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Abstract
In this thesis, timing is everything. In the first part, we mean this literally, as we tackle
systems that encode information using timing alone. In the second part, we adopt the
standard, metaphoric interpretation of this saying and show the importance of choosing the
right time to sample a system, when efficiency is a key consideration.

Time encoding machines, or, alternately, integrate-and-fire neurons, encode their inputs using
spikes, the timings of which depend on the input and therefore hold information about it.
These devices can be made more power efficient than their clocked counterparts and have thus
been studied in the fields of signal processing, event-based vision, computational neuroscience
and machine learning. However, their timing-based spiking output has so far often been
considered a nuisance that one must make do with, rather than a potential advantage. In
this thesis, we show that this timing-based output equips spiking devices with capabilities
that are out of reach for classical encoding and processing systems.

We first discover the benefits of time encoding on multi-channel encoding and recovery of
a signal: with time encoding, clock alignment is easy to solve, although it poses problems
in the classical sampling scenario. Then, we study the time encoding of low-dimensional
signals and see that the asynchrony of spikes allows for a lower sample complexity in compar-
ison with synchronous sampling. Thanks to this same asynchrony, time encoding of video
results in an entanglement between spatial sampling density and temporal resolution—a
relationship which is not present in frame-based video. Finally, we show that the all-or-none
nature of the spikes allows training spiking neural networks in a layer-by-layer fashion—a feat
that is impossible with clocked, artificial neural networks, due to the credit assignment problem.

The second part of this thesis shows that choosing the right timing of samples can be
crucial to ensure efficiency when performing nanoscale magnetic sensing. We are given a
stochastic process, where each sample at time t follows a Bernoulli distribution, and which
is characterized by oscillation frequencies that we are interested in recovering. We search
for an optimal approach to sample this process, such that the variance of the frequencies’
estimates is minimized, given constraints on the measurement time. The models we assume
stem from the field of nanoscale magnetic sensing, where the number of parameters to be
estimated varies with the number of spins one is trying to sense. We present an adaptive
approach to choosing samples in both the single-spin and two-spin cases and compare the
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Abstract

adaptive algorithm’s performance to classical approaches to sampling.

In both parts of the thesis, we move away from classical amplitude sampling and con-
sider cases where timing takes the forefront and amplitude information is merely binary, to
show that timing can carry information and that it can control the amount of information gain.

Keywords: time encoding, sampling, event video, spiking neural networks, nanoscale magnetic
sensing, adaptive sampling
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Résumé
Dans cette thèse, nous étudions l’importance du “timing”. Dans la première partie, nous nous
intéressons à des systèmes qui utilisent un codage temporel pour représenter l’information.
Dans la deuxième partie, nous montrons l’importance de choisir le bon moment pour échan-
tillonner un processus, lorsque l’efficacité de l’échantillonage est une considération clé.

Les machines à codage temporel, ainsi que les neurones à intégration-et-tir, codent leurs
entrées à l’aide d’impulsions dont le moment dépend de l’entrée et qui contiennent donc
des informations sur cette entrée-là. Ces appareils peuvent être rendus plus économes en
énergie que leurs homologues synchronisés et ont donc été étudiés dans les domaines du
traitement du signal, de la vision événementielle, des neurosciences computationnelles et de
l’apprentissage machine. Cependant, leur sortie basée sur la temporalité des impulsions a
jusqu’à présent souvent été considérée comme un inconvénient qu’il faut apprendre à gérer,
plutôt que comme un avantage. Dans cette thèse, nous montrons que cette sortie basée sur
le temps confère aux systèmes à codage temporel des capacités qui sont hors de portée des
systèmes de codage et de traitement classiques.

Nous découvrons d’abord les avantages du codage temporel sur le codage et la récupération
multicanaux d’un signal : avec le codage temporel, l’alignement des horloges de différents
échantilloneurs est facile à résoudre, alors que cet alignement est difficile à réaliser dans le
scénario classique d’échantillonnage. Ensuite, nous étudions le codage temporel de signaux de
petite dimension et voyons que l’asynchronie des impulsions permet une complexité d’échan-
tillonnage plus efficace par rapport à l’échantillonnage synchrone, pour atteindre une fidélité
de reconstruction semblable. Grâce à cette même asynchronie, le codage temporel de la
vidéo entraîne un enchevêtrement entre la densité d’échantillonnage spatiale et la résolution
temporelle - une relation qui n’est pas présente dans la vidéo basée sur les images. Enfin,
nous montrons que la nature tout ou rien des impulsions permet d’entraîner les réseaux de
neurones à impulsion, couche par couche, ce qui est impossible avec les réseaux de neurones
artificiels cadencés, en raison du problème d’attribution des crédits.

La deuxième partie de cette thèse montre que choisir le bon moment pour échantilloner un
processus peut être crucial pour garantir l’efficacité de la détection magnétique à l’échelle
nanométrique. Nous considérons un processus stochastique, où chaque échantillon au temps
t suit une distribution de Bernoulli, et qui est caractérisé par des fréquences d’oscillation
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Résumé

que nous voudrions récupérer. Nous cherchons une approche optimale pour échantillonner ce
processus, de telle sorte que la variance des estimations des fréquences soit minimisée, étant
donné les contraintes sur le temps de mesure. Les modèles que nous supposons proviennent
du domaine de la détection magnétique à l’échelle nanométrique, où le nombre de paramètres
à estimer varie avec le nombre de spins que l’on essaie de détecter. Nous présentons une
approche adaptative pour le choix des échantillons dans les cas à un et deux spins et nous
comparons les performances de l’algorithme adaptatif aux approches classiques d’échantillon-
nage.

Dans les deux parties de la thèse, nous nous éloignons de l’échantillonnage d’amplitude
classique et considérons des cas où le moment d’èchantillonage ou d’impulsion est au premier
plan et où l’information d’amplitude est simplement binaire, afin de montrer que le temps
peut contenir de l’information et qu’il peut contrôler la quantité de gain d’information.

Mots clés : codage temporal, échantillonnage, vidéo événementielle, réseaux de neurones à
impulsions, détection magnétique à l’échelle nanométrique, échantillonnage adaptatif
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1 Introduction

1.1 Breaking with Tradition

The classical approach to sampling a signal consists of recording this signal’s amplitude
at uniformly spaced times. The result is a set of (time, amplitude) pairs which are the
discretization of the signal. This scheme is popular because it is simple, intuitive and well
understood.

In fact, if given a continuous signal with varying amplitudes, the most intuitive way to track
its trajectory is to record the signal’s value at certain times. Research abounds for this type
of sampling scheme, the most canonical result being most often attributed to Shannon. He
showed that a bandlimited signal can be perfectly reconstructed from its amplitude samples
if the samples have a small enough time separation between them (Shannon, 1949). This
result was published some seventy years ago, and since then, the beaten path to uniform
sampling has branched out into many extensions and detours (Unser, 2000).

Figure 1.1 – The current state of the theory behind uniform amplitude sampling. Confused
readers can refer to the footnote1.

1See https://dictionary.cambridge.org/dictionary/english/flog-a-dead-horse.
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Chapter 1. Introduction

It is therefore understandable that this clocked, uniform approach be not only a main
component of sampling but also the chosen route for many engineered systems. However,
while this approach works well for many applications, it is not necessarily the most resource-
efficient approach.

To provide intuitive examples, it is useful if a subway predictably arrives at a station every
five minutes, following a clocked scheme, such that people can plan their time. On the other
hand, it is less useful for people to say “hello” every five minutes (or any interval for that
matter), it is better if they say it when they meet someone. In our greeting example, the
second operational scheme can be labeled as an event-based scheme: an action (which we
call an “event” and which, in this case, corresponds to saying “hello”) is triggered only when
a specific criterion is met (in this case, the trigger is the encounter).

This part of the thesis concerns itself with using such an event-based operational scheme to
encode signals.

Actually, such sampling or encoding schemes are very frequently used in real life. For example,
one can measure rain using a tipping bucket rain gauge: water is accumulated in a bucket,
and when the bucket is full, it tips over, triggering an electric signal which is used to mark
the time at which the bucket tipped over. These trigger times give information about the
amount of rainfall.

Figure 1.2 – A tipping bucket rain gauge records information about rainfall by waiting for
rain to accumulate in one of the cusps until it tips and triggers the recording of the tipping
time—An example of time encoding.

While I personally find tipping bucket rain gauges fascinating, they are not exactly hiding
behind every bush. Neurons in the human brain, however, are ubiquitous and constitute the
prime example for event-based systems. The accumulate-and-trigger mechanism of the rain
gauge is actually closely related to part of the mechanism behind neuronal communication,
as we will explore in the next section.
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1.2. Time Encoding in the Wild

1.2 Time Encoding in the Wild

Neurons are cells in the brain that receive information about the world from receptors, process
this information and transmit the result to other neurons for further processing, eventually
controlling bodily functions and movement.

In a (very small) nutshell, neurons communicate with eachother by emitting (or firing) action
potentials (or spikes)(Gerstner et al., 2014). Action potentials are sudden and short changes
in a neuron’s membrane potential, i.e. its voltage. They generally have a fixed shape and
amplitude, and can be chemically transmitted to other neurons. According to simplified
models of neurons, these spikes are generated when the spatial and temporal summation
(or integration) of the electric current input to a neuron exceeds a threshold. In reality, the
mechanism is much more complex, and includes many chemically and electrically triggered
ion channels. Attempting to explain it here would lead us astray. A good reference is Kandel
et al. (2000).

This simplified “integrate-and-fire” neuron model behaves similarly to the tipping bucket: a
neuron integrates its electrical input current (essentially collecting the current in a bucket)
and when the integral reaches a threshold (meaning the bucket is full), a spike is emitted
(and the bucket tips over). Thus, the input to the neuron is only encoded in the timings of
the spikes: the neuron’s output, which is transmitted to other neurons, is a stream of spikes
with fixed amplitude.

This output follows the all-or-none principle: the output either exhibits a spike of a fixed,
large amplitude, which is strong enough to be conveyed to other neurons (the "all" level),
or only fluctuates around the "resting potential", unnoticed by other neurons (the "zero" or
"none" level).

It is often said that the brain evolved to use spikes because it did not have copper wires,
but leaky axons, as wiring between neurons. Information needs to be transmitted between
neurons, and spikes are a robust way to do that when wiring has high attenuation.

In depth: Neuronal communication

Neurons are comprised of dendrites, cell bodies, and axons. Dendrites are the
extensions of the neurons that receive input from other neurons. Axons are the
extensions that provide information to other cells. This information transfer happens
through a synapse: when an action potential or spike reaches the axon terminal of the
presynaptic neuron, neurotransmitters are released from synaptic vesicles located at
the axon terminals. These neurotransmitters are released into the synaptic cleft where
they bind to receptors on the dendrite of the postsynaptic neuron.

Neuronal axons are long and subject any signal traveling along them to attenuation.
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Using streams of spikes as a signal remedies this, as fixed-amplitude spikes can easily
be regenerated (by simply comparing the signal to a threshold and generating an
action potential if needed). This mechanism is further facilitated by Myelin sheaths
which are wrapped around neuronal axons and partially insulate them, such that the
regeneration of the signal occurs at sites where there is a gap in this insulation, these
sites are called nodes of Ranvier.

Classical samplers versus neurons

Example 1.1. We provide an example of signal encoding using classical amplitude
sampling and using spiking integrate-and-fire neurons with a leak (Burkitt, 2006), in
Fig. 1.3. Notice how, in the former case, the amplitude samples are always regularly
spaced whereas, in the case of the simulated neuron, the rate at which spikes are
emitted varies and increases as the signal’s amplitude increases.

Input Signal Encoder Encoding
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Figure 1.3 – Encoding of the same signal using (a) a classical uniform sampler, and (b)
a spiking leaky-integrate and fire (LIF) neuron. In (a), the signal is sampled every T
seconds. The output is then a series of equally spaced amplitude measurements. In (b),
we assume that the signal is injected as a current into a spiking leaky-integrate-and-fire
neuron following the model described in Burkitt (2006) and implemented using a
spiking neural network simulator called Brian (Goodman and Brette, 2009). The
recorded output is the outgoing current which exhibits a series of action potentials, or
spikes. Notice how the output spike streams are denser when the signal is stronger
and sparser when the signal is weaker.

While it is clear why the brain “has to” use spikes from an implementation perspective, we
will show in this thesis that the all-or-none and asynchronous nature of spikes also provides
advantages in terms of efficiency in computation or richness of information—advantages
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that do not exist in traditional, clock-based systems. As a consequence, our arguments help
show that individual spike times are important in neuronal encoding, rather than accepting
neuronal spike rates as the encoding paradigm in the brain.

1.3 Time Encoding in Captivity

Inspired by the efficacy of spikes in biology, devices that perform time encoding have been
developed both to better understand the brain and for practical applications.

Such devices are nowadays mainly considered because they consume very little power. In
fact, spikes are only triggered by specified, desired criteria; in the integrate-and-fire case,
this is the crossing of a threshold. Moreover, spikes are all-or-none, which overcomes the
need for power-hungry precise amplitude quantization, and only requires precise temporal
quantization, at a time when clocks that run in the GHz range are readily available.

Two applications of spiking devices are event-based cameras and spiking neural networks.

1.3.1 Event-Based Cameras

The current approach to recording video—multiple frames taken in close succession to each
other— evolved as it did because techniques to take pictures were established first, and video
was developed as an extension thereof.

While there is no doubt that this approach works very well, there is no guarantee that it is
the most efficient one. Assume, for example, that you are taking a video of a bird against a
blue sky background. To record this video, every pixel records the intensity of the light it
receives for every frame. It is easy to see that pixels waste energy by repeatedly recording
the intensity of the sky, a static background.

This example illustrates why frame-based video is suboptimal from a sample-complexity
perspective, i.e. many samples are needed to encode little information. Other inconveniences
also stem from high power requirements and limited dynamic range.

Event-based video can help counter these issues. Event-based cameras have pixels, each of
which emits an event (the equivalent of a spike) whenever its input exhibits a change that is
“large enough” (Delbrück et al., 2010; Gallego et al., 2019). The output of an event-based
camera is a stream of events associated with each pixel, where the streams are different
across pixels, and the timings of the events depend on the input to the pixel which emits it,
as depicted in Fig. 1.4. In this encoding paradigm, frames are obsolete, and information is
only recorded when the sensors detect sought-after criteria in the input.

While the pixels of such a camera follow a differentiate-and-fire approach rather than an
integrate-and-fire one, many of the theoretical results established for the latter approach can
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Time

Time

Time

Time

Time
Time

Figure 1.4 – Video setup: we assume that we have an array of time encoding devices, each
of which is observing a scene at a particular location. The input to the device at a given
location is a time varying signal and the device will output a stream of spikes, the timing of
which is dependent on the input. On the left, we show the projection of the scene which is
being observed. In the middle, we show a patch of this scene, which is interpolated under
bandlimited periodic assumptions, with an overlay of event-based pixels shown in yellow. To
its right, we zoom in to view the spiking output of some of the pixels. The video used is
taken from the Need for Speed dataset (Galoogahi et al., 2017).

also be used for the former, as is further explained in Section 2.1.

In Chapter 5, we see how the asynchrony of the emitted events allows more efficient encoding
of a scene compared to the frame-based video scenario.

1.3.2 Spiking Neural Networks

Artificial neural networks are undeniably successful at solving complex tasks, such as classi-
fying images, navigating new terrain and processing natural language (LeCun et al., 2015;
Schmidhuber, 2015).

The simplest neural networks process their inputs by recursively feeding them through weight
matrices, then layers of nonlinearities, as illustrated in Fig. 1.5. In order for the network
to learn useful tasks, the weight matrices are optimized, or learned, by striving to mimic
examples that the network is given.

While these networks take inspiration from neuronal networks in biology, major discrepancies
exist between the inspiration and the implementation, and one might wonder: If choices set
by evolution were followed more closely, could neural networks be improved?

Neural networks traditionally apply nonlinearities in an instantaneous fashion: at time t , an
artificial neuron, or node, receives an input x(t ) and applies a nonlinearity f to it. The output
f (x(t )) depends only on the instantaneous input at time t , disregarding the input’s history2.

2Of course, this does not prevent one from enforcing dependence on input history by introducing recurrence
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Inputs WeightsWeights Weights OutputsNeurons Neurons

Figure 1.5 – A two-layer neural network, which transforms its input in a layer-by-layer fashion:
at each layer, the input is passed through a weight matrix and fed into a series of artifical
neurons or nodes, that apply a nonlinearity to their input.

When these traditional nodes are replaced by models which are more biologically sound—
spiking neurons—the playing field suddenly changes. First, the output becomes dependent
on the history of the input to the individual neuron. Second, the information at the output is
encoded using times of spikes rather than amplitudes.

The reason behind this change lies, of course, in the behavior of spiking neurons which result
in considerable consequences. In fact, not only are Spiking Neural Networks (SNNs) more
power-efficient (Seo et al., 2011; Davies et al., 2018), they can also do analog processing until
the very end, thus avoiding quantization errors which occur when digitizing inputs (Maass,
1997; Ghosh-Dastidar and Adeli, 2009). Furthermore, more resources can easily be used to
encode more complex parts of a signal. In fact, in contrast to uniform sampling, it is easy
to emit more frequent spikes, and SNNs can thus provide more flexible information transfer
rates.

However, training spiking neural networks remains an open question with many challenges
and opportunities (Neftci et al., 2019; Comsa et al., 2020; Indiveri and Horiuchi, 2011; Indiveri
and Liu, 2015).

In Chapter 6, we see how spiking neural networks can learn layer by layer—a feat that is hard
to achieve in artificial neural networks.

1.4 Our Contributions

Efforts have recently been invested to better understand spike-based systems, whether
in the realm of event-based vision (Gallego et al., 2019), in the realm of spiking neural
networks (Tavanaei et al., 2019) or in the theoretical realm of decoding bandlimited or

in the architecture as done in recurrent neural networks (Graves and Schmidhuber, 2005).
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finite-rate-of-innovation signals from their time encoding (Lazar and Tóth, 2003; Gontier
and Vetterli, 2014; Lazar, 2005; Lazar and Pnevmatikakis, 2009; Lazar, 2010; Alexandru and
Dragotti, 2019; Hilton et al., 2021b,a; Rudresh et al., 2020; Kamath et al., 2021; Florescu and
Coca, 2015; Martínez-Nuevo et al., 2016; Lai et al., 2017; Feichtinger et al., 2012; Thao and
Rzepka, 2020; Lazar et al., 2008; Saxena and Dahleh, 2014). However, comparisons between
event-based sensing and standard sampling have mostly considered the timing-based output
of event-based sensing to be more of a pesky necessity that requires some work-around rather
than a blessing in disguise. Actually, it is precisely this asynchrony and all-or-none nature of
the spikes that can allow for better resolution and more flexibility when using event-based
sampling.

We will focus on the latter claim and support it by establishing reconstruction guarantees for
spike-based sampling and comparing these guarantees to the equivalent uniform sampling
scenario.

We start by providing a summary of the notation used throughout this part of the thesis. We
then establish the background knowledge needed for our results in Chapter 2, where we explain
the time encoding paradigm as a formalization of a spiking or event-based sampler, and cover
essential results on signal reconstruction from time encoding, and on the reconstruction of
“sparse signals” from more general sampling schemes. In the following chapters, we proceed
to study time encoding under different setups of multi-channel integrate-and-fire systems:
single-signal time encoding and recovery, mixed multi-signal time encoding and recovery,
video time encoding and recovery, and training of two-layer spiking neural networks.

We advise readers who are unfamiliar with time encoding to peruse at least Section 2.1 of
the background chapter. Other sections can be perused as needed; recommended reading is
indicated at the beginning of each chapter.

1.4.1 Chapter 3: Spike Timing allows Clock Alignment

We see how the timing-based nature of the output of spiking devices gives an advantage over
classical uniform sampling in the case of multi-channel encoding of a signal.

More specifically, we show that, if a 2Ω-bandlimited signal can be perfectly reconstructed
after sampling using one time encoding machine or integrate-and-fire neuron, then a 2NcΩ-
bandlimited signal can be perfectly reconstructed after sampling using Nc time encoding
machines, if these machines have integrator shifts that ensure that their outputs are different.
This result doesn’t require the knowledge of said shifts.

The equivalent scenario in uniform sampling is more difficult to solve: the constraints on the
input that result from uniform sampling from different channels with unknown clock shifts
cannot easily be assigned to a common time frame and complex nonlinear techniques are
required.
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With spiking devices, information lies in the timing of the spikes at the output which helps
overcome the difficulty of aligning clocks.

1.4.2 Chapter 4: Spike Asynchrony allows Group Work

We extend the results of Chapter 3, and see how the asynchrony of spikes across different
spiking devices allows gathered information to be less redundant and encoding to be more
efficient.

We examine the problem of time encoding mixed signals using multiple channels, resembling a
feedforward step of a spiking neural network. We show that, if the underlying dimensionality
Ns of the input is lower than the number Nc of channels, under certain conditions on the
input and mixing, the number of spikes needed for reconstruction depends on the number of
degrees of freedom in the low-dimensional space, rather than that in the high-dimensional
space, if the different channels work together.

More specifically, we show that if a certain channel or neuron spikes too little, it can be
compensated for by having another neuron spike more often, but only up to a certain extent.
This ability to work in groups is non-existant in synchronous uniform sampling, where samples
are taken at the same time and provide linearly dependent constraints.

1.4.3 Chapter 5: Spike Asynchrony entangles Temporal and Spatial Reso-
lution in Video

We build on the results of Chapter 4 to investigate the problem of time encoding bandlimited
video and see that using event sensors or time encoding machines results in streams of
events that are asynchronous across sensors, resulting in an entanglement between spatial
and temporal resolution.

In the frame based case, spatial and temporal resolution are uniquely and respectively defined
by the pixel gridding and frame rate, but in the case of event-based vision, we will see that
the temporal resolution is also affected by the pixel gridding. As a result, both temporal and
spatial resolution in event-based vision can be increased by increasing the number of pixels.

1.4.4 Chapter 6: All-or-none Spikes help train SNNs

We start to bridge the gap between time encoding and spiking neural networks by formulating
the training problem of SNNs as a constraint satisfaction problem. This formulation allows
us to understand the power of spikes compared to traditional ANN nonlinearities that are
graded (i.e. have varying amplitudes) and synchronous.

We understand how to recover, i.e. how to learn, the weights of a two-layer spiking neural
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network by bypassing the backpropagation algorithm and using constraints that are applied
to each layer at a time, constraints that are obtained from a teacher network with the same
architecture.

A key ingredient at play is the all-or-none and asynchronous nature of the spikes within a
spiking neural network, which will allow, in the noiseless case, perfect recovery of hidden
activations, and thus of the weights of the network.

Without further ado, we proceed to laying the groundwork for this part of the thesis, and
leave the introduction for the second part for Chapter 7.
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Notation

Chapter 2
t Time
ω Frequency
Ω Bandwidth

δ(t ) Dirac delta
y(t ) Time-varying signal input to TEM
κ Integrator constant of a TEM
θ Threshold of a TEM
β Bias of a TEM

z(t ) Output of the integrator of a TEM
τ` `th spike time of a TEM

Chapter 3
Nc Number of TEMs (where c stands for channels) encoding a signal

yi (t ) Time-varying signal input to TEMi

∆zi Integrator shift between TEMs i and i +1 (modulo the number
of total TEMs)

zi (t ) Output of the integrator of TEMi

τi ,` `th Spike time of TEMi of a series of TEMs
τ̃` Combined and ordered spike times of a series of TEMs

Chapter 4
y(t ) Vector of time-varying signals input to TEM(s)
x(t ) Vector of the Ns underlying signals input to a series of TEMs,

before mixing
C(y) Coefficients defining y(t ), as in (A4)
C(x) Coefficients defining x(t ), as in (A5)

Ns Number of underlying signals that can represent y(t )

x j (t ) j th entry in x(t )

A Mixing matrix in the context of time encoding
Chapter 5
y(d (1),d (2), t ) Time-and-space-varying signal
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D (1),D (2),T Periods in the first spatial, the second spatial and the temporal
dimensions, respectively

Chapter 6
n(k) Number of TEMs in the kth layer of a feedforward SNN

TEM(k)
i i th TEM of the kth layer of a feedforward SNN
τ(k)

i ,` `th spike time of TEMi
(k) of the kth layer of TEMs in a SNN

W(k) Weight matrix of layer i in a feedforward SNN
x(k)

j (t ) j th input to mixing weight matrix W(k) of the kth layer of a SNN
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2 Background

This chapter provides the technical background needed to tackle the next chapters in Part I.
We strongly encourage the reader to at least read Section 2.1 on the basics of time encoding
before proceeding to the next chapters. The other sections can be perused as needed.

2.1 Time Encoding: Basics

Time encoding differs from traditional sampling, not only in the way it gathers information
about a signal, but also in the way the information is represented and thus reconstructed.

In fact, in traditional sampling, a signal is filtered, sampled, and then encoded using (time,
amplitude) pairs. In time encoding, as the name suggests, a signal is encoded using (signal-
dependent) times only; these are the times at which a filtered version of the signal matches a
known test signal.

We start with a general definition of a time encoding machine and later consider specific
models, which include the integrate-and-fire time encoding machine—the model this thesis
mainly focuses on.

Crossing TEM

Definition 2.1. A Crossing Time Encoding Machine (C-TEM) with test functions
{φ`(t )}`∈Z, linear filter h(t ), and time-varying input y(t ) outputs the sequence of times
τ` such that:

1. φ`(t ) may be recovered from the set {τi , i ≤ `−1},

2.
(
h ∗ y

)
(τ`) =φ`(τ`), and

3.
(
h ∗ y

)
(t ) 6=φ`(t )∀t ∈ (τ`−1,τ`).
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This definition is adapted from the definition of a C-TEM from Gontier and Vetterli (2014).
For those familiar with the latter definition, ours additionally includes a filter before the
comparison between input and test function and allows for non-continuous test functions
{φ`}. These changes allow our definition to also encompass integrate-and-fire time encoding
machines.

Sampling using a crossing time encoding machine

Example 2.1.

0 2 4 6 8 10
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Figure 2.1 – Sampling of a signal, shown in green, using a crossing time encoding
machine that has a single test function φ`(t) = sin

(5
4πt

)
, ∀` shown in blue. The

recorded sequence τ` marks the intersections of the input signal with the test function,
here shown in dashed red lines.

Integrate-and-fire TEM

Definition 2.2. An integrate-and-fire time encoding machine (TEM) with parameters
κ, θ, and β takes an input signal y(t ), adds to it a bias β, and integrates the result,
scaled by 1/κ (κ being the integrator constant), until a threshold θ is reached. Once
this threshold is reached, a time τ` is recorded, the value of the integrator resets to
−θ and the mechanism restarts. We say that the machine spikes at the integrator
reset and call the corresponding recorded time τ` a spike time. We assume that
we have access to the spike times τ`, either as a list, or in the form of a stream of
unit-amplitude Dirac deltas emitted at the spike times.

In this thesis, the results we present concern integrate-and-fire time encoding machines, and,
unless stated otherwise, it is the model we assume whenever we use the term “time encoding
machine". However, many of the results we obtain can be extended to other models of
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y(t )

z(t )

Spike Triggered Reset

Integrator

β

θ

Comparator
τ`1

κ

∫

Figure 2.2 – Circuit of a time encoding machine with input y(t ) and parameters κ, θ and β,
where κ is the integrator constant, θ is a threshold above which a spike is triggered and β is
a positive bias added to the signal.

crossing time encoding machines, such as those presented in the Further Reading box below.

Figure 2.2 depicts the circuit of a TEM and Fig. 2.3 provides an example of how an input
generates its output.

The first similar definition of a TEM appeared in Lazar and Tóth (2003), with some differences
in how the information is output1. One can also define a TEM to have its integrator reset to
zero, rather than to −θ when the threshold is reached, or define it to have the integrator
constant κ and threshold θ combined into one parameter θ′ = κθ. However, we prefer to
keep the two parameters separate as each has a different origin in hardware: the integrator
constant κ arises from the integrator circuit and is therefore hard to change, whereas the
threshold is a parameter of the comparator and is easier to manipulate.

Note how, with time encoding, our definition of a sample has changed. In traditional sampling,
a sample denoted a (time, amplitude) pair, whereas here, a sample denotes a spike time. We
use the terminology “spike time”, to keep the analogy with integrate-and-fire neurons in the
brain which produce responses by emitting action potentials. These action potentials have a
fixed shape and amplitude, so the relevant information in a neuron’s output lies in the timing
of these action potentials, or spikes.

Time encoding outputs

Definition 2.3. A TEM outputs a stream of spikes or Dirac deltas, the timing of
which holds the information. We call this type of output a raw output.

This stream can be transformed into a list of times of these spikes or Dirac deltas. In
practice, this transformation requires time quantization, although we mostly ignore
quantization errors in this thesis. We call this type of output a listed output.

