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Abstract— The use of robotic systems for harvesting of crops
is a growing application domain in the agriculture sector. A
key challenge is to develop robotic systems to harvest soft fruits
such as raspberries which require delicate handling as they are
easily damaged. Designing and optimizing a robotic harvesting
setup by testing on real raspberry crops can be challenging
due to the short natural harvesting period and the cost and
logistical challenges of running experiments in the field. To
solve this problem, we present a sensorized physical twin of
a raspberry which can be used to develop robotic harvesting
systems before deploying in the field. The sensorized raspberry
has the capability of measuring the applied forces before and
after it has been picked off the plant with a high sensitivity. The
mechanical design was optimized and a material with properties
similar to the real fruit was chosen, in order to achieve
similar mechanical properties to a real raspberry, specifically
the stiffness before and after picking and the pulling force. The
paper concludes with a harvesting demonstration performed
by a robotic gripper, where the sensorized raspberry is used
to assess the quality of the picking action. This work aims to
lay the groundwork for accelerating the future development of
robotic harvesting systems to enable robust development in a
lab before deployment in the field.

I. INTRODUCTION

Robotics has an increasing role to play in agriculture to
enable the food demands of the ever-growing population to
be met [1]. One key area where robotics can contribute
is harvesting. Due to social-economic pressures and the
challenging nature of the work, there is a shortage of workers
in recent years, resulting in up to 40% of yields remaining
unpicked [2]. This waste has significant environmental and
financial costs. One specific area still requiring much manual
work is the harvesting of soft fruit, of which one of the
most challenging is raspberries [3]. Although there has been
a wide number of attempts to develop robotic solutions to
harvest raspberries [4], [5] and other soft fruit [6], [7], their
development is limited by the challenges associated with
testing and developing robotic solutions [8].

The interactions between a robot gripper and the soft
fruit are highly complex and thus challenging to simulate
or model, requiring real world experiments. However, these
require physical “field tests” out of the lab which limits
the speed of iteration and development. This is further
constrained by the limitation that raspberries are only ripe
and ready for harvest for a few months out of the year.
Furthermore, quantitatively evaluating the harvest quality
is challenging, which is necessary for certain data driven
methods to improve the hardware and/or the control policy.
In summary, we need to develop experimental techniques to
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Fig. 1: Summary of the main characteristics of the sensorized raspberry.

overcome such practical limitations associated with develop-
ing harvesting robotics.

One approach to tackle this problem is to simulate the
physical interactions through the development of “physical
twins” - an artificial system which aims to imitate or replicate
a physical system. The concept of physical twins have been
explored in the past to aid the development of processes
or interactions which are challenging to simulate or visual-
ize [9]. Widely explored for applications in medicine, these
physical twins or “phantoms” aim to artificially imitate a real
world interaction to enable robots to learn how to perform
medical tasks or processes [10]–[12]. In addition, they can
be sensorized to provide feedback to aid the design of the
robotic system. These approaches have been shown to have
a significant impact in enabling increasingly rapid testing
and development of medical robotics. Similar concepts have
also been used in arable agriculture, most notably in the
development of physical simulators of bovine milking udders
for testing of automatic milking systems [13].

To address the challenges of undergoing harvesting re-
search we apply soft-robotic techniques and methods to cre-
ate a sensorized physical twin of a raspberry. By developing
a novel design and accompanying fabrication pipeline, we
aim to show how the reality gap between our soft sensorized
raspberry and the real fruit can be closed. In particular, we
focused on the picking force and the stiffness profile on and
off the plant. By varying design parameters we also show that
the parameters can be altered to simulate variation with the
crop. By introducing fluidic sensing [11] into this small form
factor we can record the forces exerted onto the simulated
fruit which can be used to evaluate the performance of
robotic picking experiments. Whilst we focus on raspberries,
the approach could be extended to other crops.

For a sensorized twin which mimics the real fruit’s me-
chanical properties, we demonstrate how the physical twin
can be used. Firstly, we show how the sensor how the
sensor response can be used to identify key events during
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Fig. 2: Control/optimization loop illustrating how the sensorized raspberry
can be used to improve real raspberry harvesting.

the picking process. Likewise, with a simple torque controller
on a robotic gripper we show how the sensorized raspberry
can be used to provide feedback or evaluate the quality of
picking and to optimize a controller. This demonstration also
highlights how such a simple controller is insufficient to
harvest raspberries, and a more intelligent approach which
leverages sensory-motor co-ordination is required.

