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ABSTRACT

This thesis is devoted to the construction, analysis, and implementation of two types of hierarchical
Markov Chain Monte Carlo (MCMC) methods for the solution of large-scale Bayesian Inverse
Problems (BIP).

The first hierarchical method we present is based on the idea of parallel tempering and is well-
suited for BIP whose underlying posterior measure is multi-modal or concentrates around a
lower-dimensional, non-linear manifold. In particular, we present two generalizations of the
Parallel Tempering algorithm in the context of discrete-time Markov chain Monte Carlo methods
for Bayesian inverse problems. These generalizations use state-dependent swapping rates and are
inspired by the so-called continuous-time Infinite Swapping algorithm presented in Plattner et
al. [J Chem Phys 135(13):134111, 2011]. We present a thorough analysis of the convergence of
our proposed methods and show that they are reversible and geometrically ergodic. Numerical
experiments conducted over an array of BIP show that our proposed algorithms significantly
improve sampling efficiency over competing methodologies.

Our second hierarchical method is based on multi-level MCMC (ML-MCMC) techniques. In this
setting, instead of sampling directly from a sufficiently accurate (and computationally expensive)
posterior measure, one introduces a sequence of accuracy levels for the solution of the underlying
computational model, which induces a hierarchy of posterior measures with increasing accuracy
and cost to sample from. The key point of this algorithm is to construct highly coupled Markov
chains together with the standard Multi-level Monte Carlo argument to obtain a better cost-
tolerance complexity than a single-level MCMC algorithm. We present two types of multi-level
MCMC algorithms which can be thought of as an extension of the ideas presented in Dodwell, et
al. [STAM-ASA ]. Uncertain. Quantif (2015): 1075-1108].

Our first ML-MCMC method extends said ideas to a setting where a wider class of Independent
Metropolis-Hastings (IMH) proposals are considered. We provide a thorough theoretical analysis
and provide sufficient conditions on the proposals and the family of posteriors so that there exists
a unique invariant probability measure for the coupled chains generated by our method, and the
convergence to it is uniformly ergodic. We also generalize the cost-tolerance theorem of Dodwell
et al,, to our setting, and propose a self-tuning continuation-type ML-MCMC algorithm.

Our second ML-MCMC method presents an algorithm that admits state-dependent proposals by
using a maximal coupling approach. This is desirable, from a methodological perspective, whenever
it is difficult to construct suitable IMH proposals, or when the empirical measure resulting from
samples from the posterior at the previous level does not satisfy the assumptions required for
convergence of the ML-MCMC method. We present a theoretical analysis of the method at
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Abstract

hand and show that this new method has an invariant probability measure and converges to it
with geometric ergodicity. We also extend the cost-tolerance theorem of Dodwell et. al. to this
algorithm, albeit with quite restrictive assumptions. We illustrate both of the proposed ML-
MCMC methodologies on several numerical examples.

Keywords: Bayesian inversion - Parallel tempering - Infinite swapping - Markov chain Monte Carlo
- Multi-level Monte Carlo - Multi-level Markov chain Monte Carlo - Uncertainty quantification



RESUME

Cette these est consacrée a la construction, I'analyse et la mise en ceuvre de deux types de méthodes
hiérarchiques Markov Chain Monte Carlo (MCMC) pour la résolution de problemes inverses
bayésiens (BIP) a grande échelle.

La premiere méthode hiérarchique que nous présentons est basée sur I'idée de parallel tempering,
et est bien adaptée pour BIP dont la distribution a-posteriori est multimodale ou se concentre
autour d’une variété non linéaire de dimension inférieure. Nous présentons deux généralisations de
algorithme Parallel Tempering dans le contexte des méthodes de Monte Carlo a chaine de Markov
a temps discret pour les BIPs. Ces généralisations utilisent des taux d'échange dépendant de I¥état et
s'inspirent de l'algorithme Infinite swapping en temps continu présenté par Plattner et al. (J Chem
Phys 135(13):134111, 2011). Nous présentons une analyse approfondie de la convergence de nos
méthodes proposées et montrons qu’elles sont réversibles et géométriquement ergodiques. Nous
implémentons notre méthode proposée sur plusieurs BIPs. Les résultats numériques montrent que
nos méthodes proposées améliorent considérablement l'efficacité de I'échantillonnage par rapport
aux méthodologies concurrentes.

Notre deuxieme méthode hiérarchique est basée sur des techniques MCMC multi-niveaux (ML-
MCMC). Dans ce cadre, au lieu déchantillonner directement a partir d’une mesure postérieure
suffisamment précise (et cofiteuse en calculs), on introduit une séquence de niveaux de précision
pour la solution du modele de calcul sous-jacent, ce qui induit une hiérarchie de mesures posté-
rieures avec une précision et un cotit déchantillonnage croissants. Le point clé de cet algorithme
est de construire des chaines de Markov hautement couplées combinées par la technique standard
de Monte Carlo multi-niveaux standard pour obtenir une meilleure complexité computationnelle
de tolérance aux cotits qu’un algorithme MCMC 4 un seul niveau. Nous présentons deux types
d’algorithmes MCMC multi-niveaux qui peuvent étre considérés comme une extension des idées
présentées dans Dodwell, et al. (STAM-ASA J. Incertain. Quantif (2015) : 1075-108).

Notre premi¢re méthode ML-MCMC étend ces idées a un cadre ot1 une classe plus large de
distributions des propositions de Métropolis-Hastings indépendantes (IMH) est considérée. Nous
fournissons une analyse théorique approfondie et fournissons des conditions suffisantes sur les
destr. des propositions et la famille de distr. a-posteriori pour qu’il existe une mesure de probabilité
invariante unique pour les chaines couplées générées par notre méthode, et que de telles chaines
couplées convergent uniformément ergodiques vers elle. Nous généralisons également le théoreme
de complexité de Dodwell et al., a notre cadre, et proposons un algorithme ML-MCMC de type
continuation a réglage automatique.



Résumé

Notre deuxieme méthode ML-MCMC présente un algorithme qui admet des distr. des proposi-
tions dépendantes de I'état de la chaine en utilisant un algorithme de couplage maximal. Ceci est
souhaitable, d’un point de vue méthodologique, chaque fois qu’il est difficile de construire des
propositions IMH, ou lorsque la mesure empirique résultant des échantillons de la postérieure
au niveau précédent ne satisfait pas les hypotheses requises pour la convergence de la méthode
ML-MCMC. Nous présentons une analyse théorique de la méthode en question et montrons
que cette nouvelle méthode a une mesure de probabilité invariante et la convergence vers elle est
géométriquement ergodique. Nous étendons également le théoreme de complexité Dodwell et. Al
a cet algorithme, mais avec des hypotheses plus restrictives. Nous illustrons les deux méthodologies

ML-MCMC proposées sur plusieurs exemples numériques.

Mots clés : Inversion bayésienne - Parallel tempering - Infinite swapping - Monte Carlo par chaines
de Markov - Monte Carlo multi-niveaux - Monte Carlo par chaines de Markov multi-niveau -

Quantification de I'incertitude
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I INTRODUCTION

Computational simulations, together with the mathematical algorithms that drive them, have
rapidly become a central part of the scientific paradigm over the last several decades. Indeed,
these approaches greatly complement the relationship between theory and experimentation in the
sciences, with such techniques being at the core of the design, prediction, and optimization of a
multitude of processes and phenomena arising in the natural sciences and engineering. Such is
the case of Uncertainty Quantification (UQ), understood to be the field of knowledge tasked with
quantifying and controlling the sources of uncertainty associated to a given natural phenomenon,
an engineering process, an estimation or learning procedure, and which, at its core, relies heavily
upon mathematical, computational and experimental techniques [58, 74, 147, 168]. In the context
of this thesis, we will focus on what is often referred to as znverse UQ, where, given a set of
experimental measurements of a process together with a computational model describing it, one
is tasked with (i) estimating the discrepancy between the measured and simulated data and (ii),
estimating the uncertainty in the unknown parameters that could have generated the data, the
latter of which will be the focus of this thesis. This problem of parameter identification can be
understood in a Bayesian sense, usually referred to as a Bayesian Inverse Problem (BIP). In a rather
informal way (we will present this more precisely in the following), using the symbols u and y to
denote parameters and data, respectively, together with the symbol P[] to denote probability, and
assuming that both © and y are random variables, the solution to a BIP can be understood (in a
broad sense) as the process of obtaining information from the probability distribution P[u given /],
which in light of Bayes theorem (c.f. Theorem 2.2.1 for a rigorous statement of this theorem) can

be written as

Py given u] x P[u]
Ply] ’

where informally, Py given ], quantifies how /zkely it was to obtain the data y for a given u,

Plu given y] =

IP[u] encodes the prior information or knowledge on u before data was observed, and P[y] can be
understood as a term describing the information contained in the data y.

One way of extracting such an information is by sampling from P[u given y|. Although there are
several different approaches to perform this task (c.f. Section 2.3), in this thesis we will focus on
a class of algorithms known as Markov Chain Monte Carlo (MCMC). Modern computational
facilities and recent advances in computational techniques have made the use of MCMC methods
feasible for many Bayesian Inverse Problems. However, for some /arge-scale applications in physics
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or engineering, which often involve differential models, the computational cost associated with a

Bayesian inversion procedure by MCMC, when seen as
Cost = Number of samples x Cost per sample,

can still be prohibitively expensive.

In this thesis, we present, analyze, and implement several novel bhierarchical MCMC techniques
for the acceleration of such large-scale BIPs. In the context of this work, we say that a BIP is a
large-scale problem if either (i) the evaluation of the /ikelibood, denoted by Ply given u], is deemed
to be computationally expensive, and involves large-scale computations, such as the solution of a
non-linear or time-dependent Partial Differential Equation (PDE), approximated on a sufficiently
fine grid, or (ii) those for which the parameter space is high dimensional, such as BIP on random
fields discretized on a fine grid, or more realistically, when both (i) and (ii) hold. By hierarchical
methods we mean the set of techniques that exploit a sequence of approximations of the probability
measure of interest, with given accuracy and which are possibly easier to sample from. This can be
understood in terms of a hierarchy of discretizations of the underlying mathematical model, in the
spirit of Multi-level Monte Catlo [59, 30, 31, 66], or as a hierarchy of so-called temperatures, in the
spirit of parallel tempering [52, 90]. We will be more precise about what we mean by “hierarchies”
in Section 1.3, and present such methods in further detail in upcoming chapters, which are based

upon the following works:

[95] Latz, J., Madrigal-Cianci, J. P., Nobile, F., & Tempone, R. (2021). Generalized parallel
tempering on Bayesian inverse problems. Statistics and Computing, 31(5), 1-26.

[108] Madrigal-Cianci, J. P., Nobile, F., & Tempone, R. (2021). Analysis of a class of Multi-Level
Markov Chain Monte Carlo algorithms based on Independent Metropolis-Hastings. ArXzv
preprint arXiv:2105.02035. (Submitted for publication).

[107] Madrigal-Cianci, J. P., & Nobile, F. (2021). Multi-Level Markov Chain Monte Carlo
algorithms based on maximally-coupled proposals. Iz preparation.

The rest of this introductory chapter is organized as follows. In Section 1.1 we present the uncer-
tainty quantification framework and introduce the notion of inverse problems. We briefly present
the two main paradigms used to solve such problems, namely the frequentist’s (or deterministic)
and the Bayesian approach, and make a case for the need of the latter for the types of applications
that are addressed in this work. We then present two large-scale model BIPs that will be studied
throughout this thesis in Section 1.2 and argue about the necessity of hierarchical methods to tackle
them effectively. In section 1.3 we present a literature review of the state of the art of hierarchical
MCMC methods and discuss the main contributions of this thesis. Lastly, we present the outline
for the rest of the thesis in Section 1.4.
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1.1 UNCERTAINTY QUANTIFICATION AND INVERSE PROBLEMS

Broadly speaking, Uncertainty Quantification (UQ) is the scientific discipline tasked with deter-
mining appropriate uncertainties associated with model-based predictions [58]. In general, these
models are subject to different sources of uncertainty; including, uncertainties in the model inputs
parameters (such as unknown material properties, forcing terms, initial or boundary conditions),
observation error, uncertainties in the mathematical model itself, among others. Being able to
accurately and efliciently quantify these uncertainties is of paramount importance in many fields
of science and engineering.

UQ can be classified into two main approaches: forward and inverse UQ. On the one hand, in
forward UQ one aims at assessing the impact of uncertain input parameters in the model output,
usually taken to be a physical Quantity of Interest (Qol), and understood to be a function of this
uncertain input. To that end, the input parameters u are modeled as random variables with known
distribution ftpr, and one is then interested in quantifying the effects of this forward propagation
of uncertainty for the QoI through the mapping u — Qol(u), u ~ fipr, which typically involves
the solution of a complex differential problem. This is done by estimating statistical properties
of Qol, such as its moments, or the probability of Qol exceeding a given threshold value, usually
written in terms of expectations under jipr. The literature on numerical methods for forward UQ
is vast, see e.g., [58] and the references therein. When u is a high (or even infinite) dimensional
parameter, arguably the most straightforward approach to solving this type of problem is the
Monte Carlo method [3], where these expectations over jip, are approximated by first sampling N
independently and identically distributed (iid) realizations of u, and then estimating the effects of
the forward propagation of uncertainty u — Qol (u) with the usual Monte Carlo average over
these NV realizations. Monte Carlo methods have been in active development for the last several
decades. Of particular relevance to the work outlined in this thesis are Multi-level Monte Carlo
methods [31, 59, 69, 118], a set of variance reduction techniques [3] which can greatly reduce the
computational cost associated with plain Monte Carlo by introducing a hierarchy of discretization
levels of the underlying differential mathematical model with increasing accuracy and cost, and
performing most simulations with low accuracy (and hence cost), with relatively few simulations
being performed with the highly accurate, computationally expensive model, in such a way that
the final accuracy of the estimator is equivalent to that of using plain Monte Carlo at the finest
discretization level, albeit with an overall much lower complexity.

On the other hand, in Inverse UQ [85, 158], one s instead interested in characterizing and reducing
the uncertainty on the input parameters of the model, based on some available, noise-polluted,
experimental data, assumed to have been obtained from the underlying physical process (c.f. Figure
1.1). We now proceed to formalize this idea. Let (X, ||-||x) and (Y, [|-||y) be two separable Banach
spaces with associated Borel o-algebra B(X), B(Y). We will refer to X as the parameter space and
to Y as the data space, and define the forward mapping operator F : X — Y as a mapping between
these two spaces. Broadly speaking, given some recorded, potentially noise-polluted datay € Y,
the goal of an inverse problem is to characterize (we will be more precise about what we mean by
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Find
w = argmin loss(u: )

Figure 1.1: Depiction of forward and inverse problems.

this statement shortly after) the set of unknown, possibly infinite-dimensional parameters u € X
that could have generated the data y, where the relationship between y and w is given by

Yy = f(u) + 1, M~ bnoise;

with 77 € Y some additive noise with known distribution fineise on (Y, B(Y)). In our context, the
forward mapping operator F is to be understood as a mathematical model of the physical process
that generated the data y, which is based on possibly non-linear and/or time-dependent PDEs.
Characterizing these input uncertainties can be achieved by two main paradigms, a frequentist’s
(also called deterministic or classical) approach [158] or a Bayesian approach [156], the latter of
which will be the focus of this work. We present a brief overview of these methods in the following
paragraphs, and a more thorough review of the Bayesian approach to inverse problems in the
following Chapter.

We begin with a brief description of the frequentist’s approach. For simplicity, suppose y =
(y1,92, -, yam) € RM . In the context of this work we will assume that ¥ is generated by a single
realization of the underlying physical phenomena, which is observed at M different points in space
or time, with {yi}ﬁl, corresponding to the set of observed values. In addition, consider a loss
function loss : Y x X — R, measuring, in some sense, the misfit between the recorded data y
and F(u) for some given w. This loss function can be, e.g.,

1. (squared error ) loss(y, u) = %le\il lys — [F(u)]s|?

2. (absolute error) loss(y, u) = Zf\il lys — [F(w)]i]-
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where [F (u)]; corresponds to the component of F(u) associated to the 7™ measurement ;. Let
u* € Xbe the solution to the following optimization problem:

find u* € Xthat minimizes Jo(u) (1.1)

Jo(u) :=loss(y,u) + %reg(u), a>0,

where the second term in (1.1), reg : X — R is known as a the regularization term and it is
usually included to improve the regularity and enforce well-posedness of the inverse problem (1.1)
[85, 158]. A common choice for regularization parameter is the so-called Tykhonov regularization

[158] given by
reg(u) := [Ju —uolly, uo €X,

for some carefully chosen ug € X. Loosely speaking, this choice of regularization penalizes values
of u that are far (in the X-norm) from ug. The frequentist’s approach to inverse UQ consists in first
solving Problem (1.1), usually obtained using numerical optimization algorithms, see [119], and
then using arguments and assumptions on y, 17, F, and u™, proper of frequentist statistics (such
as large amounts of data, normality and independence of the components of 7, etc) to construct
(I —a)%,a € (0,1), confidence intervals [26, 155]. Furthermore, one can also use the parametric
bootstrap method [6, 117] in order to do uncertainty quantification with this approach. Such a
technique is a Monte Carlo method that estimates parameter uncertainty by repeatedly resampling
observations and computing corresponding parameter estimates. This is achieved by repeatedly

solving the (randomized) minimization problem
u" = argmin loss(y + 7", u) + greg(u), "~ fnoise, = 1,2,...,
ueX 2

which in some special cases can leads to samples {u", n = 1,2, ...} from the posterior distribu-
tion arising from the Bayesian approach (see, e.g., [6] for a precise statement).
There are, however, certain drawbacks associated to this method:

1. Although the use of a regularization aims at guaranteeing the existence and uniqueness of
solutions to the problem (1.1) (see, e.g., [158]), the cost functional J,, (1) could still suffer
from multiple local minima, and as such, the numerical optimization techniques used to
minimize J,(u) could potentially converge to a sub-optimal solution.

2. In general, the sample distribution of u obtained using the parametric bootstrap approach
is not the posterior distribution induced by the Bayesian approach (c.f. next paragraph and

Q)2

On the Bayesian paradigm, we model u, 77 and y as random variables, and aim at obtaining the
probability distribution of u conditioned on y. For the sake of exposition, we briefly present
such an approach in rather general terms in the following, and will present a detailed overview
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of it in Chapter 2. In the Bayesian paradigm, one assumes that u follows a prior distribution
fpr encoding the information available on u before any data is observed. Notice that this is a
natural way of including expert information about u on the inversion procedure. Under the
assumptions (i) u ~ fipr before any data is observed, (ii) 17 and u are independent random variables,
and (iif), fnoise (+) 20d fenoise (- — F () (i.e., the measure finoise translated by F(u)) have a density
finoise : X — R with respect to some dominating probability measure, one then has that y|u

has the same distribution as finise (- — F(@)), which allows us to define the pozential function
D(u;y) : X x Y= Ras

<I>(u, y) = - 10g [ﬁnoise(y - .F(U))] )

where the function ®(u; y) is a measure of the misfit between the recorded data y and the predicted
value F(u), and often depends on ||y — F(u)||y. Applying Bayes’ theorem [94, 156], one can
then pose the solution to the BIP as approximating the posterior probability measure pi¥ given in
terms of its Radon-Nikodym derivative with respect to the prior by

du? L 0wy / ~0(uiy)
w)=—e Y Z = [ e WY o (du). 1.2
=y [0 (du) (12

Once such a posterior probability measure has been suitably approximated, one can compute
expectations of a given 11Y-integrable quantity of interest Qol : X — R, i.e.,

E,v [Qol] :/XQol(u),uy(du).

Furthermore, one could, e.g., estimate moments of u (provided they exists), visualize its distribu-
tion, etc. This is in stark contrast to the deterministic paradigm, in the sense that the Bayesian

approach provides a larger amount of information about u.

Remark 1.1.1 (On the drawbacks of the Bayesian approach):  There are, of course, some
drawbacks associates to the Bayesian approach. We identify two of them in the following:

1. As we shall discuss shortly after (and throught this thesis), one way of approximating |19 is
by sampling from it, using, e.g., MCMC methods. This will lead, in general, to repeated
evaluations of the forward mapping F, which will in turn result in an overall more expensive

inversion procedure.

2. The Bayesian formulation is heavily-dependent on the choice of prior, which is, in turn, subjec-
tive. Choosing an appropriate prior is delicate, as a completely misspecified prior will in turn
lead to erroneous results. Furthermore, the construction of credible regions rely upon the choice
of prior; thus, a poorly chosen prior might compromise the interpretability of the results.

As previously mentioned, the approximation of ;¥ is usually done by sampling from it. We
will present a detailed survey of commonly-used methods to generate samples (approximately)
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distributed according to ;¥ in Chapters 2 and 3. Perhaps the most powerful and robust tools for
this task are MCMC methods, where one generates samples that are (asymptotically) distributed
according to 1Y by creating a Markov chain having ;¥ as its invariant probability measure. The one
drawback of these methods is that, in general, they require a large number of samples to converge.
Furthermore, MCMC methods usually require an evaluation of the forward mathematical model
for each sample. Thus, for those BIP for which the underlying forward mapping operator F is
already costly to evaluate, as those considered in this work, MCMC methods can rapidly become
prohibitively expensive. In the next section, we present two large-scale model problems that will
be studied throughout this thesis.

1.2 MODEL PROBLEMS IN GEOPHYSICS

1.2.1 SUBSURFACE FLOW

Our first model problem is the inversion of parameters arising in a steady-state subsurface flow
model. In this case, we are interested in characterizing the geophysical properties of an aquifer,
given some noise-polluted measurements of the hydraulic head p throughout the domain. More
formally, given a physical domain D C R?, d = 1,2,3, with boundary 0D = I'y U T'p,
InNTp =0, the hydraulic head p of the aquifer follows Darcy’s subsurface flow equation given
by

=V (k(z,u)Vp(z,u)) = f(z,u), =€ D, ueX,
p(z,u) = Gp(r,u), z€Tp, ueX, (1.3)
8np($au):GN(337U)7 LUEFN, UGX,

with u representing the possible sources of uncertainty. Here, k(x, u) represents the random
permeability field in the aquifer (typically modeled as a log-normal random field), f(x, u) repre-
sents a potentially unknown source term, and Gy (z, u), Gp(z, u) represent the (also potentially
unknown) Neumann and Dirichlet boundary conditions of the model, respectively. Thus, given
some noise polluted measurements of p(z, ) at given locations in D, one aims at characterizing
one or more of K(z, u), f(z,u), Gn(z,u) or Gp(x, w). In this case, the mapping u — F(u)
can be understood as the solution of (1.3), observed at the location of the measurements. This
is a common inverse problem in the management and risk analysis of radioactive waste material
[81, 156, 157] and oil reservoir exploration [16, 121, 156].

1.2.2 SEISMIC INVERSION

A second example of a large-scale BIP is that of seismic inversion. In this case, given a set of
recordings of the the clisplacement1 of a seismic wave at different points in space and instants

1 . .. . . .
In practice, other measurable quantities can be considered as well, such as wave velocity or acceleration, see e.g., [1].



1 Introduction

in time, one aims at characterizing (i) the physical properties of the earthquake, such as source
location or moment tensor and/or (ii) the physical properties of the medium, such as its material
densities or Lamé parameters. More precisely, consider once again a physical domain D C R?,
d = 2,3 and a time interval = [0,7], 7 > 0. We will model the wave propagation of an
earthquake using either an elastic or an acoustic wave equation. For the first case, the forward
model of the wave phenomena reads as find a displacement field w : I x D x X — R% such that:

{p(x,u)wtt(t,x,u) -V -o(z,u,w) = fa(t,z,u), inlx D xX, (14)

w(0,z,u) = g1a(z,u), w(0,2,u) = gaa(z,u), on{t=0}xD xX,
where
o(z,u,w) = XNz, u)V - wl + m(z,u)(Vw + (Vw)T),

together with suitable boundary conditions. Here, p(x, u), represents the density of the material,
A(x,u), m(x, u) represent the Lamé parameters, and g; o (, u), i = 1, 2, are the initial condi-
tions. In the case where one considers the earthquake to be a point source (i.c., an explosion), the
forcing term takes the form [1]

fa(t,z,u) = —=M(u) - V(x — us)S(t, us), (1.5)

where § denotes the Dirac mass, M (u) € R4 represents the moment tensor of the earthquake,
R? 5 ug C u represents the spatial location of the source and S(-,u) : I — R represents the
time component of the forcing term (usually a Gaussian or Rickert wavelet parametrized by u)[1].
In practical computations, often a regularized version of (1.5) is considered, obtained by replacing
§(z — us) by e.g., (Ja|v/T) "L exp(—(||z — usl|y /a)?), for some |a| < 1.

Alternatively, for the case where one models the forward wave propagation using an acoustic wave,
we have that the forward model reads find the acoustic pressurew : I x D x X — R such that

p(ZE, u)wtt(ta L, u) -V (B(Ia u)vw(ta x, u)) = fac(ta L, u)v inI xDxX
w(0, 2, u) = gy (), wi(0,2,) = go( ) on {t = 0} x D x X,
together with suitable boundary conditions. Once again p(z, u) represents the density of the

medium and 3(z, u) is related to the acoustic wave velocity ¢(x, ) in the medium by 5(z, u) =
c2(z,u)p(z, u). Furthermore, in this case, we model f;. as

fac(t,z,u) = 6(x — ug)S(t,u),

or a regularized version of it. In either case, given some measurements of the wavefield at different
points in time and space, we aim at obtaining the material properties (e.g., p, 5, A, m), assuming

the source is known (which is known in the literature as seismic imaging), or, alternatively, we aim at
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recovering the source location u, and other parameters related to the source term, with an additional
potential uncertainty in the material properties of the medium (known as seismic source inversion).
For this problem the mapping u — F(u) can be understood as the displacement of the wavefield,
observed at several points in the physical domain, at different moments in time. Seismic inversion
(whether seismic imaging or source inversion) is of great importance to the seismology community
and it is an active field of research (see e.g., [23, 75, 170, 162]). However, the computational cost
associated with the evaluation of the forward computational model, together with possible multi-
modalities arising in the associated posterior, motivates the development of efficient inversion
techniques.

1.3 LITERATURE REVIEW AND CONTRIBUTIONS OF THIS THESIS

The overall aim of this thesis is to present, analyze, and implement hierarchical Markov chain
Monte Carlo methods for accelerating large-scale Bayesian inverse problems, with a particular focus
on BIPs arising in geophysics, such as those presented in Section 1.2. In this section, we introduce
two types of hierarchical MCMC methods that are central to our work, we present a literature
review of these methods, and state the main contributions of this thesis. Such contributions will
be the subject of Chapters 4-6.

For most problems of interest, involving complex PDE models, it is often the case that one can
not solve the underlying mathematical model (and hence, evaluate F) exactly, and as such its
solution needs to be approximated using numerical methods, such as finite elements (FE) or finite
differences (FD). We denote by F| the numerical approximation of the forward map at an accuracy
level L. Notice that this induces a discretized potential ®| (u;y), which in turn induces a discretized

POSI@VZb}" Wl€d.f%}"€2

bt () = - exp (B (u3) o)

Under reasonable conditions (see [156]), one has that (in a suitable sense) ,u,f — pYasl —
oo. Given (i) the potentially multi-scale effects of the material properties (in both Problems
1.2.1 and 1.2.2) and (ii) computational restrictions on the forward model, such as the Courant-
Friedrichs-Lewy (CFL) condition for Problem 1.2.2 (see e.g., [135]), the forward model F| must
be approximated using a sufficiently fine grid, together with a sufficiently small time-step for the
time-discretization. This in turn makes the computation of either forward problem extremely
expensive, specially in the case where d = 3. Although this computational cost can be reduced
by, e.g., using domain decomposition and other advanced techniques for the PDE solver, the cost
associated to an evaluation of the forward model can still be quite large. In addition, posterior
exploration via MCMC methods, requires, in general, a large number of samples in order to obtain
meaningful and accurate results. Furthermore, when targeting posterior probability measures
that are multi-modal or that concentrate around a lower dimensional non-linear manifold, as it is

2by dscretized posterior we reffer to a posterior measure associated to a discretized forward model, and this should not
be confused with a posterior measure on a discrete state space



1 Introduction

often the case for seismic inversion, the MCMC algorithm will typically require a larger number
of samples, thus further increasing the computational cost associated to the Bayesian inversion.
One way of overcoming these issues is with the use of hierarchical models on the posterior measure.
Given an ordered set 7 = [1,2,...,J], J € N, let {M?, J € J}, be a family of approximations
to ¥ with the following properties:

Ly =pf,and 1 — p¥as J — oc.

2. Forany j € J, sampling from ué’ is either easier (in some sense) or cheaper than sampling
y
from g i1

By exploiting properties 1 and 2, one can create novel sampling algorithms that can drastically
reduce the cost associated to BIP. In particular, we will present algorithms based on hierarchies of
temperatures (c.f. Chapter 4 ) and discretizations (c.f. Chapters 5-6).

1.3.1 TEMPERING
TEMPERING METHODS: LITERATURE REVIEW

In the Tempering case, we construct the hierarchy of models by introducing an increasing sequence
of temperatures 1 = T7 < Ty < --- < T; < o0, which induces the following sequence of
posterior probability measures:

1

Yy _
pi (du) = 643(—
i Z;

DL (u;y)

(du), §=0,...,J—1,
e IO

with the convention thatif Ty = 0o, ¥ (du) = ppr(du). This hierarchy is specially useful in

cases where the posterior measure ¥ is multi-modal or concentrates around a non-linear, lower-
Y

dimensional manifold. Indeed, the temperature term acts as an “inflation” parameter on :%sr (u),
which in turn makes the posterior N? easier to explore using traditional MCMC algorithms.
This is depicted in Figure 1.2, where the un-normalized density of a target posterior ¥ = 1§
is shown together with two of its tempered, un-normalized counterparts £, 1Y. As it can be
seen, /13 is strongly concentrated around two well-separated peaks, while the peaks yf), pf present
a larger overlap. A consequence of this, is that localized MCMC algorithms, such as Random
Walk Metropolis (RWM) or Preconditioned Crank-Nicolson (pCN) (c.f. chapter 3) can “explore”
e, iy faster than i, since jumping from one mode to the other using localized proposals (i.e.,
very small steps in comparison to the separation of the peaks) is, in practice, quite unlikely for ,ug,
but much more likely for 11§, p15.

Once this hierarchy has been introduced, the idea is then to sample from the joint posterior
p1 X -+ X g on the extended space (X x -+ x X, B(X x --- x X)) using a joint Markov
transition kernel (c.f. Definition 3.1.2 and Equation (5.3)) to advance each “component” of the

joint chain, together with a swapping kernel, which mixes the components between chains, thus

10
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Tempered, unnormalized densities

I

1t A= Z2- iy

— 7y -1

0.75 |- | Zo - 1
0.5 :
0.25 |- } 2

L\ )\

-5 —2.5 0 2.5 5

Figure 1.2: Depiction of an un-normalized posterior density of interest, ¥ = p, together with 2 un-
normalized tempered versions 41, pf.

providing an opportunity for each individual chain to better explore the parameter space. This
hierarchical approach is done in the spirit of parallel tempering [52, 90, 114, 171].

In recent years, there has been an active development of computational techniques and algorithms
to overcome the issues associated with sampling multi-modal measures, or those that concentrate
around a non-linear, lower-dimensional manifold using several tempering strategies [42, 52, 96,
114, 167]. Of particular importance for the work presented here is the Parallel Tempering (PT)
algorithm [52, 90, 114] (also known as replica exchange), which finds its origins in the physics and
molecular dynamics community. The general idea behind such methods is to simultaneously run
J independent MCMC chains, where each chain is invariant with respect to a flattened (referred
to as tempered) version of the posterior of interest 1Y, while, at the same time, proposing to swap
states between any two chains every so often. Such a swap is then accepted using the standard
Metropolis-Hastings (MH) acceptance-rejection rule. Intuitively, chains with a larger smoothing
parameter (referred to as temperature) will be able to better explore the parameter space. Thus,
by proposing to exchange states between chains that target posteriors at different temperatures,
it is possible for the chain of interest (i.e., the one targeting 1¥) to mix faster, and to avoid the
undesirable behavior of some MCMC samplers of getting “stuck” in a mode. Moreover, the fact
that such an exchange of states is accepted with the typical MH acceptance-rejection rule, will
guarantee that the chain targeting 1/ remains invariant with respect to such probability measure
[52].

Tempering ideas have been successfully used to sample from posterior distributions arising in differ-
ent fields of science, ranging from astrophysics to machine learning [41, 52, 114, 163]. The works
[106, 171] have studied the convergence of the PT algorithm from a theoretical perspective and
provided minimal conditions for its rapid mixing. Moreover, the idea of tempered distributions
has not only been applied in combination with parallel chains. For example, the simulated temper-
ing method [109] uses a single chain and varies the temperature within this chain. In addition,

11
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tempering forms the basis of efficient particle filtering methods for stationary model parameters in
Sequential Monte Carlo settings [10, 11, 84, 86, 96] and Ensemble Kalman Inversion [34].

A generalization over the PT approach, originating from the molecular dynamics community, is
the so-called Infinite Swapping (IS) algorithm [49, 133]. As opposed to PT, this IS paradigm is a
continuous-time Markov process and considers the limit where states between chains are swapped
infinitely often. It is shown in [49] that such an approach can in turn be understood as a swap
of dynamics, i.e., kernel and temperature (as opposed to states) between chains. We remark that
once such a change in dynamics is considered, it is not possible to distinguish particles belonging
to different chains. However, since the stationary distribution of each chain is known, importance
sampling can be employed to compute posterior expectations with respect to the target measure of

interest.

TEMPERING METHODS: CONTRIBUTIONS

Infinite Swapping has been successfully applied in the context of computational molecular dy-
namics and rare event simulation [47, 50, 103, 133], however, it was only until our work [95]
that an analogous version of this methods was formulated and implemented in the context of
Bayesian Inverse Problems (which are, inherently discrete-time in nature). We present such a work
in Chapter 4, where our contributions can be summarized as follows:

1. We present two generalizations of the Parallel Tempering algorithm, inspired by the so-called
continuous-time Infinite Swapping algorithm of [47].

2. We provide a solid theoretical analysis of the convergence of such methods. In particular,
we show that such algorithms are reversible and geometrically ergodic under some mild

conditions.

3. We implement our proposed methods, together with several competing methodologies, and
use them to solve an array of increasingly difficult Bayesian inverse problems. Our experi-
mental results suggest a significant improvement with respect to competing methodologies.

We believe these methods present sufficient innovation such that the current work can be extended
into multiple future works, both from a theoretical and computational perspective, as will be
discussed in Chapter 7.

1.3.2 MULTI-LEVEL METHODS

MULTI-LEVEL METHODS: LITERATURE REVIEW

Multi-Level Monte Carlo (MLMC) methods are well-known computational techniques [59]
used to compute expectations that arise in stochastic simulations in cases in which the stochastic
model cannot be simulated exactly, but can be approximated at different levels of accuracy and
different computational costs. Despite their wide-spread applicability, extending these MLMC

12



1.3 Literature review and contributions of this thesis

ideas to Multi-Level Markov Chain Monte Carlo (ML-MCMC) methods to compute expectations
with respect to (w.r.t) a complex target distribution from which independent (whether exact or
approximate) sampling is not accessible, has only recently been attempted, with only a handful
of works dedicated to this task. This situation arises, for instance, in Bayesian inverse problems
(BIPs) where the aim is to compute the expectation [, [Qol] of some output quantity of interest
Qol. At their core, ML-MCMC methods for BIPs introduce a hierarchy of discretization levels
¢ = 0,1,...,L of the underlying forward operator {F;}5_, with increasing accuracy and
cost to evaluate it, which, consequently, induces a family of posterior probability measures p.J,
approximating ;¥ with increasing levels of accuracy as £ — 0o. This hierarchy of forward mapping
operators is depicted in Figure 1.3, where the mesh, the random field  in (1.3), and the forward
mapping operator® Fy(k(z,u)) with p as in (1.3) is shown at three different accuracy levels
¢ = 0,1, 2, with the understanding that the cost of evaluating Fy increases with £ = 0,1, 2.
Given some jY-integrable quantity of interest Qol, we can approximate the expectation of Qol
over 1Y by a telescoping sum, as usually done in MLMC,

L
Euy [Qol] ~ E"‘E [QOlL] E y QOIO + Z (]E y Qolg #2,1[Q0|£_1])
/=1

L
=Y AE, (1.6)

with AEg = Euz [Qolg] - Eu?,l [Qolg_l], AEO = ]Eug [Qolo] and where, forl = O, 1, ey L,
Qolyisa Mif—integrable, level £ approximation of the quantity of interest Qol. This telescoping sum
presents the basis for various types of multi-level techniques for BIPs. The work [71], for example,
approximates the expectation (1.6) by splitting each AE, into three different terms, which are
then computed using a mixture of importance-sampling and MCMC techniques. A multi-index
generalization of such method is presented in [78]. In addition, similar multi-level ideas have also
been attempted in the context of Multi-Level Sequential Monte Carlo (MLSMC) in the works
[13,79, 96].

In this work, we follow the approach proposed in [45], which is probably the first proposition of
multi-level ideas for BIPs and consists of approximating £ Y [Qol| ] using the following ergodic

estimator:

[QOIL] ZQO'O (ug o) + Z ZQolg (ug ) — Qolp—1(ugy_q),

=Y

where {u’ g} L, is an ergodic Markov chain with invariant distribution 4. The key idea is

to couple the chains {u}, ;,u} e}nzo so that they are highly correlated and the variance of

3 Typically, the observation operator only gives the pressure value at a few locations, however, we plot the whole field
for illustration purposes.
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£ = 0, meshg £ =0, kg £ =0, Fy, costy
1 1 /— 1
0.75 0.75 0.75
0.5 0.5 0.5
0.25 0.25 0.25
0 0 0

0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

f =1, meshy =1,k 0 =1, Fi,cost
1 1 1
0.75 0.75 /' 0.75
0.5 0.5 0.5
0.25 0.25 0.25
0 0 0

0 025 05 075 1 0 025 05 07 1 0 025 05 075 1

{ = 2, mesho { =2, ko =2, Fy, costy
1 1 / 1
0.75 0.75 0.75
0.5 | 0.5 0.5
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0 0 0
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Figure 1.3: Depiction of accuracy and cost of Fy vs £, where cost; < cost;41 for three different levels.
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the ergodic estimator V[V, [1 > n Y/ becomes increasingly smaller as £ increases. By carefully
choosing IV, this method can achieve a much better sampling complexity (in terms of cost versus
tolerance) than its single-level counterparts (see [45]).

Few works have focused on constructing these types of couplings [35, 45]. In [45], the authors use
(an approximation of) the posterior distribution at the previous discretization level £ — 1 as a pro-
posal for level £. This is practically implemented by sub-sampling from the chain {uz‘fl, -1 }nNi61 .
As it will be discussed later (c.f. Chapter 5), for such a method to converge (in the idealized case
where one can sample from the posterior at the previous levels), however, it is required that the
posterior at level £ — 1 has not lighter tails than the posterior at level £. This assumption can
be relaxed by tempering the posteriors (as done in a single level in, e.g., [95]) at the previous
discretization levels, however, it is not clear yet how to choose this tempering parameter. This
sub-sampling method has been recently reviewed in [46]. Furthermore, from an implementation
perspective, the work [152] presents a parallelization strategy for the ML-MCMC algorithm of
[45], while the works [77] and [87] apply such an algorithm in the context of lattice field theory
and statistical mechanics.

Such an idea has been recently expanded in [35], where the subsampling idea is combined with
the so-called Dimension Independent Likelihood Informed (DILI) MCMC method of [36] to
generate proposed samples at level 0 in their ML-MCMC algorithm, and, more recently, by the
work [105], which proposes the use of the sub-sampling algorithm of [45] in the context of delayed-
acceptance, with the aim of accelerating the mixing between chains generated by the ML-MCMC
sampler. Some further work combining multi-level Monte Carlo ideas with Bayesian inference has
been presented in [80], where the authors use rejection-free Markov transitions kernels, such as
the Gibbs sampler, in order to couple the multi-level MCMC chains at two consecutive levels.

A difterent approach to coupling Markov chains, albeit in the context of unbiased estimation is
given by maximal coupling techniques [53, 76, 82, 99]. Maximal coupling methods have been of
interest, both from a theoretical and computational perspective, for a number of years. Tradition-
ally, (maximal) coupling methods have been used as a tool in the convergence analysis of Markov
chains [53, 139, 100, 159]. In this setting, one aims at estimating the so-called mixing time of
a Markov chain by creating a coupling of two Markov chains X,, Y;,, n € N, both having the
same invariant measure, and estimating the first meeting time, i.c., 7 = min{n € N: X,, =Y, }
(c.f. Algorithm 1 in Chapter 3). Recently, these methods have gained a wider computational
use; the works [70, 76] use coupling methods to construct unbiased Markov chain Monte Carlo
estimators based on the seminal work of [62]. These methods have also been used to construct
variance reduction techniques [3], such as anthitetic variates and control variables, for ergodic

estimators obtained from Markov chains [131].

15



1 Introduction

MULTI-LEVEL METHODS: CONTRIBUTIONS

It is clear that ML-MCMC algorithms have started to become increasingly popular in the UQ
community, as it can be evidenced by the impact of the work [45]*. In this thesis we present several
contributions to this emerging set of methodologies. In particular, in Chapters 5 and 6:

1. We propose two extensions of ideas presented in [45]. Our first extension can be seen as
a generalization of their work to the case where a wider class of Independent Metropolis-
Hastings (IMH) proposal distributions are considered (c.f Chapter S). The second extension
presents a ML-MCMC algorithm that admits state-dependent proposals, such as Random
Walk Metropolis. These algorithm generates joint chains using a maximal coupling between
proposal kernels and is presented in Chapter 6.

2. We present a thorough convergence analysis for the (coupled) ML-MCMC algorithm arising
form these extensions and present conditions under which there exists a unique invariant
probability measure induced by such algorithms, as well as quantifying their convergence
rate to such a measure.

3. We present a non-asymptotic bound for the mean-square error for (non-necessarily) re-
versible Markov chains, such as the one induced by the ML-MCMC sampler. We remark
that this contribution is interesting on its own and can be applied outside the scope of this
work, however, such a bound is crucial to prove the complexity result of the ML-MCMC
algorithm, as in [45]. We remark that this result is Presented in Chapter 3.

4. We extend the aforementioned complexity result of [45] to the case of ML-MCMC using
IMH under some reasonable technical assumptions. Furthermore, we present an analogous

result to the case with state-dependent proposals, albeit under more restrictive assumptions.

S. In the spirit of [132], we introduce a continuation-type ML-MCMC algorithm. Such a
method obtains a robust estimation of the hyper-parameters in the ML-MCMC algorithm
(e.g., number of samples needed for a given tolerance, c.f. Chapter 5) by estimating them

on sequence of decreasing tolerances, ending when the required error tolerance is satisfied.

We implement these proposed methodologies on an array of BIPs and discuss their strengths and
limitations. Lastly, we discuss several possible extensions to these ideas in Chapter 7.

1.4 OUTLINE

The rest of this thesis is outlined as follows. Chapters 2 and 3 are devoted to a review of the theory
and methodology of the methods of interest to this work, while chapters 4 through 6 present the
main research body and contributions of this thesis. More precisely:

“Indeed, such a work has been a highlight of the SIAM Journal of Uncertainty Quantification, one of the authors has
been awarded the SIAM UQ Early career Prize, and the paper has been republished in the SIGEST section of SIAM
Review (vol. 61(3)) [46]

16



1.4 Outline

Chapter 2 is devoted to a thorough introduction to BIPs. We begin such a chapter presenting
basics concepts of probability needed to construct the Bayesian solution to an inverse problem,
and then present an overview of the theory and modeling choices of such an approach. We finalize
this chapter discussing some non-MCMC based approaches to the solution of a BIP.

Chapter 3 is devoted to a review of theory and methodology of MCMC for Bayesian inverse prob-
lems. We begin this chapter by recalling some necessary concepts for Markov chains, such as Markov
transition kernels, and give an overview of some common results regarding their convergence. We
finalize this chapter with a survey of some common MCMC techniques.

Chapter 4 presents our first hierarchical method: the generalized parallel tempering algorithm.
In this case the hierarchy is to be understood as a sequence of temperatures {1}, k = 1,2, ...},
which induce a posterior probability measure /15, that gets increasingly “easier” to sample from as
T}, — 00. Here, we introduce, analyze and implement two MCMC algorithms used to sample
from this hierarchical model. This chapter is based on our published work [95].

Chapter 5 presents several contributions regarding the second hierarchical method (i.e., multi-
level MCMC). In particular, such a Chapter introduces a ML-MCMC algorithm based on IMH
proposals, together with a thorough analysis of the method.This chapter is based on the pre-print
(currently under revision) [108]

Chapter 6 presents a new methodology for ML-MCMC methods based on the idea of maximal
coupling [76]. This methodology allows for easily implemented ML-MCMUC that can clearly
overcome some of the difficulties associated to the methods of Chapter 5. We present a thorough
theoretical analysis of our proposed method, and implement it for different BIPs. This chapter is
based on ongoing work.

Lastly, Chapter 7 summarizes and concludes this thesis and proposes several future research

directions.
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2 BAYESIAN INVERSE PROBLEMS

In this chapter we present the conceptual and mathematical background of BIPs. We begin by
recalling some basic concepts in probability, particularly on Gaussian measures, and then proceed
to present BIPs in detail. We conclude this chapter by presenting a state of the art of some methods
for solving BIPs. We remark that this is a review chapter written with the aim of making this
thesis as self-contained as possible, and that no new material is presented here. Furthermore the
content presented in this chapter is necessarily short, however we refer the interested reader to
the monographs of, e.g., Dudley, or Ash [2, 48] for a detailed account on probability theory; to
the books of, e.g., Bogachev or Da-Prato and Zabczyk [18, 37] for material regarding Gaussian
measures on infinite-dimensional spaces; and to the seminal works of Dashti and Stuart [40, 156]
for a detailed presentation of BIPs in infinite dimensions (or on Banach spaces), of which the

material presented in this chapter is a (heavily) condensed version.

2.1 PRELIMINARIES

2.1.1 PROBABILITY THEORY

The workhorse behind the Bayesian formulation of an inverse problem is, rather unsurprisingly,
Bayes’ theorem (c.f. Theorem 2.2.1), which lies at the heart of probability theory. We begin this
chapter by recalling some necessary concepts and results from it that will be used throughout the
rest of this thesis.

Definition 2.1.1 (Probability space): A probability space (also known as probability triple, or
probability measure space) is a triple (Q, X, ), where

1. Q) is the sample space.
2. X is a o-algebra of subsets of (2.

3 pu: X — [0,1] s a probability measure, i.c., a mapping satisfying the following two
properties:
a) | is countably additive, i.e., given {A;}°, C X, AinNAj = 0, Vi # j, then
(U2 Ai) = 3002 pu(Ad).

b) The entire space bas mass equal to one, i.e., j1(Q2) = 1.

We call the couple (2, X') a measurable space.
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2 Bayesian inverse problems

In particular, in this work we are interested in the case where @ = (X, [|-|x) (resp. 2 =
(X, (-, -)x)) is a separable Banach (resp. separable Hilbert) space, and where X = B(X) is the
Borel o-algebra associated to X. Throughout this work, we will sometimes refer to X as the szate
space and to an element A € B(X) as an event.

Given two probability measures y, v on (X, B(X)), we say that y is absolutely continuous with
respect to v (denoted by p1 < v) if, for every measurable set A, v(A) = 0 implies p(A) = 0. We
say that p and v are equivalent in the sense of measures (v ~ )it < vand v < p. Conversely,
we say that p and v are mutually singular (denoted pv L v) if there exist sets A, B € B(X) such
that ANB =0, AU B = Xand u(A) = v(B) = 0.

Definition 2.1.2 (Radon-Nikodym derivative):  Let 1, v be two probability measures on X with
v K pt. A B(X)-measurable function f : X — [0, 00) is called the Radon-Nikodym derivative of
v with respect to 11 if, for any measurable set A € B(X), it bolds that v(A) = [, f(u)u(du). We
will write f(u) = g—;(u)

The Bayesian approach to inverse problems relies heavily upon the concept of conditional probabil-
ity, defined next.

Definition 2.1.3 (Conditional probability): Ler (X, B(X), u) be a measure space, and let
A, B € B(X) be two events with j1(B) > 0. The conditional probability of A given B s defined

as

u(AN B)
AB) = ———+ (2.1)
u(alB) = Ko
Conversely, one then has that if ;1(A) > 0, then
n(BNA)
B|A) := ,
u(Bla) = ML
which when combined with (2.1), motivates the so-called Bayes’ formula
#BlA)u(A)
A|B) = —————=. 2.2

Consider the case where X = R¥ for some K > 1, let p be a joint probability distribution on
(X x X, B(X x X)), with marginals x, v on (X, B(X)) having Lebesgue densities m,, : X —
Ry, my : X = Ry, respectively. In this case, one can formulate Bayes’ theorem in terms of such
Lebesgue densities as

oy = Tl (u)
7(uly) T

Although there exists an analogous form of (2.2) for the case where X is an infinite-dimensional

space (and hence, no equivalent of the Lebesgue density exists), its formulation is less straightfor-
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ward and we will delay its presentation until Section 2.2, Theorem 2.2.1. However,we introduce
some concepts and technical results that will play a central role in its proof. We begin with the
definition of transition probability (also called Markov transition kernel, transition probability
kernel, or stochastic kernel, c.f. Definition 3.1.2).

Definition 2.1.4 (Transition probability kernel): Lez (X, B(X)) and (Y,B(Y)) be two
measurable spaces. A transition probability kernel from (X, B(X)) to (Y, B(Y)) is a_function
p: X x B(Y) = [0, 1] satisfying:

1. X3 u s p(u, A) is B(X)-measurable for any A € B(Y).

2. B(Y) 2 A p(u, A) is a probability measure on (Y, B(Y)) for everyu € X.

Sometimes we will use the shorthand notation p*(-) = p(u, ). The Bayesian approach to inverse

problems relies heavily upon the concept of product regular conditional probability, defined next.

Definition 2.1.5 (Product regular conditional probability):  Given two measurable spaces
(X, B(X)) and (Y, B(Y)),set Z := X x Y, B(Z) := B(X) @ B(Y), and let (Z, B(Z),11) be a
(product) probability space. A Product Regular Conditional Probability (P-RCP) zs 2 transition
probability kernel p : Y x B(X) — [0, 1] satisfying Ily-a.e.,

(A x B) = /B Py, ATy (dy) = /B P (A)Ty(dy), VA€ B(X),B € BY), (23)

where Iy is the Y-marginal of 11, i.e, Iy (dy) = [\ I(du,dy). In this setting we say that the
regular conditional distribution of u given y (written u|y) exists and denote it by pY.

Notice that if IT is the product measure II = 1 X v, one can simply take p¥ = p. It is known
from [48, Theorem 10.1.1] that if a P-RCP exists, then, using the same notation as in the previous
definition, it follows for any II-integrable function g that

Err[g] Z/zg(uvy)ﬂ(du,dv)Z/\(Ag(u,y)py(dumv(dy)-

It is shown in [48, Theorem 10.2.2] that if Z is a Polish space’, together with a Borel o-algebra
B(Z), then there exists a unique P-RCP p¥() defined as in (2.3). We now present the following
technical result from [150].

Theorem 2.1.1:  Let (X, B(X)) and (Y,B(Y)) be measurable spaces, and let j,v be proba-
bility measures on Z = X X Y, with B(Z) = B(X) @ B(Y). Assume that (1) p < v with
i‘y‘ (u,y) = f(u,y), Yu € X,y € Y and (i1) that the (product) regular conditional distribution of

'ie., a separable completely metrizable topological space
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uly under v, denoted by v (du), exists. Then, the conditional distribution of u|y over p, p¥ (du)
exists. Furthermore, 1¥ < vY, with Radon-Nikodyn derivative given by

) = {z%y)fw, v) 0<2() < oo,
dvYy

1 otherwise,

where Z(y) := [y f(u,y)v¥(du).

Proof. See [150, Theorem 1.3.1]. O

2.1.2 GAUSSIAN MEASURES

Gaussian measures are a class of commonly-used probability measures in the context of BIP. On the
one hand, from a practical perspective, they are attractive for problems where either the mapping
u +— F(u) is (nearly) linear; indeed, if such a mapping is linear and the noise and prior measures
are Gaussian, the resulting posterior measure will also be Gaussian. They are also often used as
first-approximation to the posterior measure (c.f. [151, 23] and Section 2.3.2). On the other hand,
from a theoretical point of view, they are widely used in the case where X is an infinite-dimensional
normed space since, as opposed to the Lebesgue measure, they are well-defined in such spaces.
Furthermore, as it will be further discussed in Section 2.2.1, a draw « from a Gaussian measure

N (m,C) on a separable Hilbert space X, can be written as
i=1

where {\; }ien, {¢i}ien, are the (orthonormalized) eigenvalues and eigenfunctions of the covari-
ance operator C, and u; “d N(0,1),Vi =1,2,.... Wenow present a short survey of Gaussian
measures on infinite-dimensional Banach spaces.

We begin by recalling some basic concepts of functional analysis. Given a Banach space X, we
define its dunal space as X* := {f : X = R : fisacontinuous, linear map}. In the case where
(X, (-, -)x) is a separable Hilbert space, we say that a linear operator C : X — Xis

1. self-adjoint (or symmetric) if forall f, g € X, (Cf,g)x = (f,Cg)x,

2. positive-semidefinite itV f € X, (Cf, f)x > 0,

3. trace-class if given a complete orthonormal basis (CONB) {¢; }ien of X, it follows that
Y ien(Coi, ¢i) < +oo. Alternatively, if {\;}ien, {@i}ien, are the (orthonormalized)

eigenvalues and eigenvectors of C forming a CONB of X, C is a trace-class operator if
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Recall that a probability measure ¢ in R is a 1D-Gaussian measure centered at m € R with

variance 02 > 0if, VA € B(R), it holds that

o) = [ e (2 o =i Nt )

2mo 202

In addition, we say that ¢ is a Dirac distribution (or degenerate Gaussian) if o = 0, in which case

we write

0, ifx—m¢A,
1, ifz—me A

QD(A) = 5xfm(A) = {

It is well-known [18] that 1D-Gaussian measures are uniquely characterized by their mean m
and variance 02. Now let X = RX. For any A\, u € X, one can think of the map X > u
(A, u)grx € R asarandom variable on the measure space (X, B(X), ¢); in this case, we say that
¢ is a KD-Gaussian measure if such a mapping induces a 1D-Gaussian measure on R for each
A € X. This can be stated in more abstract terms in order to allow for the case where X is an

infinite-dimensional separable Hilbert space.

Definition 2.1.6 ((abstract) Gaussian measure [37]):  Lez (X, (-, -)x) be a (potentially infinite-
dimensional) separable Hilbert space with associated Borel o-algebra B(X). We say that a probability
measure p on (X, B(X)) is a Gaussian measure #f, for each f € X, the map X > u — (f,u)x
induces a 1D Gaussian measure on R i.c., if there exists my € R and UJ% > 0 depending on f such
that

o ({ueX: (fu)e A}) = N(mf,aj%)(A), VA € B(R).

