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Abstract

The field of artificial intelligence is set to fuel the future of mobility by driving forward the
transition from advanced driver-assist systems to fully autonomous vehicles (AV). Yet the current
technology, backed by cutting-edge deep learning techniques, still leads to fatal accidents and
does not convey trust. Current frameworks for 3D perception tasks, such as 3D object detection,
are not adequate as they (i) do not generalize well to new scenarios, (ii) do not take into account
measures of confidence in their predictions, and (iii) are not suitable for large-scale deployment
as mainly based on costly LiDAR sensors.
This doctoral thesis aims to study vision-based deep learning frameworks that can accurately
perceive the world in 3D and generalize to new scenarios. We propose to escape the pixel
domain using semantic keypoints, a sparse representation for every object in the scene containing
meaningful information for 2D and 3D reasoning. The low-dimensionality enables downstream
neural networks to focus on essential elements in the scene and improve their generalization
capabilities. Furthermore, driven by the limitation of deep learning architectures outputting point
estimates, we study how to estimate a confidence interval for each prediction. In particular, we
emphasize vulnerable road users, such as pedestrians and cyclists, and explicitly address the
long tail of 3D pedestrian detection to contribute to the safety of our roads. We further show the
efficacy of our framework on multiple real-world domains by (a) integrating it in an existing AV
pipeline, (b) detecting human-robot eye contact in real-world scenarios, and (c) helping verify
the compliance of safety measures in the case of the COVID-19 outbreak. Finally, we publicly
release the source code of all our projects and develop a unified library to contribute to an open
science mission.

Keywords: Autonomous Vehicles, Computer Vision, 3D Perception, 3D Object Detection, Human
Pose Estimation, Eye Contact Detection, Action Recognition, Social Distancing
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Riassunto

Il campo dell’intelligenza artificiale consentirà di trasformare la mobilità del futuro, permettendo
la transizione da sistemi di guida assistita a veicoli completamente autonomi. Attualmente però, i
veicoli autonomi, che si basano sulle più moderne tecniche di deep learning, sono ancora causa
di incidenti e non trasmettono sicurezza. Un motivo è che le soluzioni di computer vision, come
il rilevamento di persone e veicoli in 3D, non sono ottimali, in quanto (i) non generalizzano in
nuove situazioni, (ii) non tengono conto di misure di incertezza nelle loro previsioni, e (iii) non
sono adatte ad essere implementate su larga scala poichè richiedono costosi sensori LiDARs.
Questa tesi di dottorato si pone l’obiettivo di studiare algoritmi di deep learning che, partendo da
un’immagine, possano percepire il mondo in 3D accuratamente e che siano in grado di genera-
lizzare. La nostra soluzione consiste nel trasformare un’immagine in Semantic Keypoints: un
set limitato di punti che indichino le caratteristiche e la posizione di ogni oggetto di interesse
nell’immagine. La bassa dimensionalità permette alle reti neurali a valle di concentrarsi sugli
elementi essenziali dell’immagine e migliora la loro capacità di generalizzazione. Inoltre, svi-
luppiamo reti neurali che al posto di stime puntuali forniscano intervalli di confidenza, e siano
quindi più affidabili. Gli algoritmi proposti si focalizzano su soggetti vulnerabili, come pedoni
e ciclisti, e ne stimano la distanza, le dimensioni e la direzione nello spazio, per contribuire a
rendere i veicoli autonomi più sicuri. In aggiunta analizziamo l’efficacia dei nostri algoritmi in
diverse applicazioni pratiche, (a) integrandoli nel software principale di alcuni veicoli autonomi,
(b) usandoli per rilevare il contatto visivo tra veicoli e pedoni, e (c) aiutando a verificare la con-
formità delle misure di sicurezza dovute all’epidemia di COVID-19. Infine, abbiamo rilasciato
pubblicamente il codice sorgente di tutti i nostri progetti per contribuire ad una ricerca scientifica
aperta a tutti.

Parole chiave: Veicoli Autonomi, Computer Vision, Deep Learning, 3D Perception, 3D Object
Detection, Contatto Visivo, Riconoscimento delle Azioni, Distanziamento Sociale
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1 Introduction

1.1 Motivation

We are living in an epoch of transition as artificial intelligence (AI) applications are quickly
changing the world as we know it. One of AI’s greatest promises is to shape the future of mobility
with autonomous vehicles (AVs). The global adoption of AVs would create a social change
comparable to the invention of the automobile itself [71]. AVs have the potential to increase
mobility for the elderly or those with disabilities, to deliver goods in a cost-effective way, and
above all, to save lives. Car accidents are the leading cause of death in people under 30 [137],
and 1.25 million people die every year in a car crash. Crucially, 94% of road accidents are caused
by human error [190] and they are all considered to be preventable. AVs would offer all the
advantages of cars without their drawbacks, and the industry has already invested $120 billion in
mobility start-ups from 2017 to 2019 alone [75]. However, despite remarkable progresses from
academia and industry alike, integrating AVs into our society remains a grand challenge yet to be
solved.

At their core, AVs lack a decision-making software able to generalize to new situations [71].
Research has been shifting from the robotic sense-plan-act paradigm with hand-crafted rules [179]
to deep learning approaches that go beyond the driving rule books. However, AVs still do not
understand the world in the way that a human being does. Their software is trained to recognize
objects or imitate human behavior by using large datasets of real-world driving conditions.
Nevertheless, data accumulated over millions of kilometers of driving does not imply that all the
critical situations are covered. A human who learned to drive in Rome or Paris is reasonably
expected to carry on in other European cities, while AVs do not generalize to new environments.
They are often being tested in well-designated areas or specific neighborhoods [93], and multi-city
tests are still constituting a challenge [117].

One of the reasons why generalized self-driving remains a grand challenge is that AVs need to
accurately perceive the world in 3D. The field of computer vision has made terrific advances in
2D tasks such as image classification [97, 96], object detection [177, 160] and 2D human pose
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(a) Samples from the ImageNet dataset [47], where the goal is to classify
what category each image belongs to.

(b) A crowded scene recorded from an autonomous vehicle in the city
of London, where the goal is to detect the distance from the camera, the
orientation, and 3D dimensions of each pedestrian in the scene. The
numbers represent the radial distance of each pedestrian from the ego
camera, an attribute that cannot be deducted by just looking at the image.
Estimates are obtained using our MonoLoco algorithm [23] described in
Chapter 3. The image resolution is limited by run time constraints.

Figure 1.1 – Showing the evolution of computer vision tasks with deep learning; in this case,
from 2D image classification (a) to 3D object detection (b).

estimation [178, 34], but the performances of the corresponding 3D tasks, such as 3D object
detection [39, 40] or 3D pose estimation [122], are still lagging behind. Two main factors impact
the performances of deep-learning-based systems for 3D tasks. On the one hand, perceiving the
world in 3D from images is more complex than working directly with its 2D projection. This
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is especially true for autonomous driving scenarios with no control over the environment or the
distance of pedestrians. In Figure 1.1, we visualize samples from a popular dataset for image
classification, ImageNet [47], and we compare them with a real-world image captured from an AV
in the city of London. In the former case, the task is to classify the image according to its class. In
the latter case, the task is 3D object detection, where each dynamic object is detected in 3D, i.e.,
the 3D world coordinates, orientation, and dimensions. In particular, estimating the 3D location
of objects requires an understanding of the geometry of the object and the surrounding scene
(e.g., is a car smaller or just further away?). Recovering 3D structures from the projected images
of moving objects or scenes is an ambiguous task, which introduces a new set of challenges not
encountered in 2D perception tasks.
On the other hand, deep-learning systems that perceive the world in 3D are usually trained
with smaller datasets. The ImageNet dataset contains over 14 million labeled images, while the
pioneering dataset for 3D object detection, KITTI [64] only includes around 7500 images, even if
released four years after ImageNet. Annotating a 3D dataset is not only more time-consuming, as
every object in the 3D scene needs to be labeled, but it also requires collecting ground-truth data
with specialized hardware such as LiDARs. A human annotator can easily distinguish the types
of animals in Figure 1.1a, but cannot estimate how far people are from the camera in Figure 1.1b
just by looking at the image.
The complexity of the 3D world and the high cost of 3D labels make it harder for 3D perception
systems to perform on pair with 2D perception ones and to generalize well to unseen scenarios.

1.2 Approach

This thesis aims to improve vision-based 3D perception for autonomous driving by designing a
pipeline suitable for small training data and effective for cross-dataset generalization. We suggest
dealing with the 3D world complexity by leveraging the exceptional progress of computer vision
for 2D tasks. More specifically, we propose not to reason in the pixel domain but escape it using
keypoints, a sparse representation for every object in the scene. We define the following term:

Definition 1.2.1 (Semantic Keypoints). Semantic keypoints are spatial points associated with
high-level attributes, which convey meaningful information for 2D and 3D reasoning when
grouped together.

Examples of semantic keypoints are “left shoulders” of humans, or “left brake lights” of vehicles,
or “tails” of animals. They indicate the spatial location in the image of a specific part while
conveying information about it, e.g., indicating that the point corresponds to a right knee or that
the brake light is on. Semantic keypoints are also associated with a specific instance, e.g., a person
or a vehicle, enabling connections between them. They are opposed to keypoints used in classical
feature detectors that focus on the local geometry of the pixel intensities, like “corners” and
“edges” [9, 18]. Figure 1.2 compares keypoints obtained from the open-source ORB algorithm
[166] with the semantic keypoints obtained from our OpenPifPaf algorithm [94] presented in
Chapter 2.
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Figure 1.2 – Visually comparing keypoints used in classical feature detectors with semantic
keypoints. In the top image, we show the keypoints obtained with the ORB algorithm [166]. They
represent interest points that are expressive in texture; e.g., an intersection point between two or
more edge segments. In the bottom image, we visualize the semantic keypoints obtained with
our OpenPifPaf algorithm (described in Chapter 2). They represent a specific part of an object,
e.g., the center of the front-left wheel, and they are linked between them with unique connections
represented with different colors, e.g., front-left wheel and left side-view mirror. Each keypoint
is also associated with a specific instance; in this case, a vehicle.

Our intuition is that this low-dimensional representation can simplify perceptions tasks by adding
inductive biases on the essential elements to focus on. Simultaneously, it can improve the
generalization capabilities of perception systems by filtering our redundant information. For
instance, when people are crossing the street, they may look and dress differently across the
world while sharing the same set of semantic keypoints. Such representation can therefore help
AVs to better generalize to new cities. Figure 1.3 shows the semantic keypoints representation
of people walking in EPFL campus. Information regarding people orientation and dimensions
is preserved while providing invariance to many factors, including background scenes, lighting,
textures and clothes. Additionally, semantic keypoints are a sparse representation of the scene,
making them ideal for collecting large-scale datasets of labeled examples. In the case of human
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keypoints, the popular COCO dataset [111] contains 1.7 million labeled keypoints over 200,000
images.

Our objective is to detect a set of 2D semantic keypoints for every instance in an image and
use these keypoints to perform 3D reasoning through a neural network. First, we show that
the concept of semantic keypoints can be applied to any object by developing a human pose
detector and extending it to vehicle and animal categories. Second, we validate the effectiveness
of keypoints for 2D and 3D perception tasks by focusing on pedestrians, a challenging yet critical
category in the context of autonomous driving.

Figure 1.3 – Representing humans with semantic keypoints - a low dimensional representation
that contains enough information for 2D and 3D reasoning. A tour of EPFL campus, ©Alain
Herzog / EPFL

This thesis proposes vision-based methods that perceive humans in the 3D world. One of the
critical challenges in the autonomous driving context is to locate humans surrounding a vehicle.
Hence, we focus on the 3D pedestrian detection task: estimating the 3D location, orientation, and
3D dimensions of every pedestrian in the scene. We specifically tackle the long tail of detections
by making our framework more robust to outliers and estimating confidence intervals rather than
point estimates. Further, we expand our scope to different tasks. We study the impact of semantic
keypoints in understanding atomic actions (walking, bending, sitting, etc.) and communicative
activities (e.g., do pedestrians pay attention to the incoming traffic?). In addition, we investigate
the role of semantic keypoints in real-world applications for autonomous driving and beyond. We
specifically focus on testing how our algorithms generalize to unseen scenarios. Finally, inspired
by the Workshop on Insights from Negative Results in NLP [173], we conclude some of our
chapters with studies and experiments that did not have positive results but that we believe are
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helpful to be shared with future researchers.

Our mission is to develop a system that can be deployed ubiquitously in a fleet of autonomous
vehicles worldwide and contributes to improving the safety of vulnerable road users. Thus, we aim
for a design that excels in generalizing to new situations and can work with low-cost sensors. We
direct the attention to vision-based methods that perceive the world with cost-effective monocular
or stereo RGB cameras. In contrast to LiDARs, cameras are already installed in a large number
of vehicles, and they are orders of magnitude cheaper. If extracting 3D information from a single
RGB image is a fundamentally ill-posed problem, there is no intrinsic limitation when using
stereo cameras. However, vision-based 3D object detection algorithms are still lagging behind
LiDAR ones [197, 210]. These results depend not only on the sensor quality, but they are also a
consequence of data availability. In fact, many recent 3D vision datasets include in their sensor
suite multiple expensive LiDARs while lacking a low-cost stereo camera [31, 198, 88]. We hope
our research can contribute to revert this tendency towards a more balanced sensor suite.

1.3 Thesis Contributions

This thesis aims to show that semantic keypoints are a powerful representation to perceive humans
in the 3D world. We establish evidence of this statement by (i) obtaining state-of-the-art results
in various 2D and 3D perception tasks, (ii) testing our methods on real-world autonomous driving
applications, and (iii) extending our design beyond autonomous driving applications by measuring
social distancing to help fight COVID-19. The key contributions are:

Semantic Keypoints. We suggest semantic keypoints as an intermediate representation for
perception tasks and propose a novel bottom-up pose detector for human pose estimation tailored
for AVs. We show that our detector can generalize to car and animal poses, demonstrating its
suitability as a holistic perception framework.

Monocular 3D Pedestrian Detection. We propose a novel method that estimates 3D coordi-
nates given 2D semantic keypoints, outperforms state-of-the-art results, and exhibits cross-dataset
generalization properties. We address the ambiguity in the task by predicting meaningful confi-
dence intervals in place of point estimates.

Stereo-based 3D Pedestrian Detection. We propose a novel unified learning framework that
leverages the strengths of both monocular and stereo cues to address challenging instances, such
as occluded and far-away pedestrians. Our method goes beyond providing state-of-the-art results
on standard metrics and shows reasonable estimates even for outliers while communicating
confidence measures.
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Human-robot Eye Contact Detection. We achieve state-of-the-art results in detecting human-
robot eye contact by only using semantic keypoints as input. We tackle real-world scenarios for
autonomous vehicles, with no control over the environment or the distance of pedestrians. We
also release a large-scale dataset for human-robot eye contact detection that focuses on diverse
and unconstrained scenarios for real-world generalization.

Social Interactions and Social Distancing. We extend our neural network architecture to
infer humans’ social interactions and monitor social distancing to fight the COVID-19 outbreak.
We develop a probabilistic approach to detect F-formations and show that our design (i) is
privacy-safe, (ii) works with any fixed or moving cameras, and (iii) does not rely on ground plane
estimation.

Open-source Software. To improve the openness and reproducibility of research, we released
the source codeI of each of our projects and created a unified 3D vision library from 2D semantic
keypointsII.

1.4 Thesis Structure

The body of this thesis is organized into eight chapters, the first of which is this introduction.

Chapter 2 focuses on how to extract semantic keypoints from raw images. It proposes a novel
bottom-up pose detector for human pose estimation based on composite fields. The detector
specifically addresses challenges that arise in the context of AVs: (i) crowded and occluded
scenes with limited resolution on humans, (ii) robustness to real-world variations like lighting,
weather, and occlusions, and (iii) speed for real-time predictions. The chapter also highlights
how semantic keypoints are not limited to humans by estimating keypoints of cars and animals.
The work in this chapter has been led by Dr Sven Kreiss, and it condenses two publications: a
CVPR’19 [95] and a T-ITS’21 [94] one.

Chapter 3 leverages semantic keypoints to tackle the ill-posed problem of 3D pedestrian detec-
tion from monocular RGB images. It proposes a deep learning approach that estimates each
pedestrian’s 3D location, orientation, and bounding box dimensions in the scene. Driven by the
limitation of neural networks outputting point estimates, it addresses the ambiguity in the task by
predicting confidence intervals through a loss function based on the Laplace distribution. This
chapter expands on the paper we presented at ICCV’19 [23].

Chapter 4 shows how monocular and stereo visions solutions for 3D localization are usually
developed independently and have their respective strengths and limitations. It proposes a novel
unified learning framework that leverages the strengths of both monocular and stereo cues for

ICode: https://github.com/vita-epfl/monoloco
IILibrary Video: https://www.youtube.com/watch?v=O5zhzi8mwJ4
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3D pedestrian localization. It specifically focuses on outliers and challenging instances, such as
occluded and far-away pedestrians. It also compares stereo-based disparity estimation solutions
with structure from motion ones. Finally, it critically reviews the official KITTI 3D metrics [64]
and proposes a practical 3D localization metric tailored for humans. This chapter expands on
the paper accepted at ICRA’21 [25] and includes parts of a previous paper presented at ICRA’20
[48].

Chapter 5 focuses on real-world applications of our 3D pedestrian detector for autonomous
driving. On one side, the chapter combines the developed design with a fully learned end-to-end
motion planner to improve AVs’ intervention rates due to pedestrian interactions. It compares the
framework with a data-centric approach and shows how a better data curriculum is more effective
in improving end-to-end network performances. On the other side, it tests our keypoint-based
architecture on new scenarios and uses it to create 3D pseudo-labels of crowded scenes in London,
highlighting the practical value of our research. This chapter results from an applied research
project in collaboration with the autonomous driving company Wayve.

Chapter 6 goes beyond 3D pedestrian detection and investigates the effectiveness of semantic
keypoints for a downstream 2D task: determining whether pedestrians are paying attention to
the incoming vehicles in the street. It defines a light-weight feed-forward neural network that
estimates human-robot eye contact detection in the wild given semantic keypoints as inputs.
The method achieves state-of-the-art results and conveys better generalization properties than
leveraging raw images in an end-to-end network. It also describes the release of a large-scale
dataset for human-robot eye contact detection in the wild to study domain adaptation. We have
published preliminary results to ArXiv [22] and our work is under review.

Chapter 7 investigates the benefits of semantic keypoints for real-world applications beyond
autonomous driving. It extends our framework and develops probabilistic rules to analyze social
interactions among humans. It then adapts the method to verify the compliance of recent safety
measures due to the COVID-19 outbreak. It also shows that it is possible to redefine the concept
of social distancing to go beyond a single measure of distance while preserving the privacy of its
users. This Chapter is based on our T-ITS’21 publication [24].

Finally, this thesis ends with concluding remarks. Experimental results have supported our initial
claim:

“Semantic keypoints are an effective representation to perceive humans in the 3D world.”

1.5 Related Publications

This thesis is based on the material published in the following papers:

• Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi, MonoLoco: Monocular 3D Pedestrian
Localization and Uncertainty Estimation. International Conference on Computer Vision
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(ICCV), 2019

• Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi, Pifpaf: composite Fields for Human
Pose Estimation, The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019

• Wenlong Deng, Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi, Joint Human Pose
Estimation and Stereo 3D Localization, The IEEE International Conference on Robotics
and Automation (ICRA), 2020

• Lorenzo Bertoni, Sven Kreiss, Tayor Mordan, and Alexandre Alahi, MonStereo: When
Monocular and Stereo Meet at the Tail of 3D Human Localization, The IEEE International
Conference on Robots and Automations (ICRA), 2021

• Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi, OpenPifPaf: Composite Fields for
Semantic Keypoint Detection and Spatio-Temporal Association, IEEE Transactions on
Intelligent Transportation Systems, 2021

• Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi, Perceiving Humans: from Monocular
3D Localization to Social Distancing, IEEE Transactions on Intelligent Transportation
Systems, 2021

• Younes Belkada?, Lorenzo Bertoni? , Romain Caristan, Taylor Mordan, and Alexandre
Alahi. Do Pedestrians Pay Attention? Eye Contact Detection in the Wild, under review,
2021

? denotes equal contributions
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2 Semantic Keypoints Detection

This chapter is based on the articles:

Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi, Pifpaf: Composite fields for human pose
estimation, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi, OpenPifPaf: Composite Fields for Se-
mantic Keypoint Detection and Spatio-Temporal Association, IEEE Transactions on Intelligent
Transportation Systems, 2021

2.1 Introduction

Tremendous progress has been made in estimating human poses “in the wild” driven by popular
data collection campaigns [12, 111]. However, low accuracy and high computational complexity
have prevented applications to the transportation domain with real-time requirements like self-
driving cars and last-mile delivery robots. While a pose estimate is not the final goal, it is an
effective low-dimensional and interpretable representation of humans to detect critical actions for
autonomous navigation systems. Consequently, the further away a human pose can be detected
in real-time, the safer an autonomous system will be. This concept can be extended to other
dynamic agents, such as cars at the intersection, or animals crossing the street. We can cast these
tasks as detecting and associating semantic keypoints, which are not limited to human poses, e.g.,
“dog pows” or “left brake lights of vehicles”, as illustrated in Figure 2.1a.

This chapter tackles the multi-agent semantic keypoint estimation problem given a single image
input. We mainly focus on 2D human poses while also showing performances on cars and animals
keypoints. We specifically address challenges that arise in autonomous navigation settings, as
shown in Figure 2.1b: (i) wide viewing angle with limited resolution on humans, i.e., a height of
30-90 pixels, and (ii) high-density crowds where pedestrians occlude each other. Our method
must also be fast enough to be viable for self-driving cars and robust to real-world variations like
lighting, weather and occlusions.
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Although pose estimation has been studied before the deep learning era, a significant cornerstone
is the work of OpenPose [34], followed by Mask R-CNN [72]. The former is a bottom-up
approach (detecting joints without a person detector), and the latter is a top-down one (using
a person detector first and outputting joints within the detected bounding boxes). While the
performance of these methods is stunning on high enough resolution images, they perform poorly
in the limited resolution regime and in dense crowds where humans partially occlude each other.

In this chapter, we propose to extend the notion of fields in pose estimation proposed in [34]
to go beyond scalar and vector fields to composite fields. We introduce a new neural network
architecture with two head networks: one head network predicts a confidence and precise location
of a body part or joint, which we call a Composite Intensity Field (CIF) and which is similar to
the fused part confidence map in [138], and the other head network predicts associations between
parts, called the Composite Association Field (CAF), which is of a new composite structure. Our
encoding scheme has the capacity to store fine-grained information on low resolution activation
maps.

Our experiments show that we outperform all previous methods in accuracy and speed on the
CrowdPose dataset [105] with its particularly crowded images. Our method also achieves state-
of-the-art results among bottom-up methods on the COCO [111] keypoint task in precision while
being an order of magnitude faster in speed. Finally, we show that our method generalizes to car
and animal poses, demonstrating its suitability for a holistic perception framework. Our method
is implemented as an open source library, referred to as OpenPifPaf I.

2.2 Related Work

2.2.1 Human Semantic Keypoints

The task of detecting human semantic keypoints - also called human pose estimation - has
been recently studied using Convolutional Neural Networks [188, 72, 35, 135, 138, 206, 186,
199, 136, 90, 42]. All approaches for human pose estimation can be grouped into bottom-up
and top-down methods. The former estimates each body joint first and then groups them to
form a unique pose. The latter runs a person detector first and estimates body joints within the
detected bounding boxes. Bottom-up methods were pioneered, e.g., by Pishchulin et al. with
DeepCut [145]. In their work, the part association is solved with an integer linear program leading
to processing times for one image of the order of hours. Newer methods use greedy decoders
in combination with additional tools to reduce prediction time as in Part Affinity Fields [35],
Associative Embedding [135], PersonLab [138] and multi-resolution networks with associate
embedding [42].

Ihttps://github.com/openpifpaf/openpifpaf
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(a) A real-world scene from the perspective of a self-driving car. Schematically, all moving
actors are detected with their semantic keypoints. We place particular emphasis on understanding
humans but also show generalizations to animals and cars. Here, a car is running a red light
while also swerving to the right to avoid a woman who is walking her dog.

(b) A very crowded scene in the city of Lausanne. Our algorithm estimates semantic keypoints
for more than 800 people.

Figure 2.1 – We want to estimate human semantic keypoints in the transportation domain from a
self-driving car perspective (a), and in a crowded scene where humans occupy small portions of
the image (b).

2.2.2 Beyond Humans

While many state-of-the-art methods focused on human body pose detection, the research
community has recently studied their performance on other classes such as animals and cars.
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Pose estimation research for animals and cars has to deal with additional challenges: limited
labeled data [33] and large number of self-occlusions [159].

For animals, datasets are usually small and include limited animal species [142, 33, 26, 108, 124].
To overcome this issue, DeepLabCut [123] and WS-CDA [33] have developed transfer learning
techniques from humans to animals. Mu et al. [129] have generated a synthetic dataset from
CAD animal models and proposed a technique to bridge the real-synthetic domain gap. Another
line of work has extended the human SMPL model [113] to animals to learn simultaneously pose
and shape of endangered animals [221, 27, 220].

For cars, self-occlusions between keypoints are inevitable. A few methods improve performances
by estimating 2D and 3D keypoints of vehicles together. Occlusion-net [159] uses a 3D graph
network with self-supervision to predict 2D and 3D keypoints of vehicles using the CarFusion
dataset [51], while GSNet [84] predicts 6DoF car pose and reconstructs dense 3D shape simul-
taneously. Without 3D information, the popular OpenPose [34] shows qualitative results for
vehicles and Simple Baseline [171] extends a top-down pose estimator for cars on a custom
dataset based on Pascal3D+ [205].

2.3 Method

We aim to present a method that can detect and associate semantic keypoints efficiently. We
place particular emphasis on urban and crowded scenes that are difficult for autonomous vehicles.
Many previous methods struggle when object bounding boxes overlap. In bird-eye views from
drones or security cameras, bounding boxes are more separated than in a car driver’s perspective.
Here, top-down methods struggle. Previous bottom-up methods have been trailing top-down
methods in accuracy without improving on performance either. Our bottom-up method is efficient,
employs a stable field representation and has high accuracy and performance that even surpasses
top-down methods. Figure 2.5 presents our model architecture. It is a shared ResNet [73] or
ShuffleNetV2 [118] base network without max-pooling.

2.3.1 Composite Fields

Our method relies on the Composite Fields formalism to detect semantic keypoints. Hereafter,
we briefly present them.

Field Notation. Fields are functions over locations (e.g., feature map cells) and their outputs
are primitives like scalars or composites. Composite Fields jointly predict multiple variables of
interest, for example, the confidence, precise location and size of a semantic keypoint (e.g., body
joint).

We will enumerate the spatial output coordinates of the neural network with i, j and reserve x,y
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(a) (b) (c)

Figure 2.2 – Visualizing the components of the CIF for the “left shoulder” keypoint on a small
image crop. The confidence map is shown in (2.2a). The vector field with joint-scale estimates is
shown in (2.2b). Only locations with confidence > 0.5 are drawn. The fused confidence, vector
and scale components according to Equation 2.1 are shown in (2.2c).

(a) (b)

Figure 2.3 – Visualizing the components of the CAF that associates left shoulder with left hip.
This is one of the 18 CAF. Every location of the feature map is the origin of two vectors which
point to the shoulders and hips to associate. The confidence of associations ac is shown at their
origin in (2.3a) and the vector components for ac greater than 0.5 are shown in (2.3b).
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(a) (b) (c)

Figure 2.4 – Common association fields between two joints. Joints are visualized as gray circles.
Part Affinity Fields (a) as used in OpenPose [35] are unit vectors indicating a direction towards the
next joint. Mid-range fields (b) as used in PersonLab [138] are vectors originating in the vicinity
of a source joint and point to the target joint. Our Composite Association Field (c) regresses both
source and target points and additionally predicts their joint size which are visualized with blue
squares.

for real-valued coordinates in the input image. A field over (i, j) is denoted with fi j and can have
scalar, vector or composite values. For example, the composite field of scalars s and 2D vector
components vx,vy is {s,vx,vy}i j. This is equivalent to “overlaying” a confidence map with a
vector field if the ground truth is aligned. This equivalence is trivial in this example but becomes
more subtle when we discuss association fields below.

Composite Intensity Fields (CIF). The Composite Intensity Fields (CIF) characterize the
intensity of semantic keypoints. The composite structure is based on [139] with the extension of
a scale σ to characterize the keypoint size. This is identical to the part intensity field in [95]. We
use the notation pi j

J = {c,x,y,b,σ}i j
J where J is a particular body joint type, c is the confidence, x

and y are regressed coordinates, b is the uncertainty in the location and σ is the size of the joint.

