
VWR2A: A Very-Wide-Register Reconfigurable-Array
Architecture for Low-Power Embedded Devices

Benoît W. Denkinger
EPFL, Switzerland

Miguel Peón-Quirós
EPFL, Switzerland

Mario Konijnenburg
IMEC, Netherland

David Atienza
EPFL, Switzerland

Francky Catthoor
IMEC, and KU Leuven, Belgium

ABSTRACT
Edge-computing requires high-performance energy-efficient em-
bedded systems. Fixed-function or custom accelerators, such as
FFT or FIR filter engines, are very efficient at implementing a par-
ticular functionality for a given set of constraints. However, they
are inflexible when facing application-wide optimizations or func-
tionality upgrades. Conversely, programmable cores offer higher
flexibility, but often with a penalty in area, performance, and, above
all, energy consumption. In this paper, we propose VWR2A, an
architecture that integrates high computational density and low
power memory structures (i.e., very-wide registers and scratchpad
memories). VWR2A narrows the energy gap with similar or better
performance on FFT kernels with respect to an FFT accelerator.
Moreover, VWR2A flexibility allows to accelerate multiple kernels,
resulting in significant energy savings at the application level.

KEYWORDS
programmable cores, accelerators, CGRA, reconfigurable architec-
ture, low power, embedded systems

ACM Reference Format:
BenoîtW.Denkinger,Miguel Peón-Quirós,Mario Konijnenburg, DavidAtienza,
and Francky Catthoor. 2022. VWR2A: A Very-Wide-Register Reconfigurable-
Array Architecture for Low-Power Embedded Devices. In Proceedings of
Design Automation Conference ’22 (DAC ’22). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Moving the computational load towards the edge reduces commu-
nication energy but requires high-performance energy-efficient
embedded devices. Hardware architecture exploration for such de-
vices is an active area of research, as we still need to obtain higher
energy efficiencies to enable long-lasting operation between battery
recharges. The inclusion of hardware accelerators in the computing

This work was supported in part by the Swiss NSF ML-Edge Project under Grant
Agreement (GA) no. 200020_182009, in part by the ReSoRT Project funded by Botnar
Foundation under GA no. REG-19-019, in part by the ERC Consolidator Grant COM-
PUSAPIEN under GA no. 725657, and in part by a joint research grant for ESL-EPFL
by IMEC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

platform has become a standard in recent years. These accelera-
tors can execute repetitive operations that account for a significant
amount of the processing time (i.e., computational kernels) in a
more efficient way than a general purpose CPU or generic GPU.

The development of accelerators follows two main trends: cus-
tom accelerators, or ASIC, and flexible (programmable) cores, usu-
ally considered as DSIP [8]. Fixed-function accelerators are often
themost efficient way of implementing a particular functionality for
a given set of constraints. They are, in general, not programmable
and are thus focused on a single task or a small family of related
tasks. One example of a custom accelerator is the FFT accelerator
included in the MUSEIC platform [12], which can execute FFTs
of different sizes much more efficiently than the platform ARM
Cortex-M4 core. However, it is possible to build programmable
cores tailored specifically for algorithms from a given application
domain (i.e., DSIP) without becoming general purpose processors.
Traditional knowledge says that these flexible cores are less efficient
than fixed-function ones and that the latter should be preferred to
improve the energy efficiency of the systems.

In this paper, we showhow tomove in the flexibility-performance
trade-off and build flexible domain-specific cores that close the ef-
ficiency gap in terms of energy and performance with respect to
custom ones for individual computation kernels. Moreover, as these
cores still have an instruction-set which covers a broad domain,
they hence can be used in more parts of the application. As con-
sequence, they achieve larger improvements when the complete
application — rather than individual kernels — is taken into account.

We started from the basis of a coarse-grained reconfigurable
array (CGRA) [7], which offers a high computation density versus
control logic, and improved it with a memory architecture based on
very-wide registers (VWRs) and wide scratchpad memories (SPMs).
To demonstrate the benefits of our architecture, we considered
a biosignal-processing embedded system meant for wearable de-
vices [12]. Then, we evaluated two typical kernels used in biosignal
applications, FFT and FIR filters, and a biosignal application.

