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Abstract
Modern manufacturing engineering is based on a “design-through-analysis” workflow. According
to this paradigm, a prototype is first designed with Computer-aided-design (CAD) software
and then finalized by simulating its physical behavior, which usually involves the simulation
of Partial Differential Equations (PDEs) on the designed product. The simulation of PDEs is
often performed via finite element discretization techniques. A severe bottleneck in the entire
process is undoubtedly the interaction between the design and analysis phases. The prototyped
geometries must undergo the time-consuming and human-involved meshing and feature removal
processes to become “analysis-suitable”. This dissertation aims to develop and study numerical
solvers for PDEs to improve the integration between numerical simulation and geometric modeling.

The thesis is made of two parts. In the first one, we focus our attention on the analysis of
isogeometric methods which are robust in geometries constructed using Boolean operations. We
consider geometries obtained via trimming (or set difference) and union of multiple overlapping
spline patches. As differential model problems, we consider both elliptic (the Poisson problem,
in particular) and saddle point problems (the Stokes problem, in particular). As it is standard,
the Nitsche method is used for the weak imposition of the essential boundary conditions and to
weakly enforce the transmission conditions at the interfaces between the patches. After proving
through well-constructed examples that the Nitsche method is not uniformly stable, we design
a minimal stabilization technique based on a stabilized computation of normal fluxes (and on
a simple modification of the pressure space in the case of the Stokes problem). The main core
of this thesis is devoted to the derivation and rigorous mathematical analysis of a stabilization
procedure to recover the well-posedness of the discretized problems independently of the geometric
configuration in which the domain has been constructed.

In the second part of the thesis, we consider a different approach. Instead of considering
the underlying spline parameterization of the geometrical object, we immerse it in a much simpler
and readily meshed domain. From the mathematical point of view, this approach is closely related
to the isogeometric discretizations in trimmed domains treated in the first part. In this case, we
consider the Raviart-Thomas finite element discretization of the Darcy flow. First, we analyze a
Nitsche and a penalty method for the weak imposition of the essential boundary conditions on
a boundary fitted mesh, a problem that was not studied before, not needed for our final goal,
but still interesting by itself. Then, we consider the case of a general domain immersed in an
underlying mesh unfitted with the boundary. We focus on the Nitsche method presented for the
boundary fitted case and study its extension to the unfitted setting. We show that the so-called
ghost penalty stabilization provides an effective solution to recover the well-posedness of the
formulation and the well-conditioning of the resulting linear system.

Keywords: numerical analysis, computer-aided-design, CAD, CAE, isogeometric analysis,
IGA, finite element, FEM, FEA, Poisson, Stokes, Darcy, unfitted, immersed, trimming, union,
coupling, Nitsche, mortar, weak imposition, boundary conditions, Raviart-Thomas, fictitious
domain, CutFEM
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Sommario
La moderna ingegneria manifatturiera si basa su un flusso di lavoro “progettazione-via-analisi”.
Secondo questo paradigma, un prototipo viene prima disegnato con un software CAD (Computer-
aided-design) e poi finalizzato simulando il suo comportamento fisico, che solitamente prevede
la risoluzione numerica di equazioni alle derivate parziali (EDP) sull’oggetto disegnato. La
simulazione delle EDP è spesso ottenuta tramite tecniche di discretizzazione agli elementi finiti.
Un serio ostacolo all’intero processo sta senz’altro nell’interazione tra le fasi di progettazione e di
analisi. Prima di diventare “adatti all’analisi”, i modelli geometrici devono essere sottoposti a
costosi processi di meshing e di defeaturing, costosi in termini di tempo ed intervento umano.
Questa dissertazione mira a sviluppare e studiare solutori numerici per EDP per migliorare
l’integrazione tra la simulazione numerica e la modellazione geometrica.

La tesi è composta da due parti. Nella prima, concentriamo la nostra attenzione sull’ana-
lisi di metodi isogeometrici che sono robusti in geometrie costruite con operazioni booleane.
Consideriamo geometrie ottenute tramite trimming (o differenza di insiemi) e unione di più
patch spline sovrapposte. Come problemi differenziali modello, consideriamo sia problemi ellittici
(il problema di Poisson, in particolare) che problemi di punto sella (il problema di Stokes, in
particolare). Come consuetudine, il metodo di Nitsche è usato per l’imposizione debole delle
condizioni al bordo di tipo essenziale e per imporre debolmente le condizioni di trasmissione alle
interfacce tra le patch. Dopo aver dimostrato attraverso esempi ben congegnati che il metodo
di Nitsche non è uniformemente stabile, sviluppiamo una tecnica di stabilizzazione minimale
basata su un calcolo stabilizzato dei flussi normali (e su una semplice modifica dello spazio della
pressione, nel caso del problema di Stokes). Il nucleo principale di questa tesi è dedicato alla
derivazione e alla rigorosa analisi matematica di una procedura di stabilizzazione per ripristinare
la buona posizione dei problemi discretizzati indipendentemente dalla configurazione geometrica
in cui il dominio è stato costruito.

Nella seconda parte della tesi, consideriamo un approccio diverso. Invece di considerare la
parametrizzazione spline sottostante all’oggetto geometrico, lo immergiamo in un dominio molto
più semplice e facilmente meshabile. Dal punto di vista matematico, questo approccio è stretta-
mente legato alle discretizzazioni isogeometriche in domini trimmati trattati nella prima parte.
In questo caso, consideriamo la discretizzazione agli elementi finiti di Raviart-Thomas per il
flusso Darcy. In primo luogo, analizziamo un metodo Nitsche ed un metodo di penalizzazione
per l’imposizione debole delle condizioni al bordo di tipo essenziale su una mesh conforme al
bordo, un problema che non è stato studiato prima, non necessario per il nostro obiettivo finale,
ma comunque interessante di per sé. Ci concentriamo sul metodo di Nitsche presentato per il
caso conforme al bordo e studiamo la sua estensione al caso non conforme. Mostriamo che la
cosiddetta stabilizzazione “ghost-penalty” fornisce una soluzione efficace per recuperare la buona
posizione della formulazione ed il buon condizionamento del sistema lineare risultante.

Parole chiave: analisi numerica, computer-aided-design, CAD, CAE, analisi isogeometrica,
IGA, elementi finiti, FEM, FEA, Poisson, Stokes, Darcy, non-conforme, immerso, trimming,
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unione, accoppiamento, Nitsche, mortar, imposizione debole, condizioni al bordo, Raviart-Thomas,
dominio fittizio, CutFEM
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Notation
In this chapter we introduce some definitions and notations which will be frequently employed in
the manuscript.

With a slight abuse of notation, we will use the same symbol |·| to denote both the d-dimensional
Lebesgue measure and the (d − 1)-dimensional Hausdorff measure. Given D ⊂ Rd and Σ a
hypersurface of Rd or a subset of it, |D| and |Σ| denote the d-dimensional Lebesgue measure of
D and the (d− 1)-dimensional Hausdorff measure of Σ, respectively. The symbol #· denotes the
cardinality of a set. Given E ⊂ Rd, the notations E◦ and intE denote its interior.

A domain is an open, bounded, subset of Rd, d ∈ {2, 3}. A domain D with boundary ∂D is said
to be Lipschitz if for every x ∈ ∂D there exists a neighborhood U of x such that U ∩ ∂D is the
graph of a Lipschitz function. In the following D denotes a Lipschitz domain with boundary ∂D,
and Σ a Lipschitz continuous surface contained in ∂D. The unit outer normal on ∂D is denoted
by n.

We will denote as Qr,s,t the vector space of polynomials of degree at most r in the first variable,
at most s in the second and at most t in the third one (analogously for the case d = 2), Pu the
vector space of polynomials of degree at most u, and P̃` the vector space of polynomials of degree
exactly `. We may write Qk instead of Qk,k or Qk,k,k. We will often consider the restriction of a
polynomial space to a given domain D and write, for instance, Qk(D) instead of Qk

∣∣∣
D
.

We denote by L2(D) the space of square integrable functions on the domain D, equipped with
the usual norm ‖·‖L2(D). We denote by L2

0(D) the subspace of L2(D) of functions with zero
average, where the average of v ∈ L2(D) is v := |D|−1 ∫

D
v.

For a given ϕ : D → R sufficiently regular, α a multi-index with |α| :=
∑d
i=1 α1, and j ∈ N, we

define Dαϕ := ∂|α|ϕ

∂x
α1
1 ...∂x

αd
d

and ∂jnϕ :=
∑
|α|=j D

αϕnα, where nα := nα1
1 . . . nαdd . We indicate

by Hk(D), for k ∈ N, the standard Sobolev space of functions in L2(D) whose k-th order weak
derivatives belong to L2(D), equipped with the norm ‖ϕ‖2Hk(D) :=

∑
|α|≤k ‖Dαϕ‖

2
L2(D). Sobolev

spaces of fractional order Hr(D), r ∈ R, can be defined by interpolation techniques, see [3].

The space H1
0,Σ(D) consists of functions in H1(D) with vanishing trace on Σ. We write H1

0 (D)
instead of H1

0,∂D(D).

For vector-valued functions, we denote by L2(D) :=
(
L2(D)

)d and Hk(D) :=
(
Hk(D)

)d.
We define the Hilbert space H(div;D) of vector fields in L2(D) with divergence in L2(D),
endowed with the graph norm, denotes as ‖·‖H(div;D). Moreover, we set H0,Σ(div;D) := {v ∈
H(div;D) : v · n = 0 on Σ} and H0(div;D) := H0,∂D(div;D).
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Let H 1
2 (∂D) be the range of the trace operator of functions in H1(D) and we define its restriction

to Σ as H 1
2 (Σ). Both H 1

2 (∂D) and H 1
2 (Σ) can be endowed with an intrinsic norm, see [130].

The dual space of H 1
2 (Σ) is denoted by H− 1

2 (Σ). The duality pairing between H 1
2 (Σ) and H− 1

2 (Σ)
will be denoted with a formal integral notation. Finally, we define H 1

2 (∂D) :=
(
H

1
2 (∂D)

)d
,

H
1
2 (Σ) :=

(
H

1
2 (Σ)

)d
, and H− 1

2 (Σ) :=
(
H−

1
2 (Σ)

)d
.

We will often consider the infimum or the supremum of quotients of the type f(x)
‖x‖

or |f(x)|
‖x‖

where (E, ‖·‖) is a Hilbert space with (topological) dual E′, x ∈ E, f ∈ E′. In these cases, we

shall write sup
x∈K

f(x)
‖x‖

instead of sup
x∈K
x 6=0

f(x)
‖x‖

and sup
x∈K

|f(x)|
‖x‖

instead of sup
x∈K
x 6=0

|f(x)|
‖x‖

, where K is a

closed subspace of E.

Finally, O will denote the classical Landau symbol.
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Introduction
Part I: Stabilized isogeometric discretizations on trimmed
and union geometries

Motivation

Manufacturing engineering is based on a design-through-analysis workflow. A virtual prototype
is first designed as a geometrical model using Computer-aided-design (CAD) software. Then,
to understand and settle its properties, some physical problems need to be simulated, typically
using a Finite element analysis (FEA) software. Despite their mutual interactions in virtual
prototyping, the two fields of design and analysis grow apart as two independent communities.
On the one hand, computational design has been focusing on the modeling and visualization of
geometric objects. On the other, computational analysis has been developing models to approach
physical problems and reliable algorithms to approximate them numerically. However, most
efforts have not aimed at bridging the growing gap between these two worlds. In the usual
interplay between design and analysis, the designer produces a CAD file, which needs to be
defeatured, repaired, and meshed (requiring human intervention) to become an analysis-suitable
geometry, finally ready to be the input of a FEA code. Most of the time (about 80% [45, 78]) of
the workflow is devoted to the intermediate step of constructing the simulation-specific geometry.
It is in this context that Isogeometric analysis (IGA) comes to life, from the seminal work of
T. J. R. Hughes and collaborators in 2005 [78], with the ambition of filling the gap between
design and analysis in industrial simulation processes. The main idea of IGA is to use the same
primitives employed in CAD, typically B-splines, non-uniform rational B-splines (NURBS), or
some other extensions, as basis functions for the Galerkin discretization of the partial differential
equations (PDEs). Progress in recent years has been remarkable, so it can be said that IGA is
now a mature field of research; see the review papers [1, 19]. The mathematical study of IGA
initiated with [17] and among its major successes, let us recall the development of IGA-tailored
assembly and quadrature strategies [120], the recent progress in adaptivity [23, 29], and the
steps towards the understanding of the superior approximation properties of higher-order spline
spaces [26, 56]. However, we are still a long way from achieving the so-called isogeometric
paradigm in practice: the geometries constructed by CAD software are not ready to be used for
IGA-based-simulations. Their conversion to IGA-suitable geometric models remains an unsolved
issue, and the required analysis time is a major bottleneck in the design-through-analysis workflow.
Indeed, CAD geometries are described as collections of their boundary surfaces according to the
so-called boundary representation (B-rep) [93, 109, 128]. These surfaces, often independently
parametrized as tensor-product splines or NURBS, are joined, intersected, or trimmed. These
Boolean operations act on the original surfaces to obtain a more complex surface, but they cannot
be exactly performed, introducing gaps and overlaps. On the other hand, all developments of
IGA rely on strong requirements on the underlying geometric models and, in general, do not
support CAD geometries after Boolean operations.
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Several efforts have been undertaken in the last years to improve the usability of CAD geometries
in the solution of PDEs. From its side, the geometric modeling community provided essential
inputs to this scientific challenge [43, 60, 95, 117]. In what follows, we briefly review some of the
state-of-the-art techniques adopted by the IGA community, allowing to deal with typical CAD
geometric descriptions. One of the first attempts to overcome the tensor product structure is the
“multi-patch” representation, where the domain is represented by gluing many patches, each the
image of the d-dimensional cube [32, 44, 45]. This description is natural when the geometry is
made of different materials or when dealing with multi-physics problems. T-splines, introduced
in [124] as a generalization of B-splines allowing T-junctions, can also be used, as in [123], for
a watertight representation of the CAD geometry. Another idea is to convert the B-rep of the
CAD object into a single NURBS-compatible subdivision surface, namely, a control polygon
whose limit (in a suitable sense) is the original object itself [125]. We refer to [83, 132] for some
isogeometric methods on subdivision surfaces. These strategies fall in the class of the so-called
“global approaches” [93], where the geometric model is modified before the numerical simulation.

Another way is to follow a “local approach” [93], hence keeping the B-rep model as it is, and
instead adapt the analysis in order to deal with it. Here, we describe some of the most promising
strategies in this direction, mainly focused on geometries obtained via a trimming operation.
The finite cell method [47, 105, 114] is a fictitious domain approach [65], where the domain is
immersed into a larger domain with a simpler geometry that is readily meshed. An artificial
stiffness parameter, discontinuously varying from 1 inside the physical domain to a small value ε
outside, is introduced in order to weakly penalize the contribution from the non-physical part of
the domain. The actual geometry is considered only in the integration process of the cut cells for
which suitable quadrature rules need to be developed. Extended B-splines have been introduced
in [77] in the context of a fictitious domain B-splines-based finite element method and have been
later successfully applied within the isogeometric paradigm in [92, 94]. The main idea is to cure
the instabilities deriving from the basis functions truncated by the trimming by systematically
substituting the degenerate degrees of freedom. In this case, as well, particular care should be
taken for performing integration in the cut elements. Other successful strategies in the literature
are for sure [84, 101], even though these approaches are limited to the 2D case. Let us mention
as well the Volumetric Representation (V-Rep), which in a sense is neither a global nor a local
approach. V-rep, introduced in [95] and later proposed as an alternative framework for IGA in [4],
is a new paradigm aiming to replace the B-rep in CAD software: the geometrical models are
described by their occupied volumes. However, Boolean operations (this time among trivariate
blocks) are still the fundamental ingredient to build complex domains and a source of issues for
the numerical discretization of PDEs.

Main contributions

The goal of this dissertation is to study and develop robust solvers for isogeometric discretizations
set on geometries coming from CAD software and constructed via Boolean operations (see the
discussion in the previous section). We observe that our research applies to both the B-rep and
V-rep paradigms. In particular, we restrict our focus to two kinds of constructions.

Trimmed geometries. Set difference, also known as “trimming”, acts on geometrical objects
by removing unwanted parts. Given Ω0 a spline patch, i.e., homeomorphic to the d-unit
cube through a spline mapping, and Ω1, . . . , ΩN domains of Rd, we let

Ω = Ω0 \
N⋃
i=1

Ωi, (1)

and call it trimmed domain. Let us observe that while Ω0 is endowed with a Bézier mesh
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induced by its spline parametrization, Ω does not have any canonical mesh of its own. This
means that when discretizing a PDE on Ω, we would have to work with the underlying
mesh of Ω0, unfitted with the domain, hence to deal with cut Bézier elements, see Figure 1.

Ω0

(a) Original domain.

Ω

(b) Trimmed domain.

Figure 1 – Illustration of the trimming operation.

Union geometries. With the union, different objects are put together, giving rise to a new one.
Given Ω∗0, . . . , Ω∗N spline patches, we let

Ω =
N⋃
i=0

Ω∗i , (2)

and call it union domain. We observe that we allow in (2) the patches to glue with overlaps,
hence let

Ωi = Ω∗i \
N⋃

`=i+1
Ω∗` , i = 0, . . . ,N ,

be the visible parts of the patches, which are trimmed domains, see Figure 2. It follows that

Ω =
N⋃
i=0

Ωi. The isogeometric discretization of a PDE in Ω will require an ad hoc strategy

to glue the visible parts through their interfaces, and to deal with their cut meshes as well.

We recall that the following are necessary requirements for a numerical method in order to be
robust:

(i) it must rely on suitable quadrature rules in the trimmed elements;

(ii) the conditioning of the resulting linear system needs to be under control;

(iii) its discrete formulation has to be stable or well-posed. The precise definition is problem-
dependent and will be given in the corresponding chapter.

The focus of this thesis is point (iii), while (i) and (ii) are only partially addressed. For what
concerns (i), we rely on the technique developed in [4]. After identifying the cut and non-cut
Bézier elements through a “slicing” procedure, with given geometric precision, every cut element
is reparametrized as the union of high order Lagrange polynomials (of the same degree as the
B-splines employed for discretizing the unknowns) composed of tetrahedra or hexahedra. This
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Ω∗0

Ω∗1Ω∗2

(a) The (translated) original patches.

Ω

(b) The union domain.

Figure 2 – Illustration of the union operation.

new mesh is used only to place the quadrature points: a Gauss-Legendre rule for hexahedra and
a collapsed Gauss-Legendre rule for tetrahedra. Similarly, a thorough study of the conditioning
of the final linear system is out of the scope of this work. In the numerical experiments, we will
restrict ourselves to a simple left-right Jacobi preconditioner, which turns out to be a very effective
solution in the presence of trimmed elements. However, as much as it helps to improve the
conditioning of the stiffness matrix significantly, it does not completely eliminate the dependence
of the conditioning number on the way the mesh elements are cut.

Our starting point is the isogeometric discretization of the Poisson problem in a trimmed
geometry, like (1), whose boundary does not fit with the underlying physical Bézier mesh. As
it is customary in the fictitious domain finite element method, we use Nitsche’s method, a
penalty-based formulation, to weakly impose the Dirichlet boundary conditions. We show its lack
of well-posedness through a numerical experiment where the computational domain is trimmed so
that sliver cut elements appear. It turns out that the main culprit for this loss of stability is the
lack of an inverse inequality that is robust for trimming. We propose a stabilization technique,
mainly inspired by [73], based on local modifications of the variational formulation of the discrete
problem. In particular, we replace the evaluation of the normal derivatives through the boundaries
of the badly trimmed elements with a suitable stable evaluation. In doing so, we do not add
any additional parameters. In particular, we propose two classes of stabilizations: one whereby
the stable evaluation of the fluxes is done in the parametric domain and then pushed forward
to the physical domain, and another directly in the physical domain. The stabilization in the
parametric domain is closely related to the weighted extended B-splines di [77] and suffers from
sub-optimality in the case of an isogeometric map with low inter-regularity. The stabilization
procedure in the physical domain, on the other hand, gives rise to a formulation with optimal
approximation properties.

Then, we consider the Poisson problem in a union geometry, like (2). We assume that the
patches overlay one on top of the other according to a given hierarchy. In this way, for each
internal interface between two trimmed patches, one lies on top, and another lies below. We use
the Nitsche method to enforce the transmission conditions at the internal interfaces and couple
the patches. It turns out that the evaluation of the fluxes through a given interface, required
by the transmission conditions, may involve the presence of cut elements. Similar to the case
of a single trimmed patch, this causes instabilities to the discrete formulation. To resolve them,
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we resort to the stabilization in the physical domain developed for the case of a single trimmed
geometry. We rigorously prove the stability of the method and derive optimal a priori error
estimates. All estimates track the dependence of the number of overlaps.

We carry on with the Stokes problem in a trimmed geometry, like (1). As in the elliptic
case, the first issue we need to face is the imposition of the essential boundary conditions on the
trimmed part of the boundary of the physical domain, which is addressed by using Nitsche’s
method. Again, evaluations of velocity fluxes along the boundaries of the trimmed elements
cause instabilities that are resolved by applying a generalization of the stabilization used for the
Poisson problem, adapted to the particular choice of the isogeometric element. This time, we
must also fully stabilize the pressure space to get rid of the degrees of freedom corresponding
to badly trimmed elements. We show that the coercivity of the bilinear form of the velocities
is recovered. However, a mathematical proof of the inf-sup stability is still missing; hence we
assume it for the subsequent analysis. We show that our method, combined with the isogeometric
Raviart-Thomas, Nédélec, and Taylor-Hood elements, is well-posed and, consequently, we derive
optimal a priori error estimates.

Outline

In Chapter 1 we introduce the fundamentals of isogeometric analysis. We give the definition of
B-splines and spline spaces in the one-dimensional case and quickly move to the tensor product
case. Then, the main assumptions on the parametrization and on the mesh used throughout the
manuscript are given.

In Chapter 2 we focus on the isogeometric discretization of the Poisson problem on trimmed
geometries. We show that the resulting discrete formulation suffers a lack of stability even when
Dirichlet boundary conditions are weakly enforced using Nitsche’s method. Then, we develop two
novel stabilization techniques based on a modification of the variational formulation, allowing us
to recover well-posedness and guaranteeing accuracy.

Chapter 3 focuses on the union operation, which involves multiple independent, trimmed spline
patches, overlaid one on top of each other. We employ Nitsche’s method to weakly couple
independent patches through the visible internal interfaces. Moreover, we propose a stabilization
method to address the instability issue that arises on the interfaces shared by arbitrary small
trimmed elements. We prove that the proposed method recovers stability and guarantees the
well-posedness of the problem as well as optimal error estimates.

In Chapter 4 the isogeometric approximation of the Stokes problem in a trimmed domain
is studied. Different isogeometric elements are taken into consideration. We employ the Nitsche
method to weakly impose the essential boundary conditions on the trimmed part of the bound-
ary. Again, we show that the formulation requires appropriate stabilization. We introduce our
stabilization procedure and partially prove (a proof of the inf-sup stability is still missing, but
numerical results look promising) that in this way, we can recover the well-posedness of the
method and, accordingly, optimal a priori error estimates.

In Chapter 5 we study the discretization of the Stokes problem in a union geometry. As
in Chapter 3, we resort to the Nitsche method to weakly enforce the transmission conditions
between the interfaces of the patches. The stabilization of Chapter 4 developed for the single
patch case is extended to this setting. By assuming that some local inf-sup conditions are satisfied
in each patch, we show that our stabilized formulation is stable and that optimal convergence
rates are retained for different choices of isogeometric elements.
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A note on the numerical implementation

The numerical experiments in Chapters 2 and 4 were designed and performed by the author of
this manuscript by using the Matlab library GeoPDEs [131]. Regarding this part, we are grateful
to Dr. Pablo Antolín for providing us with an automatic routine for performing integration in the
trimmed elements to add to our code. Numerical experiments in Chapters 3 and 5 were designed
in collaboration by the author, Dr. Pablo Antolín, and Dr. Xiaodong Wei and conducted by
Dr. Xiaodong Wei using the C++ library igatools [106].

Part II: Weak imposition of the boundary conditions for the
Darcy flow

Motivation

Mesh generation is one of the major bottlenecks for the classical finite element method (FEM)
for the numerical solution of partial differential equations (PDEs). It is a very costly process
because it necessitates not only important computational power but also human intervention.
Mathematical problems for which mesh generation becomes a very demanding task are, in general,
problems set in complicated geometries or for which the computational domain changes during
the simulation. Typical examples arise in both computational fluid dynamics and mechanics:
time-dependent flow problems described in Lagrangian coordinates, multiphase flows where the
interfaces significantly vary, problems of fluid-structure interaction with large displacements,
fracture propagation in porous media are some examples.

In the last few decades, many efforts have been devoted to developing robust numerical methods
to tackle this issue. One of the most popular approaches is the so-called fictitious domain method
where the possibly complicated domain Ω is immersed in a much simpler geometry ΩT , for
which the generation of the mesh is a simple task. Its origin traces back to the pioneering
work [107], where a novel method for a fluid-structure interaction problem in heart physiology
was proposed. Since then, a zoo of variants of this method have appeared in the mathematical
and engineering literature, typically with names like “immersed methods”, “immersed boundary
methods”, “unfitted methods”, or some combinations of the previous names.

Since the boundary (or the interface) of the physical domain is not resolved by the computational
mesh, a common feature of the fictitious domain approaches is the weak imposition of the boundary
conditions (or transmission conditions at the interface) through Lagrange multipliers [8], the
penalty method [9], or Nitsche’s method [103].

We briefly review some of the most known fictitious domain methods. Among the first mathe-
matical studies, let us recall the works of J. W. Barrett and C. M. Elliott, [12, 13, 14] on unfitted
finite element methods for elliptic equations with different types of boundary conditions. In
particular, in [13] the authors study the case of Dirichlet boundary conditions weakly imposed
with the penalty method and prove optimal convergence rates in the energy norm, under extra
regularity assumptions of the analytic solution, for a suitable choice of the penalty parameter
with piecewise linear elements. Similarly, in [64] a fictitious domain finite element method based
on the weak imposition of the Dirichlet boundary conditions with Lagrange multipliers is studied.
Optimal convergence rates for piecewise linear polynomials are derived, provided that the ratio
between the boundary mesh size and the mesh size in the domain is large enough.

Another successful class of methods is the Generalized Finite Element Method (GFEM) [10, 11]
also appearing in the literature as Extended Finite Element Method (XFEM) [48, 98], addressing
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at the same time the mesh generation issue and the approximation of irregular solutions of
elliptic problems. Its main idea is the enrichment of the finite element space with non-polynomial
functions living in a neighborhood of the unfitted boundary or the interface, based on the a priori
knowledge of the behavior of the analytic solution. Integration, conditioning, and the imposition
of the essential boundary conditions remain open problems in GFEM. This class of methods has
been mainly applied to model crack propagations and, in general, for discontinuous phenomena.

In the last few years, the Cut Finite Element Method (CutFEM) [36] gained much attention and
showed its potential in different applications in science and engineering [39, 72, 97]. CutFEM
relies on solid theoretical foundations, and its key feature is to add weakly consistent stabilization
operators [35] to the variational formulation of the discrete problem to transfer the stability and
approximation properties from the finite element scheme constructed on the background mesh to
its cut finite element counterpart.

Main contributions

In the second part of the thesis, we consider the Darcy flow as model problem, and we study
the weak imposition of the essential boundary conditions. An important difference between the
variational formulations of the Poisson and the Darcy problems is that the Dirichlet boundary
conditions that were enforced by modifying the trial space in the primal case are now natural,
i.e., they appear as an integral on the right hand side, and the Neumann boundary conditions,
that were before natural, have to be enforced as essential boundary conditions in the Darcy case.

The weak imposition of essential boundary conditions for elliptic problems is a quite well-
understood matter; let us refer, for instance, to [53, 61, 126]. On the other hand, the problem
of weakly imposing the essential boundary conditions for the Darcy problem, to the best of our
knowledge, has not been deeply explored yet, either in standard boundary-fitted methods or in
the fictitious domain setting.

Our analysis is based on the classical H(div)-conforming Raviart-Thomas mixed element defined
in simplicial and quadrilateral meshes. For the boundary-fitted case, we present two families of
methods to weakly enforce the essential boundary conditions for the Darcy equations. The first
one belongs to Nitsche-type consistent methods, and the second one is a penalty method derived
from a perturbation of the strong problem. Both classes of methods are presented in symmetric
and non-symmetric versions. The main advantage of the non-symmetric versions is to exploit the
well-known commuting diagram property satisfied by the Raviart-Thomas element. The discrete
functional setting is somehow unusual since it is based on mesh-dependent norms scaling as
H1×H1, instead of the usual H(div)×L2. Moreover, we observe that a superpenalty parameter
is imposed on the flux variable along the essential part of the boundary in both formulations.
Through standard arguments for the mixed element approximation of saddle point problems, we
derive a priori error estimates for the velocity and pressure fields which are optimal for the chosen
topologies but not for the usual ones. The orthogonality along the boundary of the interpolation
operator for the velocity allows us to prove a superconvergence result enabling us to recover the
usual optimal convergence rates for the velocity in the L2-norm. What has been said above
applies to both methods. However, for the penalty method, to avoid technicalities arising from
the regularity theory of elliptic equations with essential boundary conditions, the estimates are
restricted to the case of an analytic solution for the velocity in H1. We observe that we set equal
to one the dimensionless parameter related to the enforcement of the boundary conditions, in
contrast to the Poisson problem case where these quantities have to be taken large enough. A
discussion on the conditioning of the finite element stiffness matrices is carried out. We show
through numerical experiments that the Nitsche method is preferable to the penalty method as
its effects on the condition numbers are much milder.
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In the last chapter we study the case of a fictitious domain finite element discretization of the
Darcy problem. We focus on the Nitsche method presented for the boundary fitted case and
study its extension to the unfitted setting. The discrete formulation is very ill-posed because
the geometry can cut through the mesh arbitrarily. We show that this affects the accuracy of
the approximation scheme and the conditioning of the arising linear system. Our strategy, in
line with [35, 37, 38], consists of adding to the variational formulation at the discrete level two
weakly consistent operators acting separately on the velocity and the pressure fields. Once again,
the choice of the norms for the discrete spaces gives rise to suboptimal orders of convergence
for the usual H(div)× L2 topology. The orthogonality argument that allowed us to recover the
optimal L2-estimate for the velocities is no more available because of the mismatch between mesh
and boundary. On the other hand, we can prove an upper bound for the condition number of
the stabilized stiffness matrix. Our numerical studies show that our method delivers optimal
convergence rates with respect to the L2-norm for both velocity and pressure. However, our
stabilization procedure pollutes the divergence of the numerical solution for the velocity and the
numerical scheme preserves the mass only approximately.

Outline

In Chapter 6 we introduce the Darcy problem and its standard approximation with the Raviart-
Thomas element for both triangular and quadrilateral meshes.

In Chapter 7 we propose two methods, a Nitsche-type and a penalty-type, for the weak imposition
of the essential boundary conditions for the Darcy problem. We rigorously analyze their stability
and deliver a priori error estimates for both velocity and pressure, which are optimal with respect
to the chosen norms. In the case of the velocity, we also derive optimal error estimates for the
L2-norm.

The aim of Chapter 8 is to study the extension of the Nitsche formulation of the previous
chapter to the unfitted setting. We propose a fictitious domain method approach that fits the
CutFEM paradigm and uses ghost penalty operators to recover the stability and keep the linear
system’s conditioning under control.

A note on the numerical implementation

The numerical experiments in Chapter 7 were implemented in FreeFem++ [74] and in the Matlab
library GeoPDEs [131]. For the experiments in the unfitted case in Chapter 8, we tested our
method on quadrilateral meshes in GeoPDEs. We thank Dr. Pablo Antolín for providing us with
an automatic routine for performing integration in the cut elements to add to our code.
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1 Preliminaries

In this chapter, we briefly review the construction of isogeometric spline and NURBS spaces
for the discretization of PDEs. The Poisson and Stokes equations, the model problems for this
part of the manuscript, are introduced and discretized. Let us observe that there are several
comprehensive IGA-oriented introductions to splines in the literature; we refer the interested
reader, for instance, to [19, 45, 78].

1.1 Isogeometric analysis: B-splines, mesh and parametriza-
tion

1.1.1 The univariate case

Given two positive integers p and n, we say that Ξ := {ξ1, . . . , ξn+p+1} is a p-open knot vector if

ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1.

We assume ξ1 = 0 and ξn+p+1 = 1. We also introduce Z := {ζ1, . . . , ζM}, the set of breakpoints,
or knots without repetitions, which forms a partition of the unit interval (0, 1). Note that

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζM , . . . , ζM︸ ︷︷ ︸
mM times

},

where mj is the multiplicity of the breakpoint ζj and
∑M
i=1mi = n+ p+ 1. Moreover, we assume

mj ≤ p for every internal knot, and we denote Ii := (ζi, ζi+1) and its measure hi := ζi+1 − ζi,
i = 1, . . . ,M − 1.

We denote as B̂i,p : [0, 1] → R the ith B-spline, 1 ≤ i ≤ n, obtained using the Cox-de Boor
formula

B̂i,0(ζ) :=
{

1, if ζ ∈ [ξi, ξi+1),
0, otherwise,

B̂i,p(ζ) := ζ − ξi
ξi+p − ξi

B̂i,p−1(ζ) + ξi+p+1 − ζ
ξi+p+1 − ξi+1

B̂i+1,p−1(ζ), p ≥ 1,

with the convention that 0
0 = 0. Moreover, let Spα(Ξ) := span{B̂i,p : 1 ≤ i ≤ n} be the vector

space of univariate splines of degree p. Spα(Ξ) can also be characterized as the space of piecewise
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polynomials of degree p with αj := p−mj continuous derivatives at the breakpoints ζj , 1 ≤ j ≤M
(Curry-Schoenberg Theorem [91]). The number of continuous derivatives at the breakpoints is
collected in the regularity vector α := (αj)Mj=1. A knot multiplicity mj = p+ 1 corresponds to
a regularity αj = −1, i.e., a discontinuity at the breakpoint ζj . Since the knot vector is open,
it holds α1 = αM = −1. For the sake of simplicity of the notation we assume that the basis
functions have the same regularity at the internal knots, namely αj = α for 2 ≤ j ≤M − 1. Note
that the derivatives of spines are splines too when p ≥ 1 and α ≥ 0 and, for Ξ′ := {ξ2, . . . ., ξn+p},
the operator d

dx : Spα(Ξ) → Sp−1
α−1(Ξ′) is surjective., where α − 1 denotes the regularity vector

(αj − 1)Mj=1.

Let us define univariate NURBS. Given the positive coefficients wj > 0, 1 ≤ j ≤ n, we define the

weight W (ζ) :=
n∑
i=1

wiB̂i,p(ζ), and the basis functions

N̂j,p(ζ) := wjB̂j,p(ζ)
W (ζ) , j = 1, . . . ,n,

which are called non-rational uniform B-splines (NURBS) and span the NURBS spaceNp
α(Ξ,W ) :=

span{N̂i,p : i = 1, . . . ,n}.

Moreover, given an interval Ij = (ζj , ζj+1) = (ξi, ξi+1), we define its support extension Ĩj as

Ĩj := int
⋃
{supp(B̂k,p) : supp(B̂k,p) ∩ Ij 6= ∅, 1 ≤ k ≤ n} = (ξi−p, ξi+p+1) .

1.1.2 The multivariate case

Let d ∈ {2, 3} denote the space dimension and M`,n`, p` ∈ N, Ξ` = {ξ`,1, . . . , ξ`,n`+p`+1},
Z` = {ζ`,1, . . . , ζ`,M`

} be given, for every 1 ≤ ` ≤ d. We set the degree vector p := (p1, . . . , pd),
the regularity vectors α`, 1 ≤ ` ≤ d, and Ξ := Ξ1 × · · · × Ξd. As in the univariate case, we
assume that the same regularity holds at the internal knots for every parametric direction, hence
we drop the bold font once for all and write α`, 1 ≤ ` ≤ d. Note that the breakpoints of Z` form
a Cartesian grid in the parametric domain Ω̂0 := (0, 1)d, namely the parametric Bézier mesh

M̂0,h := {Qj = I1,j1 × · · · × Id,jd : I`,j` = (ζ`,j` , ζ`,j`+1) : 1 ≤ j` ≤M` − 1},

where each Qj is called a parametric Bézier element, with hQj := diam (Qj). Let h := max{hQ :
Q ∈ M̂0,h}.

Assumption 1.1.1. The family of meshes {M̂0,h}h is assumed to be shape-regular, that is, the
ratio between the smallest edge of Q ∈ M̂0,h and its diameter hQ is uniformly bounded with
respect to Q and h.

Remark 1.1.2. Shape-regularity implies that the mesh is locally quasi-uniform, i.e., the ratio
of the sizes of two neighboring elements is uniformly bounded (see [17]). Also note that it allows
us to assign hQ as the unique size of the element, without the necessity of dealing with the length
of its edges separately.

Let I := {i = (i1, . . . , id) : 1 ≤ i` ≤ n`} be a set of multi-indices. For each i = (i1, . . . , id), we define
the set of multivariate B-splines {B̂i,p(ζ) = B̂i1,p1(ζ1) . . . B̂id,pd(ζd) : i ∈ I}. The multivariate
spline space in Ω̂ is defined as Sp

α1,...,αd(Ξ) := span{B̂i,p : i ∈ I}, which can also be seen as the space
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of piecewise multivariate polynomials of degree p and with regularity across the Bézier elements
given by the knot multiplicities. Note that Sp

α1,...,αd(Ξ) = Sp
α1,...,αd(Ξ1, . . . , Ξd) =

⊗d
`=1 S

p`
α`

(Ξ`).

Given a collection of positive coefficients {wj : j ∈ I}, we set the weight W (ζ) :=
∑
i∈I

wiB̂i,p(ζ),

and the multivariate NURBS

N̂j,p(ζ) := wjB̂j,p(ζ)
W (ζ) , j ∈ I.

The multivariate NURBS space is defined as Np
α1,...,αd(Ξ,W ) := span{N̂i,p(ζ) : i ∈ I}.

Moreover, for an arbitrary Bézier element Qj ∈ M̂0,h, we define its support extension Q̃j :=
Ĩ1,j1 × · · · × Ĩd,jd , where Ĩl,j` is the univariate support extension of the univariate case defined
above.

1.1.3 Parametrization and physical domain

Let p, Ξ be a degree and a knot vector at a coarse level of discretization. We recall that
for splines h-refinement and p-refinement are obtained, respectively, via knot insertion and
degree elevation [19]. Given a spline space Sp

α1,...,αd(Ξ) = span{B̂i,p : i ∈ I} and control points
{cj : j ∈ I}, we may define the spline parametrization or isogeometric mapping

F(ζ) :=
∑
i∈I

ciB̂i,p(ζ), ζ ∈ Ω̂0,

such that Ω0 = F
(

Ω̂0

)
, where Ω0 is the so-called physical domain. Similarly, given a NURBS

space Np
α1,...,αd(Ξ, W) = span{N̂i,p : i ∈ I}, we define the NURBS parametrization

F(ζ) :=
∑
i∈I

ciN̂i,p(ζ), ζ ∈ Ω̂0.

We define the physical Bézier mesh as the image of the elements in M̂0,h through F

M0,h := {K ⊂ Ω : K = F(Q),Q ∈ M̂0,h}.

We denote hK := diam (K) for each K ∈M0,h. To prevent the existence of singularities in the
parametrization, we make the following assumption.

Assumption 1.1.3. The parametrization F : Ω̂0 → Ω0 is bi-Lipschitz. Moreover, F
∣∣∣
Q
∈ C∞(Q)

for every Q ∈ M̂0,h and F−1
∣∣∣
K
∈ C∞(K) for every K ∈M0,h.

Some consequences of Assumption 1.1.3 are the following.

1. hQ ≈ hK , i.e., there exist C1 > 0,C2 > 0 such that C1hK ≤ hQ ≤ C2hK ;

2. there exists C > 0 such that, for allQ ∈ M̂0,h such that F(Q) = K, it holds ‖DF‖L∞(Q) ≤ C
and

∥∥DF−1
∥∥
L∞(K) ≤ C;

3. there exist C1 > 0,C2 > 0 such that C1 ≤ |det(DF(ζ))| ≤ C2 for all ζ ∈ Ω̂0.
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Chapter 1. Preliminaries

Moreover, note that Assumption 1.1.3 implies that if the parametric mesh is shape-regular,
then the physical mesh is shape-regular too. With an abuse of notation, we may denote
h := maxK∈M0,h hK , even if the same symbol has been used for the maximum diameter of the
parametric mesh. We define h : Ω0 → (0, +∞) to be the piecewise constant mesh-size function
assigning to each active element K ∈M0,h its diameter, namely h

∣∣∣
K

:= hK .

Remark 1.1.4. Even though in this thesis we are mainly going to deal with spline spaces,
everything is easily generalizable to the case of NURBS [45].

1.2 Isogeometric discretization of the Poisson problem on
untrimmed geometries

Let Γ0 denote the boundary of Ω0 with unit outer normal n0 and such that Γ0 = ΓD ∪ΓN , where
ΓD and ΓN are non-empty, open, and disjoint.
Assumption 1.2.1. We assume that Γ̂D, Γ̂D := F−1 (ΓD), is the union of full faces of the
parametric domain Ω̂0.

The Poisson problem is a second-order linear elliptic partial differential equation describing
the diffusion of a given quantity (for instance, a temperature, a mass, or an electric charge
distribution) subjected to an external force or source term and suitable boundary conditions.
Given the source term f ∈ L2(Ω0), the Dirichlet datum gD ∈ H

1
2 (ΓD) and the Neumann datum

gN ∈ H−
1
2 (ΓN ), we look for u : Ω0 → R such that

−∆u = f , in Ω0,
u = gD, on ΓD,

∂u

∂n
= gN , on ΓN .

(1.1)

In what follows, we will use the subscript 0 to refer to the fact that we are discretizing in the
untrimmed domain Ω0. We define the isogeometric approximation space in the physical domain

V0,h := {vh ◦ F−1 : vh ∈ V̂0,h},

where V̂0,h := Sp
α1,...,αd(Ξ) is the approximation space in the parametric domain, Ξ is the same

knot vector (or a refinement of it) used for the geometry at a coarse level of discretization with
degree p and internal regularities αi, 1 ≤ i ≤ d.

We say that ξ ∈ L2(ΓD) is a discrete Dirichlet datum if there exists vh ∈ V0,h such that vh
∣∣∣
ΓD

= ξ.
We define

V ξ0,h := {vh ∈ V0,h : vh
∣∣∣
ΓD

= ξ}.

Note that if gD is a discrete Dirichlet datum, then V gD0,h is readily defined. Otherwise, we assume
to have an approximation gh,D of it which is a Dirichlet datum and, by abuse of notation, we set
V gD0,h := V

gh,D
0,h . We can construct such an approximation with an L2-projection of gD on the dofs

associated with ΓD as described in [131].

We are finally ready to discretize (1.1).

Find uh ∈ V gD0,h such that

a(uh, vh) = F (vh), ∀ vh ∈ V 0
0,h, (1.2)

14



1.3. Isogeometric discretization of the Stokes problem on untrimmed geometries

where

a(wh, vh) :=
∫

Ω0

∇wh · ∇vh, wh, vh ∈ V0,h,

F (vh) :=
∫

Ω0

fvh +
∫

ΓN
gNvh, vh ∈ V0,h.

Remark 1.2.2. The writing in (1.2) should be interpreted as a shortcut for the usual lifting of
the Dirichlet datum, see [112].

Another way to impose the Dirichlet boundary conditions, instead of manipulating the discrete
space, is to incorporate them in the variational formulation of the problem. The Nitsche method,
originally proposed in [103], and later rediscovered in [126], is a consistent penalty method that
enjoys optimal approximation properties.

Find uh ∈ V0,h such that

ah(uh, vh) = Fh(vh), ∀ vh ∈ V0,h, (1.3)

where

ah(wh, vh) :=
∫

Ω0

∇wh · ∇vh −
∫

ΓD

∂wh
∂n

vh −
∫

ΓD
wh

∂vh
∂n︸ ︷︷ ︸

symmetry

+β

∫
ΓD

h−1whvh︸ ︷︷ ︸
stability

, wh, vh ∈ V0,h,

Fh(vh) :=
∫

Ω0

fvh +
∫

ΓN
gNvh−

∫
ΓD

gD
∂vh
∂n

+ β

∫
ΓD

h−1gDvh︸ ︷︷ ︸
consistency

, vh ∈ V0,h,

β > 0 being a penalty parameter.

1.3 Isogeometric discretization of the Stokes problem on
untrimmed geometries

As in the Poisson case, we assume that the boundary of Ω0, Γ0, has unit outer normal n0 and
can be written as Γ0 = ΓD ∪ ΓN , with ΓD satisfying Assumption 1.2.1.

The Stokes equations are a linear system that can be derived as a simplification of the Navier-
Stokes equations. They describe the flow of a fluid under incompressibility and slow motion
regimes. Given the body force f ∈ L2(Ω0), the mass production rate g ∈ L2(Ω0), the Dirichlet
datum uD ∈ H

1
2 (ΓD) and the Neumann datum uN ∈ H−

1
2 (ΓN ), we look for the velocity

u : Ω0 → Rd and pressure p : Ω0 → R such that

−µ∆u +∇p = f , in Ω0,
div u = g, in Ω0,

u = uD, on ΓD,
σ(u, p)n = uN , on ΓN ,

(1.4)

where µ > 0 is the viscosity coefficient, σ(u, p) := µDu − pI is the Cauchy stress tensor,
(Du)ij := ∂ui

∂xj
, i, j = 1, . . . , d. The first equation is known as the conservation of the momentum

and is nothing else than Newton’s Second Law, relating the external forces acting on the fluid to
the rate of change of its momentum, the second one is the conservation of mass (when g ≡ 0).
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Chapter 1. Preliminaries

We need to construct compatible spaces for velocity and pressure for the discretization of the
Stokes problem (see [28]). To define the isogeometric spaces in the parametric domain, we need
to resort to the following cumbersome notation. For every 1 ≤ ` ≤ d, let Ξ` be a knot vector of
degree k and regularity vector α, with Ξ = Ξ1× · · · ×Ξ` is the knot vector used for the geometry.
We construct Ξ̌`, a knot vector of degree k + 1 and regularity α + 1, from Ξ` by adding one
repetition of the first and last knots. By increasing the multiplicity of the internal knots Ξ̌` by
one, we obtain Ξ̃`, a knot vector of degree k + 1 and regularity α.

We define the following approximation spaces in the parametric domain.

V̂ RT
0,h :=

{
Sk+1,k
α+1,α(Ξ̌1, Ξ2)× Sk,k+1

α,α+1(Ξ1, Ξ̌2), if d = 2,
Sk+1,k,k
α+1,α,α(Ξ̌1, Ξ2, Ξ3)× Sk,k+1,k

α,α+1,α(Ξ1, Ξ̌2, Ξ3)× Sk,k,k+1
α,α,α+1(Ξ1, Ξ2, Ξ̌3), if d = 3,

V̂ N
0,h :=

{
Sk+1,k+1
α+1,α (Ξ̌1, Ξ̃2)× Sk+1,k+1

α,α+1 (Ξ̃1, Ξ̌2), if d = 2,
Sk+1,k+1,k+1
α+1,α,α (Ξ̌1, Ξ̃2, Ξ̃3)× Sk+1,k+1,k+1

α,α+1,α (Ξ̃1, Ξ̌2, Ξ̃3)× Sk+1,k+1,k+1
α,α,α+1 (Ξ̃1, Ξ̃2, Ξ̌3), if d = 3,

V̂ TH
0,h :=

{
Sk+1,k+1
α,α (Ξ̃1, Ξ̃2)× Sk+1,k+1

α,α (Ξ̃1, Ξ̃2), if d = 2,
Sk+1,k+1,k+1
α,α,α (Ξ̃1, Ξ̃2, Ξ̃3)× Sk+1,k+1,k+1

α,α,α (Ξ̃1, Ξ̃2, Ξ̃3)× Sk+1,k+1,k+1
α,α,α (Ξ̃1, Ξ̃2, Ξ̃3), if d = 3,

Q̂0,h :=
{
Sk,k
α,α(Ξ1, Ξ2), if d = 2,
Sk,k,k
α,α,α(Ξ1, Ξ2, Ξ3), if d = 3.

It holds V̂ RT
0,h ⊂ V̂ N

0,h ⊂ V̂ TH
0,h , see [28]. We note that, for α = −1, V̂ RT

0,h and V̂ N
0,h recover the

classical Raviart-Thomas finite element and Nédélec finite element of the second kind, respectively.
For α = 0, V̂ TH

0,h represents the classical Taylor-Hood finite element space. Henceforth we assume
α ≥ 0, otherwise V̂ �

0,h, � ∈ {RT,N,TH}, is a discontinuous space (of jump type) and it does not
provide a suitable discretization for the velocity solution of the Stokes problem, since it is not
H1-conforming.

The isogeometric spaces in the physical domain Ω0 read as follows

V RT
0,h :={vh : ιv (vh) ∈ V̂ RT

0,h }, V N
0,h := {vh : ιv (vh) ∈ V̂ N

0,h}, V TH
0,h := {vh : vh ◦ F ∈ V̂ TH

0,h },
QRT

0,h =QN
0,h := {qh : ιp(qh) ∈ Q̂0,h}, QTH

0,h := {qh : qh ◦ F ∈ Q̂0,h},

where ιv and ιp are, respectively, the divergence-preserving and integral-preserving transformations,
defined as

ιv :H(div; Ω0)→H(div; Ω̂0), ιv (v) := det (DF)DF−1 (v ◦ F) ,
ιp :L2(Ω0)→ L2(Ω̂0), ιp(q) := det (DF) (q ◦ F) .

We are going to refer to the pairs V RT
0,h − QRT

0,h, V N
0,h − QN

0,h, V TH
0,h − QTH

0,h as the isogeometric
Raviart-Thomas, Nédélec and Taylor-Hood elements, respectively. To further alleviate the notation,
we adopt the convention to omit the superscript � ∈ {RT,N,TH} when what said does not
depend from the particular finite element choice. Let us observe that, in the physical domain,
V RT

0,h ⊂ V N
0,h 6⊂ V TH

0,h .

For the Taylor-Hood element, the spaces satisfying boundary conditions V TH,uD
0,h and V TH,0

0,h can
be constructed, in general, by using an L2-projection on the dofs associated with ΓD, as explained
for the discretization of the Poisson problem. Hence, we can discretize (1.4) as follows.

Find (uh, ph) ∈ V TH,uD
0,h ×QTH

0,h such that

a(uh, vh) + b(vh, ph) = F (vh), ∀ vh ∈ V TH,0
0,h ,

b(uh, qh) = G(qh), ∀ qh ∈ QTH
0,h ,

(1.5)
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where

a(wh, vh) :=
∫

Ω0

µDwh : Dvh, wh, vh ∈ V TH
0,h ,

b(vh, qh) :=−
∫

Ω0

qh div vh, vh ∈ V TH
0,h , qh ∈ QTH

0,h

F (vh) :=
∫

Ω0

f · vh +
∫

ΓN
uN · vh, vh ∈ V TH

0,h ,

G(qh) :=−
∫

Ω0

gqh, qh ∈ QTH
0,h .

We observe that the imposition of the non-homogeneous Dirichlet boundary conditions in (1.5)
should be done with a lifting.

We recall that the Raviart-Thomas isogeometric element satisfies divV RT
0,h = QRT

0,h [34]. This
property still holds when no-penetration boundary conditions are prescribed to the velocity fields
and, consequently, constant discrete pressures are filtered out, namely div

(
V RT

0,h ∩H0(div; Ω0)
)

=

QRT
0,h∩L2

0(Ω0). However, div
(
V RT

0,h ∩H1
0 (Ω0)

)
( QRT

0,h∩L2
0(Ω0), meaning that the discrete inf-sup

condition is lost when the no-slip boundary conditions are strongly imposed [58].

Motivated by this observation and by the inclusion V RT
0,h ⊂ V N

0,h, we follow [58, 59, 131] and
impose the tangential component of the boundary conditions in a weak sense through the Nitsche
method [63]. Let us define V RT,uD

0,h ,V N,uD
0,h and V RT,0

0,h ,V N,0
0,h , but this time the L2-projection

acts just on the normal component of the datum on the dofs living on the Dirichlet part of the
boundary. At this point, we consider the following Nitsche formulation.