Furthermore, we say that ¢ = N(m,C), with mean m € X and covariance C : X — X, a

trace-class linear operator, if

/X<h,u>xg0(du) = (m, h)x, Yh € X,
/);<hh u — m>x<h2, u — m>x<p(du) = <Ch1, h2>x, Vhl, hy € X. (2.4)

It is a clear consequence of Equation (2.4) that C is both symmetric and positive-(semi)definite.
Similarly as for the 1D case, a Gaussian measure = N (m, C) is uniquely determined by its mean

m and covariance operator C [37].

Theorem 2.1.2 (Fernique Theorem): Ler (X, (-)x) be a separable Hilbert space, and let o be a
Gaussian measure. Then, there exists an o > 0 such that

[ ewalluletdu) < +oc.
X
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In particular, this means that p has moments of all orders; i.e, 5 > 0 it holds that

/X lull o (du) < +oo.

Definition 2.1.7 (Cameron-Martin space):  Lez (X, (-, -)x) be a separable Hilbert space, and let
© = N(m,C), bea Gaussian measureon (X, B(X)), withm € Xand C a self-adjoint, positive semi-
definite, trace-class covariance operator. The Cameron-Martin space of X associated to o is defined
as Im(CY/?) [37], and can be given a Hilbert structure with inner product (C~1/2.,C=1/2.)y.

The following result is a special case of the Feldman-Hajek theorem [18], and presents a rather
important result in the theory of Gaussian measures in infinite-dimensional Hilbert-spaces: two

Gaussian measures on an infinite-dimensional space are either equivalent or singular.

Theorem 2.1.3 (Cameron-Martin theorem): Ler (X, (-, -)x) be a separable Hilbert space, let
C be a positive semidefinite, self-adjoint and trace-class covariance operator, and fori = 1,2, with
mi € X, let o, = N (m;,C), be Ganssian measures on X. Then, pm, =~ @m, if and only if
mip —mg € Im(Cl/2), and

d‘/)m2
d‘/)ml

1
(u) = exp <<m2 —mi,u—m)c — 5 |1 — m2||g> J

otherwise P, L Om,. Here we have denoted (a,b)e = (C~'/2a,C~1/2b)x, Va, b € X.

This is in stark contrast to the finite-dimensional case, where absolute continuity between trans-
lated Gaussian probability measures holds for arbitrary translations. This is a fact of paramount

importance when discussing BIP in infinite dimensions.

2.1.3 SPACES OF PROBABILITY MEASURES

Let (X, ||-||x) be a separable Banach space with associated Borel o-algebra B(X). We will denote
by M(X) the set of real-valued signed measures on (X, B(X)), and by M (X) C M (X) the set of
probability measures on (X, B(X)). Let t € M (X) be a “reference” probability measure on X. In
the context of Bayesian inverse problems, this reference probability measure should be understood
as the posterior measure (i.e., 4 = p¥). Furthermore, we define the following spaces:

L, =L.(X,p) = {f : X = R, p-integrable, s.t || f|) := /X |f(w)]"p(du) < OO}QZ.S)

22 = 220, = { £ € L, sentf) = [ fayutan) =0
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Notice that, clearly, L2(X, 1) C L, (X, ). In the particular case where 7 = 2, Lo (X, 11) (and
hence L9) is a Hilbert space with inner product given by

(. 9)ps = /X F)g(u)u(du),  fg € La(X, ).

Moreover, when r = 00, we define

Loo(X,p) :== ¢ f: X = R,B(X) — measurables.t. inf sup |f(y)| < oo

m(B)=0
BeB(X) yeEX\B

In addition, for any r € [1, 00|, we define the spaces of (signed) measures

Me(X, p) = {v € MX)s.t.v < p, V]|, (x,) < 00}
dv
dp

)

where [V x ) = ’ ",
Lr(X,p

together with
MOX, p) == {v € M. (X,u), st. v(X) = 0}.

Once again, in the particular case where r = 2, M (X, 1) is a Hilbert space with inner product
given by:
dv, dm

(v, )My 1= X@(u)@(u)ﬂ(du% v,m € Ma(X, ).

Notice that the definition of the L, (respectively M,.) norm depends on the reference measure
e on X. We remark that the function space L, (X, 1) is isometrically isomorphic to the space of
measures M, (X, ), as stated in [143].

We now define some commonly-used (pseudo)metrics for a space of probability measures. We will
use some of these metrics to study the convergence of the MCMC algorithms in Chapters 4, 5 and
6.

Definition 2.1.8 (Total variation distance): Let p1, v € M(X) be absolutely continuons with
respect to a common probability measure X € M(X). The Total Variation (TV) distance berween
and v is given by

1
dry(p,v) == 2/x
1

=3 I — V”M1(X,/\) )

du dv
a (u) — a (u)

Adu) =1 — /X min{jg‘(u),ji(u)}x(du)
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where the second equality comes from the fact that min{a, b} = 3(a +b — |a — b|)

Notice that in the case where v < p1, the TV distance between ft, v is then given by

1
drv(p,v) = 2/)( 1

Definition 2.1.9 (Hellinger distance): Let j1, v € M(X) be absolutely continuous with respect

dv
dp

(u)

p(du)

to a common probability measure A\ € M(X). The Hellinger distance between p and v is given by

dualer) = |5 | WZ";w)—\/i(u))szm

Similarly as before, notice that in the case where v < p, the Hellinger distance is then given by

1/2

2 1/2
dHell(M7 V) = ;/X (1 - j:(u)> M(du>

Definition 2.1.10 (Kullback-Liebler divergence): Let v, € M(X) be two probability
measures withv < . The Kullback-Liebler (KL) divergence between v and p denoted by dir (v, 1)
is given by

dv
dgr(v, p :/lo (u)ydu
ke (v, 1) sl g M( ) | v(du)
Notice that dgr (@, v) is not a proper metric since, in general, dgr (p, v) # dir (v, p).

Itis a consequence of Jensen’s inequality [48] that dky (1, v) > 0.

2.2 BAYESIAN INVERSE PROBLEMS

We now present a rigorous derivation of Bayes’ theorem in separable Banach spaces. Let (X, ||-||x)
and (Y, ||-||y) be two separable, potentially infinite-dimensional, Banach spaces, r equipped with
Borel o-algebra B(X) and B(Y), respectively, and let 7 : X — Y be a measurable forward
mapping operator. We are interested in obtaining the conditional probability distribution of
u € X given some noise-polluted measured data y € Y, where

Y= f(u) + 1, M~ Mnoises

where 77 € Y represents the random noise polluting the measured data and fin,is is a probabil-
ity measure on (Y, B(Y)). Furthermore we assume that u follows a prior distribution, jipr on
(X, B(X)), usually encoding the information available on u before any data has been observed. A
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key component of this approach is that all its terms, namely ¥, 7, u (and hence F(u)), are random
variables. Furthermore it is assumed that u and 7 are independent random variables.

Denote by 1% ;.. the translation of fin0ise by F (). Our goal is to use the technical result presented
in Theorem 2.1.1 to construct a (potentially infinite-dimensional) version of Bayes’ theorem. We

will require the following assumptions on fipr, finoise and fif1;. to hold.

Assumption 2.2.1 (Fundamental assumptions for Bayes’ Theorem):  Given (1,05 and i, .,

it holds that

1. for ppr-a.e. , it bolds that 1. < [noise. Furthermore, there exists a B(X) @ B(Y)-
measurable function ® : X XY — R such that

dt CXP(—Z‘ZJ(;L%Z/)) if0 < Z(y) < +oo, 2.6)
d,unoz':c' . 1 otherwise , ‘
with Z(y) == [y exp(—®(u;y)) ppr (du).

2.0< Z(y) < 400,  fnoise-a-s.

For any given (u,y) € X XY, we will refer to ®(w; y) as the potential or negative log-likelihood.

Remark 2.2.1:  Notice that ® bas the form ®(u;y) = ®(F(u);y), with® : Y x Y — R,
B(Y x Y)-measurable.

Although Assumption 2.2.1.1 is relatively simple to satisfy in the finite-dimensional data case (i.c.,
when Y = RM | with some M > 1), it is certainly not as straightforward to satisty if Y is an
infinite-dimensional Hilbert space. To visualize how this difficulty arises in the infinite-dimensional
case, let (Y, (-, -)) be an infinite-dimensional separable Hilbert space, and set finoise = N(0,T),
forI' : Y — Y aself-adjoint, positive-definite, trace-class operator. Then, for (2.6) to hold
true, it follows from Theorem 2.1.3 that F must satisfy F(u) € Im(T''/2), pip-a.s. which is
not necessarily the case. Conversely, if Vu € Xi 1t holds F(u) € Im(T''/?), it then follows from
the Cameron-Martin theorem that ®(u; y) = 3 || F(u )IE — (F(u), y)r, which is a measurable
function in u and y.

Assumption 2.2.1.2 depends both on the functional form of ® and the choice of prior, and can be
satisfied under some relatively mild (and rather common [156]) assumptions on the structure of
the BIP (c.f. Theorem 2.2.2).

We can now state the general version of Bayes’ theorem. We remark that this is a well-known result
(see, e.g., [40, 94, 153, 156]), however, we give its proof here for the sake of completeness.

Theorem 2.2.1 (Bayes’ theorem):  Suppose Assumptions 2.2.1 hold. Then, the conditional distri-
bution 1Y of u|y exists and ¥ <K fipr, with

. (u) :== 70 exp (—®(u;y)) - (2.7)
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We will refer to 11¥ as the posterior probability measure.

Proof. Define the joint probability measure II(du, dy) = pipr(dt) tinoise (dy), corresponding
to the process of sampling u ~ ppr and y ~ pineise independently of each other. Similarly,
define TT(du, dy) = pipr(du) ;. (dy), as the probability measure corresponding to the process
associated to first sampling © ~ fipr, evaluating F (u), shifting finoise by F (1), and then sampling
Yy ~ .. Itis clear from the Assumption 2.2.1 that IT < II. Furthermore, since IT follows the
process of sampling © and y independently of each other, then, clearly, y|u exists under II. The
desired result then follows from an application of Theorem 2.1.1 with i(du, dy) = I(du, dy)
and v(du, dy) = II(du, dy). O

Remark 2.2.2 (On the Bayesian formulation with finite-dimensional data):  Norice that in

the case where Y is finite-dimensional and |1,y has a Lebesgue density T4, the potential function

would look like

y) = —lo Wﬂoz’:ﬁ(y — ‘F(u))
®(u;y) = —log { Tase(Y)

= —log[Muoiee(y — F(u))] + c(y),

:| — log [ﬂnoz'je(y — .F(u))] + 10g [ﬂ'noz'xe(y)]

where the constant c(y) depends only on the data y and as such, can be absorbed as a redefinition of
the normalization constant.

2.2.1 PRIOR MODELING

One of the most important (and potentially challenging) aspects of a BIP is choosing an appropriate
prior model. Choosing an appropriate prior typically requires some expert information on the
model, and it is hence problem dependent. For finite-dimensional state spaces, such as RE , K >1,
one could, for example, assume that for each i = 1,2, ..., K, u; is independently distributed
according to a prior measure fipr,; , and then set u ~ fip, 1= ®£1 Hpr,i- Alternatively, one could,
of course, use priors that correlate some or all of the components of u, provided that such an
information is available.

Prior modeling in function spaces is less straightforward, and a rather significant body of literature
is devoted to the construction and analysis of special types of prior measures, such as Gaussian,
Besov or uniform [32, 14, 156, 130] priors. These sort of priors arise in the case, for example, when
the underlying mathematical model has a physical domain D C R? d =1,2,3, withu ~ X
understood as a random field or function (rather than as a set of random parameters) on a space X
of functions defined on D. In the model problems presented in Section 1.2, this corresponds, for
example, to the spatially-varying permeability field x(z, -), € D for model problem 1.2.1, or to
the material density p(z, -), € D for model problem 1.2.2.

We now present the main idea behind the construction of infinite-dimensional prior measures.
Let (X, ||-|lx) be a separable, infinite-dimensional Banach space of R-valued functions defined on
adomain D. In addition, consider a sequence of linearly independent functions {¢; } jen € X,
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with [|¢;]|x = 1,Vj € N,andlet {u;}jen be a sequence of scalar, independently and identically
distributed random variables u; ~ v1, with v} a probability measure on (I, B(I)), I C R.
Furthermore, denote by 1o = X;en/, together with the Borel o-algebra B(I ) generated by the
cylindrical sets A C Ioo, A = Xy Ai, with finitely-many A; # I and define u = X jenvj, asa
measure on (Iso, B(Io)). For some p € [1, 00], let {w; }icn € P be a deterministic sequence

chosen such that, for some given mg € X, the series

u=mg+ Z Pjwju;

jEN

converges in LP(X, ;1) (which could happen, e.g., if v; € N, Vj € N). In this setting, one can
then model ipr 1= Law(mo + > ey @jwju;). This spectral representation of the prior lays
the basis for constructing priors in infinite-dimensional space. Throughout this work we will
limit ourselves to the use of Gaussian prior measures when modeling BIPs in infinite-dimensions,
however, we refer the interested reader to, e.g., [22, 39, 73, 166] for the formulation, analysis, and
solution of BIPs in function space using non-Gaussian priors.

We now proceed to describe such a methodology for Gaussian measures. Using a series expansion
to model Gaussian priors in the context of BIP has been presented, e.g., in the seminal works of
Stuart[156], Dashti and Stuart [40], and Cotter et. al,, [31]. Let (X, (-, -)x) denote a separable
Hilbert space, let C : X x X — R be a self-adjoint and trace-class operator, and, without loss of
generality, consider the prior ipr = N(0,C). We can generate samples from fipr be one of the

following methods:

KARHUNEN-LOEVE EXPANSION

A first straightforward method to sample © ~ i is to consider the Karhunen-Loeve expansion.
Let {A; }iens { @i Fien be the (orthonormalized) eigenvalues and eigenfunctions of C. Since C is a
trace-class operator, it then follows that ZiGN ;i < 400, and as such, it can be seen that the series

’UJ:Z\/)\Z{biui, ul%i./\/'(o, 1),i=1,2,..., (2.8)
=1

converges in Lo(X, u), with 4 = X;en/N(0,1). Such a series is called the Karbunen-Loeve
expansion of u. In practice, equation (2.8) needs to be truncated at a term K, leading to the finite
dimensional approximation

K
uK:Z\/)\mﬁiui, uiMNdN(O,l), iZl,Q,...,K. (2.9)
i=1

One can then sample the (truncated) random variable ux ~ u from M;I)(r ~ [pr by sampling
K independently and identically distributed random variables u; ~ N(0,1),7 = 1,..., K,
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ur, K =10 ug, K =50 u, K =100
1 1 1
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Figure 2.1: Random field generated using the KL expansion of a random field with different truncation

levels K = 10, 50, 100.

and then summing the terms in equation (2.9). Of course, such a truncation induces a finite-
dimensional vector uf approximating u, which will in turn induce an approximate posterior
measure /1% — £1¥ in a suitable sense as K — co. We will discuss the convergence of 1%, — 1%
in Section 2.2.3. Such an approximation is depicted in Figure 2.1, where we present a realization of
the permeability field x(x, u) in Example 1.2.1 truncated at three different values of K. As it can
be seen, finer details on the field can be clearly appreciated as K increases. It is worth mentioning,
however, that the "main features” of such a random field are captured by the first values u; in the
KL expansion. Informally speaking, larger values of K are able to capture higher levels of detail on
the field. Throughout this thesis, we will employ this method of generating random fields u in
Chapters 5 and 6.

PDE-BASED PRIORS

An alternative approach to generating samples u ~ N(0,C) is by the characterization of the

precision operator A2 =1

as a second-order “Laplace-like” differential operator on a bounded,
openset D C R?, d = 1,2, 3, with a domain chosen so that A is positive definite and invertible.
This approach is particularly attractive when the random field w is defined on a physical domain
D. Furthermore, one can control the regularity of the random field u by specifying the regularity
of the operator A. Lastly, there is a wide body of literature and computational resources for the
efficient numerical solution of PDE:s (see, e.g., [101]), making this approach also attractive from
an implementation perspective. In order to model the precision operator C ! as a “Laplace-like”

differential operator, we need the following conditions to hold [156]:

Assumption 2.2.2:  The operator A, densely defined on a Hilbert space H = Lo(D; R) satisfies
the following properties:

1. Ais positive definite, self-adjoint operator with compact inverse.
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2. The eigenfunctions and eigenvalues, {¢;} jen and {\;} jen, respectively, form an orthonor-
mal basis for H.

3. There exist positive constants Cy,, Cpp such that for all j € N it holds that

Aj

4. There exists C' such that

1
sop (1651 + £ 1Posl,. ) <
JEN J

Before proceeding to describe how to generate samples u ~ N'(0, A™2) we first define spatial
white noise (see, e.g., [33] ).

Definition 2.2.1 (spatial white noise): e say that the linear isometry W : Ly(D;R) —
Ly(S5R), with (2, F,P) a complete probability space, is a white noise, if given any {¢;}jen €
Loy(D;R), then hj := (W, ¢;) are Gaussian random variables with mean zero and covariance

given by
E[hlh]] = <¢i’¢j>L2(D), \V/l,] € Na

where (W, ¢;) denotes the action of W on b;.

Given some white noise T, one can generate samples u ~ N(0, A~2) by solving Au = W,
where the solution should be interpreted in an appropriate sense, as it will become clearer shortly
after.

As an example, consider the following elliptic PDE:

—aV - (AVu)+au =W inD,
(2.10)

—a(AVu)-n =0 ondD,

where n denotes the outward unit normal on 9D, & > Oand A € R4x¢

is a symmetric, uniformly
bounded, positive-definite tensor denoting the anisotropy of the elliptic operator. In practice, the
solution to equation (2.10) needs to be numerically approximated using, e.g., the finite element
or the finite-difference method with accuracy parameter K (which denotes, e.g., the number of
degrees of freedom in the approximation). Thus, just as with the Karhunen-Loeve approach, this
method results in an approximate posterior p%. — p¥ as K — 0o, where again, the convergence
is in a suitable sense. This is depicted in Figure 2.2, where a realization of the the permeability field
k(x, ) in Example 1.2.1 is shown at three levels of discretization. As it can be seen, finer details on
the field can be clearly appreciated as the underlying (finite element) mesh becomes more refined.

We will present this approximation in more detail in Section 2.2.3.
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Figure 2.2: Top: Discretization meshes generated with a Laplace-like operator A2, Bottom: Discretized
random fields corresponding to each mesh

32



2.2 Bayesian inverse problems

2.2.2 WELL-POSEDNESS

A problem is said to be well-posed in the Hadamard sense, if (i) a solution exists and is unique and
(i) the behavior of such a solution changes continuously with the initial conditions, i.c., small
changes on the input of the problem produce small changes on the output.

A problem that is not (Hadamard) well-posed, is said to be 7//-posed. It is known that inverse
problems (when seen, in a broad sense as “determining the input of a model given its solution”) are
often ill-posed. In the classical (i.e., frequentist’s) approach to inverse problems, one typically aims
at eliminating this ill-posedness by introducing a suitable regularization term in the minimization
functional, however, we remark that these regularization techniques are outside the scope of this
thesis, and invite the interested reader to the works, e.g., [85, 158] for its exposition in the context
of inverse problems, and to the more recent book [55], for an introduction of this topic in the
(closely-related) field of statistical learning.

Alternatively, the issue of well-posedness of an inverse problem can also be tackled from a Bayesian
perspective. Indeed, broadly speaking (we will be more detailed shortly) a BIP is said to be well-
posed if (i) there exists a unique posterior probability measure, and (ii) small changes in the data
produce small changes in the posterior.

There are, arguably, two major notions of this well-posedness, namely the so-called Lipschitz-
Hellinger well posedness, presented by Stuart and Dashti [40, 156], and the more general concept
of (M, d)-well posedness of Latz [94], where M is to be understood as space of probability measures
and d as a (psendo-)distance between such measures. We will present the Lipschitz-Hellinger well
posedness of Stuart, and refer the interesting reader to the works [94, 154] for a further study on
Bayesian well-posedness.

Let (Y, ||-||y) be a separable, possibly infinite-dimensional Banach space, with associated Borel
o-algebra B(Y). A BIP in the form of (2.7) is Lipschitz-Hellinger well-posed [94, 156] if

i (Existence and uniqueness) There exists a unique posterior probability measure ¥ that is

absolutely continuous with respect to fipy.

ii (stability) There exists a positive constant C' = C(r) such that forall y, 3y € Y withr >
max{||ylly . || |ly}> it holds that dgen (1Y, ') < C(r)lly =¥y, ie., the mapping
y — uY islocally Lipschitz continuous in the Hellinger metric.

It is shown in [40] that a BIP is well-posed under the following assumptions on the potential
function (negative log-likelihood), ®(u; y) : X X Y — R, and the prior fipr.

Assumption 2.2.3:  Let (X, [|-|lx), (Y, ||:|I\) be two separable Banach spaces with v € X and
y €Y. Weassume that ® : X X Y > R bas the following properties:

1. Ye,r > 0,3M(e,r) > Osuchthar¥u € X,y €Y, |lylly <,
®(usy) > M — e|lullx,

that is, there is a lower (quadratic) bound on the potential function.
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2. ¥r > 0,3K(r) > 0 measurable such that Vu € X, y € Y, with max{||u||x, ||y|v} < r,
O(usy) < K(r),
i.¢, there is an upper bound on the potential.
3. ¥r > 0,3L(r) > 0such thatVu,u' € X,y €Y, with max{||u||x, ||v||x, |ylly} <7
| (u;y) = D(u'sy)| < L(r)Ju —u|x,
which means that we bave Lipschitz continuity of O (-; y) with respect to the first argument.

4. Ye,r >0, 3C(e,1) > 0 € R, such that ¥V y,y' € Y, u € X, with max{||y|ly, ||y} <
,r"

[@(usy) — B(usy)| < explellullx + Cle,r)lly = y'llv

which means that we have Lipschitz continuity of ®(u; -) with respect toy for any u € X,
with u-dependent Lipschitz constant.

5. Given a sufficiently small € > 0,
/ exp <e ||uH§(> fipr(du) < +o0. (2.11)
X
6. Any (small) ball has positive [ipr-mass, i.e.,

/ ppr(du) >0, Vr > 0.
[[ullx<r

Notice that in the case of finite-dimensional, additive Gaussian noise, finoise = N (0,%), X €
RM>M “we set (Y, ||-[ly) = (RM, ||-||s;) and we have that ®(u; y) = 1 |ly — f(u)HQE , where
llally, = HE_I/za |, Va € Y(= RM). In this case, Assumptions 2.2.3.1-4 can be simplified by
the following proposition in [156], which relates to the properties of F.

Lemma 2.2.1 (Lemma 2.8 in [156]):  Let (Y, ||ly) = (RM, ||-||s) and suppose F : X — Y
satisfies the following:

i) Givene >0, 3 M(€) € Rsuch thatVu € X,

IF ()l < exp(ellull + M).

i) Yr > 0,3K(r) > 0, such that Vu,u' € X, with max{||ul|x, [|[v||x, } <,

| F(u) = F()|y, < K(r)u—o/|x.

34



2.2 Bayesian inverse problems

Then, Assumptions 2.2.3.1-4 hold for ®(u; y) = % ||ly — F(u) H22

We can state the following theorem of [156] which gives conditions for which a BIP of the form
1.2 is Lispchitz-Hellinger well-posed.

Theorem 2.2.2 (Theorems 4.1 and 4.2 in [156]):  Suppose Assumption 2.2.3 holds. Then, the
BIP associated to (1.2) is Lipschitz-Hellinger well-posed.

Existence and uniqueness of ;¥ are shown in [156, Theorem 4.1], while the stability of the posterior

measure with respect to the data y is given by [156, Theorem 4.2]

Remark 2.2.3:  Assumptions 2.2.3 presented in [40] are sufficient, but not necessary, to prove the
well-posedness of the BIP.

Remark 2.2.4 (On the use of Gaussian priors):  In the particular case where pipy = N'(m, C),
withm € Xand C a trace-class, self-adjoint, and positive covariance operator, condition (2.11) is a
consequence of Fernique’s theorem (c.f. Theorem 2.1.2), while (2.11) holds since all balls on a separable

Banach space bave positive mass under a Gaussian measure [18].

Throughout this work we will take for granted that Assumption 2.2.3 is satisfied, thus resulting
on BIPs that are Lipschitz-Hellinger well-posed. The works [94, 154] present studies on well

posedness under weaker assumptions.

2.2.3 APPROXIMATION AND CONVERGENCE

As mentioned in previous sections, in practice, it is often the case that one needs to sample from
an approximate posterior /1{ instead of the “true” posterior £¥. This approximate posterior i is

induced when

1. wy is a finite-dimensional approximation of an object in function space, which can happen,
e.g., when truncating the KL expansion of u with truncation parameter L, or in the case
where u follows a PDE-based prior discretized at level L, as in Section 2.2.1.

2. The forward mapping operator JF needs to be numerically approximated by F , which
results in an approximate potential @ (u;y) := |ly — Fi(u)|[3. This is the case, e.g.,
when the underlying mathematical model is a PDE that, for implementation purposes,
is numerically approximated (for example, via finite elements or finite differences) with

accuracy level L.

In practice, these are non-mutually exclusive approximations; in fact, they tend to go hand-in-hand
with one another, however, they each provide a different source of error; i.e., there is an error
associated to the finite-dimensional discretization of the parameter space, and there is an additional
error associated with the numerical approximaiton of the forward operator . Throughout this
work, we will denote by @ (u; y) the approximation of ®(u; y) at accuracy level L which takesinto
account both sources of error (i.e., finite-basis representation of u and numerical approximation

of F).
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FINITE-DIMENSIONAL DISCRETIZATION FOR PDE-BASED PRIORS

We now present a finite-dimensional approximation of an infinite-dimensional BIP, in the setting of
PDE-based priors (c.f. Section 2.2.1). We follow a procedure similar to that of [23]. Let (Y, ||-|ly)
be a separable Banach space, let X = Lo(D;R) and let y1p, = N(0,.472) denote the prior
measure on (X, B(X)) with A : Dom(A) — La(D;R) a “Laplace-like” differential operator
satisfying Assumption 2.2.2, with eigenvalues and eigenfunctions {A; } jen, {#; } jen, respectively.
Forany s € R, define the space

Vo= Qv e Ly(DiR) 1 Y (v,65)7,X5 < +00 5,
JEN

with norm Hv||%/s = > ien(vs gi)j)?)\;. Setting s = 1, A can be extended continuously as
AV — V*, denote now by X| a finite-dimensional subspace of V' of dimension K| and let
{9; }JKle be a basis for X|. In X we can write the finite-dimensional problem find 1 € X

satisfying
<.A1~L|_,'U|_>V7v* = <W, 1)|_>, Yo € X. (2.12)

Expanding @ on the basis @ = ZJK:L1 (ur);¢;, i can be identified by the vector u|. € R with
entries (ug ); € R.

Since h; = (W, ¢;) is a mean-zero Gaussian random variable with covariance given by E[h;h] =
(#i, @j) =: My, ,, it follows that the term by := (W, é1),..., (W, oK, )) is a Gaussian
vector in REL with covariance matrix M| € RELXEL with entries M, L, ;- Furthermore, letting
A| € RELXKL be the matrix with entries A, = (Adi, dj)vive, 4,5 € {1,2,..., KL}, one

can write a finite-dimensional version of (2.12) as
Ajug =by, b ~N(0,M).
From a practical perspective, one can then generate u_ by
ue=ACMYPE &~ N(0, Ik k),

which in turn implies that the probability measure of u| € REUis g ~ N(0, A[lMLAfl).
Typically, A and M\ are the stiffness and mass matrices in the FE literature. The Gaussian measure
of uy then induces a Gaussian measure of % in X, which is actually concentrated on X . We
can equivalently characterize @4 € X| as a suitable projection on u by the following procedure:
given u ~ N (0, A~2), define uy_such that (Auy, v )vve = (Au, v )vys, Yo € Xi. This
procedure induces a “projection” operator 73|:4 : X — X[ such that uy = ’Pf‘u. Since V is
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a Polish space, it follows from [48, Theorem 10.2.2] that one can write fipr in terms of a RCP
frpr(uL, dz) with 2z := u — u_ and a marginal prior fupr| (dug) on (Xp, B(XL)) of the form:

ppr(du) = frpr(ur, d2)ppr (dur).

Lastly, consider the discretized forward operator | : X — Y understood as the map taking
into account the state space discretization, together with the numerical approximation of the
mathematical model driving F, and suppose that Assumption 2.2.1 holds with ® : X x Y — R
replaced by @ : X x Y — R, where ®| (u; y) = ®(FL(P{*u);y), with ® as in Remark 2.2.1.
It then follows from Theorem 2.2.1 that there exists a “discretized” posterior measure i on
(X, B(X)), such that i < ppr, with

du? 1 .
q L (u) := - <xp (=®L(uw;y)), withZ = / exp (=P (u;y)) ppr(du).
Hpr L X

Notice that by proceeding in this way, the approximate posterior 1} is still defined in the infinite-
dimensional space X. On the other hand,

1
pi (du) = pf (dug,dz) = 7 exp (—Pr(u; y)) ppr(du)

1 _ -~ _
=7 P (<I>(uL; y)) frpr (uL, d2) ppr (dur) = i (dup ) fipr (ur, d2),

with
() = L (bR )
dﬂprL ZL ) ’

i.e., the posterior y' can be factorized as a posterior ;/L% on X|_and the prior RCP of u|uy . In other
words, the BIP only updated the distribution of u| in X[ and leaves unchanged the conditional
distribution of u given uy , as this part is “not seen” by the approximate forward model F .
Stuart [156] presents the following result pertaining the convergence of the discretized posterior
to uY.

Theorem 2.2.3 (Convergence of discretized posterior): Suppose that both ®(u;y) and
O (u; y) satisfy Assumptions 2.2.3.1 and 2.2.3.2 with constants independent of L. Suppose, further-
more that for any € > 0, there exists a finite K' = K'(€) > 0 such that

[@(usy) — Pu(u;y)| < K explel|ull3)E(L),  and

/ exp (2¢ [l ) ppr(du) < +oc, (2.13)
X
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with 2(L) — 0asL — oo. Then, there exists a positive constant C'y independent of € such that

dra(1Y, 1) < CaE(L).

Remark 2.2.5 (On the posterior convergence when using Gaussian priors): I the case
where fLpr = N(m,C), withm € XandC isa self-adjoint, positive, trace-class covariance operator,
condition (2.13) is satisfied as a consequence of Fernigue’s theorem (c.f. Theorem 2.1.2) for sufficiently
small €. The previous theorem is a trivial adaptation of [156, Theorem 4.6], which was originally
stated for Gaussian priors.

2.3 SoLvING BIPs

So far this chapter has focused on the formulation of the Bayesian approach to inverse problems.
As we have seen, under some technical conditions on the prior, the noise and the underlying
mathematical model generating the data, there exists a well-defined posterior probability measure
for the set of (potentially infinite-dimensional) random parameters conditioned on the observed
(also, potentially infinite-dimensional), noise-polluted data. However, we have not discussed yet a
notion of solution to such a problem. In a broad sense, we will understand the solution to a BIP
(whether it is an exact solution or an approximation of it, as we will discuss shortly) as the process
of extracting information about uly ~ uY.

In many applications arising in science and engineering, one aims at obtaining statistical quantities
of a given p¥-integrable quantity of interest Qol : X — R, such as its expected value over the
posterior measure, v [Qol] , or the probability, under the same measure, of Qol exceeding a given
threshold value A, P;s (Qol > A) = E,v[1{qo1> 4}]- For most problems of interest, however
the computation of Z(y) = [, exp(—®(u;y))ppr(du) can not be done explicitly, and even if Z
was known, X is usually high-dimensional and the mapping v — F(u) is potentially non-linear.

As such, one typically resorts to extract information from ¥ via sampling.

2.3.1 MARKOV CHAIN MONTE CARLO

These sampling techniques are broadly categorized as those which construct a Markov chain
{u"} nen (c.f. Definition 3.1.1) starting from an initial probability measure 119 and whose invariant
measure (c.f. Definition 3.1.4) is ¢4¥, in such a way that Law(u") — p¥ asn — 00, in some given
sense. In practice, since the samples u", n = 1,2, ..., N are asymptotically distributed according
to (¥, one is then generally interested in running such a chain for a large NV, discarding the first IV;,
samples as a so-called burn-in. These techniques constitute a set of quite powerful methods, with
a broad body of literature devoted to their implementation and analysis, and a rather wide array of
“generic” (i.e., problem-independent) algorithms to generate such chains. However, given that
they usually require a large number of samples, they are undeniably costly. Furthermore, for large

n+1

scale problems, for which generating a new sample u from u™ implies an evaluation of one or

more computationally expensive forward models (such as a time-dependent, non-linear PDE), the
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total computational cost associated to these methods can quickly become prohibitive. As stated in
the previous chapter, the focus of this thesis is in the development, analysis and implementation of
aspecial kind of MCMC techniques which exploit the structure of the problem and the availability
of multiple approximations in a way that the total computational cost associated to the solution of
the BIP is drastically reduced. Since MCMC methods are at the core of the work carried out in this
thesis, we will postpone their presentation to Chapter 3, where we will discuss them in detail. For
completeness, we review here alternative solution approaches that do not rely on the construction
of Markov chains.

2.3.2 APPROXIMATE METHODS

These methods present a generally cheaper, albeit less accurate, alternative to MCMC methods.
Instead of aiming to sample directly from 1%, these set of techniques aim at first finding a probability
measure 1Y such that v¥ is (i) a sufficiently accurate approximation of ;¥ and (ii) the cost of
sampling from 1Y is much lower than the cost of sampling from ;Y. This approach can be split
into three main categories; Laplace approximation and linearization based methods [23, 56, 153],
variational methods [55, 130, 129], and transport methods [110, 123, 145, 149].

LINEARIZATION AND LAPLACE APPROXIMATION

In short, these techniques proceed by first finding the Maximum a Posteriori Point (MAP) , and
then linearizing u +— F(u) around such a point Umap- If the prior is a Gaussian measure, this
approach results then on a Gaussian measure ¥ = N (1, K) approximating the posterior ;?,
with properly chosen 1, K. We now present this approach in more detail.

Let (X, (-, -, )x) be a separable Hilbert space, let Y = RM M > 1, equipped with the usual

Euclidean norm and assume the following:

1. ppr = N (m,C) forsomem € XandC a self-adjoint, positive-definite, trace-class covari-

ance operator.
2. finoise = N(0,T) for some symmetric, positive-definite matrix I' € RM*M,
3. The mapping u — F(u) is Frechet-differentiable.

Under the additional assumption that the BIP is well-posed (i.e., Assumption 2.2.3 holds), one
can pose the BIP as sampling from the posterior 1¥ given by

:/ﬁ (u) = %exp(—‘P(u; y) = %e"p <_;(y ~ Py - HUD) '

Furthermore, denote by E = Im(C'/2) endowed with the inner product (-, )¢ = (C~1/2.,C~1/2.)y,
and define J(u) := 3 [ly — F(u)|? + 3w — m||g The MAP tpm,p of 1Y, is defined as the
pointu € X that asymptotically maximizes the y¥-measure of a ball with radius € centered around
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it, divided by thefipr-measure of such a ball, as € — 0. Itis shown in [156] that an equivalent
interpretation of the MAP is as the point tpm,p satisfying

Umap = arg 11}1611;51 J(u). (2.14)

Remark 2.3.1:  Notice that U,y need not be unique without any further assumptions on F.

Remark 2.3.2:  In the case where (in addition to the previous assumptions) X is a finite dimensional
space (e.g, RY), Wnap is understood as the point which maximizes the posterior density with respect to

the Lebesgue measure.

Denoting by DF the Frechet derivative of F, one can then linearize F around Umap to obtain the

following linear approximated model for the data:
Y = F(Umap) + DF (Umap) (U — Umap) + 1. (2.15)

It is then a consequence of Theorem 6.20 in [156] that the linearized model (2.15) induces a
Gaussian probability measure v¥ = N (1, K) approximating ;¥ where

K™ i= [DF (ttmap)]* T DF (thmap) + C 7,

m .= Umap
where [DF (tmap)]* : RM 5 Xis defined as the adjoint of [DF (tmap)] defined by ([ DF (umap)|tt, v)rn =
([DF (umap)]*v, u)x, Yo € RM | w € X. This Gaussian approximation of ¥ centered around
its MAP is called Laplace’s approximation.
From a computational perspective, problem (2.14) is solved using numerical optimization al-
gorithms, such as Newton’s method. Furthermore, it is commonly the case for the covariance
operator K to be approximated by a low-rank matrix [23, 24]; this can in turn dramatically reduce
the time required for sampling from /¥,
Linearization techniques provide a first approach at approximating BIPs whose underlying mathe-
matical model is extremely computationally expensive, and for which only a few draws from /¥
can be drawn under a reasonable budget. The work [23], for example, presents such an approach
for a BIP in arising seismic-imaging at the global scale where the underlying mathematical model is
a time-dependent PDE in 3 spatial dimensions. Furthermore, they also serve as a building block to
some advanced MCMC methods, such as the so-called generalized preconditioned Crank-Nicholson
algorithm (c.f. Section 3.4 and the original references [130, 144]).
These sort of techniques are also particularly useful when the posterior measure is well-concentrated
around the MAP [153], which can occur, for example, in the case where the magnitude of the
polluting noise goes to zero. This is the case of the work by Schillings et. al. [151], which utilizes
importance sampling [3] to approximate integrals with respect to the posterior measure ¥, using a
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Laplace approximation as a biasing (importance) distribution in a (quasi) Monte Carlo quadrature.
Furthermore, the work [151] analyzes the convergence of ¥ — ¥ as ||[I'|| par — 0, ie., as the
polluting noise goes to 0; a result closely related to the Bernstein-von Mises theorem for posterior
consistency [25, 104]. Similarly, using a Laplace approximation as a biasing distribution in the
context of importance sampling, has also been proposed in [8, 9, 102] to accelerate the computation
of a so-called 7nner-loop integral for a problem arising in optimal experimental design. Of particular
relevance to us is the work [9], where the authors create a (mesh-dependent) hierarchy of Laplace
approximations, and exploit such a hierarchy using Multi-level Monte Carlo [59, 60].

VARIATIONAL METHODS

Variational methods can be understood as a generalization of the previously discussed method.
Indeed, given a family of probability measures Hg, parametrized by some 6 € © (where © is a set
of admissible parameters) the idea behind these methods is to find vy € Hg solving:

vy = arg Uenéigecz(.) (vg, 1Y),

for some suitable (pseudo-)distance dN(.) between probability measures, commonly taken as the KL
divergence [130, 129]. We now present this approach in slightly more detail. Let vy < ppr with

duy 1 B '
S () = - exp (—(wi6)).

for some measurable function ¢(+;6) : X — R, parametrized by ¢ € ©. We aim at finding
vy € Hy which minimizes:

dxi.(ve, 1Y) = Ey, [Iog (::Zm))] or (2.16)
dKL(,U,y, I/g) = Euy |:10g (jﬁj:(u))] y (2.17)

provided that such Radon-Nikodym derivatives exist. Notice that, given the lack of symmetry
of the KL divergence, if 1/; minimizes (2.16) and Vg minimizes (2.17) over the same family of
probability measures, one will have, in general, that 1/91 #* V92. Furthermore, each formulation is
better suited depending on the information available; in the case where one has access to some
samples {u" }_ from ¥ obtained by a different methodology, one can aim at minimizing (2.17),
since such an expectation can be approximated by a Monte Carlo quadrature using {uy,, }2_,. On
the flip-side, if such samples are not available a priori, then minimizing (2.16) might be a more
sensible approach. We will focus our presentation on the first direction (i.e., Equation (2.16)) and
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reiterate that the reverse direction ( Equation (2.17))) is also of interest. Under the assumption
that g ~ pipr and (¥ >~ pipy, it is easy to show that Equation (2.16)) becomes

J(0) = dxr(ve, p) = By, [A(u; )] — log (Ey, [exp(—A(u; 0))])

where A(u; 0) = ®(u;y) — (u; ). Itis not difficult to see that minimizing J over © is
equivalent to minimizing dxi (v, u¥) over ©, which is typically done using, e.g., the Robbins-
Monro algorithm [137] as it in [110, 130, 129]. A common choice of Hg is the space of all
Gaussian measures, which are, of course, uniquely characterized by their mean and covariance
operator. This is a natural choice for many problems arising in infinite-dimensional spaces [129],
since 9 (+, @) is known, as a consequence of the Feldman-Hajek theorem (see, e.g., [37]), where the
parameter 6 characterizes the mean and covariance operator of such a Gaussian approximation.
Notice that, in the case of (2.16), this particular choice is quite similar to the linearization method
discussed in the previous section.

NORMALIZING FLOWS AND MEASURE TRANSPORT

An additional set of techniques that has gained wide-spread popularity in recent years is sampling
via measure transport [165]. Throughout this subsection we will limit ourselves to the finite
dimensional case (i.e., X = RE K > 1). Letu, z € RE = Xandlet v bea probability measure
on (X, B(X)) which has a density with resprct to the Lebesgue measure, satisfying the assumption
that sampling from v and evaluating its Lebesgue density at a given point is much cheaper than
doing so for ;Y. With a slight abuse of notation, we will write v/(u) as the (Lebesgue) density of a
measure v evaluated at a point . € X. Given a diffeomorphism 7" : X — Xsuch that ¥ = Ty,
we can generate samples from ¥ by first sampling z ~ v, and then setting 7'(2) = u ~ p¥. This
procedure induces the change of probability density:

1 (u) = v(z) [det Jp(2)| ' = v (T (u)) |det Jp-1(u)],

where we have used the same abuse of notation to denote by ;¥ (u) the Lebesgue density of ¥
evaluated at u € X. We will refer to these techniques as Normalizing Flows.

The crux of this method is to find such a diffeomorphism 7. This is, in general not a trivial task and
often one needs to instead look for some optimal 7" = T} over a set of parametric diffeomorphisms
7o, satisfying some chosen concept of optimality (we will be more precise about this briefly).
Furthermore, if the target distribution ¥ has, loosely speaking, very complicated structure, a
simple T (such as a scale or shift) will not work, thus, one typically constructs Tp as a composition
of L simpler diffeomorphisms:

Ty=TfoTy o, .. 0Ty,
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which induce

and

L
)~ v =) [T (

k=1

det JTg(zk_l)‘_l> .

This poses a clear issue from a computational perspective; the complexity associated to computing
the determinant of a K' x K matrix is, in general, O (K 3), thus the total cost of evaluating 1% (u)
is of O(LK?). One can circumvent this issue by setting 7y as the set of diffeomorphisms in X
parametrized by @, such that the determinant of their Jacobian has a smaller complexity than
O(LK?). We now proceed to briefly review three appraches to this.

Optimal Triangular Transformations (OTT)

A first approach presented by Marzouk et. al., [110, 124, 125] is to consider 7y as the space of
triangular transformations parametrized by 0, i.e., diffecomorphisms of the form

fo (u1)
To(u) = fg(u:l’UQ) . VueX, (2.18)
fQK(ul,uQ, Ce UK
where, forany? = 1,..., K, fg is the it component of Ty, parametrized by 6 € ©. Notice

that the Jacobian of such a transformation is lower triangular, and as such, its determinant can
be computed in K operations. Furthermore, it is known (see, e.g., [165] ) that, whenever p¥ <
v, then there exists a unique transformation of the form (2.18) satistying ¥ = Tyv. Such a
diffeomorphism is known as the Knothe-Rosenblatt rearrangement [165]. There is some flexibility
in the choice of f§ : R" — R,i = 1,2,..., K;asstated in [110], this family of functions can be,
e.g., multivariate polynomial, or radial basis functions. Having defined 7, the OT'T approach
then proceeds by obtaining Ty = arg n}/%n dxr (Th 4v, p1¥). Alternatively, assuming that one has

access to some samples {u, }2_ ~ 1Y, one can instead create a diffeomorphism Sy : X — X
where Sg 1Y = v by minimizing dkr (Sg ¢1¥, V) (i.e., the reverse direction of the KL divergence)
over Tg. Once such a diffeomorphism Sp has been created, one can then generate samples from
vg =~ ¥ by sampling from S Ly, This approach has been proposed in [125] in the context of
a delayed-rejection Metropolis-Hastings [21] to accelerate the solution of a BIP using MCMC
methods (c.f. Chapter 3).

A similar approach to OTT has been developed by the machine learning community in the context
of generative models [55, 123]. Contrary to the OTT approach, the following two methods require
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a (potentially large) set of samples {un }N_g ~ 1Y obtained a priori. Nevertheless, they are still
useful in the context of BIPs. For the next two methods we will consider the case where T' = Ty is
a deep neural network parameterized by 6 with L layers. Typically, works in the machine-learning
community (see, e.g., the review [123]) solve the optimization over Tg using maximum-likelihood
[55].

Autorregressive flows

Autoregressive Flows (AF) model the (joint) density vy ~ p¥(u) as the product of conditional
densities [ [, #9(u; | ©1:—1). A common example in literature is when the conditional densities

are parametrized as Gaussians:

vo(ui | urio1) = N(u; | my, exp(0:)?),
where m; = T, (U1:i-1)

and ;i =Ty, (ur4-1),

where (m;, 0;) := 0;. In the above equations, the mean and standard deviations of each condi-
tional distribution are computed using (parameterized) functions of all previous variables. The

above can alternatively be written as:

i = my(ur:i—1) + exp(0i(u1:i—1)) 2 i=1,...,.K

This last equation shows how the auto-regressive model can be viewed as a transformation f from
the random variables z € R to the data u € RX.
Clearly, in this case, u; depends only on the components of z that are lower than or equal to 7 but
not any of the higher ones. This is a type of triangular transport map [149] such as the ones used
in [126].
AFs tend to be quite expressive (i.e., are able to represent a wide class of functions [123]),however,
there is a caveat associated to these methods: sampling (i.e., generating u from 2) is slow, since this
process needs to be done sequentially, i.e., one must first obtain w1, then 2, and so on up to uk.
On the flip-side, determining z from w is relatively faster; each of the above equations can be solved
for z; at the same time, resulting in

I T I S

exp(15,)

This inverse pass (obtaining z from w) is what is used in the likelihood calculations used to train
the model. To summarize this approach, it is computationally expensive to generate samples u
from it, however, evaluating the density of the approximating distribution is relatively cheap. In
summary: Samples slowly but trains (i.e., evaluates density) relatively quickly.
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In practice, one constructs several layers of AFs together with a permutation layer. This is done so

that there is some mixing between the components.
RealNVP and NICE

These are ideas presented in [43, 44] aimed at reducing the sampling cost of AFs. The ReaNVP

method [44] considers a reduced version of AF for which:

U; = 24 i:1,...,d
ui:miJrexp(Ji)zi i=d+1,...K
where
m; = Tmi(zl,.. . ,Zd)
i =T5,(21,...,24)

Hence, the transformation leaves the first d dimensions of z unchanged, while the reaming K — d
are transformed by a shift m and scalar term exp (o), construed in such a way that m and exp(o)
are some given parametric functions, depending only on the first d components of z. Note that,
in this case, both the forward and backward pass of the flow can be done fully in parallel. Its
predecessor, [43], omits the scale term exp(o;) z; altogether. Once again, one stacks several layers
of RNVP together with a permutation in order to improve expressibility. There is, of course, a
catch: such a simple form means the flow typically needs a higher number of diffeomorphisms
(i.e., a higher K value) to be able to describe complicated distributions [123].

2.3.3 SEQUENTIAL METHODS

Sequential methods (also known as filtering or particle methods), approach the solution to BIP
by building knowledge on the posterior ;¥ and/or u sequentially. More precisely, let (X, ||-||x),
(Y, ||Illy) be separable Banach spaces with associated Borel o-algebra B(X), B(Y). Furthermore,
assume there exists a sequence of probability measures 3,7 = 1,2, ... I on (X, B(X)), approxi-
mating p¥, with the property that (i) o = pupr, (ii) ¥ = vy, and (iii) v; ~ v; Vi, j = 1,..., 1.
Notice then that the posterior of interest can be written as

du?
dptpr

diy diy dvr

(u) o () % 2 ()

(2.19)

- X
dV1 dl/[_1

Given some 1Y-integrable quantity of interest Qol, One can then approximate E,»[Qol] using a

Monte Carlo quadrature with N samples by first sampling {un}N_, ud 10, and then applying
importance sampling [3] sequentially, with biasing function given by each of the Radon-Nikodym
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derivatives in (2.19). It is often the case that posterior measures concentrate around a small region
of the prior, and as such, fip is not necessarily a good approximation to £, which might in turn
have undesirable effects in the change of measure being carried out with the importance sampling.
In order to avoid this, one typically needs to apply a v;-invariant Markov transition kernel (c.f.
Definitions 3.1.2 and 3.1.4) at the i step to the empirical measure of the v;-distributed samples
(also called particles). Before applying this one step of the Markov transition kernel, each particle
{un }V_; is re-sampled with weight w; : X — [0, 1]

dv;
v, (un)
Wi (Un) = N dy;

Zm:l dv;_1 (um) .

The crux of this method relies then on the construction of the approximating measures v;. These
approximations can be, e.g., based on temperatures [14] (as presented in Chapters 1 and 4),
discretization parameters for the underlying mathematical model F (as discussed in Chapters 1, 5
and 6), [13], or both [96], where the previously discussed methodology is used in combination
with Multi-level Monte Carlo ideas [60]. Similar hierarchy-exploiting ideas have been presented by
[5,29,72,79] in the context of filtering problems for partially observed diffusions.
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In this chapter, we review MCMC methods from their theory to their implementation. More
precisely, we begin this chapter by recalling some basic concepts on Markov kernels, the workhorse
of MCMC, and then proceed to present the convergence theory of these methods. We then
conclude this chapter with a review (of an arbitrary selection of) some common MCMC techniques.
Similarly to Chapter 2, the material presented in this chapter covers a wide variety of topics, which,
for the sake of brevity, makes such a presentation necessarily short. For a more in-depth discussion
of the topics presented in this chapter, we refer the interested reader to, e.g., the monograph of Meyn
and Tweedie [113], for a thorough presentation of classical results in the theory of Markov chains;
to the book [21], for a detailed introduction to some MCMC methods and their applications, and
to the doctoral dissertations [142] and [153], together with the survey [32], for modern results
regarding the convergence and implementation of MCMC methods in function spaces.

We remark that, for the most part, this is a review chapter where we recall some well-known results
and methods in the MCMC literature, and that almost no new material is discussed, with the
exception of Theorem 3.3.2, which is taken from the appendix of our work [108], and which
presents a bound for the non-asymptotic mean-square error of an ergodic estimator obtained using
non-reversible Markov chains. Additionally, Lemma 3.4.1 (a slight generalization of Theorem 1 in
[160]), and the v-MALA algorithm (a variation of the co-MALA of [12] and the pCN algorithm
of [130]), are also, to the best of the author’s knowledge, new (albeit rather incremental) results.

3.1 MARKOV CHAIN MONTE CARLO

Let (X, B(X), 1) be a probability measure space, and let Qol : X — R be an ji-integrable function
that we will call guantity of interest. A central task in this work is to compute expectations of the

quantity of interest with respect to a reference probability measure, written as:

1(Qol) :=E,[Qol] := /XQol(u) w(du). (3.1)

Ultimately, one of the goals of this thesis is to construct and analyze efficient algorithms for
estimating expectations of the form (3.1) using MCMC techniques.

For the purposes of this work, we will consider /1 to be the posterior measure ©¥, or some hier-
archical approximation of it (e.g., a tempered version of 11, or a posterior arising from a coarse
approximation of the forward mapping operator F). Usually, it is not possible to sample directly
from p1 using so-called dzrect methods (e.g., via simple transformations of random variables, in-
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version of the cumulative distribution function, etc). Instead, one such way of sampling from
f is to use MCMC methods, which, at their core, create a Markov chain {u", n € Ny} whose
invariant probability measure (c.f. Definition 3.1.4) is ;1. Once such a chain has been obtained up
to a certain iteration /V, one can approximate [, [Qol] with the usual ergodic estimator, i.e.,

XN
E,[Qol] = N Z Qol(u™).
n=0

We formalize these concepts in the following.

Definition 3.1.1 (Markov chain):  Let u° be a probability measure on (X, B(X)), and consider
an ordered sequence of random variables {u™, n € Ny} taking values in X. We say that {u™, n €
No} isa Markov chain if (i) u® ~ p° and (i) it fulfills the Markov property; meaning, that for any
1 > 1, it holds

P (u“‘l cAu =a... vl = ﬂi) =P (u“‘l € Ajul = ﬂi) ,  AeB(X), (3.2)

where, for any j € N, we denoted by W the realization of the random variable u’.
Equation (3.2) motivates the definition of Markov transition kernel [143]:

Definition 3.1.2 (Markov kernel): 4 Markov kernel (some times referred to as Markov Transi-
tion Kernel) on a Banach space (X, ||-||x) 25 a function p : X x B(X) — [0, 1] such that

1. For each A in B(X), the mapping X > u — p(u, A), is a B(X)-measurable real-valued

Sfunction.

2. Foreachwin X, the mapping B(X) > A — p(u, A), is a probability measure on (X, B(X)).

Loosely speaking, p(u, A) can be interpreted as the (conditional) probability of moving to a set
A € B(X) given that the chain is in a current state u € X. Similarly, we can define the n-szep
Markov transition kernel given by the recursion:

P (u, A) = /X DU, Aplu, ), phu, A) = p(u, A), VA€ BX).  (33)

The Markov operator [138] associated to a Markov transition kernel is defined as follows:

Definition 3.1.3 (Markov operator): Lerp : X X B(X) + [0, 1] be a Markov kernel on a
Banach space X, let f : X +— R be a measurable function on (X, B(X)), and let p € M(X). We

denote by P the Markov operator (sometimes we will refer to it as Markov transition operator), which
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acts to the left on measures, pp — P € M(X), and to the right on functions, f +— P f, measurable
on (X, B(X)), such that

(uP)(A) = / p(u, A)pu(du), VA € B(X),
/f p(u,dz), YueX.

Similarly, for any n € N, we denote the n-step Markov transition operator associated to (3.3) by

", which clearly satisfies prtl = pnp, Throughout this work, we will make the distinction
between Markov kernel, denoted by lower case letters, and Markov operator, written with an upper
case letter. We begin with the definition of invariant measure.

Definition 3.1.4 (u-invariance):  We say that a Markov operator P is p-invariant 2f n P = pi,
t.e., if it holds that

(uP)(A) = /X plu, Ap(du) = p(4), VA € B(X).

Letr € [0, 0o]. Given a pi-invariant Markov operator P : L, (X, ) — L, (X, 1), we define its
norm by

1Py, s, == sap |Pflly, . f€ Ly,

1z, =1

with L, (X, ) defined as in (2.5). Of particular importance is the operator norm in the space L2,
which induces the L,-spectral gap ~y, [ P] defined by

V[Pl i=1— ”PHL9—>L9.’

