKVIKELIKRYLGDEIILIILTNTEELKQIAERAAREAGLEKFLVVEQDPSDEKAKEQIEELVKR
native_7 QRVELQNTEERITVTVQLTGNVKIEIEVHVEGGHTKSKSDTDSKQLTVTWIPDSYEITVRVHGENGSEVQKLQ
native_8 QSITIEVGRRKESLELHIELGPNYSIEIRFEIDGESLEIHIEVHIGNKTKHYTYQIKNGKQTIHITLDTHGPITFRVRLTKTELRLTVHRY
native_9 LIKENIDGSSIKITIPGGGGTITIRVSKDATLHIYNGRQSSTLTGKDSLQITITINDDLTIEVHIQGNVTLELR
native_10 STLQFEPGKTQTLSDQVDSKSTVVTITISSGSITIQVHFGGSARLSYEFSDGDGGVTVTLTVHEGVEVEYRWTGGDGSVEIHS
native_11 IRFEFKEGTNKFTIEVEVSGGEQVTIELHTEGDETIRVTLTGDTKIKLEFSSKPLEFHIEHHTKDRTEHTTLY
native_12 DEVHIQLNIGGDDFNWTWHYRTDDVSEALEKAKRIAEKYANGPATSFKVREKQAPDDKIRQVEITV
native_13 NIKFKLENNSQEFEITSGTGDKIREVFEKIVRKLLSLPTKLTIEIHLSKDESEEIARALEEIAKRINPNQEQETETESDNRITLKLI
native_14 LSVELQITTEGPTEIRFSTSIPDDGGGDELLKKIVQKWIEELQRRLSPKGSSYQLEKKQEGDEHKIQVKL
native_15 WTITITVEKRDGESETRTENVGPNDTEVQKWVKKIVKEFVKDGPLTIQVTVTLDGNGDKVLQLVLEAAKEAIDDLGDSLEQETRQDENGQRTSTIRIK
native_16 VTIKITIHKSDDTTEQYQYTFSFEGTPFAEVAAEVVKRYKNVPQVEIHIEVELDSEENKLIELWEKAARKVADGFATSKSTKEHQDHNGTKHIQFHFL
native_17 FEIEVQQHGDTYEVRLKTEPNATIRITITSENGQTFTENKEPTEKITVHVSSGKVEIELRITTKDGTYTNKYK
native_18 LSVTVHIQHGDHPSETYQYSSSAEGTKVVEWALEVIERLEDYGQIRIEVTIKVDGPGDEIIEILQKVLHKVKGKVGGSYHYERHSDEEGNSTITLKFY
native_19 IYQHDSKSDGNITVQVTVNLGGGGTVRLRWKVKIDHHAEVHLEFNVNRVHKYSQSQTVHGTGELELELKVRLDNGVSITLTVHGPHGTIEVEVHIE
native_20 FFIIVISDGTTKWLHELIEIWRRRYKGPIELITDKIDPRDEKKIRELAHEFAKRVSGKIVFLIYIGDETHRIAEVVEEALRKVLPVPVILLKFSDPKDAIE

IALKLIEKYLK

denovo_1 IEELARKYIEQFRGGNKVLLVFIEEKDARRAAEIAKKELKKLLGEVLVIIGPSDEILEIAKELVKKEQATYLIFFIDKDPRIEDKVKKAKKEIE
denovo_2 FEKAQKWIREILEKGTEVLVVIFIEDEVQKEVEELLKKVEGSGQNFLVFPGNDKEIAERAAEEAVKWSGIIIIFLINDVTVIEVGGDEAKKKIRELFKKLI
denovo_3 IEELAHIVLELAKQGIKVVILIFYPTVYQKLQKILKELKIEALLQIIVVPKTDKEAIREWIERLAENAQLILFLTEGRVIQIENTNTKARQEYEELIRKLQ
denovo_4 EEYLERLVREWIKKSDGEIVIIFIVVGSEDAEKEAKKAVEIIRRLIGWTVYLYRVSEGATDQVKKIIKELLKKLQNYIYIIIIIISDGPGNQIKIFVFTGP