The rest of this paper is organized as follows. First, we discuss
related architectures for low-power computing in Section 2. We
then present our proposed architecture for ultra-low power pro-
grammable accelerators in Section 3. In Section 4, we describe the
experimental setup used to evaluate our proposals, whereas in Sec-
tion 5 we analyze the results obtained. Finally, in Section 6 we draw
the main conclusions of our study.

2 RELATEDWORK
CGRAs have often been used for DSIP architectures as they pro-
vide good flexibility with reasonable energy overhead compared to
ASICs. One example isMorphoSys [11], a system-on-chip composed

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DAC ’22, July 10–14, 2022, San Francisco, CA Benoît W. Denkinger, Miguel Peón-Quirós, Mario Konijnenburg, David Atienza, and Francky Catthoor

of a TinyRISC processor and a CGRA. The processor controls the
execution flow of the code while the CGRA executes the most com-
putationally intensive kernels. The concept of VWR2A is similar
to MorphoSys in that it runs besides a low-performance processor.
The goal is to reduce the overall system energy to the minimum.

However, according to the authors of [9], such architecture is
not optimal because the control-intensive code left to the proces-
sor significantly reduces the speed-up benefit of the CGRA. To
address this issue, they proposed the ADRES framework [9]: an
architectural template composed of a VLIW processor and a CGRA.
The VLIW allows efficient execution of control-intensive code, and
the CGRA still accelerates the computation-intensive kernels. It is
focused on increasing the performance, but not on the low energy
consumption. Whereas in VWR2A, we propose to improve the typ-
ical CGRA architecture to execute the intensive-control code. This
allows complete applications to be executed on VWR2A, removing
the need for an advanced general-purpose processor like the VLIW
of the ADRES platform, thus reducing the overall system energy
consumption.

VWR2A integrates low-power memory structures. The first one
is a dedicated SPM tuned for our biosignal kernel target. VWR2A is
meant to be integrated inside a platform and needs to have access to
the system memory, usually through the system bus. Therefore, the
performance of algorithms with many data accesses is dependent
on the system bus latency and bandwidth, which can negatively
impact the overall performance. Moreover, data access through the
system bus is costly in energy and can be reduced with a judicious
memory hierarchy design. A typical approach is to use caches, like
in MorphoSys, but they incur a significant energy penalty due to
their inherent control overhead. SPMs offer similar performance at
lower energy as the control is moved to the software side [1].

Second, we propose the use of VWRs in replacement of the
traditional register file for data. VWRs have been introduced in
the FEENECS template of [10] and [2] as a better alternative, in
terms of energy, to standard multi-ported register files. The first
reason is that the cells of the VWRs are single-ported, while those
of the register files are multi-ported. Second, their wide interface
still allows multiple words to be loaded at once, which leads to a
lower overall energy per word access than traditional register files.
To fully benefit from the VWRs, the background memory — the
SPM in our case — needs to match the VWR width, allowing to fill
the VWR in one cycle. This effectively makes the VWR interface
asymmetric with respect to the SPM side and the datapath side.
The authors of [10] and [2] also show that such design is better for
place and route, as both memories (i.e., the SPM and the VWR) can
be aligned, and the wire length of the most active connection is
reduced to a minimum. Indeed, only the outputs of the multiplexers
switch in every cycle, not the outputs of the VWRs themselves,
reducing the energy consumption.

Several previous works on CGRAs focus on the interconnection
scheme of the reconfigurable cells (RCs), for example, to provide
communication with distant neighbors. This paper does not con-
sider advanced interconnections between the RCs because they
represent a significant energy overhead. Limiting the interconnec-
tion to the neighbor cells reduces the wire length, which is essential
for an ultra-low power architecture using scaled technologies, with-
out significantly impacting performance.

In this paper, we focus on the novel architectural features of
VWR2A. We integrated it into a specific platform to demonstrate
its performance, but it could be integrated into any platform. CGRA
compilers are also an active area of research, but we did not adapt
any existing solution to our specific architecture. We have currently
mapped the code manually on VWR2A.