It will be shown shortly that this quantity plays a crucial role in the convergence of Markov chains.
Given a Markov operator P : L, (X p) = Ly (X, ), wedenote by P* : L./ (X, ) — Ly (X, )
its adjoint operator, where & + 1 = 1. Letting f : X — R be a yi-integrable function, and
denoting fi : Ly (X, u) — L (X ft) the “averaging operator” that associates to f the constant
function if := [y f(u)u(du), it can be shown (see, e.g., [143, page 42]) that

1P —ally, o, = 1P* = Al -

Moreover, we define the so-called pseudo-spectral gap ([127]) of a Markov operator P : Lo (X, p1) —
Lay(X, ) as follows:

Wl P] = max { (P PH k| k€N, (3.4)
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3 Markov chain Monte Carlo

Given a pi-invariant operator P, it follows from [143, Lemma 3.9] that for any measure v €

M (X, )

()

A related concept to invariance is that of reversibility:

Definition 3.1.5 (Reversibility): 4 Markov kernelp : X x B(X) + [0, 1] issaid to be reversible
(or p-reversible) with respect to a measure p € M(X) if

/p(u,A)u(du):/p(u,B)u(du), VA, B € B(X). (3.5)
B A

which is sometimes written in the short-hand form

p(u, dv)p(du) = p(v, du)p(dv). (3.6)

It is straightforward to verify that if a Markov kernel is reversible with respect to a probability

measure /i, then its associated Markov operator P has £ as an invariant measure. Indeed, for any

set A € B(X),

(by reversibility)
PA) = | plu Ay ™= [ o) = [ plan) = ua),
where the second-to-last equality comes from the fact that for any u € X, [y p(u, dz) = 1 (since
p(u, -) is a probability measure on X). The reverse is not true, in general. A reversible Markov

operator P : Lo(X, p1) — La(X, p) (resp. M2 (X, ) — Ma(X, i) is known to be self-adjoing;
indeed, forany f, g € La(X, 1), one has that

(Pf,g)L, —/X(Pf)(U)g(u)M(du) = /x/xp(u’dv)f(”)g(“)M(dU)
:/X/XP(U,dU)f(U)g(U),u(dU) = (f, Pg) (by reversibility.)
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3.2 Convergence

Similarly, for any v, m € Ma(X, p),

P v, = /X DT ) = [ T ([ pedosian)

= [ [ etom(v. a0 @yt

/ / p(u, dv) j:( )u(du)  (by reversibility)

= gud(ﬂ—P)u u) =\, m™
Xdu()(/x (uaoyrtan)) = [ £ T ntd) = 7P

This self-adjointness plays an important role in the construction of MCMC methods, as shown in
[127, 143]. On the one hand, it is known (see, e.g., [15, 89, 116]) that some non-reversible chains
converge faster to their invariant measure. On the other hand, under some technical conditions,
one can obtain sharper error bounds when computing ergodic estimators with samples obtained
from reversible chains ( see e.g., [143] and Theorems 3.3.2 and 3.3.1).

Itisknown (see, e.g, [143, Lemma 3.8]) that forany r € [1, 00|, Markov operators P : L, (X, i) —
L, (X, ) with invariant measure f induce a weak contraction, i.e., forany f € L, (X, 1) it follows
that

I1Pfllp, <Iflz,, and ([P, 7, <1. (3.7)

Furthermore, notice that for the particular case where f = 1, onehas Pf = [\ 1p(u,dv) =
p(u, X) = 1, ie., the function f = 1is an eigen-function of the operator P associated to the
eigenvalue A = 1and || P||, = 1.

3.2 CONVERGENCE

It is usually the case that i # 4, i.e., the Markov chain is not started from stationarity. This
motivates the convergence study of u’ P — 1. We begin by defining a notion of convergence for
Markov chains.

Definition 3.2.1 (Geometric ergodicity): Lerr € [1,00]. Given a pi-invariant Markov
operator P and a probability measure i° € M, (X, 1), wesay that the Markov chain {u™, n € N}
generated by P with u® ~ p° is M,-geometrically ergodic if there exists p € (0,1) and a finite
M o0 € Ry such that

H,uOP” - ,LLHMT < Myop", neN. (3.8)
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3 Markov chain Monte Carlo

Alternatively, given a bounded function M : X — Ry, we say that the Markov chain {u",n € N}
generated by P is M,-geometrically ergodic if there exits p € (0, 1) such that

" () — 1)L, < M(u)p", ¥ €N, forpraeu € X. (3.9)

We say that a chain is uniformly ergodic if either M 0 in (3.8) is independent of the initial measure
10 or if M (u) in (3.9) is uniformly bounded.

In practice, one typically runs the chain {u”}f:[jonb for N + ny, iterations, where the first ny

samples are discarded to reduce the bias associated to not starting at the invariant distribution (this
is the so-called burn-in period). However, it is difficult, in general, to quantify an appropriate value
(or choice) of ny, (see, e.g., [83] and [143]).

There are two closely related approaches for studying the convergence of Markov chains in general
state spaces ([65, 113, 143]), namely:

1. Spectral methods. A first approach is to examine the spectral properties of the operator
P. More precisely, if the Markov transition operator P : L, (X, 1) — Ly(X, ) has
a positive L,-spectral gap, then, it is relatively straightforward to show that P generates
an M,-geometrically ergodic chain, where % + % = 1. Investigating convergence of
Markov chains in terms of the spectral properties of P (in particular, the existence of an Lo-
spectral gap) can be traced back to the work [98], which relies upon the so-called conductance
arguments presented in [27] (which has been reprinted in [28]). A closely related approach
is presented in the work [65], where the authors consider the contractive properties of P
on a Wasserstein metric in order to show the existence of an La-spectral gap (and hence,
geometric ergodicity) for the preconditioned Crank-Nicolson (pCN) algorithm in function
spaces (c.f Section 3.4). Spectral arguments have also been used in the analysis of hierarchical
methods, in particular in the convergence analysis of a type of parallel tempering presented
in [171]. The convergence analysis for our Generalized parallel tempering method ([95])
presented in Chapter 4 also relies upon these arguments. Furthermore, spectral methods
can be used to obtain rigorous non-asymptotic error bounds on the Mean Squared Error
(MSE) of ergodic estimators; the work [143] presents one such bound under the additional
assumption of reversibility (c.f Theorem 3.3.1). A similar bound that does not require the
extra assumption of reversibility (at the cost of being less sharp) is presented in Theorem
3.3.2 (taken from our work [108, Appendix]).

2. Splitting methods. An independently developed (and perhaps more classical) approach
for studying the convergence of Markov chains is based on renewal theory, splitting, and
coupling arguments as in [82, 83, 99, 113, 120, 139, 140, 159]. In this case, one requires
the chain to satisfy certain conditions (c.f. Definitions 3.2.2 through 3.2.8), under which
one can study the convergence theory of the Markov chain by splitting its trajectory into
independent blocks [120], and then using the coupling inequality (c.f. Equation (3.12))
to bound its convergence in terms of the total variation distance. This approach has been
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used to study the convergence of classical MCMC algorithms, such as the Metropolis-
Hastings and the Gibbs sampler [140, 138], and will be used to study the convergence of
our Multi-level Markov chain Monte Carlo algorithms presented in Chapters 5 and 6. Itis
worth mentioning that, although these coupling arguments were originally motivated in the
theoretical study of convergence of Markov chains, recent works, such as [53, 70, 76, 136],
have proposed practical coupling algorithms for Markov chains, that can be used in the
context of unbiased estimation. These coupling techniques will play a significant role for
the methods presented in Chapter 6.

We now present a summary of these two approaches. The following two results are of central

importance for the first (i.e., spectral) approach:

Lemma 3.2.1 (Spectral gap implies geometric ergodicity): Foranyr’' € [1,00], let P :
L (X, 1) — Ly (X, 1) be a Markov operator with a positive Lyi-spectral gap ; that is, 1 —
IIP|| 10,10, > 0. Then, the chain generated by P is M -geometrically ergodic, where % + % =1.
Proof. This s the proof of [143, Proposition 3.17], however, we include it for completeness. Given
some initial measure u’ € M, (X, u), and setting (1 — 7,-[P]) = p, we have that

d(u¥—
608"l = 6= ) P, = Py
L,
Since the function f = d(#;)l;#) € L% (X, w), we then have that
d(ul—
I P g 10~ g, = 1P i 18— bl
L,
= (L= [P)" |1° = p]| g, = Myop"™
_Z—I\ﬁ/_/
P Muo
O

The converse of Lemma 3.2.1 is true for the Lo-spectral gap, under the additional assumption of
reversibility, as shown in [138, Theorem 2.1].

Lemma 3.2.2 (L2-Geometric ergodicity and reversibility imply an Lo-spectral gap): Let
P be a p-reversible Markov transition operator. Then, P has a positive Lo (X, p1)-spectral gap if and
only if P is La(X, p)-geometrically ergodic.

Proof. See [138, Theorem 2.1]. O

We now present some definitions and results necessary for the splitting method approach.
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3 Markov chain Monte Carlo

Definition 3.2.2 (¢-Irreducibility):  Given a strictly positive measure 1 on (X, B(X)), we say
that a Markov kernel p : X x B(X) — [0, 1] #s ¢p-irreducible if for all measurable sets A € B(X)
with Y(A) > 0and for all uw € X, there exists a positive integer n, possibly depending on w and A
such that

p"(u, A) > 0.

We say that a chain is -irreducible if it is generated by a -irreducible Markov transition kernel.

1-Irreducibility is the weakest form of stochastic stability, and can be understood as a statement
on the “accessibility ” of the state space; loosely speaking, this accessibility can be understood as
“how easy it is to reach a set A € B(X) from a point u € X, when using a Markov transition

kernel p(-, -)”.

Definition 3.2.3 (Harris recurrence): A set A € B(X) is called recurrent if’
P(chain visits A infinitely often) = 1.

We say that a Markov chain is Harris Recurrent if it is 1)-irreducible and every set A € B(X) with
Y(A) > 0is recurrent. Similarly, we say that an operator P is Harris recurrent if it induces a

Harris recurvent chain.

Intuitively, one would expect that the previous condition must be satisfied for a Markov chain to
converge. Indeed, Meyn and Tweedie [113, Theorem 10.0.1] present the following result.

Theorem 3.2.1:  Let {u", n € N} be a Harris recurrent chain generated by a Markov operator
P. Then, {u™, n € N} bas a unique (up to constant multiples) invariant measure [i (notice that fu

is not necessarily a probability measure).

Furthermore, it is known from Theorem 17.0.1 (i) in [113], that, given a Harris recurrent, p-
invariant Markov chain, the law of large numbers holds for any g € L1 (X, ). Itis not always easy
to show that a Markov chain is recurrent, thus, one typically needs to resort to some additional

concepts and results in the study of Markov chains.

Definition 3.2.4 (Small set):  Given some positive, finite measure v on (X, B(X)), we say that a
set S € B(X) is (v, m)-small if there exists an m € N such that

p"(u, A) > v(A), YuelsS, AecB(X). (3.10)

We say that S is small if (3.10) holds withm = 1.

Notice that one can replace the right hand side of (3.10) by 67, where 6 := [, v(du)and & = v/§
is the probability measure induced by normalizing v. The name “small set” is a bit of a misnomer;

in practice, a small set S could be arbitrarily large (in fact, it could even be the whole space X for a
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given type of chain). Some authors refer to them as est sets. A related concept is that of petite set,
defined next.

Definition 3.2.5 (Petite set): A ser C' C Xis called petite (or (no, 0, U )-petite), if there exists
0 > 0,a € (0,1), a probability measure U on (X, B(X)), and a positive integer ng such that

no
(1-a) Za"P"(u, ) >o0(-), YueC.
n=1

Notice that petite sets then allow for the covering of the minorization condition in (3.10) by a
combination of states (see, e.g., [113] for a thorough discussion on what this implies). We remark
that a small set is always petite, however, the reverse is not always true, in general. An important

result regarding irreducibility and petite sets is given next.

Theorem 3.2.2:  Given some Markov operator P, let T'{ := inf{n > 1 : u" € A}, where {u"}
is an irreducible Markov chain with operator P starting at uY = w, denote the bittin g time of the set
A € B(X) from the state w. The Markov chain generated by P is Harris recurrent if there exists
some petite set C' € B(X) such that P(14 < 00) = 1,Vu € C.

Proof. See [113, Theorem 8.3.6]. O

Thus, instead of showing Harris recurrence of the chain directly, one typically looks for such a
petite set C' to which the chain always returns with probability 1.

Definition 3.2.6 (Aperiodicity): A -irreducible chain {u™} is called aperiodic, if there exists
a small ser S with (S) > 0and n € N such thar

inf p"(u,S) >0, Vn>n.
ues

Aperiodicity can be verified in light of the following result presented in [113].

Lemma 3.2.3:  Let {u" }pen be a -irreducible Markov chain induced by a Markov transition
kernel p. If there exists a w € X such that p(u, {u}) > 0, then, the chain is aperiodic.

A first result concerning the convergence of Markov chains, as presented by e.g., [141], is that if a
Markov operator P is pi-invariant,i- irreducible, aperiodic, and Harris recurrent, it then follows
that

lim [l (u,) ~ 1()pg, =0, Vu€X.

n—o0
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3 Markov chain Monte Carlo

The previous result however, does not quantify the rate at which the Markov chain converges to
its target probability measure. We will present the so-called regeneration construction to quantify

such a rate. Given a small set S, notice that if one writes p(u, -) as

p(u,-) = 60(:) + p(u, ) — 60(:

~—

= o9() + (1 - o) ) Z 00
=:p(u,")
=o0v()+(1=9)p(u,-), ues, (3.11)

where the minorization condition in (3.10) guarantees the positivity of p(u, -), sampling from
the probability measure p(u, -) can be understood as sampling from the mixture (3.11), i.e., with
probability (1 — &) one samples from the auxiliary kernel p(u, - ), and otherwise, one samples from
() independently of the current state of the chain. By using arguments from renewal theory,
[113, 120] one can show that the chain regenerates (broadly speaking, “forgets about the past”)
with probability d, i.e., every time we sample from ©. To see this, we begin by defining the concept
of coupling, rogether with the so-called coupling inequality.

Definition 3.2.7:  Given two measures 1, v on (X, B(X)), we say that a probability measure T
on (X x X, B(X x X)) is a coupling of 1 and v if (u,v) ~ T, impliesw ~ pand v ~ v.

It is known that whenever X is a Polish space (i.e., any separable, completely metrizable topological
space), the following coupling inequality holds [99] for any coupling I':

I = vl <Pr(u#v), (u,0) ~T. (3.12)

Now, let P be a pi-invariant, ¢)-irreducible, and aperiodic Markov transition operator satistying a
minorization condition of the form (3.10). Furthermore, let S be a small set, define S := .5 x S,
and consider two pi-invariant Markov chains {u",n € N}, {v",n € N} generated by P with

0

u ~ vand v ~ p(ie., {v", n € N} is started at stationarity). We generate a coupling I of the

chains {u",n € N}, {v", n € N} by using Algorithm 1.
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Algorithm 1 Coupling Construction

1: procedure COUPLING cONSTRUCTION(,u,u,P,ﬁ,é,S’).
2 Sample u® ~ vand v% ~
3 forn=0,1,... do
4 ifu™ = v" then
5: Sample u™ ! ~ p(u™, ) and set v T = 1
6 else
7 if (u™,v") ¢ S then
8 Sample u" Tt ~ p(u”, ), v" L ~ p(v™, -) independently
9 else
10: with probability J sample w1l ~ p, and set v = ¢!
11: Otherwise, sample u™ ™! ~ p(u™, -), v" 1 ~ pH(u™, -), independently.
12: end if
13: end if
14: end for
15: Output {u", v" }pen

16: end procedure

Furthermore, denoting by T € N the random time at which coupling occurs, it then follows from
the coupling inequality that

Ip" () = n()||,, < Pr(o" # ™) < Bp(T > n). (3.13)

Under the additional (restrictive) assumption that S = X, we have the first convergence theorem.

Theorem 3.2.3 (Small state space implies uniform ergodicity): Let P be a p-invariant,
W-irveducible and aperiodic Markov operator satisfying a minorization condition of the form (3.10)
with S = Xandn = 1. Then, the Markov chain generated by P is M1-uniformly ergodic.

Proof. Notice thatsince S' = X, atany given step, the chain can sample from  (and hence, couple)
with probability §. Thus, the random variable T" follows a geometric(J) distribution, and as such,
Pr(T = n) = §(1 — §)"L, for which it follows that Pp (T > n) = (1 — §)™. Thus, from the
coupling inequality (3.13) it then follows that
15760 ) = 1Oy = 2 9700 ) = 1)l < 201~ 6™
O

Remark 3.2.1: It is shown in [113, Theorem 16.0.2] that the converse of the previous theorem
holds true as well, i.e., a Markov chain is uniformly ergodic if and only if the entire state space is a
small set.

57
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However, this coupling argument can only be applied whenever a minorization condition of the
form (3.10) holds, i.e., whenever the chain is at a current state © contained in a small set. In order
to show convergence in the case where S C X, the chain would then need to drift towards this

small set. We now formalize this intuition.

Definition 3.2.8 (Drift condition): A4 Markov chain induced by a Markov operator P is said
to satisfy a drift condition if there exist a function V : X — [1,00], a small set S and positive
constants A € (0,1), b € Ry, such that the following bolds:

(PV)(u) <AV (u) + bl guesy, u€X (3.14)

Here, the function V : X — [1, 00] is called a Lyapunov function, and 1 (¢ sy is the characteristic
Sfunction of the set S.

Notice that (PV')(u) can be understood as ...y [V (u)[u™ = u] , where the expectation is
taken with respect to the measure p(u, -). Defining AV (u) := (PV)(u) — V (w), it is easy to see
then that AV (u) < 0 whenever the chain is not in the small set, thus making the chain drift, on
average, to the regions of X where V() is small (i.e., to S). Furthermore, it does so in such a way
that for points u € X for which V' (u) is large, this drift is faster. Intuitively ([83]), this implies
that once the chain leaves the small set .S, it tends to return rather quickly to it. This motivates the

following classical results.

Theorem 3.2.4 (Existence of an invariant measure, and convergence to it): Let P bea
Y-irreducible and aperiodic Markov operator satisfying a drift condition as in Equation (3.14).
Then, it holds that

1. There exists a unique invariant probability measure |1 for P.
2. The chain generated by P is M1-geometrically ergodic.

3. M -geometric ergodicity is equivalent to
" (u, ) — p()lly < MV (u)p"™, Vn>0,paeuc X, (3.15)
where HM()HV ‘= sup ‘:u(f)|a MeRy, pe (01 1)
[fISV

Proof. This is a standard result in the Theory of Markov chains. See, e.g., [113, Theorem 15.0.1]
O
It is easy to see that Markov chains for which the bound on the right hand side of (3.15) does not

depend on w are uniformly ergodic. The following result demonstrates the reverse implication

Theorem 3.2.5 (Bounded Lyapunov function, [113]): A Markov chain on a general state
space X is uniformly ergodic if and only if it satisfies a drift condition of the form (3.14) with a
bounded Lyapunov function V- : X — [1, Vinax)s Vinax € Ry, and a small set S.
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3.3 MSE bounds

Proof. See [113, Theorem 16.0.2, implication viii]. O

A further consequence of a drift condition is the existence of a central limit theorem, as shown in
Theorem 17.0.1(ii-iv) of [113]

Theorem 3.2.6 (Drift condition and Harris recurrence imply a central limit theorem):
Let P be a p-invariant, Harris recurvent Markov operator satisfying a drift condition of the form
(3.14). Denote by {u™, n € N} the Markov chain obtained from such an operator with u® ~ u°,
let f : X = Rbea funa‘z’on mtzkﬁ/z'ng 2< V wbere V' is the Lyapunov function of the drift
condition, and define g(u) fx ). Then, the constant

Vulf] == Bulg? ()] + 2> E, [gu®)g(u™)],
n=1

is well-defined, non-negative, and corresponds to the asymptotic variance
2
ngnoo NE <Zg ) :Vu[f]'
Furthermore, if V[ f| > 0, then the central limit theorem holds for f, i.e,
1 - D
VN (N z:lf (u™) = E;Af]) = N0, V,[f]), asN — o0,

where we used the symbol B 1o denote convergence in distribution.

Proof. See Theorem 17.0.1in [113]. O
In practice, the asymptotic variance V, [ f] is estimated using, e.g., batched means ([54, 57]), window
methods ([57]), or with regeneration arguments as in [93, 92].

3.3 MSE BOUNDS

3.3.1 NON-ASYMPTOTIC BOUNDS ON THE MSE: KNOWN RESULTS

Let f : X — R be a p-integrable function, and denote by {u”}N+nb the (finite-length) Markov
chain obtain from a geometrically ergodic, ji-invariant, Markov operator P, with u® ~ 0.
Furthermore, denote by f n, = + SN F(ut) the ergodic estimator obtained from the
Markov chain generated by P. We define the Mean Squared Error (MSE) of the chain as

~ A 2
MSE(fN,nb;MO) = ]E,uO,P |:<fN,nb - Eu[f]) :| , (316)
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3 Markov chain Monte Carlo

where E 0 p[-] denotes expectation with respect to the Markov chain started from an initial
measure 1°, and induced by the p-invariant Markov operator P. It is of interest for practical
applications to obtain (or at least, to quantify) non-asymptotic error bounds for the MSE (3.16).
In the context of this thesis, such will be the case in Chapters 5 and 6, where verifying the cost-
tolerance assumptions of ML-MCMC algorithms ([45, 108]) will require a non -asymptotic bound
on the MSE of a given estimator in terms of its asymptotic variance (c.f. Assumption T3 in Chapter
5).

Results providing bounds on (3.16) are, to the best of the author’s knowledge, rather scarce, with
only a handful of results on this topic. In particular, under the assumption of a drift condition on

P, with Lyapunov function V, the work [92] presents a bound on the form

2
MSE(fiymy; 1) < ( Vulf] <1+ CO(P)> L al? f)) |

N N N

where the terms ¢;, ¢ = 0, 1, depend on the constant § in the minorization condition (3.10),
together with the constant A and the Lyapunov function V' in the drift condition (3.14). Under
the same assumption of a drift condition, a similar bound is presented in [93, Theorem 3.1] of the

form

i 1 g 1 I 2Bp co(V, 1°, 1)
MO i) = (p v )(”1—p> Gl =yl

ueX

for some co(B, V, u, u°) > 0, with B, V, p once again as in (3.15).
The work [143], presents a non-assymptotic bound on the MSE for reversible chains.

Theorem 3.3.1:  Let f € La(X, ), be a p-square integrable function and write g(u) = f(u) —
Jx f(u)p(dw). Let P be a pi-reversible Markov operator and assume the chain generated by P starts

from an zmz‘ml probability measure i° < p, with dd% € Loo(X, ). In addition, suppose that

R1. (Lo-spectral gap) there exists b € (0, 1) such thar

1P L9 (x )= L9 (x,p) < b5

R2. (Li-exponential convergence) there exists ¢ € Ry, a € (0, 1) such that

d(u°P™)

Hlu'opn - MH/VM(X,,u) = H dM

-1 < ¢a™

L1(X,u)
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Then, the non-asymptotic MSE is given by

N 2 2|42 1| am

1 V[l 2 H dp HL

E eyl < R = 1
,uOP N;g( ) = N (1—b) N(l_a)Q ) (3 7)

where the first term in the parenthesis is associated with the variance contribution to the MSE, whereas

the second term corresponds to the statistical squared bias and is of higher order in N.

Remark 3.3.1:  The additional assumptions R1 and R2 in Theorem 3.3.1 are satisfied for a
geometrically ergodic, pi-reversible Markov operator P.

3.3.2 NON-ASYMPTOTIC BOUNDS ON THE MSE: NEW RESULT FOR NON-REVERSIBLE
CHAINS

Let P : Lo(X, ) — Lo(X, pt) be a p-invariant Markov operator for some probability measure
e on (X B(X)), and recall the averaging operator [if : Lo(X, p) — Lo(X, p), f — p(f) =
fx (du). We now present a bound similar to that in (3.17). This bound generalizes that of
Theorem 3.3.1 to the case where R1 and R2 do not necessarily hold (e.g., whenever the Markov
chain is not reversible), using the pseudo-spectral gap. This bound is an original contribution, first

presented in our work [108].

Theorem 3.3.2 (Non-asymptotic bound on the mean square error) Let f € La(X, ), be
a ji-square integrable function and write g(u) — Jx f(u)pu(du). Let P be a p-invariant
(but not necessarily ji-reversible) Markov operator wzth 'yps[ ] > O, and assume the chain generated

by P starts from an initial probability measure u° < i, with % € Loo(X, ). Then,

1 AT
MSE(fyn,: 1) = Bop | 57 D 9(u™™)| < 05 (Cin + Cu), (3.18)
n=1

0
where Ciny = (1 + ﬁ) ,Chs = <2 H % -1 HLOO (1 + - [P] ) >, where Yy P) is the psendo-
spectral gap of P, defined in (3.4).
The proof of Theorem 3.3.2 is decomposed into a series of auxiliary results.
We present a first bound of the form (3.18) for chains which are started at stationarity (i.e., whenever

1 = p). Although this is usually not the case, the following Lemma is useful in the proof of
Theorem 3.3.2.
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Lemma 3.3.1 (MSE bound starting at stationarity): Under the same assumptions as in
Theorem 3.3.2 and with 1i° =y, it holds
(570
Vps [P] .

1N
w3 290"

Proof. We follow a similar approach to those presented in [127, Theorem 3.2] and [142, Section

< Vil

]

MSE(fN ny=0;

3]. To ease notation, for the remainder of this proof we write Ly = Ly(X, i), ¢ € [1, 00]. We
can write the MSE of a Markov chain generated by P starting at /4 as

2

Eup

N
= 2 2 Enrlg(n)) Z Z E,plo(u)g(w)). (3.19)
n=1

1 N
NZQ(UH)
n=1 7=1 1=5+1

Working on the expectation of the second term on the right hand side we get from the Cauchy-

Schwarz inequality that

Ey,plo(u’)g(u)] = (g9, P g), = (g, (P = 1) 7 g)u
< lgllz, || (P~ ﬁ)i_jHLQHLQ :

Notice that for any k > 1, we have

=y
z j ~\k k
H(P ’u HLQ’—)LQ - H M) ‘LQHLQ

)
= | =@y ep - iy (3.20)

Lo—Lo

where | -] is the floor function. Now, let &y be the smallest integer such that
k P| = P*)kPSPkPS =1 (P*—AkPS(P_’\kPS 3.21
ps'YpS[ ] = ] 1) 1) ) (3.21)

LQ!—>L2

which is strictly positive for uniformly ergodic chains (see [139, Section 3.3]). Then, from (3.19),
(3.20), and (3.21), we obtain the following:

g N-1 N . . 9 NZ1 N
3 O 2 Ewrlg(ug(d)] < WZ Z g%, (1= Fpsves P

j=1 i=j+1

[N
—
o[
< ||

S
[
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3.3 MSE bounds

For notational simplicity we write 0 = (1 — kpsYps[P]). We then have the following:

N—-1 N o 2 fe’e) 2 o]

2 1=y 2llgll ey 2lgllz, k 1
LY loll ) < 2 55 i 2ol 5
Jj=11=j+1 m=0 m=0

2 2 1
_ 2||9||L2 kps 1 _ 2||9||L2 kpsl+Q2
N 1—ol/2 N 1-p

A lgll7,

- nyps[P]

where the second inequality comes from the definition of the floor function |- |.
We shift our attention to the first term in (3.19). Using Hélder’s inequality with ¢ = o0, ¢/ = 1,
and the fact that P is a weak contraction in Lq(X, ), forany ¢ € [1, 00], we obtain the following:

RS 0 2, n 2 HQQHLl
7z 2 Eurlo(u)? Z P < Z 1Prg]],, < :
n=1 n=1

Lastly,

I92ll,, = [l @latan) = [ (@) = Lol

Hence, we obtain the following bound:

lgll?
N2 Z E,.plo(u™)?] < N 2. (3.22)

Thus, from (3.19) and (3.22), with the observation that ||g||i2 = [ (f(u) = i(f))?p(du) =

V[ f], we finally obtain,
i H 17 4
i < )
1+
N Yps[P]

1N
w3 290"

The previous result should be compared to [127, Theorem 3.2] and [142, Theorem 5]. We consider
the more general case where the chain is not started from stationarity, i.e., when ud ~ ,uo, where
1 < puis a probability measure on (X, B(X)). We recall the following result from [143].
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3 Markov chain Monte Carlo

Lemma 3.3.2:  Denote by ny, € N the burn-in period and let {u™ }pen be a Markov chain
generated by P starting from an initial measure 1° and invariant probability measure 1, with
p° < . Under the same assumptions as in Theorem 3.3.2, it holds that:

N 2 LN 2
n+n _ i+n
9 N—-1 N
+xz 2 D APt g), (3.23)
=1 k=j+1
where
i i~ dp® .
H'(h)=((P"—f)h, (| ——1)) , €N, he Ly(X,pu),
du "
Proof. See [143, Proposition 3.29]. 0

We can now prove Theorem 3.3.2.

Proof of Theorem 3.3.2. Once again, for the remainder of this proof we write Ly = Lq(X, 1t), ¢ €
[1, 00]. From Lemma 3.3.2 we get

Hj+nb(92) _ <(Pj+m7 _ ﬁ)g2, <(iil,: _ 1>> , (3.24)
I
wingpig) = (- e, (S 1)) L 62s)
K 7

Using Holder’s inequality with ¢’ = 00, ¢ = 1 on the right hand side of (3.24) gives

H.]+nb H -1 L (Pj+nb — ﬁ)92HL1

( Pj +np

S T

where the last inequality comes from the definition of operator norm. Moreover, since the Markov
< 2,Vj € N, which gives

operators are weak contractions, we have that || (P/™" — [i)

the bound

HLll—)Ll

2
91, -

H.]Jrnb(g <2 H -1
Les
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3.4 Review of common techniques and algorithms

Summing over j results in

N 2
1 : 2|lgllZ, ||dp’
Jtne (2 < Lo -1 . 2
N L) < — 5 w U, (3.26)
j=1 oo
Following similar procedure for (3.25) we obtain
win(gptig) <2 | 1] g

Furthermore, from Hélder’s inequality (with ¢ = ¢ = 2) and the fact that fi(g) = 0,

(P— )" g]

k—j k—j
lotP=al|, <l |[Ps]|, = lall,

(P— )|

Lo

1) k—j
ELkPSJJ’

2
< lglz,

2
Lo Lo S HgHLQ (1 - kpszs[P])

where the last inequality follows from the same pseudo-spectral gap argument used in the proof of
Lemma 3.3.1. Adding over j and k produces

0
du”

™ (3.27)

2 SN o oy < Sl
N2 L 2 (9 g) < N'Yps
Jj=1 k=j+1

Loo

Notice then that Equations (3.26) and (3.27), provide a bound on the second and third term in
Lemma 3.3.2. Lastly, combining these results with Lemma 3.3.1 and once again observing that

Loo <1+ 'ijp]>> .

I g||%2 = V,[f], provides the desired result

(3.23) < Vul/] <1+ 2P]> +V‘;\[ff] (2’ ‘1{5—1

N Vps [

3.4 REVIEW OF COMMON TECHNIQUES AND ALGORITHMS

Perhaps the best known MCMC technique is the Metropolis-Hastings (MH) algorithm [68, 112].
Loosely speaking, this algorithm constructs a Markov chain by iteratively proposing a (possibly
state-dependent) candidate state, and accepting or rejecting it as the new state of the chain, in such
a way that the resulting Markov transition kernel associated to this process is invariant with respect
to a desired probability measure. More formally, given a state u € X, a target probability measure
{, and an auxiliary Markov transition kernel Q(u, -), denote by h(du, dv) = Q(u,dv)u(du).
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3 Markov chain Monte Carlo

Furthermore, defining AT (du, dv) as h(dv, du) and assuming that AT (du, dv) < h(du,dv),
one can define the Metropolis-Hastings acceptance probability as

a(u,v) = min {1, cthT(u, v)} . (3.28)

Here, o(u, v) corresponds to the probability of accepting a proposed state v (potentially depending
on the current state u), given that the current state of the chain is u. As it is often the case, the
absolute continuity of AT with respect to h is relatively straightforward to show in the case where
Xis a finite-dimensional space. One needs to be more careful to show this absolute continuity
whenever X is an infinite-dimensional space. The following slight extension of [160, Theorem 2]

(c.f. Remark 3.4.1) provides a way of constructing such measures.

Lemma 3.4.1 (Extension of Theorem 1 in [160]):  Consider a Metropolis-Hastings algorithm
with target measure p(dw) and proposal kernel Q(u, dv). Assume there exists a reference measure
v(du) and a reference kernel Qop(u, dv), such that p < v and Q(u, dv)pu(du) = h(du,dv) <
hrp(du, dv) = Q,(u, dv)v(du). Then, there exists a B(X)-measurable function f : X — Ry
such that (du) = f(u)v(dv) and a B(X) ® B(X)-measurable function § : X x X — Ry such
that %p (u,v) = g(u, v). Furthermore, if in addition it bolds that

1. [ and g are positive h,p—a.s., and
2. Qupis v-reversible as in (3.6) i.e, v(du)Q,(u, dv) = v(dv)QA(v, du),

then, there exists a B(X) ® B(X)-measurable function g : X x X — Ry such that dng%;)) (v) =
g(u,v). Furthermore, hT (du, dv) < h(du, dv), with

ﬂ(u oy = 1) 9w
dh fu) g(u,v)

Thus, the Metropolis-Hastings acceptance probability of the form (3.28) is well-defined.

Proof: On the one hand, since h(du, dv) < hyef(du, dv), one has that
f(u)V(du)Q(u, d’U) = /J,(dU)Q(U, dv) = g(ua U)V(du)Qref(uv Ch))

Let A := {(u,v) € X2 : f(u) = 0}, which satisfies hf(A) = 0. Then, setting g(u, v) :=
g(u,v)/ f(u), we have that

Q(u,dv) = g(u, v)Qref(u, dv),

and ———— =g(u,v), herae.

eref(uv )
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3.4 Review of common techniques and algorithms

On the other hand, since Q) ¢ is v-reversible, one then has that v (du) Q (1, dv) = v(dv) Qee(v, du).
Multiplying both sides of this equation by f(u) f (v)g(u,v)g(v, u) then gives:

fW)g(v,u) (f (w)v(du)g(u, v)Qre(u, dv)) = (f(v)v(dv)g(v, u)Qret(v, du)) f(u)g(u, v).
Since p(du) = f(u)v(du) and Q(u,dv) = g(u, v)Qer(u, dv) , one then obtains:
f(0)g(v, u)p(du)Q(u, dv) = f(u)g(u, v)u(dv)Q(v, du).

Furthermore, recognizing that h(du,dv) = p(du)Q(u,dv), and since f and g are positive
h.f—a.e., it then follows that

AT (du,dv) = p(dv)Q(v, du) = mu(du)Q(u,dm
Mh(du, dv),  huf—ae.,

f(u)g(u,v)

which implies AT (du, dv) < h(du, dv). O

Remark 3.4.1:  This previous result has also appeared in [40], where it is used to theoretically

Justify the preconditioned Crank-Nicholson algorithm. Our (slight) extension from those in [160]
and [40] come from the fact that we state it for arbitrary v and (v-reversible) Q . (provided pn < v
and Q(u, ) <K Qu(u, -) hold); while those works present such a result in terms of the prior and
proposal kernel, respectively (i.c., for v = pipr, Qup(u, -) = Q(u, -)).

0

Given an initial state u® ~ °, one can define the MH algorithm as in Algorithm 2.

Algorithm 2 Metropolis-Hastings

1: procedure METROPOLIS-HASTINGS(IN,11,Q,\Y).

2: Sample u” ~ \°

3 forn=0,...,N —1do

4 Sample v ~ Q(u", ).

5: Set w1 = v with probability al(u™, v) given by (3.28). Set u" 1 = u™ otherwise.
6 end for

7 Output {u"}2_,

8: end procedure

Step S in the previous algorithm is commonly known as the Metropolization step. Given a state
u € X, Algorithm 2 induces a Markov transition kernel of the form

p(u, A) = /Aa(u, v)Q(u, dv) + 0, (A) /(1 — a(u,v))Q(u,dv), A€ B(X).

X
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3 Markov chain Monte Carlo

Remark 3.4.2 (Aperiodicity of Metropolized Algorithms): Iz follows from Lemma 3.2.3
that Metropolized MCMC algorithms (i.c., those including an acceptance-rejection step, c.f. Section
3.4) are aperiodic if o* (u) = [ (1 — a(u,v))Q(u,dv) > 0,Yu € X.

3.4.1 CONSTRUCTION OF ())

A proper choice of () is critical for the performance of the MH algorithm. We now present some
common choices in the MCMC literature [3, 13, 129, 144], that we will justify as applications of
Lemma 3.4.1. Throughout the rest of this section we will focus specifically to the setting of BIPs
and will take p(du) = p¥(du) o< exp(—P(u; y))ppr(du).

INDEPENDENT METROPOLIS HasTINGS (IMH)

The main idea behind this method is to choose a “transition kernel” Q) (u, dv) which isindependent
of u, ie.,, Q(u,dv) = Q(dv) (i.e., Q(dv) is perhaps better understood as “just” a probability
measure independent of the current state of the chain u). This method is attractive in the sense
that, intuitively (and rather loosely speaking) one would expect that if one uses a proposal @ (du)
that well-approximates f¢(du), then the algorithm would be quite efficient. In general however, it
is, of course, not a trivial task to obtain such a measure (). We present some common choices for it.

Prior-based IMH :

A first, natural, candidate for Q(du) in the context of a BIP is the prior measure fipr(du). We set
Q(dv) = Qyef(dv) = ppr(dv), for which the assumptions of Lemma 3.4.1 are (trivially) satisfied,
and as such one obtains:

.
ddih(u,v) = exp(®(u;y) — O (v3y)).

Laplace approximation -based IMH:

Suppose that fipr = N(0,C), for some self-adjoint, positive definite and trace-class operator C.
Suppose furthermore that one has constructed a Gaussian measure Q(dv) = N (m, H)(dv)
approximating the posterior measure ¥ by using e.g., the optimization methods presented in
Section 2.3.2, in such a way that Q(dv) < pipr(dv) with Q(dv) o< exp(—1(v;0))ppr(dv)
(where 8 = (m, M), with m € Xand H a self-adjoint, positive-definite, trace-class operator and
1 is a quadratic function). Taking once again the prior as a reference probability measure for both
the posterior and the proposal (i.e., v = Qrf = pr) one then has that

Iy = SPCB0Y) £ 6(0:0)
’ exp(—®(u;y) +(u; 0))

dh
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3.4 Review of common techniques and algorithms

Theorem 3.4.1 (Convergence of IMH [3] ):  The Metropolis-Hastings chain obtained using the
f(u) .

< o0, with g and f
defined as in Lemma 3.4.1. Otherwise the algorithm fails to be exponentially ergodic in the sense of

IMH algorithm is uniformly exponentially ergodic if and only if SUPyex g(a)
Definition 3.2.1.

Remark 3.4.3:  In the case where sup,, .y % = o0, The previous Theorem does not necessarily

preclude the IMH algorithm to have slower types of convergence, such as polynomial ergodicity.
This type of sampler is at the core of multi-level MCMC techniques, such as the one presented in
[45], and the one discussed in Chapter 5. We reiterate, however, that is not always easy to find or
construct efficient independent kernels () (du). We now proceed to discuss a family of widely used
methods that allow for extra flexibility.

DIFFUSION-BASED METHODS

Let (X, (-, -)x) be a separable Hilbert space with Borel o-algebra B(X), let ®(-;y) : X — R
be a Fréchet-differentiable function, and denote by D® its (Fréchet) derivative. One way of
constructing proposal kernels is based on discretizing the following over-damped Langevin SDE :

dug = —bC (K u + aD®(u; y)) dt +V2C/2dW;,  a,b € {0,1}, (3.29)

where I, C : X — Xare self-adjoint, positive-definite and trace-class covariance operators, and W;
is a cylindrical Wiener process. We now investigate how one can use (3.29) to construct transition
kernels for the MH algorithm.

Random Walk Metropolis:

As a first case, let X be a finite-dimensional space and set b = a = 0in (3.29). A simple Euler-
Maruyama (EM) discretization of (3.29) gives:

“nﬂ_unz\/gg, E~N(0,C),n=1,2,....
T

T
= Up4+1 = Up + {7 5 ~ N(07 27—C)a

where 7 > 0 denotes the discretization step of the EM scheme. Clearly, this induces the kernel
Q(u,dv) = N(u,27C). When used as a proposal for the MH algorithm, this results in the
well-known Random Walk Metropolis algorithm, where the proposal for the (. 4 1)™ step of the
MH algorithm is a Gaussian centered at the current state . This method is arguably one of the
simplest and most common variants of MH. With a slight abuse of notation, we write 1% (-) (resp.

69



3 Markov chain Monte Carlo

Q(u™,-)) as the Lebesgue density of the posterior (resp. proposal). By symmetry of the Gaussian
density, we then obtain

It is known that, for the finite-dimensional setting, the RWM algorithm is geometrically ergodic

under relatively mild assumptions [3], however, it is shown in [65] thatits Lo-spectral gap decays to
0 as the dimensionality of the state-space grows. In the case where f1pr = N(0, C), this dependence
of the dimensionality can be avoided by a small modification of such an algorithm, which we
present next.

Preconditioned Crank-Nicolson [32, 130, 144, 153]

Alternatively, settingb = 1,a = 0 and K = C, a Crank-Nicolson discretization of (3.29) using a
time step 0 < 7 < 2 gives

— 2
M:<un+12_‘_un)+\/;£’ é-NN(O,C),TL:].,Q,--w

-
which gives

2—171 V8T
Un+1 2+7_Un+2+7_£7 3 N( > )a n ) 4y

=1—-p%u,+p¢, £~N(0,C),n=1,2,...

which clearly induces the kernel Q(up,-) = N(y/1 — p?up, p?C). Assuming that pp, =
N(0,C), it can be shown ([153]) that such a kernel is pp-reversible; to that end, we define

ho(du, dv) = Q(u,dv)pupr(du), as the process of sampling u ~ ppr and v|u ~ Q(u, ),
write h{ (du, dv) = ho(dv, du) and follow the same procedure as [153, Chapter 5]. Sampling
U ~ fipr, 2 ~ fipr independently gives

u U 1 0 u
(U) B (wl —p2u+pz> - <\/1 — p2I pI) <z) ~ ho(du, dv),

which in turn implies (see, e.g., [153, Proposition 2.20]) that

ho(du, dv) =N<<8> , (\/lfip% v 12’)%)) .
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3.4 Review of common techniques and algorithms

Similarly, one has that

(-7 2))-mrer () Lo )

and as such h (du,dv) = ho(du,dv). Thus, by setting v(du) = ppr and Qpe(u, dv) =
Q(u,-) = (/1 — p2u, p*C) in the notation of Lemma 3.4.1, one obtains the well-known pre-
conditioned Crank-Nicolson variant of the MH algorithm, which has an acceptance probability
given by:

a(u,v) = min {1, exp (®(u;y) — ®(v;y))} . (3.30)

It is shown by Hairer et. Al. [65] that the pCN algorithm converges with an La-spectral gap that
is independent of the dimensionality of the state space.

There are two closely related —yet independently developed, extensions of the pCN algorithm by
[130] and [153, 144].

v-pCN [130]

The first one, presented by Pinski et. Al. in [130], assumes that A, := {u € X : ®(uw;y) =
o0} has ipr-measure equal to zero Vy, and sets once again ppr = N(0,C) and defines v =
N (mxr, Hxy) as a reference measure, where mxy, and Hyp are the mean and covariance operator
of a Gaussian measure minimizing the Kullback-Liebler (KL) divergence dk1. (1, ) between ¥
and v, constructed in such a way that u¥ ~ v (notice that this implies that ¥ ~ pip, see [129]),

with
dp? oAb s . (o ,
5, (W= . (w)=, (@) = exp (=2(w;y) + Dy (u)) =: Flw;y), with (3.31)
1 1
®y(u) : = = (u—mxr, mrr)e + 5 (u—mxe, (Mt —C71) (u—mxr)) — 3 lmxe13

where the mean and covariance operator of v are such that my. € Im(C'/2), and Im(C*/?) =
Im(?—[llé?). Intuitively, by optimizing over a class of Gaussian measures such that v < fipy, it
follows that v o~ fip, as a consequence of the Cameron-Martin theorem (c.f. Theorem 2.1.3);

see the work of [129] for more details. Given a state u € X, v induces a proposal kernel of the
form Qxr(u,-) = N (mKL + /1= p?(u —mgr), pz’HKL), which can be shown to be v-
reversible following a similar procedure as before. Denote ho(du, dv) = Qxr.(u, dv)v(du), and
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let 21, 2o ~ N (0, Hxr ), which implies z; + mxr, ~ v ¢ = 1, 2. Following a similar procedure
as before then gives

u\) [ MKL n 21
v \mx V1—=p?z+pz
MKL 1 0 21
= — ~ ho(du,d

which implies that

— 2
ho(du. dv) = ' mKL 7 Hxe V1= p HkL ‘
oldu, dv) ((mKL> (\/ 1 — p?Hx Hxr

Proceeding just as in the case for the pCN algorithm, a similar computation shows that (v, u) T ~
ho(du, dv), which implies ho(du,dv) = hl (du, dv), meaning that the kernel Qkr (-, -) is v-
reversible. Setting Qf = Qx1, It then follows from Lemma 3.4.1 that the MH algorithm induced
by using a v-reversible proposal kernel Q. is well-defined and its acceptance probability is given

by
a(u,v) = min{1, exp(F(v;y) — F(u;y))}.

Intuitively, F'(u; y) would tend to be smaller that ®(u; ), at least for regions of high probability
with respect to (Y. Thus, for some fixed p, this extension of the pCN algorithm would tend to
accept more often that the standard pCN, thus providing a faster mixing. We will refer to this
method as v-pCN.

Generalized pCN [?, 130, 144, 153]

A second extension to the pCN algorithm is presented by Sprungk and Rudolf in [153, 144], in
the spirit of the operator weighted proposals work of Law [97], by considering Gaussian proposals
whose covariance resemble that of the target measure p?. Let pipr = N(0,C),and G : X — X be
a bounded, self-adjoint, and positive linear operator. Furthermore, define the following bounded
linear operators on X:

Hg :=CY2GCY2, Cg:=CY2(I+ Hg) 'CY?, Ag:=CY2\/T—p>(I+ Hg)- ¢/

The generalized preconditioned Crank-Nicolson algorithm of [153, 144], is then defined by using the
ppr-reversible kernel Qgpen(u, -) = N (Agu, p?C) (see [153, p. 318]) in the MH algorithm.
Setting QgpeN (U, -) = Qref(u, -), it follows from Lemma 3.4.1 that the Metropolis-Hastings
acceptance ratio is well defined and it is of the same form as Equation (3.30).
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3.4 Review of common techniques and algorithms

In the case where (¥ is induced by a Bayesian inverse problem with (finite-dimensional) additive
Gaussian noise of the form finoise = N(0, 02 I), [144] suggests to set G = (0, 2.LLT),
with £ := D@(umap), where Uma, € X is the maximum a posteriori point of pi¥. In practice,
Do (umap) can be efficiently computed using the adjoint state method, as in [24, 23, 164]. Notice
thatboth of these extensions to the pCN algorithm are closely related to the Laplace-approximation
and variational methods described in Section 2.3, however, given that they are being used in the
context of a Metropolized algorithm, the samples obtained follow the desired target distribution

instead of just an approximation of it.
Infinite-dimensional Metropolis-adjusted Langevin Algorithm (0o-MALA) [12]

Alternatively, Assume that 15y = N(0,C) and that Vy € Y, CD®(u; y) € Im(CY/?), pipr-as.
Settingb = a = 1, K = Cin (3.29), a semi-implicit Euler scheme yields the discretized model

Unt1 = V1 — p?u, — p\/zCD@(un;y) + €, £~N(0,0),

which induces the proposal kernel
p
Qmata(u, ) =N <ﬂu - p\/gODé(u;y),PQC> .

Setting Qref(u, -) = N <\/ 1 — p2u, p2C> (which is known to be fipr-reversible, from the discus-
sion on pCN) it follows from the Cameron-Martin theorem (Theorem 2.1.3) that Qef(u, -) ~

Qmara(u, -), with

dQMALA(U, )
eref(u7 )

p*r 2
(0) = exp (=7 leD® () 2 6:32)

— <p\/ZCD<I>(U;y),v - mu> ) = g(u,v).

C
Thus, setting once again v = ipr, and since Qyer is pipr-reversible it then follows from Lemma
3.4.1 that the infinite-dimensional MALA algorithm is well-defined in function spaces, and its
Metropolis-Hastings acceptance probability is given by

a(u,v) = min {1, exp (P(u;y) — (v;v))
with g(+, -) asin (3.32).

v-MALA:

73



3 Markov chain Monte Carlo

One can, of course, combine the ideas behind v-pCN and co-MALA as follows. Once again, as-
sumeVy € Y,CD®(u;y) € Im(CY/?), ppr-as. let pipr = N'(0,C), take v = N (i, Hir) =
fipr as in the v-pCN method, with mygy. € Im(C'/2) and Im(C'/?) = Im(H11</L2) and define the
transition kernel @, para : X x B(X) — [0, 1]:

Qumara(y, ) =N <mKL + V1= p?(up —mgr) — p\/zCbe(u; Y), ,02HKL> .

Setting Qrr = Qxr (known to be v-reversible), it is a consequence of the Cameron-Martin
theorem that Q1. ~ Q. .MaLA, With

dQuv-mara(u, )

) = exp (=L [cD®(us )2
dQxr(u, -) - P 4 Y

- <P\/§CD‘I’(U; y), v —mxr + /1 — p2(up — mKL)>HKL> = g'(u,v).

Once again, the conditions of Lemma 3.4.1 are satisfied, implying that the MH algorithm induced
by taking @, mara (U, -) as a proposal kernel is well-defined, with acceptance probability given by

g'(v,u) } ’

g'(u,v)

a(u,v) = min {1, exp (F(u;y) — F(v;y))

with F' defined as in (3.31).

HamirToNIAN MONTE CarLO (HMC)

A common shortfall of diffusion-based proposals in the MH algorithm is the potentially slow
exploration rate of the state space. One idea borrowed from physics, which, can be applied to most
problems with continuous state space, is to introduce a “fictitious” Hamiltonian dynamics and
“fictitious” momentum variables. We begin by describing such a method in the finite-dimensional
case.

Let X = R™. We recall that a Hamiltonian dynamical system is characterized by a Hamiltonian
function H : R™ x R™ — R, H = H (u, w), that is conserved during dynamics. Here u € X
denotes the position vector and w denotes the momentum vector. The Hamiltonian dynamics is

governed by the equations

dt ~ ow (3:33)
dwi _ oH (3 34)
dt 8uz '
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3.4 Review of common techniques and algorithms

fori = 1,...,m.In general, the above equation can be understood as a conservation of the total

energy of a system in time.

Hamiltonian Monte Carlo takes inspiration from the previous physical system in order to construct
a Markov Chain Monte Carlo algorithm with a given invariant density ;¥ (u) on the position
variables u. To do so, we introduce the potential energy U(u) = — log p¥ (u), a kinetic energy
K(w) = %wTM_lw, for some mass matrix M € R"*™, and the Hamiltonian H (u, w) =
U(u)+ K (w). Having introduced these functions, we can then simulate a Markov chain in which
each iteration re-samples the momentum, evolves the Hamiltonian system for a certain time, and
then does a Metropolis-type acceptance-rejection step on the new position vector. More concretely,
we consider the so-called Gibbs distribution, given by

1 1

Glu,w) = Zexp(—H(u, w)) = = exp(=U(u) p(=K(w))

1
)\/27T] det M| <

where Z is the (unknown) normalizing constant, < exp(—U (u)) is the probability density we
are interested and m exp(—K (w)) is the density of a multivariate Gaussian distribution
centered at 0 with covariance M. Given the state u™ at iteration n, the idea of the algorithm
is then to sample a momentum vector w", and compute, for each iteration, H (u™, w™). The
Hamiltonian system is then evolved starting from u(0) = «", w(0) = w", on a time interval
[0, T'] using equations (3.33), and (3.34) for some arbitrary final time 7', to obtain (u(T"), w(T')),
where, in general, u(T") # ¢(0). This state is then taken as the proposal state in a Metropolis-

"1 For many problems of modern relevance, it is not

Hastings step to generate the new state
possible to compute the dynamics exactly and numerical discretization is needed. A convenient
time discretization scheme is the Verlet s method: the time interval [0, T'] is divided into [V intervals

of size € > 0 and for each particle 7 the position ¢; and momemtum p; are updated as follows

w(t + ¢/2) = wi(t) — %VU(u(t))

u(t+e) =u;(t) + eM w (t + %)

w(t +€) = w; <t + %) — %VU(u(t +¢€)).
The main steps of the Hamiltonian Monte Carlo algorithm using Verlet’s method are outlined in
Algorithm 3. There, N is the length of the chain, € the time step in Verlet’s method, and 7" the
final integration time.

Notice that, similar to the random-walk Metropolis, this algorithm depends on few parameters,
namely, €, 7', and M, which should be properly tuned. Furthermore, it is worth noting the
equivalence between MALA and the HMC algorithm with a 1-step evolution.

Infinite-dimensional HMC [12]
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3 Markov chain Monte Carlo

Algorithm 3 Hamiltonian Monte Carlo

1: procedure HamiLTONIAN MONTE CaRLO(N, 1, M, \0).

2 Sample u® ~ \°

3; forn=0,...,N —1do

4 Sample new values for the momentum variables, w™ ~ N (0, M)

5 Given the currentstate (u", w™), propose a new state (u*, w*) by evolving the Hamil-
tonian system (3.33), (3.34) using Verlet’s method.