Find (uh, ph) ∈ V �,uD
0,h ×Q�

0,h such that

ah(uh, vh) + b1(vh, ph) = Fh(vh), ∀ vh ∈ V �,0
0,h ,

b1(uh, qh) = G1(qh), ∀ qh ∈ Q�
0,h,

(1.6)

where

ah(wh, vh) :=
∫

Ω0

µDwh : Dvh −
∫

ΓD
µDwhn · vh −

∫
ΓD

µwh ·Dvhn︸ ︷︷ ︸
symmetry

+ γ

∫
ΓD

h−1µwh · vh︸ ︷︷ ︸
stability

, wh, vh ∈ V �
0,h,

b1(vh, qh) :=−
∫

Ω0

qh div vh +
∫

ΓD
qhvh · n, vh ∈ V �

0,h, qh ∈ Q�
0,h

Fh(vh) :=
∫

Ω0

f · vh +
∫

ΓN
uN · vh

−
∫

ΓD
µuD ·Dvhn + γ

∫
ΓD

h−1µuD · vh︸ ︷︷ ︸
consistency

, vh ∈ V �
0,h,

G1(qh) :=−
∫

Ω0

gqh +
∫

ΓD
qhuD · n︸ ︷︷ ︸

consistency

, qh ∈ Q�
0,h,
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where γ > 0 is a penalty parameter and � ∈ {RT,N}.

Alternatively, it is possible to use the Nitsche method to enforce the “whole” Dirichlet boundary
conditions (both the penetration and slip parts) in a weak sense. In this way, we get a unified
formulation for the different choices of isogeometric elements.

Find (uh, ph) ∈ V �
0,h ×Q�

0,h such that

ah(uh, vh) + b1(vh, ph) = Fh(vh), ∀ vh ∈ V �
0,h,

b1(uh, qh) = G1(qh), ∀ qh ∈ Q�
0,h,

(1.7)

where � ∈ {RT,N,TH}.
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2 Stabilized isogeometric discretiza-
tion of the Poisson problem on
trimmed geometries
This chapter is devoted to the numerical analysis of the isogeometric discretization of the Poisson
problem in trimmed domains.

As we have already mentioned in the introduction, for the discretization of a PDE to be robust
to the trimming operation, the following points need to be addressed:

• quadrature rules to integrate in the trimmed elements must be available;

• the conditioning of the resulting linear system needs to be under control;

• its discrete formulation has to be stable or well-posed.

The problem of integration here goes by the wayside as we adopt the strategy proposed in [4]
where the cut elements are locally reparameterized by a piecewise polynomial approximation
with the same degree as the spline basis used for the discretization of the space.

Concerning the conditioning issue, we do not have a sound solution to the problem, but we
constructed tests to check the behavior of the condition number of the stiffness matrix. Numerical
evidence shows that a rescaling of the stiffness matrix, coupled with our stabilization, dramatically
reduces the condition number. However it does not solve the conditioning issue in all configurations
(see Section 2.4.4). A clear theoretical understanding of the issue is beyond the scope of this
work, and, in this regard, the interested reader is referred to [100] and to [50, 51].

The main contribution of this chapter is proposing a novel stabilization technique, inspired
by [73], which locally modifies the discrete formulation while keeping the discrete functional
space unaffected, in compliance with the so-called isogeometric paradigm. This stabilization is
“minimal”, in the sense that it does not introduce additional parameters, in contrast with the
CutFEM [37], and finite cell methods [47]. The main idea, inspired by [73], is to modify the
evaluation of the normal derivatives of the basis functions at the “bad” cut elements. We present
two different versions of the stabilization. The first one is based on polynomial extrapolation
in the parametric domain, which is easier to implement from the numerical point of view but
suboptimal in some cases. The second is a projection-based stabilization performed directly on
the physical domain, which allows us to recover optimal a priori error estimates.

The chapter is organized as follows. In Section 2.1 we set the notation for the isogeometric
discretization and introduce the Nitsche formulation of the Poisson problem on a trimmed domain.
After having explained in detail in Section 2.2 the causes for the lack of stability of the Nitsche
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formulation in trimmed geometries, in Section 2.3 we present our stabilization technique. Two
possible constructions of the stabilization operator are suggested and analyzed in Sections 2.3.1–
2.3.4, and error estimates are provided in Section 2.3.5. Finally, we conclude by showing
some numerical examples in Section 2.4, obtained using the MATLAB library GeoPDEs [131],
confirming the theoretical results.

C will denote generic positive constants that may change with each occurrence throughout the
chapter but are always independent of the local mesh size and the position of the trimming curve
(surface, if d = 3) unless otherwise specified.

This chapter is based on the publication [33].

2.1 Isogeometric discretization

2.1.1 Parametrization, mesh and approximation space in the trimmed
domain

For the sake of convenience, we will partially re-define some of the notations already introduced
in Chapter 1. Let Ξ be a knot-vector at the coarsest level of discretization, p a degree-vector,
and α`, 1 ≤ ` ≤ d, regularity vectors. The induced parametric Bézier mesh in Ω̂0 = (0, 1)d is
denoted by M̂0,h and is required to satisfy Assumption 1.1.1, allowing us to assign hQ as a
unique measure to each element and to use the Bramble-Hilbert type results developed in [17].
Finer meshes can be constructed by knot insertion, as explained in [19], and allow us to obtain a
sequence of nested meshes

(
M̂0,h

)
h>0

.

Let Ω0 ⊂ Rd be the untrimmed domain, homeomorphic to Ω̂0 = (0, 1)d through the isogeometric
mapping F ∈

(
Sp
α1,...,αd(Ξ)

)d, which is given from the CAD description of the geometry and,
to prevent singularities, is required to satisfy Assumption 1.1.3. Moreover, let Ω1, . . . , ΩN be
domains of Rd and assume that

⋃N
i=1 Ωi are to be cut away from Ω0, i.e.,

Ω = Ω0 \
N⋃
i=1

Ωi. (2.1)

We call Ω a trimmed domain and assume that its boundary Γ is Lipschitz with outer unit normal
vector n. We observe that, after trimming, the parametrization of the original patch remains
unchanged; that is, the elements and basis functions fit the boundary of Ω0 instead of that of Ω,
see Figure 2.1.

For the sake of simplicity of the presentation, but without loss of generality, we assume N = 1
in (2.1). Moreover, we let Γ = ΓD ∪ ΓN , where ΓD and ΓN are non-empty, open and disjoint.
The trimming curve (respectively, trimming surface if d = 3) is ΓT := Γ ∩ ∂Ω1.

We define the isogeometric space in the parametric domain, namely V̂0,h := Sp
α1,...,αd(Ξ), where

Ξ is the same knot vector of the geometry or a refinement of it. Throughout the chapter we are
going to consider p = p1 = · · · = pd and α = α1 = · · · = αd, hence we may write p instead of p.

Remark 2.1.1. We observe that the previous construction and what follows could be done in a
more general setting by considering different but fixed degrees and regularities for each parametric
direction. In that case, all the constants appearing in the inequalities of the theoretical results
would depend on the difference between the degrees and possibly explode if this difference is not
kept bounded. Further generalizations to the anisotropic setting, either in terms of the mesh or
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2.1. Isogeometric discretization

(a) Here, (2.1) with N = 2: Ω1 and Ω2 are the blue
domains; Ω is the red domain.

(b) B-splines are defined in the untrimmed domain.

Figure 2.1 – An example of trimmed domain. Images courtesy of Dr. Pablo Antolín.

in terms of the degree, would rely on the approximation theory in anisotropic Sobolev spaces (see,
for instance, [20, 46]). These extensions are far from trivial and out of the scope of this work.

Let us recall that the physical Bézier mesh is the collection of the images of the elements in M̂0,h

through F, namely M0,h := {K : K = F(Q),Q ∈ M̂0,h}. It will be convenient to define the
active physical Bézier meshMh := {K ∈M0,h : K ∩Ω 6= ∅}, and, similarly, the active parametric
Bézier mesh M̂h := {Q : Q = F−1(K),K ∈ Mh}. For every K ∈ Mh, let hK := diam(K) and
h := maxK∈Mh

hK . We define h : Ω→ (0, +∞) to be the piecewise constant mesh-size function
assigning to the active part of each element K ∈Mh its whole diameter, namely h

∣∣∣
K∩Ω

:= hK .
The elements whose interiors are cut by the trimming curve (or surface) are denoted as Gh,
namely, Gh := {K ∈Mh : ΓK 6= ∅}, where ΓK := ΓT ∩K. Note that in the rest of the chapter
we often write ΓK and it should be clear from the context to which part of the boundary we are
referring to. We are also going to denote Γ̂ := F−1 (Γ), Γ̂D := F−1 (ΓD), Γ̂T := F−1 (ΓT ) and as
n̂ the respective outward unit normal. By pushing forward through F the isogeometric space in
the parametric domain to the physical domain Ω0 and then restricting it to the active part of the
domain, we obtain the following discrete spaces, suitable for the discretization of (2.3) in Ω,

Vh = {vh
∣∣∣
Ω

: vh ∈ V0,h}, V0,h = {vh : vh ◦ F ∈ V̂0,h}.

We introduce the following mesh-dependent scalar product in Vh

(wh, vh)1,h :=
∫

Ω
∇wh · ∇vh +

∫
ΓD

h−1whvh, wh, vh ∈ Vh,

inducing the norm

‖vh‖21,h := ‖∇vh‖2L2(Ω) +
∥∥∥h− 1

2 vh

∥∥∥2

L2(ΓD)
, vh ∈ Vh. (2.2)

2.1.2 Variational formulation using Nitsche’s method

Our model problem is the Poisson problem already introduced in (1.1) in the context of a standard
boundary-fitted discretization in the untrimmed domain Ω0. Let us restate it for the sake of
convenience. Given f ∈ L2(Ω), gD ∈ H

1
2 (ΓD) and gN ∈ H−

1
2 (ΓN ), we look for u : Ω→ R such
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that
−∆u = f , in Ω,
u = gD, on ΓD,

∂u

∂n
= gN , on ΓN .

(2.3)

Our approach is closely related to the fictitious domain methods, where the active part of
the domain Ω, with a possibly complicated topology, is immersed into a simpler, but unfitted,
background mesh. Similarly to fictitious domain methods, we need to be able to impose the
Dirichlet boundary conditions when the mesh is not fitted with the boundary. Following [61, 126],
we decide to employ Nitsche’s method, which reads as follows in its symmetric form.

Find uh ∈ Vh such that
ah(uh, vh) = Fh(vh), ∀ vh ∈ Vh, (2.4)

where

ah(wh, vh) :=
∫

Ω
∇wh · ∇vh −

∫
ΓD

∂wh
∂n

vh −
∫

ΓD
wh

∂vh
∂n︸ ︷︷ ︸

symmetry

+β

∫
ΓD

h−1whvh︸ ︷︷ ︸
stability

, wh, vh ∈ Vh,

Fh(vh) :=
∫

Ω
fvh +

∫
ΓN

gNvh−
∫

ΓD
gD

∂vh
∂n

+ β

∫
ΓD

h−1gDvh︸ ︷︷ ︸
consistency

, vh ∈ Vh,

β > 0 being a penalty parameter.
Remark 2.1.2. We emphasize that, in order to simplify the presentation, in formulation (2.4)
we impose the Dirichlet boundary conditions in a weak sense on the whole ΓD. In the case where
there is Γ̃ ⊂ ΓD such that F−1(Γ̃) is a union of full faces of the parametric domain Ω̂0, then one
could have strongly imposed Dirichlet’s conditions on Γ̃ by appropriately modifying the discrete
velocity spaces, see Section 1.2.
Remark 2.1.3. The imposition of the Neumann boundary conditions can be done as usual even
if the mesh is not aligned with ΓN . These conditions are natural for the Poisson problem, i.e.,
they can be enforced through a boundary integral as long as suitable quadrature rules in the cut
elements are available, see [4].

Motivated by the previous remark, we henceforth assume that ΓN ∩ ΓT = ∅, so that ΓT ⊆ ΓD.

Our main goal is to provide a minimal stabilization that makes formulation (2.4) uniformly stable
(or well-posed) with respect not only to the mesh-size but also the relative position of mesh and
trimming curve.

2.2 Lack of stability of Nitsche’s method
Firstly, let us clarify what we actually mean by stability or well-posedness of the discrete variational
problem (2.4).
Definition 2.2.1. We say that problem (2.4) is stable (or well-posed) if there exist β > 0 and
α > 0 such that, for every β ≥ β, it holds that

α ‖vh‖21,h ≤ ah(vh, vh), ∀ vh ∈ Vh,

and for every fixed β ≥ β there exists γ > 0 such that

ah(wh, vh) ≤ γ ‖wh‖1,h ‖vh‖1,h , ∀ wh, vh ∈ Vh.
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Remark 2.2.2. The main point of Definition 2.2.1 is to find β, α, and γ that do not depend on
the trimming configuration. In the following lines, we will show with a numerical example that
formulation (2.4) is not stable.

Remark 2.2.3. In Definition 2.2.1 we followed [126]. Note that the coercivity constant only
depends on β, while the continuity constant depends on the penalty parameter β, and in particular
it grows with β. This dependence of the constant on β also occurs in Theorem 2.3.17 and in
Proposition 2.3.20. In practice, β has to be chosen large enough (i.e., larger than β), but as close
as possible to β, to avoid that the continuity constant deteriorates.

Proposition 2.2.4. If for all K ∈ Gh we have ΓK = ∅, then problem (2.4) is stable.

Proof. The proof is quite standard, but we include it for the sake of completeness. Since we work
in the boundary-fitted regime, the following discrete trace inequality holds∥∥∥∥h 1

2
∂vh
∂n

∥∥∥∥
L2(ΓK)

≤ CI ‖∇vh‖L2(K) , ∀ vh ∈ Vh. (2.5)

see Theorem 4.2 of [57]. Let us start with the coercivity. For vh ∈ Vh, it holds

ah(vh, vh) = ‖∇vh‖2L2(Ω) − 2
∫

ΓD

∂vh
∂n

vh + β
∥∥∥h− 1

2 vh

∥∥∥2

L2(ΓD)
.

From Cauchy-Schwarz’s and Young’s inequalities together with (2.5), we have

2
∫

ΓD

∂vh
∂n

vh ≤
1
ε
C2
I ‖∇vh‖

2
L2(Ω) + ε

∥∥∥h− 1
2 vh

∥∥∥2

L2(ΓD)
, ε > 0.

Hence,

ah(vh, vh) ≥
(

1− 1
ε
C2
I

)
‖∇vh‖2L2(Ω) + (β − ε)

∥∥∥h− 1
2 vh

∥∥∥2

L2(ΓD)
.

It suffices to choose ε > 0 such that C2
I < ε < β. Let wh, vh ∈ Vh, then

ah(wh, vh) ≤‖∇wh‖L2(Ω) ‖∇vh‖L2(Ω) +
∥∥∥∥h 1

2
∂wh
∂n

∥∥∥∥
L2(ΓD)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

+
∥∥∥∥h 1

2
∂vh
∂n

∥∥∥∥
L2(ΓD)

∥∥∥h− 1
2wh

∥∥∥
L2(ΓD)

+ β
∥∥∥h− 1

2wh

∥∥∥
L2(ΓD)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

≤‖∇wh‖L2(Ω) ‖∇vh‖L2(Ω) + CI ‖∇wh‖L2(Ω)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

+ CI ‖∇vh‖L2(Ω)

∥∥∥h− 1
2wh

∥∥∥
L2(ΓD)

+ β
∥∥∥h− 1

2wh

∥∥∥
L2(ΓD)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

.

Hence, it suffices to take γ ≥ max{1, 2CI ,β}.

The following numerical experience shows that there exists a trimming configuration for which
the formulation (2.4) is not stable according to Definition 2.2.1. In particular we show that for
every fixed β the continuity constant γ may be arbitrarily large for a given h > 0. First, we
notice that if γβ is the continuity constant corresponding to β, then γβ > γ1 for every β > 1. So,
we fix β = 1 and show that γ1 can be arbitrarily large.

Let us consider the following generalized eigenvalue problem.
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Find (uh,λh) ∈ Vh \ {0} × R such that∫
Ω
∇uh · ∇vh −

∫
ΓD

∂uh
∂n

vh −
∫

ΓD
uh
∂vh
∂n

+
∫

ΓD
h−1uhvh = λh(uh, vh)1,h, ∀ vh ∈ Vh. (2.6)

As the problem is symmetric, the continuity constant γ1 equals the maximum eigenvalue of (2.6).

Let us consider Ω0 = (0, 1)2 and as trimmed domain Ω = (0, 1)× (0, 0.757). We fix h = 2−5 as
mesh size and p = 3 as degree. We construct a sequence of discrete spaces (Vh,ε)ε>0 of degree
p and of class C2 at the internal knots, starting from the uniform knot vectors Ξx, Ξy and
substituting in the latter the knot 0.75 with ξ = 0.757− ε. Basically, the horizontal knot line
{(x, y) : y = 0.75} is replaced by {(x, y) : y = ξ}, which is such that the smaller ε > 0 is, the
closer to the trimming curve it becomes. In Figure 2.2(a) we plot Ω = (0, 1)× (0, 0.757) (in red),
{(x, y) : y = ξ} (in solid blue), {(x, y) : y = 0.75} (in dotted gray).

In Figure 2.2(b) we can see the dependence of the spectrum of (2.6) on the magnitude of ε.
In particular, the magnitude of the largest generalized eigenvalue goes to infinity as ε goes to
0, implying that the discrete formulation (2.4) is not stable, as the continuity constant can be
made arbitrarily large by reducing ε. Going through the proof of stability, we clearly miss a
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Figure 2.2 – Testing the lack of stability of formulation (2.4) with respect to trimming.

discrete trace inequality like (2.5) which is uniform with respect to any mesh-trimming curve
configuration, namely, ∥∥∥∥h 1

2
∂vh
∂n

∥∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(K∩Ω) ,

where C does not depend on the shape and diameter of K ∩ Ω.

At this point, in order to be able to deal with a stable problem, we want to find a way to improve
this discrete trace inequality, where the constant does not depend on how the trimmed boundary
intersects the mesh.

2.3 The stabilized formulation and its analysis
The goal of this section is to present a new stabilization technique for the problem (2.4). Our
construction is inspired by the work of J. Haslinger and Y. Renard in [73] and mainly follows
three steps:
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(1) distinguishing good and bad elements depending on how elements are cut;

(2) finding a good neighbor for each bad element;

(3) stabilizing the normal derivatives at the bad elements with the help of the good neighbor.

Let us start partitioning the elements of the Bézier mesh into two disjoint subfamilies.

Definition 2.3.1. Let θ ∈ (0, 1] be the volume-ratio threshold and Q ∈ M̂h. We say that Q is a
good element if ∣∣∣Ω̂ ∩Q∣∣∣

|Q|
≥ θ.

Otherwise, Q is a bad element. Thanks to the regularity Assumption 1.1.3 on F, this classification
on the parametric elements naturally induces a classification on the physical elements. Mg

h stands
for the collection of the good physical Bézier elements andMb

h for the one of the bad physical
elements. Note thatMh \ Gh ⊆Mg

h andMb
h ⊆ Gh. We denote the set of neighbors of K as

N (K) := {K ′ ∈Mh : dist (K,K ′) ≤ Ch} \ {K}, (2.7)

where C does not depend on the mesh size nor on the trimming configuration.

The following assumption is not restrictive since it holds true if the mesh is sufficiently refined.

Assumption 2.3.2. We assume that for any K ∈ Mb
h, there exists K ′ ∈ N (K) ∩Mg

h. From
now on we will refer to such K ′ as a good neighbor of K.

In what follows, we will use Assumption 2.3.2 to construct a stable representation of the normal
flux of discrete functions. Let us assume that there exists an operator

Rh : Vh → L2(ΓD),

which approximates the normal derivative on ΓD in a sense that will be specified. We propose
the following stabilized formulation of problem (2.4).

Find uh ∈ Vh such that
ah(uh, vh) = Fh(vh), ∀ vh ∈ Vh, (2.8)

where

ah(wh, vh) :=
∫

Ω
∇wh · ∇vh −

∫
ΓD

Rh(wh)vh −
∫

ΓD
whRh(vh) + β

∫
ΓD

h−1whvh, wh, vh ∈ Vh,

Fh(vh) :=
∫

Ω
fvh +

∫
ΓN

gNvh −
∫

ΓD
gDRh(vh) + β

∫
ΓD

h−1gDvh, vh ∈ Vh.

Theorem 2.3.3. Suppose Rh satisfies the following stability property. Given θ ∈ (0, 1], there
exists C > 0 such that, for every K ∈ Gh,∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(Ω∩K′) , ∀ vh ∈ Vh, (2.9)

where K ′ is a good neighbor if K ∈ Mb
h, K ′ = K if K ∈ Mg

h. Then problem (2.8) is stable in
the sense of Definition 2.2.1 (modified accordingly).
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Proof. For the continuity, let wh, vh ∈ Vh, and estimate

|ah(wh, vh)| ≤ ‖∇wh‖L2(Ω) ‖∇vh‖L2(Ω) +
∥∥∥h 1

2Rh(wh)
∥∥∥
L2(ΓD)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

+
∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓD)

∥∥∥h− 1
2uh

∥∥∥
L2(ΓD)

+ β
∥∥∥h− 1

2wh

∥∥∥
L2(ΓD)

∥∥∥h− 1
2 vh

∥∥∥
L2(ΓD)

≤‖wh‖1,h ‖vh‖1,h + C ‖∇wh‖L2(Ω) ‖vh‖1,h + C ‖∇vh‖L2(Ω) ‖wh‖1,h

+ β ‖wh‖1,h ‖vh‖1,h ≤ C ‖wh‖1,h ‖vh‖1,h ,

where we employed thr Cauchy–Schwarz inequality, the definition of the norm (2.2) and the
stability property (2.9). Take vh ∈ Vh. By using the Young inequality, with δ > 0, and, again,
the stability property (2.9), we obtain

ah(vh, vh) ≥‖∇vh‖2L2(Ω) −
1
δ

∥∥∥h 1
2Rh(vh)

∥∥∥2

L2(ΓD)
− δ

∥∥∥h− 1
2 vh

∥∥∥2

L2(ΓD)

+ β
∥∥∥h− 1

2 vh

∥∥∥2

L2(ΓD)
≥
(

1− C

δ

)
‖∇vh‖2L2(Ω) + (β − δ)

∥∥∥h− 1
2 vh

∥∥∥2

L2(ΓD)
,

from which we deduce the coercivity, provided C < δ < β.

Remark 2.3.4. Let us observe once for all that the subsequent constants related to the stabi-
lization operator Rh will depend on the threshold parameter θ.

In order for the solution of (2.8) to be a good approximation of u, it is clear that we will also need
to quantify the error between Rh(uh) and ∂u

∂n
. This issue will be addressed in the next section.

2.3.1 Construction of the stabilization operator

The definition of the operator Rh is not unique. As already observed, we seek a stable approxi-
mation of the normal derivative on the trimmed part of the boundary, namely, on ΓK for every
K ∈ Gh. Here, we propose two different constructions of such an operator.

• A stabilization in the parametric domain: for eachK ∈Mb
h we take the canonical polynomial

extension of the pull-back of the functions of Vh from Q′ := F−1(K ′) to Q := F−1(K),
where K ′ is a good neighbor.

• A stabilization in the physical domain: for each K ∈Mb
h, we first L2-project the functions

restricted to the good neighbor K ′ onto the polynomial space Qp(K ′); then we take their
canonical polynomial extension up to K.

Definition 2.3.5 (Stabilization in the parametric domain). We define the operator Rh : Vh →
L2(ΓD) locally as Rh(vh)

∣∣∣
K

:= RK(vh) for all K ∈ Gh and vh ∈ Vh, where

• if K ∈Mg
h,

RK(vh) :=
∂vh

∣∣∣
K

∂n
;

• if K ∈Mb
h,

RK(vh) :=
∂

(
EQ′,Q

(
v̂h

∣∣∣
Q′

)
◦ F−1

)
∂n

,
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2.3. The stabilized formulation and its analysis

where EQ′,Q : Qp(Q′)→ Qp(Q′ ∪Q) is the canonical polynomial extension and K ′ a good
neighbor of K.

An alternative stabilization operator can be defined by using the L2-projection in the physical
domain.

Definition 2.3.6 (Stabilization in the physical domain). We define the operator Rh : Vh →
L2(ΓD) locally as Rh(vh)

∣∣∣
K

:= RK(vh) for all K ∈ Gh and vh ∈ Vh:

• if K ∈Mg
h,

RK(vh) :=
∂vh

∣∣∣
K

∂n
;

• if K = F(Q) ∈Mb
h, K ′ ∈ N (K) ∩Mg

h,

RK(vh) :=
∂
(
EK′,K

(
ΠK′(vh

∣∣∣
K′

)
))

∂n
,

where ΠK′ : L2 (K ′) → Qp (K ′) is the L2-orthogonal projection, EK′,K : Qp(K ′) →
Qp(K ′ ∪K) is the natural polynomial extension and K ′ a good neighbor of K.

Remark 2.3.7. Note that in the trivial case where there is no isogeometric map, namely F = Id,
the L2-projection ΠK′ reduces to the identity operator, and the two stabilizations coincide.

Before analyzing the properties of the two stabilization operators, let us formalize our quasi-
interpolation technique. The target function, living in the trimmed domain Ω, is extended up to
the mesh-fitted domain Ω0, hence quasi-interpolated with standard techniques.

2.3.2 The quasi-interpolation strategy

Let us follow an interpolation procedure similar to the one of [37]. We define for m ≥ 1,

Πh : Hm(Ω)→ Vh, v 7→ Π0
h

(
E (v)

∣∣∣
Ω0

) ∣∣∣∣
Ω

,

where E : Hm(Ω) → Hm(Rd) is the Sobolev-Stein extension operator, independent of m (see
Section 3.2 of [104]) and Π0

h is the spline quasi-interpolant onto V 0
h , see [30, 87]. Let us prove

that Πh enjoys optimal approximation properties.

Theorem 2.3.8. There exists C > 0 such that, for every v ∈ Hm(Ω) with m ≥ 1,

‖v −Πhv‖1,h ≤ Ch
s ‖v‖Hm(Ω) ,

where s := min{p,m− 1}.

Proof. First of all, we apply the trace inequality of Lemma A.1.2. Then, we proceed by employing
the standard approximation properties of Π0

h and the boundedness of the Sobolev-Stein extension

27



Chapter 2. Stabilized isogeometric discretization of the Poisson problem on
trimmed geometries

operator.

‖v −Πhv‖21,h = ‖∇ (v −Πhv)‖2L2(Ω) +
∥∥∥h− 1

2 (v −Πhv)
∥∥∥2

L2(ΓD)
≤
∥∥∇ (E(v)−Π0

hE(v)
)∥∥2
L2(Ω0)

+ C
∑
K∈Gh

∥∥h−1 (E(v)−Π0
hE(v)

)∥∥
L2(K)

∥∥E(v)−Π0
hE(v)

∥∥
H1(K)

≤Ch2s ‖E(v)‖2Hm(Ω0)

+ C
∑
K∈Gh

∥∥h−1 (E(v)−Π0
hE(v)

)∥∥
L2(K)

∥∥E(v)−Π0
hE(v)

∥∥
H1(K)

≤Ch2s ‖v‖2Hm(Ω) +
∥∥h−1 (E(v)−Π0

hE(v)
)∥∥
L2(Ω0)

∥∥E(v)−Π0
hE(v)

∥∥
H1(Ω0)

≤Ch2s ‖v‖2Hm(Ω) .

2.3.3 Stabilization operator in the parametric domain

We are now up to verify if the stabilization operator in the parametric domain Rh verifies the
stability property (2.9). Its proof relies on a series of quite technical results that are reported in
the appendix.

Theorem 2.3.9. The stability property (2.9) holds for Rh defined as in Definition 2.3.5, i.e.,
there exists C > 0 such that, for every K ∈ Gh,∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(Ω∩K′) , ∀ vh ∈ Vh,

where K ′ ∈Mg
h is a good neighbor if K ∈Mb

h, K ′ = K if K ∈Mg
h.

Proof. We can restrict ourselves to the case K ∈Mb
h with good neighbor K ′. Let vh ∈ Vh and

vh := EQ′,Q(v̂h
∣∣∣
Q′

) ◦ F−1, where Q := F−1(K) and Q′ := F−1(K ′). It is enough to prove

∥∥∥h 1
2 vh

∥∥∥
L2(ΓK)

≤ C ‖vh‖L2(Ω∩K′) .

It holds that

‖vh‖2L2(ΓK) =
∫

ΓK
|vh|2 =

∫
F−1(ΓK)

|v̂h|2 |det (DF)|
∥∥DF−1n̂

∥∥
≤C

∫
F−1(ΓK)

|v̂h|2 = C ‖v̂h‖2L2(Γ̂D∩Q) ,
(2.10)

where we used F−1(ΓK) = F−1(ΓD) ∩ F−1(K) = Γ̂D ∩Q, because F preserves boundaries (as
homeomorphisms do). Hence, we have, by the Hölder inequality,

‖v̂h‖L2(Γ̂D∩Q) ≤
∣∣∣Γ̂D ∩Q∣∣∣ 1

2 ‖v̂h‖L∞(Γ̂D∩Q) ≤
∣∣∣Γ̂D ∩Q∣∣∣ 1

2 ‖v̂h‖L∞(Q) .

Now, we employ Lemma A.1.4 and Lemma A.1.1:

‖v̂h‖2L2(Γ̂D∩Q) ≤ C
∣∣∣Γ̂D ∩Q∣∣∣ 1

2 ‖v̂h‖L∞(Q′) ≤ Ch
d−1

2 ‖v̂h‖L∞(Q′) .
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At this point, notice that we can use Lemma A.1.5 because |Ω ∩K
′|

|K ′|
≥ θ implies

∣∣∣Ω̂ ∩Q′∣∣∣
|Q′|

≥ Cθ,
where C depends just on F, thanks to Assumption 1.1.3. Moreover, let us push forward to the
physical domain

‖v̂h‖L2(Γ̂D∩Q) ≤ Ch
− 1

2 ‖v̂h‖L2(Ω̂∩Q′) ≤ Ch
− 1

2 ‖vh‖L2(Ω∩K′) . (2.11)

Gathering together (2.10) and (2.11), the proof is finished.

In what follows, we analyze the approximation properties of the stabilization operator in the
parametric domain Rh and provide estimates that will be used in Section 2.3.5 to deduce a
complete error estimate.

Proposition 2.3.10. There exists C > 0 such that, for every K ∈ Gh,

• if 2 ≤ m < p+ 1
2 , for every v ∈ Hm(Ω),∥∥∥∥h 1

2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥∥
L2(ΓK)

≤ Chm−1
(
‖E(v)‖

Hm
(
K̃′
) + ‖E(v)‖Hm(BK)

)
;

• if m ≥ max{p+ 1
2 , 2} and each internal knot line is not repeated, for every v ∈ Hm(Ω), for

all ε > 0,∥∥∥∥h 1
2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥∥
L2(ΓK)

≤ Chp− 1
2−ε

(
‖E(v)‖

Hm
(
K̃′
) + ‖E(v)‖Hm(BK)

)
.

Here, K ′ is a good neighbor if K ∈ Mb
h, K ′ = K if K ∈ Mg

h, BK := F(BQ), and BQ is the
minimal bounding box enclosing Q ∪Q′, Q := F−1(K), Q′ := F−1(K ′).

Proof. Let K ∈ Gh and distinguish two cases: either K ∈Mg
h or K ∈Mb

h. If K ∈M
g
h, we use

Corollary A.1.3, Young’s inequality, and standard approximation results:∥∥∥h 1
2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥2

L2(ΓK)
=
∥∥∥∥h 1

2
∂

∂n
(Πh(v)− v)

∥∥∥∥2

L2(ΓK)

≤C
∥∥∇ (Π0

h(E(v))− E(v)
)∥∥
L2(K)

∥∥∇ (Π0
h(E(v))− E(v)

)∥∥
H1(K)

≤Ch2s ‖E(v)‖2
Hm(K̃) ,

(2.12)

where s := min{p,m − 1}. If K = F(Q) ∈ Mb
h and K ′ = F(Q′) ∈ N (K) ∩Mg

h is its good
neighbor, we proceed by pulling back to the parametric domain and triangular inequality∥∥∥h 1

2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥
L2(ΓK)

≤ C
∥∥∥∥h 1

2
∂

∂n

(
EQ′,Q

(
Πh (v) ◦ F

∣∣∣
Q′

)
− v̂
)∥∥∥∥

L2(Γ̂D∩Q)

≤C
(∥∥∥∥h 1

2
∂

∂n

(
EQ′,Q

(
Πh (v) ◦ F

∣∣∣
Q′

)
− q̂
)∥∥∥∥

L2(Γ̂D∩Q)
+
∥∥∥∥h 1

2
∂

∂n
(q̂ − v̂)

∥∥∥∥
L2(Γ̂D∩Q)

)
,

(2.13)

where v̂ := E(v) ◦F and q̂ ∈ Qp(BQ) (where BQ is the minimal bounding box containing Q∪Q′)

to be chosen. We observe that EQ′,Q
(
q̂
∣∣∣
Q′

)
= q̂. Hence, by Theorem 2.3.9 (in the parametric

domain), the first term of (2.13) becomes∥∥∥∥h 1
2
∂

∂n

(
EQ′,Q

(
Πh (v) ◦ F

∣∣∣
Q′

)
− q̂
)∥∥∥∥

L2(Γ̂D∩Q)
≤ ‖∇ (Πh (v) ◦ F− q̂)‖

L2(Ω̂∩Q′) . (2.14)
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By the triangular inequality, the optimal approximation properties of spline quasi-interpolants [30],
and the norm equivalence between parametric and physical domain, (2.14) becomes∥∥∥h 1

2
∂

∂n

(
EQ′,Q

(
Πh (v) ◦ F

∣∣∣
Q′

)
− q̂
)∥∥∥

L2(Γ̂D∩Q)

≤‖∇ (Πh (v) ◦ F− v̂)‖
L2(Ω̂∩Q′) + ‖∇ (v̂ − q̂)‖

L2(Ω̂∩Q′)

≤Chs ‖E(v)‖
Hm(K̃′) + ‖∇ (v̂ − q̂)‖

L2(Ω̂∩Q′) ,

(2.15)

where s := min{p,m− 1}. From Corollary A.1.3, the second term of (2.13) can be bounded as:∥∥∥∥h 1
2
∂

∂n
(q̂ − v̂)

∥∥∥∥
L2(Γ̂D∩Q)

≤ C ‖∇ (q̂ − v̂)‖
1
2
L2(Q) ‖h∇ (q̂ − v̂)‖

1
2
H1(Q) . (2.16)

Thus, by combining (2.13)–(2.16), we obtain∥∥∥h 1
2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥
L2(ΓK)

≤Chs ‖E(v)‖
Hm(K̃′) + ‖∇(v̂ − q̂)‖

L2(Ω̂∩Q′)

+ C ‖∇ (q̂ − v̂)‖
1
2
L2(Q) ‖h∇ (q̂ − v̂)‖

1
2
H1(Q)

≤Chs ‖E(v)‖
Hm(K̃′) + ‖∇(v̂ − q̂)‖L2(BQ)

+ C ‖∇ (q̂ − v̂)‖
1
2
L2(BQ) ‖h∇ (q̂ − v̂)‖

1
2
H1(BQ) .

(2.17)

We want to apply the Deny-Lions Lemma (Theorem 3.4.1 of [112]) on BQ. By the theory of bent
Sobolev spaces (see [17]), we have E(v) ∈ Hm(Ω0), but, in general, v̂

∣∣∣
BQ

/∈ Hm(BQ), since it is
bent by F, a spline of degree p and regularity p− 1 (under the assumption that internal knot
lines are not repeated). It holds, indeed, that v̂

∣∣∣
BQ
∈ Hr(BQ), where r := min{p + 1

2 − ε,m}.
So, there exists q̂ ∈ Qp(BQ) such that

‖q̂ − v̂‖H1(BQ) ≤ Ch
r−1 ‖v̂‖Hr(BQ) , ‖q̂ − v̂‖H2(BQ) ≤ Ch

r−2 ‖v̂‖Hr(BQ) ,

where C depends on the shape-regularity of BQ through Theorem 3.4.1 of [112] (see Remark 2.3.11).
By pushing forward to the physical domain,

‖q̂ − v̂‖H1(BQ) ≤ Ch
r−1 ‖E(v)‖Hr(BK) , ‖q̂ − v̂‖H2(BQ) ≤ Ch

r−2 ‖E(v)‖Hr(BK) , (2.18)

where BK = F(BQ). From (2.17) and (2.18), it holds∥∥∥h 1
2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥
L2(ΓK)

≤Chs ‖E(v)‖
Hm(K̃′) + Chr−1 ‖E(v)‖Hr(BK) , (2.19)

where s := min{p,m− 1} and r := min{p+ 1
2 − ε,m}. We want to rewrite inequality (2.19) by

distinguishing two cases.

• 2 ≤ m < p+ 1
2 . In this case,∥∥∥∥h 1

2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥∥
L2(ΓK)

≤ Chm−1
(
‖E(v)‖

Hm
(
K̃′
) + ‖E(v)‖Hm(BK)

)
.

• m ≥ max{p+ 1
2 , 2}. Then, for any ε > 0,∥∥∥∥h 1

2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥∥
L2(ΓK)

≤ Chp− 1
2−ε

(
‖E(v)‖

Hm
(
K̃′
) + ‖E(v)‖Hm(BK)

)
.
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Remark 2.3.11. Let NK := #{K∗ ∈ Mh : K∗ ∩ BK 6= ∅} and NQ := #{Q∗ ∈ M̂h :
Q∗ ∩ BQ 6= ∅}, given K ∈ Mh and Q = F−1(K) ∈ M̂h. Note that NK = NQ. NK may
vary according to the constant C appearing in (2.7) and the space dimension d, but it is
uniformly bounded with respect to h thanks to the regularity of F and, in particular, to the
shape-regularity ofMh (see Assumptions 1.1.3, 1.1.1). The shape-regularity ofMh also implies
that, given K ∈ Mh, #{BǨ : BǨ ∩ K 6= ∅, Ǩ ∈ Mh} is uniformly bounded with respect
to h. The uniform bound for NQ implies the shape-regularity of BQ. In other words, given
ρBQ := sup{diam(B) : B is a ball contained in BQ} and hBQ := diam(BQ), the geometric

quantity
hBQ
ρBQ

∼ h

ρBQ
is uniformly bounded with respect to Q ∈ M̂h. Hence, we can seamlessly

apply Theorem 3.4.1 of [112] in the proof of Proposition 2.3.10.

Remark 2.3.12. Note that if 2 ≤ m < p + 1
2 , the estimate is optimal. In the case m ≥

max{p+ 1
2 , 2} the estimate is suboptimal, instead. As already mentioned in the proof, this is due

to the fact that E(v) ∈ Hm(BK) does not imply E(v) ◦ F ∈ Hm(BQ): if one of the knot lines
between Q and Q′ is not repeated, namely, F ∈ Cp−1(BQ), then it holds that E(v) ◦F ∈ Hr(BQ)
with r := min{m, p+ 1

2 − ε}. Moreover, if the parametrization is less regular than requested in
the hypotheses of Proposition 2.3.10, then the suboptimality may be even worse. More precisely,
if F ∈ Cp−k (BQ), which is the case if one of knot lines between Q and Q′ is repeated k times,
then we have r := min{m, p− k + 3

2 − ε}. We will see an example of this suboptimal behavior in
the worst case scenario of k = p in Section 2.4.3.

Remark 2.3.13. Any method based on polynomial extrapolation of the B-splines in the para-
metric domain may also suffer this suboptimality depending on the regularity of the isogeometric
map F because the theory of bent Sobolev spaces from [17] cannot be applied. In particular, the
method of extended B-splines, which works very well in the parametric domain [77], may suffer a
lack of accuracy in the isogeometric setting [92, 94].

2.3.4 Stabilization operator in the physical domain

Theorem 2.3.14. The stability property (2.9) holds for Rh defined as in Definition 2.3.6, i.e.,
there exists C > 0 such that, for every K ∈ Gh,∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤ C ‖∇vh‖L2(Ω∩K′) , ∀ vh ∈ Vh,

where K ′ ∈Mg
h is a good neighbor if K ∈Mb

h, K ′ = K if K ∈Mg
h.

Proof. Let us start by applying the Hölder inequality and Lemma A.1.4:

‖Rh(vh)‖L2(ΓK) =
∥∥∥∥ ∂∂nEK′,K (ΠK′(vh

∣∣∣
K′

)
)∥∥∥∥

L2(ΓK)
≤ |ΓK |

1
2

∥∥∥∥ ∂∂nEK′,K (ΠK′(vh
∣∣∣
K′

)
)∥∥∥∥

L∞(ΓK)

≤ |ΓK |
1
2

∥∥∥∇EK′,K (ΠK′(vh
∣∣∣
K′

)
)∥∥∥

L∞(K)
≤ C |ΓK |

1
2

∥∥∥∇ΠK′(vh
∣∣∣
K′

)
∥∥∥
L∞(K′)

.

Then, we use Lemma A.1.5, Lemma A.1.1, and the stability of the L2-orthogonal projection ΠK′

(see, for instance, [24]):∥∥∥h 1
2Rh(vh)

∥∥∥
L2(ΓK)

≤Ch− d2 |ΓK |
1
2

∥∥∥h 1
2∇ΠK′(vh

∣∣∣
K′

)
∥∥∥
L2(Ω∩K′)

≤C ‖∇ΠK′(vh)‖L2(Ω∩K′) ≤ C ‖∇vh‖L2(K′) .
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Now, let us use the equivalence of norms between parametric and physical spaces, the Hölder
inequality, Lemma A.1.5, and again the norm equivalence between parametric and physical spaces.
We have ∥∥∥h 1

2Rh(vh)
∥∥∥
L2(ΓK)

≤C ‖∇v̂h‖L2(Q′) ≤ Ch
d
2 ‖∇v̂h‖L∞(Q′)

≤C ‖∇v̂h‖L2(Ω̂∩Q′) ≤ C ‖∇vh‖L2(Ω∩K′) ,

where Q′ := F−1(K ′) and C depends on θ through Lemma A.1.5.

Proposition 2.3.15. There exists C > 0 such that, for every K ∈ Gh and v ∈ Hm(Ω) with
m ≥ 2, ∥∥∥∥h 1

2

(
Rh (Πh(v))− ∂v

∂n

)∥∥∥∥
L2(ΓK)

≤ Chs
(
‖E(v)‖

Hm
(
K̃′
) + ‖E(v)‖Hm(BK)

)
,

where s := min{p,m − 1}, K ′ ∈ Mg
h is a good neighbor if K ∈ Mb

h, K ′ = K if K ∈ Mg
h, and

BK is the minimal bounding box enclosing K and K ′.

Proof. Without loss of generality, we can focus on the case K ∈Mb
h with good neighbor K ′.∥∥∥∥h 1

2

(
Rh (Πh (v))− ∂v

∂n

)∥∥∥∥
L2(ΓK)

≤
∥∥∥∥h 1

2

(
Rh (Πh (v))− ∂q

∂n

)∥∥∥∥
L2(ΓK)

+
∥∥∥∥h 1

2
∂

∂n
(q − v)

∥∥∥∥
L2(ΓK)

.

(2.20)
Let q ∈ Qp(BK), where BK is the minimal bounding box enclosingK andK ′, so that Rh(q) = ∂q

∂n
,

and focus on the first term. We apply the stability property proved in Theorem 2.3.14 and, again,
the triangular inequality:∥∥∥∥h 1

2 (Rh (Πh (v)− q))
∥∥∥∥
L2(ΓK)

≤ C ‖∇ (Πh (v)− q)‖L2(Ω∩K′)

≤C
(
‖∇ (q − v)‖L2(Ω∩K′) + ‖∇ (v −Πh (v))‖L2(Ω∩K′)

)
≤C

(
‖∇ (q − E(v))‖L2(K′) + ‖∇ (E(v)−Πh (v))‖L2(K′)

)
≤Chs

(
‖E(v)‖Hm(BK) + ‖E(v)‖

Hm(K̃′)

)
,

(2.21)

with s := min{p,m − 1} and C depends on the shape-regularity of BK (see Remark 2.3.16).
In (2.21), we used the Deny-Lions Lemma (Theorem 3.4.1 of [112]) on BK and the optimal
approximation properties of spline quasi-interpolants (together with the regularity of the mapping,
i.e., Assumption 1.1.3). Let us study the convergence of the second term of (2.20). Corollary A.1.3
together with Theorem 3.4.1 of [112], entail∥∥∥∥h 1

2
∂

∂n
(q − E(v))

∥∥∥∥2

L2(ΓK)
≤C

∥∥∥h 1
2∇ (q − E(v))

∥∥∥
L2(K)

∥∥∥h 1
2∇ (q − E(v))

∥∥∥
H1(K)

≤Ch2s ‖E(v)‖2Hm(BK) ,
(2.22)

where s := min{p,m− 1} and C depends on the shape-regularity of BK . Note that, as in the
proof of Proposition 2.3.10, we can choose the same q in (2.21) and (2.22) . By combining the
previous passages, we readily get∥∥∥∥h 1

2

(
Rh (Πh (v))− ∂v

∂n

)∥∥∥∥
L2(ΓK)

≤Chs
(
‖E(v)‖Hm(BK) + ‖E(v)‖

Hm
(
K̃′
)) ,

with s := min{p,m− 1} and C depends on the shape-regularity of BK .
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Remark 2.3.16. Let NK := #{K∗ ∈ Mh : K∗ ∩ BK 6= ∅}, given K ∈ Mh. NK may vary
according to the constant C appearing in (2.7) and the space dimension d (analogous reasoning as
in Remark 2.3.11). Still, it is uniformly bounded with respect to h thanks to the shape-regularity
of the physical mesh and, in particular, depends on F. Indeed, if we assume that for every
N ∈ N there exist h > 0 and K ∈ Mh such that NK > N , then this would contradict the
shape-regularity ofMh and the existence of uniform constant C in (2.7). The shape-regularity
ofMh also implies that, given K ∈Mh, #{BǨ : BǨ ∩K 6= ∅, Ǩ ∈Mh} is uniformly bounded
with respect to h. Moreover, given ρBK := sup{diam(B) : B is a ball contained in BK} and
hBK := diam(BK), then the geometric quantity hBK

ρBK
∼ h

ρBK
is also uniformly bounded with

respect to K ∈Mh.

2.3.5 A priori error estimates

The preparatory results of Propositions 2.3.10 and 2.3.15 were needed in order to prove the
following convergence results.

Theorem 2.3.17. There exists β > 0 such that, for every β ≥ β, if u ∈ Hm(Ω) with m ≥ 2 is
the solution to (2.3) and uh ∈ Vh is the solution to (2.8), then

‖u− uh‖1,h ≤ C
(
hs ‖u‖Hm(Ω) + hr−1 ‖E(u)‖Hr(Sh)

)
, (2.23)

where Sh is the strip of width Ch, C > 0, such that Sh ⊇
⋃
K∈Mb

h
BK , s := min{m − 1, p}, r

and BK are defined as

• r := min{m, p + 1
2 − ε}, ε > 0, if we choose the stabilization in the parametric domain

of Definition 2.3.5 (if m ≥ p+ 1
2 , we assume that each internal knot line is not repeated,

otherwise we shall refer to Remark 2.3.12). In this case BK = F(BQ), BQ is the minimal
bounding box enclosing Q ∪Q′, K ′ = F(Q′) ∈Mg

h is a good neighbor of K = F(Q);

• r := s+ 1, if we choose the stabilization in the physical domain of Definition 2.3.6, and BK
is the minimal bounding box enclosing K ∪K ′, where K ′ ∈Mg

h is a good neighbor of K.

Proof. From Theorems 2.3.3, 2.3.9, and 2.3.14 we know that, for both choices of stabilization,
ah(·, ·) is coercive w.r.t. ‖·‖1,h, i.e., there exists α > 0 such that, for every vh ∈ Vh,

sup
wh∈Vh
wh 6=0

ah(vh,wh)
‖wh‖1,h

≥ α ‖vh‖1,h .

Let vh ∈ Vh. Using the triangular inequality and coercivity, we get

‖u− uh‖1,h ≤‖u− vh‖1,h + ‖vh − uh‖1,h

≤‖u− vh‖1,h + 1
α

sup
wh∈Vh
wh 6=0

ah(vh − uh,wh)
‖wh‖1,h

. (2.24)

Then, recalling that uh solves (2.8), we get

ah(vh − uh,wh) =ah(vh,wh)− ah(uh,wh) = ah(vh,wh)− Fh(wh)

=
∫

Ω
∇vh · ∇wh −

∫
ΓD

Rh(vh)wh −
∫

ΓD
vhRh(wh) + β

∫
ΓD

h−1vhwh

−
∫

Ω
fwh +

∫
ΓD

gDRh(wh)− β
∫

ΓD
h−1gDwh.

33



Chapter 2. Stabilized isogeometric discretization of the Poisson problem on
trimmed geometries

Since u solves (2.3),
∫

Ω
fwh =

∫
Ω
∇u · ∇wh −

∫
ΓD

∂u

∂n
wh and u

∣∣∣
ΓD

= gD. Hence,

ah(vh − uh,wh) =
∫

Ω
∇(vh − u) · ∇wh︸ ︷︷ ︸

I

−
∫

ΓD
(Rh(vh)− ∂u

∂n
)wh︸ ︷︷ ︸

II

+
∫

ΓD
(u− vh)Rh(wh)︸ ︷︷ ︸

III

+β

∫
ΓD

h−1(vh − u)wh︸ ︷︷ ︸
IV

.

Let us now estimate the four terms separately. We will leave II for last since its analysis depends
on the choice of the stabilization. Clearly

I + IV ≤ C ‖u− vh‖1,h ‖wh‖1,h ,

where C = O(β) > 0. Note that this will not compromise the uniformity of the resulting constant,
provided that β is chosen as close as possible to β (see the discussion in Remark 2.2.3). Using
the stability property (2.9), we get

III2 ≤
∥∥∥h− 1

2 (u− vh)
∥∥∥2

L2(ΓD)

∑
K∈Gh

∥∥∥h 1
2Rh(wh)

∥∥∥2

L2(ΓK)

≤‖u− vh‖21,h C
∑
K∈Gh

‖∇wh‖2L2(K′∩Ω) ≤ C ‖u− vh‖
2
1,h ‖wh‖

2
1,h ,

where K ′ is a good neighbor if K ∈Mb
h, K ′ = K if K ∈Mg

h. Let us estimate the term II. By
definition of the norm ‖·‖1,h,

II ≤
∥∥∥∥h 1

2

(
Rh(vh)− ∂u

∂n

)∥∥∥∥
L2(ΓD)

‖wh‖1,h .

Now, we choose vh = Πh(u) and distinguish two cases.

• If we use the stabilization in the parametric domain of Definition 2.3.5, hence applying
Proposition 2.3.10, we get∑

K∈Gh

∥∥∥∥h 1
2

(
Rh (Πh (u))− ∂u

∂n

)∥∥∥∥
L2(ΓK)

‖wh‖1,h

≤
∑
K∈Gh

C

(
hs ‖E(u)‖

Hm
(
K̃′
) + hr−1 ‖E(u)‖Hr(BK)

)
‖wh‖1,h ,

with s := min{p,m − 1} and r := min{m, p + 1
2 − ε}, ε > 0. See the statement of the

theorem for the definition of BK .

• Employing the stabilization in the physical domain of Definition 2.3.6, hence applying
Proposition 2.3.15, we obtain∑

K∈Gh

∥∥∥∥h 1
2

(
Rh (Πh(u))− ∂u

∂n

)∥∥∥∥
L2(ΓK)

‖wh‖1,h

≤
∑
K∈Gh

Chs
(
‖E(u)‖

Hm
(
K̃′
) + ‖E(u)‖Hm(BK)

)
‖wh‖1,h ,

with s := min{p,m− 1}. See the statement of the theorem for the definition of BK .
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By using, respectively, Remarks 2.3.11 and 2.3.16 (the number of elements in each bounding box
and the number of boxes containing a particular element are uniformly bounded), we have

II ≤ C
(
hs ‖u‖Hm(Ω) + hr−1 ‖E(u)‖Hr(Sh)

)
‖wh‖1,h ,

where Sh is the strip of width Ch, C > 0, such that Sh ⊇
⋃
K∈Mb

h
BK , s := min{p,m− 1}, and

• r := min{m, p+ 1
2 − ε}, ε > 0, if we use the stabilization in the parametric domain, hence

apply Proposition 2.3.10;

• r := s+ 1 if we use the one in the physical domain and use Proposition 2.3.15.

Therefore, we get

ah(Πh(u)− uh,wh) ≤C ‖u−Πh(u)‖1,h ‖wh‖1,h

+ C
(
hs ‖u‖Hm(Ω) + hr−1 ‖E(u)‖Hm(Sh)

)
‖wh‖1,h .

(2.25)

We now combine (2.25) with (2.24), to obtain

‖u− uh‖1,h ≤‖u−Πh(u)‖1,h + 1
α

sup
wh∈Vh
wh 6=0

ah(Πh(u)− uh,wh)
‖wh‖1,h

≤
(

1 + C

α

)
‖u−Πh(u)‖1,h + C

α

(
hs ‖u‖Hm(Ω) + hr−1 ‖E(u)‖Hr(Sh)

)
.

Applying Theorem 2.3.8, we conclude

‖u− uh‖1,h ≤ C
(
hs ‖u‖Hm(Ω) + hr−1 ‖E(u)‖Hr(Sh)

)
,

where s and r have been defined above.