Figure 2.2 shows the components of a CIF field and a high resolution accumulation of the
predicted intensity. The field is coarse with a stride of 16 with respect to the input image but
the accumulated intensity is at high resolution. The high resolution confidence map f (v,w) is
a convolution of an unnormalized Gaussian kernel N with width σ over the regressed targets
from the Composite Intensity Field x and y weighted by its confidence c:

fJ(v,w) = ∑
i j

ci j
J N (v,w|xi j

J ,y
i j
J ,σ

i j
J ) (2.1)

where v and w are real-valued coordinates in the image. This accumulation incorporates informa-
tion of the confidence c, the precisely regressed spatial location (x,y) and the predicted joint size
σ . This map fJ is used to seed the pose decoder and to rescore predicted CAF associations.

Composite Association Fields (CAF). Efficiently forming associations is the core challenge
for differentiating between people. The most difficult cases are crowded scenes and camera
angles where people occlude other people – as is the case in the self-driving car perspective where
pedestrians occlude other pedestrians. Top-down methods first estimate bounding boxes and then
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Figure 2.5 – Model architecture. The input is an image batch of size (H,W ) with three color
channels, indicated by “x3”. The neural network based encoder produces composite fields for
M joints and N connections. An operation with stride two is indicated by “//2”. The shared
backbone is a ResNet [73] or ShuffleNetV2 [118] without max-pooling. We use a single 1×1
convolution in each head network, and for optional spatial upsampling, we append a sub-pixel
convolution layer [176] to each head network. The decoder converts a set of composite fields into
pose estimates. Each semantic keypoint is represented by a confidence score, a real-valued (x, y)
coordinate pair and a size estimate.

do single-person pose estimation per bounding box. This assumes non-overlapping bounding
boxes which is not given in our scenario. Therefore, we focus on bottom-up methods.

We introduce Composite Association Field (CAF) to connect joint locations together into poses.
Our association fields differ from OpenPose’s Part Affinity Fields [35] and PersonLab’s mid-range
fields [138]. A graphical review of association fields is shown in Figure 2.4 and shows that our
CAF expresses the most detail about an association.

CAFs predict a confidence, two vectors to the two parts this association is connecting, two
spreads b for the spatial precisions of the regressions (details in Section 2.3) and two joint sizes
σ . CAFs are represented with ai j

J1↔J2
= {c,x1,y1,x2,y2,b1,b2,σ1,σ2}i j

J1↔J2
where J1↔ J2 is the

association between body joints J1 and J2. Predicted associations between left shoulders and
left hips are shown for an example image in Figure 2.3. In our representation of an association,
physically meaningful quantities are regressed to continuous variables and do not suffer from
the discreteness of the feature map. In addition, it is important to represent associations between
two joints that are at the same pixel location. Our representation is stable for these zero-distance
associations – something that Part Affinity Fields [35] cannot do.

2.3.2 Loss Functions for Composite Fields

Human pose estimation algorithms tend to struggle with the diversity of scales that a human pose
can have in an image. While a localization error for the joint of a large person can be minor, that
same absolute error might be a major mistake for a small person. Our loss is the logarithm of the
probability that all components are “well” predicted, i.e., it is the sum of the log-probabilities
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for the individual components. Each component follows standard loss prescriptions. We use
binary cross entropy (BCE) for classification with a Focal loss modification w [110]. To regress
locations in the image, we use the Laplace loss [85] which is an L1-type loss that is attenuated by
a predicted spread b̂ in the location. To regress additional scale components (keypoint sizes), we
use a Laplace loss with a fixed spread bσ = 3. The CIF loss function is:

LCIF = ∑
mc

w(c, ĉ)BCE(c, ĉ) (2.2)

+ ∑
mv

1
b̂

L2(v, v̂,bmin)+ log b̂ (2.3)

+ ∑
ms

1
bs

∣∣∣∣1− ŝ
s

∣∣∣∣ (2.4)

with its three parts for confidence (2.2), localization (2.3) and scale (2.4) and where:

L2(v, v̂,bmin) =
√
(v1− v̂1)2 +(v2− v̂2)2 +b2

min . (2.5)

The sums are over masked feature cells mc, mv and mσ with i, j,J implied. The mask for
confidence mc is almost the entire image apart from regions annotated as “crowd regions” [111].
The masks for localization mv and for scale mσ are only active in a 4× 4 window around the
ground truth keypoint. Per feature map cell, there is a ground truth confidence c and its predicted
counterpart ĉ. The predicted location v̂= (v̂1, v̂2) is optimized with a Laplace loss with a predicted
spread b̂ for heteroscedastic aleatoric uncertainty [85] with respect to the ground truth location v.
A bmin = 1px is added to prevent exploding losses when the spread becomes too small. For
stability, we clip the BCE loss when it becomes larger than five. The CAF loss has the same
structure but with two localization components (2.3) and two scale components (2.4).

Self-Hidden Keypoint Suppression. The COCO evaluation metric treats visible and hidden
keypoints in the same manner. As in [95], we include hidden keypoints in our training. However,
when a visible and a hidden keypoint appear close together, we remove the hidden keypoint from
the ground truth annotation so that this keypoint is not included in associations. In Figure 2.6, we
show the effect of excluding these self-hidden keypoints from training and observe better pose
reconstruction when a keypoint hides another keypoint of the same type.

2.3.3 Greedy Decoder

The composite fields are converted into sets of pose estimates with a greedy decoder. The CIF
field and its high-resolution accumulation f (x,y) defined in equation 2.1 provide seed locations.
Previously, new associations were formed starting at the joint that has currently the highest score
without taking the CAF confidence of the association into account. Here, we introduce a frontier
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Figure 2.6 – Effect of self-hidden keypoint suppression during training. The left image is without
and the right image is with self-hidden keypoint suppression. The left hips of both soccer players
collide in pixel space.

which is a priority queue of possible next associations. The frontier is ordered by the possible
future joint scores which are a function of the previous joint score and the best CAF association:

max
i j

s(ai j
J1↔J2

,~x) = cexp
(
−||~x− (x1,y1)||2

σ1

)
fJ2(x2,y2) (2.6)

where ~x is the source joint location, ai j
J1↔J2

= (c,x1,y1,x2,y2,σ1,σ2) is the CAF field with implied
sub-/superscripts on the components and fJ2 is the high resolution confidence map of the target
joint J2. An association is rejected when it fails reverse matching. To reduce jitter, we not
only use the best CAF association in the above equation but a weighted mixture of the best two
associations; similar to blended connections in [19]. Only when all possible associations are
added to the frontier, the connection is made to the highest priority in the frontier. This algorithm
is fast and greedy. Once a connection to a new joint has been made, this decision is final.

Instance Score and Non-Maximum Suppression (NMS). Once all poses are reconstructed,
we apply NMS. Poses are first sorted by their instance score which is the weighted mean of the
keypoint scores where the three highest keypoint scores are weighted three times higher. We run
NMS at the keypoint level as in [95, 138]. The suppression radius is dynamic and based on the
predicted joint size. We do not refine predictions.

Denser Pose Skeletons. Figure 2.7 gives an overview of the pose skeletons that are used in
this paper. In particular, Figure 2.7b shows a modification of the standard COCO pose [111]
with additional associations. These denser associations are redundancies in case of occlusions.
The additional associations are longer-range and therefore harder to predict. The frontier in
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(a) (b)

Figure 2.7 – A COCO person pose [111] is shown in (a). Additional denser connections are
shown in lighter colors in (b).

Figure 2.8 – Left: A sparse pose cannot connect the right arm to the facial keypoints leading
to the detection of two separate person instances highlighted by the two white bounding boxes.
Right: An additional dense connection between the nose and right shoulder leads to a correctly
identified single pose.

our greedy decoder takes this difficulty into account and automatically prefers easier, confident
associations when available. Qualitatively, the advantage of dense associations is shown in
Figure 2.8. With the standard COCO skeleton, the single person’s pose skeleton would be divided
into two disconnected parts (left image) as indicated by the two white bounding boxes. With the
additional denser associations, a single pose is formed (right image).

2.4 Experiments

Self-driving cars must perceive and predict pedestrians and other traffic participants robustly. One
of the most challenging scenarios are crowded places. We will first show experiments on human
pose estimation in CrowdPose [105] which contains particularly challenging scenarios and on
the standardized and competitive COCO [111] person keypoint benchmark. To demonstrate the
universality of our approach, we apply our method also to poses of cars and animals.
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2.4.1 Datasets

CrowdPose. In [105], the CrowdPose dataset is proposed. It is a selection of images from
other datasets with a particular emphasis on how crowded the images are. The crowd-index of
an image represents the amount of overlap between person bounding boxes. The authors place
particular emphasis on a uniform distribution of the crowd-index in all data partitions. Because
this dataset is a composition of other datasets and to avoid contamination, our CrowdPose models
are pretrained on ImageNet [47] and then trained on CrowdPose only. The dataset comes with a
split of 10,000 images for training, 2,000 for validation and 8,000 images for the test set.

COCO. The de-facto standard for person keypoint prediction is the competitive COCO keypoint
task [111]. The test set is private and powers an active leaderboard via a protected challenge
server. COCO contains 56,599 diverse training images with person keypoint annotations. The
validation and test-dev sets contain 5,000 and 20,288 images.

ApolloCar3D. We generalize our approach to vehicle keypoints using the ApolloCar3D
dataset [182], which contains 5,277 driving images at a resolution of 4K and over 60K car
instances. The authors defined 66 semantic keypoints in the dataset and, for each car, they pro-
vided annotations for the visible ones. For clarity, we choose a subset of 24 semantic keypoints
and show quantitative and qualitative results on this dataset.

Animal Dataset. We evaluate the performances of our algorithm on the Animal-Pose Dataset [33],
which provides annotations for five categories of animals: dog, cat, cow, horse, sheep for a total
of 20 keypoints. The dataset includes 5,517 instances in more than 3,000 images. The majority
of these images originally belong to the VOC dataset [54].

2.4.2 Evaluation

Both CrowdPose and COCO follow COCO’s keypoint evaluation method. The object keypoint
similarity (OKS) score [111] is used to assign a bounding box to each keypoint as a function
of the person instance bounding box area. Similar to detection, the metric computes overlaps
between ground truth and predicted bounding boxes to compute the standard detection metrics
average precision (AP) and average recall (AR).

CrowdPose breaks down the test set at the image level into easy, medium and hard. The easy
set contains images with a crowd index in [0,0.1], the medium set in [0.1,0.8] and the hard set
in [0.8,1.0]. Given the uniform crowd-index distribution, most images of the test set are in the
medium category.

COCO breaks down the precision scores at the instance level for medium instances with a
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Figure 2.9 – Illustration of OpenPifPaf predictions from the CrowdPose [105] val set with
crowd-index hard on a sports scene, a family photo and a street scene.

bounding box area of (32 px)2 to (96 px)2 and for large instances with a bounding box area larger
than (96 px)2. For each image, pose estimators have to provide the 17 keypoint locations per
pose and a total score for each pose. Only the top 20 scoring poses per image are considered for
evaluation.

2.4.3 Implementation Details

Neural Network Configuration. All our models are based on ResNet [73] or ShuffleNetV2 [118]
base networks and multiple head networks. The base networks have their input max-pooling
operation removed as it destroys spatial information. The stride from input image to output
feature map is 16 with 2048 features at each location. We apply no additional modifications to the
standard ResNet models. We use the standard building blocks of ShuffleNetV2 backbones to con-
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struct our custom configurations which we denote ShuffleNetV2K16/K30. A ShuffleNetV2K16
model has the prediction accuracy of a ResNet50 with fewer parameters than a ResNet18. The
configuration is specified by the number of output features of the five stages and the number of
repetitions of the blocks in each stage. Our ShuffleNetV2K16 has output features (block repeats)
of 24 (1), 348 (4), 696 (8), 1392 (4), 1392 (1) and our ShuffleNetV2K30 has 32 (1), 512 (8), 1024
(16), 2048 (6), 2048 (1). Spatial 3×3 convolutions are replaced with 5×5 convolutions which
introduces only a small increase in the number of parameters because all spatial convolutions are
depth-wise.

Each head network is a single 1×1 convolution followed by a sub-pixel convolution [176] to
double the spatial resolution bringing the total stride down to eight. Therefore, the spatial feature
map size for an input image of 801px×801px is 101×101. The confidence component of a field
is normalized with a sigmoid non-linearity and the scale components for joint-sizes are enforced
to be positive with a softplus [53].

Augmentations. We apply the standard augmentations of random horizontal flipping, random
rescaling with a rescaling factor r ∈ [0.5,2.0], random cropping and padding to 385× 385
followed by color jittering with 40% variation in brightness and saturation and 10% variation
in hue. We also convert a random 1% of the images to grayscale and generate strong JPEG
compression artifacts in 10% of the images.

Training Procedure. For ResNet [73] backbones, we use ImageNet [47] pretrained models.
ShuffleNetV2 [118] models are trained from random initializations. We use the SGD [29]
optimizer with Nesterov momentum [134] of 0.95, batch size of 32 and weight decay of 10−5.
The learning rate is exponentially warmed up for one epoch from 10−3 of its target value. At
certain epochs (specified below), the learning rate is exponentially decayed over 10 epochs by a
factor of 10. We employ model averaging [146, 168] to extract stable models for validation. At
each optimization step, we update an exponentially weighted version of the model parameters
with a decay constant of 10−2.

On CrowdPose, which is a smaller dataset than COCO, we train for 300 epochs. We set the target
learning rate to 10−5 and decay at epochs 250 and 280.

On COCO, we use a target learning rate of 10−4 and decay at epoch 130 and 140. The training
time for 150 epochs of a ShuffleNetV2K16 on two V100 is approximately 37 hours. We do not
use any additional datasets beyond the COCO keypoint annotations.

2.4.4 Results

Crowded Human Pose Estimation. In Figure 2.9, we show example pose predictions from
the CrowdPose [105] validation set. We show results in a diverse selection of sports disciplines
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Table 2.1 – Evaluation on the CrowdPose test dataset [105]. Our OpenPifPaf result is based on a
ResNet50 backbone with single-scale evaluation at 641px. ∗Values extracted from CrowdPose
paper [105]. +Employs multi-scale testing.

AP AP0.50 AP0.75 APeasy APmedium APhard FPS
Mask R-CNN∗ [72] 57.2 83.5 60.3 69.4 57.9 45.8 2.9
AlphaPose∗ [55] 61.0 81.3 66.0 71.2 61.4 51.1 10.9
HigherHRNet-W48 [42] 65.9 86.4 70.6 73.3 66.5 57.9 -
SPPE [105] 66.0 84.2 71.5 75.5 66.3 57.4 10.1
HigherHRNet-W48+ [42] 67.6 87.4 72.6 75.8 68.1 58.9 -
OpenPifPaf (ours) 70.5 89.1 76.1 78.4 72.1 63.8 13.7

Table 2.2 – Evaluation metrics for the COCO 2017 test-dev dataset for bottom-up methods.
Numbers are extracted from the respective papers. Our prediction time is determined on a single
V100 GPU. ∗Only evaluating images with three person instances.

AP APM APL t [ms]
OpenPose [35] 61.8 57.1 68.2 100
Assoc. Emb. [135] 65.5 60.6 72.6 166
PersonLab [138] 68.7 64.1 75.5 -
MultiPoseNet [90] 69.6 65.0 76.3 43∗

HigherHRNet [42] 70.5 66.6 75.8 >1000
OpenPifPaf (ours) 71.9 68.5 77.4 69

and everyday settings. All shown images are from the hard subset with a crowd-index larger than
0.8.

In Table 2.1, we show a quantitative comparison of our performance with other methods. We are
not only more precise across all precision metrics AP, AP0.50, AP0.75, APeasy, APmedium and APhard

but also predict faster than all previous top-performing methods at 13.7 FPS (frames-per-second)
on a single GTX1080Ti.

COCO. All state-of-the-art methods compare their performance on the well-established COCO
keypoint task [111]. Our quantitative results on the private 2017 test-dev set are shown in Table 2.2
along with other bottom-up methods. This comparison includes field-based methods [35, 138,
95] and methods based on associative embedding [135, 42] and shows that we outperform all
the other bottom-up methods. We evaluate on rescaled images where the longer edge is 801 px.
We evaluate a single forward pass without horizontal flipping and without multi-scale evaluation
because we aim for a fast method. The average time per image with a GTX1080Ti is 152 ms
(63 ms on a V100) of which 29 ms is used for decoding.

Pedestrian, Car and Animal Poses. A holistic perception framework for autonomous vehicles
also needs to be able to generalize to other classes than humans. We show that we can predict
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Figure 2.10 – Qualitative results from the KITTI [64] and ApolloCar3D [182] datasets. We
resolve distant pedestrians, cyclists and cars and handle changing lighting conditions well.
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Figure 2.11 – Qualitative results from the Animal-Pose dataset [33]. The left image was processed
by a person model and an animal model.

Table 2.3 – Quantifying detection performance for pedestrians, cars and animals. In the “Pedestri-
ans” column, we show the detection rate on KITTI [64] with IoU=0.3 and instance threshold of
0.2 for all methods. For “Vehicles”, we show the keypoint detection rate on ApolloCar3D [182]
which was published in previous methods and we also provide AP in the text. In the “Animals”
column, we provide keypoint AP as defined in the Animal-Pose dataset [33].

Method Pedestrians Vehicles Animals
Mono3D [41] 73.2 - -
3DOP (stereo) [40] 73.1 - -
MonoDIS [180] 60.5 - -
SMOKE [112] 39.1 - -
MonoPSR [99] 82.8 - -
CPM [199] - 75.4 -
WS-CDA [33] - - 44.3
OpenPifPaf (ours) 84.6 86.1 47.8
Human labelers [182] - 92.4 -
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Table 2.4 – Ablation studies of skeleton choice and decoder configurations for human pose
estimation. All results (except where explicitly stated otherwise) are produced with the same
ShuffleNetV2k16 model on the COCO val set [111] on a single GTX1080Ti. First, we review
different backbone architectures (a ResNet50 [73] and a larger ShuffleNetV2 [118]). Second, we
show that only using confident keypoints leads to a large drop in precision. Third, we observe that
the Frontier decoder is more important for denser skeletons while incurring almost no overhead
on sparse skeletons. Fourth, we can produce a memory-efficient version of our decoder at a cost
of 1.4% in AP. The biggest drop in accuracy comes from not rescoring the CAF field and the
largest contributor to increasing the inference time is not rescoring the seeds.

AP AP0.50 AP0.75 APM APL t [ms] tdec [ms]
original (ShuffleNetV2K16) 66.8 86.5 73.2 62.1 74.6 50 19

Backbone ResNet50 68.2 87.9 74.6 65.8 72.7 64 22
ShuffleNetV2K30 71.0 88.8 77.7 66.6 78.5 92 16

Keypoints independent-only -8.1 -6.3 -9.5 -8.7 -7.3 ±0 ±0
Decoder no-frontier ±0.0 -0.1 +0.1 ±0.0 -0.1 -1 -1

dense +0.1 +0.2 +0.2 -0.3 +0.5 +15 +15
no-frontier and dense -0.3 +0.1 -0.1 -0.5 ±0.0 +14 +14

Efficiency no seed rescoring -0.1 -0.4 -0.1 +0.2 +0.1 +71 +54
no seed rescoring (with NMS) +0.1 +0.1 ±0.0 +0.2 +0.0 +19 +15
no CAF rescoring -1.0 -0.3 -1.0 -1.0 -1.7 -1 -1
no rescoring, (with NMS) -1.4 -0.4 -1.4 -1.0 -2.3 +9 +7

poses of cars and animals with high accuracy in Figures 2.10 and 2.11 and provide a quantitative
summary in Table 2.3.

The AP metric follows the same protocol of human instances, but to the best of our knowledge
no previous method has evaluated AP on ApolloCar3D [182] without leveraging 3D informa-
tion. Hence, we include a study on the keypoint detection rate, which has been defined in the
ApolloCar3D dataset [182] and considers a keypoint to be correctly estimated if the error is less
than 10 pixels. Our method achieves a detection rate of 86.1% compared to 75.4% of CPM [199].
Notably, the authors of ApolloCar3D [182] also report the detection rate of the human labelers to
be 92.4%.

On animal instances, our model achieves an AP of 47.8%, compared to 44.3% of WS-CDA,
the baseline developed by the authors of the Animal-Pose dataset [33]. Lower performances on
animals are due to the smaller dataset size with just 4K training instances. Simultaneous training
for humans and animals to achieve better generalization is left for future work.

2.4.5 Ablation Studies

We study the impact of the backbone, the precise criteria for a keypoint, our proposed Frontier
decoder, a memory efficient decoder, and the impact of input image size. Our studies on the
COCO val set are run with an option to force complete poses. This is the common practice as the
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COCO metric does not penalize false positive keypoints within poses. This option would not be
used in most real-world settings. Without forcing complete poses, the decoding time and the total
prediction time are reduced by about 10ms.

Backbone. The reference backbone is a small ShuffleNetV2K16. We show comparisons to the
larger ResNet50 and ShuffleNetV2K30 backbones and show how they improve precision (AP)
and at what cost in timing.

Keypoint Criterium. We try to illuminate why our precision and speed is significantly better
than OpenPose [35]. OpenPose first detects keypoints and then associates them. Therefore,
every keypoint has to be detectable individually. In our method, on the other side, new keypoint
associations are generated from a source keypoint. These new keypoints are not previously
known, they are discovered in the association. That allows OpenPifPaf to generate poses from a
strong seed keypoint and connect to less confident keypoints. In “independent-only”, we restrict
the keypoints of OpenPifPaf to be all of the quality of an independent seed keypoint and observe
a dramatic drop of 8.1% in AP.

Frontier Decoder. Next, we study the impact of the Frontier decoder with respect to a simpler
decoder without frontier. The standard pose is sparsely connected and, therefore, the frontier only
has few alternatives to prioritize. For a denser pose (“dense”), the impact of the frontier (compare
with “no-frontier and dense”) is more pronounced (+0.3 AP).

Memory Efficient Decoding. In the bottom part of Table 2.4, we study the effect of removing
the high-resolution accumulation map (HR) to reduce the memory footprint. This high resolution
map is used in two places. First, to rescore the seeds and, second, to rescore the CAF. The
impact of the seed rescoring is only 0.1 in AP but comes at a large cost in decoding time. As an
alternative, we investigate a local non-maximum suppression (NMS) that selects a seed only if it
is the highest confidence in a 3×3 window (introduced in CenterNet [218]). This NMS reduces
the decoding time but not back to the original speed. Independently, we study the impact of
rescoring the CAF field which is about +1.0% in AP. Only when both the seed rescoring and the
CAF rescoring are removed, the creation of the HR maps can be omitted. In that memory efficient
configuration (bottom line in Table 2.4), the AP dropped by 1.4% with respect to “original”. This
demonstrates the importance of the high-resolution accumulation for speed and accuracy and
which should only be removed when absolutely necessary.

2.5 Conclusion

We have demonstrated a new method for bottom-up pose detection for 2D human poses and
shown its strength in crowded and occluded scenes relevant for perception in self-driving cars
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and social robots. We outperform previous state-of-the-art methods on CrowdPose and COCO
datasets while running an order of magnitude faster. We have also shown that our method
generalizes to pose estimation of cars and animals, emphasizing how semantic keypoints can
represent any object. In the rest of this thesis, we will demonstrate that semantic keypoints are
an excellent intermediate representation to 3D locate humans and estimate their actions in the
context of autonomous driving applications.
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3 Monocular 3D Pedestrian Localization
and Uncertainty Estimation

This chapter is based on the articles:

Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi, MonoLoco: Monocular 3D Pedestrian
Localization and Uncertainty Estimation, The IEEE International Conference on Computer
Vision (ICCV), 2019

Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi, Perceiving Humans: From Monocular 3D
Localization to Social Distancing, IEEE Transactions on Intelligent Transportation Systems,
2021

Additional qualitative results are displayed on YouTubeI.

3.1 Introduction

The previous chapter described how to extract semantic keypoints from a monocular image. This
chapter uses semantic keypoints as an intermediate representation to improve 3D pedestrian
localization for autonomous driving applications.

Autonomous vehicles commonly rely on LiDAR sensing solutions despite high cost and sparsity
of point clouds over long ranges [41, 219, 149]. Cost-effective perception systems have been
proposed by adopting stereo/multiple cameras to address the fundamental ambiguity of monocular
solutions [40, 106]. Yet researchers are studying how to push the limits of monocular perception
to further contribute to multi-sensor fusion [109, 125]. In monocular settings, progress has
been made estimating 3D positions of vehicles from monocular images [39, 128, 163], while
pedestrians have received far less attention due to lack of adequate performances. In fact, inferring
3D locations of pedestrians from a single image is particularly ambiguous due to the variance in
human heights and shapes.

Ihttps://www.youtube.com/watch?v=ii0fqerQrec
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Figure 3.1 – 3D localization of pedestrians from a single RGB image. Our method leverages 2D
poses to find 3D locations as well as confidence intervals. The confidence intervals are shown as
blue lines in the left 3D view and as ellipses in the right birds-eye-view.

In this chapter, we explicitly study the intrinsic ambiguity of locating pedestrians in the scene and
investigate whether we can learn this ambiguity from the data. Driven by this perception task,
we aim at providing more insights into the general problem of uncertainty estimation in deep
learning.

Kendall and Gal [85] introduced practical uncertainty estimation for deep learning in perception
tasks, distinguishing between aleatoric and epistemic uncertainty [49, 85]. The former models
noise inherent in the observations, while the latter is a property of the model parameters and can
be reduced by collecting more data. While their proposed measure of uncertainty is inspiring,
they could not compare it with a known uncertainty, referred to as a task error. In this chapter,
based on the statistical variation of human height within the adult population [194], we quantify
the ambiguity of the task, i.e., the task error: an upper bound of performances for monocular
3D pedestrian localization. Surprisingly, the task error is reasonably low. Our experiments
show accurate results in 3D localization without overcoming the limitation due to this intrinsic
ambiguity.

We propose a simple probabilistic method for monocular 3D localization tailored for pedestrians
that works with any fixed or moving cameras, and does not rely on ground plane estimation.
We specifically address the challenges of the ill-posed task by predicting confidence intervals in
contrast to point estimates, which account for aleatoric and epistemic uncertainties. Our method
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is composed of two distinct steps. First, we leverage our pose detector described in Chapter 2
to obtain 2D keypoints, a low-dimensional meaningful representation of humans. Second, we
input the detected keypoints to a light-weight feed-forward network and output the 3D location
of each instance along with a confidence interval. We explore whether 2D keypoints contain
enough information for a network to learn the intrinsic ambiguity of the task as well as accurate
localization. We leverage a recently introduced loss function based on the Laplace distribution
[85] to incorporate aleatoric uncertainty for each predicted location without direct supervision
at training time. MC dropout at inference time is used to capture epistemic uncertainty [60].
Furthermore, our network, referred to as MonoLoco++, independently learns the distribution of
uncertainties, predicting confidence intervals comparable with the corresponding task error. The
codeII and a videoIII with qualitative results are available online.

3.2 Related Work

Monocular 3D Object Detection. Recent approaches for monocular 3D object detection in
the transportation domain focused only on vehicles as they are rigid objects with known shape. To
the best of our knowledge, only a few methods valuated pedestrians from monocular RGB images.
The very recent MonoPSR [99] leveraged point clouds at training time to learn local shapes of
objects. MonoDIS [180] proposes to disentangle the contribution of each loss component, while
SMOKE [112] combines a single keypoint estimate with regressed 3D variables. Kundegorski
and Breckon [100] achieved reasonable performances combining infrared imagery and real-time
photogrammetry. Alahi et al. combined monocular images with wireless signals [6] or with
additional visual priors [4, 5]. The seminal work of Mono3D [39] exploited deep learning to
create 3D object proposals for car, pedestrian and cyclist categories but it did not evaluate
3D localization of pedestrians. It assumed a fixed ground plane orthogonal to the camera and
the proposals were then scored based on scene priors, such as shape, semantic and instance
segmentations. Following methods continued to leverage Convolutional Neural Networks and
focused only on Car instances. To regress 3D pose parameters from 2D detections, Deep3DBox
[128], MonoGRnet [151], and Hu et al. [77] used geometrical reasoning for 3D localization, while
Multi-fusion [208] and ROI-10D [120] incorporated a module for depth estimation. Recently,
Roddick et al. [163] escaped the image domain by mapping image-based features into a birds-eye
view representation using integral images. Another line of work fits 3D templates of cars to the
image [203, 204, 38, 101]. While many of the related methods achieved reasonable performances
for vehicles, current literature lacks monocular methods addressing other categories in the context
of autonomous driving, such as pedestrians and cyclists.

Uncertainty Estimation in Computer Vision. Deep neural networks need to have the ability
not only to provide the correct outputs but also a measure of uncertainty, especially in safety-
critical scenarios like autonomous driving. Traditionally, Bayesian Neural Networks [162, 132]

IIhttps://github.com/vita-epfl/monoloco
IIIhttps://www.youtube.com/watch?v=ii0fqerQrec
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were used to model epistemic uncertainty through probability distributions over the model
parameters. However, these distributions are often intractable and researchers have proposed
interesting solutions to perform approximate Bayesian inference to measure uncertainty, including
Variational Inference [66, 28, 170] and Deep Ensembles [104]. Alternatively, Gal et al. [60, 61]
showed that applying dropout [183] at inference time yields a form of variational inference where
parameters of the network are modeled as a mixture of multivariate Gaussian distributions with
small variances. This technique, called Monte Carlo (MC) dropout, became popular also due to
its adaptability to non-probabilistic deep learning frameworks. Very recently, Postels et al. [148]
proposed a sampling-free method to approximate epistemic uncertainty, treating noise injected in
a neural network as errors on the activation values. In computer vision, uncertainty estimation
using MC dropout has been applied for depth regression tasks [85, 148], scene segmentation
[130, 85] and, more recently, LiDAR 3D object detection for cars [57].