In the remainder of this paper we first present the meth-
ods developed for the fabrication and sensorization of the
raspberry. The experimental setup developed to evaluate the
raspberry and the corresponding results are then provided,
before which we conclude with a discussion.

II. METHODS

A. Problem Statement

1) Assisting robotic harvesting: Fig. 2 proposes the high
level control/optimization concept of how this sensorized
physical twin of a raspberry can be used for optimizing
the robotic harvesting process. A robot system equipped
with a gripper and sensors (e.g.: tactile sensors, force/torque
sensors) can harvest the sensorized raspberry via some
picking action A. This action could be preformed through a
control policy Π using the robot’s sensor measurements M .
Throughout the picking process, the quality of the picking
motion can be evaluated by a cost C (calculated through the
sensors on the physical twin) - which then can be used to
improve upon Π or even the hardware design.

In this paper, we demonstrate a proof of concept of this
optimization loop through a simple control policy Π and cost
metric C. The dotted lines on Fig. 2 represents the future
work which has not yet been implemented.

2) Physical characteristics of raspberry harvesting: To
develop a physical twin which behaves as closely as a real
raspberry, we identified key physical characteristics that must
be matched. Considering the physical structure, a raspberry
can be thought to be comprised of two components: the
fruit and the receptacle. The receptacle is the “inner” part
where the red fruit connects to the plant. When harvesting a
raspberry, we can assume there are two dominant forces:
Fp the force required to pull the raspberry, and Fc the
force compressing the raspberry shown in Fig. 3a. A critical
observation from real raspberries is the compression stiffness
reduces significantly when the fruit is picked from the
receptacle, i.e.: kon > koff as shown in Fig. 3b and c.

Other relevant characteristics include the surface proper-
ties such as the geometry of the “dimples” and the friction
coefficient. While the “dimples” were incorporated in the
design, the friction has not been considered.
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Fig. 3: Diagrams to show the key characteristics for harvesting raspberries:
the pulling and compression forces, and the stiffness of the raspberry on
and off the receptacle.

B. Raspberry design and fabrication

The goal for this physical twin is to design and fabricate
a soft sensorized fruit which can be placed on a rigid
receptacle. The sensorized fruit should be able to measure the
compression force Fc both on and off the receptacle. While
on the receptacle, the pulling force should also be detected.
Finally, the design should allow for the maximum Fp and
kon, koff to be variable to match that of a real raspberry.

The proposed design uses Dragon SkinTM 10 Fast[14]
silicone for the soft “fruit” and 3D printed PLA for the
rigid “receptacle”. The compression force Fc is measured
through a fluidic sensor which monitors the pressure changes
induced by the deformation of the fruit [11], [15]. This is
achieved through a soft silicone tube (2mm ID x 4mm OD)
embedded and sealed inside the fruit which connects to the
fluidic sensor. When the tube deforms the volumetric changes
causes a change in pressure within the tube. The pulling
force is generated by a Neodymium magnet embedded in
both the fruit and receptacle, where the separation can be
tuned to vary the maximum pulling force (the force between
two magnetic poles varies with 1/r2). The pulling force is
measured by a load cell connected to the receptacle by a
string. The stiffness profiles of kon and koff will be varied
by changing the thickness of the silicone layer of the fruit.

To understand how best to match physical characteristics
of a raspberry, two design types (A and b) were considered.
Fig. 4 shows the internal structure of the two designs.

Both design types incorporates the necessary functionality
discussed, but differ in the structure and fabrication pipeline.
In type A, the tubing rests on an inner layer of silicone,
which is then coated by a secondary outer layer. In type
B, the tubing is directly embedded in the single silicone
layer. In the fabrication process shown in Fig. 5, 3D printed
inverse moulds are used to cast the silicone into the shape
of the fruit. While type A has more parts and two moulding
stages, it is overall simpler to fabricate than type B - requiring
less “skillful” fabrication procedures. However, type B with
the single silicone layer can achieve a lower koff when
compared to type A, which is a desired property.
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Fig. 4: Two proposed designs to fabricate the sensorized raspberry: Type A
and B. Top: Cross section sketch with relevant characteristics and tunable
parameters. Bottom: 3D render of the two designs showing the internal
structure, outer surface, and its dimensions.
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Fig. 5: Fabrication process for the two raspberry design types A and B.