1According to Lazar and Tóth (2003, 2004), a TEM outputs a piecewise constant signal, which switches
between two levels at the spike times τ`, i.e. every time the threshold is reached. Therefore, the τ`’s could be
recognized by observing the time at which the output of the TEM changes levels.
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Further note that time encoding (whether crossing or integrate-and-fire) not only provides
spike times, but also information about the sampling process (i.e. the test functions φ`)
through these spike times, which eventually also provides one with a form of amplitude
information. Unlike in traditional sampling, however, this amplitude information can be
hidden without being lost, all the while preserving properties of signal reconstruction from
traditional sampling, and simultaneously offering some benefits thanks to an encoding which
is, in practice, purely time-based.

As a result, and as we will see in Section 2.2, such TEMs can encode bandlimited signals and
recover them perfectly, provided a Nyquist-like condition is satisfied.

Processing steps of a TEM

Example 2.2.

0

10
y(t )

0

10
y(t )+β

2

0

2

z(t )

0 2 4 6 8 10
Time (s)

τ`,` ∈Z

Figure 2.3 – Processing of a signal y(t) as it goes through the different stages of a
time encoding machine. From top to bottom, we have: the input signal y(t); the
result of the bias addition where β is the bias; the result of the integration and reset;
and the spike stream output where τ` denotes the `th spike and ` ∈Z. Note that, in
practice and in our simulations, ` takes a finite number of values as there is a finite
number of spikes.
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Further reading

In this section, we presented only two definitions of TEMs, one of them is very
general (the crossing TEM in Definition 2.1) and one of them is very specific (the
integrate-and-fire TEM in Definition 2.2). However, many more models of TEMs
exist.

In fact, the crossing TEM model we presented in Definition 2.1 is flexible and can allow
for various filters h(t) and test functions {φ`}. Some more specific models can, for
example, mimick event based sensors which emit events when they see a change in their
inputs (Gallego et al., 2019; Delbrück et al., 2010). In this case, the filter h(t ) would re-
semble a derivative operator and the

{
φ`

}
’s would simply be a constant threshold value.

On the other hand, time encoding machines (TEMs) encode inputs using times that
are dependent on the input itself and are thus reminiscent of real neurons (a property
we will focus more on in Chapter 6) or biological sensors such as photoreceptors . The
integrate-and-fire TEM already follows a simple neuron model (Burkitt, 2006) but
models for leaky integrate-and-fire TEMs with refractory periods and for Hodgkin-
Huxley neurons have also been studied (Lazar, 2005, 2010; Thao et al., 2022).

2.2 Time Encoding: Reconstruction Guarantees and Algorithms

2.2.1 Unique Time Encoding of Bandlimited Signals

We consider a TEM as in Definition 2.2. Results on the reconstruction of a signal y(t ) from
its time encoding were first obtained under the following assumptions:

(A1) The input signal y(t ) is 2Ω-bandlimited, i.e. the Fourier transform Y (ω) of y(t ) is zero
for |ω| >Ω..

(A2) The input signal y(t ) is in L 2(R), i.e.
∫ ∞
−∞

∣∣y(u)
∣∣2 du <∞2.

(A3) The input signal y(t ) is bounded by a constant c, i.e. |y(t )| < c,∀t ∈R.

It was shown by Lazar and Tóth that such a signal y(t ) can be perfectly reconstructed from
the samples obtained from a TEM with parameters κ, θ, and β, if β> c and

Ω< π
(
β− c

)
2κθ

. (2.1)

2Note that a signal y(t ) is in L2(a,b) if ‖y(t )‖2 =
(∫ b

a |y(u)|2 du
)1/2 <∞.
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The reconstruction scheme and the proof of convergence are based on two key elements:

1. The time encoding scheme is tightly related to the scheme of sampling averages,
allowing the results developped for the reconstruction from averages to be used for
time encoding and reconstruction (Feichtinger and Gröchenig, 1994; Aldroubi and
Feichtinger, 2002), and

2. When performing time encoding, the maximal delay between two consecutive spike
times is dictated by the parameters of the machine:

τ`+1 −τ` <
2κθ

β− c
. (2.2)

2.2.2 Iterative Reconstruction of Bandlimited Signals

To recover the input signal y(t), the reconstruction algorithm uses the spike times τ` to
compute integrals of the original signal (Lazar and Tóth, 2004). In fact, the set of spike
times recorded by our TEM provides linear constraints on the input signal:∫ τ`+1

τ`

y(u)du = 2κθ−β (τ`+1 −τ`) , (2.3)

where τ` and τ`+1 are any two consecutive trigger times. Now, let R be an operator such
that:

R (x(t )) =
∑
`∈Z

∫ τ`+1

τ`

x(u)du sincΩ(t − s`), (2.4)

where s` = (τ`+τ`+1)/2 and sincΩ(t ) = sin(Ωt )/(πt ).

Given this R, one can estimate y(t ) iteratively by setting

ŷ (0)(t ) =R
(
y(t )

)
, (2.5)

ŷ (k+1)(t ) = ŷ (k)(t )+R
(

y(t )− ŷ (k)(t )
)

. (2.6)

To prove that the algorithm described in (2.4)-(2.6) converges to the right solution, one
can use induction to prove that the k th estimate ŷ (k)(t) is a partial sum of a Neumann
series: ŷ (k)(t ) =R

∑k
n=0 (I −R)n y(t )—where I is the identity opertor—which converges to

limk→∞ ŷ (k)(t ) =RR−1 y(t ) = y(t ), if

‖I −R‖ < 1. (2.7)

Here, ‖.‖ denotes the operator norm.

To prove convergence of the algorithm, it remains to be proven that (2.7) holds. To do so,
Lazar and Tóth use the following two lemmas (Feichtinger and Gröchenig, 1994).
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2.2. Time Encoding: Reconstruction Guarantees and Algorithms

Bernstein’s inequality

Lemma 2.1. If y = y(t) is a function defined on R bandlimited to [−Ω,Ω] then
d y/du is also bandlimited and ∥∥∥∥ d y

du

∥∥∥∥2

≤Ω‖y‖2.

Wirtinger’s inequality

Lemma 2.2. If y, d y/d t ∈ L2(a,b) and either y(a) = 0 or y(b) = 0, then∫ b

a

∣∣y(u)
∣∣2 du ≤ 4

π2 (b −a)2
∫ b

a

∣∣∣∣ d y

du

∣∣∣∣2

du.

Using these two lemmas, they deduce a bound for ‖I −R‖.

Iterative reconstruction operator is Bounded (Lazar and Tóth, 2004)

Lemma 2.3.
‖I −R‖ ≤ Ω

π

(
sup(τ`+1 −τ`)

)
. (2.8)

As a result, one can deduce a sufficient condition for perfect reconstruction of a bandlimited
signal from its time encoding:

Perfect reconstruction from time encoding (Lazar and Tóth, 2004)

Theorem 2.1. Assume y(t ) is a 2Ω-bandlimited signal in L2(R) that is bounded such
that |y(t)| ≤ c. If y(t) is passed through a TEM with parameters κ, θ and β, such
that β> c, and

Ω< π(β− c)

2κθ
,

then y(t ) is uniquely determined by the spike times of the TEM and can be recovered
by applying the algorithm from (2.4)-(2.6).

Notice that this result imposes a Nyquist-like constraint on the bandwidth: The bound in
(2.1) requires a bandwidth which is inversely proportional to the separation between spike
times. Reconstruction of the original signal is then very similar to the reconstruction of
a bandlimited signal sampled with irregularly spaced amplitude samples (Feichtinger and
Gröchenig, 1994).
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Chapter 2. Background

2.2.3 Closed-form Reconstruction of Bandlimited Signals

Lazar and Tóth (2004) also obtain a closed-form matrix formulation for the above recursive
algorithm. First, let G be the operator defined as

G (b) =
∑
`∈Z

b` sincΩ(t − s`),

where s` = (τ`+τ`+1)/2 and sincΩ(t ) = sin(Ωt )/(πt ) as before. In addition, define b to be a
column vector with

b = [b`]`∈Z =
[∫ τ`+1

τ`

y(u)du

]
`∈Z

and H to be a matrix

H = [H`k ]`,k∈Z =
[∫ τ`+1

τ`

g (u − sk )du

]
`,k∈Z

.

Then, under the conditions of Theorem 2.1, one can recover y(t ) by setting y(t ) =G
(
H+q

)
where H+ is the pseudoinverse of H. We refer the reader to Lazar and Tóth (2004) for a
proof.

We have covered the main results established in Lazar and Tóth (2004) and now wish to
reformulate the iterative reconstruction algorithm from the perspective of projections onto
convex sets. We will use this perspective in Chapters 3 and 4 to design recovery algorithms
when multiple time encoding machines are used.

2.3 Time Encoding: Recovery using Projections onto Convex
Sets

We wish to reach a more intuitive interpretation of the recursive algorithm presented above,
and to adapt it to new, potentially more complex scenarios. To do so, we will slightly modify
the algorithm to fit a projection onto convex sets approach.

Projection onto convex sets

Definition 2.4. The Projection Onto Convex Sets (POCS) method searches for
a point in the intersection of N ∈ N convex sets C1,C2, · · · ,CN which are subsets
of a Hilbert space H . It obtains a solution ŷ, by alternately projecting on each
of the convex sets C1,C2, · · · ,CN , using firmly nonexpansive projection operators
P1,P2, · · · ,PN .

The POCS algorithm is known to converge to a fixed point which lies in the intersection of
the sets at hand ⋂N

i=1 Ci (Bauschke and Borwein, 1996). Thus, if the intersection of the sets
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2.3. Time Encoding: Recovery using Projections onto Convex Sets

consists of a single element, then the algorithm converges to the correct solution.

The algorithm presented by Lazar and Tóth (Lazar and Tóth, 2004) resembles a POCS
algorithm. In particular, notice that R, defined in (2.4), can be rewritten as

R (x(t )) =B (x(t ))∗ sincΩ(t ), (2.9)

where
B (x(t )) =

∑
`∈Z

(∫ τ`+1

τ`

x(u)du

)
δ(t − s`), (2.10)

where δ(t) is the Dirac delta. Recursively applying R, as in (2.5) and (2.6), therefore
alternately projects onto two convex sets, the set of bandlimited functions (by convolving
with a sinc) and the set of functions which match the measurements {τ`,` ∈Z}.

In fact, B adds Diracs in the center of each inter-spike interval3, where the Diracs are
weighted in such a way that the input and output have the same integrals between τ` and
τ`+1.

However, the range of operator B does not lie in a Hilbert space because Dirac deltas have
infinite energy, so the algorithm does not meet all the technical requirements for a properly
converging POCS algorithm (Thao and Rzepka, 2019). To remedy this, we assume that our
input signals are in L2(R), and define operator B̃ as follows:

B̃ (x(t )) =
∑

k∈Z

∫ τ`+1

τ`

x(u)du
1

τ`+1 −τ`
1[τ`,τ`+1)(t ), (2.11)

where 1[τ`,τ`+1)(t ) is a function which takes value one when t ∈ [τ`,τ`+1) and zero elsewhere.
B̃ and B produce signals that have the same integrals over intervals [τ`,τ`+1), but the result
obtained from applying B̃ is in L2(R), which is a Hilbert space.

Now, we define operator R̃ as follows:

R̃ (x(t )) = B̃ (x(t ))∗ sincΩ(t ). (2.12)

Defining
ŷ (0)(t ) = R̃

(
y(t )

)
, ŷ (k+1)(t ) = ŷ (k)(t )+R̃(y − ŷ (k)(t )), (2.13)

we can show that ŷ (k)(t ) is 2Ω-bandlimited at every iteration k. Therefore,

ŷ (k+1)(t ) = ŷ (k)(t )∗ sincΩ(t )+B̃
(

y(t )− ŷ (k)(t )
)
∗ sincΩ(t ),

=
(

ŷ (k)(t )+B̃
(

y(t )− ŷ (k)(t )
))
∗ sincΩ(t ).

.

3The inter-spike intervals are the intervals
[
τ`,τ`+1

]
between any two consecutive spikes τ` and τ`+1.
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Chapter 2. Background

Notice the similarity between the iterations of this algorithm and those of the algorithm
presented in Section 2.2.2. Earlier, at each iteration, Diracs were placed between consecutive
spikes to make the signal consistent with the spike times and the result was then low-pass
filtered. Here, indicator functions are placed between consecutive spikes before the low-pass
filter is applied.

To formalise the POCS perspective, we can divide the computation of ŷ (k+1)(t) into two
steps:

ŷ (k+1)(t ) =PΩ

(
PTEM

(
ŷ (k)(t )

))
, (2.14)

where
PTEM (x(t )) = x(t )+B̃

(
y(t )−x(t )

)
, (2.15)

and
PΩ (x(t )) = x(t )∗ sincΩ(t ). (2.16)

Letting CΩ be the space of 2Ω-bandlimited functions which are also in L2(R), we have the
following two lemmas.

Bandlimited projection is firmly nonexpansive

Lemma 2.4. PΩ is a firmly nonexpansive projection operator onto CΩ.

Proof. See Appendix 2.A.

Bandlimited functions set is convex

Lemma 2.5. CΩ is convex.

Proof. See Appendix 2.A.

As for PTEM, we can substitute (2.11) into (2.15), yielding

PTEM (x(t )) = x(t )+ ∑
`∈Z

∫ τ`+1

τ`

[
y(u)−x(u)

]
du

1[τ`,τ`+1)(t )

τ`+1 −τ`
. (2.17)

We thus see that the operator depends on the spike times τ` emitted by a TEM with
input y(t). PTEM uses operator B̃ to produce a function which is consistent with the
measurements {τ`,` ∈Z}. We call CTEM the space of such functions ŷ(t) ∈ L2(R) satisfying∫ τ`+1
τ`

ŷ(u)du = ∫ τ`+1
τ`

y(u)du, ∀` ∈ Z. These functions could generate the spike times τ`
when passed through the TEM.
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2.3. Time Encoding: Recovery using Projections onto Convex Sets

Time encoding projection is firmly nonexpansive

Lemma 2.6. PTEM is a firmly nonexpansive projection operator onto CTEM.

Proof. See Appendix 2.A.

Time encoding set is convex

Lemma 2.7. CTEM is convex.

Proof. See Appendix 2.A.

Since both PTEM and PΩ are projection operators onto CTEM and CΩ respectively, the entire
iterative reconstruction algorithm then consists of alternately projecting onto two sets, each
being convex.

We summarize our results in the following theorem.

Perfect reconstruction from time encoding

Theorem 2.2. Assume y(t ) is a 2Ω-bandlimited signal in L2(R) that is bounded such
that |y(t)| ≤ c. If y(t) is passed through a TEM with parameters κ, θ and β, such
that β> c, and

Ω< π(β− c)

2κθ
,

then limk↔∞ ŷ (k)(t ) = y(t ) if ŷ (k)(t ) is defined as in (2.13).

Further reading

Results in the last two sections are heavily based on the reconstruction from averages
algorithm provided in Feichtinger and Gröchenig (1994); Sun and Zhou (2002b,a),
but the POCS formulation provides intuition on the process and allows for a different
approach to proving convergence.
Following the initial findings in Lazar and Tóth (2003, 2004) on bandlimited signal
reconstruction, studies were also conducted to evaluate the performance of different
reconstruction approaches.

Some results are a consequence of posing the problem as uniform sampling in the
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Chapter 2. Background

amplitude domain (Florescu and Coca, 2015; Martínez-Nuevo et al., 2016; Lai et al.,
2017).
Other work focuses on developing iterative algorithms that are implementable in
hardware. For example, in Thao and Rzepka (2020), the authors develop a multipli-
erless iteration algorithm that can be implemented in hardware with bit shifts and
additions/subtractions only.
Further research has also been done to explore algorithms that can perform decoding
in real time, for example using a stitching algorithm (Lazar et al., 2008) or using a
Kalman filter approach (Saxena and Dahleh, 2014).

Results such as those presented here were also extended to a wider range of signals,
such as signals in shift-invariant subspaces (Gontier and Vetterli, 2014) and signals with
finite rate of innovation as we will discover in Section 2.4.2. A more comprehensive
literature review on reconstructing FRI signals from their time encoding is provided in
the Further Reading box of that section.

2.4 Sampling at the Rate of Innovation

Historically speaking, recovery guarantees under different sampling schemes were most
often first established for signals with a finite bandwidth or that lie in a shift-invariant
subspace (Shannon, 1949; Unser, 2000). However, such signal classes can be restrictive in
applications where certain models of sparsity are more appropriate, for example assuming
that signals have a finite rate of innovation.

2.4.1 Finite Rate of Innovation Signals: Uniqueness Guarantees and Recov-
ery Algorithms

Finite-rate-of-inovation Signals

Definition 2.5. We consider a class of signals y(t ) that can be written:

y(t ) = ∑
k∈Z

R∑
r=1

ckrφr (t − tk ) , (2.18)

where a signal is defined by R known functions
{
φr (t )

}R
r=1, and a set of corresponding

arbitrary shifts tk and amplitudes ckr . We define the rate of innovation of y(t ),

ρ = lim
u→∞

1

u
Cy

(
−u

2
,

u

2

)
(2.19)
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2.4. Sampling at the Rate of Innovation

where Cy (ta , tb) counts the number of degrees of freedom of y(t) over [ta , tb]. The
signal y(t ) is said to have finite rate of innovation if ρ is finite.

In this thesis we will focus on the canonical example of a finite-rate-of-innovation signal, the
T -periodic stream of Diracs:

y(t ) =
K∑

k=1
ck

∑
n∈Z

δ(t − tk −nT ). (2.20)

Here the ck ’s denote the amplitudes of the Diracs and the tk ’s denote the timings of the
Diracs. Therefore, recovering such a signal from its samples implies recovering the amplitudes
ck and timings tk that are apriori unknown. In total, one wishes to recover 2K degrees of
freedom.

From Vetterli et al. (2002), we know that such a signal can be written:

y(t ) = ∑
n∈Z

1

T

(
K∑

k=1
ck e−j(2πntk /T )

)
e j(2πnt/T ). (2.21)

This form makes the Fourier series (FS) representation of y(t) evident. In fact, the FS
coefficients Y [m] take the form

Y [m] = 1

T

K∑
k=1

ck e−j(2πmtk /T ). (2.22)

Given the nonlinear relationship between the Y [m]’s and the tk ’s, recovering the tk ’s from
a signal’s FS coefficients is nontrivial. To perform this recovery, one can search for an
annihilating filter of length K +1 for Y [m].

Annihilating filter

Definition 2.6. Consider a filter A[m], m = 0, · · · ,K , with z-transform:

A(z) =
K∑

m=0
A[m]z−m (2.23)

This filter is called an annihilating filter for y(t) if A[m] 6= 0 and the result of the
convolution of the two FS coefficients A[m] and Y [m] is zero:

A[m]∗Y [m] = 0. (2.24)
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If y(t ) follows the model in (2.20), then the z-transform, A(z), of A[m] will have zeros
at uk = e−j(2πtk /T ), where the tk ’s are the timings of the Diracs of y(t ).

There are now three questions to be solved. First, how can one determine a signal’s FS
coefficients? Second, how can one determine the corresponding annihilating filter? Third,
how can one then recover the Dirac timings and amplitudes using the annihilating filter?

How to determine a signal’s FS coefficients?

The FS coefficients of a T -periodic signal can be obtained from its time domain samples
under certain conditions. This is the case for example if the input y(t ) is passed through a
filter that satisfies the alias cancellation property before sampling.

Alias cancellation property

Definition 2.7. A filter h(t) satisfies the alias cancellation property, if its Fourier
transform H(ω) satisfies, for ω0 = 2π/T and m ∈Z,

H(mω0) =
{

hm 6= 0 if m = {−K , · · · ,K },

0 otherwise.
(2.25)

If the input signal y(t ), as defined in (2.20) is passed through such a filter, following which
time domain samples of y(t ) are taken, only the FS coefficients −K to K influence the samples
and these coefficients can be recovered by solving a linear system (provided that there are
enough samples, i.e. at least 2K +1 samples that are different from one another).

Notice that we enforce H(ω) to have 2K +1 consecutive FS components because our input
signal has 2K degrees of freedom, and one needs at least 2K +1 consecutive FS coefficients
of y(t ) to recover it using our method. More FS coefficients can also be used. However, to
obtain these FS coefficients, more time-domain samples of y(t ) will be needed.

How to find an annihilating filter?

An annihilating filter for y(t ) has to satisfy (2.24). Assuming we have recovered FS coefficients
Y [−K ], · · · ,Y [K ] of the input as described in the previous section, finding the annihilating
filter A[m] for Y [m] amounts to fixing A[0] (to 1 for example) and solving a linear set of
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equations:


Y [0] Y [−1] · · · Y [−K +1]

Y [1] Y [0] · · · Y [−K +2]
. . .

Y [K −1] Y [K −2] · · · Y [0]

 .


A[1]

A[2]
...

A[K ]

=−


Y [1]

Y [2]
...

Y [K ]

 . (2.26)

Both the matrix that pre-multiplies the coefficients A[m] and the result of the multiplication
are known if one knows the FS coefficients. Therefore, A[m] can be obtained exactly by
pseudo-inversion.

How to recover the Dirac timings and amplitudes using an annihilating filter?

We mentioned in Definition 2.6 that the z-transform, A(z), of A[m] will have zeros at
uk = e−j(2πtk /T ), where the tk ’s are the timings of the Diracs of y(t). Therefore, if one has
access to the FS coefficients A[m], one can describe its z-transform A(z) as a polynomial
with coefficients A[m] as done in (2.23) and can therefore factor it into its roots. Once the
roots uk are obtained, the timings tk can easily be recovered.

Then, knowing the tk ’s, the ck ’s can be recovered by solving this linear system:
Y [0]

Y [1]
...

Y [K ]

= 1

T


1 1 1

e−j(2πt1/T ) e−j(2πt2/T ) · · · e−j(2πtK /T )

. . .
e−j(2Kπt1/T ) e−j(2Kπt2/T ) · · · e−j(2KπtK /T )

 .


c1

c2
...

cK

 , (2.27)

where only the ck ’s are unknown.

Putting it all together

In sum, the recovery of a T -periodic signal y(t) with 2K degrees of freedom as in (2.20)
can be achieved by filtering y(t) using a filter that satisfies the alias cancellation property
such that all but FS coefficients Y [−K ], · · · ,Y [K ] are cancelled out, then obtaining 2K +1

time-domain samples of y(t ) and recovering the FS coefficients Y [−K ], · · · ,Y [K ]. Once these
are obtained, one can find an annihilating filter A[m],m = 0, · · · ,K for Y [m], m =−K , · · · ,K

and recover the Dirac times by factoring the z-transform A(z) into roots (a nonlinear process)
and the Dirac amplitudes ck by solving a linear system.

29



Chapter 2. Background

Further reading

The literature on sampling signals with finite rate of innovation is much more wide-
reaching than what we have covered here and has applications in, for example, the
compression of ECG signals (Baechler et al., 2013) and the recovery of star positions
in the sky (Pan et al., 2017).
We refer readers interested in the theory behind FRI sampling to the first paper on this
topic (Vetterli et al., 2002) and to a subsequent article that deals with wider classes
of filters (Dragotti et al., 2007).
The algorithms were later extended to deal with noisy scenarios by applying Cadzow
denoising (Cadzow, 1988) and with multi-dimensional signals such as sampling curves
with finite rate of innovation or sampling FRI signals that lie on a sphere (Pan et al.,
2013, 2017).

2.4.2 Recovering FRI Signals from their Time Encoding

Until now, we assumed that uniform (time, amplitude) samples of the filtered input signal are
taken to recover the 2K degrees of freedom underlying the input y(t) as defined in (2.20).
Here, we are interested in recovering this y(t ) from its time encoding. To do so, we see that
our input y(t ) has 2K degrees of freedom we would like to recover, and we pass it through
a filter h(t) that satisifies the alias cancellation property as defined in Definition 2.7, thus
preserving 2K +1 FS coefficients of y(t ), Y [−K ], · · · ,Y [K ]. Then, the filtered signal y(t )∗h(t )

is passed through a TEM.

As previously explained, the timings at the output of the TEM provide linear constraints
on the input signal. We therefore combine the knowledge of the integrals (2.3) and the FS
expression for y(t ) to obtain a linear system in terms of the FS coefficients Y [k]. If we know
L spike times τ`, `= 0, · · · ,L−1, then


b0

b1
...

bL−2

=


∫ τ1
τ0

y(u)du∫ τ2
τ1

y(u)du
...∫ τL−1

τL−2
y(u)du

= GI F .



Y [−K ]×H [−K ]
/−j2Kπ

Y [−K +1]×H [−K +1]
/−j2(K −1)π

...
Y [0]×H [0]

...
Y [K −1]×H [K −1]

/
j2(K −1)π

Y [K ]×H [K ]
/

j2Kπ


, (2.28)
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where

GT
I F =



e−j2Kπτ1 −e−j2Kπτ0 e−j2Kπτ2 −e−j2Kπτ1 · · · e−j2KπτL−1 −e−j2KπτL−2

...
... . . . ...

e−j2πτ1 −e−j2πτ0 e−j2πτ2 −e−j2πτ1 e−j2πτL−1 −e−j2πτL−2

τ1 −τ0 τ2 −τ1 · · · τL+1 −τL

e j2πτ1 −e j2πτ0 e j2πτ2 −e j2πτ1 · · · e j2πτL−1 −e j2πτL−2

...
... . . . ...

e j2Kπτ1 −e j2Kπτ0 e j2Kπτ2 −e j2Kπτ1 · · · e j2KπτL−1 −e j2KπτL−2


. (2.29)

Notice that we expanded the transpose of GI F because of space limitations.

According to (Kamath et al., 2021), an FRI signal as in (2.20) can be recovered from its time
encoding given enough spikes at the output of the TEM:

Uniqueness of a FRI signal from its time encoding (Kamath et al., 2021)

Lemma 2.8. The matrix GI F defined in (2.29) has full column-rank whenever
L ≥ 2K +2.

This means if a TEM emits 2K +2 spike times for an input y(t ), then this time encoding of
y(t ) uniquely represents the FS coefficients of its input because the matrix GI F is full rank.
One can then proceed, as in the previous section, with finding the annihilating filter for these
FS coefficients and finally the Dirac timings and weights.

Further reading

We have elaborated one approach to recovering FRI signals from their time encodings—
an approach which uses a filter that satisfies an alias cancellation property and
which is performed offline. Further work has been done to tackle scenarios where
streams of Diracs are filtered using exponential and polynomial splines and where
the reconstruction is done in a sequential fashion (Alexandru and Dragotti, 2019).
Extensions were also done to understand how to reconstruct FRI signals from their
time encoding after filtering with a hyperbolic secant kernel or an alpha-synaptic
function, that is, filters that have more biological motivation (Hilton et al., 2021b,a).
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2.5 Low Rank Matrix Factorization

2.5.1 Problem Formulation

In the problem of low-rank factorization, one wishes to recover a matrix M ∈ RN1×N2 with
rank r << min(N1, N2) that satisfies a set of available observations y ∈Rn about M. In other
words, one assumes that the solution M can be written as a product of two matrices LRT ,
L ∈RN1×r ,R ∈RN2×r .

Notice that, even in situations where M is uniquely defined by the rank and measurements
provided, the matrices L and R are never unique beyond invertible transformations, i.e. if
M can be decomposed into M = LRT , then it can also be decomposed into M = L̃R̃T where
L̃ = LH and R̃ = R

(
HT

)−1 where H is an invertible matrix.

In more precise terms, one would ideally like to recover M by minimizing its rank, while
enforcing the constraints from y ∈Rn obtained from applying operator a linear operator S to
M and measuring the result in b:

minimize rank(M)

subject to S (M) = b.
(2.30)

This optimization problem is non-convex and NP-hard to solve. It has been shown that the
nuclear norm is the tightest convex lower bound of the rank function (Recht et al., 2010).
Therefore, the above optimization problem is often relaxed to the following:

minimize ||M||∗
subject to S (M) = b,

(2.31)

where ||M||∗ is the nuclear norm of M, i.e. the sum of the singular values of M. This problem
can be reformulated as a semi-definite problem and solved using interior-point methods (Fazel,
2003). However, this can become intractable as the matrix dimensions become high.

2.5.2 The Singular Value Projection Algorithm

Different algorithms were developed to more efficiently solve the problem in (2.31). We focus
on the Singular Value Projection (SVP) algorithm which was developed to recover matrix M

from measurements y =S (M) (Jain et al., 2010).

The Singular Value Projection (SVP) algorithm alternately applies the low-rank constraint
and the measurement constraint on the matrix of interest M and is detailed in Algorithm 1,
where we let M(k) be the estimate at iteration k of the target matrix to reconstruct and P(k)

be a proxy matrix to perform the iterations.