DEEREKEWEEAWKQD
denovo_5 YVSINGRPEDAKKQLQEILKKGGEVEVELSYEGGGDNDKRIKWILKVIEELVRAGGEFIFLVEVFTKDKVKDLVEELRKILLILIIIHTNNKGNFTTSYIL

TKGKDTKEVKEKAKKATKKVIKKAQKD
denovo_6 DEEEARRIAKLVKDGSLVLLVFFNGSDAEKQAEKIKQIIEKVIGSVIVISGPTEELAKIVQKIVKTYNVHYLFIWVDSDPSLQDYAKKVKERAE
denovo_7 EEEAARHIAELYRRGIDIFVVITLTTVAKKVHEIVRKLKVEKVLEIQEVPTTDKKLIEEILREAAKKWEVVVVLFKDQIITITNKNTEAKKQAEEAIKKTL
denovo_8 VKAEEVVEEVWHRYKHHKVLFILFVTHTEDAKKWAKIAKKRLHELGVEEVRIIELEDEESWKKAIEYVQKQIKKTKDGYIVIFFIIKQENSSFKIFILVLT

TDHEKQLKELEEKLE
denovo_9 SINVHGSAKDAAKLIQELLKKGGHVEIQVHFEIGGDTEKAYRKVAELIKLLLELGPKLRFTFEVTTEDLARTIAELWARYVALVIVKFTSSKGSLLTYVIG

SEGENTKEAQEYVKKAQKKLEEELKKK
denovo_10 AEEWAERWRKIFKDGKKFVLFFFDKENLEREARKAVKIAQEKVGSIEVLIDHTEELAKKIKEIVKKKQVEVLFFFWSSDPRIETKIRKWQKEIQ
denovo_11 IEEVVEIAVQLLRKGITVWIVIFYQTIAEKIEKLIRKKKAKDITEIQTWQETDKELIRKILEEAAEKADLVVFVKEGEVEVIQHGNDKVKKEIKKLAEKWE
denovo_12 EELLHKWVQEIVKKSDGKFLFIFIVLGDKDVEEIIEKIVEYIRKVFGHTVILFKISKGTTEQIKKIIKEILKKIQEYIVIFVFILTDGNGKQIKIILITGQ

DEEIEKYIEELLKQL
denovo_13 VEEAKKTIREWLEKGVRVIIVVFVDSEVQEEIRKLIEKVEGSGYSLIVLPTNDKELIKKYWKKLARDPGWLIFIHKDTIITVKLSGDEAQKKLEELAERKA
denovo_14 DEELAKRAEKLAKDGDLIIFVFFDEEDARKIAEKIKKYVEQTLGSVYVIVGPTEEALKIAKEIFKKHNFKLIFLWFTSDPRQETKIKQAKKHIQ
denovo_15 IREVAEELRKKIDEGSIILIVIIEQETAEKELREVVKLLQKKFGSIWVISGSTDEVLKKAKEYFHKWNVQYIFFFWSSDPRQETKVKRVWKEIQ
denovo_16 QIEFQGKVDDVLKILKEIKKHGGSVKITVKVSSGGSSEQQIKLLIKLVKKLFEHGPELILEVEVTTTEDAKTLSKLLEKYVFVIITNVSQSTGNVEVNFIG

SLGRNTKKVEEIIKRAQKEIQEKVRKE
denovo_17 KEYVKKILKEIYKKSDGEFIILFLVTGQEDVKKWAREAVKLARELAGVTVIFIEITKGETELIVKYIQKILKEFKHAILLYIFLFFEGPGNQVKVIVFDGRT