III. EXPERIMENTAL SETUP

A. Main measurement setup

To be able to close the reality gap the variation of Fc

with compression distance d and the pulling force Fp a
mechatronic setup (see Fig. 6) has been created. The setup
includes a 3kg load cell connected to a high resolution
amplifier (HX711) used to retrieve the ground truth force
readings. To measure Fc vs d, a stepper motor connected
to a lead screw will linearly actuate a 3D printed part to
compresses the raspberry against the load cell. From the
other end of the load cell, a string which can be connected
to both real and sensorized raspberries measures Fp. Sensor
measurement readings and stepper motor control signals are
all regulated by a Arduino microcontrollers.

B. Sensing inside the physical twin

To measure the compression of the raspberry (both on and
off the receptacle), a high precision analog pressure trans-
ducer (MPXH6115A) is connected to the silicone tube em-
bedded inside the raspberry utilizing “fluidic sensing” [15],
[16]. The fluidic pressure transducer provides an analog
signal that is proportional to that of the input pressure.
In this experiment, the analog to digital converter (ADC)
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Fig. 6: Custom experimental setup for testing the measuring the stiffness
and pulling force of real and sensorized raspberries.
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Fig. 7: Robot arm and gripper setup to pick the sensorized raspberry.

of the Arduino Nano (10 bit quantization, 5V reference
voltage) is used. Since the pressure change due to deformed
raspberry is minimal, the ADC quantization is not sufficient.
Therefore, the raw signal is amplified after removing a
voltage offset through an operational amplifier circuit, to
ensure the amplitude of the analog signal is not limited by
the quantization voltage. For this experiment, the voltage into
the ADC has been amplified to be in the order of 100mV.
The pulling force is measured by the same load cell mounted
on the measurement setup shown in Fig. 6.

C. Robot harvesting demonstration

To demonstrate the control/optimization process discussed
in Fig. 2, a simple gripper was developed as shown in Fig. 7.
The gripper has two 3D printed “fingers” made from PLA
and uses a Dynamixel servo (XM430-W210-R) to actuate
one of the two fingers. A thin layer of Dragon SkinTM 10 is
attached to increase gripping friction. The gripper is attached
to a Universal RobotsTM UR5 robot arm.

For this demonstration, the simplest control policy Π is
considered, which is to close the gripper by applying a
constant torque by the servo motor on the actuated finger (via
constant current control). The picking action A is a linear
motion of the arm moving directly downwards while closing
the gripper. The motor current set-point (and thus the gripper
torque) is the adjustable parameter, where an optimal value
can be determined by assessing a cost metric.

IV. RESULTS

In this section we first present results highlighting how the
physical properties of the sensorized raspberry can be tuned
to close the reality gap. Secondly, we characterize the sensing
properties of the raspberry with the embedded fluidic sensor.



Fig. 8: Top: Fp,max of real raspberries. Bottom: Fp,max of the sensorized
raspberry plotted against magnet separation distance.

We finally conclude with two harvesting demonstrations
using the sensorized raspberry. Throughout this section, we
will focus on a single raspberry design (a variant of Type B)
which best closed the reality gap.

A. Closing the Reality Gap

1) Maximum pulling force Fp,max: To characterize the
range of Fp,max on real raspberries, a representative sample
of 14 fresh raspberries were tested using the measurement
setup discussed in III-A. From Fig. 8 we see how most
raspberries require just below 3N to be harvested, while the
overall range varies between 1.2 ∼ 5.4N . Thus, the ability
to tune Fp,max in this measured boundary is important.

To demonstrate the tuneability of the sensorized raspberry,
Fig. 8 shows Fp,max for different separation between the
two magnets within the physical twin. The plot shows
how the separation can be tuned to reflect the range of
forces experienced by the real raspberries. For each magnet
separation setting, five measurements were taken where the
mean and standard deviation are plotted.