The SVP algorithm is based on projected gradient descent, and has been proven to converge

32
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Algorithm 1 Singular Value Projection
Input: S , b, tolerance ε, ηk for k = 0,1,2...
1: M(0) = 0 and k = 0
2: repeat
3: Pk+1 ← M(k) −ηkS T (S (M(k))−b)
4: Compute top r singular vectors of P(k+1) : Ur ,Σr ,Vr

5: M(k+1) ←UrΣr V T
r

6: k ← k +1
7: until ‖S (M(k+1) −b)‖2

2 ≤ ε

to the correct solution in case where the operator S satisfies the restricted isometry property.

Restricted isometry property

Definition 2.8. An operator S satisfies the restricted isometry property (RIP) if ∃
an isometry constant δr ∈ (0,1) s.t. ∀M ∈RN1×N2 of rank at most r ,(

1−δr )‖M‖2
2 ≤ ‖S (M)‖2

2 ≤ (1+δr )‖M‖2
2.(2.32)

Then, the operator S is said to satisfy the r -restricted isometry property with restricted
isometry constant δr .

The Singular Value Projection algorithm will be useful when we tackle time encoding of
signals with an unknown low dimensional structure in Chapter 4.

With this, we have now covered the main technical foundations needed to tackle the results
in this part of the thesis and can now proceed to explore new results.

2.A Appendix: Proofs for POCS

Bandlimited projection is firmly nonexpansive

Lemma 2.4. PΩ is a firmly nonexpansive projection operator onto CΩ.

Proof of Lemma 2.4. First, we show that PΩ is idempotent:

PΩ (PΩ (x(t ))) = x(t )∗ sincΩ(t )∗ sincΩ(t ) = x(t )∗ sincΩ(t ) =PΩ (x(t )) ,

since a sincΩ convolved with itself is still a sincΩ (given that its Fourier transform has value
one for frequencies ω such that |ω| <Ω and zero otherwise.).
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We now show that PΩ has as range the space CΩ of 2Ω-bandlimited functions in L2(R).

First, let x(t ) be an arbitrary L2(R) function, its Fourier transform X (ω) is then also L2(R),
according to Parseval’s theorem. The result of the projection will have Fourier transform
equal to Y (ω), ∀|ω| <Ω, and zero otherwise. Therefore PΩ (x(t )) is 2Ω-bandlimited and
∈ L2(R), and is therefore in CΩ.

Now, let x(t ) be a 2Ω-bandlimited function ∈ L2(R), then its Fourier transform X (ω) is such
that X (ω) = 0,∀|ω| >Ω. Convolving x(t) with sincΩ(t) in the time domain only multiplies
X (ω) by 1 in the region where it is nonzero. Therefore x(t )∗ sincΩ(t ) = x(t ) ∈CΩ.

Finally, PΩ is firmly non-expansive, since it is an orthogonal projection operator Vetterli et al.
(2014).

Bandlimited functions set is convex

Lemma 2.5. CΩ is convex.

Proof of Lemma 2.5. Let x1(t ) and x2(t ) be in CΩ. Then let x3(t ) be a convex combination
of x1(t ) and x2(t ), i.e. x3(t ) =λx1(t )+ (1−λ)x2(t ), where λ ∈ [0,1]. Then, let X1(ω), X2(ω)

and X3(ω) be the respective Fourier transforms of x1(t ), x2(t ) and x3(t ). By linearity of the
Fourier transform, we find that X3(ω) = λX1(ω)+ (1−λ)X2(ω). Therefore, since x1(t) and
x2(t ) are in CΩ and X1(ω) = X2(ω) = 0 ∀|ω| >Ω, X3(ω) = 0 ∀|ω| >Ω. Therefore, x3(t ) is also
2Ω-bandlimited. L2(R) is also a convex set (as it is a linear space), therefore x3(t ) is also in
L2(R), as x1(t ) and x2(t ) ∈ L2(R). Therefore x3(t ) ∈CΩ, thus showing that CΩ is convex.

Time encoding projection is firmly nonexpansive

Lemma 2.6. PTEM is a firmly nonexpansive projection operator onto CTEM.

Proof of Lemma 2.6. First we show that PTEM is idempotent. Note that
∫ τ`+1
τ`

PTEM (x(u)) =∫ τ`+1
τ`

y(u)du, ∀` ∈Z, where y(t ) is the input to the TEM. Therefore,

PTEM (PTEM (x(t ))) =PTEM (x(t ))+
∑
`∈Z

∫ τ`+1

τ`

[
y(u)−PTEM (x(u))

]
du

1[τ`,τ`+1)(t )

τ`+1 −τ`
=PTEM (x(t )) .

Now we show that the range of PTEM is indeed the space of functions f (t ) with
∫ τ`+1
τ`

f (u)du =∫ τ`+1
τ`

y(u)du.
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First let x(t ) be a function in L2(R). It is easy to show that PTEM (x(t )) will have
∫ τ`+1
τ`

PTEM (x(u)) du =∫ τ`+1
τ`

y(u)du. One can also show that PTEM (x(t )) will be in L2(R), by using Lemma 2.13.

Now, let x(t ) be in CTEM, then

PTEM (x(t )) = x(t )+ ∑
`∈Z

∫ τ`+1

τ`

[
y(u)−x(u)

]
du

1[τ`,τ`+1)(t )

τ`+1 −τ`
= x(t )+ ∑

`∈Z
0× 1[τ`,τ`+1)(t )

τ`+1 −τ`
= x(t ).

Therefore, PTEM has range CTEM.

It remains to be shown that PTEM is firmly nonexpansive. To do so, it is sufficient to show
that PTEM can be written

PTEM = 1

2
I + 1

2
N ,

where I is the identity operator and N is an nonexpansive operator. Indeed, PTEM can be
written as such if we set

N (x(t )) =I (x(t ))+2B̃
(
y(t )−x(t )

)
.

We want to show that N is nonexpansive, therefore it is sufficient to show that, for any x1(t )

and x2(t ) in L2(R),
||N (x1)−N (x2)|| ≤ ||x1 −x2|| .

We will start with the left hand side of the equation:

||N (x1)−N (x2)|| = ∣∣∣∣I (x1(t ))+2B̃
(
y(t )−x1(t )

)
− I (x2(t ))−2B̃

(
y(t )−x2(t )

)∣∣∣∣
= ∣∣∣∣I (x1)−2B̃ (x1)−I (x2) (t )+2B̃ (x2) (t )

∣∣∣∣
= ∣∣∣∣(I −2B̃

)
(x1 −x2)

∣∣∣∣
≤ ∣∣∣∣I −2B̃

∣∣∣∣ ||x1 −x2||
≤ ||x1 −x2|| ,

where we use the fact that ‖I −2B̃‖ = 1, as we show in Lemma 2.14, below.

Time encoding set is convex

Lemma 2.7. CTEM is convex.

Proof of Lemma 2.7. Let x1(t ) and x2(t ) be in CTEM. Then let x3(t ) be any convex combi-

35



Chapter 2. Background

nation of x1(t ) and x2(t ), i.e. x3(t ) =λx1(t )+ (1−λ)x2(t ), where λ ∈ [0,1]. Then,∫ τ`+1

τ`

x3(t )d t =
∫ τ`+1

τ`

λx1(t )+ (1−λ)x2(t )d t

=λ
∫ τ`+1

τ`

x1(t )d t + (1−λ)
∫ τ`+1

τ`

x2(t )d t

=λ
∫ τ`+1

τ`

y(t )d t + (1−λ)
∫ τ`+1

τ`

y(t )d t

=
∫ τ`+1

τ`

y(t )d t .

The first equality holds because of the definition of x3(t ), and the third equality holds because
x1(t) and x2(t) are in CTEM. The result shows that x3(t) is also consistent with the spike
times {τ`,` ∈Z}. On the other hand, L2(R) is a linear space (and therefore a convex set), so
x3(t ) ∈ L2(R) as well. Therefore, x3(t ) ∈CTEM, thus proving that CTEM is a convex set.

B̃ projects onto a subspace of L2(R)

Lemma 2.13. If x(t ) is in L2(R), then B̃ (x(t )) is also in L2(R).

Proof. Let x(t ) ∈ L2(R), so
∫ ∞
−∞ |x(t )|2 = d <∞ for some d ∈R.∫ ∞

−∞

∣∣B̃ (x(t ))
∣∣2

d t = ∑
`∈Z

∫ τ`+1

τ`

∣∣B̃ (x(t ))
∣∣2

d t

= ∑
`∈Z

∫ τ`+1

τ`

∣∣∣∣∣
∫ τ`+1
τ`

x(u)du

τ`+1 −τ`

∣∣∣∣∣
2

d t

= ∑
`∈Z

(τ`+1 −τ`)

∣∣∣∣∣
∫ τ`+1
τ`

x(u)du

τ`+1 −τ`

∣∣∣∣∣
2

= ∑
`∈Z

(∫ τ`+1
τ`

x(u)du
)2

τ`+1 −τ`
(a)≤ ∑

`∈Z
(τ`+1 −τ`)

∫ τ`+1
τ`

(x(u))2 du

τ`+1 −τ`
= ∑
`∈Z

∫ τ`+1

τ`

(x(u))2 du

=
∫ ∞

−∞
(x(u))2 du = d <∞.

Here, inequality (a) arises from the Cauchy-Schwarz inequality.
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Operator norm of I −2B̃ is one

Lemma 2.14. The operator norm of operator I −2B̃,
∣∣∣∣I −2B̃

∣∣∣∣ is equal 1.

Proof. To find the operator norm
∣∣∣∣I −2B̃

∣∣∣∣= sup
x

‖(I−2B̃)(x)‖
‖x‖ , let us compute, for any x(t ),

∣∣∣∣(I −2B̃
)

(x(t ))
∣∣∣∣2 =

∫ ∞

−∞

∣∣x(t )−2B̃ (x(t ))
∣∣2

d t

= ∑
`∈Z

∫ τ`+1

τ`

(
x(t )−2B̃ (x(t ))

)2
d t

= ∑
`∈Z

∫ τ`+1

τ`

(
x(t )−2

∫ τ`+1
τ`

x(u)du

τ`+1 −τ`

)2

d t

= ∑
`∈Z

(∫ τ`+1

τ`

(x(t ))2 +4

(∫ τ`+1
τ`

x(u)du

τ`+1 −τ`

)2

−4

∫ τ`+1
τ`

x(u)du

τ`+1 −τ`
x(t )d t

)

= ∑
`∈Z

4(τ`+1 −τ`)

(∫ τ`+1
τ`

x(u)du

τ`+1 −τ`

)2

−4

(∫ τ`+1
τ`

x(u)du
)2

τ`+1 −τ`
+

∫ τ`+1

τ`

(x(t ))2 d t


(2.33)

= ∑
`∈Z

4

(∫ τ`+1
τ`

x(u)du
)2

τ`+1 −τ`
−4

(∫ τ`+1
τ`

x(u)du
)2

τ`+1 −τ`
+

∫ τ`+1

τ`

(x(t ))2 d t

= ∑
`∈Z

∫ τ`+1

τ`

(x(t ))2 d t

=
∫ ∞

−∞
(x(t ))2 d t = ‖x(t )‖2.

Therefore, ‖(I −B̃) (x(t ))‖ = ‖ (x(t ))‖ for any x(t ). Thus, ‖I −B̃‖ = 1.
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3 Time Encoding a Single Signal using
Multiple Channels

Recommended Reading: Sections 2.1, 2.2, 2.3.
The content in this chapter is adapted from Adam et al. (2019, 2020b).

3.1 Introduction

We begin our journey of exploring the wonders of spikes and time encoding by focusing on
the ease of clock-alignment and, therefore, multi-channel sampling using time encoding, and
show that time encoding machines, hold an advantage over classical uniform sampling in this
scenario.

In the classical uniform case, when sampling a signal using multiple samplers, one requires a
shift between the clocks of the samplers to capture more information about the input than
in the single-sampler case. However, if this shift is unknown, recovering the input from the
multichannel samples becomes a more complex procedure (Asl et al., 2010).

On the other hand, when one samples a signal using multiple TEMs, one requires a shift
between the integrators to capture more information about a signal, as we will see later.
In this case, even if this shift is unknown, reconstruction guarantees are established for
signals with a bandwidth that is Nc times larger than in the single channel case and the
reconstruction algorithm can be as simple as the one in the single channel case.

In fact, we will show that reconstructing a 2Ω-bandlimited signal from its Nc-channel time
encoding is possible, whenever the bandwidth satisfies

Ω< Ncπ(β− c)

κθ
, (3.1)

where θ, κ and β are the machine parameters, whatever the (potentially unknown) integrator
shifts between the machines
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...

TEM1

TEMNc

TEM2y(t ) ŷ(t )
Reconstruction

Algorithm

z1(tst ar t )

z3(tst ar t )

z2(tst ar t )

Figure 3.1 – Multi-channel time encoding and decoding pipeline. In Practice, the TEMs are
initialized with some initial value of their integrators zi (tst ar t ) and the integrator shift between
two machines TEMi and TEMi+1 is ∆zi = zi+1(tst ar t )−zi (tst ar t ) mod 2θ, for 1 < i < Nc (the
shift between machines TEMNc and TEM1 is ∆zN c = z1(tst ar t )− zNc (tst ar t ) mod 2θ). The
output streams of the different machines can be combined into one before being fed into a
single decoding machine because of the perfect ordering of the spikes provided in (3.4).

Practically, clock synchronization, which poses an issue in multi-channel amplitude sampling,
can be entirely bypassed here because TEMs encode information in the timing of the spikes
that are output. These outputs can then be summed (in hardware) into one final spike train,
to find the relative positioning of spikes across channels, as we will see in Fig. 3.4.

These results allow more flexibility in device designs. To encode signals that are more
information-rich, rather than design TEMs that have higher spiking rate (thus introducing
more margin for noise), one can use multiple TEMs, allowing each TEM to have a lower
spiking rate.

We will first show that an Nc-channel TEM, as depicted in Fig. 3.1 uniquely encodes a
signal with a bandwidth Nc times larger than in the single channel case. We then provide an
iterative and a one-shot reconstruction algorithm which perform perfect reconstruction of the
input and we finally provide simulations to evaluate the performance of our algorithms with
varying number of machines, varying integrator shifts and varying noise levels.

3.2 Background

As we previously mentioned, time encoding can mimic sensory information processing in
neuroscience. Therefore, an intuitive extension to the time encoding machine introduced
in 2.1 is a system consisting of multiple time encoding machines: human sensory systems are
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comprised of many neurons that encode inputs using spikes, which are later used in higher
order processes in the brain.

Moreover, neurons in sensory systems are modeled with receptive fields. This means that
certain neurons are sensitive to certain shapes of inputs, and the spiking output of these
neurons is essentially driven by filtered versions of the original input signal (Hubel and Wiesel,
1962). Therefore, different neurons spike at different times and therefore encode different
sets of information.

Inspired by such experimental findings, Lazar and Pnevmatikakis (2008) defined a setup with
Nc linearly independent filters and Nc leaky integrate-and-fire time encoding machines. A
1-dimensional signal y(t ) is then fed into filter i before being input to TEMi , for i = 1 · · ·Nc ,
then reconstructed from the samples. Within this setup, the authors were able to quantify
the improvement one obtains from the multi-channel encoding and decoding setup.

In the present chapter, our approach to time encoding is different: we assume that we are
dealing with multiple similar neurons encoding the same input, i.e. they all respond to the
same kinds of stimuli.

Therefore, we assume that our signal is not prefiltered before being input to each machine
or neuron, but that machines output different spike times because of different initial con-
figurations of the time encoding machines or neurons. In Chapter 4, we extend the results
of this chapter to time encoding and decoding of vectors of inputs where the connection
between the inputs is more complex. This extension mimics the way neurons automatically
form receptive fields: these fields arise naturally because of the structure of the connection
between input and neuron.

The setup presented here also draws a parallel with the multi-channel sampling setup in
the classical sampling scenario, where sampling devices have unknown shifts in their clocks.
Here, our time encoding machines will have unknown shifts in their integrators. The former
problem seems to be quite difficult to solve, whereas the latter seems no harder to solve than
the single-channel variant.

3.3 Nc-Channel TEM Definition

First, we refer the reader once more to the definition of a TEM in Definition 2.2 and to its
circuit in Fig. 2.2 and define integrator shifts between TEMs with the same parameters.

Integrator shifts

Definition 3.1. Nc TEMs with parameters κ, θ and β have integrator shifts
∆z1,∆z2, · · · ,∆zNc if, for the same input y(t ), and for any time t , the outputs of the
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integrators z1(t ), z1(t ), · · · , zNc (t ) satisfy

zi+1(t ) = (zi (t )+∆zi ) mod 2θ, i = 1 · · ·Nc −1 (3.2)
z1(t ) = (zNc (t )+∆zNc ) mod 2θ. (3.3)

Here, the ∆zi ’s naturally satisfy a (∑
i ∆zi

)
mod 2θ = 0.

aThis arises from recursively expanding the expression of z1(t) in (3.3) and noting that z1(t) =
z1(t )+∑

i ∆zi mod 2θ.

Consider two time encoding machines TEM1 and TEM2, with the same parameters κ, θ, and
β. At first sight, it seems that TEM1 and TEM2 will output the same encoding of an input
signal y(t). However, consider a scenario where the integrator of TEM1 is always ∆z 6= 0

ahead of the integrator of TEM2 (modulo 2θ). Then, the threshold is reached at different
times in the two machines. Therefore, the recorded spike times of y(t ) are different and the
overall encoding of the signal is different.

Intuition tells us that we can probably gain more information about y(t ) by considering the
outputs of both machines.

More generally, our multi-channel time encoding setup assumes that a bandlimited signal is
passed through an Nc -channel time encoding machine, as defined next.

Nc-channel time encoding machine

Definition 3.2. An Nc -channel time encoding machine consists of Nc single-channel
TEMs TEM1, TEM2, · · · , TEMNc , with parameters κ, θ and β and integrator shifts
∆z1, · · · ,∆zNc .

When these shifts are all nonzero, the machines will spike in this order TEM1, TEM2, · · · ,
TEMNc , TEM1, i.e.

τ1,` < τ2,` < ·· · < τNc ,` < τ1,`+1 ∀` ∈Z, (3.4)

where
{
τi ,`,` ∈Z}

is the set of spike times emitted by TEMi .

Equation (3.4) forces a strict order of the spike times on the Nc machines, which naturally
arises from nonzero shifts between the integrators of the machines.
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Two-channel time encoding

Example 3.1.

5

0Original Signal

2

0

2

Integrator outputs z2(t )

z2(t )

0.0

2.5
Integrator output

differences

0 1 2 3 4 5 6 7
Time (s)

0.0

0.5

1.0

Spike Times

Figure 3.2 – Output of the integrators of two TEMs with nonzero shifts. We assume
both TEMs have a threshold θ = 2 and that TEM2 is leading TEM1 by ∆z1 = 0.75. This
means z2(t) = z1(t)+∆z1 mod 2θ, ∀t . We plot, from top to bottom: The original
signal input to the machines, the output zi (t ) of the integrator of each machine TEMi ,
the difference between the integrators of the two machines, and the output spikes of
each machine. Note how the spike times are interleaved, i.e. there is always one spike
of TEM1 between any two spikes of TEM2 and vice versa.

Figure 3.2 shows an example of 2-channel time encoding. We pass an input signal
through the two TEMs (with nonzero integrator shifts) and record the output of each
integrator. Notice how the integrator values are always shifted by the same amount
(modulo 2θ). Therefore, as the spike times are generated at the integrator reset, the
TEMs are guaranteed to spike at different times so that τi ,k 6= τ j ,` ∀k,` ∈Z, ∀i 6= j ,
where i , j ∈ [1, · · ·Nc ]. Moreover, the spike times are interleaved, satisfying (3.4).

We have yet to explain where the integrator shifts come from, in practice. In short, they
come from different initial conditions of the integrators as we explain in the “In depth" box
below.
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In depth: How integrator shifts occur

So far, we have assumed that input signals have infinite support, and that each TEM
samples its inputs for infinite time. In practice, however, a TEM would start recording
a signal at a certain time tstart and stop recording at tend. In these scenarios, integrator
shifts can be well defined and implemented.
Indeed, these integrator shifts will result from different initial conditions on the
integrators of the TEMs at tstart. For example, assume TEM1 and TEM2 start
integrating at the same time tstart with initial values z1(tstart) and z2(tstart), respectively.
Then TEM2 will always lead TEM1 (modulo 2θ)by ∆z1 = z2(tstart)− z1(tstart).
More practically, an integrator can be represented in circuitry by an operational
amplifier coupled with a resistor and capacitor, as seen in Fig. 3.3. This capacitor can
be charged with a certain voltage before the input is fed into the circuit. This initial
charge of the capacitor can practically implement the initial value of the integrator.
Therefore, having different initial charges on the capacitors of each machine would
lead to nonzero integrator shifts.

-

+

y(t ) R

C

∫ t
tstart

y(u)du

Figure 3.3 – The circuit of a simple integrator comprises of an operational amplifier, a
resistor R and a capacitor C in the shown configuration. The circuit does not provide
a perfect integrator as we require in our model but it serves a good approximation of it
and allows the implementation of our setup in hardware. An analysis of time encoding
using leaky integrators such as this one is presented in Lazar and Pnevmatikakis
(2008).

However, we recall that our setup assumes a perfect integrator and infinite time
support. The initial conditions formulation in this section serves as a more intuitive
explanation of how integrator shifts arise, and as a practical explanation of where
these shifts come from, in hardware.

3.4 Uniqueness of Nc-Channel Reconstruction using POCS

Our findings are summarized into the following theorem.
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Unique definition of a bandlimited signal from its multi-channel time encoding

Theorem 3.1. Assume y(t ) is a 2Ω-bandlimited signal in L2(R) that is bounded such
that |y(t )| ≤ c and that has a well-defined integral

∫ t
−∞ y(u)du =: Y (t ) <∞. If y(t ) is

passed through Nc TEMs with parameters κ, θ and β, such that β> c, the shifts ∆zi ,
i = 1 · · ·Nc between the TEMs are nonzero and

Ω< Ncπ(β− c)

2κθ
, (3.5)

then y(t ) is uniquely determined by the spike times of the TEMs.

Proof. The proof is included in Appendix 3.B.

The above theorem states that using Nc time encoding machines can uniquely encode a
signal y(t) with a bandwidth which is Nc times larger than in the single channel case, no
matter how the shifts between the machines are configured, as long as they are all nonzero.

3.5 Convergence of Nc-Channel Reconstruction using POCS

We have found sufficient conditions for a signal to be uniquely defined by its Nc -channel time
encoding. We now develop algorithms that perform perfect reconstruction from the spike
times of Nc -channel TEMs.

First, we use the projection onto convex sets (POCS) formulation to devise a reconstruction
algorithm for multi-channel time encoding.

The POCS method, as defined in Definition 2.4 can guarantee convergence onto a fixed
point by alternately projecting onto convex sets, as explained in Definition 2.4. The averaged
projection method works similarly.

The averaged projections method

Definition 3.3. The averaged projections method assumes that we have N convex
sets C1, · · · ,CN with corresponding projection operators P1, · · · ,PN and that we
compute an estimate of y at iteration k +1 by taking

ŷ (k+1) = 1

N

N∑
i=1

P i

(
ŷ (k)

)
. (3.6)

This algorithm can be reduced into an alternating projection algorithm and therefore also
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converges to a fixed point in the intersection of the sets Ci .

To apply the POCS approach, we first need to identify the convex sets and the corresponding
projection operators in the reconstruction problem.

We recall that TEM1, TEM2, · · · , TEMNc are our Nc time encoding machines, and
{
τi ,`` ∈Z

}
are the spike times emitted by machine i , i = 1 · · ·Nc , when the input is y(t )—a 2Ω-bandlimited
signal in L2(R) such that |y(t )| < c, for some c ∈R.

Then, we follow a similar treatment to the one in Section 2.3 and let R̃i be the reconstruction
operator associated with TEMi , such that

R̃i (x(t )) =
∑

k∈Z

(∫ τi ,`+1

τi ,`

x(u)du

)
1[τi ,`,τi ,`+1)(t )

τi ,`+1 −τi ,`
∗ sincΩ (t ) , (3.7)

where sincΩ(t ) = sin(Ωt )/(πt ) .

Note that each of these reconstruction operators R̃i is the same as the operator defined
in (2.12) for each of the individual machines TEMi and their respective spike times τi ,`, and
therefore also consists of two projections onto convex sets CTEMi and CΩ, where CTEMi is the
set of signals that satisfy the measurements of TEMi and CΩ is the set of 2Ω-bandlimited
signals. Each of these sets are convex by Lemma 2.5 and Lemma 2.7.

Then, we define a new reconstruction operator

R̃1···Nc =
1

Nc

Nc∑
i=1

,R̃i (3.8)

and recursively estimate y(t ) by setting

ŷ (0)(t ) = R̃1···Nc

(
y(t )

)
, ŷ (k+1)(t ) = ŷ (k)(t )+R̃1···Nc

(
y(t )− ŷ (k)(t )

)
. (3.9)

This recursive algorithm defined in (3.9) is equivalent to taking alternating projections on
the sets CTEMi and CΩ.

The POCS algorithm is guaranteed to converge to the intersection of the convex sets onto
which projections are performed. Given that this intersection is unique, as Theorem 3.1
states, the POCS algorithm we detailed here converges to the correct solution. Note that this
algorithm does not require knowing the shifts ∆zi between the integrators of the machines,
it only requires knowing the parameters κ, θ and β of the machines.

The strength of this algorithm lies in its simplicity. We have Nc TEMs with integrators that
are shifted with respect to each other by some shifts ∆zi , and if the set of ∆zi ’s changes, the
spike outputs of the machines change. However, this algorithm does not require knowledge of
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the shifts, it only operates on the spike times generated by the machine. Moreover, explicit
labeling of spike times according to the machine they come from is not necessary. TEMs are
shifted with respect to each other by ∆zi , so the order of spiking of the machines is fixed: we
will always have spikes coming from TEM1, TEM2, · · · ,TEMNc , TEM1, TEM2, · · · . Therefore,
the algorithm operates on a model as depicted in Fig. 3.1, and is still able to disentangle
spike streams.

In depth: Clock alignment in time encoding is easy...

As explained in Definition 2.3, the output of a time encoding machine TEMi can take
two forms. It is either a stream of spikes or Dirac deltas that are emitted at the times
τi ,`, or it is simply a (in practice, quantized) list of spike times τi ,`. This list can
only be obtained from the spike stream, and if the spike times of two streams are
registered separately, issues with clock alignment will occur. In other words, one will
know how far apart the spikes of the first output stream occur with respect to each
other, but one will not know how far apart the spikes of one output stream are with
respect to those of the other output stream.

To solve this, one easy solution is to combine the two output streams (as they are
being output) into one and record the spike times into lists using this single stream as
a reference.

τ2,1 τ2,2

τ1,1 τ1,2

τ2,1 τ2,2τ1,1 τ1,2

Figure 3.4 – If two streams of spikes or Diracs are added together, and the spikes
occur at different times, the distances between spike times of different machines can
be obtained by examining the sum of the two streams.

Further note that in our scenario, TEMs are assumed to have the same parameters.
As a consequence, in the noiseless case, spikes always occur in the same order, as
explained in (3.4), making the spike time recovery task easier. If this same order is not
guaranteed (because of different parameters or noise), the summed spike stream can
be interpreted together with the original output streams to recover the TEM-specific
spike times.
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3.6 Closed Form Solution

We have described an iterative algorithm to reconstruct an input signal from the output of an
Nc -channel TEM. However, adopting a POCS algorithm in practice might be quite slow, and
the performance is dependent on the number of iterations or the stopping criteria. A more
in-depth analysis is presented in Thao and Rzepka (2020). Therefore, we further propose an
equivalent closed form solution to the problem.

First, let {τ̃`,` ∈Z} denote the set of combined and ordered spike times from all machines
TEM1, · · · , TEMNc . Now define the operator G̃ on a vector v:

G̃ (v) =
∑
`∈Z

v`g̃[τ̃`,τ̃`+Nc )(t ), (3.10)

where g̃[τ̃`,τ̃`+Nc )(t ) =1[τ̃`,τ̃`+Nc )(t )∗ sincΩ(t ). Also define

q̃ =
[∫ τ̃`+Nc

τ̃`

y(u)du

]
`∈Z

, H̃ = [
H̃`, j

]
`, j∈Z =

[∫ τ̃`+Nc

τ̃`

g̃[τ̃ j ,τ̃ j+Nc )(u)du

]
`, j∈Z

. (3.11)

Then, one can show by induction that ŷ (k), as defined in (3.8) - (3.9), can be expressed as

ŷ (k)(t ) = G̃

(
k∑

m=0

(
I− H̃

)m q̃

)
, (3.12)

where G̃ , H̃ and q̃ are known. Now we note that limk→∞
∑k

m=0

(
I− H̃

)m = H̃+, whereH̃+

denotes the pseudo-inverse of H̃. Therefore, one can reconstruct y(t ) in closed-form under
the same conditions as the ones posed in Theorem 3.1 by setting

ŷ(t ) = G̃
(
H̃+q̃

)
. (3.13)

We summarize the previous two results in a Corollary.