Remark 2.3.18. As already observed in Remark 2.3.12, when u ∈ Hm(Ω), with 2 ≤ m < p+ 1
2 ,

both stabilizations give rise to optimal a priori error estimates. When u ∈ Hm(Ω), withm ≥ p+ 1
2

and m ≥ 2, instead, stabilization in Definition 2.3.5 is suboptimal. In this case the estimate can
be modified and improved using the following result.

Lemma 2.3.19. Given ε > 0, let Sh be defined as in Theorem 2.3.17, there exists C > 0 such
that

‖E(u)‖Hr(Sh) ≤ Ch
1
2−ε ‖u‖

Hp+ 3
2−ε(Ω)

, ∀ u ∈ Hp+ 3
2−ε(Ω), ∀ 0 ≤ r < p+ 1

2.

Proof. Using the fact that r < p+ 1, we are able to recover an integer order for the Sobolev norm
and so to apply Lemma A.1.8 with s = 1

2 − ε:

‖E(u)‖Hr(Sh) ≤ ‖E(u)‖Hp+1(Sh) ≤ Ch
1
2−ε ‖E(u)‖

Hp+ 3
2−ε(Ω0)

≤ Ch 1
2−ε ‖u‖

Hp+ 3
2−ε(Ω)

.

In the last inequality, we used the boundedness of the Sobolev-Stein extension operator.

Proposition 2.3.20. Let u ∈ Hp(Ω) be the solution of (2.3) and uh ∈ Vh the solution of (2.8),
obtained using the stabilization in the parametric domain of Definition 2.3.5 under the hypothesis
that each internal knot line is not repeated. Then, the following error estimate holds:

‖u− uh‖1,h ≤ Ch
p′ ‖u‖

Hp
′+ 3

2 (Ω)
∀ 0 ≤ p′ < p− 1.
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Proof. It immediately follows by combining Theorem 2.3.17 and Lemma 2.3.19.

Remark 2.3.21. At the prize of slightly higher regularity request, the optimal convergence rate
is to be also expected for the stabilization in the parametric domain of Definition 2.3.5 (when we
assume that each internal knot line is not repeated).

2.4 Numerical examples

2.4.1 Some details about the implementation

For accurate numerical integration, we decompose the trimmed elements into smaller quadrilateral
tiles to compute the integrals. These tiles are reparametrized as Bézier surfaces of the same
degree p as the approximation space used to discretize our PDE; see [4] for a detailed explanation.
We remark that this reparametrization is also used to compute the boundary integrals.

In order to compute the stabilization terms appearing in (2.8), first of all for each bad trimmed
element K we choose K ′: among all the neighbors of K, we choose (the) one with the largest
relative overlap |K ′ ∩ Ω| / |K ′|. Then we need to locally project functions living in K ′ (or in Q′)
onto the space of polynomials on K ′ (or Q′) and extend them up to ΓK . For the stabilization
in the parametric domain, by taking the Bernstein polynomials as a basis on Q′, the projection
can be computed by knot insertion, while for the stabilization in the physical domain, the
L2-projection is needed anyhow.

2.4.2 Validation of stability

Let us repeat the numerical experiment of Section 2.2 in order to validate the effectiveness
of our stabilization technique. Let us solve the generalized eigenvalue problem (2.6) with the
stabilization of Definition 2.3.5 (since F = Id, the two proposed stabilizations techniques are
equivalent) in the trimmed domain of Figure 2.2(a) for the same values of ε used in Section 2.2.
The result is shown in Figure 2.3(b). This time we observe that the maximum generalized

Ω

ε

(a) Rectangle.

10−310−710−11
1

2

3

4

5

ε

λ
m

ax
h

(b) Maximum generalized eigenvalue vs. ε.

Figure 2.3 – Testing the stability of formulation (2.8) with respect to trimming.

eigenvalue remains bounded independently of ε, confirming our method to be stable.
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2.4.3 Validation of a priori error estimates

In the following we focus on the Poisson problem (2.8) with the difference that, while we impose
Dirichlet boundary conditions weakly on the trimmed parts of the boundary, on the other parts
where the mesh is fitted with the boundary we impose them in the strong sense.

Test 1. Let Ω = Ω0 \ Ω1 be defined as in Figure 2.4(a), where Ω0 = F((0, 1)2) is a quarter of
annulus (F is a non linear mapping) constructed with biquadratic NURBS, and Ω1 is the image
of a ball in the parametric domain through the isogeometric map, namely, Ω1 = F(B(0, r)) with
r = 0.76. We consider as a manufactured solution uex(x, y) = ex sin(xy). We use the stabilization
in the parametric domain of Definition 2.3.5, and the parameters β = 1 and θ = 0.1. The results
of convergence for different values of p, which are displayed Figure 2.5(a), show that we obtain
the optimal order of convergence.

Ω
FΩ̂

(a) Quarter of annulus with a hole.

Ω

(b) L-shaped domain.

Figure 2.4 – Trimmed domains.
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(a) Quarter of annulus with a hole.
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(b) L-shaped domain.

Figure 2.5 – Convergence rates of ‖u− uh‖1,h for Test 1 and Test 2.

Test 2. We now consider the Poisson problem in the L-shaped domain shown in Figure 2.4(b),
given by Ω = Ω0 \Ω1, where Ω0 = (−2, 1)× (−1, 2) and Ω1 = (0, 1)× (−1, 0). The exact solution
is chosen as the singular function that, in polar coordinates, reads as u(r,ϕ) = r

2
3 sin

( 2
3ϕ
)
∈

H
5
3−δ(Ω) for every δ > 0. The function has a singularity at the re-entrant corner in the origin, and

the domain is chosen in such a way that the corner is always located in the interior of an element.
We employ the formulation (2.8) together with the stabilization operator in Definition 2.3.5,
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noting that since the parametrization is a simple scaling, the two stabilizations are equivalent.
This time we set the parameters θ = 1 and, due to the presence of the singularity, β = (p+ 1) · 10.
The numerical results of Figure 2.5(b) show that the method converges with order 2

3 as expected,
and the suboptimal behavior is due to the low regularity of the reference solution. We note that
in principle our a priori estimates, see Theorem 2.3.17, does not cover this case since it requires
the solution to be at least in H2(Ω).

Test 3. The goal of this test is to show that, when the regularity of the mapping F is low
between the trimmed elements and their neighbors, the stabilization in the physical domain is
more effective than the ones based on polynomial extensions in the parametric domain (as it is
the case for our stabilization in the parametric domain, but also the method proposed in [92]).
Let us consider again, as domain Ω0, the quarter of annulus, this time parametrized with a
different map F: starting from the standard biquadratic NURBS parametrization, we perform
knot insertion adding the knot ξ = 0.75, with multiplicity 2, in the direction corresponding to
the angular coordinate, that corresponds to the thick black line in Figure 2.6(a). In order to
get a geometry of class C0, we set the second coordinate of one control point, highlighted in
Figure 2.6(b), equal to 0.5 in homogeneous coordinates. Note that the new parametrization is

(a) Trimming line in dashed red, C0 knot line in thick
black.

(b) Control points.

Figure 2.6 – Lower inter-regularity parametrization of the quarter of annulus.

only of class C0 in correspondence of the knot line given by F({(x, y) : x ∈ (0, 1), y = 0.75}).
To ensure that this knot line is located between K and K ′, we define the trimmed domain
as Ω = F ((0, 1)× (0, 0.75 + ε)) with ε = 10−8. Here we set θ = 1 and, because of the lower
regularity of the parametrization, β = (p+ 1) · 25. We know from Remarks 2.3.12 and 2.3.13 that
the convergence rate deriving from the stabilization in Definition 2.3.5 (and any stabilization based
on polynomial extensions in the parametric domain) may suffer suboptimality. In particular, from
Figure 2.7(a), we see that the error with the stabilization in the parametric domain is converging
just as h 1

2 for any degree p, while in Figure 2.7(b) we observe that the desired convergence rates
are reached when using the stabilization in the physical domain.

2.4.4 Conditioning

Even if an exhaustive discussion about the conditioning of the stiffness matrix in trimmed
geometries is beyond the scope of this work (for a more detailed discussion on the topic, see,
for instance, [50, 51]), we would like to present some numerical experiments for the sake of
completeness. We focus again on the formulation (2.8) of the Poisson problem. We impose
Dirichlet boundary conditions weakly on the trimmed parts of the boundary and strongly on the
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(a) Stabilization of Definition 2.3.5.
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(b) Stabilization of Definition 2.3.6.

Figure 2.7 – Comparison of the two stabilizations in Test 3 when F has lower regularity.

fitted parts.

Test C1. Let us come back to the quarter of annulus with a hole, and, as above, we employ
B-splines of degree p = 3. In Figure 2.8(a) we show that our stabilization coupled with a simple
diagonal scaling, which can be interpreted as a left-right Jacobi preconditioner, can solve the
conditioning issue. In Figure 2.8(b) we compare the effectiveness of the diagonal rescaling with
and without the stabilization, and we observe that the effect of the stabilization is marginal
with respect to the one of the diagonal preconditioner. The stabilization used is the one in the
parametric domain with β = 1 and θ = 0.1.

stab. and Jacobi
no stab. and no Jacobi
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Figure 2.8 – Condition number study for the quarter of annulus with a hole, Test C1.

Test C2. Let us consider the same configuration as in the test of Figure 2.3(a), for which we
notice again that the two stabilizations are equivalent. Let us take B-splines of degree p = 3, as
mesh size h = 2−5, and set the penalization parameter β = 1. After a simple diagonal rescaling
as preconditioner, we compare the condition number of the stiffness matrix, as a function of
ε, obtained for the nonstabilized (θ = 0) and the stabilized (θ = 1) formulations. Note that
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as the ratio in Definition 2.3.1 is the same for all cut elements, it is sufficient to consider only
these two values of θ. The results in Figure 2.9(a) show the diagonal rescaling is acting as a
robust preconditioner with respect to the size of the trimming. Then, we perform uniform dyadic
refinement, and we plot the condition number as a function of the mesh size h, obtaining the
plots in Figures 2.9(b) and 2.9(c). The results suggest a better behavior of the condition number
when a stabilized formulation is employed to solve the problem.
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(c) κ(A) vs. h, ε = 10−11.

Figure 2.9 – Condition number study for the rectangle, Test C2.

Test C3. This test is inspired by [51]. Let us embed Ω = (0.19, 0.71) × (0.19, 0.71) in the
untrimmed domain Ω0 = (0, 1)2 with an underlying mesh of size h = 2−3. We consider B-
splines of degree p = 2. Now, let us rotate Ω around its barycenter for different angles α (see
Figure 2.10(a)). For each α = i π200 , i = 0, . . . , 100 we face a specific trimming configuration where
there may appear B-splines whose support intersects in a “pathological way” the domain Ω. Let
us denote the “smallest volume fraction” η := minK∈Gh |Ω ∩K|. In Figure 2.10(b) we plot the
condition number of the stiffness matrix against the smallest volume fraction, in order to compare
the nonstabilized case with the stabilized (with parameter θ = 0.5) and diagonally rescaled one.
Let us observe that even if the behavior of the condition number appears to be much better after
stabilization and diagonal rescaling, it is still strongly affected by the way the trimming curve
cuts the mesh. In this regard, this is a counterexample that diagonal rescaling, together with our
stabilization, is a robust preconditioner for the trimming operation.
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Figure 2.10 – Condition number study for the rotating square, Test C3.

41





3 Stabilized isogeometric discretiza-
tion of the Poisson problem on
union geometries
This chapter aims to develop a numerical method based on IGA to discretize the Poisson problem
in a domain constructed via union, i.e., by combining multiple independent overlapping patches.
More precisely, given a series of spline patches, we overlay one on top of another in a certain
order, following the same manner as in the multi-mesh finite element method [79, 80]. While we
employ the Nitsche method to weakly couple these patches through the visible interfaces, the use
of the stabilization technique borrowed from Chapter 2 allows us to prove the stability of the
proposed approach in very general geometric configurations.

As in the trimmed case, the related major challenges include performing numerical integration in
the trimmed (overlapped) elements, keeping the condition number of the arising linear system
under control, and handling the stability issue caused by small trimmed elements [33, 92].

Note that while the theory is dimension-independent, the numerical experiments are performed
just in 2D geometries. Indeed, creating a suitable quadrature mesh for each interface is a
significant challenge, especially in 3D.

The chapter is organized as follows. Section 3.1 sets up the notations and necessary assumptions.
The core of the chapter, namely the theory of overlapping multipatch isogeometric analysis, is
presented in Section 3.2. In Section 3.3, we discuss how to create suitable quadrature meshes
for interfaces, as well as how to implement the stabilization method. We next show several
numerical examples in Section 3.4 to demonstrate the convergence and conditioning behavior of
the proposed method.

C will denote generic positive constants that may change with each occurrence throughout the
document but are always independent of the local mesh size and of the way the meshes are
overlapped unless otherwise specified.

The results of this chapter have been published in [5].

3.1 Parametrization, mesh and approximation space for
domains obtained via union

To facilitate the presentation of the content, we may re-introduce some of the notations already
introduced in Chapter 1. Let Ω∗i ⊂ Rd, 0 ≤ i ≤ N (N ∈ N), d ∈ {2, 3}, be a patch or predomain,
i.e., before the union operation that will be described later on. We assume that there exists
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a bi-Lipschitz map Fi ∈
(
Spi
αi1,...,αi

d

(Ξi)
)d

such that Ω∗i = Fi(Ω̂), Ω̂ := (0, 1)d, for given degree
vector pi, regularity indices αi1, . . . ,αid, and knot-vector at the coarsest level of discretization Ξi.
Hence, each Ω∗i is homeomorphic to a square for d = 2, or a cube for d = 3, and its boundary is
naturally composed of four edges or six faces respectively. We define the physical Bézier premesh
as the image of the elements in M̂i (the parametric Bézier mesh naturally induced on Ω̂) through
Fi, i.e.,

M∗i := {K ⊂ Ω∗i : K = Fi(Q),Q ∈ M̂i}.

For the sake of simplicity of the notation and the analysis, the following simplifications are made.

Assumption 3.1.1. We assume that the degree-vector is isotropic and that all predomains are
parametrized by splines of the same degree, i.e., pi = p = (p, . . . , p). Hence, we may write p
instead of p. Similarly for the regularity vectors, that is, α = αi1 = · · · = αid, for all 0 ≤ i ≤ N .

Let V̂h,i be a refinement of Sp
α(Ξi) and

V ∗h,i = span{Bi,p(x) := B̂i,p ◦ F−1
i (x) : i ∈ I},

where {B̂i,p : i ∈ I} is a basis of V̂h,i. Let Ω be a domain of Rd, d ∈ {2, 3}, with Lipschitz boundary
Γ and outer unit normal n, obtained through union operation, i.e., such that Ω = ∪Ni=0Ω∗i . We
define Ωi as the visible part of the predomain Ω∗i

Ωi := Ω∗i \
N⋃

`=i+1
Ω∗` , i = 0, . . . ,N .

It holds ΩN = Ω∗N and Ω =
⋃N
i=0 Ωi =

⋃N
i=0 Ω∗i , see Figure 3.1. Note that this choice of definition

of the Ωi’s follows [80] and implies a hierarchy of predomains. In particular, if i > j then Ω∗i is
on top of Ω∗j , in the sense that Ω∗i ∩ Ω∗j is hidden by ∪k≥i Ωk. We define

Γi := ∂Ω∗i \
N⋃

`=i+1
Ω∗` , i = 0, . . . ,N ,

i.e., the interface Γi is the visible part of the external boundary of Ω∗i with outer unit normal ni.
Moreover, we define the local interfaces Γij as

Γij := Γi ∩ Ωj , 0 ≤ j < i ≤ N ,

i.e., Γij is the subset of the visible boundary of Ω∗i that intersects Ωj , see Figure 3.1(b). We
assume that each interface Γij either has non-zero (d− 1)-measure or is the empty set. We also
assume that Γij inherits the orientation of Γi, hence it has outer unit normal ni, also denoted as
n when it is clear from the context to which domain is referred to. Note that Γij is not connected
in general.

Definition 3.1.2. Let 0 ≤ j < i ≤ N , and

δij :=
{

1 if Γij 6= ∅,
0 otherwise.

For each 1 ≤ i ≤ N , the quantity
∑i−1
j=0 δij counts the number of visible parts Ωj whose

boundaries are overlapped by Γi and, for 0 ≤ j ≤ N − 1,
∑N
i=j+1 δij the number of visible

parts whose boundaries overlap Γj . We further define N↓Γ := max1≤i≤N
∑i−1
j=0 δij , the maximum
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Ω∗0

Ω∗1Ω∗2

(a) The (translated) predomains Ω∗i , 0 ≤
i ≤ N .

Ω0

Ω1Ω2

Γ20
Γ10

Γ21

(b) Ω =
⋃N

i=0 Ωi =
⋃N

i=0 Ω∗i .

Figure 3.1 – Definitions of predomains (a), visible parts of predomains, and local interfaces (Γ10,
Γ20 and Γ21) of predomain boundaries (b).

number of visible parts whose boundaries are overlapped by any visible boundary, and N↑Γ :=
max0≤j≤N−1

∑N
i=j+1 δij , the maximum number of visible parts whose boundaries cover any

visible boundary. Hence, we let NΓ := max{N↓Γ,N↑Γ} be the maximum number of boundary
overlaps in the current configuration.

Definition 3.1.3. We let Oij := Ωi ∩ Ω∗j , 0 ≤ j < i ≤ N , be the overlap between the j-th
predomain and the i-th visible part. For every 0 ≤ j < i ≤ N , we define

ηij :=
{

1 if Oij 6= ∅,
0 otherwise.

For each 1 ≤ i ≤ N , the quantity
∑i−1
j=0 ηij counts the number of predomains covered by the visible

part Ωi. We further define NO := max1≤i≤N
∑i−1
j=0 ηij , the maximum number of predomains

covered by any visible part.

We observe that NΓ,NO ≤ N ; see Figure 3.2. Moreover, in applications we expect NΓ,NO � N .
We refer toMi := {K ∈M∗i : K ∩Ωi 6= ∅}, i = 0, . . . ,N , as the i-th extended mesh, consisting of
all visible elements (not necessarily fully visible) of the i-th premeshM∗i . We define hi : Ωi → R+

to be the piecewise constant mesh size function of Mi assigning to each visible element its
whole diameter (rather than the diameter of its visible part), namely hi

∣∣∣
K∩Ω

:= hi,K , where
hi,K := diam (K) for every K ∈ Mi, 0 ≤ i ≤ N . Moreover let us denote hi := maxK∈Mi

hi,K
and h := max0≤i≤N hi. Finally, we denote by h : Ω→ R+ the piecewise constant function defined
as h

∣∣∣
Ωi

:= hi.

Throughout the chapter, we are going to rely on the shape-regularity hypothesis on each premesh
(in the spirit of Chapter 2) and on the assumption that adjacent sub-domains are discretized with
similar mesh sizes.

Assumption 3.1.4. For every 0 ≤ i ≤ N , the family of meshesMi (parameterized on the mesh
size) is assumed to be shape-regular, see Assumption 1.1.1. Moreover, the meshes locally have
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Ω3

Ω0 Ω1 Ω2

(a) N↓Γ = NΓ = NO = 3, N↑Γ = 1.

Ω0

Ω1 Ω2 Ω3

(b) N↓Γ = NO = 1, N↑Γ = NΓ = 3.

Ω3

Ω2

Ω1

Ω0

(c) N↓Γ = N↑Γ = NΓ = 1, NO = 3.

Figure 3.2 – Illustration of N↓Γ, N
↑
Γ, NΓ, NO.

compatible sizes in the following sense. There exist c,C > 0 such that for every Γij 6= ∅, with
1 ≤ j < i ≤ N , Ki ∈Mi such that Ki ∩ Γij 6= ∅ and Kj ∈Mj such that Kj ∩ Γij 6= ∅, it holds

chj
∣∣∣
Kj
≤ hi

∣∣∣
Ki
≤ Chj

∣∣∣
Kj

.

Finally, let us make a mild assumption on the roughness of the interfaces Γij .

Assumption 3.1.5. All the interfaces Γij , 1 ≤ j < i ≤ N , are Lipschitz-regular.

Remark 3.1.6. Assumption 3.1.5 combined with Lemma A.1.1 insures that there exists C > 0
such that for every 1 ≤ j < i ≤ N and K ∈Mj it holds

∣∣Γij ∩K∣∣ ≤ Chd−1
j

∣∣∣
K
.

Note that in what follows, we are going to refer to elements K ∈ Mi, i = 0, . . . ,N , such that
|Ωi ∩K| < |K| as cut elements. Moreover, integrals and norms will be defined on sets like Γij ,
Γij ∩K and they are meant to be on their interior in a suitable sense.

C will denote generic positive constants that may change with each occurrence throughout the
chapter but are always independent of the local mesh size, the position of the visible interfaces
with respect to the meshes, and the number of patches, unless otherwise specified.
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3.2 Isogeometric analysis on union geometries

3.2.1 Model problem and its variational formulation

Let us consider the Poisson equation as the model problem. The goal is to solve it in the union
domain Ω. Given f ∈ L2(Ω), gD ∈ H

1
2 (ΓD) and gN ∈ H−

1
2 (ΓN ), find u : Ω→ R such that

−∆u = f , in Ω,
u = gD, on ΓD,

∂u

∂n
= gN , on ΓN ,

(3.1)

where ΓD, ΓN are non-empty, open, disjoint subsets of ∂Ω, Γ := ∂Ω = ΓD ∪ ΓN , and n denotes,
as usual, the unit outward normal on Γ.

Proceeding similarly to [18, 127], we rewrite problem (3.1) in the following multipatch form. Find
u : Ω→ R such that

−∆ui = f , in Ωi, i = 0, . . . ,N , (3.2a)
ui − uj = 0, on Γij , 0 ≤ j < i ≤ N , (3.2b)

∂ui
∂ni

+ ∂uj
∂nj

= 0, on Γij , 0 ≤ j < i ≤ N , (3.2c)

ui = gD, on ΓD ∩ Γi, i = 0, . . . ,N , (3.2d)
∂ui
∂ni

= gN , on ΓN ∩ Γi, i = 0, . . . ,N , (3.2e)

where ui := u
∣∣∣
Ωi
, i = 0, . . . ,N . Equations (3.2b) and (3.2c) are commonly known as transmission

conditions at the local interfaces.

Proposition 3.2.1. Problems (3.1) and (3.2a)–(3.2e) are equivalent.

Proof. The proof is straightforward. We refer the interested reader to Chapter 1 of [113].

Let us introduce, for each visible part Ωi, the local isogeometric space

Vh,i = span{Bi,p

∣∣∣
Ωi

: i ∈ I},

and glue together the local spaces to form the union isogeometric space

Vh :=
N⊕
i=0

Vh,i.

Elements of Vh are (N + 1)-tuples vh = (v0, . . . , vN ). In practice, we can treat them as scalar
functions thanks to the embedding

Vh ↪→ L2(Ω), vh(x) 7→ vi(x), x ∈ Ωi, i = 0, . . . ,N .

In order to impose Dirichlet boundary conditions in a strong sense, some assumptions are needed.

Assumption 3.2.2. 1. There exists 0 ≤ i ≤ N such that Γ̂i, Γ̂i := F−1
i (Γi), contains a full

face of the parametric domain Ω̂.
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2. For every 0 ≤ i ≤ N , Γ̂D := F−1(ΓD), Γ̂D ∩ Γ̂i is either empty or the union of full faces of
Ω̂.

The spaces V gDh and V 0
h are readily defined as in Section 1.2. Note that in case Assumption 3.2.2

does not hold, we can combine the technique in this chapter with the one detailed in [33] and in
Chapter 2, to deal with the imposition of Dirichlet boundary conditions in a weak sense.

Let us endow Vh with the following mesh dependent norm:

‖vh‖21,h :=
N∑
i=0
‖∇vi‖2L2(Ωi) +

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
, vh ∈ Vh, (3.3)

where [vh] := vi

∣∣∣
Γij
− vj

∣∣∣
Γij

denotes the jump term on Γij , i > j. Hereafter, we also make use of

the approximation of the normal flux through Γij , denoted as 〈∂vh
∂n
〉t := t

∂vi
∂ni

+ (1− t) ∂vj
∂ni

,

t ∈ { 1
2 , 1}. When t = 1

2 the latter is a symmetric average flux, while when t = 1 we choose the
one-sided flux on the Ωi side, in the spirit of [71], i.e., on the side of the domain which is “on top”
of the other. As the choice t = 1 will turn out to be the most convenient one, we may drop the
index t when it is equal to 1.

We propose the following weak formulation for the discrete counterpart of problem (3.2a)–(3.2e),
which is obtained enforcing the transmission conditions in a weak sense using Nitsche’s method
(as initially proposed in [127]).

Find uh ∈ V gDh such that

ah(uh, vh) = Fh(vh), ∀ vh ∈ V 0
h , (3.4)

where

ah(wh, vh) :=
N∑
i=0

∫
Ωi
∇wi · ∇vi −

N∑
i=1

i−1∑
j=0

∫
Γij

(
〈∂wh
∂n
〉t [vh] + [wh] 〈∂vh

∂n
〉t
)

+ β

N∑
i=1

i−1∑
j=0

∫
Γij

h−1 [wh] [vh] ,

(3.5)

with t ∈ { 1
2 , 1}, and

Fh(vh) :=
N∑
i=0

∫
Ωi
fvi +

∫
ΓN

gNvh.

Note that β > 0 is a penalty parameter related to the spline degree, and its specific choice will be
discussed in Section 3.4.

Proposition 3.2.3. The discrete variational formulation in equation (3.4) is consistent, i.e., the
solution u of the problem (3.1) satisfies problem (3.4) as well.

Proof. The proof is quite classical. See for instance [18, 71].
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3.2.2 Quasi-interpolation strategy

Before analyzing problem (3.4), we need some technical results. First, we generalize the inter-
polation strategy employed in [33] and in Chapter 2. Given a Sobolev function living in the
whole physical domain Ω, we consider its restrictions to the predomains Ω∗i in order to be able to
interpolate on each premeshM∗i , restrict them in their turn to the visible parts Ωi, and finally
glue together the interpolated functions.

We construct a spline quasi-interpolant operator for each local space Vh,i. Given m ≥ 1 and
v ∈ Hm(Ω), for every i ∈ {0, . . . ,N}, we define

Πi
h : Hm(Ωi)→ Vh,i, v 7→ Πi,∗

h

(
v
∣∣∣
Ω∗
i

) ∣∣∣∣
Ωi

,

where Πi,∗
h : Hm(Ω∗i ) → V ∗h,i is a standard quasi-interpolation operator [19]. Then, we glue

together the local operators as

Πh : Hm(Ω)→ Vh, v 7→
N⊕
i=0

Πi
h (vi) ,

where vi(x) := v(x) for every x ∈ Ωi, i = 0, . . . ,N .

Theorem 3.2.4 (Interpolation error estimate). There exists C > 0 such that, for every v ∈
Hm(Ω) with m ≥ 1,

‖v −Πhv‖1,h ≤ Ch
s ‖v‖Hm(Ω) ,

where s := min{p,m− 1}.

Proof. The proof is rather standard and we omit it.

3.2.3 Minimal stabilization procedure

It has been shown in Chapter 2 that problem (3.4), in the case of only one cut subdomain,
may suffer from instability due to the evaluation of the normal derivatives in bad cut elements.
In the two-patch situation, such as in Figure 3.3(a), we do not have the instability issue as
soon as we are using the one-sided flux from top elements that are not cut. However, we do
have this issue in general cases with many patches; see Figure 3.3(b), where the one-sided flux
regarding the interface Γij may come from the red element, a, possibly bad, cut element. In this
regard, the stabilization technique introduced in Chapter 2 (specifically, the stabilization in the
physical domain) needs to be accommodated in the context of multipatches that overlap. For each
extended Bézier meshMi, i = 0, . . . ,N , we partition its elements into two disjoint sub-families.

Definition 3.2.5. Fix θ ∈ (0, 1], the area-ratio threshold. For every K ∈Mi, i = 0, . . . ,N , we
say that K is a good element if

|Ωi ∩K|
|K|

≥ θ.

Otherwise, K is a bad element.

We denote asMg
i andMb

i the collection of good and bad physical Bézier elements, respectively.
Note that all the uncut elements in Mi are good elements, and all its bad elements are cut
elements. Moreover, it holdsMg

N =MN andMb
N = ∅.
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Ωj

Ωi

Γij

(a)

Ωj

ΩiΩk

Γij

(b)

Figure 3.3 – Two-patch and three-patch overlapping along the interface Γij .

Definition 3.2.6. Given K ∈Mi, i = 0, . . . ,N − 1, the set of its neighbors is

N (K) := {K ′ ∈Mk : dist (K,K ′) ≤ Ch
∣∣∣
K

, k = 0, 1, . . . ,N} \ {K}, (3.6)

where C > 0 does not depend on the mesh sizes.

Next, for each bad cut element K ∈ Mb
i , 0 ≤ i < N , we want to associate a good neighbor

K ′ (a neighbor that is a good element). Note that in principle we allow K ′ ∈ Mk with
i 6= k, i.e., a good neighbor can belong to the mesh of another domain. For every K ∈ Mb

i ,
0 ≤ i < N , its associated good neighbor K ′ is chosen according to the procedure in Algorithm 1.
Algorithm 1: Find good neighbor
Given K ∈Mb

i , 0 ≤ i < N ;
for k = i, . . . ,N do

if N (K) ∩Mg
k 6= ∅ then

K ′ ← any element of N (K) ∩Mg
k;

break
end

end
return K ′;

If Algorithm 1 does not produce any output, then it suffices to relax the definition of the good
neighbor by taking a larger constant C in Definition 3.2.6. Figure 3.4 shows two choices of good
neighbor. In Figure 3.4(b) there is clearly no neighbor of K inMg

1, and the algorithm chooses it
inMg

2. Let us quantify through some suitable constants how many times any element can be
chosen as a good neighbor. Some of the estimates derived in the sequel will depend upon these
quantities.

Definition 3.2.7. Let K ∈Mk, 0 ≤ i ≤ N .

Ci,k(K) := #{Ǩ ∈Mi : K ∈ N (Ǩ)}

gives an upper bound for the number of times K can be chosen as a good neighbor from any
element of the i-th mesh. Similarly, Ci,k := maxK∈Mk

Ci,k(K) is an upper bound for the number
of times any element of the k-th mesh can be chosen as good neighbor from any element of the
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K K′

(a) K ∈Mb
0 and K′ ∈Mg

0.

K′
K

(b) K ∈Mb
1 and K′ ∈Mg

2.

Figure 3.4 – The good neighbor K ′ located in the same domain as K (a), and in a different (top)
domain (b).

i-th mesh. Then, Ck :=
∑k
i=0 Ci,k is an upper bound for the number of times any element of the

k-th mesh can be chosen as good neighbor. Finally, C := max0≤k≤N Ck is an upper bound for
the number of times any element can be chosen as good neighbor from any other element.
Remark 3.2.8. The constants introduced in Definition 3.2.7 depend on the constant C appearing
in Definition 3.2.6. Moreover, the fact that all the meshes are shape-regular and have compatible
sizes, namely Assumption 3.1.4, implies that C is uniformly bounded with respect to h.

For 0 ≤ j < i ≤ N , ` ∈ {i, j}, let us define R` : Vh → L2(Γij) locally. For every K ∈ M` such
that Γij ∩K = γ, γ 6= ∅, we distinguish two cases:

• if K ∈Mg
` , then

R`(vh)
∣∣∣
γ

:= ∂v`
∂n`

∣∣∣∣
γ

,

• if K ∈Mb
`, K ′ ∈M

g
k, 0 ≤ ` ≤ k ≤ N its good neighbor, then

R`(vh)
∣∣∣
γ

:=
∂EK′,K

(
ΠK′

(
vk

∣∣∣
K′

))
∂n`

∣∣∣∣∣∣
γ

,

where ΠK′ : L2(K ′) → Qp(K ′) is the L2-orthogonal projection onto Qp(K ′) and EK′,K :
Qp(K ′)→ Qp(K ′ ∪K) is the canonical polynomial extension.

Let us denote, for 0 ≤ j < i ≤ N such that Γij 6= ∅ and t ∈ { 1
2 , 1},

〈Rij (vh)〉t := tRi (vh)
∣∣∣
Γij

+ (1− t)Rj (vh)
∣∣∣
Γij

. (3.7)

In what follows we prove two main results on the operators R` (using the same strategies employed
in Chapter 2).
Lemma 3.2.9 (Stability property). Given θ ∈ (0, 1], there exists CS > 0 such that for every
vh ∈ Vh, 0 ≤ j < i ≤ N , K ∈M`, ` ∈ {i, j}, we have∥∥∥h

1
2
` R`(vh)

∥∥∥
L2(Γij∩K)

≤ CS ‖∇vk‖L2(Ωk∩K′) ,

where K ′ ∈Mg
k is a good neighbor if K ∈Mb

`, K ′ = K if K ∈Mg
` .
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Proof. Let us restrict to the case K ∈ Mb
` with K ′ is a good neighbor. We apply, respec-

tively, Hölder inequality, Remark 3.1.6, Lemmas A.1.4, A.1.5, and the H1-stability of the
L2-projection [24].

∥∥∥h
1
2
` R`(vh)

∥∥∥
L2(Γij∩K)

=
∥∥∥∥h

1
2
`

∂

∂n`
EK′,K

(
ΠK′

(
vh

∣∣∣
K′

))∥∥∥∥
L2(Γij∩K)

≤
∣∣Γij ∩K∣∣ 1

2

∥∥∥∥h
1
2
`

∂

∂n`
EK′,K

(
ΠK′

(
vh

∣∣∣
K′

))∥∥∥∥
L∞(Γij∩K)

≤Ch
d−1

2
i

∣∣∣∣
K

h
1
2
`

∣∣∣
K

∥∥∥∇EK′,K (ΠK′

(
vh

∣∣∣
K′

))∥∥∥
L∞(K)

≤Ch
d
2
`

∣∣∣
K

∥∥∥∇ΠK′

(
vh

∣∣∣
K′

)∥∥∥
L∞(K′)

≤C
∥∥∥∇ΠK′

(
vk

∣∣∣
K′

)∥∥∥
L2(Ωk∩K′)

≤ C ‖∇vk‖L2(K′) .

Now, let us use the equivalence of norms between parametric and physical spaces, the Hölder
inequality, Lemma A.1.5, and again the norm equivalence between parametric and physical spaces.
We have, for v̂k := vh ◦ Fk and Q′ := F−1

k (K ′),∥∥∥h
1
2
` R`(vh)

∥∥∥
L2(Γij∩K)

≤C ‖∇v̂k‖L2(Q′) ≤ Ch
d
2 ‖∇v̂k‖L∞(Q′)

≤C ‖∇v̂k‖L2(Ω̂∩Q′) ≤ C ‖∇vk‖L2(Ωk∩K′) ,

where C depends on θ through Lemma A.1.5. Moreover, we observe that the local quasi-uniformity,
consequence of Assumption 3.1.4 itself has been employed as well.

Proposition 3.2.10. There exists C > 0, depending on NΓ and C, such that for every vh ∈ Vh,
we have

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈Rij(vh)〉t

∥∥∥2

L2(Γij)
≤ C

N∑
i=0
‖∇vi‖2L2(Ωi) .

Proof. Young’s inequality entails

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈Rij(vh)〉t

∥∥∥2

L2(Γij)
≤2t2

N∑
i=1

i−1∑
j=0

∥∥∥h
1
2
i Ri(vh)

∥∥∥2

L2(Γij)
+ 2(1− t)2

N∑
i=1

i−1∑
j=0

∥∥∥h
1
2
j Rj(vh)

∥∥∥2

L2(Γij)

≤2t2
N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mi

∥∥∥h
1
2
i Ri(vh)

∥∥∥2

L2(Γij∩K)

︸ ︷︷ ︸
I

+ 2(1− t)2
N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mj

∥∥∥h
1
2
j Rj(vh)

∥∥∥2

L2(Γij∩K)

︸ ︷︷ ︸
II

.

(3.8)
In the following lines we will use Lemma 3.2.9 and the constants introduced in Definitions 3.1.2,
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and 3.2.7. Let us focus on I, when the elements are inMg
i . We have

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mg

i

∥∥∥h
1
2
i Ri(vh)

∥∥∥2

L2(Γij∩K)
≤C2

S

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mg

i

‖∇vi‖2L2(Ωi∩K)

≤C2
S

N∑
i=1

i−1∑
j=0

δij ‖∇vi‖2L2(Ωi)

≤C2
S

 max
1≤i≤N

i−1∑
j=0

δij

 N∑
i=1
‖∇vi‖2L2(Ωi)

=C2
SN
↓
Γ

N∑
i=1
‖∇vi‖2L2(Ωi) .

For the bad elements inMb
i , we have

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

i

∥∥∥h
1
2
i Ri(vh)

∥∥∥2

L2(Γij∩K)
≤C2

S

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

i

‖∇vk‖2L2(Ωk∩K′)

≤C2
S

N∑
k=1

k∑
i=1

Ci,k ‖∇vk‖2L2(Ωk)

i−1∑
j=0

δij

≤C2
S

 max
1≤i≤N

i−1∑
j=0

δij

 N∑
k=1
‖∇vk‖2L2(Ωk)

k∑
i=1

Ci,k

≤C2
SN
↓
ΓC

N∑
k=1
‖∇vk‖2L2(Ωk) .

Let us move to II and consider elements inMg
j . It holds

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mg

j

∥∥∥h
1
2
j Rj(vh)

∥∥∥2

L2(Γij∩K)
≤C2

S

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mg

j

‖∇vj‖2L2(Ωj∩K)

≤C2
S

N∑
i=1

i−1∑
j=0

δij ‖∇vj‖2L2(Ωj)

≤C2
S

N∑
i=1

N∑
j=0

δij ‖∇vj‖2L2(Ωj)

≤C2
S

 max
0≤j≤N−1

N∑
i=j+1

δij

 N∑
j=0
‖∇vj‖2L2(Ωj)

=C2
SN
↑
Γ

N∑
j=0
‖∇vj‖2L2(Ωj) .
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For the bad elements inMb
j , it holds

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

j

∥∥∥h
1
2
j Rj(vh)

∥∥∥2

L2(Γij∩K)
≤C2

S

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

j

‖∇vk‖2L2(Ωk∩K′)

≤C2
S

N∑
k=0

k∑
j=0

Cj,k ‖∇vk‖2L2(Ωk)

N∑
i=j+1

δij

≤C2
S

 max
0≤j≤N−1

N∑
i=j+1

δij

 N∑
k=0
‖∇vk‖2L2(Ωk)

k∑
j=0

Cj,k

≤C2
SN
↑
Γ max

0≤k≤N
Ck

N∑
k=0
‖∇vk‖2L2(Ωk)

=C2
SN
↑
ΓC

N∑
k=0
‖∇vk‖2L2(Ωk) .

Hence, coming back to (3.8), we get
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈Rij(vh)〉t

∥∥∥2

L2(Γij)
≤ C

N∑
i=0
‖∇vi‖2L2(Ωi) ,

where C depends, in particular, on NΓ and on C.

In the sequel E : Hm(Ω) → Rd, m ≥ 1, will denote the Sobolev-Stein extension operator (see
Section 3.2 in [104]).
Lemma 3.2.11 (Approximation property). There exists CA > 0 such that for every v ∈ Hm(Ω),
m ≥ 2, 0 ≤ j < i ≤ N , K ∈M`, ` ∈ {i, j}, it holds∥∥∥∥h

1
2
`

(
R` (Πh (v))− ∂v`

∂n`

)∥∥∥∥
L2(Γij∩K)

≤ CAhs
(
‖v‖

Hm(K̃′) + ‖E(v)‖Hm(BK)

)
,

where K ′ is a good neighbor if K ∈Mb
`, K ′ = K if K ∈Mg

` , BK is the minimal bounding box
enclosing K and K ′, s := min{p,m− 1}.

Proof. Again, let us restrict ourselves to the case where K ∈Mb
`, with K ′ its good neighbor, and

take q ∈ Qp(BK), where BK is the minimal bounding box enclosing K and K ′.∥∥∥h
1
2
`

(
R` (Πhv)− ∂v`

∂n`

)∥∥∥
L2(Γij∩K)

≤
∥∥∥∥h

1
2
`

(
R` (Πhv)− ∂q

∂n`

)∥∥∥∥
L2(Γij∩K)︸ ︷︷ ︸

I

+
∥∥∥∥h

1
2
`

∂

∂n`
(q − v`)

∥∥∥∥
L2(Γij∩K)︸ ︷︷ ︸

II

.

Let us focus on I. We note that R`(q) = ∂q

∂n`
, then apply Lemma 3.2.9 and the triangular

inequality:

I =
∥∥∥h

1
2
` (R` (Πhv − q))

∥∥∥
L2(Γij∩K)

≤ CS
∥∥∇ (Πk

hvk − q
)∥∥
L2(Ωk∩K′)

≤CS
(∥∥∇ (Πk

hvk − vk
)∥∥
L2(Ωk∩K′)

+ ‖∇ (vk − q)‖L2(Ωk∩K′)

)
.
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We employ the approximation properties of Πk
h (Theorem 2.3.8) and the standard Deny-Lions

Lemma on BK (Theorem 3.4.1 of [112]):

I ≤ Chs
(
‖v‖

Hm(K̃′) + ‖E(v)‖Hm(BK)

)
,

where s := min{p,m− 1} and C depends on the shape-regularity of BK , see Remark 3.2.12. II
can be estimated by using Corollary A.1.3 and Theorem 3.4.1 of [112] as follows:

II2 =
∥∥∥∥h

1
2
`

∂

∂n`
(q − v`)

∥∥∥∥2

L2(Γij∩K)

≤C
∥∥∥h

1
2
` ∇ (q − E(v))

∥∥∥
L2(K)

∥∥∥h
1
2
` ∇ (q − E(v))

∥∥∥
H1(K)

≤Ch2s
`

∣∣∣
K
‖E(v)‖2Hm(BK) ,

with s := min{p,m − 1} and C depending on the shape-regularity of BK . Putting everything
together, the proof is finished.

Remark 3.2.12. Let NK := #{K∗ ∈ Mi : K∗ ∩ BK 6= ∅, 0 ≤ i ≤ N}, given K ∈ M`. We
observe that NK depends on C appearing in Definition 3.2.6 and on the space dimension d.
It is uniformly bounded with respect to h thanks to Assumption 3.1.4. As in Remark 3.2.8,
we deduce that the number of times any element can be chosen as member of a minimal
bounding box is uniformly bounded with respect to h. Moreover, given ρBK := sup{diam(B) :
B is a ball contained in BK} and hBK := diam(BK), the geometric quantity hBK

ρBK
∼ h

ρBK
is also

uniformly bounded with respect to K ∈M`.

Proposition 3.2.13. There exists C > 0, depending on NΓ, NO, and C, such that, for every
v ∈ Hm(Ω), m ≥ 2, we have

N∑
i=1

i−1∑
j=0

∥∥∥∥h 1
2 〈Rij(Πh(v))− ∂v

∂n
〉t
∥∥∥∥2

L2(Γij)
≤ Ch2s ‖v‖2Hm(Ω) ,

where s := min{p,m− 1}.

Proof. The triangular and Young’s inequality entail

N∑
i=1

i−1∑
j=0

∥∥∥∥h 1
2 〈Rij(Πh(v))− ∂v

∂n
〉t
∥∥∥∥2

L2(Γij)
≤2t2

N∑
i=1

i−1∑
j=0

∥∥∥∥h
1
2
i

(
Ri(Πh(v))− ∂vi

∂ni

)∥∥∥∥2

L2(Γij)

+ 2(1− t)2
N∑
i=1

i−1∑
j=0

∥∥∥∥h
1
2
j

(
Rj(Πh(v))− ∂vj

∂nj

)∥∥∥∥2

L2(Γij)

(3.9)
By using Lemma 3.2.11, and recalling Definition 3.1.2,

N∑
i=1

i−1∑
j=0

∥∥∥∥h
1
2
i

(
Ri(Πh(v))− ∂vi

∂ni

)∥∥∥∥2

L2(Γij)
=

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mi

∥∥∥∥h
1
2
i

(
Ri(Πh(v))− ∂vi

∂ni

)∥∥∥∥2

L2(Γij∩K)

≤2C2
Ah

2s max
1≤i≤N

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mi

(
‖E(v)‖2Hm(BK) + ‖v‖2

Hm(K̃′)

)
,
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where the factor 2 comes from the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
, a, b ∈ R. Without loss of

generality, let us focus on elements inMb
i . We have

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

i

∥∥∥∥h
1
2
i

(
Ri(Πh(v))− ∂vi

∂ni

)∥∥∥∥2

L2(Γij∩K)

≤2C2
Ah

2s
N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

i

‖E(v)‖2Hm(BK) + 2C2
Ah

2s
N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

i

‖v‖2
Hm(K̃′)

≤2CN↓ΓC
2
Ah

2s ‖v‖2Hm(Ω) ,

where s := min{p,m−1}. Here, C depends on d, p, NO, C, F, on the constants in Assumption 3.1.4,
on the fact that the bounding boxes overlap a finite number of times (see Remark 3.2.12), and on
the boundedness of the Sobolev-Stein extension. Similarly, it holds
N∑
i=1

i−1∑
j=0

∥∥∥∥h
1
2
j

(
Rj(Πh(v))− ∂vj

∂nj

)∥∥∥∥2

L2(Γij)
=

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mj

∥∥∥∥h
1
2
j

(
Rj(Πh(v))− ∂vj

∂nj

)∥∥∥∥2

L2(Γij∩K)

≤2C2
Ah

2s max
1≤i≤N

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mj

(
‖E(v)‖2Hm(BK) + ‖v‖2

Hm(K̃′)

)
.

Again, without loss of generality, we focus on elements inMb
j :

N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

j

∥∥∥∥h
1
2
j

(
Rj(Πh(v))− ∂vj

∂nj

)∥∥∥∥2

L2(Γij∩K)

≤2C2
Ah

2s
N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

j

‖E(v)‖2Hm(BK) + 2C2
Ah

2s
N∑
i=1

i−1∑
j=0

δij
∑

Γij∩K 6=∅
K∈Mb

j

‖v‖2
Hm(K̃′)

≤2CC2
AN
↑
Γh

2s ‖v‖2Hm(Ω) ,

where s := min{p,m − 1}, C has the same dependencies as above. We conclude by putting
everything together.

We propose the following stabilized weak formulation.

Find uh ∈ V gDh such that

ah(uh, vh) = Fh(vh), ∀ vh ∈ V 0
h . (3.10)

Here, the bilinear form is defined, for t ∈ { 1
2 , 1}, as

ah(wh, vh) :=
N∑
i=0

∫
Ωi
∇wi · ∇vi −

N∑
i=1

i−1∑
j=0

∫
Γij

(〈Rij(wh)〉t [vh] + [wh] 〈Rij(vh)〉t)

+ β

N∑
i=1

i−1∑
j=0

∫
Γij

h−1 [wh] [vh] ,

(3.11)

where β > 0 is a penalty parameter.
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Remark 3.2.14. Note that, by the choice of the hierarchy of the predomains made in Section 3.1
and the definition of the global stabilization operator (3.7), the one-sided flux approximation is
better than the symmetric average. It allows indeed to modify the weak formulation much less
frequently.

3.2.4 Stability analysis and a priori error estimates

Our goal is to show that problem (3.10) is well-posed in the sense of the following definition.

Definition 3.2.15. Problem (3.10) is stable if, given θ ∈ (0, 1], there exist β > 0 and α > 0 such
that for every β ≥ β, for every h > 0, it holds

α ‖vh‖21,h,Ω ≤ ah(vh, vh), ∀ vh ∈ Vh,

and for every fixed β ≥ β there exists γ > 0 such that, for every h > 0, it holds

|ah(wh, vh)| ≤ γ ‖wh‖1,h,Ω ‖vh‖1,h,Ω , ∀ wh, vh ∈ Vh.

Theorem 3.2.16. Problem (3.10) is stable in the sense of Definition 3.2.15.

Proof. Let us start with continuity. For wh, vh ∈ Vh, we have

|ah(wh, vh)| ≤
N∑
i=0
‖∇wi‖L2(Ωi) ‖∇vi‖L2(Ωi)︸ ︷︷ ︸

I

+C
N∑
i=1

i−1∑
j=0

(∥∥∥h 1
2 〈Rij(wh)〉t

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [vh]

∥∥∥
L2(Γij)︸ ︷︷ ︸

II

+
∥∥∥h− 1

2 [wh]
∥∥∥
L2(Γij)

∥∥∥h 1
2 〈Rij(vh)〉t

∥∥∥
L2(Γij)

)
︸ ︷︷ ︸

III

+β

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [wh]

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [vh]

∥∥∥
L2(Γij)︸ ︷︷ ︸

IV

.

It is straightforward to bound I and IV. We focus on II, whereas taking care of III is analogous.
By using the Cauchy-Schwarz inequality and Proposition 3.2.10, we have

II =
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈Rij(wh)〉t

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [vh]

∥∥∥
L2(Γij)

≤

 N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈Rij(wh)〉t

∥∥∥2

L2(Γij)

 1
2
 N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)

 1
2

≤C

(
N∑
i=1
‖∇wi‖2L2(Ωi)

) 1
2

‖vh‖1,h ≤ C ‖wh‖1,h ‖vh‖1,h ,

(3.12)

with C depending on NΓ and C. Hence, it holds |ah(wh, vh)| ≤ γ ‖wh‖1,h ‖vh‖1,h, where γ depends
on NΓ and C, and it increases as NΓ and C grow. Now, let us prove the coercivity. Given vh ∈ Vh,
it holds

ah(vh, vh) =
N∑
i=0
‖∇vi‖2L2(Ωi) − 2

N∑
i=1

i−1∑
j=0

∫
Γij
〈Rij(vh)〉t [vh] + β

N∑
i=1

i−1∑
j=0

∥∥h−1 [vh]
∥∥2
L2(Γij)

.
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Cauchy-Schwartz’s inequality, Young’s inequality, and Proposition 3.2.10 imply

2
N∑
i=1

i−1∑
j=0

∫
Γij
〈Rij(vh)〉t [vh] ≤

N∑
i=1

i−1∑
j=0

(
1
ε

∥∥∥h 1
2 〈Rij(vh)〉t

∥∥∥2

L2(Γij)
+ ε

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)

)

≤C
ε

N∑
i=1
‖∇vi‖2L2(Ωi) + ε

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
,

for any ε > 0 and C depending on NΓ and C. Thus,

ah(vh, vh) ≥
(

1− C

ε

) N∑
i=0
‖∇vi‖2L2(Ωi) + (β − ε)

N∑
i=1

i−1∑
j=0

∥∥h−1 [vh]
∥∥2
L2(Γij)

,

from which we deduce coercivity provided that C < ε < β. Hence, the coercivity constant α
depends on NΓ and C, and it decreases as NΓ and C grow.

Theorem 3.2.17 (A priori error estimate). Let u ∈ Hm(Ω), m ≥ 2, be the solution of the
continuous problem (3.1) and uh ∈ Vh the solution of (3.10). Then, there exists C > 0, depending
on NΓ and C, such that

‖u− uh‖1,h ≤ Ch
s ‖u‖Hm(Ω) , (3.13)

where s := min{p,m− 1}.

Proof. Let u be the solution of the strong problem (3.1), ah(·, ·) and ah(·, ·) be the bilinear forms
defined in (3.5) and in (3.11), respectively. The triangular inequality and the coercivity of ah(·, ·)
entail

‖u− uh‖1,h ≤‖u− vh‖1,h + ‖vh − uh‖1,h

≤‖u− vh‖1,h + α−1 sup
wh∈Vh
wh 6=0

ah(vh − uh,wh)
‖wh‖1,h

, (3.14)

where α > 0 is the coercivity constant. Recalling that u solves (3.4) and uh solves (3.10) and
properly rearranging the terms, we have

ah(vh − uh,wh) = ah(vh,wh)− ah(uh,wh) = ah(vh,wh)− ah(u,wh)

=
N∑
i=0

∫
Ωi
∇(vi − ui) · ∇wi −

N∑
i=1

i−1∑
j=0

∫
Γij

(
〈Rij(vh)− ∂u

∂n
〉t [wh] + 〈Rij(wh)〉t [vh]− 〈∂wh

∂n
〉t [u]

)

+ β

N∑
i=1

i−1∑
j=0

∫
Γij

h−1 [vh − u] [wh] .