6: Set w1 = u* with probability o, where

a=min[1,exp (U (u") + U(u") — K(w*) + K(w"))]
7: end for
8: Output {u"}_,

9: end procedure

Similarly, the work of [12] extends the HMC algorithm in function space in the case where
Mpr = N(0,C), with C a positive, self-adjoint and trace-class operator. In this case, the infinite
dimensional HMC (co-HMC) algorithm behaves as Algorithm 3, with the modification that
w ~ fipr and that the acceptance probability o (u, ©*) is given by min{1, exp(—AH (u, w))},
where u 1= (u = ug, U1, .- ., U[T/c] 1, U[T/c] = U*) and w = (W = wo, W1, -, W[7/c])
are the intermediate values of © and w over the temporal evolution of the Hamiltonian system, and

AH(u,w) == ®(u;y) — ®(u;y) — 682 {HCI/QD{)(u*;y)Hi - HCI/2D<I>(u;y)Hf(<3}3S)

[T/e]—1

> ((wi, DR(uiz y))x + (wirr, DP(uis1;y))x)
=0

DO

(see [12] for derivation of (3.35)). Further extensions of the infinite dimensional MALA and
HMC methods which exploit the local geometry of %pyr (u), are presented in the works of [12]
and [91].
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4 GENERALIZED PARALLEL TEMPERING ON
BAYESIAN INVERSE PROBLEMS

This Chapter is essentially the same as Publication Latz, J., Madrigal-Cianci, ].P., Nobile, F. et al.
Generalized parallel tempering on Bayesian inverse problems. Stat Comput 31, 67 (2021). [95].
Small modification have been made with respect to such an article in order to avoid repeating con-
cepts and definitions already presented in previous chapters, and notation has been modified with
respect to the published article in order to make it consistent with the notation used throughout
this thesis. We have also removed some material that has already been discussed in the state of the
art. Here, we present our first hierarchical approach, which introduces and exploits a sequence of
tempered distributions approximating the posterior of interest, as presented in Chapter 1. More
precisely, we present two generalizations of the Parallel Tempering algorithm in the context of
discrete-time Markov chain Monte Carlo methods for Bayesian inverse problems. These gener-
alizations use state-dependent swapping rates, inspired by the so-called continuous time Infinite
Swapping algorithm presented in [47]. We analyze the reversibility and ergodicity properties of
our generalized PT algorithms. Numerical results on sampling from different target distributions
show that the proposed methods significantly improve sampling efficiency over more traditional
sampling algorithms such as Random Walk Metropolis, preconditioned Crank-Nicolson, and
(standard) Parallel Tempering.

4.1 INTRODUCTION

Modern computational facilities and recent advances in computational techniques have made the
use of Markov Chain Monte Carlo (MCMC) methods feasible for some large-scale Bayesian inverse
problems (BIP), where the goal is to characterize the posterior distribution of a set of parameters u
of a computational model which describes some physical phenomena, conditioned on some (usually
indirectly) measured data y. However, some computational difficulties are prone to arise when
dealing with difficult to explore posteriors, i.e., posterior distributions that are multi-modal, or that
concentrate around a non-linear, lower-dimensional manifold, since some of the more commonly-
used Markov transition kernels in MCMC algorithms, such as random walk Metropolis (RWM)
or preconditioned Crank-Nicholson (pCN), are not well-suited in such situations. This in turn
can make the computational time needed to properly explore these complicated target distributions
arbitrarily long. Some recent works address these issues by employing Markov transitions kernels
that use geometric information [12]; however, this requires efficient computation of the gradient
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4 Generalized parallel tempering on Bayesian inverse problems

of the posterior density, which might not always be feasible, particularly when the underlying
computational model is a so-called “black-box”. (this is new) One such way of alleviating these
issues is with tempering strategies, such as the ones in [42, 52, 96, 114, 167]. In particular, we will
focus on parallel-tempering techniques [52, 90, 114], as described in Chapter 1, and whose main
idea we will recall next, for convenience. In short, parallel tempering algorithms simultaneously
run K independent MCMC chains, where each chain is invariant with respect to a flattened
(referred to as tempered) version of the posterior of interest ;1¥, while, at the same time, proposing
to swap states between any two chains every so often. Such a swap is then accepted using the
standard Metropolis-Hastings (MH) acceptance-rejection rule. Intuitively, chains with a larger
smoothing parameter (referred to as temperature) will be able to better explore the parameter
space. Thus, by proposing to exchange states between chains that target posteriors at different
temperatures, it is possible for the chain of interest (i.e., the one targeting 1Y) to mix faster, and to
avoid the undesirable behavior of some MCMC samplers, such as the diffusion-based methods,
presented in Chapter 3, of getting “stuck” in a mode. Moreover, the fact that such an exchange
of states is accepted with the typical MH acceptance-rejection rule, will guarantee that the chain
targeting /4 remains invariant with respect to such probability measure [52]. A improvement over
the PT approach in the context of (inherently time-continuous) molecular dynamics is presented
in the so-called Infinite Swapping (1S) algorithm [49, 133]; a continuous-time Markov process
which considers the limit where states between chains are swapped infinitely often. It is shown
in [49] that such an approach can in turn be understood as a swap of dynamics, i.c., kernel and
temperature (as opposed to states) between chains. We remark that once such a change in dynamics
is considered, it is not possible to distinguish particles belonging to different chains. However,
since the stationary distribution of each chain is known, importance sampling can be employed to
compute posterior expectations with respect to the target measure of interest. Infinite Swapping
has been successfully applied in the context of computational molecular dynamics and rare event
simulation [47, 103, 133]; however, to the best of our knowledge, a (discrete-time) equivalent to
such method has not been implemented in the context of Bayesian inverse problems.

In light of this, the current work aims at importing such ideas to the BIP setting, by presenting
them in a discrete-time Metropolis-Hastings Markov chain Monte Carlo context. We will refer to
these algorithms as Generalized Parallel Tempering (GPT). We emphasize, however, that these
methods are 7ot a time discretization of the continuous-time Infinite Swapping presented in [49],
but, in fact, a discrete-time Markov process inspired by the ideas presented therein with suitably
defined state-dependent probabilities of swapping states or dynamics. We now summarize the
main contributions of this chapter.

We begin by presenting a generalized framework for discrete time PT in the context of MCMC
for BIP, and then proceed to propose, analyze and implement two novel state-dependent PT
algorithms inspired by the ideas presented in [49].

Furthermore, we prove that our GPT methods have the right invariant measure, by showing
reversibility of the generated Markov chains, and prove their ergodicity. Finally, we implement the

proposed GPT algorithms for an array of Bayesian inverse problems, comparing their efficiency
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4.2 Problem setting

to that of an un-tempered, (single temperature), version of the underlying MCMC algorithm,
and standard PT. For the base method to sample at the cold temperature level, we use Random
Walk Metropolis (RWM) (Sections 4.5.3-4.5.6) or preconditioned Crank-Nicolson (Section 4.5.7),
however, we emphasize that our methods can be used together with any other, more efficient base
sampler. Experimental results show improvements in terms of computational efliciency of GPT
over un-tempered RWM and standard PT, thus making the proposed methods attractive from a
computational perspective. From an implementation perspective, the swapping component of
our proposed methods is rejection-free, thus effectively eliminating some tuning parameters on
the PT algorithm, such as swapping frequency.

We remark that a PT algorithm with state-dependent swapping probabilities has been proposed in
[90], however, such a work only considers pairwise swapping of chains and a different construction
of the swapping probabilities, resulting in a less-efficient sampler, at least for the BIPs addressed in
this work.

Our ergodicity result relies on an Lo spectral gap analysis. It is known [143] that when a Markov
chain is both reversible and has a positive Lo-spectral gap, one can in turn provide non-asymptotic
error bounds on the mean square error of an ergodic estimator of the chain. Our bounds on the
Lo-spectral gap, however, are far from being sharp and could possibly be improved using e.g.,
domain decomposition ideas as in [171]. Such analysis is left for a future work.

The rest of this Chapter is organized as follows. Section 4.2 is devoted to the introduction of some
additional notation. In Section 4.3 we provide a brief review of (standard) PT (Section 4.3.2),
and introduce the two versions of the GPT algorithm in Sections 4.3.3 and 4.3.4, respectively. In
fact, we present a general framework that accommodates both the standard PT algorithms and our
generalized versions. In Section 4.4, we present the main theoretical results of the current Chapter
(Theorems 4.4.1 and 4.4.2). The proof of these Theorems is given by a series of Propositions in

Section 4.4.1. Lastly, we illustrate our methods on various numerical experiments in Section 4.5.

4.2 PROBLEM SETTING

4.2.1 NOTATION

Let (Xj, ||-||) be a separable Banach space with associated Borel o-algebra B(X;), ¢ = 1,2 and let

[, Vi be probability measures on (X;, B(X;)), with p1; < 14, and denote by m; : X — R the

corresponding Radon-Nikodym derivative m; (u) = j’y‘ * (). The product of these two measures is

defined by

p(A) = (u1 x p2) (A)
= /A71'1(u1)7T2(UQ)Vl(dul)V2(du2)7

forall A € B(X; x Xz). Joint measures on (X; x Xg, B(X1, xX2)) will always be written in
boldface, hereafter.
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4 Generalized parallel tempering on Bayesian inverse problems

Let Py, k = 1,2, be Markov transition operators associated to kernels py, : Xj, x B(Xy) — [0, 1]
(c.f3.1.2). We define the tensor product Markov operator P := Py & P, as the Markov operator
associated with the product measure p(u, -) = p1(u1, ) X pa(uz,-), u = (u1,u2) € X1 x Xo.
In particular, UP is the measure on (X1 x Xg, B(X; x Xg)) that satisfies

(VP)(Al X AQ) = //X « pl(ul,Al)pQ(UQ,AQ)V(dul,dUQ),

forall A} € B(X;)and Az € B(X3). Moreover, (Pf) : X; x X2 — Ris the function given by

(Pf)(u) = / /X Gz depalun.de)

for an appropriate f : X1 X Xo — R, B(X; x Xz)-measurable.

Recall that a Markov operator P (resp. P) is invariant with respect to a measure v (resp. V)
it vP = v (resp. vP = v ). For two given v-invariant Markov operators P, P», we say that
Py Py is a composition of Markov operators, not to be confused with P; ® P». Furthermore,
given a composition of K v-invariant Markov operators P := P P; ... Pk, we say that P, is
palindromicif Py = Pr, Po = Px_1, ... Py = Pg_p4+1, k = 1,2..., K. Itis known (see,
e.g., [21, Section 1.12.17]) that a palindromic, v-invariant Markov operator P, has an associated
Markov transition kernel p. which is v-reversible.

4.2.2 TEMPERING

Denote by p : X x B(X) — [0, 1] the Markov transition kernel induced by the Metropolis-
Hastings algorithm (c.f. Section 3.4.1), using a diffusion-based proposal kernel gprop (, -), such
as the random walk Metropolis or preconditioned Crank Nicolson algorithms, where, given some suit-
able covariance operator £ : X — X, gprop(u™, -) = N (u, pX) or orop (u”, ) = N'(y/1 — p?u™, p*%),
0 < p < 1, respectively. This type of proposals are widely used in practice, however, they tend to
present some undesirable behaviors when sampling from certain dzfficult measures, which are, for
example, concentrated over a manifold or are multi-modal [52]. In the first case, in order to avoid
a large rejection rate, the “step-size” p of the proposal kernel must be quite small, which will in
turn produce highly-correlated samples. In the second case, chains generated by these localized
kernels tend to get stuck in one of the modes. In either of these cases, very long chains are required
to properly explore the parameter space.
One way of overcoming such difficulties is to introduce tempering. As in Chapter 2, write

dpy e~ ®(wy)

= = Y
dupr u Z m (u)7
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4.3 Generalizing Parallel Tempering

and, given a set of K temperatures {Tk}?:l’ suchthatl =T7 < Ty - -+ < Tk, define MZ < fhpr
such that

dud e~ P(uy)/Tk y
Uu) = =7 (u), 4.1
) = S = ) (@1
where  Zj, = [ e~ )/ Tk (du), and with ®(u; y) the potential function defined in

Theorem 2.2.1. In the case where T = 00, we set f1% = fipr. Notice that /1f corresponds to the

target posterior measure.

Remark 4.2.1 (On notation): Notice that we have used the inverse notation with respect to
Chapter 1, setting ¥ = 1y instead of i¥ = 1%, Furthermore, notice that we are not including
any discretization accuracy in our formulation, i.c., we are not using ®| (u;y) to denote ®(u;y)
evaluated at an accuracy level L, and assume that all models are evaluated at the same discretization

accuracy. We hope this is not a cause of confusion to the reader.

We say thatfor k = 2, ..., K, each measure /LZ is a tempered version of 1. In general, the 1/},
term in (4.1) serves as a “smoothing”" factor, which in turn makes 1} easier to explore as T}, — oc.
In the “standard ” parallel tempering MCMC algorithm [52], one samples from all posterior
measures /¢ simultaneously. Here, we first use a 1] -reversible Markov transition kernel py, on each
chain, and then, we propose to exchange states between chains at two consecutive temperatures, i.e.,
chains targeting uf, 1, k € {2,..., K}. Such a proposed swap is then accepted or rejected
with a standard Metropolis-Hastings acceptance rejection step. This procedure is presented in
Algorithm 4. Notice that such an algorithm does a systematic sweep across temperatures going
from hot-to-cold. Alternatively, one could construct such an algorithm going from cold-to-hot; i.c.,
swapping chains at temperatures T, and Tj,41, k = {1,2,..., K — 1}. Our numerical examples
in Section 5.6 implement Algorithm 4 in such a way that the order of the swapping (i.e., either from
hot-to-cold or from cold-to-hot) is alternated at every iteration. We remark that such an algorithm
can be modified to, for example, propose to swap states every Ny steps of the chain, or to swaps
states between two chains 1, ,ug-, with ¢, j chosen randomly and uniformly from the index set
{1,2,..., K}. In the next section we present the generalized PT algorithms which swap states
according to a random permutation of the indices drawn from a state dependent probability.

4.3 GENERALIZING PARALLEL TEMPERING

Infinite Swapping was initially developed in the context of continuous-time MCMC algorithms,
which were used for molecular dynamics simulations. In continuous-time PT, the swapping of the
states is controlled by a Poisson process on the set {1, ..., K }. Infinite Swapping is the limiting
algorithm obtained by letting the waiting times of this Poisson process go to zero. Hence, we swap
the states of the chain infinitely often over a finite time interval. We refer to [49] for a thorough

"Here, smoothing is to be understood in the sense that it faztens the density.
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4 Generalized parallel tempering on Bayesian inverse problems

Algorithm 4 Standard PT.

function STANDARD PT(V, {pi H |, {77 H |, fipr)

Sampleuk ~ ppr, E=1,..., K
# Do one step of MH on each chain
forn=1,2,...,N —1do

fork=1,...,Kdo

Sample u t ~ py(ul, )
end for
# Swap states

fork=K K—-1,...,2do

Swap states u? T and u? ! with probabili
p k k—1 p
Y, n+1y, Y n+1
e — mind 1 () (u )
swap — Yy on+1\_y n+1
T (uy )y ()
end for
end for

n1\N
end function

introduction and review of Infinite Swapping in continuous-time. In Section S of the same article,
the idea to use Infinite Swapping in time-discrete Markov chains was briefly discussed. Inspired by
this discussion, we present two Generalizations of the (discrete-time) Parallel Tempering strategies.
To that end, we propose to either (i) swap states in the chains at every iteration of the algorithm in
such a way that the swap is accepted with probability one, which we will refer to as the Unweighted
Generalized Parallel Tempering (UGPT), or (ii), swap dynamics (i.e., swap kernels and temperatures
between chains) at every step of the algorithm. In this case, importance sampling must also be
used when computing posterior expectations since this in turn provides a Markov chain whose
invariant measure is not the desired one. We refer to this approach as Weighted Generalized Parallel
Tempering (WGPT). We begin by introducing a common framework to both PT and the two
versions of GPT.

Let (X, ||-||x) be a separable Banach space with associated Borel o-algebra B(X). Let us define the
K fold product space XX := le:{:l X, with associated product o-algebra BX := ®£{:1 B(X),
as well as the product measure on (XX, BK)

p = X i, (4.2)
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4.3 Generalizing Parallel Tempering

where p, k = 1,..., K are the tempered measures with temperatures 1 = 71 < T < T3 <
--» < Tk < oointroduced in the previous section. Similarly, we define the product prior measure
pr 1= Xszl ppr- Notice that u¥ has a density 7% (u) with respect to phprior given by

K
w¥(u) = H ™(ug), w:= (ug,...,ug) € XK,
k=1

with 7t} (u) given asin (4.1). The idea behind the tempering methods presented herein is to sample
from p¥ (as opposed to solely sampling from i) by creating a Markov chain obtained from
the successive application of two pu¥-invariant Markov kernels p and q, to some initial distribu-

tion v, usually chosen to be the prior gipr. Each kernel acts as follows. Given the current state

n

u” = (uy,...,u}), thekernel p, which we will call the standard MCMC kernel, proposes a new,

= (@t At

rithm (or any other algorithm that generates a p-invariant Markov operator). The Markov kernel p

intermediate state @ possibly following the Metropolis-Hastings algo-

is a product kernel, meaning that each component @y, k = 1. .., K, is generated independently

= )

by introducing an “interaction” between the components of @™ 1) This interaction step can

of the others. Then, the swapping kernel q proposes a new state u

be achieved, e.g., in the case of PT, by proposing to swap two components at two consecutive
temperatures, i.e., components k and k + 1, and accepting this swap with a certain probability
given by the usual Metropolis-Hastings acceptance-rejection rule. In general, the swapping kernel
is applied every N steps of the chain, for some Ny > 1. We will devote the following subsection

to the construction of the swapping kernel q.

4.3.1 THE SWAPPING KERNEL q

Define .k as the collection of all the bijective maps from {1, 2, ..., K} to itself, i.e., the set of
all K'! possible permutations of id := {1,..., K}. Let 0 € . be a permutation, and define
the swapped state U, = (Ug(1), - - -, Ug(K)), and the inverse permutation o~ ! € .Sk such that
cgoo !t =0"1oo =id. In addition, let Sx C .k be any subset of .k closed with respect to
inversion, i.e., 0 € Sg = o' € Sk. We denote the cardinality of Sk by | Sk |.

Example 4.3.1:  As a simple example, consider a Standard PT as in Algorithm 4 with K = 4. In
this case, we attempt to swap two contignous temperatures Ty and Ti 1, 1 = 1,2, 3. Thus, Si is the
set of permutations {01 2,02 3, 03 4} with:

01,2 = (27 17374)a
0-2,3 — (17372)4)5
o34 = (1,2,4,3).
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Notice that each permutation is its own inverse; for example:

0172(0172) = 0'172((2, 1,3,4)) = (1,2,3,4) = id.
To define the swapping kernel q, we first need to define the swapping ratio and swapping acceptance
probability.

Definition 4.3.1 (Swapping ratio): Wz say that a function v : XX x Sy + [0,1] s a
swapping ratio if it satisfies the following two conditions:

1 Yu € XE r(u,-)isa probability mass function on Sk.

2. Yo € Sk, r(-,0) is measurable on (XX, BK).

Definition 4.3.2 (Swapping acceptance probability): Letu € XX and o, 071 € Si. We
call swapping acceptance probability the function Cgyap : XX X Sg 5 [0, 1] defined as

. ¥ (uq)r g,a’l .
(u,0) = mm{l, %} . ifr(u,o) >0,

0 ifr(u,o) =0.

aswap

We can now define the swapping kernel q.

Definition 4.3.3 (Swapping kernel):  Given a swapping ratior : XX x Sy + [0, 1] and its
associated swapping acceptance probability Qgyap XE % Sk — [0, 1], we define the swapping
Markov kernel q : XE % BE 5 [0,1] as

q(u,B) = Y r(u,0) [(1 — agap(tt,0))0u(B) (4.3)
ocESK
+0wap (U, 0)0u, (B)],  we XX, BeBE,

where Oy (B) denotes the Dirac measure in u, i.c., 64 (B) = 1ifu € B and 0 otherwise.

The swapping mechanism should be understood in the following way: given a current state of the
chain u € XX the swapping kernel samples a permutation o from Sk with probability r(u, o)
and generates U, . This permuted state is then accepted as the new state of the chain with probability
Qswap (W, 7). Notice that the swapping kernel follows a Metropolis-Hastings-like procedure with
“proposal” distribution 7(u, o) and acceptance probability cigyap (U, o). Moreover, as detailed in
the next proposition, such a kernel is reversible with respect to p, since it is a Metropolis-Hastings

type kernel.

Proposition 4.3.1:  The Markov kernel q defined in (4.3) is reversible with respect to the product
measure | defined in (4.2).
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Proof. Let A, B € BX . We want to show that

/ a(u, B)p(du) = / a(u, A)pu(du).
A B
Thus,

/A (u, B)p(du) Z / u,o aswap(u 0)0u, (B)mY (u) prpr (du)

ogESK

I

30 100 (1 o 0:0) BB ).

oESK

11

Let A, := {z € XK : 2,1 € A}, and, for notational simplicity, write min{a, b} = {a A
b}, a,b € R. From I, we have:

1= 3 [{iamlele 0O oyt )i, (B

ocESK
-5 [ e et

Then, noticing that ptp, is permutation invariant, we get

=X e

ocESK )
X r(u, 0_1)7ry(u)5u(B)upr(du)

=3 A e

oc€SK
X r(u, ail)wy(u)éu(B)upr(du)
(

WARE e

0ESK
x r(u, J_l)ﬂ'y (u)6u(Ags) tpr(du)
(

- ¥ L ey

oESK T(
xr(u, o 1)7“’(11/)51%,_1(A)upr(<iu)
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= Z /B r(u, Uﬁl)ﬂ'y(u)aswap(u’ 071)5'“‘0—1 (A)Hpr(du)

oeSKk

= Z /B7’(“7U)Wy(u)aswap(“aU)5ua(A)upr(du).

g€ESK
For the second term I we simply have

II = Z /Ar(u,a)(l — Qwap (U, 0) )60 (B) Y (w) prpr (dur)

g€ESK

= /AmB (1, 0)(1 — Cgwap (1, 0)) 00 (B) Y (w) o (du)

oESK

— Z /BT(U,O')(l - asw&p(“’:J))éu(A)Try(u)ru‘Pr(du)'

oESK

This generic form of the swapping kernel provides the foundation for both PT and GPT. We
describe these algorithms in the following subsections.

4.3.2 THE PARALLEL TEMPERING CASE

We first show how a PT algorithm that only swaps states between the i and j™ components
of the chain can be cast in the general framework presented above. To that end, let 0; ; be the

permutation of (1,2, . . ., K), which only permutes the i* and j th components, while leaving the
other components invariant (i.c., such that o (i) = j,0(j) = i,and o (k) = k, k # i, k # j). We
can take Sg = {0 ;, 1,7 = 1,..., K} and define the PT swapping ratio between components
tand j byrZ(I;T) : XE x S+ [0,1] as

1 ifo=o0;,,

TEI;T) (u,0) = "
’ 0 otherwise.

Notice that this implies that Tz(,PjT) (up, 07t = rg’PjT) (u, o) since a;; =0 and rl(’PjT) does not

depend on u, which in turn leads to the swapping acceptance probability 045(5}2 : XE % Sy s

[0, 1] defined as:

y ..
o ®T) (u,044) := min {17 W} ’

swap iy (u)

ag\gzg (’U,, U) = 07 o 7é 0—7:1]"
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4.3 Generalizing Parallel Tempering

Thus, we can define the swapping kernel for the Parallel Tempering algorithm that swaps compo-
nents ¢ and j as follows:

Definition 4.3.4 (Pairwise Parallel Tempering swapping kernel): Leru € XX, 0; ; € Sk.
We define the Parallel Tempering swapping kernel, which proposes to swap states between the i™ and
D chains as q( D XK x BE — [0, 1] given by

a5 . B) = 3 T (w,0) (1= all)(u, 0))du(B)
og€ESK
+a§wag<u,o)6ug<3>)

= (1 — min {1, %} 6u(B))

. U (uoi, j ) K
+m1n{1,ﬂ_y(,u)}5uo_i7j(3), VBGB .
In practice, however, the PT algorithm considers various sequential swaps between chains, which
. g (PT) _(PT) .
can be understood by applying the composition of kernels q; ; 'qy. ,* . .. atevery swapping step.

In its most common form [21, 52, 114], the PT algorithm, hereafter referred to as standard PT
(which on a slight abuse of notation we will denote by PT), proposes to swap states between chains
at two consecutive temperatures. Its swapping kernel q(pT) : XE % BE [0, 1] is given by

(rT) ._ (PT) (PT) (PT)

q =912 93 95 -1,K"

Moreover, the algorithm described in [52], proposes to swap states every Ny > 1 steps of MCMC.
The complete kernel for the PT kernel is then given by [21, 52, 114]

(PT) . (PT) _(PT) (PT) (44)

P =912 9,3 - 9r— IKP

where p is a standard reversible Markov transition kernel used to evolve the individual chains
independently.

Remark 4.3.1:  Although the kernel p as well as each of the q; ;41 are p-reversible, notice that
(4.4) does not have a palindromic structure, and as such it is not necessarily pu-reversible. One way of
making the PT algorithm reversible with respect to pu is to consider the palindromic form

p(RPT) —

PT PT PT PT) (PT
(‘152)‘1(, ) ‘I(K )1K> (qg(l)( 1 ‘léQ)‘lg1))a

where RPT stands for Reversible Parallel Tempering. In practice, there is not much difference between

p(RpT) and p(P 1), however, under the additional assumption of geometric ergodicity of the chain (c.f
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4 Generalized parallel tempering on Bayesian inverse problems

Section 4.4) baving a reversible kernel is useful to compute explicit error bounds on the non-asymptotic

mean square error of an ergodic estimator [143].

4.3.3 UNWEIGHTED GENERALIZED PARALLEL TEMPERING

The idea behind the Unweighted Generalized Parallel Tempering algorithm is to generalize PT
so that (i) Ny = 1 provides a proper mixing of the chains, (ii) the algorithm is reversible with
respect to p, and (iii) the algorithm considers arbitrary sets S of swaps (always closed w.r.t
inversion), instead of only pairwise swaps. We begin by constructing a kernel of the form (4.3).
Let 7(U%) - XK x Sg + [0, 1] be a function defined as

¥ (uq)

(UW) o K
T u,o) = , u€X, o€ Sk. (4.5)
( ) ZO”ESK ﬂ-y(uo'/)

Clearly, (4.5) is a swapping ratio according to Definition 4.3.1. As such, given some state u € G
r(UW) (u, o) assigns a state-dependent probability to each of the | Sk | possible permutations in
Sk. A permutation 0 € Sk is then accepted with probability as(vl‘ijg ) (u,0), given by

(UW) -1
(UW) R 7Y (ue)r'") (uy,071)
Ogyap’ (W, 0) 1= min {1, 9 () O (0, o) . (4.6)

Thus, we can define the swapping kernel for the UGPT algorithm, which takes the form of (4.3),
with the particular choice of 7(u, o) = (YY) (u, o) and

aSWap (u7 O-) = aS(\&/{:)pV) (u7 U) *
Notice that aS(VLV]X ) (u,0) = 1,Vo € Sk. Indeed, if we further examine Equation (4.6), we see

that

(1) g0 ) () w() Y (ug)
w0 (w)r(V¥) (u, o) () w(us) D, T (ug)
w¥(uy,) wY(u)

- 7Y (u) .ﬂ'y(ug) =1

In practice, this means that the proposed permuted state is always accepted with probability 1.

The expression of the UGPT kernel then simplifies as follows.
Definition 4.3.5 (unweighted swapping kernel):  The unweighted swapping kernel VW)

XE x BE [0, 1] is defined as

qU(u,B) = > 1" (u,0)6y,(B),
gESK
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4.3 Generalizing Parallel Tempering

Vu € XX B € BE. Applying this swapping kernel successively with the kernel p = p; x pa X
... px in the order VW) pq(VW) =: p(U¥) gives what we call Unweighted Generalized Parallel

(Uw)

Tempering kernel p . Lastly, we write the UGPT in operator form as

pWW) .— Q(UW)pQ(UW),

where P and QU™ are the Markov operators corresponding to the kernels p and qV%), respec-
tively. We now investigate the reversibility of the UGPT kernel. We start with a rather straightfor-

ward result.

Proposition 4.3.2:  Suppose that, forany k = 1,2,..., K, py is py-reversible. Then, p =
P1 X -+ X pi 15 reversible with respect to pa.

Proof. We prove reversibility by confirming that equation (3.5) holds true. To that end, letu €
XK A B € BX, where A and B tensorize, ic., A 1= Hszl Apand B = Hle By, with
Ai,...,Ax,B1,...,Bg € B(X) Then,

>

/ 09 (1) p(ut, B) e (da) = / ¥ )t Byt (i)
A Ay

k=1

/ ¥ (s )p (o, A tpr(duce)
17 Bk

=

k

B / ™ (w)p(u, A)ppr(du).
B

Showing that the previous equality holds for sets A, B that tensorize is indeed sufficient to show
that the claim holds forany A, B € BX. This follows from Carathéodory’s Extension Theorem
applied as in the proof of uniqueness of product measures; see [2, §1.3.10, 2.6.3], for details. [

We can now prove the reversibility of the chain generated by p(UW).

Proposition 4.3.3 (Reversibility of the UGPT chain):  Suppose that, foranyk = 1,2,... K,
Dy, 15 pu-reversible. Then, the Markov chain generated by p(UW) is p-reversible.

Proof. Tt follows from Proposition 4.3.1 and 4.3.2 that the kernels q\V™) and p are pu-reversible.
Furthermore, since p\Y™) is a palindromic composition of kernels, each of which is reversible with

(UW)

respect to i, then, p is reversible with respect to p [21].

O]

The UGPT algorithm proceeds by iteratively applying the kernel p{V™) to a predefined initial state.
In particular, states are updated using the procedure outlined in Algorithm 5.

Remark 4.3.2:  In practice, one does not need to perform | S i | posterior evaluations when computing

W) (u™, ), rather “Gust” K of them. Indeed, since W?(UZ) o 7 (up)l, k,j =1,2,...,K,
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4 Generalized parallel tempering on Bayesian inverse problems

Algorithm 5 Unweighted Generalized Parallel Tempering.

function GENERALIZED PARALLEL TEMPERING(p, IV, V)
Sample uld ~ v
forn=1,2,...,N —1do
# First swapping kernel
Sample o) ~ qV™) ()
# Markov transition kernel p
Sample 2™+ ~ p(OC(Tn), -) kernel
# Second swapping kernel
Sample amtl) q(UW) (z(n—‘rl)’ )
end for
Output {1,

end function

we just need to store the values of ™ (u}l), k = 1,2, ..., K, for a fixed n, and then permute over the
temperature indices.

Let now Qol : X — R bea quantity of interest. The posterior mean of Qol, ¥ (Qol) := p¥(Qol)

—

is approximated using N € N samples by the following ergodic estimator Qol(yy):
ool L\ (n)
! (Qol) ~ Qoluw) = +— Z_jb Qol(u; ).

A COMMENT ON THE PAIRWISE STATE-DEPENDENT PT METHOD OF [90]

The work [90] presents a similar state-dependent swapping. We will refer to the method presented
therein as Pairwise State Dependent Parallel Tempering (PSDPT). Such a method, however, differs
from UGPT from the fact that (i) only pairwise swaps are considered and (ii) it is not rejection
free. We summarize such a method for the sake of completeness. Let Sk pairwise denote the group

of pairwise permutations of (1,2, ..., K). Given a current state u € XX the PSDPT algorithm
L ) . ... (PSDPT) .
samples a pairwise permutation U, ; € Sk pairwise With probability r; ; (u, 0y,5) given by
(PSDPT)( ) : eXP(—|‘I’(Ui>y) - ‘I)(Uj;y)D
i 1 0iyj)

~ e ep(— @ (uk, y) — @(wsy)])’

and then accepts this swap with probability

1 1
YuI)\ T~ T;
o) (u, 5 ) = min {1’ (Zes)” } |

7 (u;)

This method is attractive from an implementation point of view in the sense that it promotes
pairwise swaps that have a similar energy, and as such, are lékely (yet not guaranteed) to get accepted.
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4.3 Generalizing Parallel Tempering

In contrast, UGPT a/ways accepts the new proposed state, which in turn leads to a larger amount
of global moves, thus providing a more efficient algorithm. This is verified on the numerical

experiments.

4.3.4 WEIGHTED GENERALIZED PARALLEL TEMPERING

Following the intuition of the continuous-time Infinite Swapping approach of [49, 133], we
propose a second discrete-time algorithm, which we will refer to as Weighted Generalized Parallel
Tempering (WGPT). The idea behind this method is to swap the dynamics of the process, that
is, the Markov kernels and temperatures, instead of swapping the states such that any given swap
is accepted with probability 1. We will see that the Markov kernel obtained when swapping
the dynamics is not invariant with respect to the product measure of interest p; therefore, an
importance sampling step is needed when computing posterior expectations.

For a given permutation o € Sk, we define the swapped Markov kernel py : XX x BE — [0, 1]
and the swapped product posterior measure pi, (on the measurable space (XX, BX)) as:

Pa(u7 ) = po(1)<917 ) Koo X pJ(K)(0K7 ')7
K = (1) X 0 X fo ()
where the swapped posterior measure has a density with respect to fiprior given by
7 (u) = Wg(l)(ul) X e X wg(K)(uK), ue XK oe Sk (4.7)
Moreover, we define the swapping weights

o (u

)
ZU ESK cyr (u)’

Note that, in general, ) (u) # 7Y (u,) (however 7r371 (w) = 7Y (1)), and as such, w, (u) #
(VW) (u, o), with w, defined as in (4.8).

we () := ueX® oe k. (4.8)

Definition 4.3.6: Wz define the Weighted Generalized Parallel Tempering kernel pt™) = XK x
BE [0, 1] as the following state-dependent, convex combination of kernels:

P (u,-) = Z wo (w)ps(u,-), weXE oeSk.

ocESK

Thus, the WGPT chain is obtained by iteratively applying p{¥). We show in proposition 4.3.4
that the resulting Markov chain has invariant measure

y — — ot
W |SK| Z .LLU :Ufa

oc€SK
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4 Generalized parallel tempering on Bayesian inverse problems

with 12V = Y ie., the average with tensorization. Furthermore, 4% has a density (w.r.t
[Sx] Zwo Ho> g w Y
the tensorized prior ptp,) given by

Y Z wl(u), wue€ XK,
’SK‘ c€SK

and a similar average and then tensorization representation applies to 7y,. We now proceed to

show that p(™) (w, ) is pig-reversible (hence pu3-invariant).

Proposition 4.3.4 (Reversibility of the WGPT chain):  Supposethat, foranyk = 1,2,..., K
D 15 pg-reversible. Then, the Markov chain generated by p™) s pig-reversible.

Proof. We show reversibility by showing that (3.5) holds true. Thus, for u € XK A, B e BX,
with A := Ay x -+ x Ag, Ay, € B(X), and with By, defined in a similar way, we have that:

/ﬁpNOuufnw%mwum«ho

:/A Z we (u)ps(u, B) %}Hpr(du)

ceSK

_O'ESK
) (u
2 pesi ™o () (du)
|Sk|
1
= o(w, B (du) = 1
5] 2 [, et Bl
oE€SK
From proposition 4.3.2, and multiplying and dividing by 3° 5, 7 () we obtain
I= Z /‘ny )P (uw, A)ppr(du)  (by Prop. 4.3.2)
‘ UGS’
Z / Z )) > Y (w) ppr(dur)
aeS o'eSk To/ pESK
:z/%pwmmmmw
ocE€SK

=Lﬁ“mAwwwwmw.

where once again, in light of Carathéodory’s Extension Theorem, it is sufficient to show that
reversibility holds for sets that tensorize. O
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4.3 Generalizing Parallel Tempering

We remark that the measure i, is not of interest per se. However, we can use importance sampling
to compute posterior expectations. Let Qol(u) := Qol(u;) be a p-integrable quantity of interest.

‘We can write

B Y (u)
E,, [Qol] = E,[Qol(u1)] = Epy [Qol(ul)ﬂ_y (w)
w
o Wy(uo)
= o] 2 Eue [Q o wé@(ua)]

ceSK

The last equality can be justified since g% is invariant by permutation of coordinates. Thus, we
can define the following (weighted) ergodic estimator Qol y) of the posterior mean of a quantity
of interest Qol by

1(Qol)
N (n)
— 1 1 ¥ (ug )
QOl(W) = — Z Qol(u )
|S |N ceSkg n=1 ﬂ-%(/(ua .
N
1 1
= v O > @™, 5)Qol(u)) (4.9)
where we have denoted the importance sampling weights by w(u, o) = :f, ((Z")) = dib“ (uy)
W o

and where N is the number of samples in the chain. Notice that w(u, ) = @(u,01). Asa
result, the WGPT algorithm produces an estimator based on IV K weighted samples, rather than
“just” IV, at the same computational cost of UGPT. Thus, the previous estimator evaluates the

(n)

quantity of interest Qol not only in the points Qol(u ), butalso in all states of the parallel chains,
Qol(u, (r ) )forallo € Sk, namely Qol(u,(ﬂ )) E=1,2,...,K.

Remark 4.3.3:  Although it is known that, in some cases, an importance sampling estimator can
be negatively affected by the dimensionality of the parameter space X (see e.g., [3, Remark 1.17] or
[122, Examples 9.1-9.3]), we argue that this is not the case for our estimator. Indeed, notice that the
importance-sampling weights W(w, o) are always upper bounded by | Sk |, and do not blow up when
the dimension goes to infinity. In Section 4.5.7 we present a numerical example on a bigh-dimensional
problem. The results on that section evidence the robustness of WGPT with respect to the dimension of
u.

The Weighted Generalized Parallel Tempering procedure is shown in Algorithm 6. To reiterate, we
remark that sampling from p, (u(™), -) involves a swap of dynamics, i.e., kernels and temperatures.
Just as in Remark 4.3.2, one only needs to evaluate the posterior K times (instead of |Sk|) to

compute w.)(u").
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4 Generalized parallel tempering on Bayesian inverse problems

Algorithm 6 Weighted Generalized Parallel Tempering.

function WEIGHTED GENERALIZED PARALLEL TEMPERING( p, N, V)
Sample u) ~ v
forn=1,2,...,N —1do
# Sample permutation o with probability w, (u")
Sample 0 ~ {wy (u")}ores,
# Sample state with the swapped Markov kernel
Sample w1 ~ p,(u(™, )
end for
Output {1, {{uwpr ()} e}y
end function

4.4 ERGODICITY OF GENERALIZED PARALLEL TEMPERING

4.4.1 GEOMETRIC ERGODICITY AND Lo-SPECTRAL GAP FOR GPT

Our path to prove ergodicity of the GPT algorithms will be to show the existence of an Lo-spectral
gap. The main results of this section are presented in Theorem 4.4.1 and Theorem 4.4.2, which
show the existence of an Lo-spectral gap for both the UGPT and WGPT algorithms, respectively.
We begin with the definition of overlap between two probability measures. Such a concept will
later be used to bound the spectral gap of the GPT algorithms.

Definition 4.4.1 (Density overlap):  Let iy, (1 be two probability measures on the measurable
space (X, B(X)), each having respective densities wp(u), mj(u), u € X, with respect to some common
reference measure vx also on (X, B(X)). We define the overlap between my,(u) and 7j(u) as

Mo (T 3) £ = /X min{mp (), 7 () b (du)
1
=1- 9 |k — ”j||L1(X,uX) ‘

An analogous definition holds for 7o, T, with p,o € Sk.

Assumption 4.4.1: Fork = 1,..., K, let pif} € M1 (X, pipr) be given as in (4.1), p + X x
B(X) + [0,1] be the Markov kernel associated to the k™ dynamics and let Py, : Ly (X, ) —
L, (X, i) be its corresponding 1Y, invariant Markov operator. In addition, for o, p € Sk, define
the measures i, phy € M(XE) as in Equation (4.2). Throughout this chapter it is assumed that:

C1. The Markov kernel py, is i} -reversible.
C2. The Markov operator Py, has an La(X, ) spectral gap.
C3. Foranyo,p € Sk, Nop = N, (78, 7)) > 0, with w4, 7}, defined as in (4.7).

These assumptions are relatively mild. In particular, C1 and C2 are known to hold for many
commonly-used Markov transition kernels, such as RWM, Metropolis-adjusted Langevin Algo-
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4.4 Ergodicity of Generalized Parallel Tempering

rithm, Hamiltonian Monte Carlo, (generalized) preconditioned Crank-Nicolson, among others,
under mild regularity conditions on 7Y [3, 65]. Assumption C3 holds true given the construction
of the product measures in Section 4.3.

We now present an auxiliary result that we will use to bound the spectral gap of both the Weighted
and Unweighted GPT algorithms.

Proposition 4.4.1:  Suppose that Assumption 4.4.1 holds and let P := ®£(:1 Py i Lo(XE pu¥)
Lo(XE, u¥), with invariant measure ¥ = p x - - x p%. Then, P hasan Lo(XX | u¥)-spectral
gap, i.e, ||P|| LXK ) LYK vy < L. Moreover, the Markov chain obtained from P is L,
geometrically ergodic, for anyr € [1, 00].

Proof. We limit ourselves to the case ' = 2, since the case for K > 2 follows by induction.
Denoteby I : La(X, i) — La(X, i), k = 1, 2 theidentity Markov transition operator, and let
f € La(X?%, u¥). Notice that f admits a spectral representation in Lo (X2, p¥) given by f(u) =
>k Pr(ur)j(uz)ek j, with ¢ ; € R, and where {¢ }ien is a complete orthonormal basis
(CONB)of L (X, p1Y) and {1, } jen isa CONBof Lo (X, 1§ ), so that { ¢ ®1; } i, jen isa CONB
of Lo (X2, u¥). Moreover, we assume that ¢g = 19 = 1, and write, for notational simplicity
1P = [P py iy Lo (x,a2y> 204 12200 = 12| 1y x )5 L (x gut - Leastly, denote fo =
f — co.0,50 that fo € LY(X?, u¥). Notice that

2
(k.5)#(0,0) Lo (X2,09)
00 00 00 2
=112 (Z Pld%ck,j) Vi + Y coiPiood : (4.10)
=0 M= 7=l La(X2,u¥)
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Splitting the sum, we get from the orthonormality of the basis that:

[o¢] o 2
(4.10) Z ZqubkC/w* + co,jP1do
: k= LZ(XHLLIiI)

Z Proper,o
La(X,u)

(o)

00 2
P, <Z ¢k0k,o>
k=1 LZ(XN“L?)
sz(uau zckﬁ%) 1A zcko

2

[o.¢]
2
+ 3 lleoioll7, x )

Ly (Xvuil) j=1

=3 |l7

J=1

o0
2 2
= PP [ foll ez vy + (1= IPLI) D (eo,5)
J=1

Proceeding similarly, we can obtain an equivalent bound for || (1 ® P») fo Hiz(XQ,

2
ready to bound ||PHL2(X27“y),_>L2(X27My):

”PfOHLQ x2,uv) = (P11 ® P2)f0HL2 X2, pv)
= [I(Pr ® I)(I © P2) fol| 7, (x2 pn)
<P (1 @ P2) foll7, xe

+ (1= A1)

o0

X Z (I® Py) (cekPebr, Pot;)

Jj=1 (£,k)#(0,0)
= PP (T @ Pa) foll 2, x.puv)

oo [oe) 2
LA | <Z<co,k<P2wk>,¢j>>
j=1

k=1

2

< PP I @ Po) foll 7, xe )

()]

+ (1~ |1 Pu?)

Lo (X,p¥)

96

) We are now



4.4 Ergodicity of Generalized Parallel Tempering

2 201112
< PP 1ol x2 pavy

+ P (= (2] Z

+ (1= 1P) | P )® ( 0(2),k>

k=1

Assuming without loss of generality that | Py || > || P2||, we can use the inequality above to bound

2 2 201 112
IPfollZ, x2 vy < 1P IIP2I7 Lfoll 2y x2 0

+P0* A= [2)) Z%o"‘ZCOk

2
< HfOHLQ(x%#y)

2 2
< Pl ol 7, x2 o -
Thus, we have that
HPHLg(XQ,y,y)HLg(XQ,y,y) < kﬂzli‘ié{||Pk||Lg(x,ug)HLg(x7MZ)} <L

The previous result can easily be extended to K > 2. Lastly, L, (XX, u¥)-geometric ergodicity
Vr € [1, o] follows from Lemma 3.2.1. O

We can use the previous result to prove the geometric ergodicity of the UGPT algorithm:

Theorem 4.4.1 (Ergodicity of UGPT ):  Suppose Assumption 4.4.1 holds and denote by p¥

the invariant measure of the UGPT Markov operator PYY). Then, PYY) has an Ly(XE | pu¥)-

spectral gap. Moreover, the chain generated by POV is L. (XK u¥)-geometrically ergodic for any
€ [1, 0]

Proof. Recall that P(VW) .= QUWIPQU™), From the definition of operator norm, we have that

o

LY(XK puv)s LY(XK v
<[l

<Pl g x vy L9 x< vy < 1

LY(XK v ) LY (XK 1) P g i< puvys L8 pav)

where the previous line follows from Proposition 4.4.1 and the fact that QYY) isa weak contraction
in Lo(XE, u¥) (see, Equation (3.7)). Lastly, L, (XX, u¥)-geometric ergodicity Vr € [1, o]
follows from Lemma 3.2.1 and the fact that P(UW) is p4¥-reversible by Proposition 4.3.3. O
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We now turn to proving geometric ergodicity for the WGPT algorithm. We begin with an auxiliary
result, lower-bounding the variance of a g -integrable functional f € Lo (XX, u%).

Proposition 4.4.2: Let f € LY(XE, ) bea p-integrable function such that || f | Lo(XK ud) =
1, and denote by V“gv [f1, V u [f] the variance of f with respect to WYy, P, respectivelywitho € Sk.
In addition, suppose Assumption 4.4.1 holds. Then, it can be shown that

Am
0< Vulf] <V =1,
= o X Yl

with Ay, = mm {AU p}and Ny, as in Assumption 4.4.1-C3.
,p€

Proof. This proof is partially based on the proof of Theorem 1.2 in [106). Let u,y € XX and
define f5 := po(f). The right-most inequality follows from the fact that

V=l = [ swPat ()
2
\SKIU;:/ P2 (u) o (du)
~ 5 X w122 g5 32 Vil

We follow a procedure similar to the proof of [106, Theorem 1.2] for the lower bound on the
variance. We introduce an ordering on Si = {01,02,...,0|5,}, define the matrix C' €
RISk XISk 35 the matrix with entries

Cy= [ ] (10~ 1)1 (G, (),

where Cjj = 2V, [f] and

ISk
1
J— p— —_ 2 [
2= 20l = [ [ 0= 50 | g 3 e (0w
ISKk|
“ 15 ’Zua] dy)
-3 e o

We thus aim at finding an upper bound of Equation (4.11) in terms of (|Sk|) ™! > vesy Volfl:
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By assumption 4.4.1-C3, for any 0, 0; € Sk the densities 7y, , ™o, of fo,, o, (With respect to
Hpr) have an overlap Ay, 5, > 0. For brevity, in the following we use the shorthand notation A; ;

for Ay, ; Thus, we can find densities
M 1= Ay min {76, (w), w0, (w)}, i, 0
such that Ty, = Aij’l’]ij + (1 — Aij)cpi, and To; = Aij’l’]ij + (1 — Az‘j)d’j- Thus, integrating

over XX we get for the diagonal entries of the C' matrix:

Cii = 2V, [f]
- / [ () = 1)) Qi) + (1 - A)iw)
X (Aijnij(y) + (1 — Aij)pi(y)) ppr(du) ppr(dy)
— [~ 1225w oo

+ / / (Fw) — F)2 A5 (1 — Ay )opi ()i (14)phpe (e pipe ()
+ / / () — F@)*Aii (1 — M) oo ()5 () e (dae) ppe (dg)

/ / V21— A2 0i(1) 01 (10) phpr (1) e ()
= 2A§jvmj [£]+2(1 — Ayj)2 Vo, [f] + 205 (1 — Ayj)
x / / (F () — F(9))2 015 ()1 (1) fopr () pe (). (4.12)
Notice that equation (4.12) implies that
/ / (1) — £(39)) 21055 (1) 91 (14)pipr () e () (4.13)
o ] = A2V (/]
S TN O-Ay)
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As for the non-diagonal entries of C, we have

Cij = [ [ (16w) = 1)) iy (4.14)

+ (1 = Aij)pi(w)] (Aijnij(y)
+(1— zg)¢g (y))ﬂpr(du)l‘pr(dy)
=277V, [f]

(1-Ay) / [ () (31 e (d0)ppr(dy)

+Alj Z] //

x (mij(w)hj(y) + nij(y)pi(w)) ppr(du) ppr(dy).

We can bound the second term in the previous expression using Cauchy-Schwarz. Let z € XK,
Then,

/ / (), () prpr (de) e (dy)

_ / / / w) — £(2) + £(2) — f@) (), (y)mi; (=)

X ppr(dw) ppr(dy) ppr(d2)

<2 [[[ () = 12 + (1) = 1)) erwps wmi (=)

X ppr(dw) por (dy) ppr(d2)

. / / £(2)) 201 ()45 (2) (1) prpe(d2)

+2// (Y)Mi5(2) pr (dY) ppr (d2). (4.15)
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Thus, from equations (4.13), (4.14), and (4.15) we get

Cij < 205V, [f] 4 (2(1 = Ay)® + Aij (1 — Ayy))

<[ [[ - 1w)* st w)

+nij (y)Yi(w)) ppr(du) ppr(dy))
= 207V, [f] + (2 = Aiy) (1 = Aj)

(Vi 1) = AZ Vi ] + Vi 1] = A3V, 1))
Agj(1 = Agj)

2 Ay
= S (Vi 14 Vi, 11]) = 48050 = A Vi ]

IN

(Viao, 111+ Vi, 151) (416

since Aj; € (0,1) V4, j. Finally, from equations (4.11) and (4.16) we get that

1= l‘w Z|S |2

\SK|

<35 2 i (Vi 14 Vi 1)

3,j=1 Y

[Sk|
2— A,
< )
— Am ’SK‘ § : IJ'UZ

with Ap, := min{A;;} > 0,and A; ;j asin Assumption 4.4.1-C3. Notice that we have used
1,j=1,2,...,| Sk |
(4.16) for the first inequality, including the case ¢ = j, in the previous equation. This in turn

0< 3 A ( K|1§V )

yields the lower bound

We are finally able to prove the ergodicity of the WGPT algorithm.

Theorem 4.4.2 (Ergodicity of WGPT):  Suppose Assumption 4.4.1 holds fomome r € [1,00]
and denote by Py the invariant measure of the WGPT Markov operator P™). Then, P) bas an
Lo (XX pd)-spectral gap. Moreover, the chain generated by P™) is L. (XK u¥,) geometrically
ergodic for any r € [1,00].
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Proof. Let £ := {f € LY(XE, ;) : HfHLg(XK,HgV) = 1}, and, for notational clarity, write

1P g += 1ol yx ity ) -

Then, from the definition of operator norm,

Ll

LY( XK,MW)HLO(XK,M%)

— WPrec HP f‘ Lo (XK u¥)

2
su o o ’d W d
<p [ 3 wolw)| | 1ol dy)| sy (o)
1 2
= sup—— o d g du), :
fGF[)J‘SK| JGZSK /XK XK J@)pa(u,dy)| 45 (du) (417

where the second to last line follows from the convexity of ()2 and the last line follows from the

definition of w, and p%;. Now, let f, := p&(f). Notice that we have

o

- /x ) /X @) = Jo + Fo)po(u.dy)| pl(du)

:/X< [ G- Ity | [ fopotdw|
w20 [ (1) Eopatud) ) itdu)

:/XK (/XK(f(y) - fa)po(u,dy)yug(dw+(fo)2

w2y [ [ (@)= e dy)ids (0w (4.19

= 0 by stationarity

2

S Wpo(u, dy)| pg(du)

2

Thus, multiplying and dividing I by

([, - ) staw).
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4.4 Ergodicity of Generalized Parallel Tempering

we obtain from the definition of ||P, H%g that:

(4.18) = (fXK (e (S fa)pa(u dy))ng(du)>
fXK( 0’) Hg(du)

SYRICE fa) ug(dU)> NiAL

<Ipeliy ([ (w7
LAY >)
2

+ (1= 1IP 13y (7o)

— ([ rwruza) - (1= il

—_——
= ~, withy € (0,1)

x ( /X (fw) —fo)? u%(du)) : (4.19)

Replacing Equation (4.19) into Equation (4.17), we get

(du) 2

[,

LY(XE, i) LY (XK, i)

<o ([ S0 i) = i 32 Vel

ocESK

A,
<l-—v (2 A ) <1 (byProposition 4.4.2).

Thus, P™) hasan Lo (XK | pd;,) spectral gap. Once again, L, (XX, pu%;)-geometric ergodicity (with
€ [1,00]) follows from Lemma 3.2.1 and the fact that P(V) is 1% -reversible by Proposition

4.3.4.
O

Di1SCUSSION AND COMPARISON TO SIMILAR THEORETICAL RESULT

Theorems 4.4.1 and 4.4.2 state the existence of an La-spectral gap, hence L,-geometric ergodicity
for both the UGPT and the WGPT algorithm. Their proof provides also a quantification of the
Lo-spectral gap in terms of the Lo-spectral gap of each individual Markov operator Pj,. Such a
bound is, however, not satisfactory as it does not use any information on the temperature and it
just states that the La-spectral gap of the UWPT and WGPT chain is not worse that the smallest

Lo-spectral gap among the individual chains (without swapping). This result is not sharp, as it can
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4 Generalized parallel tempering on Bayesian inverse problems

be evidenced in the numerical section, where a substantial improvement in convergence is achieved
by our methods.

Convergence results for the standard parallel tempering algorithm have been obtained in the works
[114] and [171]. In particular, the work [114] has proved geometric ergodicity for the pairwise
parallel tempering algorithm using the standard drift condition construction of [113]. Itis unclear
from that work which convergence rate is obtained for the whole algorithm. In comparison, our
results are given in terms of spectral gaps. On the other hand, the work [171] presents conditions
for rapid mixing of a particular type of parallel tempering algorithm, where the transition kernel is
to be understood as a convex combination of such kernels, as opposed to our case, where it is to be
understood as a tensorization. Their obtained results provide, for their setting, a better convergence
rate than the one we obtained for the UGPT. We believe that their result can be extended to the
UGPT algorithm, and this will be the focus of future work. On the other hand, the use of the
ideas in [171] for the WGPT algorithm seems more problematic.