Perfect recovery of bandlimited signals from their multichannel time encoding

Corollary 3.2. Assume y(t ) is a 2Ω-bandlimited signal in L2(R) that is bounded such
that |y(t )| ≤ c and that has a well-defined integral

∫ t
−∞ y(u)du =: Y (t ) <∞. If y(t ) is

passed through Nc TEMs with parameters κ, θ and β, such that β> c, the shifts ∆zi ,
i = 1 · · ·Nc , between the TEMs are nonzero and

Ω< Ncπ(β− c)

2κθ
, (3.14)

then y(t ) can be recovered either as y(t ) = limk→∞ ŷ (k)(t ) where ŷ (k)(t ) is as defined
in the recursive algorithm in (3.9) or as y(t) = ŷ(t) as defined in the closed-form
algorithm in (3.13).
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.

Reconstructing a bandlimited signal from its two-Channel time encoding

Example 3.2. We show, in Fig. 3.5, a reconstruction example demonstrating that
the algorithm we suggested for the Nc -channel case can reconstruct a wider range of
signals than is possible in the single channel case.

0.0
2.5
5.0

Reconstruction
using one TEM

Original Signal
Reconstruction

6 8 10 12 14 16 18 20
Time (s)

0.0
2.5
5.0

Reconstruction
using two TEMs

Original Signal
Reconstruction

6 8 10 12 14 16 18 20
Time (s)

0.0
2.5
5.0

Reconstruction
error

1-Channel Reconstruction
2-Channel Reconstruction

Figure 3.5 – (Top) Reconstruction of a signal from its time encoding, using one
channel. (Middle) Reconstruction of the same signal from its time encoding using two
channels with integrators shifted by an unknown value. (Bottom) Reconstruction error
when using outputs of 1-channel TEM and 2-channel TEM.

3.7 Simulations

3.7.1 Simulation Setup

To validate our theory, we evaluate the reconstruction algorithm’s success while varying four
main variables in different combinations: the bandwidth of the inputs Ω, the number of
machines Nc , the shifts ∆zi and the variance of the noise added on top of the spike times.

The parameters of the TEMs are always kept constant, taking κ= θ = 1 and β= maxt |y(t )|+1

where y(t ) is the input signal. In fact, when evaluating the algorithm performance, we can
keep these parameters constant without loss of generality as long as we vary Ω as we explain
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in Section 3.A.2 of the appendix.

The implementation details can be found in Section 3.A.1 of the appendix and the figures
are reproducible using code available online (Adam, 2019).
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Figure 3.6 – Error of time encoding reconstruction when Nc = 1 · · ·10 channels with equally-
shifted integrators encode a signal as its bandwidth varies. The mean-squared error is
averaged over one hundred trials and plotted as a function of the bandwidth and the number
of samples.

3.7.2 Experimental Validation of Theorem 3.1

In Fig. 3.6, we randomly generate one hundred 2Ω-bandlimited signals, for each value of
Ω=π,2π, · · · ,20π. We provide the reconstruction error when using Nc = 1 · · ·10 channels with
the same parameters κ, θ and β to sample (simulated using discrete time encoding) and
reconstruct the signals. The channels are constructed with equally spaced shifts, i.e. for an
Nc -channel TEM, the integrator shifts are ∆zi = 2θ/Nc , ∀i = 1 · · ·Nc .

For every number of channels Nc used to perform the signal sampling and reconstruction, we
have a different constraint on the bandwidth which ensures that this Nc-channel TEM can
reconstruct its input signal as given in Theorem 3.1. Looking at Fig. 3.6, for each number
of channels Nc , we can see a degradation of the reconstruction as the bandwidth increases
beyond the constraint placed in Theorem 3.1. Notice how this degradation happens for
higher Ω as the number of channels Nc increases. The separation between “good” and “bad”
performance seems to change linearly with the number of channels Nc as we would expect
from Theorem 3.1.
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To show that this Nc-fold improvement on the bound for the bandwidth is independent of
the value of the shift, we evaluate the reconstruction error when signals are sampled using
2-channel TEMs with different values for the shift (simulated using discrete time encoding). In
Fig. 3.7, we again simulate one hundred 2Ω-bandlimited signals where Ω now varies between
π/4 and 15π, and plot the averaged reconstruction error for 2-channel decoding, as well as
the averaged reconstruction error for single-channel decoding. For both the single-channel
and the 2-channel case, the reconstruction error is low for low values of Ω and becomes
much higher as Ω surpasses the bound provided in Theorem 3.1 and plotted using the dashed
vertical lines in Fig. 3.7. Notice how the reconstruction is successful for wider ranges of the
bandwidth in the 2-channel case, compared to the single-channel case, and how different
values of the integrator shifts between the two channels do not affect this region of success.
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Figure 3.7 – Error of time encoding reconstruction, when using a single channel (blue),
and when using 2 channels with different spacing configurations (orange, green, red). The
mean-squared error is averaged over two hundred trials and plotted as a function of the
bandwidth. The shift takes value ∆z1.

3.7.3 Problem Ill-Conditioning for Small Shifts

We have shown that, in theory, the condition we placed in Theorem 3.1 is sufficient for the
reconstruction algorithm to converge no matter the shifts between the integrators of different
machines. Moreover, Fig. 3.7 verified this result for a few values of the integrator shifts.
Intuitively, however, the problem should become more ill-posed as the shifts approach zero.

To investigate this, we evaluate the performance of two-channel time encoding (using
continuous time encoding) and decoding as the shifts between the channels approach zero.
We randomly generate one hundred 2Ω-bandlimited signals, where Ω varies between π/4

and 8π. These signals are then encoded and decoded using two-channel TEMs with fixed
parameters κ, θ and β and with varying shift ∆z1. We then estimate the reconstruction
success by computing the reconstruction error.

Figure 3.8 is essentially a two dimensional version of the plot in Fig. 3.7 which investigates
smaller shifts. As one of the integrator shifts approaches zero, the outputs of the two channels
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Figure 3.8 – Reconstruction error plotted as a function of bandwidth and integrator shift.
A hundred 2Ω-bandlimited signals, where Ω varies between π/4 and 8π are generated and
subsequently sampled and reconstructed using two-channel time encoding and decoding. The
TEM used has fixed parameters κ= 1, θ = 1 and β= maxt |y(t)|+1 but variable integrator
shifts. Here, we plot one of the two shifts ∆z1, the value of the second shift can be obtained
by solving ∆z2 = 2θ−∆z1. The mean-squared error is averaged over the hundred randomly
generated signals and plotted as a function of bandwidth and shift. Although we have
shown that the value of the integrator shifts should have no effect on the reconstructible
bandwidth Theorem 3.1 very small shifts perform less well than shifts that are within the
same order of magnitude as the threshold θ. The rightmost column, separated by the dashed
yellow line, shows the reconstruction error when a shift of zero is used. In other words, this is
the reconstruction error when using single-channel time encoding and decoding.

of the TEM start to resemble each other more and more, so our two-channel encoding starts
to resemble single-channel encoding. Therefore, we also include, in Fig. 3.8 the reconstruction
error of a single-channel TEM, to compare it to the result obtained with two-channel encoding
with very small shift.

Note that the system seems to perform reasonably well in the noiseless case, when the
condition in Theorem 3.1 is satisfied, for shifts that are not too small (greater than 10−4).

Therefore, if the shifts are randomly assigned, they will, with very high probability fall in a
regime where the algorithm provides good performance.

As for the physical implementation of the shifts, as previously mentioned, the hardware
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implementation of time encoding machines uses a capacitor which can hold some initial
charge. One can make sure that different machines have different initial charges on their
capacitors by first feeding the TEMs with different signals to randomly initialize the values of
the capacitor before beginning to encode the signal of interest.
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Figure 3.9 – (a) Reconstruction error of two-channel time encoding with equal spacing in the
shifts, with gaussian noise added to the spike times, when the SNR varies between 80 dB
and 0 dB and the bandwidth varies between 0.25π and 8π. (b) To the left of the yellow line,
reconstruction error of two-channel time encoding of 2Ω-bandlimited signals with Ω= 2π,
with gaussian noise added to the spike times, when the SNR varies between 80 dB and 0 dB
and the integrator shifts vary between 1 (equal spacing) and 10−8. To the right of the yellow
line, reconstruction error of single-channel time encoding of signals with the same bandwidth.

3.7.4 Algorithm Performance in Noisy Settings

We now provide basic analyses to understand the system’s performance in the case of noise.
We study the effect of noise on reconstruction when varying two other parameters: the
bandwidth (Fig. 3.9.a) and the shift (Fig. 3.9.b). In both scenarios, we assume that we have
a two-channel TEM with parameters κ, θ and β fixed, such that the TEM is guaranteed to
be able to reconstruct 2Ω-bandlimited signals with Ω=π.

In Fig. 3.9.a, we assume that the two machines are equally spaced (∆z1 = ∆z2) and that
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Gaussian noise is added to the spike times. We then vary the SNR between 80 dB and 0
dB and the bandwidth between 0.25π and 8π. Notice how, with high SNR, i.e. with low
noise, the machines can reconstruct signals with bandwidths that go up to 2π. As the SNR
becomes lower, the machines become less apt at reconstructing signals with high bandwidths.

In Fig. 3.9.b, we assume that the input signals to the machines are 2Ω-bandlimited where
Ω= 2π. We then vary the SNR between 80 dB and 0 dB and the integrator shifts of the
machines between 1 (equal spacing) and 10−8. Notice how the reconstruction of the input
becomes worse as one of the shifts between the machines approaches zero and as the SNR
decreases. We also provide the reconstruction error for the single-channel time encoding as a
comparison.

3.8 Conclusion

We have studied multi-channel time encoding of 2Ω-bandlimited signals, we have proposed
an algorithm for reconstructing an input signal from its samples, and have provided sufficient
conditions on Ω for the algorithm to converge to the correct solution. We have shown that
if one TEM can perfectly encode a 2Ω-bandlimited signal, then Nc TEMs with the same
parameters and with shifts in their integrators can perfectly encode a 2NcΩ-bandlimited
signal. This reconstruction algorithm is based on a projection onto convex sets method.

The improvement in the condition on the bandwidth that we have found is independent of
the value of the shifts between the machine integrators, as long as these shifts are nonzero.
We have also shown that the knowledge of the relative shifts between the machines is
not necessary for reconstruction to be possible. This is not the case in similar setups of
multi-channel encoding in the classical sampling scenario where an unknown shift makes the
inverse problem more difficult to solve.

Our setting has focused on reconstructing signals using TEMs with the same parameters κ, θ
and β, where β> 0. As a more general rule, a 2Ω-bandlimited signal can still be reconstructed,
if Ω is proportional to the rate of linearly independent constraints that arise from the spike
times generated by the machines. In the next chapters, we will provide conditions that
guarantee that a signal is unique and recoverable from its time encoding by examining the
number of linearly independent constraints arising from spike times.

3.A Appendix: Simulation Details

3.A.1 Implementation

1. Signal generation: We wish to generate signals that are 2Ω-bandlimited, and sample
them over a finite time window [tstart, tend]. We assume the signals to be a linear
combination of sincs centered at uniform time points between tstart and tend with a
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separation of π/Ω. The amplitudes of these sincs are randomly generated assuming a
uniform distribution over [0,1], and the signals are finally all normalized to have unit
L2 norm.

2. Signal sampling: Time encoding is performed using either of two techniques. In the
first “discrete time encoding” approach, we sample the signal discretely using small
steps and approximate the integral of the signal with a cumulative sum. In the second
“continuous time encoding” technique, signals are assumed to be generated according
to our signal generation procedure described above, and we search for each spike time
using binary search, by evaluating the signal’s integral at different time points. On one
hand, the first technique is more versatile to different signal types. On the other hand,
the second technique allows more spike time precision without requiring extra space
requirements which arise from heavily oversampling the input signal.

3. Signal reconstruction: Signal reconstruction is performed using the closed form solution
provided in (3.13). The reconstruction can also be done using the iterative POCS
algorithm, but obtaining the reconstruction then becomes more time consuming and
the reconstruction’s performance depends on the chosen number of iterations or the
stopping criterion.

4. Performance evaluation: To evaluate the performance of our reconstruction, we compute
the difference between our (discretized) reconstruction and the original (discretized)
signal. We then compute the power of this difference for the middle 90% of the signal
(assuming the start and end generally have a less precise reconstruction because of
our finite support sampling and reconstruction setup). We call this the mean-squared
reconstruction error. As all signals are normalized to have unit norm, the mean-squared
reconstruction error of different signals are comparable.

3.A.2 Parameter Variation Design

We would like to understand why it is enough to fix the threshold θ, integrator constant κ
and β= c +1 and vary Ω for a fair view on performace.

Assume we have a 2Ω-bandlimited signal y1(t) that is sampled using parameters κ, θ and
bias β and generates spike times

{
τ`(y1),` ∈Z}

. Then, let y2(t ) be a 2pΩ-bandlimited signal
such that y2(t ) = y1(pt ). Now assume y2(t ) is sampled using parameters κ, θ/p and β and
generates the spike times

{
τ`(y2),` ∈Z}

, then τ`+1(y2)−τ`(y2) = (τ`+1(y1)−τ`(y1))/p. In
essence, the information content of the two signals is the same, and the increase in bandwidth
of one can be compensated for by a decrease in the threshold θ and vice versa. One can also
perform similar analyses for the other parameters κ and β. Therefore we decide to fix the
first three of the four parameters κ, θ, β and Ω and only vary the last one.
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3.B Appendix: Proof of Theorem 3.1

Assume the input signal, y(t ), is a c-bounded, 2Ω-bandlimited signal in L2(R), which has its
integral well defined: Ψ(t ) := ∫ t

−∞ y(u)du s.t. |Ψ(t )| <∞. We wish to find an estimate of the
input signal y(t ), which we denote ŷ(t), using the output spike times of Nc time encoding
machines. Let us show that if ŷ(t ) satisfies the constraints provided by the spike times of the
TEMs, then ŷ(t ) = y(t ).

We start by noting that such an ŷ(t ) would then satisfy, ∀i = 1 · · ·Nc ,∫ τi ,`+1

τi ,`

ŷ(u)du =
∫ τi ,`+1

τi ,`

y(u)du, ∀k ∈Z. (3.15)

Then we use two lemmas that concern the integralsΨ(t ) = ∫ t
−∞ y(u)du and Ψ̂(t ) = ∫ t

−∞ ŷ(u)du.

Integrals are bandlimited

Lemma 3.1. The integrals Ψ(t ) and Ψ̂(t ) are both 2Ω-bandlimited.

Proof. The original signals y(t ) and ŷ(t ) are both 2Ω-bandlimited. Taking the integrals of
these signals corresponds to a division by jω in the frequency domain, where ω denotes the
frequency, so the frequency content of Ψ(t ) and Ψ̂(t ) remains concentrated in [−Ω,Ω].

Integrals match at spike times

Lemma 3.2. Ψ(τi ,`) = Ψ̂(τi ,`), ∀ ` ∈Z, ∀i = 1 · · ·Nc .

Proof.

Ψ(τi ,`)
(a)=

∫ τi ,`

−∞
y(u)du

(b)=
`−1∑

k=−∞

(
Ψ(τi ,k+1)−Ψ(τi ,k )

)
(c)=

`−1∑
k=−∞

(
Ψ̂(τi ,k+1)− Ψ̂(τi ,k )

)
(d)=

∫ τi ,`

−∞
ŷ(u)du

(e)= Ψ̂(τi ,`), ∀` ∈Z,
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where equalities (a) and (e) follow from the definitions of Ψ(t) and Ψ̂(t), respectively, (b)

and (d) follow from y(t) and ŷ(t) having well-defined integrals, and (c) follows from the
fact that Ψ(τi ,`+1)−Ψ(τi ,`) = Ψ̂(τi ,`+1)− Ψ̂(τi ,`),∀` ∈ Z. So Ψ(t) and Ψ̂(t) match at all
τi ,`, ` ∈Z, i = 1 · · ·Nc .

Therefore, Ψ(t) and Ψ̂(t) are two 2Ω-bandlimited functions which coincide at time points
τi ,`, ∀` ∈Z, ∀i = 1 · · ·Nc . In other words, if both Ψ(t) and Ψ̂(t) are sampled at the τi ,`’s,
their samples would have the same values.

Let us combine and order all spike times from the machines into one set {τ̃`,` ∈Z}. To
show that these samples are sufficient to ensure that Ψ(t ) and Ψ̂(t ) match, we use a result
from Jaffard (1991), where it was proven that a sampling sequence {τ`,` ∈Z} generates a
frame for the space of 2Ω-bandlimited functions if and only if {τ`,` ∈Z} is relatively separated
and

liminf
r→∞

n(r )

r
> Ω
π

, (3.16)

where n(r ) is the number of samples in an interval of length r .

This finding provides sufficient conditions for irregular (time, amplitude) samples to completely
characterize a bandlimited signal: the sample set has to be relatively separated, and the
average sampling rate needs to be higher than the Nyquist rate.

Relatively separated sets

Definition 3.4. A set {τ`,` ∈Z} is called relatively separated if it can be divided
into a finite number of subsets so that |τn −τm | ≥ γ> 0 for a fixed γ> 0, n 6= m, and
τn , τm in the same subset.

Note that the set being relatively separated is only required for the reformulation in terms of
a problem about frames.

It is a technical condition which is naturally satisfied in our scenario. In fact, it ensures a
minimum separation between sample times.

Combined spike times are relatively separated

Lemma 3.3. Assume we have an Nc -channel TEM with parameters κ, θ and β, with
shifts ∆zi 6= 0, i = 1 · · ·Nc , and input y(t) such that |y(t)| ≤ c < β. Let {τ̃`,` ∈Z} be
the spike times generated by this Nc-channel TEM. In other words, {τ̃`,` ∈Z} is the
combined and ordered set of spike times generated by all channels of TEM1, TEM2,
· · · , TEMNc . Then, the spike times {τ̃`,` ∈Z} are relatively separated.
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Proof. Assume, without loss of generality that the channels TEM1, TEM2, · · · , TEMNc are
ordered by spike time:

τ1,` < τ2,` < ·· · < τNc ,` < τ1,`+1 ∀` ∈Z,

If we denote, as in Definition 3.2, ∆zi , i = 1 · · ·Nc to be the shifts between two consecutively
spiking machines, then a pair of consecutive spike times τ̃` and τ̃`+1 will satisfy∫ τ̃`+1

τ̃`

y(u)du = 2κ∆zi −β (τ̃`+1 − τ̃`) , (3.17)

for some ∆zi that depends on the provenance of τ̃` and τ̃`+1, which is determined by ` since
different machines always spike in order (see Definition 3.2).

Now recall that |y(t )| ≤ c, which, when substituted into (3.17), yields

c (τ̃`+1 − τ̃`) ≥ 2κ∆zi −β (τ̃`+1 − τ̃`) ,

τ̃`+1 − τ̃` ≥
2κ∆zi

β+ c
,

for some i ∈ {1, · · · , Nc } which depends on `. Then,

τ̃`+1 − τ̃` ≥
2κmini (∆zi )

β+ c
.

Now denote γ= 2κmini (∆zi )/(β+ c). Note that γ is nonzero because all ∆zi ’s are assumed
to be nonzero. Therefore, our sampling set {τ̃`,` ∈Z} is relatively separated.

On the other hand, to help us prove that the Nyquist-like condition in (3.16) is satisfied, the
following lemma provides us with a lower bound on the average sampling rate of our spike
times {τ̃`,` ∈Z}.

Minimal multi-channel sampling rate

Lemma 3.4. The sampling set {τ̃`,` ∈Z} has an average sampling rate which is at
least Nc (β− c)/(2κθ).

Proof. Spike times have a maximal separation between them defined by (2.2). According
to this bound, every machine TEMi produces a sampling set

{
τi ,`,` ∈Z}

where two spike
times have a separation of at most 2κθ/(β− c). Therefore, the sampling rate n(r )/r is
at least (β− c)/2κθ, for any r ∈ R . Therefore, the average sampling rate of a machine
liminfr→∞ n(r )/r is at least (β− c)/2κθ. Since all machines fire at distinct time points
(because the shifts between them are nonzero), together, they have an average sampling rate
which is at least Nc (β− c)/2κθ.
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It follows that the samples emitted by the TEMs are sufficient to determine uniqueness for a
2Ω-bandlimited signal, provided that Ω satisfies (3.5).

Hence, a signal Ψ(t) which is 2Ω-bandlimited, with Ω satisfying (3.5), is uniquely defined
by the samples provided by a Nc-channel TEM with parameters κ, θ and β and input y(t ),
such that |y(t )| ≤ c <β, y(t ) ∈ L2(R) and has a well defined integral, if the shifts between the
machines are nonzero. Therefore, Ψ(t ) and its estimate Ψ̂(t ) match exactly, and as y(t ) and
ŷ(t ) are their respective derivatives, they are also completely characterized by the samples
and match exactly. Therefore, the input to the Nc-channel TEM is uniquely defined by iits
spike time output under the conditions of Theorem 3.1.
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4 Time Encoding Multiple Signals
with Low Dimensional Structure

Recommended Reading: Sections 2.1, 2.2, 2.3, 2.5.
The content in this chapter is adapted from Adam et al. (2020a, 2022).

4.1 Introduction

One would expect that, when sampling many signals that have a low-dimensional structure,
that is, they can be written as linear combinations of few signals, the number of samples
needed to ensure recovery would depend on the complexity of these few underlying signals,
and not on the “apparent” complexity of the input.

However, if one goes about sampling these many signals at the same uniformly spaced times,
the above statement falls through.

In fact, it only holds if signals are sampled at different times.

Therefore, as time encoding paves a natural way to asynchronous sampling, we here study
multi-channel time encoding of multiple signals with low-dimensional representations.

More specifically, we assume that Nc ≥ 1 time encoding machines receive, as input, signals
that can each be written as a linear combination of Ns signals where Ns << Nc . We find
that, if each input can be described using a finite number of degrees of freedom that
are unknown apriori, a Nyquist-like criterion applies on the number of spikes needed for
reconstruction, requiring as many linearly independent constraints as degrees of freedom in
the lower dimensional representation.

In fact, we will see that the minimum number of spike pairs required will be NsK , with some
conditions on the provenance of the spikes, where K is the number of degrees of freedom per
signal, and where Ns is potentially much smaller than Nc . Note that, when uniformly and
synchronously sampling Nc signals, a setup where all samplers record their information at the
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same time, one would need Nc K measurements to recover the input.

We will see that this setup not only allows more efficient reconstruction, but also a more
collaborative one. Time encoding machines or neurons that spike too little can be compen-
sated for by having other machines that spike more frequently. However, every machine’s
contribution is limited to a maximum amount.

The results of this chapter follow the same spirit as those in Chapter 3, and indicate that
time encoding or event-based sensing allows compensating for low spiking rates by increasing
the number of sensors to ensure signal recovery. This, in turn, means that (1) sensors do
not require higher spiking rates to encode more complex information, and (2) the effect of
noise can be limited because sensors can have a lower spiking rate, and can thus integrate
information over more time.

First, we present the sampling setup for mixed multi-channel time encoding. We then provide
a bound for reconstruction of two classes of bandlimited signals assuming the mapping
to the low-dimensional representation is known. This bound will depend on the number
of degrees of freedom in the low-dimensional space. Then, as the time encoding problem
can be cast as a problem of rank-one sensing (Pacholska et al., 2020), this allows us to
derive two reconstruction algorithms, one of them based on Projections onto Convex Sets
as in Section 2.3 and the other based on the pseudo-inversion of a linear system. Later,
in Section 4.4, we treat the case where the mapping to the lower dimensional space is not
known but the dimensionality is known. We consider an algorithm based on Singular Value
Projection as described in Section 2.5 to perform more efficient reconstruction and conclude
with simulation results in Section 4.4.2.

4.2 Problem Setup

In this chapter, we consider many time-varying signals yi (t ), i = 1 · · ·Nc , that are correlated
with each other. These signals are encoded using time encoding machines and we assume
that each signal follows a parametric model which we know.

The goal is to recover the unknown inputs yi (t ) from their time encoding.

Correlated signals arise in applications where principle component analysis yields little loss
in information, such as, among others, meteorological data, biomarkers in human patients,
regional economic data, audio, and video. The latter example will be given particular attention
in Chapter 5.

In our setup, we let y(t) denote the vector signal composed of yi (t)’s and let y(t) be such
that
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TEM1y1(t )
{
τ1,`,`= 1 · · ·L1

}
TEM2y2(t )

{
τ2,`,`= 1 · · ·L2

}
TEM3y3(t )

{
τ3,`,`= 1 · · ·L3

}

TEMNcyNc (t )
{
τNc ,`,`= 1 · · ·LNc

}

a1,1
a2,1
a

3,1

a
N

c ,1

x1(t )

x2(t )

xNs (t )

Figure 4.1 – Sampling setup: Ns input signals x j (t), j = 1 · · ·Ns are mixed using a matrix
A and produce signals yi (t), i = 1 · · ·Nc . Each yi (t) is then sampled using a time encoding
machine TEMi which produces spike times

{
τi ,`,`= 1 · · ·Li

}
.

(A4) each yi (t ) has a finite parametric representation:

yi (t ) =
K∑

k=1
ci ,k (y) fk (t ), (4.1)

where the ci ,k (y) are fixed coefficients that are unknown apriori and form a matrix C(y),
and the fk (t )’s, k = 1...K are known functions,

(A5) each yi (t ) can be written as a linear combination of x j (t )’s, j = 1 · · ·Ns where Ns < Nc :

y(t ) = Ax(t ), (4.2)

for x j (t)’s characterized by a matrix of coefficients C(x) (where the x j (t)’s and C(x)

are unknown apriori) and a mixing matrix A ∈RNc×Ns , such thats C(y) = AC(x), and

(A6) each yi (t ) is sampled using a time encoding machine TEMi with parameters κi , θi and
βi which are known and can vary between machines. The outputs of the machines are
denoted

{
τi ,`,`= 1 · · ·Li

}
.

The sampling setup we described is depicted in Fig. 4.1.

Our results will hold if the integrals of the functions fk (t ) are linearly independent functions
from a linear space of functions F , such that every non-zero element of F has a set of zeros
with Lebesgue measure equal to zero. We will consider two options for the functions fk (t ):

(A7.a) fk (t ) is a sinc function

fk (t ) = sincΩ(t − tk ) = sin(Ω(t − tk ))

π(t − tk )
, (4.3)

for Ω and tk known, so that the yi (t )’s are a finite sum of sincs, or
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(A7.b) fk (t ) is a complex exponential function,

fk (t ) = exp

(
j
2π

T
kt

)
, (4.4)

so that the yi (t )’s are bandlimited periodic functions.

For both functions in (A7.a) and (A7.b), we consider the reconstruction conditions with A

satisfying either of the following two assumptions.

(A8.a) The linear map from the low dimensional space A ∈RNc×Ns is known.

(A8.b) The linear map from the low dimensional space A ∈RNc×Ns is unknown but the dimension
of the low dimensional space Ns is known.

We first consider the case where A is known and provide conditions for perfect reconstruction
in Section 4.3.1 and a reconstruction algorithm in Sections 4.3.2 and 4.3.3.

Later, we will consider the case where A is unknown and provide a reconstruction algorithm
based on singular value projection for low-rank matrix recovery in Section 4.4. We then
follow with simulations to show results and with example applications for time encoding
time-varying scenes.

Later, In Chapter 5, we provide applications for the known mixing matrix scenario, where we
deal with time encoding of video.

4.3 Known Low-Rank Factorization: Time Encoding and Re-
construction

4.3.1 Conditions for Perfect Reconstruction

We can establish the following sufficient conditions to ensure that a series of inputs yi (t)

drawn at random are reconstructible from their time encoding using machines TEMi .

Perfect reconstruction from mixed time encoding

Theorem 4.1. Let Nc signals yi (t), i = 1 · · ·Nc satisfy assumptions (A4), (A5)
and (A6), and their functions fk (t) satisfy either of (A7.a) or (A7.b) with the cor-
responding coefficients c j ,k (x) being drawn from a Lipschitz continous probability
distribution. Now assume A ∈RNc×Ns as defined in (A5) is known and has every Ns

rows linearly independent. Then the inputs yi (t ), i = 1 · · ·Nc are exactly determined by
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the spike times
{
τi ,`,`= 1 · · ·Li

}
, i = 1 · · ·Nc , with probability one, if:

Nc∑
i=1

min(Li −1,K ) > NsK . (4.5)

An intuitive explanation of this result follows in Section 4.3.4.

We can prove the above theorem by writing it as a problem of rank one measurements,
also called bi-linear measurements in (Pacholska et al., 2020). The full proof is provided in
Appendix 4.A.