(3.15)
Reminding that [u] = 0, we have∫

Γij
〈Rij(wh)〉t [vh] =

∫
Γij
〈Rij(wh)〉t [vh − u] .
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Hence,

ah(vh − uh,wh) =
N∑
i=0

∫
Ωi
∇(vi − ui) · ∇wi︸ ︷︷ ︸

I

−
N∑
i=1

i−1∑
j=0

∫
Γij

(
〈Rij(vh)− ∂u

∂n
〉t [wh] + 〈Rij(wh)〉t [vh − u]

)
︸ ︷︷ ︸

II & III

+ β

N∑
i=1

i−1∑
j=0

∫
Γij

h−1 [vh − u] [wh]︸ ︷︷ ︸
IV

(3.16)

First of all, we note that
I + IV ≤ C ‖vh − u‖1,h ‖wh‖1,h . (3.17)

Then, in order to bound III, we use Cauchy-Schwarz inequality and Proposition 3.2.10

III ≤
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈Rij(wh)〉t

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [u− vh]

∥∥∥
L2(Γij)

≤

 N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈Rij(wh)〉t

∥∥∥2

L2(Γij)

 1
2
 N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [u− vh]

∥∥∥2

L2(Γij)

 1
2

≤C

(
N∑
i=1
‖∇wi‖2L2(Ωi)

) 1
2

‖u− vh‖1,h ≤ C ‖wh‖1,h ‖u− vh‖1,h ,

(3.18)

with C depending on NΓ and C. Let us choose vh := Πhu. By using Proposition 3.2.13 and
proceeding as in (3.18), we have

II ≤
N∑
i=1

i−1∑
j=0

∥∥∥∥h 1
2 〈Rij(Πhu)− ∂u

∂n
〉t
∥∥∥∥
L2(Γij)

∥∥∥h− 1
2 [wh]

∥∥∥
L2(Γij)

≤Chs ‖u‖Hm(Ω) ‖wh‖1,h ,
(3.19)

where s := min{p,m − 1} and C depends on NΓ and C. Coming back to (3.14) and using
Theorem 3.2.4, we get

‖u− uh‖1,h ≤
(
1 + α−1C

)
hs ‖u‖Hm(Ω) ,

where s := min{p,m− 1} and C depends on NΓ and C.

Remark 3.2.18. We note that the constant C appearing in (3.13) depends on NΓ and C, in
particular it degenerates as these quantities grow. As already observed, we expect NΓ to be
small in practice. Interested readers may further refer to [79] (the accompanying work of [80]) for
numerical results with a growing number of domains.

3.3 Implementation aspects of the union operation
Union, subtraction (i.e., trimming), and intersection are three common Boolean operations in
CAD systems. Generally speaking, subtraction and intersection can be handled in the same
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manner. Given two predomains (Ω∗0 and Ω∗1) in 2D, the trimmed region Ω∗0\Ω∗1 is bounded by a
set of counterclockwise-oriented curves that forms a closed wire. Such curves come from ∂Ω∗0 and
∂Ω∗1. The same argument applies to the intersected region Ω∗0 ∩ Ω∗1, where the difference from
subtraction lies in the involved curves as well as their orientations.

On the other hand, recall that we create union by first trimming Ω∗0 with Ω∗1, and then weakly
coupling the visible part of Ω∗0, i.e., Ω0 := Ω∗0\Ω∗1, with Ω∗1 through their interface. While the
integration on cut elements has been discussed in [4] (see also [86, 114, 119]), here we focus on
dealing with interfaces, which includes creating a quadrature mesh for each interface as well as
stabilizing bad cut elements that are adjacent to the union interface. In what follows, we explain
the related algorithms in 2D and will also comment on the extension to 3D.

3.3.1 Generation of the interface quadrature mesh

The key to creating an interface quadrature mesh is to find mesh intersections on the interface;
see a 2D example in Figure 3.5. Each visible interface is shared by two patches, one on the
top and the other on the bottom. Recall that we denote the interface, the top patch, and the
bottom patch as Γij , Ωi and Ωj (i > j), respectively. According to our construction of unions,
Γij is always part of the boundary of Ωi, so its geometric mapping is the same as that of Ωi and
it naturally has the mesh information of Ωi. Now the aim is to find out how the mesh of Ωj

intersects with Γij . We find these intersections primarily in the parametric domain Ω̂j := F−1
j (Ωj)

Ω̂j

Ω̂i

Ωj

Ωi

Γ̃ij

Γij = ∂Ωi ∩ Ωj

Fj

Fi

F̃−1
j

Figure 3.5 – Mesh intersections of a top patch (blue lines) and a bottom patch (orange lines)
on their interface. The mesh intersections are marked in blue and orange dots. The parametric
domain of the interface is marked as red lines.
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following three steps. First, we obtain an approximate preimage of Γij with respect to Ω̂j through
the inversion algorithm (Chapter 6 of [108]), i.e., Γ̃ij := F̃−1

j (Γij), where the tilde indicates the
approximation nature of the inversion algorithm. Second, in Ω̂j we find the intersections of
Γ̃ij with the axis-aligned knot lines of Ω̂j , which is easier compared to the general curve-curve
intersection; see the bottom left figure in Figure 3.5. Third, we map these intersections to the
physical domain through Fj . However, the resulting points generally do not lie on Γij , again due
to the approximation of the inversion algorithm. Therefore, we further project these points onto
Γij to get the final intersections; see orange and blue dots in Figure 3.5.

With all the intersections, we are ready to create the interface quadrature mesh and compute the
interface integral. We here emphasize two aspects that can improve the computation in terms of
accuracy and efficiency. First, as the Nitsche method needs the normal information of Γij , we
compute it using Ωi where the geometric information is exact. In contrast, if we compute it using
Ωj , we will lose accuracy because it relies on Γ̃ij , which is only an approximation. Second, when
evaluating basis functions from Ωj in the interface integral, it involves finding corresponding
quadrature points in Ω̂j through the approximate inverse mapping F̃−1

j , so there is an unnecessary
coupling of the geometric operation (i.e., the inversion operation) and analysis. Instead, we
precompute and store those quadrature points in Ω̂j such that later analysis can be performed
without repeatedly appealing to the inversion operation.

Remark 3.3.1. We use OpenCASCADE [2], an open-source CAD system, to perform geometric
surface operations, including creating the union of multiple spline patches and finding the mesh
intersections on each interface. To the author’s knowledge, the default geometric tolerance in
OpenCASCADE is around 10−8 in trimming-related operations and cannot be further reduced.
Its influence will be seen in a numerical example in Section 3.4, where the geometric error induced
by this tolerance begins to dominate once the approximation error (in L2 norm) reaches 10−8.

3.3.2 Implementation of the minimal stabilization

The minimal stabilization method introduced in Section 3.2.3 mainly needs to: (1) find a list
of bad-to-good element pairs and (2) replace the basis functions of each bad element with
extended polynomials from its good neighbor. In the following, we explain the procedure in 2D
terminologies, but the extension to 3D is straightforward.

Simply speaking, a bad element is a cut element with a “small” effective area on which we have
to compute fluxes, i.e., normal derivatives at its boundary. All the other active elements are
good. In practice, we compute element areas in the parametric domain and use a given threshold
to identify bad elements, which serves as an approximate criterion to Definition 3.2.5. Then we
follow the procedure described in Section 3.2.3.

Next, we take a look at the interface integral that contributes to the stiffness matrix. Let T (Γij)
denote the quadrature mesh of the interface Γij , and e ∈ T (Γij) be a quadrature element. The
two elements adjacent to e are denoted as Ke

i ∈ Ωi and Ke
j ∈ Ωj . The index set of basis functions

Bk,i with support on Ke
i is denoted as IKe

i
; similarly, IKe

j
corresponds to Ke

j . Note that we
neglect the degree information in the notation of basis functions as it is fixed. We are particularly
interested in the terms involving normal derivatives, and such a term takes the following form
when the one-sided flux from the top patch Ωi is used,∫

e

∂Bk,i

∂ni
B`,i,

∫
e

∂Bk,i

∂ni
Bm,j , (3.20)

where `,k ∈ IKe
i
, and m ∈ IKe

j
. The stability issue originates from ∂B`,i

∂ni
if Ke

i is badly cut;

61



Chapter 3. Stabilized isogeometric discretization of the Poisson problem on union
geometries

otherwise equation (3.20) contributes to the matrix entries corresponding to the indices (k, `)
and (k,m), respectively.

In the following, we focus on the case that Ke
i is badly cut. The minimal stabilization consists in

replacing ∂B`,i
∂ni

with a stabilized version that involves function extension from the good neighbor
(Ke

i )′ of Ke
i . In other words, we need to extend basis functions defined on (Ke

i )′ to Ke
i and use

the extended functions to evaluate the involved normal derivatives. Specifically, we follow three
steps. First, we find the Cartesian bounding box (Ke

i )′b of (Ke
i )′ in the physical domain and

define on it a set of bi-degree-p Bernstein polynomials br, where r ∈ {1, 2, . . . , (p+ 1)2}, and p
is the degree. Second, let I(Ke

i
)′ be the index set of basis functions with support on (Ke

i )′, and
we compute a L2-projection of each Bk′,i (k′ ∈ I(Ke

i
)′) using these Bernstein polynomials. As a

result, we have

Π(Ke
i
)′(Bk′,i) =

(p+1)2∑
r=1

ck′r br,

where Π(Ke
i
)′ stands for the L2-orthogonal projection onto Qp ((Ke

i )′). Note that ck′r ∈ R
are obtained by solving a local system of linear equations

∑(p+1)2

r=1 Mmrck′r = Fm for m =
1, . . . , (p+ 1)2, where

Mmr =
∫

(Ke
i
)′

bm br, Fm =
∫

(Ke
i
)′
Bk′,i bm.

Third, we define the extension of Bk′,i to be Π(Ke
i
)′(Bk′,i) and enlarge the definition domain of

the Bernstein polynomials by including the bounding box (Ke
i )b of the bad element Ke

i as well,
that is,

E(Π(Ke
i
)′(Bk′,i(x))) :=

(p+1)2∑
r=1

ck′rbr(x), x ∈ (Ke
i )′b ∪ (Ke

i )b.

Finally, the stabilized interface integral corresponding to equation (3.20) becomes∫
e

∂E(Π(Ke
i
)′(Bk′,i))

∂ni
B`,i,

∫
e

∂E(Π(Ke
i
)′(Bk′,i))

∂ni
Bm,j , (3.21)

where recall that k′ ∈ I(Ke
i
)′ , ` ∈ IKe

i
, and m ∈ IKe

j
. Therefore, when Ke

i is a bad element, it is
equation (3.21) rather than equation (3.20) that contributes to the stiffness matrix. Particularly,
it contributes to the entries corresponding to the indices (k′, `) and (k′,m).

We have discussed the stabilization with the one-sided flux. Following a similar procedure, we
can obtain the stabilization with the symmetric average flux as well, which, however, generally
requires to stabilize more elements. More specifically, with the symmetric average flux, the term
we need to stabilize becomes∫

e

∂B`,i
∂ni

B`,i,
∫
e

∂B`,i
∂ni

Bm,j ,
∫
e

∂Bm,j

∂ni
B`,i,

∫
e

∂Bm,j

∂ni
Bm,j ,

where the integral involves normal derivatives from both patches. Therefore, in addition to ∂B`,i
∂ni

,

the flux ∂Bm,j

∂ni
also needs stabilization if Ke

j is badly cut.

Remark 3.3.2. Conditioning is another important issue related to trimming. As already
observed, the guarantee of stability does not necessarily imply a well-conditioned stiffness matrix
due to the presence of cut basis functions. A proper preconditioner is needed to ensure a reliable
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solution. In the next set of numerical experiments, the simple diagonal scaling preconditioner was
used. Another alternative is the recent work on the multigrid preconditioner [50], which can deliver
cut-element independent convergence rates in the context of immersed isogeometric analysis.
However, further investigation, especially theoretically, is needed to advance our knowledge on
this challenging issue.

3.4 Numerical examples
This section presents three examples to demonstrate the convergence and conditioning by solving
the Poisson equation on various domains obtained through the union operation. We then show
the geometric flexibility of our proposed method by solving the linear elasticity problem on a more
complex 2D geometry. In all the numerical tests, we set the penalty parameter β in Nitsche’s
formulation as 6p2, where p is the degree of the spline discretization. The area-ratio threshold is
set to be 10% to identify bad elements, i.e., θ = 0.1.

3.4.1 Convergence and conditioning under bad cuts

We start with a two-patch union that forms a unit square. This simple test is meant to show
that the minimal stabilization works robustly even when there are extremely small cut elements
involved. As shown in Figure 3.6(a), the bottom patch Ω∗0 is a unit square [0, 1]2 with a 4×3 mesh
(orange lines), whereas the top patch Ω∗1 covers the region [0.5+ε, 1]× [0, 1] with a 2×2 mesh (blue
lines). The parameter ε ∈ (0, 10−2) controls trimming of the bottom patch, or equivalently, ε is the
width of the cut elements in the bottom patch. Both patches are B-spline patches. Particularly,
we set ε = 10−6 to perform a convergence study with bases of degrees 2, 3 and 4 in all the
patches. We consider the manufactured solution: u(x, y) = sin(πx/2) cos(πy), (x, y) ∈ [0, 1]2, with
homogeneous Dirichlet and Neumann boundary conditions imposed according to Figure 3.6(a).
Figure 3.6(b) shows the solution obtained on the input mesh using the quadratic basis, where
the cut elements are invisible due to their small scale. The convergence plots in the L2-norm
and in the H1-broken norm error are shown in Figures 3.6(c), 3.6(d), where we observe expected
optimal convergence rates in both norms. With “H1-broken norm” we mean

‖vh‖2H1(Ω),broken :=
N∑
i=0
‖vi‖2H1(Ωi) , vh ∈ Vh.

Note that we have used two types of fluxes 〈∂vh
∂n
〉t, t ∈ { 1

2 , 1}, to show that they behave almost
the same in terms of convergence and conditioning. We should also note that the symmetric
average flux involves the flux from the bad cut elements and thus needs to be stabilized through
the minimal stabilization method. On the other hand, the one-sided flux comes from a non-cut
domain, so it does not need stabilization. Indeed, we observe in Figures 3.6(c), 3.6(d) that the
convergence curves are indistinguishable using both types of fluxes.

Next, we study the conditioning of global stiffness matrices in three cases:

(i) the symmetric average flux without stabilization;

(ii) the symmetric average flux with stabilization;

(iii) the one-sided flux (no need for stabilization).
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ε

ΓD

ΓN

ΓN

ΓN

(a) Meshes of the two patches. (b) Computed solution using p = 2.
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(c) ‖u− uh‖L2(Ω).
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(d) ‖u− uh‖H1(Ω),broken.

Figure 3.6 – The unit square example by a two-patch union. Here ε is set to 10−6.

We compute the condition number of the rescaled stiffness matrix D−1/2
s KsD

−1/2
s , where Ks is

the stiffness matrix and Ds denotes diag(Ks). We test both the influence of ε on a fixed mesh
and the influence of the mesh size h with a fixed small ε. First, given the input mesh shown
in Figure 3.6(a) and bases of different degrees (2, 3 and 4), we compute their corresponding
condition numbers changing ε from 10−2 down to 10−6. The result is summarized in Figure 3.7.
We observe that in cases (ii) and (iii), the condition number is independent from trimming, that is,
it almost remains constant as ε decreases. Moreover, the condition numbers obtained in these two
cases are indistinguishable. In contrast, the condition number in case (i) increases as O

(
ε−

1
2

)
(see [51] for a more involved discussion about the dependence of the condition number on ε). We
now fix ε to be 10−6 in the initial mesh and change the mesh size h (via global refinement) to
further compare conditioning. First, we observe in Figure 3.8 that for all the degrees considered,
the condition number in cases (ii) and (iii) is constantly lower than that in case (i). Second,
higher-degree splines generally yield higher condition numbers under the same mesh size in all
the cases. Third, in the low degree case (e.g., p = 2), the condition number tends to be controlled
by the mesh size h, and it increases in the order of h−2 as h decreases, as it is expected. On the
other hand, in the high degree case (e.g., p = 4), the condition number is higher but does not
enter the asymptotic regime yet (this is a known behavior in IGA, see, for instance, Tables 2,3
in [31]). As h goes down, the effective area ratio of a cut element actually becomes larger, and
this is why the condition number in case (i) decreases as h decreases, whereas it remains almost
constant in cases (ii) and (iii); see Figure 3.8(c).
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Figure 3.7 – Condition number vs. ε for the domain of Figure 3.6.

In both the convergence and condition tests, we have shown that the one-sided flux works almost
the same as the symmetric average flux with stabilization. The one-sided flux is chosen in the
following tests as it generally needs to stabilize fewer elements than the symmetric average flux
case.

3.4.2 Influence of patch ordering

We next study a disk geometry centered at (0, 0) with a radius of 2. It is formed by the union of
an annulus with a rectangle, and we focus on a quarter of it due to symmetry. The annulus is
represented by a NURBS patch with an inner radius of 1 and an outer radius of 2, which has a
5× 5 mesh. The rectangle is a B-spline patch covering the region [0, 1.13]× [0, 1.17] with a 4× 4
mesh. We consider two arrangements of patches to check if there is a difference in the numerical
performance:

(i) the rectangle on top of the annulus,

(ii) the annulus on top of the rectangle;

see Figures 3.9(a), 3.9(b). In the convergence study, we take the manufactured solution u(x, y) =
(4 − x2 − y2) cos(πx) cos

(
πy
2
)
(x ≥ 0, y ≥ 0, x2 + y2 ≤ 4), see Figure 3.9(c), and use bases of
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Figure 3.8 – Condition number vs. h for the domain of Figure 3.6a. Here ε is set to 10−6.

degrees 2, 3 and 4 everywhere. Homogeneous Dirichlet and Neumann boundary conditions are
imposed as shown in Figures 3.9(a), 3.9(b). In Figures 3.9(d), 3.9(e), we observe the expected
optimal convergence in all the cases before the error reaches 10−8. Afterwards we observe a
deteriorated behavior due to the dominance of the geometric error, which is induced by the fixed
tolerance setting (∼ 10−8) in OpenCASCADE. Moreover, in all the convergence plots, we do not
find distinguishable differences in the two different arrangements before the L2-norm error hits
the geometric tolerance; compare dashed and solid lines.

3.4.3 Multiple overlapped patches

We further study an example that involves multiple overlapping patches; see Figure 3.10(a). In
particular, there is a region where three patches overlap; see the intersection region of orange,
blue, and green patches. All the patches are B-spline patches. We take the manufactured
solution u(x, y) = sin(2πx) sin(πy) for the convergence test, and we use bases of degrees 2, 3
and 4 to solve Poisson’s problem. The homogeneous Dirichlet boundary condition is imposed
according to Figure 3.10(a), whereas the Neumann boundary condition is imposed on all the other
boundaries. Again, we observe the expected optimal convergence for all the degrees considered;
see Figures 3.10(c), 3.10(d). Note that the blue patch provides the one-sided flux to the orange
patch, and it is in the meanwhile cut by the green patch, so generally it needs stabilization. Recall

66



3.4. Numerical examples

ΓN

ΓN

ΓD

(a) Rectangle on top.

ΓN

ΓN

ΓD

(b) Annulus on top. (c) Computed solution with annulus
on top and p = 4.

p = 2, rectangle on top p = 3, rectangle on top p = 4, rectangle on top
p = 2, annulus on top p = 3, annulus on top p = 4, annulus on top

202−12−22−32−42−5

10−7

10−5

10−3

10−1

13
14

15

h

er
ro
r

(d) ‖u− uh‖L2(Ω).

202−12−22−32−42−5

10−7

10−5

10−3

10−1

12

13 14

h

er
ro
r

(e) ‖u− uh‖H1(Ω),broken.

Figure 3.9 – The quarter of disk example by a two-patch union.

that we set the area-ratio threshold to be 10%. In our test cases, we observe that around 3% to
7% of cut elements are usually identified as bad elements. In other words, stabilization is only
needed for a small number of elements. Moreover, let us observe that the elements depicted in
Figure 3.10(b) are just used to set up quadrature rules.

3.4.4 A complex geometry obtained via Boolean operations

As the last example, we consider a more complex geometry, a toy car wheel model in the planar
domain as shown in Figure 3.11(a), to show the potential capability of the proposed method.
Such a geometry can be easily created with a combination of trimming and union operations,
more specifically, by first generating two annuli, putting handles on top of them via union, and
finally creating holes of different sizes via trimming. Two boundary conditions are shown in
Figure 3.11(a), whereas the homogeneous Neumann boundary condition is imposed on all the
other boundaries. We use quadratic splines to solve the linear elasticity problem on a series of
meshes under the plane strain assumption, where the material is homogeneous and isotropic with
Young’s modulus and Poisson’s ratio being 1 and 0.3, respectively. In particular, we show the
displacement field on the initial mesh and the von Mises stress on the mesh after three steps of
global refinement; see Figure 3.11(b) and Figure 3.11(c), respectively. As expected, we observe
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Figure 3.10 – An example of multipatch overlapped domain.

stress concentrations around holes as well as sharp corners. Moreover, our computational tool
is robust in reparameterizing cut elements and handling union interfaces, and it can be easily
adapted to solving different elliptic PDEs.

ΓN

σn=pn

ΓD

u=0

(a) Arrangement of patches and
boundary conditions.

(b) Magnitude of displacement on
the initial mesh.

(c) The von Mises stress on the mesh
after refining.

Figure 3.11 – A toy car wheel example in the planar domain. σ is the stress tensor, p = 1 is
the pressure, n is the outward unit normal, and u is the displacement vector. The results are
visualized on deformed geometries. The white lines represent both the Bézier mesh and the
quadrature mesh for cut elements.
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4 Stabilized isogeometric discretiza-
tion of the Stokes problem on
trimmed geometries
Here, we extend the analysis developed in Chapter 2 from second-order elliptic PDEs to flow
problems, focusing on the isogeometric discretization of the Stokes problem in trimmed domains.
As we already observed in the introduction, the main issues for the numerical analysis are
integration, conditioning, and stability. For what concerns integration, namely the construction
of suitable quadrature rules on the trimmed geometries, we rely on the technique developed
in [4], where the cut elements are subdivided into tiles which are reparametrized with piecewise
polynomials of the same degree of the spline basis employed for the space discretization. The
conditioning issue is also out of the scope of this work: herein, we limit ourselves to applying
a Jacobi preconditioner. Our goal is to address the stability of incompressible flow problems
in trimmed geometries. As in the Poisson problem, we rely on Nitsche’s method for the weak
imposition of the Dirichlet boundary conditions. After empirically demonstrating the lack of
stability of this formulation, we propose our stabilization. On the one hand, just as in the
elliptic case, we modify the evaluation of the normal derivatives of the velocities at the “bad” cut
elements. At the same time, stabilization is applied to the whole space of pressures.

The chapter is structured as follows. After having introduced in Section 4.1 some notations
and the strong formulation of the Stokes problem, in Section 4.2 we provide the basic notions
on IGA: we introduce three families of isogeometric elements (Raviart-Thomas, Nédélec, and
Taylor-Hood) and use them to discretize the considered equations in a trimmed domain using
Nitsche’s method for the imposition of the essential boundary conditions. In Section 4.3 we show
through numerical experiments that the Nitsche formulation is not stable with respect to the
trimming operation. Then, in Section 4.4, we introduce our stabilization procedure together with
its key properties and the stabilized discrete formulation. In Section 4.5, we develop our stability
analysis: we observe that one of the cardinal steps of the proof of stability, namely the inf-sup
stability, is missing. In Section 4.6, we prove that optimal a priori error estimates hold. In the
last section, we provide numerical experiments to validate the theory, emphasizing the validation
of the inf-sup stability of our method.

The results of this chapter are collected in the preprint [111], which has been submitted for
publication.

4.1 Model problem

We let Ω0 ⊂ Rd (here d = 2, 3) be the starting domain parametrized by a bijective spline map
F : (0, 1)d → Ω0, i.e., a patch in the isogeometric terminology, and let Ω1, . . . , ΩN be Lipschitz
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domains in Rd . We assume that Ωi, i = 1, . . . ,N , are to be cut away from Ω0 and that our
computational domain reads:

Ω = Ω0 \
N⋃
i=1

Ωi. (4.1)

For simplicity, let us assume that Ω is a Lipschitz domain that has been obtained via trimming
operations, as in (4.1) with N = 1, namely Ω = Ω0 \ Ω1. Let Γ be its boundary such that
Γ = ΓD ∪ΓN , where ΓD and ΓN are open and disjoint. We denote the trimming curve (trimming
surface if d = 3) as ΓT = Γ ∩ ∂Ω1.

Given the body force f : Ω → Rd, the mass production rate g : Ω → R, the Dirichlet datum
uD : Ω → R and the Neumann datum uN : Ω → R, we look for the velocity u : Ω → Rd and
pressure p : Ω→ R such that

−µ∆u +∇p = f , in Ω,
div u = g, in Ω,

u = uD, on ΓD,
σ(u, p)n = uN , on ΓN ,

(4.2)

where µ ∈ R, µ > 0 is the viscosity coefficient, σ(u, p) = µDu− pI is the Cauchy stress tensor,
(Du)ij := ∂ui

∂xj
, i, j = 1, . . . , d. For the sake of simplicity of the exposition, we set µ ≡ 1.

C will denote generic positive constants that may change with each occurrence throughout the
chapter but are always independent of the local mesh size and the position of the trimming curve
(surface, if d = 3) unless otherwise specified.

4.2 Isogeometric discretization

4.2.1 Isogeometric spaces on trimmed geometries

Let us consider the isogeometric mixed elements defined in the untrimmed domain Ω0, which have
been introduced in Section 1.3. We recall that V RT

0,h −QRT
0,h, V N

0,h −QN
0,h, and V TH

0,h −QTH
0,h denote

the Raviart-Thomas, the Nédélec, and the Taylor-Hood isogeometric elements, respectively. Let
us restrict them to the the active part of the domain, i.e.,

V RT
h :={vh

∣∣∣
Ω

: vh ∈ V RT
0,h }, V N

h := {vh
∣∣∣
Ω

: vh ∈ V N
0,h}, V TH

h := {vh
∣∣∣
Ω

: vh ∈ V TH
0,h },

QRT
h = QN

h :={qh
∣∣∣
Ω

: qh ∈ QRT
0,h}, QTH

h := {qh
∣∣∣
Ω

: qh ∈ QTH
0,h}.

We observe that in general, in the physical domain, V RT
h ⊂ V N

h 6⊂ V TH
h .

To alleviate the notation, we may omit the superscript � ∈ {RT, N, TH} when what said does
not depend from the particular isogeometric element choice. Moreover, for the notation about
the mesh, mesh-size, and cut elements, we refer the reader to Section 2.1.1.

We endow the discrete spaces of the velocities with the scalar product

(wh, vh)1,h :=
∫

Ω
Dwh : Dvh +

∫
ΓD

h−1wh · vh, wh, vh ∈ Vh,

inducing the mesh-dependent norm

‖vh‖21,h := ‖Dvh‖2L2(Ω) +
∥∥∥h− 1

2 vh
∥∥∥2

L2(ΓD)
, vh ∈ Vh.
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We also equip the discrete spaces of the pressures with the mesh-dependent norm

‖qh‖20,h := ‖qh‖2L2(Ω) +
∥∥∥h 1

2 qh

∥∥∥2

L2(ΓD)
, qh ∈ Qh.

We consider the following Nitsche’s formulations as discretizations of problem (4.2).

Find (uh, ph) ∈ Vh ×Qh such that

ah(uh, vh) + b1(vh, ph) = Fh(vh), ∀ vh ∈ Vh,
bm(uh, qh) = Gm(qh), ∀ qh ∈ Qh,

(4.3)

where m ∈ {0, 1} and

ah(wh, vh) :=
∫

Ω
Dwh : Dvh −

∫
ΓD

Dwhn · vh −
∫

ΓD
wh ·Dvhn

+ γ

∫
ΓD

h−1wh · vh, wh, vh ∈ Vh,

bm(vh, qh) :=−
∫

Ω
qh div vh +m

∫
ΓD

qhvh · n, vh ∈ Vh, qh ∈ Qh,

Fh(vh) :=
∫

Ω
f · vh +

∫
ΓN

uN · vh −
∫

ΓD
uD ·Dvhn + γ

∫
ΓD

h−1uD · vh, vh ∈ Vh,

Gm(qh) :=−
∫

Ω
gqh +m

∫
ΓD

qhuD · n, qh ∈ Qh,

γ > 0 being a penalty parameter.
Remark 4.2.1. In the literature, the Nitsche formulation of the Stokes problem was introduced
in [63] with m = 1 and allows to weakly impose the Dirichlet boundary conditions without
manipulating the discrete velocity space (see also Section 1.3). The choice m = 0 allows for
an exactly divergence-free numerical solution for the velocity field in the case of g ≡ 0 and the
Raviart-Thomas isogeometric element, see Remark 4.4.9.
Remark 4.2.2. We observe that, in order to simplify the presentation, in formulation (4.3) we
impose Dirichlet conditions weakly everywhere. In the case where there is Γ̃ ⊂ ΓD such that
F−1(Γ̃) is a union of full faces of Ω̂0, then one could have strongly imposed Dirichlet’s conditions
on Γ̃ by appropriately modifying the discrete velocity spaces: the traces for V TH

h and the normal
components for V RT

h and V N
h (the tangential components are weakly imposed in the spirit of [59]).

Remark 4.2.3. The imposition of the Neumann boundary conditions does not pose any particular
problem in a mesh that is not aligned with ΓN . These kinds of conditions are natural for the
Stokes problem, i.e., they can be enforced through a boundary integral as long as suitable
quadrature rules in the cut elements are available, see [4].

Motivated by the previous remark, we henceforth assume that ΓN ∩ ΓT = ∅, so that ΓT ⊆ ΓD,
i.e., we impose Dirichlet boundary conditions on the trimming curve.

4.3 Lack of stability of Nitsche’s method
Throughout this section, we want to show with some numerical experiences that the Nitsche
formulation of the Stokes problem (4.3), discretized with Raviart-Thomas, Nédélec, and Taylor-
Hood elements, lacks stability when working on trimmed geometries. It is well-known (see [21, 102])
that the following are necessary conditions for the well-posedness of formulation (4.3) for both
m ∈ {0, 1}.
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1. There exists γ > 0 such that, for every fixed γ ≥ γ, there exists Ma > 0 such that

|ah(wh, vh)| ≤Ma ‖wh‖1,h ‖vh‖1,h , ∀ wh, vh ∈ Vh. (4.4)

2. There exist β1 > 0, β0 > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b1(vh, qh)
‖qh‖0,h ‖vh‖1,h

≥ β1, (4.5)

inf
qh∈Qh

sup
vh∈Vh

b0(vh, qh)
‖qh‖0,h ‖vh‖1,h

≥ β0. (4.6)

Remark 4.3.1. We observe that Ma depends (and grows dependently) on γ, which has to be
taken sufficiently large, i.e., γ ≥ γ, but at the same time as small as possible, i.e., close to γ, in
order not to end up with a too-large continuity constant.

We want to show that the stability constants in the previous estimates, Ma, β1, β0, can be
arbitrarily negatively influenced by the relative position between the mesh and the trimming
curve; hence they are not uniform with respect to the trimming operation. Note that in the
following essential boundary conditions are enforced on the whole boundary, and they are weakly
imposed on the parts unfitted with the mesh. Let us proceed in order.

1. The breakdown example for the robustness of the continuity constant Ma is the following.
Let Ω0 = (0, 1)2, Ω1 = (0, 1)× (0.75 + ε, 1) and Ω = Ω0 \Ω1, as illustrated in Figure 4.1(a).
Note that the continuity constant of ah(·, ·) corresponding to γ = 1 is smaller than the
one related to γ > 1, i.e., Mγ

a > M1
a for every γ > 1. Hence, in order to verify that the

continuity constant also degenerates with the cut, it is sufficient to show that M1
a grows as

ε gets smaller. M1
a can be estimated as the largest eigenvalue of the subsequent generalized

eigenvalue problem.
Find (uh,λh) ∈ Vh \ {0} × R such that

ah(uh, vh) = λh (uh, vh)1,h , ∀ vh ∈ Vh. (4.7)

Assume that the mesh is uniform and let us fix the degree k = 2.

Ω

ε

(a) Rectangle.

Ω
ε

ε

(b) Pentagon.

Figure 4.1 – The trimmed geometries.

Then, let us compute λmax
h for different values of ε: in each configuration we refine the mesh,

see Figure 4.2. We can clearly see how the largest eigenvalue grows unboundedly as ε goes
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to zero, implying that the continuity constant can be made arbitrarily large by reducing ε.
As already observed in Section 2.2, this is due to the lack of an inverse inequality robust
with respect to the trimming operation, namely,∥∥∥h 1

2Dvhn
∥∥∥
L2(ΓK)

≤ C ‖Dvh‖L2(K∩Ω) ,

with C independent of the shape and diameter of K ∩ Ω.
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Figure 4.2 – Maximum generalized eigenvalue of (4.7) for the trimmed rectangle.

2. Now, we consider a different setting. Let Ω0 = (0, 1)2, Ω1 be the triangle with vertices
(0, 0.25 + ε)− (0, 1)− (0.75− ε, 1) and Ω = Ω0 \ Ω1, see Figure 4.1(b). We want to study
the values of βm, m ∈ {0, 1}, with respect to the trimming parameter ε. The inf-sup
constants are numerically evaluated as explained in [15]. In Figure 4.3 we plot βm for
k = 2 and different values of the trimming parameter ε and the mesh-size h. The numerical
experiments show the dependence of βm on ε. This negative result is due to the presence of a
spurious pressure mode pεh (technically speaking it is not spurious since, even if βm(pεh)� 1,
it still holds βm(pεh) 6= 0) whose support is concentrated in trimmed elements with a very
small overlap with the physical domain Ω.
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Figure 4.3 – Inf-sup constants for the trimmed pentagon.

Remark 4.3.2. Let us observe that in the previous numerical counterexamples, in order to
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validate the lack of stability of the formulation, one should have constructed a sequence of spaces
depending on ε rather than changing the domain (as it is done in [33], where the lack of stability
of the Nitsche formulation for the Poisson problem on trimmed domains is shown). However, both
constructions lead to the same results, and we believe that our choice makes the presentation
more fluent. We also note that in the first counterexample, the inf-sup condition is not violated,
and, similarly, the second configuration is not a counterexample for the continuity.

4.4 Stabilized Nitsche’s formulations

4.4.1 Stabilization procedure

We start by subdividing, for each h > 0, the elements of the active physical Bézier meshMh

into two disjoint collections: the one of the good elementsMg
h, those with sufficient overlap with

the physical domain, and the one of the bad elementsMb
h, a small portion of which intersect Ω.

Then, for each bad element K, we select a good neighbor K ′, see Definition 2.3.1. We also define
ΩI,h =

⋃
K∈Mh\Gh K, the region occupied by untrimmed elements, and Sh := Ω \

⋃
K∈Mg

h
K =

int
⋃
K∈Mb

h
K ∩ Ω, the region occupied by bad elements.

It is well known that formulation (4.3) is stable if Ω = ΩI,h. In the general case ΩI,h ( Ω, the
goal of the stabilization is, informally speaking, to extend the stability of the discrete problem
from the internal elements of the domain to the cut ones.

Remark 4.4.1. We observe that choosing θ = 1 in Definition 2.3.1 corresponds to stabilizing all
cut elements, in which case it holdsMb

h = Gh, ΩI,h =
⋃
K∈Mg

h
K and Sh = Ω \ ΩI,h.

The following assumption is not restrictive and is satisfied whenever the mesh is sufficiently
refined, and we take C large enough in (2.7).

Assumption 4.4.2. For every K ∈Mb
h, there exists K ′ ∈ N (K) ∩Mg

h. From now on we will
refer to such K ′ as a good neighbor of K.

Let us start by stabilizing the pressures. We define the operator Rph : Qh → L2(Ω) locally as
Rph(qh)

∣∣∣
K

:= RpK(qh), for every K ∈Mh and all qh ∈ Qh, as follows:

• if K ∈Mg
h, then

RpK(qh) := qh

∣∣∣
K

,

• if K ∈Mb
h, then

RpK(qh) := EK′,K
(

ΠK′

(
qh

∣∣∣
K′

)) ∣∣∣
K

,

where ΠK′ : L2 (K ′)→ Qk (K ′) is the local L2-projection and EK′,K : Qk(K ′)→ Qk(K ′∪K)
is the canonical polynomial extension. K ′ is a good neighbor of K.

Proposition 4.4.3 (Stability property of Rph). Given θ ∈ (0, 1], there exist C1,C2 > 0 such that,
for every K ∈Mh and h > 0,∥∥∥h 1

2Rph(qh)
∥∥∥
L2(ΓK)

≤C1 ‖qh‖L2(K′∩Ω) , ∀ qh ∈ Qh,

‖Rph(qh)‖
L2(K∩Ω) ≤C2 ‖qh‖L2(K′∩Ω) , ∀ qh ∈ Qh,

where K ′ is a good neighbor if K ∈Mb
h, K ′ = K and if K ∈Mg

h.
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Proof. Let qh ∈ Q�
h , � ∈ {TH, RT, N}, and K ∈ Mh. We first assume K ∈ Mg

h and let
Q = F−1(K), q̂h = qh ◦ F if � = TH, qh = det(DF)−1q̂h ◦ F−1 if � ∈ {RT, N}. Hölder’s
inequality, Lemma A.1.5, and Lemma A.1.1 imply∥∥∥h 1

2 qh

∥∥∥
L2(ΓK)

=h
1
2
K ‖qh‖L2(ΓK) ≤ h

1
2
K |ΓK |

1
2 ‖qh‖L∞(ΓK) ≤ h

1
2
K |ΓK |

1
2 ‖qh‖L∞(K)

≤C�h
1
2
K |ΓK |

1
2 ‖q̂h‖L∞(Q) ≤ C�h

1
2
K |ΓK |

1
2 h
− d2
K ‖q̂h‖L2(Q∩Ω̂) ≤ CC�C� ‖qh‖L2(K∩Ω) ,

where CTH = 1, CRT = CN =
∥∥detDF−1

∥∥
L∞(K), CTH =

∥∥detDF−1
∥∥ 1

2
L∞(K∩Ω), CRT = CN =

‖detDF‖
1
2

L∞(Q∩Ω̂)
, and C depends on k, and on θ. Now, let K ∈ Mb

h with good neighbor K ′.
We employ, respectively, Hölder’s inequality, Lemma A.1.1, and Lemma A.1.4, and we get∥∥∥h 1

2RpK(qh)
∥∥∥
L2(ΓK)

=h
1
2
K ‖EK′,K (ΠK′ (qh))‖L2(ΓK) ≤ h

1
2
K |ΓK |

1
2 ‖EK′,K (ΠK′ (qh))‖L∞(ΓK)

≤Ch
d
2
K ‖EK′,K (ΠK′ (qh))‖L∞(K) ≤ Ch

d
2
K ‖ΠK′ (qh)‖L∞(K′) .

We can now use Lemma A.1.6, the boundedness of the L2-projection with respect to ‖·‖L2 and
the local quasi-uniformity of the mesh, to obtain∥∥∥h 1

2RpK(qh)
∥∥∥
L2(ΓK)

≤Ch
d
2
Kh
− d2
K′ ‖ΠK′(qh)‖L2(K′) ≤ C ‖qh‖L2(K′) ,

with C depending on k. By applying Hölder’s inequality, moving to the parametric domain, using
Lemma A.1.5, and moving back to the physical domain, we get∥∥∥h 1

2RpK(qh)
∥∥∥
L2(ΓK)

≤Ch
d
2
K′ ‖qh‖L∞(K′) ≤ C�h

d
2
K′ ‖q̂h‖L∞(Q′)

≤CC�h
d
2
K′h

− d2
Q′ ‖q̂h‖L∞(Q′∩Ω̂) ≤ CC�C� ‖qh‖L2(K′∩Ω) ,

(4.8)

where C depends, in particular, on k and θ, and C�, C� have been defined above.

Let us move to the proof of the other inequality of the statement. If K ∈ Ggh, then there is
nothing to prove. Let K ∈ Gbh and K ′ its good neighbor.

‖Rph(qh)‖
L2(K∩Ω) ≤ |K ∩ Ω|

1
2 ‖Rph(qh)‖

L∞(K∩Ω) ≤ |K ∩ Ω|
1
2 ‖Rph(qh)‖

L∞(K)

≤C |K ∩ Ω|
1
2 ‖ΠK′(qh)‖L∞(K′) ,

where we have used, respectively, Hölder’s inequality and Lemma A.1.4. Note that it is trivial
to check that, for every u ∈ L2(K ′), ‖ΠK′(u)‖L2(K′) ≤ ‖u‖L2(K′). On the other hand, by
using Lemma A.1.6, and the L2-stability of the L2-projection, we have ‖ΠK′(qh)‖L∞(K′) ≤

Ch
− d2
K′ ‖ΠK′(qh)‖L2(K′) ≤ Ch

− d2
K′ ‖qh‖L2(K′). Hence,

‖Rph(qh)‖
L2(K∩Ω) ≤ C |K ∩ Ω|

1
2 h
− d2
K′ ‖qh‖L2(K′) ≤ C |K ∩ Ω|

1
2 |K|−

1
2 ‖qh‖L2(K′) ≤ C ‖qh‖L2(K′) ,

where in the second last passage of both lines we used the shape-regularity and quasi-local
uniformity of the mesh, entailing h−

d
2

K′ ∼ |K ′|
− 1

2 , |K ′|−
1
2 ∼ |K|−

1
2 . We observe that the constant

C depends on k, since we relied on Lemma A.1.6. We conclude as in (4.8).

Now, let us move to the velocities and define, for � ∈ {RT, N, TH}, the operator Rvh : V �
h → L2(Ω)

locally as Rvh(vh)
∣∣∣
K

:= RvK(vh) for every K ∈Mh and all vh ∈ V �
h :
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• if K ∈Mg
h, then

RvK(vh) := vh
∣∣∣
K

,

• if K ∈Mb
h, then

RvK(vh) := EK′,K
(
ΠK′

(
vh
∣∣∣
K′

)) ∣∣∣
K

,

where ΠK′ : L2 (K ′)→ Vk(K ′) is the L2-orthogonal projection onto

Vk(K ′) :=
{

Sk(K ′), if � = RT,
(Qk+1(K ′))d , if � ∈ {N, TH},

Sk(K ′) :=
{

Qk+1,k(K ′)×Qk,k+1(K ′), if d = 2,
Qk+1,k,k(K ′)×Qk,k+1,k(K ′)×Qk,k,k+1(K ′), if d = 3,

and EK′,K : Vh(K ′)→ Vh(K ∪K ′) is the canonical polynomial extension. Here, K ′ ∈Mg
h

denotes a good neighbor of K.

Proposition 4.4.4 (Stability property of Rvh). Given θ ∈ (0, 1], there exists C > 0 such that,
for every K ∈Mh,∥∥∥h 1

2DRvh(vh)n
∥∥∥
L2(ΓK)

≤ C ‖Dvh‖L2(K′∩Ω) , ∀ vh ∈ Vh,

where K ′ ∈Mg
h is a good neighbor of K if K ∈Mb

h, K ′ = K if K ∈Mg
h.

Proof. We refer the reader to the proof of Theorem 2.3.14. The constant C will depend on F
accordingly to the element choice.

As we saw in Section 4.3, due to the unfitted configuration, the Nitsche formulation (4.3) may
present some serious instabilities. Our remedy is twofold. On the one hand, we locally change
the evaluation of the normal derivatives of the velocities in the weak formulation; on the other,
we modify the space of the discrete pressures.

We introduce the following stabilized pressure space

Qh :=
{
ϕh ∈ L2(Ω) : ∃ qh ∈ Qh such that ϕh

∣∣∣
Ω\Sh

= qh

∣∣∣
Ω\Sh

and ϕh
∣∣∣
Sh

= Rph(qh)
∣∣∣
Sh

}
.

Remark 4.4.5. Let us stress that, while dimQh ≤ dimQh, in general, we have that Qh is not
a subspace of Qh since its elements are discontinuous functions. However, we observe that the
discontinuities are located across the facets in the region of bad elements Sh and, for qh ∈ Qh
and Rph(qh) ∈ Qh, it holds

qh

∣∣∣
Ω\Sh

= Rph(qh)
∣∣∣
Ω\Sh

.

Remark 4.4.6. Proposition 4.4.3 entails that ‖·‖0,h and ‖·‖L2(Ω\Sh) are equivalent norms on Qh,
namely there exist c1, c2 > 0, independent on h and on the the way the mesh is cut by trimming
curve, but in general depending on the fixed parameter θ ∈ (0, 1], such that

c1 ‖qh‖L2(Ω\Sh) ≤ ‖qh‖0,h ≤ c2 ‖qh‖L2(Ω\Sh) , ∀ qh ∈ Qh.

Remark 4.4.7. Let Qh = {Bk

∣∣∣
Ω

: k ∈ K} and define Q̃h = {Bi

∣∣∣
Ω

: i ∈ I}, where I := {i ∈ K :

∃ K ∈Mg
h such that K ⊂ suppBi}. This time Q̃h is a subspace of Qh. Moreover, let us observe

that Qh and Q̃h are isomorphic (as normed vector spaces) when equipped with ‖·‖L2(Ω\Sh).
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We introduce the following stabilized version of formulation (4.3).

Find (uh, ph) ∈ Vh ×Qh such that

ah(uh, vh) + b1(vh, ph) = Fh(vh), ∀ vh ∈ Vh,
bm(uh, qh) = Gm(qh), ∀ qh ∈ Qh,

(4.9)

where m ∈ {0, 1} and

ah(wh, vh) :=
∫

Ω
Dwh : Dvh −

∫
ΓD

DRvh (wh) n · vh −
∫

ΓD
wh ·DRvh (vh) n

+ γ

∫
ΓD

h−1wh · vh, wh, vh ∈ Vh,

Fh(vh) :=
∫

Ω
f · vh +

∫
ΓN
σ · vh −

∫
ΓD

uD ·DRvh (vh) n + γ

∫
ΓD

h−1uD · vh, vh ∈ Vh.

Remark 4.4.8. We believe that this strategy is still consistent with Chapter 2 since the
modification does not affect the space of the velocities, but just the one of pressures, the latter
being discontinuous objects from a physical point of view.

4.4.2 Interpolation and approximation properties of the discrete spaces

From [75], there exist E : Ht(Ω) → Ht(Rd), t ≥ 1, and E : Hr (Ω) → Hr
(
Rd
)
, r ≥ 1,

universal (degree-independent) Sobolev-Stein extensions such that div ◦E = E ◦ div. We define,
for � ∈ {RT, N, TH} and t ≥ 1,

Π�
Vh

: Ht(Ω)→ V �
h , v 7→ Π�

V0,h

(
E (v)

∣∣∣
Ω0

) ∣∣∣∣
Ω

,

where Π�
V0,h

is the spline quasi-interpolant onto V �
0,h. Similarly, for the pressures, given r ≥ 1, we

introduce
Π�
Qh

:Hr (Ω)→ Q�
h , q 7→ Π�

Q0,h

(
E (q)

∣∣∣
Ω0

) ∣∣∣∣
Ω

,

and further compose it with the stabilization operator for the pressures,

Π�
Qh

:Hr (Ω)→ Q
�
h , q 7→ Rph

(
Π�
Qh
qh

)
,

where Π�
Q0,h

is the spline quasi-interpolant onto Q�
0,h. Let us recall that, in the Raviart-Thomas

case, ΠRT
V0,h

and ΠRT
Q0,h

are defined so that the first diagram in (4.10) commutes (see [34]). Our
construction implies that also the diagram on the right commutes.

H(div; Ω0) div−−−−→ L2(Ω0)yΠRT
V0,h

yΠRT
Q0,h

V RT
0,h

div−−−−→ QRT
0,h

H(div; Ω) div−−−−→ L2(Ω)yΠRT
Vh

yΠRT
Qh

V RT
h

div−−−−→ QRT
h

(4.10)

Remark 4.4.9. Note that the commutativity of the right-hand diagram in (4.10) is lost when
instead of Qh we use the stabilized space Qh.
Proposition 4.4.10 (Approximation property of Rvh). There exists C > 0 such that, for every
v ∈Ht(Ω), t ≥ 2, and K ∈ Gh,∥∥∥h 1

2D
(
v−Rvh(Π�

Vh
v)
)

n
∥∥∥
L2(ΓD)

≤ Chs ‖v‖Ht(Ω) ,

where s := min{k, t− 1} if � = RT and s := min{k + 1, t− 1} if � ∈ {N, TH}.
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Proof. It is sufficient to apply the vectorial version of Proposition 2.3.15 and to sum over the cut
elements in Gh, by taking into account Remark 2.3.16. The constant C depends on F accordingly
to the element choice.

Lemma 4.4.11. There exists C > 0 such that

‖ΠVhv‖1,h ≤ C ‖v‖H1(Ω) , ∀ v ∈H1
0,ΓD (Ω).

Proof. Let v ∈H1
0,ΓD (Ω). Using the H1-stability for the quasi-interpolant in the boundary-fitted

case [34], we have

‖ΠVhv‖
2
1,h =

∥∥DΠV0,h (E(v))
∥∥2
L2(Ω) +

∥∥∥h− 1
2 ΠV0,h (E(v))

∥∥∥2

L2(ΓD)
(4.11)

≤C ‖E (v)‖H1(Ω0) +
∑
K∈Gh

h−1
K

∥∥ΠV0,h (E (v))
∥∥2
L2(ΓK) . (4.12)

By using E(v)
∣∣∣
ΓD

= 0, Lemma A.1.2, and the optimal approximation properties of the quasi-
interpolants on boundary-fitted meshes, it holds∑

K∈Gh

h−1
K

∥∥ΠV0,h (E (v))
∥∥2
L2(ΓK) =

∑
K∈Gh

h−1
K

∥∥ΠV0,h (E (v))−E(v)
∥∥2
L2(ΓK)

≤C
∑
K∈Gh

h−1
K

∥∥ΠV0,h (E (v))−E(v)
∥∥
L2(K)

∥∥ΠV0,h (E (v))−E(v)
∥∥
H1(K)

≤C ‖E (v)‖2H1(Ω0) .

(4.13)

We conclude by combining (4.11) and (4.13), and using the boundedness of the Sobolev-Stein
extension operator.

Theorem 4.4.12. There exist Cv,Cq > 0 such that for every (v, q) ∈ Ht(Ω) ×Hr(Ω), t ≥ 1
and r ≥ 1, it holds∥∥∥v−Π�

Vh
v
∥∥∥

1,h
≤ Cvhs ‖v‖Ht(Ω) ,

∥∥q −ΠQhq
∥∥

0,h ≤ Cqh
` ‖q‖Hr(Ω) ,

where s := min{k, t−1} if � = RT, s := min{k+1, t−1} if � ∈ {N, TH}, and ` := min{k+1, r}.

Proof. For the velocities, we proceed by employing the trace inequality of Lemma A.1.2 componen-
twise, the standard approximation properties of ΠV0,h , and the boundedness of the Sobolev-Stein
extension operator.∥∥∥v−Π�

Vh
v
∥∥∥2

1,h
≤
∥∥∥D (E(v)−Π�

V0,h
E(v)

)∥∥∥2

L2(Ω0)

+ C
∑
K∈Gh

∥∥∥h−1
(
E(v)−Π�

V0,h
E(v)

)∥∥∥
L2(K)

∥∥∥E(v)−Π�
V0,h

E(v)
∥∥∥
H1(K)

≤Ch2s ‖E(v)‖2Ht(Ω0)

+ C
∑
K∈Gh

∥∥∥h−1
(
E(v)−Π�

V0,h
E(v)

)∥∥∥
L2(K)

∥∥∥E(v)−Π�
V0,h

E(v)
∥∥∥
H1(K)

≤Ch2s ‖v‖2Ht(Ω) +
∥∥∥h−1

(
E(v)−Π�

Vh
v
)∥∥∥

L2(Ω0)

∥∥∥E(v)−Π�
Vh

v
∥∥∥
H1(Ω0)

≤Ch2s ‖v‖2Ht(Ω) ,
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where s := min{k, t − 1} if � = RT, s := min{k + 1, t − 1} if � ∈ {N, TH}. For the pressure
term, we have∥∥q −ΠQhq

∥∥2
0,h =

∥∥(q −ΠQhq
)∥∥2
L2(Ω) +

∑
K∈Gh

∥∥∥h 1
2
(
q −ΠQhq

)∥∥∥2

L2(ΓK)
. (4.14)

For the volumetric term we may proceed analogously to the case of the velocities. Let us focus
on the boundary part of (4.14) and take K ∈Mg

h. We employ Lemma A.1.2:∥∥∥h 1
2
(
E(q)−ΠQhq

)∥∥∥2

L2(ΓK)
≤C

∥∥E(q)−ΠQ0,hE (q)
∥∥
L2(K)

∥∥h
(
E(q)−ΠQ0,hE (q)

)∥∥
H1(K)

≤Ch2` ‖E(q)‖
Hr(K̃) ,

where ` := min{k + 1, r}. Now, let us suppose K ∈Mb
h, with K ′ ∈M

g
h its good neighbor. Let

ϕ ∈ Qk(BK), where BK is the minimal bounding box enclosing K and K ′, so that RpK(ϕ) = ϕ.
We have ∥∥∥h 1

2
(
q −ΠQhq

)∥∥∥
L2(ΓK)

=
∥∥∥h 1

2 (q −RpK (ΠQhq))
∥∥∥
L2(ΓK)

≤
∥∥∥h 1

2 (q − ϕ)
∥∥∥
L2(ΓK)︸ ︷︷ ︸

I

+
∥∥∥h 1

2RpK (ϕ−ΠQhq)
∥∥∥
L2(ΓK)︸ ︷︷ ︸

II

.