4.5 NUMERICAL EXPERIMENTS

We now present four academic examples to illustrate the efficiency of both GPT algorithms
discussed herein and compare them to the more traditional random walk Metropolis and standard
PT algorithms. Notice that we compare the different algorithms in their simplest version that uses
random walk Metropolis as a base transition kernel. The only exception is in Section 4.5.7, which
presents a high-dimensional BIP for which the preconditioned Crank-Nicolson [32] is used as
the base method in all algorithms instead of RWM. More advanced samplers, such as Adaptive
metropolis [63, 64], or other transition kernels, could be used as well to replace RWM or pCN.
Experiments 4.5.3, 4.5.4 and 4.5.5 were run in a Dell (R) Precision (TM) T3620 workstation with
Intel(R) Core(TM) i7-7700 CPU with 32 GB of RAM. Numerical simulations in Section 4.5.3
and 4.5.5 were run on a single thread, while the numerical simulations in Section 4.5.4 were run
on an embarrassingly parallel fashion over 8 threads using the Message Passing Interface (MPI)
and the Python package MPI4py [38]. Lastly, experiments 4.5.6 and 4.5.7 were run on the Fidis
cluster of the EPFL. The scripts used to generate the results presented in this section were written
in Python 3.6, and can be found in DOI: 10.5281/zenodo.4736623

4.5.1 IMPLEMENTATION REMARKS

In most Bayesian inverse problems, particularly those dealing with large-scale computational
models, the computational cost is dominated by the evaluation of the forward operator, which can
be, for example, the numerical approximation of a possibly non-linear partial differential equation.
In the case where all possible permutations are considered (i.e., Sx = k), there are K'! possible
permutations of the states, the computation of the swapping ratio in the GPT algorithms can
become prohibitively expensive if one is to evaluate K'! forward models, even for moderate values
of K. This problem can be circumvented by storing the values — log(7¥(u}})), k = 1,..., K,
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Figure 4.1: Cost per sample vs K for Sx = %k for the forward model in Section 4.5.5 and the forward
modelin 4.5.7.

n = 1,... N, since the swapping ratio for GPT consists of permutations of these values, divided
by the temperature parameters. Thus, “only” K forward model evaluations need to be computed
at each step and the swapping ratio can be computed at negligible cost for moderate values of K.
There is, however, a clear trade-off between the choice of K (which has a direct impact on the
efficiency of the method), and the computational cost associated to (G)PT. Intuitively, a large K
would provide a better mixing, however, it requires a larger number of forward model evaluations,
which tends to be costly. We remark that such a trade-off between efficiency and number of
function evaluations is also present in some advanced MCMC methods, such as Hamiltonian
Monte Carlo, where one needs to choose a number of time steps for the time integration (see,
e.g., [12]). Furthermore, there is an additional constraint when choosing Si = #f, and it is the

(UW)(w, o) and w,, (). In particular, the computation

permutation cost associated to computing 7
of either of those quantities has a complexity of K'! thus, this cost will eventually surpass the cost of
evaluating the forward model K times. This is illustrated in Figure 4.1, where we plot the cost per
sample of two different posteriors vs K. These posteriors are taken from the numerical examples
in Sections 4.5.5 and 4.5.7. The posterior in Section 4.5.5 is rather inexpensive to evaluate, since
one can compute the forward map F analytically (the difficulty associated to sampling from that
posterior comes from its high multi-modality). On the contrary, evaluating the posterior in Section
4.5.7 requires numerically approximating the solution to a time-dependent, second-order PDE,
and as such, evaluating such a posterior is costly. As we can see for K < 6, the computational cost
in both cases is dominated by the forward model evaluation. Notice that for K < 9, the cost per

sample from posterior (4.27) is dominated by the evaluation of the forward model.
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4 Generalized parallel tempering on Bayesian inverse problems

Thus, for high values of K, it is advisable to only consider the union of properly chosen semi-groups
A, B of Sk, with AN B # (), such that A, B generates /¥ (i.c., if the smallest semi-groups that
contains A and B is .Sk itself), and |AU B| < |Zk| = K, which is referred to as partial Infinite
Swapping in the continuous case [49]. One particular way of choosing A and B is to consider, for
example, A to be the set of permutations that only permute the indices associated with relatively
low temperatures while leaving the other indices unchanged, and B as the set of permutations for
the indices of relatively high temperatures, while leaving the other indices unchanged. Intuitively,
swaps between temperatures that are, in a sense, “close” to each other tend to be chosen with a
higher probability. We refer the reader to [49, Section 6.2] for a further discussion on this approach
in the continuous-time setting. One additional idea would be to consider swapping schemes that,
for example, only permute states between pi) and ! oy w! f2r s w ¢ for some user-defined
¢>landanygiveni = 1,2,..., K — 1. The intuition behind this choice also being that swaps
between posteriors that are at close temperatures are more likely to occur than swaps between
posteriors with a high temperature difference. We intend to explore this further in depth in future
work.

We reiterate that the total number of temperatures K depends heavily on the problem and the
computational budget available [47, 163, 172] For the experiments considered in the work we
chose K = 4 or K = 5, which provide an acceptable compromise between acceleration and cost.

Remark 4.5.1: It was brought to our attention duing the private defense of this Thesis that in the
case where Sic = Sk (i.e., when all K! permutations of the set {1,2, ..., K} are considered), the
(state-dependent) normalization term Z(u) ==Y s ™ (Uq), can be computed with a much
lower complexity than O(K). This can in turn, drastically reduce the computational cost associated
to GPT for the case where K is large and all possible permutaitons are considered. Indeed, given a
matrix A € REXK with entries Aiij=1,2,..., K, wedefineits permanent A — Perm(A)

as

K
Perm(A) := Z HAk,o(k)-

€Sk k=1

Thus, it is easy to see that Z () is the permanent of the matrix A(u) € RE*K with entries
A= ﬂg(uj), i,j=1,..., K. Itisshown in [7, 61, 146] that such an operation can be computed
with complexity O(25 L K). We intend to include such algorithms for the efficient cmputation of
Z () in future work.

4.5.2 EXPERIMENTAL SETUP

We now present an experimental setup common to all the numerical examples presented in the
following subsections. In particular, all the experiments presented in this work utilize a base method
given by either RWM (for experiments 4.5.3 through 4.5.6) or pCN (used in experiment 4.5.7)
for the Markov transition kernels p. Furthermore, we take S = .7 for all experiments, where
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K = 5 for experiment 4.5.5 and K = 4 for the other 4 experiments. In addition, we follow the
rule of thumb of [52] for the choice of temperatures, setting, for each experiment, T}, = ak-1,
k=1,..., K, forsome positive constant @ > 1. The particular choice of a is problem-dependent
and it is generally chosen so that u%- becomes sufficiently simple to explore. For each experiment
we implement S MCMC algorithms to sample from a given posterior /¥ = ¥, namely, the base
(untempered) method (either RWM or pCN), and such a method combined with the standard PT
algorithm (PT) with Ny = 1, the PSDPT algorithm of [90], and both versions of GPT. For our
setting, the tempered algorithms have a cost (in terms of number of likelihood evaluations) that is
K times larger than the base method. Thus, to obtain a fair comparison across all algorithms, we
run the chain for the base method K times longer. Lastly, given some problem-dependent quantity
of interest Qol, we assess the efficiency of our proposed algorithms to compute the posterior
expectation of Qol by comparing the mean square error (experiments 4.5.3-4.5.5), for which the
exact value of ;s [Qol] is known, or the variance (experiments 4.5.6-4.5.7) of the ergodic estimator
6& obtained over Vyyns independent runs of each algorithm.

4.5.3 DENSITY CONCENTRATED OVER A QUARTER CIRCLE-SHAPED MANIFOLD

Let ¥ be a probability measure that has density ¥ with respect to the uniform Lebesgue measure
on the unit square i, = U([0, 1]2) given by

1
m(u) = - exp (—10000(w + uj — 0.8%)%) 1pg 12,

where u = (u1, us2), Z is the normalization constant, and Lg,1)2 is the indicator function over
the unit square. We remark that this example is not of particular interest per se; however, it can
be used to illustrate some of the advantages of the algorithms discussed herein. The difficulty
of sampling from such a distribution comes from the fact that its density is concentrated over a
quarter circle-shaped manifold, as can be seen on the left-most plot in Figure 4.2. This in turn
will imply that a single level RWM chain would need to take very small steps in order to properly
explore such density.

We aim at estimating @i = E,w[u;] = u;, fori = 1,2. For the tempered algorithms (PT,
PSDPT, UGPT, and WGPT), we consider K = 4 temperatures and choose T3 = 5000, so that
the tempered density 7} becomes sufficiently simple to explore the target distribution. This gives
Ty = 1,175, = 17.1,T3 = 292.4,T, = 5000. We compare the quality of our algorithms by
examining the variance of the estimators @;, i = 1, 2 computed over Nyyns = 100 independent
MCMC runs of each algorithm. For the tempered algorithms, each estimator is obtained by
running the inversion experiment for N' = 25, 000 samples per run, discarding the first 20% of
the samples (5000) as a burn-in. Accordingly, we run the single-chain random walk Metropolis
algorithm for Npwm = KN = 100, 000 iterations, per run, and discard the first 20% of the
samples obtained with the RWM algorithm (20,000) as a burn-in.
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Figure 4.2: Tempered densities (with 77 = 1, Ty = 17.1, T3 = 292.4, T = 5000) for the density
concentrated around a quarter circle-shaped manifold example. As we can see, the density
becomes less concentrated as the temperature increases, which allows us to use RWM proposals

with larger step sizes.
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The untempered RWM algorithm uses Gaussian proposals with covariance matrix Yrwym =
p%[ 2x2, where 92 is the identity matrix in R2%2 and p% = 0.022is chosen in order to obtain an
acceptance rate of around 0.23. For the tempered algorithms (i.e., PT, PSDPT, and both versions
of GPT), we use K = 4 RWM kernels py, k = 1, 2, 3, 4, with proposal density gprop,k (U, ) =
N (ul, pzlgxg), where py, is shown in Table 4.1. This choice of py, gives an acceptance rate for

each chain of around 0.23 (determined empirically). Notice that p; corresponds to the “step-size’
of the single-temperature RWM algorithm.

k=1 k=2 k=3 k=4
pr  0.022  0.090 0.310 0.650

Table 4.1: Step size of the RWM proposal distribution for the manifold experiment.

Experimental results for the ergodic run are shown in Table 4.2. We can see how both GPT
algorithms provide a gain over RWM, PT and PSDPT algorithms, with the WGPT algorithm
providing the largest gain. Scatter plots of the samples obtained with each method are presented
in Figure 4.3. Here, the subplot titled “WGPT” (bottom row, middle) corresponds to weighted
samples from 3, with weight @ as in (4.9), while the one titled “WGPT (inv)” (bottom row,
right) corresponds to samples from gy, without any post-processing. Notice how the samples
from the latter concentrates over a thicker manifold, which in turn makes the target density easier
to explore when using state-dependent Markov transition kernels.

Mean MSE MSEgwum/MSE
uy U uy Us uy U

RWM 0.50996 0.50657 0.00253 0.00261 1.00 1.00
PT 0.50978 0.51241 0.00024 0.00021 10.7 11.0
PSDPT 0.50900 0.50956 0.00027 0.00026 9.53 10.2
UGPT 0.50986 0.50987 0.00016 0.00016 16.1 16.4
WGPT 0.51062 0.50838 0.00015 0.00014 16.9 18.4

Table 4.2: Results for the density concentrated around a circle-shaped manifold experiment. As we can see,
both GPT algorithms provide an improvement over PT, PSDPT and RWM. The computational
cost is comparable across all algorithms.

4.5.4 MULTIPLE SOURCE ELLIPTIC BIP

We now consider a slightly more challenging problem, for which we try to recover the probability
distribution of the location of a source term in a Poisson equation (Eq. (4.20)), based on some noisy
measured data. Let (X, B(X), ppr) be the measure space, set X = D := [0, 1]?, with Lebesgue
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Figure 4.3: Scatter-plots of the samples from ;¥ obtained with each algorithm on a single run. Top, from
left to right: random walk Metropolis, PT and PSDPT. Bottom, from left to right: UGPT,
WGPT (after re-weighting the samples), and WGPT, before re-weighting the samples.

(uniform) measure fipr, and consider the following Poisson’s equation with homogeneous bound-

ary conditions:

r€e€ D, ueX,

4.20
xz € 9D. ( )

{—Av(x,u) = f(z,u),
v(z,u) =0,

Such equation can model, for example, the electrostatic potential v := v(z, u) generated by a
charge density f(z, u) depending on an uncertain location parameter u € X. Data y is recorded

on an array of 64 x 64 equally-spaced points in D by solving (4.20) with a forcing term given by

4 ) )
Fl) = 3 100 —of) o))
i=1

(4.21)

where the true source locations sV, i = 1,2,3,4, are given by s = (0.2,0.2), s =
(0.2,0.8), s®) = (0.8,0.2), and 5(¥ = (0.8,0.8). Such data is assumed to be polluted by
an additive Gaussian noise with distribution N'(0, 7% Ig4x64), with n = 3.2 x 1075, (which
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corresponds to a 1% noise) and where Ig4x 64 is the 64-dimensional identity matrix. Thus, we

set (Y, [|-ly) = (REG4 || |1), with [|A]| = (64n)~2 || A||%, for some arbitrary matrix A €
RO4%64 where ||| - is the Frobenius norm. We assume a misspecified model where we only
consider a single source in Eq. (4.21). That, is, we construct our forward operator F : X — Y by

solving (4.20) with a source term given by
flx,u) = ¢~ 1000[(z1 —u1) (w2 —u2)?] (4.22)

In this particular setting, this leads to a posterior distribution with four modes since the prior
density is uniform in the domain and the likelihood has a local maximum whenever (uy, us) =
(sgi), sgi)), i = 1,2, 3, 4. The Bayesian inverse problem at hand can be understood as sampling
from the posterior measure ¥, which has a density with respect to the prior gy = U(D) given
by

ww) = ap (—5 Iy FIE )

for some (intractable) normalization constant Z as in (2.7). We remark that the solution to (4.20)
with a forcing term of the form of (4.22) is approximated using a second-order accurate finite
difference approximation with grid-size h = 1,/64 on each spatial component.
The difficulty in sampling from the current BIP arises from the fact that the resulting posterior ¥
is multi-modal and the number of modes is not known apriori (see Figure 4.4).

—

We follow a similar experimental setup to the previous example, and aim at estimating Qol; =
E, v [u;) = u;, fori = 1,2. We use K = 4 temperatures and Nyyps = 100. For the PT, PSDPT
and GPT algorithms, four different temperatures are used, with 77 = 1, Ty = 7.36, 13 =
54.28, and Ty = 400. For each run, we obtain N = 25, 000 samples with the PT, PSDPT, and
both GPT algorithms, and N = 100, 000 samples with RWM, discarding the first 20% of the
samples in both cases (5000, 20000, respectively) as a burn-in. On each of the tempered chains,
we use RWM proposals, with step-sizes shown in table 4.3. This choice of step size provides an
acceptance rate of about 0.24 across all tempered chains and all tempered algorithms. For the
single-temperature RWM run, we choose a larger step size (prwm = 0.16) so that the RWM
algorithm is able to explore the whole distribution. Such a choice, however, provides a smaller
acceptance rate of about 0.01 for the single-chain RWM.

Experimental results are shown in Table 4.4. Once again, we can see how both GPT algorithms
provide a gain over RWM and both variations of the PT algorithm, with the WGPT algorithm
providing a larger gain. Scatter-plots of the obtained samples are shown in Figure 4.4.
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Figure 4.4: True tempered densities for the elliptic BIP example. Notice that the density is not symmetric,
due to the additional random noise.
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Figure 4.5: Scatterplots of the samples from u¥ obtained with different algorithms on a single run. Top,
from left to right: random walk Metropolis, PT and PSDPT. Bottom, from left to right: UGPT,
WGPT (after re-weighting the samples), and WGPT, before re-weighting the samples. As we
can see, WGPT (before re-weighting) is able to "connect” the parameter space.
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k=1 k=2 k=3 k=4
Pk, Tempered ~ 0.030  0.100  0.400  0.600
Pk RWM 0.160 - - -

Table 4.3: Step size of the RWM proposal distribution for the elliptic BIP experiment.

Mean MSE MSErwMm / MSE
Ul U2 Ul u2 ui U2

RWM 0.48509 0.51867 0.00986 0.01270 1.00 1.00
PT 0.48731 0.50758 0.00042 0.00036 23.0 29.2
PSDPT 0.48401 0.50542 0.00079 0.00099 12.4 10.7
UGPT  0.48624 0.50620 0.00038 0.00027 25.9 38.2
WGPT 0.48617 0.50554 0.00025 0.00023 38.6 44.9

Table 4.4: Results for the elliptic BIP problem. The computational cost is comparable across all algorithms,
given that the cost of each iteration is dominated by the cost of solving the underlying PDE.

4.5.5 1D WAVE SOURCE INVERSION

We consider a small variation of example 5.1 in [115]. Let (X, B(X), ttpr) be a measure space,
with X = [—5, 5] and uniform (Lebesgue) measure fipr, and let I = (0, 7] be a time interval.
Consider the following Cauchy problem for the 1D wave equation:

v (x, t,u) — vge(z, t,u) =0, (z,t,u) € R X T x X,
v(z,0,u) = h(z,u), (x,t,u) € R x {0} x X, (4.23)
v(z,0,u) =0, (z,t,u) € R x {0} x X.

Here, h(x, u) acts as a source term generating a initial wave pulse. Notice that Equation (4.23)
can be easily solved using d’Alembert’s formula, namely

(h(x —t,u) + h(z +t,u)).

1
v(z,t,u) = 3

Synthetic data y is generated by solving Equation (4.23) with initial data

1
h(x) uy, u2) - 5

+e—100(m—u1+0.5)2 _|_€—100(x—u2—0.5)2

(e—IOO(m—u1—0.5)2 1 o~ 100(z—u1)?

)

1 e 100(z—uz)? _i_eflOO(sz,ngOB)Q)

with u; = —3,u2 = 3 and observed at Ng = 11 equally-spaced receiver locations between
Ry = —5and Ry = 5 on Ny = 1000 time instants between t = 0 and 7" = 5. The signal
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Figure 4.6: Multi-modal potential for the Cauchy problem. Notice the minima aroundu = —3and u = 3.

recorded by each receiver is assumed to be polluted by additive Gaussian noise NV'(0, 1% I1000x1000);
with 7 = 0.01, which corresponds to roughly 1% noise. We set (Y, |||ly) = (RM*1900].||&.),

with
Ngr Np

1412 = (VNa) 230 42,

i=1 j=1

A € RUX1000 Opce again, we assume a misspecified model where we construct our forward
operator F : X = Y by solving (4.23) with a source term given by

) = (o700 w05?

1 e 100(z—u)? | 67100(17u+0.5)2> '

The Bayesian inverse problem at hand can be understood as sampling from the posterior measure
1Y, which has a density with respect to the prior ppr = U([—5, 5]) given by

w0 = g op (5 v - FwIE) (424

1

— e (~B(uiy),

for some (intractable) normalization constant Z as in (2.7). The difficulty in solving this BIP
comes from the high multi-modality of the potential ®(u; y), as it can be seen in Figure 4.6. This,
shape of ®(u; y) makes the posterior difficult to explore using local proposals.

In this case, we consider K = 5,andsetT; =1, To =5, T3 = 25,74, = 125and T5 = 625.
Notice that from Figure 4.1, the computational cost per sample is dominated by the evaluation of
(4.24) for values of K < 6. Once again, we obtain N = 25, 000 samples with the PT, PSDPT,
and both GPT algorithms, and N = 125, 000 samples with RWM, discarding the first 20% of the
samples in both cases (5000, 25000, respectively) as a burn-in. On each of the tempered chains,
we use RWM proposals, with step-sizes shown in table 4.5. This choice of step size provides an
acceptance rate of about 0.4 across all tempered chains and all tempered algorithms. The choice
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of step-size for the RWM algorithm is done in such a way that it can "jump” modes, which are at
distance of roughly 1/2.

We consider Qol = w as a quantity of interest. Experimental results are shown in Table 4.6. Once
again, we can see how both GPT algorithms provide a gain over RWM and both variations of
the PT algorithm, with the WGPT algorithm providing the largest gain. Notice that, given the
high muti-modality of the posterior at hand, the simple RWM algorithm is not well-suited for this
type of distribution, as it can be seen from its large variance; this suggests that the RWM usually
gets “stuck” at one mode of the posterior. Notice that, intuitively, due to the symmetric nature of
the potential, one would expect the true mean of u to be close to 0. This value was computed by
means of numerical integration and is given by E}[u] = 0.08211.

k=1 k=2 k=3 k=4 k=5
PhTempered 002 005 010 050 2.0
Pk RWM 0.5 - - - -

Table 4.5: Step size of the RWM proposal distribution for the Cauchy BIP experiment.

Mean MSE MSEgrwm/MSE

RWM -0.10120  9.36709 1.000
PT 0.05118  0.03681 254.5
PSDPT  0.15840 0.21701 43.20
UGPT  0.08976 0.03032 308.9
WGPT  0.06149 0.02518 372.0

Table 4.6: Results for the 1D Cauchy BIP problem. The computational cost is comparable across all
algorithms.

4.5.6 ACOUSTIC WAVE SOURCE INVERSION

We consider a more challenging problem, for which we try to recover the probability distribution
of the spatial location of a (point-like) source term, together with the material properties of the
medium, on an acoustic wave equation (see Eq. (4.25) below), based on some noisy measured data.
We begin by describing the mathematical model of such wave phenomena. Let (X, B(X), ttpr)
be the measure space , with Lebesgue (uniform) measure pipr, set D := [0, 3] x [0,2], 0D =
Tn U T aps, In N Taps = 0, [T, [Taps] > 0, and define X = D x X, x Xg, where X, =
6,14], X5 = [4500, 5500]. Here, we are considering a rectangular spatial domain D, with the
top boundary denoted by I'y and the side and bottom boundaries denoted by I'z1,,. Lastly, let
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u = (s1, 82, a, §) € X. Consider the following acoustic wave equation with absorbing boundary

conditions:

vy — V- (B2Vu) = f, inD x (0,T) x X,

v=1u =0, inD x {0} x X,

R (4.25)
B2V -1 =0, onI'y x (0,7) x X,
B2V -1 = —afuy, onTpps X (0,T) x X,

where uw = v(x,t,u),and f = f(z,t, u). Here the boundary condition on the top boundary
I'n corresponds to a Neumann boundary condition, while the boundary condition on I'ps
corresponds to the so-called absorbing boundary condition, a type of artificial boundary condition
used to minimize reflection of wave hitting the boundary. Datay € Y is obtained by solving
Equation (4.25) with a force term given by

1 2 2
Pl tyu) = 101 70 (150 "+ s2)’] (4.26)

x (1 — 2 - 100072¢2)e~ 2 1000%7%¢2

with a true set of parameters X 3 u* := (s1, 52,0, ) givenby s1 = 1.5,50 = 1.0, =
10, 8 = 5000, and observed on N = 3 different receiver locations R; = (1.0,2.0), Ry =
(1.5,2.0), Rz = (2.0,2.0) at Ny = 117 equally-spaced time instants between ¢ = 0 and
t = 0.004. In physical terms, the parameters s1, 52 represent the source location, while the
parameters v, 3 are related to the material properties of the medium. Notice that, on a slight
abuse of notation, we have used the symbol 7 to represent the number 3.14159 ... in equa-
tion (4.26) and it should not be confused with the symbol for density. The data measured by
each receiver is polluted by additive Gaussian noise N(0, 7]211 17x117), with n = 0.013, which
corresponds to roughly a 2% noise. Thus, we have that (Y, [|-|[y) = (R¥>17 ||-||g), where
Al = (vV/Ngn)~2 ZZ]\E ?;TO A%j. Thus, the forward mapping operator F : X — Y
can be understood as the numerical solution of Equation (4.25) evaluated at 117 discrete time
instants at each of the 3 receiver locations. Such a numerical approximation is obtained by the finite
element method using piece-wise linear elements and the time stepping is done using a Forward
Euler scheme with sufficiently small time-steps to respect the so-called Courant-Friedrichs-Lewy
condition [134]. This numerical solution is implemented using the Python library FEniCS [101],
using 40 x 40 triangular elements. The Bayesian inverse problem at hand can thus be understood as
sampling from the posterior measure £, which has a density with respect to the prior prpr = U(X)
given by

ww) = w5 Iy - IR )
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Figure 4.7: Plot of the log-likelihood for different values of 51, s2 and fixed values of & = 10 and 8 = 5000.
The magenta points represent the reciever locations R1, Rg, R3. The black point represents the
true location of the source (s1, s2) = (1.5, 1.0).

The previous BIP presents two difficulties; on the one hand, Equation (4.25) is, typically, expensive
to solve, which in turn translates into expensive evaluations of the posterior density. On the other,
the log-likelihood has an extremely complicated structure, which in turn makes its exploration
difficult. This can be seen in Figure 4.7, where we plot of the log-likelihood for different source
locations (1, s2) and for fixed values of the material properties « = 10,3 = 5000. More
precisely, we plot ®((s1,52);y) = — 3 |ly — F(s1, 52, 10, 5000)||%, on a grid of 100 x 100
equally spaced points (s1, $2) in D. It can be seen that, even though the log-likelihood has a clear
peak around the true value of (s1, 52), there are also regions of relatively high concentration of
log-probability, surrounded by regions with a significantly smaller log-probability, making it a
suitable problem for our setting.

Following the same set-up of previous experiments, we aim at estimating @i = B [w;] = w, for
i = 1, 2. Once again, we consider K = 4 temperatures for the tempered algorithms (PT, PSDPT,
UGPT, and WGPT), and set temperatures to T = 1,75 = 7.36,T3 = 54.28, T, = 400. We
compare the quality of our algorithms by examining the variance of the estimators U;, i = 1,2
computed over Nys = 50 independent MCMC runs of each algorithm. For each run, we
run the tempered algorithms obtaining N = 7,000 samples, discarding the first 20% of the
samples (1400) as a burn-in. For the RWM algorithm, we run the inversion experiment for
Nrwm = KN = 28,000 iterations, and discard the first 20% of the samples obtained (5600) as
a burn-in.

Each individual chain is constructed using Gaussian RWM proposals gorop (U7, -) = N (uf}, C),
k =1,2,3,4, with covariance Cj, described in Table 4.7. The covariance is tuned in such a way
that the acceptance rate of each chain is around 0.2. The variance of the estimators obtained with
each method is presented in Table 4.8. Once again, our GPT algorithms outperform all other
tested methods for this particular setting. In particular, our methods provide huge computational
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gains when compared to RWM and the PSDPT algorithm of [90], as well as some moderate
computational gains when compared to the standard PT.

1/2 1/2
Ck,Tempered Ck,RWM
k=1 Diag(0.01,0.01,0.2,5) | Diag(0.02,0.02,0.2,5)
k =2 | Diag(0.06,0.06, 0.4, 14) -
k= Diag(0.3,0.3,0.6, 20) -
k=4 Diag(1,1,1,50) -

Table 4.7: Step size of the RWM proposal distribution for the acoustic BIP experiment. Here
Diag(dy,dsg,...,dn) is to be understood as the N x N diagonal matrix with entries
dy,do,...,dy.

Mean Var Vargwg /Var
S1 S9 S1 S9 S1 S9

RWM 133801 1.54293 9.86 x 107! 8.21x10~2  1.000000 1.000
PT 1.50121 1.00829 6.61 x 1076 2.77 x 107* 149136.1 296.2
PSDPT 139775 123119 2.48 x 107! 6.54 x 1072 3.900000 1.200
UGPT 150177 1.00711 2.72x 1076 238 x 10~* 361744.5 345.0
WGPT 150174 1.00601 2.08 x 1076 1.46 x 10~* 4721332 558.6

Table 4.8: Results for the acoustic BIP problem. Once again, we can see that both GPT algorithm provide
an improvement over RWM, PT and PSDPT. The computational cost is comparable across all
algorithms, given that the cost of each iteration is dominated by the cost of solving the underlying
PDE.

4.5.7 HIGH-DIMENSIONAL ACOUSTIC WAVE INVERSION

Lastly, we present a high-dimensional example for which we try to invert for the material properties
/32 in (4.25). For simplicity, we will consider fixed values of « = 1,57 = 1.5,and s3 = 1. In
this case, we set 2 = 10 + 2(z), where 3 () is taken to be a realization of a random field
discretized on a mesh of N, x N, triangular elements. This modeling choice ensures that 32 is
lower bounded. In this case, we will invert for the nodal values of (the finite element discretization
of) B, which will naturally result in a high-dimensional problem. We remark that one is usually
interested in including the randomness in 3 2 instead of B\ ; however, we purposely choose to do so
to induce an explicitly multi-modal posterior, and as such, to better illustrate the advantages of
our proposed methods when sampling from these types of distributions.

We begin by formalizing the finite-element discretization of the parameter space (see e.g., [24] for a
more detailed discussion).
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Let D = [0, 3] x [0, 2], denote the physical space of the problem and let V}, be a finite-dimensional
subspace of L (D) arising from a given finite element discretization. We write the finite element
approximation 3;, € V}, of B as

~

Ny
B(x) ~ Bu(@) =D budn(@),
n=1

Ny

where {¢} | are the Lagrange basis functions corresponding to the nodal points {z, }2* |,

(bi,...,bn,)T = u € R is the set of nodal parameters and N, corresponds to the number
of vertices used in the FE discretization. Thus, the problem of inferring the distribution of 3
given some data y, can be understood as inferring the distribution of u given 3. For our particular
case, we will discretize D using 28 X 28 (non-overlapping) piece-wise linear finite elements, which
results in N, = 841 and as such X = R84, We consider a Gaussian prior i3y oo = N(0,.A72)
(c.f Section 2.2.1), where A is a differential operator acting on L (D) of the form

A:=—-aV-(HV)+dl, a,d>0,

together with Robin boundary conditions V(-) - 7 + v ad(-) = 0, where, following [164], H is
taken of the form

.o (& sin(€) + eq cos?(¢) (e1 — e2) sin(¥) cos(¥)
' (e1 — eg)sin(£) cos({) e1 cos?(£) + egsin?(f) |

Here H models the spatial anisotropy of a Gaussian Random field sampled from fipr oo. It is
known that for a two-dimensional (spatial) space, the covariance operator A~2 is symmetric and
trace-class [24], and as such, the (infinite-dimensional) prior measure is well-defined. Thus, we set

5(35) ~ Hpr,c05

which in turn induces the discretized prior:

o~

ﬁh(w) ~ Hpr ‘= -/\/’(07“4}:2)7

where A; 2 is a finite-element approximation of A using 28 x 28 (non-overlapping) piece-wise
linear finite elements. Samples from pup, are obtained using the FEn1CS package [101] and the
hIPPYlib library [164].

We follow an approach similar to our previous example. We collect datay € Y by solving Equation
(4.25) with a force term given by (4.26) and a true field B;; ~ ppr witha = 0.1,d = 0.5,
¢ =mY/4,e; = 2and ea = 0.5. Such a realization of 3 is shown in Figure 4.8.

Furthermore, data is observed at N = 5 different receiver locations Ry = (1.0,2.0), Ry =
(1.25,2.0), R3 = (1.5,2.0), R4 = (1.75,2.0), and R5 = (2.0,2.0) at N7 = 600 equally-
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Figure 4.8: True field §(z). Notice the anisotropy on the field. The magenta points represent the receiver
locations. The black line represents the zero-level set of the field.

spaced time instants between ¢ = 0 and ¢ = 0.6. The data measured by each receiver is polluted
by an (independent) additive Gaussian noise 7 ~ N(0, 02 . T600x600)> with o = 0.021, which
corresponds to roughly a 0.5% noise. Thus, we have that (Y, [|-||y) = (R>*%0 ||-||s;). Similarly
as in Section 4.5.6, the forward mapping operator F : X Y can be understood as the numerical
solution of Equation (4.25) evaluated at 600 discrete time instants at each of the 5 receiver locations.
Numerical implementation follows a similar set-up as in Section 4.5.6, however, for simplicity, we
use 28 X 28 triangular elements to approximate the forward operator F. The Bayesian inverse
problem at hand can thus be understood as sampling from the posterior measure ;1¥, which has a
Radon-Nikodym derivative with respect to the prior ppr given by

_dp? 1 1 9
= 2w = pow (5 Iy - I3 ) (427

™ (u)

The previous BIP has several difficulties; clearly, it is a high-dimensional posterior. Furthermore,
just as in the previous example, the underlying mathematical model for the forward operator is a
costly time-dependent PDE. Lastly, by choosing to invert for B~ fipr (instead of 32), and since fpy
is centered at zero, we induce a multi-modal posterior, indeed, if the posterior concentrates around
B;‘L it will also have peaks at any other Bj obtained by flipping the sign of Efl in a concentrated
region separated by the zero level set of B\Z (we identify 7 regions in Figure 4.8). This can be
seen in Figure 4.9, where we plot 4 samples from p. Notice the change in sign between some

~

regions. Lastly, as a quantities of interest, we will consider Qol; = [, exp(3(z))dz and Qoly =
exp(B(1.5,1)). We remark that, although these quantities of interest do not have any meaningful
physical interpretation, they are, however, affected by the multi-modality of the posterior, and as
such, well suited to exemplify the capabilities of our method.

Given the high-dimensionality of the posterior, we present a slightly different experimental setup

in order to estimate E,[Qol;] ~ Qol;, i = 1,2. In particular, we will use the preconditioned
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Figure 4.9: Posterior samples obtained with the UW GPT algorithm. Notice the resemblance to Figure 4.8.

Crank-Nicolson (pCN) as a base method, instead of RWM, for the transition kernel p. We compare
the quality of our algorithms by examining the variance of the estimators @i computed over
Nruns = 50 independent MCMC runs of each algorithm, with K' = 4 temperatures for the
tempered algorithms given by 77 = 1,75 = 4.57,T3 = 20.89,T, = 100. For the tempered
algorithms, each estimator is obtained by running the inversion experiment for N = 4,800
samples, discarding the first 20% of the samples (800) as a burn-in. For the untempered pCN
algorithm, we run the inversion experiment for Nycn = KN = 19, 200 iterations, and discard
the first 20% of the samples obtained (3840) as a burn-in.

Each individual chain is constructed using pCN proposals qprop, & (up,-) =N(/1 - pzu’g, pi.A}_f),
k =1,2,3,4, with pj described in Table 4.9. The simple, un-tempered pCN algorithm is run
with a step size given by p = p1. The values of py, are tuned in such a way that the acceptance rate
of each chain is around 0.3 and are reported in Table 4.9. The variance of the estimators obtained
with each method is presented in Table 4.10. Once again, even for this high-dimensional, highly
multi-modal case, our proposed methods perform considerably better than the other algorithms.

k=1 k=2 k=3 k=4
Pk 0.1 0.2 0.4 0.8

Table 4.9: Values of py, for the pCN kernel for the high-dimensional wave inversion problem.

4.5.8 APPLICATION TO A (SEMI-)REALISTIC SEISMIC SOURCE INVERSION PROBLEM:
TANZANIA CASE STUDY

Lastly, we conclude this chapter by applying our WGPT algorithm to the solution of a BIP arising
in seismic source inversion. Given some noise-polluted data recorded at three different locations,
we are interested in obtaining the probability distribution for the source location of an earthquake
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Mean Var Varpcn / Var
QOll QOlQ QOll QO|2 QO|1 QO|2

pCN 8.8665 1.5255 5.7362 0.6029 1.00 1.00
PT +pCN 87710 1.5311 1.3308 0.1380 4.31 4.36
PSDPT +pCN  8.5546 1.4453 2.1289 0.2666 2.69  2.26
UGPT +pCN  8.7983 1.4614 1.0543 0.1051 549 5.73
WGPT +pCN  8.6464 1.4643 1.0126 0.1016 5.74 5.93

Table 4.10: Results for the high-dimensional acoustic BIP problem. As for the previous examples, The
computational cost is comparable across all algorithms.

given that the material properties of the medium are also unknown. Such an experiment is a
computational model of an earthquake that took place on the Tanzania basin on the 12th of
October 2016 at 1:31:53. Given the source-receiver configuration, this seismic source inversion
problem can be well-approximated by a two-dimensional model (c.f. Figure 4.10). We consider a
rectangular domain D = [0, 145000] x [0, 87000] m?, together with a time interval I = [0, T']
T = 17s. We will model the seismic event as an elastic wave equation (c.f. Equation (1.4)), that we
restate here for convenience. Given some Banach space X (that we will define shortly), the forward
model of the wave phenomena reads as find a displacement field w : I x D x X — R? such that:

plx, w)wy(t,z,u) — V- o(z,u,w) = =M - Vo(z —us)S(t), for(t,z,u) €l x D xX
w(0,z,u) =0, w(0,z,u) =0, for {t =0}, (z,u) € XD x X,

where

o(z,u,w) = Xz, u)V - wl + m(z,u)(Vw + (Vw)T),
3fo < 2f§(t+t0)2>
St)= —exp | ——2—""], tp=—0.6s, fo =2Hz,
( ) \/% Xp 9 0 fO
~[5.5895 x 101 7.9762 x 10'3
-\ 7.9762 x 101 -2.5698 x 10 |’

together with Neumann Boundary conditions at the surface of the domain, and with perfectly
matched layers (a kind of absorbing boundary conditions) on the side and lower boundary, to sim-
ulate the propagation of the wave through a “infinite”, layered medium on those directions. Here,
p(z,u), represents the density of the material, A\(z, u), m(x, u) represent the Lam¢é parameters,
and the forcing term models an explosion centered at ug € X. We write the material properties
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Figure 4.10: (Top). Aerial view of the source-receiver geometry. Receivers are denoted in red and source
location is in blue. Figure reproduced from [4], with permission from the publisher (Springer
Nature). (Bottom). Depiction of the computational domain of the Tanzania test-case. Blue
represents the PML.

(p, A, ) of the earth in terms of its density, compressional V), and shear wave Vj velocities, given

by

Vp(z,u) = \//\(w,uz(—; 217;(:8’”), Vi(z,u) = m

We make the following simplifying assumptions:
1. The number of layers (7) and their depth are known beforehand.
2. The material properties (p, V), Vs) are constant on each layer.
3. The Moment tensor M is known.

These assumptions can be justified by known models for the structure of the Earth (see, e.g., [51]),
and were discussed in collaboration with the Computational Earthquake Seismology group from
the King Abdullah University of Science and Technology (KAUST), lead by Prof. Martin Mai.
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Such assumptions drastically reduce the number of unknown parameters in the inversion; indeed
we would have two parameters for the source location + 3 X 7 parameters for the material properties.
Synthetic data is generated using the values shown in Table 4.11 and recorded by three receivers
located at the top boundary of the domain. 1700 data-points per seismograph are obtained. Syn-
thetic data is polluted by Gaussian additive noise representing 1% of the maximum amplitude
of the recorded signal. We assume there is no correlation on the noise between time instances or

receivers.

Source Location
zs = 54000 zs = 59500
Layer \ Property | o Vi Vs

Layer 1 2571 | 6128 | 3459
Layer 2 2426 | 6355 | 3799
Layer 3 2520 | 6799 | 3823
Layer 4 2599 | 6854 | 3985
Layer 5 2972 | 7906 | 4673
Layer 6 3076 | 8424 | 4928
Layer 7 3060 | 8434 | 4999

Table 4.11: Set of true parameters, by which the data are synthetically generated, approximated to the closest
unit.

Computationally, The domain is discretized using the spectral element method, using 116 x 68
elements, with 5 Gauss-Legendre-Lobatto (GLL) nodes per element. We use a leap-frog scheme for
the evolution of the forward model, up to the final time of 7" = 175, and with a time discretization
of At =5 x 1073 s. This is implemented using the software SPECFEM2D [88].

We record (noise-polluted) data and aim to recover the probability distribution of the source
location, as well as the uncertain material properties. Thus, we have M = 23 total unknown

parameters (2 spatial components + 3 X 7 material properties), namely

u = (3707207@13‘/;)17%1’ .. '7@77‘/})75‘/87%
——"

=Ug

where g; (resp. Vp,, Vs, ) represents the density (resp. bulk modulus and compressional velocity)
at the i layer. For the prior distribution jpy, we set

M
Mpr = ® Kpr;,
i=1
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where fipy, is the prior of the i parameter. In particular, we consider uniform priors for all
components of u, thus making 79 = U(a, b), where a and b are the minimum and maximum
admissible values for u;. For the source location, we set (z¢, 20) = us ~ U(D) where zg, 2o
represent the horizontal and vertical component of the source location, respectively. As for the

material properties, following [4], we use the following priors.

0i ~ U(0.90;™¢,1.10"),
Vii ~ U(0.95VE, 1,05V,

ER ]

Vpi ~ U(L.558V, 1.869V).

ER ]

Notice that the priors on V), ; are expressed in terms of Vj ;. This is due to the high correlation

between these parameters in an attenuating medium.

We implement our WGPT algorithm with K = 4 temperatures, with 77 = 1,75 = 5,713 = 25
and Ty = 125, obtaining N = 5000 samples, after a burn-in period of 1000 samples. Each kernel
p; is a RWM algorithm with covariance

. — Z:source,i 0
' 0 X
where $32_ = (25)2I51x21, and

mat
1/2 20 0 1/2 100 O
E = 2 =
source, 1 ( 0 50) » “source,2 0 300 ’

g2 _ (500 0\ Lip o _ (5000 0
source,3 » “source,4 T
0 2000 0 5000

We plot the density of the source in Figure 4.11. There we can see, denoted by the “+” symbols
some of the samples obtained from the WGPT algorithm (after re-weighting the samples), and
the blue regions represent the density of the concentration of the points. Notice that, as expected,
there’s a strong concentration of points around the true location of the source (x5 = 54000,
zs = 59500). Although in practical applications 5000 is certainly a small number of samples for a
BIP, we can still see that the resulting density is both mutli-modal and heavily concentrated around
an extremely small region of the computational domain; indeed notice that the plot concentrates
on an area that is less than 1% of the total computational domain. On the contrary, given this
multi-modality and concentration of the source location in the domain, running a RWM algorithm
for this problem (with an equivalent number of samples and using ¥ as a covariance) results in
samples that are not able to identify the region of source location (not shown). Once again, we

have seen how these hierarchical methods are well-suited for these types of problems.
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4.5 Numerical experiments

Source location density
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Figure 4.11: Density of source location
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S A crass oF MuLTI-LEVEL MCMC
ALGORITHMS BASED ON INDEPENDENT
METROPOLIS-HASTINGS

This chapter is mostly the same as the pre-print J.P. Madrigal-Cianci, F. Nobile, and R. Tempone.
Analysis of a class of Multi-Level Markov Chain Monte Carlo algorithms based on Independent
Metropolis-Hastings. arXiv:2105.02035 (2021) [108]. Some modifications have been made with
respect to such a pre-print; some material was removed, as this has already been presented in
Chapters 2 and 3 of this thesis. Furthermore, the theoretical analysis has been greatly simplified
(following the suggestion of anonymous referees). Furthermore, a challenging, high-dimensional
example has been added in Section 5.6.4.

In this work we present, analyze, and implement a class of Multi-Level Markov Chain Monte Carlo
(ML-MCMC) algorithms based on independent Metropolis-Hastings proposals for Bayesian
inverse problems. In this context, the evaluation of the likelihood function involves solving a
complex difterential model, which is approximated using a sequence of increasingly accurate
discretizations. The key point of this algorithm is to construct highly coupled Markov chains
together with the standard multi-level Monte Carlo argument to obtain a better cost-tolerance
complexity than a single level MCMC algorithm. Our method extends the ideas of [45] to a wider
range of proposal distributions. We present a thorough convergence analysis of the proposed
ML-MCMC method and demonstrate that (i) under some mild conditions on the (independent)
proposals and family of posteriors, a unique invariant probability measure exists for the coupled
chains generated by the proposed method, and (ii) that such coupled chains are uniformly ergodic.
We also generalize the cost-tolerance theorem of Dodwell et al., to our wider class of ML-MCMC
algorithms. Finally, we propose a self-tuning continuation-type ML-MCMC algorithm (C-ML-
MCMC). The presented method is tested on an array of academic examples, where some of our
theoretical results are numerically verified. These numerical experiments reveal how the extended
ML-MCMC method is robust when targeting some pathological posteriors, for which some of the
previously proposed ML-MCMC algorithms fail.
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5 A dass of Multi-Level MCMC algorithms based on Independent Metropolis-Hastings

5.1 INTRODUCTION

Multi-Level Monte Carlo (MLMC) methods are well-known computational techniques [59] used
to compute expectations that arise in stochastic simulations in cases in which the stochastic model
cannot be simulated exactly, but can be approximated at different levels of accuracy and different
computational costs. Despite their wide-spread applicability, extending these MLMC ideas to
Multi-Level Markov Chain Monte Carlo (ML-MCMC) methods to compute expectations with
respect to a complex target distribution from which independent (whether exact or approximate)
sampling is not accessible, has only recently been attempted, with only a handful of works dedicated
to this task. This situation arises, for instance, in Bayesian inverse problems (BIPs) where the aim
is to compute the expectation E [Qol] of some output quantity of interest Qol with respect to
the posterior measure ;¥ of some parameters . € X given some indirect noise measurements
y = F(u) + n, where 1) is the additive noise and F is the forward operator, which may involve
the solution of a differential equation (see Chapter 2 for more details). At their core, ML-MCMC
methods for BIPs introduce a hierarchy of discretization levels ¢ = 0, 1, . . ., L of the underlying
forward operator, which induces a family of posterior probability measures 1, approximating
(¥ with increasing levels of accuracy as £ — oo. Given some pY-integrable quantity of interest
Qol, we can approximate the expectation of Qol over ¥ by the usual telescoping sum argument
of MLMC,

L
E#y [QO” ~ E#f [QO||_] E y QOIQ + Z (E y Qolg 71[Q0|g_1]>
{=1
L
=Y AE, (5.1)
=0

with AE[ = E“ZZ [Qolg] - E#271 [Qolg_l], AEO = E#g [Qolo] and where, forl = O, 1, ey |_,
Qolyisa M?—integrable, level £ approximation of the quantity of interest Qol. This telescoping sum
presents the basis for various types of multi-level techniques for BIPs. The work [71], for example,
approximates the expectation (5.1) by splitting each AE, into three different terms, which are
then computed using a mixture of importance-sampling and MCMC techniques. A multi-index
generalization of such method is presented in [78]. In addition, similar multi-level ideas have also
been attempted in the context of Multi-Level Sequential Monte Carlo (MLSMC) in the works
[13,79, 96].

In this work, we follow the approach proposed in [45], which is probably the first proposition of
multi-level ideas for BIPs and consists of approximating £ Y [Qol| ] using the following ergodic

estimator:

[QoIL ~ — Z QO|0 u n —l— Z Z QOIK Uge Qo'ﬁ—l(u?j—l)v

7

=Y
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5.1 Introduction

where {uné}gio is an ergodic Markov chain with invariant distribution 4. The key idea is
to couple the chains {uy, ;,uy é}gio so that they are highly correlated and the variance of
the ergodic estimator V[, [1 >, Y] becomes increasingly smaller as £ increases. By carefully
choosing IV, this method can achieve a much better sampling complexity (in terms of cost versus
tolerance) than its single-level counterparts (see [45]).

Most of the existing literature on ML-MCMC has focused on constructing these types of couplings
[35, 45]. In [45], the authors use (an approximation of) the posterior distribution at the previous
discretization level £ — 1 as a proposal for level £. This is practically implemented by sub-sampling
from the chain {uj_; , , }gif)l.

Such an idea has been recently expanded in [35], where the subsampling idea is combined with
the so-called Dimension Independent Likelihood Informed (DILI) MCMC method of [36] to
generate proposed samples at level 0in their ML-MCMC algorithm. Some further work combining
multi-level Monte Carlo ideas with Bayesian inference has been presented in [80], where the authors
use rejection-free Markov transitions kernels, such as the Gibbs sampler, in order to couple the
multi-level MCMC chains at two consecutive levels.

However, investigating more theoretical aspects of ML-MCMC algorithms, such as the existence
of an invariant measure for the coupled chains and the type of convergence to such a measure (if it
exists), has been widely overlooked, and one of the aims of this chapter is to fill this gap.

This work presents several novel contributions. First, we present an ML-MCMC algorithm where
chains are coupled using Independent Metropolis Hastings (IMH)-type proposals as in [45],
however, allowing for a wider class of admissible proposals. In particular, we show that the sub-
sampling approach in [45] can be replaced by a properly chosen IMH proposal (that is, a proposal
for which the proposed state is independent of the current state of the chain), which proposes
the same state to the two chains {uz 01> Up e}gi o targeting 1y, juj respectively, which is then
accepted by the usual Metropolis-Hastings (MH) criterion. This ensures the coupling of the chains.
Such a proposal can be, for example, the prior, a Laplace approximation, or even a kernel density
approximation of the posterior at the previous level. Obviously, the choice of proposal has a direct
influence on the joint invariant distribution v/ of the coupled chain {UZ -1 U e}gio (if it exists),
and thus, on the variance of the ergodic estimator [V, [1 Zn Y,

The main contribution of this work is an in-depth convergence analysis of the extended ML-
MCMC method. More precisely, we provide sufficient conditions on the (marginal) level £ pos-
terior and proposal probability measure (), so that a unique joint invariant probability measure
exists for the coupled chain. Such a contribution is presented in Theorem 5.3.1, where it is shown
that, under some mild conditions on Qg, 115, 191, the presented ML-MCMC algorithm (i) has a
unique, invariant probability measure for the joint chain at level £ and (ii) is uniformly ergodic.
Following the convergence results presented in Chapter 3, we provide computable, quantitative,
non asymptotic error estimators for the ergodic estimator (5.1). These estimators allow us to
generalize the cost-tolerance result of [45] to our extended MLMCMC method and propose

131



5 A dass of Multi-Level MCMC algorithms based on Independent Metropolis-Hastings

an adaptive ML-MCMC algorithm in which the number of levels L and chain lengths [N, are
determined on the fly, in the spirit of the continuation MLMC method presented in [31].

The rest of this chapter is organized as follows. In Section 5.2 we present our ML-MCMC
method, and then proceed to analyze its convergence in Section 5.3. Section 5.4 is dedicated to the
generalization to our case of the cost-tolerance analysis result in [45]. In Section 5.5 we discuss
the continuation-type algorithm and implementation details. Lastly, we illustrate our method in

several numerical experiments in Section 5.6.

5.2 MULTI-LEVEL MARKOV CHAIN MONTE CARLO

Let (X, [|||x) and (Y, ||-|[\) be separable Banach spaces with associated Borel o-algebras B(X), B(Y).
As in Chapter 2, we consider the BIP of finding the posterior distribution ¥ of some state u € X

given noisy observations y € Y where
y=F(u)+n,

with F : X — Y the forward operator and 1 ~ fi50isc Some polluting noise with known distri-
bution fineise 0n (Y, B(Y)). Furthermore, recall that assuming that u follows a prior probability
measure fipr on (X, B(X)) before any data has been observed, it can be shown under some tech-
nical assumptions (c.f. Chapter 2) that ¥ < pup, with g% (du) = Z 71 exp(—®(u; y)) ppr (du),
Z = [y e~ ) (du), and @ (u; y) defined as in (2.6). It is often the case that the forward
mapping u — F(u) involves the numerical approximation of the underlying mathematical model
driving the BIP, and as such, J needs to be approximated at an accuracy level L, i.e., /| = F,
with 7 — FasL — oo. This induces the discretized posterior 1}, given in terms of its
Radon-Nikodym derivative with respect to the prior by:

_dy! 1

_ _ Ly / —eL(uw) ), (4
u e s L e % u),
dftpr ) . pr(du)

) (u) : Z

with g — p¥ as L — oo in some sense. Throughout this chapter we will assume that
D(u;y), PL(u;y) > 0Vu € Xand y € Y. The sampling from the posterior ; will in turn be
done using the Metropolis-Hastings algorithm (c.f. 3.4).

In general, such an algorithm requires running the Markov chain for a long time to obtain a
good approximation of the posterior, and it is not uncommon for N to be of the order of tens of
thousands. Furthermore, such a method requires the evaluation of the posterior density 7}’ (2)
at each newly proposed state z every time the acceptance rate oy (u", z) in the MH algorithm
is evaluated. In PDE-driven BIP, where evaluating 7{ (z) implies solving a possibly non-linear
and time-dependent PDE on a sufficiently fine mesh (i.e., with high accuracy), the cost associated
with the MH algorithm can rapidly become prohibitive. One technique to alleviate this issue is to
introduce multi-level techniques. Thus, we let { M, g}'gzo be a hierarchy of discretization parameters

of the underlying mathematical model F(-), which could represent, for example, the number of
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5.2 Multi-level Markov Chain Monte Carlo

degrees of freedom used in the discretization of the underlying PDE. We consider only geometric
sequences for {Mf}lézo with My, = sMy_q for some My > 0and s > 1. We denote the
corresponding discretized forward models by F¢(-) and the corresponding approximate quantity
of interest by Qoly. We assume that the accuracy of the discretization and the cost of evaluating
the discretized model, increase as £ (and hence Mpy) increases. This hierarchy of discretizations
induces a hierarchy of posterior probability measures {1}/ }5_, approximating 4 with increasing
accuracy and cost. We can write the posterior expectation [E,;s [Qol], approximated on the finest
available discretization level L, in terms of the following telescoping sum:

L
E,s[Qol] ~ E,»[QolL] = E,y[Qolg] + 3 (Eug [Qol] —E,y [QolH]) .
/=1

This result motivates introducing the following MLMCMC ergodic estimator:

No L N,

_— 1 1
QO'L,{NE}',;:0 = Ny Z[QOlo(UG,o)] + Z N, Z (QOlé(UZD - QO'zfl(UZeq)) - (5.2)

n=1 /=1 ¢ n=1

TV
Pp— n
=Y,

where we have introduced the notation ug s ~ pj and uge—1 ~ pj ,and ugj = uge—q if
j=40—1landus; = ugeif j = £. The terms Y, are generally small if (g1, up ¢) are close.
The key to the method is to design a coupled Markov chain {(uy _, 7 s)n>0} for whichug,_;,
and uj , stay highly correlated and close to each other with high probability for every n, while
keeping the right marginal invariant distributions /‘?—1’ and M?» respectively. This is necessary for
the terms in (5.2) to telescope in the mean. Constructing a coupled Markov chain (with marginal

target measures /1j_, /1y ) for which H“Ze—l —upy « — 0 in a suitable sense, as £ — o0, results
inV,,[Y] = 0asf — oo, where v, € M(X?) is the invariant measure of the coupled Markov
chain (if it exists). Hence, by using an adequate proposal distribution and properly choosing L
and { N, }}_, one can obtain a significantly better complexity than that of a single-level MCMC
estimator ( see [45] for a general complexity result of the ML-MCMC approach). To achieve
this, following [45], we will use what we call an Independent Metropolis-Hastings coupling (IMH-
coupling) of ug ¢—1, ug,¢. The main idea of such a coupling is to create two simultaneous Markov
Chains {uz -1, U ¢ Inen at two adjacent discretization levels, using as a proposal a probability
measure Qg (w~ith ,u? < Quj=10-1,0), having a (strictly positive) pipr-density Qy, in such
a way that (i) ()¢ generates proposed states z € X independently of the current state of either
chain, and (ii) at every iteration, the same candidate state 2 is proposed as the new state of both
chains, which then accept or reject it using the standard MH accept-reject step with the same
uniform random variable u ~ (0, 1). This will in turn guarantee that, marginally u ; ~ M?’
asymptotically for both j = ¢—1and j = £ (i.e., the marginal chains follow the right distribution),
and that the pair (uz 15 Up ¢) is highly correlated for any n € N, provided the acceptance rate is
sufficiently high. A depiction of one step of such a coupling procedure is presented in Algorithm
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5 A dass of Multi-Level MCMC algorithms based on Independent Metropolis-Hastings

7. We emphasize that such an algorithm also couples the Metropolisation step by comparing the
acceptance probabilities o5, j = £ — 1, £, with respect to the same uniform random number U.
The full ML-MCMC procedure is presented in Algorithm 8. Ateachlevel £ =1,2,... L, the
coupled chains {ug,_,uj e}gio in Algorithm 8 start from the same state uz —1 = ug o (the
diagonal of the set X?).