EELEKIVREYLKQL
denovo_18 ELLQEVLKRLAEEYSSTKIRIIIIITKDESIKKLAKQAIKILKKIGIEEIELIEVNTDENIKKILEELEERLKKTDDGIWIIVIIVAKDNSSYSLVIILVG

SKEKEQIEELKKKAK
denovo_19 KEEIERVLREIAEKQDVTLVVFLSDTLVEEAKEAAKRVWHPKHNIVFVTGPDDERVVKEFVKAWKKYPGWVWIFIDPSAKELKEKIEEAVKK
denovo_20 KEELKRIFEETWRRSPAVIIIYLTSTLAEEAREILHQVLREEHNIFVFTEPNHEEVIKKFVEAVKRYPYDFYIFLDPDAQRLKKIIEERVKK
denovo_21 YEVKEIAEEVARRYKDTKLTFIFFVTNDETAKRIAKEAAKLLHKLGVERVEIYELNTEESLKKILKKFKEWLQKSEDGLWIVFFIIIHENSSYSIWWLISG

TDEKELAEKIYKHLK
denovo_22 HEELKRAWEEIVKKEDTTILLFLASTLAEEAREIIERLLRDKNNIWLFTDPNDERIWHEIAEQWKKIPYKVWIFVDPDAQELAKKVEEWVKK
denovo_23 LEEIIKKLQEQAHKQEDLILIILVGRTAEELVQEALEKIKEVVKLIFITVLQTTEELEKLVEIAKKLTGGKVILFIVVGNDSTFVIHLDKDDEEKAKKIIEKLVK
denovo_24 IEEVKKYIKEALKKGQPLLIIIFHDSKIQKEVEEALREVEGDGKKYKTFTANDKENVQEIWRRVARDPGWLLFIFENEVYIFKVTGSDAEKYLHELAKKYA
denovo_25 DEEAAKRAQKAIKDGNKIVLFFVVTETAHKVAEKILKIVQKVAGEVILVTGDTDRALKKFKELVKKWNVQVVVFWFDHDPSIRSKVEEWLKQAR
denovo_26 IKLQEVIEEYVRKYKDEQLIFFFLITRDETAEKYAQEARKTAHKLGVEEVRIIKLNDDRSIEEILKKIEEVARKVPHGKVVIFILKLHENSSYKLVVITITSDRE

KQLEEALKKLE
denovo_27 VEEVLKKLEERLRKQKDIVVIVLVGRTAKEKVKEVLQRVKEKVRIEVYELITTSEQLEELVKIAQKLLGGEVWIFFQVGNDSFYVIEIEKDRKEEAERQAKKYIK
denovo_28 AEEIAKEIKELLEKQEDIKIIILVADTAEEILRRALEAVKEKVQFEIYKILTTTDQIEKVKEVAQKLLGGIVYVVIIFGNSSYYELKLEKDREEEFKELLKQYKK
denovo_29 KKFEEYIEELARKYKETDILFIILVSKTEDLRELAQQAARIAHEIGIKEVIIIEIKTEENLQRATKIAEEIIKKTNSGIIFLFIISKTDNSSFKVYYLTLPSDRE

KEIEEYIKKAR
denovo_30 KEWLKKLIEEIVKKSDGKIIFVFIVVGDEDAHEIVKEIVEYARKAGDVEVTVFHISKGYTDIIAEIVEKLLKKFKDYIVLYLFIIIDGNGEQIKIVLFDGRTE

KLEEIVKKYIKRT
denovo_31 FEEVAKRIVKKFKEGSLILIVFVDGDDARKEAEKAKEILKKYLGSVLFLIDSTDEALKKAKEVIKKYQFEYLFWIFSQDPSLQDKIEKVKREAH
denovo_32 KEEIERIIKRTVKEKDTSIVFVVASTAEEEVREIAHEALREKNNIFIYTDPNDERVFKAFAQWAKKLPGEVIFFLDDDAKELWKKVEEWIKK
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