4.3.2 One-Shot Reconstruction Algorithm

The spike time outputs of the machines
{
τi ,`,`= 1 · · ·Li

}
provide constraints on the integral

of the input signals: ∫ τi ,`+1

τi ,`

yi (u)du = 2κiθi −βi (τi ,`+1 −τi ,`) =: ḃi ,`. (4.6)

These measurements can be rewritten to fit the rank one measurements formulation (Pacholska
et al., 2020). Letting C(x) denote the matrix of coefficients c j ,k (x) for the underlying signals
x j (t ), we can reconstruct C(x) (and therefore y(t )) by solving

ḃi ,` = vec
(
ai

[
Ḟi ,`

]T
)

vec(C(x)) , (4.7)

where ḃi ,` is known, vec() denotes the vectorization operation,

[
Ḟi ,`

]
k =

∫ τi ,`+1

τi ,`

fk (u)du,

and τi ,1 denotes the first spike time of TEMi .

Under the conditions of Theorem 4.1, the linear system in (4.7) is full rank and C(x) can be
recovered perfectly. Once the matrix C(x) has been recovered, one can recover the coefficients
ci ,k (y) of the yi (t )’s by setting C(y) = AC(x) and can therefore recover the original sampled
signals.

Note that, given this formulation, there are different approaches to solving for C(x). One can
either invert the system in (4.7) by using a pseudo-inverse, or use iterative approaches to
minimize the mean-squared error, such as gradient descent or projections onto convex sets
(POCS) (Bauschke and Borwein, 1996; Feichtinger and Gröchenig, 1994; Thao and Rzepka,
2020) as we did in Adam et al. (2020a). All of these methods converge to the same result,
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given that a pseudo-inverse approach minimizes the mean-squared error by definition, that
the gradient descent approach is given a convex loss function and that the POCS approach
uses convex sets which have a unique intersection. For the experiments in this chapter, we
use the pseudo-inverse approach, mostly for its speed of execution. Nonetheless, we explain
how to go about a POCS approach, next.

4.3.3 POCS Reconstruction Algorithm

As in Section 2.3, we use a projection onto convex sets algorithm to reconstruct signals with
a low dimensional representation from the spike times they generate when fed through TEMs.

We again refer the reader to our definition of the POCS method in Section 2.3 (Definition 2.4).

The POCS algorithm is known to converge to a fixed point which lies in the intersection of
the sets at hand ⋂N

n=1 Cn (Bauschke and Borwein, 1996; Thao and Rzepka, 2020). Thus, if
the intersection of the sets consists of a single element, then the algorithm converges to the
correct solution.

Theorem 4.1 states that, if (4.5) is satisfied, the solution x(t ), and thus y(t ) = Ax(t ), is unique.
We will therefore set up a POCS algorithm to first recover y(t ) and then x(t ).

To recover y(t ), we define three convex sets: the set CΩ of collections of Nc signals formed
using a sum of K functions fk (t) which are either sincs as in (A7.a) or exponentials as
in (A7.b) depending on the starting assumption, the set Cspikes of collections of signals that
satisfy the constraints that are set by the spike times of each machine

{
τi ,`,`= 1 · · ·Li

}
and

the set CA of collections of signals y(t ) which can be written y(t ) = Ax(t ).

The intersection CΩ∩Cspikes ∩CA is the set of solutions

Lemma 4.1. The intersection CΩ∩Cspikes ∩CA is the set of solutions y(t), given
spike times τi ,` and mixing matrix A.

Proof. It is easy to see that a solution ŷ(t) lies in CΩ∩Cspikes ∩CA. Now assume that
ŷ(t ) ∈CΩ∩Cspikes ∩CA. Then ∃ x̂(t ) formed using a sum of K functions fk (t ) defined either
as in (A7.a) or as in (A7.b), depending on the starting assumptions, such that ŷ(t ) = Ax̂(t )

and ŷ(t ) produces the obtained spike times. Therefore ŷ(t ) is a solution to the input of the
machines.

Each of these sets is convex, therefore, we define operators PΩ, Pspikes, and PA that
project orthogonally onto CΩ, Cspikes and CA, respectively. Then, we alternately apply these
projection operators to an initial estimate, and, since the intersection is unique, we converge
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to the correct solution.

If we assume (A7.a) holds, to project onto CΩ, we convolve the input with a sinc of bandwidth
Ω, sample the obtained signal at values tk and use the values as amplitudes of the sincs
located at tk :

PΩ,i
(
ŷ(t )

)= K∑
k=1

ŷΩ,i (tk )sincΩ(t − tk ), (4.8)

where ŷΩ,i (t) = ŷi (t) ∗ sincΩ(t). Otherwise, if we assume (A7.b) holds, the projection is
performed by simply finding the closest periodic bandlimited function to each ŷΩ,i (tk ), using
inner products with the complex exponentials of interest. To project onto Cspikes, we define
Pspikes to act on each row of ŷ(t ) individually:

Pspikes,i
(
ŷ(t )

)= ŷi (t )+
L∑
`=1

qi ,`
1[τi ,`,τi ,`+1)(t )

τi ,`+1 −τi ,`
(4.9)

where qi ,` =
∫ τi ,`+1
τi ,`

(
ŷi (u)− yi (u)

)
du, and 1[a,b)(t ) is the indicator function over [a,b).

In words, for each ŷi (t ), Pspikes adds rectangles over the intervals
[
τi ,`,τi ,`+1

]
with appropriate

weights to satisfy the constraints set by
{
τi ,`,`= 1 · · ·Li

}
.

Now, to project ŷ(t ) onto the set CA, we let

PA
(
ŷ(t )

)= A
(
AT A

)−1
AT ŷ(t ). (4.10)

Thus, our reconstruction algorithm runs iteratively and computes new estimates ŷ(k)(t) of
the originally sampled signals:

ŷ(0)(t ) = 0, ŷ(k+1)(t ) =PΩ

(
PA

(
Pspikes

(
ŷ(k)(t )

)))
. (4.11)

In the end, we set x̂(k)(t ) = (
AT A

)−1
AT ŷ(k)(t ).

Given that this is a POCS algorithm and that our theorem states uniqueness, ŷ(k)(t), and
therefore x̂(k)(t ), will converge to the correct solution as k →∞.

4.3.4 Interpretation

The result in Theorem 4.1 establishes a Nyquist-like criterion for recovery. It specifies how to
count the number of linearly independent constraints in the multi-channel TEM setup and
requires as many of these constraints as there are degrees of freedom to recover the sampled
signals. Given that each pair of spike times corresponds to one linear constraint on the input,
the results can be summarized by a few key points:

1. When sampling a collection of signals with a known linear mapping to or from a lower
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dimensional representation, what matters is the number of degrees of freedom in the
low dimensional space, rather than the number of degrees of freedom in the high
dimensional space. More practically, to ensure perfect reconstruction, we need the
number of linearly independent constraints to be at least the number of degrees of
freedom in the low dimensional space NsK . In the case where Ns << Nc , we can see
how this can be a major improvement in spiking rate.

2. When multiple correlated signals are sampled using different time encoding machines,
a lower spiking rate of one machine can be compensated for by higher spiking rates
from others. This can be seen by observing the summation in (4.5) and noting that
the total spiking rate of the machines matters more than the individual spiking rates.

3. One machine can only compensate for another machine’s low spiking rate up to a
certain degree. This can be seen by the min term in (4.5) which implies that every
machine has a maximal “useful” spiking rate depending on the signal and that going
above this rate does not add further information.

This has a series of implications. First, signals that have lower dimensional representations
can be sampled at lower rates overall, increasing sampling efficiency. Second, if TEMs have
limited capacity in terms of spiking rates (for example they have a refractory period), this
can be compensated for by adding more TEMs. This would still ensure reconstruction of the
input since the reconstruction condition in (4.5) is only linked to the number of degrees of
freedom in the low dimensional space. Third, we will see in Section 5.3 how the results help
us solve time encoding of time-varying spatial signals which have certain structure in space.

Note that these results provide a stark improvement to sampling high-dimensional but low-
complexity signals using regular clock-based sampling. In fact, Theorem 4.1 holds because
of one key element: different dimensions of the signal are sampled at different times with
continuous probability distributions. Regular-based sampling does not have this property;
and indeed, it only takes a short mental exercice to see that the recovery of y(t ) takes Nc K

samples if the yi (t )’s are all sampled at the same sampling times.

To be fair, one could ensure that different yi (t )’s are sampled at different times (minus the
continuous probability condition), but this condition is much more elegantly ensured in the
time encoding scenario. Moreover, using different clocks in the classical sampling setup poses
difficulties because it is hard to align them. Clock alignment is not an issue in time encoding:
the outputs are trains of spikes and finding delays between TEMs is solved by adding spike
trains and comparing spike times on one time axis, as explained in the “in depth” box of
Section 3.5.
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Possible extensions

The results in this section assumed a fixed signal model and relied on two key elements: the
structure of the matrix A and the timing of the spikes which is asynchronous across machines.

In this case, the asynchrony of the spikes across TEMs occurs because the matrix A has
different rows. However, this asynchrony can also be ensured by TEMs having different
parameters, as discussed in Chapter 3.

In such as scenario, repeated (or linearly dependent) entries in A are allowed and our assump-
tions can be relaxed, so that A does not have to have every Ns rows linearly independent.

We choose not to further explore this possibility, here, but rather to provide a basic framework
to understand time encoding of mixed signals.

4.4 Unknown Low-Rank Factorization

4.4.1 Problem Formulation and Algorithm

We revisit the setup exposed in Section 4.2. So far, we have assumed that we are given the
time encodings of a collection of signals yi (t ) with a low dimensional structure which we can
reach by a known linear transformation A ∈RNc×Ns and that we are asked to reconstruct the
inputs yi (t ). While this is a useful model in itself, we are also interested in studying the case
where the linear transform A is unknown.

Once again, we assume we have the time encodings of a collection of signals yi (t) which
satisfy assumptions (A4), (A5) and (A6). Furthermore, we assume the functions fk (t) of
yi (t ) satisfy either of (A7.a) or (A7.b) and that the linear transformation A is unknown as
in (A8.b).

We wish to recover the signals yi (t ), i = 1 · · ·Nc , from their time encoding, with as few samples
as possible.

To do so, we aim to reconstruct the coefficients of the parametric representation of y(t),
ci ,k (y) as defined in (A4). These coefficients are placed in the matrix C(y), with row i

containing the coefficients of signal yi (t ). We note once more that C(y) can be written:

C(y) = AC(x)

where A ∈RNc×Ns , C(x) ∈RNs×K , Ns ≤ Nc and Ns is known.

In words, C(y) is a matrix which has a low rank matrix decomposition with a known rank.

The matrix C(y) is probed using a sensing operator which we will call S . The sensing operator
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performs the measurements in (4.7), i.e.

Sn
(
C(y)

)= ḃn , (4.12)

where we index a pair (i ,`) by n so that ḃn = ḃi ,` is as defined in (4.6)

Given this measurement setup, we can adopt the Singular Value Projection approach to
recover the matrix C(y) from few measurements (Jain et al., 2010).

The Singular Value Projection (SVP) algorithm alternately applies the low-rank constraint
and the measurement constraint on the matrix of interest C(y). In Algorithm 1 we let Ĉ(y)

(m)

be the estimate at iteration m of the target matrix to reconstruct (in our case this is C(y))
and Pm be a proxy matrix to perform the iterations.

Algorithm 2 Singular Value Projection for Mixed Time Encoding
Input: S , ḃ, rank Ns , tolerance ε, ηm for m = 0,1,2...

1: Ĉ(y)
(0) = 0 and m = 0

2: repeat
3: Pm+1 ← Ĉ(y)

(m) −ηmS T (S (Ĉ(y)
(m)

)− ḃ)
4: Compute top Ns singular vectors of P(m+1) : UNs ,ΣNs ,VNs

5: Ĉ(y)
(m+1) ←UNsΣNs V T

Ns

6: m ← m +1
7: until ‖S (Ĉ(y)

(m+1) − ḃ)‖2
2 ≤ ε

The SVP algorithm is based on projected gradient descent. Reconstruction guarantees for this
algorithm were initially established in cases where the sensing operator satisfies the Restricted
Isometry Property (Jain et al., 2010; Candès and Recht, 2009; Recht et al., 2010). This
property does not hold in our case, given that our measurement operators Sn have rank one.
The rank one scenario has been treated in Zhong et al. (2015) where Gaussianity assumptions
are made. Again, these assumptions do not hold for our case and we leave the theoretical
analysis of convergence for future work. We do, however, illustrate the utility of our approach
with simulations in the next section.

4.4.2 Simulations

We provide simulation results to evaluate the reconstruction performance in different regimes.
We consider the scenario where we time encode and reconstruct twenty signals that are com-
posed of 25 sinc functions at known locations and that can be written as linear combinations
of two such signals.

We evaluate the reconstruction performance that varies as the number of spikes of all machines
increase uniformly. We do this in the following cases:
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Figure 4.2 – Reconstruction error of one out of Nc = 20 signals that have rank Ns = 2, as the
number of emitted spikes increases. The red dashed line marks the perfect reconstruction
condition assuming the transform to the low dimensional space is known, and the purple
dashed line marks the perfect reconstruction condition assuming there is no lower dimensional
representation of the signals. We show the median and quartiles of the reconstruction error
for 25 random trials, when assuming the signals have no low dimensional structure, when
assuming they have a low dimensional structure with a known linear mapping, and when they
have a low dimensional structure with an unknown linear mapping.

(S1) when assuming the signals have no underlying low dimensional structure,

(S2) when assuming the signals have an underlying low dimensional representation which
we can reach through a known linear transform A, and

(S3) when the signals have an underlying low dimensional representation with an unknown
mapping A.

For each of these cases, we draw the entries of C(x) and A uniformly at random and time
encode and reconstruct all twenty signals, computing the obtained normalized mean-squared
error for the first signal among the twenty, assuming a random mapping A to low dimensional
space. Then we plot the median and quartiles of the mean-squared error on a log plot to
compare performance. Results are included in Fig. 4.2.
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Note that, if we assume no underlying low dimensional structure (S1), the signals can be
reconstructed assuming there are Nc ×K linearly independent constraints. In this case, since
the number of spikes of all machines increase uniformly, we will need Nc ×K = 500 spikes. As
for the scenario (S2), according to Theorem 4.1, the signals can be reconstructed assuming
that there are Ns ×K linearly independent constraints. As before, this means we would need
Ns ×K = 50 spikes.

We draw each of these conditions in Fig. 4.2 to see if the performance is consistent with our
expectations.

Assuming we know the transformation A to a low-dimensional space (S2) greatly improves
reconstruction compared to when we assume that there is no low rank structure for the input
(S1): the error decays much earlier in the first case than it does in the second case.

Assuming such a transformation exists but that we do not know it (S3), also offers benefit.
While the reconstruction algorithm can be quite unstable in regimes where the number of
spikes is not sufficient, it can yield a very good reconstruction for a higher number of spikes,
where the scenario (S1) fails entirely.

4.5 Conclusion

We have shown how time encoding can be used to encode and reconstruct multiple signals
that have lower-dimensional representations.

We have reformulated our problem as a rank-one matrix measurement problem and have
shown that signals that have a known lower dimensional representation require fewer spikes
for perfect reconstruction than if this lower dimensional representation did not exist. This is
stark contrast to the same scenario where the signals are sampled using synchronous, uniform
sampling. In the case of time encoding, it is the “underlying” complexity of the signal which
dictates the spiking rate required for recovery, whereas in synchronous uniform sampling, the
“apparent” complexity dictates the necessary sampling rate.

We have also examined the case where the signals of interest have low rank but we do not
know the transformation to the low rank space. We applied low rank factorization algorithms
and found significant experimental improvements compared to the case where no low rank
structure is assumed.

For readers who wonder how difficult it is to achieve the same results with uniform sampling,
we refer to the next chapter on time encoding video. There, we stress on the need for
asynchronous sampling approaches. We contextualize our results to show that frame-based
video is suboptimal in terms of sampling efficiency and that a paradigm shift is needed in the
way we perform sampling. Time encoding provides a tool to achieve this paradigm shift.

72



4.A. Appendix: Known Low Dimensional Mapping - Elaboration and Proof of
Theorem 4.1

4.A Appendix: Known Low Dimensional Mapping - Elabora-
tion and Proof of Theorem 4.1

To prove Theorem 4.1, we will use results about rank-one matrix measurements (Pacholska
et al., 2020). The work in Pacholska et al. (2020) assumes that one is attempting to
reconstruct a matrix C using measurements of the form:

bn = gT
n Chn , (4.13)

and rewrites the measurements as

bn = vec(gnhT
n )T vec(C), (4.14)

where vec() is the vectorization operator.

Note that we adopted a change of notation with respect to Pacholska et al. (2020) to avoid
confusion.

The results of Pacholska et al. (2020) then hold under two further assumptions.

(A9) hn can be parametrized by one variable t ∈ R. More precisely, we assume the k-th
entry of hn has the form [hn]k = hk (tn) where hk : I →R,k = 0, · · · ,K −1 are linearly
independent functions from a linear space of fucntions F , I ∈R is an interval or the
whole real line and tn ∈I ,n = 0, ..N −1 are sampling times. Moreover, it is assumed
that the sampling times (t0, ...tN−1) follow a continuous probability distribution on I N

and that for every non-zero element h ∈F , the set of zeros of h has Lebesgue measure
(λ) equal to zero: λ({t | f (t ) = 0}) = 0.

(A10) The vectors gn are taken from a set A , where every J elements of A are linearly
independent.

As a result, a uniqueness condition can be obtained.

Matrix recovery from bilinear measurements (Pacholska et al., 2020)

Theorem 4.2. Consider the set of K J vectors of the form vec(gnhT
n ). It is a basis in

RK J if and only if no more than K vectors gn are equal.

We are able to rewrite our problem as a rank-one measurement problem and use Theorem 4.2
in combination with the following lemmas to prove Theorem 4.1.
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Spike times follow a continuous probability distribution

Lemma 4.2. Under the assumptions of Theorem 4.1, the spike times{
τi ,`,`= 1 · · ·Li

}
, i = 1 · · ·Ns follow a continuous probability distribution.

Proof. This closely follows the proof in Pacholska et al. (2020).

Zero set of fk ’s is measure zero

Lemma 4.3. Let the fk (t)’s be the functions as defined in (A7.a) or (A7.b) and
define Fk (t) = ∫ t

t0
fk (u)du. Then the Fk ’s are linearly independent functions from a

linear space of functions F which is the space of bandlimited functions. Moreover,
every non-zero element of F has a set of zeros with Lebesgue measure equal to zero.

Proof. This follows by construction of the fk ’s which are linearly independent, leading to
their integrals being linearly independent. The second part of the lemma follows from both
sums of complex exponentials and sinc functions having a countable number of zeros. The
sum of complex exponentials has a countable number of zeros because it can be rewritten
as a polynomial, which has zeros described by the fundamental theorem of algebra, and the
sum of sincs can also be written as a polynomial of a function of time, divided by the time,
which also yields countable zeros (Vetterli et al., 2014). Given that the set of zeros of each
of these functions is countable, they have Lebesgue measure zero (Tao, 2011).

Before proving Theorem 4.1, we prove the following lemma.

Perfect reconstruction from mixed time encoding with known initial conditions

Lemma 4.4. Let Nc signals yi (t ), i = 1 · · ·Nc , satisfy assumptions (A4), (A5) and (A6),
and their function fk (t) satisfy either of (A7.a) or (A7.b) with the corresponding
coefficients c j ,k (x) being drawn from a Lipschitz continous probability distribution.
Now assume A ∈RNc×Ns as defined in (A5) is known and has every Ns rows linearly
independent. Then the inputs yi (t), i = 1 · · ·Nc are exactly determined by the spike
times

{
τi ,`,`= 1 · · ·Li

}
, i = 1 · · ·Nc , if:

N∑
i=1

c min(Li ,K ) > NsK , (4.15)

if the time encoding machines start sampling at t0 with a known integrator value
zi (t0).
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The integrator value zi (t0) indicates the value of the integral of TEMi at time t0, before the
time encoding begins.

Proof of Lemma 4.4. We will assume that we operate under the assumptions set out in
Lemma 4.1.

We start by showing that different constraints imposed by the time encoding machines can
be written as in (4.13). In fact, two consecutive spike times τi ,` and τi ,`+1 from a machine
TEMi impose a constraint on the integral of the concerned signal:∫ τi ,`+1

τi ,`

yi (u)du = 2κiθi −βi (τi ,`+1 −τi ,`) = ḃi ,`. (4.16)

We define Ψi (t ) = ∫ t
t0

yi (u)du to be the integral of the signal yi (t ) between t0 and any later
time t . Given (4.16), and that we know the initial integrator value zi (t0), we can compute
Ψi (τi ,`) for any spike time τi ,`:

Ψi (τi ,`) =
∫ τi ,`

t0

yi (u)du = 2`κiθi −βi (τi ,`− t0)+ zi (t0). (4.17)

We define this quantity to be bi ,` :=Ψi (τi ,`) and denote the function Fk (t) = ∫ t
t0

fk (u)du.
We then rewrite the right-hand side of (4.17) in terms of the parametrization of yi (u):

bi ,` =
∫ τi ,`

t0

K∑
k=1

ci ,k (y) fk (u)du

=
K∑

k=1
ci ,k (y)

∫ τi ,`

t0

fk (u)du

=
K∑

k=1
ci ,k (y)Fk (τi ,`)

= [
F(τi ,`)

][
C(y)

]T

i
(4.18)

Where we defined
[
F(τi ,`)

]
to be the vector of integrals Fk (τi ,`) for k = 1...K . We also defined

C(y) to be the matrix of coefficients ci ,k (y) as defined in (A4) and
[

C(y)
]

i
is the i th row

containing the coefficients for signal yi (t ).

We further rewrite C(y) = AC(x) (from (A5)) and obtain
[

C(y)
]

i
= [A]i C(x). We thus obtain:

bi ,` =
[
F(τi ,`)

]
([A]i C(x))T

bi ,` =
[
F(τi ,`)

]
C(x)T [A]T

i

bi ,` = [A]i C(x) [F(τi ,`)
]T (4.19)
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We can thus reindex the above equations: we let every n correspond to a pair (i ,`) (where
we sometimes write n(i ,`) to emphasize the correspondance) and let bn = bi ,`, gn = [A]i and
hn = [

F(τi ,`)
]
.

We can now see that the vectors hn can be parametrized by one variable t ∈R using a set of
functions hk which satisfy assumption (A9), as stated by Lemma 4.3. Moreover, according
to Lemma 4.2, the spike times follow a continuous probability distribution, as required in
assumption (A9).

We can also see that the vectors gn just defined satisfy assumption (A10) by construction
since this is a condition in Lemma 4.4.

Then, under the conditions of Lemma 4.4, one can extract NsK constraints that satisfy the
constraints of Theorem 4.2, thus ensuring perfect reconstruction of the matrix C(x).

We now restate Theorem 4.1 before proving it.

Perfect reconstruction from mixed time encoding

Theorem 4.1. Let Nc signals yi (t), i = 1 · · ·Nc satisfy assumptions (A4), (A5)
and (A6), and their functions fk (t) satisfy either of (A7.a) or (A7.b) with the cor-
responding coefficients c j ,k (x) being drawn from a Lipschitz continous probability
distribution. Now assume A ∈RNc×Ns as defined in (A5) is known and has every Ns

rows linearly independent. Then the inputs yi (t ), i = 1 · · ·Nc are exactly determined by
the spike times

{
τi ,`,`= 1 · · ·Li

}
, i = 1 · · ·Nc , with probability one, if:

Nc∑
i=1

min(Li −1,K ) > NsK . (4.20)

Proof of Theorem 4.1. Using similar notation used for the Proof of Lemma 4.4, we note that
the value bi ,` is not known, when the initial integrator values zi (t0) are not known, instead,
we know the value of

b̃i ,` = bi ,`+ zi (t0) = [A]i C(x)
[
F(τi ,`)

]T + zi (t0). (4.21)

Continuing in the same logic as before, we let b̃n = b̃i ,`, gn = [A]i and hn = [
F(τi ,`)

]
.

We then obtain
b̃n = vec(gnhT

n )T vec(C(x))+ zin (t0). (4.22)

To keep things in matrix form, we first denote R to be a matrix with rows rn = vec(gnhn
T )T and

then denote R̃ to be a matrix with row vectors r̃n = [rn,ein ] where ein is a length-Nc row vector
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with value one in the column corresponding to the machine that generated measurement n and
zeros otherwise. We also denote the column vector C̃(x) = [vec(C(x))T , z1(t0), z2(t0), · · · , zNc (t0)]T .

The measurement therefore satisfies

b̃n = r̃nC̃(x). (4.23)

For the system to be invertible we need Ns×(K +1) of the vectors r̃n to be linearly independent.

If we satisfy the condition set by Theorem 4.1, we also satisfy the condition set by Lemma 4.4
in (4.15). This means that there are NsK rows rn of R that are linearly independent. Now
let us consider the extension R̃, the corresponding NsK rows from R̃ will still be linearly
independent (otherwise we reach a contradiction).

According to the assumptions of the corollary, R̃ has, in addition to the NsK rows already
mentioned, one extra row ρ̃i coming from each TEMi .

We would therefore like to check if there exist NsK +Nc coefficients pn(i ,`) such that

Nc∑
i=1

Li∑
`=1

pn(i ,`)r̃n(i ,`) = 0

Nc∑
i=1

Li∑
`=1

pn(i ,`)
[
rn(i ,`) ei

]= 0 (4.24)

Because the ei ’s are orthogonal, the above constraint can be translated to:

Li∑
`=1

pn(i ,`)r̃n(i ,`) = 0, and

Li∑
`=1

pn(i ,`) = 0, ∀i = 1, · · · , Nc (4.25)

Because Li ≤ K +1 for TEMi , and the first Li −1 rows (other than ρ̃i ) from TEMi have full
rank equal to Li −1 (according to Lemma 4.4), there is at most one solution for the pn(i ,`)’s.
This solution will depend on the rn(i ,`)’s which follow a continuous probability distribution
(given that the τi ,`’s also follow a continuous probability distribution). Therefore the pn(i ,`)’s
almost surely don’t satisfy the second condition of (4.25), and the measurement vectors of R̃

are almost surely linearly independent, making the system uniquely invertible with probability
one.
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5 How Asynchronous Events Encode
Video

Recommended Reading: Sections 2.1, 2.2, 2.3, 5.
The content in this chapter is adapted from Adam et al. (2022, 2021).

5.1 Introduction

Event-cameras forego the frame-based, clock-driven limitation that standard cameras abide
by. To record video, they use a set of pixels, each of which emits an event whenever its
input exhibits sufficient change (Liu and Delbruck, 2010; Gallego et al., 2019; Brandli et al.,
2014). Event-cameras have recently been gaining traction among researchers (Kim et al.,
2016; Mueggler et al., 2017; Rebecq et al., 2018; Gehrig et al., 2020; Cordone et al., 2021;
Duwek et al., 2021; Zheng et al., 2021; Zhao et al., 2021) by virtue of their power efficiency,
higher dynamic range and reduced motion blur compared to standard cameras.

Simulated output of an event camera can be used to reconstruct videos with a frame rate of
over 5000 frames per second while running in real-time (Rebecq et al., 2019). Event-based
sensors also have an impressively low data consumption. For example, the dynamic and
active pixel vision sensor (DAVIS) has 240×180 sensors and operates at 5-14mW of power
depending on the activity of the sensors (Brandli et al., 2014).

Power reduction also extends beyond the sensing devices themselves, as the output of these
sensors can be processed using event-based processors. These are neuromorphic chips that
contain units which act like neurons and output spikes, and have reduced power consumption
compared to standard processors (Merolla et al., 2014; Akopyan et al., 2015; Davies et al.,
2018). Studies have shown for example that live-streamed event data can be used to recognize
hand gestures using 200mW of power if neuromorphic hardware is used (Amir et al., 2017).

While the technology behind event-based sensing and neuromorphic hardware gains in
popularity, theoretical insight and guarantees are advancing at a slower pace (Liu et al., 2019).
One key difficulty with understanding event-based vision is the fact that different sensors
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Figure 5.1 – Vision setup: we assume that we have an array of spiking devices, such as TEMs,
each of which is observing a scene at a particular location. The input to the sensor at this
location is a time varying signal and the sensor will output a stream of spikes, the timing of
which is dependent on the input. On the left, we show the projection of the scene which is
being observed. In the middle, we show a patch of this scene, which is interpolated under
bandlimited periodic assumptions, with an overlay of event-based sensors shown in yellow.
To its right, we zoom in to view the spiking output of some of the sensors. The video used is
taken from the Need for Speed dataset (Galoogahi et al., 2017).

emit events at different times, making it difficult to build frames and thus difficult to perform
a reconstruction.

In this chapter, we will show that the asynchrony of events across pixels actually consitutes an
advantage of event-based vision over frame-based vision and allows an encoding of information
that is more sample-efficient.