Algorithm 7 One-step IMH coupling

1: procedure IMH_Courrin({m)_,, )}, {uf,_1,uj,}, Qr)
2 Sample z ~ Q.

3: Sample U ~ U(0,1).

4 forj=(—1,¢do

5 Set u"+1 = zifU < a;(uy;, 2), where

7 (2)Qe(uy ;)
aj(uf;,2) == min |1, 2 ————IC|
[ )0
Set u?jl = u?j otherwise.

Output {uu 15Uy g

6
7: end for
3 n+1 n+1
9: end procedure

Algorithm 7 is, effectively a type of independent sampler Metropolis [3] on the marginal chains.
As such, the sampling efficiency of such an algorithm critically depends on how well the proposal
Qu approximates i) and pi) . Choosing a proposal Qp that closely resembles 1) or i reduces
the number of rejection steps, enhancing the mixing of the chains (see [3, 21] for a more in-depth
discussion). In principle, Qz can be chosen to be, e.g., the prior, or, an empirical version of the
posterior based on the samples {u}_ 1} £ collected at the previous level, as originally proposed in
[45]. Itcan also be any reasonable approximation of i, pf_; suchas,e. g a Laplace approximation
orakernel density estimator (KDE), again based on the sample {u}_; J e o collected at the previous
level.

Each step of Algorithm 7 produces 1 out of 4 possible configurations St, S2, S3, Sy :

n+1 n+1

Pupe_p gy ) = (2,2) (both chains accept the proposed state),

9 (u?jll, u?jl) = (2, ugy) (chain at level £ — 1 accepts and chain at level £ rejects),
Ss (u%’ll, u%’l) = (ufg_1,2) (chain at level £ — 1 rejects and chain at level £ accepts),
Sy (u%’ll, u%’l) = (ugo—1,upy) (both chains reject the proposed state).
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5.2 Multi-level Markov Chain Monte Carlo

Algorithm 8 Multi-level Markov chain Monte Carlo

1: procedure ML—MCMC({W?}LO, Q, {Ng}'gzo, %)

2 if / = 0 then

3 {uao}nNiO =Metropolis-Hastings(m{, @, No, A\0)
4 Set X0,0 = {u0.0}02.

S: end if
6
7

8

9

for(=1,...,Ldo

“Construct” Qg (e.g., from x¢—1,¢—1).
Sample ug 1~ A0 and set uge = ug -1
forn=0,...,N,—1do ’

10: # Create a coupled chain using IMH coupling
+1 +1 .
11: {’U,Ze_l, ’U,Ze } = IMH_COUP-U ng({ﬂg_p ﬂ—g}7 {UZZ—P uz€}7 QZ)
12: end for
N, .
13: Set x¢ :{uzj}nio,j ={—-1,0
14: end for

15: Output X0,0 U {Xﬂ,é—laXE,E}lézl and QOILv{NZ}IZ:O'
16: end procedure

These configurations are illustrated in Figure 5.1. More formally, weset X* > )} := (ufp_q>ugp)-
Then, for any A € B(X?), Algorithm 7 induces the multilevel Markov transition kernel py
X2 x B(X?%) + [0, 1] given by the following:

pe(uy, A) = /Xmin{ae—l(UZg_pZ),Oée(UZg,Z)}QE(Z)1{(z,z)eA}Mpr(dZ) (5.3)
+ [ et 1.2) = arlufe ) QuCa)1 (e peayor(@)

+ [ (@l 2) = s (1 QU )

U g5
+ 11{(%_1’%)64} <1 - /Xmax{af—l(uZZ—hZ)7a€(ug,£vZ)}QZ(Z)Mpr(dZ)) :

where ()T = m—i—2\m|7 x € R. Each line on the right-hand side of (5.3) corresponds to the

transition kernel proposing to move from the state uj to one of the four possible configurations
Si, 1 = 1,2,3,4. Although py targets the right marginals, the properties related to the con-
vergence of the chain generated by py, such as irreducibility, the existence of an invariant (joint)
measure 1z, or geometric ergodicity, are not obvious. We investigate these convergence properties
in the following section.
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Ug.e

(R UB,E— 1

Figure 5.1: Schematic of the possible configurations S1, S, S3, S4. The sampler moves to the diagonal
A = {(upp—1,up0) € X?s.tupp_1 = ug e} whenever both chains accept (regardless of their
current state) or when both chains reject, assuming that they were at the diagonal.

5.3 CONVERGENCE ANALYSIS OF THE ML-MCMC ALGORITHM

We now proceed to analyze the convergence of the level-wise coupled chains generated by Algorithm
7. The main result in this section is stated in Theorem 5.3.1. Loosely speaking, this theorem (i)
provides conditions for the existence and uniqueness of a joint invariant measure of the multi-
level Markov transition kernel (5.3), and (ii) indicates that such a kernel generates a uniformly
ergodic chain under certain conditions (i.e., a chain that converges exponentially fast to its invariant
distribution with a constant that does not depend on the initial state of the chain).

At each level £, Algorithm 7 creates two coupled chains using the same proposal (¢, inducing two
Markov transition kernels, each generating a marginal chain. We formalize this in the following

definition.

Definition 5.3.1 (Marginal kernel): For a given level {, { = 1,2 ... L and proposal Qy,
we define the ,u?-z'nvarz’ant marginal Markov transition kernel py j : X x B(X) — [0, 1], with
j=0—1,4 as

pj(ug;, A) = /A 03 (g 5, 2)Qu(2) o (d2) (5.4)
ey [ (0 05l 2) Quln(d2),

forany ug; € X, and A € B(X). Similarly, we denote its corresponding marginal Markov

transition operator by Py ;.

The marginal chains {uj’ z}nNim {up,_y }gio generated by (5.4) are indeed Markov chains. Fur-
thermore, by construction, Py ; is ,u?—invariant, (ie., [L?P& = ,ué’)
We make the following assumptions on the proposal and the (marginal) posterior densities.
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5.3 Convergence analysis of the ML-MCMC algorithm

Assumption 5.3.1 (Assumptions on proposal and posterior densities): The following
conditions hold forall ¢ = 1,. .. L:

5.3.1.1. There exists a positive constant ¢ € (0, 1), independent of ¥, such that

ess inf {Qg(z)/wy(z)} >e>0, j=0-1,0L
zeX J
5.3.1.2. Forany fixedy € Y, the potential function y(-;y) : X — Ry is strictly positive.

5.3.1.3. Thereexist positive constantst > 1, and C., independent of {, such that [y Q7 (u)pupr(du) <
C, forany L.

Assumption 5.3.1.1 implies that the tails of the proposal (), must decay more slowly than those of
1y, iy atinfinity, (i.., Qg has heavier tails than M?7 J = £—1,£). In practice, this is a moderately
restrictive assumption however, it is crucial for the convergence of both the marginal IMH and
the multi-level algorithm. Assumption 5.3.1.2 requires the potential to be strictly positive in X
(for some fixed y € Y). This assumption is relatively mild, and will be used in the next Section
(c.f. Lemmata 5.4.2 and 5.4.5). Lastly, Assumption 5.3.1.3 is an integrability condition on Q)¢
with respect to the prior. Just as Assumption 5.3.1.1, this assumption is quite mild and will also

become useful in the next section (c.f. Lemma 5.4.6).

5.3.1 CONVERGENCE OF THE LEVEL-WISE COUPLED CHAIN

In most MCMC methods, one typically designs a Markov chain with a given invariant probability
measure, which automatically ensures the existence of (at least) one invariant probability measure.
However, this is not the case for Multi-level MCMC algorithms (including the one presented
here), and as such, we now proceed to demonstrate that such an invariant measure uniquely exists.

The main result of this subsection is given below.

Theorem 5.3.1:  (Uniform ergodicity of the coupled chain) Suppose that Assumption 5.3.1 holds.
Then, for any level ¢ = 0,1,2 ..., L, there exists a unique invariant probability measure vy on
(X2, B(X2)) for the Markov transition operator Py. Furthermore, the Markov chain induced by

such an operator is uniformly ergodic, i.e.,

< 2(1_p£)n, Vuy ze,nGN,

f(ug)pe" (g, duy’) — /><2 f(ug)ve(duy)

sup

2
Hf”Loo(XQ,HerHpr)gl X

with pg == ¢ [y min {7} (z),7_,(2)} ppr(dz), and c € (0,1) as in Assumption 5.3.1.
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Proof. We begin by showing that the whole space X2 is a small set. Indeed, notice that for any
(wpo—1,u00) = up € X2and A € B(X?), it follows from Equation (5.3) that

pe(ug, A) Z/min{ae—1(w,e—1,Z),ae(w,e? 2)}Qe(2) Ly (2 2 e aytpr(d2)
X

:/min 1 T 1(2) Quuge—1) ) (2) Qelugy)
X ’@@WLWHV@@ﬁ()

}Qﬁ( 2)1y( ) eaytpr(dz)

, (), m(= .
Z/Xmm{l7 77@ 1( | c, QKEE ; }Qe( )]1{22)€A}Mp,(dz) (By Assumption 5.3.1)

1 (2) T (2)
>c /mln{ 0(2) Qg(Z)}QE( 2) 1,2y eaytpr(dz)

_. /X min {(2), 7, (2)} L (goomyetytipr(d2) = cr(A),

where we have set
() i= [ min {m}(2), 1 (2} L epepiton(d).

Notice that 7y defines then a measure on X2. Thus, since such a minorization condition holds for

the whole space, X2 is a small set and the chain is Dp-irreducible and strongly aperiodic. Setting

pe = cvg(X?), it then follows from Theorem 3.2.2 that the Markov chain generated by P is

Harris recurrent, and as such, it admits a unique invariant probability measure vy. Lastly, it follows

from Theorem 3.2.3 (c.f. also [113, Theorem 16.2.4]) that the chain is uniformly ergodic and
<2(1—pp)", VuseXineN,

sup

f(ud)pe" (we, duy) — /x? f(up)ve(duy)

2
||f||Loo(X2,,upr><NPY)§1 X

with pp = casl — 0. O

We have demonstrated that the joint chain generated by the multi-level algorithm with independent
proposals (i) has an invariant measure and (ii) is uniformly ergodic.
Notice that the previous theorem is closely related to the following standard result in the theory of

Markov chains (see, e.g., [111]), and which we recall here for convenience.

Theorem 5.3.2 (Uniform ergodicity of IMH): Foranyl =1,2,...,Landj =1{— 1,4,
letpgj - X x B(X) = [0, 1] denote the /L?—revemz’ble Markov transition kernel associated with an

IMH algorithm with proposal Qq. If Q¢ and i are such that ess inf,ex {Qg(z)/wg(z)} > 0

then py ; is uniformly ergodic. Conversely, if essinf,ex {Qg(z)/wg(z)} = 0, then, py ; fails to be
ergodic in the sense of (3.15).
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5.3 Convergence analysis of the ML-MCMC algorithm

Proof. See [111, Theorem 2.1]. O

Thus, from Theorem 5.3.2, Assumption 5.3.1.1 also implies uniform ergodicity of the marginal
chains of the ML-MCMC algorithm. We remark however, that such a result cannot directly be
used instead of our Theorem 5.3.1, since it presumes the existence of an invariant probability
measure for the chain.

The choice of @y is delicate for the ML-MCMC algorithm to work. For instance, consider the
case L = 1, uf = N'(1,1) and pf = N (3, 1). What might initially appear to be a good proposal
for the coupled chain at level (¢ — 1,¢) = (0,1) is to take Q1 = pf, i.e., the (exact) posterior
at the previous level. However, this proposal choice (which is unfeasible in practice, as direct
sampling from M?—l is inaccessible) does not lead to a geometrically ergodic chain given Theorem
5.3.1, because Q1 (z) /77 (2) has essential infimum 0. The idea of proposing from the previous
level is somehow what is advocated in [45], which could work only if dc1, 2 € Ry such that
c1 <7y (2)/7](2) < ¢2,Vz € Xand VL.

Lastly, notice that, by construction, the ML-MCMC algorithm 8 starts from a measure 0 (A) :=
A(AA), Y < pipr, where, for any set A € B(X?), we define Ap := {z € X : (z,2) € A}.
We now show that, forany level £ = 1,2, ..., L, 2\ <« vy.

Theorem 5.3.3 (Absolute continuity of initial measure): Under the same assumptions as in
Theorem 5.3.1, for any level £ = 1,2, ..., L, it holds that N2

Proof. Let A € B(X?) be a compact set such that v4(A) = 0 (the case for the non-compact set is

shown later). Furthermore, from the tightness of 7/, we have that, given some € > 0, there exists a
compact K, € B(X?) such that vy(K,) > 1 — €. Thus

0=1p(A) = /)(2 Pe(we, A)ve(duy)

7} (2)Qe(ur )
> /)(2 /AA mjin {min {Qz(z)a 7T?(uij)e}},upr(dz)yg(duz)

3 (2)Qe(ur 5)
> /6 /AA mjll’l {min {Qg(Z), T{M}} Iu,pr(dZ)Vg(dUg). (5.5)

By Assumption 5.3.1 and the compactness of K and A, we have that there existsa ¢’ > 0 such
y .
that ¢ < min; {min {Qg(z), T ()Qu(ue ) } } Vg € K., V2 € Aa. Then, we obtain the

m (ue,)
following:

(55) > Cl(l — €>,Uzpr(AA)7
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which implies that gtpr(Aa) = 0. Moreover, because A% < gy, we have XO(A) = \(4a) = 0;
therefore \? < 1. Suppose A is not compact. As Aisa tight probability measure it follows that

(see, e.g., [17]),
A(A) = sup \(K) =0,
KCA

K compact

and we can conclude the proof as in the previous case . O

5.3.2 NON-ASYMPTOTIC BOUNDS ON THE LEVEL-WISE ERGODIC ESTIMATOR

Recall that given some g € [1, 00}, the Ly (X, p)-spectral gap of P : Lqy(X, 1) — Lg(X, ) is
given by:

P =1~ Pl g

Whenever y,[P] > 0, v P™ converges to 1 for any v° € M (X) in some appropriate distance for
probability measures (see, e.g., [95, 143]). Recall, furthermore, that the pseudo-spectral gap of a
given Markov operator Py : Lo(X2, vp) — Lo(X?, 1) is given by:

sl = max {2 (P PY k) k€ N, (5.6)

where P;* : Ly (X2yp) — Ly (X2, 1) is the adjoint operator of Py. It is shown in [127,
Proposition 3.4] that for a uniformly ergodic chain with Markov kernel, P, it holds that ;[ P] >
0.

Forall/ =1,2,...,L,and fora ,u?-integrable quantity of interest Qol;, j = £ — 1, £, we write
the following:

Yo(ug) = QOU(W ¢) — Qoly—1(upe—1), we = (wrp—1,us0) € X3,

: -1
Yon, = Z Yo(u"tm0), up ~ pe(u ™), mpe € N

Next, we analyze the level-wise contribution to the ML-MCMC ergodic estimator (5.2), which
we write hereafter in more general terms, including a burn-in phase.
For/=1,2,...,L,letQol; — Qoly_; =: Y; : X2 = Rbeary square-integrable function, and
10 be a probability measure on (X%, B(X?)) such that ¥ < v;. Inaddition, denote by E,0_p, [Y7]
(resp V,0_p, [Y¢]) the expectation (resp. variance) of Yy over the Markov chain generated by P,
starting from an initial probability measure 0, and consider the following ergodic estimator:

Y&Ne,nb,e = ZYZ n+n” ), up Npg(Uanl’ ), (5.7)
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where 1y, , € N is the usual burn-in period. This section provides error bounds on the non-
asymprotic statistical Mean Square Error (MSE) of (5.7)

A ~ 2
MSE(YZ,N@%,Z; VO) = EVO:PZ [(nganb,z B W(YZ)) ]

. . 2
=V, p, [Yé,Nl,nb,g] + {EVO,PZ [Ye] — Vz(Ye)} (5.8)
In particular, we aim to obtain a bound of the following form

Vi, [Y]
Ny 7

MSE(Yz, Ny 05 7°) < Crusert (5.9)
for some level-dependent, positive constant Cpyg ¢. Such a bound is presented in Theorem 5.3.4,
the main result of this subsection. A bound of the form (5.9) is required for the cost analysis in
Section 5.4. As discussed in Chapter 3, bounds such as (5.9) exist for geometrically ergodic and
reversible Markov transition kernels [143]. However, the chain generated by P is not v/¢-reversible.
Consequently, we can not directly apply the nonasymptotic bounds presented in [143]. Instead,
inspired by the error analysis of [143] and the psexdo-spectral approach of [127], we construct a
bound of the form (5.9) for general (i.e., not necessarily multi-level) nonreversible, discrete-time

Markov chains. To the best of the authors’ knowledge, this result is new.

Theorem 5.3.4 (Nonasymptotic bound on the mean square error):  Suppose Assumption
5.3.1 holds. Furthermore, for any ¢ = 1,2,..., L, let Y, € Lo(X?,1p), and write go(up) =
Yo(up)— fx2 Yo (we)ve(duy), and assume the Markov chain generated by Py starts from a measure
V0 with 1° < vy, and % € Lo (XQ, vp). Then,

. 0 N Vi, [Y7]
MSE(YeNyii V") = B,y | 7 Zl e N e
where Crnse ¢ = Ciny,p + Chs g, with
4 dv? 4
s = (14 mm) Ot = (2’ ae (1 mm)) |
where Yys| Py) is the pseudo-spectral gap of Py, defined in (5.6).
Proof. This is an application of Theorem 3.3.2. ]

Remark 5.3.1:  Notice that Assumption WO < vy bolds in our setting by Theorem 5.3.3 for
VO(A) = X0(Ap).

Moreover, although constants Ciy, ¢ and C)s ¢ depend on the level £, we do not expect them to

degenerate as £ — 00. In particular, the dependency on the level is given by two terms: ~yps[ Py
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s
dv

and ‘ ’ . For the first term, we expect ps [ Py] to become smaller and smaller as £ — oo
Lo

and for it to converge to a limit value yps[Poo] > 0 (see also the discussion of synchronization of
dv®

dvy

the coupled chains in Section 5.4). For the second term notice that vy converges
p ) (4 g

[ee]

to a measure that has all of its mass in the diagonal set of X2, Because /¥ is a finite measure on such
a diagonal, we also expect that this term remains bounded as £ — 0o. However, we are not able to

prove these claims at the moment, thus we formulate the following assumption.

Assumption 5.3.2:  There exist a level independent constant Cnge such that, foranyl = 0,1, ...,
it holds that Cyyee p < Crnge.

The fact that Cly ¢ does not blow-up as £ — 00 is an important requirement on the asymptotic
analysis of ML-(MC)MC methods.

The bound (5.10) should be compared to the bound presented in [143, Theorem 3.34]. In
particular, that work presents a sharper bound than (5.10), however, such a bound necessitates
more restrictive assumptions which we list in the next theorem for completeness, whose proof is
an easy adaptation of [143, Theorem 3.34] to our setting and is omitted.

Theorem 5.3.5:  Suppose that the Assumptions of Theorem 5.3.4 hold. In addition, assume that
foranyl =1,2,...,L:

R1. (Lo-spectral gap) there exists by € (0, 1) such that
HPEHL%(X?,WHLg(x{u@) <,

R2. (Li-exponential convergence) there exists ¢ € Ry, ag € (0,1) such that

0
1P — - [|delB) < &af
L1(X2p) dv, L) X
Then, the non-asymptotic MSE is given by
2 ~ |0 np,L
Vo, [Ye] 2 20 ’ dv 1HLOO %

< +
Ny (1—by) Ny(1 — ay)?

Evo.p, , (5.11)

1
N, O gelud )
n=1

where the first term in the parenthesis is associated with the variance contribution to the MSE, whereas

the second term corresponds to the statistical squared bias and is of higher order in Nj.

In general, the stronger Assumptions R1 and R2 are known to hold for Markov chains which
are both reversible and geometrically ergodic. However, due to its construction, the Markov
transition kernel Py of the ML-MCMC algorithm is not reversible. Nevertheless, we believe that
the presented algorithm satisfies Assumptions R 1 and R2 and as such, a bound on the MSE of the
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5.4 Cost analysis of the ML-MCMC algorithm

form (5.11), should hold. However, we are currently unable to verify this claim either, and we will
restrict to the bound of Theorem 5.3.4 and the less restrictive Assumption 5.3.2.

5.4 COST ANALYSIS OF THE ML-MCMC ALGORITHM

For{ =0,1,...,L,let Qol; : X +— Rbea ,uzé—integrable quantity of interest, denote by Eyr,
(resp. Vi) the sample mean (resp. variance) of the multi-level ergodic estimator (5.2), and denote
by E = E,0 p, (resp. V.= V,0 p,) the sample mean (resp. variance) with respect to Markov chain
generated by a vy-invariant Markov kernel P, started form an initial measure V. The Total Mean

Square Error of the multi-level estimator (5.2) is given by the following:

—

— 2
éML(QOILv{NZ}IZ:O) = EML I:(QOILv{NZ}IE_O — El‘y [QOI]) :| .

. . N~ L . c
Notice that the estimator Qol; ¢ NS, also depends on { Py} ;_,, the burn-in, and initial measure
for each level; however, for the sake of readability, we opted not to write these dependencies

explicitly throughout this section. The previous term can be upper bounded by

— — . 2
e (Qoly (xp1_ ) = Vae[Qol (1 ]+ [EML [Qoh {NZ}LJ —Eu [Qol]}

_ _ 2 2
< VML[QC)'L,{NE}IZ:D] +2 [EML [QOIL{NZ}'@:O} — B [QOlL]} +2 {Euf [Qol ] — E,» [Qol]] )

Variance contr. MCMC bias contr. Discretization contr.

Notice that
. L L
VaL[Qol gyt J=> VIVl +2 Y Cov(Ye,Ye) <2(L+1)) V[Vl
=0
Furthermore, we have that
— 2 L . 2
2 [Bn (QolL gy, ) — Eyp[Qall] < 2(L+1) Y (EI¥i ~ By, [¥) -

Thus, recognizing from Equation (5.8) the level-wise (statistical) MSE of Yy as

MSE(Yy) = V[V, + (E[ffg] —E,, [Ye]>2 ;
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we then have that

éML(Q0|L,{N5};:O) <
L

2L +1) > MSE(Yy) +2 [Euf [Qol] — E,v [Qo”} * — vt (Qol, ). (5.12)
=0 —

Discretization error
Total statistical error

For some tolerance tol > 0, we denote the minimal computational cost required to obtain
eML(aaL’{N[}%:O) < tol? by C (eML <®L7{N2}lé:o> ,to|2). The focus of this section is to
provide upper bounds on this computational cost, while quantifying the computational advantage
of the ML-MCMC method over its single-level counter part (at level L). In particular, our result
can be thought of as an extension of [45, Theorem 3.4]. The main result of this section is presented
in Theorem 5.4.1. To establish a cost-tolerance relation, we must first make assumptions on the
decay of the discretization error and the corresponding increase in computational cost for the
evaluation of F as a function of the discretization parameter M, = st M.

Assumption 5.4.1:  Forany{ > 0, the following hold:
5.4.1.1. There exist positive functions Cr,Cp : X — R independent of {, and positive constants
Ce, o independent of w and € such that
a) || Fo(w) — F(u)|ly < Cr(u)s—, Yu € X.
b) |@e(usy) — (u;y)| < Co(u) [|Fe(u) = Flu)lly, Yu € X,
& fy exp(Co(u) Co (1) pr(du) < C. < 0.
5.4.1.2. Given a |i}-integrable quantity of interest Qoly, there exits a_function Cq : X — Ry

independent of U and positive constants C'q, o, Cm,and m > 2, independent of u and {
such that

a) \Qole(U)—Qol( ) <C
b) fx Cq(wppr(du) < CF <
o (Jy |Qolg u)|m,up,(du))1/m < C < o

,(u)st Yu e X.

5.4.1.3. There exist positive constants ~y and C.,, such that, for each discretization level £, the computa-
tional cost of obtaining one sample from a u? -integrable quantity of interest Qoly(ug ), we e ~
/ﬁé, with wy g generated by Algorithm 7, denoted by Co(Qoly), scales as

Co(Qoly) < Cys7".

Remark 5.4.1:  With a slight abuse of notation, we have used the symbol c to denote the (strong)
rate in 5.4.1.1, and oy (-, ) to denote acceptance probability at level L. We hope this does not create
any confusion.
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5.4 Cost analysis of the ML-MCMC algorithm

We state the main result of this section.

Theorem 5.4.1 (Decay of errors):  Foranyl =0,1,...,L,lerQolybean Ly (X, u?)-z’ntegmble
quantity of interest and suppose Assumptions 5.3.1, 5.3.2, and 5.4.1 hold. Then, there exist positive
constants Cyy, Cy, Cinse, independent of € such that:

T1. (Weak convergence) Eu}_f [Qolg] — E,w[Qol]| < Cps— Ot
T2. (Strong convergence) V,,[Y;] < C,s~P~.

T3. (MSE bound) MSE(Yz,n,) < N, Cinee Vo, [Y2].

Here, ony = min{ay, a} and f = min{2aq, (1 —2/m)}, with o, g, and m as in Assumption
5.4.1.

The proof of Theorem 5.4.1 is presented in Section 5.4.1. In [45, Theorem 3.4], it has been
shown that, if an ML-MCMC algorithm satisfies conditions T1-T3, then it has a complexity (cost-
tolerance relation) analogous to a standard MLMC algorithm to compute expectations (when
independent sampling from the underlying probability measure is possible) up to logarithmic terms.
This result is stated in Theorem 5.4.2 below. The purpose of Theorem 5.4.1 is to demonstrate
that our class of ML-MCMC algorithms does actually fulfill conditions T1-T3.

Remark 5.4.2:  Throughout this work, we have the tacit assumption that the chain at level 0 (i.e.,
the one that does not require an IMH sampler, is geometrically ergodic with respect to i)).

Theorem 5.4.2: ([45, Theorem 3.4]) Under the same assumptions as in Theorem 5.4.1, with
oy > 3 min{y, B}, foranytol > 0 there exist a number of levels L = L(tol), a decreasing sequence
of integers { Ny(tol) Yo_, and a positive constant Cyyy, independent of tol, such that the MSE bound
of the multilevel estimator, eML(QolL AT ), satisfies

— 2

whereas, the corresponding total ML-MCMC cost is bounded by

tol 2| log tol| if B>,
C (CML (QOIL,{NZ}'EZ()) 7t0|2) <CmL t0|_2| lOgtO”g, if B=r,
tol 2~ =A)/ew| Jogtol|, if B < 7.

Proof. See [45]. O

The rates in Theorem 5.4.2 are independent of the dimension of X. In [45] it is shown that the
cost of obtaining an equivalent single-level (at level L) mean square error of an estimator Qol 5/
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based on a single-level MCMC algorithm (e.g., standard MH) (denoted by ey ), generated by a
reversible and geometrically ergodic Markov kernel is given by

C (eSL (®N> ,tol2) < CSLtoI_z_V/O‘W, Cst € Ry,

where v, and 7y are the same constants as in Theorem 5.4.1, and Cyy, is a positive constant
independent of the tolerance tol.

5.4.1 PROOF OF THEOREM §5.4.1

We decompose the proof of Theorem 5.4.1 in a series of auxiliary results. Further, T3 is obtained
from Theorem 5.3.4 with a level dependent constant and we postulated in Assumption 5.3.2 that
this constant can be bounded by a finite, level-independent constant Ciy,g., and as such, we can use
itin T3. Thus, we just need to prove that T'1 and T2 hold, which is done in Lemmata 5.4.3 and
5.4.7. We first prove some auxiliary results needed to prove implication T1.

Lemma 5.4.1:  Suppose Assumption 5.4.1 holds. Then, for ¢ = 1,2, ..., L it holds
Cr < Zf < Cea

where cr = [y exp(—®(u;y) — Cr(u)Cop(u)) pipr(du) and C, as in Assumption 5.4.1.

Proof. From Assumption 5.4.1.1, forall £ > 0,and u € X,
(u;y) — Co(u)Cr(u) < @o(u3y) < D(u;y) + Co(u)Cr(u).

Hence,

Z = /XCXP(—@z(U;?J))Mpr(dU) < /Xexm—(@w; y) = Ca(u)Cr(u)) tipr(du)
< [ explCo(uCr{u) () = Cc,

where the last step follows from the assumption of nonnegativity of ®(6;y). Similarly, Z, >
Jy exp(—®(u; y) — Co(u)Cr(u)) ppr(du) = cr, independently of /. O

Lemma 5.4.2:  Suppose Assumption 5.4.1 holds. Then, for any £ > 1, there exist positive functions
Crro(u) : X = Ry, Cr () : X — Ry, such that

i () = iy (u)]

[ (w) = 7 (u)]

| /\

Cro(u)s™,  Yu X, (5.13)
Cra(u)s™™, Yu e X. (5.14)

| /\
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5.4 Cost analysis of the ML-MCMC algorithm

Moreover, Crr p(u) = (7§ (u) + 7 (w) K p(u), Cro(u) = (7 (u) + 7 (w)) K o (w), with

Furthermore, for any p € [1,400),

1/p
K, = </x \ng(u)|p,upr(du)> < 400,

. N 1/p
K, = (/X \Kﬂyg(u)]pupr(du)) < +00.
Proof. We begin with the proof of (5.13). We consider first the case ®,(u;y) < ®o_;(u;y).

e~ Pe(wy) o= Pe_1(usy)

Iy (u) = 7y (u)| =

Zy Zi—1
e~ Pe(wy) o= Pe—1(usy) e~ Pe—1(uiy) o= Pr_1(usy)
< - + —
Zy Zy Zy Zr—1
7 11

We first focus on I. A straightforward application of the mean value theorem (c.f. Assumption
5.3.1.2) results in the following:

‘e—‘be(u;y) _ e—%_l(wy)) < e\ Py(u;y) — By (usy)). (5.15)
Thus, from (5.15), together with Assumptions 5.4.1.1 we have the following:

I=2"" ‘e“b‘"(“;y) — e‘q’z‘l(“;y)’ < (u) | @ (us y) — o1 (u; )]

<y (u) (1Pe(us y) — @(us y)| + [Pr1(us ) — P(us )|)
7 (u)Co(u) (| Fe(u) = F(u)lly + [|Fe-1(uw) = F(u)lly)
{(u)Co(uw)Cr(u) (1+5%) 5. (5.16)

303

<
<
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We shift our attention to /1. Following a similar procedure as for I, we have the following:

Y (u

< 77?—1 (u)
S =z

< 77? () (1 +5%) s cll/Cq)(z)c}-(z)e—min{@z(z;y)@zq(z;y)}upr(dz)

X

< m¥ () (14 57) 5%y / Cop(2)Cr (2) e (d2)

<y (u) (1+5%) s e ' Ce, (5.17)
where in the last step we used the fact that
/)(C@(U)C’]:(u)upr(du) < /Xexp(C’q>(u)Cf(u))upr(du) < (..
Adding (5.16) and (5.17) provides the desired result with

" o(w) = (7 (W) Co (u)Cr(u) + i (u)er 'Ce) (1 + 5%).

The case ®y(u;y) > Py—_1(u; y) can be treated analogously by considering the alternative splitting

)

which yields the constant C7/ ,(u) = (7¢_, (u)Co(uw)Cr(u) + 7Te( )CI 'C.) (1+ ). Thus,
one can obtain the desired bound |7} (u) — 7}_; (u)| < Cr o(u)s™ o with

e~ Pe(wy) o= Pe(usy)

Zy Zy1

e~ Pe(wy) o= Pe—1(usy)

Zp—1 Zp—1

) — 72, ()] < ( N

Crt () = (i () Y () ),
Kro(u) = (Co (w)Cor(u) + ¢ 'C)(1 + 5°).

A similar procedure reveals that the bound (5.14) holds with

Cre(u) = (7% () + 7] (u)) Ko (u),
Ky o(u) = Cp(u)Cr(u) + c; 'C..
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Finally,

1/p

Ky i= ([ 1ratw rpupmdu))l/p = 1+ [ (Calu)Cr(a + 67 CoPrpedn)

< (1459 (9 </x exp {Ca(u)Cr(u) +cf'Ce} “F"<d“)>l/p (using 2? < (B)pex)

e

<+ (2) (Coomp {67 C}) "7 < o0,

A similar calculation for K. ¢ leads to the following:

= - 1/p
Kp = </X ‘Kﬂ’,f(u)’pﬂpr(du)) < (p/e) (Ce exp {Cj_lce})l/p < too.

Thus, we can show implication T'1.

Lemma 5.4.3:  Suppose Assumption 5.4.1 holds. Then, for any ¢ = 0,1,...L, there exists a
positive constant C, € R, independent of ¥, such that:

B, [Qole(u)] — Euw[Qol (u)]| < Cus™ ",

with ou, = min{oyg, o} and ag, o as in Assumption 5.4.1.

Proof. We follow an approach similar to that of [45].
B, [Qol(w)] — By [Qol(u)]| < [E,[Qols(u)] — E,y[Qol(w)]
n ‘EMZ [Qol(w)] — B, [Qol(u)]‘ .
For the first term:
B, [Qol(w)] — B,y [Qol(w)]| < E,y[|Qol () ~ Qol(u)]

a gl A
< (/XCq(u),ug(du))s o < Z /XCq(u),upr(du) < cftCysm ot (5.18)

For the second term:

4 [Qol (1] — E,[Qol(u)] =

/X Qol () () — (1) e ()

< [ 1Qol(a)| (nf () + () Koot i)™ (5.19)
X
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Working on the first term of the previous integral, we obtain the following from Holder’s inequality:

/X Qol () () K p g () p1pr ()

< ([ st " ([t o o)

< Cmcj_lkm’a

where we have taken m as in Assumption 5.4.1, m' =1 — 1/mand K, asin Lemma 5.4.2. A
similar bound holds for the second term in (5.19), thus leading to

E. [Qol(w)] — B, [Qol(w)]| < 2¢; ' Cip Kyprs ™. (5.20)

The desired result follows from (5.18) and (5.20), with o, = min{ e, o}, and alevel independent
constant Cy, = ¢ *(2Cm K, + Cy). O

We now turn our attention to implication T2. We first prove several auxiliary results.

For any given level £ = 0,1,...,L, we say that the joint chains created by Algorithm 7 are
synchronized at step nif uy , = uy, ;. Conversely, we say they are unsynchronized at step n if
uz 0 7 UZ /1~ Notice that if the chains are synchronized at a state uz ;= u?’ s—1 = u,and the
new proposed state at the (n + 1)™ iteration of the algorithm is z € X, they de-synchronize at
the next step with probability |y (u, 2) — a—1 (u, 2)| (c.f. Figure 5.1). Intuitively, one would
expect that such a probability approaches 0 as £ — 0o. We formalize this intuition below.

Lemma 5.4.4:  Suppose Assumptions 5.4.1.1 hold. Then, the following bound holds
lag(u, 2) — ap_1(u, 2)| < he(u, 2)s™%,  u,z e X,

with

u,z) = QZ(U) 1 7Ty z u 7Ty u z
)= Q) ey 7¢O+ ()

and Cr ¢(-) as in Lemma 5.4.2.
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Proof. From the definition of ay, and the fact that ¢)(z) := min{1, 2} is Lipschitz continuous

with a constant of 1, it can be seen that

g, 2) — oy (u, )| < | QLW TEE) Qe My (2)) _ Qelw) | (2) iy (2)

’ o ~ [ Qu(2) W%(u) Qe(2) 77?_1(114) Qe(z) W?(u Wg_l(u)
— gig; ﬁ?(u);g_l(u) |7 (2) (—7f (u) + 7y () + 7] (w) (7] () — )1 (2))]
<50 o) (L) + ) nal2) s~

Lemma 5.4.5:  Suppose Assumptions 5.3.1 and 5.4.1 hold. Furthermore, denote the diagonal set
of X2 as A = {(u, 2) € X% s.t. u = z}. The transition probability to A° for the coupled chain of
Algorithm 7 is such that

pe(ug, A°) < Ry(u)s™, VYuy = (u,u) € A,
with

Ry(u) = Qe(u) ; (Crro(u) + 7 (u) K1),

7 (w)my_ (u
and Cr () and Ky as in Lemma 5.4.2. Moreover, whenever uy € A,
prlun, 8% < 1 [ min{r(w). . (0) e (),
X

where c is the same constant as in Assumption 5.3.1.1. Furthermore, 30 > 0 independent of € such
that

giglg/xmin{ﬂ'g(u),Wg_l(u)}pp,(du) >0 > 0. (5.21)

Proof. We begin with the first inequality. For u; € A and from the definition of py we obtain the
following

pe(ug, A) = /)((045—1(1%,@—1,2) — aplue, 2)) Qu(2) Ly (2 0, yenc) tpr(dz)

+ [ @ulueer2) = e (-1 2) Qe ()
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where the first and last term in (5.3) are both zero. Writing ug ¢ = s ¢—1 = u, it then follows

from Lemma S.4.4 that:
pe(ug, A%) < / v (1, 2) — v, 2) Qe (2) apr(d2)
X

w)s—el
< S [ mHE)C ) + 7 0)Cr2) )

my (u)my_ (u)

_Qu(w)s™" . (e
< iy (Ot 71 [ Coseiptes)

u S—aﬁ
< m (Cro(u) + 2¢; 'Ky (u)

Thus, Vu, € A,
pe(ug, A°) < Ry(u)s™,
with

Ry(u) = m (Cro(u) + 27) (u)e; Ky
l {—1

Next, we focus on the second inequality which holds for u;, € A°. Thus, from the fact that
max{a, b} — |a — b| = min{a, b} Va, b € R, using Assumption 5.3.1.1, we obtain

piu ) < [ (1— min {a (e >}> Qe ip(du)

Jj=t-1
}] QZ Mpr du

<1- min |min
X j=t—1,

1—/X min [mm {Qg( ), emt (u) H fpr(du)

j=f—1,0 j
R WL L [min { 5}2]583 ’ C} ] (u)] fipr(du)

_ . Y
S ! C[(ji?lq,[{ J( )} /‘Lpr(du

where c is the same constant as in Assumption 5.3.1.1 (notice that ¢ < 1).
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5.4 Cost analysis of the ML-MCMC algorithm

Finally, we demonstrate that the integral term in the previous equation is lower bounded by a
strictly positive constant independent of the £. First notice that

. . o1
Jim [ min {20} o) = 1= im 5 () = i ()l
> lim (1 — K579 =1,
{—o00

and, by definition,

o <
/Xj%j{% ()} ipe(du) <1, WEEN

Thus, the sequence { [, minj—;_1 ¢ {Wé’(u)} fpr(du) }ren has 1 as an accumulation point, as

¢ — 00,and, fixedany ¢ € (0, 1), thereexists ¢/ > Osuch that, forany ¢ > ¢, fX minj—¢_1 ¢ {Tr?(u)} ppr(du)} >
d’. Lastly, recall that by Assumption 5.3.1.2 ﬂé’ and ﬂ'gil are continuous and strictly positive.
Thus, for any compact set A C X with pipr(A) > 0,and forany £ = {0,1,...,¢'}, we have

/Xj_ngi_rij {Wf(u)} ppr(du) > /Aj_r?i_nw {W;/(u)} ppr(du) =: 8¢ > 0.

Thus setting & = ming<¢<¢{d¢},and § = min{9, &'} we obtain that, for any £ > 0

/X min {Wé/(u)} ppr(du) > 6 > 0.

j=0—1,0

Remark 5.4.3 (On the dependence of the TV distance between posteriors):  Notice that
the term [y min{7} (w), 7} _, (u)} pipr (du) can be written as

[ min{e .y ()bl = 1= 5 [t 0) = 7y )| o) =1 = it ).
X X

Furthermore, it is a consequence of Lemma 5.4.2 that dry( ,ug, ,ugfl) — Qasl — o0o. Thus, a
bound on & depends on the largest TV distance between two consecutive posteriors, which, intuitively,
one would expect to occur at the coarser discretization levels.

Lemma 5.4.6:  Suppose Assumptions 5.3.1 and 5.4.1 hold. Then, forall{ =1,2,... L, there
exist a positive constant Cy. g with Cy g — CF > 0asl — 00, such that

P, (uzg % UZE—I) < Cngs*af, Vn € N,

with ¢ as in Assumption 5.3.1.1 and v as in Assumption 5.3.1.3.
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5 A dass of Multi-Level MCMC algorithms based on Independent Metropolis-Hastings

Proof. For notational simplicity, for the remainder of this proof we will write P, := P, (u},_; #
ug ), upy_ysup, € X, n € NoLet Za g := [, ve(dug) = (1 — Py). From Lemma 5.4.5 we
obtain, foranyn € N

VZ(U£?1 75 U?zr_lﬂug S A) = ZA}E/Apg(’u,g,AC)I/g(d’U,g)

—al
< 5 / Ry(u)vg(duy) (withwy = (u,u) on A)
Zag JA
s~ Qe(u) s [ Qu(u)
< K, 2e7 K ) we(d K, d
~ Zayg Ja w?_l(u)( elu) 2 Kyl u£)+ZA7e /A 7 (u) elujve(due)
I 1
We begin with integral I:
[— Qu(ugr—1)

X2 Fé/ 1(uf 0-1) (Kﬂ’ﬁ(u&e_ﬂ + chlKl)l{(uua,UZ,Z)EA}Vf(duf)

Qe(upe—1) . /
———~ (Kx ~1)+2¢, K du
XW§_1(ue,471)( eluee=1) +2ep k) XW( 2

:/XQe(W,z—l)(Kw,ﬁ(W,e—ﬁ+2611K1)Mpr(dw,z—1)

1/r ) 1/r
< </x !Qe(uz,eﬂlrupr(dw,eﬂ) (201?1}(1 + </x | Ko (wpo—1)|" Mpr(duz,e1)> )

=Cr(2¢;  + 1)K,

Similarly, for II, we get:

Qe(ugye)

xz T é’ (UM)

< /XQz(W,e)Kw,e(uz,e)ﬂpr(due,z) < Cr K.

II =

Kro(uee)l {(ue,e—1,ue,0)EA}VE (duy)

Setting C' = 2C, K« (c; ' + 1), one then has
n+1 n+1 n _ .n Nr7—1 _—ak —1
P, (ugy ™ # ug e_ﬂue,z =ugy1) <CZ AS = LaSt
where we have set sp = C's~¢. Similarly, letting Zae ¢ := fAc ve(duy), one has
n+1 n+1
W(u” 7 Ug g ug € A%) = Ace/ pe(we, A%)ve(duy)

<1- c/ min{7} (u), 7]_;(u)}ppr(du) =: & (from Lemma 5.4.5).
X
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5.4 Cost analysis of the ML-MCMC algorithm

We write the de-synchronization probability at the (n + 1)® step as follows:

1 1 1 1
Prt1 =Py, (U% # “%—1) =P, (“% # “%—1\“2@ = U?,z—ﬁpw (ug, = UZz—O
1 1
+ Py, (“? ? # “Zziﬂuu # ue,e—l)Pw (W,e a UZe—l)
< ZA,ZSE (1 — Pn) 4¢Py,
——
=Zayp

< sp+¢Pp. (5.22)
However, by stationarity, P, 1 = P,, =: P. Thus, from Equation (5.22),

Py, (uy #uy,) =P < Csot = ¢ P
ver -1 ¢t —1-¢ cfx min{wg(u),W}Ll(u)}upr(du) '

By (5.21) the integral term in the denominator is lower bounded by a constant § independent of
the level. Furthermore, this integral converges to 1 as £ — 00. O

We are now ready to prove implication T2.

Lemma 5.4.7:  Suppose Assumptions 5.4.1 and 5.3.1.2 hold. Then, for any £ > 1, there exists a
positive constant Cy, such that

V,[Yi] < Cps™P¢

Y

where B = min {2aq, a(1 — 2/m)}, and o, ag, m as in Assumption 5.4.1.

Proof. We follow an argument similar to that of [45, Lemma 4.8]. From Young’s inequality we

have

Vi, [Ve] < By, [(Qolg(uge) — Qolp—1(uge-1))?]
< 2By, |(

(Y
2E,, [(Qol¢(ure) — Qoly(uge—1))?] + 2E,, [(Qole(use—1) — Qolp—1(uge—1))?] -

In the case in which Qoly(-) and Qoly_; (+) are the same (which could happen when the quantity

of interest, seen as a functional, is mesh-independent), the second term vanishes. Otherwise, we
have, using Assumption 5.4.1.2, that

vy [(QOIK(UZ,Kfl) — Qolg_l(um,l))Q] < 2@3(1 4 g200) g 200t

The first term is only nonzero when g ¢ # g ¢—1. Thus, it can be rewritten as

2E,, [(Qoly(use) — Qoly(uge—1))*] = 2E,, [(Qole(uu) — Qolg(tr,-1))*Lfuy s fupp 1} | -

155
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By applying Holder’s inequality, we can write the above expression as follows:

2By, [(Qole(uur,) = Qole(ure1))* L fuy g 1}
<2E,, [\Qole(uu) - Qole(uz,e—l)\gm/Qr/mE [ ?u“;ﬁu“ YT (withm! = m/(m — 2))
= 2E,, [|Qol¢(uee) — Qole(uge—1)|™* ™ By, (uee # uge1)™. (5.23)
From Assumption 5.4.1.2¢, it follows that we can bound the first term in Equation (5.23) by
ve [|Qole(ug) — Qou<ue,e,1>rm}2/m

(E y[Qlg(ug,e)™] 7 + By [Qole(upe—1)™]

e7me?,

3|~

y

IN

Moreover, from Lemma 5.4.6, we have that Py, (ug s # uge—1) < CMS*O‘Z. Thus,
V,,[Ye] < Cps™,

where C, = 8¢ /" C2max{Cy,e} +4C2(1 + 5%4). 0
€

5.5 IMPLEMENTATION

We discuss how to choose the optimal number of samples Ny. For £ = 0, ..., L, we denote the
total cost of producing one coupled sample of (Qoly—1, Qoly) at level £ using Algorithm 8 by C;.
The total cost of the multi-level MCMC estimator is calculated as follows:

L
c (@L,{Ne}) =3 CiNe. (5.24)
/=0

To bound the statistical contribution of the total error bound, from (5.10) and (5.12),we have the

following constraint:

l,,_, Yg tol?

L
L 1 C’mse < 5

where tol is a user-prescribed tolerance. However, it is generally not a simple task to compute or
estimate the constant Cye. We ignore it hereafter, and aim at bounding the following quantity:

~

VW[ <ﬁ
Ny, — 2 .

2(L+1) (5.25)

L
£=0
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5.5 Implementation

To that end we will use the so-called batched means estimator of V,, [}Afd denoted by 67 (see [54]
for further details). In this case, treating /Ny as a real number and minimizing (5.24) subject to
(5.25), gives the optimal samples sizes

L
Ny = |2tol2\[62/Co [ D 1/62¢Ci || (5.26)
j=0

where [-] is the ceiling function. Lastly, we must also ensure that the second contribution to the
total error (i.e., the discretization bias at level L), is such that

0 Qol) — By [Qol]| < 2

5l

From T1 it follows

E,y[Qolt] ~ Euw[Qol]| = | Y E,y[Qol;] — E,s  [Qol; 1]
j=L+1
’[@L - @L—ﬂ’
- 1 — s~ aw '

Thus, to achieve a total (estimated) MSE of the ML-MCMC estimator less than tol?, we must
check that

L o452 ’[@L — Qol 4
2L +1) (Z %) ) — < tol?.
/=0

In practice, the set of parameters P := {Cly, vy, {&?}'gzo, Cy, B, Cy, v} must be estimated
with a preliminary run over L levels, using Ny, £ = 0,1, ..., Lo samples per level. However,
the main disadvantage of this procedure is that this screening phase can be quite inefficient for
computationally expensive problems. In particular, if L¢ is chosen too large, then the screening
phase might be more expensive than the overall ML-MCMC simulation on the optimal hierarchy
{0,1,...,L}. On the other hand, if Ly (or Ng) is chosen too small, the extrapolation (or estima-
tion) of the values of P might be quite unreliable, particularly at higher levels. In the MLMC
literature, one way of overcoming these issues is with the so-called continuation Multi-level Monte
Carlo method [31]. We will present a continuation-type ML-MCMC (C-ML-MCMC) algorithm
in the following subsection, based on [31, 132].
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5 A dass of Multi-Level MCMC algorithms based on Independent Metropolis-Hastings

5.5.] A CONTINUATION-TYPE ML-MCMC

The key idea behind this method is to iteratively implement an ML-MCMC algorithm with a
sequence of decreasing tolerances while, at the same time, progressively improving the estimation of
the problem-dependent parameters P. As presented, these parameters directly control the number
of levels and sample sizes. Following [31], we introduce the family of tolerances tol;, 7 = 0,1, .. .,

given by

ip—i

riP Mol i <ip,
tol; = 1 ) )
ry’ Ty tol 1 >ip,

where r; > r9 > 1, so thattol;,,_1 > tol > tol;,, with

ip = \‘— log(tol) + log(r2) + log(tolo)J ‘ (527)

log (1)

Theidea is to iteratively run the ML-MCMC algorithm for each of the tolerances tol;,7 = 0, 1, . ..
until the algorithm achieves convergence, based on the criteria defined in the previous subsection.
Iterations for which ¢ < i, are used to obtain increasingly more accurate estimates of P. Notice
that when ¢ = 7, the problem is solved with a slightly smaller tolerance 5 Ltol for some carefully
chosen 7. Solving at this slightly smaller tolerance is performed to prevent any extra unnecessary
iterations due to the statistical nature of the estimated quantities. Furthermore, if the algorithm
has not converged at the Z% iteration, it continues running for even smaller tolerances tol;, ¢ > if,
to account for cases where the estimates of P are unstable. Thus, at the i iteration of the C-ML-
MCMC algorithm, we run Algorithm 8 with an iteration-dependent number of levels L;, where
L; is obtained by solving the following discrete constrained optimization problem:

2
arg min {2to|i22(L +1) (Z;:O \/Cﬂs_ﬁjcj) } ,

Li* 1 SLS Linax

—ayl ~ toli
S.t. CwS @ < ﬁ’

(5.28)

where, L_1 = Ly is the given minimum number of levels, L., is chosen as the maximum number
of levels given a computational budget (which could be dictated, for example, by the minimum
mesh size imposed by memory or computational restrictions). Notice that (5.28) is easily solved
by exhaustive search.

We now have everything needed to implement the C-ML-MCMC algorithm, which we present in
the listing 9.
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5.5 Implementation

Algorithm 9 Continuation ML-MCMC

10:
11:

12:
13:
14:
15:
16:
17:
18:

1:
2:
3
4
S:
6
7
8
9

procedure C-ML-MCMC( {ﬂ'g}z O,Q,N Lo, max,{ug}ezo,tolo,tol,rl,rg)

# Prellmmarv ruan
Compute iE according to Equation (5.27).Set Ng = N, £ =0,1,..., Lo,
{{uu}n 07{UM l}n 0 e 2 =ML~ MCMC({W%}Z 0 @ {NZ}Z 0 {Vg}léio)
Compute estimates for the parameters P using least squares fit
seti = landte = 0o
# Starts continuation algorithm
while 7 < ig or te > tol do
Update tolerance tol; = tol;_1 /7y, where k = 1ifi < ip and k = 2 otherwise.
Compute L; = L;(Li—1, Limax, tol;, P) using (5.28)
Compute Ny = Ny(L;, tol;, P) for £ = 0,1, ..., L;, using (5.26), for unexplored

levels, extrapolate Vo, [Y¢] from previous points

Qean be constructed usino samples from previou@ iterations

{{Uu}n 0 {uf o ko e o=ML- MCMC({W%@ 0 @5 {Nf}e ov{’/e}e 0))
Update estimates for PP using least squares fit

Update total error te = 2(L + 1) (Z';ZO C}?/Né) +2 (C’ws*awLi)Q
t=1+1

end while

Return Qol AT computed with (5.2).

19: end procedure
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5 A dass of Multi-Level MCMC algorithms based on Independent Metropolis-Hastings

5.6 NUMERICAL EXPERIMENTS

We first present two “sanity check” experiments to verify the theory presented in previous sections
numerically.

In the following two experiments we compare our proposed ML-MCMC algorithm to that in [45],
which, by construction, does not satisfy our Assumption 5.3.1.1. The aim of these experiments is
to verify the theoretical results of the previous sections, as well as to provide a setting for which our
methods might be better suited than the sub-sampling approach of [45]. For ease of exposition,
we consider as a quantity of interest Qol(u) = u, u ~ pY, and we assume that the cost of
evaluating the posterior density at each level grows as 27¢, with v = 1. For both experiments, we
implement the sub-sampling ML-MCMC algorithm of [45] with a level-dependent sub-sampling
rate ty := min {1 +2 ZkNi o Ok» 5}, where gy, is the so-called lag-k auto-correlation time and

1+2 Z,]:Z o Ok is the so-called integrated auto-correlation time [21].

5.6.1 NESTED GAUSSIANS

We begin with a scenario for which both ML-MCMC methods can be applied. In this case we
aim at sampling from the family of posteriors ,u? =N (1, 1+ Q_Z) , £ =0,1,2,..., which
approximate ;1¥ = N (1,1) as £ — oo. For the ML-MCMC method proposed in the current
work, we will use a fixed proposal across all levels given by Qy = Q = N (1, 3). Such proposal
is chosen to guarantee that Assumption 5.3.1.1 is fulfilled. The family of posteriors and the
proposal () used in our ML-MCMC algorithm are depicted in Figure 5.2. For both algorithms, the
proposal distribution at level £ = 0 is a random walk Metropolis proposal Qo (ug, ) = N (ug, 1).
This proposal is chosen to guarantee an acceptance rate of about 40%, the value deemed close to

optimum for MCMC in one dimension [21].

0.4 -

0.3 -

Figure 5.2: Family of posteriors 1 and fixed proposal distribution @ for the nested Gaussians example.

As a sanity check, we begin by verifying that both algorithms target the right marginal distribution
at different levels. This can be seen in Figure 5.3, where the histograms of samples obtained with
a simple ML-MCMC algorithm with proposal () and prescribed number of levels L = 7 and
number of samples Ny = 50000 for £ = 0, 1, .. ., L (top row) and the algorithm of [45] (bottom
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5.6 Numerical experiments

row) are shown for levels ¢ = 0, 3, 6. The true posterior at level £ is shown in red. As it can be seen,
both methods are able to sample from the right marginal distribution for the family of posteriors

considered here-in.

0.5 0.5 0.5
0.4 - 0.4 - 0.4 -
03 - 0.3 - 0.3 -
02 - 02 - 02 -
0.1 - ‘ 0.1 - 0.1 -
0.0 0.0 0.0
5 0 5 5 0 5 5 0 5
0.5 £=0 0.5 t=3 0.5 t=6
0.4 - 0.4 — 0.4 —
03 - 0.3 - 0.3 -
02 - 02 - 02 -
0.1 - ‘ 0.1 - 0.1 -
00 % 0 5 00 ¢ 0 5 00 ¢ 0 5
? =0 ¢ =3 ! =6

Figure 5.3: True posterior ) for different levels ¢ = 0,3, 6 and histogram of the samples of u; ~ pj
obtained with the ML-MCMC algorithm described herein with Q¢ = N (1, 3) (Top row)and
the sub-sampling ML-MCMC algorithm (Bottom row). Both methods are able to obtain
samples from the right posterior distribution.