2) Compression force Fc variation: To capture a “ground
truth” of kon and koff , the compression force Fc vs distance
d profile of 14 fresh raspberries were obtained for both on
and off the receptacle using the measurement setup. The
range of typical force displacement curves are shown in
Fig. 9 indicated by the gray area. From this we can inspect
a large difference between kon and koff of a factor of
×2 ∼ 5. This large difference in stiffness is one of the most
challenging characteristic to reflect on the physical twin.

The coloured curves belong to different designs variants
of the sensorized raspberries. For both design types A and
B, the wall thickness was varied to produce thin and thick
variations, resulting in a total of four designs that were tested.

When on the receptacle, we see that all designs fall within
the region of a typical real raspberry (the coloured lines are
in the gray area). However, the Fc variation changes greatly
when off the receptacle. When the sensorized raspberry is
on the receptacle and compressed, the compression force is
dominated by the stiffness of the silicone material. However,
when the fruit is off the receptacle, the stiffness is dominated

Fig. 9: Force vs compression distance plot of real and sensorized raspberries.

Fig. 10: Top: time series data for characterizing the fluidic sensor response.
Bottom: fluidic sensor characterization.

by the geometry (provided the material is flexible), which
can be seen on the right hand plot. Firstly, we see type
A is stiffer than type B. Since type A has a 2 silicone
layer structure, the overall thickness of the fruit is larger
compared to type B. Secondly, for each type, the thinner
variant had a lower stiffness. From these observations we
confirm that the silicone thickness is the primary factor for
koff , and therefore, by varying the thickness parameter in
the fabrication process, we are able to develop sensorized
raspberries of a wide range of stiffness values. Finally, from
the four designs the thin variant of raspberry type B closes
the reality gap the best, since both the force-distance curves
fall within the region of a typical real raspberry.

B. Sensor Characterization

The sensorized raspberry can be used to measure the two
forces Fp and Fc applied to it. The measurement of Fp

is straightforward since the raspberry is connected directly
to a calibrated load cell through a string. Whereas, the
measurement of Fc is done indirectly by measuring the
pressure change caused by physical deformation through a
tube embedded in the silicone. To demonstrate the charac-
teristics of the fluidic sensor, strain cycles were applied to
the sensorized raspberry on and off the receptacle.
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Fig. 11: Typical time series of a human harvesting the sensorized raspberry.

The curves with the solid blue line on Fig. 10 are raw volt-
age measurements of the sensorized raspberry. By inspection,
we see that the sensitivity (i.e.: variation for each cycle) is
consistent across time, but there is a drift (shown by the blue
dotted line) which shifts the measurements. We hypothesize
that this drift is linked to hysteresis of the silicone or tube.
The drift was estimated by fitting a 8th order polynomial
through least squares regression of each local minima on the
raw data (marked by the blue dots).

Here we observe that the drift changes over a long time
scale (in the order of 100s to 1000s). However, for this
particular application we are interested in the short time
scale, as the time to harvest a raspberry takes a few seconds
at most. Therefore we make the assumption that over a short
time scale which we are interested, the effect of the drift
is negligible and we only care about the change in output.
Based on this assumption, to characterize the sensitivity, the
raw data is shifted by subtracting the drift curve. The drift-
compensated sensor reading is given by the red solid line.

Fig. 10 plots the drift-compensated (shifted) sensor data
against the ground truth force applied to it, measured by the
load cell (over 20 cycles were performed). Arrows indicate
the direction of hysteresis. We see for both strain cycles
the response is approximately linear with little hysteresis.
This is a desired response from such a sensor, and verifies
the voltage output is indeed meaningful and can be used
to convert voltage readings to compression force. We also
observe that the force sensitivity (the gradient of the plot)
changes on and off the receptacle. During each cycle the
physical twin compressed 3.5mm and 9mm respectively for
on and off the receptacle.

C. Harvesting Demonstration

In this section we demonstrate a simplified scenario of
how the physical twin can be used to evaluate the controller
of robot harvesting system, by comparing with a human.

1) Human harvesting: In the first experiment, a human
will harvest the raspberry while the readings from the fluidic
sensor and the load cell is logged (to measure Fc and Fp

respectively). The aim of this experiment is to see if key
events can be monitored through the time series, such as the
removal of the raspberry. This way, the sensor data can be
used to evaluate the quality of the harvesting motion.