We use time encoding machines (TEMs) as a model for event sensors to understand how
these sensors encode their data, and we build on results from Chapter 4 to understand time
encoding of video. We will see that using event sensors or TEMs results in streams of events
that are asynchronous across sensors, thus allowing for richer information content than in
the frame-based approach. To do so, we assume our scene can be modeled by a periodic
bandlimited function in three dimensions (two spatial and one temporal dimension) and will
see how the setup results in an entanglement between spatial and temporal resolution. In
the frame based case, spatial and temporal resolution are uniquely and respectively defined
by the pixel gridding and frame rate, but in the case of event-based vision, we will see that
the temporal resolution is also affected by the pixel gridding. As a result, both temporal and
spatial resolution in event-based vision can be increased by increasing the number of pixels.

5.2 Background

We use a time encoding machine (TEM), as defined in Definition 2.2 as a model for an
event-based sensor (Lazar and Tóth, 2003), where the TEM follows an integrate and-fire
mechanism and encodes its input using times that are dependent on the input itself, depicted
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in Fig. 2.2.

We adopt the integrate-and-fire model for the event-based sensor because it is well understood
and results on sampling and reconstruction are widely available. However, the results can
be extended to different types of time encoding machines which filter the signal, compare
it to an output and emit events when the comparison yields a match (Gontier and Vetterli,
2014). A differentiate-and-fire model, for example, can be written similarly, as well as more
complicated event-based sensing models.

In this chapter, we tackle the problem of time encoding video, achieved by replacing pixels
in a standard frame-based camera by event-based sensors or, in this case, time encoding
machines, as depicted in Fig. 5.1. Video time encoding machines have been examined before,
and results on perfect reconstruction have already been established (Lazar and Pnevmatikakis,
2011; Lazar and Zhou, 2014). However, previous work relied on applying linearly independent
filters to a bandlimited video before it is processed by the TEMs. Here, we propose a
filter-less approach where the scene is encoded without preprocessing. Moreover, we clarify a
dependency between spatial sampling density and temporal resolution that was not apparent
before.

To do so, we build on Theorem 4.1 from Chapter 4, on multi-channel time encoding of mixed
low-dimensional signals. When Nc signals observed by Nc TEMs have a lower dimensional
representation and can be written as a linear combination of Ns ≤ Nc signals, as depicted in
Fig. 4.1, the low dimensionality of the input can be used to reduce the number of spike pairs
needed to ensure reconstruction of the input.

This results shows that a signal with low dimensional representation can be reconstructed
from its time encoding if the number of pairs of spikes scales with the number of parameters
in the low dimensional space rather than the high dimensional space. In total, one requires
NsK ≤ Nc K linearly independent constraints where Ns is the number of signals in the
underlying low dimensional representation and Nc is the number of signals seen by the TEMs.

We will show that we can formulate the problem of time encoding video to fit the framework
presented in Assumptions (A4)-(A6), allowing us to use Theorem 4.1.

5.3 Time Encoding Video: Theory

5.3.1 Video Model

To tackle the problem of time encoding video, we model video as a continuous signal
y(d (1),d (2), t ) which varies in three dimensions: two spatial dimensions d (1) and d (2) and one
temporal dimension along t . Such a signal is then sampled using a collection of time encoding
machines.

81



Chapter 5. How Asynchronous Events Encode Video

For the remainder of this chapter, we assume that y(d (1),d (2), t) is periodic bandlimited
in all dimensions. Such a signal can be described by a finite number of parameters and
can thus potentially be fully characterized by a finite number of “measurements”. In more
mathematical terms, we assume that the input signal to an event-based camera or to a time
encoding camera can be written:

y(d (1),d (2), t ) =
K0∑

k0=−K0

K1∑
k1=−K1

K2∑
k2=−K2

ck0,k1,k2 (y)exp

(
j2π

(
tk0

T
+ d (1)k1

D (1)
+ d (2)k2

D (2)

))
, (5.1)

where the ck0,k1,k2 (y)’s denote the 3D Fourier series coefficients of y(d (1),d (2), t ). Note that
we assume that y(d (1),d (2), t) has (2K0 +1)× (2K1 +1)× (2K2 +1) of these coefficients with
periods T , D (1) and D (2) in the time dimension and in the first and second space dimensions,
respectively.

While the periodic bandlimited model choice may seem restrictive at first sight, note that
frame-based video has limited frame rate and finite pixel separation, thus inherently assuming
that the input is “smooth enough” between temporal and spatial samples. Moreover, frame-
based video records data over finite amounts of time and limited space, and assuming
periodicity in the input is a natural way to deal with finite sampling windows.

We have described the signal model, we now focus on the measurement approach. We
assume that the scene is recorded using integrate-and-fire time encoding machines. Each
TEMi observes a specific direction di = (d (1)

i ,d (2)
i ) in 2D space, where d (1)

i ,d (2)
i ∈R, and fires

corresponding spikes τi ,`.

Then, the input yi (t ) observed by TEMi is

yi (t ) = y(d (1)
i ,d (2)

i , t ). (5.2)

For example, the pixels can be made to lie on a uniform grid, as illustrated in Fig. 5.1.

5.3.2 Uniqueness of Video Time Encoding

Assuming the input is periodic bandlimited allows our problem to fit within the framework
we presented in Section 5.2, where low-dimensional signals are mixed and time-encoded.

Mixed time encoding assumptions are respected

Lemma 5.1. The signals yi (t), as defined in (5.2), satisfy assumptions (A4)-(A6),
with Ns = (2K1 +1)(2K2 +1).
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Proof. We first define proxy signals x(k1,k2)(t ), with k1 ∈ {−K1, · · · ,K1} and k2 ∈ {−K2, · · · ,K2}:

x(k1,k2)(t ) =
K0∑

k0=−K0

ck0,k1,k2 (y)exp

(
j2π

(
tk0

T

))
. (5.3)

With this definition, we can write the input to each TEMi as

yi (t ) =
K1∑

k1=−K1

K2∑
k2=−K2

x(k1,k2)(t )exp

(
j2π

(
d (1)

i k1

D (1)
+ d (2)

i k2

D (2)

))
. (5.4)

We further define an index j that has a unique correspondence to k1 and k2: j := (k1 +K1 +
1)×(2K2+1)+(k2+K2+1). The index j takes on values 1, · · · , Ns where Ns = (2K1+1)(2K2+1),
and we write k1( j ) and k2( j ) the unique indices k1 and k2 that define j , so that

x j (t ) = x(k1( j ),k2( j ))(t ). (5.5)

We further define a matrix A with entries

ai , j = exp

(
j2π

(
d (1)

i k1( j )

D (1)
+ d (2)

i k2( j )

D (2)

))
. (5.6)

Given these definitions, we see that yi (t ) can be written:

yi (t ) =
(2K1+1)×(2K2+1)∑

j=1
ai , j x j (t ). (5.7)

As a result, and given that the inputs yi (t ) are periodic bandlimited functions that are input
to TEMs, assumptions (A4)-(A6) are satisfied, with the entries of mixing matrix A defined
by the known directions di the TEMs or pixels are observing, as described in (5.6).

A similar result to Theorem 4.1 can thus be established:

Perfect reconstruction of video time encoding

Corollary 5.1. Assume a signal y(d (1),d (2), t ) is defined as in (5.1) with the coefficients
ck0,k1,k2 (y) being drawn from a Lipschitz continuous probability distribution. Further
assume y(d (1),d (2), t) is sampled using Nc ≥ Ns = (2K1 +1)(2K2 +1) TEMs observing
directions di such that the resulting matrix A with entries defined in (5.6) has every
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Ns rows linearly independent. Then, if each TEMi fires Li spikes and

Nc∑
i=1

min(Li −1,K ) > NsK , (5.8)

where we defined K = (2K0+1), the scene y(d (1),d (2), t ) can be perfectly reconstructed
from its spike times.

Before we dive into the assumptions for this theorem, namely the condition on the mixing
matrix A, let us understand the implications. First recall that the reconstruction of any
input signal to a TEM can be achieved because pairs of consecutive spike times provide
linear constraints on the input as explained in (2.3). According to the result in Corollary 5.1,
the number Nc of TEMs used to encode an input signal y(d (1),d (2), t) does not affect the
number of pairs of spike times needed to ensure a unique characterization of the scene, as
long as the matrix A has every Ns rows linearly independent. It is rather the complexity
NsK =

2∏
n=0

(2Kn +1) of the scene itself, determined by the number of Fourier series coefficients,
which dictates the required number of spike time pairs.

We now tackle the requirement that the mixing matrix A have every Ns = (2K1 +1)(2K2 +1)

rows linearly independent. In Adam et al. (2022), we showed that a (2K1 +1)× (2K2 +1)

grid of equally spaced pixels results in a matrix A that is full rank and therefore fulfills the
requirement. However, this property cannot be extended to uniform grids with more pixels
than in the sufficient gridding case. Fortunately, the requirement on matrix A having every
Ns rows linearly independent is merely a sufficient requirement for perfect reconstruction
rather than a necessary one. We will show in the upcoming simulations that one can still
achieve perfect reconstruction under condition (5.8) even if this requirement on the mixing
matrix is not strictly obeyed.

5.3.3 Reconstruction Algorithm

As previously mentioned, each pair of spike times emitted by each TEMi provides a linear
constraint on the input to this TEMi . We define a measurement vector

{
ḃi ,`

}
`=1···Li

associated
with each TEMi where

ḃi ,` :=
∫ τi ,`+1

τi ,`

yi (u)du, (5.9)

where ḃi ,` is known and as described in (2.3). We can show that our problem can be
rewritten as a rank-one sensing problem (Pacholska et al., 2020) and, with some vectorization
operations, the right hand side of (5.9) can be rewritten to obtain

ḃi ,` = vec

(
ai

[
Ḟ(i )
`

]T
)

vec(C(x)) , (5.10)
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where ai denotes a row of matrix A, vec() denotes the vectorization operation and[
Ḟ(i )
`

]
k
=

∫ τi ,`+1

τi ,`

exp

(
j
2π(k −K0 −1)

T
u

)
du.

Therefore, as recovering the video is equivalent to recovering the coefficients C(x), and as
A and

[
Ḟ(i )
`

]
are known, one can recover the video by simply inverting the linear system

in (5.10). The system is full rank and uniquely invertible if the conditions of Corollary 5.1
are met.

5.3.4 Interpretation of Results

The observation in Corollary 5.1 provides intuition on how the parameters of the input signal
are recovered. Essentially, our result states that if there are more pixels than needed for full
spatial resolution (i.e. Nc ≥ (2K1+1)(2K2+1)), recovery occurs when there are sufficient spike
pairs coming from all TEMs or pixels, provided that these spike pairs yield non-redundant
information. In fact, our statement is supported by two components of the condition in (5.8):
(1) the min term ensures that only “useful” information is counted from each TEM (given
that each TEM has a limited information capacity determined by the complexity of its input)
and (2) the summation ensures that the information gathered from the different machines is
used collaboratively.

An interesting effect ensues: a machine that spikes too rarely can be compensated for by
having other machines spike more often or simply by having more machines, and one can
thus always improve signal reconstruction by increasing the number of TEMs or pixels used,
because the emitted spike times will almost surely be asynchronous.

In some sense, spatial sampling density now has not only an effect on spatial resolution, but
on temporal resolution as well, an effect that does not exist in classical frame-based video.
This effect occurs because TEMs emit spikes at different times, thus collecting information
about their inputs at different times and providing linearly independent constraints on the
input. In the frame-based scenario, on the other hand, each frame is captured at the same
time and increasing the pixel grid size cannot improve temporal resolution.

Therefore, if we have TEM-like receptors or sensors that have a limited spiking rate, spatial
and temporal resolution can be regained by adding more sensors that observe new directions.
In the frame-based scenario, spatial and temporal resolution are independendent of eachother:
the former is defined by the pixel grid used in each frame and the latter is defined by the
frame rate used to capture the video. On the other hand, employing event-based vision
creates an entanglement between spatial and temporal resolution and the latter can also be
improved by increasing the size of the pixel grid, as we will show in the upcoming simulations.
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5.4 Time Encoding Video: Experiments

In the previous section, we discussed the relationship between spatial sampling density and
temporal resolution: in event-based vision, the former influences the latter, whereas in
frame-based video, the two quantities are independent.

We would like to show this effect through simulations. As mentioned, using a grid of
uniformly spaced pixels and increasing the number of pixels beyond the necessary number
(2K1 +1)(2K2 +1) violates the condition on A in Corollary 5.1. However, we will show that
under the same assumptions, the predicitions of the corollary can still be realized.

We time encode a patch of a video recorded with a standard frame-based camera from the
Need for Speed dataset (Galoogahi et al., 2017). The patch is originally 9 pixels high, 9 pixels
wide and 9 frames long and we therefore assume that it is periodic bandlimited with 9×9×9

Fourier series coefficients (where we assume K0 = K1 = K2 = 4). This assumption allows us
to have a continuous model for the video and to perform time encoding of a smooth and
continuous input signal.

We sample the smoothly varying patch using different numbers of time encoding machines
with different spiking rates and evaluate the result under the different assumptions. Different
spiking rates can be achieved by manipulating the threshold of the TEMs: the lower the
threshold, the higher the number of spikes emitted over a certain time. Note that emitting
more spikes requires more power, so the choice of the threshold always entails a tradeoff
between power consumption and reconstruction error.

We place TEMs, for example, at the yellow dots in Fig. 5.1 in a 9×9 grid of time encoding
machines. We will show in our experiments that this is the minimum number of TEMs
required to achieve perfect reconstruction.

We will also show how we can use more TEMs in the spatial dimensions to obtain better
resolution in the time dimension. This will not necessarily be the case the other way around:
more sampling in time does not always provide improved spatial frequency resolution. To
achieve this, we run two experiments.

Higher spatial density increases temporal resolution

Example 5.1. In the first experiment, depicted in the left part of Fig. 5.2, we
evaluate the reconstruction performance when the grid of TEMs has more or fewer
TEMs. When there are at least as many TEMs as necessary (i.e. a 9×9 or 9×15 grid
of TEMs), we see that the reconstruction error indeed decreases sharply when the
condition for Corollary 5.1 is achieved, as indicated by the vertical orange line. When
there are fewer TEMs than necessary (a 9×5 grid of TEMs), the spatial density is not
sufficient and perfect reconstruction can never be reached as the system will always
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be underdetermined due to the too few number of sensors.
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Figure 5.2 – Mean-squared reconstruction error with varying number of pixel TEMs
and varying number of spike pairs per TEM. The original video has 9×9×9 Fourier
series coefficients that we wish to recover. On the left-hand side, we study the
evolution of the error as the number of spikes increases, assuming we time encode the
video using grids of uniformly spaced TEMs with sizes that are decreasing from top
to bottom, and where the second row assumes the minimal number of TEMs needed
to reconstruct the video. On the right-hand side, we study the evolution of the error
as the number of TEMs increases for numbers of spikes emitted per machine which
are increasing from top to bottom, and where the second row assumes the maximal
useful spiking rate per TEM. For each plot, the vertical orange line marks the point
starting from which the condition for Corollary 5.1 is satisfied. The dashed green line
marks the point starting from which we have more constraints than unknowns, without
accounting for linear independence, i.e. counting the number of obtained spike pairs
rather than estimated the quantity on the left hand side in (5.8). Note that N spike
pairs corresponds to N +1 spikes.

In the second experiment, depicted in the right part of Fig. 5.2, we evaluate the
reconstruction performance given fixed spiking rates of the TEMs. When the spiking
rate is at most the maximal rate per TEM (i.e. 9 spikes per TEM allow each machine
to perfectly resolve its input), the reconstruction error decreases with the increase of
number of TEMs used, when the condition for Corollary 5.1 is achieved, as indicated
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by the vertical orange line. When the spiking rate increases beyond the useful rate
(in this case, we have 15 spikes per machine), the higher spiking rate only provides
redundant information in the noiseless case and the profile of the reconstruction error
resembles that in the case of a spiking rate of 9.

With these experiments, we see how increased spatial density can increase overall reconstruc-
tion (including temporal resolution), even if each TEM has a limited spiking rate.

5.5 Conclusion

We have shown how to use time encoding to understand event-based video and have
consequently demonstrated that event-based vision has an advantage over frame-based vision
when it comes to sample complexity.

This advantage arises because event-based cameras emit streams of events from their pixels.
As these events are asynchronous across pixels, they provide information about the input that
is almost surely linearly independent. This uncovers a relationship between spatial sampling
density and temporal resolution in event-based vision. As sensors emit events at different
times, increasing the number of sensors used in event-based video increases both spatial and
temporal resolution, without requiring a higher firing rate per sensor.

We have seen how spikes or events can be a sample-efficient way of encoding video and we
know that they can be implemented in a power-efficient manner. While spikes are more
difficult to treat compared to uniform samples, their asynchronous and all-or-none nature
provide avenues for improvement over clocked systems, as will become clearer when we
investigate spiking neural networks in Chapter 6.
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6 A Time Encoding Approach to
Training Spiking Neural Networks

Recommended Reading: Sections 2.1, 2.2, 2.3.
The content in this chapter is adapted from Adam (2022).

6.1 Introduction

We have seen the benefits of the asynchrony of spike times that naturally occurs in spiking
integrate-and-fire devices. This chapter additionally shows how the all-or-none nature of
spikes allows training of spiking neural networks in a layer-by-layer fashion, by enforcing
constraints.

Spiking Neural Networks (SNNs) transform their input using nonlinearities that follow simple
models of spiking neurons as depicted in Fig. 6.1. SNNs are gaining in popularity for a
number of reasons. They can provide insight on information processing in the brain and can
guide experimental studies to validate or refute this insight. They can inspire new learning
algorithms for artificial neural networks (ANNs), as SNNs are often made to rely on local
operations, thus reducing computational complexity and power load. The hardware needed
to implement them can also be very power efficient thanks to the all-or-none nature of SNNs’
spiking output.

Despite these motivations, advances in SNNs are quite far from those achieved in the realm of
ANNs. While neuromorphic hardware is available (Davies et al., 2018; Akopyan et al., 2015;
Indiveri et al., 2011) and numerous learning algorithms have been developed (Bohte et al.,
2002; Neftci et al., 2019; Comsa et al., 2020), implemented on these chips and tested on
various tasks (Cordone et al., 2021; Davies et al., 2021), the tasks that SNNs are trained on
are still much simpler than those tackled by ANNs (Comsa et al., 2020; Wunderlich and Pehle,
2021; Ma et al., 2021), because training SNNs on more complex data seems prohibitively
difficult.

The difficulty in training SNNs lies in the discontinuity of the function applied by spiking
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neurons. These neurons fire spikes when their input reaches a threshold—a behavior which
results in a discontinuity, posing problems when derivatives are required for backpropagation.
Current approaches to training SNNs avoid this discontinuity in different ways, whether by
using spike rates instead of times (Boerlin et al., 2013), using surrogate gradients (Neftci
et al., 2019), or using spike times as a continuous variable with respect to which differentiation
is done when performing backpropagation (Bohte et al., 2002; Comsa et al., 2020; Wunderlich
and Pehle, 2021).

An under-explored approach, however, comes from the theory behind time encoding. This
approach can provide a different perspective on learning SNNs which not only avoids the
discontinuity mentioned above, but bypasses the backpropagation algorithm altogether.

TEMs can be used to encode and decode weighted sums of bandlimited input, following
an architecture that is reminiscent of a layer of a feedforward network, as we showed in
Chapter 4. TEMs can also encode and reconstruct spike streams that are passed through
various filters (Alexandru and Dragotti, 2019; Rudresh et al., 2020; Kamath et al., 2021), such
as the alpha synaptic function which is often considered in simpler models of neurons (Hilton
et al., 2021a). These filters are needed both for biological similarity but also for reconstruction
to be possible. Many of these results are possible because the recovery from time encoding
can be formulated as a problem of linear constraint satisfaction (Thao and Rzepka, 2020).

In this chapter, we bridge the gap between TEMs and SNNs by formulating the training
problem of SNNs as a constraint satisfaction problem. This formulation allows us to understand
the power of spikes compared to traditional ANN nonlinearities that are graded (i.e. have
varying amplitudes) and synchronous.

We assume that we want an SNN to learn to associate certain inputs with corresponding
output spike streams, a task which we further assume to be perfectly learnable, in the
noiseless case, for the particular network used. For a single-layer SNN, when using the TEM
formulation, we will see that the SNN’s weights can be learnt by solving for one set of
linear equations. We can then build on this result to train two-layer SNNs using the TEM
formulation. In the latter scenario, a key ingredient at play is the all-or-none and asynchronous
nature of the spikes within an SNN, which will allow layers to be trained one after the other.

We evaluate our method by examining the trained weights of SNNs and their distance to a
set of known ground-truth weights. This is different from standard approaches to evaluating
neural networks, where emphasis is placed on the task rather than the weights. However, we
focus on the weights becausue it is actually possible for weights to be recovered exactly if an
SNN is trained as we propose.

The work in this chapter is a first step towards training SNNs using the TEM paradigm,
allowing one to bypass traditional backpropagation algorithms, and providing a new tool to
tackle this problem.
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Figure 6.1 – A two-layer spiking neural network where each of the individual neurons (marked
by circles) is a TEM as defined in 2.2. When learning such an SNN, we assume that we
know the synaptic filters as well as the parameters of the TEMs, that we are given a set of
examples of input-output pairs and that we wish to learn the weights of the network W(1)

and W(2).

6.2 Training SNNs: Background

There is ongoing debate about the modality the brain uses to encode information: is it spike
times or spike rates? Of course, this debate also extends to SNNs, where the question targets
the quantity used to perform learning.

Evidence has been found for both spike rate and spike time coding in the brain, and the
preference in coding scheme depends on the area in question. It is argued, for example, that
some tasks are performed too quickly for them to depend on the computation of spike rates
and rather rely on quantities such as the time to first spike (VanRullen et al., 2005).

Following these two schools of thought when it comes to brain activity, we also see two trends
for learning rules of SNNs.

In the spike rate paradigm, a neuron is often assumed to emit spikes according to a Poisson
process with a varying and information-carrying rate (which is its input) and operations are
done by calculating and using the rate of the neuron over moving windows as done e.g.
in Boerlin et al. (2013). This follows a clock-based approach, where updates are made after
uniform time steps. It allows one to use classical approaches to training deep neural networks,
such as error-backpropagation, which uses the gradient of the loss function with respect to
every weight or parameter to update said parameter1.

1Note that the use of backpropagation might not be desired. Often, when training SNNs one wishes to
achieve some locality in the computations and the backpropagation algorithm is far from local.
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In the spike timing paradigm, updates are made in (almost) continuous time and spikes are
sent to receiving neurons as they are emitted2. Because spikes create sharp transitions in the
outputs of nodes, discontinuities arise in the gradient of the loss function.

On one hand, one can tackle this by finely discretizing all neuron currents, and training an
SNN by reformulating it as a recurrent neural network and using surrogate gradients (Neftci
et al., 2019).

On the other hand, there exist different spike-timing based training approaches to SNNs,
which bypass this discontinuity altogether. For example, single-layered SNNs can be learned
using spike timing dependent plasticity (Pfister and Gerstner, 2006). For learning rules for
deeper SNNs, we point to the SpikeProp algorithm which does not consider currents as a
discontinuous function of weights, but rather considers spike times as a continuous function
of these weights and performs backpropagation on this basis (Bohte et al., 2002). A similar
line of work was also explored by Comsa et al. (2020) and Wunderlich and Pehle (2021),
often prioritizing quantities such as the time to first spike, i.e. the timing of the first spike of
an output neuron.

We will next see how results from time encoding can inspire learning algorithms of a different
kind.

6.3 Learning a Single-Layer SNN

6.3.1 Input Processing through a Single-Layer SNN

We consider the training of an SNN from a constraint satisfaction perspective.

To begin tackling this problem, we first consider the case of a single-layered SNN, i.e. we
focus on the first layer in Fig. 6.1. The SNN has nonlinearities which are modeled by
integrate-and-fire neurons, i.e. TEMs as defined in Definition 2.2 and with streams of Diracs
as an output, and are assumed to have a known set of parameters κ, θ and β.

We would like to recover an unknown weight matrix W(1) and to do so, we are given a set
of examples. Each of these examples is composed of an input x(0)(t ) =

[
x(0)

1 (t ), · · · , x(0)
n(0) (t )

]T

which is a collection of n(0) signals, and of the corresponding target output spike streams
{t (1)

i ,`}` for each of the n(1) neurons TEM(1)
i .

Given the known input and output of each example, we would like to find the weights W(1)

such that the SNN generates the correct output for each input of the examples.

Notice the relationship between the problem we are solving here and the one we solved in

2We say that time is almost continuous, because many simulators for spiking neural networks actually use
a clock-based approach (for which our computers are well suited) with a very small discretization step.
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Figure 6.2 – Structure of a single-layer feedforward spiking neural network, where x(0)
i are the

inputs, W(1) is a weight matrix that mixes the input, TEMi
(1) are the spiking neurons that

apply the nonlinearities, and the streams of Diracs at locations
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τi ,`

}Li
`=1 are the outputs.

Chapter 4. The processing steps that an input vector to the network goes through are the
same. However, in Chapter 4, we looked to recover the input itself from its time encoding,
whereas, here, we look to recover the weights from the time encoding, as depicted in Fig. 6.2

6.3.2 Recovery of Weights through the Translation from Spikes to Linear
Constraints

The recovery of the weights W(1) can be performed in a row by row fashion. In fact, the
timing of the spikes {τ(1)

i ,`}` of TEM(1)
i provide linear constraints on the input ∑

j wi , j x(0)
j (t ) to

TEM(1)
i and therefore on the weight matrix row wi ,:

bi ,` =
∫ τ(1)

i ,`+1

τ(1)
i ,`

∑
j

wi , j x(0)
j (t ) =∑

j
wi , j

∫ τ(1)
i ,`+1

τ(1)
i ,`

x(0)
j (t ), (6.1)

where bi ,` = 2κθ−β(τ(1)
i ,`−τ(1)

i ,`+1) as mentioned in (2.3).

Given that the inputs x(0)(t ) are known, their integrals needed for (6.1) are also known. It is
also possible to further show that the spike times will almost surely provide constraints that
are linearly independent, if one assumes, for instance, that the x(0)(t ) are periodic bandlimited
signals and have their coefficients drawn from a Lipschitz-continuous probability distribution,
along similar lines as those in the proof of Lemma 4.2.
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Notice that, in (6.1), we assume we have one example with corresponding input and output
spike stream, but this can be extended to include multiple examples, by concatenating the
constraints from each example on W(1) into a single measurement matrix and vector.

6.3.3 Simulations

We assume that we would like to train an SNN that has a known number of inputs and
outputs, using a varying number of examples.

To do so, we create a Simulator SNN with weights W(1) drawn uniformly at random and
process a set of input signals through the Simulator SNN to obtain our ground truth output
spike streams. The input signals are here assumed to be periodic bandlimited, with Fourier
series coefficients drawn uniformly at random.

Then, we learn the weights Ŵ(1) of a Learned SNN that match these examples, by finding
the least squares solution to (6.1), which can either be done in one shot or through gradient
descent.

Note that the Learned SNN has the exact same architecture as the Simulator SNN, and only
the weights Ŵ(1) are being learned, so that we are essentially simulating a teacher-student
setup where teacher and student are single-layer feedforward SNNs with the same number of
inputs and outputs.

To evaluate the success of our learning, we look at the mean squared error of our estimate of
the weights Ŵ(1), as the number of examples, the duration of exposure, and the noise level
changes. This is not the standard evaluation metric when training neural networks, but it is
a pertinent measure here as the weights should be recoverable exactly.

Learning a single-layer SNN with varying number of examples and exposure

Example 6.1. We assume our network has n(0) = 20 inputs and n(1) = 5 outputs. We
study the reconstruction error on the weights after training using a varying number
of examples and varying exposure duration per example, in Fig. 6.3. By exposure
duration, we mean the time over which the Simulator SNN is exposed to the input and
allowed to spike. The higher the exposure duration, the more spikes (and constraints)
are generated.
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Figure 6.3 – Heatmap of the reconstruction error of the weight matrix Ŵ(1), using
the L2 norm, as a function of the number of examples and the exposure time used to
train the network.

Learning a single-layer SNN with varying noise levels
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Figure 6.4 – Heatmap of the reconstruction error of the weight matrix Ŵ(1), using
the L2 norm, as a function of the number of examples and the SNR of the spike times
used to learn the network.

In Fig. 6.4, we provide simulations where we introduce uniform noise on the spike
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times, varying the signal-to-noise ratio (SNR) of the spike times, and evaluate the
reconstruction error on the weights after learning. Notice how increasing the number
of examples can partly compensate for higher noise levels.

6.4 Learning a Two-Layer SNN

6.4.1 Input Processing through a Two-Layer SNN

We have seen that we can train a single-layer SNN in a one-shot inversion of linear equa-
tions (6.1), and now consider the case where we have two layers of neurons or TEMs as
depicted by Fig. 6.1.

For a certain input x(0)(t ) to the network, this input is passed through a weight matrix W(1),
through a layer of nonlinearities

{
TEM(1)

i

}n(1)

i=1
, each of which outputs a stream of spikes (i.e.