2D Keypoints for 3D Vision Tasks. Detecting people in images and estimating their skeleton is
a widely studied problem and in Chapter 2, we have extensively compared top-down and bottom-
up approaches and proposed a method tailored for autonomous driving scenarios that performs
well in low-resolution, crowded and occluded scenes [95, 94] . The idea of leveraging 2D
keypoints for 3D vision tasks is not novel. The most related to our work is Simple Baseline [122],
which shows the effectiveness of latent information contained in 2D semantic keypoints. They
achieve state-of-the-art results by simply predicting 3D body joints from 2D poses through a
light, fully connected network. However, these lines of work estimate relative 3D joint positions
[127, 213, 164], or relative 3D meshes [114, 82], not providing any information about the real
3D location in the scene.

3.3 3D Localization Ambiguity

Inferring distance of pedestrians from monocular images is a fundamentally ill-posed problem.
The majority of previous works has circumvented this challenge by assuming a planar ground
plane and estimating an homography by manual measurement or by knowing some reference
elements [172, 45, 39, 40]. These approaches do not work when people are on stairs and require
a static calibrated setup. In this chapter, we address this limitation by directly estimating distance
of humans without relying on a ground plane, homography, or contextual cues, such as scene
geometry. This problem is ill-posed due to human variation of height. If every pedestrian has
the same height, there would be no ambiguity. However, does this ambiguity prevent from
robust localization? This section is dedicated to explore this question and analyze the maximum
accuracy expected from monocular pedestrian localization.

Our approach consists in assuming that all humans have the same height hmean and analyzing the
error of this assumption. Inspired by Kundegorski and Breckon [100], we model the localization
error due to variation of height as a function of the ground truth distance from the camera,
which we call task error. From the triangle similarity relation of human heights and distances,
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Figure 3.2 – Localization error due to human height variations at different distances from the
camera. We approximate the distribution of height for a generic adult as Gaussian mixture
distribution and we define the task error: an upper bound of performances for monocular
methods.

dh-mean/hmean = dgt/hgt , where hgt and dgt are the the ground-truth human height and distance,
hmean is the assumed mean height of a person and dh-mean the estimated distance under the hmean

assumption. We can define the task error for any person instance in the dataset as:

e≡ |dgt −dh−mean|= dgt

∣∣∣∣1− hmean

hgt

∣∣∣∣ . (3.1)

Previous studies from a population of 63,000 European adults have shown that the average height
is 178cm for males and 165cm for females with a standard deviation of around 7cm in both
cases [194]. However, a pose detector does not distinguish between genders. Assuming that the
distribution of human stature follows a Gaussian distribution for male and female populations
[59], we define the combined distribution of human heights, a Gaussian mixture distribution
P(H), as our unknown ground-truth height distribution. The expected task error becomes

ê = dgt Eh∼P(H)

[∣∣∣∣1− hmean

h

∣∣∣∣] , (3.2)

which represents a lower bound for monocular 3D pedestrian localization due to the intrinsic
ambiguity of the task. The analysis can be extended beyond adults. A 14-year old male reaches
about 90% of his full height and a female about 95% [59, 100]. Including people down to 14
years old leads to an additional source of height variation of 7.9% and 5.6% for men and women,
respectively [100]. Figure 3.2 shows the expected localization error ê due to height variations
in different cases as a function of the ground-truth distance from the camera dgt . This analysis
shows that the ill-posed problem of localizing pedestrians, while imposing an intrinsic limit, does
not prevent from robust localization in general cases.
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Figure 3.3 – Network architecture. the input is a set of 2D keypoints extracted from a raw image
and the output is the 3D location, orientation and dimensions of a human with the localization
uncertainty. 3D location is estimated with spherical coordinates: radial distance d, azimuthal
angle β , and polar angle ψ . Every fully connected layer (FC) outputs 1024 features and is
followed by a Batch Normalization layer (BN) [79] and a ReLU activation function.

3.4 Method

3.4.1 3D Pedestrian Detection

The task of 3D object detection is defined as detecting 3D location of objects along with their
orientation and dimensions [64, 31]. In the case of pedestrians, the ambiguity of the task derives
from the localization component, which is our main focus. Hence, we argue that effective
monocular localization implies not only accurate estimates of the distance but also realistic
predictions of uncertainty. Consequently, we propose a method which learns the ambiguity from
the data without supervision and predicts confidence intervals in contrast to point estimates. The
task error modeled in Eq. 3.2 allows to compare the predicted confidence intervals with the
intrinsic ambiguity of the task.

Input. We use a pose estimator to detect a set of keypoints [ui,vi]
T for every instance in the

image. We then back-project each keypoint i into normalized image coordinates [x∗i ,y
∗
i ,1]

T using
the camera intrinsic matrix K:

[x∗i ,y
∗
i ,1]

T = K−1 [ui,vi,1]
T . (3.3)

This transformation is essential to prevent the method from overfitting to a specific camera.

2D Human Poses. We obtain 2D joint locations of pedestrians using the off-the-shelf pose
detectors OpenPifPaf [94], a state-of-the-art, bottom-up method designed for crowded scenes and
occlusions. The detector can be regarded as a stand-alone module independent from our network,
which uses 2D keypoints as inputs. OpenPifPaf has not been fine-tuned on any additional dataset
for 3D object detection as no annotations for 2D poses are available.
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Output. For each person in the scene, we predict their 3D location using a regressive model,
along with their orientation and bounding-box dimensions in a multi-task setting. Estimating
depth is arguably the most critical component in vision-based 3D object detection due to intrinsic
limitations of monocular settings described in Section 3.3. However, due to perspective projec-
tions, an error in depth estimation z would also affect the horizontal and vertical components
x and y. To disentangle the depth ambiguity from the other components, we use a spherical
coordinate system (r,β ,ψ), namely radial distance d, azimuthal angle β , and polar angle ψ .
Another advantage of using a spherical coordinate system is that the size of an object projected
onto the image plane directly depends on its radial distance d and not on its depth z. The same
pedestrian in front of a camera or at the margin of the camera field-of-view will appear as having
the same height in the image plane, as long as the distance from the camera d is the same.

As already noted in [106], the viewpoint angle is not equal to the object orientation as people at
different locations may share the same orientation θ but results in different projections. Hence,
we predict the viewpoint angle α , which is defined as α = θ +β , where β denotes the azimuth
of the pedestrian with respect to the camera. Similarly to [106], we also parametrize the angle
as [sinα,cosα] to avoid discontinuity. Regarding bounding box dimensions, we follow the
standard procedure to calculate width, height and length of each pedestrian. We calculate average
dimensions from the training set and regress the displacement from the expectation.

Our final loss is the logarithm of the probability that all components are “well” predicted, i.e., it
is the sum of the log-probabilities for the individual components. For every component but the
3D localization, we use a vanilla L1 loss. To regress distances of people, we use a Laplace-based
L1 loss [88], which we describe in the following section. Our minimization objective is a simple
non-weighted sum of each loss function. Our minimization objective for our multi-output model
follows the formulation in [86].

Base Network. The building blocks of our model are shown in Figure 3.3. The architecture,
inspired by Martinez et al. [122], is a simple, deep, fully-connected network with six linear
layers with 1024 output features. It includes dropout [183] after every fully connected layer,
batch-normalization [79] and residual connections [73]. The model contains approximately 400k
training parameters.

MonoLoco vs MonoLoco++. We have developed two versions of our network: MonoLoco [23]
and MonoLoco++ [24]. In this chapter, we refer to the most up-to-date version (MonoLoco++),
and in the experiments section, we compare both versions of our algorithm. Technically,
MonoLoco++ differs from MonoLoco [23] by:

• the multi-task approach to combine 3D localization, orientation and bounding-box dimen-
sions,

• the use of spherical coordinates to disentangle the ambiguity in the 3D localization task,
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• an improved neural network architecture.

3.4.2 Uncertainty

In this chapter, we propose a probabilistic network which models two types of uncertainty:
aleatoric and epistemic [49, 85]. Aleatoric uncertainty is an intrinsic property of the task and
the inputs. It does not decrease when collecting more data. In the context of 3D monocular
localization, the intrinsic ambiguity of the task represents a quota of aleatoric uncertainty. In
addition, some inputs may be more noisy than others, leading to an input-dependent aleatoric
uncertainty. Epistemic uncertainty is a property of the model parameters, and it can be reduced
by gathering more data. It is useful to quantify the ignorance of the model about the collected
data, e.g., in case of out-of-distribution samples.

Aleatoric Uncertainty. Aleatoric uncertainty is captured through a probability distribution
over the model outputs. We define a relative Laplace loss based on the negative log-likelihood of
a Laplace distribution as:

LLaplace(x|d,b) =
|1−d/x|

b
+ log(2b) , (3.4)

where x represents the ground-truth distance, and d, b the predicted distance and the spread,
making this training objective an attenuated L1-type loss via spread b. During training, the model
has the freedom to ignore noisy data and attenuate its gradients by predicting a large spread
b. As a consequence, inputs with high uncertainty have a small effect on the loss, making the
network more robust to noisy data. The uncertainty is estimated in an unsupervised way, since
no supervision is provided. At inference time, the model predicts the distance d and a spread b
which indicates its confidence about the predicted distance. The latter one indicates the model’s
confidence about the predicted distance. Following [85], to avoid the singularity for b = 0, we
apply a change of variable to predict the log of the spread s = log(b).

Compared to previous methods [85, 202], we design a Laplace loss which works with relative
distances to keep into account the role of distance in our predictions. For example in autonomous
driving scenarios, estimating the distance of a pedestrian with an absolute error can lead to a
fatal accident if the person is very close, or be negligible if the same human is far away from the
camera.

Epistemic Uncertainty. To model epistemic uncertainty, we follow [60, 85] and consider each
parameter as a mixture of two multivariate Gaussians with small variances and means 0 and θ .
The additional minimization objective for N data points is:

Ldropout(θ , pdrop) =
1− pdrop

2N
||θ ||2 . (3.5)

38



Monocular 3D Pedestrian Localization and Uncertainty Estimation Chapter 3

Figure 3.4 – Average localization error (ALE) as a function of distance. We outperform the
monocular MonoPSR [99] and MonoDIS [180], while even achieving more stable results than
the stereo 3DOP [40]. Monocular performances are bounded by our modeled task error in Eq.
3.2. The task error is only a mathematical construction not used in training and yet it strongly
resembles the network error, especially for the more statistically significant clusters (number of
predicted instances included).

In practice, we perform dropout variational inference by training the model with dropout before
every weight layer and then performing a series of stochastic forward passes at test time using
the same dropout probability pdrop of training time. The use of fully-connected layers makes
the network particularly suitable for this approach, which does not require any substantial
modification of the model.

The combined epistemic and aleatoric uncertainties are captured by the sample variance of
predicted distances x̃. They are sampled from multiple Laplace distributions parameterized with
the predictive distance d and spread b from multiple forward passes with MC dropout:

Var(X̃) =
1

T I

T

∑
t=1

I

∑
i=1

x̃2
t,i(dt ,bt)−

[
1

T I

T

∑
t=1

I

∑
i=1

x̃t,i(dt ,bt)

]2

, (3.6)

where for each of the T computationally expensive forward passes, I computationally cheap
samples are drawn from the Laplace distribution.
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Figure 3.5 – Results of aleatoric uncertainty predicted by MonoLoco++ (spread b), and the
modeled aleatoric uncertainty due to human height variation (task error ê). The term b− ê is
indicative of the aleatoric uncertainty due to noisy observations. The combined uncertainty σ

accounts for aleatoric and epistemic uncertainty and is obtained applying MC Dropout [60] at
test time with 50 forward passes.

3.5 Experiments

3.5.1 Monocular 3D Localization

Datasets. We train and evaluate our monocular model on KITTI Dataset [64]. It contains 7481
training images along with camera calibration files. All the images are captured in the same city
from the same camera. To analyze cross-dataset generalization properties, we train another model
on the teaser of the recently released nuScenes dataset [31] and we test it on KITTI. We do not
perform cross-dataset training.

Training/evaluation Procedure. To obtain input-output pairs of 2D keypoints and distances,
we apply an off-the-shelf pose detector and use intersection over union of 0.3 to match our
detections with the ground-truths, obtaining 5000 instances for KITTI and 14500 for nuScenes
teaser. KITTI images are upscaled by a factor of two to match the minimum dimension of
32 pixels of COCO instances. NuScenes already contains high-definition images, which are
not modified. Once the human poses are detected, we apply horizontal flipping to double the
instances in the training set.

We follow the KITTI train/val split of Chen et al. [39] and we run the training procedure for 200
epochs using Adam optimizer [89], a learning rate of 10−3 and mini-batches of 512. The code,
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available online II, is developed using PyTorch [141]. Working with a low-dimensional latent
representation is very appealing as it allows fast experiments with different architectures and
hyperparameters. The entire training procedure requires around two minutes on a single GPU
GTX1080Ti.

Evaluation Metrics. We use two metrics to analyze 3D pedestrian localization. First, we
consider a prediction as correct if the error between the predicted distance and the ground-truth is
smaller than a threshold. We call this metric Average Localization Accuracy (ALA). We use 0.5
meters, 1 and 2 meters as thresholds. We also analyze the average localization error (ALE). To
make fair comparison we set the threshold of the methods to obtain similar recall. We do not
evaluate on the common set of detected instances; such evaluation would not be reproducible
as the common set depends on the methods used for the evaluation. In contrast, analyzing ALE
and recall allows for simple but fair comparison. Following KITTI guidelines, we assign to each
instance a difficulty regime based on bounding box height, level of occlusion and truncation:
easy, moderate and hard. However in practice, each category includes instances from the simpler
categories, and, due to the predominant number of easy instances (1240 easy pedestrians, 900
moderate and 300 hard ones), the metric can be misleading and underestimate the impact of
challenging instances. Hence, we evaluate each instance as belonging only to one category and
add the category all to include all the instances.

Geometric Approach. 3D pedestrian localization is an ill-posed task due to human height
variations. On the other side, estimating the distance of an object of known dimensions from
its projections into the image plane is a well-known deterministic problem. As a baseline, we
consider humans as fixed objects with the same height and we investigate the localization accuracy
under this assumption.

For every pedestrian, we apply a pose detector to calculate distances in pixels between different
body parts in the image domain. Combining this information with the location of the person
in the world domain, we analyze the distribution of the real dimensions (in meters) of all the
instances in the training set for three segments: head to shoulder, shoulder to hip and hip to ankle.
For our calculation we assume a pinhole model of the camera and that all instances stand upright.
Using the camera intrinsic matrix K and knowing the ground-truth location of each instance
D = [xc,yc,zc]

T we can back-project each keypoint from the image plane to its 3D location and
measure the height of each segment using Eq. 3.3. We calculate the mean and the standard
deviation in meters of each of the segments for all the instances in the training set. The standard
deviation is used to choose the most stable segment for our calculations. For instance, the position
of the head with respect to shoulders may vary a lot for each instance. To take into account noise
in the 2D keypoints predictions we also average between left and right keypoints values. The
result is a single height ∆y1−2 which represents the average length of two body parts. In practice,
our geometric baseline uses the shoulder-hip segment and predicts an average height of 50.5cm.
Combining the study on human heights [194] described in Section 3 with the anthropometry study
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of Drillis et al. [52], we can compare our estimated ∆y1−2 with the human average shoulder-hip
height: 0.288∗171.5cm = 49.3cm.

The next step is to calculate the location of each instance knowing the value in pixels of the
chosen keypoints v1 and v2 and assuming ∆y1−2 to be their relative distance in meters. This
configuration requires to solve an over-constrained linear system with two specular solutions, of
which only one is inside the camera field of view.

Other Baselines. We compare our monocular method on KITTI against four monocular ap-
proaches and a stereo one:

• Mono3D [39] is a monocular 3D object detector for cars, cyclists and pedestrians. 3D
localization of pedestrians is not evaluated but detection results are publicly available

• MonoPSR [99] is a monocular 3D object detector that leverages point clouds at training
time to learn shapes of objects. In contrast, our method does not use any privileged signal
at training time.

• MonoDIS [180] is a very recent multi-class 3D object detector that provides evaluations
for the pedestrian category on the KITTI dataset.

• SMOKE [112] is a single-stage monocular 3D object detection method which is based
on projecting 3D points onto the image plane. The authors have shared their quantitative
evaluation.

• 3DOP [40] is a stereo approach for pedestrians, cars and cyclists and their 3D detections
are publicly available.

Finally, in Figure 3.4 we also compare the results against the task error of Eq. 3.2, which defines
the target error for monocular approaches due to the ambiguity of the task.

3.5.2 Quantitative Results

Table 3.1 summarizes our quantitative results on KITTI. We strongly outperform all the other
monocular approaches on all metrics and obtain comparable results with the stereo approach
3DOP [40], which has been trained and evaluated on KITTI and makes use of stereo images
during training and test time. In addition, we show cross-dataset generalization properties
by training our network on a subset of the nuScenes dataset containing only 1799 instances
and evaluating it on the KITTI dataset. Its generalization properties can be attributed to the
low-dimensional input space of 2D keypoints [68].

In Figure 3.4, we make an in-depth comparison analyzing the average localization error as
a function of the ground-truth distance. We also compare the performances against the task
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Table 3.1 – Comparing our proposed method against baseline results on the KITTI dataset [64].
We use PifPaf [95] as off-the-shelf network to extract 2D poses. For the ALE metric, we show the
recall between brackets to insure fair comparison. We show results by training with three different
data splits: KITTI dataset [64], nuScenes teaser [31] or a subset of nuScenes to match the number
of instances of the KITTI dataset. All cases share the same evaluation protocol. The models
trained on nuScenes show cross-dataset generalization properties by obtaining comparable results
in the ALE metric.

Method Training Training ALE (m) ↓ [Recall (%) ↑ ] ALA (%) ↑
Dataset Instances Easy Mod. Hard All < 0.5m < 1m < 2m

Mono3D [39] KITTI 1799 2.26 [89%] 3.00 [65%] 3.98 [34%] 2.62 [69%] 13.0 22.9 38.2
MonoPSR [99] KITTI 1799 0.88 [96%] 1.86 [68%] 1.85 [16%] 1.19 [69%] 31.1 44.2 57.4
SMOKE [112] KITTI 1799 0.75 [59%] 1.30 [30%] 1.53 [10%] 0.91 [39%] 18.7 27.3 34.5
MonoDIS [180] KITTI 1799 0.66 [85%] 1.26 [64%] 1.83 [32%] 0.93 [66%] 33.2 47.6 57.6
3DOP [40] (Stereo) KITTI 1799 0.67 [88%] 1.19 [64%] 1.93 [37%] 0.94 [69%] 40.6 53.7 61.4
Our Geometric KITTI - 1.05 [89%] 0.95 [63%] 1.34 [31%] 1.04 [68%] 23.5 41.9 59.4
Our MonoLoco KITTI 1799 0.95 [89%] 0.98 [64%] 1.11 [31%] 0.97 [68%] 25.3 43.4 60.5
Our MonoLoco nuScenes 8189 0.91 [92%] 1.16 [80%] 1.45 [30%] 1.08 [74%] 27.6 46.6 63.7
Our MonoLoco++ KITTI 1799 0.69 [90%] 0.71 [66%] 1.37 [31%] 0.76 [70%] 37.4 53.2 63.6
Our MonoLoco++ nuScenes 1799 0.81 [92%] 0.84 [68%] 1.14 [29%] 0.84 [70%] 31.8 50.2 63.9
Our MonoLoco++ nuScenes 8189 0.72 [91%] 0.77 [68%] 1.03 [29%] 0.76 [70%] 32.5 51.9 65.6

error due to human height variations modeled in equation 3.2. Our method results in stable
performances that almost replicate the target threshold. More generally, it is notable that the error
of each method shows a quasi-linear behaviour. At a short range, the majority of methods show
large errors, as the instances are not fully visible in the image. Since our method reasons with
keypoints, its performances are more stable. At the 25-30m range MonoLoco++ error is slightly
lower than the task error. This is mainly caused by the statistical fluctuations due to the small
sample sizes at those distances. Figure 3.6 and 3.7 show qualitative results on challenging images
from the KITTI and nuScenes datasets, respectively.

Aleatoric Uncertainty. We compare in Figure 3.5 the aleatoric uncertainty predicted by our
network through spread b with the task error due to human height variation defined in Eq. 3.2.
While ê is a linear function of the distance from the camera, the predicted aleatoric uncertainty
(through the spread b) is a property of each set of inputs. In fact, b includes not only the
uncertainty due to the ambiguity of the task but also the uncertainty due to noisy observations
[85], i.e., the 2D keypoints inferred by the pose detector. Hence, we can approximately define the
predictive aleatoric uncertainty due to noisy keypoints as b− ê and we observe that the further a
person is from the camera, the higher is the term b− ê. The spread b is the result of a probabilistic
interpretation of the model and the resulting confidence intervals are calibrated. On the KITTI
validation set, they include 68% of the instances.

Combined Uncertainty. The combined aleatoric and epistemic uncertainties are captured by
sampling from multiple Laplace distributions using MC dropout. During each of the forward
passes, we draw and accumulate samples from the estimated Laplace distribution. Then, we

43



Chapter 3 Monocular 3D Pedestrian Localization and Uncertainty Estimation

Table 3.2 – Precision and recall of uncertainty for KITTI validation set with 50 stochastic forward
passes. |x− d| is the localization error, σ the predicted confidence interval, ê the task error
modeled in Eq. 3.2 and Recall is represented by the % of ground-truth instances inside the
predicted confidence interval.

|x−d|/σ |σ − e| [m] Recall [%]
pdrop = 0.05 0.60 0.90 82.8
pdrop = 0.2 0.58 0.96 84.3
pdrop = 0.4 0.50 1.26 88.3

Table 3.3 – Impact of different loss functions with Mask R-CNN [72] and OpenPifPaf [94]
pose detectors on nuScenes teaser validation set [31]. We also show results using the Average
Localization Error (ALE) metric as a function of the ground- truth distance using clusters of 10
meters.

Mask R-CNN ALE [m]
[72] 10

0
20
10

30
20

+
30 All

Geometric 0.79 1.52 3.17 9.08 3.73
L1 loss 0.85 1.17 2.24 4.11 2.14
Gaussian loss 0.90 1.28 2.34 4.32 2.26
Laplace Loss 0.74 1.17 2.25 4.12 2.12
OpenPifPaf [94] ALE [m]

10
0

20
10

30
20

+
30 All

Geometric 0.83 1.40 2.15 3.59 2.05
L1 loss 0.83 1.24 2.09 3.32 1.92
Gaussian loss 0.89 1.22 2.14 3.50 1.97
Laplace Loss 0.75 1.19 2.24 3.25 1.90

calculate the combined uncertainty as the sample variance of predicted distances in Eq. 3.6. The
magnitude of the uncertainty depends on the chosen dropout probability pdrop in Eq. 3.5. In
Table 3.2, we analyze the precision/recall trade-off for different dropout probabilities and choose
pdrop = 0.2. We perform 50 computationally expensive forward passes and, for each of them,
100 computationally cheap samples from a Laplace distribution using Eq. 3.6. As a result, 84%
of pedestrians lie inside the predicted confidence intervals for the validation set of KITTI.

One of our goals is robust 3D estimates for pedestrians, and being able to predict a confidence
interval instead of a single regression number is a first step towards this direction. To illustrate the
benefits of predicting intervals over point estimates, we construct a controlled risk analysis. To
simulate an autonomous driving scenario, we define as high-risk cases all those instances where
the ground-truth distance is smaller than the predicted one, hence a collision is more likely to
happen. We estimate that among the 1932 detected pedestrians in KITTI which match a ground-
truth, 48% of them are considered as high-risk cases, but for 89% of them the ground-truth lies
inside the predicted interval.
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Challenging Cases. We qualitatively analyze the role of the predicted uncertainty in case of
an outlier in Figure 3.8. In the top image, a person is partially occluded and this is reflected in
a larger confidence interval. Similarly in the bottom figure, we estimate the 3D localization of
a driver inside a truck. The network responds to the unusual position of the 2D keypoints with
a very large confidence interval. In this case the prediction is also reasonably accurate, but in
general an unusual uncertainty can be interpreted as a useful indicator to warn about critical
samples.

We also show the advantage of estimating distances without relying on homography estimation
or assuming a fixed ground plane, such as [39, 40]. The road in Figure 3.8 (top) is uphill as
frequently happens in the real world (e.g., San Francisco). MonoLoco++ does not rely on ground
plane estimation, making it robust to such cases.

Ablation Studies. In Table 3.3, we analyze the effects of choosing a top-down or a bottom-up
pose detector with different loss functions and with our deterministic geometric baseline. We
compare our Laplace-based L1 loss of Eq. 3.4 with a relative L1 loss

L1(x|d) = |1−d/x| , (3.7)

and a Gaussian loss

LGaussian(x|d,σ) =
(1−d/x)2

2σ2 +
1
2

log(σ2) . (3.8)

The Gaussian Loss is based on the negative log-likelihood of a Gaussian distribution and corre-
sponds to an L2 loss attenuated by a predicted σ in the location. Intuitively, L2 type losses are
more sensitive to outliers due to their quadratic component. All the losses make use of relative
distances for consistency with Eq. 3.4. From Table 3.3, we observe that L1-type losses perform
slightly better than the Gaussian loss, but the main improvement is given by choosing PifPaf as
pose detector.

A run time comparison is shown in Table 3.4. Our method is faster or comparable to all the other
methods, achieving real-time performance.
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Table 3.4 – Single-image inference time on a GTX 1080Ti for KITTI dataset [64] with OpenPifPaf
[94] as pose detector. We only considered images with positive detections. Most computation
comes from the pose detector (ResNet 50 / ResNet 152 backbones). For Mono3D, 3DOP and
MonoPSR we report published statistics on a Titan X GPU. In the last line, we calculated
epistemic uncertainty through 50 sequential forward passes. In future work, this computation can
be paralleled.

Method \ Time [ms] t pose tmodel ttotal

Mono3D [39] - 1800 1800
3DOP [40] - 2000 2000
MonoPSR [99] - 200 200
Our MonoLoco++ (1 forward pass) 89 / 162 10 99 / 172
Our MonoLoco++ (50 forward passes) 89 / 162 51 140 / 213

Figure 3.6 – Illustration of results from KITTI [64] dataset containing true and inferred distance
information as well as confidence intervals. The direction of the line is radial as we use spherical
coordinates. Only pedestrians that matches a ground-truth are shown for clarity.
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Figure 3.7 – 3D localization task. Illustration of results from nuScenes dataset [31] containing
true and inferred distance information as well as confidence intervals.
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Figure 3.8 – These examples show 1) why relying on homography or assuming a flat plane can
be dangerous, and 2) the importance of uncertainty estimation. In the top image, the road is
uphill and the assumption of constant flat plane would not stand. MonoLoco++ accurately detects
people up to 40 meters away. Instance 4 is partially occluded by a van and this is reflected in
higher uncertainty. In the bottom image, we also detect a person inside a truck. No ground-truth is
available for the driver but empirically the prediction looks accurate. Furthermore, the estimated
uncertainty increases, a useful indicator to warn about critical samples.
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3.6 Negative Results: Correlating Distance and Height Estimation

This chapter hypothesizes that the ill-posedness of the 3D localization task, while inevitable, does
not prevent accurate 3D localization. We also highlight how the human height variation implicitly
causes the 3D localization error through the task error of Eq 3.2. Then, our next research question
becomes: “can we improve our 3D localization estimates by consistently predicting a person’s
height and distance?”. For example, the same set of 2D keypoints may refer to a shorter person
closer to the camera or to a taller person further from the camera.
In this Section, we exploit the strong correlations between a person’s height, the appearance in the
image plane, and the distances from the camera. We specifically refer to Zamir et al. [211], where
they demonstrate that neural networks do not make consistent predictions without enforcing
additional constraints. Hence, they develop a cross-task consistent learning procedure to improve
the predictions. The proposed method is based on the concept of inference-path invariance, where
“the result of inferring an output domain from an input domain should be the same, regardless of
the intermediate domains mediating the inference” [211].

We develop a cross-task consistency (X-TC) based training procedure to consistently learn
people’s height and their distance from the camera. Our scenario differs from the proposed
ones in [211], where the inputs and the outputs are high-dimensional, e.g., from raw images to
surface normals or dense depth estimation. In this approach, the inputs are low-dimensional
2D keypoints and the output instance-based attribute of pedestrians: distance and height. In
addition, we combine cross-task consistency with multi-task learning, where each of the networks
may simultaneously predict multiple tasks, e.g., estimating the radial distance from the camera
together with the horizontal and vertical location in the 3D world. Finally, in our scenario, the
relation between height and distance is conditioned to the appearance of the person in the image
plane, and we include this conditioning in our X-TC architecture, as shown in Figure 3.9.