Fig. 11 shows the time series for Fc and Fp measurements
(top and bottom plots). All plots contain 7 time series, but
one is highlighted to show a typical sample. For the left plots,
a human is purposely “strongly” picking the raspberry. On

a1
Before harvest After harvest

a2

Fig. 12: Sample fluidic sensor reading during a robot harvest.

the right, the human is picking the raspberry “gently”. This
strength Fc is clear from the amplitude of the fluidic sensor
reading (shown by ∆Voltage).

From this time series, we can identify key events as shown
on the plot. The most notable feature is the big “dip” in
fluidic sensor reading which occurs consistently before the
raspberry starts to detach. This is most likely caused by
the tube deforming before the magnet detaches from the
receptacle. This unexpected but useful feature can be used
to identify the moment of detachment.

2) Robot harvesting: Fig. 12 shows a typical time series
of the fluidic sensor response when the physical twin is
harvested by the robot. Before the grasp, the fluidic sensor
reading is zeroed to measure the voltage change. The magnet
separation distance was set to 2mm. A simple metric to
assess the picking quality is to penalize the average force
applied on the raspberry both before and after the pick.
From Fig. 12, we see that the force profile is steady between
1 ∼ 1.5s and 3.5 ∼ 4s. Therefore, the integral of the
recorded data can be used to determine the average force
for these regions: a1, a2. Provided the fruit is picked from
the plant, the cost metric is defined to be this average force
relative to a human by subtracting the average forces for a
human grasp a1,h, a2,h, as such:

C1 = a1 − a1,h C2 = a2 − a2,h (1)

In summary, C1, C2 represents the average force on the
raspberry relative to a human before and after harvesting.

To find the optimal current set-point on the servo motor
(i.e.: finding the optimal Π), the cost metric was evaluated
for a range of current set-points. For each current set-point,
10 picking experiments were conducted. The average C1, C2

and its standard deviations are plotted in Fig. 13.
From this plot, two key observations can be made. Firstly,

we see that the optimal control policy is to use the lowest
current set-point (95mA) since it is minimising both metrics
and can also be considered to be the most repeatable based
on having the lowest standard deviation. This conclusion
could have been predicted prior to the experiment, but it
demonstrates a) the simple cost metric is useful and b) the
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Fig. 13: Cost of harvesting a raspberry relative to a human.

sensor output/robotic setup is reliable to produce consistent
measurements. The second observation is that a simple force
controller is insufficient for a good picking action. For
both metrics, there is a gap between the robot and human.
Furthermore, we see that C2 does not decrease as much
as C1 when the current set-point is lowered. Qualitatively,
this corresponds to the raspberry always being squished
after picking. In comparison the human holds the raspberry
loosely once off the receptacle, and tunes the force applied
throughout the harvesting cycle in response to tactile infor-
mation. This results shows a need for sensorized grippers
and a more complex controller to vary the control policy on
and off the receptacle.

V. CONCLUSIONS & DISCUSSION

In this paper we presented a sensorized physical twin of
a raspberry which can be used to aid in the research and
development for automated robotic harvesting. By consid-
ering the pulling force Fp, compression force Fc, and the
difference between the stiffness on and off the receptacle kon
and koff , the reality gap was closed for the physical twin
to match key physical properties of a real raspberry. The
“fruit” of the physical twin was sensorized which produces
a linear voltage output to the force applied with low drift in
a short time scale. Finally, we demonstrate how the physical
twin can be used with a robotic gripper setup to evaluate the
quality of the picking action.

In the future, the design, fabrication, and sensor placement
should be explored to improve: the effect of drift on the
sensor response; the difficulty in fabrication of a type B
raspberry; and better characterize how the design parameters
(e.g.: wall thickness) relates to kon and koff . The effect
of other physical properties such as the textures of the
dimples could be considered for future work. Furthermore,
the sensorized raspberry should be used with a more com-
plex gripper and robotic setup to optimize a control policy
(and possibly also optimize the hardware) for picking real
raspberries. The visual appearance can also be improved
to allow for this picking task to include computer vision
within its pipeline. The stiffness of the stem/plant itself can
also be incorporated into the setup by characterizing the
plant properties by a spring-damper system and creating its
physical twin.
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