Dirac deltas) at times {τ(1)
i ,`}`, which are passed through a second weight matrix W(2), through

a filter (which can be likened to synaptic filters in real neurons), and then through the second

layer of nonlinearities
{

TEM(2)
i

}n(2)

i=1
, each of which outputs a stream of spikes at times {τ(2)

i ,`}`.

As before, we assume that we would like to train the network, i.e. find the weight matrices
W(1) and W(2). To do so, we have a set of examples, each of which is composed of an input
x(0)(t)—a collection of n(0) signals x(0)

i (t)—and of the corresponding target output spike
streams {τ(2)

i ,`}` for each of the n(2) output neurons {TEM(2)
i }i . We further assume that the

filters that are used between the first and second layer of TEMs are known and satisfy the
alias cancellation property as defined in Section 2.4.

Following a similar approach to the one in Section 6.3, we use the examples to constrain the
weight matrices W(1) and W(2). Of course, in the two-layer case, this does not result in linear
constraints on W(1) and W(2). Therefore, we propose an approach which performs a layer by
layer recovery of the weight matrices, starting with W(2).

6.4.2 Recovery of Weights Leveraging the All-or-None and Asynchronous
Properties of Spikes

Learning both weight matrices W(1) and W(2) would be straightforward if the output of the
hidden layer {TEM(1)

i }i were known. As this is not the case, we look to recover it. The trick
we use lies in the all-or-none nature of the spikes output by the {TEM(1)

i }i . These outputs
are streams of Diracs, as described in (2.20), but with ck = 1, given that a TEM encodes its
input using spike times only.
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Therefore, the inputs to the second layer {TEM(2)
i }i will also be streams of Diracs, the times

of which are dictated by the outputs of {TEM(1)
i }i and the weights of which are dictated by

W(2).

In depth: All-or-none property of spikes allows weight recovery

The figure below examines the all-or-none property more closely and shows how the
weighted inputs to TEMs can be deconstructed into a sum of many inputs with
unit-amplitude Diracs, multiplied by a weight matrix with recoverable weights.
As such, the times of the original signals can be recovered by finding the times of
the Diracs in the mixed signals and assigning the Diracs by clustering them according
to weight. Then, the weights will simply be the weights of the Diracs observed in
the mixed signals, given that the Diracs in the original signals always have amplitude
one—as the “all-or-none” property dictates.
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Figure 6.5 – Two streams of unit-amplitude and asynchronous Diracs can be mixed
and the different Diracs and weights remain resolvable.

Consequently, if the {TEM(2)
i }i spikes often enough (and we will clarify this shortly), the Fourier

series coefficients of the inputs to the {TEM(2)
i }i can be recovered, and a joint annihilating

filter can be found for all of these inputs. It is then easy to recover the locations of the
Diracs, then assign them to different TEMs of {TEM(1)

i }i while recovering W(2) (up to a
permutation) simply by using a k-means algorithm. Note that this is only possible because
of the all-or-none and asynchronous nature of the spikes. This is not possible with classical
nonlinearities that are graded and simultaneous. Once the outputs of {TEM(1)

i }i are known, it
is easy to recover the weights W(1) as we did in Section 6.3.

Let us now specify how many spikes at the output of {TEM(2)
i }i are needed in order for the

output of {TEM(1)
i }i and for W(2) to be recoverable. Following the result in (Kamath et al.,

2021) and reformulated in 2.4.2, we need every TEM at the output to generate (2L+2)n(1)

spikes if each of the TEMs in the hidden layer fires L spikes. We will discuss the implications
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of this in the conclusion.

6.4.3 Simulations

To provide a proof of concept, we design simulations where we again work with a Simulator
SNN and a Learned SNN. The Simulator SNN has its weight matrices W(1) and W(2) drawn
uniformly at random and is used to obtain the spike stream outputs for the inputs of (in this
case) two examples. Then, the Learned SNN “learns” the appropriate weight matrices Ŵ(1)

and Ŵ(2) to reproduce the examples using our described approach.

Learning a two-layer SNN with varying exposure duration

Example 6.3.
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Figure 6.6 – Reconstruction Error, using the L2 norm, of W(1) and W(2) of a two-layer
SNN, as the duration of exposure increases. We plot the median and the first and
second quartiles of the error for 50 randomly generated networks, each trained with
two examples.

Both Simulator and Learned SNNs are assumed to have n(0) = n(1) = 2 input and hidden
nodes and n(2) = 4 output nodes. We show the reconstruction error of the weight
matrices as the duration of exposure increases. As before, the longer the duration of
the exposure, the more spikes the SNN can generate at the output.
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6.5 Conclusion

We have developed a method that learns the weights of SNNs in a layer-by-layer approach,
leveraging the all-or-none and asynchronous nature of the spikes. In fact, these properties of
spikes allow the recovery of weight matrices up to permutations, whereas a similar approach
applied to ANNs, for example, would never allow recovery beyond Hermitian transformations,
making credit assignment a difficult problem. Here, it is easy to assign contributions of nodes
to the desired output, allowing the weights to be learned in a layer-by-layer fashion

It is clear, however, that questions remain to be solved for this approach to be actionable in
reality. These questions motivate different research directions, each of which is worthy of
attention for its own sake. First, our approach currently only deals with the case where the
desired task can be perfectly learned by the given network, in the noiseless case. Second, we
currently assume that we know what output spike stream to associate with input examples,
which is not applicable in every situation. Such a setup can be conceived when training
denoising autoencoders, for example, but it should be clarified how one can translate generic
loss functions to corresponding spike streams that minimize them.

Moreover, while our approach can technically be extended to more layers, we currently require
that the number of spikes at the output of any layer scale as the total number of spikes in the
previous layer, multiplied by the number of nodes in the given layer. As a result, the number
of spikes required scales badly with the number of layers. We hope that this requirement can
be optimized by leveraging the fact that the input to all neurons within a layer have spikes at
the same time (even if these spikes have different weights).

Finally, note that our results assume that the output spike stream of {TEM(1)
i }i is periodic,

which we can enforce in our simulations but is, in reality, more difficult to ensure.

Nonetheless, the results in this chapter provide a stepping stone to train SNNs in a layer-
by-layer way, with no concern about the difficulty of credit assignment or about the cost of
backpropagation.
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Conclusion and Future Work
To conclude this part of the thesis, we would like to emphasize, once more, the importance
of bringing spikes out of their niches.

Spikes provide a power-efficient way to encode information and can provide better sample
efficiency in comparison to clocked and synchronous sampling schemes. This is due to the
timing -based nature of the output, the asynchrony of spikes within a device’s output stream
and therefore across devices, and the all-or-none property of spikes.

Many avenues still exist for the exploration of spike-based sampling and processing; we here
highlight a few of them that would constitute a natural continuation of the work in this
thesis.

Further theoretical results on mixed time encoding

It would prove useful to better understand when one can recover a low rank input with an
unknown factorization from its multi-channel time encoding, and how to perform the recovery.
This would not only complete our analysis of the mixed time encoding scenario we presented
in Chapter 4, but would also allow lower sample-complexity approaches to recording video
with event-based sensors, much as the field of compressed sensing has helped bolster the
field of computational photography.

Moreover, it would help improve the sample-complexity needed to train spiking neural networks.
In fact, results in low rank matrix factorization of time encoded signals would help solve
the joint annihilating filter problem with fewer samples, thus reducing the number of spikes
needed to recover every layer of the network.

Further development of video time encoding to increase sample efficiency

In Chapter 5, we studied how to time encode and recover video which can be represented as
a periodic bandlimited signal. As a means to improve the sample efficiency of the system, we
propose two extensions.
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On one hand, we suggest to better understand time encoding of video with different models:
it is clear that video can be much sparser than a 3D periodic bandlimited signal, thus requiring
a lower spiking rate to ensure recovery.

On the other hand, we suggest to design approaches to adapt the spiking rate of video time
encoding in real time, in order to capture the varying complexity of the scene. Event-based
vision already provides a form of adaptation, as events are triggered by pre-defined criteria,
but one can further refine this adaptation by controlling the parameters of the pixels, such as
the biases and firing thresholds, as the need arises.

More accessible implementations of reconstruction and learning algorithms

Algorithms that perform recovery or learning from time encoding are, still, merely sufficient
to provide proofs of concept of input recovery. In other words, they are successful, but
they are slow and often assume offline data processing. The target is clear: faster online
algorithms that can be implemented with low power. For the last action point, it is necessary
to also develop hardware that implements these algorithms and that is well suited for the
task. Clearly, our classical clocked computers were not designed to process event-based data.
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7 Introduction and Background

7.1 Introduction

We once again wander off the path of classical amplitude sampling, where one records the
amplitude of a signal at uniformly spaced times, to, this time, show how more tailored
approaches can lead to better sampling efficiency.

To start with an example, imagine a friend of yours is going through a rough patch; it is not
too serious but you would like to monitor their state over a few weeks. However, this friend’s
mood fluctuates during the day (e.g. due to hunger or sleepiness) and they conveniently
happen to only give (somewhat random) indications about their mood with “good” or “bad”
labels. You care about this friend, but you are quite busy so your time is limited. Thus, you
would like to maximize the information you get about this friend’s state while spending the
least amount of time possible checking on them.

This part of the thesis studies how to best sample such a friend’s state, except that the
friend is not a friend, but a stochastic process with more abstract but (luckily) well defined
dynamics, a process that occurs in the field of nanoscale magnetic sensing. The overarching
goal is to obtain a good estimate about parameters of the process that are apriori unknown.
Furthermore, it is useful to achieve good estimates in the least amount of time possible, so
we investigate the problem of choosing sampling times such that they maximize information
gain about a parameter, while minimizing total measurement time.

In this context, the title of this thesis—Timing is everything—focuses on the necessity to
perform this sampling at the right point in time, to ensure more efficient sampling processes.
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7.1.1 Nanoscale Magnetic Sensing

We are interested in characterizing a process that occurs in the field of nanoscale Nuclear
Magnetic Resonance, through efficient sampling.

In depth: NMR spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy allows the identification and de-
scription of molecules, by searching for magnetic fields around atomic nuclei. It
uses a strong magnetic field to align nuclei, then perturbs this strong magnetic field
using weak oscillations of different frequencies. The strength of the response to these
oscillations varies and can be recorded to form a spectrogram. Frequencies at which
these responses are strong are called resonant frequencies and help characterize the
sampled molecule.

NMR spectroscopy is the go-to approach for identifying organic compounds. However, it has
limited spatial resolution and cannot detect weak magnetic fields, causing single spins to only
be detected under extreme conditions of temperature and vaccuum (Rugar et al., 2004).

Nanoscale nuclear magnetic resonance (nNMR) is a new approach that arose in the last
fifteen years, and that can measure fewer spins with higher spatial resolution, allowing for
higher precision in molecular structure recovery while operating at room temperature (Maze
et al., 2008; Balasubramanian et al., 2008).

In depth: Nanoscale NMR

Nanoscale Nuclear Magnetic Resonance (nNMR) uses a strong magnetic field to align
nuclei of interest, as in NMR spectroscopy, but the rest of the process is different.
Nanoscale NMR uses nitrogen-vacancy (NV) centers in diamonds: these are point
defects with one unpaired electron which can be coupled to a nucleus of interest. The
electron can be excited using a laser, thus producing a fluorescent response which can
be read out. This fluorescent response yields information about the electron’s own
state but also about the state of the spin(s) to which it is coupled.

In the case of nNMR, one obtains samples from a stochastic process which has well-defined
dynamics, although parameters of interest, mainly the “resonant” frequencies, are unknown.
The samples occur in the form of Bernoulli trials, as probing the electron state gives one
out of two results with varying probabability. Thus, in nNMR, one can no longer recover
the frequencies of interest by looking for a resonant response but requires a more statistical
approach to perform the recovery.

Such a new acquisition technique requires new sampling strategies. With NMR, the technology
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imposed a Fourier-spectrum approach to signal and structure estimation. In the nNMR case,
one no longer obtains spectra, but rather the result of Bernoulli trials as the fluorescence of
the diamond NV center is recorded. As these Bernoulli trials have expectations that vary
with time, an adaptive approach is better suited to sample the system at the correct times.

7.1.2 Our Contribution

We begin this part of the thesis by covering essential topics in statistical inference and signal
processing in Section 7.2. For the remainder of this thesis, the language used will keep a
signal processing flavor, abstracting away the physical phenomenon at hand.

Chapter 8: Single Frequency Recovery

We assume that we are given a random process, with a sample X (t) at time t following
a Bernoulli trial with time-varying mean. This mean varies as an amplitude-shifted and
time-decaying cosine with an unknown frequency of interest.

We formulate the problem of the recovery of this frequency from samples, and explain how to
go about this recovery assuming arbitrary sampling times. We then present the task at hand—
maximizing recovery accuracy, while minimizing measurement time. We quantify the Fisher
information obtained from sampling at any time and develop an adaptive sampling approach
that maximizes the gained Fisher information while minimizing the total measurement time.
Finally, we compare our approach to other non-adaptive approaches in simulations.

Chapter 9: Multi Frequency Recovery

As before, we are given a random process, with each sample following a Bernoulli trial with
time-varying mean. This time, the mean varies as an amplitude-shifted and time-decaying
product of multiple cosines of different frequencies, where we are interested in recovering
these apriori unknown frequencies.

We define the Fisher information about the unknowns in different forms and consider the
case of recovering the frequencies of two cosines which multiply, resulting in a slow and fast
oscillations that manifest in the process. We define an estimate of added information gained
from sampling at any time t , and develop a tailored adaptive approach to choosing sample
times. Finally we again compare the performance of our adaptive sampling scheme to that of
a uniform and an exponential scheme.
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7.2 Background

7.2.1 Statistical View on Parameter Information from Samples

Let’s start by understanding how to quantify the information one obtains about an unknown
parameter, by sampling a random variable or process.

First we denote P[A ] to be the probability that an event A occurs. Now let X be a discrete
random variable, for which we define the probability mass function.

Probability mass function

Definition 7.1.
The Probability Mass Function (PMF) p(x) of a discrete random variable X specifies
the probability that X take the value x:

p(x) :=P [X = x] . (7.1)

Further assume that X has a probability mass function p(x;θ) which is parametrized by θ, an
unknown parameter which we would like to estimate. We only observe X and our estimate of
θ depends on our observation of X . The Fisher information Iθ with respect to the parameter
θ is then defined as the variance of the partial derivative of the natural logarithm of the PMF
p(x;θ), with respect to the parameter θ, as detailed below.

Fisher information

Definition 7.2. The Fisher information that a random variable X holds about an
unknown scalar parameter θ is defined to be the variance of the score of the PMF
p(x;θ):

Iθ = E
[(

∂

∂θ
log p(x;θ)

)2 ∣∣∣∣θ]
. (7.2)

If log p(x;θ) is twice differentiable, the Fisher information can also be written

Iθ =−E
[
∂2

∂θ2 log p(x;θ)

∣∣∣∣θ]
. (7.3)

The above definition of the Fisher information applies when one wishes to estimate a
scalar parameter θ. In the case where one wishes to estimate a vector of N parameters
θ = [θ1,θ2, · · · ,θN ]T , the Fisher information is an N ×N matrix with the entry in the i th row
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and j th column defined as:

[Iθ]i , j := E
[(

∂

∂θi
log p(x;θ)

)(
∂

∂θ j
log p(x;θ)

) ∣∣∣∣θ]
, (7.4)

or, if p(X ;θ) is twice differentiable,

[Iθ]i , j =−E
[

∂2

∂θi∂θ j
log p(x;θ)

∣∣∣∣θ]
. (7.5)

Further note that the Fisher information obtained from a collection of samples is simply the
sum of the Fisher information obtained from each sample.

The Fisher information gives an idea about the maximal amount of information one can
gain about a parameter. Its inverse provides a lower bound on the variance of any unbiased
estimate one makes of this parameter.

Unbiased estimator

Definition 7.3. An unbiased estimator θ̂ of a parameter θ is an estimator which has
its expectation equal to the true, unknown parameter θ:

E
[
θ̂
]= θ. (7.6)

In cruder, less precise english than the original result, we can now present the Cramér-Rao
bound.

The Cramér-Rao bound (Cramér, 2016; Ibragimov and Has’ Minskii, 2013)

Theorem 7.1. Let X be a random variable with a probability mass function p(x;θ)

which is parametrized by θ, an unknown parameter. Any unbiased estimate θ̂ of θ
based on an observation of X will have a variance which is lower bounded by the
inverse of the Fisher information:

Var(θ̂) ≥I−1
θ . (7.7)

The result also generalizes to PMFs with parameter vectors θ = [θ1,θ2, · · · ,θN ]T , in
which case

Covθ(θ̂) ≥I−1
θ .(7.8)

If an unbiased estimator meets this lower bound with equality, the estimator is called the
minimum-variance unbiased estimator (MVUE). Such an MVUE does not always exist, but
it is well defined for certain distributions. For example, when searching for the mean of a
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Gaussian distribution, the MVUE is simply the average of the sample values.

7.2.2 Signal-Processing View on Parameter Uniqueness from Samples

We further require, for this part of the thesis, some basics on sampling a time-varying signal.
Below, we present the sampling theorem, a canonical result in the field of signal processing.

Sampling theorem (Shannon, 1949)

Theorem 7.2. If a function y(t ) is bandlimited such that its Fourier transform Y ( f )

is zero for frequencies | f | > B H z, this function is completely determined by its samples
if these samples are spaced 1/(2B) seconds apart.

Recovering the frequency of a single cosine

In the next sections, we will more specifically need to understand how to sample and recover
signals that relate to the following signal y(t )

y(t ) = cos(2π f t ), (7.9)

where the oscillation frequency f ∈ [A,B) is unknown and where we assume that we can take
noiseless samples.

Such a signal can actually be recovered from a single (noiseless) sample, provided the timing
of the sample occurs at an appropriate time.

Nyquist sampling time

Definition 7.4. Assume we wish to recover a frequency f ∈ [A,B) from a signal
defined as in (7.9). Then we call TNyquist = 1/(2(B − A)) the Nyquist sampling time.

Frequency recovery from one sample

Lemma 7.1. If a signal of the form presented in (7.9) has an unknown frequency
lying in [A,B), and one noiseless sample is taken at a time t < TNyquist = 1/(2(B − A)),
the frequency of the cosine can be recovered perfectly. If the same cosine is sampled
once at a time t > 1/(2(B − A)), the frequency of the cosine cannot be recovered
uniquely.

Proof. Assume a signal y(t ) = cos(2π f t ) is sampled at time t0 has value c0. The frequency
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f is know to lie in [A,B) and satisfies the following:

cos(2π f t0) = c0

f = 1

2πt0
(±arccos(c0)+2kπ)

f = ±arccos(c0)

2πt0
+ k

t0
. (7.10)

If the sample time is assumed to be smaller than the Nyquist sampling time TNyquist =
1/(2(B − A) , the different solutions for f will k/t0 ≥ 2(B−A) apart. Given that f ∈ [A,B), there
is only one solution for f which satisfies the constraints. Otherwise, if the sample time t0 is
larger than TNyquist, there can be at least two solutions for f . In the case where t0 ≤ 1/(B − A),
these solutions are f̂ = arccos(c0)/(2πt0)+k/t0 and f̂ = −arccos(c0)/(2πt0)+ (k +1)/t0 for
k = dAt0 −arccos(c0)/(2π)e. Note that these solutions are sometimes equal if arccos(c0) is an
integer multiple of π. In cases where t0 > 1/(B − A), multiple solutions arise because k can
take different values.

We provide two examples to illustrate the above results.

Sub-Nyquist sampling time

Example 7.1.

0.0 0.1 0.2 0.3 0.4 0.5
Time(s)

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

f(
t)

signal
recovery

Figure 7.1 – The original cosine is plotted in blue and is assumed to have a fre-
quency ∈ [0Hz,10Hz), i.e. the Nyquist spacing is TNyquist = 0.05. It is sampled at
t0 = 0.04, indicated by the dashed green vertical line. There is only one possible cosine
frequency which fits this measurement and we show the corresponding signal in dashed
red.
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We consider the case of a cosine with unknown frequency and which is sampled once,
at a time which is smaller than the Nyquist rate. In this case, the cosine frequency
can be recovered perfectly.

Above-Nyquist sampling time

Example 7.2. We consider the case of a cosine with unknown frequency f ∈
[AHz,BHz) and which is sampled once, at a time which is larger than the Nyquist
rate. In this scenario, the cosine frequency cannot be uniquely recovered.

0.0 0.1 0.2 0.3 0.4 0.5
Time(s)

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

f(
t)

signal
recovery

Figure 7.2 – The original cosine is plotted in blue and is assumed to have a fre-
quency ∈ [0Hz,10Hz), i.e. TNyquist = 0.05. It is sampled at t0 = 0.2 > TNyquist, indicated
by the dashed green vertical line. There are three possible cosine frequencies which fit
this measurement and we show the corresponding signals in dashed red.

7.2.3 Sampling Schemes

Finally, we also define two sampling schemes: The uniform sampling scheme and the
exponential sampling scheme.
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Uniform sampling scheme

Definition 7.5. A uniform sampling scheme with sampling step ∆t samples a signal
y(t ) once at each time tn which are uniformly spaced from one another:

tn = n∆t , (7.11)

where n indexes the measurements.

The uniform sampling scheme is a very classical and well-understood approach to sampling.
The advantage of using it include the simplicity of the scheme as well the rich theoretical
result which guarantee reconstruction from sampling under certain conditions (such as the
sampling theorem in Theorem 7.2).

Exponential sampling scheme

Definition 7.6. An exponential sampling scheme with parameters τ0, K , MK and F

samples a signal y(t ) at times tk such that:

tk = τ02k , (7.12)

and where y(t ) is sampled M(K ,k) times at each tk , where

M(K ,k) = MK +F (K −k). (7.13)

The exponential sampling scheme has many tunable parameters, but allows one to reach
samples at higher times more quickly, allowing for increased recovery precision in some
scenarios. For example, in the case of a signal y(t ) = at with an unknown a and with additive
noise e(t) ∼N

(
0,σ2) of variance that is independent of the sampling time, sampling at a

later point in time allows for a more precise recovery of a.
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8 Nanoscale Magnetic Sensing: Single
Frequency Estimation

8.1 Introduction

Consider the case where the spin of an electron in a Nitrogen Vacancy center in a diamond
is coupled to a single nuclear spin, leading to the Bernoulli distribution of the electron’s
fluorescene to be dictated by a single unknown variable: the frequency behind its oscillation.
We would like to be able to recover this variable as accurately as possible, while requiring the
least amount of sampling time possible.

Standard approaches to recovering such a frequency include simple sampling schemes such
as the well-understood uniform sampling scheme or the exponential sampling scheme which
allows for better frequency resolution (Waldherr et al., 2012).

However, as we will see, the problem is well defined, placing the development of a more
tailored approach within reach. The process we deal with showcases oscillations and an
eventual decay, which helps clearly define regions where samples are more “informative”.

In this chapter, we start with a definition of the sampled process. Then, we expose the
goals and constraints we deal with, and clarify how we perform the frequency recovery given
samples at arbitrary times. We then present our adaptive approach to sampling which is
based on the Fisher information which, in this case, varies over time. We conclude the
chapter with simulations to compare the performance of our adaptive sampling scheme to
that of uniform and exponential sampling.

8.2 Problem Formulation

8.2.1 Sampled Process

We assume we can sample a single spin process X (t ), as defined below.

115



Chapter 8. Nanoscale Magnetic Sensing: Single Frequency Estimation

Single spin process

Definition 8.1. A random process X (t ) is a single spin process if it can take values
0 or 1 and which has a time-varying probability mass function (PMF) pX (t )(x), and
where we denote p(t ) = pX (t )(1) with p(t ) taking the following form:

p(t ) =P [X (t ) = 1] = 1

2

(
1+cos(2π f t )exp

(
− t

T2

))
, (8.1)

where we call f the oscillation frequency and T2 the evolution time.

Note that the probability of taking value 1 is a continuous function of time, but the random
variable X (t ) remains a discrete random variable although it can be sampled continuously in
time.

Time-varying Bernoulli probability

Example 8.1.

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

p
(t

)

Figure 8.1 – The probability of a process X (t ) taking value 1 at time t , as described
in (8.1). The signal has an oscillation frequency of f = 100Hz and a time constant of
T2 = 0.1s.

Given that the process which we measure takes value 1 with time-varying probability,
all samples are not created equal. For example, if a sample is taken at a time t0 when
p(t0) = 0.5, the variance of X (t0) takes its maximal possible value, at 0.25. On the
other hand, if a sample is taken at time t when p(t ) = 0.9, the variance is lower, and
is equal 0.09.
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Intuitively, and after observing the graph in Fig. 8.1, one would ideally like to sample X (t ) at
the peaks or troughs of the oscillations, a bit later in time to gain more precision (the sample
at time t = 0 being deterministically equal to 1), but not so late that the effect of the decay
kicks in. We would like to formally characterize this ideal sampling time.

8.2.2 Goal and Constraints

Let us formalize the task we want to achieve by writing it as an optimization problem.

For the rest of this chapter, we are interested in recovering f from samples of X (t ) and wish
to determine the sample times that allow the “best” recovery of f . More specifically, we
denote tn the times at which X (t ) is sampled, and xn the outcomes of the sampling, where
each xn takes as value either 0 or 1. Moreover, we assume that, to take any such sample of
X (tn) the process needs to restart from time t = 0 because of the physical properties of spins
which, once projected onto a state, can no longer evolve afterwards.

Our goal is to minimize the mean-squared error of our estimate of f while observing a limited
total sampling time. More specifically, we would like to choose the tn ’s such that

1. the expected mean-squared error E
[(

f̂ − f
)2

]
is minimized, and

2. the overall sampling time ∑
n tn is limited.

We further assume that the frequency of interest can be written f = fcarrier−δ f where fcarrier

is known and is in the KHz-MHz range and δ f is unknown but assumed to be uniformly
distributed over (0Hz,10Hz]. Moreover, the evolution time is known and is in the range of
tens of milliseconds to seconds.

8.3 Frequency Recovery from Samples

First let us specify how to estimate the parameter f of such a process X (t), when X (t) is
sampled at arbitrary times tn and yields the measurements xn , for n = 1, · · · , N .

We follow a Bayesian approach, and seek to maximize the likelihood (or, equivalently, the log
likelihood) of the samples’ occurrence given the parameter f which we are searching for. In
more mathematical terms, our estimate f̂ of f is the solution to

f̂ =argmax
f

log P
[

X (tn) = xn , ∀n = 1, · · · , N ; f
]

subj. to fcarrier −10 ≤ f < fcarrier.
(8.2)
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In the above, the log likelihood of the samples’ occurrence is equal

log P
[

X (tn) = xn , ∀n = 1, · · · , N ; f
]= log

N∏
n=1

P
[

X (tn) = xn ; f
]

= log
N∏

n=1
p(tn ; f )xn × (1−p(tn ; f ))1−xn

=
N∑

n=1

(
xn log p(tn ; f )+ (1−xn) log(1−p(tn ; f ))

)
(8.3)

Such an estimate of f is called the maximum likelihood estimate (MLE). The MLE is often
an intuitive choice for a solution, and has the benefit of often being the minimum variance
unbiased estimator, which meets the Cramér Rao lower bound. For example, this is the case
of a random variable Y which takes values 0 or 1 with an unknown mean value: the MLE of
the mean value will provide the most accurate (i.e. minimum-variance), unbiased estimate.

8.4 Adaptive Sampling Strategy

The recovery approach we exposed above is agnostic to how one chooses the sampling times
tn .

Clearly, observing Fig. 8.1, all samples do not yield the same amount of information. Here,
we present an adaptive scheme to sample the process at hand in the most “efficient” way,
such that the requirements in Section 8.2.2 are satisfied. In more mathematical terms, our
goal is to solve for the sample times tn in the below optimization problem:

argmin
[tn ]N

n=1

E
(

f̂
(
[tn]N

n=1

)− f
)2

]

subj. to
N∑

n=1
tn ≤ T,

(8.4)

where f̂ ([tn]N
n=1) denotes the maximum likelihood estimate for f given the sample times tn .

8.4.1 Fisher information as a measure of sample utility

As it is difficult to derive the variance of the estimator analytically, we solve a simpler problem.
Rather than minimizing the variance of the estimator, we aim to minimize the lower bound
on the variance, i.e. the Cramér-Rao bound. As mentioned in Theorem 7.1, the Cramér-Rao
bound is the inverse of the Fisher information with respect to the unknown f . Therefore,
rather than minimizing the Cramér-Rao lower bound, we maximize the Fisher information
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obtained from the samples and our optimization problem becomes the following:

argmax
[tn ]N

n=1

If ([tn]N
n=1)

subj. to
∑
n

tn ≤ T.
(8.5)

where If ([tn]N
n=1) is the total Fisher information obtained about f from X (t ) when sampling

at times tn . It is equal to the sum of the Fisher informations obtained from sampling at each
time tn :

If ([tn]N
n=1) =

N∑
n=1

If (tn), (8.6)

where If (t ) is the Fisher information gained from sampling at time t :

If (t ) = 4π2 t 2 sin2(2π f t )

exp(2t/T2)−cos2(2π f t )
. (8.7)

The expression for the Fisher information may not seem inviting, but it essentially comprises
of oscillations with frequencies that depend on f , a quadratic increase and an exponential
decay factor as illustrated in the example below.