By using Lemma A.1.2, we obtain

I ≤C ‖E(q)− ϕ‖
1
2
L2(K) ‖h (E(q)− ϕ)‖

1
2
H1(K) ≤ C ‖E(q)− ϕ‖

1
2
L2(BK) ‖h (E(q)− ϕ)‖

1
2
H1(BK) .

On the other hand, from Proposition 4.4.3 and triangular inequality we have

II =
∥∥∥h 1

2RpK (ϕ−ΠQhq)
∥∥∥
L2(ΓK)

≤ C ‖(ϕ−ΠQhq)‖L2(K′)

≤C
(
‖ϕ− q‖L2(K′) + ‖q −ΠQhq‖L2(K′)

)
≤C

(
‖ϕ− E(q)‖L2(BK) + ‖E(q)−Π0,Qh (E (q))‖L2(K′)

)
.

Let us choose ϕ such that the Deny-Lions Lemma (Theorem 3.4.1 of [112]) holds on BK and use
the optimal approximation properties of ΠQ0,h . Thus∥∥∥h 1

2
(
q −ΠQhq

)∥∥∥
L2(ΓK)

≤ I + II ≤ Ch`
(
‖E(q)‖Hr(BK) + ‖E(q)‖

Hr(K̃′)

)
, (4.15)

where ` := min{k + 1, r} and C depends on the shape-regularity of BK (through Theorem 3.4.1
of [112]), on F, and on the shape-regularity of the parametric Bézier mesh (through the approxi-
mation properties of ΠQ0,h). Hence, we conclude by taking the sum over the cut elements. The
final constant will depend on k, d, on the constant appearing in (2.7), on the shape-regularity
of the parametric mesh, on F, and on the boundedness of the Sobolev-Stein extension (see also
Remark 2.3.16).

4.5 Well-posedness of the stabilized formulations
The following result gives the necessary and sufficient conditions for the existence, uniqueness and
stability of the solution of (4.9). Let us denote Km := {vh ∈ Vh : bm(vh, qh) = 0 ∀ qh ∈ Qh},
for m = 0, 1. Even if not explicitly stated in order to keep the notation lighter, the following
stability constants are required to be independent of the mesh-size h and on the wayMh has
been cut by ΓT .
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Proposition 4.5.1. Let us fix m ∈ {0, 1}, i.e., we choose either the symmetric or the non-
symmetric version of (4.9).

(i) There exists γ > 0 such that, for every γ ≥ γ, there exists Ma > 0 such that

|ah(wh, vh)| ≤Ma ‖wh‖1,h ‖vh‖1,h , ∀ wh, vh ∈ Vh. (4.16)

(ii) There exist Mb1 > 0, Mb0 > 0 such that

|b1(vh, qh)| ≤Mb1 ‖vh‖1,h ‖qh‖0,h , ∀ vh ∈ Vh,∀ qh ∈ Qh, (4.17)
|b0(vh, qh)| ≤Mb0 ‖vh‖1,h ‖qh‖0,h , ∀ vh ∈ Vh,∀ qh ∈ Qh. (4.18)

(iii) There exist γ > 0 and αm > 0 such that, for every γ ≥ γ, it holds

inf
vh∈Km

sup
wh∈K1

ah(wh, vh)
‖wh‖1,h ‖vh‖1,h

≥ αm, (4.19)

and, for all wh ∈ K1 \ {0},
sup

vh∈Km
ah(wh, vh) > 0. (4.20)

(iv) There exist β1 > 0, β0 > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b1(vh, qh)
‖qh‖0,h ‖vh‖1,h

≥ β1, (4.21)

inf
qh∈Qh

sup
vh∈Vh

b0(vh, qh)
‖qh‖0,h ‖vh‖1,h

≥ β0. (4.22)

Conditions (i)− (iv) hold if and only if there exists a unique solution (uh, qh) ∈ Vh ×Qh
to (4.9). Moreover,

‖uh‖1,h ≤
1
α

∥∥Fh∥∥−1,h + 1
βm

(
Ma

α
+ 1
)
‖Gm‖−0,h ,

‖ph‖0,h ≤
1
β1

(
1 + Ma

αm

)∥∥Fh∥∥−1,h + Ma

βmβ1

(
Ma

αm
+ 1
)
‖Gm‖−0,h ,

(4.23)

where ‖·‖−1,h and ‖·‖−0,h denote the dual norms with respect to ‖·‖1,h and ‖·‖0,h, respectively.

Proof. We refer the interested reader to [21, 102].

Remark 4.5.2. We observe that condition (4.20) can be replaced by dimKm = dimK1. If
m = 1, then conditions (4.19) and (4.20) can be summarized in the coercivity of ah(·, ·) on K1.
Moreover, if g ≡ 0, then we are no more bound to satisfy (4.22) when m = 0.

Lemma 4.5.3. There exist γ > 0 and α > 0 such that, for every γ ≥ γ, it holds

α ‖vh‖21,h ≤ ah(vh, vh), ∀ vh ∈ Vh,

and, for every γ ≥ γ, there exists Ma > 0 such that

|ah(wh, vh)| ≤Ma ‖wh‖1,h ‖vh‖1,h , ∀ wh, vh ∈ Vh.

Proof. This proof is based on Proposition 4.4.4 and follows the same lines of Theorem 2.3.3.
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During the review process of the manuscript to which this chapter refers (see [111]), we encountered
an error in the proof of the conditions (4.21), (4.22). Due to the lack of time, we are compelled
to require them in the form of the following assumption. The search for suitable techniques to
derive such properties will be the subject of a future study.

Assumption 4.5.4. Given θ ∈ (0, 1], there exist β0 > 0 and β1 > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b1(vh, qh)
‖qh‖0,h ‖vh‖1,h

≥ β1, inf
qh∈Qh

sup
vh∈Vh

b0(vh, qh)
‖qh‖0,h ‖vh‖1,h

≥ β0.

Section 4.7 includes numerical experiments testing and confirming the validity of Assumption 4.5.4.

Theorem 4.5.5. Let us require that Assumption 4.5.4 holds. For m ∈ {0, 1}, given θ ∈ (0, 1],
there exists a unique solution (uh, ph) ∈ V �

h ×Qh of (4.9) satisfying the stability estimates (4.23).

Proof. It suffices to verify the hypotheses of Proposition 4.5.1. Conditions (4.16), (4.19), (4.20) are
implied by Lemma 4.5.3. The continuity bounds (4.17), (4.18) readily follow from the definitions of
‖·‖1,h and ‖·‖0,h. Finally, conditions (4.17), (4.18) hold because required by Assumption 4.5.4.

4.6 A priori error estimates
The goal of this section is to demonstrate that the errors, for both the velocity and pressure
fields, achieve optimal a priori convergence rates in the topologies induced by the norms ‖·‖1,h
and ‖·‖0,h, respectively.

Lemma 4.6.1. Let us require that Assumption 4.5.4 holds. Let (u, p) ∈ H 3
2 +ε(Ω) × H1(Ω),

ε > 0, and (uh, ph) ∈ Vh × Qh be the solutions of (4.2) and (4.9) with m ∈ {0, 1}. Then, for
every (uI , pI) ∈ Vh ×Qh the following estimates hold.

‖uh − uI‖1,h ≤
1
α

(
Ma ‖u− uI‖1,h +

∥∥∥h 1
2D (u−Rvh(uI)) n

∥∥∥
L2(ΓD)

+Mb1 ‖p− pI‖0,h

)
+ 1
βm

(
1 + Ma

α

)
Mbm ‖u− uI‖1,h ,

‖ph − pI‖0,h ≤
1
β1

(
1 + Ma

α

)(
Ma ‖u− uI‖1,h +

∥∥∥h 1
2D (u−Rvh(uI)) n

∥∥∥
L2(ΓD)

+Mb1 ‖p− pI‖0,h

)
+ Ma

βmβ1

(
1 + Ma

α

)
Mbm ‖u− uI‖1,h .

Proof. Let m ∈ {0, 1} and (uI , pI) ∈ Vh × Qh be arbitrary. By linearity (uh − uI , ph − pI) ∈
Vh ×Qh satisfies the saddle point problem

ah(uh − uI , vh) + b1(vh, ph − pI) = FI(vh), ∀ vh ∈ Vh,
bm(uh − uI , qh) = GI,m(qh), ∀ qh ∈ Qh,

(4.24)

where

FI(vh) :=
∫

Ω
(D (u− uI) : Dvh −

∫
ΓD

D (u−Rvh(uI)) n · vh + b1(vh, p− pI)

−
∫

Ω
(u− uI) ·DRvh(vh)n + γ

∫
ΓD

h−1 (u− uI) · vh, vh ∈ Vh,

GI,m(qh) :=bm(u− uI , qh), qh ∈ Qh.
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For the sake of completeness, let us show the first line of (4.24). Note that the second line follows
immediately. Recall from (4.2) and (4.3) that F (vh) =

∫
ΩDu : Dvh −

∫
ΓD Dun · vh + b1(vh, p)

and u
∣∣∣
ΓD

= uD. Hence

ah(uh − uI , vh) + b1(vh, ph − pI) = Fh(vh)− ah(uI , vh)− b1(vh, pI)

=F (vh)−
∫

Ω
uD ·DRvh(vh)n + γ

∫
ΓD

h−1uD · vh −
∫

Ω
DuI : Dvh

+
∫

ΓD
DRvh(uI)n · vh +

∫
ΓD

uI ·DRvh(vh)n− γ
∫

ΓD
h−1uI · vh − b1(vh, pI)

=
∫

Ω
D (u− uI) : Dvh −

∫
ΓD

D (u−Rvh(uI)) n · vh + b1(vh, p− pI)

−
∫

ΓD
(u− uI) ·DRvh(vh)n + γ

∫
ΓD

h−1 (u− uI) · vh.

Using the stability estimates (4.23), respectively for m = 0, 1, we get

‖uh − uI‖1,h ≤
1
α
‖FI‖−1,h + 1

βm

(
1 + Ma

α

)
‖GI,m‖−0,h ,

‖ph − pI‖0,h ≤
1
β1

(
1 + Ma

α

)
‖FI‖−1,h + Ma

βmβ1

(
1 + Ma

α

)
‖GI,m‖−0,h .

We conclude since, by definition of dual norm, we have

‖FI‖−1,h ≤Ma ‖u− uI‖1,h +
∥∥∥h 1

2D (u−Rvh(uI)) n
∥∥∥
L2(ΓD)

+Mb1 ‖p− pI‖0,h ,

‖GI,m‖−0,h ≤Mbm ‖u− uI‖1,h .

Theorem 4.6.2. Let us require that Assumption 4.5.4 holds. Let (u, p) ∈Ht (Ω)×Hr (Ω), t ≥ 2
and r ≥ 1, be the solution to problem (4.2). Then, the discrete solution (uh, ph) ∈ V �

h ×Qh of
the stabilized problem (4.9) satisfies

‖u− uh‖1,h + ‖p− ph‖0,h ≤ Cmh
min{s,`}

(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
,

where s := min{k, t− 1} if � = RT, s := min{k+ 1, t− 1} if � = N, and ` := min{k+ 1, r}, and
Cm > 0 depends on the choice m ∈ {0, 1} through the constants appearing in Lemma 4.6.1.

Proof. Given (uI , pI) ∈ V �
h ×Qh, we proceed by triangular inequality:

‖u− uh‖1,h ≤‖u− uI‖1,h + ‖uh − uI‖1,h , (4.25)
‖p− ph‖0,h ≤‖p− pI‖0,h + ‖ph − pI‖0,h . (4.26)

Using Lemma 4.6.1, we obtain

‖u− uh‖1,h ≤‖u− uI‖1,h + 1
α

(
Ma ‖u− uI‖1,h +

∥∥∥h 1
2D (u−Rvh(uI)) n

∥∥∥
L2(ΓD)

+Mb1 ‖p− pI‖0,h

)
+ 1
βm

(
1 + Ma

α

)
Mbm ‖u− uI‖1,h ,

‖p− ph‖0,h ≤‖ph − pI‖0,h + 1
β1

(
1 + Ma

α

)(
Ma ‖u− uI‖1,h +

∥∥∥h 1
2D (u−Rvh(uI)) n

∥∥∥
L2(ΓD)

+Mb1 ‖p− pI‖0,h

)
+ Ma

βmβ1

(
1 + Ma

α

)
Mbm ‖u− uI‖1,h .
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Let us choose uI := Π�
Vh

u and pI := ΠQhp so that, by Proposition 4.4.10 and Theorem 4.4.12,
we obtain

‖u− uh‖1,h ≤Cvh
s ‖u‖Ht(Ω) + 1

α
max{Ma, 1,Mb1}Chmin{s,`}

(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
+ 1
βm

(
1 + Ma

α

)
MbmCvh

s ‖u‖Ht(Ω) ,

‖p− ph‖0,h ≤Cqh
` ‖p‖Hr(Ω)

+ 1
β1

(
1 + Ma

α

)
max{Ma, 1,Mb1}Chmin{s,`}

(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
+ Ma

βmβ1

(
1 + Ma

α

)
MbmCvh

s ‖u‖Ht(Ω) .

4.7 Numerical tests
The main goal of the following numerical experiments is to validate the convergence results of
the Theorem 4.6.2 and to validate the inf-sup condition that we have not been able to prove
theoretically.

To prevent the conditioning number of the linear system from being excessively corrupted by
the presence of basis functions whose support barely intersects the physical domain, a left-right
Jacobi preconditioner is employed. This approach helps for improving the conditioning, but, as
previously discussed in Chapter 2, does not completely solve the problem of its dependence on
the trimming configuration. A more sophisticated approach has been proposed in [49].

4.7.1 Pentagon

Let us consider as computational domain the pentagon Ω = Ω0 \ Ω1, where Ω0 = Ω̂0 and Ω1 is
the triangle of vertices (0, 0.25 + ε)− (0, 1)− (0.75− ε, 1) as illustrated in Figure 4.1(b). Here
ε = 10−13. The following functions are chosen as manufactured solutions for the velocity and
pressure fields:

u =
(
xy3,x4 − y4

4

)
, p = pfun −

1
|Ω|

∫
Ω
pfun, where pfun = x3 cos(x) + y2 sin(x).

Dirichlet boundary conditions are weakly enforced on the boundary sides unfitted with the mesh,
while on the rest, they are imposed in the strong sense (we recall from Remark 4.2.2 that, for
the Raviart-Thomas and Nédélec element, we need to impose the tangential components in a
weak sense). We compare, for different isogeometric elements, the well-posedness and accuracy of
the non-symmetric, i.e., with m = 0, non-stabilized and stabilized formulations, (4.3) and (4.9)
respectively, for k = 2 and γ = 20 (k + 1)2 (the dependency of the penalty parameter on the
degree is coherent with [57]). The threshold parameter θ is set equal to 1,i.e., all cut elements
are stabilized.

In Table 4.1 we see the values of the inf-sup constants β0, β1, computed as in [15], in the
non-stabilized and stabilized cases (subscripts ns and s respectively) for the different choices of
the isogeometric element (superscripts RT, N and TH). In the stabilized case, we observe that the
inf-sup constants lost their dependence on how the mesh is trimmed. In Figure 4.4 the accuracy
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of the non-stabilized and stabilized formulations are compared. We observe a clear improvement
in the pressure error between the non-stabilized and the stabilized case.

h 2−1 2−2 2−3 2−4 2−5 2−6

βRT
0,ns 0.2437 1.6450e-07 2.3014e-07 3.2638e-07 4.6166e-07 6.5221e-07
βRT

1,ns 0.2699 2.8358e-07 3.9759e-07 5.5849e-07 7.8738e-07 1.1108e-06
βRT

0,s 0.4103 0.1740 0.2032 0.1850 0.1588 0.1635
βRT

1,s 0.3923 0.2088 0.2397 0.2440 0.2441 0.2442
βN

0,ns 0.2714 1.6541e-07 2.3212e-07 3.2900e-07 4.6583e-07 6.5811e-07
βN

1,ns 0.3178 3.6259e-07 5.0472e-07 7.0780e-07 9.9752e-07 1.4077e-06
βN

0,s 0.4142 0.2430 0.2902 0.2803 0.2809 0.2676
βN

1,s 0.4118 0.2564 0.2979 0.3089 0.3096 0.3096
βTH

0,ns 0.2672 1.6728e-07 2.3504e-07 3.3295e-07 4.7052e-07 4.7052e-07
βTH

1,ns 0.2768 4.8359e-07 6.8222e-07 9.6265e-07 1.3581e-06 1.9189e-06
βTH

0,s 0.3374 0.2836 0.2853 0.2853 0.2853 0.2853
βTH

1,s 0.2994 0.2755 0.2789 0.2802 0.2807 0.2809

Table 4.1 – Inf-sup constant for the pentagon: stabilized vs non-stabilized formulations with
k = 2.

4.7.2 Mapped pentagon

Let us perform an experiment similar to the previous one, this time with a non-linear isogeometric
mapping F. We consider Ω = Ω0 \ Ω1, where Ω0 = F

(
(0, 1)2) is the quarter of annulus

parametrized by a biquadratic NURBS F, and Ω1 = F(T ), with T the triangle with vertices
(0, 0.25 + ε), (0, 1), (0.75− ε, 1), see Figure 4.6(a). We compare the inf-sup stability of the non-
stabilized and the stabilized formulations (4.3) and (4.9) respectively, for different degrees and
isogeometric elements, θ = 1 (we stabilize at all cut elements), and ε = 10−13. Dirichlet boundary
conditions are imposed on the whole boundary, weakly on the unfitted parts. From Figure 4.5
we observe that the inf-sup constants of the stabilized formulation behave much better than the
ones of the non-stabilized formulation. The order of magnitude of the inf-sup constants in the
non-stabilized case are of the same order of the ones in Table 4.1.

4.7.3 Rotating square

Let us consider the same geometrical setting of Test C3 in Section 2.4.4. We embed Ω =
(0.19, 0.71) × (0.19, 0.71) into Ω0 = (0, 1)2, the latter subdivided with a Cartesian grid of 8
elements per direction, and rotate Ω around its barycenter for different angles α, as illustrated in
Figure 4.6(b). We choose a threshold parameter θ = 0.75, and, for each angle α ∈ {i π200 : i =
0, . . . , 100}, we compute the inf-sup constants β0 and β1 in the stabilized and non-stabilized cases.
For every configuration we compute η := min

K∈Mh

|K ∩ Ω| and in Figure 4.7 we plot the inf-sup
constants with respect to η for the Raviart-Thomas, the Nédélec, and the Taylor-Hood elements
of degree k = 2. In most configurations, we can observe that the constants corresponding to the
stabilized formulation perform better than those of the non-stabilized formulation, specially for
small values of η.

Furthermore, we notice a greater efficiency, i.e., a greater difference between stabilized and
non-stabilized cases, when using the Taylor-Hood element. The configurations corresponding to a
smaller η do not necessarily give rise to a worse inf-sup constant. Although stabilization does not
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non-stabilized stabilized
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Figure 4.4 – Convergence errors for the pentagon with k = 2.
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k = 1 stab. k = 2 stab. k = 3 stab. k = 4 stab. k = 5 stab.
k = 1 no stab. k = 2 no stab. k = 3 no stab. k = 4 no stab. k = 5 no stab.
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(b) Nédélec.
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(c) Taylor-Hood.

Figure 4.5 – Inf-sup constant for the mapped pentagon.

Ω

F

Ω̂

(a) Mapped pentagon. (b) Rotating square
for α ∈ {0, π10 , π5 , 3π

10 , 2π
5 , π2 }.

Figure 4.6 – Trimmed domains.
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always seem to "beat" the non-stabilized method, we observe that the configurations in which the
non-stabilized inf-sup constant is greater than the stabilized one are, in general, the ones with
bigger values of η, which are not the most critical ones.

non-stabilized stabilized
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(f) β0 with TH.

Figure 4.7 – Inf-sup constants vs. the measure of the “smallest cut element”.
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4.7.4 Square with circular trimming

Let us set up another numerical experience where the physical domain is Ω = Ω0 \ Ω1 with
Ω0 = (0, 2)× (0, 2) and Ω1 = B(0, r), r = 0.52, as depicted in Figure 4.8(a). We take as reference
solution fields

u =
(

2y3 sin(x),x3 sin(x)− y4 cos(x)
2 − 3x2 cos(x)

)
, p = x3y2

2 + y3

2 ,

where u is a solenoidal vector field. We impose Neumann boundary conditions on the straight
trimmed sides {(0, y) : 0 ≤ y ≤ 2}, {(x, 0) : 0 ≤ x ≤ 2} and on the rest of the boundary we impose
Dirichlet boundary conditions, enforced in a weak sense on {(r cos θ, r sin θ) : 0 ≤ θ ≤ π

2 }. We

Ω

(a) Bézier mesh. (b) |div uh| for h = 2−4.

Figure 4.8 – Square with circular trimming.

solve using the non-symmetric stabilized formulation (4.9), discretized with the Raviart-Thomas
element, with different degrees k = 1, 2, 3, 4, 5, penalty parameter γ = 10 (k + 2)2, and threshold
parameter θ = 1. The convergence results, validating the error estimates of Theorem 4.6.2,
are shown in Figure 4.9, while the divergence of the discrete velocity field uh, for k = 3 and
h = 2−4, has been plotted in Figure 4.8(b). As already observed in Remark 4.4.9, our numerical
scheme does not preserve exactly the incompressibility constraint since divV RT

h 6⊂ Qh. From
Figure 4.8(b), we can observe that the divergence of the numerical solution for the velocity is
polluted in the vicinity of the trimmed boundary.

4.7.5 Stokes flow around a cylinder

We consider a classic benchmark example in computational fluid dynamics, i.e., the so-called
two-dimensional flow around a cylinder, proposed by [16] and already seen in the context of
immersogeometric methods in [76]. The incompressible flow of a fluid around a cylinder placed
in a channel is studied. The physical domain is Ω = Ω0 \ Ω1, where Ω0 = (0,L) × (0,H) and
Ω1 = B(x0,R) with L = 2.2, H = 0.41, x0 = (0.2, 0.2) and R = 0.05. Let us observe that Ω1
is not symmetric with respect to Ω0. As Dirichlet boundary condition on the inflow boundary
{(0, y) : 0 ≤ y ≤ H} a parabolic horizontal profile is prescribed:

u(0, y) =
(

4Umy (H − y) /H2

0

)
,

where Um = 0.3 is the maximum magnitude of the velocity field. Stress free boundary conditions,
i.e., uN = 0, are imposed on the outflow boundary {(L, y) : 0 ≤ y ≤ H}, while no slip boundary
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(c) Divergence of the velocity error.

Figure 4.9 – Convergence errors for the Square with circular trimming with the Raviart-Thomas
element.

conditions are imposed on the rest of the boundary. No external forces act on the fluid flow, i.e.,
f = 0.

Let us set k = 3, γ = 10 (k + 1)2 and consider the mesh configuration depicted in Figure 4.10,
with 26 elements in the x-direction and 24 elements in the y-direction. In Figure 4.11 we show
the magnitude of the velocity field and the pressure in the case of the stabilized formulation (4.3)
for m = 0 with the Nédélec isogeometric element. Note that both the velocity and pressure fields
do not show any spurious oscillations around the trimmed part of the boundary and seem to
comply with their physical meaning.

4.7.6 Lid-driven cavity

The lid-driven cavity is another important benchmark for the Stokes problem where the incompress-
ible flow in a confined volume is driven by the tangential in-plane motion of two opposite bounding
walls [67, 129]. Here, the cavity is represented by the trimmed domain Ω = (−1, 1) × (−3, 3)
immersed in Ω0. Ω0 is the rectangle with vertices (−3,−3.5), (3,−3.5), (3, 3.5), (−3, 3.5) rotated
of π6 counterclockwise around the origin. No-slip Dirichlet boundary conditions are imposed on
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Ωinflow outflow

Figure 4.10 – Bézier mesh for the flow around a cylinder.

(a) Magnitude of the velocity.

(b) Pressure.

Figure 4.11 – Numerical solutions of the non-symmetric stabilized formulation (4.9) for the flow
around a cylinder with the Nédélec element.

the left and right sides of the cavity, while the top and bottom ones are walls sliding, respectively,
to the right and left with unitary velocity magnitude, namely we enforce the non-homogenous
Dirichlet boundary conditions

u (x, 3) =
(

1
0

)
on {(x, 3) : x ∈ [−1, 1]}, u (x,−3) =

(
−1
0

)
on {(x,−3) : x ∈ [−1, 1]}.

Since the Dirichlet boundary conditions have a jump at the corners, the trace of the solution
for the velocity does not belong to H 1

2 (Γ), hence u 6∈H1(Ω). The applied body force is f = 0.
We solve the problem by using the non-symmetric stabilized formulation (4.9), discretized using
the Taylor-Hood element, with degree k = 2, penalty parameter γ = 30 (k + 1)2 and mesh-sizes
hx = hy = 2−5 along the first and second parametric directions respectively. The mesh employed
for the numerical simulation is depicted in Figure 4.12(a). In Figures 4.12(b), 4.12(c) the numerical
solutions for the velocity and the pressures are plotted: our results are qualitatively in accordance
with the ones of [28, 67].
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Ω

u = (1, 0)

u = (−1, 0)

no-slip b.c. no-slip b.c.

(a) Bézier mesh for the lid-driven cavity. (b) Velocity. (c) Pressure.

Figure 4.12 – Numerical solutions of the non-symmetric stabilized formulation (4.9) for the
lid-driven cavity with the Taylor-Hood element.
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5 Stabilized isogeometric discretiza-
tion of the Stokes problem on
union geometries
This chapter considers the isogeometric discretization of the Stokes problem in geometries obtained
through a union operation. The computational domain is described as a collection of spline
patches overlapping each other according to a fixed hierarchy. The discretization of the problem
is based on the weak imposition of transmission conditions between the domain interfaces through
the Nitsche method. As in the previous chapters, suitable strategies to address the integration,
conditioning, and stability issue need to be provided. Still, the construction of integration routines
in the cut elements and the design of a robust preconditioning strategy take a back seat in this
chapter. As before, we borrow the integration technique of [4] and apply a simple left-right
diagonal preconditioner to the resulting linear system. Our focus is instead the search for an
appropriate stabilization technique.

Our numerical scheme is based on the combination of the techniques developed in Chapters 3
and 4. In particular, we stabilize the evaluation of the normal derivatives of the velocity at
the interface and modify the space of the pressure corresponding to the “bad” cut elements.
Under the assumption that some local inf-sup conditions hold for every patch, we prove the
well-posedness of the stabilized formulation and optimal a priori error estimates.

Let us sketch the outline of the chapter. In Section 5.1, we introduce the notation and the
geometrical setting. Section 5.2 is devoted to the proofs of stability and convergence of the
method. Finally, in Section 5.3 we present some numerical experiments confirming the theoretical
results.

5.1 Parametrization, mesh and approximation spaces for
domains obtained via union operations

Throughout this section, we will briefly recall some of the notations already defined in Sec-
tions 1.3, 3.1. Hence we refer the reader to that part of the manuscript for more details.

Let Ω∗i ⊂ Rd, 0 ≤ i ≤ N , with N ∈ N, d ∈ {2, 3}, be spline patches, i.e., Ω∗i = Fi(Ω̂), where
Fi ∈

(
Spi
αi1,...,αi

d

(Ξi)
)d

and, as usual, Ω̂ := (0, 1)d, for given degree vector pi, regularity indices
αi1, . . . ,αid, and knot-vector at the coarsest level of discretization Ξi. Hence, each patch has an
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underlying Bézier meshM∗i , naturally induced by the map Fi. For every 0 ≤ i ≤ N , we define

V ∗,RT
h,i :={vh : ιiv(vh) ∈ V̂ RT

0,h }, V ∗,Nh,i := {vh : ιiv(vh) ∈ V̂ N
0,h}, V ∗,TH

h,i := {vh : vh ◦ Fi ∈ V̂ TH
0,h },

Q∗,RT
h,i =Q∗,Nh,i := {qh : ιip(qh) ∈ Q̂0,h}, Q∗,TH

h,i := {qh : qh ◦ Fi ∈ Q̂0,h},

and the Piola transformations

ιiv :H(div; Ω∗i )→H(div; Ω̂), ιiv (v) := det (DFi)DF−1
i (v ◦ Fi) ,

ιip :L2(Ω∗i )→ L2(Ω̂), ιip(q) := det (DFi) (q ◦ Fi) .

Let us consider the union domain Ω, namely Ω = ∪Ni=0Ω∗i . We assume that it has Lipschitz
boundary Γ with outer unit normal n. Moreover, for every 0 ≤ i ≤ N , Ωi will denote the visible
part of Ω∗i , i.e.,

Ωi := Ω∗i \
N⋃

`=i+1
Ω∗` , i = 0, . . . ,N .

The unit outer normal on Γi is denoted as ni. We define the visible part of the external boundary
of Ω∗i as

Γi := ∂Ω∗i \
N⋃

`=i+1
Ω∗` , i = 0, . . . ,N ,

and, similarly, the local interfaces Γij as

Γij := Γi ∩ Ωj , 0 ≤ j < i ≤ N .

See Figure 3.1(b) for an example. We require every interface Γij to have either non-zero (d− 1)-
measure or to be the empty set. The outer unit normal on Γij inherits the orientation of Γi, hence
it is denoted as ni. We also denote it as n when it is clear from the context to which domain is
referred to. Note that Γij is not connected in general. Let us also point out that integrals and
norms will be defined on sets like Γij , Γij ∩K and they are meant to be on their interior in a
suitable sense. To simplify our analysis, we will adopt Assumptions 3.1.1, 3.1.4, and 3.1.5.

Let us recall the definitions of some quantities relating to the patches’ configuration upon which
our method’s stability constants will depend.

Definition 5.1.1. Let 0 ≤ j < i ≤ N , and

δij :=
{

1 if Γij 6= ∅,
0 otherwise.

For each 1 ≤ i ≤ N , the quantity
∑i−1
j=0 δij counts the number of visible parts Ωj whose

boundaries are overlapped by Γi and, for 0 ≤ j ≤ N − 1,
∑N
i=j+1 δij the number of visible

parts whose boundaries overlap Γj . We further define N↓Γ := max1≤i≤N
∑i−1
j=0 δij , the maximum

number of visible parts whose boundaries are overlapped by any visible boundary, and N↑Γ :=
max0≤j≤N−1

∑N
i=j+1 δij , the maximum number of visible parts whose boundaries cover any

visible boundary. Hence, we let NΓ := max{N↓Γ,N↑Γ} be the maximum number of boundary
overlaps in the current configuration. See Figure 3.2 for some examples.

Definition 5.1.2. We let Oij := Ωi ∩ Ω∗j , 0 ≤ j < i ≤ N , be the overlap between the j-th
predomain and the i-th visible part. For every 0 ≤ j < i ≤ N , we define

ηij :=
{

1 if Oij 6= ∅,
0 otherwise.
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For each 1 ≤ i ≤ N , the quantity
∑i−1
j=0 ηij counts the number of predomains covered by the visible

part Ωi. We further define NO := max1≤i≤N
∑i−1
j=0 ηij , the maximum number of predomains

covered by any visible part. See Figure 3.2 for some examples.

We denote asMi := {K ∈M∗i : K ∩ Ωi 6= ∅}, i = 0, . . . ,N , the i-th extended mesh, consisting
of all visible elements of the i-th premeshM∗i . For i = 0, . . . ,N , we denote Gh,i the collection of
cut elements ofMi, namely Gh,i := {K ∈ Mi : K ∩

(
Γi \ ∂Ω∗i

)
6= ∅}. We define hi : Ωi → R+

to be the piecewise constant mesh size function of Mi assigning to each visible element its
whole diameter, namely hi

∣∣∣
K∩Ω

:= hi,K , where hi,K := diam (K) for every K ∈Mi, 0 ≤ i ≤ N .
Moreover let us denote hi := maxK∈Mi

hi,K and h := max0≤i≤N hi. Finally, we denote by
h : Ω→ R+ the piecewise constant function defined as h

∣∣∣
Ωi

:= hi.

Throughout this chapter, C will denote generic positive constants that may change with each
occurrence throughout the chapter but are always independent of the local mesh size, the position
of the visible interfaces with respect to the meshes, and the number of patches, unless otherwise
specified.

5.2 Isogeometric discretization on overlapping multipatch
domains

5.2.1 Model Problem and its variational formulation

Let Γ = ΓD ∪ ΓN , where ΓD and ΓN are non-empty, open, and disjoint. We consider the Stokes
problem in the union domain Ω. Given f ∈ L2(Ω), uD ∈H

1
2 (ΓD) and uN ∈H−

1
2 (ΓN ), we look

for the velocity u : Ω→ Rd and the pressure p : Ω→ R such that

−divσ(u, p) = f , in Ω,
div u = 0, in Ω,

u = uD, on ΓD,
σ(u, p)n = uN , on ΓN ,

(5.1)

where σ(u, q) := µDu − pI is the Cauchy stress tensor and µ ∈ R, µ > 0, is the viscosity
coefficient. For the sake of simplicity of the notation, let us set µ ≡ 1.

We rewrite problem (5.1) in the following multi-patch form. Find u : Ω → Rd and p : Ω → R
such that

−divσ(ui, pi) = f , in Ωi, i = 0, . . . ,N , (5.2a)
div ui = 0, in Ωi, i = 0, . . . ,N , (5.2b)

ui − uj = 0, on Γij , 0 ≤ j < i ≤ N , (5.2c)
σ(ui, pi)ni + σ(uj , pj)nj = 0, on Γij , 0 ≤ j < i ≤ N , (5.2d)

ui = uD, on ΓD ∩ Γi, i = 0, . . . ,N , (5.2e)
σ(ui, pi)ni = uN , on ΓN ∩ Γi, i = 0, . . . ,N , (5.2f)

where ui := u
∣∣∣
Ωi
, pi := p

∣∣∣
Ωi
, i = 0, . . . ,N . Equations (5.2c) and (5.2d) are commonly known

as transmission conditions at the local interfaces.

Proposition 5.2.1. Problems (5.1) and (5.2a)–(5.2f) are equivalent.
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Proof. To demonstrate this result, the variational formulation of the two problems must be used.
We refer the interested reader to Chapter 5 of [113].

Let us introduce, for each visible part Ωi, the local isogeometric spaces

V �
h,i :={vh

∣∣∣
Ωi

: vh ∈ V ∗,�h,i }, Q�
h,i := {qh

∣∣∣
Ωi

: qh,i ∈ Q∗,�h,i },

and glue them to form the union isogeometric spaces

V �
h :=

N⊕
i=0

V �
h,i, Q�

h :=
N⊕
i=0

Q�
h,i,

where � ∈ {RT, N, TH}. To further alleviate the notation, we adopt the convention to denote as
Vh the space of the velocities and omit the superscript � ∈ {RT, N, TH} when what said does
not depend from the particular finite element choice. Elements of Vh and Qh are (N + 1)-tuples
vh = (v0, . . . , vN ) and qh = (q0, . . . , qN ), respectively. In practice, we can treat them as ordinary
functions thanks to the embeddings

Vh ↪→ L2(Ω), vh(x) 7→ vi(x), x ∈ Ωi, i = 0, . . . ,N ,
Qh ↪→ L2(Ω), qh(x) 7→ qi(x), x ∈ Ωi, i = 0, . . . ,N .

In order to strongly impose Dirichlet boundary conditions, let us adopt Assumption 3.2.2. In
case Assumption 3.2.2 does not hold, we can combine the technique in this chapter with that
detailed in [111] and in Chapter 4 to deal with the imposition of Dirichlet boundary conditions
in a weak sense.

Let ϕ : Ω → R be smooth enough and, for every 0 ≤ i ≤ N , we denote its restriction to Ωi as
ϕi := ϕ

∣∣∣
Ωi
. Then, for every interface Γij , 0 ≤ j < i ≤ N , and a.e. x ∈ Γij , we define, respectively,

the average and the jump of ϕ as

〈ϕ〉t,Γij (x) :=tϕi
∣∣∣
Γij

(x) + (1− t)ϕj
∣∣∣
Γij

(x), t ∈ {1
2 , 1},

[ϕ]Γij (x) :=ϕi
∣∣∣
Γij

(x)− ϕj
∣∣∣
Γij

(x).

We may remove the subscript Γij when it is clear from the context to which interface we refer
to. The average is said to be symmetric if t = 1

2 and one-sided when t = 1. We define the jump
and average of a vector valued function τ : Ω→ Rd componentwise by letting 〈τ 〉t,k := 〈τk〉t and
[τ ]k := [τk], for 0 ≤ k ≤ d.

Let us endow Vh and Qh with the mesh dependent norms:

‖vh‖21,h :=
N∑
i=0
‖Dvi‖2L2(Ωi) +

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
, vh ∈ Vh,

‖qh‖20,h :=
N∑
i=0
‖qi‖2L2(Ωi) +

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 [qh]

∥∥∥2

L2(Γij)
, qh ∈ Qh.

We propose the following weak formulation for the discrete counterpart of problem (5.2a)–(5.2f),
which is obtained enforcing the transmission conditions in a weak sense using Nitsche’s method.

Find (uh, ph) ∈ V uD
h ×Qh such that

ah(uh, vh) + b(vh, qh) = F (vh), ∀ vh ∈ V 0
h ,

b(uh, qh) = 0, ∀ qh ∈ Qh,
(5.3)
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where

ah(wh, vh) :=
N∑
i=0

∫
Ωi
Dwi : Dvi −

N∑
i=1

i−1∑
j=0

∫
Γij

(〈Dwhn〉t [vh] + [wh] 〈Dvhn〉t)

+ γ

N∑
i=1

i−1∑
j=0

∫
Γij

h−1 [wh] [vh] , wh, vh ∈ Vh,

b(vh, qh) :=−
N∑
i=0

∫
Ωi
qi div vi +

N∑
i=1

i−1∑
j=0

∫
Γij
〈qh〉t[vh · n], vh ∈ Vh, qh ∈ Qh,

with t ∈ { 1
2 , 1}, and

F (vh) :=
N∑
i=0

∫
Ωi

f · vi +
∫

ΓN
uN · vh, vh ∈ Vh.

Here, γ > 0 is a penalty parameter related to the spline degree. V uD
h and V 0

h denote the discrete
spaces with boundary conditions; see Section 1.3.

Proposition 5.2.2. The discrete variational formulation in equation (5.3) is consistent, i.e., the
solution (u, p) ∈H 3

2 +ε(Ω)× L2(Ω), ε > 0, of problem (5.1) satisfies problem (5.3) as well.

Proof. The proof is quite standard. See, for instance, Chapter 5 of [113].

5.2.2 Stabilization procedure

It has been shown in Chapter 4 that problem (5.3), in the case of only one trimmed subdomain,
may suffer from instability. This is primarily due to two factors. On the one hand, the evaluation
of the normal derivatives of the velocity is not stable along the boundaries of the bad cut elements,
and on the other hand, the functions related to the pressure in the bad cut elements cause
instabilities in turn. In the two-patch situation, such as in Figure 3.3(a), we do not have the
instability issue caused by the velocity as soon as we use the one-sided flux from top elements
that are not cut. Nevertheless, as for the Poisson problem, we do have this issue in general cases
with many patches; see Figure 3.3(b), where the one-sided flux regarding the interface Γij comes
from the red element, which may be a bad cut element. Note that the instabilities caused by the
pressure are intrinsic and cannot be mitigated with the choice of t.

In this regard, the stabilization procedure, developed in the previous chapters, comes to help.
In what follows, we need to accommodate this method in the context of the Stokes problem on
multi-patches that overlap.

For each extended Bézier meshMi, i = 0, . . . ,N − 1, we partition its elements into two disjoint
sub-families, the collection Mg

i of the good elements, i.e., the ones with a sufficiently large
“active” part, and the collection Mb

i of the bad elements, namely the ones which are barely
visible, according to a threshold parameter θ ∈ (0, 1], as explained in Definition 3.2.5. For every
i = 0, . . . ,N − 1 and to every bad element K ∈Mb

i we associate a good neighboring element K ′
and denote the set of its good neighbors as N (K), see Definition 3.2.6.

The following assumption is not restrictive and is satisfied whenever the meshes of the patches
are sufficiently refined, and we take C large enough in (3.6).

Assumption 5.2.3. For every K ∈Mb
i , 0 ≤ i < N , there exist i ≤ k ≤ N and K ′ ∈ N (K)∩Mg

k.
From now on we will refer to such K ′ as a good neighbor of K.
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For every K ∈ Mb
i , 0 ≤ i < N , its associated good neighbor K ′ is chosen according to the

procedure described in Algorithm 1 in Section 3.2.3.

As already observed, if Algorithm 1 does not produce any output, then it suffices to relax
the definition of the good neighbor by taking a larger constant C in (3.6). We observe that
formulation (5.3) is well-posed if there are no cut elements, i.e., Gh,k = ∅, for every 0 ≤ k ≤ N .
In the general case Gh,k 6= ∅, for some 0 ≤ k < N , the goal of the stabilization is, informally
speaking, to extend the stability of the discrete formulation from the internal elements of the
visible parts of the patches up to their cut elements.

Let us start by stabilizing the pressure. For 0 ≤ j < i ≤ N , ` ∈ {i, j}, let us define Rp` : Qh →
L2(Ω`) locally. For every qh ∈ Qh and K ∈M` such that K ∈ Gh,`, we distinguish two cases:

• if K ∈Mg
` , then

Rp` (qh)
∣∣∣
K

:= q`

∣∣∣
K

,

• if K ∈Mb
`, then

Rp` (qh)
∣∣∣
K

:= EK′,K
(

ΠK′

(
qk

∣∣∣
K′

)) ∣∣∣
K

,

where ΠK′ : L2(K ′) → Qk(K ′) is the L2-orthogonal projection onto the space of tensor
product polynomials defined on the good neighbor K ′ and EK′,K : Qk(K ′)→ Qk(K ∪K ′)
is the canonical polynomial extension.

Lemma 5.2.4 (Stability properties of Rp` ). Given θ ∈ (0, 1], there exist CS,1,CS,2 > 0 such that,
for every 0 ≤ j < i ≤ N , K ∈M`, ` ∈ {i, j}, and qh ∈ Qh, we have∥∥∥h

1
2
` R

p
` (qh)

∥∥∥
L2(Γij∩K)

≤ CS,1 ‖qk‖L2(K′∩Ω) , ‖Rp` (qh)‖
L2(K∩Ω`) ≤ CS,2 ‖qk‖L2(K′∩Ω) ,

where K ′ ∈Mg
k is a good neighbor of K if K ∈Mb

`, K ′ = K if K ∈Mg
` .

Proof. The proof is analogous to the one of Proposition 4.4.3, hence we skip it.

Proposition 5.2.5. There exists C > 0, depending on NΓ and C, such that for every qh ∈ Qh,
we have

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 [Rpij(qh)]

∥∥∥2

L2(Γij)
≤ C

N∑
i=0
‖qh‖2L2(Ωi) ,

where [Rpij(qh)] := Rpi (qh)
∣∣∣
Γij
− Rpj (qh)

∣∣∣
Γij

, for 0 ≤ j < i ≤ N , and C was introduced in
Definition 3.2.7.

Proof. The proof is a consequence of Lemma 5.2.4. We skip it since it follows the same lines of
Proposition 3.2.10. The constant C will depend on the choice of the isogeometric element.

Now, let us move to the velocity. For 0 ≤ j < i ≤ N , ` ∈ {i, j}, let us define Rv` : Vh → L2(Ω`)
locally. For every vh ∈ Vh and K ∈M` such that K ∈ Gh,`, we distinguish two cases:

• if K ∈Mg
` , then

Rv` (vh)
∣∣∣
K

:= v`
∣∣∣
K

,
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• if K ∈Mb
`, then

Rv` (vh)
∣∣∣
K

:= EK′,K
(
ΠK′

(
vk
∣∣∣
K′

)) ∣∣∣
K

,

where ΠK′ : L2(K ′)→ Vk(K ′) is the L2-orthogonal projection,

Vk(K) :=
{

Sk(K) if � = RT,
(Qk+1(K))d if � ∈ {N, TH},

Sk(K) :=
{

Qk+1,k(K)×Qk,k+1(K) if d = 2,
Qk+1,k,k(K)×Qk,k+1,k(K)×Qk,k,k+1(K) if d = 3,

and EK′,K : Vk(K ′)→ Vk(K ∪K ′) is the canonical polynomial extension.

We denote, for 0 ≤ j < i ≤ N such that Γij 6= ∅ and t ∈ { 1
2 , 1},

〈DRvij(vh)n〉t := tDRvi (vh) ni
∣∣∣
Γij

+ (1− t)DRvj (vh) nj
∣∣∣
Γij

. (5.4)

In the previous definition, we used the spaces Vh and Vh,`. Let us point out that the stabilization
operators Rv` are equally defined for the spaces with zero boundary conditions V 0

h and V 0
h,`,

0 ≤ ` ≤ N , as well.

Lemma 5.2.6 (Stability property of Rv` ). Given θ ∈ (0, 1], there exists C > 0 such that for every
0 ≤ j < i ≤ N , K ∈M`, ` ∈ {i, j}, and vh ∈ Vh, we have∥∥∥h

1
2
` DR

v
` (vh)n`

∥∥∥
L2(Γij∩K)

≤ C ‖Dvk‖L2(K′∩Ω) ,

where K ′ ∈Mg
k is a good neighbor of K if K ∈Mb

`, K ′ = K if K ∈Mg
` .

Proof. We refer the interested reader to the proof of Proposition 4.4.4.

Proposition 5.2.7. There exists C > 0, depending on NΓ and on C, such that, for every
vh ∈ Vh,

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈DRvh(vh)n〉t

∥∥∥
L2(Γij)

≤ C
N∑
i=0
‖Dvi‖L2(Ωi)

Proof. This result is a direct consequence of Lemma 5.2.6 and is the vectorial counterpart of
Proposition 3.2.10, hence we omit its proof.

We introduce the following stabilized space for the pressures.

Qh = {ϕh ∈ L2(Ω) : ∃ qh ∈ Qh such that ϕh
∣∣∣
K

= qh

∣∣∣
K
∀ K ∈Mg

i

and ϕh
∣∣∣
K

= Rph(qh)
∣∣∣
K
∀ K ∈Mb

i ,∀ 0 ≤ i ≤ N}.

We can finally propose our stabilized weak formulation.

Find (uh, ph) ∈ V uD
h ×Qh such that

ah(uh, vh) + b(vh, qh) = F (vh), ∀ vh ∈ V 0
h ,

b(uh, qh) = 0, ∀ qh ∈ Qh,
(5.5)
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where

ah(wh, vh) :=
N∑
i=0

∫
Ωi
Dwi : Dvi −

N∑
i=1

i−1∑
j=0

∫
Γij

(
〈DRvij(wh)n〉t [vh] + [wh] 〈DRvij(vh)n〉t

)
+ γ

N∑
i=1

i−1∑
j=0

∫
Γij

h−1 [wh] [vh] , wh, vh ∈ Vh,

b(vh, qh) :=−
N∑
i=0

∫
Ωi
qi div vi +

N∑
i=1

i−1∑
j=0

∫
Γij
〈qh〉t[vh · n], vh ∈ Vh, qh ∈ Qh,

with t ∈ { 1
2 , 1}, and

F (vh) :=
N∑
i=0

∫
Ωi

f · vi +
∫

ΓN
uN · vh, vh ∈ Vh.

As before γ > 0 is a penalty parameter scaling as the spline degree of the velocity.

5.2.3 Interpolation and approximation properties of the discrete spaces

Before analyzing problem (5.5), we need some technical results. Let us proceed as in Chapter 3.
Giving a Sobolev function living in the whole physical domain Ω, we consider its restrictions to
the predomains Ω∗i in order to be able to interpolate on each premeshM∗i , restrict them in their
turn to the visible parts Ωi, and finally glue together the interpolated functions.

Let us start with the velocity. We construct a quasi-interpolant operator for each local space Vh,i.
Given � ∈ {RT, N, TH} and m ≥ 1, for every i ∈ {0, . . . ,N}, we denote

Πi,�
Vh

: Hm(Ωi)→ V �
h,i, v 7→ Πi,∗,�

Vh

(
v
∣∣∣
Ω∗
i

) ∣∣∣∣
Ωi

,

where Πi,∗,�
Vh

: Hm(Ω∗i )→ V ∗,�h,i is a standard quasi-interpolant operator [19, 30]. Then, we glue
together the local operators as

Π�
Vh

: Hm(Ω)→ V �
h , v 7→

N⊕
i=0

Πi,�
Vh

(vi) ,

where vi(x) := v(x) for every x ∈ Ωi, i = 0, . . . ,N . For the pressures, given r ≥ 1, we introduce
the local quasi-interpolants

Πi,�
Qh

: Hr(Ωi)→ Q�
h,i, q 7→ Πi,∗,�

Qh

(
q
∣∣∣
Ω∗
i

) ∣∣∣∣
Ωi

,

where Πi,∗,�
Qh

: Hr(Ω∗i ) → Q∗,�h,i is a standard quasi-interpolant operator. We glue together the
local operators for the pressures as

Π�
Qh

: Hr(Ω)→ Q
�
h , q 7→ Rph

(
N⊕
i=0

Πi,�
Qh

(qi)
)

,

where qi(x) := q(x) for every x ∈ Ωi, i = 0, . . . ,N .
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Proposition 5.2.8 (Interpolation error estimate). There exist Cv,Cp > 0 such that, for every
(v, q) ∈Hm(Ω)×Hr(Ω), m ≥ 1 and r ≥ 1, it holds∥∥∥v−Π�

Vh
v
∥∥∥

1,h
≤ Cvhs ‖v‖Hm(Ω) , ‖q −ΠQhq‖0,h ≤ Cph

` ‖q‖Hr(Ω) ,

where s := min{k,m−1} if � = RT, s := min{k+1,m−1} if � ∈ {N, TH}, and ` := min{k+1, r}.

Proof. The proof follows from the best approximation properties of the local quasi-interpolant
operators Πi

Vh
and Πi

Qh
, 0 ≤ i ≤ N , namely Theorem 4.4.12.

Lemma 5.2.9 (Approximation property of Rv` ). There exists C > 0, depending on NΓ, NO, and
C, such that, for every v ∈Hm(Ω), m ≥ 2, it holds

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈DRvij

(
Π�
Vh

(v)
)

n−Dvn〉t
∥∥∥2

L2(Γij)
≤ Ch2s ‖v‖2Hm(Ω) ,

where s := min{k,m− 1} if � = RT and s := min{k + 1,m− 1} if � ∈ {N, TH}.

Proof. The proof follows the same lines of the one of Proposition 3.2.13.

5.2.4 Well-posedness of the stabilized formulation

Since we do not know how to prove an inf-sup condition for b(·, ·), it will be convenient for
the subsequent analysis to reframe the Nitsche formulation as a stabilized Lagrange multiplier
method, as done in [126]. In doing so, we find a formulation equivalent to (5.5), but whose
well-posedness is easier to prove.

Remark 5.2.10. We observe that if we find a strategy for proving the inf-sup condition for
the b1(·, ·) form of Chapter 4, then we would likely have a technique for being able to prove the
inf-sup condition for b(·, ·).

First of all, we observe that the transmission conditions at the interfaces (5.2b) and (5.2c) can
be enforced by introducing a Lagrange multiplier living in Λ :=

⊕
0≤j<i≤N H

− 1
2

00 (Γij), where,

for 0 ≤ j < i ≤ N , H−
1
2

00 (Γij) :=
(
H

1
2
00(Γij)

)′
and H

1
2
00(Γij) := {ϕ ∈ L2(Γij) : ϕ̃ ∈ H 1

2 (Γj)}, ϕ̃
denoting the extension by zero of ϕ ∈ L2(Γij) on Γj \ Γij (see Chapter 11 of [121]). Let Λh be a
discrete subspace of Λ large enough such that, for every (vh, qh) ∈ Vh ×Qh, it holds

h−1[vh]
∣∣∣
Γij

, 〈DRvij(vh)n〉t
∣∣∣
Γij

, 〈qhn〉t
∣∣∣
Γij
∈ Λh, ∀ 0 ≤ j < i ≤ N , t ∈ {1

2 , 1}. (5.6)

For instance, let

Λ�
h :=

⊕
0≤j<i≤N

Λ�
ij , Λ�

ij := W�
h (Γij) + L�

h (Γij)n +N�
h (Γij)n, (5.7)
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for � ∈ {TH,RT,N}, where

W�
h (Γij) :={h−1wh

∣∣∣
Γij

: wh = ŵh ◦ F−1
` if � = TH, wh = (ι`v)−1(ŵh) if � ∈ {RT,N},

ŵh ∈ Vk(Q), ∀ K = F(Q) ∈M` ∩ Gh,`, ` ∈ {i, j}},

L�
h (Γij) :={Dwh

∣∣∣
Γij

: wh = ŵh ◦ F−1
` if � = TH, wh = (ι`v)−1(ŵh) if � ∈ {RT,N},

ŵh ∈ Vk(Q), ∀ K = F(Q) ∈Mg
` ∩ Gh,`, wh ∈ Vk(K), ∀ K ∈Mb

` ∩ Gh,`, ` ∈ {i, j}},

N�
h (Γij) :={ϕh

∣∣∣
Γij

: ϕh = ϕ̂h ◦ F−1
` if � = TH, ϕh = (ι`p)

−1(ϕ̂h) if � ∈ {RT, N}, ϕ̂h ∈ Qk(Q),

∀ K = F`(Q) ∈Mg
` ∩ Gh,`, ϕh ∈ Qk(K), ∀ K ∈Mb

` ∩ Gh,`, ` ∈ {i, j}}.

It is easy to check that (5.7) satisfies conditions (5.6) . Moreover, Λh 6= ∅. We endow Λh with
the mesh-dependent norm

‖µh‖2− 1
2 ,h :=

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
, µh ∈ Λh.

Let us introduce the following stabilized augmented Lagrangian formulation.

Find (uh, ph,λh) ∈ V uD
h ×Qh × Λh such that

Ah ((uh, ph,λh) ; (vh, qh,µh)) = F (vh, qh,µh) , ∀ (vh, qh,µh) ∈ V 0
h ×Qh × Λh, (5.8)

where, for (wh, rh,ηh) , (vh, qh,µh) ∈ Vh ×Qh × Λh,

Ah((wh, rh,ηh) ; (vh, qh,µh)) := a(wh, vh) + b0(vh, rh) + bΓ(vh,ηh)
+ b0(wh, qh) + bΓ(wh,µh)

−
N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h
(
ηh + 〈DRvij(wh)n〉t − 〈rhn〉t

) (
µh + 〈DRvij(vh)n〉t − 〈qhn〉t

)
,

F (vh, qh,µh) :=F (vh), a(wh, vh) :=
N∑
i=0

∫
Ωi
Dwi : Dvi,

b0(vh, qh) :=−
N∑
i=0

∫
Ωi
qi div vi, bΓ(vh,µh) :=

N∑
i=1

i−1∑
j=0

∫
Γij
µh[vh].

Proposition 5.2.11. Let Λh be defined as in (5.7). Then, problem (5.8) is equivalent to the
stabilized Nitsche formulation (5.5).

Proof. We can reformulate problem (5.8) as follows.

Find (uh, ph,λh) ∈ V uD
h ×Qh × Λh such that

a(uh, vh) + b0(vh, ph) + bΓ(vh,λh)

−
N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h
(
λh + 〈DRvij(uh)n〉t − 〈phn〉t

)
〈DRvij(vh)n〉t = F (vh), ∀ vh ∈ V 0

h ,

b0(uh, qh) +
N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h
(
λh + 〈DRvij(uh)n〉t − 〈phn〉t

)
〈qh〉t = 0, ∀ qh ∈ Qh,

bΓ(uh,µh)−
N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h
(
λh + 〈DRvij(uh)n〉t − 〈phn〉t

)
µh = 0, ∀ µh ∈ Λh.
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From the third equation, we can statically condensate the Lagrange multiplier as λh =
N∑
i=1

i−1∑
j=0

λij ,

where

λij =
N∑
i=1

i−1∑
j=0

γPij
(
h−1[uh]

)
− Pij

(
〈DRvij (uh) n〉t

)
+ Pij (〈phn〉t) ,

where Pij : L2(Γij)→ Λij is the L2-orthogonal projection. By substituting it back to the first
and second equations and using (5.7), we recover the desired formulations.

Remark 5.2.12. Let us observe that formulation (5.8) no longer falls within the class of saddle-
point problems; hence their well-posedness needs to be proved directly by showing the invertibility
of the arising global systems through the so-called Banach-Neças-Babuška Theorem [54]. On the
other hand, we are no longer bound to satisfy an inf-sup condition, and for this reason, we are free
to choose the Lagrange multiplier space large enough so that the hypotheses of Proposition 5.2.11
are satisfied.

A fundamental ingredient for our numerical analysis is that the following local inf-sup conditions
are satisfied on each visible part of the domain.

Assumption 5.2.13. For every 0 ≤ i ≤ N , let us equip Vh,i with

‖vi‖21,h,i := ‖Dvi‖2L2(Ωi) +
N∑

k=i+1

∥∥∥h− 1
2 vi
∥∥∥2

L2(Γki)
+

i−1∑
j=0

∥∥∥h− 1
2 vi
∥∥∥2

L2(Γij)
, vi ∈ Vh,i, (5.9)

and Qh
∣∣∣
Ωi

with ‖·‖L2(Ωi). We assume that, for every 0 ≤ i ≤ N , there exist C1,i,C2,i > 0 such

that, for every qi ∈ Qh
∣∣∣
Ωi
, there exists vi ∈ Vh,i such that

−
∫

Ωi
qi div vi ≥ C1,i ‖qi‖2L2(Ωi) , ‖vi‖1,h,i ≤ C2,i ‖qi‖L2(Ωi) . (5.10)

Remark 5.2.14. We observe that, because of Remark 4.4.6, the inf-sup condition for b0(·, ·),
expressed in (4.22), can be interpreted as a special case of Assumption 5.2.13. In Chapter 4, we
saw that, although we cannot prove such a condition, numerical experiments seem to confirm
that it holds in practice.

The following Lemma provides a norm equivalence result for the space of stabilized pressures,
useful for the proof of the inf-sup stability of b0(·, ·).

Lemma 5.2.15. There exists C > 0 such that

N∑
i=0
‖qi‖2L2(Ωi) ≤ ‖qh‖

2
0,h ≤ C

N∑
i=0
‖qi‖2L2(Ωi) , ∀ qh ∈ Qh. (5.11)

Proof. Let us take qh ∈ Qh. By definition,

‖qh‖20,h =
N∑
i=0
‖qi‖2L2(Ωi) +

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 [qh]

∥∥∥2

L2(Γij)
.
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Hence, we use Proposition 5.2.5 so that

‖qh‖20,h ≤C
N∑
i=0
‖qi‖2L2(Ωi) ,

where, in particular, C depends on NΓ, C, and θ. The other inequality trivially holds.

The following inf-sup condition for b0(·, ·) is a key ingredient for the proof of the well-posedness
of formulation (5.8).

Lemma 5.2.16. Under Assumption 5.2.13, given θ ∈ (0, 1], there exists β0 > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b0(vh, qh)
‖vh‖1,h ‖qh‖0,h

≥ β0. (5.12)

Proof. We prove that there exist C1,C2 > 0 such that, for every qh ∈ Qh, there exists vh ∈ Vh
such that

b0(vh, qh) ≥ C1 ‖qh‖20,h , ‖vh‖1,h ≤ C2 ‖qh‖0,h .

Let us fix qh := (q0, . . . , qN ) ∈ Qh. From Assumption 5.2.13, there exist C1,i,C2,i > 0 and vi ∈
Vh,i, 0 ≤ i ≤ N , such that (5.10) holds. Let vh := (v0, . . . , vN ). By letting C1 := min0≤i≤N C1,i,
we have

b0(vh, qh) ≥ C1

N∑
i=0
‖qi‖2L2(Ωi) .

On the other hand, from the Young inequality,

‖vh‖21,h ≤
N∑
i=0
‖Dvi‖2L2(Ωi) + 2

 N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 vi
∥∥∥2

L2(Γij)
+

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 vj
∥∥∥2

L2(Γij)

 .

Notice that
∑N
i=1
∑i−1
j=0

∥∥∥h− 1
2 vj
∥∥∥2

L2(Γij)
=
∑N−1
i=0

∑N
k=i+1

∥∥∥h− 1
2 vi
∥∥∥2

L2(Γki)
. Hence, from the defi-

nition of ‖·‖1,h,i (5.9) and Assumption 5.2.13, it holds

‖vh‖21,h ≤ C
N∑
i=0
‖vi‖21,h,i ≤ C

2
2

N∑
i=0
‖qi‖2L2(Ωi) , (5.13)

where C2 := (CC̃) 1
2 and C̃ := max0≤i≤N C2,i. We conclude by taking C1 := C1C

−1 and
C2 := C2, where C > 0 come from Lemma 5.2.15. In particular, note that C depends on θ.

Let us indirectly study the well-posedness of the problem (5.5) by showing that (5.8) verifies the
hypotheses of the so-called Banach-Neças-Babuška Theorem [54]. The proof of the next result is
given in Appendix A.2.

Theorem 5.2.17. Under Assumption 5.2.13, there exists γ > 0 and C > 0 such that, for every
γ ≥ γ,

inf
(vh,qh,µh)∈Vh×Qh×Λh

sup
(wh,rh,ηh)∈Vh×Qh×Λh

Ah ((wh, rh,ηh) ; (vh, qh,µh))
|||(wh, rh,ηh)||||||(vh, qh,µh)||| ≥ C, (5.14)

where |||·||| is the Euclidean product norm on Vh ×Qh × Λh.
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We can characterize the existence, uniqueness, and stability for the solution of problem (5.5) as
follows.

Proposition 5.2.18. (i) There exists γ > 0 such that, for every fixed γ ≥ γ, there exists
Ma > 0 such that

|ah(wh, vh)| ≤Ma ‖wh‖1,h ‖vh‖1,h , ∀ wh, vh ∈ Vh.

(ii) There exists α > 0 such that, for every γ ≥ γ,

α ‖vh‖21,h ≤ ah(vh, vh), ∀ vh ∈ kerB,

where kerB := {vh ∈ Vh : b(vh, qh) = 0, ∀ qh ∈ Qh}.

(iii) There exists Mb > 0 such that

|b(vh, qh)| ≤Mb ‖vh‖1,h ‖qh‖0,h , ∀ vh ∈ Vh,∀ qh ∈ Qh.

(iv) There exists β > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)
‖vh‖1,h ‖qh‖0,h

≥ β.

(v) There exists MF > 0 such that

|F (vh)| ≤MF ‖vh‖1,h , ∀ vh ∈ Vh.

Conditions (i)-(v) hold if and only there exists a unique solution (uh, ph) of (5.5). Moreover,

‖uh‖1,h ≤
1
α
‖F‖−1,h , ‖ph‖0,h ≤

1
β

(
1 + Ma

α

)
‖F‖−1,h , (5.15)

where ‖·‖−1,h denotes the dual norm with respect to ‖·‖1,h.

Proof. This is a standard result. See, for instance, Theorem 3.4.1 in [22].

Remark 5.2.19. The most natural way to demonstrate the stability of problem (5.5) would have
been to check one by one the necessary and sufficient conditions provided by Proposition 5.2.18.
We observe that conditions (iii), (v) follow trivially from the definition of the norms ‖·‖0,h and
‖·‖1,h. Conditions (i), (ii) can be proved in an analogous way to Theorem 3.2.16. In particular,
Ma and α will depend on NΓ, C, and, of course, on θ, and one could get the coercivity on the
whole space Vh. On the other hand, it is unclear how to prove iv, even assuming that local inf-sup
conditions hold. In this sense, going through the Banach-Neças-Babuška condition allows us to
circumvent the problem, thanks to the fact that Lemma 5.2.16 holds.

Theorem 5.2.20. Under Assumption 5.2.13, given θ ∈ (0, 1], there exists a unique solution
(uh, ph) ∈ V uD

h ×Qh of the stabilized problem (5.5) satisfying the stability estimates (5.15).

Proof. From Theorem 5.2.17 there exists a unique solution (uh, ph,λh) ∈ V uD
h ×Qh×Λh of (5.8).

Thanks to Proposition 5.2.11, (uh, ph) is the unique solution of problem (5.5). The stability
estimates follow from Proposition 5.2.18.
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5.2.5 A priori error estimates

The goal of this section is to demonstrate that the errors, for both the velocity and pressure
fields, achieve optimal a priori convergence rates in the topologies induced by the norms ‖·‖1,h
and ‖·‖0,h, respectively.

Lemma 5.2.21. Given θ ∈ (0, 1], let (u, p) ∈H 3
2 +ε(Ω)× L2(Ω), ε > 0, and (uh, ph) ∈ Vh ×Qh

be the solutions to (5.1) and (5.5), respectively. Then, for every
(
uI , pI

)
∈ Vh×Qh, the following

estimates hold.

∥∥uh − uI
∥∥

1,h ≤
1
α

(
Ma

∥∥u− uI
∥∥

1,h +
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈D

(
u−Rvij(uI)

)
n〉t
∥∥∥
L2(Γij)

+Mb

∥∥p− pI∥∥0,h

)
+ 1
β

(
1 + Ma

α

)
Mb

∥∥u− uI
∥∥

1,h ,

∥∥ph − pI∥∥0,h ≤
1
β

(
1 + Ma

α

)(
Ma

∥∥u− uI
∥∥

1,h +
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈D

(
u−Rvij(uI)

)
n〉t
∥∥∥
L2(Γij)

+Mb

∥∥p− pI∥∥0,h

)
+ Ma

β2

(
1 + Ma

α

)
Mb

∥∥u− uI
∥∥

1,h .

Proof. Let us fix
(
uI , pI

)
∈ Vh × Qh. By linearity

(
uh − uI , ph − pI

)
∈ Vh × Qh satisfies the

saddle point problem

ah(uh − uI , vh) + b(vh, ph − pI) = F I(vh), ∀ vh ∈ V 0
h ,

b(uh − uI , qh) = GI(qh), ∀ qh ∈ Qh,
(5.16)

where, for every (vh, qh) ∈ V 0
h ×Qh,

F I(vh) :=
N∑
i=0

∫
Ωi
D(ui −DuIi ) : Dvh −

N∑
i=1

i−1∑
j=0

∫
Γij

(
〈D
(
u−Rvij(uI)

)
n〉t[vh]

+ 〈DRvij(vh)n〉t[u− uI ]
)

+ γ

N∑
i=1

i−1∑
j=0

∫
Γij

h−1[uh − uI ][vh] + b(vh, ph − pI),

GI(qh) :=b(u− uI , qh).

Let us show the first line of (5.16). Note that the second line follows immediately. Let vh ∈ V 0
h .

From Proposition 5.2.2, we know F (vh) = ah(u, vh) + b(vh, p). Hence,

ah(uh − uI , vh) + b(vh, ph − pI) = F (vh)− ah(uI , vh)− b(vh, pI)
=ah(u, vh)− ah(uI , vh) + b(vh, p− pI)

=
N∑
i=0

∫
Ωi
D(ui −DuIi ) : Dvh −

N∑
i=1

i−1∑
j=0

∫
Γij

(
〈D
(
u−Rvij(uI)

)
n〉t[vh]

+ 〈DRvij(vh)n〉t[u− uI ]
)

+ γ

N∑
i=1

i−1∑
j=0

∫
Γij

h−1[uh − uI ][vh] + b(vh, ph − pI).
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Using standard the stability estimates (5.15), we get

∥∥uh − uI
∥∥

1,h ≤
1
α

∥∥F I∥∥−1,h + 1
β

(
1 + Ma

α

)∥∥GI∥∥−0,h ,

∥∥ph − pI∥∥0,h ≤
1
β

(
1 + Ma

α

)∥∥F I∥∥−1,h + Ma

β2

(
1 + Ma

α

)∥∥GI∥∥−0,h ,

‖·‖−1,h and ‖·‖−0,h being the dual norms induced by ‖·‖1,h and ‖·‖0,h, respectively. Hence,

∥∥F I∥∥−1,h ≤Ma

∥∥u− uI
∥∥

1 +
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈D

(
u−Rvij(uI)

)
n〉t
∥∥∥
L2(Γij)

+Mb

∥∥p− pI∥∥0,h ,∥∥GI∥∥−0,h ≤Mb

∥∥u− uI
∥∥
−1,h .

Theorem 5.2.22. Under Assumption 5.2.13, given θ ∈ (0, 1], let (u, p) ∈Hm (Ω)×Hr (Ω), m ≥
2 and r ≥ 1, be the solution to problem (5.1). Then, the discrete solution (uh, ph) ∈ V �,uD

h ×Q�
h

of the stabilized problem (5.5) satisfies

‖u− uh‖1,h + ‖p− ph‖0,h ≤ Ch
min{s,`}

(
‖u‖Hm(Ω) + ‖p‖Hr(Ω)

)
,

where s := min{k,m− 1} if � = RT, s := min{k + 1,m− 1} if � ∈ {N, RT}, ` := min{k + 1, r},
and C > 0 depends on the constants appearing in Lemma 5.2.21.

Proof. Given
(
uI , pI

)
∈ V �

h ×Qh, we proceed by triangular inequality:

‖u− uh‖1,h ≤
∥∥u− uI

∥∥
1,h +

∥∥uh − uI
∥∥

1,h ,

‖p− ph‖0,h ≤
∥∥p− pI∥∥0,h +

∥∥ph − pI∥∥0,h .
(5.17)

Using Lemma 5.2.21, we obtain:

‖u− uh‖1,h ≤
∥∥u− uI

∥∥
1,h + 1

α

Ma

∥∥u− uI
∥∥

1,h +
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈D

(
u−Rvij(uI)

)
n〉t
∥∥∥
L2(Γij)

+Mb ‖p− pI‖0,h

+ 1
β

(
1 + Ma

α

)
Mb

∥∥u− uI
∥∥

1,h ,

‖p− ph‖0,h ≤
∥∥ph − pI∥∥0,h + 1

β

(
1 + Ma

α

)Ma

∥∥u− uI
∥∥

1,h +
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈D

(
u−Rvij(uI)

)
n〉t
∥∥∥
L2(Γij)

+Mb

∥∥p− pI∥∥0,h

+ Ma

β2

(
1 + Ma

α

)
Mb

∥∥u− uI
∥∥

1,h .

Let us choose uI := Π�
Vh

u and pI := Π�
Qh
p so that, by Proposition 5.2.8, and Lemma 5.2.9, we
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obtain

‖u− uh‖1,h ≤Ch
s
(
‖u‖Hm(Ω)

)
+ 1
α

max{Ma, 1,Mb}Chmin{s,`}
(
‖u‖Hm(Ω) + ‖p‖Hr(Ω)

)
+ 1
β

(
1 + Ma

α

)
MbCh

s ‖u‖Hm(Ω) ,

‖p− ph‖0,h ≤Ch
` ‖p‖Hr(Ω) + 1

β

(
1 + Ma

α

)
max{Ma, 1,Mb}Chmin{s,`}

(
‖u‖Hm(Ω) + ‖p‖Hr(Ω)

)
+ Ma

β2

(
1 + Ma

α

)
MbCh

s ‖u‖Hm(Ω) .

5.3 Numerical example

We consider as computational domain Ω = (0, 1)2 constructed as Ω = Ω0 ∪ Ω1, where Ω0 is Ω
itself and Ω1 is the quadrilateral of vertices (0.125, 0.125 + ε), (0.875− ε, 0.875), (0.375− ε, 0.875),
(0.125, 0.625 + ε), where ε > 0 is a parameter that we can control (see Figure 5.1). We note that
in the overlapped meshM0 some elements of measure ε2 appear. This numerical experiment
aims to show that the stabilized formulation is robust to the degeneracy of the overlapping
configuration, i.e., as ε goes to 0. Let us solve problem (5.5) in Ω, enforcing Dirichlet boundary
conditions on {(0, y) : 0 ≤ y ≤ 1}, {(1, y) : 0 ≤ y ≤ 1} and Neumann boundary conditions on
{(x, 0) : 0 ≤ x ≤ 1}, {(x, 1) : 0 ≤ x ≤ 1}. We borrow the reference solution from Example 4.1.1
of [94], namely

u =
(

2ex (−1 + x)2
x2(y2 − y)(−1 + 2y),−ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2

)
,

p =− 424 + 156e+ (y2 − y)(−456 + ex(456 + x2(228− 5(y2 − y))))
+ 2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y)).

We use the Taylor-Hood isogeometric element, use t = 1
2 , which corresponds to the symmetric

(a) Initial coarse mesh. (b) Refined mesh.

Figure 5.1 – Meshes configuration.

average, and choose threshold parameter θ = 1, i.e., we stabilize at all cut elements. The chosen
penalty parameter is γ = 10(k + 2)2. The arising linear system is preconditioned with a left-right
block-diagonal preconditioner corresponding to a rescaling with respect to ‖·‖0,h and ‖·‖1,h. In
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5.3. Numerical example

Figure 4.11 we plot the numerical solutions for the velocity and the pressure, and we can see
the underlying mesh used for the numerical quadrature as well. We fix ε = 10−12 and perform
five dyadic refinements starting from the coarse mesh depicted in Figure 5.1(a). The error for
the velocity and the pressure fields are shown in Figure 5.3 for degrees 2 and 3. The need for
stabilization is observable from the error for the pressure. Note that the latter behaves in a
similar way to the single patch trimmed case; see Section 4.7.1. The convergence rates for the
stabilized case agree with the ones predicted by Theorem 5.2.22. In Figure 5.4 we also compare
the condition numbers of the stabilized and non-stabilized formulations when the degree is k = 2.
In Figure 5.4(a) we fix ε = 10−12 and perform four dyadic refinement of the coarse meshes of
Figure 5.1(a). In Figure 5.4(b) we fix the mesh sizes (one refinement of the mesh depicted in
Figure 5.1(a)) and decrease the value of ε. We observe that the stabilization helps in reducing
the dependence of the condition number from ε.

(a) Magnitude of the first
component of the velocity.

(b) Magnitude of the second
component of the velocity.

(c) Pressure.

Figure 5.2 – Numerical solutions.

109



Chapter 5. Stabilized isogeometric discretization of the Stokes problem on union
geometries
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Figure 5.3 – Convergence errors.
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Figure 5.4 – Conditioning study.
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Summary of Part I
In the first part of the dissertation, we studied the isogeometric discretization of PDEs on
geometries coming from CAD software and constructed via Boolean operations. In our ideal
setting, we restrict ourselves to computational domains of Rd, d ∈ {2, 3}, obtained via trimming
and union operations. The significant contributions of the thesis lie on the theoretical side, and
as far as the numerical side is concerned, we restricted ourselves to the case d = 2.

We started by tackling the Poisson problem on trimmed domains. Our approach is a fictitious
domain method making use of the Nitsche framework [103] for the imposition of the Dirichlet
boundary conditions. The main contribution is a novel stabilization method to recover the
well-posedness of the discrete weak formulation of the problem. In this procedure, the elements
are first divided into “good elements” (sufficient intersection with the physical domain) and “bad
elements” (insufficient intersection with the physical domain). Our method does not modify
the basis functions and does not add any stabilization parameters to calibrate. It modifies the
evaluation of the normal derivatives that appear in the discrete variational formulation at the
bad elements by replacing them with the evaluation at a “good neighboring element”.

We also considered the Poisson problem on geometries obtained via union operations, treated
as multipatch overlapped domains with an underlying hierarchy. We employed a Nitsche-based
mortar formulation to couple the trimmed patches together. This time, the formulation was
unstable due to weak coupling at the interfaces, in particular to the evaluation of the normal
derivatives at the elements cut by the interfaces. We successfully adapted the stabilization
technique developed for the case of a single trimmed geometry. To provide more flexibility to our
method, we allowed the good neighbor, from which we evaluated the normal derivative, to belong
to the mesh of another patch.

Then, we treated the Stokes problem in a trimmed geometry. For the weak imposition of the
essential boundary conditions, we employed the Nitsche method. This time ill-posedness even
led to a lack of accuracy for the pressure in the presence of some unfortunate mesh cuts. The
extension to the vector case of the stabilization for the Poisson problem was sufficient to cure
instabilities due to flux evaluations in the diffusive part of the weak formulation. To restore the
discrete inf-sup stability, we locally modified the pressure space at the bad elements. In this
way, we excluded the basis functions responsible for the instabilities and replaced them with an
extension of those from good neighboring elements.

We considered a Nitsche-based mortar discretization of the Stokes problem in the case of multiple
overlapping spline patches, following the same framework as Poisson’s problem. Similar to Poisson,
we extended the stabilization technique from the trimmed case to the union case, allowing the
good neighbor to be searched in a different mesh.

Several stability and error estimates have been rigorously derived throughout the different sections.
These theoretical results have been confirmed and supported by the numerical experiments at
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Summary of Part I

the end of every chapter.

Let us present some future directions of research that may be interesting to be investigated based
on this part of the thesis.

On the theoretical side, a mathematical proof of the inf-sup stability of the stabilized Nitsche
formulation of the Stokes problem in a trimmed geometry remains an open problem. In particular,
the proof should cover the cases of the Raviart-Thomas, Nédélec, and Taylor-Hood isogeometric
elements. In the specific case of the Raviart-Thomas isogeometric element, it would also be
interesting to understand how to modify the stabilization procedure to retrieve a pointwise
divergence-free numerical solution for the velocity (when g = 0 in (4.2)).

In this manuscript, no sound solution has been provided to the ill-conditioning problem of the
final linear system due to the contribution when dealing with isogeometric methods on cut meshes.
Indeed, as already said, we limited ourselves to applying a simple Jacobi preconditioner. Even
though the stabilization procedure coupled with the diagonal rescaling allows for a significant
improvement of the conditioning, it does not completely solve its dependency on trimming and
overlapping configuration.

From a more practical side, the simulation of problems close to real applications requires extending
our research code to the three-dimensional setting, which is not straightforward. Although the
implementation of our stabilization procedure is readily extendable to the three-dimensional case,
this is not the case for the integration strategy of the cut elements. The problem of deriving
efficient quadrature rules in general curvilinear polyhedra is an active area of research; see, for
instance, [6].
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Part IIWeak imposition of the boundary
conditions for the Darcy flow
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6 The Raviart-Thomas discretiza-
tion of the Darcy problem

The material in this chapter is quite standard. However, we decided to include it as a standalone
chapter to make the exposition of the following chapters lighter and avoid as many overlaps as
possible.

In what follows, integrals, norms, and vector spaces of functions will be defined on sets like K̂,
where K̂ is a closed polyhedron, and they are meant to be on their interior in a suitable sense.

Let Ω be a Lipschitz-regular domain of Rd, d ∈ {2, 3}. We assume its boundary Γ to be partitioned
into Γ = ΓN ∪ ΓD, where ΓD, ΓN are open and disjoint. Let us consider the Darcy problem,
a system of linear PDEs, often associated with a linearized model for the flow of groundwater
through the domain Ω, here representing a saturated porous medium with permeability κ.

Given f ∈ L2(Ω), g ∈ L2(Ω), uN ∈ H−
1
2 (ΓN ), pD ∈ H

1
2 (ΓD), we look for u : Ω → Rd and

p : Ω→ R such that
κ−1u−∇p = f , in Ω,

div u = g, in Ω,
u · n = uN , on ΓN ,

p = pD, on ΓD.

(6.1)

The unknowns u and p represent, respectively, the seepage velocity and the pressure of the fluid.
The first equation of (6.1) is called Darcy law relating the velocity and the pressure gradient of
the fluid, the second one expresses mass conservation, the third and the fourth equations are,
respectively, a essential boundary condition for the velocity field and a natural boundary condition
for the pressure. Moreover, κ ∈ Rd×d is symmetric positive definite with eigenvalues λi such that
0 < λmin ≤ λi ≤ λmax < +∞, for every 1 ≤ i ≤ d.

In order to discretize the problem (6.1), we resort to the theory of mixed finite elements. In
particular, we introduce the classical Raviart-Thomas element [22, 115]. Let us follow the very
classical definition of finite element à la Ciarlet (see [42, 99]). A finite element is defined by a
triple (K,PK , ΣK), where K is a geometric domain, PK a finite-dimensional space of functions,
and ΣK a set of linear functionals on PK , known as degrees of freedom. The Raviart-Thomas
element is a couple of finite elements, one for the velocity and one for the pressure fields, suitable
for the discretization of problem (6.1).

Let (Th)h>0 be a family of triangular or quadrilateral meshes of Ω. For every K ∈ Th, h > 0, let
hK := diam(K) and h := maxK∈Th hK . We assume the mesh family to be shape-regular, i.e.,
there exists σ > 0, independent of h, such that maxK∈Th hK

ρK
≤ σ, ρK being the diameter of the

largest ball inscribed in K.
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Chapter 6. The Raviart-Thomas discretization of the Darcy problem

In the case of triangles and tetrahedra, we consider as reference element K̂ is the unit d-simplex,
i.e., the triangle of vertices (0, 0), (1, 0), (0, 1) if d = 2 and the tetrahedron of vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1) when d = 3. For quadrilaterals, the reference element K̂ is the unit
d-cube [0, 1]d.

Let us construct the spaces of polynomials on the reference element. For the triangular meshes
(see Section 2.3.1 of [22]),

RTk(K̂) :=
(
Pk(K̂)

)d
⊕ xP̃k(K̂), Mk(K̂) := Pk(K̂),

while, in the case of quadrilaterals (see [7] and Section 2.4.1 of [22]), it reads as follows

RTk(K̂) :=
{

Qk+1,k(K̂)×Qk,k+1(K̂), if d = 2,
Qk+1,k,k(K̂)×Qk,k+1,k(K̂)×Qk,k,k+1(K̂), if d = 3,

Mk(K̂) := Qk(K̂).

Remark 6.0.1. For quadrilaterals, RTk(K̂) can equivalently be defined as

RTk(K̂) := Qk(K̂)d ⊕ xQk(K̂).

Let FK : K̂ → K be a diffeomorphism mapping the reference element to a general K ∈ Th. For
triangles we consider an affine bijection FK(x̂) := BK x̂+ bK , where BK ∈ Rd×d is non-singular
and invertible, and bK ∈ Rd. For quadrilateral meshes, an affine mapping would constrain us to
parallelograms, hence we let FK being a bilinear bijection for each component, so that we can
map the reference element to abritrary convex quadrilaterals. The diffeomorphism FK induces
the following pull-back operators.

FpK :L2(K)→ L2(K̂), FpK(q) := |det (DFK)| q ◦ FK , (6.2)
FvK :H(div;K)→H(div; K̂), FvK(v) := |det(DFK)|DF−1

K v ◦ FK . (6.3)

Let us observe that FpK and FvK are isometric isomorphisms (see, for instance, [118]). For the
construction of our discrete spaces, we will use FpK and FvK . The inverse of FvK is commonly
known as the contravariant Piola transform or, more simply, Piola transform, and we denote it
as follows

PK : H(div; K̂)→H(div;K), PK(v̂) := |det (DFK)|−1
DFK v̂ ◦ F−1

K .

We define the following finite-dimensional vector spaces

Vh :=
{

vh ∈H (div; Ω) : FvK
(
vh
∣∣∣
K

)
∈ RTk(K̂), ∀ K ∈ Th

}
=
{

vh ∈H (div; Ω) : vh
∣∣∣
K
∈ RTk(K), ∀ K ∈ Th

}
,

Qh :=
{
qh ∈ L2 (Ω) : FpK

(
qh

∣∣∣
K

)
∈Mk

(
K̂
)

, ∀ K ∈ Th
}

=
{
qh ∈ L2 (Ω) : qh

∣∣∣
K
∈Mk (K) , ∀ K ∈ Th

}
,

where RTk(K) := {PK(ŵh) : ŵh ∈ RTk(K̂)} and Mk(K) := {m̂h ◦ (FpK)−1 : m̂h ∈ Mk(K̂)}.
Remember that in the pure essential case, i.e., Γ = ΓN , we have to filter out the constant
functions from Qh by imposing the zero average constraint.

Instead of exhibiting the degrees of freedom associated with the polynomial spaces RTk and Mk,
let us construct the interpolants associated with them.
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We start with the velocity. For every v ∈Hs(K̂), s > 1
2 , rK̂(v) is uniquely defined by:∫

f̂

r
K̂

(v) · nq̂h =
∫
f̂

v̂ · nq̂h, ∀ q̂h ∈ Ψk(f̂),∫
K̂

r
K̂

(v) · ŵh =
∫
K̂

v̂ · ŵh, ∀ ŵh ∈ Ψk

(
K̂
)

, if k > 0,
(6.4)

where, for triangles,

Ψk

(
K̂
)

:=
(
Pk−1(K̂)

)d
, Ψk(f̂) := Pk(f̂),

and, for quadrilaterals,

Ψk

(
K̂
)

:=
{

Qk−1,k(K̂)×Qk,k−1(K̂), if d = 2,
Qk−1,k,k(K̂)×Qk,k−1,k(K̂)×Qk,k,k−1(K̂), if d = 3,

Ψk

(
f̂
)

:=
{

Pk(f̂), if d = 2,
Qk(f̂), if d = 3,

for all facets (edges if d = 2, faces if d = 3) f̂ of K̂. We define rK : Hs(K)→ RTk(K), s > 1
2 , so

that the diagram in (6.5) commutes, namely rK = (FvK)−1 ◦ r
K̂
◦ FvK = PK ◦ rK̂ ◦ P

−1
K .

Hs(K) rK−−−−→ RTk(K)yFvK

yFvK

Hs(K̂)
r
K̂−−−−→ RTk(K̂),

(6.5)

The global interpolant rh : H(div; Ω) ∩
∏
K∈ThH

s(K)→ Vh, s > 1
2 , is readily defined by gluing

together the local interpolation operators, that is rh
∣∣∣
K

:= rK , K ∈ Th. Let us move to the

pressure case. We start from the reference element K̂, and define Π
K̂

: L2(K̂)→Mk(K̂) which
acts on ξ ∈ L2(K̂) as ∫

K

Π
K̂
ξqh =

∫
K̂

ξqh, ∀ qh ∈Mk(K̂). (6.6)

Then, for a general K ∈ Th, we define ΠK : L2(K) → Mk(K̂) such that the diagram (6.7)
commutes, namely ΠK = (FpK)−1 ◦Π

K̂
◦ FpK .

L2(K) ΠK−−−−→ Mk(K)yFp
K

yFp
K

L2(K̂)
Π
K̂−−−−→ Mk(K̂).

(6.7)

Finally, let Πh : L2 (Ω)→ Qh such that for every K ∈ Th, Πh

∣∣∣
K

:= ΠK .

Remark 6.0.2. Given v ∈ H(div; Ω) ∩
∏
K∈ThH

s(K), s > 1
2 , the degrees of freedom for

r
K̂

(
v
∣∣∣
K̂

)
given by (6.4) are invariant under FvK , for every K ∈ Th. Similarly, given q ∈ L2(Ω),

the degrees of freedom for Π
K̂

(
q
∣∣∣
K̂

)
given by (6.6) are invariant under FpK , for every K ∈ Th.
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Chapter 6. The Raviart-Thomas discretization of the Darcy problem

We now state a key property of the Raviart-Thomas element.

Theorem 6.0.3. The following diagram commutes:

H(div; Ω) ∩
∏
K∈ThH

s(K) div−−−−→ L2(Ω)yrh yΠh

Vh
div−−−−→ Qh.

In particular, it holds divVh = Qh.

Proof. For the commutative diagram note that, for every v ∈ H(div; Ω) ∩
∏
K∈ThH

s(K), it
holds ∫

K

Πh(div v)ϕh =
∫
K

div vϕh = −
∫
K

v · ∇ϕh +
∫
∂K

ϕhv · n

=−
∫
K

rh(v) · ∇ϕh +
∫
∂K

ϕhrh(v) · n

=
∫
K

div rh(v)ϕh, ∀ ϕh ∈Mk(K).

A direct calculation readily shows the inclusion divVh ⊆ Qh. Let us prove the other one. Let
qh ∈ Qh, then, by the surjectivity of the divergence operator [22], there exists v ∈ H1(Ω) ⊂
H(div; Ω) ∩

∏
K∈ThH

s(K) such that div v = qh. Let us define vh := rh(v). Thanks to the
commutativity diagram we have div vh = qh.

We are now ready to discretize (6.1). To incorporate the boundary conditions, we shall define
V 0
h := Vh ∩H0,ΓN (div; Ω) (assuming that the family of meshes is such that no elements’ facet is

shared between ΓD and ΓN ). Moreover, let ũ ∈ H(div; Ω) be such that ũ · n = uN on ΓN in the
sense of traces. We look for (uh, ph) such that uh = u0

h + ũ and (u0
h, ph) ∈ V 0

h ×Qh solves

a(u0
h, vh) + b0(vh, ph) =F (vh), ∀ vh ∈ V 0

h ,
b0(u0

h, qh) =G(qh), ∀ qh ∈ Qh,
(6.8)

where

a(wh, vh) :=
∫

Ω
κ−1wh · vh, wh, vh ∈ Vh,

b(wh, vh) :=
∫

Ω
qh div vh, vh ∈ Vh, qh ∈ Qh,

F (vh) :=
∫

Ω
f · vh +

∫
ΓD

pDvh · n− a(ũ, vh), vh ∈ Vh,

G(qh) :=
∫

Ω
gqh, qh ∈ Qh.

Formulation (6.8) is a consistent discretization of problem (6.1). It is stable in the sense of
Theorem 5.2.5 of [22]. In particular, the inf-sup stability can be proved with the so-called Fortin’s
trick (Proposition 5.4.2 of [22]), thanks to Theorem 6.0.3.
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7 Weak imposition of the essen-
tial boundary conditions for the
Darcy flow: fitted case
This chapter proposes two families of discrete formulations for the weak imposition of the
essential boundary conditions for the Darcy flow. The Raviart-Thomas mixed finite element on
both triangular and quadrilateral meshes is considered for both methods. One is a consistent
discretization depending on a weighting parameter scaling as O(h−1). The other is a penalty-type
formulation obtained as the discretization of a perturbation of the original problem and relies on
a parameter scaling as O(h−(k+1)), k being the order of the Raviart-Thomas space. We rigorously
prove that both methods are stable and result in optimal convergent numerical schemes with
respect to appropriate mesh-dependent norms, although the chosen norms do not scale as the
usual L2-norm. However, we can still recover the optimal a priori L2-error estimates for the
velocity field for high-order and the lowest-order Raviart-Thomas discretizations, for the first and
second numerical schemes, respectively.

Let us briefly sketch the outline of the paper. In Section 7.1 we introduce, respectively, the strong
formulation of the Darcy problem and a singularly perturbed formulation of it. In Section 7.2, the
Raviart-Thomas finite element is introduced together with our two discrete formulations, both
depending on a mesh-dependent weighting parameter. As already mentioned, for the first one,
the penalty parameter is O(h−1), while for the other it is O(h−(k+1)). In Section 7.3, we prove
the desired stability estimates with respect to different mesh-dependent norms, guaranteeing
the well-posedness of the associated problems. Then, in Section 7.4, optimal a priori error
estimates, in terms of the chosen norms, are demonstrated for the velocity and pressure fields. We
recover optimality for the L2-error of the velocity field as well. Finally, some numerical examples
corroborating the theory are provided.

The content of this chapter has been accepted for publication, see [41].

In the following, C will denote generic positive constants that may change with each occurrence
throughout the chapter but are always independent of the mesh size unless otherwise specified.
Given x, y ∈ R, we will write x . y if there exists c > 0, independent on the mesh size, such that
x ≤ cy and x ∼ y if x . y and y . x.

7.1 The Darcy problem and a perturbed formulation

Let Ω be a Lipschitz-regular domain of Rd, d ∈ {2, 3}. We assume its boundary Γ to be partitioned
into Γ = ΓN ∪ ΓD, where ΓD, ΓN are open and disjoint. Let us consider the Darcy problem that
has been introduced in Chapter 6.
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Chapter 7. Weak imposition of the essential boundary conditions for the Darcy
flow: fitted case

Given f ∈ L2(Ω), g ∈ L2(Ω), uN ∈ H−
1
2 (ΓN ), pD ∈ H

1
2 (ΓD), we look for u : Ω → Rd and

p : Ω→ R such that
κ−1u−∇p = f , in Ω,

div u = g, in Ω,
u · n = uN , on ΓN ,

p = pD, on ΓD.

(7.1)

Here, κ ∈ Rd×d is symmetric positive definite with eigenvalues λi such that 0 < λmin ≤ λi ≤
λmax < +∞, for every 1 ≤ i ≤ d.

Remark 7.1.1. We observe that the subscripts N and D (in ΓD, ΓN ) refer to the Dirichlet
and Neumann boundary conditions for the Poisson problem, from which (7.1) can be derived by
duality techniques (see Chapter 1 of [22]). Contrary to the case of the Poisson problem, here, the
boundary conditions for the pressure on ΓD are natural, in the sense that they can be implicitly
enforced in the weak formulation of the problem. In contrast, the boundary conditions for the
velocity on ΓN are essential, i.e., they are imposed on the functional space. Moreover, let us
observe that in the pure essential case Γ = ΓN , in order to have well-posedness, we have to “filter
out” the constant pressures, i.e., the trial and test functions for the pressures are required to lie
in L2

0(Ω), and to impose a compatibility condition on the data:
∫

ΓN uN =
∫

Ω g.

Let us consider the following perturbation of problem (7.1).

Find uε : Ω→ Rd and pε : Ω→ R such that

κ−1uε −∇pε = f , in Ω,
div uε = g, in Ω,

ε−1uε · n = ε−1uN − pε, on ΓN ,
pε = pD, on ΓD.

(7.2)

Note that as ε → 0+ problem (7.2) formally degenerates to (7.1). In this sense (7.2) is a
perturbation of problem (7.1).

In the subsequent analysis we are going to consider, for the sake of simplicity, κ = I the identity
matrix.

Proposition 7.1.2. Let (uε, pε), (u, p) be respectively the solutions to (7.2) and (7.1), and assume
that f ∈H(div; Ω). Then there exists C > 0 such that

‖u− uε‖L2(Ω) ≤ Cε
(
‖div f‖L2(Ω) + ‖g‖L2(Ω) + ‖uN‖

H−
1
2 (ΓN )

+ ‖pD‖
H

1
2 (ΓD)

)
.

Proof. Let us observe that if (u, p) and (uε, pε) solve, respectively, the problems (7.1) and (7.2),
then p and pε are the solutions of

−∆p = −g + div f , in Ω,
∂p

∂n
= uN − f · n, on ΓN ,

p = pD, on ΓD,

(7.3)

and
−∆pε = −g + div f , in Ω,

∂pε

∂n
+ εpε = uN − f · n, on ΓN ,

pε = pD, on ΓD.

(7.4)
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7.1. The Darcy problem and a perturbed formulation

Let δ := p− pε, with p and pε, respectively, the solutions of (7.3) and (7.4), then δ solves

−∆δ = 0, in Ω,

δ + ε−1 ∂δ

∂n
= p, on ΓN ,

δ = 0, on ΓD.

(7.5)

We rewrite (7.5) in variational form.

Find δ ∈ H1
0,ΓD (Ω) such that∫

Ω
∇δ · ∇ϕ+ ε

∫
ΓN

δϕ = ε

∫
ΓN

pϕ, ∀ ϕ ∈ H1
0,ΓD (Ω). (7.6)

Since δ vanishes on a part of the boundary, a Poincaré-like inequality entails ‖δ‖H1(Ω) ≤
CP ‖∇δ‖L2(Ω), with CP > 0 independent of ε. Now, by testing (7.6) with δ, we get

‖∇δ‖2L2(Ω) + ε ‖δ‖2L2(ΓN ) = ε

∫
ΓN

pδ.

The Cauchy-Schwarz, a standard trace inequality, and the Poincaré inequality above imply

‖∇δ‖2L2(Ω) . ε ‖p‖H1(Ω) ‖∇δ‖L2(Ω) .

On the other hand, p solves (7.3), hence

‖∇δ‖2L2(Ω) . ε
(
‖div f‖L2(Ω) + ‖g‖L2(Ω) + ‖uN‖

H−
1
2 (ΓN )

+ ‖pD‖
H

1
2 (ΓD)

)
‖∇δ‖L2(Ω) .

Since u− uε = ∇p+ f − (∇pε + f) = ∇ (p− pε) = ∇δ, then the proof is completed.

Remark 7.1.3. With the extra assumption f · n = 0 on ΓN , it turns out that problems (7.1)
and (7.2) are equivalent to problems (7.3) and (7.4), respectively.

In order to avoid technicalities, let us assume Ω to be a convex domain with a Lipschitz polygonal
boundary, uN = 0 and f · n = 0 on ΓN .

Proposition 7.1.4. Let (uε, pε) be the solution of (7.2) and suppose that Ω is a convex domain
with a Lipschitz polygonal boundary Γ, f · n = 0 on ΓN and uN = 0. Then there exists C > 0,
independent of ε, such that

‖uε‖H1(Ω) ≤ C
(
‖f‖H1(Ω) + ‖g‖L2(Ω) + ‖pD‖

H
1
2 (ΓD)

)
. (7.7)

Proof. For the sake of brevity, we are not giving the details of the proof. As above, observe
that if (uε, pε) solves (7.2), then pε is the solution of (7.4). We first assume that Ω is a convex
C2-domain and, without loss of generality, we put ourselves in the pure essential case Γ = ΓN .
Then the statement follows as a particular case of the a priori inequality of Theorem 3.1.2.3
in [66], which itself is based on the special integration by parts identity of Theorem 3.1.1.1 in [66].
Finally, as observed in Remark 3.2.4.6 in [66], the statement can be generalized to a convex
domain with Lipschitz polygonal boundary, since it can be approximated with a sequence of
convex C2-domains.
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7.2 The finite element discretization
Let (Th)h>0 denote a family of triangular or quadrilateral meshes of Ω. It will be useful to
partition the facets (edges if d = 2 and faces if d = 3) Fh of Th into three collections: the internal
ones F ih and the ones lying on ΓN and on ΓD, grouped, respectively, in F∂h (ΓN ) and F∂h (ΓD),
F∂h = F∂h (ΓN ) ∪ F∂h (ΓD). For every K ∈ Th, h > 0, let hK := diam(K) and h := maxK∈Th hK .
We assume the mesh to be shape-regular, i.e., there exists σ > 0, independent of h, such that
maxK∈Th hK

ρK
≤ σ, ρK being the diameter of the largest ball inscribed in K. Moreover, Th

is supposed to be quasi-uniform in the sense that there exists τ > 0, independent of h, such
that minK∈Th hK ≥ τh. We fix an orientation for the internal faces, given f ∈ F ih such that
f = ∂K1 ∩ ∂K2 we assume that unit normal vector on f points from K1 toward K2. Note that
nothing said from here on will depend on this choice. Let ϕ : Ω→ R be smooth enough so that
for every K ∈ Th its restriction ϕ

∣∣∣
K

can be extended up to the boundary ∂K. Then, for all
f ∈ F ih and every x ∈ f , we define the jump of ϕ as

[ϕ]f (x) := ϕ
∣∣∣
K1

(x)− ϕ
∣∣∣
K2

(x),

where f = ∂K1 ∩ ∂K2. We may remove the subscript f when it is clear from the context to
which facet we refer to.

In order to discretize problem (7.1), we choose the Raviart-Thomas finite element, defined in
Chapter 6, which reads as

Vh := {vh ∈H (div; Ω) : vh
∣∣∣
K
∈ RTk(K) ∀ K ∈ Th},

Qh := {qh ∈ L2 (Ω) : qh
∣∣∣
K
∈Mk (K) ∀ K ∈ Th}.

We refer to Chapter 6 for the definitions of RTk(K) and Mk(K). Remember that in the case
Γ = ΓN , we have to filter out constant discrete pressures by imposing the zero average constraint
to the space Qh.

By proceeding as in Chapter 6, we can construct the interpolation operators rh : H(div; Ω) ∩∏
K∈ThH

s(K)→ Vh, where s > 1
2 , and Πh : L2(Ω)→ Qh, satisfying the following commutative

diagram:
H(div; Ω) ∩

∏
K∈ThH

s(K) div−−−−→ L2(Ω)yrh yΠh

Vh
div−−−−→ Qh.

(7.8)

Diagram (7.8) implies, in particular, divVh = Qh.

We are now ready to introduce the following two discretizations of problem (7.1).

First formulation

Find (uh, ph) ∈ Vh ×Qh such that

ah(uh, vh) + b1(vh, ph) =
∫

Ω
f · vh + h−1

∫
ΓN

uNvh · n +
∫

ΓD
pDvh · n, ∀ vh ∈ Vh,

bm(uh, qh) =
∫

Ω
gqh −m

∫
ΓN

qhuN , ∀ qh ∈ Qh,
(7.9)
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where m ∈ {0, 1}. Here,

ah(wh, vh) :=
∫

Ω
wh · vh + h−1

∫
ΓN

(wh · n)(vh · n), wh, vh ∈ Vh,

bm(wh, qh) :=
∫

Ω
qh div wh −m

∫
ΓN

qhwh · n, wh ∈ Vh, qh ∈ Qh.

In what follows just the analysis for the symmetric case m = 1 will be presented, however
numerical results will be provided for the case m = 0 as well.

Second formulation

Find (uh, ph) ∈ Vh ×Qh such that

aε(uh, vh) + b0(vh, ph) =
∫

Ω
f · vh + ε−1

∫
ΓN

uNvh · n +
∫

ΓD
pDvh · n, ∀ vh ∈ Vh,

b0(uh, qh) =
∫

Ω
gqh, ∀ qh ∈ Qh.

(7.10)

where

aε(wh, vh) :=
∫

Ω
uh · vh + ε−1

∫
ΓN

(wh · n)(vh · n), wh, vh ∈ Vh.

Remark 7.2.1. Let us observe that both the non-symmetric version of problem (7.9), i.e., with
m = 0, and formulation (7.10), thanks to (7.8) allow for a weakly divergence-free numerical
solution uh, namely div uh = 0 in the sense of L2, provided that the right hand side g vanishes.

Lemma 7.2.2. Formulations (7.9) and (7.10) are consistent discretizations of (7.1) and (7.2)
respectively.

Proof. It is clear that (7.9) is a consistent discretization of (7.1). Let (uε, pε) be the solution
to (7.2). Of course, we have

b0(uε, qh) =
∫

Ω
gqh, ∀ qh ∈ Qh.

By integrating by parts the first equation of (7.2), we obtain∫
Ω

uε · vh + b0(vh, pε)−
∫

ΓN
pεvh · n =

∫
Ω

f · vh +
∫

ΓD
pDvh · n, ∀ vh ∈ Vh. (7.11)

By performing static condensation of the multiplier from the boundary conditions, we obtain

pε = ε−1 (uN − uε · n) , on ΓN . (7.12)

Substituting (7.12) back into (7.11), we obtain

aε(uε, vh) + b0(vh, pε) =
∫

Ω
f · vh +

∫
ΓN

ε−1uNvh · n +
∫

ΓD
pDvh · n, ∀ vh ∈ Vh.

123



Chapter 7. Weak imposition of the essential boundary conditions for the Darcy
flow: fitted case

For the numerical analysis of (7.9), we endow the discrete spaces with the following mesh-
dependent norms

‖vh‖20,h := ‖vh‖2L2(Ω) +
∑

f∈F∂
h

(ΓN )

h−1 ‖vh · n‖2L2(f) , vh ∈ Vh

‖qh‖21,h :=
∑
K∈Th

‖∇qh‖2L2(K) +
∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f) +
∑

f∈F∂
h

(ΓD)

h−1 ‖qh‖2L2(f) , qh ∈ Qh,

while for (7.10) we are going to employ:

‖vh‖20,h,ε := ‖vh‖2L2(Ω) +
∑

f∈F∂
h

(ΓN )

ε−1 ‖vh · n‖2L2(f) , vh ∈ Vh

‖qh‖21,h,ε :=
∑
K∈Th

‖∇qh‖2L2(K) +
∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f) +
∑
f∈F∂

h

h−1 ‖qh‖2L2(f) , qh ∈ Qh.

Remark 7.2.3. Concerning formulation (7.9), we restrict ourselves to the numerical analysis of
the symmetric case, i.e., m = 1. The generalization to case m = 0 is readily done by considering
a norm for the pressure controlling the whole boundary region and not just ΓD, namely

‖qh‖21,h :=
∑
K∈Th

‖∇qh‖2L2(K) +
∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f) +
∑
f∈F∂

h

h−1 ‖qh‖2L2(f) , qh ∈ Qh.

In this way, the proofs given in Section 7.3 easily generalize to the non-symmetric case.

Remark 7.2.4. Note that the natural functional setting for the mixed formulation of the Poisson
problem is H(div; Ω) × L2(Ω), but here we consider norms that induce the same topology as
that of H1(Ω) × H1(Ω). Moreover, we observe that in both formulations (7.9) and (7.10) a
superpenalty parameter (h−1 in (7.9) and ε−1 in (7.10)) is imposed in the flux variable. Indeed,
the natural weight, mimicking the H− 1

2 -scalar product, would be h
∫

ΓN (uh · n)(vh · n). However,
such weight does not lead to an optimally converging scheme. In addition, this is also what
destroys the conditioning (see Section 7.5.2).

7.3 Stability estimates
In this section, we carry on at the same time the proofs of the well-posedness of the two discrete
formulations.

Proposition 7.3.1. There exist Ma,Maε ,Mbm > 0, m = 0, 1, such that, for ε . h,

|ah(wh, vh)| ≤Ma ‖wh‖0,h ‖vh‖0,h , ∀ wh, vh ∈ Vh,
|aε(wh, vh)| ≤Maε ‖wh‖0,h,ε ‖vh‖0,h,ε , ∀ wh, vh ∈ Vh,

|b1(vh, qh)| ≤Mb1 ‖vh‖0,h ‖qh‖1,h , ∀ vh ∈ Vh, qh ∈ Qh,
|b0(vh, qh)| ≤Mb0 ‖vh‖0,h,ε ‖qh‖1,h,ε , ∀ vh ∈ Vh, qh ∈ Qh.