We now aim at verifying the rates presented in Theorem 5.4.1. To that end, we run the ML-MCMC
algorithm 100 independent times. For each independent run, we obtained 50,000 samples on each
level and investigate the behavior of |E,, [Y¢]| (Figure 5.4 (left) ) and V,, [Y7] (Figure 5.4 (right) )
with respect to the level £. As it can be seen from Figure 5.4, both |E,, [Y]| and V,, [Y;] decay with
respect to £ with nearly the same estimated rate = —1.34 for the ML-MCMC algorithm discussed
in this current work, close to the predicted one in Theorem 5.4.1. It can be seen, however, from
Figure 5.4 (right), that the variance decay of the sub-sampling algorithm is slightly better than the
one obtained by the method presented herein. This, in turn, results in a smaller overall sample size
at each level for a given particular error tolerance, as it can be seen in Figure 5.5 (left). We believe
that this difference in rate is due (i) to the slightly higher synchronization rate of the sub-sampling
ML-MCMC algorithm (Figure 5.5 (right)) and (ii) to the fact that the convergence rate of the
marginal chain in the sub-sampling algorithm also increases with level, which is not necessarily the
case for our method. These results suggest that, for this particular case, it is more cost-efficient to
use the sub-sampling ML-MCMUC algorithm.

We plot sample size vs level (Figure 5.5 (left)) and synchronization rate vs. level (Figure 5.5 (right)).
Both figures were obtained from 100 independent runs: solid lines indicate the average value
and dashed lines indicate 95% confidence intervals. The computation of N for each level £ =

0,1,...,L was done by estimating 6, with 50,000 samples per level and a tolerance tol = 0.07.
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E,, [Ye] vs. level Vo, [Ye] vs. level

Vi, [V

I R
01 2 3 456
14

—— Subsampled — Gaussian —— Subsampled — Gaussian
—k—slope -1.34 ----slope-1.64 —k—slope-1.34

Figure 5.4: (Left) |E,, [Yz]| Vs. level. (Right) V,,[Y;] Vs. level. In both figures, the rates were estimated
over 100 independent runs, with 50,000 samples per level, on each run. Solid lines indicate the
average value, dashed lines indicate 95% confidence intervals.

It can be seen from Figure 5.5 (left) that the sub-sampling algorithm requires a smaller number of
samples per level. From Figure 5.5 (right) we can see that both algorithms tend to a synchronization
rate of 1, as expected. It can be seen that the sub-sampling algorithm provides a slightly higher
synchronization rate for the problem at hand.

Sample size vs. level Sync rate vs. level
105 = 1-
; g 0.95
>~ 10* = =
< : g 09-
- &
103 = 0.85 -
E\ | | | | | |
0 2 4 6 0.8 4 6
14 {
—— Subsampled — Gaussian —— Subsampled — Gaussian

Figure 5.5: (Left) Number of samples, Vs. level for both algorithms. (Right) Synchronization rate vs level
for both algorithms.

Lastly, we perform some robustness experiments for our C-ML-MCMC algorithm. To that end,

we run Algorithm 9 using the same level independent proposals @y = Q@ = N (1, 3) for three
different prescribed tolerances tol = {0.025,0.05, 0.1}. The algorithm is run for a total of 100
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independent times. At each run k, we compute the total squared error of the multi-level estimator
obtained from the k™ run of the C-ML-MCMC algorithm given by

2
—(k)
ers = <QOI('-7{N£}'2_0 - uy(Qo|)> (5.29)

and plot it in Figure 5.6. As we can see, we obtain estimators whose mean square error is less than
the prescribed tolerance, as desired. This result evidences the robustness of Algorithm 9 when

computing quantities of interest for a given tolerance.

107!
1072
1073
1074
107°
1076
1077
1078

er2

| | | |
3x 1072 4x 1072 6 x 1072 1071
tol

—— tol? Oer? x mean squared error

Figure 5.6: Total squared error er? vs tol for the nested Gaussians example. Here, we used 100 independent
runs of the full C-ML-MCMUC algorithm for three different tolerances; tol = 0.025,0.05, 0.1
(black circles). The red cross denotes the estimated MSE over the 100 runs.

5.6.2 SHIFTING GAUSSIANS

We now move to a slightly more challenging problem, which is better suited for our proposed
method. In this case, we aim at sampling from the family of posteriors uf = N (27+21)
¢ =0,1,2,...,L, which approximate ¥ = N (0,1) as ¢ — c0. Once again, for the ML-
MCMC method proposed in the current work, we will use a fixed proposal across all levels given by
Qv = Q = N(2,3). Such a proposal is chosen to guarantee that Assumption 5.3.1.1 is fulfilled.
The posterior and proposal densities are shown in Figure 5.7. Just as in experiment 5.6.1 the
proposal distribution at level £ = 0 for both algorithms is a random walk Metropolis proposal
Qo(ug,-) = N (uy,1). This proposal is chosen to guarantee an acceptance rate of about 40%.
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Figure 5.7: Illustration of the posterior densities 7, and the proposal @ for the moving Gaussians example.

Once again, we begin by investigating the correctness of the corresponding marginals. Therefore,
we run both algorithms for L = 6, obtaining 50, 000 samples per level and plot the resulting
histograms of ,uz forlevels £ = 0, 3, 6. Such results are presented in Figure 5.8. As it can be seen,
the presented ML-MCMC (Figure 5.8, top row) is able to sample from the correct marginals. In
contrast, the sub-sampling ML-MCMC algorithm is not able to produce samples from the correct
distributions, at least for the number of samples considered, as it can be seen in Figure 5.8 (Bottom
row). We believe that this is because Assumption 5.3.1.1 not being satisfied due to the very small
overlap between the posterior at level 0 and the posteriors at higher levels. Sampling from the
wrong marginal distribution results in biased estimators when using the sub-sampling method

[45].

Figure 5.8: Sample histograms for one ML-MCMC run at levels £ = 0, 3, 6 (Top row): Fixed Gaussian
proposal . (Bottom row): Sub-sampling approach. As it can be seen, the sub-sampling approach
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is not able to properly sample from the posterior at higher levels.



5.6 Numerical experiments

Next, we verify the converge rates stated in Theorem 5.4.1. For this particular setting we have
]Eﬂg [Qol¢] — E,w[Qol]] = 271, We run Algorithm 8 100 independent times, obtaining
50,000 samples on each level for every run. The accuracy of the theoretical rates in Theorem 5.4.1
is numerically verified in Figure 5.9. However, the sample mean of Qol, obtained with the sub-
sampling algorithm does not decay as 2-¢ confirming the bias of the sub-sampling ML-MCMC
algorithm (Figure 5.9, top left). The decay rates cv,, and 3, corresponding to the decay in weak and
strong error, respectively, are verified to be 1 for the ML-MCMC algorithm with fixed proposals,
as theoretically expected (Figure 5.9, top right and bottom left). The optimal number of samples
per level is presented in Figure 5.9 (bottom left). Again, the sub-sampling ML-MCMC provides a
smaller number of samples and variances than the proposed method, but at the cost of a biased
estimator. Furthermore, Figure 5.10 reveals that the synchronization rate of both methods tends

to 1 with £, as expected.
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Figure 5.9: (Top left) Estimated expected value of Qol, for both ML-MCMUC algorithms and the true
mean of Qol, for different values of £. (Top right) Expected value of Y, = Qol, — Qol,_;
obtained with both algorithms for different values of £. (Bottom left): Variance of Y obtained
with both algorithms for different values of £. (Bottom right): Number of samples per level for
each method with tol = 0.07. On all plots, dashed lines represent a 95% confidence interval
estimated over 100 independent runs of each algorithm.
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Sync rate vs. level

1 [—
0.8 -
8
[y
= 0.6 -
b=
c,>~)\ %
04 -
0.2 -
\ \ \ \ \ \
1 2 3 4 5 6
14
—— Subsampled
——  Gaussian

Figure 5.10: Synchronization rate for both algorithms. Dashed lines represent a 95% confidence interval.
As expected, the chains become more and more synchronized as the number of levels increases.

Lastly, we once again perform some robustness experiments for our C-ML-MCMC algorithm.
We run Algorithm 9 using the same level independent proposals Q¢ = @ = N (2, 3) for three
different prescribed tolerances tol = {0.1,0.07,0.06} for a total of 100 independent runs. Similar
as in the previous example, for each independent run k of the C-ML-MCMC algorithm, we
compute eri as in (5.29) and plot it in Figure 5.11. Once again, we obtain estimators whose mean
square error is close to the prescribed tolerance, as desired. This further evidences the robustness
of Algorithm 9.
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Figure 5.11: Total squared error er? vs tolerance tol for the moving Gaussian example.

5.6.3 SUBSURFACE FLOW

We consider a slightly more challenging problem in which we aim to recover the probability
distribution of the stochastic permeability field in Darcy’s subsurface flow equation (5.30), based on
some noise-polluted measured data. In particular, let D = [0,1]%, X = R4, (71, 22) =: 2 € D,
OD =Ty UTp,with['y NTp = 0, where T := {(z1,22) € D, s.t. 1 = {0,1}},and
'y = 0D\I'p. Darcy’s subsurface equation is given by

—Vz - (k(z,u)Vep(z,u) =1, €D, ueX,
p(z,u) =0 z€Tlp, u€X, (5.30)
Opp(x,u) =0 zely, ueX,

where p represents the pressure (or hydraulic head), and we model the stochastic permeability
k(z,u) for (u1, ug, usg, uq) =: u € X, as

K(x,u) = exp <u1 cos(mzx) + % sin(mz) + % cos(2mx) + % sin(27rx)) ,

withu; ~ N (0,1), i = 1,2, 3, 4. Data y is modeled by the solution of Equation (5.30) observed
ata grid of 9 x 9 equally-spaced points in D (hence Y = R?*%) and polluted by a normally-
distributed noise n ~ N(0, 02 .. Is1x81), With pise = 0.004, which corresponds to approx-
imately 1% noise and Ig; xs1 is the 81-dimensional identity matrix. At each discretization level
¢ > 0, the solution to Equation (5.30) is numerically approximated using the finite element
method on a triangular mesh of 2¢.16 x 2¢ - 16 elements, which is computationally implemented
using the FEniCS library [101]. Such a library includes optimal solvers for the forward model, for

which 7y can be reasonably taken equal to 1. Thus, the map u +— F(u) is to be understood as the
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numerical solution of Equation (5.30) at a discretization level /, observed at a grid of 9 x 9 equally

spaced points, for a particular value of u € X. This, in turn, induces a level dependent potential

Dp(usy) = ly — Fo(u)|?,

202

noise

and prior ipr = N'(0, I1x4). In the above expressions, ||-|| denotes the Frobenius norm on R9*9.
Given that we are on a finite-dimensional setting, fipr has a density with respect to the Lebesgue
measure, and as such, we can define the un-normalized posterior density 7?’? : X —= Ry w.r.t the
Lebesgue measure given by

i} (u) = exp (—‘I)e(my) - ;UTU> :

As a quantity of interest we consider the average pressure over the physical domain, that is,

Qol(u) = [, p(x, u)dz. We implement our ML-MCMC algorithm to approximate E v [Qol].
2

In particular, we use RWM at level 0 with Gaussian proposals V' (0, 0, [ax4) with step-size
Orwm = 0.05, which produces an acceptance rate of about 24%. For the proposal @ at higher
levels £ > 1, we use a mixture between the prior and a KDE obtained from the samples obtained
at the previous level £ — 1. This choice of mixture is made so that Assumption 5.3.1 holds.

We begin by numerically verifying the converge rates stated in Theorem 5.4.1. To that end, we run
Algorithm 8 20 independent times, obtaining 10,000 samples per run at each level ¢ = 0, 1,2, 3.
We plot the obtained rates in Figure 5.12. Aswe can see, we numerically verify that o, =~ B(~ 2.0),
as predicted by our theory; this follows since Qol is smooth, and as such, one should expect the
number of moments m to be large, and since o = 2 for our FE implementation (see, e.g., [20]).
Lastly, we once again perform some robustness experiments for our C-ML-MCMC algorithm, with
Limax = 3. To that end, we first estimate E s [Qol] ~ 4 (Qoly) by performing SO independent
runs of a single-level MCMC algorithm at a discretization level £ = 4, obtaining 2000 samples on
each simulation. In particular, each independent run implements a RWM sampler, using proposals
given by (0, O'gwmf4>< 4) with step-size Orym = 0.05, which produces an acceptance rate of about
21%. We run Algorithm 9 using the same mixture of independent proposals as before for different
tolerance levels tol = {1.1 x 107%,2.0 x 1074,3.0 x 10~*}. The C-ML-MCMC algorithm is

run 20 independent times for each tolerance tol;. For each independentrun k = 1,2, ..., 20,

let Qol (tol), {N 15 tol;

run at tolerance tol;. We compute the (approximate) total error squared eNrZ2 i at the k™ run with a

, with L(tol;) < 3, denote the ML estimator obtained from the k™

tolerance tol; as

2
- ——(k) -
erzk = <QOIL(k)(toI¢),{NZ}E(k3,toI,' — ,LLZ(QO|4)> , (5.31)
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and plot it vs a given tolerance in Figure 5.13. As expected, the MSE of the obtained estimators is
less than the prescribed tolerance. This further evidences the robustness of Algorithm 9.
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Figure 5.12: Decays of E,, [Yy] and V,, [Y¢] vs level £.As we can see, both quantities decay with the same
rate, as predicted by the theory.
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Figure 5.13: Computed squared error er? (using Equation 5.31) vs tol for the elliptic PDE example.
5.6.4 HIGH DIMENSIONAL SUBSURFACE FLOW WITH LAPLACE’S APPROXIMATION

Lastly, let us consider a more interesting problem given by a high dimensional example. Consider
once again the same setting as in Section 5.6.3 namely the Darcy’s subsurface flow (5.30) with
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Kz, u) = @), with u(x) ~ N(0,,A72) = N(0,C) = f1pr where the precision operator is
the square of the differential operator A acting on a dense subspace Dom(.A) C Lo (D) of the
form

1

together with Robbin boundary conditions V(-) - 1 + ?() = 0 (c.f. Sections 2.2.1 and
4.5.7). We assume that the data y is generated by solving equation (5.30), using a realization
Ugrue ~ Mpr> and observing it at a grid of 10 x 10 equally spaced points in [0.1, 0.9]2, polluted
by some normally distributed noise 7 ~ N(0, 02 ;. J100x100) With Tpoiee = 9.61 x 1077,
corresponding to roughly 1% noise. Denoting by u +— F(u) the mapping associated to solving
Equation (5.30) with k(z, u) = ") and observing the solution at the given grid of points, we
can then pose our BIP as sampling from p¥ with

dupy 1
d//j (U) - E €xp (_ Hy - f(“)”;) ) Y= JgoiseIIOOXIOO-
pr

Once samples from £ have been obtained, we aim at approximating E,,» [Qol] where the quantity
of interest Qol : X — R is the log-flux through the bottom boundary 'y, := {(x1,22) €
0D s.t. xg = 0} defined as

Qol(u) :=log </ “@vp . ﬁds) ,
Iy

where p is the solution to (5.30) and 72 denotes the unit normal vector to I'y,. In order to implement
this, we introduce a sequence of discretization levels £ = 0, 1,2, 3 = L of the forward mapping
operator F by numerically approximating Equation (5.30) using the finite-element method with
16 - 2 x 16 - 2¢ piece-wise-linear finite elements. We denote by {Xg}'gzo the sequence of finite-
element spaces and by {7 }}_; the sequence of approximate forward operators. We also introduce
afinite-dimensional approximationuy ¢ € X of the state variable using the projection operator 73[74
introduced in Section 2.2.3, namely, uy = Pg“u is such that (Aug ¢, ve) = (Au,vy), Vup € Xy,
where (-, -) denotes the duality pairing between H* (D) and its dual, and (A-, -) can be understood
as

v,

(Au,v) = /D Vu(z) - Vu(z) + 1u(ac)v(ac)dac + (z)v(z)dz Yu,v € HY(D).

2 oD

Together, F; and P7* induce a sequence of approximate potentials ®y(u; y) = é(fg(Pf‘u); Y),
¢ =10,1,...,L, and a corresponding sequence of posterior measures {;Lif }IZ:O defined on the

whole state space X, which can however be factorized for ug , = Pg‘lu and zp = u — ug ¢ as

iy (du) = pd (duge, dze) = pd (duge) frpr (we,e, dze),
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with ;Tg(duu) = Z;  exp (—é(fg(uz,g); y)) tory(dug ¢). We finally consider a sequence of
approximations Qoly of Qol, given by Qol,(u) = Qol(uy, ). Notice that

E,[Qol = /X Qol (PAu) i (du) = /X Qol (11,0 fimy (1 ¢, Az )2 (dug )

= QO|(Ug7g)[/L%(dUZ’g) = ]E;@[Qol],
Xe (4

—

i.e., with the goal of computing the posterior expectation of Qoly, only the posterior measure ,wz
on X, matters, so that we can forget about the conditional distribution fipr (¢, dz¢) and restrict
our analysis to just the finite-dimensional space Xy. In view of constructing coupled chains on
levels £, ¢ — 1, we also remark that uy 1 = Pﬁ U= PZA_ 1U¢ ¢ so that, to build the posterior

measure fi;_; atlevel £ — 1 on the full space X reads

1

exp (—@(fz_l(Pz‘iW); y)) for(du)
—1

= exp <_‘i)(}-€—1(7)e{1ué,€)§y)> topr(dug ) fpr (g 0, d2),
-1

and we can restrict the measure to Xy giving a posterior
—_—

1
Y dugy) :=
Né,£—1( ) 7

exp (-‘i)(]:e—l(PZéilue,e); y)) Ppry(dug p).

Our goal is then to construct the coupled chains atlevels £, ¢ — 1, ¢ > 1 in the higher dimensional
space space Xy x Xy, which is achieved by using a high-dimensional proposal z; € X, for both chains,
in such a way that the state 2y is “down-sampled” (i.e., projected onto Xy_1, deterministically)
when evaluating the posterior density and the quantity of interest at level £ — 1. Denoting by ﬂf,

7??71 and Q) the pupr -densities of ,ugz, MZ 1 and of the proposal, respectively, one then has that

the MH acceptance ratios are given by

7 (20) Qu(uey) }

) (uge) Qulze)

T1(20)  Qeluge1) } ‘

(e, z¢) = min {1,

ap—1(uge—1,2¢) = min ¢ 1, —
( %) { Ty (wee—1)  Qe(ze)

Remark 5.6.1:  Alternatively, one could construct an “up-sampled” approach, where one aims at
generating coupled chains in the space Xg—1 X Xg_1, using an IMH proposal Qo1 on the coarse
space Xo_1 as follows:

1. Sample zp—1 ~ Qp—1, ze—1 € X¢_1.
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2. Given the coarse state 2g—1 =: 2( coarser gENEVate its complement on the fine-state by, e.g., a

Gaussian process regression conditioned on 24 goarser 1-€.5 20 fine ~ GP (|20 coarse)-

3. Setzy = (ZZ,coamm Zfzﬁm’)‘

4. Accept or reject zj, § = L — 1,4, with MH acceptance probabilities given by

Tréj (Zg) QZ—I (uﬁ,f,mam’) glp(uf,fﬁne’uﬁ,é,warm) }
’ 7[-2 (uf,f) fol (Zé,amme) g,})(zfzﬁne’zf,mame) ’

7)1 (2e-1) Qeluge—1)
"y (uge—1) Qe(ze-1)

Ozg(u&g, Zg) = min {1

ap—1(wpe—1,20—1) = min

where we have set Up g = (ugvg’fmm, Ug,gﬁ,w), with WP 0 coarse N Xy_1, and Ugp € Xy.

However, we chose not to investigate this approach further.

CONSTRUCTING AN EFFICIENT LAPLACE APPROXIMATION

We follow the procedure of [23, 24], where a Laplace-approximation to ,uz is constructed using
alow-rank covariance matrix. For eachlevel ¢ = 0,1, ..., L, we aim at constructing a proposal

Qf = N(mmap,é7 CLap,Z), Where

. 1 1
e = argmiy (3 1y = il + 5 ol ) (5:32)
—1\—1
CLap,Z = (H€ (mmap,g) + Cg 1) )

where Hy(Mmap,e) € RF4*5¢ is the Hessian of ®(u;y) = ||y — Fo(u) |13, evaluated at Mmap,t>
and C; € REeXEe js the symmetric positive-definite matrix representing the covariance operator
C at discretization level £ (i.e., C; 1 — AZIM gAZl, where Ay and My are the stiffness and mass
matrices defined in 2.2.3. Notice that the optimization problem (5.32) can be understood as
minimizing ®(u; y) with Tykhonov regularization [158] given by 3 || que, and as such, such an
optimization problem is well-posed, provided that the regularization is strong enough ([85, 158]).
The computation of the gradient, together with the Hessian of the misfit ’H@(mmap,g) can be
computed using adjoint state methods, together with a Lagrangian formulation of the optimization
problem (see, e.g., [164]).

It is typically inefficient to construct Cp,p ¢ directly; instead, the work [23] overcomes this issue by
proposing a low-rank approximation, summarized as follows (see, e.g., the works [23, 164] for a
detailed derivation). Write H, = Hg(mmap, ¢), and consider the following generalized symmetric

eigenproblem

Hov; = )\Z-Cz_lvi, AL > Ao > .AKZ,’UZ‘ S RK[.
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Itis known [164] that under some technical conditions A; decays rapidly. Thus, choosingry < K
such that A\, 11 < 1, and defining

Vi o= [o1,02, ..., 0p, ], Ay, o= diag(A, A2, ... Ay,), with Vi, G VL = Iy,

it then follows from the Sherman-Morrison-Woodbury formula [161] that one can construct the
following low-rank approximation of Cp p ¢:
Ky )\Z

i=rp+1 )\Z + 1

_1\—1
CLap,Z = (/HE (mmap,ﬁ) + Cg 1) = C€ - ‘/rgDrg Vrjz +0

~Cp— Vr'gD VT = (:/;Lap,fv

TeVry

where D, := diag(A1 /(A1 +1),..., A, /(Ar, +1)) € R™*7 Ttis known that the generalized
eigenpairs (A;,v;),7 = 1,..., Ky can be efficiently obtained using randomized eigensolvers
[67, 148], provided that the spectrum of H, decays sufficiently fast. From a computational
perspective, the minimization procedure, together with the low-rank approximation of Cpap ¢ is
efficiently implemented using the hiPPY11b library [164] of the FEniCS package [101].

CONSTRUCTION OF THE SAMPLER

At each iteration of the coupled MCMC algorithm we sample as a proposal
zp ~ N(mmap,ﬁu éLap,@)u

where the efficient sampling from N (mmap,g, éLap’g) can also be efficiently implemented using
hiPPYlib library [164]. We constrct the level-wise MH acceptance probability. Write H, =
Cl;i)’é—czl. Itisshownin [129, Lemma 3.3] and [130, Section 3.2] that Q; = N(mmap’g, ClLapt) =
[pr,¢ With

dQy
d:“pr,(

1 1
(ué,f) = &Xp <<u€,€ — Mmap,¢, mmap,€>c[ - ) HUE,E - mmaP’ZHiIZI + ) Hmmap,f}lgé) = Qf(u)

Furthermore, setting QQy = @,y = ¥y in the notation of Lemma 3.4.1, it then follows that

du? du? du¥ ; -1 . .
d%( ) = d%(uu) = du/:f,e (uey) - (di?fz (u&g)) , and the MH algorithm with target

measure ,u?; induced by taking Q ¢ as an independent proposal is well defined, with
7] (z0) Qu(ueye) }
7 (uee) Qe(ze)

T_1(20)  Quoluge—1) }

Ozg(qu, Z¢) = min {1,

ap—1(uge—1,2¢) = min ¢ 1, -
( 22) { ) (wee-1)  Qelze)
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Furthermore, we assume that for any level £, ®¢(uy ¢; y) grows such that

. 1
o elgl(f Dy (upe;y) + (U — Minap,ts Mimap.t) o — 5 |we,e = Miape
thus, satisfying Assumption 5.3.1.1. Intuitively, one would expect this to happen whenever the
posterior measure is more concentrated than the Laplace approximation proposal.

RESULTS

We follow a similar procedure as in previous examples, and proceed to numerically verify the
converge rates stated in Theorem 5.4.1. To that end, we run Algorithm 8 50 independent times,
obtaining 2,000 samples per run at each level / = 0,1, 2, 3, using as a proposal the Laplace-
approximation of the posterior at level £ = 0,1, 2,3 to construct the coupled chain, obtain-
ing an acceptance rate and synchronization rate shown in Figure 5.17, where dim(Xg) = 289,
dim(X;) = 1089, dim(X3) = 4225 and dim(X3) = 16641. As we can see, the synchronization
rate increases rapidly with ¢, while the (marginal) acceptance rates converge quickly to the same
dimension-independent value of around 0.56. As an illustration, we plot the MAP M, A each
level in Figure 5.15, where the difference in dimensionality between spaces is clearly appreciable.
Notice that the MAP at each level is able to capture the main features of .. We remark that we
use hiPPY1ib [164] and FEniCS [101] to efficiently construct the Laplace approximation (i.c.,
to solve the minimization problem (5.32) and to construct the low-rank approximation of the
covariance, taking 7y = 100 forall £ = 0, 1, 2, 3). We depict three samples from /fé, £=0,1,2,3
obtained with our method in Figure 5.16. We plot the obtained rates for E,,[Y/] and V,, [Y/]
in Figure 5.17, where transparent colors represent a 95% confidence interval. As we can see, we
have that v, = 1.4, § &~ 1.4. Furthermore, we plot the joint distribution of (Qol,—_1, Qoly) for
¢ =1,2,3onFigure 5.18. Itis clear then that the samples become increasingly concentrated in the
diagonal, as expected. Lastly, once again under the assumption thaty = 1, we estimate the number
of required samples per level for difterent levels of tolerance, together with the total computational
cost of the algorithm and plot them in Figure 5.19. The number of required samples per level at a
given tolerance are shown in Figure 5.19 (left). As it can be seen, the amount of samples required
decreases with £. Notice that there is a rather small decrease between the number of samples at
level £ = 0 and level £ = 1; this suggests that coarsest discretization level was, perhaps, too coarse.
in Figure 5.19 (right), we plot the complexity of the ML-MCMC method, compared to that of the
standard, single level MH’s algorithm. As it can be seen, our proposed method has a much better
complexity than its single level counterpart.
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Figure 5.14: Plots of synchronization and acceptance rates using the Laplace-approximation proposal
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Figure 5.15: Realization of . and the MAP 1, ¢ at each level.
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Figure 5.16: Three samples from u ~ 1/ per each level; from top to bottom £ = 0,1, 2, 3.
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Figure 5.17: Plots of E,, [Y?] and V,, [Y¢] (in log,-scale) vs level for the high-dimensional example.
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Figure 5.19: Costs for the high-dimensional example. Left: number of samples vs level for different toler-
ances. Right: complexity of ML-MCMC vs a single-level MCMC estimator.
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6 MULTI-LEVEL MARKOV CHAIN MONTE
CARLO METHOD BASED ON MAXIMALLY
COUPLED PROPOSALS

6.1 INTRODUCTION

As discussed in Chapter 5, the crux of the ML-MCMC algorithm relies upon introducing a corre-
lation between the chains {u’& E}ﬁ\gl, {UZ —1 }f\ﬁl, at each given level £. In the previous chapter,
we introduced such a correlation by proposing the same state for both chains at each step in the
MH algorithm, using an IMH sampler. In this chapter we present a novel type of ML-MCMC
algorithms for which the correlation between chains is introduced by using a Metropolis-Hastings
algorithm for each marginal chain {U%, e}ﬁv:él, {uz -1 }ﬁvzél, in such a way that the proposal dis-
tributions for each chain are coupled using a so-called maximal coupling of the proposals. Such
an algorithm allows for state-dependent proposals in the context of ML-MCMC. Being able to
construct state-dependent proposals (like, e.g., RWM or pCN) in the context of ML-MCMC
algorithms is particularly useful in those cases in which constructing a suitable IMH proposal
(as discussed in the previous chapter), is difficult in some sense. This can occur, e.g., in the sub-
sampling algorithm, whenever Assumption 5.4.1 is not satisfied by the posterior at the previous
level (or more precisely, by the empirical measure approximating it), or when the Gaussian measure
arising from the Laplace’s approximation to the posterior measure is not sufficiently accurate, due
to having few measurements or extremely noisy data. Also, our proposed methodology can also
be of interest when solving the optimization problem associated to the construction of such an
approximating measure (i.e., finding the MAP and the Hessian) is not feasible, which could be the
case, e.g., when the forward mapping is computationally implemented using a so-called “black-
box” and no information on the gradient of the cost-functional for the minimization problem is
available.

In short, our method uses the following procedure. Supposing the chains are at a state (uz -1, g, o)
and each marginal chain is being constructed using possibly state-dependent proposals Q¢ (uy,, )
and Ry—1(uy,_;, ), our proposed method samples a coupled state (v', u’), from a maximal cou-
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

pling of Q¢ (uy y, ) and Ry—1(uf,_y, ). In practice, this means that (v', u’) are sampled in such a
Qe ) = Reoa(upey, )|

where ||-||, is the rotal variation distance. Each candidate state then gets accepted or rejected by

way thatu' ~ Qg(uzé, )Jandv' ~ Rg_l(uzz_l, ), withP(u' # v') = ,
its respective chain with the usual MH acceptance-rejection step. This procedure, allows us to
use more flexible, non-necessarily independent proposals for each chain, such as Random Walk
Metropolis (RWM) or preconditioned Crank Nicholson (pCN) (c.f. Section 3.4.1), while at the
same time, creating chains that are highly correlated, as required by the ML-MCMC algorithm
(see discussion on Section 5.2 ). More importantly, this type of ML-MCMC based on maximally
coupled proposals, allows for more “flexibility” in the choice of proposals, while at the same time
being easy to implement and for which marginal chains are geometrically ergodic under mild
conditions. We show by numerical experimentation the effectiveness of our approach. Moreover,
we present some elements of analysis, proving, in particular, the existence of a unique invariant
measure for the level-¢ coupled sampler.

The rest of this Chapter is organized as follows. We begin Section 6.2 by introducing an algorithm
to sample from a maximal coupling between Gaussian probability measures (c.f. Algorithm 11),
and then proceed to introduce our proposed method in Section (c.f. Algorithm 12). We present
an analysis of the existence of and convergence to an invariant measure for the proposed algorithm

in Section 6.3, and present some numerical experiments in Section 6.4.

6.2 ML-MCMC BASED ON MAXxiMAL COUPLING

We begin this section by recalling some basic concepts on the coupling of probability measures. We
follow closely some of the theory presented in [19, 53, 76, 99]. Let X be a separable Banach space
with associated Borel o-algebra B(X), define the product space X? := X x X, and denote by M (X)
the set of probability measures on (X, B(X)). For any two probability measures @, R € M(X),
we say that a measure /' € M (X2) is a coupling of QQ and R if for any set A € B(X),

Y (AxX)=Q(A) and ~'(Xx A)= R(A).

In words, we say that a probability measure 7 is a coupling of @) and R if its marginals are ) and
R. Itis known (see, e.g., [159]) that for any such coupling 4" it holds that

IQ = Rlly <Py(E#C) (£¢) ~7. (6.1)

We say that ' is a maximal coupling of Q and R if 7' is a coupling such that equality holds for
equation (6.1). It is always possible to find such a coupling under the assumption that X is a Polish
space, as shown in [99, Theorem 5.2]. We remark, however, that such a maximal coupling is not
necessarily unique.

Suppose, for the time being, that there exists an algorithm to efficiently sample from a maximal
coupling between two (possibly state-dependent) proposal kernels Q(us g, -) and R(ug—1,-)
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6.2 ML-MCMC based on Maximal Coupling

(suchas, e.g., RWM or pCN), in such a way that R(us¢—1, -), Q(ue ¢, -) are the proposal kernels for
a MH algorithm with invariant measure ,uz_l, ,uz, respectively. Denoting this sampling procedure
as Coupled-chain-MCMC, one can then use such a coupling to create a ML-MCMC algorithm as

shown in Algorithm 10. We will discuss next a possible way to generate such a coupling.

Algorithm 10 Multi-level MCMC

1: procedure ML-MCMC({1e/ }5_o, {Ne} o, tors {Qe, Re o)

2 if / = 0 then

3 # Create a chain at level £ = 0 using any suitable MCMC algorithm
4 {u } =MCMC( MO? No,...). Set X0,0 = {uo}

5: end if

6 for/=1,...,Ldo

7 Sample “2,271 ~ lpr, and set ug’e = “2,271

8 forn=20,...,N;,—1do

9 # Create a coupled chain using some coupling
10: {u?}'_ll, ”'H} = Coupled-chain-McMC({py 1, 1j}, {ul o1 up e, {Re, Qe})
11: end for

12: Set Xee = {UZK}QIiO? and Xt 0—1 = {UZZ—I}QZO'
13: end for -
14: Output x0,0 U {Xé,é—l , X&f}lfzo and QOIL,{Nz}'E:O

15: end procedure

6.2.1 REFLECTION MAXIMAL COUPLING FOR GAUSSIAN PROPOSALS

We recall a technique used to sample from a given maximal coupling [76, 99, 100] between two
Gaussian distributions. Further coupling strategies are presented in, e.g., [76]. We will focus our
attention to couplings in finite-dimensional Hilbert spaces. This setting applies, e.g., when:

Case I. Xitselfis a finite-dimensional space, i.e., X = RE, for some K > 1.

CaseII. Xis an infinite-dimensional Hilbert space that can be decomposed as X| @& Xﬁ with Xﬁ L
X, where X is a K| -dimensional subspace of X, for some K| > 1. This is the case, e.g.,
where we model ug ¢, 1y o1 in terms of their Karhunen-Loeve expansion, and aim at only

coupling the proposal distribution of the first K| terms in the expansion.

Case III. A similar case occurs when X;_; C X, and one tries to couple the proposals for the first
K,_1 components of uy ¢ with all the Ky_1 components of 1y ¢—1, while the fine modes
of uy ¢ evolve independently of the coarse modes of s ¢—1.

For notational simplicity and with a slight abuse of notation, hereafter we will denote by X
either the K —-dimensional space of Case I, the K| -dimensional subspace of Case II, or the
K_1-dimensional subspace of Case III. Forany ¢ = 1,2 ..., L and any given stepn € N, let
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

(uf o—1,uy o) be the current state of the joint chain constructed by Algorithm 10 with marginals
,ug_l, ,uz. Furthermore, suppose that each marginal chain is being constructed following the usual
Metropolis-Hastings algorithm with proposal measures Q™ := Qg(uz o) R = Ry (uz v—1s")
in (X, B(X)). We aim at coupling proposals Q" and R"™ whenever these proposals are of the general
form

Uzg ~ N(m(UZz)7é) =Q", (6.2)

wherem : X — X, is some B(X)-measurable function and C is some symmetric, positive-definite
covariance matrix in RE*K Proposals of this form are commonly used in MCMC; for some
z € X, one could have, e.g., m(z) = z, if the corresponding proposal scheme corresponds to a
RWM, or in the case where 15, = N (0, C), onecansetm(z) = /1 — p?z, withsome p € (0, 1)
andC = p?Cifoneis using pCN proposals instead. Let @9 = N (0, I), and with a slight abuse of
notation, denote by ¢g : X — R its Lebesgue density. Clearly, one can generate coupled samples
with marginals (6.2) by sampling (£, ¢) ~ 7/, where 7/ is a coupling of ¢ with ¢, and setting

up e =m(ugy) +CY2%, up, y =mlug, ) +CY2, §¢~N(O,T).

Thus, by carefully choosing how £, € are generated, one can generate maximally coupled proposals
(uz’ i—1> ué’ ;) with the desired distributions; indeed, one could (trivially) generate a maximal
coupling of (g with itself by sampling £ ~ g, and then setting ¢ = £, which produces (¢, ¢) as
sample from a maximal coupling. However, this will be a maximal coupling of ¢ with itself, but
will not lead, in general, to a maximal coupling of @™, R". To that end, for any UZ —1> uZ ¢ €X,
let 2™ := C~_1/2(m(u2£) — m(up,_1)) and define

o {Z”/ 12"l if 2" # 0, (6.3)

0 otherwise.

The reflection maximal coupling algorithm proceeds by first sampling & ~ ¢ and then setting

E+ 27, with probability min {1, %} (case I),

& —2(e" &)xe™, otherwise (caseII).

Thus, intuitively, if 2™ ~ 0, meaning that m(uy ,), m(u},_,) are relatively close to each other,
then, with high probability, ( = &£ + 2", and as such, u} ,_; = uy ,. Otherwise, the algorithm

produces ¢ which is a reflection of § with respect to the plane orthogonal to €™ defined in (6.3).
Theorem 6.2.1 states that Algorithm 11 samples (UZ, —19 UZ, ) from a maximal coupling of @™, R"™.
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6.2 ML-MCMC based on Maximal Coupling

Algorithm 11 Reflection maximal coupling.

1: procedure REFLECTION-COUPLING(po, m(uy, ), m(ug,))
2 Setz" = m(uy,) — m(uy,_,)andsete” from (6.3).
3 Sample & ~ g, and w ~ U([0, 1]).
4 ifwgmin{l,M}then
©o(§)
S: Set( =& + 2™, > case I
6 else
7 Set ( =& — 2(e™, &)xe™. > case I1
8 end if 3 .
9 Setuy , = m(uy,) + C'/%¢ and up = mluy, ;) + Cl/%¢
10: Output (up 1, Uy )-
11: end procedure

Theorem 6.2.1:  Letuy, o, up, € X. Algorithm 11 produces a coupled sample (uj , 1,y ) ~

Y™ wherey" is a maximal coupling of Q" = N (m(uj,),C) and R* = N (m(uj,_,),C), i,
Pw"(ule,z # “2,12—1) = ||R" — Q" || with ué,e ~ Q" and UZ,Z—l ~ R".

Proof. See [76]. O

We reiterate that this coupling is induced by the coupling between the spherically symmetric
measure @o with itself. This technique can only be used to couple spherically symmetric proposals,
such as (but not limited to) Gaussians [76]. Many commonly-used MCMC algorithms for PDE-
based BIPs utilize proposals that arise from a spherically symmetric measure . Thus, we will
primarily focus on this type of coupling for the work presented herein. An additional coupling
technique based on rejection sampling is presented in [76, 159], but we will not investigate it in this
work, since we believe it is less efficient than the reflection coupling in the ML-MCMC context.

6.2.2 GENERATING COUPLED CHAINS

Let 4™ be the reflection maximal coupling of ", R" induced by Algorithm 11. Once such
a coupling has been constructed, one can use ¥ as a proposal in a Metropolis-Hastings algo-
rithm with marginals 1, pi/, with £ € {0,1,2,...,L}. The procedure is relatively straight
forward; given a joint state (uy',_, uj,) =: u," and (possibly state-dependent) marginal pro-
posals probability measures Q™ and R", the algorithm begins by generating a joint proposal
w' = (upe_1,upe) ~ 7" = " (where v" can possibly depend on the joint state uy, ie.,
7" (wy, -)) together with a random number w ~ ([0, 1]). and it then proceeds to accept or
reject u’z’ ¢ and ’LLZ, ¢ as the new states of the respective marginal chains, following the usual MH
accept-reject rule where, for each marginal chain, the MH acceptance probability av(uy, uy )
and ayp_q (UZ I—1> uz 571) are compared to the same random number w. Furthermore, since 4" is
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

a maximal coupling of Q", R", meaning, in particular, that Q™ and R" are the marginals of 7",
the MH acceptance rate o, j = £, £ — 1, is of the form

Ty
Y
)

ap—1(ug—1, U/M_I) =min< 1 , (6.4)

-1 (ulﬁ,é—l)r(ulé,é—l’ “26—1)
i (ug )T(“szlvule,e—l)

14
l

ozg(um,uw) =min{ 1, o , (6.5)

i
where 7T;<J : X = R4, j = € — 1, are the densities of the posterior at level j with respect to some
suitable reference measure (e.g., the prior), and similarly, r : X2 - R4 andg : X2 = Ry are
the densities of the proposal measures R", Q™ with respect to some suitable reference probability
measure (c.f. Section 3.4.1). This procedure is depicted in Algorithm 12. Once again (c.f. Chapter
5), we emphasize that such an algorithm also couples the Metropolisation step by comparing the
acceptance probabilities avj, j = £ — 1, £, with respect to the same uniform random number
w. It is important to remark that, even though we use a maximal coupling as a proposal, the
resulting joint Markov chain has marginals that are not, in general, maximally coupled, because of
the Metropolization step.

Algorithm 12 Coupled chain MCMC.

1: procedure COUPLED-CHAIN-MCMC(11), pi_1, us™, R™, Q™, m, ¢)

. - ) 2y N1 n n : n+1 Y, . n+1
2: # Produces one sample u, = (“U LUy ) ~ vg,withwyy ™ ~ pyandw,, — ~

1y, given some current state ug" = (u} uy,)
Fp—1> glven s state Uy £,0—1> e )

3: Sample u,” =reflection-coupling(po, m(uy,_y), m(uy,)).
4 Sample w ~ U([0, 1])
5: Compute avp—1(up 1, up 1), and ap(uy y, up ), as in Equations (6.4), (6.5).
6: ifw < ay(upy, up ) then
n+l _ ./
7: Set uel — u‘e’e
8: else
n+l _ n
9: Set U/&E — uf,@
10: end if
11: ifw < O‘f—l(u?,z—lvué,z—l) then
n+l _ ./
12: Set UE7Z_1 — u€7£_1.
13: else
n+l _ n
14: Set u€7€_1 — u€7£_1.
15: end if
n+1 __ n+1l  n+l
16: Output we"™ = (uyy, uyy ).

17: end procedure
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6.2 ML-MCMC based on Maximal Coupling

Forany A € B(X?), Algorithm 12 induces a Markov transition kernel py : X? x B(X?) — [0, 1]
given by

Y (ufna A)

= - min{ov(ugy, U@,z), o1 (ug 1, U@,z-ﬁ}l{u;{eA}Vn(uga duy’)

n ! n / + n(, n /
— oy 1 d
+ /)(2 (ae(uw,um) oy 1(ue,5717w,571)) {(UZ,M?,@A)EA}’Y ('U/g, ue) (6.6)

n / n / + ni,.n /
+ /x2 (aﬁ—l(uf,é—l,uf,é—l) - O‘E(ué,ﬁvué,é)) 1{( )eA}v (uy, duy)

n !
Uy eUp0—1

F Lureny (1 - /X max{an(uh g, ), 01 (W, ) 12" (07, du/)) ,

where we have used ()" = b%lbl, Vb € R. In words, (6.6) gives the probability of moving to a set
A given a joint state uj;. We associate a Markov transition operator Py : La(X,vy) — Lo(X, 1)
to py, where v is the invariant probability measure of the Algorithm, provided it exists.

6.2.3 RE-SYNCHRONIZING THE CHAINS

So far, we have proposed a method to generate coupled MCMC chains by sampling from a
maximal coupling of the proposals of each marginal chain. However, it is still possible for the
chains to uncouple and stay de-synchronized for a long period of time. In the setting for which
one constructs each marginal chain using localized Gaussian proposals (such as RWM and pCN),
where each proposal is a Gaussian centered at some m(ug¢), m(uge—1) € X, such a prolonged
stage of de-synchronization is likely to occur when m(ug¢) and m(ug 1) are sufficiently far
apart. This is a situation that could potentially happen whenever the posterior is e.g., multi-modal
or high-dimensional, as suggested by the numerical experiments in [76]. Ideally, we would like
for the chains generated by our algorithm to avoid such a situation, since long periods of de-
synchronizations will, in general, reduce the correlation between chains at level £ and £ — 1, and
could eventually result in having V,,, [Y;] = O(1). One possible way to avoid this undesirable
situation is to construct the coupled chains at level £, using the following convex combination of

Markov transition operators:

Pg =1 —w)Pr+we P>, w;€(0,1),¢=0,1,...,L.

sync

Here, P, denotes one step of Algorithm 12 and P, is a synchronization Markov transition
operator, which at each step, proposes to both chains a common candidate state, which then gets
accepted or rejected by each marginal chain with the usual Metropolisation step. Thus, for some
fixed wy, Pg can be understood as sampling from Algorithm 12 with probability 1 — wy, and

sync

otherwise sampling from P,™". This synchronization operator can be understood as a one step

of IMH as in Chapter 5, proposing a candidate state from, e.g., the prior pp, or a KDE of the
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

previous samples, a sub-sampled approximation of i, as in [45], or a sample from p or p§
obtained from a chain with invariant measure /ﬁé or ,uzé_l run independently and in parallel. One
could, alternatively, propose to synchronize the chains (i.e., attempt to have u?‘;l = u?";_ll with
some probability) by performing one full iteration of the multi-level delayed—acéeptance algorithm
presented in [105].

This re-synchronization procedure yields the following alternative one-step re-synchronized cou-

pled chain MCMC algorithm which can also be used inside Algorithm 8.

Algorithm 13 Resync. Coupled-chain-MCMC.

1:

2: procedure REsync. CoUuPLED cHAIN MCMC(py, p;’", (uf o1, up ), we)

3: # Produces one sample u," 1 = (11}’;,,’711. Uy l) ~ vy, with 112]'_/,‘; L py and “7]—11 ~

141> given some current state wg” = (u},_;, u},).

4 Sample U ~ U(0, 1)

5 if U > wy then

6 Sample ug"H ~ pg(Ugn, )

7: else

8 Sample w," ™! ~ p?"“(u", ) , ie., do one step of IMH as described above.
9 end if

. n+l _ (¢, n+l n+1

10: Output we"™ = (uy; ", upy ).

11: end procedure

6.3 CONVERGENCE OF THE LEVEL-WISE COUPLED PCN CHAIN

We now proceed to analyze the convergence of the level-wise coupled chains generated by Algorithm
12. The main result of this section is stated in Theorem 6.3.1, which provides conditions for the
existence and uniqueness of an invariant measure vp. We will limit ourselves to the particular
case where X = RE| 1, = N(0,C) and Qo(u,-) = N(\/1 — p?u, p?C). Here K > 1is
independent of the level, C is a symmetric positive definite matrix in RE*¥ and p € (0, 1). This
setting corresponds to a pCN algorithm in a finite-dimensional space. In this case, the acceptance
rate for the marginal chain at level £ is of the form ay(u, uy ,) = min{1, ePelu)=Pelug iv)y
Yu, uz’g € X. We believe that our setting can be easily extended to other MCMC algorithms,
however, we choose not to pursue such an analysis in this work.

Similarly as in the previous chapter, our goal is then to show that, under some technical assumptions,
our ML-MCMC algorithm satisfies the assumptions of Theorem 3.2.4. To that end, we will require

the following assumptions to hold:

Assumption 6.3.1 (Assumptions on the potential):  The following conditions hold for all
(=1,...,%2:

6.3.1.1. ®y(usy) isstrictly positiveNu € X, y € Y.
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6.3 Convergence of the level-wise coupled pCN chain

6.3.1.2. Thereexists B > 0, o\, > —o0 and a function v : RT — R satisfying r(s) = 7s® for
all |s| > &, 7 > 0,a € (3,1), such that for all w € Bg(0)C, it holds that

inf ae(u, up ) > exp(y, ).
U  €Br(uf) (V1=p?u)

Assumption 6.3.1.1 is mild and easy to satisfy. Assumption 6.3.1.2 is more complicated to verify,
however, it is needed to establish the convergence of the marginal pCN algorithm (see [65]). We
now present the main result of this section.

Theorem 6.3.1:  (Existence of a unique invariant measure and geometric ergodicity) Suppose
that Assumption 6.3.1 holds. Then, for any level ¢ = 1,2,. .., L,

1. The joint Markov chain generated by Py in (6.6) has a unique stationary probability measure
vgon (X2, B(X?)).

2. The joint Markov chain generated by Py is geometrically ergodic. That is, there exists a
vp-integrable, bi-variate Lyapunov function Vy_1 0 : X2 + [1,00],anr € (0,1) and
M € RY, such that

sup
[fI<Ve—1,e

< MVp_q o(ue)r™,

o ) = | |l

X2

Yuy, € X2, n € N, where the supremum is taken over all vo-measurable functions f X2
R satisfying | f(we)| < Vi1 e(ug).

We postpone the proof of Theorem 6.3.1 to the end of the this subsection. We begin by showing
the irreducibly of the chain generated by (6.6). For notational simplicity, for the remainder of
this subsection we will write uy = (ug—1,upz), uf' = (ulé,ffl’ U/M)’ and q(ug , uﬂ) and
(e e—1, “2,671) as the Lebesgue densities of Q(ugr, ), Ro—1(tg—1, -) respectively, evaluated
atuy, 1,uy, € X. Furthermore, we denote by 7(-) = 7(u, ) the maximal coupling of
Qz(Ug7g, )and Ry_1 (Uf,é—b -) obtained with Algorithm 11.

Lemma 6.3.1:  (Irreducibility) Suppose Assumption 6.3.1 holds. Then, forany ¢ =1,2,... L,
the joint Markov transition kernel py defined in (6.6) is P-irreducible.

Proof. Take any compactset K € B(X) with non-zero Lebesgue measure, set K2 = K x K and,
forany set A € B(XQ), denote A = AN K2. Foruy € X2, one has that

pf("é? A) Z pf(ufu AK)

> /)(2 min{ozg(u,ué’g),ozg_l(v,ulg,e_l)}ll{wzeAK}v(ué,du/), (6.7)
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

Since we are using pCN kernels on both marginals, we obtain:

min{a(ue,e, wp ), o1 (g e—1,upe 1)}

e~ ®euy iy) = Pe1 (vl 43y)
=min< 1,

e~ Pe(u,esy) o= Pe—1(ue-159)
— o _ / . N
> min {e ®elup,eiy) o (I)Z*I(“N*’y)} =: dy(uy). (6.8)

Furthermore, since A is a compactsetand @, j = £ — 1, £ isa continuous and positive function,
then, there exists d; > 0 such that &y(wy’) > 6y, Vuy' € Ag. Thus, we obtain

(6.7) = ¢ /)(2 Ly, rennyy(ue, duy’)

=5z/ n{u/EAK}'Y(ubduﬁl)"'/ Ly, e nyy(we, duy’)
X2nA X2NAc

> 5e/Al{W'eAK}7(Uz,d’ue'), (6.9)

where A = {(ugs—1,ure) € X? : upg—1 = ugy}. Notice that the integral in Equation (6.9) is
over the diagonal set of X2, i.e., over the set {u,’ € X% : Ugo—1 = Uy}, which can only occur
when Algorithm 11 finalizes in case I. Thus, writing u} —1 = ué ¢, = ¢/, and observing that since
u' = m(ugy) + CY%€, € ~ o, we have

E=C20 —m(ugy)), €+ CV2(mluge) — m(uge—r) = C 2 (W — m(uge-r)),
it then follows that
(6.9) = o /X L (e),u(¢)e AR} min {900(5)7 wo(&+C2(m(uge) — m(ue,e—l)))} d¢

=|detC1/2|5, /X L{(u ) Ay} Min {@0(6_1/2(71,/ —m(ugy))), eo(C V2w — m(u&g,l)))} du'.

C 12 — m(w’g))”i <2 HCll/Qu’

follows from the previous equation that

2 . 2
Furthermore, since + 2 HC’I/zm(w ?) ‘ ,it then
X ’ X

(69) 2 |detC™2| minfeImteelle e—limeolicys, /X L eagyvo (V2E20 ) du!

where ||-|| s = HCLI/ZHX. Setting

P(A) == /x L uhyeAnK?2}$0 (\@é_l/zu'> du’
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gives the desired result. O

We now proceed to show that Assumption 6.3.1 implies that all compact subsets of X? are small

sets.

Lemma 6.3.2:  (Existence of small sets) Let Sy € B(X?) be a compact subset and suppose Assump-
tion 6.3.1 holds. Then, S ¢ 15 a small set for the Markov kernel py.

Proof. We proceed similarly to the proof of Lemma 6.3.1. Notice that for any A € B(X?), it
holds that

pe(ug, A) > /><2 min{o(u, wpp), 2e—1 (0, up 1) quyreayy (e, duy)

> /2 (w1 e ayy (e, duy'),
X

with dy(u,") as in (6.8). Minorizing once again by the probability of Algorithm 11 finishing on

the first case (i.e., proposing the same state for both chains), we obtain:
pe(ug, A) > |decC™ Y2

X / drg(wg") (e 4y min {@0(6*1/2@’ —m(ugy))), po(C 2 (u — m(uf,zfl)))} du'.
X

Moreover, since Sy is compact and ¢ (-) (when seen as a density) is a positive, continuous, and
bounded function, then, there exists a continuous and bounded function § : X — R such that

0 < §'(u) < min {@0(5_1/2(1/ —m(ugy))), po(C (1 — m(uu—l)))} Yy € S

Thus, setting v(A) = [ Sl&g(u’)]l{(u/,u/)eA}goo (\/5(3’1/21/> du/ gives the desired result.
O

Aperiodicity follows from Lemmata 6.3.1 and 6.3.2 since v(Sg) > 0 aslongas Sy a = {u € X :
(u,u) € Sy} has non-zero -measure.

We now focus on the existence of a drift condition (c.f. Definition 3.2.8) for our ML-MCMC
kernel. We recall the following auxiliary result from [65], which states the existence of such a drift

condition for the marginal pCN algorithm.

Lemma 6.3.3:  (convergence of the marginal pCN kernel) Suppose Assumption 6.3.1 holds. Then,
the pCN algorithm with invariant measure 1) is geometrically ergodic and satisfies the drift condition
as in (3.14) with a Lyapunov function Vy : X — [1, 00) of the form Vi (uge) = exp(ke ||ueelly)s
for some kg > 0.

Proof. See [65, Theorem 2.12] O
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

Remark 6.3.1:  The work [65] states the previous result in terms of Lyapunov function' V' satisfying
the slightly different drift condition:

(PeVi)(uge) < NVi(uge) + Ko, Ny € (0,1), Ky < o0,

i.e., without an explicit dependency on a small set. It can be shown, however, that the function V in
the previous Lemma also satisfies our drift condition. 10 that end, set Sy = {u € X : Vy(u) < L},
for some L sufficiently large so that Ny := X, + K¢/ L < 1. Notice that since Vy bas compact level
sets and, by Lemma 6.3.2, compact sets are small, Sy is then a small set. We then bave that

(PeV) (uge) < NVi(uee) + Ko = NpVi + Kol e,y + Kell fugs,y

Ky
SNVe+ Kol e,y + <L1{W¢5@}> Ve(ue)

K,
_ ( n L) Viluee) + Kel{, es,)

= A(W(uf,f) + Kfl{u&zesz}'

Notice that from the previous theorem, it follows that, given some I' € R, the set 5’4 = {uy €
X : Vi(uge) < T'}is compact (and hence, a small set, from Lemma 6.3.2). We will use this in the
proof of Lemma 6.3.4. We define the joint function V;_1 ¢ : X2 — [1,00) by

Viso(u) 1= 5 (Vilun) + Vi (1)) (@10

The next Lemma shows that V,_; ¢ is a Lyapunov function for the joint kernel p,. Since the
marginal kernels of py are p; and py_; respectively, one then has, for f/g(ug) = Vi(ugye) that
PV, =PV, = Jx V}g(u’g,g)pg,g(uu, du’u) (where py ¢ is the Markov transition kernel corre-
sponding to the marginal chain with invariant measure /ﬁj) and similarly P,V,_1 = P}Vi_q, that
is, the joint kernel acts on the marginal Lyapunov function exactly as the marginal kernel does. In
light of this, we now show that our joint kernel py satisfies a drift condition of the form (3.14).