Time-varying Fisher information

Example 8.2.

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

0.00

0.01
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0.03

0.04
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I
f

(t
)

Fisher information
Approximation

Figure 8.2 – (In blue) The Fisher information of the process in Fig. 8.1. (In orange)
The estimated envelope as defined in (8.8). The signal has an oscillation frequency of
f = 100Hz and a time constant of T2 = 0.1s.
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We provide an example of the time-varying Fisher information. We plot, in Fig. 8.2,
the Fisher information of a process X (t ) with frequency frequency of f = 100Hz and a
time constant of T2 = 0.1s. Notice how the Fisher information has fine oscillations and
a coarser and smoother increase followed by a decrease, caused by the t 2 term and
the decay with evolution time T2, respectively.

8.4.2 Maximizing the Fisher Information

Clearly, the time-varying Fisher information of the process X (t ) is not convex with respect to
time, as we also see in Fig. 8.2, rendering it difficult to maximize. However, for high enough
frequency, this Fisher information highly resembles an oscillation contained in an envelope
g (t ) of the form:

g (t ) = t 2 exp(−2t/T2). (8.8)

To show this, we overlay the above defined envelope with the plot of the time-varying Fisher
information in Fig. 8.2.

Thus, as the optimization problem in (8.5) is difficult to solve in closed form, we look for an
approximate closed-form solution by applying the following:

1. We replace If (t ) by its envelope g (t ), and would now like to solve

argmax
[tn ]n

∑
n

t 2
n exp(−2tn/T2)

subj. to
∑
n

tn ≤ T.
(8.9)

2. We can also show by contradiction that the above can be maximized by taking
n0 samples at an optimal sample time topt for n0 = bT /toptc and one sample at
tres = T −n0topt. We can therefore relax the problem to find topt such that:

topt = argmax
t

g (t )

t

= argmax
t

t exp(−2t/T2)
(8.10)

The above optimization problem also has the benefit of resembling a measure of Fisher
information per unit of sample time.

The simplified problem in (8.10) can be solved by setting topt = T2/2. Given that this only
solves the simplified problem, and not our target in (8.5) where the objective function exhibits
fast oscillations, we take a sample as close to topt as possible, such that this sample lies at
the peak of an oscillation of the Fisher information.
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At this point, it has probably become clear to the reader that it is actually impossible to
maximize the true Fisher information, as it depends on f , a quantity that is apriori unknown,
and which we would like to estimate. Therefore, we proceed in an adaptive manner, where we
iteratively search for an estimate of f , refine our estimate of the Fisher information, choose
the next sample time such that the estimated Fisher information is maximized, and repeat.

8.4.3 Further Considerations about Aliasing

Given that the ideal sampling point we choose is close to topt = T2/2, this can become
problematic as the evolution time becomes large. In fact, we saw, in Lemma 7.1, that, if a
single sample time is chosen such that it is greater than the Nyquist sampling time TNyquist,
which is here equal to 0.05, the frequency of interest cannot be uniquely recovered.

For this reason, whenever the evolution time T2 is large, we also sample closer to TNyquist to
ensure a better recovery of the frequency, as we explain in more detail in Section 8.5.3.

8.4.4 Our Adaptive Sampling Scheme in a Nutshell

We summarize our adaptive sampling algorithm for further clarity.

Adaptive sampling scheme for single spin processes

Definition 8.2. The adaptive sampling scheme is allotted a total permitted mea-
surement time, assumes an initial estimate for f̂ and iterates through the following
steps.

1. It assumes that a certain fraction of the permitted measurement time can be
used to sample the process X (t ),

2. it chooses the sample times tn such that they maximize the gained Fisher
information given this fraction of the measurement time, according to the latest
estimate of f̂ ,

3. it samples the process and obtains a new estimate f̂ from all the samples it has
obtained so far, and

4. it repeats these steps until the total permitted measurement time is elapsed.

Note that, if aliasing can occur as described in Section 8.4.3, step 2 is modified such
that sample times that are close to the Nyquist sampling time are also chosen.

Notice that the above definition leaves some design choices undetermined. For example, it
is unclear how much measurement time should be allotted at each iteration and how many
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samples should be taken near the Nyquist sampling time, should that be needed. We address
these practical questions in Section 8.5.3.

8.5 Simulations

We wish to evaluate the performance of our method. To this end, we consider different
values for the carrier frequency fcarrier and evolution time T2 and estimate the performance
of our approach assuming different total sampling times.

More practically, we simulate the process with time-varying probability described in (8.1) for
carrier frequencies equal to 104Hz, 105Hz and 106Hz and for evolution times T2 equal to 1s,
100ms, and 10ms.

Then, we simulate three sampling approaches on such a process: our adaptive approach, a
uniform approach and an exponential approach (all further explained later). The recovery of
the frequency once the samples are taken is always performed by iteratively solving for the
maximum likelihood for f , as described in (8.2). Our code is implemented in C++ and uses
the NLOpt to perform iterative optimization (Johnson).

Each sampling approach is tested on 500 processes drawn at random, i.e. the frequency
shift δ f is drawn uniformly from [0Hz,10Hz]. Our plots in Fig. 8.3 present, per sampling
approach, the median squared error of the frequency estimate, as well as the first and fourth
quartiles, plotted against varying total measurement times, on log-log plots. The simulations
implement a sweep over total measurement times. However, as one cannot guarantee that
the total measurement times be used precisely, especially in the case of adaptive sampling,
we use the median of the obtained measurement time, when generating these plots.

Before we discuss the results, we quickly detail our implementations of the three sampling
approaches we use.

8.5.1 Uniform Sampling

We adopt a uniform sampling approach as defined in Definition 7.5, with a sampling step of
∆t = 1µs. Every sample time is used only once, and there is no cap on the allowed timing of
the samples.

Such an approach allows one to use theoretical results on uniform sampling, permitting, for
example, a good understanding of time-frequency resolution tradeoffs.
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8.5.2 Exponential Sampling

We adopt an exponential sampling approach as defined in Definition 7.6 and originally
presented in Waldherr et al. (2012).

In Waldherr et al. (2012), the values of the parameters MK and F are empirically set to
be 36 and 8 respectively. The value of τ0 is also fixed to 20µs, while K varies within the
experiments to evaluate the improvement of the error with increased sampling time.

In our scenario, we fix τ0 = 1µs to match our highest frequency (106Hz) and we always
choose K such that our last sampling time tK is as close to the evolution time as possible.
That means that, for a fixed evolution time, K is also fixed. We do this, because we notice
that the amount of gained information decreases when we surpass the evolution time, as is
illustrated in Fig. 8.2.

Then, we find MK and F by setting a fixed ratio MK /F = 4 between the two and we solve for
the appropriate values of MK and F assuming a maximal sampling time which we would like
to use.

8.5.3 Adaptive Sampling

We follow the definition for the adaptive sampling scheme presented in Definition 8.2 and
provide, here, further specifications about the algorithm’s implementation.

Sample choice

Given an estimate f̂ of the frequency, the next optimal sample time is taken to be close to
T2/2 (the solution to (8.10)), and such that the estimated Fisher information is maximized.
The Fisher information roughly oscillates with a frequency of 2 f̂ and the optimal time is
chosen such that it lies at the latest peak that occurs before T2/2.

If this optimal sample time is lower than the Nyquist sample time TNyquist, it is repeated as
many times as possible, such that the allowed sampling time is not surpassed.

If the optimal sampling time is higher than the Nyquist sample time TNyquist, the total
sampling is divided into sampling at this optimal time and sampling close to TNyquist. The
samples are taken such that the amount of information gathered at the two locations are
roughly the same. More precisely, if a sample at the optimal location yields four times as
much information as a sample near TNyquist, then we sample four times as often near TNyquist,
at a peak of the oscillation in the Fisher information.
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Figure 8.3 – Reconstruction error as a function of total measurement time using the (blue)
adaptive sampling scheme, the (green) exponential scheme and the (orange) uniform sampling
scheme. We plot the median squared reconstruction error using the solid lines, as well as the
first and third quartile using the dashed lines. Different subplots represent results for different
pairs of evolution time T2 and carrier frequency fcarrier as specified by the column and row
labels, at the top and left-hand side of the plots, respectively.

Step size

We experimented with schemes that determine the allotted measurement time for each
iteration of our adaptive scheme, from the total allowed time, for L iterations. Based on the
fact that our estimate f̂ becomes closer to the true value with increasing measurement time,
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we set the alloted measurement time T` for iteration ` to be:

T` = T0`
2, (8.11)

where T0 is chosen such that the total allowed measurement time is used and L takes as value
the minimum of 10 and the total measurement time divided by twice the evolution time.

8.5.4 Results

We provide, in Fig 8.3, the results of the simulations for the three sampling schemes. Notice
how, for all approaches, the mean-squared error of the estimate f̂ decreases with increased
total measurement time, as expected.

Monitoring the green curve across the different plots, i.e. the curve for the adaptive sampling
method, we notice that, in some case, it performs better than the other two sampling methods,
assuming the same total measurement time. In the other cases, for example in the case of a
frequency of 1MHz and an evolution time of 1s, the adaptive method is not worse than the
uniform and classical methods. However, the adaptive scheme seems more consistent across
different operation assumptions than the exponential sampling scheme.

The reader may have further noticed that, when the evolution time is 0.01, the uniform
sampling scheme seems to provide decreasing reconstruction error up to a certain measurement
time, and this decrease slows down past this point. This occurs because the uniform samples
of the process are taken at increasingly large times, eventually surpassing the relatively small
evolution time. Hence, this effect does not occur for larger evolution times, where we did
not simulate total measurement times that are large enough to exhibit this behavior. It also
does not occur for the other two techniques, by design. In the adaptive scheme, we do not
sample beyond the evolution time because this would contradict our maximization of Fisher
information per unit of time. In the exponential scheme, we explicitly avoid sampling beyond
the evolution time as explained in Section 8.5.2.

8.6 Conclusion

We have presented the problem of recovering a frequency from a process with time-varying
probability which oscillates with this frequency and decays over time. We then presented
an adaptive scheme that chooses the best sampling times for this process such that the
mean-squared error of the estimate is minimized, while observing a maximal total sampling
time. This adaptive scheme is based on maximizing the time-varying Fisher information about
the parameter of interest provided by samples at different times and provides, according to
our simulations, a more robust approach to efficiently sampling such processes.

The process we considered assumed that a single frequency governs the oscillation in the
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time-varying probability. In the next chapter, we will consider the case where we would like
to recover multiple frequencies which characterize a process’s dynamics.
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9 NV Sensing: Multi Spin Estimation

9.1 Introduction

We consider the case where the electron spin of an NV center in a diamond is coupled to
multiple nuclear spins. In this case, the electron’s fluorescence follows a Bernoulli distribution
which varies over time and is dictated by multiple unknown variable: the frequencies of
oscillations that multiply. In fact, the mean of the Bernoulli distribution varies as an amplitude-
shifted, time-decaying product of cosines of different frequencies, leading to varying amounts
of information being provided by samples at different times.

Once again, the aim is to recover these frequencies as accurately as possible, while operating
under time constraints.

In this chapter, we start with a definition of the sampled multi-spin process, and show how
it can be interpreted using either sums or products of cosines. Following this definition, we
explain how to recover the frequencies from samples taken at arbitrary times using maximum
likelihood estimation. Then, we derive the Fisher information obtained about each of the
parameters as a function of time. This allows us to study the case of a two-spin system
and devise a sampling approach that takes into account the effect of the frequencies on the
Fisher information of the process. Finally, we compare our approach with the more standard
approaches of uniform and exponential sampling.

9.2 Problem Formulation

In this chapter, we assume that we are dealing with a multi-spin process where a random
variable X (t ) can be sampled at any time t .
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Multi-spin process

Definition 9.1. A random process X (t ) is a multi-spin process if it can take values 0
or 1 with a time-varying probability mass function (PMF) pX (t )(x). We further denote
p(t ) = pX (t )(1) where p(t ) takes the following form:

p(t ) =P [x(t ) = 1] = 1

2N f

(
1+

(
N f∏
`=1

cos(2π( f`)t )

)
exp

(
− t

T2

))
, (9.1)

where N f is the number of oscillation frequencies f` to estimate, and T2 is the evolution
time.

Naturally, the product in the above expression can also be expanded, and the result is an
amplitude-shifted, time-decaying sum of 2N f cosines:

p(t ) = 1

2N f

(
1+

(
1

2N f

2N f∑
m=1

cos
(
2πφm t

))
exp

(
− t

T2

))
(9.2)

(9.3)

where we let φ= [
φ1, · · · ,φNφ

]T be the summed frequencies with Nφ = 2N f and

φm =
N f∑
`=1

(−1)(m mod 2`) f`. (9.4)

Note that there are symmetries in the frequencies φm , leading to a lower effective number of
contributing frequencies of 2N f −1.

As in Chapter 8, our task is to recover the frequencies f` or φm , while assuming, as before,
that the evolution time T2 is in the range of tens of milliseconds to seconds and that each of
the frequencies f` is drawn from a uniform distribution over

[
fcarrier −10, fcarrier

)
.

9.3 Frequency Recovery from Samples

First, we explain how to recover the frequencies f` or φm from samples at arbitrary times tn .
As before, we wish to maximize the likelihood of the samples’ occurrence with respect to the
parameters f` or φm . Thus, we can define f to be the vector of frequencies f` and solve for:

f̂ =argmax
f

log P
[

X (tn) = xn , ∀n = 1, · · · , N ; f
]

subj. to fcarrier −10 ≤ f` < fcarrier, ∀`= 1, · · · , N f .
(9.5)
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Alternately, defining φ to be the vector of frequencies φm , we can solve for:

φ̂ =argmax
φ

log P
[

X (tn) = xn , ∀n = 1, · · · , N ;φ
]

subj. to fcarrier −10 ≤ f`(φ) < fcarrier, ∀`= 1, · · · , N f ,
(9.6)

where f`(φ) is the recovered frequency f` from the frequencies φm, by simple inversion
of (9.4).

9.4 Fisher Information about Frequencies

We would like to find the optimal time to sample the process, such that the variance of the
estimates defined above is minimized while operating under time constraints. Our optimization
problem can therefore be written as

argmin
[tn ]N

n=1

N f∑
`=1

E
(

f̂`
(
[tn]N

n=1

)− f`
)2

]

subj. to
N∑

n=1
tn ≤ T,

(9.7)

if one would like to focus on the recovery of the frequencies f`. Otherwise, one can also
write an optimization problem in terms of the frequencies φm :

argmin
[tn ]N

n=1

2N f −1∑
m=1

E
(
φ̂m

(
[tn]N

n=1

)−φm
)2

]

subj. to
N∑

n=1
tn ≤ T.

(9.8)

Note that we wish to solve for 2N f −1 frequencies rather than 2N f frequencies given the
symmetries we previously mentioned.

As was the case in Chapter 8, deriving and thus minimzing the variance of our estimator
is difficult so we will, for the remainder of the chapter, instead aim to minimize the lower
bound on the variance, as dictated by the Cramér-Rao bound in Theorem 7.1:

argmin
[tn ]N

n=1

2N f −1∑
m=1

1

Iφm ([tn]N
n=1)

subj. to
N∑

n=1
tn ≤ T.

(9.9)

To solve such an optimization problem, one needs the Fisher informations about the frequencies
f` or φm obtained from sampling at time t . In the case where we are interested in the
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frequencies f`,

If`(t ) = 1

p(t )(1−p(t ))

(
∂p(t )

∂ f`

)2

(9.10)

where the derivative of the time-varying probability with respect to frequency f` is

∂p(t )

∂ f`
=−2πt

2N f
sin(2π f`t )

 N f∏
m=1
m 6=`

cos(2π fm t )

exp

(
− t

T2

)
. (9.11)

Similarly, in the case where we are interested in the frequencies φm ,

Iφm (t ) = 1

p(t )(1−p(t ))

(
∂p(t )

∂φm

)2

, (9.12)

where the derivative of the time-varying probability with respect to frequency φm is:

∂p(t )

∂φm
=− 2πt

(2N f )(2N f −1)
sin(2πφm t )exp

(
− t

T2

)
. (9.13)

While these expressions for the Fisher information may seem non-inviting, we will present
approximations thereof in the next section, where we consider the case of a two spin process.

9.5 Two Spin Scenario

We consider the case of sampling a two-spin process. Given that the frequencies φm are
linear combinations of the frequencies f`, and as the number N f of frequencies is even, the
resulting summed oscillations will exhibit a low frequency and a high frequency. In fact, the
probability of the sampled process X (t ) taking value 1 takes the following form:

p(t ) =P [x(t ) = 1] = 1

4

(
1+

(
1

2
cos(2πφfastt )+ 1

2
cos(2πφslowt )

)
exp

(
− t

T2

))
, (9.14)

where φfast = f1 + f2 is the high frequency, leading to a fast oscillation in p(t), and φslow =∣∣ f1 − f2
∣∣ is the low frequency, leading to a slow oscillation.

Time-varying Bernoulli probability for two spins

Example 9.1.
Notice how the two frequencies f1 and f2 result in a slow oscillation which affects
the general shape of the signal in Fig. 9.1 and a fast oscillation which is more clearly
discerned in the inset. Further notice how the evolution time T2 ensures the timely
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decay of the function to a value of 1/2N f = 1/4.
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Figure 9.1 – The probability of the process X (t ) taking value 1 at time t . The signal
has an evolution time of T2 = 0.1s and frequencies f1 = 9.998KHz and f2 = 9.993KHz.

9.5.1 Fisher Information and Approximations

The slow frequency φslow has an effect not only on the probability, but also on the Fisher
information about the parameters obtained from any sample at time t .

Fisher information about f1 and f2

Example 9.2.
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Figure 9.2 – The Fisher information If1 (t ) and If2 (t ) about each of the frequencies f1

and f2 obtained from sampling the same process as in Fig. 9.1 at time t . The process
has an evolution time of T2 = 0.1s and frequencies f1 = 9.998KHz and f2 = 9.993KHz.
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In Fig. 9.2, we examine the Fisher informations If1 (t ) and If2 (t ) about each of the
variables f1 and f2 as defined in (9.10) and (9.11).

As is clear from Fig. 9.2, both the low and high frequencies φslow and φfast have an effect on
the Fisher information about each of the variables f1 and f2. To attempt to isolate these
effects, we now look at the Fisher informations Iφslow (t ) and Iφfast (t ) about the low frequency
φslow and the high frequency φfast, respectively, as defined in (9.12) and (9.13).

Fisher information about φslow and φfast

Example 9.3.
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Figure 9.3 – (In blue) The Fisher information Iφslow (t ) and Iφfast (t ) about each of the
frequencies φslow and φfast obtained from sampling the same process as in Fig. 9.1 at
time t . (In orange), the approximation gslow(t ) (to the left)and gfast(t ) (to the right)
to the time-varying Fisher information as defined in (9.16) and (9.17), respectively.
The process has an evolution time of T2 = 0.1s and frequencies f1 = 9.998KHz and
f2 = 9.993KHz, i.e. φslow = 5Hz and φfast = 19.991KHz.

As we see from Fig.9.3, considering the Fisher information about the low and high frequencies
separately allows disentangling the contribution of the two on the Fisher informations. As
such, for the continuation of this section, we choose to consider the low and high frequencies
φslow and φfast to be our variables of interest.

Similarly to our treatment in Chapter 8, we look for an approximation of the Fisher information
that is easier to analyze than the expression in (9.12).

To do so, we first define p̃(t ) to resemble p(t ), omitting the fast oscillation:

p̃(t ) = 1

4

(
1+ 1

2
cos

(
2πφslowt

)
exp(−t/T2)

)
. (9.15)
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Then we define gslow(t ) to be the approximation of Iφslow (t ), where

gslow(t ) = 1

p̃(t )(1− p̃(t ))
t 2 exp(−2t/T2)sin2 (

2πφslowt
)

, (9.16)

and gfast(t ) to be the approximation of Iφfast (t ), where

gfast(t ) = 1

p̃(t )(1− p̃(t ))
t 2 exp(−2t/T2). (9.17)

We plot gslow(t ) and gfast(t ) alongside Iφslow (t ) and Iφfast (t ) respectively, in Fig. 9.3, and see
how these approximations indeed follow the slower fluctuations of the true Fisher information.

9.5.2 Our Adaptive Approach

We have defined the Fisher information obtained about φslow and φfast from sampling at time
t , and we have examined its shape as a function of the low and high frequency of the process.

As in the single spin case, the unknown frequencies affect the shape of the Fisher information
as a function of time, thus requiring an adaptive approach to sampling, where one alternates
between estimating the frequencies and choosing the ideal sampling times depending on the
Fisher information. In the two-spin case, φslow additionally affects the general shape of the
Fisher information, thus requiring us to slightly change our adaptive sampling scheme.

First, we assume that we wish to place equal weight on the variance of each of the two
frequencies φslow and φfast and thus aim to solve the optimization problem in 9.9, where the
next sampling point is chosen to minimize the overall variance.

Furthermore, when choosing the next sampling location, we wish to account for information
gained in previous sampling steps. More specifically, we note that if a variance is already low
because of previous samples, an extra sample reduces this variance less than if this variance
were originally high. This occurs because new information gained from samples is added
to the original Fisher information, but the variance is lower bounded by the inverse of this
information. Thus, if many samples have already been taken such that they minimize the
variance on, say, φslow, it would be useful to now take samples that reduce the variance on
φfast.

Therefore, for any parameter φm , we call the variance difference ∆Varφm

(
tprev,tn) , where

∆Varφm

(
tprev,tn

)= E[(
φ̂m

(
tprev

)−φm
)2

]
−E

[(
φ̂m

(
tprev + tn

)−φm
)2

]
(9.18)

where φ̂m(t) denotes the estimate of φm using samples at times t , where tprev+tn denotes the
concatenation of tprev and tn, and where the variances are lower bounded by the respective
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Fisher informations:

E
[(
φ̂m

(
tprev + tn

)−φm
)2

]
≥ 1

Iφm (tprev + tn)
= 1

Iφm (tprev)+Iφm (tn)
. (9.19)

Finally, we define an estimate of added information Ĩ (tprev, t ) which is the inverse of the sum
of the variance differences:

Ĩφm (tprev,tn) = 1

∆Varφslow

(
tprev,tn

)+∆Varφfast

(
tprev,tn

) (9.20)

We call this value Ĩφm (tprev,tn) the added information obtained about φm from additionally
sampling at times tn after already having sampled at tprev. Notice that in the case of a single
spin, this added information Ĩf (tprev, t ) is exactly equal to the Fisher information If (tprev, t )

with respect to the single frequency f at time t .

We can now pose a new optimization problem, such that the total added information is
maximized under time constraints:

argmax
[tn ]N

n=1

Ĩ (tprev, [tn]N
n=1)

subj. to
N∑

n=1
tn ≤ T.

(9.21)

where tprev is a set of known previous sampling times.

As before, rather than solving the above constrained optimization problem, we rather aim to
maximize the added information per unit of time:

t = argmax
u

Ĩ (tprev,u)/u. (9.22)

To be fair, in the single spin case, solving this simplified optimization problem, in addition
to a few extra steps, resulted in solving the original problem in (9.21). This is not the case
here, in the multi-spin scenario, but we nonetheless use this simplified problem to devise an
adaptive algorithm.

Adaptive sampling scheme for double spin processes

Definition 9.2. The adaptive sampling scheme is allotted a total permitted mea-
surement time, assumes initial estimates for φ̂slow and φ̂fast and iterates through the
following steps.

1. It assumes that a certain fraction of the permitted measurement time can be
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used to sample the process X (t ).

2. It chooses the sample times tn at at least 2 locations such that they maximize
the normalized, added Fisher information Ĩ (tprev,tn) given this fraction of the
measurement time, according to the latest estimate of φ̂slow and φ̂fast. This is
done by:

(a) maximizing the added fisher info by considering only the slow frequecy,
thus replacing Iφfast(t) and Iφslow(t) by their respective approximations
gfast(t) and gslow(t) to find the general positioning of the optima in the
normalized added Fisher information, and

(b) refining the estimate by now maximizing the true value for Ĩ (tprev, t),
taking into account the fast frequency’s influence on the normalized added
Fisher information by considering the true expressions for Iφfast(t) and
Iφslow(t ).

3. It samples the process and obtains new estimates φ̂slow and φ̂fast from all the
samples it has obtained so far.

4. It repeats these steps until the total permitted measurement time has elapsed.

Note that, if aliasing can occur as described in Section 8.4.3, step 2 is modified such
that an addition sample location that is close to the Nyquist sampling time are also
chosen.

The step size is chosen as described in Section 8.5.3 and the samples are taken at different
times and repeated depending on the normalized, added information at each time.

9.5.3 Simulations

We compare our adaptive sampling approach to uniform and exponential sampling under
different assumptions for the evolution time T2, and assuming the carrier frequency fcarrier

takes a value of 100KHz.

More practically, we simulate the process with time-varying probability described in (9.1) and
with frequencies drawn uniformly at random from

[
fcarrier −10, fcarrier

)
.

Then, we simulate three sampling approaches on such a process: our adaptive approach, a
uniform approach and an exponential approach. Once the samples are obtained, the recovery
of the frequencies is always performed by iteratively solving for the maximum likelihood
estimate of the frequencies φslow and φfast, as described in Section 9.3.
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Figure 9.4 – Reconstruction error as a function of total measurement time using the (blue)
adaptive sampling scheme, the (green) exponential scheme and the (orange) uniform sampling
scheme. We plot the median squared reconstruction error using the solid lines, as well as
the first and third quartile using the dashed lines. The top subplots represent the squared
reconstruction error of the high frequency φfast and the bottom subplots represent the squared
reconstruction error of the low frequency φslow, for different values of evolution time T2 as
specified by the column labels.

Each sampling scheme is tested on 200 processes drawn at random. Our plots in Fig. 9.4
present, per sampling approach, the median squared error of the frequency estimate, as well
as the first and fourth quartiles, plotted against varying total measurement times, on log-log
plots.

We notice that, in some cases of evolution time, our adaptive approach surpasses the other
two approaches in terms of accuracy. When this is not the case, our approach at least does
not perform worse than the others and provides an estimation with consistent performance.
Note for example, in the case of an evolution time of 0.01s, the adaptive approach continues
to decrease as the total measurement time increases, although we see a slower decrease of
the error of the high frequency estimate in the uniform sampling case and a slower decrease
of the error of the low frequency in the exponential sampling case.

9.6 Conclusion

We have formulated the problem of recovering frequencies from Bernoulli trials obtained from
sampling a multi-spin process and have shown how the frequencies of the process influence
the change of Fisher information about the parameters of interest with respect to the sample
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9.6. Conclusion

time.

We specifically considered the two-spin case and developped an adaptive sampling scheme
which iteratively estimates the parameters and chooses the ideal sampling times, which
maximize an estimate of added information. Then, we compared our approach to classical
sampling and exponential sampling in simulations, and found a favorable performance of our
approach compared to the others.
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Conclusion
We have presented the time-varying probability distribution that underlies samples of the
fluorescence of an electron spin which is coupled to nuclear spins of interest and exhibits
frequencies we would like to recover.

We have studied the case where this electron is coupled to one spin and to multiple spins,
leading to one or multiple frequencies to recover, respectively. We have shown how to devise
an optimal sampling strategy in the case of one or two spins, leveraging the fact that the
Fisher information varies with time, depending on the evolution time and on the frequencies
of interest. Then, we compared our technique to other sampling schemes in simulation and
showed that our adaptive technique compares favorably.

Naturally, the optimization problems we pose, both for the recovery of the frequencies and for
the choice of the sample time, become more difficult to solve as the number of frequencies
to recover becomes higher. It is thus important to optimize speed and scalability, and further
work should be invested into providing fast algorithms and implementations for sampling and
recovery.

Another question to address concerns our sampling scheme’s performance (in comparison to
others) as the number of spins increases. With increasing number of frequencies, parameter
uncertainty increases and the computed estimate of the Fisher information becomes less
precise, for the same measurement time, given that the estimate of the Fisher information
depends on the estimated frequencies. In these situations, it would be interesting to see
what the adaptive scheme converges to at the initial phases of estimation, when parameter
uncertainty is still high.

In this part of the thesis, we saw that sampling a process near half of its evolution time tends
to maximize information per unit time, and that it is important to respect a Nyquist rate
dictated by the range of values that the frequencies can take. An adaptive approach currently
compares favorably to other approaches to sampling. Regardless of how well this effect scales
with the number of unknowns, we hope that lessons can be drawn from the results in this
part of the thesis to achieve more efficient sampling.
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