3.6.1 Consistency Functions

To ensure consistency between distance and height, we study an analytical approach as well a
a neural network approximation. In both cases, the distance in meters cannot be informative
regarding the height without including additional information. Hence, we combine the distance
with the height of the person in the image plane (in pixels) to obtain the real height in meters.

Analytical Function. In its simplest form, the analytical relation between the variables is the
following:

h =C ∗H ∗d , (3.9)

where H is the 2D bounding box height in pixels, d and h the distance and the person height
in meters. C is a constant that can be derived having access to the ground-truth heights and
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Figure 3.9 – Cross-task Consistency (X-TC) architecture: the input of our keypoint-based model
is the set of 2D body joints extracted from a raw image, and the output is the distance of the
person from the camera. The consistency function receives as input the estimated distance d, as
well as the height of the person in the image plane (in pixels) H, and the vertical location of the
feet Yf eet , and estimates the real height of the person h (in meters).

distances.

Neural network. Alternatively, we train a simple neural network, consisting of two blocks of
fully connected layers to derive h given d and H. In addition, we include the vertical location
of the feet of the person, Yf eet , as additional input. We use it as a proxy to inform the network
about the location of the person in the ground-plane. Assuming a flat ground-plane, the network
can learn to use Yf eet to better correlate d and h in case of noisy predictions. An overview of the
consistency function is shown in Figure 3.9.

Triangle Loss. We implement the triangle loss described in [211], using distance and the height
as our target domains. We use as direct losses a Laplacian-based loss function for the distance
[85], and a L1 loss for the height estimation. Our triangle loss is the following:

Ltriangle = Ld +Lh + |i( f (x))−g(x)| , (3.10)
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where Ld and Lh are the direct losses, x the set of input keypoints, f , g and i neural networks
estimating distance, height, and consistency.

Separable and Perceptual Loss. The triangle loss, while intuitive, has the following limita-
tions: (i) it requires simultaneous training of all the output domains, and (ii), it assumes a perfect
function for mapping from the height to the distance. These assumptions are not verified in our
scenario, as the height in pixels H is provided by the off-the-shelf pose detector, which we can
consider as a noisy sensor. The person height h is noisy too, as we are approximating it using the
height of the enclosing 3D box.

If we are only interested in predicting the distance d, we can convert the triangle loss into a
simpler loss in the form of:

Lseparable = Ld + |i( f (x))−hgt | , (3.11)

by substituting the neural network g with the ground-truth height. However, the link from i( f (x))
to hgt may still be ill-posed, resulting in a non-zero loss, and when optimizing jointly the networks,
the error may corrupt the optimization of the network f (the one that estimates the distance
directly), leading to a degradation of performances.

We follow [211] and handle this by adopting a perceptual loss that depends on high-level features
from a pre-trained loss network. In particular, we compare f (x) against the ground-truth distance
dgt , through the lenses of the network i. The perceptual loss has the following formulation:

Lperceptual = Ld + |i( f (x))− i(dgt)| , (3.12)

This trick avoids the residual imperfections of i(dgt) to be back-propagated during the training
phase and to corrupts the training of f (x). The overall architecture trained with the perceptual
loss is shown in Figure 3.9.

3.6.2 Cross-Task Consistency Evaluation

X-TC Training Procedure When training our model with the X-TC pipeline, we include the
following steps:

• initialize each network with standard direct training

• select the best validation epoch for each of the network and store the trained models

• train the main network (for distance estimation) using one of the following losses:
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Figure 3.10 – Distribution of human heights predicted by our network trained using 2D keypoints
compared with the ground-truth distribution for the KITTI validation set. The average error is 8.5
cm.

1. Triangle loss of Equation 3.10

2. Separable loss of Equation 3.11

3. Perceptual loss of Equation 3.12

and select the the best results among the following two options:

– freezing all the parameters of the (pre-trained) consistency networks and only train
the network for distance estimation

– training all the parameters of all the two/three networks together

Finally, to balance the losses, we apply a scaling factor to translate a distance error into a height
error. In the simplest version, we assume an average distance of 15 meters and scale the loss
terms related to the height of this scaling factor.

The X-TC pipeline can be seen as a stand-alone addition to our method. Thus, we first assess our
approach without X-TC consistency and add an ablation study in Section 3.6.2 to evaluate the
performances of our method when correlating height and distance estimation.

Height Estimation Results. Our goal is to improve the 3D pedestrian localization perfor-
mances by correlating these results with the height estimation ones. However, a neural network
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could simply learn the average height for each pedestrian instead of its variations. We verify
that the network estimates are not constant and in Figure 3.10, we show the distribution of the
ground-truth height for the KITTI validation set compared with the one predicted by the network.
Our network estimates the 3D bounding box height with an average error of 8.5 cm, and the
distribution of its prediction overlaps the ground-truth one. We are not claiming that the network
can correctly predict a person’s height, and a residual error remains as expected. However, we
are still interested in studying whether we can improve the overall performances by correlating
height and distance estimation and their errors.

Table 3.5 – Comparing our X-TC pipeline with different loss functions. no X-TC is the
MonoLoco++ model retrained with the same hyper-parameters of the X-TC models, and without
orientation estimates, to ensure fair comparison. All approaches achieve approximately on par
results. Among them, our X-TC model trained with perceptual loss shows marginally superior
performances on the ALA metric.

Method ALE (m) ↓ [Recall (%) ↑ ] ALA (%) ↑
Easy Mod. Hard All < 0.5m < 1m < 2m

MonoLoco++ [24] 0.69 [90%] 0.71 [66%] 1.37 [31%] 0.76 [70%] 37.4 53.2 63.6
No X-TC 0.70 [91%] 0.82 [68%] 1.07 [32%] 0.76 [71%] 37.9 54.0 64.7
X-TC Triangle 0.64 [87%] 0.78 [63%] 1.17 [27%] 0.72 [67%] 36.4 52.6 61.9
X-TC Separable 0.72 [90%] 0.76 [65%] 1.07 [31%] 0.76 [69%] 37.0 52.4 63.5
X-TC Perceptual 0.70 [91%] 0.77 [66%] 1.11 [31%] 0.75 [70%] 37.9 53.6 64.4

Consistency Network Results We test our consistency function that estimates a person’s
height starting from his/her 3D distance. We either use the analytical formulation of Equation
3.9, or a simple fully connected network.

With the analytical function, we obtain a constant C = 0.1156 with a relative standard deviation
of 13.6 %. We calculate this using the ground-truth distance and the 2D bounding box height
in pixels from the pose detector. When using the ground-truth 2D box from the KITTI dataset
[64], the relative standard deviation lower to 8.0 %. It is worth noticing that the ground-truth 2D
box (i) cannot be used during evaluation, (ii) it is still not precise, as it is the projection of the
ground-truth 3D bounding box. We, therefore, use the constant obtained from the bounding box
enclosing the 2D keypoints, and we obtain an average error of 14.9 cm. The error is not negligible
considering that the standard deviation of human height is around 9 cm [194]. However, the
analytical function is a simple approximation that considers a pinhole camera and neglects that
we are estimating the height of the 3D bounding box enclosing the pedestrian instead of the actual
height.

Alternatively, we train a simple network with two fully-connected blocks with a fully connected
layer (FC), a Batch Normalization layer (BN) [79], and a ReLU activation function. We feed
the network with the ground-truth distance and the bounding box height from the 2D keypoints,
obtaining an error of 7.08 cm on the validation set of KITTI. When adding the information on the
y-location of the feet of the pedestrian (as a proxy for the ground-plane), our results marginally
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improve to 6.28 cm. These results highlight the amount of noise between the person’s height and
his/her distance when conditioning to the person’s appearance in the image plane.

(a) Training loss. Freezed consistency network pa-
rameters.

(b) Training loss. Including consistency network
parameters.

(c) Validation loss. Freezed consistency network
parameters.

(d) Validation loss. Including consistency network
parameters.

Figure 3.11 – Training and validation loss functions using the perceptual loss of Equation 3.12
and the architecture in Figure 3.9. The blue line represents the direct loss for distance estimation,
the orange line the consistency component of the loss, including a scaling factor of 15 to translate
height errors into distance errors. The validation losses concerning the direct training from the
2D keypoints to the distance do not improve and the training losses tend to overfit. Performances
are not affected by the scaling factor.

3D Localization Results In Table 3.5, we compare our MonoLoco++ trained without X-TC
with three versions of our X-TC pipeline, using respectively the triangle, the separable, and the
perceptual losses. Our results are comparable in all the above cases. One explanation is that the
amount of noise inside the consistency function described in the previous paragraph may prevent
further improvements. As seen in Figure 3.10, even if the network estimated the distribution of
human heights from 2D keypoints, the link between the ground-truth height and distance remains
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noisy. More details are shown in Figure 3.11, where we show the training and validation losses
when using the perceptual loss of Equation 3.12. The loss components that account for the direct
training of the distance from keypoint do not improve in the validation set, showing overfitting in
the training set.

In summary, exploiting the correlation between humans’ height and their distance from the camera
does not result in any substantial improvement regarding the 3D localization task. However,
the study provides insights about directly estimating humans’ height and the amount of noise
between a person’s height and his/her distance from the camera.

3.7 Conclusion

We presented a new deep learning method that uses monocular cameras to perceive humans’ 3D
location and emphasized that the main challenge is the intrinsic ambiguity of the task. Thus, we
presented a method that predicts calibrated confidence intervals in contrast to point estimates
leading to state-of-the-art results in the 3D localization task.

While monocular cameras find application in many different sectors, it is fundamental to minimize
uncertainty and maximize the prediction accuracy in autonomous driving applications. The next
chapter will describe how to best leverage semantic keypoints with stereo cameras. We will
show that estimating the 3D localization of people from stereo cameras presents a separate set
of challenges and demonstrate how to obtain robust and accurate predictions by combining
monocular and stereo cues.
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4 Tackling the Long Tail of 3D Pedes-
trian Localization with Stereo Cam-
eras
This chapter is based on the articles:

Lorenzo Bertoni, Sven Kreiss, Taylor Mordan, and Alexandre Alahi, Monstereo: When Monocu-
lar and Stereo Meet at the Tail of 3D Human Localization, The IEEE International Conference
on Robotics and Automation (ICRA), 2021

Deng Wenlong, Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi, Joint Human Pose Estima-
tion and Stereo 3D Localization, The IEEE International Conference on Robotics and Automation
(ICRA), 2020

Additional qualitative results are displayed on YouTubeI.

4.1 Introduction

Monocular and stereo visions are cost-effective solutions for 3D pedestrian localization in the
context of self-driving cars or social robots. In the previous chapter, we have studied monocular
vision, describing its strengths and limitations. This chapter will focus on perceiving humans
from stereo cameras, proposing a novel unified learning framework that leverages the strengths
of both monocular and stereo cues to focus on the long tail of 3D pedestrian localization.

Stereo cameras have been extensively used as a cost-effective sensor to 3D locate humans in the
context of autonomous vehicles or social robots [10, 99, 23, 48, 197], and all the most recent
approaches strive to improve state-of-the-art results in popular metrics. Yet these solutions do not
necessarily convey trust in real-world applications, and the long tail of 3D perception opens a
Pandora’s box of undetected challenges. While many methods perform very well “on average”,
can they still be trusted in the most challenging cases? The long tail of 3D object localization, i.e.,
the share of instances where methods struggle the most, is crucial for safety but rarely evaluated
in standard benchmarks [64]. This is especially relevant for pedestrians, undoubtedly an essential

Ihttps://www.youtube.com/watch?v=pGssROjckHU

57

https://www.youtube.com/watch?v=pGssROjckHU
https://www.youtube.com/watch?v=pGssROjckHU


Chapter 4 Tackling the Long Tail of 3D Pedestrian Localization with Stereo Cameras

Figure 4.1 – Long tail example in the KITTI dataset [64]. The pedestrian g is only visible from
the left camera (no stereo information available) as shown by overlapping the white van from
the right image. The network classifies it as a monocular sample (red color) and outputs a larger
confidence interval that reflects less accurate monocular estimates at that location. We display
radial distances in meters in the frontal image and radial uncertainties in the bird-eye-view image.
Only instances that match a ground-truth are shown.

category to safeguard from vehicle or robot collisions.

Multi-view [4, 8, 7, 11] and stereo-based [195, 48] methods have the potential for accurate 3D
human localization, as they are free from the perspective projection ambiguity, inevitable in the
monocular case [23]. Pseudo-LiDAR [197] drastically reduced the discrepancy between camera
and LiDAR performances by converting a stereo-based dense depth map into 3D point clouds
and directly applying LiDAR-based object detectors [149, 98]. However, computing depth from
disparity poses two main challenges. Instances can be located out of the field of view or be
occluded in one of the two images, and an association may not be available. Furthermore, a small
disparity error (e.g., a pixel shift) for far-away objects leads to unacceptable errors of several
meters, as the error grows quadratically with depth [62]. We identify occluded and far instances
as the largest share of the stereo-based long tail of predictions. On the contrary, monocular images
are less error-prone for far instances and do not depend on accurate detections on both images.
In Chapter 3, we achieved competitive performances in 3D human localization by exploiting
the known prior distribution of human heights. However, this approach fails in the presence
of children or very tall people, connecting the long tail of monocular 3D localization with the
distribution of human heights.

In this chapter, we leverage the best of both worlds, i.e., stereo and monocular methods, in a
unified learning framework tailored for pedestrian 3D localization. Our method, referred to as
MonStereo [25], jointly associates detections in left-right images and implicitly learns to leverage
monocular and/or stereo cues. Moreover, it also learns to communicate uncertainty driven by
the cues (again without direct supervision at training time). Our approach uses an off-the-shelf
pose detector [94] on left-right images to obtain 2D keypoints, a low-dimensional representation
of humans. A simple feed-forward network estimates whether each input pair is formed by the
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same person from left-right images and, concurrently, estimates the 3D location of pedestrians
with their corresponding uncertainty (accounting for stereo disparity and/or monocular cues).

The popular KITTI dataset [64] has a limited variation of instances, oversimplifying the monocular
task. We address the long tail of height distribution by injecting prior knowledge from the real
world. Leveraging the simplicity of manipulation of 2D keypoints, we create instances of people
from a broader spectrum of heights. This conveys information about the real challenge of the
task in the data domain, thus, increases the network performance and calibrates the estimated
confidence intervals without the need for hand-crafted architectures.

In summary, we propose a unified learning framework that jointly matches detections in left-right
pairs of images and estimates the 3D localization of each pedestrian. We focus on the limitations
of monocular and stereo visions, referred to as the long tail challenge, by jointly exploiting stereo
and monocular cues with a measure of uncertainty. We also design a data augmentation procedure
to tackle the long tail of the human height distribution. Our network achieves state-of-the-art
results on 3D localization metrics and provides reliable confidence intervals even for challenging
cases. The codeII and a videoIII with qualitative results are available online.

4.2 Related Work

Stereo 3D Detection. Stereo-based 3D detectors can be grouped into instance-level and pixel-
level depth estimators. The instance-level approach consists of detecting instances in the image
plane and comparing features of proposals in left and right frames to correctly associate objects
and estimate their locations [40, 107, 106, 152, 48, 147]. Among them, PSF [48] was designed for
human localization and, similarly to our method, leverages 2D keypoints to solve the association
task. However, their 3D output is simply the median depth calculated from a set of disparities. The
pixel-level approach consists in estimating a dense disparity map for every pixel and transforming
the dense map into a 3D point cloud [197, 150]. The pseudo-LiDAR point cloud can then be
used to detect vehicles and pedestrians by applying LiDAR-based algorithms [149, 98]. The
underlying task of all previous methods is to compute disparity from pixels, either locally to
associate and align pairs of left-right instances, or globally to find dense correspondences between
pixels. Qin et al. [152] have recently proposed to extend a monocular baseline to predict 3D
locations of car instances with a triangulation network. Our work goes beyond the concept of
“depth from disparity” and is not limited by the discrete nature of pixels, but can exploit together
monocular and stereo cues to directly estimate a continuous depth.

Vision-based 3D Localization Ambiguity. Estimating the 3D location of objects from a single
RGB image is a fundamentally ill-posed problem due to the ambiguous projections to the 2D
image. This is particularly true for humans due to their variation of height and non-rigid body

IIhttps://github.com/vita-epfl/monoloco
IIIhttps://www.youtube.com/watch?v=pGssROjckHU
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Figure 4.2 – Network architecture. The input is a set of 2D keypoints extracted from a raw image.
The outputs are the radial distance d with its confidence interval b, the azimuthal angle β , the
polar angle ψ , and the Instance-based stereo matching (ISM). Every fully connected layer is
followed by a Batch Normalization layer (BN) [79] and a ReLU activation function.

structure. In Chapter 3, we quantified this ambiguity as a function of the distance from the
camera, assuming that the distribution of human stature follows a Gaussian distribution for male
and female populations [59]. The expected localization error êmono due to height variations of
people can be obtained by êmono =C ∗dgt , where the constant C is modelled from the distribution
of human heights and dgt is the ground-truth distance. On the other side, even if stereo methods
do not suffer from the intrinsic ambiguity of perspective projection, the error grows quadratically
with depth, making disparity estimation very sensitive to pixel resolution. The depth error ez

can be expressed as a function of the disparity error ed [62] as ez ≈ z2

b f ed , where z is the depth, b
the camera baseline and f the focal length. With the goal of comparing monocular and stereo
limitations, we analyze what we call the pixel error: the depth error due to a disparity error of one
pixel. Its value depends on the characteristics of the camera and we use the camera parameters
of the KITTI dataset [64], a popular dataset for 3D object detection with stereo imaging at a
resolution of 1240×380 pixels. The results, shown in Figure 4.5, highlight that the stereo depth
error can become more challenging than the monocular one for humans at just over 20 meters.
For example, a disparity error of 1 pixel at 40 meters corresponds to 4.5 meters of depth error.
These conclusions depend on the precision of the disparity estimation and the image resolution,
but highlight the importance of monocular estimation for 3D perception.

4.3 Method

Our approach aims to detect, associate and estimate the 3D positions of pedestrians in a pair
of stereo images. We identified two main challenges for a stereo network: (i) when a person is
not identified in both images, there is no disparity information, and (ii) disparity estimation for
faraway objects leads to poor predictions. We propose a simple yet effective way to tackle both
issues.

Architecture. Our method consists of two steps. First, we reduce the input dimensionality by
predicting 2D keypoints for each person in left-right images. Keypoints are a low-dimensional
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representation which is invariant to many nuisances, is suitable in the low-data regime and is
prone to easy manipulations. Second, we analyze pairs of keypoints from left-right images in an
“all-vs-all” setting to predict 3D location, and confidence interval of every person in the scene.
Our simple architecture is shown in Figure 4.2 and consists of few fully-connected layers with
batch-normalization, residual connections [73], and dropout [183].

Input/output. Similarly to our monocular architecture [24], we use the pose detector described
in Chapter 2 to obtain a set of keypoints [~x,~y]Ti for every person i in the left and right images. Each
keypoint is projected into normalized image coordinates [~x∗,~y∗,~1]Ti = I(i) to prevent overfitting
to a specific camera. To construct the network inputs, we associate in an “all-vs-all” way the
keypoints I(l) from each person l in the left image with the one I(r) from each person r in the
right image, to form the associated pair I(l,r):

I(l,r) = I(l) ‖ (I(l)− I(r)) ∀ l ∈ NL,r ∈ NR , (4.1)

where ‖ is a concatenation operation, and NL, NR denote the sets of detected instances in the
left-right image pair. If the sets of keypoints I(l) and I(r) belong to the same person, the input
is a true pair and we call it I(l,r)S−M, with subscript denoting stereo and monocular cues available.

Otherwise the input is a false pair, which we denote with I(l,r)M . We treat this problem as a
binary classification task and use binary cross-entropy loss to train our network. We refer to
this association task as Instance-based stereo matching (ISM) and to its loss as ISM loss. As in
Chapter 3, to disentangle the depth ambiguity from the other localization components (x, y), we
use a spherical coordinate system (d,β ,ψ), namely radial distance d, azimuthal angle β , and
polar angle ψ .

Uncertainty. We model the aleatoric uncertainty for the depth estimation task using the relative
Laplace loss function described in Section 3.4. At inference time, the model predicts a radial
distance d and a spread b which indicates its confidence about the predicted distance. The
use of spherical coordinates allows to convey all the 3D localization uncertainty into the radial
component d.

Inference. The network performs 3D localization as well as ISM by predicting whether each
pair of keypoints belongs to the same person or to different ones. The ISM component is also used
to filter multiple results for the same person. At inference time, the network predicts NR outputs
for each person in the left image (one for each associated pair) and selects the one with the highest
predicted stereo matching. In fact, a true pair I(l,r)S−M always contains more information about

the left instance than I(l,r)M . For a single image pair, the number of pairwise combinations grows
quadratically as NL ∗NR but, as the inputs are low-dimensional, the computation is parallelizable
by including all the pairs in the same batch.
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Knowledge Injection. Monocular estimates are essential to address the long tail of stereo-
based 3D localization, but they present their own issues. A typical dataset for 3D object detection
such as KITTI [64] is not representative of the real world as it only contains few scenes recorded
from a single city. For instance in the case of a child, any monocular estimate of depth will
either fail or rely solely on the ground plane estimation [50]. These settings make the network
over-confident toward monocular estimates, as: (i) the predicted confidence intervals do not
reflect the real distribution of human heights and the model can drastically fail in case of children
or tall people; (ii) the training phase becomes ineffective as the network relies on monocular
estimates even when a stereo association is available. To tackle both issues, we inject knowledge
in the training data by augmenting it with relevant examples from the long tail of the human
height distribution. We augment the KITTI dataset with synthetic 2D keypoints of people of
heights ranging from 1.2 meters to 2 meters. We rely on the mild assumption that the aspect ratio
between children and adults is unchanged and for each set of keypoints I(l,r), we sample a height
h from the uniform distribution U (1.2,2) and we derive a new ground-truth distance from the
triangle similarity relation of human heights and distances. Then, we create a new input I∗(l,r)

updating the disparity and the ground-truth distance. We repeat this procedure for every pair I(l,r)

with double-sided advantages. The network benefits from augmenting the number of true pairs
I(l,r)S−M as it learns that disparity estimates correspond to correct depths whereas the monocular

assumption of average height breaks down. It also benefits from augmenting false pairs I(l,r)M ,
by becoming receptive to more realistic human height variations, including children or very tall
people. This knowledge is reflected in more calibrated confidence intervals of distance especially
in the tail of human heights.

4.4 Alternative Methods

Our MonStereo receives as input sets of keypoints obtained from an off-the-shelf pose detector
and solves the stereo matching and 3D localization tasks together. As alternative approaches,
we propose to (i) jointly solve pose estimation and stereo matching with a single feed-forward
regression network, and to (ii) separately solve the pose estimation, stereo-matching, and the 3D
localization tasks.

4.4.1 End-to-end Approach

To address challenges related to keypoints’ stability and limited resolution, we develop an end-to-
end method, referred to as Part Spatial Fields (PSF) [48], which combines composite fields [95]
and correlation layers [78]. The method reasons in 3D, creating location proposals in the form
of 3D human poses. It includes a shared ResNet [73] base network and OpenPifPaf [95] head
networks to predict the 2D poses and a new third head network for predicting association between
stereo keypoints.
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Correlation Calculation. Our goal is to detect and match across pair of stereo images multiple
people at the same time. We compute correlation values for all positions in a feature map and
make our model operate on the whole feature maps for matching regression. Calculating all
possible circular shifts would lead to a vast output dimensionality, but stereo images do not
require a significant disparity. Hence, we restrict the correlation calculation to small translations.
Our correlation module is inspired by FlowNet [78], where a correlation layer is aimed to help a
convolutional network in matching feature points between stereo images. The correlation layer
operates pixel-level feature comparison of two feature maps xl,xr:

xl,r
corr(i, j, p,q) = 〈xl(i, j),xr(i+ p, j+q)〉, (4.2)

where −K ≤ p≤ K and K ≤ q≤ K are offsets to compare features in the square neighborhood
around the locations i, j in the feature map, defined by the maximum displacement K. The
correlation layer output becomes xcorr ∈ RHl×Wl×(2K+1)×(2K+1). In other words, Equation 4.2 can
be seen as a correlation between two feature maps within a local square window defined by K.
We compute this local correlation for left regression and right regression.

Figure 4.3 – The Part Spatial Fields (PSF) output maps for the “left wrist”. The intensity map
gives the route of the joint movement. The left and right regression maps measure the down-scaled
distance from each pixel location to left and right stereo keypoints. From the regression map, we
generate dense association vectors to associate stereo keypoints.

Part Spatial Fields. Our Part Spatial Fields (PSF) module outputs one intensity map sc to
model the confidence of association and two regression maps 〈sxl(r),syl(r)〉 to convert the similarity
into a pixel-level distance. As shown in Figure 4.3, at every output location, two vectors point to
the left and right stereo keypoints locations, respectively.

ISM algorithms need to consider the diversity of scales that a human pose can have in an image.
While a localization error for the joint of a close proximity person can be minor, that same absolute
error might be a major mistake for faraway smaller persons. At the same time, measuring the
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uncertainty of the spatial precision of an association could be helpful when computing a score for
each connection. As described in Section 3.4, we use a Laplace loss 3.4 to train the regressive
model, and, PSF can be represented as:

−→s = {si, j
c ,s

i, j
xl ,s

i, j
yl ,s

i, j
bl ,s

i, j
xr ,s

i, j
yr ,s

i, j
br}, (4.3)

where (sxl,syl) and (sxr,syr) are absolute locations (sum of pixel location and regression distance)
of an association vector’s two endpoints. (sc,sbl,sbr) represent the confidences for the association
and left and right spatial precision, respectively. The output is then decoded to associate stereo
poses with high location similarity.

Finally, given the depth of each joint, we calculate the distance of the person to the camera.
Since some joint locations are not accurate due to occlusion or detection error, we include a
z-score thresholding procedure to remove outliers and consider the median depth of the remaining
keypoints as our final output.

4.4.2 ISM Baselines.

Our MonStereo combines the ISM task with the 3D localization one. An alternative approach is
to simply focus on the stereo matching task and calculate the 3D localization of each pedestrian
from the given disparity. We propose three ways to associate people in left-right pairs of images.

1. B-Median. We use our network only for the ISM task and, if a match between two people
is found, we calculate the depth from the median value of the set of disparities.

2. B-Pose. An intuitive way to associate people is to use pose similarity based on the detected
2D keypoints, i.e., calculating how similar two poses are in left and right images. In
particular, we look for the best similarity score for each person in the left image (reference)
with respect to all the people in the right image (targets). We zero-center the reference and
the target poses using the location of their center and we calculate the L2 norm between
our reference vector and all the target vectors and save the scores. We repeat this procedure
for all the poses in the left images and associate left-right pairs of poses in a greedy way.

3. B-ReID. We develop an image-based baseline which associates the same person in left-right
pairs of images by looking at the appearance of the person and the scene around him. We
use a state-of-the-art Re-Identification model [1] trained on Market-1501 [217], a very
large person re-identification dataset, to make the association from cropped images.

All the three methods provide the best similarity score for each person in the left image with
respect to all the people in the right image. Any association can be then either accepted or
rejected. The decision is made by filters based on the coefficient of variation between keypoints
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and vertical disparity of the pair. If the association is accepted, the depth is calculated from
disparity as described in Section 4.7.3. Otherwise, we estimate depth through a monocular
estimate using MonoLoco [23].

4.5 Critical Review of 3D Metrics for Pedestrians

The majority of previous works for 3D object detections do not report results on the pedestrian
category [163, 106], even when using LiDAR point clouds [98]. We argue that the most common
metrics for 3D object detection, namely the bird’s eye view (BEV) and 3D average precision
metrics [64], are not representative of effective performances in case of pedestrians. For the BEV
metric, a prediction is considered as correct if the intersection over union (IoU) between the
predicted box and the ground-truth one is greater than 0.5. This metric has proven to be effective
in the pixel space in popular 2D object detection benchmarks such as PASCAL VOC [54] and
MS COCO [111]. On the contrary, in the 3D space a pedestrian 3D bounding box has average
width and length of 60 cm and 75 cm. Considering perfect orientation and dimensions, a distance
error of 18 cm already leads to an intersection over union lower than 0.5. This requirement is
unnecessarily strict and shifts the attention of the community from the challenging instances to
the easy ones, where obtaining results with a precision of few centimeters may still be possible.
In case of stereo-based algorithms, where the disparity is large for close instances and small for
further ones, this behaviour is further enforced. Furthermore, the KITTI official metric assigns to
each instance a difficulty regime based on bounding box height, level of occlusion and truncation:
easy, moderate and hard. Each category includes instances from the simpler categories, and, due
to the predominant number of easy instances (1240 “easy” pedestrians and 300 “hard” ones), the
metric can underestimate the impact of challenging instances. To address the current limitations,
we propose to consider a safety-critical area around a pedestrian, recognizing a prediction as
correct if the localization error between the predicted and ground-truth box is less than a threshold
error. Differently from the metric proposed by Xiang et al. [203], we define an adaptive threshold
based on distance. In our evaluation, we use a relative error ez of 5%, considering 1 meter
as reasonable safety-critical range for people 20 meters away, but thresholds are application
dependent. We refer to the metric as Relative Average Localization Precision (RALP) and we
split the evaluation into “Easy”, “Moderate”, “Hard”, with no overlap between categories, and
“All”.

4.6 Experiments

4.6.1 Experimental Setup

We compare our method with the alternative approaches presented in Section 4.4. We also
evaluate additional state-of-the-art monocular and stereo baselines that focus on the pedestrian
category. The monocular baselines are described in Section 3.5, while the stereo ones are:
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Table 4.1 – Comparing our proposed method against baselines on KITTI dataset [64]. We use
OpenPifPaf [95, 94] as off-the-shelf network to extract 2D poses. On the RALP metric, our
MonStereo achieves state-of-the-art results. On the ALE metric, the confidence threshold of
methods has been set to 0.5 and we show the recall between brackets to insure fair comparison.
Italics entries are not directly comparable as they achieve a lower recall even when no threshold
is set. Our method performs better on hard instances while maintaining 2-5 times higher recall.
The improvement of jointly solving the ISM and the 3D localization tasks is shown by the three
baselines (B-).

Method ALE (m) ↓ [Recall (%) ↑ ] RALP-5% (%) ↑
Easy Mod. Hard All Easy Mod. Hard All

Monocular
Mono3D [39] 2.26 [89%] 3.00 [65%] 3.98 [34%] 2.62 [69%] 9.21 1.26 0.21 7.22
MonoPSR [99] 0.89 [99%] 2.00 [93%] 2.40 [34%] 1.51 [83%] 48.87 12.54 0.47 35.35
MonoLoco [23] 0.83 [91%] 1.12 [72%] 1.15 [27%] 0.93 [70%] 49.01 19.44 1.89 38.76
Stereo
E2E-PL [150] 0.12 [68%] 0.17 [23%] 0.60 [13%] 0.15 [43%] 49.32 4.43 0.44 31.31
OC [147] 0.10 [66%] 0.14 [31%] 0.75 [6%] 0.13 [42%] 65.58 26.38 1.46 41.30
3DOP [40] 0.67 [88%] 1.19 [64%] 1.93 [37%] 0.93 [69%] 57.88 22.70 3.85 45.92
PL [197] 0.16 [88%] 0.72 [59%] 1.59 [33%] 0.46 [67%] 88.94 42.91 10.41 66.33
Our PSF 0.55 [88%] 0.65 [58%] 0.80 [25%] 0.56 [65%] 57.27 19.94 4.82 46.15
Our B-ReID 0.73 [91%] 0.78 [72%] 1.02 [28%] 0.77 [70%] 73.81 39.44 4.48 58.23
Our B-Pose 0.65 [91%] 0.77 [71%] 1.18 [27%] 0.72 [70%] 73.92 39.10 4.82 58.25
Our B-Median 0.57 [92%] 0.69 [72%] 0.78 [31%] 0.61 [72%] 80.19 50.38 8.17 64.00
Our MonStereo 0.29 [92%] 0.41 [70%] 0.50 [31%] 0.34 [71%] 85.54 54.27 8.92 67.60

Figure 4.4 – ALE as a function of distance. MonStereo achieves robust performance while even
detecting more instances (numbers included) in the farthest clusters.

• Pseudo-Lidar (PL) [197] converts a stereo-based dense depth map into 3D point clouds
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Figure 4.5 – For close instances the spread b has a quadratical trend as MonStereo exploits stereo
cues, and a linear trend at further distances thanks to monocular cues.

and applies a LiDAR-based 3D object detector;

• End-to-End Pseudo-Lidar (E2E-PL) [150] updated framework that allows the entire Pseudo-
Lidar pipeline to be trained end-to-end;

• Object Centric (OC) [147]: performs stereo matching on only object image crops and mask
the ground truth background disparities during training to only penalize errors for object
pixels;

• 3DOP [40] is a pioneering stereo approach for pedestrians, cars and cyclists and their 3D
detections are publicly available.

To evaluate pedestrian 3D object detection we use the R-ALP metric with 5% threshold. We
also evaluate the Average Localization Error (ALE) [23], that differently from average precision
metrics, penalizes large errors and is suited for the long tail of 3D localization.

4.6.2 Implementation Details

We train and evaluate our model on the KITTI Dataset [64] using the train/val split of Chen
et al. [39]. To detect 2D keypoints, we use the off-the-shelf pose detector OpenPifPaf [95, 94]
and we upscale the images by a factor of two to match the minimum dimension of 32 pixels for
COCO instances. We train our network for 400 epochs using Adam optimizer [89], a learning
rate of 10−3, mini-batches of 512 and gradient clipping. We use a Laplace loss [23] for the radial
distance, binary cross-entropy loss for stereo matching, and L1 loss for all other components.
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Figure 4.6 – Box plots of Average Localization Error (ALE). Circles identify outliers. Our
MonStereo achieves very robust performance in the long tail with a maximum error of 7 meters
for far instances and less than 5 meters in all the other cases. Every other stereo method has a few
catastrophic estimates even for very close people. MonStereo’s monocular component stabilizes
the performances as shown by the performances of the monocular MonoLoco [23], which is on
average not as accurate as a stereo method but more robust.

The losses are equally weighted. The KITTI dataset [64] does not provide pairwise matching
information, thus, we extend the ground-truth by associating each person in the left image with the
corresponding one in the right image (more details in Section 4.7.3). We also perform horizontal
flipping and switch left and right instances.

4.6.3 Results

Table 4.1 summarizes our 3D localization results with the ALE and RALP metrics. Our method
outperforms every other stereo method in the ALE metric for Moderate, Hard and All instances.
Solving jointly the ISM task and the 3D localization one is a crucial ingredient, as shown by the
three baselines where the association and localization tasks are sequential. We make in-depth
comparisons with the ALE metric as a function of the ground-truth distance in Figure 4.4. On the
ISM task, we obtain an accuracy of 98.2%.
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Outliers. To go beyond “average-based metrics”, we analyze the entire distribution of predic-
tions through the box plots in Figure 4.6. Our MonStereo is drastically more reliable for the long
tail of predictions, especially when compared to other stereo methods. MonStereo’s maximum
error is lower than 5 meters, while Pseudo-LiDAR [197] and 3DOP [40] have maximum errors
of 24 and 17 meters respectively.

Table 4.2 – Impact of the ISM loss with mean and standard deviation (σ ) of localization error. S
simulates a standard stereo method by training a model solely with true pairs I(l,r)S−M; the network
could learn monocular cues but is not guided by the ISM loss. S-x is as S, but without providing
y-coordinates of input keypoints to remove information on human heights. S+M is trained with
the same set of pairs I(l,r)S−M and I(l,r)M of MonStereo without the ISM Loss. The long tail of far
instances is the most impacted by the ISM loss.

ALE [σ ] (m) d < 10 10< d < 20 20< d < 30 30< d < 50
S 0.24 [0.6] 0.47 [0.9] 1.38 [1.4] 3.95 [2.4]
S-x 0.52 [1.5] 0.61 [1.4] 1.72 [1.5] 5.50 [3.0]
S+M 0.25 [0.4] 0.50 [0.7] 1.08 [1.2] 2.24 [1.9]
MonStereo 0.20 [0.4] 0.38 [0.7] 0.73 [1.0] 1.63 [1.8]

Long Tail-aware Confidence Intervals. The spread b is the result of a probabilistic interpre-
tation of the model, and it is calibrated during training according to the Laplace distribution.
Training data includes the long tail of the height distribution, and the number of true and false
pairs is balanced by design. During validation, stereo cues are available for the majority of
instances, and the confidence intervals become more conservative, with 86.0% of validation
instances lying inside them. Yet the length of each side is only 3.9% of the predicted distance,
making the confidence intervals small enough for practical purposes.

Monocular and Stereo Limitations. We compare in Figure 4.5 the predicted aleatoric uncer-
tainty b with the 3D localization ambiguity for monocular and stereo modalities through the
monocular task error and the stereo pixel error, respectively. The stereo ambiguity is very small at
close distances but grows quadratically, while the monocular one grows linearly. Our MonStereo
intrinsically learns to predict 3D locations of instances combining stereo and monocular cues
based on the distance. This is reflected in the estimated confidence intervals. For close instances
the trend is quadratic as stereo cues are more accurate. In contrast, at further distances the trend
is linear. For very far pedestrians the predicted b is larger than the task error as, in addition to the
task-based uncertainty, the aleatoric uncertainty b also includes input noise [85], in our case 2D
keypoints noise.

Run Time. We conducted our experiments using a machine with a single NVIDIA GeForce
GTX 1080 Ti and Intel(R) Core(TM) i7-8700 CPU @ 3.20GH for both 2D pose detector and
MonStereo. Our run time relies heavily on the 2D pose detector [95] (∼ 150 ms) with negligible
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Table 4.3 – Impact of knowledge injection (KI). We trained a monocular baseline M and a stereo
one without KI. Recall measures the fraction of instances inside the intervals, and I. Size is the
ratio between the spread b and the ground-truth distance. KI improves performances, especially
for Hard instances. The intervals do not grow, as the spread b is reduced by better exploiting
stereo cues.

ALE ↓ [m] Recall ↑ [%] I. Size ↓ [%]
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

M 0.77 0.82 1.35 58.0 58.9 32.5 4.6 5.0 4.9
W/o KI 0.51 0.68 0.87 76.2 72.7 42.0 4.1 4.5 4.4
With KI 0.29 0.41 0.50 91.2 81.9 65.4 3.8 4.1 4.1

computation from 2D to 3D, making our pipeline suitable for real-time applications. The runtime
is on average 1.5 ms, and can grow up to to 16 milliseconds in the most crowded case of 28/29
people in each of the two images.

4.6.4 Ablation Studies

Learning an ensemble of monocular and stereo cues is a delicate balance. The ISM loss pre-
vents our method from overfitting to stereo disparity, and the KI prevents it from overfitting to
monocular cues.

ISM Loss. This loss encourages the use of monocular cues when stereo ones are not available
or monocular cues are more convenient (e.g., faraway people where pixel disparity is not accurate
enough). Without explicit guidance, the network over-relies on stereo cues, as shown in Table
4.2.

Knowledge Injection (KI). Without KI, the network over-relies on monocular cues. We
illustrate it by training a monocular baseline, and a stereo baseline without KI. We analyze ALE
metric, recall (percentage of instances inside the intervals) and relative size of the intervals in
Table 4.3. KI improves results and calibrates the confidence intervals, including the long tail of
the height distribution. Recall increases, yet the interval size decreases, as KI helps to exploit
stereo cues and reduce the spread b.

4.7 Additional Results and Discussions

In this section, we show qualitative examples of challenging and critical cases from a safety point
of view, and we shed light on the key challenges of our approach in these scenarios. Finally, we
analyze the quality of 2D keypoints for disparity estimation using two off-the-shelf pose detectors
and show that our method is agnostic to the choice of the detector.
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Figure 4.7 – A very close pedestrian who belongs to the moderate category (according to KITTI
guidelines) due to the occlusion. Our MonStereo estimates accurate localization with an error of
2 cm despite the occlusion.

Figure 4.8 – A pedestrian covered by a low wall belongs to the category hard. MonStereo
performs instance-based stereo matching and 3D localization with an error of 19 cm.

4.7.1 Close Instances

KITTI categories are defined based on occlusions, truncations and bounding box heights. Hence,
moderate and hard instances often correspond to very close but partially occluded pedestrians.
These types of instances deserve a great deal of attention and, in Figure 4.7, we show an example
of it. A bike rack partially covers the pedestrian’s legs in both images but MonStereo identifies a
instance-based stereo matching and estimates depth with a localization error of 2 cm. Another
example is shown in Figure 4.8, where the person is largely occluded by a low wall and belongs to
the hard category. The person is 10 meters far and may soon cross the street. Early and accurate
3D localization is crucial for safety.

Challenges of Close Instances.

Humans occupy a 3D volume and estimating a single depth is not straightforward. Keypoints
span over all the body and their disparities are not consistent for close instances. In Figure 4.9,
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Figure 4.9 – Two sets of keypoint of each person in left-right images lead to 17 disparities. We
analyze the standard deviation for keypoints obtained by two off-the-shelf pose detectors: Mask
R-CNN [72] and OpenPifPaf [95]. The resulting performances are similar for the two pose
detectors, highlighting that our method is agnostic to the choice of the detector. For very close
instances, the standard deviation of keypoints disparity is high as humans are 3D entities and
every body joint may be located at a different depth.

we analyze the standard deviation of keypoints disparity as a function of the ground-truth distance
using two pose detectors: the top-down Mask R-CNN [72] and the bottom-up OpenPifPaf [95].
High variation of disparity for close instances can be concurrently caused by the 3D nature
of humans and the quality of 2D keypoints. The two detectors lead to similar performances,
highlighting the challenge of accurate 3D localization for close instances. Furthermore, the result
shows that our method is agnostic to the choice of the pose detector.

Figure 4.10 – Two far pedestrians heavily occluded by vehicles (hard category) are detected in
both images and 3D localization is estimated with less than 5 cm error in both cases.
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4.7.2 Far Instances

For far pedestrians, the standard deviation of keypoints disparities described in Figure 4.9 is
greatly reduced, as a person only spans over few pixels. However, the depth error due to one
pixel disparity grows quadratically with depth. In Figure 4.10, we show an example of two
heavily occluded pedestrians 22 meters far, who are localized with only few centimeters of error.
In Figure 4.11, we show a qualitative example of a “failure” as the instance 0 at 25 meters of
distance is predicted with 69 cm of localization error. According to KITTI split, this instance
belongs to the easy category. The performances for far instances are limited by the resolution of
the camera: 69 cm of error corresponds to less than 0.5 pixel error in disparity estimation. On the
contrary, all the people sitting at the café are closer and predicted with higher accuracy, but not
evaluated by KITTI metrics as belonging to the category “person sitting”.

Figure 4.11 – A far pedestrian in the easy category is localized with a large error of 69 cm, while
still included in the confidence interval. All the people sitting are localized with high accuracy,
but not evaluated in KITTI metrics.

4.7.3 Details on Ground-truth Generation

KITTI dataset [64] does not include stereo matching information for instances in left and right
images, but only depth of left instances. Hence, we extend ground-truth information to train our
network for the instance-based stereo matching task. We detect a set of keypoints for each person
using the off-the-shelf pose detector OpenPifPaf [95] and we compare the ground-truth depth
with the one obtained through disparity estimation. For a given detection, the accuracy of every
joint depends on many factors, such as occlusion. It is crucial to be able to detect and filter outlier
keypoints that may affect our disparity calculation. Therefore, we adopt the following filters:

1. remove keypoints with confidence lower than a threshold;

2. remove outlier keypoints using Interquartile Range over the disparity estimation;

3. remove instances with large median vertical displacement.

Finally, we calculate the disparity as the median disparity of the remaining keypoints, we compare
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it with the ground-truth one and assign a binary label to the pair. We use an adaptive threshold
which increases linearly with the depth, allowing for a larger error in case of far instances. This
procedure does not involve the use of patches of images to analyze visual correspondences,
being much faster and still very accurate. Our MonStereo reaches an accuracy of 98.2% on the
validation set after being trained with binary cross-entropy loss.

4.8 Negative Results: Temporal Extension

A common alternative to stereo cameras is using multiple monocular frames over time. If the
ego camera is moving, it is possible to calculate the distance of objects by their pixel disparity
with just a monocular camera. While this approach, called structure from motion (SfM) [200],
may in principle substitute stereo cameras, it is in practice more challenging. Stereo cameras are
characterized by a constant disparity, while the SfM disparity is affected by the ego-motion of the
camera and the target objects. In the autonomous driving scenarios, estimating the distance from
SfM or stereo disparity is an equivalent problem only in the ideal case of a car at a constant speed
and static pedestrians.

Problem Statement. In this section, we analyze the performances of our MonStereo by using
two consecutive frames from a monocular camera as an alternative to stereo frames. KITTI
dataset [64] does not include videos; hence, we use the recent nuScenes dataset [31] that provides
video scenes of a car moving around the cities of Boston and Singapore. Ground-truths include
the pedestrians’ distance and their tracking ID over time with a frame rate of 2 Hz. We only work
with images from the front-left camera, as the relative location of the camera with respect to the
car affects the disparity. We consider as left-right pair of images the frames at time t and t−1,
and our objective remains to estimate pedestrians’ distance from monocular and disparity-based
cues.

Architecture. The disparity is affected by the vehicle ego-motion on which the camera is
mounted. Thus, we modify our network architecture of Figure 4.2 to include information from
the CAN bus data, a vehicle bus over which information such as position, velocity, acceleration,
steering, lights, battery are submitted. For simplicity, we choose to include as inputs to our
network the vehicle speeds and steering angles at time t and t − 1. We then upsample the
signal with three consecutive fully connected layers with batch normalization [79] and a ReLU
activation function and 128 features. The output features are then concatenated before the residual
connections of our encoder.

Experiments. In Table 4.4, we show the ALE results of our experiments when using MonStereo
with temporal frames and compare it with the monocular counterpart. We also evaluate the ISM
task in different configurations to analyze the network performances in associating people between

74



Tackling the Long Tail of 3D Pedestrian Localization with Stereo Cameras Chapter 4

Table 4.4 – Evaluating the performances of MonStereo with two monocular frames at 2 Hz.
Constant conditions indicates we train and evaluate frames with the ego car at a constant speed
and steering angle. Stationary conditions only includes frames where the car is stationary (while
target pedestrians may still be moving). True Pairs uses ground-truth information to pair the
instances between frames. In this case, the association task is superfluous, and the network could
just use disparity-based cues instead of monocular ones. In each of these scenarios, we compare
our MonStereo with a monocular baseline, where the network input is just the pedestrian pose at
time t. Temporal-based results never outperform the monocular ones, showing that MonStereo
mainly leverages monocular cues. Lower performances on the ISM task may also justify this.

Conditions Instances ISM ALE (m) ALE-Monocular
All 20K 87.1 1.39 1.36
Constant 2.3K 89.8 1.59 1.52
Stationary 27K 97.1 1.54 1.35
True Pairs 15K - 1.25 1.22
Stereo Camera (KITTI) 5K 98.2 0.34 0.93

frames. The task is harder as the disparity is affected by the ego motion and the target pedestrians’
one. Our results show an ISM accuracy of 87% compared to the stereo one of 97%. To simplify
the problem, we also test a scenario where the car is stationary and another one in constant
settings, namely:

1. |vt − vt−1|< 0.2 ,

2. |st − st−1|< 10 ,

3. vt > 3 ,

where v is the vehicle speed in m/s and s the steering angle in degrees. The first two conditions
approximates constant speed and steering between the two frames, while the third one assures
the car is actually moving. Similarly to the other scenarios, the ALE error is comparable between
MonStereo and the monocular counterpart, indicating that the network just uses monocular cues
to estimate the distance. This is true even when we evaluate only True Pairs by using ground-truth
information to input to the network pairs correctly associated between frames.

The results in Table 4.4 highlight the challenges of associating dynamic objects between temporal
frames and using SfM to calculate their 3D localization. While our experiments on SfM are
preliminary, they clearly show that using stereo cameras enables a privileged setup not easily
replaceable by temporal information.

4.9 Conclusion

We have proposed a vision-based approach tailored for the long tail of 3D human localization. Our
neural network implicitly learns to leverage monocular and/or stereo cues while communicating
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uncertainty driven by those cues. Our method goes beyond providing competitive results “on
average” and shows reasonable estimates even for outliers. We hope this chapter will help direct
the vision community’s attention towards the long tail for autonomous driving and social robot
applications, still an unchartered research territory.

In Chapter 3 and the current one, we demonstrated the effectiveness of semantic keypoints for
the 3D pedestrian localization task. In the next chapter, we will study how to apply our methods
for two real-world applications in the context of autonomous driving.
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5 Autonomous Driving Applications of
Pedestrian 3D Detection

This chapter is based on an applied research project in collaboration with the autonomous driving
company Wayve.

5.1 Introduction

Our goal is to integrate AVs into our society, and for that to happen, they need to co-exist with
humans in close proximity. The two previous chapters proposed vision-based methods to locate
humans in 3D. This chapter explores two real-world applications of our methods to improve the
interactions between self-driving cars and vulnerable road users.

One of the greatest challenges for self-driving cars is co-existing with dynamic agents. Among
them, vulnerable road users present a separate set of challenges. First, the dynamics of pedestrians
and cyclists are extremely complicated. People can often jaywalk or suddenly change direction
without warning. Second, interactions between an autonomous vehicle and a pedestrian are
not as frequent as interactions with other vehicles. Zebra crossings are mainly located in urban
scenarios, and jaywalking may be considered an edge case behavior in most cities. Finally, the
dynamics between a car and a pedestrian are affected by the surrounding environment. For
example, at a zebra crossing without a traffic light, cars should always yield to pedestrians, but
the presence of a traffic light affects all the dynamics. Unsurprisingly then, autonomous vehicles
may fail to stop when a pedestrian is crossing the street or, vice-versa, they may engage in a too
conservative behavior with unnecessary stops.

In the first application, we use our MonoLoco++ architecture, developed in Chapter 3, for creating
pseudo-labels for 3D pedestrian detection. Low-cost data collection techniques are crucial to
improving AV performances and their interactions with humans. For this purpose, we study
the generalization capabilities of our model by training it on a publicly-available dataset and
evaluating it on a custom-curated dataset in the city of London. In the second application, we
propose a new approach to improve pedestrian awareness in AV systems. We first review the
concept of AV 2.0 [71], and two patterns to improve the performances on pedestrian interventions
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for autonomous vehicles: data-centric and model-centric approaches. We then propose a new
model architecture to add an inductive bias on the importance of pedestrians in the scene.

5.2 Pseudo-labels for 3D Pedestrian Detection

The autonomous driving field is driven by deep learning advancements [71], and this comes
with the underlying requirement of collecting a massive amount of data. A common approach
in the AV industry is to collect thousands of hours of data by driving with a fleet of vehicles
and recording images and driver signals using the attached sensors. The collected data may
directly be used to train end-to-end deep learning models, from sensory input to motion plan
output. Nevertheless, training models with only throttle and steering labels make such models
hard to interpret and debug. A possible solution is to modify the model to produce several
intermediate outputs, such as 3D object detection or semantic segmentation. These outputs can
be used for interpretability, safety verification, as well as to improve the overall performances
[116, 37]. However, training models to produce intermediate representations usually require
extra supervision with a large number of expensive labels. Labeling platforms are not feasible for
labelling millions of images with human-interpretable representations such as semantic, geometry,
and motion predictions. In addition, it is not clear in advance which labels are the most effective
for debugging or improving performances.

In this section, we propose to unlock intermediate representations at a large scale by using
pseudo-labels. We focus on the 3D object detection task, i.e., 3D localization, orientation, and
object dimensions for vulnerable road users. We compare our MonoLoco++ of Chapter 3 with
FCOS3D [196], a new vision-based method that achieves state-of-the-art results in the nuScenes
3D detection challenge [31]. Our goal is to label millions of images recorded from vehicles
driving in the city of London. To validate the quality of the pseudo-labels, we have created and
labeled a small dataset of crowded traffic scenes in London, which we refer to as LDN. The
dataset contains 3K instances for training and 3K instances for testing labeled with 3D bounding
boxes.

Model Calibration. Our MonoLoco++ has the advantage of working with different monocular
cameras without needing to be calibrated. Using semantic keypoints as an intermediate represen-
tation, we can back-project each keypoint into normalized image coordinates using the camera
intrinsic matrix (more details in Section 3.4). This preprocessing step automatically scales the
keypoints according to the focal length and image size. On the other side, end-to-end approaches,
such as FCOS3D [196], are camera dependent. FCOS3D has been trained with specific camera
parameters, and it does not adapt to different focal lengths. We correct FCOS3D predictions by
calibrating them on our custom data to compensate for this. When using a camera with a different
focal length, FCCOS predictions shift by a constant factor, and instances are estimated too close
or too far from the camera. We correct the shifting using our custom data by minimizing the
average signed error between the predictions and the ground truth.
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Table 5.1 – Comparing FCOS3D [196] and our MonoLoco++ [23, 24] on the custom dataset
LDN, which contains crowded traffic scenes in the city of London. FCOS3D has been trained on
the full nuScenes dataset (nS-F) [31] that contains 1.4M training instances, while MonoLoco++
has been trained on the nuScenes teaser (nS-T). Our MonoLoco++ performs better in the average
localization error (ALE) and average orientation error (AOE) even when trained on 100 times
fewer instances. In addition, the use of semantic keypoints allows adapting to different cameras
easily. In the case of FCOS3D, using the correct intrinsic matrix as input is not sufficient, and we
had to scale the results with a corrective factor (indicated with *).

Method Training Dataset ALE (m) ↓ [Recall (%) ↑ ] AOE (◦) ↓
(instances) Easy Mod. Hard All

FCOS3D nS-F (1.4M) 1.58 [72%] 2.21 [57%] 3.46 [22% ] 2.57 [36%] 71.0
FCOS3D* nS-F (1.4M) 0.85 [72%] 1.31 [57%] 3.30 [22%] 2.01 [36%] 71.0
MonoLoco++ nS-T (8K) 0.74 [84%] 1.44 [61%] 2.69 [12%] 1.54 [31%] 30.7
MonoLoco++ LDN (3K) 0.70 [84%] 1.28 [61%] 2.45 [12%] 1.40 [31%] 30.6
MonoLoco++ nS-T+LDN (11K) 0.68 [84%] 1.23 [61%] 2.45 [12%] 1.38 [31%] 26.5

Evaluation. We use the average localization error (ALE) and the average orientation error
(AOE) metrics for evaluation. We compare FCOS3D [196] trained on the nuScenes dataset
[31] with 1.4M instances with our MonoLoco++ trained on the teaser version of nuScenes that
contains 100 times less instances. We also compare with versions of MonoLoco++ trained on
the LDN training set only and both datasets. As shown in Table 5.1, our method achieves better
results on all metrics. Results only marginally improve when training on both nuScenes and LDN,
indicating good domain adaptation properties. The use of semantic keypoints as intermediate
representations makes the architecture camera independent and removes background artifacts that
encourage overfitting. We also analyze in more detail the ALE metric as a function of the ground-
truth distance in Figure 5.1. We compare our results with the upper bound of performances for
monocular methods, represented by the task error of Equation 3.2. Up to 20 meters, the error
grows linearly due to the ambiguity of perspective projection. From 20 meters on, the noise in
the predicted keypoints becomes a dominant source of error. A qualitative example is shown in
Figure 5.2, representing a crowded intersection in London from a vehicle perspective.

These results highlight that our MonoLoco++ can generalize well to unseen scenarios. In the next
application, we are going to integrate our architecture into a more complex end-to-end motion
planner to improve AVs awareness of vulnerable road users.

5.3 Pedestrian Awareness for AV2.0 autonomous driving systems

In this section, we review the concept of AVs 2.0 [71] and we propose a new model architecture to
add an inductive bias on the importance of pedestrians in the scene. In our study conducted in the
city of London, autonomous vehicles (AVs) often slow down in the presence of pedestrians but
they do not always stop when they should. The vehicles analyzed in this study deploy end-to-end
models trained with the control signals from expert drivers, without any direct supervision on
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Figure 5.1 – Average Localization Error (ALE) as a function of distance for FCOS3D [196] and
MonoLoco. FCOS3D* is corrected to account for a different focal length. MonoLoco++ achieves
robust performance while detecting a comparable number of instances in each cluster (numbers
included). The task error represents an upper bound of performances for monocular methods.

pedestrian location or behaviour. Our hypothesis is that the model is averaging its response
between stopping and navigating at a constant speed, as it is not able to correctly capture
pedestrians’ dynamics (e.g., being close to a zebra crossing is not a sufficient condition to infer
that the pedestrian is going to cross).

To test our hypothesis, we use as a case study one of the development models created by the
autonomous driving company Wayve, which we refer to as W1. It is a fully learned end-to-end
motion planner trained with imitation learning. It receives as input a single image, the GPS
location, the current speed, a coarse route map, and outputs the vehicle trajectory in the following
seconds [117]. Our goal is to improve the intervention rate of autonomous vehicles due to
pedestrian interactions, either by managing data or by improving the current W1 model. We
test both approaches by (i) leaving the W1 architecture unaltered but changing the training data
curriculum and (ii) modifying the W1 model to inject knowledge about pedestrians. For the latter
option, we build on the MonoLoco++ architecture developed in Chapter 3 to convert the 3D
location, orientation, and uncertainty estimation into a bird’s eye view occupancy map. We then
upsample and fuse this occupancy map as additional features into the main model without adding
any supervision or additional loss. The overall model is still trained end-to-end with imitation
learning but we are nudging it to pay attention to pedestrian dynamics through the fusion of
additional features. The use of an external, pre-trained network to detect vulnerable road users
has two advantages. First, it increases the interpretability of the architecture. In case of a failure
mode, it is possible to debug whether the pedestrian or cyclist has been detected by the external
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Figure 5.2 – Example of a crowded scene in the city of London from a car perspective. Our
network estimates the 3D localization, orientation, dimensions, and uncertainty of each vulnerable
road user.

network. Second, it increases redundancy against out-of-distribution samples as the network has
been trained on different datasets.

