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Abstract

This thesis is devoted to the construction, analysis, and implementation of two types of hierarchical
Markov ChainMonte Carlo (MCMC)methods for the solution of large-scale Bayesian Inverse
Problems (BIP).
The first hierarchical method we present is based on the idea of parallel tempering and is well-
suited for BIP whose underlying posterior measure is multi-modal or concentrates around a
lower-dimensional, non-linear manifold. In particular, we present two generalizations of the
Parallel Tempering algorithm in the context of discrete-timeMarkov chain Monte Carlo methods
for Bayesian inverse problems. These generalizations use state-dependent swapping rates and are
inspired by the so-called continuous-time Infinite Swapping algorithm presented in Plattner et
al. [J Chem Phys 135(13):134111, 2011]. We present a thorough analysis of the convergence of
our proposed methods and show that they are reversible and geometrically ergodic. Numerical
experiments conducted over an array of BIP show that our proposed algorithms significantly
improve sampling efficiency over competing methodologies.
Our second hierarchical method is based onmulti-levelMCMC (ML-MCMC) techniques. In this
setting, instead of sampling directly from a sufficiently accurate (and computationally expensive)
posterior measure, one introduces a sequence of accuracy levels for the solution of the underlying
computational model, which induces a hierarchy of posterior measures with increasing accuracy
and cost to sample from. The key point of this algorithm is to construct highly coupledMarkov
chains together with the standard Multi-level Monte Carlo argument to obtain a better cost-
tolerance complexity than a single-level MCMC algorithm. We present two types of multi-level
MCMC algorithms which can be thought of as an extension of the ideas presented in Dodwell, et
al. [SIAM-ASA J. Uncertain. Quantif (2015): 1075-1108].
Our first ML-MCMCmethod extends said ideas to a setting where a wider class of Independent
Metropolis-Hastings (IMH) proposals are considered. We provide a thorough theoretical analysis
and provide sufficient conditions on the proposals and the family of posteriors so that there exists
a unique invariant probability measure for the coupled chains generated by our method, and the
convergence to it is uniformly ergodic. We also generalize the cost-tolerance theorem of Dodwell
et al., to our setting, and propose a self-tuning continuation-type ML-MCMC algorithm.
Our secondML-MCMCmethod presents an algorithm that admits state-dependent proposals by
using amaximal coupling approach. This is desirable, from amethodological perspective, whenever
it is difficult to construct suitable IMH proposals, or when the empirical measure resulting from
samples from the posterior at the previous level does not satisfy the assumptions required for
convergence of the ML-MCMC method. We present a theoretical analysis of the method at
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Abstract

hand and show that this new method has an invariant probability measure and converges to it
with geometric ergodicity. We also extend the cost-tolerance theorem of Dodwell et. al. to this
algorithm, albeit with quite restrictive assumptions. We illustrate both of the proposed ML-
MCMCmethodologies on several numerical examples.

Keywords: Bayesian inversion · Parallel tempering · Infinite swapping ·Markov chainMonteCarlo
· Multi-level Monte Carlo · Multi-level Markov chainMonte Carlo · Uncertainty quantification
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Résumé

Cette thèse est consacrée à la construction, l’analyse et la mise en œuvre de deux types de méthodes
hiérarchiques Markov Chain Monte Carlo (MCMC) pour la résolution de problèmes inverses
bayésiens (BIP) à grande échelle.
La première méthode hiérarchique que nous présentons est basée sur l’idée de parallel tempering,
et est bien adaptée pour BIP dont la distribution à-posteriori est multimodale ou se concentre
autour d’une variété non linéaire de dimension inférieure. Nous présentons deux généralisations de
l’algorithme Parallel Tempering dans le contexte des méthodes deMonte Carlo à chaîne deMarkov
à temps discret pour les BIPs. Ces généralisations utilisent des taux d’échange dépendant de l’état et
s’inspirent de l’algorithme Infinite swapping en temps continu présenté par Plattner et al. (J Chem
Phys 135(13):134111, 2011). Nous présentons une analyse approfondie de la convergence de nos
méthodes proposées et montrons qu’elles sont réversibles et géométriquement ergodiques. Nous
implémentons notre méthode proposée sur plusieurs BIPs. Les résultats numériques montrent que
nos méthodes proposées améliorent considérablement l’efficacité de l’échantillonnage par rapport
aux méthodologies concurrentes.
Notre deuxième méthode hiérarchique est basée sur des techniques MCMCmulti-niveaux (ML-
MCMC). Dans ce cadre, au lieu d’échantillonner directement à partir d’une mesure postérieure
suffisamment précise (et coûteuse en calculs), on introduit une séquence de niveaux de précision
pour la solution du modèle de calcul sous-jacent, ce qui induit une hiérarchie de mesures posté-
rieures avec une précision et un coût d’échantillonnage croissants. Le point clé de cet algorithme
est de construire des chaînes de Markov hautement couplées combinées par la technique standard
de Monte Carlo multi-niveaux standard pour obtenir une meilleure complexité computationnelle
de tolérance aux coûts qu’un algorithmeMCMC à un seul niveau. Nous présentons deux types
d’algorithmes MCMCmulti-niveaux qui peuvent être considérés comme une extension des idées
présentées dans Dodwell, et al. (SIAM-ASA J. Incertain. Quantif (2015) : 1075-108).
Notre première méthode ML-MCMC étend ces idées à un cadre où une classe plus large de
distributions des propositions deMétropolis-Hastings indépendantes (IMH) est considérée. Nous
fournissons une analyse théorique approfondie et fournissons des conditions suffisantes sur les
destr. des propositions et la famille de distr. à-posteriori pour qu’il existe une mesure de probabilité
invariante unique pour les chaînes couplées générées par notre méthode, et que de telles chaînes
couplées convergent uniformément ergodiques vers elle. Nous généralisons également le théorème
de complexité de Dodwell et al., à notre cadre, et proposons un algorithmeML-MCMC de type
continuation à réglage automatique.
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Résumé

Notre deuxième méthodeML-MCMC présente un algorithme qui admet des distr. des proposi-
tions dépendantes de l’état de la chaîne en utilisant un algorithme de couplage maximal. Ceci est
souhaitable, d’un point de vue méthodologique, chaque fois qu’il est difficile de construire des
propositions IMH, ou lorsque la mesure empirique résultant des échantillons de la postérieure
au niveau précédent ne satisfait pas les hypothèses requises pour la convergence de la méthode
ML-MCMC. Nous présentons une analyse théorique de la méthode en question et montrons
que cette nouvelle méthode a une mesure de probabilité invariante et la convergence vers elle est
géométriquement ergodique. Nous étendons également le théorème de complexité Dodwell et. Al.
à cet algorithme, mais avec des hypothèses plus restrictives. Nous illustrons les deux méthodologies
ML-MCMC proposées sur plusieurs exemples numériques.

Mots clés : Inversion bayésienne · Parallel tempering · Infinite swapping · Monte Carlo par chaînes
de Markov · Monte Carlo multi-niveaux · Monte Carlo par chaînes de Markov multi-niveau ·
Quantification de l’incertitude
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1 Introduction

Computational simulations, together with the mathematical algorithms that drive them, have
rapidly become a central part of the scientific paradigm over the last several decades. Indeed,
these approaches greatly complement the relationship between theory and experimentation in the
sciences, with such techniques being at the core of the design, prediction, and optimization of a
multitude of processes and phenomena arising in the natural sciences and engineering. Such is
the case ofUncertainty Quantification (UQ), understood to be the field of knowledge tasked with
quantifying and controlling the sources of uncertainty associated to a given natural phenomenon,
an engineering process, an estimation or learning procedure, and which, at its core, relies heavily
uponmathematical, computational and experimental techniques [58, 74, 147, 168]. In the context
of this thesis, we will focus on what is often referred to as inverse UQ, where, given a set of
experimental measurements of a process together with a computational model describing it, one
is tasked with (i) estimating the discrepancy between the measured and simulated data and (ii),
estimating the uncertainty in the unknown parameters that could have generated the data, the
latter of which will be the focus of this thesis. This problem of parameter identification can be
understood in a Bayesian sense, usually referred to as a Bayesian Inverse Problem (BIP). In a rather
informal way (we will present this more precisely in the following), using the symbols u and y to
denote parameters and data, respectively, together with the symbol P[·] to denote probability, and
assuming that both u and y are random variables, the solution to a BIP can be understood (in a
broad sense) as the process of obtaining information from the probability distributionP[u given y],
which in light of Bayes theorem (c.f. Theorem 2.2.1 for a rigorous statement of this theorem) can
be written as

P[u given y] =
P[y given u]× P[u]

P[y]
,

where informally, P[y given u], quantifies how likely it was to obtain the data y for a given u,
P[u] encodes the prior information or knowledge on u before data was observed, and P[y] can be
understood as a term describing the information contained in the data y.
One way of extracting such an information is by sampling from P[u given y]. Although there are
several different approaches to perform this task (c.f. Section 2.3), in this thesis we will focus on
a class of algorithms known asMarkov ChainMonte Carlo (MCMC). Modern computational
facilities and recent advances in computational techniques have made the use of MCMCmethods
feasible for many Bayesian Inverse Problems. However, for some large-scale applications in physics
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1 Introduction

or engineering, which often involve differential models, the computational cost associated with a
Bayesian inversion procedure byMCMC, when seen as

Cost = Number of samples × Cost per sample,

can still be prohibitively expensive.
In this thesis, we present, analyze, and implement several novel hierarchicalMCMC techniques
for the acceleration of such large-scale BIPs. In the context of this work, we say that a BIP is a
large-scale problem if either (i) the evaluation of the likelihood, denoted by P[y given u], is deemed
to be computationally expensive, and involves large-scale computations, such as the solution of a
non-linear or time-dependent Partial Differential Equation (PDE), approximated on a sufficiently
fine grid, or (ii) those for which the parameter space is high dimensional, such as BIP on random
fields discretized on a fine grid, or more realistically, when both (i) and (ii) hold. By hierarchical
methodswemean the set of techniques that exploit a sequence of approximations of the probability
measure of interest, with given accuracy and which are possibly easier to sample from. This can be
understood in terms of a hierarchy of discretizations of the underlying mathematical model, in the
spirit ofMulti-levelMonte Carlo [59, 30, 31, 66], or as a hierarchy of so-called temperatures, in the
spirit of parallel tempering [52, 90]. We will be more precise about what we mean by “hierarchies”
in Section 1.3, and present such methods in further detail in upcoming chapters, which are based
upon the following works:

[95] Latz, J., Madrigal-Cianci, J. P., Nobile, F., & Tempone, R. (2021). Generalized parallel
tempering on Bayesian inverse problems. Statistics and Computing, 31(5), 1-26.

[108] Madrigal-Cianci, J. P., Nobile, F., & Tempone, R. (2021). Analysis of a class of Multi-Level
Markov ChainMonte Carlo algorithms based on IndependentMetropolis-Hastings. ArXiv
preprint arXiv:2105.02035. (Submitted for publication).

[107] Madrigal-Cianci, J. P., & Nobile, F. (2021). Multi-Level Markov Chain Monte Carlo
algorithms based on maximally-coupled proposals. In preparation.

The rest of this introductory chapter is organized as follows. In Section 1.1 we present the uncer-
tainty quantification framework and introduce the notion of inverse problems. We briefly present
the two main paradigms used to solve such problems, namely the frequentist’s (or deterministic)
and the Bayesian approach, and make a case for the need of the latter for the types of applications
that are addressed in this work. We then present two large-scale model BIPs that will be studied
throughout this thesis in Section 1.2 and argue about the necessity of hierarchicalmethods to tackle
them effectively. In section 1.3 we present a literature review of the state of the art of hierarchical
MCMCmethods and discuss the main contributions of this thesis. Lastly, we present the outline
for the rest of the thesis in Section 1.4.
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1.1 Uncertainty quantification and inverse problems

1.1 Uncertainty quantification and inverse problems

Broadly speaking, Uncertainty Quantification (UQ) is the scientific discipline tasked with deter-
mining appropriate uncertainties associated with model-based predictions [58]. In general, these
models are subject to different sources of uncertainty; including, uncertainties in the model inputs
parameters (such as unknownmaterial properties, forcing terms, initial or boundary conditions),
observation error, uncertainties in the mathematical model itself, among others. Being able to
accurately and efficiently quantify these uncertainties is of paramount importance in many fields
of science and engineering.
UQ can be classified into two main approaches: forward and inverse UQ. On the one hand, in
forward UQ one aims at assessing the impact of uncertain input parameters in the model output,
usually taken to be a physical Quantity of Interest (QoI), and understood to be a function of this
uncertain input. To that end, the input parameters u are modeled as random variables with known
distribution µpr, and one is then interested in quantifying the effects of this forward propagation
of uncertainty for the QoI through the mapping u 7→ QoI(u), u ∼ µpr, which typically involves
the solution of a complex differential problem. This is done by estimating statistical properties
of QoI, such as its moments, or the probability of QoI exceeding a given threshold value, usually
written in terms of expectations under µpr. The literature on numerical methods for forward UQ
is vast, see e.g., [58] and the references therein. When u is a high (or even infinite) dimensional
parameter, arguably the most straightforward approach to solving this type of problem is the
Monte Carlo method [3], where these expectations over µpr are approximated by first samplingN
independently and identically distributed (iid) realizations of u, and then estimating the effects of
the forward propagation of uncertainty u 7→ QoI(u) with the usual Monte Carlo average over
theseN realizations. Monte Carlo methods have been in active development for the last several
decades. Of particular relevance to the work outlined in this thesis areMulti-level Monte Carlo
methods [31, 59, 69, 118], a set of variance reduction techniques [3] which can greatly reduce the
computational cost associated with plainMonte Carlo by introducing a hierarchy of discretization
levels of the underlying differential mathematical model with increasing accuracy and cost, and
performing most simulations with low accuracy (and hence cost), with relatively few simulations
being performed with the highly accurate, computationally expensive model, in such a way that
the final accuracy of the estimator is equivalent to that of using plain Monte Carlo at the finest
discretization level, albeit with an overall much lower complexity.
On the other hand, in InverseUQ [85, 158], one is instead interested in characterizing and reducing
the uncertainty on the input parameters of the model, based on some available, noise-polluted,
experimental data, assumed to have been obtained from the underlying physical process (c.f. Figure
1.1). We now proceed to formalize this idea. Let (X, ‖·‖X) and (Y, ‖·‖Y) be two separable Banach
spaces with associated Borel σ-algebra B(X),B(Y). We will refer to X as the parameter space and
toY as the data space, and define the forwardmapping operator F : X → Y as a mapping between
these two spaces. Broadly speaking, given some recorded, potentially noise-polluted data y ∈ Y,
the goal of an inverse problem is to characterize (we will be more precise about what we mean by
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Figure 1.1: Depiction of forward and inverse problems.

this statement shortly after) the set of unknown, possibly infinite-dimensional parameters u ∈ X
that could have generated the data y, where the relationship between y and u is given by

y = F(u) + η, η ∼ µnoise,

with η ∈ Y some additive noise with known distribution µnoise on (Y,B(Y)). In our context, the
forward mapping operatorF is to be understood as a mathematical model of the physical process
that generated the data y, which is based on possibly non-linear and/or time-dependent PDEs.
Characterizing these input uncertainties can be achieved by two main paradigms, a frequentist’s
(also called deterministic or classical) approach [158] or a Bayesian approach [156], the latter of
which will be the focus of this work. We present a brief overview of these methods in the following
paragraphs, and a more thorough review of the Bayesian approach to inverse problems in the
following Chapter.
We begin with a brief description of the frequentist’s approach. For simplicity, suppose y =

(y1, y2, . . . , yM ) ∈ RM . In the context of this work we will assume that y is generated by a single
realization of the underlying physical phenomena, which is observed atM different points in space
or time, with {yi}Mi=1, corresponding to the set of observed values. In addition, consider a loss
function loss : Y × X → R+, measuring, in some sense, the misfit between the recorded data y
andF(u) for some given u. This loss function can be, e.g.,

1. (squared error ) loss(y, u) = 1
2

∑M
i=1 |yi − [F(u)]i|2

2. (absolute error) loss(y, u) =
∑M

i=1 |yi − [F(u)]i|.
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1.1 Uncertainty quantification and inverse problems

where [F(u)]i corresponds to the component ofF(u) associated to the ith measurement yi. Let
u∗ ∈ X be the solution to the following optimization problem:

find u∗ ∈ X that minimizes Jα(u) (1.1)

Jα(u) := loss(y, u) + α

2
reg(u), α > 0,

where the second term in (1.1), reg : X → R+ is known as a the regularization term and it is
usually included to improve the regularity and enforce well-posedness of the inverse problem (1.1)
[85, 158]. A common choice for regularization parameter is the so-called Tykhonov regularization
[158] given by

reg(u) := ‖u− u0‖2X , u0 ∈ X,

for some carefully chosen u0 ∈ X. Loosely speaking, this choice of regularization penalizes values
ofu that are far (in theX-norm) fromu0. The frequentist’s approach to inverseUQ consists in first
solving Problem (1.1), usually obtained using numerical optimization algorithms, see [119], and
then using arguments and assumptions on y, η,F , and u∗, proper of frequentist statistics (such
as large amounts of data, normality and independence of the components of η, etc) to construct
(1−a)%, a ∈ (0, 1), confidence intervals [26, 155]. Furthermore, one can also use the parametric
bootstrap method [6, 117] in order to do uncertainty quantification with this approach. Such a
technique is aMonte Carlo method that estimates parameter uncertainty by repeatedly resampling
observations and computing corresponding parameter estimates. This is achieved by repeatedly
solving the (randomized) minimization problem

un = argmin
u∈X

loss(y + ηn, u) +
α

2
reg(u), ηn ∼ µnoise, n = 1, 2, . . . ,

which in some special cases can leads to samples {un, n = 1, 2, . . .} from the posterior distribu-
tion arising from the Bayesian approach (see, e.g., [6] for a precise statement).
There are, however, certain drawbacks associated to this method:

1. Although the use of a regularization aims at guaranteeing the existence and uniqueness of
solutions to the problem (1.1) (see, e.g., [158]), the cost functional Jα(u) could still suffer
frommultiple local minima, and as such, the numerical optimization techniques used to
minimize Jα(u) could potentially converge to a sub-optimal solution.

2. In general, the sample distribution of u obtained using the parametric bootstrap approach
is not the posterior distribution induced by the Bayesian approach (c.f. next paragraph and
[6]).

On the Bayesian paradigm, we model u, η and y as random variables, and aim at obtaining the
probability distribution of u conditioned on y. For the sake of exposition, we briefly present
such an approach in rather general terms in the following, and will present a detailed overview
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of it in Chapter 2. In the Bayesian paradigm, one assumes that u follows a prior distribution
µpr encoding the information available on u before any data is observed. Notice that this is a
natural way of including expert information about u on the inversion procedure. Under the
assumptions (i)u ∼ µpr before any data is observed, (ii) η andu are independent random variables,
and (iii), µnoise(·) and µnoise(· − F(u)) (i.e., the measure µnoise translated byF(u)) have a density
µ̃noise : X → R+ with respect to some dominating probability measure, one then has that y|u
has the same distribution as µnoise(· − F(u)), which allows us to define the potential function
Φ(u; y) : X × Y 7→ R as

Φ(u; y) = − log [µ̃noise(y −F(u))] ,

where the functionΦ(u; y) is ameasure of themisfit between the recorded data y and the predicted
valueF(u), and often depends on ‖y −F(u)‖Y. Applying Bayes’ theorem [94, 156], one can
then pose the solution to the BIP as approximating the posterior probability measure µy given in
terms of its Radon-Nikodym derivative with respect to the prior by

dµy

dµpr
(u) =

1

Z
e−Φ(u;y), Z =

∫
X
e−Φ(u;y)µpr(du). (1.2)

Once such a posterior probability measure has been suitably approximated, one can compute
expectations of a given µy-integrable quantity of interest QoI : X → R, i.e.,

Eµy [QoI] =
∫

X
QoI(u)µy(du).

Furthermore, one could, e.g., estimate moments of u (provided they exists), visualize its distribu-
tion, etc. This is in stark contrast to the deterministic paradigm, in the sense that the Bayesian
approach provides a larger amount of information about u.

Remark 1.1.1 (On the drawbacks of the Bayesian approach): There are, of course, some
drawbacks associates to the Bayesian approach. We identify two of them in the following:

1. As we shall discuss shortly after (and throught this thesis), one way of approximating µy is
by sampling from it, using, e.g., MCMC methods. This will lead, in general, to repeated
evaluations of the forward mappingF , which will in turn result in an overall more expensive
inversion procedure.

2. The Bayesian formulation is heavily-dependent on the choice of prior, which is, in turn, subjec-
tive. Choosing an appropriate prior is delicate, as a completely misspecified prior will in turn
lead to erroneous results. Furthermore, the construction of credible regions rely upon the choice
of prior; thus, a poorly chosen prior might compromise the interpretability of the results.

As previously mentioned, the approximation of µy is usually done by sampling from it. We
will present a detailed survey of commonly-used methods to generate samples (approximately)
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1.2 Model problems in geophysics

distributed according to µy in Chapters 2 and 3. Perhaps the most powerful and robust tools for
this task are MCMCmethods, where one generates samples that are (asymptotically) distributed
according toµy by creating aMarkov chain havingµy as its invariant probability measure. The one
drawback of these methods is that, in general, they require a large number of samples to converge.
Furthermore, MCMCmethods usually require an evaluation of the forward mathematical model
for each sample. Thus, for those BIP for which the underlying forward mapping operatorF is
already costly to evaluate, as those considered in this work, MCMCmethods can rapidly become
prohibitively expensive. In the next section, we present two large-scale model problems that will
be studied throughout this thesis.

1.2 Model problems in geophysics

1.2.1 Subsurface flow

Our first model problem is the inversion of parameters arising in a steady-state subsurface flow
model. In this case, we are interested in characterizing the geophysical properties of an aquifer,
given some noise-polluted measurements of the hydraulic head p throughout the domain. More
formally, given a physical domain D ⊂ Rd, d = 1, 2, 3, with boundary ∂D = ΓN ∪ ΓD,
Γ̊N ∩ Γ̊D = ∅, the hydraulic head p of the aquifer follows Darcy’s subsurface flow equation given
by


−∇ · (κ(x, u)∇p(x, u)) = f(x, u), x ∈ D, u ∈ X,
p(x, u) = GD(x, u), x ∈ ΓD, u ∈ X,
∂np(x, u) = GN (x, u), x ∈ ΓN , u ∈ X,

(1.3)

with u representing the possible sources of uncertainty. Here, κ(x, u) represents the random
permeability field in the aquifer (typically modeled as a log-normal random field), f(x, u) repre-
sents a potentially unknown source term, andGN (x, u), GD(x, u) represent the (also potentially
unknown) Neumann and Dirichlet boundary conditions of the model, respectively. Thus, given
some noise polluted measurements of p(x, u) at given locations inD, one aims at characterizing
one or more of κ(x, u), f(x, u), GN (x, u) orGD(x, u). In this case, the mapping u 7→ F(u)

can be understood as the solution of (1.3), observed at the location of the measurements. This
is a common inverse problem in the management and risk analysis of radioactive waste material
[81, 156, 157] and oil reservoir exploration [16, 121, 156].

1.2.2 Seismic inversion

A second example of a large-scale BIP is that of seismic inversion. In this case, given a set of
recordings of the the displacement1 of a seismic wave at different points in space and instants
1In practice, other measurable quantities can be considered as well, such as wave velocity or acceleration, see e.g., [1].
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in time, one aims at characterizing (i) the physical properties of the earthquake, such as source
location or moment tensor and/or (ii) the physical properties of the medium, such as its material
densities or Lamé parameters. More precisely, consider once again a physical domainD ⊂ Rd,

d = 2, 3 and a time interval I = [0, T ], T > 0. We will model the wave propagation of an
earthquake using either an elastic or an acoustic wave equation. For the first case, the forward
model of the wave phenomena reads as find a displacement fieldw : I ×D × X → Rd such that:{

ρ(x, u)wtt(t, x, u)−∇ · σ(x, u, w) = fel(t, x, u), in I ×D × X,
w(0, x, u) = g1,el(x, u), wt(0, x, u) = g2,el(x, u), on {t = 0} ×D × X,

(1.4)

where

σ(x, u, w) = λ(x, u)∇ · wI +m(x, u)(∇w + (∇w)T ),

together with suitable boundary conditions. Here, ρ(x, u), represents the density of the material,
λ(x, u),m(x, u) represent the Lamé parameters, and gi,el(x, u), i = 1, 2, are the initial condi-
tions. In the case where one considers the earthquake to be a point source (i.e., an explosion), the
forcing term takes the form [1]

fel(t, x, u) = −M(u) · ∇δ(x− us)S(t, us), (1.5)

where δ denotes the Dirac mass,M(u) ∈ Rd×d represents the moment tensor of the earthquake,
Rd 3 us ⊂ u represents the spatial location of the source and S(·, u) : I → R represents the
time component of the forcing term (usually a Gaussian or Rickert wavelet parametrized by u)[1].
In practical computations, often a regularized version of (1.5) is considered, obtained by replacing
δ(x− us) by e.g., (|a|

√
π)−1 exp(−(‖x− us‖2 /a)2), for some |a| � 1.

Alternatively, for the case where one models the forward wave propagation using an acoustic wave,
we have that the forward model reads find the acoustic pressurew : I ×D × X → R such that{

ρ(x, u)wtt(t, x, u)−∇ · (β(x, u)∇w(t, x, u)) = fac(t, x, u), in I ×D × X
w(0, x, u) = g1(x, u), wt(0, x, u) = g2(x, u) on {t = 0} ×D × X,

together with suitable boundary conditions. Once again ρ(x, u) represents the density of the
medium and β(x, u) is related to the acoustic wave velocity c(x, u) in the medium by β(x, u) =
c2(x, u)ρ(x, u). Furthermore, in this case, we model fac as

fac(t, x, u) = δ(x− us)S(t, u),

or a regularized version of it. In either case, given some measurements of the wavefield at different
points in time and space, we aim at obtaining the material properties (e.g., ρ, β, λ,m), assuming
the source is known (which is known in the literature as seismic imaging), or, alternatively, we aim at
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recovering the source locationus andother parameters related to the source term,with an additional
potential uncertainty in the material properties of the medium (known as seismic source inversion).
For this problem the mapping u 7→ F(u) can be understood as the displacement of the wavefield,
observed at several points in the physical domain, at different moments in time. Seismic inversion
(whether seismic imaging or source inversion) is of great importance to the seismology community
and it is an active field of research (see e.g., [23, 75, 170, 162]). However, the computational cost
associated with the evaluation of the forward computational model, together with possible multi-
modalities arising in the associated posterior, motivates the development of efficient inversion
techniques.

1.3 Literature review and contributions of this thesis

The overall aim of this thesis is to present, analyze, and implement hierarchical Markov chain
Monte Carlomethods for accelerating large-scale Bayesian inverse problems, with a particular focus
on BIPs arising in geophysics, such as those presented in Section 1.2. In this section, we introduce
two types of hierarchical MCMCmethods that are central to our work, we present a literature
review of these methods, and state the main contributions of this thesis. Such contributions will
be the subject of Chapters 4-6.
For most problems of interest, involving complex PDEmodels, it is often the case that one can
not solve the underlying mathematical model (and hence, evaluate F ) exactly, and as such its
solution needs to be approximated using numerical methods, such as finite elements (FE) or finite
differences (FD).We denote byFL the numerical approximation of the forwardmap at an accuracy
level L. Notice that this induces a discretized potentialΦL(u; y), which in turn induces a discretized
posterior measure2

µyL(du) =
1

ZL
exp (−ΦL(u; y))µpr(du).

Under reasonable conditions (see [156]), one has that (in a suitable sense) µyL → µy as L →
∞. Given (i) the potentially multi-scale effects of the material properties (in both Problems
1.2.1 and 1.2.2) and (ii) computational restrictions on the forward model, such as the Courant-
Friedrichs-Lewy (CFL) condition for Problem 1.2.2 (see e.g., [135]), the forward modelFL must
be approximated using a sufficiently fine grid, together with a sufficiently small time-step for the
time-discretization. This in turn makes the computation of either forward problem extremely
expensive, specially in the case where d = 3. Although this computational cost can be reduced
by, e.g., using domain decomposition and other advanced techniques for the PDE solver, the cost
associated to an evaluation of the forward model can still be quite large. In addition, posterior
exploration viaMCMCmethods, requires, in general, a large number of samples in order to obtain
meaningful and accurate results. Furthermore, when targeting posterior probability measures
that are multi-modal or that concentrate around a lower dimensional non-linear manifold, as it is
2by dscretized posterior we reffer to a posterior measure associated to a discretized forward model, and this should not
be confused with a posterior measure on a discrete state space
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1 Introduction

often the case for seismic inversion, the MCMC algorithm will typically require a larger number
of samples, thus further increasing the computational cost associated to the Bayesian inversion.
One way of overcoming these issues is with the use of hierarchical models on the posterior measure.
Given an ordered setJ = [1, 2, . . . , J ], J ∈ N, let {µyj , j ∈ J }, be a family of approximations
to µy with the following properties:

1. µyJ = µyL, and µ
y
J → µy as J → ∞.

2. For any j ∈ J , sampling from µyj is either easier (in some sense) or cheaper than sampling
from µyj+1.

By exploiting properties 1 and 2, one can create novel sampling algorithms that can drastically
reduce the cost associated to BIP. In particular, we will present algorithms based on hierarchies of
temperatures (c.f. Chapter 4 ) and discretizations (c.f. Chapters 5-6).

1.3.1 Tempering

Tempering methods: literature review

In the Tempering case, we construct the hierarchy of models by introducing an increasing sequence
of temperatures 1 = T1 < T2 < · · · < TJ ≤ ∞, which induces the following sequence of
posterior probability measures:

µyj (du) =
1

Zj
exp
(
−ΦL(u; y)

TJ−j

)
µpr(du), j = 0, . . . , J − 1,

with the convention that if TJ = ∞, µy1(du) = µpr(du). This hierarchy is specially useful in
cases where the posterior measure µy is multi-modal or concentrates around a non-linear, lower-
dimensional manifold. Indeed, the temperature term acts as an “inflation” parameter on

dµy
j

dµpr
(u),

which in turn makes the posterior µyj easier to explore using traditional MCMC algorithms.
This is depicted in Figure 1.2, where the un-normalized density of a target posterior µy = µy2
is shown together with two of its tempered, un-normalized counterparts µy0, µ

y
1. As it can be

seen, µy2 is strongly concentrated around two well-separated peaks, while the peaks µ
y
0, µ

y
1 present

a larger overlap. A consequence of this, is that localized MCMC algorithms, such as Random
Walk Metropolis (RWM) or Preconditioned Crank-Nicolson (pCN) (c.f. chapter 3) can “explore”
µy0, µ

y
1 faster than µ

y
2, since jumping from one mode to the other using localized proposals (i.e.,

very small steps in comparison to the separation of the peaks) is, in practice, quite unlikely for µy2,
but much more likely for µy0, µ

y
1.

Once this hierarchy has been introduced, the idea is then to sample from the joint posterior
µ1 × · · · × µJ on the extended space (X × · · · × X,B(X × · · · × X)) using a joint Markov
transition kernel (c.f. Definition 3.1.2 and Equation (5.3)) to advance each “component” of the
joint chain, together with a swapping kernel, which mixes the components between chains, thus
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Figure 1.2: Depiction of an un-normalized posterior density of interest, µy = µy
2 , together with 2 un-

normalized tempered versions µy
0, µ

y
1 .

providing an opportunity for each individual chain to better explore the parameter space. This
hierarchical approach is done in the spirit of parallel tempering [52, 90, 114, 171].
In recent years, there has been an active development of computational techniques and algorithms
to overcome the issues associated with sampling multi-modal measures, or those that concentrate
around a non-linear, lower-dimensional manifold using several tempering strategies [42, 52, 96,
114, 167]. Of particular importance for the work presented here is the Parallel Tempering (PT)
algorithm [52, 90, 114] (also known as replica exchange), which finds its origins in the physics and
molecular dynamics community. The general idea behind such methods is to simultaneously run
J independent MCMC chains, where each chain is invariant with respect to a flattened (referred
to as tempered) version of the posterior of interest µy , while, at the same time, proposing to swap
states between any two chains every so often. Such a swap is then accepted using the standard
Metropolis-Hastings (MH) acceptance-rejection rule. Intuitively, chains with a larger smoothing
parameter (referred to as temperature) will be able to better explore the parameter space. Thus,
by proposing to exchange states between chains that target posteriors at different temperatures,
it is possible for the chain of interest (i.e., the one targeting µy) to mix faster, and to avoid the
undesirable behavior of someMCMC samplers of getting “stuck” in a mode. Moreover, the fact
that such an exchange of states is accepted with the typical MH acceptance-rejection rule, will
guarantee that the chain targeting µy remains invariant with respect to such probability measure
[52].
Tempering ideas have been successfully used to sample from posterior distributions arising in differ-
ent fields of science, ranging from astrophysics to machine learning [41, 52, 114, 163]. The works
[106, 171] have studied the convergence of the PT algorithm from a theoretical perspective and
provided minimal conditions for its rapid mixing. Moreover, the idea of tempered distributions
has not only been applied in combination with parallel chains. For example, the simulated temper-
ing method [109] uses a single chain and varies the temperature within this chain. In addition,
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tempering forms the basis of efficient particle filtering methods for stationary model parameters in
Sequential Monte Carlo settings [10, 11, 84, 86, 96] and Ensemble Kalman Inversion [34].
A generalization over the PT approach, originating from the molecular dynamics community, is
the so-called Infinite Swapping (IS) algorithm [49, 133]. As opposed to PT, this IS paradigm is a
continuous-timeMarkov process and considers the limit where states between chains are swapped
infinitely often. It is shown in [49] that such an approach can in turn be understood as a swap
of dynamics, i.e., kernel and temperature (as opposed to states) between chains. We remark that
once such a change in dynamics is considered, it is not possible to distinguish particles belonging
to different chains. However, since the stationary distribution of each chain is known, importance
sampling can be employed to compute posterior expectations with respect to the target measure of
interest.

Tempering methods: contributions

Infinite Swapping has been successfully applied in the context of computational molecular dy-
namics and rare event simulation [47, 50, 103, 133], however, it was only until our work [95]
that an analogous version of this methods was formulated and implemented in the context of
Bayesian Inverse Problems (which are, inherently discrete-time in nature). We present such a work
in Chapter 4, where our contributions can be summarized as follows:

1. We present two generalizations of the Parallel Tempering algorithm, inspired by the so-called
continuous-time Infinite Swapping algorithm of [47].

2. We provide a solid theoretical analysis of the convergence of such methods. In particular,
we show that such algorithms are reversible and geometrically ergodic under some mild
conditions.

3. We implement our proposed methods, together with several competing methodologies, and
use them to solve an array of increasingly difficult Bayesian inverse problems. Our experi-
mental results suggest a significant improvement with respect to competing methodologies.

We believe these methods present sufficient innovation such that the current work can be extended
into multiple future works, both from a theoretical and computational perspective, as will be
discussed in Chapter 7.

1.3.2 Multi-level methods

Multi-level methods: literature review

Multi-Level Monte Carlo (MLMC) methods are well-known computational techniques [59]
used to compute expectations that arise in stochastic simulations in cases in which the stochastic
model cannot be simulated exactly, but can be approximated at different levels of accuracy and
different computational costs. Despite their wide-spread applicability, extending these MLMC
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ideas toMulti-LevelMarkovChainMonte Carlo (ML-MCMC)methods to compute expectations
with respect to (w.r.t) a complex target distribution from which independent (whether exact or
approximate) sampling is not accessible, has only recently been attempted, with only a handful
of works dedicated to this task. This situation arises, for instance, in Bayesian inverse problems
(BIPs) where the aim is to compute the expectationEµy [QoI] of some output quantity of interest
QoI. At their core, ML-MCMCmethods for BIPs introduce a hierarchy of discretization levels
` = 0, 1, . . . , L of the underlying forward operator {F`}L

`=0, with increasing accuracy and
cost to evaluate it, which, consequently, induces a family of posterior probability measures µy` ,
approximatingµy with increasing levels of accuracy as `→ ∞. This hierarchy of forwardmapping
operators is depicted in Figure 1.3, where the mesh, the random field κ in (1.3), and the forward
mapping operator3 F`(κ(x, u)) with p as in (1.3) is shown at three different accuracy levels
` = 0, 1, 2, with the understanding that the cost of evaluatingF` increases with ` = 0, 1, 2.
Given some µy-integrable quantity of interest QoI,we can approximate the expectation of QoI
over µy by a telescoping sum, as usually done inMLMC,

Eµy [QoI] ' Eµy
L
[QoIL] = Eµy

0
[QoI0] +

L∑
`=1

(
Eµy

`
[QoI`]− Eµy

`−1
[QoI`−1]

)
=

L∑
`=0

∆E`, (1.6)

with∆E` := Eµy
`
[QoI`]− Eµy

`−1
[QoI`−1],∆E0 = Eµy

0
[QoI0] and where, for ` = 0, 1, . . . , L,

QoI` is aµy` -integrable, level ` approximation of the quantity of interestQoI. This telescoping sum
presents the basis for various types of multi-level techniques for BIPs. The work [71], for example,
approximates the expectation (1.6) by splitting each∆E` into three different terms, which are
then computed using a mixture of importance-sampling andMCMC techniques. A multi-index
generalization of such method is presented in [78]. In addition, similar multi-level ideas have also
been attempted in the context of Multi-Level Sequential Monte Carlo (MLSMC) in the works
[13, 79, 96].
In this work, we follow the approach proposed in [45], which is probably the first proposition of
multi-level ideas for BIPs and consists of approximatingEµy

L
[QoIL] using the following ergodic

estimator:

Eµy
L
[QoIL] ≈

1

N0

N∑̀
n=1

QoI0(un0,0) +
L∑

`=1

1

N`

N∑̀
n=1

QoI`(un`,`)− QoI`−1(u
n
`,`−1)︸ ︷︷ ︸

:= Y n
`

,

where {un·,`}
N`
n=0 is an ergodic Markov chain with invariant distribution µy` . The key idea is

to couple the chains {un`,`−1, u
n
`,`}

N`
n=0 so that they are highly correlated and the variance of

3Typically, the observation operator only gives the pressure value at a few locations, however, we plot the whole field
for illustration purposes.
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Figure 1.3: Depiction of accuracy and cost ofF` vs `, where costi < costi+1 for three different levels.
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the ergodic estimatorV[N−1
`

∑
n Y

n
` ] becomes increasingly smaller as ` increases. By carefully

choosingN`, this method can achieve a much better sampling complexity (in terms of cost versus
tolerance) than its single-level counterparts (see [45]).
Few works have focused on constructing these types of couplings [35, 45]. In [45], the authors use
(an approximation of) the posterior distribution at the previous discretization level `− 1 as a pro-
posal for level `. This is practically implemented by sub-sampling from the chain {un`−1,`−1}

N`−1

n=0 .
As it will be discussed later (c.f. Chapter 5), for such a method to converge (in the idealized case
where one can sample from the posterior at the previous levels), however, it is required that the
posterior at level ` − 1 has not lighter tails than the posterior at level `. This assumption can
be relaxed by tempering the posteriors (as done in a single level in, e.g., [95]) at the previous
discretization levels, however, it is not clear yet how to choose this tempering parameter. This
sub-sampling method has been recently reviewed in [46]. Furthermore, from an implementation
perspective, the work [152] presents a parallelization strategy for theML-MCMC algorithm of
[45], while the works [77] and [87] apply such an algorithm in the context of lattice field theory
and statistical mechanics.
Such an idea has been recently expanded in [35], where the subsampling idea is combined with
the so-called Dimension Independent Likelihood Informed (DILI) MCMCmethod of [36] to
generate proposed samples at level 0 in their ML-MCMC algorithm, and, more recently, by the
work [105], which proposes the use of the sub-sampling algorithm of [45] in the context of delayed-
acceptance, with the aim of accelerating the mixing between chains generated by the ML-MCMC
sampler. Some further work combining multi-level Monte Carlo ideas with Bayesian inference has
been presented in [80], where the authors use rejection-free Markov transitions kernels, such as
the Gibbs sampler, in order to couple the multi-level MCMC chains at two consecutive levels.
A different approach to couplingMarkov chains, albeit in the context of unbiased estimation is
given bymaximal coupling techniques [53, 76, 82, 99]. Maximal coupling methods have been of
interest, both from a theoretical and computational perspective, for a number of years. Tradition-
ally, (maximal) coupling methods have been used as a tool in the convergence analysis of Markov
chains [53, 139, 100, 159]. In this setting, one aims at estimating the so-calledmixing time of
a Markov chain by creating a coupling of two Markov chainsXn, Yn, n ∈ N, both having the
same invariant measure, and estimating the first meeting time, i.e., τ = min{n ∈ N : Xn = Yn}
(c.f. Algorithm 1 in Chapter 3). Recently, these methods have gained a wider computational
use; the works [70, 76] use coupling methods to construct unbiasedMarkov chainMonte Carlo
estimators based on the seminal work of [62]. These methods have also been used to construct
variance reduction techniques [3], such as anthitetic variates and control variables, for ergodic
estimators obtained fromMarkov chains [131].
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Multi-level methods: contributions

It is clear that ML-MCMC algorithms have started to become increasingly popular in the UQ
community, as it can be evidenced by the impact of the work [45]4. In this thesis we present several
contributions to this emerging set of methodologies. In particular, in Chapters 5 and 6:

1. We propose two extensions of ideas presented in [45]. Our first extension can be seen as
a generalization of their work to the case where a wider class of Independent Metropolis-
Hastings (IMH)proposal distributions are considered (c.fChapter 5). The second extension
presents a ML-MCMC algorithm that admits state-dependent proposals, such as Random
WalkMetropolis. These algorithm generates joint chains using a maximal coupling between
proposal kernels and is presented in Chapter 6.

2. We present a thorough convergence analysis for the (coupled)ML-MCMCalgorithm arising
form these extensions and present conditions under which there exists a unique invariant
probability measure induced by such algorithms, as well as quantifying their convergence
rate to such a measure.

3. We present a non-asymptotic bound for the mean-square error for (non-necessarily) re-
versible Markov chains, such as the one induced by theML-MCMC sampler. We remark
that this contribution is interesting on its own and can be applied outside the scope of this
work, however, such a bound is crucial to prove the complexity result of the ML-MCMC
algorithm, as in [45]. We remark that this result is Presented in Chapter 3.

4. We extend the aforementioned complexity result of [45] to the case of ML-MCMC using
IMH under some reasonable technical assumptions. Furthermore, we present an analogous
result to the case with state-dependent proposals, albeit under more restrictive assumptions.

5. In the spirit of [132], we introduce a continuation-type ML-MCMC algorithm. Such a
method obtains a robust estimation of the hyper-parameters in the ML-MCMC algorithm
(e.g., number of samples needed for a given tolerance, c.f. Chapter 5) by estimating them
on sequence of decreasing tolerances, ending when the required error tolerance is satisfied.

We implement these proposed methodologies on an array of BIPs and discuss their strengths and
limitations. Lastly, we discuss several possible extensions to these ideas in Chapter 7.

1.4 Outline

The rest of this thesis is outlined as follows. Chapters 2 and 3 are devoted to a review of the theory
and methodology of the methods of interest to this work, while chapters 4 through 6 present the
main research body and contributions of this thesis. More precisely:
4Indeed, such a work has been a highlight of the SIAM Journal of Uncertainty Quantification, one of the authors has
been awarded the SIAMUQ Early career Prize, and the paper has been republished in the SIGEST section of SIAM
Review (vol. 61(3)) [46]
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Chapter 2 is devoted to a thorough introduction to BIPs. We begin such a chapter presenting
basics concepts of probability needed to construct the Bayesian solution to an inverse problem,
and then present an overview of the theory and modeling choices of such an approach. We finalize
this chapter discussing some non-MCMC based approaches to the solution of a BIP.
Chapter 3 is devoted to a review of theory andmethodology ofMCMC for Bayesian inverse prob-
lems. Webegin this chapter by recalling somenecessary concepts forMarkov chains, such asMarkov
transition kernels, and give an overview of some common results regarding their convergence. We
finalize this chapter with a survey of some commonMCMC techniques.
Chapter 4 presents our first hierarchical method: the generalized parallel tempering algorithm.
In this case the hierarchy is to be understood as a sequence of temperatures {Tk, k = 1, 2, . . .},
which induce a posterior probability measure µk that gets increasingly “easier” to sample from as
Tk → ∞. Here, we introduce, analyze and implement twoMCMC algorithms used to sample
from this hierarchical model. This chapter is based on our published work [95].
Chapter 5 presents several contributions regarding the second hierarchical method (i.e., multi-
level MCMC). In particular, such a Chapter introduces a ML-MCMC algorithm based on IMH
proposals, together with a thorough analysis of the method.This chapter is based on the pre-print
(currently under revision) [108]
Chapter 6 presents a newmethodology for ML-MCMCmethods based on the idea of maximal
coupling [76]. This methodology allows for easily implemented ML-MCMC that can clearly
overcome some of the difficulties associated to the methods of Chapter 5. We present a thorough
theoretical analysis of our proposed method, and implement it for different BIPs. This chapter is
based on ongoing work.
Lastly, Chapter 7 summarizes and concludes this thesis and proposes several future research
directions.
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2 Bayesian inverse problems

In this chapter we present the conceptual and mathematical background of BIPs. We begin by
recalling some basic concepts in probability, particularly on Gaussian measures, and then proceed
to present BIPs in detail. We conclude this chapter by presenting a state of the art of somemethods
for solving BIPs. We remark that this is a review chapter written with the aim of making this
thesis as self-contained as possible, and that no newmaterial is presented here. Furthermore the
content presented in this chapter is necessarily short, however we refer the interested reader to
the monographs of, e.g., Dudley, or Ash [2, 48] for a detailed account on probability theory; to
the books of, e.g., Bogachev or Da-Prato and Zabczyk [18, 37] for material regarding Gaussian
measures on infinite-dimensional spaces; and to the seminal works of Dashti and Stuart [40, 156]
for a detailed presentation of BIPs in infinite dimensions (or on Banach spaces), of which the
material presented in this chapter is a (heavily) condensed version.

2.1 Preliminaries

2.1.1 Probability theory

The workhorse behind the Bayesian formulation of an inverse problem is, rather unsurprisingly,
Bayes’ theorem (c.f. Theorem 2.2.1), which lies at the heart of probability theory. We begin this
chapter by recalling some necessary concepts and results from it that will be used throughout the
rest of this thesis.

Definition 2.1.1 (Probability space): A probability space (also known as probability triple, or
probability measure space) is a triple (Ω,X , µ), where

1. Ω is the sample space.

2. X is a σ-algebra of subsets ofΩ.

3. µ : X → [0, 1] is a probability measure, i.e., a mapping satisfying the following two
properties:

a) µ is countably additive, i.e., given {Ai}∞i=1 ⊆ X , Ai ∩ Aj = ∅, ∀i 6= j, then
µ (∪∞

i=1Ai) =
∑∞

i=1 µ(Ai).

b) The entire space has mass equal to one, i.e., µ(Ω) = 1.

We call the couple (Ω,X ) ameasurable space.
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In particular, in this work we are interested in the case where Ω = (X, ‖·‖X) (resp. Ω =

(X, 〈·, ·〉X)) is a separable Banach (resp. separable Hilbert) space, and where X = B(X) is the
Borel σ-algebra associated to X. Throughout this work, we will sometimes refer to X as the state
space and to an elementA ∈ B(X) as an event.
Given two probability measures µ, ν on (X,B(X)), we say that µ is absolutely continuous with
respect to ν (denoted by µ� ν) if, for every measurable setA, ν(A) = 0 implies µ(A) = 0. We
say that µ and ν are equivalent in the sense of measures (ν ' µ) if µ� ν and ν � µ. Conversely,
we say that µ and ν aremutually singular (denoted µ ⊥ ν) if there exist setsA,B ∈ B(X) such
thatA ∩B = ∅,A ∪B = X and µ(A) = ν(B) = 0.

Definition 2.1.2 (Radon-Nikodym derivative): Letµ, ν be two probabilitymeasures onXwith
ν � µ. A B(X)-measurable function f : X → [0,∞) is called the Radon-Nikodym derivative of
ν with respect to µ if, for any measurable setA ∈ B(X), it holds that ν(A) =

∫
A f(u)µ(du). We

will write f(u) = dν
dµ(u).

The Bayesian approach to inverse problems relies heavily upon the concept of conditional probabil-
ity, defined next.

Definition 2.1.3 (Conditional probability): Let (X,B(X), µ) be a measure space, and let
A,B ∈ B(X) be two events with µ(B) > 0. The conditional probability ofA givenB is defined
as

µ(A|B) :=
µ(A ∩B)

µ(B)
. (2.1)

Conversely, one then has that if µ(A) > 0, then

µ(B|A) := µ(B ∩A)
µ(A)

,

which when combined with (2.1), motivates the so-called Bayes’ formula

µ(A|B) =
µ(B|A)µ(A)

µ(B)
. (2.2)

Consider the case where X = RK for someK ≥ 1, let ρ be a joint probability distribution on
(X × X,B(X × X)), with marginals µ, ν on (X,B(X)) having Lebesgue densities πu : X →
R+, πy : X → R+, respectively. In this case, one can formulate Bayes’ theorem in terms of such
Lebesgue densities as

π(u|y) = π(y|u)πu(u)
πy(u)

.

Although there exists an analogous form of (2.2) for the case where X is an infinite-dimensional
space (and hence, no equivalent of the Lebesgue density exists), its formulation is less straightfor-
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ward and we will delay its presentation until Section 2.2, Theorem 2.2.1. However,we introduce
some concepts and technical results that will play a central role in its proof. We begin with the
definition of transition probability (also calledMarkov transition kernel, transition probability
kernel, or stochastic kernel, c.f. Definition 3.1.2 ).

Definition 2.1.4 (Transition probability kernel): Let (X,B(X)) and (Y,B(Y)) be two
measurable spaces. A transition probability kernel from (X,B(X)) to (Y,B(Y)) is a function
p : X × B(Y) → [0, 1] satisfying:

1. X 3 u 7→ p(u,A) is B(X)-measurable for anyA ∈ B(Y).

2. B(Y) 3 A 7→ p(u,A) is a probability measure on (Y,B(Y)) for every u ∈ X.

Sometimes we will use the shorthand notation pu(·) = p(u, ·). The Bayesian approach to inverse
problems relies heavily upon the concept of product regular conditional probability, defined next.

Definition 2.1.5 (Product regular conditional probability): Given two measurable spaces
(X,B(X)) and (Y,B(Y)), set Z := X × Y, B(Z) := B(X) ⊗ B(Y), and let (Z,B(Z),Π) be a
(product) probability space. A Product Regular Conditional Probability (P-RCP) is a transition
probability kernel p : Y × B(X) → [0, 1] satisfyingΠY-a.e.,

Π(A×B) =

∫
B
p(y,A)ΠY(dy) =

∫
B
py(A)ΠY(dy), ∀A ∈ B(X), B ∈ B(Y), (2.3)

where ΠY is the Y-marginal of Π, i.e., ΠY(dy) =
∫

X Π(du, dy). In this setting we say that the
regular conditional distribution of u given y (written u|y) exists and denote it by py .

Notice that ifΠ is the product measureΠ = µ × ν, one can simply take py = µ. It is known
from [48, Theorem 10.1.1] that if a P-RCP exists, then, using the same notation as in the previous
definition, it follows for anyΠ-integrable function g that

EΠ[g] =

∫
Z
g(u, y)Π(du, dv) =

∫
Y

∫
X
g(u, y)py(du)ΠY(dy).

It is shown in [48, Theorem 10.2.2] that if Z is a Polish space1, together with a Borel σ-algebra
B(Z), then there exists a unique P-RCP py() defined as in (2.3). We now present the following
technical result from [150].

Theorem 2.1.1: Let (X,B(X)) and (Y,B(Y)) be measurable spaces, and let µ,ν be proba-
bility measures on Z = X × Y, with B(Z) = B(X) ⊗ B(Y). Assume that (i) µ � ν with
dµ
dν (u, y) = f(u, y), ∀u ∈ X, y ∈ Y and (ii) that the (product) regular conditional distribution of

1i.e., a separable completely metrizable topological space
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u|y under ν, denoted by νy(du), exists. Then, the conditional distribution of u|y over µ, µy(du)
exists. Furthermore, µy � νy , with Radon-Nikodyn derivative given by

dµy

dνy
(u) =

{
1

Z(y)f(u, y) if 0 < Z(y) <∞,

1 otherwise,

whereZ(y) :=
∫

X f(u, y)ν
y(du).

Proof. See [150, Theorem 1.3.1].

2.1.2 Gaussian measures

Gaussianmeasures are a class of commonly-used probabilitymeasures in the context of BIP.On the
one hand, from a practical perspective, they are attractive for problems where either the mapping
u 7→ F(u) is (nearly) linear; indeed, if such a mapping is linear and the noise and prior measures
are Gaussian, the resulting posterior measure will also be Gaussian. They are also often used as
first-approximation to the posterior measure (c.f. [151, 23] and Section 2.3.2). On the other hand,
from a theoretical point of view, they are widely used in the case whereX is an infinite-dimensional
normed space since, as opposed to the Lebesgue measure, they are well-defined in such spaces.
Furthermore, as it will be further discussed in Section 2.2.1, a draw u from a Gaussian measure
N (m, C) on a separable Hilbert space X, can be written as

u = m+

∞∑
i=1

√
λiφiui,

where {λi}i∈N, {φi}i∈N, are the (orthonormalized) eigenvalues and eigenfunctions of the covari-
ance operator C, and ui

iid∼ N (0, 1), ∀i = 1, 2, . . . . We now present a short survey of Gaussian
measures on infinite-dimensional Banach spaces.
We begin by recalling some basic concepts of functional analysis. Given a Banach space X, we
define its dual space as X∗ := {f : X → R : f is a continuous, linear map}. In the case where
(X, 〈·, ·〉X) is a separable Hilbert space, we say that a linear operator C : X → X is

1. self-adjoint (or symmetric) if for all f, g ∈ X, 〈Cf, g〉X = 〈f, Cg〉X,

2. positive-semidefinite if ∀f ∈ X, 〈Cf, f〉X ≥ 0,

3. trace-class if given a complete orthonormal basis (CONB) {φi}i∈N of X, it follows that∑
i∈N〈Cφi, φi〉 < +∞. Alternatively, if {λi}i∈N, {φi}i∈N, are the (orthonormalized)

eigenvalues and eigenvectors of C forming a CONB of X, C is a trace-class operator if∑
i∈N λi < +∞.
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2.1 Preliminaries

Recall that a probability measure ϕ in R is a 1D-Gaussian measure centered at m ∈ R with
variance σ2 ≥ 0 if, ∀A ∈ B(R), it holds that

ϕ(A) =

∫
A

1√
2πσ

exp
(
−(x−m)2

2σ2

)
dx =: N (m,σ2)(A).

In addition, we say that ϕ is aDirac distribution (or degenerate Gaussian) if σ = 0, in which case
we write

ϕ(A) = δx−m(A) =

{
0, if x−m /∈ A,

1, if x−m ∈ A.

It is well-known [18] that 1D-Gaussian measures are uniquely characterized by their meanm
and variance σ2. Now let X = RK . For any λ, u ∈ X, one can think of the map X 3 u 7→
〈λ, u〉RK ∈ R as a random variable on the measure space (X,B(X), ϕ); in this case, we say that
ϕ is a KD-Gaussianmeasure if such a mapping induces a 1D-Gaussianmeasure on R for each
λ ∈ X. This can be stated in more abstract terms in order to allow for the case where X is an
infinite-dimensional separable Hilbert space.

Definition 2.1.6 ((abstract) Gaussian measure [37]): Let (X, 〈·, ·〉X) be a (potentially infinite-
dimensional) separable Hilbert space with associated Borelσ-algebraB(X). We say that a probability
measure ϕ on (X,B(X)) is a Gaussian measure if, for each f ∈ X, the map X 3 u 7→ 〈f, u〉X
induces a 1D Gaussian measure onR i.e., if there existsmf ∈ R and σ2f ≥ 0 depending on f such
that

ϕ ({u ∈ X : 〈f, u〉 ∈ A}) = N (mf , σ
2
f )(A), ∀A ∈ B(R).

Furthermore, we say that ϕ = N (m, C), with mean m ∈ X and covariance C : X → X, a
trace-class linear operator, if ∫

X
〈h, u〉Xϕ(du) = 〈m,h〉X, ∀h ∈ X,∫

X
〈h1, u−m〉X〈h2, u−m〉Xϕ(du) = 〈Ch1, h2〉X, ∀h1, h2 ∈ X. (2.4)

It is a clear consequence of Equation (2.4) that C is both symmetric and positive-(semi)definite.
Similarly as for the 1D case, a Gaussianmeasureϕ = N (m, C) is uniquely determined by its mean
m and covariance operator C [37].

Theorem 2.1.2 (Fernique Theorem): Let (X, 〈·〉X) be a separable Hilbert space, and let ϕ be a
Gaussian measure. Then, there exists an α > 0 such that∫

X
exp(α ‖u‖2X)ϕ(du) < +∞.
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In particular, this means that ϕ has moments of all orders; i.e., ∀j ≥ 0 it holds that∫
X
‖u‖jX ϕ(du) < +∞.

Definition 2.1.7 (Cameron-Martin space): Let (X, 〈·, ·〉X) be a separable Hilbert space, and let
ϕ = N (m, C), be aGaussianmeasure on (X,B(X)), withm ∈ XandC a self-adjoint, positive semi-
definite, trace-class covariance operator. The Cameron-Martin space of X associated to ϕ is defined
as Im(C1/2) [37], and can be given a Hilbert structure with inner product 〈C−1/2·, C−1/2·〉X.

The following result is a special case of the Feldman-Hajek theorem [18], and presents a rather
important result in the theory of Gaussian measures in infinite-dimensional Hilbert-spaces: two
Gaussian measures on an infinite-dimensional space are either equivalent or singular.

Theorem 2.1.3 (Cameron-Martin theorem): Let (X, 〈·, ·〉X) be a separable Hilbert space, let
C be a positive semidefinite, self-adjoint and trace-class covariance operator, and for i = 1, 2, with
mi ∈ X, let ϕmi = N (mi, C), be Gaussian measures on X. Then, ϕm1 ' ϕm2 if and only if
m1 −m2 ∈ Im(C1/2), and

dϕm2

dϕm1

(u) = exp
(
〈m2 −m1, u−m1〉C − 1

2
‖m1 −m2‖2C

)
,

otherwise ϕm1 ⊥ ϕm2 . Here we have denoted 〈a, b〉C = 〈C−1/2a, C−1/2b〉X, ∀a, b ∈ X.

This is in stark contrast to the finite-dimensional case, where absolute continuity between trans-
lated Gaussian probability measures holds for arbitrary translations. This is a fact of paramount
importance when discussing BIP in infinite dimensions.

2.1.3 Spaces of probability measures

Let (X, ‖·‖X) be a separable Banach space with associated Borel σ-algebra B(X). We will denote
byM(X) the set of real-valued signed measures on (X,B(X)), and byM(X) ⊂ M(X) the set of
probability measures on (X,B(X)). Letµ ∈ M(X) be a “reference” probability measure onX. In
the context of Bayesian inverse problems, this reference probability measure should be understood
as the posterior measure (i.e., µ = µy). Furthermore, we define the following spaces:

Lr = Lr(X, µ) =
{
f : X 7→ R, µ-integrable, s.t ‖f‖rr :=

∫
X
|f(u)|rµ(du) <∞

}
,(2.5)

L0
r = L0

r(X, µ) =
{
f ∈ Lr(X, µ), s.t µ(f) :=

∫
X
f(u)µ(du) = 0

}
.
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2.1 Preliminaries

Notice that, clearly, L0
r(X, µ) ⊂ Lr(X, µ). In the particular case where r = 2, L2(X, µ) (and

henceL0
2) is a Hilbert space with inner product given by

〈f, g〉L2 :=

∫
X
f(u)g(u)µ(du), f, g ∈ L2(X, µ).

Moreover, when r = ∞, we define

L∞(X, µ) :=

f : X 7→ R,B(X)−measurable s.t. inf
µ(B)=0
B∈B(X)

sup
y∈X\B

|f(y)| <∞

 .

In addition, for any r ∈ [1,∞], we define the spaces of (signed) measures

Mr(X, µ) := {ν ∈ M(X) s.t. ν � µ, ‖ν‖Lr(X,µ) <∞},

where ‖ν‖Lr(X,µ) :=

∥∥∥∥dνdµ
∥∥∥∥
Lr(X,µ)

,

together with

M0
r(X, µ) := {ν ∈ Mr(X, u), s.t. ν(X) = 0}.

Once again, in the particular case where r = 2,M2(X, µ) is a Hilbert space with inner product
given by:

〈ν, π〉M2 :=

∫
X

dν
dµ

(u)
dπ
dµ

(u)µ(du), ν, π ∈ M2(X, µ).

Notice that the definition of theLr (respectivelyMr) norm depends on the reference measure
µ on X. We remark that the function spaceLr(X, µ) is isometrically isomorphic to the space of
measuresMr(X, µ), as stated in [143].
We now define some commonly-used (pseudo)metrics for a space of probability measures. We will
use some of these metrics to study the convergence of the MCMC algorithms in Chapters 4, 5 and
6.

Definition 2.1.8 (Total variation distance): Let µ, ν ∈ M(X) be absolutely continuous with
respect to a common probability measure λ ∈ M(X). The Total Variation (TV) distance between µ
and ν is given by

dTV(µ, ν) :=
1

2

∫
X

∣∣∣∣dµdλ (u)− dν
dλ

(u)

∣∣∣∣λ(du) = 1−
∫

X
min

{
dµ
dλ

(u),
dν
dλ

(u)

}
λ(du)

=
1

2
‖µ− ν‖M1(X,λ) ,
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where the second equality comes from the fact thatmin{a, b} = 1
2(a+ b− |a− b|)

Notice that in the case where ν � µ, the TV distance between µ, ν is then given by

dTV(µ, ν) =
1

2

∫
X

∣∣∣∣1− dν
dµ

(u)

∣∣∣∣µ(du)
Definition 2.1.9 (Hellinger distance): Let µ, ν ∈ M(X) be absolutely continuous with respect
to a common probability measure λ ∈ M(X). TheHellinger distance between µ and ν is given by

dHell(µ, ν) :=

1

2

∫
X

(√
dµ
dλ

(u)−
√

dν
dλ

(u)

)2

λ(du)

1/2

Similarly as before, notice that in the case where ν � µ, the Hellinger distance is then given by

dHell(µ, ν) :=

1

2

∫
X

(
1−

√
dν
dµ

(u)

)2

µ(du)

1/2

Definition 2.1.10 (Kullback-Liebler divergence): Let ν, µ ∈ M(X) be two probability
measures with ν � µ. The Kullback-Liebler (KL) divergence between ν andµ denoted by dKL(ν, µ)
is given by

dKL(ν, µ) =

∫
X
log
(
dν
dµ

(u)

)
ν(du)

Notice that dKL(µ, ν) is not a proper metric since, in general, dKL(µ, ν) 6= dKL(ν, µ).

It is a consequence of Jensen’s inequality [48] that dKL(µ, ν) ≥ 0.

2.2 Bayesian inverse problems

We now present a rigorous derivation of Bayes’ theorem in separable Banach spaces. Let (X, ‖·‖X)

and (Y, ‖·‖Y) be two separable, potentially infinite-dimensional, Banach spaces, r equipped with
Borel σ-algebra B(X) and B(Y), respectively, and let F : X → Y be a measurable forward
mapping operator. We are interested in obtaining the conditional probability distribution of
u ∈ X given some noise-polluted measured data y ∈ Y, where

y = F(u) + η, η ∼ µnoise,

where η ∈ Y represents the random noise polluting the measured data and µnoise is a probabil-
ity measure on (Y,B(Y)). Furthermore we assume that u follows a prior distribution, µpr on
(X,B(X)), usually encoding the information available on u before any data has been observed. A
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2.2 Bayesian inverse problems

key component of this approach is that all its terms, namely y, η, u (and henceF(u)), are random
variables. Furthermore it is assumed that u and η are independent random variables.
Denote by µunoise the translation of µnoise byF(u). Our goal is to use the technical result presented
in Theorem 2.1.1 to construct a (potentially infinite-dimensional) version of Bayes’ theorem. We
will require the following assumptions on µpr, µnoise and µunoise to hold.

Assumption 2.2.1 (Fundamental assumptions for Bayes’ Theorem): Given µnoise and µunoise,
it holds that

1. for µpr-a.e. u, it holds that µunoise � µnoise. Furthermore, there exists a B(X) ⊗ B(Y)-
measurable functionΦ : X × Y → R such that

dµunoise
dµnoise

(y) :=

{ exp(−Φ(u;y))
Z(y) if 0 < Z(y) < +∞,

1 otherwise
, (2.6)

withZ(y) :=
∫

X exp(−Φ(u; y))µpr(du).

2. 0 < Z(y) < +∞, µnoise-a.s.

For any given (u, y) ∈ X × Y, we will refer toΦ(u; y) as the potential or negative log-likelihood.

Remark 2.2.1: Notice that Φ has the form Φ(u; y) = Φ̃(F(u); y), with Φ̃ : Y × Y → R,
B(Y × Y)-measurable.

Although Assumption 2.2.1.1 is relatively simple to satisfy in the finite-dimensional data case (i.e.,
when Y = RM , with someM ≥ 1), it is certainly not as straightforward to satisfy if Y is an
infinite-dimensionalHilbert space. To visualize how this difficulty arises in the infinite-dimensional
case, let (Y, 〈·, ·〉) be an infinite-dimensional separable Hilbert space, and set µnoise = N (0,Γ),
for Γ : Y → Y a self-adjoint, positive-definite, trace-class operator. Then, for (2.6) to hold
true, it follows from Theorem 2.1.3 that F must satisfy F(u) ∈ Im(Γ1/2), µpr-a.s. which is
not necessarily the case. Conversely, if ∀u ∈ X it holdsF(u) ∈ Im(Γ1/2), it then follows from
the Cameron-Martin theorem thatΦ(u; y) = 1

2 ‖F(u)‖2Γ − 〈F(u), y〉Γ, which is a measurable
function in u and y.
Assumption 2.2.1.2 depends both on the functional form ofΦ and the choice of prior, and can be
satisfied under some relatively mild (and rather common [156]) assumptions on the structure of
the BIP (c.f. Theorem 2.2.2).
We can now state the general version of Bayes’ theorem. We remark that this is a well-known result
(see, e.g., [40, 94, 153, 156]), however, we give its proof here for the sake of completeness.

Theorem 2.2.1 (Bayes’ theorem): Suppose Assumptions 2.2.1 hold. Then, the conditional distri-
bution µy of u|y exists and µy � µpr, with

dµy

dµpr
(u) :=

1

Z(y)
exp (−Φ(u; y)) . (2.7)
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We will refer to µy as the posterior probability measure.

Proof. Define the joint probability measure Π(du, dy) := µpr(du)µnoise(dy), corresponding
to the process of sampling u ∼ µpr and y ∼ µnoise independently of each other. Similarly,
define Π̃(du, dy) := µpr(du)µunoise(dy), as the probability measure corresponding to the process
associated to first sampling u ∼ µpr, evaluatingF(u), shifting µnoise byF(u), and then sampling
y ∼ µunoise. It is clear from the Assumption 2.2.1 that Π̃ � Π. Furthermore, sinceΠ follows the
process of sampling u and y independently of each other, then, clearly, y|u exists underΠ. The
desired result then follows from an application of Theorem 2.1.1 with µ(du, dy) = Π̃(du, dy)
and ν(du, dy) = Π(du, dy).

Remark 2.2.2 (On the Bayesian formulation with finite-dimensional data): Notice that in
the case where Y is finite-dimensional and µnoise has a Lebesgue density πnoise, the potential function
would look like

Φ(u; y) = − log
[
πnoise(y −F(u))

πnoise(y)

]
= − log [πnoise(y −F(u))] + log [πnoise(y)]

= − log[πnoise(y −F(u))] + c(y),

where the constant c(y) depends only on the data y and as such, can be absorbed as a redefinition of
the normalization constant.

2.2.1 Prior modeling

Oneof themost important (and potentially challenging) aspects of a BIP is choosing an appropriate
prior model. Choosing an appropriate prior typically requires some expert information on the
model, and it is hence problemdependent. For finite-dimensional state spaces, such asRK , K ≥ 1,
one could, for example, assume that for each i = 1, 2, . . . ,K , ui is independently distributed
according to a prior measure µpr,i , and then set u ∼ µpr := ⊗K

i=1µpr,i. Alternatively, one could,
of course, use priors that correlate some or all of the components of u, provided that such an
information is available.
Prior modeling in function spaces is less straightforward, and a rather significant body of literature
is devoted to the construction and analysis of special types of prior measures, such as Gaussian,
Besov or uniform [32, 14, 156, 130] priors. These sort of priors arise in the case, for example, when
the underlying mathematical model has a physical domainD ⊂ Rd, d = 1, 2, 3, with u ∼ X
understood as a random field or function (rather than as a set of random parameters) on a space X
of functions defined onD. In the model problems presented in Section 1.2, this corresponds, for
example, to the spatially-varying permeability field κ(x, ·), x ∈ D for model problem 1.2.1, or to
the material density ρ(x, ·), x ∈ D for model problem 1.2.2.
We now present the main idea behind the construction of infinite-dimensional prior measures.
Let (X, ‖·‖X) be a separable, infinite-dimensional Banach space ofR-valued functions defined on
a domainD. In addition, consider a sequence of linearly independent functions {φj}j∈N ∈ X,
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with ‖φj‖X = 1,∀j ∈ N, and let {uj}j∈N be a sequence of scalar, independently and identically
distributed random variables uj ∼ ν1, with νj a probability measure on (I,B(I)), I ⊂ R.
Furthermore, denote by I∞ = ×i∈NI , together with the Borel σ-algebra B(I∞) generated by the
cylindrical setsA ⊂ I∞,A =×i∈NAi, with finitely-manyAi 6= I and define µ = ×j∈Nνj , as a
measure on (I∞,B(I∞)). For some p ∈ [1,∞], let {wi}i∈N ∈ `p be a deterministic sequence
chosen such that, for some givenm0 ∈ X, the series

u = m0 +
∑
j∈N

φjwjuj

converges in Lp(X, µ) (which could happen, e.g., if νj ∈ N , ∀j ∈ N). In this setting, one can
then model µpr := Law(m0 +

∑
j∈N φjwjuj). This spectral representation of the prior lays

the basis for constructing priors in infinite-dimensional space. Throughout this work we will
limit ourselves to the use of Gaussian prior measures when modeling BIPs in infinite-dimensions,
however, we refer the interested reader to, e.g., [22, 39, 73, 166] for the formulation, analysis, and
solution of BIPs in function space using non-Gaussian priors.
We now proceed to describe such a methodology for Gaussian measures. Using a series expansion
to model Gaussian priors in the context of BIP has been presented, e.g., in the seminal works of
Stuart[156], Dashti and Stuart [40], and Cotter et. al., [31]. Let (X, 〈·, ·〉X) denote a separable
Hilbert space, let C : X × X → R be a self-adjoint and trace-class operator, and, without loss of
generality, consider the prior µpr = N (0, C). We can generate samples from µpr be one of the
following methods:

Karhunen-Loeve expansion

A first straightforward method to sample u ∼ µpr is to consider the Karhunen-Loeve expansion.
Let {λi}i∈N, {φi}i∈N be the (orthonormalized) eigenvalues and eigenfunctions of C. Since C is a
trace-class operator, it then follows that

∑
i∈N λi < +∞, and as such, it can be seen that the series

u =

∞∑
i=1

√
λiφiui, ui

iid∼ N (0, 1), i = 1, 2, . . . , (2.8)

converges in L2(X, µ), with µ = ×i∈NN (0, 1). Such a series is called the Karhunen-Loeve
expansion of u. In practice, equation (2.8) needs to be truncated at a termK , leading to the finite
dimensional approximation

uK =

K∑
i=1

√
λiφiui, ui

iid∼ N (0, 1), i = 1, 2, . . . ,K. (2.9)

One can then sample the (truncated) random variable uK ≈ u from µKpr ≈ µpr by sampling
K independently and identically distributed random variables ui ∼ N (0, 1), i = 1, . . . ,K ,
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Figure 2.1: Random field generated using the KL expansion of a random field with different truncation
levelsK = 10, 50, 100.

and then summing the terms in equation (2.9). Of course, such a truncation induces a finite-
dimensional vector uK approximating u, which will in turn induce an approximate posterior
measure µyK → µy in a suitable sense asK → ∞. We will discuss the convergence of µyK → µy

in Section 2.2.3. Such an approximation is depicted in Figure 2.1, where we present a realization of
the permeability field κ(x, u) in Example 1.2.1 truncated at three different values ofK . As it can
be seen, finer details on the field can be clearly appreciated asK increases. It is worth mentioning,
however, that the ”main features” of such a random field are captured by the first values ui in the
KL expansion. Informally speaking, larger values ofK are able to capture higher levels of detail on
the field. Throughout this thesis, we will employ this method of generating random fields u in
Chapters 5 and 6.

PDE-based priors

An alternative approach to generating samples u ∼ N (0, C) is by the characterization of the
precision operatorA2 = C−1 as a second-order “Laplace-like” differential operator on a bounded,
open setD ⊂ Rd, d = 1, 2, 3, with a domain chosen so thatA is positive definite and invertible.
This approach is particularly attractive when the random field u is defined on a physical domain
D. Furthermore, one can control the regularity of the random field u by specifying the regularity
of the operatorA. Lastly, there is a wide body of literature and computational resources for the
efficient numerical solution of PDEs (see, e.g., [101]), making this approach also attractive from
an implementation perspective. In order to model the precision operator C−1 as a “Laplace-like”
differential operator, we need the following conditions to hold [156]:

Assumption 2.2.2: The operatorA, densely defined on a Hilbert space H = L2(D;R) satisfies
the following properties:

1. A is positive definite, self-adjoint operator with compact inverse.
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2. The eigenfunctions and eigenvalues, {φj}j∈N and {λj}j∈N, respectively, form an orthonor-
mal basis for H.

3. There exist positive constants cm, CM such that for all j ∈ N it holds that

cm ≤ λj

j2/d
≤ CM .

4. There existsC ′ such that

sup
j∈N

(
‖φj‖L∞

+
1

j
‖Dφj‖L∞

)
≤ C ′.

Before proceeding to describe how to generate samples u ∼ N (0,A−2) we first define spatial
white noise (see, e.g., [33] ).

Definition 2.2.1 (spatial white noise): We say that the linear isometry Ẇ : L2(D;R) →
L2(Ω;R), with (Ω, F,P) a complete probability space, is a white noise, if given any {φj}j∈N ∈
L2(D;R), then hj := 〈Ẇ , φj〉 are Gaussian random variables with mean zero and covariance
given by

E[hihj ] = 〈φi, φj〉L2(D), ∀i, j ∈ N,

where 〈Ẇ , φj〉 denotes the action of Ẇ on φj .

Given some white noise Ẇ , one can generate samples u ∼ N (0,A−2) by solving Au = Ẇ ,
where the solution should be interpreted in an appropriate sense, as it will become clearer shortly
after.
As an example, consider the following elliptic PDE:{

−α∇ · (Λ∇u) + αu = Ẇ inD,

−α (Λ∇u) · n = 0 on ∂D,
(2.10)

wheren denotes the outward unit normal on∂D,α > 0 andΛ ∈ Rd×d is a symmetric, uniformly
bounded, positive-definite tensor denoting the anisotropy of the elliptic operator. In practice, the
solution to equation (2.10) needs to be numerically approximated using, e.g., the finite element
or the finite-difference method with accuracy parameterK (which denotes, e.g., the number of
degrees of freedom in the approximation). Thus, just as with the Karhunen-Loeve approach, this
method results in an approximate posterior µyK → µy asK → ∞, where again, the convergence
is in a suitable sense. This is depicted in Figure 2.2, where a realization of the the permeability field
κ(x, ·) in Example 1.2.1 is shown at three levels of discretization. As it can be seen, finer details on
the field can be clearly appreciated as the underlying (finite element) mesh becomes more refined.
We will present this approximation in more detail in Section 2.2.3.
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Figure 2.2: Top: Discretization meshes generated with a Laplace-like operatorA−2. Bottom: Discretized
random fields corresponding to each mesh
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2.2.2 Well-posedness

A problem is said to be well-posed in the Hadamard sense, if (i) a solution exists and is unique and
(ii) the behavior of such a solution changes continuously with the initial conditions, i.e., small
changes on the input of the problem produce small changes on the output.
A problem that is not (Hadamard) well-posed, is said to be ill-posed. It is known that inverse
problems (when seen, in a broad sense as “determining the input of a model given its solution”) are
often ill-posed. In the classical (i.e., frequentist’s) approach to inverse problems, one typically aims
at eliminating this ill-posedness by introducing a suitable regularization term in the minimization
functional, however, we remark that these regularization techniques are outside the scope of this
thesis, and invite the interested reader to the works, e.g., [85, 158] for its exposition in the context
of inverse problems, and to the more recent book [55], for an introduction of this topic in the
(closely-related) field of statistical learning.
Alternatively, the issue of well-posedness of an inverse problem can also be tackled from a Bayesian
perspective. Indeed, broadly speaking (we will be more detailed shortly) a BIP is said to be well-
posed if (i) there exists a unique posterior probability measure, and (ii) small changes in the data
produce small changes in the posterior.
There are, arguably, two major notions of this well-posedness, namely the so-called Lipschitz-
Hellinger well posedness, presented by Stuart and Dashti [40, 156], and the more general concept
of (M, d)-well posedness of Latz [94], whereM is to be understood as space of probability measures
and d as a (pseudo-)distance between such measures. We will present the Lipschitz-Hellinger well
posedness of Stuart, and refer the interesting reader to the works [94, 154] for a further study on
Bayesian well-posedness.
Let (Y, ‖·‖Y) be a separable, possibly infinite-dimensional Banach space, with associated Borel
σ-algebra B(Y). A BIP in the form of (2.7) is Lipschitz-Hellinger well-posed [94, 156] if

i (Existence and uniqueness) There exists a unique posterior probability measure µy that is
absolutely continuous with respect to µpr.

ii (stability) There exists a positive constantC = C(r) such that for all y, y′ ∈ Y with r >
max{‖y‖Y , ‖y′‖Y}, it holds that dHell(µ

y, µy
′
) < C(r) ‖y − y′‖Y , i.e., the mapping

y 7→ µy is locally Lipschitz continuous in the Hellinger metric.

It is shown in [40] that a BIP is well-posed under the following assumptions on the potential
function (negative log-likelihood),Φ(u; y) : X × Y → R, and the prior µpr.

Assumption 2.2.3: Let (X, ‖·‖X), (Y, ‖·‖Y) be two separable Banach spaces with u ∈ X and
y ∈ Y. We assume thatΦ : X × Y 7→ R has the following properties:

1. ∀ε, r > 0,∃M(ε, r) > 0 such that ∀u ∈ X, y ∈ Y, ‖y‖Y < r,

Φ(u; y) > M − ε‖u‖2X,

that is, there is a lower (quadratic) bound on the potential function.
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2. ∀r > 0,∃K(r) > 0measurable such that ∀u ∈ X, y ∈ Y, withmax{‖u‖X, ‖y‖Y} < r,

Φ(u; y) ≤ K(r),

i.e, there is an upper bound on the potential.

3. ∀r > 0,∃L(r) > 0 such that ∀u, u′ ∈ X, y ∈ Y, withmax{‖u‖X, ‖u′‖X, ‖y‖Y} <r,

|Φ(u; y)− Φ(u′; y)| ≤ L(r)‖u− u′‖X,

which means that we have Lipschitz continuity ofΦ(·; y) with respect to the first argument.

4. ∀ε, r > 0, ∃C(ε, r) > 0 ∈ R, such that ∀ y, y′ ∈ Y, u ∈ X, withmax{‖y‖Y, ‖y′‖Y} <
r,

|Φ(u; y)− Φ(u; y′)| ≤ exp(ε‖u‖2X + C(ε, r))‖y − y′‖Y

which means that we have Lipschitz continuity of Φ(u; ·) with respect to y for any u ∈ X,
with u-dependent Lipschitz constant.

5. Given a sufficiently small ε > 0,∫
X
exp
(
ε ‖u‖2X

)
µpr(du) < +∞. (2.11)

6. Any (small) ball has positive µpr-mass, i.e.,∫
‖u‖X<r

µpr(du) > 0, ∀r > 0.

Notice that in the case of finite-dimensional, additive Gaussian noise, µnoise = N (0,Σ), Σ ∈
RM×M , we set (Y, ‖·‖Y) = (RM , ‖·‖Σ) and we have thatΦ(u; y) =

1
2 ‖y −F(u)‖2Σ ,where

‖a‖Σ =
∥∥Σ−1/2a

∥∥ , ∀a ∈ Y(= RM ). In this case, Assumptions 2.2.3.1-4 can be simplified by
the following proposition in [156], which relates to the properties ofF .

Lemma 2.2.1 (Lemma 2.8 in [156]): Let (Y, ‖·‖Y) = (RM , ‖·‖Σ) and supposeF : X → Y
satisfies the following:

i) Given ε > 0, ∃M(ε) ∈ R such that ∀u ∈ X,

‖F(u)‖Σ ≤ exp(ε‖u‖2X +M).

ii) ∀r > 0,∃K(r) > 0, such that ∀u, u′ ∈ X, withmax{‖u‖X, ‖u′‖X, } < r,∥∥F(u)−F(u′)
∥∥
Σ
≤ K(r)‖u− u′‖X.
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Then, Assumptions 2.2.3.1-4 hold forΦ(u; y) = 1
2 ‖y −F(u)‖2Σ.

We can state the following theorem of [156] which gives conditions for which a BIP of the form
1.2 is Lispchitz-Hellinger well-posed.

Theorem 2.2.2 (Theorems 4.1 and 4.2 in [156]): Suppose Assumption 2.2.3 holds. Then, the
BIP associated to (1.2) is Lipschitz-Hellinger well-posed.

Existence anduniqueness ofµy are shown in [156, Theorem4.1], while the stability of the posterior
measure with respect to the data y is given by [156, Theorem 4.2]

Remark 2.2.3: Assumptions 2.2.3 presented in [40] are sufficient, but not necessary, to prove the
well-posedness of the BIP.

Remark 2.2.4 (On the use of Gaussian priors): In the particular case where µpr = N (m, C),
withm ∈ X and C a trace-class, self-adjoint, and positive covariance operator, condition (2.11) is a
consequence of Fernique’s theorem (c.f. Theorem 2.1.2), while (2.11) holds since all balls on a separable
Banach space have positive mass under a Gaussian measure [18].

Throughout this work we will take for granted that Assumption 2.2.3 is satisfied, thus resulting
on BIPs that are Lipschitz-Hellinger well-posed. The works [94, 154] present studies on well
posedness under weaker assumptions.

2.2.3 Approximation and convergence

As mentioned in previous sections, in practice, it is often the case that one needs to sample from
an approximate posterior µyL instead of the “true” posterior µ

y . This approximate posterior µyL is
induced when

1. uL is a finite-dimensional approximation of an object in function space, which can happen,
e.g., when truncating the KL expansion of u with truncation parameter L, or in the case
where u follows a PDE-based prior discretized at level L, as in Section 2.2.1.

2. The forward mapping operator F needs to be numerically approximated by FL, which
results in an approximate potential ΦL(u; y) := ‖y −FL(u)‖2Y. This is the case, e.g.,
when the underlying mathematical model is a PDE that, for implementation purposes,
is numerically approximated (for example, via finite elements or finite differences) with
accuracy level L.

In practice, these are non-mutually exclusive approximations; in fact, they tend to go hand-in-hand
with one another, however, they each provide a different source of error; i.e., there is an error
associated to the finite-dimensional discretization of the parameter space, and there is an additional
error associated with the numerical approximaiton of the forward operator . Throughout this
work, wewill denote byΦL(u; y) the approximation ofΦ(u; y) at accuracy levelLwhich takes into
account both sources of error (i.e., finite-basis representation of u and numerical approximation
ofF ).
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Finite-dimensional discretization for PDE-based priors

Wenowpresent a finite-dimensional approximation of an infinite-dimensional BIP, in the setting of
PDE-based priors (c.f. Section 2.2.1). We follow a procedure similar to that of [23]. Let (Y, ‖·‖Y)

be a separable Banach space, let X = L2(D;R) and let µpr = N (0,A−2) denote the prior
measure on (X,B(X)) withA : Dom(A) → L2(D;R) a “Laplace-like” differential operator
satisfying Assumption 2.2.2, with eigenvalues and eigenfunctions {λj}j∈N, {φj}j∈N, respectively.
For any s ∈ R, define the space

V s :=

v ∈ L2(D;R) :
∑
j∈N

〈v, φj〉2L2
λsj < +∞

 ,

with norm ‖v‖2V s :=
∑

j∈N〈v, φj〉2λsj . Setting s = 1, A can be extended continuously as
A : V → V ∗, denote now by XL a finite-dimensional subspace of V of dimensionKL and let
{φj}KL

j=1 be a basis for XL. In XL we can write the finite-dimensional problem find ũL ∈ XL
satisfying

〈AũL, vL〉V,V ∗ = 〈Ẇ , vL〉, ∀vL ∈ XL. (2.12)

Expanding ũL on the basis ũL =
∑KL

j=1(uL)jφj , ũL can be identified by the vector uL ∈ Rwith
entries (uL)j ∈ R.
Sincehj = 〈Ẇ , φj〉 is a mean-zero Gaussian random variable with covariance given byE[hihj ] =
〈φi, φj〉 =: MLi,j

, it follows that the term bL := (〈Ẇ , φ1〉, . . . , 〈Ẇ , φKL〉) is a Gaussian
vector inRKL with covariance matrixML ∈ RKL×KL ,with entriesMLi,j

. Furthermore, letting
AL ∈ RKL×KL be the matrix with entriesALi,j

= 〈Aφi, φj〉V,V ∗ , i, j ∈ {1, 2, . . . ,KL}, one
can write a finite-dimensional version of (2.12) as

ALuL = bL, bL ∼ N (0,ML).

From a practical perspective, one can then generate uL by

uL = A−1
L M1/2ξ, ξ ∼ N (0, IKL×KL),

which in turn implies that the probability measure of uL ∈ RKL is µL ∼ N (0, A−1
L MLA

−1
L ).

Typically,AL andML are the stiffness andmassmatrices in the FE literature. TheGaussianmeasure
of uL then induces a Gaussian measure of ũL in X, which is actually concentrated on XL. We
can equivalently characterize ũL ∈ XL as a suitable projection on u by the following procedure:
given u ∼ N (0,A−2), define uL such that 〈AuL, vL〉V,V ∗ = 〈Au, vL〉V,V ∗, ∀vL ∈ XL. This
procedure induces a “projection” operator PA

L : X → XL such that uL = PA
L u. Since V is
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a Polish space, it follows from [48, Theorem 10.2.2] that one can write µpr in terms of a RCP
µ̂pr(uL, dz)with z := u− uL and a marginal prior µprL(duL) on (XL,B(XL)) of the form:

µpr(du) = µ̂pr(uL, dz)µprL(duL).

Lastly, consider the discretized forward operator FL : XL → Y understood as the map taking
into account the state space discretization, together with the numerical approximation of the
mathematical model drivingF , and suppose that Assumption 2.2.1 holds withΦ : X × Y → R
replaced byΦL : X × Y → R, whereΦL(u; y) = Φ̃(FL(PA

L u); y), with Φ̃ as in Remark 2.2.1.
It then follows from Theorem 2.2.1 that there exists a “discretized” posterior measure µyL on
(X,B(X)), such that µyL � µpr, with

dµyL
dµpr

(u) :=
1

ZL
exp (−ΦL(u; y)) , withZL :=

∫
X
exp (−ΦL(u; y))µpr(du).

Notice that by proceeding in this way, the approximate posterior µyL is still defined in the infinite-
dimensional space X. On the other hand,

µyL(du) = µyL(duL, dz) =
1

ZL
exp (−ΦL(u; y))µpr(du)

=
1

ZL
exp
(
Φ̃(uL; y)

)
µ̂pr(uL, dz)µprL(duL) = µ̂yL(duL)µ̂pr(uL, dz),

with

dµ̂yL
dµprL

(uL) =
1

ZL
exp
(
−Φ̃(FL(uL); y)

)
,

i.e., the posterior µyL can be factorized as a posterior µ̂
y
L onXL and the prior RCP of u|uL. In other

words, the BIP only updated the distribution of uL in XL and leaves unchanged the conditional
distribution of u given uL, as this part is “not seen” by the approximate forward modelFL.
Stuart [156] presents the following result pertaining the convergence of the discretized posterior
to µy .

Theorem 2.2.3 (Convergence of discretized posterior): Suppose that both Φ(u; y) and
ΦL(u; y) satisfy Assumptions 2.2.3.1 and 2.2.3.2 with constants independent of L. Suppose, further-
more that for any ε > 0, there exists a finiteK ′ = K ′(ε) > 0 such that

|Φ(u; y)− ΦL(u; y)| ≤ K ′ exp(ε ‖u‖2X)Ξ(L), and∫
X
exp
(
2ε ‖u‖2X

)
µpr(du) < +∞, (2.13)
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withΞ(L) → 0 as L → ∞. Then, there exists a positive constantCH independent of ` such that

dHell(µ
y, µyL) ≤ CHΞ(L).

Remark 2.2.5 (On the posterior convergence when using Gaussian priors): In the case
where µpr = N (m, C), withm ∈ X and C is a self-adjoint, positive, trace-class covariance operator,
condition (2.13) is satisfied as a consequence of Fernique’s theorem (c.f. Theorem 2.1.2) for sufficiently
small ε. The previous theorem is a trivial adaptation of [156, Theorem 4.6], which was originally
stated for Gaussian priors.

2.3 Solving BIPs

So far this chapter has focused on the formulation of the Bayesian approach to inverse problems.
As we have seen, under some technical conditions on the prior, the noise and the underlying
mathematical model generating the data, there exists a well-defined posterior probability measure
for the set of (potentially infinite-dimensional) random parameters conditioned on the observed
(also, potentially infinite-dimensional), noise-polluted data. However, we have not discussed yet a
notion of solution to such a problem. In a broad sense, we will understand the solution to a BIP
(whether it is an exact solution or an approximation of it, as we will discuss shortly) as the process
of extracting information about u|y ∼ µy .
In many applications arising in science and engineering, one aims at obtaining statistical quantities
of a given µy-integrable quantity of interest QoI : X → R, such as its expected value over the
posterior measure,Eµy [QoI] , or the probability, under the samemeasure, ofQoI exceeding a given
threshold valueA, Pµy(QoI > A) = Eµy [11{QoI>A}]. For most problems of interest, however
the computation ofZ(y) =

∫
X exp(−Φ(u; y))µpr(du) can not be done explicitly, and even ifZ

was known, X is usually high-dimensional and the mapping u 7→ F(u) is potentially non-linear.
As such, one typically resorts to extract information from µy via sampling.

2.3.1 Markov chainMonte Carlo

These sampling techniques are broadly categorized as those which construct a Markov chain
{un}n∈N (c.f. Definition 3.1.1) starting froman initial probabilitymeasureµ0 andwhose invariant
measure (c.f. Definition 3.1.4) is µy , in such a way that Law(un) → µy as n→ ∞, in some given
sense. In practice, since the samples un, n = 1, 2, . . . , N are asymptotically distributed according
to µy , one is then generally interested in running such a chain for a largeN , discarding the firstNb

samples as a so-called burn-in. These techniques constitute a set of quite powerful methods, with
a broad body of literature devoted to their implementation and analysis, and a rather wide array of
“generic” (i.e., problem-independent) algorithms to generate such chains. However, given that
they usually require a large number of samples, they are undeniably costly. Furthermore, for large
scale problems, for which generating a new sample un+1 from un implies an evaluation of one or
more computationally expensive forward models (such as a time-dependent, non-linear PDE), the
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total computational cost associated to these methods can quickly become prohibitive. As stated in
the previous chapter, the focus of this thesis is in the development, analysis and implementation of
a special kind ofMCMC techniques which exploit the structure of the problem and the availability
of multiple approximations in a way that the total computational cost associated to the solution of
the BIP is drastically reduced. SinceMCMCmethods are at the core of the work carried out in this
thesis, we will postpone their presentation to Chapter 3, where we will discuss them in detail. For
completeness, we review here alternative solution approaches that do not rely on the construction
of Markov chains.

2.3.2 Approximate methods

These methods present a generally cheaper, albeit less accurate, alternative toMCMCmethods.
Instead of aiming to sample directly fromµy , these set of techniques aimat first finding a probability
measure νy such that νy is (i) a sufficiently accurate approximation of µy and (ii) the cost of
sampling from νy is much lower than the cost of sampling from µy . This approach can be split
into three main categories; Laplace approximation and linearization based methods [23, 56, 153],
variational methods [55, 130, 129], and transport methods [110, 123, 145, 149].

Linearization and Laplace approximation

In short, these techniques proceed by first finding theMaximum a Posteriori Point (MAP) , and
then linearizing u 7→ F(u) around such a point umap. If the prior is a Gaussian measure, this
approach results then on a Gaussian measure νy = N (m̃,K) approximating the posterior µy ,
with properly chosen m̃,K. We now present this approach in more detail.
Let (X, 〈·, ·, 〉X) be a separable Hilbert space, let Y = RM ,M ≥ 1, equipped with the usual
Euclidean norm and assume the following:

1. µpr = N (m, C) for somem ∈ X and C a self-adjoint, positive-definite, trace-class covari-
ance operator.

2. µnoise = N (0,Γ) for some symmetric, positive-definite matrix Γ ∈ RM×M .

3. The mapping u 7→ F(u) is Frechet-differentiable.

Under the additional assumption that the BIP is well-posed (i.e., Assumption 2.2.3 holds), one
can pose the BIP as sampling from the posterior µy given by

dµy

dµpr
(u) =

1

Z
exp(−Φ(u; y)) =

1

Z
exp
(
−1

2
(y −F(u))Γ−1(y −F(u))

)
.

Furthermore, denotebyE = Im(C1/2) endowedwith the inner product 〈·, ·〉C = 〈C−1/2·, C−1/2·〉X,
and define J(u) := 1

2 ‖y −F(u)‖2Γ + 1
2 ‖u−m‖2C . The MAP umap of µy , is defined as the

point u ∈ X that asymptotically maximizes the µy-measure of a ball with radius ε centered around
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it, divided by theµpr-measure of such a ball, as ε → 0. It is shown in [156] that an equivalent
interpretation of the MAP is as the point umap satisfying

umap = argmin
u∈E

J(u). (2.14)

Remark 2.3.1: Notice that umap need not be unique without any further assumptions onF .

Remark 2.3.2: In the case where (in addition to the previous assumptions)X is a finite dimensional
space (e.g.,RP ), umap is understood as the point which maximizes the posterior density with respect to
the Lebesgue measure.

Denoting byDF the Frechet derivative ofF , one can then linearizeF around umap to obtain the
following linear approximated model for the data:

y ≈ F(umap) +DF(umap)(u− umap) + η. (2.15)

It is then a consequence of Theorem 6.20 in [156] that the linearized model (2.15) induces a
Gaussian probability measure νy = N (m̃,K) approximating µy , where

K−1 := [DF(umap)]
∗Γ−1DF(umap) + C−1,

m̃ := umap

where [DF(umap)]
∗ : RM 7→ X is defined as the adjoint of [DF(umap)]definedby 〈[DF(umap)]u, v〉Rn =

〈[DF(umap)]
∗v, u〉X, ∀v ∈ RM , u ∈ X. This Gaussian approximation of µy centered around

its MAP is called Laplace’s approximation.
From a computational perspective, problem (2.14) is solved using numerical optimization al-
gorithms, such as Newton’s method. Furthermore, it is commonly the case for the covariance
operatorK to be approximated by a low-rank matrix [23, 24]; this can in turn dramatically reduce
the time required for sampling from νy .
Linearization techniques provide a first approach at approximating BIPs whose underlying mathe-
matical model is extremely computationally expensive, and for which only a few draws from νy

can be drawn under a reasonable budget. The work [23], for example, presents such an approach
for a BIP in arising seismic-imaging at the global scale where the underlying mathematical model is
a time-dependent PDE in 3 spatial dimensions. Furthermore, they also serve as a building block to
some advancedMCMCmethods, such as the so-called generalized preconditioned Crank-Nicholson
algorithm (c.f. Section 3.4 and the original references [130, 144]).
These sort of techniques are also particularly usefulwhen the posteriormeasure iswell-concentrated
around the MAP [153], which can occur, for example, in the case where the magnitude of the
polluting noise goes to zero. This is the case of the work by Schillings et. al. [151], which utilizes
importance sampling [3] to approximate integrals with respect to the posterior measureµy , using a
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Laplace approximation as a biasing (importance) distribution in a (quasi) Monte Carlo quadrature.
Furthermore, the work [151] analyzes the convergence of νy → µy as ‖Γ‖RM → 0, i.e., as the
polluting noise goes to 0; a result closely related to the Bernstein-vonMises theorem for posterior
consistency [25, 104]. Similarly, using a Laplace approximation as a biasing distribution in the
context of importance sampling, has also been proposed in [8, 9, 102] to accelerate the computation
of a so-called inner-loop integral for a problem arising in optimal experimental design. Of particular
relevance to us is the work [9], where the authors create a (mesh-dependent) hierarchy of Laplace
approximations, and exploit such a hierarchy using Multi-level Monte Carlo [59, 60].

Variational methods

Variational methods can be understood as a generalization of the previously discussed method.
Indeed, given a family of probability measuresHΘ, parametrized by some θ ∈ Θ (whereΘ is a set
of admissible parameters) the idea behind these methods is to find νθ ∈ HΘ solving:

ν∗θ = arg min
νθ∈HΘ

d̃(·) (νθ, µ
y) ,

for some suitable (pseudo-)distance d̃(·) between probability measures, commonly taken as the KL
divergence [130, 129]. We now present this approach in slightly more detail. Let νθ � µpr with

dνθ
dµpr

(u) :=
1

Zν
exp (−ψ(u; θ)) ,

for some measurable function ψ(·; θ) : X → R, parametrized by θ ∈ Θ. We aim at finding
νθ ∈ Hθ which minimizes:

dKL(νθ, µ
y) = Eνθ

[
log
(
dνθ
dµy

(u)

)]
or (2.16)

dKL(µ
y, νθ) = Eµy

[
log
(
dµy

dνθ
(u)

)]
, (2.17)

provided that such Radon-Nikodym derivatives exist. Notice that, given the lack of symmetry
of the KL divergence, if ν1θ minimizes (2.16) and ν2θ minimizes (2.17) over the same family of
probability measures, one will have, in general, that ν1θ 6= ν2θ . Furthermore, each formulation is
better suited depending on the information available; in the case where one has access to some
samples {un}Nn=0 fromµy obtained by a different methodology, one can aim at minimizing (2.17),
since such an expectation can be approximated by a Monte Carlo quadrature using {un}Nn=0. On
the flip-side, if such samples are not available a priori, then minimizing (2.16) might be a more
sensible approach. We will focus our presentation on the first direction (i.e., Equation (2.16)) and
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reiterate that the reverse direction ( Equation (2.17))) is also of interest. Under the assumption
that νθ ' µpr and µy ' µpr, it is easy to show that Equation (2.16)) becomes

J̃(θ) := dKL(νθ, µ
y) = Eνθ [∆(u; θ)]− log (Eνθ [exp(−∆(u; θ))]) ,

where ∆(u; θ) := Φ(u; y) − ψ(u; θ). It is not difficult to see that minimizing J̃ over Θ is
equivalent to minimizing dKL(νθ, µy) overΘ, which is typically done using, e.g., the Robbins-
Monro algorithm [137] as it in [110, 130, 129]. A common choice of HΘ is the space of all
Gaussian measures, which are, of course, uniquely characterized by their mean and covariance
operator. This is a natural choice for many problems arising in infinite-dimensional spaces [129],
since ψ(·, θ) is known, as a consequence of the Feldman-Hajek theorem (see, e.g., [37]), where the
parameter θ characterizes the mean and covariance operator of such a Gaussian approximation.
Notice that, in the case of (2.16), this particular choice is quite similar to the linearization method
discussed in the previous section.

Normalizing flows and measure transport

An additional set of techniques that has gained wide-spread popularity in recent years is sampling
via measure transport [165]. Throughout this subsection we will limit ourselves to the finite
dimensional case (i.e., X = RK ,K ≥ 1). Let u, z ∈ RK = X and let ν be a probability measure
on (X,B(X))which has a density with resprct to the Lebesgue measure, satisfying the assumption
that sampling from ν and evaluating its Lebesgue density at a given point is much cheaper than
doing so for µy . With a slight abuse of notation, we will write ν(u) as the (Lebesgue) density of a
measure ν evaluated at a point u ∈ X. Given a diffeomorphism T : X → X such that µy = T]ν,
we can generate samples from µy by first sampling z ∼ ν, and then setting T (z) = u ∼ µy . This
procedure induces the change of probability density:

µy(u) = ν(z) |det JT (z)|−1 = ν
(
T−1(u)

)
|det JT−1(u)| ,

where we have used the same abuse of notation to denote by µy(u) the Lebesgue density of µy

evaluated at u ∈ X. We will refer to these techniques asNormalizing Flows.
The crux of this method is to find such a diffeomorphismT . This is, in general not a trivial task and
often one needs to instead look for some optimal T = Tθ over a set of parametric diffeomorphisms
Tθ, satisfying some chosen concept of optimality (we will be more precise about this briefly).
Furthermore, if the target distribution µy has, loosely speaking, very complicated structure, a
simple Tθ (such as a scale or shift) will not work, thus, one typically constructs Tθ as a composition
ofL simpler diffeomorphisms:

Tθ = TL
θ ◦ TL−1

θ ◦ . . . ◦ T 1
θ ,

42



2.3 Solving BIPs

which induce
zk = T k−1

θ (zk−1), k = 1, . . . , L,

and

µy(u) ≈ νθ = ν(z)

L∏
k=1

(∣∣∣det JTk
θ
(zk−1)

∣∣∣−1
)
.

This poses a clear issue from a computational perspective; the complexity associated to computing
the determinant of aK ×K matrix is, in general,O(K3), thus the total cost of evaluating µy(u)
is ofO(LK3). One can circumvent this issue by setting Tθ as the set of diffeomorphisms in X
parametrized by θ, such that the determinant of their Jacobian has a smaller complexity than
O(LK3). We now proceed to briefly review three appraches to this.

Optimal Triangular Transformations (OTT)

A first approach presented by Marzouk et. al., [110, 124, 125] is to consider Tθ as the space of
triangular transformations parametrized by θ, i.e., diffeomorphisms of the form

Tθ(u) =


f1θ (u1)

f2θ (u1, u2)
...

fKθ (u1, u2, . . . , uK)

 , ∀u ∈ X, (2.18)

where, for any i = 1, . . . ,K , f iθ is the i
th component of Tθ, parametrized by θ ∈ Θ. Notice

that the Jacobian of such a transformation is lower triangular, and as such, its determinant can
be computed inK operations. Furthermore, it is known (see, e.g., [165] ) that, whenever µy �
ν, then there exists a unique transformation of the form (2.18) satisfying µy = T]ν. Such a
diffeomorphism is known as theKnothe-Rosenblatt rearrangement [165]. There is some flexibility
in the choice of f iθ : Ri → R, i = 1, 2, . . . ,K ; as stated in [110], this family of functions can be,
e.g., multivariate polynomial, or radial basis functions. Having defined Tθ, the OTT approach
then proceeds by obtaining Tθ = argmin

Tθ
dKL(Tθ,]ν, µy).Alternatively, assuming that one has

access to some samples {un}Nn=0 ∼ µy , one can instead create a diffeomorphism Sθ : X → X
where Sθ,]µy = ν by minimizing dKL(Sθ,]µy, ν) (i.e., the reverse direction of the KL divergence)
over Tθ. Once such a diffeomorphism Sθ has been created, one can then generate samples from
νθ ≈ µy by sampling from S−1

θ ν. This approach has been proposed in [125] in the context of
a delayed-rejection Metropolis-Hastings [21] to accelerate the solution of a BIP using MCMC
methods (c.f. Chapter 3).
A similar approach to OTT has been developed by the machine learning community in the context
of generative models [55, 123]. Contrary to theOTT approach, the following twomethods require
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a (potentially large) set of samples {un}Nn=0 ∼ µy obtained a priori. Nevertheless, they are still
useful in the context of BIPs. For the next two methods we will consider the case where T = Tθ is
a deep neural network parameterized by θ withL layers. Typically, works in the machine-learning
community (see, e.g., the review [123]) solve the optimization over Tθ usingmaximum-likelihood
[55].

Autorregressive flows

Autoregressive Flows (AF) model the (joint) density νθ ≈ µy(u) as the product of conditional
densities

∏
i νθ(ui | u1:i−1). A common example in literature is when the conditional densities

are parametrized as Gaussians:

νθ(ui | u1:i−1) = N (ui | mi, exp(σi)2),

where mi = Tmi(u1:i−1)

and σi = Tσi(u1:i−1),

where (mi, σi) := θi. In the above equations, the mean and standard deviations of each condi-
tional distribution are computed using (parameterized) functions of all previous variables. The
above can alternatively be written as:

ui = mi(u1:i−1) + exp(σi(u1:i−1))zi i = 1, . . . ,K

This last equation shows how the auto-regressive model can be viewed as a transformation f from
the random variables z ∈ RK to the data u ∈ RK .
Clearly, in this case, ui depends only on the components of z that are lower than or equal to i but
not any of the higher ones. This is a type of triangular transport map [149] such as the ones used
in [126].
AFs tend to be quite expressive (i.e., are able to represent a wide class of functions [123]),however,
there is a caveat associated to these methods: sampling (i.e., generating u from z) is slow, since this
process needs to be done sequentially, i.e., one must first obtain u1, then u2, and so on up to uK .
On the flip-side, determining z from u is relatively faster; each of the above equations can be solved
for zi at the same time, resulting in

zi =
ui − Tmi

exp(Tσi)
i = 0, . . . ,K − 1.

This inverse pass (obtaining z from u) is what is used in the likelihood calculations used to train
the model. To summarize this approach, it is computationally expensive to generate samples u
from it, however, evaluating the density of the approximating distribution is relatively cheap. In
summary: Samples slowly but trains (i.e., evaluates density) relatively quickly.
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In practice, one constructs several layers of AFs together with a permutation layer. This is done so
that there is somemixing between the components.

RealNVP and NICE

These are ideas presented in [43, 44] aimed at reducing the sampling cost of AFs. The RealNVP
method [44] considers a reduced version of AF for which:

ui = zi i = 1, . . . , d

ui = mi + exp(σi)zi i = d+ 1, . . .K

where

mi = Tmi(z1, . . . , zd)

σi = Tσi(z1, . . . , zd)

Hence, the transformation leaves the first d dimensions of z unchanged, while the reamingK − d

are transformed by a shiftm and scalar term exp(σ), construed in such a way thatm and exp(σ)
are some given parametric functions, depending only on the first d components of z. Note that,
in this case, both the forward and backward pass of the flow can be done fully in parallel. Its
predecessor, [43], omits the scale term exp(σi)zi altogether. Once again, one stacks several layers
of RNVP together with a permutation in order to improve expressibility. There is, of course, a
catch: such a simple form means the flow typically needs a higher number of diffeomorphisms
(i.e., a higherK value) to be able to describe complicated distributions [123].

2.3.3 Sequential methods

Sequential methods (also known as filtering or particlemethods), approach the solution to BIP
by building knowledge on the posterior µy and/or u sequentially. More precisely, let (X, ‖·‖X),

(Y, ‖·‖Y) be separable Banach spaces with associated Borel σ-algebra B(X), B(Y). Furthermore,
assume there exists a sequence of probability measures νi, i = 1, 2, . . . I on (X,B(X)), approxi-
mating µy , with the property that (i) ν0 = µpr, (ii) µy = νI , and (iii) νi ' νj ∀i, j = 1, . . . , I .
Notice then that the posterior of interest can be written as

dµy

dµpr
(u) ∝ dν1

dµpr
(u)× dν2

dν1
(u)× · · · × dνI

dνI−1
(u). (2.19)

Given some µy-integrable quantity of interest QoI, One can then approximateEµy [QoI] using a
Monte Carlo quadrature withN samples by first sampling {un}Nn=1

iid∼ ν0, and then applying
importance sampling [3] sequentially, with biasing function given by each of the Radon-Nikodym
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derivatives in (2.19). It is often the case that posterior measures concentrate around a small region
of the prior, and as such, µpr is not necessarily a good approximation to µy , which might in turn
have undesirable effects in the change of measure being carried out with the importance sampling.
In order to avoid this, one typically needs to apply a νi-invariant Markov transition kernel (c.f.
Definitions 3.1.2 and 3.1.4) at the ith step to the empirical measure of the νi-distributed samples
(also called particles). Before applying this one step of the Markov transition kernel, each particle
{un}Nn=1 is re-sampled with weightwi : X → [0, 1]

wi(un) =

dνi
dνi−1

(un)∑N
m=1

dνi
dνi−1

(um)
.

The crux of this method relies then on the construction of the approximating measures νi. These
approximations can be, e.g., based on temperatures [14] (as presented in Chapters 1 and 4),
discretization parameters for the underlying mathematical modelF (as discussed in Chapters 1, 5
and 6), [13], or both [96], where the previously discussed methodology is used in combination
withMulti-level Monte Carlo ideas [60]. Similar hierarchy-exploiting ideas have been presented by
[5, 29, 72, 79] in the context of filtering problems for partially observed diffusions.
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In this chapter, we review MCMCmethods from their theory to their implementation. More
precisely, we begin this chapter by recalling some basic concepts onMarkov kernels, the workhorse
of MCMC, and then proceed to present the convergence theory of these methods. We then
conclude this chapterwith a review (of an arbitrary selection of) some commonMCMCtechniques.
Similarly to Chapter 2, the material presented in this chapter covers a wide variety of topics, which,
for the sake of brevity, makes such a presentation necessarily short. For a more in-depth discussion
of the topics presented in this chapter, we refer the interested reader to, e.g., themonographofMeyn
and Tweedie [113], for a thorough presentation of classical results in the theory of Markov chains;
to the book [21], for a detailed introduction to someMCMCmethods and their applications, and
to the doctoral dissertations [142] and [153], together with the survey [32], for modern results
regarding the convergence and implementation of MCMCmethods in function spaces.
We remark that, for the most part, this is a review chapter where we recall some well-known results
and methods in the MCMC literature, and that almost no new material is discussed, with the
exception of Theorem 3.3.2, which is taken from the appendix of our work [108], and which
presents a bound for the non-asymptotic mean-square error of an ergodic estimator obtained using
non-reversible Markov chains. Additionally, Lemma 3.4.1 (a slight generalization of Theorem 1 in
[160]), and the ν-MALA algorithm (a variation of the∞-MALA of [12] and the pCN algorithm
of [130]), are also, to the best of the author’s knowledge, new (albeit rather incremental) results.

3.1 Markov ChainMonte Carlo

Let (X,B(X), µ) be a probabilitymeasure space, and letQoI : X → R be anµ-integrable function
that we will call quantity of interest. A central task in this work is to compute expectations of the
quantity of interest with respect to a reference probability measure, written as:

µ(QoI) := Eµ[QoI] :=
∫

X
QoI(u) µ(du). (3.1)

Ultimately, one of the goals of this thesis is to construct and analyze efficient algorithms for
estimating expectations of the form (3.1) using MCMC techniques.
For the purposes of this work, we will consider µ to be the posterior measure µy , or some hier-
archical approximation of it (e.g., a tempered version of µy , or a posterior arising from a coarse
approximation of the forward mapping operatorF ). Usually, it is not possible to sample directly
from µ using so-called direct methods (e.g., via simple transformations of random variables, in-
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3 Markov chainMonte Carlo

version of the cumulative distribution function, etc). Instead, one such way of sampling from
µ is to use MCMCmethods, which, at their core, create a Markov chain {un, n ∈ N0}whose
invariant probability measure (c.f. Definition 3.1.4) is µ. Once such a chain has been obtained up
to a certain iterationN , one can approximate Eµ[QoI]with the usual ergodic estimator, i.e.,

Eµ[QoI] ≈ 1

N

N∑
n=0

QoI(un).

We formalize these concepts in the following.

Definition 3.1.1 (Markov chain): Let µ0 be a probability measure on (X,B(X)), and consider
an ordered sequence of random variables {un, n ∈ N0} taking values in X. We say that {un, n ∈
N0} is aMarkov chain if (i) u0 ∼ µ0 and (ii) it fulfills theMarkov property; meaning, that for any
i ≥ 1, it holds

P
(
ui+1 ∈ A|u0 = ũ0, . . . , ui = ũi

)
= P

(
ui+1 ∈ A|ui = ũi

)
, A ∈ B(X), (3.2)

where, for any j ∈ N, we denoted by ũj the realization of the random variable uj .

Equation (3.2) motivates the definition ofMarkov transition kernel [143]:

Definition 3.1.2 (Markov kernel): AMarkov kernel (some times referred to as Markov Transi-
tion Kernel) on a Banach space (X, ‖·‖X) is a function p : X × B(X) → [0, 1] such that

1. For each A in B(X), the mapping X 3 u 7→ p(u,A), is a B(X)-measurable real-valued
function.

2. For each u in X, the mappingB(X) 3 A 7→ p(u,A), is a probability measure on (X,B(X)).

Loosely speaking, p(u,A) can be interpreted as the (conditional) probability of moving to a set
A ∈ B(X) given that the chain is in a current state u ∈ X. Similarly, we can define the n-step
Markov transition kernel given by the recursion:

pn(u,A) :=

∫
X
pn−1(z,A)p(u, dz), p1(u,A) = p(u,A), ∀A ∈ B(X). (3.3)

TheMarkov operator [138] associated to a Markov transition kernel is defined as follows:

Definition 3.1.3 (Markov operator): Let p : X × B(X) 7→ [0, 1] be aMarkov kernel on a
Banach space X, let f : X 7→ R be a measurable function on (X,B(X)), and let µ ∈ M(X). We
denote byP theMarkov operator (sometimes we will refer to it asMarkov transition operator), which
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3.1 Markov ChainMonte Carlo

acts to the left on measures, µ 7→ µP ∈ M(X), and to the right on functions, f 7→ Pf,measurable
on (X,B(X)), such that

(µP )(A) =

∫
X
p(u,A)µ(du), ∀A ∈ B(X),

(Pf)(u) =

∫
X
f(z)p(u, dz), ∀u ∈ X.

Similarly, for any n ∈ N, we denote the n-stepMarkov transition operator associated to (3.3) by
Pn, which clearly satisfies Pn+1 = PnP . Throughout this work, we will make the distinction
betweenMarkov kernel, denoted by lower case letters, andMarkov operator, written with an upper
case letter. We begin with the definition of invariant measure.

Definition 3.1.4 (µ-invariance): We say that aMarkov operator P is µ-invariant if µP = µ,
i.e., if it holds that

(µP )(A) =

∫
X
p(u,A)µ(du) = µ(A), ∀A ∈ B(X).

Let r ∈ [0,∞]. Given a µ-invariant Markov operator P : Lr(X, µ) → Lr(X, µ), we define its
norm by

‖P‖Lr→Lr
:= sup

‖f‖Lr
=1

‖Pf‖Lr
, f ∈ Lr,

withLr(X, µ) defined as in (2.5). Of particular importance is the operator norm in the spaceL0
r ,

which induces theLr-spectral gap γr[P ] defined by

γr[P ] := 1− ‖P‖L0
r→L0

r
,

It will be shown shortly that this quantity plays a crucial role in the convergence of Markov chains.
Given aMarkov operatorP : Lr(X, µ) → Lr(X, µ), we denote byP ∗ : Lr′(X, µ) → Lr′(X, µ)
its adjoint operator, where 1

r′ +
1
r = 1. Letting f : X → R be a µ-integrable function, and

denoting µ̂ : Lr(X, µ) → Lr(X, µ) the “averaging operator” that associates to f the constant
function µ̂f :=

∫
X f(u)µ(du), it can be shown (see, e.g., [143, page 42]) that

‖P − µ̂‖Lr→Lr
= ‖P ∗ − µ̂‖Lr′→Lr′

.

Moreover, wedefine the so-called pseudo-spectral gap ([127]) of aMarkovoperatorP : L2(X, µ) →
L2(X, µ) as follows:

γps[P ] := max
k≥1

{
γ2[(P

∗)kP k]/k
}
, k ∈ N. (3.4)
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Given a µ-invariant operator P , it follows from [143, Lemma 3.9] that for any measure ν ∈
Mr(X, µ)

d (νP )
dµ

= P ∗
(
dν
dµ

)
A related concept to invariance is that of reversibility:

Definition 3.1.5 (Reversibility): AMarkov kernelp : X×B(X) 7→ [0, 1] is said to be reversible
(or µ-reversible) with respect to a measure µ ∈ M(X) if∫

B
p(u,A)µ(du) =

∫
A
p(u,B)µ(du), ∀A,B ∈ B(X). (3.5)

which is sometimes written in the short-hand form

p(u, dv)µ(du) = p(v, du)µ(dv). (3.6)

It is straightforward to verify that if a Markov kernel is reversible with respect to a probability
measure µ, then its associatedMarkov operator P has µ as an invariant measure. Indeed, for any
setA ∈ B(X),

(µP )(A) =

∫
X
p(u,A)µ(du)

(by reversibility)
=

∫
A
p(u,X)µ(du) =

∫
A
µ(du) = µ(A),

where the second-to-last equality comes from the fact that for any u ∈ X,
∫

X p(u, dz) = 1 (since
p(u, ·) is a probability measure on X). The reverse is not true, in general. A reversible Markov
operatorP : L2(X, µ) → L2(X, µ) (resp. M2(X, µ) → M2(X, µ)) is known to be self-adjoint;
indeed, for any f, g ∈ L2(X, µ), one has that

〈Pf, g〉L2 =

∫
X
(Pf)(u)g(u)µ(du) =

∫
X

∫
X
p(u, dv)f(v)g(u)µ(du)

=

∫
X

∫
X
p(v, du)f(v)g(u)µ(dv) = 〈f, Pg〉 (by reversibility.)
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Similarly, for any ν, π ∈ M2(X, µ),

〈νP, π〉M2 =

∫
X

d(νP )
dµ

(u)
dπ
dµ

(u)µ(du) =
∫

X

dπ
dµ

(u)

(∫
X
p(v, du)ν(dv)

)
=

∫
X

∫
X

dπ
dµ

(u)p(v, du)
dν
dµ

(v)µ(dv)

=

∫
X

∫
X

dπ
dµ

(u)p(u, dv)
dν
dµ

(v)µ(du) (by reversibility)

=

∫
X

dν
dµ

(v)

(∫
X
p(u, dv)π(du)

)
=

∫
X

dν
dµ

(u)
d(πP )
dµ

(u)µ(du) = 〈ν, πP 〉M2 .

This self-adjointness plays an important role in the construction of MCMCmethods, as shown in
[127, 143]. On the one hand, it is known (see, e.g., [15, 89, 116]) that some non-reversible chains
converge faster to their invariant measure. On the other hand, under some technical conditions,
one can obtain sharper error bounds when computing ergodic estimators with samples obtained
from reversible chains ( see e.g., [143] and Theorems 3.3.2 and 3.3.1).
It is known (see, e.g, [143, Lemma3.8]) that for anyr ∈ [1,∞],MarkovoperatorsP : Lr(X, µ) →
Lr(X, µ)with invariantmeasureµ induce a weak contraction, i.e., for any f ∈ Lr(X, µ) it follows
that

‖Pf‖Lr
≤ ‖f‖Lr

, and ‖P‖Lr→Lr
≤ 1. (3.7)

Furthermore, notice that for the particular case where f = 1, one has Pf =
∫

X 1p(u, dv) =
p(u,X) = 1, i.e., the function f = 1 is an eigen-function of the operator P associated to the
eigenvalue λ = 1 and ‖P‖Lr

= 1.

3.2 Convergence

It is usually the case that µ0 6= µ, i.e., the Markov chain is not started from stationarity. This
motivates the convergence study of µ0Pn → µ. We begin by defining a notion of convergence for
Markov chains.

Definition 3.2.1 (Geometric ergodicity): Let r ∈ [1,∞]. Given a µ-invariant Markov
operatorP and a probabilitymeasureµ0 ∈ Mr(X, µ), we say that theMarkov chain {un, n ∈ N}
generated by P with u0 ∼ µ0 isMr-geometrically ergodic if there exists ρ ∈ (0, 1) and a finite
Mµ0 ∈ R+ such that ∥∥µ0Pn − µ

∥∥
Mr

≤Mµ0ρn, n ∈ N. (3.8)
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Alternatively, given a bounded functionM : X → R+, we say that theMarkov chain {un, n ∈ N}
generated by P isMr-geometrically ergodic if there exits ρ ∈ (0, 1) such that

‖pn(u, ·)− µ(·)‖Mr
≤M(u)ρn, ∀n ∈ N, for µ-a.e u ∈ X. (3.9)

We say that a chain is uniformly ergodic if eitherMµ0 in (3.8) is independent of the initial measure
µ0 or ifM(u) in (3.9) is uniformly bounded.

In practice, one typically runs the chain {un}N+nb
n=0 for N + nb iterations, where the first nb

samples are discarded to reduce the bias associated to not starting at the invariant distribution (this
is the so-called burn-in period). However, it is difficult, in general, to quantify an appropriate value
(or choice) of nb (see, e.g., [83] and [143]).
There are two closely related approaches for studying the convergence of Markov chains in general
state spaces ([65, 113, 143]), namely:

1. Spectral methods. A first approach is to examine the spectral properties of the operator
P . More precisely, if the Markov transition operator P : Lr(X, µ) → Lr(X, µ) has
a positive Lr-spectral gap, then, it is relatively straightforward to show that P generates
anMr′ -geometrically ergodic chain, where 1

r + 1
r′ = 1. Investigating convergence of

Markov chains in terms of the spectral properties of P (in particular, the existence of anL2-
spectral gap) can be traced back to the work [98], which relies upon the so-called conductance
arguments presented in [27] (which has been reprinted in [28]). A closely related approach
is presented in the work [65], where the authors consider the contractive properties of P
on a Wasserstein metric in order to show the existence of an L2-spectral gap (and hence,
geometric ergodicity) for the preconditioned Crank-Nicolson (pCN) algorithm in function
spaces (c.f Section 3.4). Spectral arguments have also been used in the analysis of hierarchical
methods, in particular in the convergence analysis of a type of parallel tempering presented
in [171]. The convergence analysis for ourGeneralized parallel tempering method ([95])
presented in Chapter 4 also relies upon these arguments. Furthermore, spectral methods
can be used to obtain rigorous non-asymptotic error bounds on theMean Squared Error
(MSE) of ergodic estimators; the work [143] presents one such bound under the additional
assumption of reversibility (c.f Theorem 3.3.1). A similar bound that does not require the
extra assumption of reversibility (at the cost of being less sharp) is presented in Theorem
3.3.2 (taken from our work [108, Appendix]).

2. Splitting methods. An independently developed (and perhaps more classical) approach
for studying the convergence of Markov chains is based on renewal theory, splitting, and
coupling arguments as in [82, 83, 99, 113, 120, 139, 140, 159]. In this case, one requires
the chain to satisfy certain conditions (c.f. Definitions 3.2.2 through 3.2.8), under which
one can study the convergence theory of the Markov chain by splitting its trajectory into
independent blocks [120], and then using the coupling inequality (c.f. Equation (3.12))
to bound its convergence in terms of the total variation distance. This approach has been
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used to study the convergence of classical MCMC algorithms, such as the Metropolis-
Hastings and the Gibbs sampler [140, 138], and will be used to study the convergence of
our Multi-level Markov chain Monte Carlo algorithms presented in Chapters 5 and 6. It is
worth mentioning that, although these coupling arguments were originally motivated in the
theoretical study of convergence of Markov chains, recent works, such as [53, 70, 76, 136],
have proposed practical coupling algorithms for Markov chains, that can be used in the
context of unbiased estimation. These coupling techniques will play a significant role for
the methods presented in Chapter 6.

We now present a summary of these two approaches. The following two results are of central
importance for the first (i.e., spectral) approach:

Lemma 3.2.1 (Spectral gap implies geometric ergodicity): For any r′ ∈ [1,∞], let P :

Lr′(X, µ) → Lr′(X, µ) be a Markov operator with a positive Lr′ -spectral gap ; that is, 1 −
‖P‖L0

r′→L0
r′
> 0. Then, the chain generated byP isMr-geometrically ergodic, where 1

r +
1
r′ = 1.

Proof. This is the proof of [143, Proposition 3.17], however, we include it for completeness. Given
some initial measure µ0 ∈ Mr(X, µ), and setting (1− γr[P ]) = ρ,we have that

∥∥µ0Pn − µ
∥∥
Mr

=
∥∥(µ0 − µ

)
Pn
∥∥
Mr

=

∥∥∥∥∥(P ∗)n
d
(
µ0 − µ

)
dµ

∥∥∥∥∥
Lr′

.

Since the function f =
d
(
µ0−µ

)
dµ ∈ L0

r′(X, µ), we then have that∥∥∥∥∥(P ∗)n
d
(
µ0 − µ

)
dµ

∥∥∥∥∥
Lr′

≤ ‖(P ∗)n‖L0
r′→L0

r′

∥∥µ0 − µ
∥∥
Mr

= ‖P‖nL0
r′→L0

r′

∥∥µ0 − µ
∥∥
Mr

= (1− γr′ [P ])
n︸ ︷︷ ︸

ρn

∥∥µ0 − µ
∥∥
Mr︸ ︷︷ ︸

Mµ0

=Mµ0ρn.

The converse of Lemma 3.2.1 is true for theL2-spectral gap, under the additional assumption of
reversibility, as shown in [138, Theorem 2.1].

Lemma 3.2.2 (L2-Geometric ergodicity and reversibility imply an L2-spectral gap): Let
P be a µ-reversible Markov transition operator. Then, P has a positiveL2(X, µ)-spectral gap if and
only if P isL2(X, µ)-geometrically ergodic.

Proof. See [138, Theorem 2.1].

We now present some definitions and results necessary for the splitting method approach.
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3 Markov chainMonte Carlo

Definition 3.2.2 (ψ-Irreducibility): Given a strictly positive measure ψ on (X,B(X)), we say
that aMarkov kernel p : X × B(X) → [0, 1] is ψ-irreducible if for all measurable setsA ∈ B(X)
with ψ(A) > 0 and for all u ∈ X, there exists a positive integer n, possibly depending on u andA
such that

pn(u,A) > 0.

We say that a chain is ψ-irreducible if it is generated by a ψ-irreducible Markov transition kernel.

ψ-Irreducibility is the weakest form of stochastic stability, and can be understood as a statement
on the “accessibility ” of the state space; loosely speaking, this accessibility can be understood as
“how easy it is to reach a set A ∈ B(X) from a point u ∈ X, when using a Markov transition
kernel p(·, ·)”.

Definition 3.2.3 (Harris recurrence): A setA ∈ B(X) is called recurrent if

P(chain visitsA infinitely often) = 1.

We say that aMarkov chain isHarris Recurrent if it is ψ-irreducible and every setA ∈ B(X) with
ψ(A) > 0 is recurrent. Similarly, we say that an operator P is Harris recurrent if it induces a
Harris recurrent chain.

Intuitively, one would expect that the previous condition must be satisfied for a Markov chain to
converge. Indeed, Meyn and Tweedie [113, Theorem 10.0.1] present the following result.

Theorem 3.2.1: Let {un, n ∈ N} be a Harris recurrent chain generated by aMarkov operator
P . Then, {un, n ∈ N} has a unique (up to constant multiples) invariant measure µ̃ (notice that µ̃
is not necessarily a probability measure) .

Furthermore, it is known from Theorem 17.0.1 (i) in [113], that, given a Harris recurrent, µ-
invariant Markov chain, the law of large numbers holds for any g ∈ L1(X, µ). It is not always easy
to show that a Markov chain is recurrent, thus, one typically needs to resort to some additional
concepts and results in the study of Markov chains.

Definition 3.2.4 (Small set): Given some positive, finite measure ν on (X,B(X)), we say that a
set S ∈ B(X) is (ν,m)-small if there exists anm ∈ N such that

pm(u,A) ≥ ν(A), ∀u ∈ S, A ∈ B(X). (3.10)

We say that S is small if (3.10) holds withm = 1.

Notice that one can replace the right hand side of (3.10) by δν̂,where δ :=
∫

X ν(du) and ν̂ = ν/δ

is the probability measure induced by normalizing ν. The name “small set” is a bit of a misnomer;
in practice, a small set S could be arbitrarily large (in fact, it could even be the whole space X for a
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3.2 Convergence

given type of chain). Some authors refer to them as test sets. A related concept is that of petite set,
defined next.

Definition 3.2.5 (Petite set): A setC ⊆ X is called petite (or (n0, δ, ν̂)-petite), if there exists
δ > 0, a ∈ (0, 1), a probability measure ν̂ on (X,B(X)), and a positive integer n0 such that

(1− a)

n0∑
n=1

anPn(u, ·) ≥ δν̂(·), ∀u ∈ C.

Notice that petite sets then allow for the covering of the minorization condition in (3.10) by a
combination of states (see, e.g., [113] for a thorough discussion on what this implies). We remark
that a small set is always petite, however, the reverse is not always true, in general. An important
result regarding irreducibility and petite sets is given next.

Theorem 3.2.2: Given someMarkov operatorP , let τuA := inf{n ≥ 1 : un ∈ A}, where {un}
is an irreducible Markov chain with operator P starting at u0 = u, denote the hitting time of the set
A ∈ B(X) from the state u. TheMarkov chain generated by P is Harris recurrent if there exists
some petite setC ∈ B(X) such that P(τuC <∞) = 1, ∀u ∈ C .

Proof. See [113, Theorem 8.3.6].

Thus, instead of showing Harris recurrence of the chain directly, one typically looks for such a
petite setC to which the chain always returns with probability 1.

Definition 3.2.6 (Aperiodicity): A ψ-irreducible chain {un} is called aperiodic, if there exists
a small set S with ψ(S) > 0 and ñ ∈ N such that

inf
u∈S

pn(u, S) > 0, ∀n ≥ ñ.

Aperiodicity can be verified in light of the following result presented in [113].

Lemma 3.2.3: Let {un}n∈N be a ψ-irreducibleMarkov chain induced by aMarkov transition
kernel p. If there exists a u ∈ X such that p(u, {u}) > 0, then, the chain is aperiodic.

A first result concerning the convergence of Markov chains, as presented by e.g., [141], is that if a
Markov operator P is µ-invariant,ψ- irreducible, aperiodic, and Harris recurrent, it then follows
that

lim
n→∞

‖pn(u, ·)− µ(·)‖M1
= 0, ∀u ∈ X.
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3 Markov chainMonte Carlo

The previous result however, does not quantify the rate at which theMarkov chain converges to
its target probability measure. We will present the so-called regeneration construction to quantify
such a rate. Given a small set S, notice that if one writes p(u, ·) as

p(u, ·) = δν̂(·) + p(u, ·)− δν̂(·)

= δν̂(·) + (1− δ)
p(u, ·)− δν̂(·)

1− δ︸ ︷︷ ︸
=:p̂(u,·)

= δν̂(·) + (1− δ)p̂(u, ·), u ∈ S, (3.11)

where the minorization condition in (3.10) guarantees the positivity of p̂(u, ·), sampling from
the probability measure p(u, ·) can be understood as sampling from the mixture (3.11), i.e., with
probability (1− δ) one samples from the auxiliary kernel p̂(u, ·), and otherwise, one samples from
ν̂(·) independently of the current state of the chain. By using arguments from renewal theory,
[113, 120] one can show that the chain regenerates (broadly speaking, “forgets about the past”)
with probability δ, i.e., every time we sample from ν̂. To see this, we begin by defining the concept
of coupling, together with the so-called coupling inequality.

Definition 3.2.7: Given two measures µ, ν on (X,B(X)), we say that a probability measure Γ
on (X × X,B(X × X)) is a coupling of µ and ν if (u, v) ∼ Γ, implies u ∼ µ and v ∼ ν.

It is known that whenever X is a Polish space (i.e., any separable, completely metrizable topological
space), the following coupling inequality holds [99] for any coupling Γ:

‖µ− ν‖tv ≤ PΓ(u 6= v), (u, v) ∼ Γ. (3.12)

Now, let P be a µ-invariant, ψ-irreducible, and aperiodic Markov transition operator satisfying a
minorization condition of the form (3.10). Furthermore, let S be a small set, define Ŝ := S × S,
and consider two µ-invariant Markov chains {un, n ∈ N}, {vn, n ∈ N} generated by P with
u0 ∼ ν and v0 ∼ µ (i.e., {vn, n ∈ N} is started at stationarity). We generate a coupling Γ of the
chains {un, n ∈ N}, {vn, n ∈ N} by using Algorithm 1.
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3.2 Convergence

Algorithm 1 Coupling Construction

1: procedureCoupling construction(µ,ν,P ,ν̂,δ,Ŝ).
2: Sample u0 ∼ ν and v0 ∼ µ

3: for n = 0, 1, . . . do
4: if un = vn then
5: Sample un+1 ∼ p(un, ·) and set vn+1 = un+1

6: else
7: if (un, vn) /∈ Ŝ then
8: Sample un+1 ∼ p(un, ·), vn+1 ∼ p(vn, ·) independently
9: else
10: with probability δ sample un+1 ∼ ν̂, and set vn+1 = un+1

11: Otherwise, sample un+1 ∼ p̂(un, ·), vn+1 ∼ p̂(un, ·), independently.
12: end if
13: end if
14: end for
15: Output {un, vn}n∈N
16: end procedure

Furthermore, denoting by T ∈ N the random time at which coupling occurs, it then follows from
the coupling inequality that∥∥pn(u0, ·)− µ(·)

∥∥
tv ≤ PΓ(v

n 6= un) ≤ PΓ(T > n). (3.13)

Under the additional (restrictive) assumption that S = X, we have the first convergence theorem.

Theorem 3.2.3 (Small state space implies uniform ergodicity): Let P be a µ-invariant,
ψ-irreducible and aperiodic Markov operator satisfying a minorization condition of the form (3.10)
with S = X and n = 1. Then, theMarkov chain generated by P isM1-uniformly ergodic.

Proof. Notice that sinceS = X, at any given step, the chain can sample from ν̂ (and hence, couple)
with probability δ. Thus, the random variable T follows a geometric(δ) distribution, and as such,
PΓ(T = n) = δ(1− δ)n−1, for which it follows that PΓ(T > n) = (1− δ)n. Thus, from the
coupling inequality (3.13) it then follows that∥∥pn(u0, ·)− µ(·)

∥∥
M1(X,µ)

= 2
∥∥pn(u0, ·)− µ(·)

∥∥
tv ≤ 2(1− δ)n.

Remark 3.2.1: It is shown in [113, Theorem 16.0.2] that the converse of the previous theorem
holds true as well, i.e., aMarkov chain is uniformly ergodic if and only if the entire state space is a
small set.
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3 Markov chainMonte Carlo

However, this coupling argument can only be applied whenever a minorization condition of the
form (3.10) holds, i.e., whenever the chain is at a current state u contained in a small set. In order
to show convergence in the case where S ⊂ X, the chain would then need to drift towards this
small set. We now formalize this intuition.

Definition 3.2.8 (Drift condition): AMarkov chain induced by aMarkov operator P is said
to satisfy a drift condition if there exist a function V : X → [1,∞], a small set S and positive
constants λ ∈ (0, 1), b ∈ R+, such that the following holds:

(PV )(u) ≤ λV (u) + b11{u∈S}, u ∈ X. (3.14)

Here, the function V : X → [1,∞] is called a Lyapunov function, and 11{u∈S} is the characteristic
function of the set S.

Notice that (PV )(u) can be understood asEp(u,·)
[
V (un+1)|un = u

]
,where the expectation is

taken with respect to the measure p(u, ·). Defining∆V (u) := (PV )(u)−V (u), it is easy to see
then that∆V (u) < 0whenever the chain is not in the small set, thus making the chain drift, on
average, to the regions of X where V (u) is small (i.e., to S). Furthermore, it does so in such a way
that for points u ∈ X for which V (u) is large, this drift is faster. Intuitively ([83]), this implies
that once the chain leaves the small set S, it tends to return rather quickly to it. This motivates the
following classical results.

Theorem 3.2.4 (Existence of an invariant measure, and convergence to it): Let P be a
ψ-irreducible and aperiodic Markov operator satisfying a drift condition as in Equation (3.14).
Then, it holds that

1. There exists a unique invariant probability measure µ for P .

2. The chain generated by P isM1-geometrically ergodic.

3. M1-geometric ergodicity is equivalent to

‖pn(u, ·)− µ(·)‖V ≤MV (u)ρn, ∀n ≥ 0, µ-a.e.u ∈ X, (3.15)

where ‖µ(·)‖V := sup
|f |≤V

|µ(f)|, M ∈ R+, ρ ∈ (0, 1).

Proof. This is a standard result in the Theory of Markov chains. See, e.g., [113, Theorem 15.0.1]

It is easy to see that Markov chains for which the bound on the right hand side of (3.15) does not
depend on u are uniformly ergodic. The following result demonstrates the reverse implication

Theorem 3.2.5 (Bounded Lyapunov function, [113]): AMarkov chain on a general state
space X is uniformly ergodic if and only if it satisfies a drift condition of the form (3.14) with a
bounded Lyapunov function V : X → [1, Vmax], Vmax ∈ R+, and a small set S.
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3.3 MSE bounds

Proof. See [113, Theorem 16.0.2, implication viii].

A further consequence of a drift condition is the existence of a central limit theorem, as shown in
Theorem 17.0.1(ii-iv) of [113]

Theorem 3.2.6 (Drift condition and Harris recurrence imply a central limit theorem):
Let P be a µ-invariant, Harris recurrentMarkov operator satisfying a drift condition of the form
(3.14). Denote by {un, n ∈ N} theMarkov chain obtained from such an operator with u0 ∼ µ0,
let f : X → R be a function satisfying f2 ≤ V , where V is the Lyapunov function of the drift
condition, and define g(u) := f(u)−

∫
X f(u)µ(du). Then, the constant

Vµ[f ] := Eµ[g
2(u0)] + 2

∞∑
n=1

Eµ

[
g(u0)g(un)

]
,

is well-defined, non-negative, and corresponds to the asymptotic variance

lim
N→∞

1

N
Eµ

( N∑
n=1

g(un)

)2
 = Vµ[f ].

Furthermore, ifVµ[f ] > 0, then the central limit theorem holds for f , i.e.,

√
N

(
1

N

N∑
n=1

f (un)− Eµ[f ]

)
D→ N (0,Vµ[f ]) , asN → ∞,

where we used the symbol “ D→” to denote convergence in distribution.

Proof. See Theorem 17.0.1 in [113].

In practice, the asymptotic varianceVµ[f ] is estimatedusing, e.g., batchedmeans ([54, 57]),window
methods ([57]), or with regeneration arguments as in [93, 92].

3.3 MSE bounds

3.3.1 Non-asymptotic bounds on theMSE: known results

Let f : X → R be a µ-integrable function, and denote by {un}N+nb
n=0 the (finite-length) Markov

chain obtain from a geometrically ergodic, µ-invariant, Markov operator P , with u0 ∼ µ0.
Furthermore, denote by f̂N,nb

= 1
N

∑N
n=1 f(u

n+nb) the ergodic estimator obtained from the
Markov chain generated by P . We define the Mean Squared Error (MSE) of the chain as

MSE(f̂N,nb
;µ0) := Eµ0,P

[(
f̂N,nb

− Eµ[f ]
)2]

, (3.16)
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3 Markov chainMonte Carlo

where Eµ0,P [·] denotes expectation with respect to the Markov chain started from an initial
measure µ0, and induced by the µ-invariant Markov operator P . It is of interest for practical
applications to obtain (or at least, to quantify) non-asymptotic error bounds for the MSE (3.16).
In the context of this thesis, such will be the case in Chapters 5 and 6, where verifying the cost-
tolerance assumptions ofML-MCMCalgorithms ([45, 108]) will require a non -asymptotic bound
on theMSE of a given estimator in terms of its asymptotic variance (c.f. AssumptionT3 inChapter
5).
Results providing bounds on (3.16) are, to the best of the author’s knowledge, rather scarce, with
only a handful of results on this topic. In particular, under the assumption of a drift condition on
P , with Lyapunov function V , the work [92] presents a bound on the form

MSE(f̂N,nb
;µ0) ≤

(√
Vµ[f ]

N

(
1 +

c0(P )

N

)
+
c1(P, f)

N

)2

,

where the terms ci, i = 0, 1, depend on the constant δ in the minorization condition (3.10),
together with the constant λ and the Lyapunov function V in the drift condition (3.14). Under
the same assumption of a drift condition, a similar bound is presented in [93, Theorem 3.1] of the
form

MSE(f̂N,nb
;µ0) ≤ N−1

(
sup
u∈X

|f − µ(f)|2

V (u)

)(
1 +

2Bρ

1− ρ

)(
µ(V ) +

c2(V, µ
0, µ)

N(1− ρ)

)
.

for some c2(B, V, µ, µ0) > 0, withB, V, ρ once again as in (3.15).
The work [143], presents a non-assymptotic bound on the MSE for reversible chains.

Theorem 3.3.1: Let f ∈ L2(X, µ), be a µ-square integrable function and write g(u) = f(u)−∫
X f(u)µ(du). LetP be a µ-reversibleMarkov operator and assume the chain generated byP starts
from an initial probability measure µ0 � µ, with dµ0

dµ ∈ L∞(X, µ). In addition, suppose that

R1. (L2-spectral gap) there exists b ∈ (0, 1) such that

‖P‖L0
2(X,µ)→L0

2(X,µ) ≤ b,

R2. (L1-exponential convergence) there exists c̃ ∈ R+, a ∈ (0, 1) such that

∥∥µ0Pn − µ
∥∥
M1(X,µ)

:=

∥∥∥∥d(µ0Pn)

dµ
− 1

∥∥∥∥
L1(X,µ)

≤ c̃an,
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3.3 MSE bounds

Then, the non-asymptotic MSE is given by

Eµ0,P

∣∣∣∣∣ 1N
N∑

n=1

g(un+nb)

∣∣∣∣∣
2

≤ Vµ[u]

N

 2

(1− b)
+

2c̃
∥∥∥dµ0

dµ − 1
∥∥∥
L∞

anb

N(1− a)2

 , (3.17)

where the first term in the parenthesis is associated with the variance contribution to theMSE, whereas
the second term corresponds to the statistical squared bias and is of higher order inN .

Remark 3.3.1: The additional assumptions R1 and R2 in Theorem 3.3.1 are satisfied for a
geometrically ergodic, µ-reversible Markov operator P .

3.3.2 Non-asymptotic bounds on theMSE: new result for non-reversible
chains

Let P : L2(X, µ) 7→ L2(X, µ) be a µ-invariant Markov operator for some probability measure
µ on (X,B(X)), and recall the averaging operator µ̂f : L2(X, µ) → L2(X, µ), f 7→ µ̂(f) =∫

X f(u)µ(du).We now present a bound similar to that in (3.17). This bound generalizes that of
Theorem 3.3.1 to the case where R1 and R2 do not necessarily hold (e.g., whenever the Markov
chain is not reversible), using the pseudo-spectral gap. This bound is an original contribution, first
presented in our work [108].

Theorem 3.3.2 (Non-asymptotic bound on the mean square error): Let f ∈ L2(X, µ), be
a µ-square integrable function and write g(u) = f(u)−

∫
X f(u)µ(du). Let P be a µ-invariant

(but not necessarily µ-reversible) Markov operator with γps[P ] > 0, and assume the chain generated
by P starts from an initial probability measure µ0 � µ, with dµ0

dµ ∈ L∞(X, µ). Then,

MSE(f̂N,nb
;µ0) = Eµ0,P

∣∣∣∣∣ 1N
N∑

n=1

g(un+nb)

∣∣∣∣∣
2

≤ Vµ[f ]

N
(Cinv + Cns), (3.18)

whereCinv =
(
1 + 4

γps[P ]

)
, Cns =

(
2
∥∥∥dµ0

dµ − 1
∥∥∥
L∞

(
1 + 4

γps[P ]

))
, where γps[P ] is the pseudo-

spectral gap of P, defined in (3.4).

The proof of Theorem 3.3.2 is decomposed into a series of auxiliary results.
Wepresent a first boundof the form (3.18) for chainswhich are started at stationarity (i.e., whenever
µ0 = µ). Although this is usually not the case, the following Lemma is useful in the proof of
Theorem 3.3.2.
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Lemma 3.3.1 (MSE bound starting at stationarity): Under the same assumptions as in
Theorem 3.3.2 and with µ0 = µ, it holds

MSE(f̂N,nb=0;µ) := Eµ,P

∣∣∣∣∣ 1N
N∑

n=1

g(un)

∣∣∣∣∣
2

≤ Vµ[f ]

N

(
1 +

4

γps[P ]

)
.

Proof. We follow a similar approach to those presented in [127, Theorem 3.2] and [142, Section
3]. To ease notation, for the remainder of this proof we writeLq = Lq(X, µ), q ∈ [1,∞]. We
can write the MSE of a Markov chain generated by P starting at µ as

Eµ,P

∣∣∣∣∣ 1N
N∑

n=1

g(un)

∣∣∣∣∣
2

=
1

N2

N∑
n=1

Eµ,P [g(u
n)2] +

2

N2

N−1∑
j=1

N∑
i=j+1

Eµ,P [g(u
i)g(uj)]. (3.19)

Working on the expectation of the second term on the right hand side we get from the Cauchy-
Schwarz inequality that

Eµ,P [g(u
i)g(uj)] = 〈g, P i−jg〉µ = 〈g, (P − µ̂)i−jg〉µ

≤ ‖g‖2L2

∥∥(P − µ̂)i−j
∥∥
L2 7→L2

.

Notice that for any k ≥ 1, we have

∥∥(P − µ̂)i−j
∥∥
L2 7→L2

≤
∥∥∥(P − µ̂)k

∥∥∥b i−j
k

c

L2 7→L2

=
∥∥∥(P ∗ − µ̂)k(P − µ̂)k

∥∥∥ 1
2
b i−j

k
c

L2 7→L2

(3.20)

where b·c is the floor function. Now, let kps be the smallest integer such that

kpsγps[P ] = γ[(P ∗)kpsP kps ] = 1−
∥∥∥(P ∗ − µ̂)kps(P − µ̂)kps

∥∥∥
L2 7→L2

, (3.21)

which is strictly positive for uniformly ergodic chains (see [139, Section 3.3]). Then, from (3.19),
(3.20), and (3.21), we obtain the following:

2

N2

N−1∑
j=1

N∑
i=j+1

Eµ,P [g(u
i)g(uj)] ≤ 2

N2

N−1∑
j=1

N∑
i=j+1

‖g‖2L2

(
1− kpsγps[P ]

) 1
2
b i−j

kps
c
.
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3.3 MSE bounds

For notational simplicity we write % = (1− kpsγps[P ]). We then have the following:

2

N2

N−1∑
j=1

N∑
i=j+1

‖g‖2L2
%

1
2
b i−j

kps
c ≤

2 ‖g‖2L2

N

∞∑
m=0

%
1
2
b m
kps

c ≤
2 ‖g‖2L2

kps

N

∞∑
m=0

%
1
2
m

=
2 ‖g‖2L2

kps

N

1

1− %1/2
=

2 ‖g‖2L2
kps

N

1 + %
1
2

1− %

≤
4 ‖g‖2L2

Nγps[P ]
,

where the second inequality comes from the definition of the floor function b·c.
We shift our attention to the first term in (3.19). Using Hölder’s inequality with q = ∞, q′ = 1,
and the fact thatP is a weak contraction inLq(X, µ), for any q ∈ [1,∞], we obtain the following:

1

N2

N∑
n=1

Eµ,P [g(u
n)2] =

1

N2

N∑
n=1

〈1, Png2〉µ ≤ 1

N2

N∑
n=1

∥∥Png2
∥∥
L1

≤

∥∥g2∥∥
L1

N
.

Lastly, ∥∥g2∥∥
L1

=

∫
X
|g2(u)|µ(du) =

∫
X
g2(u)µ(du) = ‖g‖2L2

.

Hence, we obtain the following bound:

1

N2

N∑
n=1

Eµ,P [g(u
n)2] ≤

‖g‖2L2

N
. (3.22)

Thus, from (3.19) and (3.22), with the observation that ‖g‖2L2
=
∫

X(f(u)− µ̂(f))2µ(du) =
Vµ[f ], we finally obtain,

Eµ,P

∣∣∣∣∣ 1N
N∑

n=1

g(un)

∣∣∣∣∣
2

≤
‖g‖2L2

N

(
1 +

4

γps[P ]

)
=

Vµ[f ]

N

(
1 +

4

γps[P ]

)
.

The previous result should be compared to [127, Theorem3.2] and [142, Theorem5]. We consider
the more general case where the chain is not started from stationarity, i.e., when u0 ∼ µ0, where
µ0 � µ is a probability measure on (X,B(X)). We recall the following result from [143].
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Lemma 3.3.2: Denote by nb ∈ N the burn-in period and let {un}n∈N be a Markov chain
generated by P starting from an initial measure µ0 and invariant probability measure µ, with
µ0 � µ. Under the same assumptions as in Theorem 3.3.2, it holds that:

Eµ0,P

∣∣∣∣∣ 1N
N∑

n=1

g(un+nb)

∣∣∣∣∣
2

= Eµ,P

∣∣∣∣∣ 1N
N∑

n=1

g(un)

∣∣∣∣∣
2

+
1

N2

N∑
j=1

Hj+nb(g2)

+
2

N2

N−1∑
j=1

N∑
k=j+1

Hj+nb(gP k−jg), (3.23)

where

Hi(h) =

〈
(P i − µ̂)h,

(
dµ0

dµ
− 1

)〉
µ

, i ∈ N, h ∈ L2(X, µ),

Proof. See [143, Proposition 3.29].

We can now prove Theorem 3.3.2.

Proof of Theorem 3.3.2. Once again, for the remainder of this proofwewriteLq = Lq(X, µ), q ∈
[1,∞]. From Lemma 3.3.2 we get

Hj+nb(g2) =

〈
(P j+nb − µ̂)g2,

(
dµ0

dµ
− 1

)〉
µ

, (3.24)

Hj+nb(gP k−jg) =

〈
(P j+nb − µ̂)(gP k−jg),

(
dµ0

dµ
− 1

)〉
µ

. (3.25)

Using Hölder’s inequality with q′ = ∞, q = 1 on the right hand side of (3.24) gives

Hj+nb(g2) ≤
∥∥∥∥dµ0dµ

− 1

∥∥∥∥
L∞

∥∥(P j+nb − µ̂)g2
∥∥
L1

≤
∥∥∥∥dµ0dµ

− 1

∥∥∥∥
L∞

∥∥(P j+nb − µ̂)
∥∥
L1 7→L1

∥∥g2∥∥
L1
,

where the last inequality comes from the definition of operator norm. Moreover, since theMarkov
operators are weak contractions, we have that

∥∥(P j+nb − µ̂)
∥∥
L1 7→L1

≤ 2,∀j ∈ N, which gives
the bound

Hj+nb(g2) ≤ 2

∥∥∥∥dµ0dµ
− 1

∥∥∥∥
L∞

‖g‖2L2
.
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Summing over j results in

1

N2

N∑
j=1

Hj+nb(g2) ≤
2 ‖g‖2L2

N

∥∥∥∥dµ0dµ
− 1

∥∥∥∥
L∞

. (3.26)

Following similar procedure for (3.25) we obtain

Hj+nb(gP k−jg) ≤ 2

∥∥∥∥dµ0dµ
− 1

∥∥∥∥
L∞

∥∥∥g(P k−j)g
∥∥∥
L1

.

Furthermore, fromHölder’s inequality (with q′ = q = 2) and the fact that µ̂(g) = 0,∥∥∥g(P k−j)g
∥∥∥
L1

≤ ‖g‖L2

∥∥∥P k−jg
∥∥∥
L2

= ‖g‖L2

∥∥∥(P − µ̂)k−jg
∥∥∥
L2

≤ ‖g‖2L2

∥∥∥(P − µ̂)k−j
∥∥∥
L2 7→L2

≤ ‖g‖2L2

(
1− kpsγps[P ]

) 1
2
b k−j

kps
c
,

where the last inequality follows from the same pseudo-spectral gap argument used in the proof of
Lemma 3.3.1. Adding over j and k produces

2

N2

N−1∑
j=1

N∑
k=j+1

Hj+nb(gP k−jg) ≤
8 ‖g‖2L2

Nγps

∥∥∥∥dµ0dµ
− 1

∥∥∥∥
L∞

. (3.27)

Notice then that Equations (3.26) and (3.27), provide a bound on the second and third term in
Lemma 3.3.2. Lastly, combining these results with Lemma 3.3.1 and once again observing that
‖g‖2L2

= Vµ[f ], provides the desired result

(3.23) ≤ Vµ[f ]

N

(
1 +

2

γps[P ]

)
+

Vµ[f ]

N

(
2

∥∥∥∥dµ0dµ
− 1

∥∥∥∥
L∞

(
1 +

4

γps[P ]

))
.

3.4 Review of common techniques and algorithms

Perhaps the best knownMCMC technique is theMetropolis-Hastings (MH) algorithm [68, 112].
Loosely speaking, this algorithm constructs a Markov chain by iteratively proposing a (possibly
state-dependent) candidate state, and accepting or rejecting it as the new state of the chain, in such
a way that the resultingMarkov transition kernel associated to this process is invariant with respect
to a desired probability measure. More formally, given a state u ∈ X, a target probability measure
µ, and an auxiliary Markov transition kernelQ(u, ·), denote by h(du, dv) = Q(u, dv)µ(du).
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3 Markov chainMonte Carlo

Furthermore, defining hT(du, dv) as h(dv, du) and assuming that hT(du, dv) � h(du, dv),
one can define theMetropolis-Hastings acceptance probability as

α(u, v) = min
{
1,

dhT

dh
(u, v)

}
. (3.28)

Here,α(u, v) corresponds to the probability of accepting a proposed statev (potentially depending
on the current state u), given that the current state of the chain is u. As it is often the case, the
absolute continuity of hT with respect to h is relatively straightforward to show in the case where
X is a finite-dimensional space. One needs to be more careful to show this absolute continuity
whenever X is an infinite-dimensional space. The following slight extension of [160, Theorem 2]
(c.f. Remark 3.4.1) provides a way of constructing such measures.

Lemma 3.4.1 (Extension of Theorem 1 in [160]): Consider aMetropolis-Hastings algorithm
with target measure µ(du) and proposal kernelQ(u, dv). Assume there exists a reference measure
ν(du) and a reference kernelQref(u, dv), such that µ� ν andQ(u, dv)µ(du) = h(du, dv) �
href(du, dv) := Qref(u, dv)ν(du). Then, there exists a B(X)-measurable function f : X → R+

such that µ(du) = f(u)ν(dv) and a B(X)⊗ B(X)-measurable function g̃ : X × X → R+ such
that dh

dhref
(u, v) = g̃(u, v). Furthermore, if in addition it holds that

1. f and g̃ are positive href−a.s., and

2. Qref is ν-reversible as in (3.6) i.e., ν(du)Qref(u, dv) = ν(dv)Qref(v, du),

then, there exists a B(X)⊗ B(X)-measurable function g : X × X → R+ such that dQ(u,·)
dQref(u,·)(v) =

g(u, v). Furthermore, hT(du, dv) � h(du, dv), with

dhT

dh
(u, v) =

f(v)

f(u)

g(v, u)

g(u, v)
.

Thus, theMetropolis-Hastings acceptance probability of the form (3.28) is well-defined.

Proof. On the one hand, since h(du, dv) � href(du, dv), one has that

f(u)ν(du)Q(u, dv) = µ(du)Q(u, dv) = g̃(u, v)ν(du)Qref(u, dv).

Let A := {(u, v) ∈ X2 : f(u) = 0}, which satisfies href(A) = 0. Then, setting g(u, v) :=
g̃(u, v)/f(u), we have that

Q(u, dv) = g(u, v)Qref(u, dv),

and
dQ(u, ·)
dQref(u, ·)

= g(u, v), href-a.e.
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3.4 Review of common techniques and algorithms

Ontheother hand, sinceQref isν-reversible, one thenhas thatν(du)Qref(u, dv) = ν(dv)Qref(v, du).
Multiplying both sides of this equation by f(u)f(v)g(u, v)g(v, u) then gives:

f(v)g(v, u) (f(u)ν(du)g(u, v)Qref(u, dv)) = (f(v)ν(dv)g(v, u)Qref(v, du)) f(u)g(u, v).

Since µ(du) = f(u)ν(du) andQ(u, dv) = g(u, v)Qref(u, dv) , one then obtains:

f(v)g(v, u)µ(du)Q(u, dv) = f(u)g(u, v)µ(dv)Q(v, du).

Furthermore, recognizing that h(du, dv) = µ(du)Q(u, dv), and since f and g are positive
href−a.e., it then follows that

hT(du, dv) = µ(dv)Q(v, du) =
f(v)g(v, u)

f(u)g(u, v)
µ(du)Q(u, dv)

=
f(v)g(v, u)

f(u)g(u, v)
h(du, dv), href−a.e.,

which implies hT(du, dv) � h(du, dv).

Remark 3.4.1: This previous result has also appeared in [40], where it is used to theoretically
justify the preconditioned Crank-Nicholson algorithm. Our (slight) extension from those in [160]
and [40] come from the fact that we state it for arbitrary ν and (ν-reversible)Qref (provided µ� ν

andQ(u, ·) � Qref(u, ·) hold); while those works present such a result in terms of the prior and
proposal kernel, respectively (i.e., for ν = µpr,Qref(u, ·) = Q(u, ·)).

Given an initial state u0 ∼ µ0, one can define the MH algorithm as in Algorithm 2.

Algorithm 2Metropolis-Hastings

1: procedureMetropolis-Hastings(N ,µ,Q,λ0).
2: Sample u0 ∼ λ0

3: for n = 0, . . . , N − 1 do
4: Sample v ∼ Q(un, ·).
5: Set un+1 = v with probability α(un, v) given by (3.28). Set un+1 = un otherwise.
6: end for
7: Output {un}Nn=0

8: end procedure

Step 5 in the previous algorithm is commonly known as theMetropolization step. Given a state
u ∈ X, Algorithm 2 induces a Markov transition kernel of the form

p(u,A) =

∫
A
α(u, v)Q(u, dv) + δu(A)

∫
X
(1− α(u, v))Q(u, dv), A ∈ B(X).
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Remark 3.4.2 (Aperiodicity of Metropolized Algorithms): It follows from Lemma 3.2.3
thatMetropolizedMCMC algorithms (i.e., those including an acceptance-rejection step, c.f. Section
3.4) are aperiodic if α∗(u) =

∫
X(1− α(u, v))Q(u, dv) > 0, ∀u ∈ X.

3.4.1 Construction ofQ

A proper choice ofQ is critical for the performance of the MH algorithm. We now present some
common choices in the MCMC literature [3, 13, 129, 144], that we will justify as applications of
Lemma 3.4.1. Throughout the rest of this section we will focus specifically to the setting of BIPs
and will take µ(du) = µy(du) ∝ exp(−Φ(u; y))µpr(du).

IndependentMetropolis Hastings (IMH)

Themain idea behind thismethod is to choose a “transition kernel”Q(u, dv)which is independent
of u, i.e., Q(u, dv) = Q(dv) (i.e., Q(dv) is perhaps better understood as “just” a probability
measure independent of the current state of the chain u). This method is attractive in the sense
that, intuitively (and rather loosely speaking) one would expect that if one uses a proposalQ(du)
that well-approximates µ(du), then the algorithm would be quite efficient. In general however, it
is, of course, not a trivial task to obtain such a measureQ. We present some common choices for it.

Prior-based IMH :

A first, natural, candidate forQ(du) in the context of a BIP is the prior measure µpr(du). We set
Q(dv) = Qref(dv) = µpr(dv), for which the assumptions of Lemma 3.4.1 are (trivially) satisfied,
and as such one obtains:

dhT

dh
(u, v) = exp(Φ(u; y)− Φ(v; y)).

Laplace approximation -based IMH :

Suppose that µpr = N (0, C), for some self-adjoint, positive definite and trace-class operator C.
Suppose furthermore that one has constructed a Gaussian measure Q(dv) = N (m,H)(dv)
approximating the posterior measure µy by using e.g., the optimization methods presented in
Section 2.3.2, in such a way that Q(dv) � µpr(dv) with Q(dv) ∝ exp(−ψ(v; θ))µpr(dv)
(where θ = (m,H), withm ∈ X andH a self-adjoint, positive-definite, trace-class operator and
ψ is a quadratic function). Taking once again the prior as a reference probability measure for both
the posterior and the proposal (i.e., ν = Qref = µpr) one then has that

dhT

dh
(u, v) =

exp(−Φ(v; y) + ψ(v; θ))

exp(−Φ(u; y) + ψ(u; θ))
.
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Theorem 3.4.1 (Convergence of IMH [3] ): TheMetropolis-Hastings chain obtained using the
IMH algorithm is uniformly exponentially ergodic if and only if supu∈X

f(u)
g(u) <∞, with g and f

defined as in Lemma 3.4.1. Otherwise the algorithm fails to be exponentially ergodic in the sense of
Definition 3.2.1.

Remark 3.4.3: In the case where supu∈X
f(u)
g(u) = +∞,The previous Theorem does not necessarily

preclude the IMH algorithm to have slower types of convergence, such as polynomial ergodicity.

This type of sampler is at the core of multi-level MCMC techniques, such as the one presented in
[45], and the one discussed in Chapter 5. We reiterate, however, that is not always easy to find or
construct efficient independent kernelsQ(du). We now proceed to discuss a family of widely used
methods that allow for extra flexibility.

Diffusion-based methods

Let (X, 〈·, ·〉X) be a separable Hilbert space with Borel σ-algebra B(X), let Φ(·; y) : X → R
be a Fréchet-differentiable function, and denote by DΦ its (Fréchet) derivative. One way of
constructing proposal kernels is based on discretizing the following over-damped Langevin SDE :

dut = −bC
(
K−1u+ aDΦ(u; y)

)
dt+

√
2C1/2dWt, a, b ∈ {0, 1}, (3.29)

whereK, C : X → X are self-adjoint, positive-definite and trace-class covariance operators, andWt

is a cylindrical Wiener process. We now investigate how one can use (3.29) to construct transition
kernels for the MH algorithm.

RandomWalkMetropolis:

As a first case, let X be a finite-dimensional space and set b = a = 0 in (3.29). A simple Euler-
Maruyama (EM) discretization of (3.29) gives:

un+1 − un
τ

=

√
2

τ
ξ, ξ ∼ N (0, C), n = 1, 2, . . . .

=⇒ un+1 = un + ξ, ξ ∼ N (0, 2τC),

where τ > 0 denotes the discretization step of the EM scheme. Clearly, this induces the kernel
Q(u, dv) = N (u, 2τC). When used as a proposal for the MH algorithm, this results in the
well-knownRandomWalkMetropolis algorithm, where the proposal for the (n+ 1)th step of the
MH algorithm is a Gaussian centered at the current state un. This method is arguably one of the
simplest and most common variants of MH.With a slight abuse of notation, we write µy(·) (resp.
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3 Markov chainMonte Carlo

Q(un, ·)) as the Lebesgue density of the posterior (resp. proposal). By symmetry of the Gaussian
density, we then obtain

α(u, v) = min
{
1,
µy(v)Q(v, u)

µy(u)Q(u, v)

}
= min

{
1,
µy(v)

µy(u)

}
.

It is known that, for the finite-dimensional setting, the RWM algorithm is geometrically ergodic
under relativelymild assumptions [3], however, it is shown in [65] that itsL2-spectral gap decays to
0 as the dimensionality of the state-space grows. In the case whereµpr = N (0, C), this dependence
of the dimensionality can be avoided by a small modification of such an algorithm, which we
present next.

Preconditioned Crank-Nicolson [32, 130, 144, 153]

Alternatively, setting b = 1, a = 0 andK = C, a Crank-Nicolson discretization of (3.29) using a
time step 0 < τ < 2 gives

un+1 − un
τ

= −
(
un+1 + un

2

)
+

√
2

τ
ξ, ξ ∼ N (0, C), n = 1, 2, . . . ,

which gives

un+1 =
2− τ

2 + τ
un +

√
8τ

2 + τ
ξ, ξ ∼ N (0, C), n = 1, 2, . . .

=
√
1− ρ2un + ρξ, ξ ∼ N (0, C), n = 1, 2, . . .

which clearly induces the kernel Q(un, ·) = N (
√
1− ρ2un, ρ

2C). Assuming that µpr =

N (0, C), it can be shown ([153]) that such a kernel is µpr-reversible; to that end, we define
h0(du, dv) := Q(u, dv)µpr(du), as the process of sampling u ∼ µpr and v|u ∼ Q(u, ·),
write hT

0 (du, dv) = h0(dv, du) and follow the same procedure as [153, Chapter 5]. Sampling
u ∼ µpr, z ∼ µpr independently gives(

u

v

)
=

(
u√

1− ρ2u+ ρz

)
=

(
I 0√

1− ρ2I ρI

)(
u

z

)
∼ h0(du, dv),

which in turn implies (see, e.g., [153, Proposition 2.20]) that

h0(du, dv) = N

((
0

0

)
,

(
C

√
1− ρ2C√

1− ρ2C C

))
.
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Similarly, one has that(
v

u

)
=

(√
1− ρ2I ρI

I 0

)(
u

z

)
∼ hT

0 (du, dv) = N

((
0

0

)
,

(
C

√
1− ρ2C√

1− ρ2C C

))

and as such hT
0 (du, dv) = h0(du, dv). Thus, by setting ν(du) = µpr and Qref(u, dv) =

Q(u, ·) = (
√

1− ρ2u, ρ2C) in the notation of Lemma 3.4.1, one obtains the well-known pre-
conditioned Crank-Nicolson variant of the MH algorithm, which has an acceptance probability
given by:

α(u, v) = min {1, exp (Φ(u; y)− Φ(v; y))} . (3.30)

It is shown by Hairer et. Al. [65] that the pCN algorithm converges with anL2-spectral gap that
is independent of the dimensionality of the state space.
There are two closely related –yet independently developed, extensions of the pCN algorithm by
[130] and [153, 144].

ν-pCN [130]

The first one, presented by Pinski et. Al. in [130], assumes that Ay := {u ∈ X : Φ(u; y) =

∞} has µpr-measure equal to zero ∀y, and sets once again µpr = N (0, C) and defines ν =

N (mKL,HKL) as a reference measure, wheremKL andHKL are the mean and covariance operator
of a Gaussian measure minimizing the Kullback-Liebler (KL) divergence dKL(µy, ν) between µy

and ν, constructed in such a way that µy ' ν (notice that this implies that µy ' µpr, see [129]),
with

dµy

dν
(u) =

dµ
dµpr

(u)
dµpr
dν

(u) = exp (−Φ(u; y) + Φν(u)) =: F (u; y), with (3.31)

Φν(u) : = −〈u−mKL,mKL〉C +
1

2

〈
u−mKL,

(
H−1

KL − C−1
)
(u−mKL)

〉
− 1

2
‖mKL‖2C ,

where the mean and covariance operator of ν are such thatmKL ∈ Im(C1/2), and Im(C1/2) =

Im(H1/2
KL ). Intuitively, by optimizing over a class of Gaussian measures such that ν � µpr, it

follows that ν ' µpr as a consequence of the Cameron-Martin theorem (c.f. Theorem 2.1.3);
see the work of [129] for more details. Given a state u ∈ X, ν induces a proposal kernel of the
form QKL(u, ·) = N

(
mKL +

√
1− ρ2(u−mKL), ρ

2HKL

)
, which can be shown to be ν-

reversible following a similar procedure as before. Denote h0(du, dv) = QKL(u, dv)ν(du), and
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let z1, z2 ∼ N (0,HKL), which implies zi +mKL ∼ ν i = 1, 2. Following a similar procedure
as before then gives(

u

v

)
=

(
mKL

mKL

)
+

(
z1√

1− ρ2z1 + ρz2

)

=

(
mKL

mKL

)
+

(
I 0√

1− ρ2I ρI

)(
z1
z2

)
∼ h0(du, dv),

which implies that

h0(du, dv) = N

((
mKL

mKL

)
,

(
HKL

√
1− ρ2HKL√

1− ρ2HKL HKL

))
.

Proceeding just as in the case for the pCN algorithm, a similar computation shows that (v, u)T ∼
h0(du, dv), which implies h0(du, dv) = hT

0 (du, dv), meaning that the kernel QKL(·, ·) is ν-
reversible. SettingQref = QKL, It then follows from Lemma 3.4.1 that theMH algorithm induced
by using a ν-reversible proposal kernelQKL is well-defined and its acceptance probability is given
by

α(u, v) = min{1, exp(F (v; y)− F (u; y))}.

Intuitively, F (u; y)would tend to be smaller thatΦ(u; y), at least for regions of high probability
with respect to µy . Thus, for some fixed ρ, this extension of the pCN algorithm would tend to
accept more often that the standard pCN, thus providing a faster mixing. We will refer to this
method as ν-pCN.

Generalized pCN [?, 130, 144, 153]

A second extension to the pCN algorithm is presented by Sprungk and Rudolf in [153, 144], in
the spirit of the operator weighted proposals work of Law [97], by considering Gaussian proposals
whose covariance resemble that of the target measure µy . Let µpr = N (0, C), andG : X → X be
a bounded, self-adjoint, and positive linear operator. Furthermore, define the following bounded
linear operators on X:

HG := C1/2GC1/2, CG := C1/2(I +HG)
−1C1/2, AG := C1/2

√
I − ρ2(I +HG)−1C−1/2.

The generalized preconditionedCrank-Nicolson algorithmof [153, 144], is then defined by using the
µpr-reversible kernelQgpCN(u, ·) = N (AGu, ρ

2CG) (see [153, p. 318]) in the MH algorithm.
Setting QgpCN(u, ·) = Qref(u, ·), it follows from Lemma 3.4.1 that the Metropolis-Hastings
acceptance ratio is well defined and it is of the same form as Equation (3.30).
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In the case where µy is induced by a Bayesian inverse problem with (finite-dimensional) additive
Gaussian noise of the form µnoise = N (0, σ2noiseI), [144] suggests to set G = (σ−2

noiseLLT),
with L := DΦ(umap), where umap ∈ X is themaximum a posteriori point of µy . In practice,
DΦ(umap) can be efficiently computed using the adjoint state method, as in [24, 23, 164]. Notice
that both of these extensions to the pCNalgorithm are closely related to the Laplace-approximation
and variational methods described in Section 2.3, however, given that they are being used in the
context of aMetropolized algorithm, the samples obtained follow the desired target distribution
instead of just an approximation of it.

Infinite-dimensionalMetropolis-adjusted Langevin Algorithm (∞-MALA) [12]

Alternatively, Assume that µpr = N (0, C) and that ∀y ∈ Y, CDΦ(u; y) ∈ Im(C1/2), µpr-a.s.
Setting b = a = 1,K = C in (3.29), a semi-implicit Euler scheme yields the discretized model

un+1 =
√
1− ρ2un − ρ

√
τ

2
CDΦ(un; y) + ρξ, ξ ∼ N (0, C),

which induces the proposal kernel

QMALA(u, ·) = N
(√

1− ρ2u− ρ

√
τ

2
CDΦ(u; y), ρ2C

)
.

SettingQref(u, ·) = N
(√

1− ρ2u, ρ2C
)
(which is known to be µpr-reversible, from the discus-

sion on pCN) it follows from the Cameron-Martin theorem (Theorem 2.1.3) thatQref(u, ·) '
QMALA(u, ·),with

dQMALA(u, ·)
dQref(u, ·)

(v) = exp
(
−ρ

2τ

4
‖CDΦ(u; y)‖2C (3.32)

−
〈
ρ

√
τ

2
CDΦ(u; y), v −

√
1− ρ2u

〉
C

)
= g(u, v).

Thus, setting once again ν = µpr, and sinceQref is µpr-reversible it then follows from Lemma
3.4.1 that the infinite-dimensional MALA algorithm is well-defined in function spaces, and its
Metropolis-Hastings acceptance probability is given by

α(u, v) = min
{
1, exp (Φ(u; y)− Φ(v; y))

g(v, u)

g(u, v)

}
,

with g(·, ·) as in (3.32).

ν-MALA:
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One can, of course, combine the ideas behind ν-pCN and∞-MALA as follows. Once again, as-
sume ∀y ∈ Y, CDΦ(u; y) ∈ Im(C1/2), µpr-a.s., letµpr = N (0, C), take ν = N (mKL,HKL) '
µpr as in the ν-pCNmethod, withmKL ∈ Im(C1/2) and Im(C1/2) = Im(H1/2

KL ) and define the
transition kernelQν-MALA : X × B(X) → [0, 1]:

Qν-MALA(u, ·) := N
(
mKL +

√
1− ρ2(un −mKL)− ρ

√
τ

2
CDΦ(u; y), ρ2HKL

)
.

Setting Qref = QKL (known to be ν-reversible), it is a consequence of the Cameron-Martin
theorem thatQKL ' Qν-MALA, with

dQν-MALA(u, ·)
dQKL(u, ·)

(v) = exp
(
−ρ

2τ

4
‖CDΦ(u; y)‖2HKL

−
〈
ρ

√
τ

2
CDΦ(u; y), v −mKL +

√
1− ρ2(un −mKL)

〉
HKL

)
= g′(u, v).

Once again, the conditions of Lemma 3.4.1 are satisfied, implying that the MH algorithm induced
by takingQν-MALA(u, ·) as a proposal kernel is well-defined, with acceptance probability given by

α(u, v) = min
{
1, exp (F (u; y)− F (v; y))

g′(v, u)

g′(u, v)

}
,

with F defined as in (3.31).

HamiltonianMonte Carlo (HMC)

A common shortfall of diffusion-based proposals in the MH algorithm is the potentially slow
exploration rate of the state space. One idea borrowed from physics, which, can be applied to most
problems with continuous state space, is to introduce a “fictitious” Hamiltonian dynamics and
“fictitious” momentum variables. We begin by describing such a method in the finite-dimensional
case.
Let X = Rm. We recall that a Hamiltonian dynamical system is characterized by aHamiltonian
functionH : Rm × Rm → R,H = H(u,w), that is conserved during dynamics. Here u ∈ X
denotes the position vector andw denotes the momentum vector. The Hamiltonian dynamics is
governed by the equations

dui
dt

=
∂H

∂wi
(3.33)

dwi

dt
= −∂H

∂ui
(3.34)
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for i = 1, . . . ,m. In general, the above equation can be understood as a conservation of the total
energy of a system in time.

HamiltonianMonteCarlo takes inspiration from the previous physical system in order to construct
a Markov Chain Monte Carlo algorithm with a given invariant density µy(u) on the position
variables u. To do so, we introduce the potential energy U(u) = − logµy(u), a kinetic energy
K(w) = 1

2w
TM−1w, for some mass matrixM ∈ Rm×m, and the HamiltonianH(u,w) =

U(u)+K(w). Having introduced these functions, we can then simulate aMarkov chain in which
each iteration re-samples the momentum, evolves the Hamiltonian system for a certain time, and
then does aMetropolis-type acceptance-rejection step on the new position vector. More concretely,
we consider the so-called Gibbs distribution, given by

G(u,w) =
1

Z
exp(−H(u,w)) =

1

Z̃
exp(−U(u))

1√
2π| detM |

exp(−K(w))

where Z is the (unknown) normalizing constant, 1
Z̃
exp(−U(u)) is the probability density we

are interested and 1√
2π| detM | exp(−K(w)) is the density of a multivariate Gaussian distribution

centered at 0 with covarianceM . Given the state un at iteration n, the idea of the algorithm
is then to sample a momentum vector wn, and compute, for each iteration, H(un, wn). The
Hamiltonian system is then evolved starting from u(0) = un, w(0) = wn, on a time interval
[0, T ] using equations (3.33), and (3.34) for some arbitrary final time T , to obtain (u(T ), w(T )),
where, in general, u(T ) 6= q(0). This state is then taken as the proposal state in a Metropolis-
Hastings step to generate the new state un+1. For many problems of modern relevance, it is not
possible to compute the dynamics exactly and numerical discretization is needed. A convenient
time discretization scheme is theVerlet’s method: the time interval [0, T ] is divided intoNt intervals
of size ε > 0 and for each particle i the position qi and momemtum pi are updated as follows

w(t+ ε/2) = wi(t)−
ε

2
∇U(u(t))

u(t+ ε) = ui(t) + εM−1w
(
t+

ε

2

)
w(t+ ε) = wi

(
t+

ε

2

)
− ε

2
∇U(u(t+ ε)).

The main steps of the HamiltonianMonte Carlo algorithm using Verlet’s method are outlined in
Algorithm 3. There,N is the length of the chain, ε the time step in Verlet’s method, and T the
final integration time.
Notice that, similar to the random-walkMetropolis, this algorithm depends on few parameters,
namely, ε, T , andM , which should be properly tuned. Furthermore, it is worth noting the
equivalence betweenMALA and the HMC algorithm with a 1-step evolution.

Infinite-dimensional HMC [12]
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3 Markov chainMonte Carlo

Algorithm 3HamiltonianMonte Carlo

1: procedureHamiltonianMonte Carlo(N ,µy ,M ,λ0).
2: Sample u0 ∼ λ0

3: for n = 0, . . . , N − 1 do
4: Sample new values for the momentum variables,wn ∼ N (0,M)
5: Given the current state (un, wn), propose a new state (u∗, w∗) by evolving theHamil-

tonian system (3.33), (3.34) using Verlet’s method.
6: Set un+1 = u∗ with probability α, where

α = min [1, exp (−U(u∗) + U(un)−K(w∗) +K(wn))]

7: end for
8: Output {un}Nn=0

9: end procedure

Similarly, the work of [12] extends the HMC algorithm in function space in the case where
µpr = N (0, C), with C a positive, self-adjoint and trace-class operator. In this case, the infinite
dimensional HMC (∞-HMC) algorithm behaves as Algorithm 3, with the modification that
w ∼ µpr and that the acceptance probability α(u, u∗) is given by min{1, exp(−∆H(u,w))},
where u := (u = u0, u1, . . . , udT/εe−1, udT/εe = u∗) andw := (w = w0, w1, . . . , wdT/εe)

are the intermediate values of u andw over the temporal evolution of theHamiltonian system, and

∆H(u,w) := Φ(u∗; y)− Φ(u; y)− ε2

8

{∥∥∥C1/2DΦ(u∗; y)
∥∥∥2

X
−
∥∥∥C1/2DΦ(u; y)

∥∥∥2
X

}
(3.35)

− ε

2

dT/εe−1∑
i=0

(〈wi, DΦ(ui; y)〉X + 〈wi+1, DΦ(ui+1; y)〉X)

(see [12] for derivation of (3.35)). Further extensions of the infinite dimensional MALA and
HMCmethods which exploit the local geometry of dµy

dµpr
(u), are presented in the works of [12]

and [91].
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4 Generalized parallel tempering on
Bayesian inverse problems

This Chapter is essentially the same as Publication Latz, J., Madrigal-Cianci, J.P., Nobile, F. et al.
Generalized parallel tempering on Bayesian inverse problems. Stat Comput 31, 67 (2021). [95].
Small modification have been made with respect to such an article in order to avoid repeating con-
cepts and definitions already presented in previous chapters, and notation has been modified with
respect to the published article in order to make it consistent with the notation used throughout
this thesis. We have also removed some material that has already been discussed in the state of the
art. Here, we present our first hierarchical approach, which introduces and exploits a sequence of
tempered distributions approximating the posterior of interest, as presented in Chapter 1. More
precisely, we present two generalizations of the Parallel Tempering algorithm in the context of
discrete-timeMarkov chainMonte Carlo methods for Bayesian inverse problems. These gener-
alizations use state-dependent swapping rates, inspired by the so-called continuous time Infinite
Swapping algorithm presented in [47]. We analyze the reversibility and ergodicity properties of
our generalized PT algorithms. Numerical results on sampling from different target distributions
show that the proposed methods significantly improve sampling efficiency over more traditional
sampling algorithms such as RandomWalk Metropolis, preconditioned Crank-Nicolson, and
(standard) Parallel Tempering.

4.1 Introduction

Modern computational facilities and recent advances in computational techniques have made the
use ofMarkovChainMonteCarlo (MCMC)methods feasible for some large-scale Bayesian inverse
problems (BIP), where the goal is to characterize the posterior distribution of a set of parameters u
of a computationalmodelwhichdescribes somephysical phenomena, conditionedon some (usually
indirectly) measured data y. However, some computational difficulties are prone to arise when
dealing with difficult to explore posteriors, i.e., posterior distributions that are multi-modal, or that
concentrate around a non-linear, lower-dimensional manifold, since some of the more commonly-
usedMarkov transition kernels in MCMC algorithms, such as random walkMetropolis (RWM)
or preconditioned Crank-Nicholson (pCN), are not well-suited in such situations. This in turn
canmake the computational time needed to properly explore these complicated target distributions
arbitrarily long. Some recent works address these issues by employingMarkov transitions kernels
that use geometric information [12]; however, this requires efficient computation of the gradient
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4 Generalized parallel tempering on Bayesian inverse problems

of the posterior density, which might not always be feasible, particularly when the underlying
computational model is a so-called “black-box”. (this is new) One such way of alleviating these
issues is with tempering strategies, such as the ones in [42, 52, 96, 114, 167]. In particular, we will
focus on parallel-tempering techniques [52, 90, 114], as described in Chapter 1, and whose main
idea we will recall next, for convenience. In short, parallel tempering algorithms simultaneously
run K independent MCMC chains, where each chain is invariant with respect to a flattened
(referred to as tempered) version of the posterior of interest µy , while, at the same time, proposing
to swap states between any two chains every so often. Such a swap is then accepted using the
standardMetropolis-Hastings (MH) acceptance-rejection rule. Intuitively, chains with a larger
smoothing parameter (referred to as temperature) will be able to better explore the parameter
space. Thus, by proposing to exchange states between chains that target posteriors at different
temperatures, it is possible for the chain of interest (i.e., the one targeting µy) to mix faster, and to
avoid the undesirable behavior of someMCMC samplers, such as the diffusion-based methods,
presented in Chapter 3, of getting “stuck” in a mode. Moreover, the fact that such an exchange
of states is accepted with the typical MH acceptance-rejection rule, will guarantee that the chain
targeting µ remains invariant with respect to such probability measure [52]. A improvement over
the PT approach in the context of (inherently time-continuous) molecular dynamics is presented
in the so-called Infinite Swapping (IS) algorithm [49, 133]; a continuous-time Markov process
which considers the limit where states between chains are swapped infinitely often. It is shown
in [49] that such an approach can in turn be understood as a swap of dynamics, i.e., kernel and
temperature (as opposed to states) between chains. We remark that once such a change in dynamics
is considered, it is not possible to distinguish particles belonging to different chains. However,
since the stationary distribution of each chain is known, importance sampling can be employed to
compute posterior expectations with respect to the target measure of interest. Infinite Swapping
has been successfully applied in the context of computational molecular dynamics and rare event
simulation [47, 103, 133]; however, to the best of our knowledge, a (discrete-time) equivalent to
such method has not been implemented in the context of Bayesian inverse problems.
In light of this, the current work aims at importing such ideas to the BIP setting, by presenting
them in a discrete-timeMetropolis-Hastings Markov chain Monte Carlo context. We will refer to
these algorithms as Generalized Parallel Tempering (GPT). We emphasize, however, that these
methods are not a time discretization of the continuous-time Infinite Swapping presented in [49],
but, in fact, a discrete-timeMarkov process inspired by the ideas presented therein with suitably
defined state-dependent probabilities of swapping states or dynamics. We now summarize the
main contributions of this chapter.
We begin by presenting a generalized framework for discrete time PT in the context of MCMC
for BIP, and then proceed to propose, analyze and implement two novel state-dependent PT
algorithms inspired by the ideas presented in [49].
Furthermore, we prove that our GPT methods have the right invariant measure, by showing
reversibility of the generated Markov chains, and prove their ergodicity. Finally, we implement the
proposed GPT algorithms for an array of Bayesian inverse problems, comparing their efficiency
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4.2 Problem setting

to that of an un-tempered, (single temperature), version of the underlying MCMC algorithm,
and standard PT. For the base method to sample at the cold temperature level, we use Random
WalkMetropolis (RWM) (Sections 4.5.3-4.5.6) or preconditioned Crank-Nicolson (Section 4.5.7),
however, we emphasize that our methods can be used together with any other, more efficient base
sampler. Experimental results show improvements in terms of computational efficiency of GPT
over un-tempered RWM and standard PT, thus making the proposed methods attractive from a
computational perspective. From an implementation perspective, the swapping component of
our proposed methods is rejection-free, thus effectively eliminating some tuning parameters on
the PT algorithm, such as swapping frequency.
We remark that a PT algorithm with state-dependent swapping probabilities has been proposed in
[90], however, such a work only considers pairwise swapping of chains and a different construction
of the swapping probabilities, resulting in a less-efficient sampler, at least for the BIPs addressed in
this work.
Our ergodicity result relies on anL2 spectral gap analysis. It is known [143] that when aMarkov
chain is both reversible and has a positiveL2-spectral gap, one can in turn provide non-asymptotic
error bounds on the mean square error of an ergodic estimator of the chain. Our bounds on the
L2-spectral gap, however, are far from being sharp and could possibly be improved using e.g.,
domain decomposition ideas as in [171]. Such analysis is left for a future work.
The rest of this Chapter is organized as follows. Section 4.2 is devoted to the introduction of some
additional notation. In Section 4.3 we provide a brief review of (standard) PT (Section 4.3.2),
and introduce the two versions of the GPT algorithm in Sections 4.3.3 and 4.3.4, respectively. In
fact, we present a general framework that accommodates both the standard PT algorithms and our
generalized versions. In Section 4.4, we present the main theoretical results of the current Chapter
(Theorems 4.4.1 and 4.4.2). The proof of these Theorems is given by a series of Propositions in
Section 4.4.1. Lastly, we illustrate our methods on various numerical experiments in Section 4.5.

4.2 Problem setting

4.2.1 Notation

Let (Xi, ‖·‖) be a separable Banach space with associated Borel σ-algebra B(Xi), i = 1, 2 and let
µi, νi be probability measures on (Xi,B(Xi)), with µi � νi, and denote by πi : X → R+ the
corresponding Radon-Nikodym derivative πi(u) = dµi

dνi (u). The product of these twomeasures is
defined by

µ(A) = (µ1 × µ2) (A)

=

∫∫
A
π1(u1)π2(u2)ν1(du1)ν2(du2),

for allA ∈ B(X1 × X2). Joint measures on (X1 × X2,B(X1,×X2)) will always be written in
boldface, hereafter.
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4 Generalized parallel tempering on Bayesian inverse problems

LetPk, k = 1, 2, beMarkov transition operators associated to kernels pk : Xk×B(Xk) 7→ [0, 1]

(c.f 3.1.2). We define the tensor productMarkov operator P := P1 ⊗ P2 as the Markov operator
associated with the product measure p(u, ·) = p1(u1, ·)× p2(u2, ·), u = (u1, u2) ∈ X1 × X2.
In particular, νP is the measure on (X1 × X2,B(X1 × X2)) that satisfies

(νP)(A1 ×A2) =

∫∫
X1×X2

p1(u1, A1)p2(u2, A2)ν(du1, du2),

for allA1 ∈ B(X1) andA2 ∈ B(X2). Moreover, (Pf) : X1 × X2 → R is the function given by

(Pf)(u) =
∫∫

X1×X2

f(z1, z2)p1(u1, dz1)p2(u2, dz2),

for an appropriate f : X1 × X2 → R, B(X1 × X2)-measurable.
Recall that a Markov operator P (resp. P) is invariant with respect to a measure ν (resp. ν)
if νP = ν (resp. νP = ν ). For two given ν-invariant Markov operators P1, P2, we say that
P1P2 is a composition of Markov operators, not to be confused with P1 ⊗ P2. Furthermore,
given a composition ofK ν-invariant Markov operators Pc := P1P2 . . . PK , we say that Pc is
palindromic if P1 = PK , P2 = PK−1, …, Pk = PK−k+1, k = 1, 2 . . . ,K . It is known (see,
e.g., [21, Section 1.12.17]) that a palindromic, ν-invariant Markov operator Pc has an associated
Markov transition kernel pc which is ν-reversible.

4.2.2 Tempering

Denote by p : X × B(X) → [0, 1] the Markov transition kernel induced by the Metropolis-
Hastings algorithm (c.f. Section 3.4.1), using a diffusion-based proposal kernel qprop(u, ·), such
as the randomwalkMetropolis or preconditionedCrankNicolson algorithms, where, given some suit-
able covarianceoperatorΣ : X → X, qprop(un, ·) = N (un, ρΣ)orqprop(un, ·) = N (

√
1− ρ2un, ρ2Σ),

0 < ρ < 1, respectively. This type of proposals are widely used in practice, however, they tend to
present some undesirable behaviors when sampling from certain difficult measures, which are, for
example, concentrated over a manifold or are multi-modal [52]. In the first case, in order to avoid
a large rejection rate, the “step-size” ρ of the proposal kernel must be quite small, which will in
turn produce highly-correlated samples. In the second case, chains generated by these localized
kernels tend to get stuck in one of the modes. In either of these cases, very long chains are required
to properly explore the parameter space.
One way of overcoming such difficulties is to introduce tempering. As in Chapter 2, write

dµy

dµpr
(u) =

e−Φ(u;y)

Z
=: πy(u),
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4.3 Generalizing Parallel Tempering

and, given a set ofK temperatures {Tk}Kk=1, such that 1 = T1 < T2 · · · < TK , defineµyk � µpr
such that

dµyk
dµpr

(u) :=
e−Φ(u;y)/Tk

Zk
=: πyk(u), (4.1)

where Zk :=
∫

X e
−Φ(u;y)/Tkµpr(du), and with Φ(u; y) the potential function defined in

Theorem 2.2.1. In the case where TK = ∞, we set µyK = µpr. Notice that µy1 corresponds to the
target posterior measure.

Remark 4.2.1 (On notation): Notice that we have used the inverse notation with respect to
Chapter 1, setting µy = µy1 instead of µy = µyK . Furthermore, notice that we are not including
any discretization accuracy in our formulation, i.e., we are not using ΦL(u; y) to denote Φ(u; y)
evaluated at an accuracy level L, and assume that all models are evaluated at the same discretization
accuracy. We hope this is not a cause of confusion to the reader.

We say that for k = 2, . . . ,K, each measure µyk is a tempered version of µy1. In general, the 1/Tk
term in (4.1) serves as a “smoothing”1 factor, which in turnmakes µyk easier to explore as Tk → ∞.
In the “standard ” parallel tempering MCMC algorithm [52], one samples from all posterior
measuresµyk simultaneously. Here, we first use aµyk-reversibleMarkov transition kernel pk on each
chain, and then, we propose to exchange states between chains at two consecutive temperatures, i.e.,
chains targeting µyk, µ

y
k−1, k ∈ {2, . . . ,K}. Such a proposed swap is then accepted or rejected

with a standard Metropolis-Hastings acceptance rejection step. This procedure is presented in
Algorithm 4. Notice that such an algorithm does a systematic sweep across temperatures going
from hot-to-cold. Alternatively, one could construct such an algorithm going from cold-to-hot; i.e.,
swapping chains at temperatures Tk and Tk+1, k = {1, 2, . . . ,K − 1}. Our numerical examples
in Section 5.6 implement Algorithm 4 in such away that the order of the swapping (i.e., either from
hot-to-cold or from cold-to-hot) is alternated at every iteration. We remark that such an algorithm
can be modified to, for example, propose to swap states everyNs steps of the chain, or to swaps
states between two chains µyi , µ

y
j , with i, j chosen randomly and uniformly from the index set

{1, 2, . . . ,K}. In the next section we present the generalized PT algorithms which swap states
according to a random permutation of the indices drawn from a state dependent probability.

4.3 Generalizing Parallel Tempering

Infinite Swapping was initially developed in the context of continuous-timeMCMC algorithms,
which were used for molecular dynamics simulations. In continuous-time PT, the swapping of the
states is controlled by a Poisson process on the set {1, . . . ,K}. Infinite Swapping is the limiting
algorithm obtained by letting the waiting times of this Poisson process go to zero. Hence, we swap
the states of the chain infinitely often over a finite time interval. We refer to [49] for a thorough

1Here, smoothing is to be understood in the sense that it flattens the density.
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4 Generalized parallel tempering on Bayesian inverse problems

Algorithm 4 Standard PT.

function Standard PT(N, {pk}Kk=1, {π
y
k}

K
k=1, µpr)

Sample u1k ∼ µpr, k = 1, . . . ,K
# Do one step of MH on each chain
for n = 1, 2, . . . , N − 1 do

for k = 1, . . . ,K do
Sample un+1

k ∼ pk(u
n
k , ·)

end for
# Swap states
for k = K,K − 1, . . . , 2 do

Swap states un+1
k and un+1

k−1 with probability

αswap = min

{
1,
πyk(u

n+1
k−1)π

y
k−1(u

n+1
k )

πyk(u
n+1
k )πyk−1(u

n+1
k−1)

}

end for
end for
Output {un1}Nn=1

end function

introduction and review of Infinite Swapping in continuous-time. In Section 5 of the same article,
the idea to use Infinite Swapping in time-discrete Markov chains was briefly discussed. Inspired by
this discussion, we present two Generalizations of the (discrete-time) Parallel Tempering strategies.
To that end, we propose to either (i) swap states in the chains at every iteration of the algorithm in
such a way that the swap is accepted with probability one, which we will refer to as theUnweighted
GeneralizedParallel Tempering (UGPT), or (ii), swapdynamics (i.e., swap kernels and temperatures
between chains) at every step of the algorithm. In this case, importance sampling must also be
used when computing posterior expectations since this in turn provides a Markov chain whose
invariantmeasure is not the desired one. We refer to this approach asWeightedGeneralized Parallel
Tempering (WGPT). We begin by introducing a common framework to both PT and the two
versions of GPT.
Let (X, ‖·‖X) be a separable Banach space with associated Borel σ-algebra B(X). Let us define the
K-fold product space XK :=×K

k=1 X, with associated product σ-algebra BK :=
⊗K

k=1 B(X),
as well as the product measure on (XK ,BK)

µy :=
K

×
k=1

µyk, (4.2)
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where µyk, k = 1, . . . ,K are the tempered measures with temperatures 1 = T1 < T2 < T3 <

· · · < TK ≤ ∞ introduced in the previous section. Similarly, we define the product priormeasure
µpr :=×K

k=1 µpr.Notice thatµy has a densityπy(u)with respect toµprior given by

πy(u) =
K∏
k=1

πyk(uk), u := (u1, . . . , uK) ∈ XK ,

with πyi (u) given as in (4.1). The idea behind the temperingmethods presented herein is to sample
from µy (as opposed to solely sampling from µy1) by creating a Markov chain obtained from
the successive application of twoµy-invariant Markov kernels p and q, to some initial distribu-
tion ν, usually chosen to be the prior µpr. Each kernel acts as follows. Given the current state
un = (un1 , . . . , u

n
K), the kernel p, whichwewill call the standardMCMCkernel, proposes a new,

intermediate state ũn+1 = (ũn+1
1 , . . . , ũn+1

K ), possibly following the Metropolis-Hastings algo-
rithm (or any other algorithm that generates aµ-invariantMarkov operator). TheMarkov kernel p
is a product kernel, meaning that each component ũnk , k = 1 . . . ,K, is generated independently
of the others. Then, the swapping kernel q proposes a new state un+1 = (un+1

1 , . . . , un+1
K )

by introducing an “interaction” between the components of ũ(n+1). This interaction step can
be achieved, e.g., in the case of PT, by proposing to swap two components at two consecutive
temperatures, i.e., components k and k + 1, and accepting this swap with a certain probability
given by the usual Metropolis-Hastings acceptance-rejection rule. In general, the swapping kernel
is applied everyNs steps of the chain, for someNs ≥ 1. We will devote the following subsection
to the construction of the swapping kernel q.

4.3.1 The swapping kernel q

DefineSK as the collection of all the bijective maps from {1, 2, . . . ,K} to itself, i.e., the set of
allK! possible permutations of id := {1, . . . ,K}. Let σ ∈ SK be a permutation, and define
the swapped stateuσ := (uσ(1), . . . , uσ(K)), and the inverse permutation σ−1 ∈ SK such that
σ ◦ σ−1 = σ−1 ◦ σ = id. In addition, let SK ⊆ SK be any subset ofSK closed with respect to
inversion, i.e., σ ∈ SK =⇒ σ−1 ∈ SK . We denote the cardinality of SK by |SK |.

Example 4.3.1: As a simple example, consider a Standard PT as in Algorithm 4 withK = 4. In
this case, we attempt to swap two contiguous temperatures Ti and Ti+1, i = 1, 2, 3. Thus, SK is the
set of permutations {σ1,2, σ2,3, σ3,4} with:

σ1,2 = (2, 1, 3, 4),

σ2,3 = (1, 3, 2, 4),

σ3,4 = (1, 2, 4, 3).
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4 Generalized parallel tempering on Bayesian inverse problems

Notice that each permutation is its own inverse; for example:

σ1,2(σ1,2) = σ1,2((2, 1, 3, 4)) = (1, 2, 3, 4) = id.

Todefine the swapping kernelq, we first need to define the swapping ratio and swapping acceptance
probability.

Definition 4.3.1 (Swapping ratio): We say that a function r : XK × SK 7→ [0, 1] is a
swapping ratio if it satisfies the following two conditions:

1. ∀u ∈ XK , r(u, ·) is a probability mass function on SK .

2. ∀σ ∈ SK , r(·, σ) is measurable on (XK ,BK).

Definition 4.3.2 (Swapping acceptance probability): Letu ∈ XK and σ, σ−1 ∈ SK . We
call swapping acceptance probability the function αswap : XK × SK 7→ [0, 1] defined as

αswap(u, σ) =

min
{
1, π

y(uσ)r(uσ ,σ−1)
πy(u)r(u,σ)

}
, if r(u, σ) > 0,

0 if r(u, σ) = 0.

We can now define the swapping kernel q.

Definition 4.3.3 (Swapping kernel): Given a swapping ratio r : XK × SK 7→ [0, 1] and its
associated swapping acceptance probability αswap : XK × SK 7→ [0, 1], we define the swapping
Markov kernel q : XK × BK 7→ [0, 1] as

q(u, B) =
∑
σ∈SK

r(u, σ)
[
(1− αswap(u, σ))δu(B) (4.3)

+αswap(u, σ)δuσ(B)
]
, u ∈ XK , B ∈ BK ,

where δu(B) denotes the Dirac measure inu, i.e., δu(B) = 1 ifu ∈ B and 0 otherwise.

The swapping mechanism should be understood in the following way: given a current state of the
chainu ∈ XK , the swapping kernel samples a permutation σ from SK with probability r(u, σ)
and generatesuσ.This permuted state is then accepted as the new state of the chainwith probability
αswap(u, σ). Notice that the swapping kernel follows a Metropolis-Hastings-like procedure with
“proposal” distribution r(u, σ) and acceptance probability αswap(u, σ). Moreover, as detailed in
the next proposition, such a kernel is reversible with respect toµ, since it is a Metropolis-Hastings
type kernel.

Proposition 4.3.1: TheMarkov kernel q defined in (4.3) is reversible with respect to the product
measureµ defined in (4.2).

84



4.3 Generalizing Parallel Tempering

Proof. LetA,B ∈ BK . We want to show that∫
A
q(u, B)µ(du) =

∫
B
q(u, A)µ(du).

Thus, ∫
A
q(u, B)µ(du) =

∑
σ∈SK

∫
A
r(u, σ)αswap(u, σ)δuσ(B)πy(u)µpr(du)︸ ︷︷ ︸

I

+
∑
σ∈SK

∫
A
r(u, σ)

(
1− αswap(u, σ)

)
δu(B)πy(u)µpr(du)︸ ︷︷ ︸

II

.

Let Aσ := {z ∈ XK : zσ−1 ∈ A}, and, for notational simplicity, write min{a, b} = {a ∧
b}, a, b ∈ R. From I , we have:

I =
∑
σ∈SK

∫
A

{
1 ∧ π

y(uσ)r(uσ, σ
−1)

πy(u)r(u, σ)

}
r(u, σ)πy(u)δuσ(B)µpr(du)

=
∑
σ∈SK

∫
A

{
1 ∧ πy(u)r(u, σ)

πy(uσ)r(uσ, σ−1)

}
r(uσ, σ

−1)πy(uσ)δuσ(B)µpr(du).

Then, noticing thatµpr is permutation invariant, we get

I =
∑
σ∈SK

∫
Aσ

{
1 ∧ π

y(uσ−1)r(uσ−1 , σ)

πy(u)r(u, σ−1)

}
× r(u, σ−1)πy(u)δu(B)µpr(du)

=
∑
σ∈SK

∫
Aσ∩B

{
1 ∧ π

y(uσ−1)r(uσ−1 , σ)

πy(u)r(u, σ−1)

}
× r(u, σ−1)πy(u)δu(B)µpr(du)

=
∑
σ∈SK

∫
B

{
1 ∧ π

y(uσ−1)r(uσ−1 , σ)

πy(u)r(u, σ−1)

}
× r(u, σ−1)πy(u)δu(Aσ)µpr(du)

=
∑
σ∈SK

∫
B

{
1 ∧ π

y(uσ−1)r(uσ−1 , σ)

πy(u)r(u, σ−1)

}
× r(u, σ−1)πy(u)δuσ−1 (A)µpr(du)
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=
∑
σ∈SK

∫
B
r(u, σ−1)πy(u)αswap(u, σ

−1)δuσ−1 (A)µpr(du)

=
∑
σ∈SK

∫
B
r(u, σ)πy(u)αswap(u, σ)δuσ(A)µpr(du).

For the second term II we simply have

II =
∑
σ∈SK

∫
A
r(u, σ)(1− αswap(u, σ))δu(B)πy(u)µpr(du)

=
∑
σ∈SK

∫
A∩B

r(u, σ)(1− αswap(u, σ))δu(B)πy(u)µpr(du)

=
∑
σ∈SK

∫
B
r(u, σ)(1− αswap(u, σ))δu(A)π

y(u)µpr(du).

This generic form of the swapping kernel provides the foundation for both PT and GPT. We
describe these algorithms in the following subsections.

4.3.2 The Parallel Tempering case

We first show how a PT algorithm that only swaps states between the ith and jth components
of the chain can be cast in the general framework presented above. To that end, let σi,j be the
permutation of (1, 2, . . . ,K),which only permutes the ith and jth components, while leaving the
other components invariant (i.e., such thatσ(i) = j,σ(j) = i, andσ(k) = k, k 6= i, k 6= j). We
can take SK = {σi,j , i, j = 1, . . . ,K} and define the PT swapping ratio between components
i and j by r(PT)i,j : XK × SK 7→ [0, 1] as

r
(PT)
i,j (u, σ) :=

{
1 if σ = σi,j ,

0 otherwise.

Notice that this implies that r(PT)i,j (uσ, σ
−1) = r

(PT)
i,j (u, σ) since σ−1

i,j = σi,j and r
(PT)
i,j does not

depend onu, which in turn leads to the swapping acceptance probability α(PT)
swap : XK × SK 7→

[0, 1] defined as:

α(PT)
swap (u, σi,j) := min

{
1,
πy(uσi,j )

πy(u)

}
,

α(PT)
swap (u, σ) = 0, σ 6= σi,j .
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4.3 Generalizing Parallel Tempering

Thus, we can define the swapping kernel for the Parallel Tempering algorithm that swaps compo-
nents i and j as follows:

Definition 4.3.4 (Pairwise Parallel Tempering swapping kernel): Letu ∈ XK , σi,j ∈ SK .
We define the Parallel Tempering swapping kernel, which proposes to swap states between the ith and
jth chains as q(PT)i,j : XK × BK 7→ [0, 1] given by

q(PT)i,j (u, B) =
∑
σ∈SK

r
(PT)
i,j (u, σ)

(
(1− α(PT)

swap (u, σ))δu(B)

+α(PT)
swap (u, σ)δuσ(B)

)
=

(
1−min

{
1,
πy(uσi,j )

πy(u)

}
δu(B)

)
+min

{
1,
πy(uσi,j )

πy(u)

}
δuσi,j

(B), ∀B ∈ BK .

In practice, however, the PT algorithm considers various sequential swaps between chains, which
can be understood by applying the composition of kernels q(PT)i,j q(PT)k,` . . . at every swapping step.
In its most common form [21, 52, 114], the PT algorithm, hereafter referred to as standard PT
(which on a slight abuse of notation we will denote by PT), proposes to swap states between chains
at two consecutive temperatures. Its swapping kernel q(PT) : XK × BK 7→ [0, 1] is given by

q(PT) := q(PT)1,2 q(PT)2,3 ...q(PT)K−1,K .

Moreover, the algorithm described in [52], proposes to swap states everyNs ≥ 1 steps of MCMC.
The complete kernel for the PT kernel is then given by [21, 52, 114]

p(PT) := q(PT)1,2 q(PT)2,3 ...q(PT)K−1,KpNs , (4.4)

where p is a standard reversible Markov transition kernel used to evolve the individual chains
independently.

Remark 4.3.1: Although the kernel p as well as each of the qi,i+1 are µ-reversible, notice that
(4.4) does not have a palindromic structure, and as such it is not necessarilyµ-reversible. One way of
making the PT algorithm reversible with respect toµ is to consider the palindromic form

p(RPT) :=(
q(PT)1,2 q(PT)2,3 ...q(PT)K−1,K

)
pNs

(
q(PT)K,K−1...q

(PT)
3,2 q(PT)2,1

)
,

where RPT stands for Reversible Parallel Tempering. In practice, there is not much difference between
p(RPT) and p(PT), however, under the additional assumption of geometric ergodicity of the chain (c.f
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4 Generalized parallel tempering on Bayesian inverse problems

Section 4.4) having a reversible kernel is useful to compute explicit error bounds on the non-asymptotic
mean square error of an ergodic estimator [143].

4.3.3 Unweighted Generalized Parallel Tempering

The idea behind the Unweighted Generalized Parallel Tempering algorithm is to generalize PT
so that (i)Ns = 1 provides a proper mixing of the chains, (ii) the algorithm is reversible with
respect to µ, and (iii) the algorithm considers arbitrary sets SK of swaps (always closed w.r.t
inversion), instead of only pairwise swaps. We begin by constructing a kernel of the form (4.3).
Let r(UW) : XK × SK 7→ [0, 1] be a function defined as

r(UW)(u, σ) :=
πy(uσ)∑

σ′∈SK
πy(uσ′)

, u ∈ XK , σ ∈ SK . (4.5)

Clearly, (4.5) is a swapping ratio according to Definition 4.3.1. As such, given some stateu ∈ XK ,
r(UW)(u, σ) assigns a state-dependent probability to each of the |SK | possible permutations in
SK . A permutation σ ∈ SK is then accepted with probability α(UW)

swap (u, σ), given by

α(UW)
swap (u, σ) := min

{
1,
πy(uσ)r

(UW)(uσ, σ
−1)

πy(u)r(UW)(u, σ)

}
. (4.6)

Thus, we can define the swapping kernel for the UGPT algorithm, which takes the form of (4.3),
with the particular choice of r(u, σ) = r(UW)(u, σ) and

αswap(u, σ) = α(UW)
swap (u, σ).

Notice that α(UW)
swap (u, σ) = 1,∀σ ∈ SK . Indeed, if we further examine Equation (4.6), we see

that

πy(uσ)r
(UW)(uσ, σ

−1)

πy(u)r(UW)(u, σ)
=
πy(uσ)

πy(u)
· π

y(u)

πy(uσ)
·
∑

σ′ πy(uσ′)∑
σ̂ π

y(uσ̂)

=
πy(uσ)

πy(u)
· π

y(u)

πy(uσ)
= 1.

In practice, this means that the proposed permuted state is always accepted with probability 1.
The expression of the UGPT kernel then simplifies as follows.

Definition 4.3.5 (unweighted swapping kernel): The unweighted swapping kernel q(UW) :

XK × BK 7→ [0, 1] is defined as

q(UW)(u, B) =
∑
σ∈SK

r(UW)(u, σ)δuσ(B),
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4.3 Generalizing Parallel Tempering

∀u ∈ XK , B ∈ BK .Applying this swapping kernel successively with the kernel p = p1 × p2 ×
. . . pK in the order q(UW)pq(UW) =: p(UW) gives what we callUnweighted Generalized Parallel
Tempering kernel p(UW). Lastly, we write the UGPT in operator form as

P(UW) := Q(UW)PQ(UW),

where P andQ(UW) are the Markov operators corresponding to the kernels p and q(UW), respec-
tively. We now investigate the reversibility of the UGPT kernel. We start with a rather straightfor-
ward result.

Proposition 4.3.2: Suppose that, for any k = 1, 2, . . . ,K, pk is µk-reversible. Then, p =

p1 × · · · × pK is reversible with respect toµ.

Proof. We prove reversibility by confirming that equation (3.5) holds true. To that end, letu ∈
XK , A,B ∈ BK , where A and B tensorize, i.e., A :=

∏K
k=1Ak and B :=

∏K
k=1Bk, with

A1, . . . , AK , B1, . . . , BK ∈ B(X). Then,

∫
A
πy(u)p(u, B)µpr(du) =

K∏
k=1

∫
Ak

πy(uk)p(uk, Bk)µpr(duk)

=

K∏
k=1

∫
Bk

πy(uk)p(uk, Ak)µpr(duk)

=

∫
B
πy(u)p(u, A)µpr(du).

Showing that the previous equality holds for setsA,B that tensorize is indeed sufficient to show
that the claim holds for anyA,B ∈ BK . This follows from Carathéodory’s Extension Theorem
applied as in the proof of uniqueness of product measures; see [2, §1.3.10, 2.6.3], for details.

We can now prove the reversibility of the chain generated by p(UW).

Proposition 4.3.3 (Reversibility of theUGPT chain): Suppose that, for anyk = 1, 2, . . . ,K,

pk is µk-reversible. Then, theMarkov chain generated by p(UW) is µ-reversible.

Proof. It follows from Proposition 4.3.1 and 4.3.2 that the kernels q(UW) and p areµ-reversible.
Furthermore, since p(UW) is a palindromic composition of kernels, each of which is reversible with
respect toµ, then, p(UW) is reversible with respect toµ [21].

The UGPT algorithm proceeds by iteratively applying the kernel p(UW) to a predefined initial state.
In particular, states are updated using the procedure outlined in Algorithm 5.

Remark 4.3.2: In practice, one does not need to perform |SK | posterior evaluationswhen computing
r(UW)(un, ·), rather “just”K of them. Indeed, since πyj (u

n
k) ∝ πy(uk)

Tj , k, j = 1, 2, . . . ,K ,
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4 Generalized parallel tempering on Bayesian inverse problems

Algorithm 5 Unweighted Generalized Parallel Tempering.
functionGeneralized Parallel Tempering(p, N,ν)

Sampleu(1) ∼ ν
for n = 1, 2, . . . , N − 1 do

# First swapping kernel
Sample θ(n)σ ∼ q(UW)(u(n), ·)
#Markov transition kernel p
Sample z(n+1) ∼ p(θ(n)σ , ·) kernel
# Second swapping kernel
Sampleu(n+1) ∼ q(UW)(z(n+1), ·)

end for
Output {θ(n)1 }Nn=1

end function

we just need to store the values of πy(unk), k = 1, 2, . . . ,K , for a fixed n, and then permute over the
temperature indices.

Let nowQoI : X 7→ Rbe a quantity of interest. The posteriormean ofQoI ,µy(QoI) := µy1(QoI)
is approximated usingN ∈ N samples by the following ergodic estimator Q̂oI(UW):

µy(QoI) ≈ Q̂oI(UW) =
1

N − b

N∑
n=b

QoI(u(n)1 ).

A comment on the pairwise state-dependent PT method of [90]

The work [90] presents a similar state-dependent swapping. We will refer to the method presented
therein as Pairwise State Dependent Parallel Tempering (PSDPT). Such a method, however, differs
from UGPT from the fact that (i) only pairwise swaps are considered and (ii) it is not rejection
free. We summarize such a method for the sake of completeness. Let SK,pairwise denote the group
of pairwise permutations of (1, 2, . . . ,K).Given a current stateu ∈ XK , the PSDPT algorithm
samples a pairwise permutationuσi,j ∈ SK,pairwise with probability r

(PSDPT)
i,j (u, σi,j) given by

r
(PSDPT)
i,j (u, σi,j) :=

exp(−|Φ(ui, y)− Φ(uj ; y)|)∑
k,l exp(−|Φ(uk, y)− Φ(ul; y)|)

,

and then accepts this swap with probability

α(PSDPT)
swap (u, σi,j) := min

{
1,

(
πy1(ui)

πy1(uj)

) 1
Tj

− 1
Ti

}
.

This method is attractive from an implementation point of view in the sense that it promotes
pairwise swaps that have a similar energy, and as such, are likely (yet not guaranteed) to get accepted.
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4.3 Generalizing Parallel Tempering

In contrast, UGPT always accepts the new proposed state, which in turn leads to a larger amount
of global moves, thus providing a more efficient algorithm. This is verified on the numerical
experiments.

4.3.4 Weighted Generalized Parallel Tempering

Following the intuition of the continuous-time Infinite Swapping approach of [49, 133], we
propose a second discrete-time algorithm, which we will refer to asWeighted Generalized Parallel
Tempering (WGPT). The idea behind this method is to swap the dynamics of the process, that
is, the Markov kernels and temperatures, instead of swapping the states such that any given swap
is accepted with probability 1. We will see that the Markov kernel obtained when swapping
the dynamics is not invariant with respect to the product measure of interest µ; therefore, an
importance sampling step is needed when computing posterior expectations.
For a given permutation σ ∈ SK , we define the swappedMarkov kernel pσ : XK × BK 7→ [0, 1]

and the swapped product posterior measure µσ (on the measurable space (XK ,BK)) as:

pσ(u, ·) = pσ(1)(θ1, ·)× · · · × pσ(K)(θK , ·),
µy
σ := µσ(1) × · · · × µσ(K),

where the swapped posterior measure has a density with respect toµprior given by

πy
σ (u) := πyσ(1)(u1)× · · · × πyσ(K)(uK), u ∈ XK , σ ∈ SK (4.7)

Moreover, we define the swapping weights

wσ(u) :=
πy
σ(u)∑

σ′∈SK
πy
σ′(u)

, u ∈ XK , σ ∈ SK . (4.8)

Note that, in general,πy
σ(u) 6= πy(uσ) (howeverπy

σ−1(u) = π
y(uσ)), and as such,wσ(u) 6=

r(UW)(u, σ), withwσ defined as in (4.8).

Definition 4.3.6: We define theWeighted Generalized Parallel Tempering kernel p(W) : XK ×
BK 7→ [0, 1] as the following state-dependent, convex combination of kernels:

p(W)(u, ·) :=
∑
σ∈SK

wσ(u)pσ(u, ·), u ∈ XK , σ ∈ SK .

Thus, the WGPT chain is obtained by iteratively applying p(W). We show in proposition 4.3.4
that the resulting Markov chain has invariant measure

µy
W =

1

|SK |
∑
σ∈SK

µy
σ = µ̃× · · · × µ̃,
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with µ̃y = 1
|SK |

∑
σ µ

y
σ, i.e., the average with tensorization. Furthermore,µy

W has a density (w.r.t
the tensorized priorµpr) given by

πy
W(u) =

1

|SK |
∑
σ∈SK

πy
σ(u), u ∈ XK ,

and a similar average and then tensorization representation applies to πy
W.We now proceed to

show that p(W)(u, ·) isµy
W-reversible (henceµ

y
W-invariant).

Proposition 4.3.4 (Reversibility of theWGPT chain): Suppose that, for anyk = 1, 2, . . . ,K

pk is µk-reversible. Then, theMarkov chain generated by p(W) is µy
W-reversible.

Proof. We show reversibility by showing that (3.5) holds true. Thus, foru ∈ XK , A,B ∈ BK ,
withA := A1 × · · · ×AK ,Ak ∈ B(X), and withBk defined in a similar way, we have that:∫

A
p(W)(u, B)πy

W(u)µpr(du)

=

∫
A

 ∑
σ∈SK

wσ(u)pσ(u, B)

 ∑ρ∈SK
πy
ρ(u)

|SK |
µpr(du)

=

∫
A

 ∑
σ∈SK

πy
σ (u)∑

σ′∈SK
πy
σ′(u)

pσ(u, B)


×
∑

ρ∈SK
πy
ρ(u)

|SK |
µpr(du)

=
1

|SK |
∑
σ∈SK

∫
A
πy
σ(u)pσ(u, B)µpr(du) = I.

From proposition 4.3.2, and multiplying and dividing by
∑

ρ∈SK
πy
ρ(u)we obtain

I =
1

|SK |
∑
σ∈SK

∫
B
πy
σ(u)pσ(u, A)µpr(du) (by Prop. 4.3.2)

=
1

|SK |
∑
σ∈SK

∫
B

πy
σ(u)pσ(u, A)∑
σ′∈SK

πy
σ′(u)

∑
ρ∈SK

πy
ρ(u)µpr(du)

=
∑
σ∈SK

∫
B
wσ(u)pσ(u, A)πy

W(u)µpr(du)

=

∫
B
p(W)(u, A)πy

W(u)µpr(du).

where once again, in light of Carathéodory’s Extension Theorem, it is sufficient to show that
reversibility holds for sets that tensorize.
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We remark that themeasureµy
W is not of interest per se. However, we can use importance sampling

to compute posterior expectations. LetQoI(u) := QoI(u1) be aµ-integrable quantity of interest.
We can write

Eµ1 [QoI] = Eµ[QoI(u1)] = EµW

[
QoI(u1)

πy(u)

πy
W(u)

]
=

1

|SK |
∑
σ∈SK

EµW

[
QoI(uσ(1))

πy(uσ)

πy
W(uσ)

]
.

The last equality can be justified sinceµy
W is invariant by permutation of coordinates. Thus, we

can define the following (weighted) ergodic estimator Q̂oI(W) of the posterior mean of a quantity
of interest QoI by

µ(QoI) ≈

Q̂oI(W) =
1

|SK |
1

N

∑
σ∈SK

N∑
n=1

πy(u
(n)
σ )

πy
W(u

(n)
σ )

QoI(u(n)σ(1))

=
1

|SK |
1

N

∑
σ∈SK

N∑
n=1

ŵ(u(n), σ)QoI(u(n)σ(1)), (4.9)

where we have denoted the importance sampling weights by ŵ(u, σ) := πy(uσ)
πy
W(uσ)

= dµ
dµy

W
(uσ)

and whereN is the number of samples in the chain. Notice that w(u, σ) = ŵ(u, σ−1). As a
result, the WGPT algorithm produces an estimator based onNK weighted samples, rather than
“just”N , at the same computational cost of UGPT. Thus, the previous estimator evaluates the
quantity of interestQoI not only in the pointsQoI(u(n)1 ), but also in all states of the parallel chains,
QoI(u(n)σ(1)) for all σ ∈ SK , namely QoI(u(n)k ), k = 1, 2, . . . ,K .

Remark 4.3.3: Although it is known that, in some cases, an importance sampling estimator can
be negatively affected by the dimensionality of the parameter space X (see e.g., [3, Remark 1.17] or
[122, Examples 9.1-9.3]), we argue that this is not the case for our estimator. Indeed, notice that the
importance-sampling weights ŵ(u, σ) are always upper bounded by |SK |, and do not blow up when
the dimension goes to infinity. In Section 4.5.7 we present a numerical example on a high-dimensional
problem. The results on that section evidence the robustness ofWGPT with respect to the dimension of
u.

TheWeighted Generalized Parallel Tempering procedure is shown in Algorithm 6. To reiterate, we
remark that sampling from pσ(u(n), ·) involves a swap of dynamics, i.e., kernels and temperatures.
Just as in Remark 4.3.2, one only needs to evaluate the posteriorK times (instead of |SK |) to
computew(·)(u

n).
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Algorithm 6Weighted Generalized Parallel Tempering.
functionWeighted Generalized Parallel Tempering( p, N,ν)

Sampleu(1) ∼ ν
for n = 1, 2, . . . , N − 1 do

# Sample permutation σ with probabilitywσ(u
n)

Sample σ ∼ {wσ′(un)}σ′∈SK

# Sample state with the swappedMarkov kernel
Sampleu(n+1) ∼ pσ(u(n), ·)

end for
Output {u(n)}Nn=1, {{wσ′(un)}σ′∈SK

}Nn=1.
end function

4.4 Ergodicity of Generalized Parallel Tempering

4.4.1 Geometric ergodicity and L2-spectral gap for GPT

Our path to prove ergodicity of the GPT algorithms will be to show the existence of anL2-spectral
gap. The main results of this section are presented in Theorem 4.4.1 and Theorem 4.4.2, which
show the existence of anL2-spectral gap for both the UGPT andWGPT algorithms, respectively.
We begin with the definition of overlap between two probability measures. Such a concept will
later be used to bound the spectral gap of the GPT algorithms.

Definition 4.4.1 (Density overlap): Let µk, µj be two probability measures on the measurable
space (X,B(X)), each having respective densitiesπk(u), πj(u), u ∈ X,with respect to some common
reference measure νX also on (X,B(X)). We define the overlap between πk(u) and πj(u) as

ηνX(πk, πj) : =

∫
X
min{πk(u), πj(u)}νX(du)

= 1− 1

2
‖µk − µj‖L1(X,νX)

.

An analogous definition holds forπσ,πρ, with ρ, σ ∈ SK .

Assumption 4.4.1: For k = 1, . . . ,K , let µyk ∈ M1(X, µpr) be given as in (4.1), pk : X ×
B(X) 7→ [0, 1] be the Markov kernel associated to the kth dynamics and let Pk : Lr(X, µyk) 7→
Lr(X, µyk) be its corresponding µ

y
k invariantMarkov operator. In addition, for σ, ρ ∈ SK , define

the measuresµy
σ,µ

y
ρ ∈ M(XK) as in Equation (4.2). Throughout this chapter it is assumed that:

C1. TheMarkov kernel pk is µyk-reversible.

C2. TheMarkov operator Pk has anL2(X, µyk) spectral gap.

C3. For any σ, ρ ∈ SK ,Λσ,ρ := ηµpr(π
y
σ,π

y
ρ) > 0, withπy

σ,π
y
ρ defined as in (4.7).

These assumptions are relatively mild. In particular, C1 and C2 are known to hold for many
commonly-usedMarkov transition kernels, such as RWM,Metropolis-adjusted Langevin Algo-
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rithm, HamiltonianMonte Carlo, (generalized) preconditioned Crank-Nicolson, among others,
under mild regularity conditions on πy [3, 65]. Assumption C3 holds true given the construction
of the product measures in Section 4.3.
We now present an auxiliary result that we will use to bound the spectral gap of both theWeighted
and Unweighted GPT algorithms.

Proposition 4.4.1: Suppose thatAssumption4.4.1 holds and letP :=
⊗K

k=1 Pk : L2(XK ,µy) 7→
L2(XK ,µy),with invariant measureµy = µy1×· · ·×µyK . Then, P has anL2(XK ,µy)-spectral
gap, i.e., ‖P‖L0

2(XK ,µy)7→L0
2(XK ,µy) < 1. Moreover, the Markov chain obtained from P is Lr

geometrically ergodic, for any r ∈ [1,∞].

Proof. We limit ourselves to the caseK = 2, since the case forK > 2 follows by induction.
Denote by I : L2(X, µyk) 7→ L2(X, µyk), k = 1, 2 the identityMarkov transition operator, and let
f ∈ L2(X2,µy).Notice that f admits a spectral representation inL2(X2,µy) given by f(u) =∑

k,j φk(u1)ψj(u2)ck,j , with ck,j ∈ R, and where {φk}i∈N is a complete orthonormal basis
(CONB) ofL2(X, µy1) and {ψj}j∈N is aCONBofL2(X, µy2), so that {φk⊗ψj}k,j∈N is aCONB
of L2(X2,µy). Moreover, we assume that φ0 = ψ0 = 1, and write, for notational simplicity
‖P1‖ = ‖P1‖L2(X,µy

1)7→L2(X,µy
1)
, and ‖P2‖ = ‖P2‖L2(X,µy

2) 7→L2(X,µy
2)
. Lastly, denote f0 =

f − c0,0, so that f0 ∈ L0
2(X2,µy). Notice that

‖(P1 ⊗ I)f0‖2L2(X2,µy) =

∥∥∥∥∥∥
∑

(k,j) 6=(0,0)

(P1φk)ψjck,j

∥∥∥∥∥∥
2

L2(X2,µy)

=

∥∥∥∥∥∥
∞∑
j=0

( ∞∑
k=1

P1φkck,j

)
ψj +

∞∑
j=1

c0,jP1φ0ψj

∥∥∥∥∥∥
2

L2(X2,µy)

. (4.10)
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Splitting the sum, we get from the orthonormality of the basis that:

(4.10) =
∞∑
j=1

∥∥∥∥∥
∞∑
k=1

P1φkck,j + c0,jP1φ0

∥∥∥∥∥
2

L2(X,µy
1)

+

∥∥∥∥∥
∞∑
k=1

P1φkck,0

∥∥∥∥∥
2

L2(X,µy
1)

=

∞∑
j=1

∥∥∥∥∥P1

( ∞∑
k=1

φkck,j

)∥∥∥∥∥
2

L2(X,µy
1)

+

∞∑
j=1

‖c0,jφ0‖2L2(X,µy
1)

+

∥∥∥∥∥P1

( ∞∑
k=1

φkck,0

)∥∥∥∥∥
2

L2(X,µy
1)

≤
∞∑
j=1

(
‖P1‖2

∞∑
k=1

c2k,j + c20,j

)
+ ‖P1‖2

∞∑
k=1

c2k,0

= ‖P1‖2 ‖f0‖2L2(X2,µy) + (1− ‖P1‖2)
∞∑
j=1

(c0,j)
2.

Proceeding similarly, we can obtain an equivalent bound for ‖(I ⊗ P2)f0‖2L2(X2,µy). We are now
ready to bound ‖P‖2L2(X2,µy) 7→L2(X2,µy):

‖Pf0‖2L2(X2,µy) = ‖(P1 ⊗ P2)f0‖2L2(X2,µy)

= ‖(P1 ⊗ I)(I ⊗ P2)f0‖2L2(X2,µy)

≤ ‖P1‖2 ‖(I ⊗ P2)f0‖2L2(X2,µy)

+ (1− ‖P1‖2)

×

 ∞∑
j=1

(I ⊗ P2)
∑

(`,k) 6=(0,0)

〈c`,kφ`ψk, φ0ψj〉

2
= ‖P1‖2 ‖(I ⊗ P2)f0‖2L2(X2,µy)

+ (1− ‖P1‖2)

 ∞∑
j=1

( ∞∑
k=1

〈c0,k(P2ψk), ψj〉

)2


≤ ‖P1‖2 ‖(I ⊗ P2)f0‖2L2(X2,µy)

+ (1− ‖P1‖2)

∥∥∥∥∥P2

( ∞∑
k=1

c0,kψk

)∥∥∥∥∥
2

L2(X,µy
2)
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≤ ‖P1‖2 ‖P2‖2 ‖f0‖2L2(X2,µy)

+ ‖P1‖2 (1− ‖P2‖2)

 ∞∑
j=1

c2j,0


+ (1− ‖P1‖2) ‖P2‖2

( ∞∑
k=1

c20,k

)

Assuming without loss of generality that ‖P1‖ ≥ ‖P2‖, we can use the inequality above to bound

‖Pf0‖2L2(X2,µy) ≤ ‖P1‖2 ‖P2‖2 ‖f0‖2L2(X2,µy)

+ ‖P1‖2 (1− ‖P2‖2)

 ∞∑
j=1

c2j,0 +
∞∑
k=1

c20,k


︸ ︷︷ ︸

≤ ