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Abstract— Wearable and unobtrusive monitoring and pre-
diction of epileptic seizures has the potential to significantly
increase the life quality of patients, but is still an unreached goal
due to challenges of real-time detection and wearable devices
design. Hyperdimensional (HD) computing has evolved in recent
years as a new promising machine learning approach, especially
when talking about wearable applications. But in the case of
epilepsy detection, standard HD computing is not performing at
the level of other state-of-the-art algorithms. This could be due
to the inherent complexity of the seizures and their signatures
in different biosignals, such as the electroencephalogram (EEG),
the highly personalized nature, and the disbalance of seizure
and non-seizure instances. In the literature, different strategies
for improved learning of HD computing have been proposed,
such as iterative (multi-pass) learning, multi-centroid learning
and learning with sample weight ("OnlineHD"). Yet, most of
them have not been tested on the challenging task of epileptic
seizure detection, and it stays unclear whether they can increase
the HD computing performance to the level of the current state-
of-the-art algorithms for wearable devices, such as random
forests. Thus, in this paper, we implement different learning
strategies and assess their performance on an individual basis, or
in combination, regarding detection performance and memory
and computational requirements. Results show that the best-
performing algorithm, which is a combination of multi-centroid
and multi-pass, can indeed reach the performance of the random
forest model on a highly unbalanced dataset imitating a real-life
epileptic seizure detection application.

I. INTRODUCTION

Hyperdimensional (HD) computing is a novel machine
learning paradigm inspired by neuroscience that has attracted
lots of interest in the last years in many different domains.
In the biomedical domain it has been used for emotion
recognition from GSR (galvanic-skin response), electrocardio-
gram (ECG) and electroencephalogram (EEG) [1], EEG error-
related potentials detection [2], electromyogram (EMG), ges-
ture recognition [3], epileptic seizure detection from EEG [4],
etc. HD computing is an interesting alternative to standard
machine learning approaches as it offers opportunities for
continuous online learning [5], [6], semi-supervised [7],
distributed [8] or multi-centroid learning [9]. Furthermore, it
is highly efficient due to its lower energy and memory re-
quirements [4], [10], [11], and offers opportunities for design
novel algorithms [7], [9], [12], which makes it interesting
for wearable devices. Thus, hardware implementations and
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optimizations for HD computing are a common topic of recent
works showing promising results [13], [14].

In recent years, a lot of effort has been put into designing
wearable devices for patient monitoring, with detection and
prediction capabilities. Epilepsy monitoring and real-time
seizures detection are one of such applications. Epilepsy
is a chronic neurological disorder characterized by the
unpredictable occurrence of seizures, affecting a significant
portion of the world population (0.6 to 0.8%) [15]. Despite of
pharmacological treatments, one-third of patients still suffer
from seizures [16]. The unexpected occurrence of seizures
imposes serious health risks and many restrictions on daily life.
As such, solutions that would allow continuous unobtrusive
monitoring and a reliable detection (and ideally prediction)
of seizures will be of high importance. Such technology will
also be instrumental in deepening knowledge and designing
novel treatments. Epilepsy is not only challenging from a
medical perspective related to its origins, treatment, and
prevention but also from the engineering perspective of
detection from the recorded physiological signals. Even
from multi-channel EEG recordings, it is a big challenge
to design a lightweight, real-time detection system with
(almost) no false positive alarms. Reasons are multi-fold: huge
disbalance in data distribution (i.e., the amount of seizure vs.
non-seizure data), scarcity of training data available, highly
variable and personalized morphologies of signals, as well as
computational and memory requirements of algorithms used.

HD computing comes as an interesting option due to the
aforementioned positive aspects. Despite initial optimistic
performance reported in the literature [4], [10], HD computing
is not performing so well when taking into account more
realistic data distributions [9]. As will be shown in this paper,
when using ten times more non-seizure data, performance
is significantly reduced with the HD computing approach
when compared to the Random Forest model. Other state-of-
the-art models, such as those based on deep learning [17],
are not considered due to their excessive complexity (both
on computing and memory requirements) for a low-power
implementation in wearables. At the same time, various
strategies have been proposed in the literature to improve
learning and detection with HD computing. For example, the
iterative learning approach [18] has been proposed instead
of single-pass learning, but it has not been fully explored yet
for epilepsy. Further, the multi-centroid approach [9], which
is appropriate for the high variability of seizure and non-
seizure signals, also showed significant improvements when
compared to the standard single-centroid approach. In the end,
the "OnlineHD" approach [12] also works in a single-pass
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Fig. 1. Schematic of the HD computation workflow. Adapted from [9].

manner but multiplies vectors with a weight factor depending
on the novelty each data window brings. It aims, as well as
both iterative and multi-centroid approaches, to overcome the
dominance problem of more common patterns in the final
prototype vectors. This approach also has not yet been tested
for the challenging task of epileptic seizure detection.

Thus, following the challenges epileptic seizure detection
poses, we aim to test and compare various algorithms for HD
computing improvement on this problem, hoping to achieve a
performance that would be acceptable by users. In this work,
we contribute to the state of the art in the following manner:

• We systematically compare the performance of the
standard single-pass one-centroid HD computing ap-
proach with the classical random forest learning model
on epileptic seizure detection with more realistic data
distributions and show that HD computing still has a
performance gap to cross.

• We then implement several existing proposals for im-
proved HD computing learning: iterative (multi-pass)
one-centroid learning, multi-centroid single-pass as well
as "OnlineHD". Not all of them have been yet tested
for epileptic seizure detection.

• We combine two strategies to test whether multi-centroid
with multi-pass approach can bring additional improve-
ments to the performance.

• Finally, we compare the mentioned strategies in terms of
their performance and their memory and computational
requirements with a wearable implementation in mind.

II. HD COMPUTING LEARNING STRATEGIES

A. Traditional HD computing workflow

HD computing is based on computations with very long
and redundant (mostly binary) vectors (usually >10000
dimensions), which represent information in a condensed
and distributed way. Calculating and learning with vectors is
based on a few specific algebraic properties. The two most
important ones are: 1) any randomly chosen pair of vectors
are nearly orthogonal and 2) when summing two or more
vectors, the result will be with high probability more similar
to the added vectors than to any other randomly chosen vector.
These properties are crucial for learning and inference.

More specifically, HD learning starts by encoding data
and its relations to HD vectors. As illustrated in Fig. 1,

baseline vectors representing different scalar values, features
and channels are combined during the encoding stage to get
one vector. This vector represents that specific data sample
(window), instead of a feature set, as in other ML approaches.
The training phase is relatively simple and consists of
summing (bundling) all vectors from the same class to one
prototype vector representing each class. Summation of the
vectors is usually done by bit-wise summation, followed by
majority voting normalization. In the end, for inference, a
vector representing the current data sample is compared with
prototype vectors of all classes, and the label of the most
similar one is given as output. The most common measure
of similarity is the Hamming distance in the case of binary
HD vectors (elements are 0 or 1), but cosine or dot products
can also be used in the case of integer or float HD vectors.

Traditionally, HD computing classifiers have been based on
a single-pass learning and a single-centroid model vector per
class, as illustrated in Fig. 2A. However, many current ma-
chine learning problems are challenging due to the immense
complexity and variability of patterns in data, especially when
compared to the amount of training data available. Epilepsy is
one such case, where electroencephalogram (EEG) signatures
of epileptic seizures are highly unique and variable among
people, brain states, and time instances, especially if they
are grouped under only two given labels. Non-seizure data
represents many different brain states, such as awake, sleeping,
physical or mental effort conditions, which can significantly
increase data variability grouped under one class. All of these
states have their own brain signatures that need to be learned.
In the standard single-pass one-centroid HD approach, all
data samples are equally important during learning, leading to
more common patterns dominating the prototype vectors. This
means that less common patterns could be potentially under-
represented and wrongly predicted even on the same training
data. Thus, in this work, we compare different proposed
strategies that can tackle this problem: iterative (multi-pass)
learning, multi-centroid, multi-centroid with iterative learning,
and "OnlineHD". We find epileptic seizure detection a perfect
test case for this due to the variability of patterns in both
seizure and non-seizure classes, the inherent disbalance in
the amount of seizure/non-seizure recordings, and a generally
relatively small size of training data.
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Fig. 2. Schematic of different improvements on HD computing learning: A. Standard single-pass single-centroid HD learning, B. Multi-pass
(iterative) single-centroid learning, C. Multi-centroid single-pass learning and D. OnlineHD single-pass learning.

B. Multi-pass learning approach

The first approach aimed at overcoming the problem of
dominance of common patterns is iterative learning [18]. We
call it also multi-pass learning to clarify its relation to other
approaches. In the first pass of learning, all samples are added
to the corresponding data class, the same as in traditional
single-pass learning. Next, an iterative process of multiple
passes starts wherein each pass for each sample prediction is
given based on the learned prototype vectors from the previous
pass. In case of a wrong prediction, this sample is added
again to the correct class. In this way, less common patterns
that got under-represented are strengthened by adding them
multiple times. After each pass, performance is evaluated
on the same training set. The multi-pass process stops once
there is no more significant improvement in performance.
The workflow of iterative learning is shown in Fig. 2B.

This approach can be improved if the vector of a wrongly
classified sample is added to the correct class prototype
vector and also subtracted from the other ones. Further,
before adding/subtracting vectors to prototype vectors, it
can be multiplied with a factor (learning rate) to increase its
weight. In [18], authors test different values of multiplication
factors (learning rate) and their influence on the number of
iterations needed to achieve a stable performance and the final
performance itself. They show that small factors lead to clear
performance increase but require many iterations. On the
other side, too big multiplication factors lead to fluctuations
in performance, thus potentially never converging and never
finishing the training procedure. Hence, they also tested an
adaptable threshold strategy to exploit the advantages of a
large learning rate at the beginning and a small learning
rate in the end for fine-tuning the performance. They tested
these approaches on four different classification applications
and showed performance improvement as well as improved
energy and computational complexity. Unfortunately, none
of the applications used for testing was epileptic seizure
detection, and one could argue that the chosen problems were
less complex and challenging than the epileptic seizure one.
Further, in order to be able to compare properly with other
approaches (explained below), we implemented this approach
as well.

C. Multi-centroid learning approach

Another way to not let the frequency of certain pat-
terns make them dominate the model, leading to under-

representation and worse classification of less common
patterns, is to treat them as separate sub-classes (centroids)
of the same class. In this way, they are not all accumulated
to the same prototype vectors, but it is possible to have
multiple vectors representing the same class. This approach
was explored in [9] and has shown to significantly improve
epileptic seizure detection. Balanced datasets, with the same
amount of seizure and non-seizure data, are commonly used,
but are not realistic in real-life applications. Thus, authors
compared performance also on unbalanced datasets with
more non-seizure than seizure data. The more unbalanced the
dataset was, the bigger the performance improvement when
compared to the single-centroid approach.

The workflow of the approach is illustrated in Fig. 2C.
This approach is interesting as it allows the semi-supervised
creation of an unlimited number of centroids (sub-classes)
of each class. Namely, if the current sample vector is more
similar to the wrong class than any correct sub-class (meaning
that it would be wrongly classified), a new subclass of the
correct class is created. This process can sometimes lead to
many sub-classes where some have only a few samples that
contributed (were added) to it. Hence, in the last step of the
workflow, the number of sub-classes is reduced by either
removing the less common sub-classes or clustering them
with the most similar sub-classes sharing the same label. This
step significantly reduces the number of sub-classes and thus
the memory required to store them while still achieving higher
performance by allowing several centroids. When compared
to the iterative multi-pass approach, this approach is more
memory-consuming but should be faster due to the single-
pass approach. This is the motivation to compare those two
approaches in more detail.

Furthermore, it is interesting to test whether combining
iterative and multi-centroid approaches could further improve
performance. Namely, the multi-centroid and multi-pass
approach would consist of the first step with one pass of
multi-centroid training and then passing several times through
the training data to fine-tune the exact centroid values.

D. Weighted learning approach

Following the data-driven learning rate idea from [18],
in [12], the multi-pass approach is replaced with single-pass
to reduce the training costs. More specifically, as shown in
Fig. 2D., a naive accumulation of equally important samples
is replaced by using the weighting approach before adding the



current vector to the prototype vectors. The weight is defined
by the similarity of the current vector to the current prototype
vectors; the higher the similarity, the lower the weight.
This approach identifies the most dominating patterns and
lowers model saturation by them. In [12], authors compared
this so called "OnlineHD" approach in performance to the
previously described iterative approach. Comparable accuracy
was achieved on several different classification problems. This
approach should be as memory-consuming as the traditional
one-centroid single-pass, but might be more time-consuming.
This is due to the need to update continuously and normalize
the prototype vector after adding each training sample (and not
at the end of the pass as in other approaches). It is interesting
to analyze the performance of this approach and compare it
to the two previously proposed methods for preventing the
under-representation of less common patterns.

III. EXPERIMENTAL SETUP

Epilepsy is a challenging and relevant problem for which
science and technology have not yet proposed a good wearable
solution for monitoring, detecting, and even predicting
seizures to increase patients’ quality of life. Thus, we test
HD learning strategies on this use-case with the final goal of
reaching a performance that could be acceptable by users.

A. Databases

CHB-MIT [19], [20] is a widely known and publicly
available database that contains long EEG (electrocardiogram)
recordings that can be used to test algorithms not only in a
balanced manner (same amount of seizure and non-seizure)
but also in more realistic data balance. It contains scalp EEG
recordings from 24 subjects, and includes 183 seizures, with
an average of 7.6 ± 5.8 seizures per subject. To standardize
the experiment, we use the 18 channels from the international
10-20 bipolar montage that are common to all patients. From
the raw database, we prepared a dataset that contains ten
times more non-seizure data than seizure data to be closer
to a more real-life data balance. The main reason to avoid
a balanced scenario, which is common in many works in
the literature, is that it can lead to a highly overestimated
performance, not achievable during the continuous monitoring
with a wearable device [9]. Non-seizure segments were chosen
randomly from available non-seizure data, but excluding data
1 min before and 15 min after a seizure. This data might
contain ictal patterns and thus make classes less separable. In
reality, performance on this data segment would not be very
relevant for the subject as seizures would be either detected
slightly earlier (which could be interpreted as prediction) or
seizure detection would last longer, which is not critical for the
patient either. Moreover, neurologists often have difficulties in
defining the exact end of a seizure, and thus many databases
do not even have labeled end of the seizure.

B. Feature extraction and mapping to HD vectors

In this work, we use 46 features as used in [9] to make it
comparable, as we use the same database and share one of the
approaches. Most of the features were based on [21] which

contains eight frequency spectrum features, 27 entropy-based
features and mean amplitude value. Entropy-based features
contain sample, permutation, Renyi, Shannon, and Tsallis
entropies. Frequency-domain features present power spectral
density and the relative power in the five common brain
wave frequency bands; delta: [0.5-4] Hz, theta: [4-8] Hz,
alpha: [8-12] Hz, beta: [12-30] Hz, gamma: [30-45] Hz, and
a low-frequency component ([0-0.5] Hz). These features are
considered medically relevant for detecting seizures [22].

C. Validation

Training and evaluation are performed in a personalized
manner. This is due to the subject-specific nature of epileptic
seizures and their signal patterns. More specifically, for each
subject and seizure, data is preprocessed to contain 10 times
more randomly selected non-seizure data and saved to an
individual file. Then leave-one-seizure-out cross-validation is
performed, where HD models are trained on all but one file
(containing one seizure each). Final performances reported
per subject are the average of all cross-validation iterations.

1) Performance Evaluation: We quantify prediction perfor-
mance with two measures to increase the interpretability of
performance, as proposed in [23]. This is an ongoing discus-
sion that started with [24] and [25]. Here, more specifically,
we measure performance on the 1) episode level and on the
2) seizure duration level. The episode level performance cares
if seizure episodes are correctly detected, but not necessarily
that the full duration of seizure and the start and end time
points are correctly classified. It treats predictions and true
labels as blocks of 1’s and 0’s and evaluates on a level of these
blocks. The duration level performance cares about the correct
prediction of each time-point, also meaning that seizures
need to be correctly classified during their whole duration.
This metric can sometimes be challenging to use due to the
difficulty in labeling the true start and end of a seizure. Indeed,
it might not be possible to achieve 100% accuracy. Thus, we
use both metrics to give us a better insight into the operation
of the proposed algorithms. For both levels, sensitivity,
precision, and F1 score are calculated. Sensitivity or true
positive rate TPR is calculated as TP/(TP + FN), while
precision or positive predictive value or PPV is calculated as
TP/(TP+FP ). F1 score is calculated as the harmonic mean
of sensitivity and precision: 2∗TPR∗PPV/(TPR+PPV ).
Finally, to have a single measure for easier comparison of
methods, we calculate the mean value of the F1 score for
episodes and duration as F1DEmean.

2) Label post-processing: The raw predictions from the
classifier can show unrealistic behavior for dynamics of
epileptic seizures (e.g., seizures lasting only a few seconds
or separate seizures that are a few seconds apart). Thus,
we utilize time information to perform label post-processing,
which consists of two steps. In the first step, time information
of the signal is exploited to smooth the predictions by going
through the predicted labels with a moving average window
of a certain size SWlen (5s) and then performing majority
voting. In the second step, seizures closer than 30s are merged
together into one seizure.



Fig. 3. Performance of random forest as a benchmark for HD
computing. Performance is shown for both episode and duration
level, including sensitivity, precision and F1 score values.

3) Statistical analysis: Due to the high performance
variability between subjects, we perform statistical analyses
to compare different strategies. We compare each learning
approach with the traditional single-pass one-centroid ap-
proach using the Wilcoxon statistical test. It compares the
performance of two paired groups, and we report the p-value.

Finally, the code and data required to reproduce the
presented results are available online as open-source1.

IV. EXPERIMENTAL RESULTS

A. Standard HD computing learning

Standard, traditional HD computing learning is single-
pass single-centroid per class, where each sample is equally
important. As explained previously, it consists of simple
summing up (and normalizing in the end) all vectors coming
from the same class to get prototype vectors of the class.
Fig. 3 shows a performance comparison of the standard HD
computing approach with Random Forest performance as a
benchmark. The random forest contained up to 100 trees and
was trained on the same dataset, with identical preparation,
train-test split, and post-processing as the HD computing
approach. Here we see that HD computing is performing
significantly worse than the random forest approach. TPR or
sensitivity stays equally good with the HD approach, meaning
that all seizures are usually detected, but a significant drop is
perceived in PPV (precision), which means that many false
positives occur when using HD computing. For F1 score for
episodes the drop in the mean performance of all subjects
is 25.7%, while for F1 duration score is 16.9%. Thus, in
the next experiments, we test if improved learning strategies
of HD learning can help resolve this problem and reach the
performance of random forest.

B. Multi-pass (iterative) learning

In Fig. 4, two versions of the multi-pass approach are
compared with the standard single-pass approach. In one
approach, when the current data window would be wrongly
classified, it was just added to the correct class again (2C+),
whereas in another approach, it was also subtracted from
the wrong class (2C+

− ). The average number of iterations,
percentage of re-added data, and prediction performance are

1https://c4science.ch/source/LearningImprovForHDcomputingOnEpilepsy/

Fig. 4. Iterative (multi-pass) approach compared to single-pass
approach. The average number of iterations, percentage of data that
had to be re-added and performances on the test set are shown.

analyzed and shown as a distribution over all subjects. It can
be observed that on average, it took around 13 passes for 2C+

and 12 passes for 2C+
− to get a stable performance value. The

amount of data that had to be re-added on average was 24%
for 2C+ and 16% for 2C+

− . Interestingly, for 2C+
− model,

the variability between patients is smaller than for the 2C+

model. Concerning the performance, the F1 score for episodes
(F1E) and for duration (F1D) as well as their mean (F1DE)
is shown. Both multi-pass (2C+ and 2C+

− ) approaches have
significantly higher performance when compared to single-
pass (2C) approach (p = 1.63e−5 for 2C+ and p = 2.6e−2

for 2C+
− for mean of F1E and F1D). There is no significant

difference in F1DE performance between between using
either the 2C+ or 2C+

− approach (p = 0.74).

C. Multi-centroid learning

Fig. 5 shows the performance of several versions of a multi-
centroid approach when compared to a traditional single-
centroid one. As described in [9] first step of the multi-
centroid approach is to allow an unlimited creation of sub-
classes (MC), after which the essential step of removing
unnecessary sub-classes follows. This can be done either by
simply removing the least common centroids of each class
(MCr) or clustering (MCc) least common centroids with
the closest same class ones. Here, results for only MCr
approach are showed as they were slightly better and it is
lighter to implement.

Results show that the first step of MC approach creates,
in average for all subjects, 18 sub-classes for seizure and 22
for non-seizure. The approach of removing least populated
classes (MCr) results in, on average, five seizure and six non-
seizure sub-classes. Variability is very high between subjects
and is within [6-117] sub-classes (summed for seizure and
non-seizure) after the first MC step, and is reduced to range
[3-26] after MCr step. Going from single-centroid to multi-
centroid significantly improves the performance on both train
and test sets. More specifically, for the test set the average
performance of all subjects is increased from 61% to 76%
for mean value of F1 score for duration and episodes. It is
important to note that after the second step of reducing the
number of sub-classes, despite a significant reduction in the
number of sub-classes, the performance is not significantly
reduced for the MCr approach.



Fig. 5. Multi-centroid learning approach is compared to traditional
single-centroid approach. The average number of centroids per
seizure and non-seizure as well as performance is shown.

Next, we tested whether performing additional steps of
iterative learning on centroids decided after MCr can lead
to additional performance improvements. Thus, the number
of centroids (and their initial structure) was fixed based on
the previous step, but then by passing several times through
the training dataset, we allowed slight fine-tuning of the
centroids. Although additional performance improvement can
be obtained in the training set, but not in the test set. We
believe this is due to overfitting.

D. Weighted learning

The weighted approach, also called "OnlineHD" [12], is
an alternative to the multi-pass and multi-centroid approaches.
In Fig. 6, the distribution of the weights for seizure and non-
seizure is shown. The average values of weights are between
0.1 and 0.2, meaning that between 80% and 90% of the
bits in vectors were identical when adding a new sample.
For some subjects, such as subjects 5, 9, 10, 14, 19 and 24,
values are similar for both seizure and non-seizure, while for
some subjects, seizure values are larger than for non-seizure,
meaning that they were bringing more novelty. For a few
subjects (e.g., for subj 1 and 23), it was the opposite, i.e.,
non-seizure data brought more novelty.

Finally, when comparing performance, we compared two
versions of weighted learning. The first one where the weighed
sample is added only to the correct class (On+) and and a
second one, similarly to multi-pass, where it is also subtracted
from the wrong class if it would be wrongly predicted (On+

−).
Performance results in Fig. 6 show that just weighted adding
(On+) does not significantly improve results on the test set,
but that adding and subtracting does help significantly.

E. Comparison of all tested learning strategies

Finally, in Fig. 7, we compare the seizure detection
performance for all the studied strategies. The mean of F1
score for duration and episodes is shown as a distribution
over all subjects. Again, the performance of standard HD
computing (2C) with single-pass and single-centroid leads
to a significantly lower performance and higher inter-subject
variability than the random forest (RF ) approach. Performing
iterative (multi-pass) learning improves the performance both
for training and test sets, but a larger improvement is possible
when both adding the current data vector to the correct class

Fig. 6. Weighted learning approach is compared to the traditional
single-centroid approach. The distribution of the weights for seizure
and non-seizure is shown for each subject on the upper plot. The
lower plot shows the performance when comparing two weighted
approaches with the traditional (non-weighted) approach.

Fig. 7. All learning approaches tested in this work are compared
together regarding seizure detection performance. Only one measure
combining all together is shown (mean of F1 score for episodes
and duration). Results on the test set are shown, where boxplots
represent a distribution of performance over all subjects.

and subtracting it from the wrong class (2C+
− ) than only

adding it (2C+), as shown previously in the literature.
The multi-centroid approach (MC, MCr) also leads to a

significantly improved performance (with respect to 2C) but
not yet achieving the level of random forest. If centroids are
then fine-tuned through several passes of multi-pass learning
(MCri), performance is improved even more. In that case,
there is no significant difference between multi-centroid multi-
pass approach with removal of less common classes (MCri)
with respect to random forest (p = 0.18).

The "OnlineHD" approach also leads to a significant
improvement in performance, but only when using the
approach of adding and subtracting vectors from correct and
wrong classes, respectively. However, it did not reach the level
of no significant difference with random forest (p = 0.013).

These results show that with additional improvements to
standard HD computing, it is possible to achieve a perfor-
mance as good as with random forests for the seizure detection
problem. Nevertheless, Fig. 7 highlights that variance between
subjects is high, especially for HD, and there is space for
further improvements of HD performance.

F. Memory and computational requirements

Finally, we analyse also the memory and computational
complexity of the different learning strategies. Memory is
calculated as the memory needed to store all the prototype
vectors. In Fig. 8, the relative amount of memory is shown to



Fig. 8. Comparison of different learning approaches with respect
to the time needed for calculation of prototype vectors and memory
required for storing them.

compare different approaches. Multi-centroid learning (MC)
obviously requires the largest amount of memory, but this is
reduced to less than half after optimization steps of removing
unnecessary centroids in the second step of the algorithm
(MCr). This is still up to 5 times more than the standard
single-centroid "onlineHD" (On+ or On+

−) approach.
In order to quantify computational complexity we analysed

the time needed to perform each type of training using
the python implementationrunning on a single-core. We
evaluate the relative time between learning strategies. Time
was measured as an average over all subjects and all
cross-validation iterations. As expected, iterative, multi-pass
learning (2C+ or 2C+

− ) is significantly more complex (>30x
time for 2C), due to the need for evaluation of performance
after each pass of training. Multi-centroid approach in its first
step (MC) is not extremely time consuming (∼5x time for
2C), but the second step (Mrc ) of optimizing the number of
centroids increases the computational complexity (>35x time
for 2C). In the end, multi-centroid and multi-pass (MCri ) is
understandably the most time and computationally intensive
(∼85x time for 2C). Interestingly, "onlineHD" (On+ or On+

−)
learning, even though more complex than single-pass, is
significantly more lightweight than the multi-pass or multi-
centroid approaches (only ∼2x time for 2C).

V. CONCLUSION

In this work, we have investigated and compared the
characteristics of different HD computing strategies in the
context of epileptic seizure detection with respect to more
established approaches such as random forest. In particular,
our results have shown a significantly lower performance of
the standard HD approach compared to the random forest
one, mainly due to many false-positive seizure detections.
Moreover, enhancing this standard HD approach by using
multi-pass, multi-centroid learning and their combination
improves this performance. However, only their combination
reaches a performance level comparable to the random forest.
Then, we tested a single-pass training approach with sample
importance ("OnlineHD") and it significantly improved the
performance. Furthermore, this approach is much more
memory and computationally friendly when compared to
a multi-pass approach, which takes more time to train, or
when compared to a multi-centroid approach, which requires

more memory. Our analyses and results have proven the
applicability of HD computing for real-life epileptic seizure
detection.
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