3 ARCHITECTURE FOR ULTRA-LOW POWER
PROGRAMMABLE CORES

Fig. 1 shows the VWR2A architecture diagram. We used the CGRA
architecture as a basis as it offers a high computation density versus
control logic. The new features and design choices proposed in this
paper have been driven by two criteria: extended application code
coverage and low power design.

3.1 Reconfigurable array
VWR2A contains a 4x2 array of reconfigurable cells. To reduce
control overhead, the RCs are grouped in two columns, where all
the RCs of a column are synchronized through a shared program
counter (PC). The columns are independent, allowing two kernels
to run in parallel. Each RC has a program memory of 64 words,
which is enough to execute most kernels. The configuration words
are stored in the configuration memory and loaded to the RCs’
local program memory when a kernel execution starts. The CGRA
architecture offers a high computation density because the bits of
the configuration words (i.e., “instructions”) correspond directly to
the control signals in the cell datapaths, without an actual decod-
ing process. There is evident parallelism between this architecture,
where the RCs of a column share a program counter, and a VLIW
in which all the execution slots are equivalent. Indeed, the instruc-
tions of the different RCs can be fused and considered as a wide
(predecoded) instruction word.

Each RC of the reconfigurable array contains a small register
file (two 32-bit entries) and a 32-bit ALU that can execute typical
operations: signed addition, subtraction and multiplication, logical
bitwise operations, and logical/arithmetic bit shift. All operations
happen in one clock cycle. The multiplier has two working modes: a
standard mode, where the lowest 32 bits are kept, and a fixed-point
mode, where the lower 16 bits are discarded, and the next 32 bits are
kept. This enables single-cycle fixed-point multiplication in 16.15
format and good performance for algorithms that require decimal
representation, such as the FFT. The ALU operands have multiple
sources: the VWRs, the SRF (see Sec. 3.2), the RC local register file,
and the previous-cycle results of neighboring RCs. All the operators
in the ALUs implement operand isolation [5] to minimize energy
consumption.

3.2 Ultra-low energy memory organisation
VWR2A contains a dedicated 32 KiB SPM shared by all the columns.
The SPM has a double interface: on the system side, it has the
system bus width. On the accelerator side, it has the same width as
the VWRs. A DMA performs the data transfers between the SPM
and the system memory, while the LSU moves the data between the
SPM and the VWRs. The VWRs act as a buffer between the SPM
and the RCs, which can access the elements in the wide registers
word by word. The RCs and the VWRs are connected through a

VWR2A: A Very-Wide-Register Reconfigurable-Array Architecture for Low-Power Embedded Devices DAC ’22, July 10–14, 2022, San Francisco, CA
S
o
C

 B
u
s

In
te

rc
o
n
n

e
ct

io
n

SHARED SPM

S
Y
N

C
H

R
O

N
IZ

E
R

C
O

N
FI

G
U

R
A
T
IO

N
 M

E
M

O
R
Y

D
M

A

VWR2A

V
W

R

 A

V
W

R

 B

V
W

R

 C

S
H

U
FF

LE
 U

N
IT

COLUMN 1

S
R

FMXCU LCULSU

RC0

RC1

RC2

RC3

V
W

R

 A

V
W

R

 B

V
W

R

 C

S
H

U
FF

LE
 U

N
IT

COLUMN 0

S
R

F MXCULSULCU

RC0

RC1

RC2

RC3

RECONFIGURABLE ARRAY

Figure 1: VWR2A architecture diagram

network of multiplexers, allowing multiple RCs to work in parallel
on different sections of a VWR.

The size of the VWRs depends on the target domain, biosignal
kernels in our case, and the datapath width consuming the data
words. On the one hand, the VWRs need to be large enough to
minimize the frequency at which new data have to be loaded. On
the other hand, wider VWRs have higher leakage. In VWRA2, the
VWRs and the SPM have a 4096 bitwidth allowing 128 words of
32 bits to be transferred in a single cycle. This width is a good
tradeoff considering that the four RCs can access one-fourth of a
VWR (32 words). To be single-ported, multiple VWRs are needed to
store the different operands. After testing different implementations,
we found out that 3 VWRs represent a good compromise between
performance and energy efficiency.