Lemma 6.3.4 (Drift condition):  Suppose Assumption 6.3.1 bolds. Then, the kernel py in (6.6)
satisfies a drift condition of the form (3.14) with Lyapunov function Vo_j () = %(Vg(uu) +
Vi1 (uge—1)).

Proof. From Lemma 6.3.3, it follows that for j = £ — 1, £, the marginal kernel py ;, satisfies a drift
condition of the form

/X Vj (g 3)pe,j(ue,g, dup ;) < A;Vj(ug) + Filf, es) Vs €%

forsome \; € (0,1),#; € (0,00)and forasmallset S; := {ug; € X:Vj(ug;) <T}, S; X,

with I > 0 sufficiently large such that max{A¢, \p—1} + mzm{liiiiﬂ’l} < 1. Notice that this
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X

Ug,i—1

Figure 6.1: Depiction of a two-dimensional small set.

choice of small set is motivated since, by Lemma 6.3.3, the Lyapunov function V; : X — [1, 00)
,j = £ — 1,4, has compact level sets. Furthermore, define Sy := Sy x Sy_1. We remark that
S j (and hence Sp) is compact since the function Vj given in Lemma 6.3.3 has compact level sets,
and as such Sy is a small set. We will now show that P satisfies a drift condition with Lyapunov
function given by (6.10) and small set Sy. Consider first the case where u, € Sj. Notice that the
set S; can be written as the union of three non-overlapping regions; S¢ = Ry U Ry U R3, where
Ri={us€X®:upe ¢ Sp,uge1 € Se—1},Ro = {up € X2t ugy € So,upey ¢ Seo1}s
and R3 = S\ (R1 U Ry), as depicted in Figure 6.1.

For uy € Ry we have that

Kyp_
(AeVi(uge) + Ae—1Vi—i(uge—1)) + et (6.11)

(PyVi—10)(ug) < 5

N =

Since uy € Ry, it then holds that V; > T'. Furthermore, since V; > 1, we then have that
Vicie(ug) = % (Ve(uge) + Vo1 (uge—1)) > %(1 + I'), which in turn implies that % <

szll_‘i_iél(ﬂw. Thus, from (6.11), one obtains that
1 Ke—1
(6.11) < = (MNeVi(uge) + Ae—1 Vi1 (uge—1)) + Vi—1,0(ug)
2 1+T
< | max{ s, Ap_1} + -1 Vo1.0(up). (6.12)
e ) 1 + T s
<1
Similarly, for uy € Rg it holds that
K
PV (ug) < <maX{)\e,>\z1} + 1+ZF> Vi1,e(up), (6.13)
<1
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

and for uy € R3 we simply have:
PV o(ue) < (max{Ag, Ae—1}) Vio1e(up). (6.14)
Thus, from (6.12), (6.13), and (6.14) it follows that

max{ry, Ke—1}

PV (ug) < (maX{)\e,)\e—l} + 4T

> Vicie(ug), Yug ¢S (6.15)

=: Kgr< 1
Lastly, for uy € Sy we have

1 Ko— K
PV p(up) < 5 (AeVa(uee) + Ne—1 Vo1 (uge—1)) + % EK

< AVioq o(ug) + Ay, (6.16)

with /&y 1= %(/ﬁg,l + k¢). Thus, from (6.15) and (6.16), we have that the joint kernel satisfies a
drift condition of the form (3.14), namely:

PV 0(we) < AgViqp(ue) + Relgy,es,)

We now have all the required results to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. The proof of Theorem 6.3.1 follows immediately from Theorem 3.2.4
and Lemmata 6.3.1, 6.3.2, and 6.3 .4. O

Corollary 6.3.1:  Under the same assumptions as in Theorem 6.3.1, the ML-MCMC algorithm
induced by a maximal coupling of the gpCN method of [144] also has a unique invariant joint
measure; this follows form the fact that both pCN and the gpCN samplers have the same MH
acceptance probability a(u, v).

Remark 6.3.2 (On the proof of the complexity result of [45]):  We remark that we are
currently unable to prove that conditions T2 and T3 of Theorem 5.4.1 in Chapter S for the complexity
result of Dodwell et. al. ([45, Theorem 3.5]) hold true for the currently proposed method, under
reasonable assumptions (one can show that T1 holds true under similar conditions to that of Lemma
5.4.3, however, this condition alone is not sufficient for the complexity result of Dodwell. et. al. to
hold true). We expect however, that, by including a re-synchronization kernel, as in Algorithm
13 the convergence properties of the ML-MCMC algorithm are “inberited” from the IMH part.
Furthermore, the numerical results in the following sections suggest that T2 holds, indeed, true (with
and without re-synchronization). Furthermore, it is a consequence of Theorem 5.3.4 that '3 also
holds true provided that the (joint) chain is mixing sufficiently fast. We investigate this in further
detail in the Appendix of this chapter.
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6.4 Numerical experiments

6.4 NUMERICAL EXPERIMENTS

6.4.1 MOVING GAUSSIANS, REVISITED

We return to the sanity check experiment of Section 5.6.2 to verify the capabilities of our pro-
posed method. In this case, we aim at sampling from the family of probability measures 1] =
N (2*£+2, 1) 0 =0,1,2,..., L, whichapproximate ¥ = N (0, 1) as¢ — co. Asdiscussed in
Chapter 5, such a family of probability measures poses a problem to some ML-MCMC algorithms
due to the relatively small overlap between the posterior measure at level £ = 0 and those at higher
accuracy levels. In particular, we aim at comparing our method with the sub-sampling algorithm
of [45]. To that end, we first implement our ML-MCMC Algorithm 8 from Chapter 5 together
with Algorithm 12 (that is, we are not using a re-synchronization kernel). At any given level /,
the proposed coupled state at the (n + 1) step is given by (u ,_y, u}) ~ 7}, where uj ,_; ~
N(UZK—P 02),u’u ~ /\/‘(uzf, 02),and]P)(u’u_1 # uy) = HN(uzf—l’ o?) — ./\/'(uzg, 02)Ht )
Here, (UZ 01> U7 ¢) denotes the current state of each chain with invariant measure 1j_;, 11 rg—
spectively. At each level, the step-size of the RWM algorithm, 02 = 1is chosen such that each
chain has an acceptance rate of about 40%. We compared our proposed approach to the meth-
ods and experimental setting of Section 5.6.2, i.e., (a) the sub-sampling ML-MCMC algorithm
of [45] with a level-independent sub-sampling rate t; = max {1 +2 Zév:o oe(k), 5}, where

142 ch\]:() o¢(k) is the integrated auto-correlation time of Yy (uy) at level £, and (b) our IMH
algorithm with a level-independent proposal @y = @ = N (2, 3). For all methods, the proposal
distribution at level ¢ = 0 is a random walk Metropolis proposal Qo (u{, -) = N (uf, 1), which
yields an acceptance rate of about 40%.

We begin by investigating the correctness of the corresponding marginals obtained with our
method, and compare such results to those obtained with the the previously discussed ML-MCMC
algorithms. To that end, we run all algorithms with L = 7, obtaining 20, 000 samples per level,
and present the histograms of the samples obtained with all methods at levels £ = 2, 4, 7 in Figure
6.2. The left column of Figure 6.2 shows the histograms of the samples from ,uz_l, /fé obtained
with the maximal coupling algorithm, the middle column of Figure 6.2 shows the histograms
of the samples from pj_,, u§ obtained with the sub-sampling algorithm, and the right column
corresponds to the histograms of /1 ,, 11/ obtained with the IMH algorithm. For either column,
each row represents a different level £ = 2 (top), ¢ = 4 (middle) and ¢ = 7 (bottom). As it can
be seen from Figure 6.2 (left), the maximal coupling algorithm is able to target the right marginal
distributions at any level. This should not be a surprising fact, since each marginal chain is being
created using RWM proposals.

We now investigate the coupling between chains, i.c., how often are the chains coupled when using
Ny—1

— _ 5
n=0 {“Ze—“?,za}

which is an ergodic estimator of Py, (ug ¢ = ug¢—1) (with v the joint probability measure with

our method. To thatend, we define the synchronization rate atlevel by 7 = N%z >

marginals 42 ,, y1f/, induced by the ML-MCMC algorithm with maximal couplings). We run our
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

Max. coupling Sub-sampling IMH, NV (2, 3)
0.4 o —1] 04- i —1] 04- T -1
(=2 —A4=2 . =2
0.2 0.2 + 0.2
0.0 - T 0.0 T 0.0
-5 0 5 10 -5 0 5 10 -5 0 5 10
0.47 —623 0.47 —€:3 047 —6_3
— =4 — =4 — =4
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Figure 6.2: Histograms of samples obtained with a (left) maximal coupling of the proposals (center) with a

sub-sampling algorithm and (right) with the independent Metrpolis-Hastings algorithm, for
different pairs of accuracy levels. Each histogram is obtained with 20000.
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—— Maximal coupling
Sub-sampling
—IMH, N(2, 3)

Figure 6.3: Average synchronization rate for the chains generated with maximally coupled proposals (blue)
those generated by the sub-sampling algorithm (orange), and those obtained with IMH (bur-
gundy). 95% confidence intervals are shown in dashed lines.

ML-MCMC Algorithm 8 together with Algorithm 12 M = 50 independent times, where each
independent run has L = 7, Ny = 20,000, ¢ = 0,1, ..., L. Furthermore, for each independent
runk =1,2,..., M, we compute 5’@(@. We plot the estimated .7 := ﬁ 224:1 ,%(k ateach
level, together with a 95% confidence interval, in Figure 6.3. As we can see, the synchronization
rates of all algorithms increase with £, with the synchronization rate of the sub-sampling algorithm

increasing faster.

SAMPLING WITH A RE-SYNCHRONIZATION KERNEL

The (simple) numerical experiments conducted so far show that our ML-MCMC method (a) is able
to sample from the right marginal probability measures at each level £ and (b) the synchronization
rate increases with £. However, as evidenced in Figure 6.3, the synchronization rate for our method
increases at slower rate than that of the sub-sampling or IMH algorithm. Ideally, one would like to
have a coupled sampler that fulfills (a), while at the same time having a higher synchronization rate.
As discussed in Section 6.2.3, this can be achieved by using a convex combination of our coupled
sampler together with a re-synchronization kernel.

Remark 6.4.1 (On the use of re-synchronization kernel):  One should not expect to introduce
an additional bias on the marginal chains when using a combination of joint Markov operators of
the form P = wP} + (1 — w)P?,w € (0, 1), provided that i P} = p, j = £ — 1,6,i = 1,2,
Indeed, since fori = 1,2, PZ is a Markov operator, it follows that HPEZ HL2 = 1 thus forw € (0,1)

P=wP}+(1-w)P? = HP L0 <w+ (1 —-w) HPEQHLO = a, with a < 1 provided
2 2

HPZQ H o<1 (1., the marginal max. coupling has a positive Lo spectral gap). The choice of weight
2
w does affect the convergence rate though.

Motivated by this, we shift our attention to the performance of our method when combined with
either the sub-sampling algorithm of [45] or our IMH algorithm presented in the previous Chapter
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

as a re-synchronization kernel. To that end, we implement our ML-MCMC Algorithm 8 together
with Algorithm 13. This induces two different Markov operators, Psszync, corresponding to the
Markov operator which induces the re-synchronization via the sub-sampling algorithm (by using
the emperical distribution form the samples obtained at level £ — 1 as a proposal), and PIMsznC,
which induces it using the IMH algorithm.

We consider alevel independent weightwy = w, for different valuesof w € {0,0.1,0.2,0.5,0.7,0.9},
where the level £ synchronization operator P(.);"" is to be understood as a step of the either the
sub-sampling algorithm of [45] or our IMH algorithm presented in the previous section, with

Qv = Q = N(2,3). We first verify the accuracy of a ML-MCMC estimator of the form

No L Ny
QOIL’{N[}IZ:O = FO Z:O[QOIO(UO’O)] + Z ﬁe ZO (QOI((U&E) - QOIZ—l(u&[_l)) .
n= /=1 n=

N
py— n
=Y,

(6.17)

(6.17) obtained with our mixed algorithm. We begin by first focusing only in the results gen-
erated by Psszync, since, as previously discussed, the sub-sampling algorithm by itself tends to
give biased results for this particular hierarchy of posteriors. Setting Qol = u, we clearly have
that E, v [Qol/] = E,u [u] = 27%+2. Thus, one can investigate the accuracy of the ML-MCMC

estimator, by computing 6&,_7 (N}, and comparing it to [ v [u]. To that end, for each value
of w, we run our ML-MCMUC algorithm M = 50 independent times, where each independent
simulation is run with L = 7 levels, using Ny, = 20,000, ¢ = 0,1, ..., L, samples per level, per

. . ——(w,k
run. For each w we compute M independent level £ estimators Qol, (N}, k=1,2,..., M,
’ 2'=0

)

~—(w (w,k) . .
and compute, for each value of w, Qolé = 4 S Qol, (N, - Forillustrative purposes,
’ =0

we plot @gd) v.s £ for each value of w in Figure 6.4. As we can see, for values of w < 0.7, there
does not seem to be any noticeable bias with respect to the true estimator. This is further confirmed
in Figure 6.5, where the histograms of the resulting samples from our ML-MCMC algorithm are
presented forw = {0.1,0.5, 0.7} (top, middle, and bottom row, respectively). As we can see, the
histograms match the densities of 11§ for different levels /.

Lastly we plot, for both synchronization kernels (subsampling and IMH), the synchronization
rate for each w in Figure 6.6. As we can see from Figure 6.6 (left), for all values of w > 0, we
obtain synchronization rates that go to 1 much faster than the one corresponding to w = 0. This
result, together with the ones presented in Figures 6.4 and 6.5, suggest that one can combine
the sub-sampling approach of [45] with our ML-MCMC based on maximal couplings using the
convex combination of kernels presented in Section 6.4.1 with some carefully-chosen weights.
Similarly, we can see from Figure 6.6 (Right) that introducing such a re synchronization kernel
noticeably improves the synchronization between chains at two consecutive levels. Although, for
this particular case there does not seem to be much difference between the synchronization rate
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Figure 6.4: Mean multi-level estimator log, (|®éw) |> , using the sub-sampling re-synchronization kernel.

Estimates where computed for each value of w, from 50 independent runs.
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Figure 6.5: Histograms of the samples from 4/ obtained with our Algorithm. Each row corresponds to a
different value of w = 0.1 (top), w = 0.5 (middle), w = 0.7 (bottom).
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sub-sampling

—w=0
w=0.1
—w=0.2
—w=0.5
— w=0.7
—w=0.9
w=1.0

Figure 6.6: Mean synchronization rate for different values of w and different synchronization kernels. (Left)
re-sync. via sub-sampling kernel. (Right) re-sync using IMH kernel. Dashed lines represent 95%
confidence intervals.

induced by two values wy,ws > 0.1, we believe this to be problem dependent, and affected by
several factors, such as dimensionality, multi-modality and choice of Q.

6.4.2 SUBSURFACE FLOW: MODERATE-DIMENSIONS

We consider a more interesting example for which we try to recover the probability distribution
of the permeability field £ in Darcy’s subsurface flow equation, given some measurements of
the hydraulic head on the phy51ca1 domain. Let D = [0,1]%, X = RE (21,29) =: x € D,
OD =T nUTp,withD'y NTp = 0, where T'p := {(x1,22) € D, s.t. z1 = {0,1}},and
I'ny = OD\I'p. Darcy’s subsurface equation is given by

=V (k(z,u)Vep(r,u)) =1, €D, ueX,
p(z,u) =0 zelp, ueX, (6.18)
Onp(z,u) =0 zeln, ueX

where p represents the pressure (or hydraulic head), and we simulate the stochastic permeability
(2, u) as a mean-zero stationary Gaussian field written in terms of its Karhunen-Logve expansion

as
10g Z Z \ mn¢mn um,na Un,m "~ N(07 1) (619)
m=1n=1
with A\, = 7”112 7TnQ,aLnd Gmon () = sin(mmzy) sin(nmag), Vo € D, m,n € N. Notice that

the random permeability field can be recovered given the set of random parameters {ty, . nen-
For computational purposes, we reorder Equation (6.19) in terms of a single index j in such a way
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that Ay, =0 Aj < Aj41 (in case of equal values the order is chosen arbitrarily), and truncate

such an expansion after K terms, thus obtaining the following approximation:

K

log(k(z,u)) ~ Z VAjoj(z)ug, uwj~N(O,1),5=1,..., K. (6.20)

j=1

Equation (6.18) can then be numerically approximated at a discretization level £ > 0 using the
finite element method on a triangular mesh of 2¢ - 22 x 2 - 22 piece-wise linear elements. Such a
numerical approximation is done using the FEniCS package [101].

Data y is generated from the numerical solution of (6.18) observed at a grid of 4 X 4 uniformly
spaced points inside D, polluted by a normally-distributed noise £ ~ N'(0, 02 .. I16x16), where
I16x16 is the 16-dimensional identity matrix. In particular, the solution to Equation (6.18) is
numerically approximated at a discretization level L* = 6, using a truncation parameter K* = 150
in Equation (6.20), with a true set of parameters u} ~ N(0,1), 7 =1,2,..., K*. Moreover,
we set Tpoie = 0.01, which corresponds to, roughly, 1% measurement noise.

We set K = 50, ¢ € {0,1,2,3,4}, L = 4, and define the map v — Fy(u) as the numerical
approximation of the solution to Equation (6.18) at a discretization level , using a log-permeability
field modeled by (6.20), and observed at a grid of 4 X 4 equally spaced points inside D, for a
particular value of u € X; = RX. Thus, the level-dependent potential is given by

1

2
2O-noise

Qy(u;y) = ly — Fo(u)|?.

Furthermore, setting fipr = ®fi1 N(0,1), we can then define the level-¢ posterior 11 in terms

of its Radon-Nykodim derivative with respect to the prior as:

dpd 1
dW v=7
Hpr i

exp (~@e(usn) . Ze = | exp (~Bu(uiy) o).

The BIP thus consists of sampling from the probability distribution log(x(x, u)) (parameterized
in terms of {u;} JK:l) conditioned on the noise-polluted observed data y.
We implement our ML-MCMC algorithm to sample from 1}’ and compute posterior expectations

atlevel L of a quantity of interest

Qol(u) :=1n (—/F k(z,u)Vp(x,u) - nds) , (6.21)

where I' p, denotes the rightmost boundary of the domain and n is the unit normal vector to I'p, .
We will denote by Qoly as (6.21) computed with a level £ approximation of p.

We implement our method together with a re-synchronization kernel, where, similar to Sec-
tion 6.4.1, we use the sub-sampling algorithm of [45] as a re-synchronizing kernel, with a level-
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true field k(x, u*) Rz, u),u ~ pl
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Figure 6.7: (Left) true log-field log(x(z, u*)). (Right) Posterior mean estimator of log(x(z, u)) at level
L=4

dependent sub-sampling rate of ty = max {1 +2 Z,ivzo 00(k), 5} , where 1 + 2 Ziv:o oe(k) is
the integrated auto-correlation time of {Qoly—1 (uj o 1)} atlevel £ — 1. We do not compare
our results to those of algorithm [45] since such a method can produce biased results when used
by itself (c.f. Section 5.6.2). We implement the re-synchronization kernel with level-dependent
weights wy given by w; = 0.1, and wyp = w3 = w4 = 0.5. This choice of weights was made in
such a way that, at the coarsest level, the coupling is mostly driven by localized proposals, while
the choice of higher weights for the higher levels is made in such a way that it favors “desirable”
properties for the chains, such as having a rapidly decaying ACF for the marginal chains, or a
rapidly increasing synchronization rate for the joint chains (c.f. Figure 6.9). An alternative (and
certainly more systematic) approach for the selection of {wy }Iézo could be to include a Bayesian
update on their value inside a continuation-type ML-MCMC algorithm. Further investigation on
the choice of these values will likely be the subject of future work.

As a verification of our method, we run our ML-MCMC algorithm 50 independent times, where
each simulation is run with /Ny = 5000 samples per level, for each level £ = 0,1, ..., 4. The true
log-permeability field, together with the level L posterior mean are shown in Figure 6.7. As it can
be seen, the level-L estimator is able to capture some of the more representative features of the true
permeability field.

We begin by investigating the synchronization of the chains. In Figure 6.8 we plot Qoly—; Vs Qol,
for¢ = 1, 2 (top row, from left to right) and £ = 3, 4 (bottom row, from left to right). As expected,

samples become increasingly more concentrated on the diagonal as £ increases. Furthermore, we
Ny—1

n=0 n _,mn >
{“e,e*“e,eﬂ}

and compute %(k) for each independent run k = 1,...,50. We plot 1 — .7, with .} =

consider once again the synchronization rate at level £ given by .} = N% >

ﬁ Z%:l %(k), at each level, together with a 95% confidence interval, in Figure 6.9 (left). As
we can see, the synchronization rates increase with £. Notice that 1 — .7, can be understood
as an estimator of P = P, (ug¢ # ug¢—1). Furthermore, under the same setting, we plot the
autocorrelation function (ACF) of Qoly fo each level £ = 0, 1, 2, 3, 4 on Figure 6.9. The weights
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Figure 6.8: Diagonal plots of Qol, vs Qoly_; for £ =1,2,3, 4.
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

Figure 6.9: (Left) Estimated synchronization rate vs level. (Right) Mean autocorrelation plot (ACF) at lag
100. In both plots, dashed lines representa 95% confidence interval obtained over 50 independent

runs.
—4
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Figure 6.10: Convergence vs level. (Left) weak convergence, (right) strong convergence (logs scale in y axis).
Dashed lines represent a 95% confidence interval obtained over 50 independent runs.

are chosen so that they produce a decay on the ACF with respect to ¢, while at the same time
conserving the explorability associated to our maximal coupling algorithm.

We now proceed to numerically investigate the rates o and 3 in the complexity theorem reported
in Chapter 5 (c.f. Theorem 5.4.1). To that end, we estimate o and /3 using the same set-up
as before (i.e., 50 independent runs with Ny = 5000 per level, per run) and plot estimates of
’E#}il [Qol,—1] — E. [Qol/]| and V,,, [Qoly — Qol,_1] versus ¢, together with a 95% confidence
interval, in Figure 6.10 (right). As we can see, we obtain a weak decay rate o, = 1.0 and a strong
decay 3 ~ 1.96. This in turn verifies numerically Assumptions T1 and T2 in Theorem 5.4.1.
Lastly, following the same discussion as in Section 5.5, we have that the optimal hierarchy of
samples in our ML-MCMC algorithm for a given tolerance tol is given by

2 L
Ny = 2tor2,/% S /ec | |
=0
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Figure 6.11: (Left). Number of samples N¢(tol;) for a given tolerance tol;, ¢ = 1,2, 3, 4. (Right). Com-
parison of the cost against a single-level MCMC algorithm.

with Ug =V, [Y7] which can be estimated, for instance, by a batched means estimator (see e.g.,
[54]) and where Cy is the cost of obtaining one independent sample of (Qoly—1 (up ¢—1), Qolg(ug )
using our ML-MCMC algorithm. We plot the hierarchy of samples { Ny (tol;) }5_, for different
tolerances tol; € {0.029,0.019,0.011,0.006} in Figure 6.11 (left), and the total computational
cost (in seconds) vs tolerance of our ML-MCMC estimator vs that of its single-level counterpart in
Figure 6.11 (right) . Figure 6.11 (left) suggests the computational advantage of using ML-MCMC;
indeed for a tolerance of tol = 0.007, a single-level MCMC algorithm would need over 109
(correlated) samples at level L = 4. Meanwhile, the ML-MCMC algorithm, requires around
10? (correlated) samples at this level, since most of the computational effort is being done at the
low discretization levels, where samples are inexpensive to obtain. These results are consistent
with those of [45]. This is further corroborated in Figure 6.11 (right), where we plot the cost (in
seconds) vs tolerance for both our ML-MCMC and a single level MCMC, where the number of
samples necessary for the single-level (at level £ = £(tol)) chain to achieve an error smaller than
tol was estimated from 10 independent pCN runs of the single-level MCMC algorithm using
5000 samples per run. As it can be seen from such a figure, the ML-MCMC has a much smaller

complexity than its single-level counterpart.

6.5 APPENDIX

6.5.1 A.1. HIGHER-DIMENSIONAL SUBSURFACE FLOW REVISITED: SOME NUMERICAL
RESULTS

Lastly, we revisit the same problem studied in in Section 5.6.4. In particular, we are interested in
testing our maximal coupling algorithm without re-synchronization for this large-dimensional
problem using a v-pCN algorithm (c.f. Section 3.4.1) as a proposal. As we will see on this example,
the maximal coupling algorithm can show promise on problems where the coupling is done in
rather large dimensions. We remark however that this last section is rather exploratory in nature,

and further investigation is needed.
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

We recall the formulation of the problem at hand for convenience. Consider once again the same
setting as in Section 6.4.2, namely the Darcy’s subsurface flow (6.18) with x(x,u) = eul®),
with u(z) ~ N(0,,A72) = N(0,C) = ppr where the precision operator is the square of the
differential operator A acting on a dense subspace Dom(.A) C Lo (D) of the form

A=-A+ip
2

together with Robbin boundary conditions V(-) - 7 + g() = 0 (c.f. Sections 2.2.1 and
4.5.7). We assume that the data y is generated by solving equation (6.18), using a realization
Urrge ~ fhpr, and observing it at a grid of 10 x 10 equally spaced points in [0.1, 0.9]%, polluted
by some normally distributed noise  ~ N(0, Jgoisel 100x100) With Opeie = 9.61 X 1072,
corresponding to roughly 1% noise. Denoting by u +— F(u) the mapping associated to solving
Equation (6.18) with s (x,u) = ¢(*) and observing the solution at the given grid of points, we
can then pose our BIP as sampling from p¥ with

du¥ 1
G =Zop (~ly - F@IR). 2= oo
pr

Once samples from p1¥ have been obtained, we aim at approximating E,,» [Qol] where the quantity
of interest Qol : X — R is the log-flux through the bottom boundary I'y := {(x1,22) €
0D s.t. xo = 0} defined as

Qol(u) := log (/ AV ﬁds) .
Iy

Following Section 5.6.4, we introduce a sequence of discretization levels ¢ = 0,1,2,3 = L of
the forward mapping operator F by numerically approximating Equation (6.18) using the finite-
element method with 16 - 2¢ x 16 - 2¢ piece-wise-linear finite elements. This hierarchy of {F¢}5_,
induces the family of of potential {®(u; y)}5_g, with ®¢(u;y) = ®(F4(P7u);y), which in
turn induces the family of posteriors {;%}IZ:O’ witch each posterior defined on (X¢, B(X¢)),
approximating p¥ as £ — oo, with

—

1 B
1y (duge) = 7, P (*‘I’(}—z—l(uu); y)) Hprp(dugp)

with pipr, the discretized prior, induced by the approximation of the operator A, as discussed
in Section 5.6.4. We are interested in investigating how, (or whether) we can use our proposed
algorithm in such a (high-dimensional) case. To reiterate, this is of interest if, e.g., a sufficiently
accurate Laplace approximation can not be built in this rather large number of dimensions, or if
the sub-sampling approach of [45] cannot be applied. At each level £ = 0, 1, 2, 3, we generate a
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Figure 6.12: Rates for cost-tolerance theorem for the high-dimensional example with maximal-coupling.
(log,-scale in the y-axis)

coupling of two proposal measures Q¢ (ug,¢, -) Re(upe—1,-) in Xg (ie., the higher dimensional
space induced by the FE discretization of the operator A), where

Qf(uf,b ) = N(mmap,ﬁ + v 1- p2 (uf,é - mmap,€)7 pQCLap,ﬁ)
Rf(“[,[*l? ) = N(mmap,f + V 1— P2 (Ug’g,1 - mmap,f)y p2CLap,Z)a

We implement our proposed ML-MCMC algorithm for M = 10 independent runs, obtaining
N = 2000 samples per level, per run. We obtain the following results. We estimate the rates for
the cost-tolerance result of [45] (c.f. Theorem 5.4.2) in Figure 6.12. As we can see, although it
is clear that there is indeed a decay on the rates for the variance and expected value of Yy (uy) =
Qoly(ug,r) —Qoly—1(uge—1), this decay is not as fast as in the case of IMH. We plot Qoly—;vs Qol,
in Figure 6.13. We remark that, although there is no actual coupling between the chains such that
up¢—1 = Uy (indeed, the proposed maximal coupling algorithm is designed to work in finite-
dimensions), there is still a clear correlation between samples, which become increasingly more
concentrated around the diagonal A. Lastly, we plot the number of samples and the computational
cost of our ML-MCMC method compared to its single level counter part in Figure 6.14. As we
can see, even in this case where we pay the extra price of not using an IMH, we can see that the
total computational cost associated to the ML-MCMC algorithm has a much better complexity
than its single-level counterpart.
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Figure 6.13: Diagonal plots of Qolg(ug¢) — Qoly—1(uge—1)

106 | —#— tol=0.168 Z 10% ——ML-MCMC
—#— tol=0.03 5 ~o- MCMC
(9]
. e koo |8
Z 10 ’k\k jé: 1047
o)
24 =¥
10 >
I T T T I T T
0 1 2 3 4 10—1.5 10—1
¢ tol

Figure 6.14: (Left) Number of samples per level for different tolerances. (Right). Total computational cost
vs tolerance of ML-MLMC and single-level MCMC.
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6.5.2 A.2. SOME RESULTS TOWARDS THE COMPLEXITY STUDY OF THE MAXIMAL
COUPLING ALGORITHM

As mentioned in Section 6.3 we were, at the time of the writing of this thesis, unable to show that
the conditions required for [45, Theorem 3.5] to hold are satisfied under reasonable assumptions.
It is known from Theorem 3.3.2 that Assumption T3 holds true provided that the join chain is
mixing sufficiently fast (i.e., that it has finite mixing time, see [127] for more details), however,
verifying this is highly technical, and as such, we will consider it to hold true. We will limit ourselves
to verifying that Assumptions T'1 and T2 hold for our setting, the latter of which would require
some additional, potentially restrictive conditions. As we will see, in our formulation verifying this
latter condition will require that [, . pe(ue, A)ve(dug) /4 0as £ — 00, roughly understood as
the chains always having a positive probability of re-synchronizing,and which we will assume to

hold true. We formalize this discussion below.

Assumption 6.5.1:  Foranyl > 0, the following hold: There exist positive functions Cr,Cg, Cs :

X — Ry independent of £, a positive constant C, e independent of u and {, and a positive constant
{—o0

co A 0 such that
L [y (Cr(u)Cos(u))Qe(u,du’) < Cq(u) < oo,
2. [y Co(u)ppr(du) < C! < 0.

3. fAC pe(ug, A)vg(dug) > ¢y

We remark that while Assumption 6.5.1.1-2 are relatively mild, Assumption 6.5.1.3 is difficult to
verify and perhaps, too strong. For this reason we decided to include the following results as an
appendix, as they possibly need further investigation. Our results will also rely upon Assumption
5.4.1, introduced in Chapter 5, on the potential ®y, the forward operator Fy and the quantity of
interest Qoly for £ > 0.

Theorem 6.5.1:  Suppose Assumptions 5.4.1 and 6.5.1 hold. Then, Assumptions T1 and 12 are
satisfied.

Corollary 6.5.1:  Suppose additionally that Assumption 13 holds true. Then, the ML-MCMC
algorithm based on maximally coupled proposals satisfies the conditions for Theorem 5.4.2 to hold.

The proof of Theorem 6.5.1 is decomposed in a series of results and is given at the end of the
section. It has been shown in Lemma 5.4.3 that T1 holds under Assumption 5.4.1. We recall such

a result, for convenience.

Lemma 6.5.1:  Suppose Assumption 5.4.1 holds. Then, for any ¢ = 0,1,...L, there exists a
positive constant Cy, € R, independent of €, such that:

By [Qole(w)] — B [Qol(w)]| < Cyps ™",

with ou, = min{ay, o} and aq, a as in Assumption 5.4.1.
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

Recall that for any given level £ = 0,1, ..., L, we say that the joint chains created by the ML-
MCMC algorithm are synchronized at step n if UZK = uz ¢—1 = u. We say that they are unsyn-
chronized otherwise. Notice that, in our setting, if the chains are synchronized, Algorithm 11 will
propose the same candidate state 1 to both chains with probability 1. Thus, assuming that the
chains are synchronized at step n, they will become unsynchronized at step n + 1 with probability
lap(u, u) — ap—1 (u, u')|. We now show that such a probability approaches 0 as ¢ — oo, using a
simplified version of Lemma 5.4.4 in Chapter 5.

Lemma 6.5.2:  Suppose Assumptions 5.4.1.1 hold. Then, the following bound holds
|ove(u, u') = cpq (u, )| < Ry(u,u)s™,  w,u’ € X,

with

e~ ®e(Wsy) 4 o= P (usy)
hle(u,u/) = [ e—@g(u;y) C@(l/)C]:(?/)

4o Pe-1(u'y) (€<I>1z_1(u;y) + e<1>e_1(u;y)> Co(u)Cr(u)| s~

Proof. From the definition of ay, and the fact that ¢)(x) := min{1, z} is Lipschitz continuous
with a constant of 1, it can be seen that

e PeWsy) o= o1 (usy)

e, ') = e ()] < e=Pe(wy)  o—Peo1(uiy)

ef(blfl(u/;y)

< Pelu) ‘e—@(u';y) _ e—ée_l(u';y)‘ I ‘e—¢£(u;y) _ e—<1>f_1(u;y>) ‘

e—Po(u;y) o= Pr—1(wsy)
(6.22)

Assuming ®/(u') < ®y_; ('), a straightforward application of the mean value theorem gives
‘e"bé(““y) - e’q’“l(“';y)’ < e "Wy y) - @ (uy)|. (6.23)
Similarly, for the case ®y(u’) > ®y_1(u’), we obtain
e — =P )| < =) |y (s y) — B ()] (6.24)
Thus, from (6.23)-(6.24) it follows that

‘e—‘i’z(u/;y) _ e—@fl(u';y)‘ < (e—%l(u';y) + e—@(u';y)) |5 ) — Do 1 (/)]
(6.25)
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Thus, from (6.22), (6.25) and Assumption 5.4.1, we obtain:

e~ Pe(u'sy) 4 o= Pe1(vsy)

e—Pe(usy) Co(u)Cr(v)

(6.22) < [

+e—‘1>e_1(U’;y) (eq>e_1(u;y) + 6‘1>4_1(U;y)> C@(U)C}‘(U)] Paetd

Lemma 6.5.3:  Suppose Assumptions 5.4.1 and 6.5.1 hold, and denote the diagonal set of X*
as A = {(u,u') € X2s.t. u = u'}. The transition probability to A° for the coupled chain of
Algorithm 12 is such that

pe(ug, A% < hg(u)s*ae, Vuy = (u,u) € A,
with
he(u) = 2CQ(u)eq)e(“;y) + (e<I>e_1(U;y) + e‘Pe(u;y)) Cq>(u)C’f(u)] .

Proof. Since uy € A, wesetupy = ugp—1 = u. Furthermore, in this case, we have that
uy , = Uy ;4 since only Case I in Algorithm 11 will happen. It then follows from Lemma 6.5.2
that:

pe((u,u), A°) = /x |ag,1(u,u') — ay(u, u’)|Q4(u,du’)

/ e~ Pe(Wiy) 4 e=Pe1(uiy)
X

< S—Oée
e_(bz(uﬂ/)

Co(u)Cr(u")Qe(u,du’)

+ S—aé’/ e~ Pe-1(u3y) <€<I>e71(uw) + eée(u;y)> Co(w)Cr(u)Qp(u, du’).
X
(6.26)

Since from Assumption 6.5.1 we have that [y e~ W) O (W) Cr(u) Qe (u, du’) < Co(u), it
then follows that

(6.26) < s~ [2CQ(u)e‘De<w> + (e‘be—l(“w) + e‘l’du;y)) ap(u)c;(u)] :

Setting h(u) = [QCQ(’U,)@@Z(HW) + (6@2*1(“;3’) + eq)f*l(“?y)) Co(u)Cr(u)] gives the desired
result. O
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6 Multi-level Markov chain Monte Carlo method based on maximally coupled proposals

Lemma 6.5.4:  Suppose Assumptions 5.4.1 and 6.5.1 hold. Then, there exists a positive constant
Ch, independent of the level such that

[ etunntdun < Chur = (u.) € 2,
A
Proof. Since uy € A, we have
/Ahg(u@l/g(d’u%) = /)(2 €¢£—1(W’e_1;y)0<1>(UZ,E—l)C}'(Uﬁ,ﬂ—l)’/ﬁ(dué)

=I

+/ €q>g(ug,e;y)cq)(uw)0f(Ue,é)W(dW)
X2

212
+2 /X2 o) Oy (ug ¢ )ve(duy)

=I5

Since u € A, we can marginalize over each component on both /7 and . We begin with I,

integrating over uy g:

I = /2 P13V O (ug g1 ) OF (ug o1 )ve(duy)
X
=7, / Co(uge—1)Cr(uge—1)ppr(duge—1)
X
< C’ecI_1 (from Assumption 5.4.1 and Lemma 5.4.1).

A similar procedure for I, also yields Io < C’eC’;l. Lastly, we focus on I3. Integrating over

Up g—1 gives
IS = /2 6(1)[(“[*2;?4)CQ(Ugj)Vg(dug) = ZZl / CQ(U&()/,Lpr(dU&g)
X X
< C’écl_1 (from Assumption 6.5.1 and 5.4.1).

Taking Cy, = ¢; ' (C% + 2C.) gives the desired result. O

Lemma 6.5.5:  Suppose Assumptions 5.3.1, 5.4.1 and 6.5.1 hold. Then, foralll =1,2,...,L,
there exist a positive constant C,. independent of U such that

Py, (upe # ugp—1) < Crs™ VneN.
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Proof. Since Py is vp-invariant, we can write

Py, (g # uge—1) = / ve(duy) = /x2 De(wg, A%)vp(duy)
=1 /X2 pe(’u,g,A)Vg(d’u,g)

= 1—/Apg(Ug,A)Vg<dUg)—/Cpg(Ug,A)l/g(d’u,g).

<1l- / pe(ug, A)ve(dug) — cePy, (g # wee—1)  (from Assumption 6.5.1)
A
= /Apz(’ue, A)vp(dug) — cgPy, (upe # upe—1).
It then follows from Lemmata 6.5.3 and 6.5.4 that

C C
Py, (g # uge—) < —vs= vl < Zhgmowt
e, c

where 0 < ¢ := infyen{c/}, by Assumption 6.5.1. O

Lemma 6.5.6:  Suppose Assumptions S.4.1, 5.3.1 and 6.5.1 hold. Then, for any £ > 1, there exists
a positive constant Cy, such that
Vi, [Ye] < Cyps™,

where f = min {20y, (1 — 2/m)} , and o, g, M as in Assumption 5.4.1.

Proof. Having shown Lemma 6.5.5, the proof of this Lemma becomes the same as that of Lemma
5.4.7. O
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7 FINALIZING REMARKS

The last chapter of this thesis is divided into two parts. In the first one, we summarize and draw
some conclusions from the material presented in Chapters 4 through 6. In the second part we
identify and discuss several possible research directions extending the work presented in previous
chapters.

7.1 SUMMARY AND CONCLUSIONS

In this thesis, we have developed, analyzed and implemented different novel hierarchical MCMC
techniques with the aim of alleviating some of the computational challenges arising in modern,
large scale Bayesian inverse problems.

The first hierarchical method we presented was the Generalized Parallel Tempering method, an
extension of the well-known parallel tempering algorithm [52], used primarily to sample from
probability distributions that are multi-modal or that concentrate around a lower-dimensional,
non-linear manifold. Inspired by the infinite swapping methodology of Doll et. al., [47] (who
propose an algorithm aimed at improving the efficiency of continuous-time Markov chains arising
in the field of molecular dynamics), we introduced two tempering techniques based on state-
dependent kernel swaps. We provided a thorough convergence analysis of these methods; indeed,
we were able to show that under some technical conditions on the marginal Markov transition
kernels and marginal (in the context of tempering) probability measures, both of our proposed
methods are reversible and convergent with respect to their own invariant measure. Furthermore,
we implemented and successfully applied these methodologies to sample from several multi-modal
probability distributions arising in the context of BIP. In addition, we presented an extensive
discussion on the implementation and potential shortcomings of these methods. We were able to
see that, at the experimental level, our proposed methodologies clearly outperform (in terms of total
computational cost VS. variance of a given estimator) several competing algorithms. An additional
advantage of our proposed algorithms is that they can be seen, to some extent, as “self-tuning”,
since the choice of swaps between chains (in UGPT) or kernels (in WGPT), is done automatically,
eliminating the need of fixing this swapping schedule apriori, as it has been typically done in the
parallel-tempering literature. Lastly, we also implemented these methods for the solution of a
high-dimensional BIP based on a hyperbolic (i.e., acoustic wave) PDE. To the best of the author’s
knowledge, tempering techniques have seldom been applied to tackle such high-dimensional
problems, and even more so to those arising from wave phenomena, for which the literature on
BIP is rather scarce.
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7 Finalizing remarks

We remark that the framework considered in Chapter 4 can be combined with other, more advanced
MCMC algorithms, such as, e.g., the Metropolis-adjusted Langevin algorithm (MALA) (c.f.
Section 3.4.1), or the Delayed Rejection Adaptive Metropolis (DRAM) [63]. Furthermore, in
principle, such a method can also be combined with geometry-informed, dimension-independent
samplers such as the ones presented in [12, 36].

The second hierarchical method we presented in this work was a class of multi-level MCMC algo-
rithms based on independent Metropolis-Hastings proposals. We presented several contributions
to the emerging sub-field of ML-MCMC.

From a methodological perspective, we extended the seminal work of [45], by devising a ML-
MCMC method based on a class of independent Metropolis Hastings proposals fulfilling certain
technical conditions. This is an important contribution in the sense that, previous ML-MCMC
algorithms based solely on sub-sampling the posterior distribution at the previous accuracy level,
could lead to biased results for a certain class of problems. In addition, we presented a continuation-
type ML-MCMC algorithm in the spirit of [31, 132], in the hope of making the ML-MCMC
procedure both efficient and robust.

From a theoretical perspective we investigated the existence and uniqueness of a joint invariant
measure for this class of techniques, and presented conditions on the level dependent posteriors
and proposal kernels under which such a joint invariant measure exists. Furthermore, we were
able to show that the joint ML-MCMC algorithm has a uniformly ergodic convergence to such a
probability measure, a generally desirable attribute for MCMC samplers. In addition, we extended
the complexity results of [45] to our setting; indeed, their result was formulated specifically for
their choice of proposal. Lastly, we implemented our proposed methodology on an array of BIP,
of both low and high dimensionality, where we validated some of our theoretical results. Once
again, we can see that there is a clear computational and methodological advantage to the methods
we advocate in this work.

In the last part of this thesis we presented a novel ML-MCMC based on maximally coupled
proposals. This setting can be though of as a generalization of our previous methodology, in
the sense that it allows for both state-dependent and state-independent proposals; indeed, the
way coupled chains are being generated in Chapter 5 (and in [45]) can be thought of as a (rather
trivial) maximal coupling of an independent proposal kernel Q;(+) with itself. Being able to
construct ML-MCMC algorithms with state-dependent proposals is of great interest from a
methodological perspective, as it can overcome some of the drawbacks associated to previous
ML-MCMC methodologies. We presented guidelines on how to construct this ML-MCMC
sampler using maximal coupling techniques, and, although the focus of this chapter was more
on the methodological aspect, we showed that under certain technical conditions there exists a
unique invariant joint measure for this type of ML-MCMC algorithms, similarly to the case of the
ML-MCMC based on independent proposals. Although at the time of the writing of this thesis,
we were unable to analytically verify that the complexity results of [45] could be extended to this
method (under reasonable assumptions), numerical simulations suggest that our method presents

a clear compurtational advantage with respect to its single-level counterpart.
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7.2 Perspectives

7.2 PERSPECTIVES

As evidenced by the previous subsection, the proposed methods on this thesis show a lot of promise
for their application to large-scale BIP. However, there is, of course, plenty of room for future work
both on the theoretical and practical side. The theoretical analysis on the presented methodologies
could (and should) be refined.

Our convergence results for the GPT show that the rate of convergence is no worse than that of
the slowest-converging chain, however, experimental results suggest that there is a much more
dramatic improvement in the convergence of the algorithm.

Concerning the ML-MCMC algorithms, although it is clear that the invariant joint measure
induced by the ML-MCMC algorithms depends heavily on the choice of proposal mechanism
(contrary to the single-level MCMC case), a more precise description of this dependency is not
available at the time of the writing of this work. Further developing and understanding the
theoretical aspects behind such methodology would be an interesting continuation of this work.
Additionally, from a methodological perspective, a natural question that arises in the use of ML-
MCMC methods is their extension to multi-fidelity techniques, where, instead of constructing the
hierarchy of forward mapping operators {F; }5_ based on several levels of discretization accuracy
¢, one constructs it using a hierarchy of so-called “fidelity models” of F; which could be, e.g.,
models using increasingly refined physics, Gaussian processes, or low-rank approximations of .
Using multi-fidelity models in the context of statistical inference has been discussed in, e.g., [128,
Section 4 ]. Similarly, one could try to devise a multi-index Markov chain Monte Carlo method
based on the ideas presented in [66, 78] and the work presented in this thesis.

From an application perspective, it would be desirable to see the methods discussed in this work
applied to other large-scale and potentially more realistic simulations.

In addition to the perspectives discussed in the previous paragraphs, we identify and discuss in
slightly more detail the following research directions.

7.2.1 NORMALIZING FLOWS AND ML-MCMC

A drawback associated to our ML-MCMC approach based on IMH is that, in general, it is not
easy to find suitable (IMH) proposals. This is particularly true whenever the underlying posterior
is high-dimensional and not well-approximated by a Gaussian probability measure. One possible
way of alleviating this issue is to construct said proposals using normalizing flows (c.f. Section
2.3.2). In this context, one could visualize a novel ML-MCMC algorithm as follows. Suppose
that, at a given level £, we have already collected samples from ,u,z, onalllevels ¢ =0,1,2,...L,
which could have been achieved, e.g., by a previous iteration of C-ML-MCMC algorithm (c.f.

Section 5.5). Given a state u}} we could generate a coupled sample u ™! with u?j—ll ~ pj_; and

u?’jl ~ i, using the following procedure:

1. Sample U?tﬂl ~ '“271’ using, e.g., sub-sampling approach [45].

217



7 Finalizing remarks

2. Obtain u%l = Tg(uzz'_ll), where for all ¢ > 0, Ty is a normalizing flow in the sense of
Section 2.3.2 (i.c., a class of bijections from X, to X, whose determinant is, in some sense,
inexpensive to compute) that maps /J,ZZ_I into u?, built in such a way that T} becomes easier
to compute as { — 00. As an ansatz one could take, e.g., Ty = I + 0y, where [ is the
identity transformation and 6, — O as £ — oo.

3. Setuj ! = Uy ¢ as the new state of the chain with marginal 1y with probability
ap(up s, upy) = ming 1 H%(UZ@) PZ(UZg)
\Ug o, Upe) = ’ )
o pi (ugg) pe(uyy)
where
pue) = (T (@))] dec Iy 2 (2],
otherwise set u) ' = u7,.

We illustrate the potential use of these techniques in the following (borderline trivial) example.
Suppose we are interested in sampling from the family of distributions

py = N2 1),

which approximate ¥ = N(0,1) as £ — oo. For this particular case, one has that for any
u,v € X, Tp(u) = u— my_y + my, where forany ¢ > 0, my = 9—+2, Similarly, T[l(v) =
v 4+ my_1 — my and | det JT[1 (u)| = 1. We implement a ML-MCMC algorithm using this
method, the sub-sampling ML-MCMC algorithm of [45], and the maximal coupling algorithm.
For all algorithms we take L = 2 and IV, = 5000, £ = 0, 1, 2, 3. Results are shown in Figures
7.1and 7.2. As it can be seen in Figure 7.1 where we plot the histograms of the samples obtained
with each method for different levels, the proposed approach is able to correctly sample from the
right marginals. However, and perhaps more interestingly, is Figure 7.2, where we plot wg 1 vs
uy ¢ for different levels. As it can be seen, the correlation between the samples from the proposed
method is stronger than those from the sub-sampling and the maximal-coupling methodologies.
Although Figures 7.1 and 7.2 show some promising results, there are still some open questions
regarding this approach. We identify the following:

1. There is a large overhead cost for training (deep) neural networks. In many cases such
networks are trained using specialized clusters of graphical processing units (GPUs), which
are currently more expensive that CPU clusters. As an example, the samples obtained from
a normalizing flow depicted in Figure 7.3 were obtained by implementing RealNVP on a
single 12GB NVIDIA Tesla K80 GPU (implemented via the Google Colab™ platform)and
required a little over two hours to train. Such transformation was trained using prevously
obtained posterior samples .
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2. Given that T} will usually have an extremely complex structure, it might be difficult to
guarantee that the induced proposal p = Ty “Zé—l satisfies the Assumptions necessary for
its chain to be (uniformly) ergodic.

3. Currently, our theoretical results rely upon showing that P, (us e # uge—1) — 0 as
¢ — oo. This is not the case with this proposed methodology, as one would have that
]P’l,[(’u,g’g #* u&g,l) = 1, however, with Hu&g — Ugj,lHX < ¢ for some ¢g — 0 as
¢ — oo. This implies that the theoretical analysis is slightly more involved that the one
presented in Chapter 5.

7.2.2 ON THE USE AND ANALYSIS OF MORE EFFICIENT COUPLINGS

The maximal coupling ML-MCMC algorithms discussed so far have been constructed using a
maximal coupling of the proposal kernels for each individual chain. We have also limited our case
to only using diffusion-based proposals (c.f. Section 3.4), such as pCN, to create the coupled
chains. These ideas can be extended based on the recent works [19, 70, 169]. More precisely, [19]
introduces a coupling between chains using a mixture between Hamiltonian Monte Carlo and a
spherical coupling, such as the one presented in Algorithm 11 (c.f. Section 3.4). Their results seem
to suggest that such a mixture of methods is more robust with respect to the dimensionality of
the target measure when compared to just using spherical couplings, in the sense that the average
meeting time between two chains having the same invariant measure, started at two different points
in space seems to increase with the dimension of the space at a significantly slower rate (if at all) than
that of Algorithm 11 (see, e.g., [70, Section 5.2]). The work [169] presents a way of generating
maximal couplings between Markov transition kernels; as opposed to just coupling the proposals,
by modifying the algorithms presented in [76]. Intuitively, this would result in a “stronger” type
of coupling (i.e., increasing the probability of the event uy ¢ = ug ¢—1), thus making this approach
interesting to our ML-MCMC setting.

7.2.3 TOWARDS A MULTI-LEVEL GENERALIZED PARALLEL TEMPERING

A natural extension to the work presented in this thesis is to combine both our proposed gener-
alized parallel tempering and the discussed ML-MCMC methods; indeed, by introducing and
exploiting hierarchies in both temperature and discretization, one could, in theory, propose a
multi-level MCMC algorithm that is robust to multi-modality or measure concentration, i.c.,
a novel MCMC algorithm exploiting the attractive points of both approaches. This is not,
however, a trivial extension of these works, as we shall discuss shortly after introducing some
notation. Forany ¢ = 0,1,2,...L,let K = K (/) denote the (level-dependent) number of
temperatures 71, . . ., T, (inducing K (¢) parallel chains), let Sg(¢) denote the subset of pos-
sible permutations at level £ of cardinality [Sk (| € N, and forany j = 1,2,..., K, write
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Figure 7.1: Histograms of samples for different ; from top to bottom: £ = 0, 1, 2.
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Figure 7.3: (Left). Samples from N (0, [17x17). (Middle) posteriors samples form a subsurface flow BIP.
(Right) Samples obtained with a normalizing flow.
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uif’j(du) = exp(—P¢(u; y)T; ) f1pr (du). Furthermore, let wp = (w1, up 2, - - -, ug i ) and for
some o € SK( 0 let Uy o = (u&U( 1), UL,o(2)5 - > 'LL&(,(K)). Lastly, define
= gy X Hpg X X

— Y Yy Yy
oo =y, ( ) X Hpo) < X Hy o (k)

N%v,e Z “z o

O‘ESK(Z)

Given an accuracy level L and a ,uf—integrable quantity of interest Qol, we are interested in com-
puting Eﬂf [Qol], which can be done via, e.g., the WGPT approach (c.f. Section 4.3.4) using an
estimator of the form:

EME [QO||_] = [QO||_(U|_)] = Euy [QOIL(ule)]

d Yy
Z E,v | Qol(u U(l))%( ULo)

() UGSK(Z) HWL
E Nos o ™ 4 )
\SK ol > Jfuig)l ue ~ iy

UESK(()
dp y .
where we set fi (u ,) = Qol(uL,U(l))d v (u|_ o). Under the convention that Qol_; := 0,

this previous expectation can in turn be wrltten in terms of the usual telescoping sum associated to

multi-level techniques as:

L
Qol :Z

> Euy, lfe(ues)] —E [fe1(ve—10)] |, (7.1)

O’ESK(@

y
My o1

\SK(Z |

where uy 5 ~ u%% yand vy 5 ~ [1,%(,7 ¢+_1- Given that samples from }L‘?\,va ¢ are generated with
a kernel of the form

g, ) = wp o (wr)peo(u,-),

oESK

P

with

duy ,

wy, o (up) = Tl (uL),
W0

one then needs to devise a clever way of generating samples from this mixture of kernels, while
at the same time keeping the terms fy, fy—1 in the ergodic estimator of Equation (7.1) highly

223



7 Finalizing remarks

correlated. Perhaps a simpler approach is to consider the UGPT algorithm to generate samples, in

which case one would obtain the simpler expression

L
E,y[Qol) =" (Euz Qo] — B, [Qolg_l]) ,

=0

however, in this case one would still need to be careful when constructing the coupling between
samplers, since these tempering methods tend to propose rather “large” jumps in the state space,
which could rapidly become problematic if, e.g., the chain targeting ,uzl makes a large jump and
the chain targeting u?ﬁm does not (which could happen, e.g., when the swapping kernel of the
UGPT algorithm samples two permutations p, o of g and w1 respectively, with p(1) # o(1))

as it would “inflate” the variance between chains.
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