5.3.1 AV 2.0 Framework

The navigation task from a robotic perspective has been traditionally tackled with the sense-
plan-act paradigm [179], which is composed of two main pillars: perception and planning.
Dividing the task into sequential steps is attractive for its interpretability and because it enables
parallel progress on each sub-task [115]. However, this pipeline imposes fundamental limits
on the autonomous driving development. It often leads to compound errors by neglecting the
interactions between the stages and its sequential nature does not foster agility and speed [115].
Hawke et al. [71] from the self-driving cars company Wayve argue that with the traditional sense-
plan-act paradigm, referred to as AV 1.0, AI could never be scaled rapidly to new environments
or vehicle types. In their view, only a complete rethink of these decision-making systems could
move the AV research forward. The main argument is that the perception and planning pillars
(with the exception of behavior prediction and planning) are already mature enough and further
development would not unlock structural improvements in autonomous driving. The authors
claim that the main issue the AV industry is facing is the ability for AVs to generalize to unseen
scenarios, and that only a data-driven, end-to-end pipeline could solve it. The AV 2.0 framework
consists in solving driving with data, by creating an end-to-end architecture that implicitly
combines the perception and planning pillars. As of 2021, the autonomous driving community
is adhering more and more to the AV 2.0 trend, sharing the concept of a fully-differentiable AV
stack. Among them, Lyft Level 5 is focusing on the importance of data-driven simulation [88],
and Uber ATG is working on end-to-end models with intermediate interpretable representations
[37].

The AV 2.0 framework can be seen as the combination of two approaches: a data-centric approach
and model-centric one, as data collection is as critical as model improvements towards scalability
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issues [88, 71]. We review the two approaches using as case-study the fully learned end-to-end
motion planner (W1) developed by the self-driving cars company Wayve. In the experiments
described here, we have focused for simplicity and speed of iteration on a variant of the model
that only uses monocular input and no temporal context, nor any 3D information in the form of
LiDAR point clouds or stereo cameras. The output is a bird’s eye view cost map indicating the
likelihood of the trajectories in the next few seconds. The most feasible trajectory is then passed
to the actuator module to be converted into acceleration and steering signals. The architecture is
inspired by [144, 76, 117] and the core idea consists of first lifting the features extracted from an
image into the 3D space and then projecting them into the bird’s eye view space. At this stage,
the features from the image are concatenated with the features extracted from the current speed
and the coarse road map before being processed in the planning module. All the components
are trained end-to-end without any independent hand-engineering of the different modules. An
overview of the W1 components is shown in Figure 5.4.

Data-centric Approach. It consists of improving the performances by focusing on the data
curriculum aspect of the training pipeline. W1 has been trained to estimate the best future
trajectory at any time step, given just a monocular image as input. In the context of imitation
learning, ground-truth trajectories are obtained by recording two types of data:

1. Expert data: standard data collected recorded speed, steering, and acceleration labels of
expert drivers during navigation.

2. Corrective action (CA) data: intervention data collected while disengaging from au-
tonomous mode. The expert driver intervenes to correct the trajectory of the W1 model
when necessary. Speed, steering, and acceleration labels during the intervention are
recorded.

To improve pedestrian awareness through data, we modify the data curriculum to upsample
both expert data in proximity of zebra crossing and corrective action data due to a pedestrian
intervention. This approach excels for its simplicity. However, CA data may be recorded during
an emergency response and should not represent the majority of the training data. Also, the data-
centric approach requires a careful analysis to validate whether a model trained with a different
data distribution does not worsen its performances on different behavioural competencies. In
this chapter, we mainly focus on the model-centric approach and use the data-centric one as a
baseline.

Model-centric Approach. It consists of modifying the model architecture and its parameters
without altering the data distribution. We first review two common techniques and their limitations
to improve the vehicles’ intervention rate in the presence of pedestrians, and then describe the
proposed approach. A widely-used method is multi-task learning [215], which consists of training
a neural network with a common encoder and two or more separate decoders. In this case, one
decoder is used for trajectory prediction, and the additional one is used for 3D object detection or
dense depth estimation. We consider this approach soft as the additional loss does not enforce
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Figure 5.3 – Visual illustration of the occupancy map generated by MonoLoco++. Each pedestrian
is detected in 3D, projected into a discrete bird’s eye view map, and represented as a cone. The
origin of the cone corresponds to the predicted 3D location, its width to the predicted aleatoric
uncertainty, and its orientation to the body orientation of the person.

the model to slow down in the presence of pedestrians, but only to detect them. As pointed
out by Standley et al. [185], multi-task learning does not guarantee improved performances,
and smaller independent networks often achieve better performances. At the same time, this
approach requires explicit supervision on 3D object detection labels, which may not be available
at training time. A second technique is the use of collision losses [17]. It consists of penalizing
trajectories that collide with vulnerable road users. This is a hard approach as it enforces the
expected behaviour of the model. At the same time, it is limited in its scope, as a trajectory is not
necessarily correct only when it avoids collisions with pedestrians. For example, AVs also need
to yield to pedestrians, slowing down as soon as they understand the pedestrian intention even if
a collision is not foreseen yet. Our proposed approach lies at the intersection of a traditional soft
approach such as multi-task learning, and a hard approach that explicitly enforces constraints.

5.3.2 Pedestrian-aware Occupancy Map

We inject knowledge into the model regarding the 3D location and orientation of vulnerable
road users using the pre-trained network MonoLoco++ [24]. We first discretize the network
output into a binary occupancy map of 32 meters of height and width, with a grid size of 160. As
shown in Figure 5.3, we transform each detection into a cone with the origin corresponding to
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Figure 5.4 – Overall architecture of an end-to-end model for autonomous driving, which we refer
to as W1. The inputs are a monocular image, the current speed, and a coarse route map, and
the output is the planned trajectory in the next few seconds. The main blocks are a perception
encoder, a sensor fusion, and planning modules. We inject knowledge about pedestrians by
combining the W1 intermediate features with the output of our MonoLoco++ architecture. The
occupancy module upsamples the occupancy map from a two-dimensional 1-channel feature map
into 32-channels features with the same spatial resolution.

the predicted 3D location. The width of the cone is given by the predicted aleatoric uncertainty
of the network, and its orientation represents the predicted body orientation of the person. We
treat this binary occupancy map as a 1-channel feature map, and we pass it into four blocks of
convolutional layers, each one followed by batch-norm [79] and ReLU activation function [131].
This occupancy module transforms the occupancy map into 32-channels features with the same
spatial resolution of 160. The features are then concatenated with the intermediate features of the
W1 model, which have been selected in accordance with the W1 model structure.

In the W1 model, after the perception encoder, the features are first lifted to 3D and then projected
back to a bird’s eye view canvas of 32m x 32m and the same grid resolution of 160 [76]. At
this stage, the W1 features are concatenated with features coming from the current speed and
the coarse road map. Then, we extend the current W1 structure to fuse features coming from
our occupancy map. The model is then trained end-to-end with the exception of MonoLoco++
module that is considered as an off-the-shelf network.

5.3.3 Experiments

Testing a new feature in an AV model is a daunting task. The real world is multi-modal and
labels are usually not available. In addition, we expect a model to improve on a given task, for
example pedestrian awareness, while maintaining consistent results in the whole operational
driving domain distribution (right turns, cycle lanes, etc). For the sake of this study, we only
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Figure 5.5 – Qualitative example of an out-of-distribution sample. A pedestrian is bending to
pick up an object. Our off-the-shelf network recognizes the pedestrian and estimates a reasonable
3D localization and orientation

focus on evaluating the model performances on pedestrian interventions in “shadow mode”. It is
an open-loop, offline protocol that registers how the car would have acted if the computer was
in control [65]. It is effective to evaluate independent frames but it cannot be used for temporal
evaluation, as the predicted action at a given time step will not actually affect the future vehicle
behaviour.

Quantitative Results. We create a test set by collecting CA data due to pedestrian interven-
tions. It consists of frames and labels where the expert driver intervened because the vehicle in
autonomous mode did not give way to pedestrians. In these cases, the AV was either driving
too fast or not yielding, and the expert driver had to slow down or stop. Hence, we evaluate the
speed of our new models in shadow mode at the time of intervention, as shown in Table 5.2
as well as with the histograms in Figure 5.6. We compare a baseline W1 model, a data-centric
approach (DCA), and a model-centric approach (MCA). The DCA shares the same architecture
of the W1 model but it is trained by upsampling expert data in proximity of zebra crossing and
corrective action data due to a pedestrian intervention. The MCA is the modified version of the
W1 model that includes the occupancy map as depicted in Figure 5.4. The results are shown in
Table 5.1 as well as in Figure 5.2. The best performing approach is the DCA, while the MCA
obtains approximately the same results as the baseline. Our hypothesis is that the occupancy map
layers did not learn a meaningful representation of vulnerable road users due to the sparsity of
pedestrians in the training set. In fact, in the training set for the large majority of frames, the
occupancy map remains blank. To test our hypothesis, we substitute the actual occupancy map
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Table 5.2 – Average speed at the time of intervention with a baseline method (W1), a data-centric
approach (DCA), a model-centric one (MCA), and a combined approach (DCA + MCA). The
lower the speed, the better, as we collected only the frames where the expert driver intervened to
slow down due to a pedestrian crossing.

Method Average Speed [m] ↓

Baseline (W1 Model) 13.6
DCA 10.4
MCA 13.5
DCA + MCA 11.2

Figure 5.6 – Predictive and cumulative speed distributions at the time of intervention with a
baseline method, a data-centric approach (DCA), a model-centric one (MCA), and a combined
approach (DCA + MCA). The most effective approach to reduce speed when needed is the
data-centric one.

with an empty one and notice that the model predictions remained the same, meaning that the
model has learned to ignore the occupancy map layers.

These results speak in favour of the data-centric paradigm for real-world testing at scale, as
this paradigm is not only more effective in these scenarios but also simpler to implement. This
experiment demonstrates once again how large-scale, low-cost data collections [80] and data
curriculum [71] are critical solutions towards scalability issues.

Qualitative Results. While using a DCA improves overall performances, the use of MCA
with an external network can add interpretability and, potentially, robustness towards out-of-
distribution samples. A qualitative example is shown in Figure 5.5, where MonoLoco++ detects
a pedestrian that is bending over to pick up an object. This image is recorded in the city of
London from a camera mounted on a vehicle. In the context of autonomous driving scenarios,
the pedestrian may be considered as an outlier due to the unnatural pose. On the other side, pose
estimation datasets such as COCO [111] include a large variety of poses and this may justify why
the pedestrian is correctly detected by the pose estimation algorithm OpenPifPaf [95].
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Model Deployment and Run Time. Deploying a deep-learning model in a vehicle presents
additional challenges, often overlooked when developing research models. Arguably, the main
one is serializing the model to embed it into high-performance production environments such
as C++. In our case, we use TorchScript [141] to convert a PyTorch model into an intermediate
representation that can run outside of Python, via LibTorch, a C++ native module. A scripted
model gains flexibility and execution performances at the price of extra development effort. For a
model to be converted, its initialization and forward pass can only be constructed using torch
tensors or Python constants. This constraint is particularly challenging in our case, where both
the OpenPifPaf decoder [94] (not differentiable) and the keypoints’ preprocessing steps were not
originally developed in PyTorch. With a serialized model, we obtain an average inference time of
128 ms with a raw image of 960x600 resolution using a machine with a single NVIDIA GeForce
GTX 1080 Ti.

5.4 Conclusion

In this chapter, we have studied how to apply our 3D pedestrian detector MonoLoco++ for
real-world applications in the autonomous driving field. First, we have created a pipeline to
obtain low-cost pseudo-labels. We have adapted our MonoLoco++ to produce 3D pedestrian
detection labels and evaluated it on a new custom dataset, hence studying its generalization
properties. Second, we have studied two approaches to improve pedestrian awareness in end-to-
end models: data-centric and model-centric. We have worked with a real-world development
model for autonomous vehicles in the city of London. Specifically, we have experimented with (a)
improving the data curriculum and (b) developing a new model-centric approach to highlight the
importance of pedestrian features. Our experiments have demonstrated that, for this application,
the data-centric approach was the most effective one to improve the network performances.

In general, we encourage the vision community to direct their attention towards data-centric
approaches. Often, researchers focus solely mainly on model-centric approaches, training
and comparing different models on the same benchmark to carry out fair and reproducible
experiments but there is plenty of unexplored territory and scope for further improvements with
both approaches. As this case study has highlighted, data-centric approaches, such as data
curriculum, may play a critical factor in improving performances for real-world applications.

In Chapters 3, 4, and the current one, we have analyzed the effectiveness of semantic keypoints in
locating humans in the 3D world using cost-effective vision-based sensors. However, autonomous
agents cannot safely navigate around pedestrians by just estimating their 3D distance; they must
understand humans’ actions and infer their behavior. Luckily, humans communicate intentions
through body language, e.g., a look over the shoulder to determine whether it is safe to stop
and turn. The next chapter will focus on perceiving an essential communicative action: eye
contact. In urban or crowded environments, humans rely on eye contact for fast and efficient
communication with nearby people. Autonomous agents also need to detect eye contact to
interact with pedestrians and navigate around them. In the following chapters, we will also be
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expanding our focus to different types of actions, studying atomic actions, such as walking or
sitting, and communicative action, such as talking in groups.
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6 Detecting Pedestrians Attention:
Human-Robot Eye Contact in the
Wild
This chapter is based on the article:

Younes Belkada?, Lorenzo Bertoni? , Romain Caristan, Taylor Mordan, and Alexandre Alahi, Do
Pedestrians Pay Attention? Eye Contact Detection in the Wild (Under review)

and on the extended abstract:

Weijiang Xiong, Lorenzo Bertoni, Taylor Mordan, and Alexandre Alahi, Simple Yet Effective
Action Recognition for Autonomous Driving, (Under review)

6.1 Introduction

In the previous chapters, we have focused on locating humans in 3D. However, AVs also need
to understand humans’ actions and their future intentions to move naturally around humans and
avoid collisions [155, 158]. Intentions are usually communicated with body language, and in this
chapter, we focus on detecting eye contact between humans and a target robot, such as an AV
or a delivery robot. When walking or driving, people use eye contact to pay attention to their
environments, acknowledge the presence of others, and communicate intentions. Hence, AVs need
to understand whether a pedestrian intends to cross the street in front of the vehicle [156, 191].
Similarly, smaller robots moving in crowds should be capable of detecting whether pedestrians
have noticed them and are more likely to avoid them actively [91, 92]. Finally, even in smart
cities, detecting eye contact between a human and a robot can be helpful in better understanding
pedestrians’ future behaviors [13] by identifying where their attentions go or what public signs
they are looking at.

This chapter focuses on detecting whether humans are looking at the camera, hence performing
eye contact with a target robot on which the camera is mounted. This communicative action is
informative on whether pedestrians are paying attention to the incoming AV, ultimately affecting

? denotes equal contributions
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Figure 6.1 – Typical scene for eye contact detection in the wild, where pedestrians might be
far from the camera and heavily occluded. Our method estimates, from predicted body poses,
whether people are paying attention (showed in green) to the ego camera through eye contact, or
are distracted (showed in red). This information can then help to better forecast their behaviors
and to reduce the risk of collision with a self-driving agent.I

the vehicle trajectory. For clarity, we will refer to this task as eye contact detection in the reminder
of this thesis.

Although humans make eye contact with each other at all times, detecting this communicative
action in the wild, i.e., with no constraint on the environment such as exemplified in Figure 6.1,
presents a few challenges. First, the action can be quick and subtle, happening with small head
movements lasting as short as a few milliseconds. Because of this small window, both spatially
and temporally, the detection is hard and can easily be affected by environmental conditions, such
as lighting or distances of pedestrians. Furthermore, eye contact has received little attention, and
few datasets have been annotated with it [156, 154], when compared to more popular vision tasks
such as object detection [54] or 2D pose estimation [111]. These reasons make it more difficult
for autonomous systems to detect eye contact effectively and generalize to new environments.

In order to mitigate these issues, we propose to detect eye contact from high-level semantic
keypoints, as displayed in Figure 6.1. Although one could expect images to be a crucial input
representation for eye contact detection, we show that we can use keypoints as input to escape
the image domain, and process them with a simple, yet effective neural architecture. For this, we
first rely on a pose estimation step, which extracts semantic keypoints for all pedestrians in an

IImage under license CC-0, https://jooinn.com/images1280_/people-walking-on-pedestrian-lane-during-daytime.
jpg.
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image, using the off-the-shelf pose detector OpenPifPaf [95]. Using pose features as input rather
than images presents several advantages. As pose needs less resolution than gaze, while also
being annotated on more diverse datasets, it should be less affected by noise from environmental
conditions, and predictions should generalize better to different scenarios and environments.
Poses are also much less dimensional than images, and do not require as much network capacity
to be processed properly. This allows the use of lighter networks, which should help prevent
overfitting on the few scenarios annotated. Finally, by leveraging these high-level features, we
remove background information and reduce effects from changes in image statistics, allowing
our model to focus solely on eye contact detection.

Since there are not many datasets covering a large variety of scenarios for eye contact, and
these usually include a limited number of pedestrians [156, 154], we argue that if a model
is to be trained on them and deployed in the real world, it then must be particularly able to
generalize well to new, uncontrolled conditions. We suggest evaluating this through cross-dataset
generalization, and we annotate three common autonomous driving datasets with this new task,
namely KITTI [64], nuScenes [31], and JRDB [121], to diversify the scenarios involving eye
contact. When evaluating our models, we show that using semantic keypoints leads to models
generalizing better to various datasets and scenarios. We publicly release the annotations as a
new dataset, which we refer to as LOOKII, as well as the source codeIII, towards an open science
mission.

Driven by the effectiveness of semantic keypoints for eye contact detection, we expand our
study at the end of the chapter and focus on various action recognition tasks in the context
of transportation applications. We use our approach to determine which tasks keypoints are
effective representations for. We first validate our approach on the TCG [201] dataset, showing
that a simple method can achieve better results than temporal baselines using LSTMs [74],
and comparable results with complex attention-based graph convolutional networks. Then, we
compare our approach on various action recognition tasks on TITAN [119], a new dataset for
autonomous driving. We show that on atomic actions, such as walking or sitting, our keypoint-
based approach outperforms image-based methods, validating the effectiveness of human poses
as intermediate representations for action recognition tasks in transportation applications.

To summarize, our contributions are as follows:

• We propose a deep learning model leveraging semantic keypoints, specially adapted to the
challenges of human-robot eye contact detection. We further adapt our model for various
action recognition tasks in the context of transportation applications.

• We publicly release LOOK, a diverse, large-scale dataset for human-robot eye contact
detection in the wild, with numerous unique pedestrians and a focus on generalization
across domains and scenarios, by annotating three common autonomous driving datasets;

IIDataset: https://looking-vita-epfl.github.io
IIISource code: https://github.com/vita-epfl/looking
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• We suggest an evaluation protocol for eye contact detection with real-world generalization
in mind, and show that our approach yields state-of-the-art results and strong generalization
compared to image-based methods.

6.2 Related Work

6.2.1 General Eye Contact

Gaze estimation has received a lot of attention from the Computer Vision community, as a simpler
alternative to eye tracking. As for most other tasks, all leading approaches now rely on Deep
Learning to get state-of-the-art results on the various benchmarks [214]. In this paper, we focus
on eye contact detection, which can be considered as a special case of gaze estimation. There
are multiple works that tackle this problem, e.g., Smith et al. [181] focus on gaze locking from
eyes’ visual appearances by masking out their surroundings, Park et al. [140] transform single
eye images into simplified pictorial representations to regress the angle of the gaze. Some others
focus also on real-time inference. Fischer et al. [58] use a cascade of networks to localize heads
and face landmarks, to align them to a predefined normalized face image for extracting eye
patches, then compute gaze with a deep network. Rowntree et al. [165] also use two networks for
head detection and gaze estimation in order to speed up the overall pipeline.

The major issue with these works is that the benchmarks and the methods are not applied to
in-the-wild applications for autonomous vehicles, where the resolution of the pedestrian is low.
They usually focus on situations where people are rather close to the camera (e.g., inside a vehicle,
in front of a computer), where the heads occupy larger regions in the images, and with simple or
plain backgrounds, sometimes in controlled setups. On the other hand, we focus on eye contact
detection in the wild, where there is no prior constraint on the type of environment pedestrians
are in.

6.2.2 Eye Contact between Pedestrians and Vehicles

From a driver’s perspective, detecting eye contact is an important cue that indicates pedestrians’
awareness of the traffic and future crossing intentions. However, few datasets have annotated
this action. JAAD [156] and PIE [154] are two such datasets, both focusing on pedestrians likely
to cross the road in front of vehicles. They therefore allow learning and evaluating eye contact
directly from images. Rasouli et al. [156] use an AlexNet [96] to classify cropped images of
pedestrians’ heads but require bounding boxes to be given. Varytimidis et al. [191] have a similar
approach where they use an SVM to classify features from a convolutional network applied to
head crops, and then process their predictions with contextual information. Mordan et al. [126]
jointly detect pedestrians and eye contact, along with other attributes, in a single network forward
pass using multi-task fields.

In the context of pedestrian crossings, multiple works (in addition to the previous ones) use
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eye contact as an intermediate feature to better predict pedestrians’ future behaviors. Kooij
et al. [91] estimate head orientation as a cue for pedestrians’ situational awareness, and use it
with other indicators to predict their paths around the road with a Dynamic Bayesian Network.
Other approaches use a similar strategy for pedestrian awareness, e.g., Hariyono et al. [70] for
estimating the risk of collision, Kwak et al. [103] for prediction pedestrian intention at night time.

Eye contact detection is directly related to whether pedestrians pay attention to the incoming
traffic. In practice, detecting that they do not pay attention is as important. One of the main
reasons for that is the use of a phone that draws their attention away from the road. Identifying
phone-related activities is therefore an insightful cue to detect. Rangesh et al. [153] show
the practical importance of having gaze annotations, both for eye contact between drivers and
pedestrians, or phone-related distractions. Going further to recognize actions implying a phone,
Saenz et al. [169] use a two-branch convolutional network to predict distracted behaviors due to
phone usage from stereo image pairs.

While detecting phone-related activities or pedestrian intentions are crucial tasks, eye-contact
detection remains an essential channel of communication. Pedestrians may have the intention to
cross but have they seen the upcoming car they should yield to? Contrarily, people may hold the
phone but still pay attention to the upcoming traffic.

6.3 LOOK Dataset

We argue that eye contact detection is a crucial yet under-explored task to enable autonomous
agents to safely navigate around pedestrians. To promote research in this area, we show that
the current datasets are not sufficiently diverse for data-driven methods, and we create a new
large-scale dataset for eye contact detection in the wild.

6.3.1 Existing Datasets

To the best of our knowledge, only two datasets contain annotations for the eye contact detection
task: JAAD dataset [157], and PIE dataset [154]. JAAD consists of 390K instances of pedestrians
labeled with bounding boxes and behaviour annotation, of which 17K instances have been labeled
as looking at the driver (i.e., at the camera in the car). The dataset is large in size but limited in
diversity. It is made of 346 video clips of 5-10 seconds recorded with an on-board camera at
30fps in North America and Europe. Thus, many frames show the same people in similar scenes,
and the number of unique pedestrians looking at the camera is 686.

PIE [154] is also a recent dataset for pedestrian intention estimation. It shares many of the
characteristics of its predecessor JAAD [157]. It is recorded using an on-board camera at 30fps
and consists of continuous footage of 6 hours in downtown Toronto, Canada. Out of 700K
annotated pedestrian instances, there are 1,842 unique pedestrians, of which less than 180 are
looking at the camera.
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Table 6.1 – Dataset statistics. Frames is the total number of frames in the datasets. Pedestrians
indicates the number of unique pedestrians, while Instances counts the number of occurrences of
pedestrians in all frames. In brackets, we mention the percentage of instances that are looking
at the camera. JAAD [157] and PIE [154] datasets include a very large number of instances
but in comparison a very small number of different pedestrians. In contrast, our LOOK dataset
includes in total 7,944 unique pedestrians from three continents, enabling exhaustive studies on
cross-dataset generalization.

Dataset Frames Instances [% looking] Pedestrians

JAAD [157] 82K 133K [18%] 686
PIE [154] 909K 739K [9%] 1,842

Our LOOK-KITTI [64] 1,391 4.630 [17%] 425
Our LOOK-JRDB [121] 9,441 39K [18%] 399
Our LOOK-nuScenes [31] 2,216 13K [9%] 7,100

Our LOOK 13K 57K [16%] 7,944

Figure 6.2 – Modular architecture: the input of our keypoint-based model is the set of 2D
keypoints extracted from a raw image, and the output is the binary flag indicating whether a
person is looking at the camera. A Fully connected block outputs 256 features and includes a fully
connected layer (FC), a Batch Normalization layer (BN) [79], a ReLU activation function, and
dropout [183]. Optionally, the features obtained from the semantic keypoints are concatenated
with the features obtained from the head crops. We experiment with two types of fusions in the
early (O1) or late (O2) layers, and with different convolutional architectures, such as ResNet-18
[73] or ResNeXt-50 [207] as backbones for the crop-based module.
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6.3.2 Benchmark Selection

We have built a new large-scale dataset for eye contact detection in the wild by selecting publicly
available images from three existing datasets: KITTI [64], nuScenes [31] and JRDB [121].
The first two are autonomous driving datasets and are made of images taken from a driver
perspective. The latter one consists of videos taken from a small robot moving in crowded
spaces inside Stanford University campus. In total, we have labeled 57K images from four
different cities (Boston, Singapore, Tübingen, Palo Alto) in three continents. We aim for diversity,
selecting pedestrians areas [64], crowded images from six cameras around the car [31], and
indoor environments from a robot perspective [121]. In total we have labeled around 8,000 unique
pedestrians, making it the most diverse dataset for eye contact detection in the wild. Examples
from the LOOK dataset are shown in Figures 6.4a, 6.4b and 6.4d.

We provide, together with the dataset annotation, the training and testing splits. We make sure
that splits do not contain overlapping scenes and that the test set is sufficiently diverse, including
22% of the total number of unique pedestrians over 15% of the frames.

6.3.3 Annotation Pipeline

Our LOOK dataset has been annotated using the Amazon Mechanical Turk (AMT) platform.
Each image has been annotated by four workers, which had the options to select whether a person
was looking at the camera, somewhere else, or none of the two in case of ambiguity. We then
include in the dataset only the labels with a consensus of at least three out of four annotators.
This threshold has been selected by reviewing edge cases where not all the workers agree on a
selected instance.

To promote the creation of an ever-growing open-source dataset, we have also developed and
released a labeling toolIII to ease the annotation process. The tool leverages the off-the-shelf
pose detector OpenPifPaf [95] to locate the 2D bounding boxes of pedestrians. It then runs a
pre-trained model (more detailed on Section 6.5) on the JAAD [157] and PIE [154] dataset to
provide a first guess. This pipeline allows annotators to only check and eventually correct wrong
predictions.

To count the number of pedestrians, we use the tracking identification number for JRDB [121]
dataset, while for the KITTI dataset [64] we manually count them. In the case of the nuScenes
dataset [31], we leverage the metadata associated with each frame. We approximate the number
of unique pedestrians by only counting once the instances that appear in the same camera multiple
times in a 5-seconds time window. We run sensibility analysis on the time window and opt for 5
second as the images are recorded from a moving vehicle in the majority of scenes.
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Table 6.2 – Comparing our proposed method and baseline results on JAAD [157] and on our
LOOK dataset. We evaluate eye contact classification using the average precision (AP) metric.
For a fair comparison, we also report the recall of the detected pedestrians for each method.
All approaches have been trained for classification on either JAAD solely, or on our LOOK
dataset, and we evaluate them on both JAAD and LOOK. Our method is only trained on keypoints
and reaches state-of-the-art results on the eye contact detection task on both the JAAD and
LOOK datasets when compared with image- and crop-based methods. It also shows the best
generalization properties when evaluated on a different dataset. The keypoints are obtained
running an off-the-shelf pose estimator [95] without re-training or adapting it to the different
datasets.

Dataset Method Input Eye Contact Classification (AP) ↑ [Pedestrian Detection Recall ↑]

Train / Eval JAAD LOOK-KITTI LOOK-JRDB LOOK-nuScenes LOOK

Rasouli [157] Crops 75.4 [80.1] 65.9 [99.8] 87.2 [98.2] 78.7 [89.8] 77.3 [95.9]
MTL-Fields [126] Images 82.6 [92.4] 89.7 [93.1] 82.1 [81.9] 92.0 [71.8] 87.9 [82.3]JAAD
Our method Keypoints 85.9 [80.1] 91.6 [99.8] 94.8 [98.2] 91.0 [89.8] 92.5 [95.9]

Rasouli [157] Crops 71.0 [80.1] 76.8 [99.8] 89.5 [98.2] 82.9 [89.8] 83.1 [95.9]
MTL-Fields [126] Images 80.7 [79.0] 95.1 [96.5] 95.2 [93.0] 93.4 [68.4] 94.6 [86.0]LOOK
Our Method Keypoints 86.0 [80.1] 96.4 [99.8] 97.1 [98.2] 95.1 [89.8] 96.2 [95.9]

6.4 Eye Contact Detection

The goal of our method is to detect from images whether humans are looking at the camera or
somewhere else. We tackle autonomous driving scenarios, i.e., outdoor scenes where people
may be several meters far from the camera. Our approach consists of two steps. First, we use a
2D pose detector to obtain a low-dimensional representation from the image domain, which we
call semantic keypoints. The keypoints are a convenient representation that provides invariance
to many factors, e.g., background artifacts, clothes, weather conditions. Second, we feed the
extracted keypoints to a simple feed-forward neural network that detects the presence of eye
contact. In addition, we also explore multi-modal representations, by combining the keypoint
representations with the features obtained from crops of images, and we explore different fusion
techniques. A diagram of our modular architecture can be found in Figure 6.2.

6.4.1 Keypoint-based Method

We escape the image domain using 2D keypoints: a low-dimensional representation obtained
through the off-the-shelf pose detector OpenPifPaf described in Chapter 2, which was designed
for crowded scenes and low-resolution images. The output of our network is the binary flag
indicating whether a person is looking at the camera. To create the training and testing dataset,
we match the bounding boxes enclosing the keypoints with the ground-truth bounding boxes
using their intersection over union (IoU). We select the instances with the highest matching IoU
above 0.3 for each ground truth.

Keypoints are especially useful to prevent overfitting. To further increase generalization properties,
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we normalize the keypoints and zero-center them on the y-axis. Normalization prevents different
scale differences from biasing the results, while the vertical location of a person in the image
plane does not add any information regarding eye contact detection. The x-coordinate in the
image plane, on the other side, may help infer the relative head and body orientations with respect
to the camera. For every keypoint i with pixel coordinates (ui,vi) in the image plane, we apply
the following transformation:ûi =

ui−uhip
wbox

+
uhip

wimage
,

v̂i =
vi−vhip

hbox
,

(6.1)

where (uhip, vhip) is the mean of the coordinates of the left and right hips of the instance, wbox,
hbox, the width and height of the enclosing box given by the keypoints, and wimage the width of
the input image. In practice, the normalization removes information on the size of the person as
well as on the vertical location in the image plane.

Our architecture is composed of a simple fully-connected network with residual blocks [73], and
includes batch-normalization [79] after every fully connected layer as well as dropout [183]. The
structure is inspired by the success in 3D vision tasks using 2D keypoints, especially Martinez
et al. [122] for 3D pose estimation, and Bertoni et al. [23] for human 3D localization. The
residual blocks increase performances and avoid overfitting, while the model, which contains
approximately 411K training parameters, is characterized by great speed and a low memory
footprint. Its building blocks are shown in Figure 6.2.

6.4.2 Combined Method

We argue that 2D keypoints are a low-dimensional representation that contains enough information
to understand whether a person is looking at the camera. This is motivated by the application
we are targeting: autonomous driving scenarios, where people are often further away from
the camera and the pupils may not be distinguishable. To test our hypothesis, we develop a
modular architecture to optionally include visual information from the head region of a pedestrian.
We create a combined method that encodes features from both the keypoints and the cropped
head region. While the former branch does not change, we select for the crops the upper
third of the bounding box [157] enclosing the keypoints, and we extract the features using a
convolutional backbone. We explore different backbone architectures (i.e., AlexNet, [96] ResNet
[73] and ResNeXt [207]) and different fusion techniques. As visually described in Figure 6.2,
we experiment with early fusion and with late fusion. In the former option (O1), we sum the
visual features extracted from a convolutional backbone with the raw features extracted from
the 2D keypoints. In the latter option (O2), we concatenate the visual features together with the
features extracted from the last layer of the fully-connected architecture. Our training schedule,
inspired by Zamir et al. [211], consists of two steps. We first initialize the keypoint-based and
the crop-based branches by training them independently. We then keep frozen all the layers
before the concatenation and train the remaining ones. At both stages, we use the binary cross-
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Table 6.3 – Impact of different architectures on the AP metric for eye contact classification (%) on
different datasets. We train all the methods on the JAAD dataset [157] only, and we evaluate them
on JAAD, PIE [154], and our LOOK dataset. Crops stands for adapting a crop-based model first
introduced by Rasouli et al. [157] with a ResNet [73] or ResNeXt [207] architecture. Keypoints
stands for our simple architecture only trained with keypoints as input, either all the 17 keypoints
of the human body, or a subset of it: keypoints - Body includes all the keypoints but the head ones,
while Keypoints - Head includes the ears, eyes and nose locations. Keypoints & Crops stands
for our fusion-based approach combining keypoints and crops in a single representation. We
experiments with two backbones for crops, ResNet-18 (R-18) [73] and ResNeXt-50 (RX-50)
[207], and with two fusion techniques, O1 and O2. When training only using the 5 head keypoints,
we obtain the best results on JAAD [157] but training on all the keypoints generalizes better
across datasets.

Method JAAD PIE LOOK-KITTI LOOK-JRDB LOOK-nuScenes LOOK

Crops (R-18) 78.1 73.5 76.7 92.0 81.7 83.5
Crops (RX-50) 79.7 74.2 72.0 92.5 85.7 83.4
Eyes Crops 77.4 70.6 77.1 83.6 84.7 81.8
Keypoints 85.9 83.8 91.6 94.8 91.0 92.5
Body Keypoints 76.4 72.6 79.3 75.4 80.7 78.5
Head Keypoints 86.3 84.0 90.9 95.1 90.2 92.0
Keypoints & Crops (R-18, O1) 78.0 75.2 79.7 91.6 85.3 85.5
Keypoints & Crops (R-18, O2) 78.7 75.6 78.9 92.7 84.3 85.4
Keypoints & Crops (RX-50, O1) 79.5 75.1 73.6 92.1 85.8 83.8
Keypoints & Crops (RX-50, O2) 80.6 75.9 74.1 93.2 86.2 84.5
Keypoints & Eyes Crops (O1) 83.9 79.9 87.0 92.5 91.2 90.2
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entropy loss. The combined method allows us to verify whether adding visual information to the
keypoint-based method increases the performance.

6.5 Experiments

6.5.1 Experimental setup

Evaluation Metrics. We evaluate pedestrian detection and eye contact classification separately.
Some previous methods [157] do not include pedestrian detection, using a box classification
approach, where the ground-truth boxes are given. In our case, a detection step is also included to
ensure fair comparison among different methods. To disentangle the contributions of pedestrian
detection and eye contact classification, we split the two tasks. To evaluate the detection results,
we use the recall metric with a threshold on intersection over union (IoU) of 0.5. Compared
to [54, 126], we do not use Average Precision (AP) metric for detection as we only focus on
instances labeled with the eye contact attribute, and in any given dataset very far instances are not
annotated for it. In this case, the AP metric may penalize extra detections. In the classification
setup, we evaluate the set of detected instances that match a ground-truth, and we use the AP
metric to evaluate the classification of the binary attribute of looking or not at the camera.

As shown in Table 6.1, each dataset is unbalanced toward a majority of people not looking at the
camera. Following again the procedure of [126], we compute results on a balanced test set where
negative instances are randomly sampled. The sampling is done 10 times to reduce the variance
and the results are averaged.

Regarding training and testing split, for JAAD dataset [157] the official split is composed of 177
videos for training, 29 videos for validation, and 117 videos for testing. For PIE dataset we use,
as recommended, set01, set02, set04 for training, set05 set06 for validation and set03 for the
testing set.

Implementation Details. To obtain input-output pairs of 2D keypoints and binary labels, we
apply the off-the-shelf pose detector OpenPifPaf [95, 94] and match our detections with the
ground-truth boxes provided by each dataset. We train our keypoint-based architecture for 20
epochs, using binary cross-entropy loss function with Adam optimizer [89], with a learning rate
of 0.0001, and mini-batches of 64 instances. The crop model is trained for 20 epochs, using binary
cross-entropy loss function, SGD optimizer [29] with Nesterov momentum [133], a learning rate
of 0.0001, and mini-batches of 32 instances. For the combined architecture, we pre-train both
branches and freeze the early layers before the fusion of the features. We train the last layers with
an SGD optimizer, a learning rate of 0.00001, and mini-batches of 128 instances.

The code, available online, is developed using PyTorch [141]. We do not apply any data
augmentation procedure on the 2D poses.
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6.5.2 Baselines

We argue that eye contact detection is a crucial task yet to be solved to develop safe autonomous
vehicles. However, to the best of our knowledge, very few methods have reported results on the
eye contact task in JAAD [157] or PIE [154]. Rasouli et al. [157] proposed to use image crops
of people as inputs to an AlexNet architecture [97] followed by fully connected layers. Their
published results on the JAAD dataset [157] used a smaller version of the dataset and randomly
split the instances of the dataset. Hence, the same unique pedestrian in different time frames
may appear both in training and testing sets. For a fair comparison, we have re-implemented this
method and evaluated it on the recently released official JAAD split to prevent any contamination
of the testing set.

In addition, we compare against the very recent MTL-Fields developed by Mordan et al. [126].
It is a field-based approach that leverages multiple pedestrian attributes in a multi-task fashion,
including eye contact, to understand the visual appearances and behaviors of pedestrians. Contrary
to Rasouli et al. [157] that operate on image crops of people and therefore discard context around
them, MTL-Fields keep full images in order to understand the scenes and learn interactions
between pedestrians. As their code is open-source, we train a network and evaluate it with our
setup for eye contact detection.

Our Baselines. One of our goals is to compare the properties of keypoints and crops for the eye
contact task. Thus, we develop a modular architecture that is either based on keypoints only, or
can combine keypoints and visual information together, and we benchmark it with the following
baselines:

• Crops: when referring to methods using crops only, we consider the approach of Rasouli et
al. [157] with a more recent ResNet [73] or ResNeXt [207] backbone. Rasouli et al. [157]
train their model with ground-truth crops without including detection results. For a fair
comparison, we train and evaluate the model including the same set of instances provided
by the OpenPifPaf detector [94].

• Head & Body Keypoints: we test our keypoint-based architecture with subsets of keypoints,
either only including the keypoints of the head region (eyes, nose, ears), or only the ones
from the rest of the body. The goal is to analyze whether the body orientation also provides
informative cues, or the head keypoints suffice for the eye contact detection task.

• Keypoints & Eye Crops: we test whether adding visual information about the region around
the eyes could be informative and less prone to overfitting than head crops. From the 2D
keypoint locations of the eyes and ears, we crop a small region around the pupils and resize
it to a fixed patch of 3x10x30 pixels. The model architecture is consistent with the one
shown in Figure 6.2, but we substitute the head crops with the eyes one, and a convolutional
backbone with a fully connected block.
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Table 6.4 – Evaluating cross-dataset results for our best crop- and keypoint-based methods using
the AP binary classification metric (%) on the JAAD dataset [157]. In parenthesis, the relative
difference with respect to the same method trained on the JAAD dataset [157]. Instances counts
the total number of training instances.

JAAD [157]

Training Datasets Instances Crops Keypoints

JAAD [157] 50K 79.7 ( - ) 85.9 ( - )

LOOK-nuScenes [31] 10K 71.1 (-8.6) 84.6 (-1.3)
LOOK 41K 73.7 (-6.0) 86.0 (+0.1)
LOOK + PIE [154] 61K 75.1 (-4.6) 87.7 (+1.8)

6.5.3 Quantitative Results

In Table 6.2, we show the results of training and evaluating each method on the same dataset
(either JAAD [157] or our LOOK dataset) as well as cross-dataset results. Our method achieves
the best performances when compared to the other baselines, achieving at least a 5% improvement
both when testing on the same dataset and when evaluating cross-dataset generalization properties.
More notably, our model is able to generalize well on our LOOK dataset when trained on the
JAAD dataset [157] only, as it reaches an AP of 92.5%; almost on par when compared against
baselines trained on the LOOK dataset. Qualitative examples from different datasets are shown
in Figure 6.4.

Our recall results are shared with Rasouli [157] baseline, as we train and evaluate their model on
the same instances detected by the off-the-shelf pose detector OpenPifPaf [95]. We observe that
MTL-Fields [126] achieves higher recall on JAAD when trained on the same dataset, but the same
recall drops by 15% when trained on a different dataset. Our method on the other side maintains
high recall when testing domain adaption, as it leverages an off-the-shelf pose estimator [95]
trained and optimized on a general-purpose dataset [111] that is beneficial for domain adaptation.

6.5.4 Cross-dataset Generalization.

We further study cross-dataset generalization with our new LOOK dataset in Tables 6.3 and
6.4. First of all, we investigate the performances of eleven crop- and keypoint-based methods
in Table 6.3. We train the models on JAAD dataset [157] and evaluate them on JAAD [157],
PIE [154], and our LOOK dataset. Keypoint-based models perform and generalize better than
crop-based ones, consistently with results obtained in Table 6.2. Surprisingly, combining visual
information to the keypoints into our combined models (which we refer to as Keypoints & Crops)
degrades the performances as it leads to stronger overfitting. The best results are achieved only
by combining features from the eye region instead of the head region. We attribute this result to
the generalization properties of keypoints, as this low-dimensional representation does not overfit

101



Chapter 6 Detecting Pedestrians Attention: Human-Robot Eye Contact in the Wild

Figure 6.3 – Visual illustration of the normalized magnitude of the gradients of the loss function
with respect to each keypoint during training. The keypoints related to the head (eyes and ears)
are the ones that most affect the loss function.

on background scenes or specific faces. Yet even simpler models with no visual information
achieve the best results on all the datasets, but for LOOK-nuScenes [31].

As additional experiment in Table 6.4, we train our best keypoint-based and crop-based methods
on different datasets but JAAD [157], and evaluate them on JAAD. We train our keypoint-based
model on 10K instances from the nuScenes dataset [31], and we obtain less than 2% difference
compared to training it on the 50K instances of the JAAD dataset [157]. The best crop-based
model, on the other side, achieves an AP of 71.1%, down from an original 79.7%. When
increasing the number of instances from multiple datasets, the performances of the crop-based
model never reach the baseline result of being trained on JAAd only. The keypoint-based model,
on the other side, achieves the best performances on JAAD [157] when trained on different
datasets.

6.5.5 Additional Studies

The Role of Distance. We test the hypothesis that crop-based methods may be most effective
when people are closer to the camera, while keypoints may be more useful when people are far
away and details of the face are less informative. We obtain the distribution of bounding box
heights for all the instances of the JAAD test set [157], and evaluate each quartile separately. As
we show in Table 6.5, the hypothesis is not verified: keypoints remain more effective than crops
even for people close to the camera. This result may not be intuitive at first sight, but we are
analyzing autonomous driving datasets, where even close people may be several meters away
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Table 6.5 – Average precision (AP) in percentage (%) as a function of the bounding box height in
pixels for the JAAD dataset [157]. Each cluster corresponds to one quartile of the distribution.
For the crop-based methods, we consider our ResNeXt-50 model with late fusion when not
differently specified.

JAAD [157]

Method / Box Height [px] 240+ 160-240 110-160 0-110 All

Crops (ResNet-18) 80.4 79.5 80.4 73.4 78.1
Crops (ResNeXt-50) 79.0 81.2 83.0 75.3 79.7
Eyes Crops 74.4 79.1 81.3 74.7 77.4
Keypoints 87.9 88.7 87.0 78.7 85.9
Head Keypoints 90.4 89.7 86.7 76.5 86.3
Keypoints & Crops 80.5 82.2 83.6 75.9 80.6
Keypoints & Eyes Crops 85.3 86.4 85.0 79.4 83.9

from the camera, and detecting the direction of the pupil may not be feasible. Keypoints provide
a simple yet effective representation in these scenarios.

Saliency Map. To verify the impact of each keypoint in the final decision of the model, we
compute the absolute value of the gradient of the objective function with respect to each input
node for every epoch on the training set:

ik =
1
N

N

∑
j=0

∣∣∣∣∂L(y j, f (x j))

∂kx

∣∣∣∣+ ∣∣∣∣∂L(y j, f (x j))

∂ky

∣∣∣∣+ ∣∣∣∣∂L(y j, f (x j))

∂kc

∣∣∣∣, (6.2)

where ik represents the impact of the keypoint k with its three components: kx and ky coordinates,
and the confidence score kc. We then average this value by taking the mean absolute value across
all the training instances (x j,y j) that consists of N samples. The results are illustrated in Figure
6.3. The dominant keypoints are the eyes and ears, as shown by the magnitude of the gradients of
the loss function L with respect to each keypoint.

Run Time. Our experiments have been conducted using a machine with a single NVIDIA
GeForce GTX 1080 Ti and Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. In Table 6.6, we
compare the run time performances of several methods on the test set of the JAAD dataset [157].
As the original method from Rasouli et al. did not include a detection step, we use the same
backbone to extract the poses for our method and the crops for Rasouli’s one. For MTL-Fields,
detection and classification are performed in a single stage. Our method excels in the classification
step with less than 1 ms of inference time as it uses low-dimensional keypoints. Regarding the
detection step, our method is agnostic to the pose detector. We have tested it with OpenPifPaf
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Table 6.6 – Average run time performances for a single image on the JAAD test set. The detection
steps for both Rasouli [157] and our method are calculated with the off-the-shelf pose detector
OpenPifPaf [95], using either a ResNet-50 (R-50) [73] or a ShuffleNetV2K30 (S-30) [118]
backbone.

Average Run Time (ms)

Method AP (%) Detection Classification Total

Rasouli [157] (S-30) 71.0 602 39 672
MTL-Fields [126] 80.7 – – 573
Our Method (S-30) 85.9 602 0.8 626
Our Method (R-50) 82.6 305 0.8 328

[95] using two different backbones and achieved the fastest run time with a ResNet-50 (R-50)
[73].
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(a) LOOK-KITTI [64]

(b) LOOK-nuScenes [31]

(c) JAAD [157]

(d) LOOK-JRDB [121]

Figure 6.4 – Qualitative results for the eye contact detection task on multiple datasets. People
with green poses are predicted as looking at the camera, people with red poses as not looking.
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6.6 Beyond Eye Contact: Simple Yet Effective Action Recognition
for Autonomous Driving

This chapter shows that our keypoint-based method achieves state-of-the-art results on detecting
eye contact, a communicative action where one could expect images to be a crucial input
representation. In this section, we expand our focus beyond this communicative action and
shed light on the effectiveness of semantic keypoints for action recognition in the context of
autonomous driving. First, we validate the design of our model on the TCG Dataset [201] that
collects accurate 3D body keypoints for recognition of traffic control gestures. Using ground-truth
keypoints as input lets up validate our architecture filtering out the impact of keypoints’ quality.
Second, we focus on cyclists by assessing arm signal recognition on the CASR dataset [56].
Finally, we analyze the complete action recognition workflow starting from raw images with both
pedestrians and cyclists. We train and evaluate our approach on various action recognition tasks
on TITAN [119], a new dataset captured from a moving vehicle on highly interactive urban traffic
scenes in Tokyo.

Figure 6.5 – Model architecture for action recognition tasks. The input is a set of 2D keypoints
extracted from a raw image and the output is the estimated action of a pedestrian. We use
three different heads for image-based and video-based action recognition, and for estimating
simultaneous actions (e.g., a person may be walking while talking at the phone).

We use the same architecture described in Section 6.4, encoding the keypoints with a feedforward
network, and predicting the corresponding action from the encoded representation. We also
extend our method (i) to estimate actions from videos and (ii) to predict simultaneous groups of
actions (e.g., a person can walk while being on the phone). For (i), we add a simple LSTM [74] to
process a temporal sequence of poses before the final linear layer, and for (ii), we use a multitask
approach, where multiple parallel heads (instead of just one) process a shared representation to
yield multiple predictions. We train our architecture with focal loss [110]. The architecture is
illustrated in Figure 6.5.

6.6.1 Experiments

Traffic Control Gestures. We evaluate traffic control gestures on the TCG dataset [201], which
consists of 250 sequences from five actors staging to regulate the traffic on road intersections. The
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Table 6.7 – Action recognition results on TCG [201] test set. Our single-frame model performs
on par with all the simple temporal baselines while being outperformed by a complex attention-
enhanced Adaptive graph convolutional network [143].

Method Cross-subject Cross-view

Accuracy (%) Jaccard (%) F1 (%) Accuracy (%) Jaccard (%) F1 (%)

RNN 82.81 57.40 69.45 80.94 57.21 69.98
GRU 84.44 58.16 70.45 83.47 56.25 68.59
LSTM 83.23 56.32 68.59 79.58 52.02 64.62
Att-LSTM 85.67 50.70 61.87 85.30 59.87 71.20
Bi-GRU 86.80 57.25 68.95 87.37 55.55 67.68
Bi-LSTM 87.24 67.00 78.48 86.66 65.95 77.14
TCN 83.44 62.06 74.23 82.66 63.97 75.95
GCN 65.42 38.55 50.73 62.40 35.05 48.51

AAGCN [175] 91.13 - 85.81 90.22 - 85.21
AAGCN++ [143] 91.09 - 86.26 90.64 - 85.52

Ours (single-frame) 85.03 63.72 76.91 86.29 68.76 80.81
Ours (temporal) 87.31 69.15 81.15 87.74 70.11 81.89

actors use the standard European traffic control gestures, i.e., stop, go and clear. Following the
cross-subject and cross-view evaluation protocols in TCG, Table 6.7 compares the performances
of our single-frame and temporal models with eight simple baseline methods as well as two
more complex attention-based graph convolutional networks [175, 143]. Our temporal model
outperforms the simple baseline models. Specifically, it performs better than the LSTM baseline,
which directly predicts actions from raw keypoint coordinates. This demonstrates the effectiveness
of processing raw keypoints with a feedforward network. Our models are still outperformed by
the two attention-based graph convolutional networks, but those are much heavier and would
likely be less suitable for applications with hard run-time constraints (e.g., memory footprint,
inference time), such as autonomous driving. Additionally, traffic control gestures are designed
to be unambiguous actions that could easily be understood without temporal context, which
means temporal information should not be crucial for these gestures. The close results of our
single-frame and temporal models confirm this observation.

Table 6.8 – Assessing the performances of our method on the CASR dataset [56]. We evaluate
cyclists’ arm signals, i.e., turning left, right, or stopping using classification accuracy and F1
score.

Method Accuracy (%) ↑ F1 Score (%) ↑
Fang et al. [56] 93.0 92.0
Ours (single-frame) 93.4 91.2

Cyclist Arm Signal Recognition. Cyclists, like pedestrians, are vulnerable road users prone
to injury in any vehicular collision. They usually communicate their intentions with arm signals,
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indicating whether they are turning left, right, or stopping. Hence, we evaluate the performances
of our method to assess arm signal recognition. We use the CASR dataset [56], which contains
annotated videos of 219 cyclists’ actions. Each frame only contains a single cyclist in front of the
camera, simplifying the evaluation procedure. Our method is similar to the baseline of Fang et
al. [56] as they also use a pose detector to extract 2D keypoints. Out of each keypoint set, they
hand-craft a set of 1170 features based on angles and distances between keypoints and use a
Random Forest classifier to process them. In our case, we simply pass the normalized keypoints
to a light-weight neural network. Results are shown in Table; our method achieves comparable
results with Fang et al. [56], both reaching an accuracy of 93%.

Table 6.9 – Action recognition results on TITAN [119] test set. Our single-frame method outper-
forms a 3D ResNet [69] using the accuracy suggested in the original dataset evaluation [119].
In reality, every method’s predictions are highly imbalanced towards the no action class, as the
average precision metric suggests.

I3D [36] 3D ResNet [69] Ours (multitask)

Action group Accuracy (%) Accuracy (%) Accuracy (%) mAP (%)

atomic 92.19 75.52 80.01 26.80
simple 53.18 31.73 47.97 20.27
complex 98.81 98.80 97.80 15.50
communicative 86.49 86.48 83.69 29.55
transportive 90.80 90.81 89.80 28.30

overall 84.29 76.67 79.85 24.08

Table 6.10 – Action recognition results with selected actions on TITAN [119] test set. We
focus on atomic actions that can be perceived using semantic keypoints. Our method strongly
outperforms the crop-based baseline for every task, especially on the most challenging actions,
such as bending and sitting.

Average Precision (AP %) ↑ [Detection Recall ↑]

Method Inputs
Walking
[75.4%]

Standing
[65.4%]

Sitting
[62.1%]

Bending
[71.8%]

Biking
[82.4%]

Average
[73.7%]

Ours (multitask) Keypoints 90.16 40.67 43.78 41.12 57.70 48.14

ResNet-50 (He et al.) Crops 92.85 42.07 5.18 8.44 56.00 40.91
Ours (single-frame) Keypoints 96.87 64.55 81.22 64.59 88.30 79.11
Ours (temporal) Keypoints 97.83 73.02 65.78 47.31 84.98 73.78

Action Recognition for Autonomous Driving. After validating our method on traffic control
gestures and arm signals, we focus on general action recognition for autonomous driving ap-
plications. The TITAN dataset [119] has 700 video clips captured by an on-board camera that
include both pedestrians and cyclists, making it a suitable dataset for evaluating the complete
recognition workflow starting from raw images. All annotated actions belong to atomic, simple
context, complex context, communicative or transportive action groups. Notably, all the people in
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all the frames are annotated with five action labels, i.e., one from each action group (including
labels for no action for any group).

In Table 6.9, we compare our multitask model, using five prediction heads to match the five
action groups of TITAN, with I3D [36] and 3D ResNet [69]. We observe it has comparable
accuracy to the other two methods. However, TITAN is highly imbalanced (toward no action
for almost all groups), thus the overall accuracy is not a suitable metric to evaluate results. For
example, in the complex context action group, more than 98% of the persons are labeled as no
action, and each method overfits on this class. For this reason, we propose to evaluate using
mean Average Precision (mAP), where Average Precisions (APs) are computed for all classes
separately and then averaged, as seen in Table 6.9, while our method reaches an accuracy of 80%,
outperforming a 3D ResNet[69], it only achieves a mAP of 24%, confirming our hypothesis that
all the predictions are highly imbalanced towards the no action class.

Figure 6.6 – Action recognition examples from our single-frame model on TITAN [119] test
set. Predicted actions and ground truths (GT) are shown at the bottom of the boxes. Each color
represents a different action, e.g., red for walking and purple for bending.

Since the labels no action dominate most action groups, and some actions have insufficient
numbers of examples, we focus on a subset of actions where our multitask model has reasonable
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Figure 6.7 – Examples of failure from our single-frame model on TITAN [119] test set. Left
image: without temporal context, discriminating between walking and standing is hard, especially
with occlusions. Middle image: contextual features would help distinguish that the person is not
biking even if the pose resembles it. Right image: the man is picking up an object, an indication
of bending and not just standing.

mAP. We also merge actions cycling and motorcycling with close meaning, resulting in five
classes of interest: walking, standing, sitting, bending and biking. Table 6.10 compares the
recognition performances of four models using mAP. Our multitask model is trained on the
original TITAN dataset, and we only keep the predictions corresponding to the selected action
subset. Since the original dataset contains considerable no action samples, the training process of
this model is dominated by this majority class, and the model does not have satisfactory mAP.
The following three models are trained and tested on the selected action subset. The first of
them is a ResNet-50 [73] classification network trained on image crops centered on detected
pedestrians. For our temporal model, we follow the procedure used in TITAN [119] and obtain
temporal sequences by associating detected poses using ground-truth track IDs. The results
confirms the findings of Table 6.2 for the eye contact detection task: our keypoint-based model
strongly outperforms the crop-based one. This is particularly evident for sitting and bending
classes. The dataset contains only 304 and 1297 instances for these classes, out of a total of
50K instances, and the low-dimensionality of semantic keypoints helps in low-data regimes. The
results also highlight that our temporal model is better at walking and standing, two visually
close actions where temporal context should help disambiguation, while our single-frame model
is better for sitting, bending and biking, for which temporal information is not as important.
Figure 6.6 presents qualitative examples from our single-frame model, and Figure 6.7 illustrates
failure cases, where combining image-based features and pose estimation could help improve the
results.
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6.7 Conclusion

This chapter has introduced a deep learning approach for human-robot eye contact detection in the
wild, i.e., with no prior knowledge of the environment, suited to the multiple challenges associated
with this task. We have discussed the importance of eye contact to forecast human behaviors
and publicly released LOOK, a large-scale dataset for human-robot eye contact detection in
the wild. We designed it with real-world generalization in mind by annotating three standard
autonomous driving datasets to consider cross-dataset training and evaluation and focus on
multiple scenarios and diverse environments. We evaluated our method and several approaches
from the literature on LOOK to create a benchmark for this task and show state-of-the-art results
with robust generalization across datasets compared to image-based approaches. Finally, we have
demonstrated that our method generalizes to different action recognition tasks, moving towards a
holistic framework for action recognition in the wild.