Proof. Let wh, vh ∈ Vh, qh ∈ Qh be arbitrary. It holds

|ah(wh, vh)| ≤ ‖wh‖L2(Ω) ‖vh‖L2(Ω) + h−
1
2 ‖vh · n‖L2(ΓN ) h

− 1
2 ‖wh · n‖L2(ΓN )

≤‖wh‖0,h ‖vh‖0,h ,

|aε(wh, vh)| ≤ ‖wh‖L2(Ω) ‖vh‖L2(Ω) + ε−
1
2 ‖vh · n‖L2(ΓN ) ε

− 1
2 ‖wh · n‖L2(ΓN )

≤‖wh‖0,h,ε ‖vh‖0,h,ε .

124



7.3. Stability estimates

By integration by parts, we get

b1(vh, qh) =
∫

Ω
qh div vh −

∫
ΓN

qhvh · n =
∑
K∈Th

∫
K

qh div vh −
∑

f∈F∂
h

(ΓN )

∫
f

qhvh · n

=−
∑
K∈Th

∫
K

∇qh · vh +
∑
f∈Fi

h

∫
f

[qh] vh · n +
∑

f∈F∂
h

(ΓD)

∫
f

qhvh · n.

Thus,

|b1(vh, qh)| ≤
∑
K∈Th

‖∇qh‖L2(K) ‖vh‖L2(K) +
∑
f∈Fi

h

h−
1
2 ‖[qh]‖L2(f) h

1
2 ‖vh · n‖L2(f)

+
∑

f∈F∂
h

(ΓD)

h−
1
2 ‖qh‖L2(f) h

1
2 ‖vh · n‖L2(f) .

By combining standard trace and inverse inequalities, we have

h
1
2 ‖vh · n‖L2(f) . ‖vh‖L2(K) , f ∈ F∂h (ΓD), f ∈ F ih, f ⊂ ∂K. (7.13)

In this way, we obtain

|b1(vh, qh)| . ‖vh‖0,h ‖qh‖1,h .

On the other hand,

b0(vh, qh) =−
∑
K∈Th

∫
K

∇qh · vh +
∫
∂K

qhvh · n = −
∑
K∈Th

∫
K

∇qh · vh +
∑
f∈Fi

h

∫
f

[qh] vh · n

+
∑

f∈F∂
h

(ΓN )

∫
f

qhvh · n +
∑

f∈F∂
h

(ΓD)

∫
f

qhvh · n.

We have

|b0(vh, qh)| ≤
∑
K∈Th

‖∇qh‖L2(K) ‖vh‖L2(K) +
∑
f∈Fi

h

h−
1
2 ‖[qh]‖L2(f) h

1
2 ‖vh · n‖L2(f)

+
∑
f∈F∂

h

h−
1
2 ‖qh‖L2(f) h

1
2 ‖vh · n‖L2(f) . ‖vh‖0,h,ε ‖qh‖1,h,ε ,

having used again (7.13) and h− 1
2 . ε−

1
2 for ε . h.

Proposition 7.3.2. It holds

ah(vh, vh) = ‖vh‖20,h , ∀ vh ∈ Vh,

aε(vh, vh) = ‖vh‖20,h,ε , ∀ vh ∈ Vh.

Proof. The proof is trivial, hence we skip it.

Proposition 7.3.3. There exist β0,β1 > 0, such that

inf
qh∈Qh

sup
vh∈Vh

b1(vh, qh)
‖vh‖0,h ‖qh‖1,h

≥β1,

inf
qh∈Qh

sup
vh∈Vh

b0(vh, qh)
‖vh‖0,h,ε ‖qh‖1,h,ε

≥β0.
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Proof. We start with the first inequality. Let us fix qh ∈ Qh arbitrary. We construct vh by using
the degrees of freedom of the Raviart-Thomas space (see Chapter 6).∫

f

vh · nϕh = h−1
∫
f

[qh]ϕh, ∀ f ∈ F ih, ϕh ∈ Ψk(f), (7.14)∫
f

vh · nϕh = 0, ∀ f ∈ F∂h (ΓN ), ϕh ∈ Ψk(f), (7.15)∫
f

vh · nϕh = h−1
∫
f

qhϕh, ∀ f ∈ F∂h (ΓD), ϕh ∈ Ψk(f), (7.16)∫
K

vh ·ψh = −
∫
K

∇qh ·ψh, ∀ K ∈ Th, ψh ∈ Ψk(K), if k > 0. (7.17)

We refer the reader to Chapter 6 for the definitions of Ψk(f) and Ψk(K). By using the definition
of vh,

b1(vh, qh) =
∫

Ω
qh div vh −

∫
ΓN

qhvh · n =
∑
K∈Th

∫
K

qh div vh −
∑

f∈F∂
h

(ΓN )

∫
f

qhvh · n

=−
∑
K∈Th

(∫
K

∇qh · vh +
∫
∂K

qhvh · n
)
−

∑
f∈F∂

h
(ΓN )

∫
f

qhvh · n

=−
∑
K∈Th

∫
K

∇qh · vh +
∑
f∈Fi

h

∫
f

[qh] vh · n +
∑

f∈F∂
h

(ΓD)

∫
f

qhvh · n

=
∑
K∈Th

‖∇qh‖2L2(K) +
∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f) +
∑

f∈F∂
h

(ΓD)

h−1 ‖qh‖2L2(f) = ‖qh‖21,h .

Finally, let us show that ‖vh‖0,h ≤ C ‖qh‖1,h. Note that for every f ∈ F∂h (ΓN ), since vh · n
∣∣∣
f
∈

Ψk(f), (7.15) implies

‖vh · n‖2L2(f) =
∫
f

(vh · n)(vh · n) = 0 ⇒ vh · n = 0, on f .

Then, let us show ‖vh‖L2(Ω) ≤ C ‖qh‖1,h. From (7.14), it holds vh · n
∣∣∣
f

= h−1
K πf ,k([qh])

∣∣∣
f
for

every f ∈ F ih and, from (7.17), we have πK,k(vh)
∣∣∣
K

= −πK,k(∇qh)
∣∣∣
K

for everyK ∈ Th. Note that
here πK,k denotes the L2-orthogonal projection onto Ψk(K). Similarly, πf ,k is the L2-projection
onto Ψk(f). From finite dimensionality it holds ‖v̂h‖2L2(K̂) .

∥∥∥π
K̂,k(v̂h)

∥∥∥2

L2(K̂)
+ ‖v̂h · n̂‖2L2(f̂).

Hence, ‖vh‖2L2(K) . ‖∇qh‖
2
L2(K) + h−1

K ‖[qh]‖2L2(f), f being a facet of K, which follows by a
standard scaling argument (see Proposition 2.1 of [40]) and by construction of vh.

We move now to the inequality involving β0. Let qh ∈ Qh. We define vh as follows:∫
f

vh · nϕh = h−1
∫
f

[qh]ϕh, ∀ f ∈ F ih, ϕh ∈ Ψk(f),∫
f

vh · nϕh = h−1
∫
f

qhϕh, ∀ f ∈ F∂h (ΓN ), ϕh ∈ Ψk(f),∫
f

vh · nϕh = h−1
∫
f

qhϕh, ∀ f ∈ F∂h (ΓD), ϕh ∈ Ψk(f),∫
K

vh ·ψh = −
∫
K

∇qh ·ψh, ∀ K ∈ Th, ψh ∈ Ψk(K), if k > 0.
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Hence,

b0(vh, qh) =
∫

Ω
qh div vh =

∑
K∈Th

∫
K

qh div vh = −
∑
K∈Th

(∫
K

∇qh · vh +
∫
∂K

qhvh · n
)

=−
∑
K∈Th

∫
K

∇qh · vh +
∑
f∈Fi

h

∫
f

[qh] vh · n +
∑

f∈F∂
h

(ΓN )

∫
f

qhvh · n

+
∑

f∈F∂
h

(ΓD)

∫
f

qhvh · n

=
∑
K∈Th

‖∇qh‖2L2(K) +
∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f) +
∑
f∈F∂

h

h−1 ‖qh‖2L2(f) = ‖qh‖21,h,ε .

We refer the reader to [85] for the inequality ‖vh‖0,h,ε ≤ C ‖qh‖1,h,ε.

7.4 A priori error estimates
In this section we will prove a priori error estimates for the formulations (7.9) and (7.10).
We observe that all the constants appearing throughout this section and concerning the error
bounds for the formulation (7.10) are independent of the parameter ε. This is due to the
orthogonality properties of the interpolants along the boundary.

Lemma 7.4.1. Let (u, p) be the solution of the continuous problem (7.1) and (uh, ph) ∈ Vh×Qh
the one of the discrete problem (7.9) with m = 1. Then

‖uh − rh(u)‖0,h + ‖ph −Πh(p)‖1,h . ‖u− rh(u)‖L2(Ω) + h
1
2

∑
f∈F∂

h
(ΓN )

‖p−Πh(p)‖L2(f) .

Proof. The stability estimates previously shown for ah(·, ·) and b1(·, ·) with respect to ‖·‖0,h and
‖·‖1,h imply

|||ηh, sh|||h . sup
(vh,qh)∈Vh×Qh

Ah ((ηh, sh) , (vh, qh))
|||vh, qh|||h

, ∀ (ηh, sh) ∈ Vh ×Qh, (7.18)

where

Ah ((ηh, sh) , (vh, qh)) :=ah(ηh, vh) + b1(vh, sh) + b1(ηh, qh),
|||ηh, sh|||2h := ‖ηh‖20,h + ‖sh‖21,h .

Using (7.18), for (uh − rh(u), ph −Πh(p)) there exists (vh, qh) ∈ Vh ×Qh such that

‖uh − rh(u)‖0,h + ‖ph −Πh(p)‖1,h ≤
√
d|||uh − rh(u), ph −Πh(p)|||h

.
Ah ((uh − rh(u), ph −Πh(p)) , (vh, qh))

|||vh, qh|||h
.
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Hence, we have

Ah ((uh − rh(u), ph −Πh(p)) , (vh, qh)) =
∫

Ω
(uh − u) · vh +

∫
Ω

(u− rh(u)) · vh

+ h−1
∫

ΓN
((uh − u) · n) (vh · n)

+ h−1
∫

ΓN
((u− rh(u)) · n) (vh · n) + b0(vh, ph − p)

+ b0(vh, p−Πh(p))

−
∫

ΓN
(ph − p) vh · n−

∫
ΓN

(p−Πh(p)) vh · n

+ b1(uh − u, qh) + b1(u− rh(u), qh).
(7.19)

By construction of rh and Πh we have, respectively,

h−1
∫

ΓN
((u− rh(u)) · n) (vh · n) = 0, ∀ vh ∈ Vh,

b1(u− rh(u), qh) = −
∑
K∈Th

∫
K

∇qh · (u− rh(u)) +
∑
f∈Fi

h

∫
f

[qh] (u− rh(u)) · n = 0, ∀ qh ∈ Qh,

b0(vh, p−Πh(p)) = 0, ∀ vh ∈ Vh.

By consistency (Lemma 7.2.2), we have∫
Ω

(uh − u) · vh + h−1
∫

ΓN
((uh − u) · n) (vh · n) + b0(vh, ph − p)

+
∫

ΓN
(ph − p) vh · n = 0, ∀ vh ∈ Vh,

b1(uh − u, qh) = 0, ∀ qh ∈ Qh.

Hence, in (7.19) we are left with

Ah ((uh − rh(u), ph −Πh(p)) , (vh, qh)) =
∫

Ω
(u− rh(u)) · vh −

∫
ΓN

(p−Πh(p)) vh · n.

We have∫
Ω

(u− rh(u)) · vh −
∫

ΓN
(p−Πh(p)) vh · n ≤‖u− rh(u)‖L2(Ω) ‖vh‖L2(Ω)

+
∑

f∈F∂
h

(ΓN )

h
1
2 ‖(p−Πh(p))‖L2(f) h

− 1
2 ‖vh · n‖L2(ΓN ) ,

and we can write

‖uh − rh(u)‖0,h + ‖ph −Πh(p)‖1,h .

(
‖u− rh(u)‖L2(Ω) + h

1
2
∑
f∈F∂

h
(ΓN ) ‖p−Πh(p)‖L2(f)

)
|||vh, 0|||h

|||vh, qh|||h
. ‖u− rh(u)‖L2(Ω) + h

1
2

∑
f∈F∂

h
(ΓN )

‖p−Πh(p)‖L2(f) .

Lemma 7.4.2. Let (uε, pε) be the solution of the perturbed continuous problem (7.2) and
(uh, ph) ∈ Vh ×Qh the one of the discrete problem (7.10). Then

‖uh − rh(uε)‖0,h,ε + ‖ph −Πh(pε)‖1,h,ε . ‖u
ε − rh(uε)‖L2(Ω) .
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Proof. The stability estimates previously shown for aε(·, ·) and b0(·, ·) with respect to ‖·‖0,h,ε
and ‖·‖1,h,ε imply

|||η, sh|||h,ε . sup
(vh,qh)∈Vh×Qh

Aε ((ηh, sh) , (vh, qh))
|||vh, qh|||h,ε

, ∀ (ηh, sh) ∈ Vh ×Qh,

where

Aε ((ηh, sh) , (vh, qh)) :=aε(ηh, vh) + b0(vh, sh) + b0(ηh, qh),
|||ηh, sh|||2 := ‖ηh‖20,h,ε + ‖sh‖21,h,ε .

Hence, for (uh − rh(uε), ph −Πh(pε)) there exists (vh, qh) ∈ Vh ×Qh such that

‖uh − rh(uε)‖0,h,ε + ‖ph −Πh(pε)‖1,h,ε ≤
√
d|||uh − rh(uε), ph −Πh(pε)|||h,ε

.
Aε ((uh − rh(uε), ph −Πh(pε)) , (vh, qh))

|||vh, qh|||h,ε
.

Hence, we have

Aε
(

(uh − rh(uε), ph −Πh(pε)),(vh, qh)
)

=
∫

Ω
(uh − uε) · vh +

∫
Ω

(uε − rh(uε)) · vh

+ ε−1
∫

ΓN
((uh − uε) · n) (vh · n)

+ ε−1
∫

ΓN
((uε − rh(uε)) · n) (vh · n)

+ b0(vh, ph − pε) + b0(vh, pε −Πh(pε)) + b0(uh − uε, qh)
+ b0(uε − rh(uε), qh).

The following orthogonality relations hold by definition of rh and Πh:

ε−1
∫

ΓN
((uε − rh(uε)) · n) (vh · n) =0, ∀ vh ∈ Vh,

b0(vh, pε −Πh(pε)) =0, ∀ vh ∈ Vh,

b0(uε − rh(uε), qh) = −
∑
K∈Th

∫
K

∇qh · (uε − rh(uε))

+
∑
f∈Fi

h

∫
f

[qh] (uε − rh(uε)) · n +
∑

f∈F∂
h

(ΓN )

∫
f

qh (uε − rh(uε)) · n =0, ∀ qh ∈ Qh.

Moreover, by consistency (Lemma 7.2.2), we have∫
Ω

(uh − uε) · vh + ε

∫
ΓN

((uh − uε) · n) (vh · n) + b0(vh, ph − pε) = 0, ∀ vh ∈ Vh,

b0(uh − uε, qh) = 0, ∀ qh ∈ Qh.

Hence,

Aε ((uh − rh(uε), ph −Πh(pε)) , (τh, qh)) =
∫

Ω
(uε − rh(uε)) · vh,

and we can write

‖uh − rh(uε)‖0,h,ε + ‖ph −Πh(pε)‖1,h,ε .
‖uε − rh(uε)‖L2(Ω) |||vh, 0|||h,ε

|||vh, qh|||h,ε
. ‖uε − rh(uε)‖L2(Ω) .
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Proposition 7.4.3. Let (u, p) ∈ Hr+1(Ω) × Ht+1(Ω) be the solution of (7.1) and (uh, ph) ∈
Vh ×Qh the one of (7.9) with m = 1. There exists C > 0 such that, for s = min{r, t, k},

‖uh − rh(u)‖0,h + ‖ph −Πh(p)‖1,h ≤ Ch
s+1

(
‖u‖Hr+1(Ω) + ‖p‖Ht+1(Ω)

)
. (7.20)

Proof. By Lemma 7.4.1, a multiplicative trace inequality for Sobolev functions, and the standard
Deny-Lions argument (Theorem 3.4.1 of [112])

‖uh − rh(u)‖0,h + ‖ph −Πh(p)‖1,h . ‖u− rh(u)‖L2(Ω) +
∑

f∈F∂
h

(ΓN )

h
1
2 ‖p−Πh(p)‖L2(f)

. ‖u− rh(u)‖L2(Ω)

+
∑
K∈Th

h
1
2 ‖p−Πh(p)‖

1
2
L2(K) ‖∇ (p−Πh(p))‖

1
2
L2(K)

. ‖u− rh(u)‖L2(Ω) + h
1
2h

t+1
2 ‖p‖

1
2
Ht+1(Ω) h

t
2 ‖p‖

1
2
Ht+1(Ω)

= ‖u− rh(u)‖L2(Ω) + ht+1 ‖p‖Ht+1(Ω) .

By using Deny-Lions argument (Theorem 3.4.1 of [112]), we get

‖uh − rh(u)‖0,h + ‖ph −Πh(p)‖1,h . h
r+1 ‖u‖Hr+1(Ω) + ht+1 ‖p‖Ht+1(Ω) ,

with 0 ≤ t ≤ k and 0 ≤ r ≤ k.

Proposition 7.4.4. Let (uε, pε) ∈Hr+1(Ω)×Ht+1(Ω) be the solution of the perturbed continuous
problem (7.2) and (uh, ph) ∈ Vh × Qh the one to (7.10). There exists C > 0 such that, for
s = min{r, t, k},

‖uh − rh(uε)‖0,h,ε + ‖ph −Πh(pε)‖1,h,ε ≤ Ch
s+1 ‖uε‖Hs+1(Ω) . (7.21)

Proof. By Lemma 7.4.2 and the Deny-Lions argument (Theorem 3.4.1 of [112]), we get

‖uh − rh(uε)‖0,h,ε + ‖ph −Πh(pε)‖1,h,ε . h
s+1 ‖uε‖Hs+1(Ω) .

Remark 7.4.5. Let us remark that the quantities ‖uh − rh(uh)‖0,h, ‖ph −Πh(p)‖1,h in (7.20)
and ‖ph −Πh(pε)‖1,h,ε, ‖uh − rh(uε)‖0,h,ε in (7.21), respectively, are super convergent.

Theorem 7.4.6. Let (u, p) ∈Hr+1(Ω)×Ht+1(Ω) be the solution to (7.1) and (uh, ph) ∈ Vh×Qh
the one to (7.9) with m = 1. Then there exists C > 0 such that, for s = min{r, t, k},

‖u− uh‖L2(Ω) ≤ Ch
s+1

(
‖u‖Hr+1(Ω) + ‖p‖Ht+1(Ω)

)
.

Proof. Let us proceed by triangular inequality.

‖u− uh‖L2(Ω) ≤ ‖u− rh(u)‖L2(Ω) + ‖rh(u)− uh‖L2(Ω) .

The first and the second terms in the rhs scale as O(hr+1) and O(hs+1), respectively, because of
Deny-Lions argument (Theorem 3.4.1 of [112]) and Proposition 7.4.3.
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Lemma 7.4.7. Let (uε, pε) ∈Hr+1(Ω)×Ht+1(Ω) be the solution to the perturbed continuous
problem (7.2) and (uh, ph) ∈ Vh ×Qh the one to (7.10). Then there exists C > 0 such that, for
s = min{r, k},

‖uε − uh‖L2(Ω) ≤ Ch
s+1 ‖uε‖Hs+1(Ω) .

Proof. Let us proceed by triangular inequality.

‖uε − uh‖L2(Ω) ≤ ‖u
ε − rh(uε)‖L2(Ω) + ‖rh(uε)− uh‖L2(Ω) .

The first and the second terms in the rhs scale as O(hs+1), respectively, because of Deny-Lions
argument (Theorem 3.4.1 of [112]) and Proposition 7.4.4.

Theorem 7.4.8. Let (u, p) ∈ H1(Ω) × H2(Ω) be the solution to the continuous (7.1) and
(uh, ph) ∈ Vh × Qh the one to (7.10) with ε = h. Assume Ω to be a convex domain with a
Lipschitz polygonal boundary Γ, f ∈ H1(Ω), f · n = 0 on ΓN and uN = 0. Then, there exists
C > 0 such that

‖u− uh‖L2(Ω) ≤ Ch
(
‖f‖H1(Ω) + ‖g‖L2(Ω) + ‖pD‖

H
1
2 (ΓD)

)
.

Proof. Let us proceed by triangular inequality.

‖u− uh‖L2(Ω) ≤‖u− uε‖L2(Ω) + ‖uε − uh‖L2(Ω)

.ε
(
‖div f‖L2(Ω) + ‖g‖L2(Ω) + ‖pD‖

H
1
2 (ΓD)

)
+ h ‖uε‖H1(Ω)

.ε
(
‖div f‖L2(Ω) + ‖g‖L2(Ω) + ‖pD‖

H
1
2 (ΓD)

)
+ h

(
‖f‖H1(Ω) + ‖g‖L2(Ω) + ‖pD‖

H
1
2 (ΓD)

)
.

We used Lemma 7.4.7, Proposition 7.1.2 and Proposition 7.1.4. Finally, let us choose ε = h.

Remark 7.4.9. We observe that for both formulations, (7.9) and (7.10), all dimensionless
parameters have been set for simplicity to 1, unlike for the standard Nitsche method for the
Poisson problem [126], where the dimensionless parameter needs to be taken large enough.

7.5 Numerical examples

7.5.1 Convergence results

In this first set of numerical examples we verify the optimal a priori error estimates of Theo-
rems 7.4.6, 7.4.8. We also check that the result of Theorem 7.4.6 holds in the non-symmetric case
m = 0, as already mentioned in Section 7.2. Moreover, we study the L2-error of the pressure
field, for which optimal convergence is observed in general and super convergence in the case
of the lowest order Raviart-Thomas element and triangular meshes. Although Theorem 7.4.8
guarantees us optimal a priori error estimates for the discretization (7.10) only with the lowest
order Raviart-Thomas element, numerical results show that we have optimal convergence rates
also for higher orders.

131
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Unit square with triangular meshes

We approximate the Darcy problem in the unit square Ω = (0, 1)2 using a family of triangular
meshes, with weakly enforced essential boundary conditions on the whole boundary, using as
manufactured solutions

uex =
(

x sin(x) sin(y)
sin(x) cos(y) + x cos(x) cos(y)

)
, pex = x3y − 0.125.

Note that uex is divergence-free. The numerical results are in Figure 7.1.

Unit circle with triangular meshes

Now, we consider the unit circle Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1} which is meshed using triangles.
We weakly impose the essential boundary conditions on the boundary and consider the following
reference solutions:

uex =
( 1

10e
x sin(xy)
x4 + y2

)
, pex = x3 cos(x) + y2 sin(x).

This time div uex = 2y + 1
10 (ex sin(xy) + yex cos(xy)). See Figure 7.2.

Unit square with quadrilateral meshes

Let us consider the unit square Ω = (0, 1)2 meshed using quadrilaterals. We impose natural
boundary conditions on {(x, y) : 0 ≤ x ≤ 1, y = 0} and essential boundary conditions everywhere
else in a weak sense. The reference solutions are:

uex =
(

cos(x) cosh(y)
sin(x) cosh(y))

)
, pex = − sin(x) sinh(y)− (cos(1)− 1) (cosh(1)− 1) .

We have div uex = 0. For the numerical results we refer to Figure 7.3.

Quarter of annulus with quadrilateral isoparametric elements

Let us consider the quarter of annulus centered in the origin with inner and outer radii, respectively,
r = 1 and R = 2, discretized using quadrilateral isoparametric elements [82]. We impose natural
boundary conditions on the straight edges {(x, y) : 1 ≤ x ≤ 2, y = 0} and {(x, y) : x = 0, 1 ≤ y ≤
2} and weak essential boundary conditions on the curved ones. The manufactured solutions are:

uex =
(

−xy2

−x2y − 3
2y

2

)
, pex = 1

2
(
x2y2 + y3) ,

with div uex = −x2 − y2 − 3y. See Figure 7.4.

7.5.2 A remark about the condition numbers

Proceeding as in [55] it would be possible to prove that the `2-condition number of the stiff-
ness matrix arising from the discretizations (7.9), for both m ∈ {0, 1}, scales as h−2, as Fig-
ures 7.5a, 7.5b, 7.6a, 7.6b confirm. The penalty parameter for the weak imposition of the essential
boundary conditions is the responsible of the deterioration of the conditioning with respect to
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(a) Velocity error using (7.9) with m = 1.
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(b) Pressure error using (7.9) with m = 1.
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(c) Velocity error using (7.9) with m = 0.
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(d) Pressure error using (7.9) with m = 0.
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(e) Velocity error using (7.10).
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(f) Pressure error using (7.10).

Figure 7.1 – Convergence rates in the unit square with triangular meshes.
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k = 0 k = 1 k = 2
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(a) Velocity error using (7.9) with m = 1.
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(b) Pressure error using (7.9) with m = 1.
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(c) Velocity error using (7.9) with m = 0.
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(d) Pressure error using (7.9) with m = 0.
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(e) Velocity error using (7.10).
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(f) Pressure error using (7.10).

Figure 7.2 – Convergence rates in the unit circle with triangular meshes.
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(a) Velocity error using (7.9) with m = 1.
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(b) Pressure error using (7.9) with m = 1.
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(c) Velocity error using (7.9) with m = 0.
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(d) Pressure error using (7.9) with m = 0.
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(e) Velocity error using (7.10).
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(f) Pressure error using (7.10).

Figure 7.3 – Convergence rates in the unit square with quadrilateral meshes.

135



Chapter 7. Weak imposition of the essential boundary conditions for the Darcy
flow: fitted case

k = 0 k = 1 k = 2 k = 3 k = 4

2−12−22−32−42−52−610−13

10−9

10−5

10−1

11

12

13

14

15

h

‖u
−

u h
‖ L

2
(Ω

)

(a) Velocity error using (7.9) with m = 1.
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(b) Pressure error using (7.9) with m = 1.
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(c) Velocity error using (7.9) with m = 0.
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(d) Pressure error using (7.9) with m = 0.
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(e) Velocity error using (7.10).
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(f) Pressure error using (7.10).

Figure 7.4 – A priori errors in the quarter of annulus with isoparametric quadrilateral meshes.

the standard mixed finite element discretization of the Poisson problem, for which the condition
number scales as h−1. An even worse situation occurs when formulation (7.10) is employed. In
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this case the condition number scales as h−(s+2), s = min{r, k}, r being the Sobolev regularity
of the exact solution for the pressure field and k the polynomial degree of the Raviart-Thomas
discretization, as confirmed by Figures 7.5c, 7.6c.
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(a) Condition number using (7.9) with m = 1.
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(b) Condition number using (7.9) with m = 0.
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(c) Condition number using (7.10).

Figure 7.5 – Condition numbers in the unit square with quadrilateral meshes.

7.5.3 The optimality of the penalty parameter

We want to analyze the optimality of the penalty parameter, denoted through this Section as γ,
for both numerical schemes. Let us observe indeed that in order for formulations (7.9) and (7.10)
to be extended in the unfitted case and provide an optimal convergence scheme, we would expect
γ to scale as O(h) (see also Remark 7.2.4). Let us consider the Raviart-Thomas element of order
k = 1 and compare the numerical results for the L2-error of the velocity field with respect to
different powers of the mesh-size as penalty parameter. The first set of numerical experiences is
performed using triangular meshes, then we move to quadrilaterals.

Figures 7.7, 7.8, 7.9, 7.10 correspond to the settings introduced in Section 7.5.1.

In all numerical experiments, we do not detect any particular sensitivity of the convergence of the
error of the velocities with respect to γ in the case of method (7.9), see for instance Figures 7.8a.
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(a) Condition number using (7.9) with m = 1.
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(b) Condition number using (7.9) with m = 0.
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(c) Condition number using (7.10).

Figure 7.6 – Condition numbers in the quarter of annulus with isoparametric quadrilateral
elements.

On the other hand, for the formulation (7.10) strong influence of varying γ is clearly seen in
Figures 7.7c, 7.8c, 7.9c, 7.10c. Let us observe indeed that for formulations (7.9) and (7.10) to be
extended in the unfitted case and provide an optimal convergence scheme, we would expect γ to
scale as O(h). In this sense, the method (7.9) seems a more promising approach.
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(a) Velocity error using (7.9) with m = 1.
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(b) Velocity error using (7.9) with m = 0.
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(c) Velocity error using (7.10).

Figure 7.7 – Compare L2-errors for the velocity in the unit square with respect to different values
of the penalty parameter γ with triangular meshes.
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(a) Velocity error using (7.9) with m = 1.
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(b) Velocity error using (7.9) with m = 0.
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(c) Velocity error using (7.10).

Figure 7.8 – Compare L2-errors for the velocity in the unit circle with respect to different values
of the penalty parameter γ with triangular meshes.
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(a) Velocity error using (7.9) with m = 1.

2−12−22−32−42−52−6

10−5

10−3

10−1

11

11.5

12

h

‖u
−

u h
‖ L

2
(Ω

)

(b) Velocity error using (7.9) with m = 0.
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(c) Velocity error using (7.10).

Figure 7.9 – Compare L2-errors for the velocity in the unit square with respect to different values
of the penalty parameter γ with quadrilateral meshes.
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(a) Velocity error using (7.9) with m = 1.
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(b) Velocity error using (7.9) with m = 0.
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(c) Velocity error using (7.10).

Figure 7.10 – Compare L2-errors for the velocity in the quarter of annulus with respect to different
values of the penalty parameter γ with isoparametric quadrilateral elements.
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8 Weak imposition of the essen-
tial boundary conditions for the
Darcy flow: unfitted case
In this chapter, we study the Nitsche method introduced in Chapter 7 in the case of a mesh that
does not fit the boundary of the domain. The discrete formulation is very ill-posed because of
the mismatch between the computational mesh and the physical domain where the PDEs live.
We show that this affects the accuracy of the approximation scheme and the conditioning of
the arising linear system. Our strategy to recover the well-posedness of the discrete formulation
is in line with [35, 37, 38]. It adds to the variational formulation at the discrete level two
weakly consistent ghost penalty operators acting separately on the velocity and pressure fields.
The discrete functional setting is unusual since it is based on mesh-dependent norms scaling as
H1 ×H1, instead of the standard H(div)×L2. Hence, we derive a priori error estimates for the
velocity and pressure fields which are optimal for the chosen topology but not for the usual ones.
We also prove optimal estimates for the condition number of the stiffness matrix.

An outline of the chapter follows. In Section 8.1, we introduce the model problem and its
Raviart-Thomas discretization for both triangular and quadrilateral meshes. In Section 8.2
we explain how we interpolate regular functions when the mesh does not fit the boundary of
the physical domain. Section 8.3 contains the discrete stabilized formulation and its numerical
analysis: we rigorously derive the estimates guaranteeing the stability of our formulation and
prove the a priori error estimates. Section 8.4 is devoted to the study of the condition number of
the stiffness matrix. We prove that the ghost penalty stabilization restores the usual conditioning
of the boundary-fitted case. In Section 8.5 we explain how to treat the case of pure natural
boundary conditions. Finally, in Section 8.6 we present some numerical experiments illustrating
the theory.

Given x, y ∈ R, we will write x . y if there exists c > 0, independent of x,y, such that x ≤ cy
and x ∼ y if x . y and y . x. C will denote generic positive constants that may change with
each occurrence throughout the chapter but are always independent of the local mesh size and
the mutual position of mesh and domain unless otherwise specified.

8.1 Model problem and notation

Let Ω be a Lipschitz-regular domain of Rd, d ∈ {2, 3}, with boundary Γ such that Γ = ΓN ∪ ΓD,
where ΓN , ΓD are open and disjoint. We consider the Darcy problem introduced in Chapter 6.

Given f ∈ L2(Ω), g ∈ L2(Ω), uN ∈ H−
1
2 (ΓN ), pD ∈ H

1
2 (ΓD), we look for u : Ω → Rd and
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p : Ω→ R such that
κ−1u−∇p = f , in Ω,

div u = g, in Ω,
u · n = uN , on ΓN ,

p = pD, on ΓD.

(8.1)

In the subsequent analysis we are going to consider, for the sake of simplicity, κ = I the identity
matrix.

Let us introduce (Th)h>0, a family of triangular or quadrilateral meshes such that, for every h > 0,
Ω ( ΩT , ΩT being the fictitious domain, i.e., ΩT := ∪K∈ThK. Let us denote the collection of all
the facets (edges if d = 2 and faces if d = 3) as Fh and partition the latter into two disjoint sets: the
faces lying on the boundary of ΩT , denoted as F∂h , and F ih, the internal ones. For every cut element
K ∈ Th, let us denote its intersection with the boundary as ΓK . It will be clear from the context if
with ΓK we mean the intersection with the whole boundary, i.e., ΓK := Γ∩K◦ or with just one of its
disjoint components ΓN , i.e., ΓK := ΓN ∩K◦, or ΓD, i.e., ΓK := ΓD∩K◦. It will also be useful to
define the collection of the cut-elements, namely Gh := {K ∈ Th : |ΓK | 6= 0}, its two sub-collections
Gh(ΓN ) := {K ∈ Th : |ΓN ∩K◦| 6= 0} and Gh(ΓD) := {K ∈ Th : |ΓD ∩K◦| 6= 0}, that we assume
to be disjoint, and the interior part ΩI,h := Ω \ ∪K∈GhK. Let Th(ΩI,h) := {K ∈ Th : K ⊂ ΩI,h}.
The collections of the internal and boundary facets entirely contained in ΩI,h are respectively
denoted as F ih(ΩI,h) and F∂h (ΩI,h). The collection of internal facets in the boundary region are
denoted as FΓ

h := {f ∈ F ih : ∃ K ∈ Gh such that f ⊂ ∂K}.

Let us assign to each element K ∈ TK its diameter hK and denote h := maxK∈Th hK . We assume
the background mesh to be shape-regular, i.e., there exists σ > 0, independent of h, such that
maxK∈Th hK

ρK
≤ σ, ρK being the diameter of the largest ball inscribed in K. Moreover, Th is

supposed to be quasi-uniform in the sense that there exists τ > 0, independent of h, such that
minK∈Th hK ≥ τh. We fix an orientation for the internal faces, i.e., given f ∈ F ih such that
f = ∂K1 ∩ ∂K2, we assume that the unit normal on f points from K1 toward K2. Let ϕ : Ω→ R
be smooth enough. Then, for all f ∈ F ih and a.e. x ∈ f , we define the jump of ϕ as

[ϕ]f (x) := ϕ
∣∣∣
K1

(x)− ϕ
∣∣∣
K2

(x),

where f = ∂K1 ∩ ∂K2. We may remove the subscript f when it is clear from the context to
which facet we refer to.

The following mild assumptions on how the mesh may be intersected by the boundary Γ will be
helpful. First, let us require that the number of facets to be crossed to move from a cut element
K to an uncut element K ′ is uniformly bounded with respect to h.

Assumption 8.1.1. There exists N > 1 such that, for every h > 0 and K ∈ Gh, there exist
K ′ ∈ Th(ΩI,h) and at most N elements (Ki)Ni=1 ⊂ Th such that K1 = K, KN = K ′ and Ki∩Ki+1
is a cut facet, for every 1 ≤ i ≤ N − 1.

Then, we assume that it is possible to subdivide the boundary region into patches, each consisting
of a moderate number of elements and with a sufficient overlap with the physical domain.

Assumption 8.1.2. The boundary zone
⋃
K∈Gh K can be decomposed into NP patches (P`)NP`=1,

P ` =
⋃
K∈P` K, 1 ≤ ` ≤ NP , satisfying:

(i) for every K ∈ Gh there exists (at least) 1 ≤ ` ≤ NP such that K ∈ P`;

(ii) for every 1 ≤ ` ≤ NP there exists K ′` ∈ Th(ΩI,h) ∩ P`;
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(iii) there exists C > 0 such that, for every 1 ≤ ` ≤ NP and K ∈ P`, it holds hK ≥ ChP` , where
hP` := diam (P`);

For every 1 ≤ ` ≤ NP , we denote F` := {f ∈ F ih : f ⊆ P`, f 6⊂ ∂P`}.

Let us construct a suitable couple of subspaces Vh ⊂H (div; ΩT ) and Qh ⊂ L2(ΩT ) defined in
the whole fictitious domain ΩT . We define

Vh := {vh ∈H (div; ΩT ) : vh
∣∣∣
K
∈ RTk(K), ∀ K ∈ Th},

Qh := {qh ∈ L2 (ΩT ) : qh
∣∣∣
K
∈Mk (K) , ∀ K ∈ Th},

where RTk(K) and Mk(K) have been defined in Chapter 6. Remember that in the pure essential
case, i.e., Γ = ΓN , we have to filter out constant discrete pressures by imposing the zero average
constraint on the space Qh.

8.2 Interpolation strategy

By proceeding as in Chapter 6, we construct the interpolation operators rTh : H(div; ΩT ) ∩∏
K∈ThH

s(K)→ Vh, s > 1
2 , and ΠTh : L2(ΩT )→ Qh such that the following diagram commutes

and, in particular, divVh = Qh.

H(div; ΩT ) ∩
∏
K∈ThH

s(K) div−−−−→ L2(ΩT )yrTh yΠTh

Vh
div−−−−→ Qh.

(8.2)

From [75], there exist E : Ht (Ω)→Ht
(
Rd
)
, t ≥ 1, and E : Hr (Ω)→ Hr

(
Rd
)
, r ≥ 1, universal

(degree-independent) Sobolev-Stein extensions such that div ◦E = E ◦ divE. We define, for t ≥ 1
and r ≥ 1,

rh :Ht (Ω)→ Vh, v 7→ rTh

(
E (v)

∣∣∣
ΩT

)
,

Πh :Hr (Ω)→ Qh, q 7→ ΠTh
(
E (q)

∣∣∣
ΩT

)
.

Remark 8.2.1. By construction, the commutativity of diagram (8.2) is preserved when restricting
to the physical domain Ω, namely when employing Vh

∣∣∣
Ω
, H(div; Ω), rh, and Qh

∣∣∣
Ω
, L2(Ω), Πh

instead of Vh, H(div; ΩT ), rTh , and Qh, L2(ΩT ), ΠTh . See Section 8.6.3.

8.3 The stabilized formulation
Given k ∈ N, the order of the Raviart-Thomas element employed for the discretization, we
introduce two ghost penalty jumps-based operators to enhance the stability of our discrete
formulation and, in particular, to recover stability estimates independent of the mesh-boundary

145



Chapter 8. Weak imposition of the essential boundary conditions for the Darcy
flow: unfitted case

intersection (see [35, 38, 68, 96]. We define

jh(wh, vh) :=
∑
f∈FΓ

h

k∑
j=0

h2j+1
∫
f

[∂jnwh][∂jnvh], wh, vh ∈ Vh,

jh(mh, qh) :=
∑
f∈FΓ

h

k∑
j=0

h2j−1
∫
f

[∂jnmh][∂jnqh], mh, qh ∈ Qh.

(8.3)

Remark 8.3.1. A wide zoo of ghost penalty operators has been proposed in the literature. For
instance, it is possible to show that jh(·, ·) and jh(·, ·) are equivalent to the following operators.

sh(wh, vh) :=
NP∑
`=1

∫
P`

(wh − π`(wh)) vh, wh, vh ∈ Vh,

gh(wh, vh) :=
NP∑
`=1

∫
P`

[wh]P` [vh]P` , wh, vh ∈ Vh,

sh(mh, qh) :=
NP∑
`=1

h−2
∫
P`

(mh − π`(mh)) qh, mh, qh ∈ Qh,

gh(mh, qh) :=
NP∑
`=1

h−2
∫
P`

[mh]P` [qh]P` , mh, qh ∈ Qh,

namely it holds, respectively,

jh(vh, vh) .sh(vh, vh) . jh(vh, vh), jh(vh, vh) . gh(vh, vh) . jh(vh, vh), ∀ vh ∈ Vh,
jh(qh, qh) .sh(qh, qh) . jh(qh, qh), jh(qh, qh) . gh(qh, qh) . jh(qh, qh), ∀ qh ∈ Qh.

Here,

π` : L2(P`)→ RTk(P`), π` : L2(P`)→Mk(P`),

denote the L2-orthogonal projections onto RTk(P`) := {E`(ϕh)
∣∣∣
P`

: ϕh ∈ RTk(K ′`)} and

Mk(P`) := {E`(ψh)
∣∣∣
P`

: ψh ∈ Mk(K ′`)}, K ′` is the uncut element of the `-th patch (see As-
sumption 8.1.2), and E` and E` are the canonical extension operators of the respective polynomial
space. For vh ∈ Vh and qh ∈ Qh,

[vh]P`(x) :=vh(x)− E`
(

vh
∣∣∣
K′
`

)
(x), x ∈ P`,

[qh]P`(x) :=qh(x)− E`
(
qh

∣∣∣
K′
`

)
(x), x ∈ P`,

see [88, 110].

From the implementation point of view, the operators sh(·, ·), sh(·, ·) and gh(·, ·), gh(·, ·) turn out
to be a more convenient choice of jh(·, ·), jh(·, ·), respectively, when a higher-order discretization
is employed because of the evaluation of the high order derivatives. In the numerical experiments
of Section 8.6 we use the projection-based operators sh(·, ·) and sh(·, ·).

We are now ready to introduce our stabilized discrete formulation. The idea is to employ the
Nitsche formulation for the Darcy flow, which has been proposed and analyzed in Chapter 7,
stabilizing it with the ghost penalty operators introduced above.
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Find (uh, ph) ∈ Vh ×Qh such that

ah(uh, vh) + jh(uh, vh) + b1(vh, ph) =
∫

Ω
f · vh +

∫
ΓD

pDvh · n + h−1
∫

ΓN
uNvh · n, ∀ vh ∈ Vh,

b1(uh, qh)− jh(ph, qh) =
∫

Ω
gqh −

∫
ΓN

uNqh, ∀ qh ∈ Qh,

(8.4)
where

ah(wh, vh) :=
∫

Ω
wh · vh + h−1

∫
ΓN

(wh · n) (vh · n) , wh, vh ∈ Vh,

b1(vh, qh) :=
∫

Ω
qh div vh −

∫
ΓN

qhvh · n, vh ∈ Vh, qh ∈ Qh.

It will be convenient to rewrite (8.4) in the following more compact form.

Find (uh, ph) ∈ Vh ×Qh such that

Ah ((uh, ph); (vh, qh)) = Fh(vh, qh), ∀ (vh, qh) ∈ Vh ×Qh, (8.5)

where, for (wh,mh) , (vh, qh) ∈ Vh ×Qh,

Ah ((wh,mh); (vh, qh)) :=ah(wh, vh) + jh(wh, vh) + b1(vh,mh) + b1(wh, qh)− jh(mh, qh),

Fh(vh, qh) :=
∫

Ω
f · vh +

∫
ΓD

pDvh · n + h−1
∫

ΓN
uNvh · n +

∫
Ω
gqh −

∫
ΓN

uNqh.

Proposition 8.3.2 (Weak Galerkin Orthogonality). Let (u, p) ∈ H(div; Ω) × L2(Ω) be the
solution of (8.1) and (uh, ph) the one of (8.5). Then,

Ah ((u− uh, p− ph); (vh, qh)) = jh(u, vh)− jh(p, qh), ∀ (vh, qh) ∈ Vh ×Qh.

Proof. The proof is trivial, hence we skip it.

Remark 8.3.3. We note that the formulation (8.5) no longer fits into the framework of saddle-
point problems. Hence, in order to study its stability, we will need to resort to the more general
Banach-Nečas-Babuška Theorem [55]. The case of pure natural boundary conditions will be
covered separately in Section 8.5. Moreover, note that all the dimensionless parameters have
been set for simplicity to 1, unlike for the standard Nitsche method for the Poisson problem [61],
where the dimensionless parameter needs to be taken large enough.

We endow Vh and Qh with the following mesh-dependent norms.

‖vh‖20,h,ΩT := ‖vh‖2L2(ΩT ) +
∑

K∈Gh(ΓN )

h−1 ‖vh · n‖2L2(ΓK) , vh ∈ Vh,

‖qh‖21,h,ΩI :=
∑

K∈Th(ΩI,h)

‖∇qh‖2L2(K) +
∑

f∈Fi
h

(ΩI,h)

h−1 ‖[qh]‖2L2(f) , qh ∈ Qh,

‖qh‖21,h,ΩT :=
∑
K∈Th

‖∇qh‖2L2(K) +
∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f∩Ω) +
∑

K∈Gh(ΓD)

h−1 ‖qh‖2L2(ΓK) qh ∈ Qh.

The space Vh ×Qh is equipped with the product norm

|||(vh, qh)|||2 := ‖vh‖20,h,ΩT + ‖qh‖21,h,ΩT , (vh, qh) ∈ Vh ×Qh. (8.6)

Let us illustrate the salient properties of the ghost penalty operators that are needed to study
the well-posedness of formulation (8.4).
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Lemma 8.3.4. The bilinear forms jh(·, ·) and jh(·, ·) induce semi-inner products on Vh and Qh,
respectively. In particular,

jh(wh, vh) ≤jh(wh, wh) 1
2 jh(vh, vh) 1

2 , ∀ wh, vh ∈ Vh,
jh(mh, qh) ≤jh(mh,mh) 1

2 jh(qh, qh) 1
2 , ∀ mh, qh ∈ Qh.

Proof. It suffices to apply the Cauchy-Schwarz inequality, first in the L2-setting and then in the
`2-setting. Let us show, for instance, the bound for jh(·, ·). Given mh, qh ∈ Qh, it holds

jh(mh, qh) =
∑
f∈FΓ

h

k∑
j=0

h2j−1
∫
f

[∂jnmh][∂jnqh] ≤
∑
f∈FΓ

h

k∑
j=0

h
1
2 (2j−1) ∥∥[∂jnmh]

∥∥
L2(f) h

1
2 (2j−1) ∥∥[∂jnqh]

∥∥
L2(f)

≤

∑
f∈FΓ

h

k∑
j=0

h2j−1 ∥∥[∂jnmh]
∥∥2
L2(f)

 1
2
∑
f∈FΓ

h

k∑
j=0

h2j−1 ∥∥[∂jnqh]
∥∥2
L2(f)

 1
2

= jh(mh,mh) 1
2 jh(qh, qh) 1

2 .

The inequality for jh(·, ·) follows in a similar fashion.

Lemma 8.3.5. Let K1,K2 ∈ Th with a facet f = ∂K1 ∩ ∂K2. Let ϕh be a piecewise polynomial
such that ϕ1 := ϕh

∣∣∣
K1
∈Mk1(K1) and ϕ2 := ϕh

∣∣∣
K2
∈Mk2(K2), and let k := max{k1, k2}. There

exist C1,C2 > 0, independent of h > 0, but dependent on the shape-regularity constant and on k,
such that

‖ϕ1‖2L2(K1) ≤ C1

‖ϕ2‖2L2(K2) +
k∑
j=0

h2j+1 ∥∥[∂jnϕh]
∥∥2
L2(f)

 ,

∥∥∥∥∂ϕ1

∂xj

∥∥∥∥2

L2(K1)
≤ C2

∥∥∥∥∂ϕ2

∂xj

∥∥∥∥2

L2(K2)
+

k∑
j=0

h2j−1 ∥∥[∂jnϕh]
∥∥2
L2(f)

 , ∀ 1 ≤ j ≤ d.

(8.7)

Proof. The first inequality in (8.7) has been proven in Lemma 5.1 in [96]. For the second
inequality, see Lemma 5.2 of [88].

The following results enable us to control the norms in the whole ΩT in terms of the norms in
the domain ΩI,h through the ghost penalty operators.

Theorem 8.3.6. The following inequalities hold.

‖vh‖2L2(ΩT ) . ‖vh‖
2
L2(ΩI,h) + jh(vh, vh), ∀ vh ∈ Vh, (8.8)∑

K∈Th

‖∇qh‖2L2(K) .
∑

K∈Th(ΩI,h)

‖∇qh‖2L2(K) + jh(qh, qh), ∀ qh ∈ Qh, (8.9)

∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f) .
∑

f∈Fi
h

(ΩI,h)

h−1 ‖[qh]‖2L2(f) + jh(qh, qh), ∀ qh ∈ Qh. (8.10)

Proof. Let us start with the proof of (8.8). Since we can decompose ΩT = ΩI,h ∪
⋃
K∈Gh K, it is

sufficient to show∑
K∈Gh

‖vh‖2L2(K) . ‖vh‖
2
L2(ΩI,h) + jh(vh, vh), ∀ vh ∈ Vh,
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which holds by Assumption 8.1.1, the shape-regularity of Th, and Lemma 8.3.5. See also Lemma 2
of [68] and Proposition 5.1 of [96]. Inequality (8.9) for the pressures follows in a similar fashion.

Let us move to (8.10). Note that in view of Remark 8.3.1, we may replace jh(·, ·) with sh(·, ·).
Without loss of generality, let f ∈ F ih \ F ih(ΩI,h). Assumption 8.1.2 guarantees the existence
of a patch P` such that f ∈ F` and of an internal face f ′ ∈ F` ∩ F ih(ΩI,h). We proceed by
a scaling argument. Let us take qh ∈ Qh and map P` to the reference patch P̂ . P̂ can be
defined as P̂ := {F−1

K′
`
(x) : x ∈ P`}, where K ′` ∈ P` ∩ Th(ΩI,h) (whose existence follows from

Assumption 8.1.2), see Section 2.4.1 of [90]. Note that diam
(
P̂
)

= O(1) and P̂ depends on the
shape of P`. We denote f̂ := F−1

K′
`
(f), f̂ ′ := F−1

K′
`
(f ′), q̂h := qh ◦FK′

`
, and π̂ : L2(P̂ )→Mk(P̂ ) the

L2-orthogonal projection. Moreover, let F̂ := {f̂ : f̂ = F−1
K′
`
(f), f ∈ F ih, f ⊆ P`, f 6⊂ ∂P`}. We

also write

ŝ(q̂h, q̂h) :=
∫
P̂

(q̂h − π̂(q̂h)) q̂h.

It is sufficient to show that

‖[q̂h]‖2
L2(f̂) ≤ C(P̂ ) ‖[q̂h]‖2

L2(f̂ ′) + ŝ(q̂h, q̂h). (8.11)

We decompose q̂h = q̂1 + q̂2, where q̂1 ∈ ker(ŝ) and q̂2 ∈ (ker(ŝ))⊥, where the orthogonal
complement is taken with respect to the L2-scalar product on P̂ . Note that ker(ŝ) = Mk(P̂ ) =
Im(π̂). We have, of course,

‖[q̂1 + q̂2]‖2
L2(f̂) ≤ ‖[q̂1 + q̂2]‖2

L2(f̂) + ‖[q̂2]‖2
L2(f̂ ′) . (8.12)

From norms equivalence on discrete spaces, it holds∑
f∈F̂

‖[q̂2]‖2
L2(f̂) . ‖q̂2‖2L2(P̂ ) . (8.13)

Indeed, it is easy to check that both terms in (8.13) are norms on (ker(ŝ))⊥. In particular, (8.13)
entails

‖[q̂2]‖2
L2(f̂) . ‖q̂2‖2L2(P̂ ) , ∀ f̂ ∈ F̂ . (8.14)

By combining (8.12) and (8.14), we have ‖[q̂1 + q̂2]‖2
L2(f̂) ≤ ‖[q̂1 + q̂2]‖2

L2(f̂) + ‖q̂2‖2L2(P̂ ). The
reader can easily check ŝ(q̂1 + q̂2, q̂1 + q̂2) = ‖q̂2‖2L2(P̂ ). Hence,

‖[q̂1 + q̂2]‖2
L2(f̂) ≤ ‖[q̂1 + q̂2]‖2

L2(f̂) + ŝ(q̂1 + q̂2, q̂1 + q̂2).

By compactness, it holds sup
P̂
C(P̂ ) ≤ C, see Section 2.2.7 of [22]. The claim follows by scaling

back to the physical patch P`, summing over all the patches, using Assumption 8.1.2, and the
shape-regularity of the mesh.

8.3.1 Stability estimates

Let us prove the main ingredients that allow us to show the well-posedness of formulation (8.5).
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Proposition 8.3.7. The bilinear forms appearing in the weak formulation (8.5) are continuous,
namely, there exist Ma,Mb1 ,Mj ,Mj > 0, such that

|ah(wh, vh)| ≤Ma ‖wh‖0,h,ΩT ‖vh‖0,h,ΩT , ∀ wh, vh ∈ Vh,
|b1(vh, qh)| ≤Mb1 ‖vh‖0,h,ΩT ‖qh‖1,h,ΩT , ∀ vh ∈ Vh,∀ qh ∈ Qh,
|jh(wh, vh)| ≤Mj ‖wh‖0,h,ΩT ‖vh‖0,h,ΩT , ∀ wh, vh ∈ Vh,
|jh(mh, qh)| ≤Mj ‖mh‖1,h,ΩT ‖qh‖1,h,ΩT , ∀ mh, qh ∈ Qh.