The scalar register file (SRF) has 8 32-bit entries used for scalar
values that are kernel-dependent, such as addresses for the SPM,
masking values for the VWRs index computation, or loop param-
eters for the kernel execution control. The SRF is single-ported,
allowing one access at a time from the different units (RCs, LSU,
MXCU, and LCU).

3.3 Specialized slots
We borrow from the VLIW architecture the concept of specialized
slots by introducing an LSU, an LCU, and an MXCU on top of the
RCs of each column, as shown in Fig. 1. They all have their own
instruction stream (see Table 1), synchronized with the RCs in the
column via the common PC.

3.3.1 LSU: Load-Store Unit. Controls the data transfers between
the SPM and the VWRs or the SRF. The data arrays are allocated to
VWRs while scalar values (e.g., loop size) are stored in the SRF. The
LSU also controls the shuffle unit that is an essential component of
VWR2A. As each RC is accessing only one-fourth of a VWR, data

reordering is needed to move the data inside the full VWR. Such
reordering is possible through the RCs connection matrix, but it
is highly inefficient in terms of performance and energy, whereas
the shuffle unit enables fast and energy-efficient data reordering.
It takes as input the data contained in the VWRs A and B, applies
a hardcoded shuffle operation on the data, and stores the result in
the VWR C (Fig. 1). The available shuffle operations are:

• Words interleaving: VWR A and B words are interleaved. The
result is twice the size of a VWR, and the upper or lower half
can be selected as the output.

• Even or odd index pruning: prunes the even/odd elements of
VWRs A and B, and outputs the remaining elements (of both
A and B).

• Bit-reversal: applies bit-reversal shuffling to the concatena-
tion of VWRs A and B. The result is twice the size of a VWR,
and the upper or lower half can be selected as the output.

• Circular shift: the concatenation of VWRs A and B is shifted
by 32 words up in a circular manner (i.e., the upper 32 words
are moved to the lower 32 words). The result is twice the
size of a VWR, and the upper or lower half can be selected
as the output.

3.3.2 MXCU: MultipleXer-Control Unit. Controls the multiplexers
that connect the VWRs outputs to the RCs. Each RC has access to
1/4 of the VWRs width. To limit the number of control bits, all the
RCs access the same address of their slice. This address is also used
to write the data back to any of the VWRs. Although this structure
adds some constraints to the kernel mapping, they can be solved
with careful data placement and proper use of the shuffling unit.

3.3.3 LCU: Loop-Control Unit. Generates the branches and jumps
for the program counter and notifies the synchronizer at the end
of a kernel. It increases the code coverage by allowing the execu-
tion of loops with any nest depth and control-intensive code to be

DAC ’22, July 10–14, 2022, San Francisco, CA Benoît W. Denkinger, Miguel Peón-Quirós, Mario Konijnenburg, David Atienza, and Francky Catthoor

Table 1: VWR2A instruction flow example

PC LCU LSU MXCU RC0-3
...

3 NOP LOAD A k=0 NOP
4 i=0 LOAD B NOP NOP
5 i++ NOP NOP VWRC=VWRA+VWRB
6 BLT PC=5 NOP k++ VWRA=VWRA-VWRB

...
14 j++ STORE A NOP NOP
15 NOP STORE C NOP NOP
16 BLT PC=3 NOP NOP NOP
17 EXIT NOP NOP NOP

efficiently executed on VWR2A. When multiple columns work in
parallel, their respective PCs are synchronized.

3.4 Kernel mapping
The FFT kernel mapping is discussed here to illustrate the use of
the architecture. This kernel uses the common in-place radix-2
FFT algorithm [4], which reduces the computation complexity from
𝑂 (𝑁 2) to𝑂 (𝑁 log𝑁), where𝑁 is the number of points. The radix-2
algorithm divides the computation into 𝑘 stages, where 2𝑘 = 𝑁 . All
the stages execute the same flow of operations; the only changes
are the coefficients and the data ordering. The shuffle unit applies
the “words interleaving” shuffling to create the correct data layout
for the next stage. Both columns are used to execute the FFT kernel.
The output of the kernel is in bit-reversed order, and the shuffle
unit is again used to reorder the data.