The main limitation of our approach is that instances are analyzed independently. However, some
actions are performed in groups and require modeling people’s interactions. Talking is the most
evident example: two or more people close to each other may just be standing waiting for the
traffic light signal, or they may be talking with each other and not be interested in crossing the
street. In the next chapter, we will combine our studies on 3D localization and action recognition
to study social interactions among humans. We will focus on the field of proxemics, analyzing
how people arrange themselves in the space [87] and inferring social relations. In addition, we
will demonstrate the applicability of our approach beyond autonomous driving applications. We
will show how our neural network architecture can be used to fight the COVID-19 outbreak by
monitoring social distancing in a privacy-safe manner.
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7 Beyond Autonomous Driving: Social
Interactions and Social Distancing

This chapter is based on the article:

Lorenzo Bertoni, Sven Kreiss, and Alexandre Alahi, Perceiving Humans: From Monocular 3D
Localization to Social Distancing, IEEE Transactions on Intelligent Transportation Systems,
2021

Additional qualitative results are displayed on YouTubeI.

This story appeared in the following media:

• BBC 4Tech showII

• EPFL News III

• SwissInfoIV

• LeMatinV

7.1 Introduction

The previous chapters study the effectiveness of semantic keypoints to localize humans in 3D
and to detect their actions for autonomous driving applications. One limitation of our approaches
is that every instance is analyzed independently, while certain types of action, such as talking,
are performed in group. This chapter combines our 3D localization and action recognition
findings to propose a deep learning approach that perceives humans and their social interactions

Ihttps://www.youtube.com/watch?v=r32UxHFAJ2M
IIhttps://www.youtube.com/watch?v=0BkQEOwa5kc&list=PL63lwGZ_8vsnmWuxFBTL6NulPaYZXj0zv&

index=1&t=61s
IIIhttps://news.epfl.ch/news/3d-detectors-measure-social-distancing-to-help-fig/
IVhttps://www.swissinfo.ch/eng/3d-detectors-measure-social-distancing-to-help-fight-covid-19-/46601518
Vhttps://www.lematin.ch/story/lepfl-a-une-solution-pour-nous-faire-garder-nos-distances-523241072624
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Figure 7.1 – Our method retrieves 3D locations with confidence intervals, body orientations,
social interactions and social distancing in the wild from a single RGB image. We leverage
2D semantic keypoints as intermediate representations, which allow to verify social distancing
compliance while preserving privacy.

in the 3D space from visual cues only. Perceiving when and how people interact is essential to
understanding mobility patterns and forecasting human behavior in transportation applications.
At the same time, we prove our method to be valuable beyond autonomous driving applications
by measuring social distancing to help fight COVID-19.

The COVID-19 pandemic has forced authorities to limit non-essential movements of people,
especially in crowded areas or public transports [16]. Social distancing measures are becoming
essential to restart passenger services, e.g., leaving train seats unoccupied. Yet, in many contexts,
it is not obvious how to preserve inter-personal distances. When the risk of contagion remains, we
should work to minimize it, and perceiving social interactions can play a vital role in this quest.
In fact, talking with a person does not incur the same risk of infection than crossing someone in
the street. The infection rate of a disease can be summarized as the product of exposure time and
exposure to virus particles [161, 30]. When people are talking together, not only the exposure
time escalates, but the act of speaking itself increases the release of respiratory droplets about 10
fold [14, 184]. These analyses urge us to rethink safety measures and focus on proximal social
interactions, which can be defined as any behavior of two or more people mutually oriented
towards each other’s that influence or that take account of each other’s subjective experiences or
intentions [167]. We show that we can monitor the concept of “social distancing” as a form of
social interaction in contrast to a simple location-based rule or smartphone-based solutions [216,
212, 83]. Few methods have studied interactions from images [45, 46], but their results are either
limited to personal photos, [209], indoor scenarios, [3], or necessitate a homography calibration
[45, 46]. However, the study of social distancing requires an understanding of social interactions
in a variety of unconstrained scenarios, either outdoor or within large facilities.

Our approach builds on top of the architectures described in previous chapters and consists of three
main steps. First, we use the off-the-shelf pose detector proposed in Chapter 2 to obtain semantic
keypoints of humans. Second, the 2D keypoints are fed into our MonoLoco++ architecture
(proposed in Chapter 3), which predicts 3D locations, orientations, and corresponding confidence
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intervals for each person. Finally, driven by these perception tasks, we aim at investigating how
people use the space when interacting in groups. According to the subfield of proxemics, people
tend to arrange themselves spontaneously in specific configurations called F-formations [87]. The
detection of F-formations is critical to infer social relations [45, 46]. Our intuition is that knowing
the 3D location and orientation of people in a scene allows retrieving F-formations accurately
with simple probabilistic rules. Inspired by [45, 46], we exploit our predicted confidence intervals
to develop a simple probabilistic approach to detect F-formations and social interactions among
humans. Consequently, we show that we can redefine the concept of social distancing to go
beyond a simple measure of distance. We provide simple rules to verify safety compliance
in indoor/outdoor scenarios based on the interactions among people rather than their relative
position alone. Finally, the design of our pipeline encourages privacy-safe implementations
by decoupling the image processing step. Our network is trained on and performs inference
with anonymous 2D human poses. An example is provided in Figure 7.1, where 3D location,
orientation, and interactions among people are analyzed to verify social distancing compliance in
a private manner. The codeVI and a videoVII showing qualitative results are available online.

7.2 Related Work

In this chapter, we tackle the high-level task of understanding 3D spatial relations among humans
from a single RGB image without ground plane estimation. While perception tasks have been
monopolized by relatively new deep learning algorithms, the study of social interactions is based
on historic discoveries in behavioural science [81]. In this section, we focus on the subfield
called proxemics, which investigates how people use and organize the space they share with
others [67, 46]. People tend to arrange themselves spontaneously in specific configurations
called F-formations [87]. These formations are characterized by an internal empty zone (o-space)
surrounded by a concentric ring where people are located (p-space). According to Kendon
[87]: “an F-formation arises whenever two or more people sustain a spatial and orientational
relationship in which the space between them is one to which they have equal, direct, and
exclusive access”.

These formations characterize how people use the space when interacting to each other. They are
characterized by three types of social spaces [67, 45]:

1. o-space: An circular empty region to preserve the intimacy of people around it. Every
participant looks inward and no people are allowed inside. The type of relation (e.g.,
personal or business-related) defines the dimensions of this space

2. p-space: a concentric ring around the o-space that contains all the participants

3. r-space: the area outside the p-space

VIhttps://github.com/vita-epfl/monoloco
VIIhttps://www.youtube.com/watch?v=r32UxHFAJ2M
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In the case of two participants, typical F-formation are vis-a-vis, L-shape, and side-by-side.
For larger groups, a circular formation is typically formed [102]. An example of F-formation
configuration is shown in Figure 7.3.

To the best of our knowledge, Cristani et al. 2011a [45] is the first work to focus solely on visual
cues to discover F-formations and social interactions. In parallel, Cristani et al. 2011b [46]
studied how people get closer to each other when the social relation is more intimate. Following
works have proposed various techniques to automatically detect F-formations in heterogeneous
real crowded scenarios [189, 20, 192, 174]. In all approaches is evident how the detection of
F-formations is critical to inference social relations and we decided to follow their lead. This
line of work, however, considers as input the position of people on the ground floor and their
orientation [46] or requires an homogrpaphy estimation to compute the x-y-z coordinates of
pedestrians [45]. On the contrary, our approach works end-to-end from a single RGB image. The
perception stage, i.e., extracting 3D detections from a monocular image, is arguably the most
challenging one due to the intrinsic ambiguity of perspective projections.

Social interactions have been also studied in the context of personal photos [209] or egocentic
photo-streams [2, 3]. Both approaches assumes humans to stand less than few meters apart
from each other and the camera, and do not scale to long range applications, such as monitoring
an airport terminal. Recently, deep learning approach has been adopted to understand social
interactions under a different perspective. Joo et al. [81] learned to predict behavioral cues of a
target person (e.g., body orientation) from the position and orientation of another person. They
aimed to learn the dynamics between social interactions in a data-driven manner, laying the
foundations for deep learning to be applied in the field of behavioral science.

7.3 Method

The goal of our method is to recognize social interactions and monitor social distancing given a
single image as input. Figure 7.2 illustrates our overall method, which consists of three main steps.
First, we exploit a pose detector to escape the image domain and reduce the input dimensionality.
Second, we use the 2D joints as input to a feed-forward neural network which predicts x-y-z
coordinates and the associated uncertainty, orientation, and dimensions of each pedestrian. Third,
the network estimates are combined to obtain F-formations [67] and recognize social interactions.

7.3.1 Social Interactions and Distancing

We identify social interactions by recognizing the spatial structures that define F-formations (see
Section 7.2 for more details). Our approach considers groups of two people in an “all-vs-all”
fashion by studying all the possible pairs of people in an image.
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Figure 7.2 – Network architecture. MonoLoco++ [24]: The input is a set of 2D joints extracted
from a raw image and the output is the 3D location, orientation and dimensions of a pedestrian
and the localization uncertainty. 3D location is estimated with spherical coordinates: d, azimuthal
angle β , and polar angle ψ . Every fully connected layer (FC) outputs 1024 features and is
followed by a Batch Normalization layer (BN) [79] and a ReLU activation function. Social
interactions/distancing: estimates from MonoLoco++ are analyzed with an all-vs-all approach
to discover F-formations using Eq. 7.2.

Figure 7.3 – Illustration of the o-space discovery using [45] on the left and our approach on the
right. Both approaches use the candidate radius r to find the center of the o-space, as infinite
number of circles could be drawn from two points. Differently from [45], once a center is found,
we dynamically adapt the final radius of the o-space ro−space depending on the effective location
of the two people.
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Social Interactions. Ideally, two people talking to each other define the same o-space by
looking at its center. In practice, 3D localization and orientation of people are noisy and previous
methods [45, 46] have adopted a voting approach. They define a candidate radius r of the o-space
and each person vote for a center. The average result defines the center of the o-space. In Cristani
et al. [45], the candidate radius r remains the final radius of the o-space and is fixed for every
group of people. However, once the o-space center is found, nothing prevents us from considering
its radius ro−space dynamically as the minimum distance between the center and one of the two
people. An illustration of the differences is show in Figure 7.3. Therefore, given the location of
two people in the x-z plane x and their body orientation θ , we define the center and the radius of
the o-space as:

O01 =
µ0 +µ1

2
ro−space = min(|O01−xo|, |O01−x1|) ,

(7.1)

where O01 and ro−space are the center and radius of the resulting o-space, µ0 and µ1 indicate the
location of the two candidate centers of the o-space. In general, µ = [x+r∗cos(θ),z+r∗sin(θ)]
and is parametrized by the candidate radius r, which depends on the type of relation (intimate,
personal, business, etc.) [67].

Once the o-space is drawn, we verify the following conditions:

(a) |xo−x1|< Dmax

(b) |O01−xi|< ro−space ∀i 6= 0,1

(c) |µ0−µ1|< Rmax

(7.2)

where Dmax and Rmax are the maximum distances between two people, and between the candidate
centers of the o-spaces, respectively. Vectors are represented in bold.

The above conditions verify the presence of an F-formation, as:

(a) examines whether two people stand closer than a maximum distance Dmax, i.e., they lie
inside a p-space,

(b) examines whether the o-space is empty (no-intrusion condition),

(c) examines whether the two people are looking inward the o-space.

We note that condition (c) is empirical as looking inward is a generic requirement. Two people
usually look at each other when talking, but the needs for social distancing may be different.
Our goal is not to find perfect empirical parameters for F-formations discovery, but rather to
show the effectiveness of combining simple rules and estimating 3D localization and orientation.
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We consider two people as interacting with each other if the three conditions are verified. This
method is automatically extended to larger groups as two people can already cover any possible
F-formation (vis-a-vis, L-shape and side-by-side), while three or more people usually form a
circle [45]. Further, we are not interested in defining the components of each group but rather in
understanding whether people are interacting or not.

Social Distancing. The procedure to monitor social distancing can either follow the same steps,
or can be adapted to a different context. Risk of contagion strongly increases if people are
involved in a conversation [184, 30]. Therefore, recognizing social interactions lets the system
only warn the people that incur in the highest risk of contagion. In crowded scenes, this is crucial
to prevent an extremely high number of false alarms that could undermine any benefit of the
technology. Yet social distancing conditions can also be differentiated from the social interaction
ones. For example, a third person invading the o-space could mean that the three people involved
are not conversing, but still they may be at risk of contagion due to the proximity. How strict
these rules should be can only be decided case by case by the competent authority. Our goal is to
help assessing the risk of contagion not only thorough distance estimation but also leveraging
social cues.

Uncertainty Estimation. A deterministic approach can be very sensitive to small error in 3D
localization, which we know are inevitable due to the perspective projection. Therefore, we
introduce a probabilistic approach that leverage our estimated uncertainty to increase robustness
towards 3D localization noise. We note that Cristani et al. [45] also adopted a probabilistic
approach injecting uncertainty in a Hough-voting procedure. However, the chosen parameters
were driven by sociological and empirical considerations. In our case, uncertainty estimates
comes directly as an output of the neural network and they are unique for each person. Recalling
from Section 3.4 that the location of each person is defined as a Laplace distribution parametrized
by d and b in Eq. 3.4, we draw k samples from the distribution. For each pair of samples, we
verify the above conditions for social interactions. Combining all the results, we evaluate the
final probability for a social interaction to occur.

7.4 Experiments

7.4.1 Social Interactions

To evaluate social interactions we focus on the activity of talking, which is considered as the
most common form of social interactions [45]. From single images, we can evaluate how well
we recognize whether people are talking or just passing by, walking away etc.
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Table 7.1 – Accuracy in recognizing the talking activity on the Collective Activity dataset [43].
In all cases the distance has been estimated by our MonoLoco++. “W/o Orientation”, does not
uses the estimated orientation, while “Deterministic” leverages orientation but not the uncertainty.
“Task Error Uncertainty” refers to the distance-based uncertainty due to ambiguity in the task
(Eq. 3.2), “MonoLoco++ Uncertainty” refers to the instance-based uncertainty estimated by our
MonoLoco++.

Method Accuracy (%) ↑ Recall (%)↑
W/o Orientation 67.0 97.2
Deterministic 83.7 97.2
Task Error Uncertainty 91.3 97.2
MonoLoco++ Uncertainty 91.5 97.2

Datasets. We evaluate social interactions on the Collective Activity Dataset [43], which con-
tains 44 video sequences of 5 different collective activities: crossing, walking, waiting, talking,
and queuing and focus on the talking activity. The talking activity is recorded for both indoor
and outdoor scenes, allowing to test our 3D localization performances in different scenarios.
Compared to other deep learning methods [32, 15, 63], we analyze each frame independently
with no temporal information, and we do not perform any training for this task, using all the
dataset for testing.

Evaluation. For each person in the image, we estimate their 3D localization confidence interval
and orientation. For every pair of people, we apply Eq. 7.1 and Eq. 7.2 to discover the F-
formation and assess its suitability. We use the following parameters in meters: Dmax= 2 as
maximum distance, and r1 = 0.3, r2 = 0.5 r3 = 1 as radii for o-space candidates. These choices
reflect the average distances of intimate relations, casual/personal relations and social/consultive
relations, respectively [67].

How much people should look inward the o-space (to assume they are talking) is also an empirical
evaluation. We set the maximum distance between two candidate centers Rmax = ro−space for
simplicity. We treat the problem as a binary classification task and evaluate the the detection
recall and the accuracy in estimating whether the detected people are talking to each other. To
disentangle the role of the 2D detection task, we report accuracy on the instances that match a
ground truth. To avoid class imbalance, we only analyzes sequences that contain at least a person
talking in one of its frames. Consequently, we evaluate a total of 4328 instances, of which 52.8 %
is talking.

Voting Procedure. To account for noise in 3D localization, we sample our results from the
estimated Laplace distribution parametrized by distance d and spread b (Eq. 3.4). Each sample
vote for a candidate center µ and we accumulate the voting. If an agreement is reached within at
least 25% of the samples, we consider the target pair of people as involved in a social interaction
and/or at risk of contagion. MonoLoco++ estimates a unique spread b for each pedestrian,
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Table 7.2 – Accuracy in monitoring social distancing on KITTI dataset [64]. In all cases the
distance has been estimated by our MonoLoco++. “W/o Orientation”, does not uses orientation to
account for social distancing, while “Deterministic” leverages orientation but not the uncertainty.
“Task Error U.” refers to the distance-based uncertainty due to ambiguity in the task (Eq. 3.2),
“MonoLoco++ U.” refers to the instance-based uncertainty estimated by our MonoLoco++.

Method Accuracy (%) ↑ [Recall (%) ↑ ]
Easy Mod. Hard All

W/o Orientation 84.0 [95] 80.9 [75] 82.5 [33] 83.3 [75]
Deterministic 80.5 [95] 77.9 [75] 79.0 [33] 79.8 [75]
Task Error U. 84.2 [95] 81.4 [75] 85.3 [33] 83.6 [75]
MonoLoco++ U. 84.7 [95] 81.6 [77] 85.3 [33] 84.0 [75]

which accounts for occlusions or unusual locations. We compare this technique to (i) a baseline
approach that leverages 3D localization but not orientation, (iI) a deterministic approach by only
using the distance d, and (iii) a probabilistic approach where the uncertainty is provided by the
task error defined in Eq. 3.2.

Results. Table 7.1 shows the results for the talking activity in the Collective Activity Dataset
[43]. Our MonoLoco++ detects whether people are talking from a single RGB image with 91.4%
accuracy without being trained on this dataset, but only using the estimated 3D localization and
orientation. The uncertainty estimation plays a crucial role in dealing with noisy 3D localizations
as shown in the ablation study of Table 7.1. All approaches use the same values for 3D localization
and orientation, but they differ in their uncertainty component. The biggest improvement is
given from a deterministic approach to a probabilistic one. Task Error U. refers to the task
error uncertainty of Eq. 3.2, which grows linearly with distance. MonoLoco++ U. refers to the
estimated confidence interval from MonoLoco++, which are unique for each person. The role of
uncertainty is also shown in Figures 7.4, and 7.5, where 3D localization errors are compensated
by the voting procedure.

7.4.2 Social Distancing

Regarding social distancing, there are no fixed rules for evaluation. As previously discussed, the
risk of contagion is higher when people are talking to each other [14], yet it may be necessary
to maintain social distancing also when people are simply too close. Our goal is not to provide
effective rules, but a framework to assess whether a given set of rules is respected.

Datasets. In the absence of a dataset for social distancing, we created one by augmenting 3D
labels of KITTI dataset [64]. We apply Eq. 7.2 using the ground-truth localization and orientation
to define whether people are violating social distancing. Once every person is assigned a binary
attribute, we evaluate our accuracy on this classification task using our estimated 3D localization
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and orientation and applying the same set of rules.

Evaluation. We evaluate on the augmented KITTI dataset where every person has been assigned
a binary attribute for social distancing. Coherently with the monocular 3D localization task, we
evaluate on the val split of Chen et al. [39] even if no training is performed for this task. We use
the same parameters as for the social interaction task, only relaxing the constraint on how people
should look inward the o-space, and we set Rmax = 2∗ ro−space. This corresponds to verifying
whether both candidate centers µ0,µ1 are inside the o-space, as shown in Figure 7.3. The larger
Rmax in Eq. 7.2c, the more conservative the social distancing requirement. If Eq. 7.2c is removed
completely, social distancing would only depend on the distance between people.

Results. Using the augmented KITTI dataset, we analyze whether social distancing is respected
for 1760 people. Using the ground-truth localization and orientation we generate labels for which
36.8% of people do not comply with social distancing requirements. This is reasonable as KITTI
dataset contains many crowded scenes. As shown in Table 7.2, our MonoLoco++ obtains an
accuracy of 83.2%. We note that this dataset is more challenging than the Collective Activity one
[43], as it includes people 40+ meters far as well as occluded instances. Qualitative results are
shown in Figures 7.6 and 7.7, where our method estimates 3D localization and orientation, and
verify social distancing compliance. In particular, Figure 7.7 shows that the network is able to
accurately localize two overlapping people and recognize a potential risk of contagion, also based
on people’s relative orientation. In addition, we notice that orientation has a direct impact on
reducing false alarms. Without orientation, the network estimates that 43% of instances violate
social distancing requirements. Including orientation, the estimated number reaches 37%, almost
on par with the ground-truth value of 38%.

7.5 Privacy

Our network analyzes 2D poses and does not require images to process the scene. In fact in
Figures 7.1, 7.6 and 7.7, the original image is only shown to clarify the context, but is not
processed directly by MonoLoco++. We leverage an off-the-shelf pose detector that could be
embedded in the camera itself. We have designed our system to encourage a privacy-by-design
policy [44], where images are processed internally by smart cameras [21] and only 2D poses
are sent remotely to a secondary system. The 2D poses do not contain any sensible data but are
informative enough to monitor social distancing.

We also note that smart cameras differentiate from other technologies by being non-invasive and
mostly non-collaborative [44]. Unlike mobile applications, the user is not requested to share
any personal data. On the contrary, a low-dimensional representation such as a set of semantic
keypoints may prove helpful for privacy concerns.
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Figure 7.4 – Estimating whether people are talking to each other. The use of uncertainty makes
the method more robust to 3D localization errors and improves the accuracy. The bird eye view
shows the estimated 3D location and orientation of all the people. The color of the arrows
indicates whether people are involved in talking.

7.6 Conclusion

While we have demonstrated the strengths of our method on popular tasks (monocular 3D
localization and social interaction recognition), the COVID-19 outbreak has highlighted more
than ever the need to perceive humans in 3D in the context of intelligent systems. We argued
that to effectively monitoring social distancing, we should go beyond a measure of distance.
Orientation and relative positions of people strongly influence the risk of contagion, and people
talking to each other incur in higher risks than simply walking apart. Hence, we have presented
an innovative approach to analyze social distancing, not only based on 3D localization but also on
social cues. We hope our work will also contribute to the collective effort of preserving people’s
health while guaranteeing access to transportation hubs.
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Figure 7.5 – Estimating whether people are talking. Even small errors in 3D localization can lead
to wrong predictions. As shown in the bird eye view, the estimated location of the two people is
only slightly off due to the height variation of the subjects. Uncertainty estimation compensates
the error due to the ambiguity of the task.

Figure 7.6 – 3D localization task. Illustration of two people walking and talking together. Our
MonoLoco++ estimates 3D location, orientation and raises a warning when social distancing is
not respected.
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Figure 7.7 – Three people waiting at the traffic light. Two overlapping people are detected as
very close to each other and the system warns for potential risk of contagion. A third person is
located slightly more than two meters away and no warning is raised.
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8 Conclusion

This thesis has examined the effectiveness of using semantic keypoints for locating humans in
the 3D world and analyzing their behavior. We summarize the key results we have found, some
of the limitations of our approach, and possible future extensions of it.

8.1 Findings

Chapter 2 introduced semantic keypoint and proposed a novel bottom-up pose detector based on
composite fields. We found that our method based on composite fields is particularly suited for
autonomous navigation settings: limited resolution on humans and high-density crowds where
pedestrians occlude each other. Our method outperformed state-of-the-art bottom-up methods
for human pose estimation while running an order of magnitude faster. We also showed how the
concept of semantic keypoints is not limited to human pose estimation by extending it to car and
animal poses and showing quantitative and qualitative results on multiple datasets [95, 94].

Chapter 3 set the basis for establishing the effectiveness of semantic keypoints for 3D pedestrian
detection. Our proposed architecture achieved state-of-the-art results in monocular settings
without access to any contextual information such as scene background or other objects locations.
We also discovered that using a loss function based on the Laplace distribution is an effective
technique to address the ambiguity in the task and predict calibrated confidence intervals. Our
experiments have shown that the design is particularly well suited for small training data and
cross-dataset generalization.

Chapter 4 built on top of the previous chapter by extending our architecture to multiple inputs
from stereo cameras. We found that stereo-based disparity is highly effective only when explicitly
combined with monocular cues. Hence, we developed an architecture (i) that jointly associates
humans in left-right images, (ii) deals with occluded and distant cases in stereo settings by
relying on the robustness of monocular cues, and (iii) tackles the intrinsic ambiguity of monocular
perspective projection by exploiting prior knowledge of the human height distribution. Leveraging
stereo and monocular information was crucial to improving performances and robustness to
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outliers. In addition, we observed that the official KITTI 3D metrics are not suited for the 3D
pedestrian localization task and proposed a practical 3D metric tailored for humans.

Chapter 5 focused on autonomous driving applications of our method in two different settings.
First, integrating our architecture in an end-to-end motion planner, we showed how a data-centric
approach is actually more effective than a model-centric one to improve the intervention rate
of autonomous vehicles due to pedestrian interactions. Second, we proved that our keypoints-
based design is particularly effective in generalizing to unseen scenarios and, therefore, creating
pseudo-labels of crowded scenes in London.

Chapter 6 went beyond locating humans in 3D, focusing on eye contact detection in real-world
scenarios for autonomous vehicles with no control over the environment or the pedestrians’
distance. To study domain adaptation, we created LOOK: a large-scale dataset for eye contact
detection in the wild made of diverse and unconstrained scenarios for real-world generalization.
We observed that a network based on semantic keypoints better estimates whether people are
looking at the camera than end-to-end networks leveraging raw images. In addition, we explored
the effectiveness of semantic keypoints to recognize various humans’ actions in autonomous
driving applications.

Chapter 7 concluded the body of our thesis by combining our studies on 3D localization and
action recognition and by expanding our approach beyond the autonomous driving domain.
We entered the field of proxemics by investigating how people use the space when interacting
in groups and realized that, by extending our architecture with probabilistic rules, we could
accurately detect F-formations and social interactions among humans. We also showed that
analyzing social interactions is a more effective way to monitor social distancing and fight the
COVID-19 outbreak. In addition, our proposed solution (i) is privacy-safe, (ii) works with any
fixed or moving cameras, and (iii) does not rely on ground plane estimation.

In summary, experimental results have supported our initial belief: Semantic keypoints are a
powerful representation to perceive humans in the 3D world.

8.2 Limitations and Future Work

Often, someone’s greatest strength is also their main weakness. Similarly, semantic keypoints
effectively highlight the important elements of an image but are at risk of neglecting other crucial
components. For instance, understanding the surrounding scene is a prerequisite to discriminate
whether a pedestrian is crossing the street at the zebra crossing or is jaywalking. Alternatively,
in locating humans in 3D, the appearance may help indicate whether the detected person is a
close-by child or a far-away adult.

Generalization of Semantic Keypoints. Our vision is to improve scene understanding for
autonomous driving by extending the concept of semantic keypoints. In this work, we used them
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to encode the location in the image where certain information is available, but the information
contained in a keypoint is not limited to parts of an object. It can represent the class of the object
or a specific behaviour. In addition, while we have already expanded the concept of keypoints
from humans to vehicles and animals in this thesis, we could go beyond dynamic objects and
represent static ones, such as trees or zebra crossing. By modeling the entire scene with a
meaningful low-dimensional representation, we could improve our visual understanding of the
world while still filtering redundant information and, more importantly, leveraging the progress
of 2D vision tasks to improve 3D perception. Our keypoints detector OpenPifPaf (described in
Chapter 2) is particularly suited to extend the concept of semantic keypoints, as it can even detect
a different number of joints for instances belonging to the same category. 3D information of any
object can be obtained using nuScenes [31] or KITTI [64] datasets by projecting 3D point clouds
into the image plane and applying a segmentation algorithm [187] to the image.

Modeling Object Relations with Semantic Keypoints. Another exciting extension of our
work is to create an architecture that simultaneously analyzes all the instances in an image and
exploits their relations to improve 3D object detection. We have already dealt with multiple
inputs from stereo images in Chapter 4 and with human social interactions in Chapter 7. Tying
together these works, we could expand the concept of relations combining:

• Proximity relations. E.g., people close together should be predicted at similar depths,

• Contextual relations. E.g., a person behind a tree is further away than the tree,

• Identity relations. E.g., two instances in a pair of left-right images or consecutive temporal
frames should be predicted at the same depth.

By modeling interactions between all objects in a scene, we have the potential to improve
quantitative results and specifically tackle the long tail of 3D object detection. For example, in a
group of people, the adults’ predicted depth may help estimate the depth of the close-by children
or occluded instances. For this application, the use of keypoints over raw images presents two
advantages: (i) the number of input features is invariant to the size of the object and the depth in
the scene, and (ii) keypoints are a convenient representation to perform data augmentation. Hence,
we suggest augmenting 3D vision datasets with synthetic instances of outliers often missing in
standard datasets, e.g., children close by their parents.
Moreover, we argue that one of the greatest setbacks to exploiting all types of relations in a scene
is the unstructured input format: different images contain a different number of instances and, at
test time, the number is not known in advance. Low-dimensional representations mitigate this
issue and in Chapter 4 we have proposed a pairwise approach to deal with it. This approach,
however, is limited in its scalability when moving from pairwise to multi-wise comparisons.
Alternative neural network architectures, such as Graph Attention Networks [193], are worth to
be explored as they offer the following advantages:
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• they are parallelizable across node-neighbor pairs,

• they can be applied to graph nodes having different degrees,

• they are directly applicable to inductive learning problems, where the model has to general-
ize to unseen structures,

In conclusion, we encourage the vision community to expand the concept of semantic keypoints
beyond a spatial attribute and to investigate the interconnections between dynamic and static
objects in a scene. More generally, we hope future research will continue to emphasize vulnerable
road users, such as pedestrians and cyclists, and explicitly address the long tail of 3D perception
to contribute to the safety of our roads.
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