Proof. Let us fix any wh, vh ∈ Vh and mh, qh ∈ Qh. By Cauchy-Schwartz’s inequality

|ah(wh, vh)| ≤ ‖wh‖L2(Ω) ‖vh‖L2(Ω) + h−
1
2 ‖wh · n‖L2(ΓN ) h

− 1
2 ‖vh · n‖L2(ΓN )

≤‖wh‖0,h,ΩT ‖vh‖0,h,ΩT ,

hence Ma = 1. By integration by parts, we get

b1(vh, qh) =
∫

Ω
qh div vh −

∫
ΓN

qhvh · n =
∑
K∈Th

∫
K∩Ω

qh div vh −
∑

K∈Gh(ΓN )

∫
ΓK

qhvh · n

=−
∑
K∈Th

∫
K∩Ω

∇qh · vh +
∑
f∈Fi

h

∫
f∩Ω

[qh] vh · n +
∑

K∈Gh(ΓD)

∫
ΓK

qhvh · n.

From Cauchy-Schwarz’s inequality, Lemma A.1.2, and a standard inverse estimate (Proposi-
tion 6.3.2 of [112]), we obtain∑

f∈Fi
h

∫
f∩Ω

[qh]vh · n ≤
∑
f∈Fi

h

h−
1
2 ‖[qh]‖L2(f∩Ω) h

1
2 ‖vh · n‖L2(f∩Ω)

≤C

∑
f∈Fi

h

h−1 ‖[qh]‖2L2(f∩Ω)

 1
2 ( ∑

K∈Th

‖vh‖2L2(K)

) 1
2

≤C ‖qh‖1,h,ΩT ‖vh‖0,h,ΩT ,

and, analogously,∑
K∈Gh(ΓD)

∫
ΓK

qhvh · n ≤
∑

K∈Gh(ΓD)

h−
1
2 ‖qh‖L2(ΓK) h

1
2 ‖vh · n‖L2(ΓK)

≤C

 ∑
K∈Gh(ΓD)

h−1 ‖qh‖2L2(ΓK)

 1
2 ( ∑

K∈Th

‖vh‖2L2(K)

) 1
2

≤C ‖qh‖1,h,ΩT ‖vh‖0,h,ΩT .

Thus,

|b1(vh, qh)| ≤
∑
K∈Th

‖∇qh‖L2(K∩Ω) ‖vh‖L2(K∩Ω) + C ‖qh‖1,h,ΩT ‖vh‖0,h,ΩT

≤C ‖qh‖1,h,ΩT ‖vh‖0,h,ΩT .

The bounds for jh(·, ·) and jh(·, ·) follow as well straightforward.

Proposition 8.3.8. There exists α > 0, such that,

ah(vh, vh) + jh(vh, vh) ≥ α ‖vh‖20,h,ΩT , ∀ vh ∈ Vh.
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Proof. This is just a consequence of Theorem 8.3.6.

Proposition 8.3.9. There exists β1 > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b1(vh, qh)
‖vh‖0,h,ΩT

≥ β1 ‖qh‖1,h,ΩI,h .

Proof. Let us fix qh ∈ Qh and construct vh ∈ Vh using just the internal degrees of freedom of Vh,
namely ∫

f

vh · nϕh = h−1
∫
f

[qh]ϕh, ∀ f ∈ F ih(ΩI,h),∀ ϕh ∈ Ψk(f),∫
f

vh · nϕh = 0, ∀ f ∈ F∂h (ΩI,h), ∀ ϕh ∈ Ψk(f),∫
K

vh ·ψh = −
∫
K

∇qh ·ψh, ∀K ∈ Th(ΩI,h),∀ ψh ∈ Ψk(K), if k > 0.

We refer the reader to Chapter 6 for the definitions of Ψk(K) and Ψk(f). Let us extend vh to
zero outside ΩI,h. It holds

b1(vh, qh) =−
∑

K∈Th(ΩI,h)

∫
K

∇qh · vh +
∑

f∈Fi
h

(ΩI,h)

∫
f

[qh]vh · n

=
∑

K∈Th(ΩI,h)

‖∇qh‖2L2(K) +
∑

f∈Fi
h

(ΩI,h)

h−1 ‖[qh]‖2L2(f) = ‖qh‖21,h,ΩI,h .

Now, we prove that ‖vh‖0,h,ΩT . ‖qh‖1,h,ΩI,h . By construction of vh, it is sufficient to show∑
K∈Th(ΩI,h)

‖vh‖2L2(K) .
∑

K∈Th(ΩI,h)

‖∇qh‖2L2(K) +
∑

f∈Fi
h

(ΩI,h)

h−1 ‖[qh]‖2L2(f) .

We mimic the proof of Proposition 2.1 in [40]. Let K ∈ Th(ΩI,h) and K̂ be the the reference
element. Let f be a face of K and f̂ be its preimage through FK (see Chapter 6 for the definitions
of K̂ and FK). Finite dimensionality implies

‖v̂h‖2L2(K̂) .
∥∥∥π

K̂,k−1(v̂h)
∥∥∥2

L2(K̂)
+ ‖v̂h · n‖2L2(f̂) ,

where π
K̂,k−1 is the L2-projection onto Ψk(K̂). By pushing forward to the element K, a scaling

argument implies

‖vh‖2L2(K) . ‖πK,k−1(vh)‖2L2(K) + h ‖vh · n‖2L2(f) .

This time πK,k−1 is the L2-projection onto Ψk(K) By construction of vh,

‖vh‖2L2(K) . ‖πK,k−1(∇qh)‖2L2(K) + h−1 ‖πf ,k([qh])‖2L2(f) = ‖∇qh‖2L2(K) + h−1 ‖[qh]‖2L2(f) ,

where πf ,k denotes the L2-projection onto Ψk(f).

We are left with the proof of the well-posedness of formulation (8.5). In order to do that, we verify
that the bilinear form Ah(·; ·) satisfies the hypotheses of the Banach-Nečas-Babuška Theorem.
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Theorem 8.3.10. There exists η > 0 such that

inf
(vh,qh)∈Vh×Qh

sup
(wh,mh)∈Vh×Qh

Ah ((vh, qh); (wh,mh))
|||(vh, qh)||||||(wh,mh)||| ≥ η.

Proof. Let (vh, qh) ∈ Vh ×Qh be arbitrary and −wh be the element attaining the supremum in
Proposition 8.3.9, namely

−b1(wh, qh) = ‖qh‖21,h,ΩI,h , ‖wh‖0,h,ΩT . ‖qh‖1,h,ΩI,h . (8.15)

From Proposition 8.3.7, we have

Ah ((vh, qh); (−wh, 0)) =− ah(vh, wh)− jh(vh, wh)− b1(wh, qh) + b1(vh, 0)− jh(qh, 0)
≥− 2 ‖vh‖0,h,ΩT ‖wh‖0,h,ΩT + ‖qh‖21,h,ΩI,h

&− 2 ‖vh‖0,h,ΩT ‖qh‖1,h,ΩI,h + ‖qh‖21,h,ΩI,h

&− 1
ε
‖vh‖20,h,ΩT + (1− ε) ‖qh‖21,h,ΩI,h ,

where ε > 0 arises from the Young inequality. On the other hand, it holds

Ah ((vh, qh); (vh,−qh)) =ah(vh, vh) + jh(vh, vh) + b1(vh, qh)− b1(vh, qh) + jh(qh, qh)
& ‖vh‖20,h,ΩT + jh(qh, qh).

By choosing (vh − δwh,−qh) ∈ Vh ×Qh, for δ > 0 to be set later on, we get

Ah ((vh, qh); (vh − δwh,−qh)) &
(

1− δ

ε

)
‖vh‖20,h,ΩT + δ(1− ε) ‖qh‖21,h,ΩI,h + jh(qh, qh).

Let us take, for instance, ε = 1
2 and any 0 < δ < 1

2 , so that

Ah ((vh, qh); (vh − δwh,−qh)) & ‖vh‖20,h,ΩT + ‖qh‖21,h,ΩI,h + jh(qh, qh)

& ‖vh‖20,h,ΩT + ‖qh‖21,h,ΩT ,

where in the last inequality we used ‖qh‖21,h,ΩT . ‖qh‖
2
1,h,ΩI,h + jh(qh, qh), which follows from

Theorem 8.3.6. We are left with proving that |||(vh − δwh, qh)||| . |||(vh, qh)|||, which is a
consequence of (8.15).

8.3.2 A priori error estimates

Theorem 8.3.11. There exists C > 0 such that, for every (v, q) ∈Ht(Ω)×Hr(Ω), t ≥ 1, r ≥ 1,
it holds

‖E(v)− rh(v)‖0,h,ΩT + ‖E(q)−Πh(q)‖1,h,ΩT ≤ Ch
s
(
‖v‖Ht(Ω) + ‖q‖Hr(Ω)

)
,

where s := min{t− 1, r − 1, k}, E and E have been introduced in Section 8.2.

Proof. Let us start with the velocity. We have

‖E(v)− rh(v)‖20,h,ΩT = ‖E(v)− rh(v)‖2L2(ΩT ) + h−1
∑

K∈Gh(ΓN )

‖(E(v)− rh(v)) · n‖2L2(ΓK) .
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For the volumetric term, let us apply the standard Deny-Lions argument (Chapter 3 of [112]) to
the interpolant rh and get

‖E(v)− rh(v)‖2L2(ΩT ) =
∑
K∈Th

‖E(v)− rh(v)‖2L2(K) ≤ C
∑
K∈Th

h2t ‖E(v)‖2Ht(K) ≤ Ch
2t ‖v‖2Ht(Ω) .

For the boundary part, let us first use the multiplicative trace inequality of Lemma A.1.2
(componentwise) and then, again, the Deny-Lions argument:

h−1
∑

K∈Gh(ΓN )

‖(E(v)− rh(v)) · n‖2L2(ΓK) ≤h
−1

∑
K∈Gh(ΓN )

‖E(v)− rh(v)‖2L2(ΓK)

≤Ch−1
∑

K∈Gh(ΓN )

‖E(v)− rh(v)‖H1(K) ‖E(v)− rh(v)‖L2(K)

≤Ch−1
∑
K∈Th

ht−1 ‖E(v)‖Ht(K) h
t ‖E(v)‖Ht(K)

≤Ch2(t−1) ‖v‖2Ht(Ω) .

We move to the pressure case.

‖E(q)−Πh(q)‖21,h,ΩT =
∑
K∈Th

‖∇ (E(q)−Πh(q))‖2L2(K) +
∑
f∈Fi

h

h−1 ‖[E(q)−Πh(q)]‖2L2(f∩Ω)

+
∑

K∈Gh(ΓD)

h−1 ‖E(q)−Πh(q)‖2L2(ΓK) .

(8.16)
For the volumetric term we may proceed as in the case of the velocity to easily obtain∑

K∈Th

‖∇ (E(q)−Πh(q))‖2L2(K) ≤ Ch
2(r−1) ‖q‖2Hr(Ω) .

Let us focus on the jump part of (8.16) and take f ∈ F ih such that f = K1 ∩ K2. Then, by
Lemma A.1.2 and the Deny-Lions Lemma, we have

h−1 ‖[E(q)−Πh(q)]‖2L2(f∩Ω) =h−1
∥∥∥∥(E(q)−Πh(q))

∣∣∣
K1
− (E(q)−Πh(q))

∣∣∣
K2

∥∥∥∥2

L2(f)

≤Ch−1 ‖E(q)−Πh(q)‖L2(K1) ‖E(q)−Πh(q)‖H1(K1)

+ Ch−1 ‖E(q)−Πh(q)‖L2(K2) ‖E(q)−Πh(q)‖H1(K2)

≤Ch2(r−1)
(
‖E(q)‖2Hr(K1) + ‖E(q)‖2Hr(K2)

)
.

Hence, ∑
f∈Fi

h

h−1 ‖[E(q)−Πh(q)]‖2L2(f∩Ω) ≤ Ch
2(r−1) ‖q‖2Hr(Ω) .

The bound for the boundary part of (8.16) follows in a similar fashion.

Lemma 8.3.12. For every v ∈Ht(Ω) and q ∈ Hr(Ω), t ≥ 1, r ≥ 1,

jh(rh(v), rh(v)) 1
2 .hm ‖v‖Ht(Ω) ,

jh(Πh(q), Πh(q)) 1
2 .h` ‖q‖Hr(Ω) ,

where m := min{k + 1, t} and ` := min{k, r − 1}.
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Proof. Note that

jh(Πh(q)− E(q), Πh(q)− E(q)) =jh(Πh(q), Πh(q))− jh(Πh(q),E(q))− jh(E(q), Πh(q))
+ jh(E(q),E(q)).

(8.17)

Given 0 ≤ k ≤ r − 1, for every 0 ≤ j ≤ k, and α multi-index such that |α| = j, then
DαE(q) ∈ Hr−j(ΩT ) ⊂ H1(ΩT ), hence [∂jnE(q)]f vanishes across every f ∈ F ih. Thus, (8.17)
implies that

jh(Πh(q), Πh(q)) = jh(Πh(q)− E(q), Πh(q)− E(q)).

Now, by using Corollary A.1.3 and a standard approximation argument, we obtain

jh(Πh(q)− E(q), Πh(q)− E(q)) =
∑
f∈FΓ

h

k∑
i=0

h2i−1 ∥∥[∂in(Πh(q)− E(q))]
∥∥2
L2(f)

≤C
∑
K∈Gh

k∑
i=0

h2i−1 ∥∥Di (Πh(q)− E(q)))
∥∥
L2(K)

∥∥Di+1 (Πh(q)− E(q)))
∥∥
L2(K)

≤Ch2` ‖E(q)‖2Hr(ΩT ) ≤ Ch
2` ‖q‖2Hr(Ω) ,

where ` := min{k, r − 1} and the last inequality follows from the boundedness of E. The bound
for jh(·, ·) follows in a completely similar fashion.

Theorem 8.3.13. Let (u, p) ∈Ht (Ω)×Hr (Ω), t ≥ 1, r ≥ 1, be the solution of problem (8.1).
Then, the finite element solution (uh, ph) ∈ Vh ×Qh of (8.4) satisfies

‖u− uh‖L2(Ω) +
( ∑
K∈Th

‖∇ (p− ph)‖2L2(K∩Ω)

) 1
2

≤ Chs
(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
,

where s := min{t− 1, r − 1, k}.

Proof. Firstly, we observe that

‖u− uh‖L2(Ω) +
( ∑
K∈Th

‖∇ (p− ph)‖2L2(K∩Ω)

) 1
2

≤‖E(u)− uh‖0,h,ΩT + ‖E(p)− ph‖1,h,ΩT

≤
√
d|||(E(u)− uh,E(p)− ph)|||,

it suffices to bound |||(E(u)− uh,E(p)− ph)|||. Let us proceed by triangular inequality:

|||(E(u)− uh,E(p)− ph)||| ≤ |||(E(u)− rh(u),E(p)−Πh(p))|||︸ ︷︷ ︸
I

+ |||(rh(u)− uh, Πh(p)− ph)|||︸ ︷︷ ︸
II

.

(8.18)

Theorem 8.3.11 implies, for s = min{t− 1, r − 1, k},

I ≤ Chs
(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
. (8.19)

By Theorem 8.3.10, for (uh − rh(u), ph − πhp) there exists (vh, qh) ∈ Vh ×Qh such that

II = |||(uh − rh(u), ph −Πh(p))||| . Ah ((uh − rh(u), ph −Πh(p)) ; (vh, qh))
|||(vh, qh)||| . (8.20)
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From Propositions 8.3.2, 8.3.7, and the definition of |||·|||, it holds

Ah ((uh − rh(u), ph −Πh(p)) ; (vh, qh)) = Ah ((uh − u, ph − p); (vh, qh))
+Ah ((u− rh(u), p−Πh(p)); (vh, qh)) = −jh(u, vh) + jh(p, qh) + ah(u− rh(u), vh)
+ b1(vh, p−Πh(p)) + b1(u− rh(u), qh) + jh(u− rh(u), vh) + jh(p−Πh(p), qh)
. |jh(rh(u), vh)|+ |jh(Πh(p), qh)|+ |||(u− rh(u), p−Πh(p))||||||(vh, qh)|||.

(8.21)

Lemmas 8.3.4, 8.3.12 entail, for s := min{t− 1, r − 1, k},

|jh(rh(u), vh)|+ |jh(Πh(p), qh)| ≤jh(rh(u), rh(u)) 1
2 jh(vh, vh) 1

2 + jh(Πh(p), Πh(p)) 1
2 jh(qh, qh) 1

2

.hs ‖u‖Ht(Ω) ‖vh‖0,h,ΩT + hs ‖p‖Hr(Ω) ‖qh‖1,h,ΩT

.hs
(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
|||(vh, qh)|||,

(8.22)
where s := min{t− 1, r − 1, k}. By plugging (8.22) back into (8.21) and using Theorem 8.3.11,
we obtain

Ah ((uh − rh(u), ph −Πh(p)) ; (vh, qh)) .hs
(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
|||(vh, qh)|||. (8.23)

We combine (8.18), (8.19), (8.20) and (8.23), getting

|||(E(u)− uh,E(p)− ph)||| .hs
(
‖u‖Ht(Ω) + ‖p‖Hr(Ω)

)
,

where s := min{t− 1, r − 1, k}.

Remark 8.3.14. The convergence rates given by Theorem 8.3.11 are optimal for the chosen
discrete norms. On the other hand, the scaling of the energy norm ‖·‖0,h,ΩT does not allow us
to obtain optimal convergence rates for the velocities with respect to the L2-norm by simply
applying Theorem 8.3.11. This is due to the term h−1 ∫

ΓN (uh · n) (vh · n): the natural weight,
mimicking the H− 1

2 -scalar product, would be h instead of h−1. However, as already discussed in
Chapter 7 such weight does not lead to an optimally converging scheme.

8.4 The condition number
Following [54] and [96], we want to show that the Euclidean condition number of the matrix
arising from the discretization (8.5) is uniformly bounded by Ch−2, where C > 0 is independent
of how the underlying mesh cuts the boundary. Let us observe that the usual scaling of the
condition number for a finite element discretization of the Darcy problem is O(h−1). We pay
with a factor h−1 because of the choice of the discrete norms.

Denoting N = dimVh×Qh, we can expand an arbitrary element (vh, qh) ∈ Vh×Qh as (vh, qh) =∑N
i=1 Viϕi, where (ϕ)Ni=1 is the finite element basis for the product space Vh ×Qh and V ∈ RN

is its coordinate vector. The previous expansion of the elements of Vh ×Qh uniquely defines a
canonical isometric isomorphism between Vh ×Qh and RN , namely

C : Vh ×Qh → RN , (vh, qh) 7→ V.

Here, RN is equipped with the standard Euclidean scalar product, denoted as (·, ·)`2 , and the
induced norm |·|`2 . Given M ∈ RN×N , we denote as ‖M‖2 the matrix norm of M induced by
|·|`2 . Let A ∈ RN×N denote the matrix associated to the discrete formulation (8.5), namely

(AV,W)`2 = Ah ((vh, qh); (wh,mh)) , ∀ V,W ∈ RN ,

where V = C(vh, qh), W = C(wh,mh) and (vh, qh), (wh,mh) ∈ Vh ×Qh.
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Remark 8.4.1. In the pure essential case Γ = ΓN the solution to (8.5) for the pressure is
determined up to a constant, hence A is singular and kerA = span{C(0, 1)}. We shall consider,
instead of A, its bijective restriction A

∣∣∣
R̂N

: R̂N → R̃N , where R̂N := RN/ kerA and R̃N := Im(A).

As already said, the goal is to analyze the Euclidean condition number κ2(A) := ‖A‖2
∥∥A−1

∥∥
2.

From [112], we know that the main ingredients for the conditioning analysis are the following:

1. the stability of the discrete formulation with respect to a given norm ‖·‖a;

2. the `2-stability of the basis with respect to a given norm ‖·‖b;

3. the equivalence between the norms ‖·‖a and ‖·‖b.

In the subsequent exposition, the product norm (8.6) plays the role of ‖·‖b, while |||·|||L2(ΩT ),
defined as |||(vh, qh)|||2L2(ΩT ) := ‖vh‖2L2(ΩT ) + ‖qh‖2L2(ΩT ), corresponds to ‖·‖a.

Lemma 8.4.2. There exist C1,C2 > 0 such that, for every (vh, qh) ∈ Vh ×Qh,

C1h
d
2 |V|`2 ≤ |||(vh, qh)|||L2(ΩT ) ≤ C2h

d
2 |V|`2 ,

where V = C(vh, qh).

Proof. The result holds because the background mesh is shape-regular and quasi-uniform. We
refer the interested reader to Lemma A.1 in [55].

Lemma 8.4.3. There exist C1,C2 > 0 such that, for every (vh, qh) ∈ Vh ×Qh,

C1|||(vh, qh)|||L2(ΩT ) ≤ |||(vh, qh)||| ≤ C2h
−1|||(vh, qh)|||L2(ΩT ).

Proof. The first bound follows because of a Poincaré-Friedrichs inequality for piecewise H1-
functions (Section 10.6 of [25] and [52]). For the second inequality it is sufficient to apply
standard inverse estimates for boundary-fitted finite elements.

Theorem 8.4.4. There exists C > 0 such that

κ2(A) ≤ Ch−2.

Proof. Let us start by bounding ‖A‖`2 . Given (vh, qh), (wh,mh) ∈ Vh×Qh such that C(vh, qh) =
V, C(wh,mh) =W, we have

(AV,W)`2 =Ah ((vh, qh); (wh,mh)) . |||(vh, qh)||||||(wh,mh)|||
. h−2|||(vh, qh)|||L2(ΩT )|||(wh,mh)|||L2(ΩT ) . h

d−2 |V|`2 |W|`2 .

In the previous inequalities we used, respectively, the continuity of Ah(·; ·), Lemma 8.4.3 and
Lemma 8.4.2. Hence, ‖A‖2 . hd−2. We need to bound

∥∥A−1
∥∥

2. Since (the restriction of) A−1 is
invertible, we can write

∥∥A−1∥∥
2 = sup

Y∈R̃N\{0}

∣∣A−1Y
∣∣
`2

|Y|`2
= sup

AV∈R̃N

V∈R̂N\{0}

|V|
|AV|

= sup
AV∈R̃N

V∈R̂N\{0}

sup
W∈R̂N\{0}

|V|`2 |W|`2
(AV,W)`2

. (8.24)
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8.5. The pure natural case

From Theorem 8.3.10, we know that, for every V ∈ R̂N \ {0}, there exists W such that

(AV,W)`2 =Ah ((vh, qh); (wh, qh)) & |||(vh, qh)||||||(wh,mh)||| & |||(vh, qh)|||L2(ΩT )|||(wh,mh)|||L2(ΩT )

&hd |V|`2 |W|`2 ,
(8.25)

where in the last two inequalities we used, respectively, Lemma 8.4.3 and Lemma 8.4.2. By
combining (8.24) and (8.25) we get

∥∥A−1
∥∥

2 . h
−d. Hence, we are done.

8.5 The pure natural case
The goal of this section is to sketch the main steps required to analyze formulation (8.4) in the
pure natural case. If Γ = ΓD, then we consider the following Raviart-Thomas finite element
discretization of problem (8.1).

Find (uh, ph) ∈ Vh ×Qh such that∫
Ω

uh · vh + b0(vh, ph) =
∫

Ω
f · vh +

∫
Γ
pDvh · n, ∀ vh ∈ Vh,

b0(uh, qh) =
∫

Ω
gqh, ∀ qh ∈ Qh.

(8.26)

It is natural to equip the discrete spaces Vh and Qh with ‖·‖H(div;Ω) and ‖·‖L2(Ω), respectively.
It is readily seen that formulation (8.26) satisfies the standard stability estimates for saddle point
problems (see the hypotheses of Theorem 5.2.5 of [22]). Hence a priori error estimates can be
obtained by standard techniques (again, we refer the reader to Section 5.2 of [22]). This time,
the convergence rates are optimal because of the choice of the norms. However, the conditioning
of the arising linear system will still strongly depend on the way the boundary cuts the mesh. As
for the general case with mixed boundary conditions, we propose to cure this issue with a ghost
penalty-based stabilization.

j̃h(wh, vh) :=
∑
f∈FΓ

h

k∑
j=0

h2j+1
∫
f

[∂jnwh][∂jnvh], wh, vh ∈ Vh,

j̃h(mh, qh) :=
∑
f∈FΓ

h

k∑
j=0

h2j+1
∫
f

[∂jnmh][∂jnqh], mh, qh ∈ Qh.

Let us observe that the ghost penalty operators scale differently than in (8.3) because of the
different choices of the norms to the mixed case. The stabilized formulation reads as follows.

Find (uh, ph) ∈ Vh ×Qh such that∫
Ω

uh · vh + j̃h(uh, vh) + b0(vh, ph) =
∫

Ω
f · vh +

∫
Γ
pDvh · n, ∀ vh ∈ Vh,

b0(uh, qh) + j̃h(ph, qh) =
∫

Ω
gqh, ∀ qh ∈ Qh,

(8.27)

By mimicking the same lines of Section 8.4, it is possible to show that the condition number
of (8.27) goes as O

(
h−1).
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8.6 Numerical examples
In the following, we use the ghost penalty projection-based operators sh(·, ·) and sh(·, ·) defined
in Remark 8.3.1. As already observed, this choice is convenient from the implementation point of
view since it spares us to calculate the jumps of possibly high-order normal derivatives through
the facets in the vicinity of the cut boundary. We limit the scope of our numerical investigations
to the case of Cartesian quadrilateral meshes in 2D. To integrate in the cut elements, we employ
the strategy depicted in [4]: the cut elements are reparametrized using polynomials with the
same approximation order of the Raviart-Thomas space employed for the space discretization.

Ω
ε

ε

(a) Cut pentagon.

Ω

(b) Cut circle.

Ω

ε

(c) Cut rectangle.

Ω

(d) Square with circular cut.

Figure 8.1 – Unfitted domains employed for the numerical experiments.

8.6.1 Convergence rates

Cut pentagon

Let Ω0 = (0, 1)2, Ω1 be the triangle with vertices (0, 0.25+ε)−(0, 1)−(0.75−ε, 1) and Ω = Ω0\Ω1,
with ε = 10−9, see Figure 8.1(a). The reference solutions are

uex =
(
y sin(x) cos(y)
−x sin(y) cos(x)

)
, pex = x3y.

Essential boundary conditions are imposed on the whole boundary, weakly just on the sides
that do not fit the underlying mesh. We compute the approximation errors of the velocity and
pressure fields for different degrees k ∈ {0, 1, 2}, see Figure 8.2. We have optimal convergence,
despite the sub-optimal result of Theorem 8.3.13.
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k = 0 k = 1 k = 2
k = 0 with GP k = 1 with GP k = 2 with GP
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(a) Velocity error.
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(b) Pressure error.

Figure 8.2 – Convergence rates of the errors in the cut pentagon.

Cut circle

Let us consider Ω = Br(x0), with x0 = (0.5, 0.5) and r = 0.45, see Figure 8.1(b). The
manufactured solution for the pressure is

pex = sin (2πx) cos (2πy) ,

and the velocity field is computed from Darcy’s law (8.1) when f is taken to be zero. We weakly
prescribe essential boundary conditions on the whole boundary, which does not fit the underlying
mesh. The L2-errors for the velocity and pressure fields are plotted in Figure 8.3. We can see
optimal orders of convergence and better accuracy in the stabilized case for k = 2.

k = 0 k = 1 k = 2
k = 0 with GP k = 1 with GP k = 2 with GP

2−32−42−52−62−7
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(a) Velocity error.
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101
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p
h
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(b) Pressure error.

Figure 8.3 – Convergence rates of the errors in the cut circle.
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8.6.2 Condition number

Cut rectangle
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(d) k = 3.

Figure 8.4 – Condition number for the cut rectangle with essential boundary conditions.

Let us consider as physical domain the cut rectangle Ω = (0, 1)× (0, 0.75 + ε) where ε = 10−7,
see Figure 8.1c. We impose essential boundary conditions weakly on the whole boundary. In
Figure 8.4 we compare the conditioning of the stabilized and non-stabilized formulations. Similarly,
in Figure 8.5 we compare the conditioning of the stabilized and non-stabilized formulations when
natural boundary conditions are imposed. The results are in agreement with the theory developed
in Sections 8.4, 8.5. In particular, we observe that without stabilization, the condition number is
negatively affected by the presence of cut elements and seems to grow without control, while in
the stabilized case, the expected scaling of the conditioning is restored: O(h−2) for the essential
case and O(h−1) for the pure natural case.
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k = 0 k = 1 k = 2 k = 3
k = 0 with GP k = 1 with GP k = 2 with GP k = 3 with GP

2−12−22−32−42−52−6

101

106

1011

1
-1

h

co
nd

iti
on

nu
m
be

r

(a) k = 0.

2−12−22−32−42−52−6
101

1011

1021

1
-1

h

co
nd

iti
on

nu
m
be

r

(b) k = 1.

2−12−22−32−42−52−6
101

1017

1033

1049

1
-1

h

co
nd

iti
on

nu
m
be

r

(c) k = 2.

2−12−22−32−42−52−6
101

1027

1053

1079

1-1

h

co
nd

iti
on

nu
m
be

r

(d) k = 3.

Figure 8.5 – Condition number for the cut rectangle with natural boundary conditions.

8.6.3 On mass conservation

Mass conservation is an important feature for finite element discretizations of incompressible
flows, whose violation is not tolerable in many applications [81]. As observed in Remark 8.2.1,
the Raviart-Thomas finite element satisfies divVh = Qh in the unfitted configuration as well. The
formulation (8.4) as it stands is bound to fail to satisfy the incompressibility constraint in a weak
sense, which is why, to exploit this property when the right-hand side g vanishes, we consider the
following non-symmetric variant of formulation (8.4).

Find (uh, ph) ∈ Vh ×Qh such that

ah(uh, vh) + b1(vh, ph) + jh(uh, vh) =
∫

Ω
f · vh +

∫
ΓD

pDvh · n + h−1
∫

ΓN
uNvh · n, ∀ vh ∈ Vh,

b0(uh, qh) + jh(ph, qh) = 0, ∀ qh ∈ Qh,
(8.28)
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where

b0(wh, qh) :=
∫

Ω
qh div wh, wh ∈ Vh, qh ∈ Qh.

Let us test formulation (8.28) in the stabilized and non-stabilized cases. We take as reference
solutions

uex =
(

cos(x) sinh(y)
sin(x) cosh(y)

)
, pex = − sin(x) sinh(y)− (cos(1)− 1) (cosh(1)− 1) .

Note that div uex = 0. We impose natural boundary conditions on {(x, y) : x = 2, 0 ≤ y ≤ 2}
and on {(x, y) : 0 ≤ x ≤ 2, y = 2}, and weak essential boundary conditions on the rest of the
boundary. The computed divergence of the discrete solution for the velocity is shown in Figure 8.6
for k = 1 and h = 2−4. We observe that the ghost penalty stabilization pollutes the divergence of
the velocity, hence also the non-symmetric formulation (8.28) fails to the mass conservation at
the discrete level.

(a) Without stabilizations. (b) With ghost penalty.

Figure 8.6 – |div uh| in the square with circular cut obtained with (8.28).
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Summary of Part II
In the second part of the dissertation, we considered the Raviart-Thomas finite element dis-
cretization of the Darcy problem. We proposed and analyzed a Nitsche and a penalty method
for the weak imposition of the essential boundary conditions in the boundary fitted case. We
provided a theoretical framework for the numerical analysis of the two schemes and delivered
optimal a priori error estimates for the L2-error of the velocity. From our analysis, the Nitsche
method must be preferred to the penalty method. Indeed, the latter relies on a mesh-dependent
parameter growing at a much higher rate compared to the other terms in the stiffness matrix.
This leads to the rapid deterioration of the conditioning of the final linear system.

We moved to the much more complicated situation of a mesh unfitted with the domain. To
perform integration in the cut elements, we relied on the same polynomial reparametrization
discussed in the first part of the thesis. The Nitsche method previously introduced cannot be
directly used as it is, since it is severely ill-posed. The presence of cut elements destroys the
conditioning of the linear system, and the stability estimates shown in the boundary-fitted case
cannot be retrieved. Indeed, the main techniques previously used for the theoretical proofs
break down. We showed that by adding some weakly consistent ghost penalty operators acting
separately on the velocity and the pressure in the spirit of [35] we restore the expected behavior
of the condition number and prove a priori convergence estimates.

However, the content of Chapter 8 should be considered a preliminary step towards the design
of a satisfactory method in the unfitted case. The current analysis did not recover the optimal
convergence of the velocity in the L2-norm, even though numerical experiments show that it
should hold. The major limitation remains that our stabilization procedure pollutes the divergence
of the discrete velocity and does not allow for a conservative numerical scheme at the discrete
level. A natural direction of research will be to try to overcome these drawbacks.
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A Appendix

A.1 Useful inequalities
In this section, we collect some technical results repeatedly employed in different chapters of this
thesis. We rely on the notation introduced in Section 2.1.1. The constants that will appear in
the inequalities below, unless otherwise specified, are intended to be robust with respect to the
mesh size and mutual position between trimming curve and active physical Bézier mesh.

Lemma A.1.1. There exists C > 0 such that, for every K ∈ Gh, it holds |ΓK | ≤ Chd−1
K .

Proof. The result holds since Γ is assumed to be Lipschitz-regular, hence not too oscillating.
See [62].

Lemma A.1.2. There exists C > 0. depending on Γ, such that, for every K ∈ Gh,

‖v‖2L2(ΓK) ≤ C ‖v‖L2(K) ‖v‖H1(K) , ∀ v ∈ H1(K).

Proof. See, for instance, Lemma 3 in [69], Lemma 3 in [70], or Lemma 4.1 of [116].

Corollary A.1.3. There exists C > 0, depending on Γ, such that, for every K ∈ Gh,∥∥∥∥ ∂v∂n
∥∥∥∥2

L2(ΓK)
≤ C ‖∇v‖L2(K) ‖∇v‖H1(K) , ∀ v ∈ H2(K).

Proof. It immediately follows from Lemma A.1.2.

Lemma A.1.4. Let Q,Q′ ∈ M̂h be neighbor elements in the sense of Definition 2.3.1. There
exists C > 0 such that

‖ϕ‖L∞(Q) ≤ C ‖ϕ‖L∞(Q′) , ∀ ϕ ∈ Qp(Rd),

where C depends on p, on the shape regularity of the mesh, and on the distance between Q and
Q′.

Proof. Let N := (p+ 1)d = dimQk(Rd) and define

Ψ : RN \ {0} → R, Ψ(η) =
‖ϕ‖L∞(Q)

‖ϕ‖L∞(Q′)
=

maxx∈Q
∣∣∣∑N

i=1 ηibi(x)
∣∣∣

maxx∈Q′
∣∣∣∑N

i=1 ηibi(x)
∣∣∣ ,
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where η = (η)Ni=1 are the coordinates of ϕ with respect to the Bernstein basis (bi)Ni=1. Note that
Ψ is continuous and homogeneous of degree 0, i.e., Ψ(tη) = Ψ(η), ∀ t > 0. In particular, by
homogeneity

Ψ (η) = ψ

(
|η|RN

η

|η|RN

)
= Ψ

(
η

|η|RN

)
,

that is Ψ is determined by its values on the unit sphere S = {η ∈ RN : |η|RN = 1}, which is
compact. By Weierstrass theorem Ψ attains its maximum on S, i.e., there exists C > 0 such
that |Ψ(η)| ≤ C. Note that C depends on the dimension N (i.e., on the degree p), on the shape
regularity of the mesh and on the distance between Q and Q′ (we are evaluating the same basis
functions (bi)Ni=1 at points which are far from each other).

The next result says that the L2-norm on the cut portion of an element Q controls the L∞-norm
(and hence any other) on the whole element with an equivalence constant depending on the
relative measure of the cut portion.

Lemma A.1.5. Let θ ∈ (0, 1]. There exists C > 0 such that, for every Q ∈ M̂h and every
S ⊂ Q measurable such that |S| ≥ θ |Q|, we have

‖ϕ‖L∞(Q) ≤ Ch
− d2 ‖ϕ‖L2(S) , ∀ ϕ ∈ Qp(Rd),

where C depends only on θ, p, and the mesh regularity.

Proof. See Proposition 1 in [62].

Let us recall a more standard inverse inequality with an explicit dependence on the polynomial
degree p.

Lemma A.1.6. There exists C > 0, depending on the shape regularity of the mesh, such that,
for every Q ∈ M̂h,

‖ϕ‖L∞(Q) ≤ Cp
dh
− d2
Q ‖ϕ‖L2(Q) , ∀ ϕ ∈ Qp(Q).

Proof. Since it is not easy to find a proof of this result in the literature, let us enclose one based
on the Legendre polynomials. Let us consider the reference element Q̂ := (−1, 1)d and ϕ ∈ Qp(Q̂).
We can expand ϕ(x) =

∑p
i1=0 . . .

∑p
id=0 ci1,...,idL̃i1(x1) . . . L̃id(xd), where

L̃k(t) :=
(

2k + 1
2

) 1
2

Lk(t), t ∈ [−1, 1],

and (Lk)pk=0 are the univariate Legendre polynomials (see [122]). Let us recall that

∫ 1

−1
Li(t)Lj(t) = 2

2i+ 1δij , ‖Li‖L2(−1,1) =
(

2
2i+ 1

) 1
2

, ‖Li‖L∞(−1,1) = 1,

so that∥∥∥L̃i∥∥∥
L2(−1,1)

= 1, ‖ϕ‖2
L2(K̂) =

p∑
i1=0

. . .

p∑
id=0
|ci1,...,id |

2 ,
∥∥∥L̃i∥∥∥

L∞(−1,1)
=
(

2i+ 1
2

) 1
2

.

(A.1)
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By the triangle inequality, we have

‖ϕ‖
L∞(K̂) ≤

p∑
i1=0

. . .

p∑
id=0
|ci1,...,id |

∥∥∥L̃i1∥∥∥
L∞(−1,1)

. . .
∥∥∥L̃id∥∥∥

L∞(−1,1)

≤
∥∥∥L̃p∥∥∥d

L∞(−1,1)

p∑
i1=0

. . .

p∑
id=0
|ci1,...,id | .

Using (A.1) and
∑d
i=1 |xi| ≤ d

1
2

(∑d
i=1 |xi|

2
) 1

2 , we have

‖ϕ‖
L∞(Q̂) ≤

(
2p+ 1

2

) d
2

(p+ 1)
d
2

(
p∑

i1=0
. . .

p∑
id=0
|ci1,...,id |

2

) 1
2

=
(

2p+ 1
2

) d
2

(p+ 1)
d
2 ‖ϕ‖

L2(Q̂) .

For every Q ∈ Mh, there exists TQ : Q̂ → Q affine bijection such that Q = TQ(Q̂) and

|det(DTQ)| = |Q|∣∣∣Q̂∣∣∣ =
(
hQ
2

)d
. Hence, a simple change of variable leads, for ϕ ∈ Qp(Q) and

ϕ̂ := ϕ ◦ TQ ∈ Qp(Q̂),

‖ϕ‖L∞(Q) = ‖ϕ̂‖
L∞(Q̂) ≤

(
2p+ 1

2

) d
2

(p+ 1)
d
2 ‖ϕ̂‖

L2(Q̂)

≤
(

2p+ 1
2

) d
2

(p+ 1)
d
2

∣∣∣det(DT−1
Q )

∣∣∣ 1
2 ‖ϕ‖L2(Q)

= (2p+ 1)
d
2 (p+ 1)

d
2 h
− d2
Q ‖ϕ‖L2(Q) .

For the next two results, let us define, for every x ∈ Ω, d(x) := dist(x, Γ) = infy∈Γ |x− y|.

Lemma A.1.7 (Hardy’s inequality). There exists C > 0 such that∥∥∥u
d

∥∥∥
L2(Ω)

≤ C ‖∇u‖L2(Ω) , ∀ u ∈ H1
0 (Ω). (A.2)

Proof. See [27].

Lemma A.1.8. Let C ≥ 1 and define the boundary strip Sh := {x ∈ Ω : d(x) ≤ Ch}. It holds
that

‖v‖L2(Sh) ≤ Ch
s ‖v‖Hs

i
(Ω) , ∀ v ∈ Hs

i (Ω),

where the interpolation space Hs
i (Ω) or

(
H1

0 (Ω),L2(Ω)
)
s,2 is isomorphic to Hs(Ω) for 0 ≤ s < 1

2 ,

to H
1
2
00(Ω) for s = 1

2 , and to Hs
0(Ω) for 1

2 < s ≤ 1 (see [130]).

Proof. We prove the following (like in [89]):

‖v‖L2(Sh) ≤ Ch ‖∇v‖L2(Ω) , ∀ v ∈ H1
0 (Ω). (A.3)
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Recall that, for x ∈ Sh, it holds 1 ≤ Ch2

|d(x)|2 , so that, by Lemma A.1.7,∫
Sh

|v|2 ≤ Ch2
∫
Sh

|v|2

|d|2
≤ Ch2

∫
Ω

|v|2

|d|2
≤ Ch2

∫
Ω
|∇v|2 .

On the other hand, it is clear that

‖v‖L2(Sh) ≤ ‖v‖L2(Ω) , ∀ v ∈ L2(Ω). (A.4)

It suffices to interpolate the estimates (A.3) and (A.4), getting

‖v‖L2(Ω\Ω1) ≤ Ch
s ‖v‖Hs

i
(Ω) , ∀ v ∈ Hs

i (Ω).

A.2 Technical proofs
Proof of Theorem 5.2.17. In order to prove (5.14), let us show that there exist c1, c2 > 0 such
that, for every (vh, qh,µh) ∈ Vh ×Qh × Λh, there exists (wh, rh,ηh) ∈ Vh ×Qh × Λh such that
Ah ((wh, rh,ηh) ; (vh, qh,ηh)) ≥ c1|||(vh, qh,µh)|||2 and |||(wh, rh,ηh)||| ≤ c2|||(vh, qh,µh)|||. Let
us take (vh, qh,µh) ∈ Vh ×Qh × Λh. It holds

Ah ((vh,−qh,−µh) ; (vh, qh,µh)) =
N∑
i=0
‖Dvi‖2L2(Ωi)

+
N∑
i=1

i−1∑
j=0

γ−1
(∥∥∥h 1

2µh

∥∥∥2

L2(Γij)
− 2

∫
Γij

hµh〈qhn〉t −
∥∥∥h 1

2 〈DRvij(vh)n〉t
∥∥∥2

L2(Γij)
+
∥∥∥h 1

2 〈qhn〉t
∥∥∥2

L2(Γij)

)
.

Notice that

γ−1
∥∥∥h 1

2 (−µh + 〈qhn〉t)
∥∥∥2

L2(Γij)
=γ−1

(∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
− 2

∫
Γij

hµh〈qhn〉t +
∥∥∥h 1

2 〈qhn〉t
∥∥∥2

L2(Γij)

)
.

Hence, by using Proposition 5.2.7 and choosing γ > 0 large enough,

Ah ((vh,−qh,−µh) ; (vh, qh,µh)) ≥
(
1− Cγ−1) N∑

i=0
‖Dvi‖2L2(Ωi) + γ−1

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)

≥1
2

N∑
i=0
‖Dvi‖2L2(Ωi) + γ−1

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)
.

(A.5)
Now, let wq

h ∈ Vh be the supremizer of Lemma 5.2.16. Since b0(wq
h, qh) ≥ C ‖qh‖20,h, we have

Ah ((wq
h, 0, 0) ; (vh, qh,µh)) ≥

N∑
i=0

∫
Ωi
Dvi : Dwp

i + C ‖qh‖20,h +
N∑
i=1

i−1∑
j=0

∫
Γij
µh[wq

h]

−
N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h〈DRvij(vh)n〉t〈DRvij(w

q
h)n〉t

+
N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h (−µh + 〈qhn〉t) 〈DRvij(w

q
h)n〉t.

(A.6)
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By the Cauchy-Schwarz inequality
N∑
i=1

i−1∑
j=0

∫
Γij

h〈DRvij(vh)n〉t〈DRvh(wq
h)n〉t

≤
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈DRvij(vh)n〉t

∥∥∥
L2(Γij)

∥∥∥h 1
2 〈DRvij(w

q
h)n〉t

∥∥∥
L2(Γij)

,

N∑
i=1

i−1∑
j=0

∣∣∣∣∣
∫

Γij
h (−µh + 〈qhn〉t) 〈DRvij(w

q
h)n〉t

∣∣∣∣∣
≤

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥
L2(Γij)

∥∥∥h 1
2 〈DRvij(w

q
h)n〉t

∥∥∥
L2(Γij)

.

By using Young’s inequality, for s, δ > 0, Proposition 5.2.7 and the construction of wq
h in the

proof of Lemma 5.2.16, there exists C1 > 0 such that
N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h〈DRvij(vh)n〉t〈DRvij(w

q
h)n〉t ≥−

C1

2γs

N∑
i=0
‖Dvi‖2L2(Ωi) −

sC1

2γ ‖qh‖
2
0,h ,

N∑
i=1

i−1∑
j=0

γ−1
∫

Γij
h (−µh + 〈qhn〉t) 〈DRvij(w

q
h)n〉t ≥−

C1

2γδ

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t))

∥∥∥2

L2(Γij)

− δC1

2γ ‖qh‖
2
0,h .

From the Cauchy-Schwarz inequality, the construction of wq
h, and Young’s inequality, there exists

C2 > 0 such that, for ε > 0,
N∑
i=0

∫
Ωi
Dvi : Dwp

i ≥ −
C2

2ε

N∑
i=0
‖Dvi‖2L2(Ωi) −

εC2

2 ‖qh‖20,h .

In an analogous fashion, there exists C3 > 0 such that, for r > 0,
N∑
i=1

i−1∑
j=0

∫
Γij
µh[wq

h] ≥ −C3

2r

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
− rC3

2 ‖qh‖20,h .

Let us go back to (A.6). We have

Ah ((wq
h, 0, 0) ; (vh, qh,µh)) ≥ −C2

2ε

N∑
i=0
‖Dvi‖2L2(Ωi) −

εC2

2 ‖qh‖20,h + C ‖qh‖20,h

− C3

2r

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
− rC3

2 ‖qh‖20,h −
C1

2γs

N∑
i=0
‖Dvi‖2L2(Ωi)

− sC1

2γ ‖qh‖
2
0,h −

C1

2γδ

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥
L2(Γij)

− δC1

2γ ‖qh‖
2
0,h

=
(
C − εC2

2 − rC3

2 − sC1

2γ −
δC1

2γ

)
‖qh‖20,h +

(
−C2

2ε −
C1

2γs

) N∑
i=0
‖Dvi‖2L2(Ωi)

− C1

2γδ

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉)

∥∥∥2

L2(Γij)
− C3

2r

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
.
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Let ε, r, s, δ > 0 be small enough such that C − εC2

2 − rC3

2 − sC1

2γ −
δC1

2γ ≥
C

2 . Hence, there
exist C4,C5,C6 > 0 such that

Ah ((wq
h, 0, 0) ; (vh, qh,µh)) ≥ C

2 ‖qh‖
2
0,h − C4

N∑
i=0
‖Dvi‖2L2(Ωi)

− C5

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)
− C6

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
.

(A.7)

Let Ph :
⊕

0≤j<i≤N L
2(Γij) → Λh be the L2-orthogonal projection. From condition (5.6), we

have h−1[vh]
∣∣∣
Γij

= Phh−1[vh]
∣∣∣
Γij

, for every 0 ≤ j < i ≤ N . Therefore, from the Cauchy-Schwartz
inequality, we have

Ah
((

0, 0,Phh−1[vh]
)

; (vh, qh,µh)
)
≥

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)

− γ−1

(
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈DRvij(vh)n〉t

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [vh]

∥∥∥
L2(Γij)

+
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [vh]

∥∥∥
L2(Γij)

)
.

By Proposition 5.2.7 and Young’s inequality, there exists C7 > 0 such that, for a, b > 0,

−
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈DRvh(vh)n〉t

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [vh]

∥∥∥
L2(Γij)

≥− C7

2a

N∑
i=0
‖Dvi‖2L2(Ωi)

− aC7

2

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
,

−
N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥
L2(Γij)

∥∥∥h− 1
2 [vh]

∥∥∥
L2(Γij)

≥− 1
2b

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)

− b

2

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
.

Thus,

Ah
((

0, 0Phh−1[vh]
)

; (vh, qh,µh)
)
≥
(

1− aC7

2γ −
b

2γ

) N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)

− C7

2aγ

N∑
i=0
‖Dvi‖2L2(Ωi) −

1
2bγ

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)
.

Let us choose a, b > 0 small enough such that 1− aC7

2γ −
b

2γ ≥
1
2 . Hence, there exist C8,C9 > 0

such that

Ah
((

0, 0,Phh−1[vh]
)

; (vh, qh,µh)
)
≥1

2

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
− C8

N∑
i=0
‖Dvi‖2L2(Ωi)

− C9

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)
.

(A.8)
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Let us put together (A.5), (A.7), (A.8). For k, η > 0, we have

Ah
((

vh + kwq
h,−qh,−µh + ηPhh−1[vh]

)
; (vh, qh,µh)

)
≥
(

1
2 − kC4 − ηC8

) N∑
i=0
‖Dvi‖2L2(Ωi)

+
(

1
γ
− kC5 − ηC9

) N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)
+ kC

2 ‖qh‖
2
0,h

− kC6

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
+ η

2

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
.

From Proposition 5.2.5, there exists C10 > 0 such that

Ah
((

vh + kwq
h,−qh,−µh + ηPhh−1[vh]

)
; (vh, qh,µh)

)
≥
(

1
2 − kC4 − ηC8

) N∑
i=0
‖Dvi‖2L2(Ωi)

+
(

1
γ
− kC5 − ηC9

) N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)
+ k

4C10

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈qh〉t

∥∥∥2

L2(Γij)

+ kC

4 ‖qh‖
2
0,h − kC6

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
+ η

2

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
.

(A.9)
Let C11 := 4

kC10
and C12 := 1

γ
− kC5 − ηC9, so that we can write

C11

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈qh〉t

∥∥∥2

L2(Γij)
+ C12

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)

=C12

N∑
i=1

i−1∑
j=0

((
C11

C12
+ 1
)∥∥∥h 1

2 〈qhn〉t
∥∥∥2

L2(Γij)
+
∥∥∥h 1

2µh

∥∥∥2

L2(Γij)
− 2

∫
Γij

h 1
2µhh 1

2 〈qhn〉t

)
.

From the Cauchy-Schwartz and the Young inequalities, for ` > 0, it holds

−2
∫

Γij
h 1

2µhh 1
2 〈qhn〉t ≥ −`

∥∥∥h 1
2 〈qhn〉t

∥∥∥2

L2(Γij)
− 1
`

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)
.

By observing
∥∥∥h 1

2 〈qhn〉t
∥∥∥2

L2(Γij)
=
∥∥∥h 1

2 〈qh〉t
∥∥∥2

L2(Γij)
, we have

C11

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈qh〉t

∥∥∥2

L2(Γij)
+ C12

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 (−µh + 〈qhn〉t)

∥∥∥2

L2(Γij)

≥C12

N∑
i=1

i−1∑
j=0

((
C11

C12
+ 1− `

)∥∥∥h 1
2 〈qh〉t

∥∥∥2

L2(Γij)
+
(

1− 1
`

)∥∥∥h 1
2µh

∥∥∥2

L2(Γij)

)
.

(A.10)

By plugging (A.10) back into (A.9), we have

Ah
((

vh + kwq
h,−qh,−µh + ηPhh−1[vh]

)
; (vh, qh,µh)

)
≥
(

1
2 − kC4 − ηC8

) N∑
i=0
‖Dvi‖2L2(Ωi)

+C12

(
C11

C12
+ 1− `

) N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈qh〉t

∥∥∥2

L2(Γij)
+
(
C12

(
1− 1

`

)
− kC6

) N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)

+kC

4 ‖qh‖
2
0,h + η

2

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
.
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We require 1 < ` <
C11

C12
+ 1 and k, η to be small enough so that 1

2 − kC4 − ηC8 ≥
1
4 ,

C12

(
C11

C12
+ 1− `

)
≥ C13, C12

(
1− 1

`

)
− kC6 ≥ C14, for some C13,C14 > 0. Note that the

choice of ` depends on k and η. On the other hand, there exist C15,C16 > 0 such that kC4 ≥ C15

and η

2 ≥ C16. Hence,

Ah
((

vh + kwq
h,−qh,−µh + ηPhh−1[vh]

)
; (vh, qh,µh)

)
≥ 1

4

N∑
i=0
‖Dvi‖2L2(Ωi)

+C13

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2 〈qh〉t

∥∥∥2

L2(Γij)
+ C14

N∑
i=1

i−1∑
j=0

∥∥∥h 1
2µh

∥∥∥2

L2(Γij)

+C15 ‖qh‖20,h + C16

N∑
i=1

i−1∑
j=0

∥∥∥h− 1
2 [vh]

∥∥∥2

L2(Γij)
.

Finally, the stability property of wq
h, namely ‖wq

h‖1,h ≤ C ‖qh‖0,h, entails∣∣∣∣∣∣(vh + kwq
h,−qh,−µh + ηPhh−1[vh]

)∣∣∣∣∣∣ ≤ C|||(vh, qh,µh)|||.
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