An optimized version is used for real-valued FFTs (i.e., the imagi-
nary part is null). The sequence of 𝑁 real values is transformed into
an 𝑁 /2 complex sequence. Then, the complex FFT kernel presented
above is used. This technique reduces the computations of the FFT
kernel but requires some additional operations, also executed on
VWR2A, to recover the correct output. The overall gain is approxi-
mately a factor of 2 compared to a complex FFT of size 𝑁 where
the imaginary part is zero.

These steps are mapped into instructions for the different units
(i.e., LCU, LSU, MXCU, and the RCs). Table 1 shows a sample of
the instruction flow of the different units for the FFT kernel, where
𝑘 corresponds to the VWRs address that is accessed by the RCs.
The RCs’ instructions are grouped for simplicity, but they can all
execute a different operation.

4 EXPERIMENTAL SETUP
4.1 Biosignal processing ultra-low power

embedded platform
To demonstrate the advantages of our architecture, we have inte-
grated VWR2A in an ultra-low power SoC intended for biomedical
signal acquisition and processing [12]. This platform features an
ARM Cortex M4F processor, 192 KiB of static random access mem-
ory (SRAM) (divided into six banks that can be individually power
gated), an analog front end for the acquisition of biosignals (e.g.,
electrocardiogram (ECG), photoplethysmogram (PPG)), a DMA, and
several fixed-function accelerators. The FFT accelerator is used for

comparison with our VWR2A because this platform is also oriented
to biosignal processing. It computes FFTs and inverse FFTs up to
4096 points, with an optimized flow for real-valued inputs. The FFT
weights are stored in internal ROMs, whereas a dual-port memory
is used to store the data. To avoid overflow, this custom FFT ac-
celerator uses an internal representation of 18 bits with dynamic
scaling. The SoC elements (e.g., accelerators, memories, processor)
are connected through the AMBA-AHB bus interface. The SoC
has multiple power domains that can be turned on and off during
execution to optimize energy consumption further.

4.2 Integration of our programmable core
We connected our VWR2A to the AMBA-AHB bus interface, pre-
cisely like the other hardware accelerators, to have a fair compari-
son within the original SoC design. VWR2A has one master port,
controlled by its DMA, to transfer data between the SoC SRAM
and the VWR2A SPM. The kernel acceleration and DMA transfer
requests from the CPU are received through an additional slave
port. VWR2A informs the processor when a kernel execution, or
a DMA transfer, is finished through an interrupt line. VWR2A is
included in the same power domain as the other accelerators and
can therefore be power gated.

4.3 Performance and energy characterization
We synthesized the complete SoC, including VWR2A, with the
TSMC 40 nm LP CMOS technology at 80MHz (the original SoC
frequency) and ran post-synthesis simulations to compare the per-
formance and the energy of both implementations (i.e., custom
accelerator versus programmable core). This allows cycle accurate
simulations from which we extract the cells switching activity that
we use for power estimation with Synopsys PrimePower [13].

4.4 Software benchmarks
4.4.1 Standalone kernels. We first compared our VWR2A with the
SoC FFT accelerator using a standalone FFT kernel, which is a
typical kernel used in biomedical applications. We implemented
different FFT sizes for both complex and real-valued sequences. The
SoC FFT accelerator uses a mixed radix-2 and radix-4 implementa-
tion. For our VWR2A, we used the radix-2 algorithm presented in
Section 3.4. The second kernel is a FIR filter with 11 taps. We used
three different input sizes to compare our VWR2A with the CPU.
Our mapping uses two columns of the reconfigurable array that
work on different slices of the input array.

4.4.2 Biosignal application. To study the impact at the application
level of our programmable architecture, we considered the MBio-
Tracker application, which measures cognitive workload [6]. This
application is divided into four steps: preprocessing, delineation,
features extraction, and prediction. First, the preprocessing applies
a FIR filter over the raw input data. Second, the delineation de-
tects the maximums and minimums of the filtered signal to extract
inspiration and expiration times. Third, these values are used for
extraction of time features (mean, median, and RMS values), while
the FFT of the filtered signal is employed for frequency features
extraction. Finally, the cognitive workload is estimated using an
SVM algorithm.

VWR2A: A Very-Wide-Register Reconfigurable-Array Architecture for Low-Power Embedded Devices DAC ’22, July 10–14, 2022, San Francisco, CA

Table 2: FFT kernel performance comparison for various
sizes

CPU FFT ACCEL VWR2A
Complex-valued cycles cycles speed-up cycles speed-up

512 47 926 7099 6.8× 7125 6.7×
1024 84 753 13 629 6.2× 12 405 6.8×
2048 219 667 31 299 7.0× 30 217 7.3×

Real-valued

512 24 927 3523 7.1× 3666 6.8×
1024 62 326 8007 7.8× 7133 8.7×
2048 113 489 16 490 7.4× 14 427 7.9×

5 EXPERIMENTAL RESULTS
5.1 Performance on standalone kernels
5.1.1 FFT kernel. The performance and energy consumption re-
sults for various complex and real-valued FFT sizes are reported
in Table 2 and Fig. 2, respectively. These results show that both
the FFT accelerator (FFT ACCEL) and VWR2A have similar per-
formance and are 7.4× faster than the ARM Cortex-M4 (CPU) on
average. VWR2A is less performant for small FFT sizes because the
programming of the DMA transfers and the kernel parameters has
a slightly larger overhead than the FFT accelerator programming.
As expected, Fig. 2 shows that the FFT accelerator is more energy-
efficient than VWR2A when the specific kernel it was designed for
is considered in isolation. Nevertheless, our goal was to narrow as
much as possible the energy gap between both implementations.

The FFT accelerator uses a mixed radix-2 and radix-4 implemen-
tation that depends on the actual FFT size, resulting in different
performance and power consumption, while the VWR2A mapping
is identical for all FFT sizes. This explains the variation of the energy
consumption ratio in Fig. 2. Finally, this figure only considers the
accelerator energy consumption. If the complete SoC is considered,
the energy difference is between a factor 4× to 5×. In any case,
compared to an FFT using only the Cortex-M4 processor and the
CMSIS-DSP library with 16-bit data in q15 format, both the FFT
accelerator and our architecture produce energy savings, of 86.0 %
and 40.8 %, respectively.

Table 3 presents the power consumption breakdown per sub-
component, i.e., for the FFT accelerator and VWR2A. The main
contributors in our architecture are the memories and the datap-
ath (i.e., the RCs). This means that the overhead of the instruction
control, which is non-negligible in typical instruction-set proces-
sors [2], is removed in VWR2A. The Memories category contains
the VWR2A SPM (32KiB) and the VWRs (3KiB), accounting for
46 % and 54 % of the total power, respectively. In contrast, the FFT
accelerator has 17 KiB of memory in total. To build the SPM wide
interface, smaller memory macros of the width supplied by the
technology provider were concatenated. The VWRs were built us-
ing latches of the standard cell library. A custom design for these
memories will undoubtedly reduce power consumption. Regarding
the Datapath category, the available optimizations are more lim-
ited because the FFT accelerator is specialized for FFTs, with an
18-bit-wide datapath, while our CGRA has a more general-purpose

Figure 2: FFT kernel energy comparison for various sizes.
Even if the performance of VWR2A is equivalent to that of
the custom FFT accelerator, as expected, the gap in energy
consumption is still significant in the case of isolated kernels.

Table 3: FFT accelerator and VWR2A power breakdownwhile
executing a 512-point real-valued FFT

FFT ACCEL VWR2A
Instance Power (mW) % Power (mW) % ratio

DMA 1.07 × 10−2 1 % 9.47 × 10−2 2 % 8.9
Memories 6.68 × 10−1 68 % 3.49 × 100 64 % 5.2
Control 6.25 × 10−2 6 % 1.00 × 10−1 2 % 1.6
Datapath 2.42 × 10−1 25 % 1.72 × 100 32 % 7.1

Total 9.83 × 10−1 100 % 5.41 100 % 5.5

32-bit ALU. One solution could be to have a 16-bit mode with two
simultaneous 16-bit operations instead of one 32-bit operation.

Compared to the Ultra-Low Power Samsung Reconfigurable Pro-
cessor (ULP-SRP) [3], a recent instantiation of the ADRES template
that uses the TSMC 40 nm LP technology, VWR2A exhibits sig-
nificant performance and energy gains. The authors reported an
execution time of 839.1 µs and an energy consumption of 19.9 µJ
for a 256-Point FFT,1 while VWR2A executes that same kernel in
35.6 µs and consumes 0.3 µJ. These numbers correspond to a factor
23× improvement in performance and a factor of 66× in terms
of energy. It is important to note that post-layout simulation has
been done for the ULP-SRP, while we ran post-synthesis simulation,
which can explain part of the significant difference in energy.

5.1.2 FIR filter kernel. Table 4 reports the experimental results
for three different input sizes for the FIR filter with 11 taps. We
compared the performance of the processor (CPU) with that of our
VWR2A. The processor uses the CMSIS-DSP library with 16-bit
data (q15 format), while our solution uses 32-bit data. Table 4 shows
that our accelerator is on average 14.9 times faster and consumes
71.3 % less energy than the processor.
1The authors do not specify if they implement a complex-valued or a real-valued FFT.
We considered a 256-Point complex-valued FFT, corresponding to the worst case for
VWR2A.

DAC ’22, July 10–14, 2022, San Francisco, CA Benoît W. Denkinger, Miguel Peón-Quirós, Mario Konijnenburg, David Atienza, and Francky Catthoor

Table 4: FIR filter kernel performance and energy compari-
son for different numbers of points and 11 taps

CPU VWR2A GAIN
Cycles Energy Cycles Energy Cycles Energy

(µJ) (µJ) speed-up savings

256 pts 24 747 0.37 1849 0.11 13.4 69.9 %
512 pts 49 253 0.73 3260 0.21 15.1 71.7 %

1024 pts 98 283 1.45 6091 0.40 16.1 72.4 %

5.2 Performance on biosignal application
Table 5 reports performance and energy consumption for the dif-
ferent steps of the application. The complete application has been
ported on VWR2A and the processor only manages the high-level
control of the application. This table supports the central claim of
this paper and shows that larger savings can be obtained from a
reconfigurable architecture with respect to a custom accelerator
when complete applications — rather than individual kernels — are
considered. The significant gains in performance and energy pre-
sented below are due to the parallel computing power of VWR2A
(i.e., 8 RCs and the specialized slots) and its low power consumption.

5.2.1 Preprocessing. The version using our VWR2A is 13.2 times
faster than the Cortex-M4 (CPU), which translates into energy sav-
ings of 64.7%. The CPU+FFT ACCEL version is equivalent to the
CPU version because no code can be accelerated by the FFT accel-
erator (which remains power-gated), hence showing the advantage
of a programmable architecture. This shows the potential benefits
that can be obtained by using a programmable architecture that
can execute a larger proportion of the overall application.

5.2.2 Delineation. This step is a typical example of control-inten-
sive code. The computation load is low but there are a lot of if
conditions used to detect the valid minimums and maximums. Gen-
eral purpose CPUs are very inefficient at executing such code, while
VWR2A can take advantage of its more powerful ILP capabilities.
This translates into a 94.1 % gain in performance and 82.9 % savings
in energy. As before, the CPU+FFT ACCEL version is equivalent to
the CPU version.

5.2.3 Features extraction and SVM prediction. The FFT accelera-
tor computes a real-valued 512-Point FFT, which translates to an
9.3% gain in energy compared to the CPU version. However, the
FFT represents only a portion of the application code, of which
the custom accelerator cannot execute anything else. In contrast,
VWR2A can execute all the code of the feature extraction step and
the SVM prediction, with a corresponding energy saving of 56.0 %
compared to the CPU version. This result is 6× better than the
CPU+FFT ACCEL version. VWR2A benefits from its large code
coverage, limiting the data transfers between the system’s main
memory and its SPM. For example, the FFT uses the filtered data
loaded into the SPM during the preprocessing step and keeps the
results inside the SPM. It copies only the estimated state by the
SVM back to the system’s main memory, while the FFT accelerator
has to copy back the 512 FFT output values.

Table 5: Biosignal application performance and energy com-
parison

CPU CPU + CPU +
FFT ACCEL VWR2A

Cycles savings savings

Preprocessing 49 760 49 760 0.0 % 3763 92.4 %
Delineation 46 268 46 268 0.0 % 2723 94.1 %
Feat. extraction 70 639 54 255 23.2 % 8627 87.8 %

Total 166 667 150 283 9.8 % 15 113 90.9 %

Energy (µJ)

Preprocessing 0.74 0.74 0.0 % 0.26 64.7 %
Delineation 0.74 0.74 0.0 % 0.13 82.9 %
Feat. extraction 1.1 0.98 9.3 % 0.47 56.0 %

Total 2.6 2.5 3.9 % 0.86 66.3 %

6 CONCLUSION
In this paper, we have shown the feasibility of using a domain-
specific programmable core as an accelerator instead of a fixed-
function accelerator and achieving similar, or better, performance.
Regarding energy consumption, fixed-function accelerators typi-
cally perform better on specific tasks, but when complete applica-
tions are considered, our VWR2A has better energy consumption.
The reason is that programmable architectures can accommodate
application-specific optimizations that are not possible with custom
accelerators. In addition, more code is also eligible for acceleration
with a flexible architecture, which leads to better overall perfor-
mance and energy efficiency, as long as the energy gap with respect
to the fixed-function accelerator has been sufficiently reduced.

REFERENCES
[1] R. Banakar et al. 2002. Scratchpad memory: a design alternative for cache on-chip

memory in embedded systems. In Proc. of IEEE CODES. 73–78.
[2] Francky Catthoor et al. 2010. Ultra-Low Energy Domain-Specific Instruction-Set

Processors (1 ed.). Springer Netherlands, Chapter An asymmetrical register file:
the VWR, 199–222.

[3] Kim Changmoo et al. 2014. ULP-SRP: Ultra Low-Power Samsung Reconfigurable
Processor for Biomedical Applications. ACM TRETS 7, 22 (2014), 1–15. Issue 3.

[4] James W. Cooley and John W. Tukey. 1965. An Algorithm for the Machine
Calculation of Complex Fourier Series. Math. Comp. 19, 90 (1965), 297–301.

[5] Anthony Correale. 1995. Overview of the Power Minimization Techniques
Employed in the IBM PowerPC 4xx Embedded Controllers. In ISLPED’95. ACM,
75–80.

[6] Fabio Dell’Agnola et al. 2021. MBioTracker: Multimodal Self-Aware Bio-
Monitoring Wearable System for Online Workload Detection. IEEE TBioCAS 15,
5 (2021), 994–1007.

[7] Loris Duch et al. 2017. HEAL-WEAR: An Ultra-Low Power Heterogeneous System
for Bio-Signal Analysis. IEEE TCAS-I 64, 9 (Sept. 2017), 2448–2461.

[8] Robert Fasthuber et al. 2013. Energy-efficient communication processors. Springer,
New York.

[9] B. Mei et al. 2005. Architecture exploration for a reconfigurable architecture
template. IEEE Design Test of Computers 22, 2 (2005), 90–101.

[10] Praveen Raghavan et al. 2007. Very Wide Register: An Asymmetric Register File
Organization for Low Power Embedded Processors. In DATE.

[11] H. Singh et al. 2000. MorphoSys: an integrated reconfigurable system for data-
parallel and computation-intensive applications. IEEE Trans. Comput. 49, 5 (2000),
465–481.

[12] Shuang Song et al. 2019. A 769 `W Battery-Powered Single-Chip SoC With BLE
for Multi-Modal Vital Sign Monitoring Health Patches. IEEE TBioCAS 13, 6 (2019),
1506–1517.

[13] Synopsys. Q-2019.12. PrimePower. https://www.synopsys.com

https://www.synopsys.com

	Abstract
	1 Introduction
	2 Related work
	3 Architecture for ultra-low power programmable cores
	3.1 Reconfigurable array
	3.2 Ultra-low energy memory organisation
	3.3 Specialized slots
	3.4 Kernel mapping

	4 Experimental setup
	4.1 Biosignal processing ultra-low power embedded platform
	4.2 Integration of our programmable core
	4.3 Performance and energy characterization
	4.4 Software benchmarks

	5 Experimental results
	5.1 Performance on standalone kernels
	5.2 Performance on biosignal application

	6 Conclusion
	References

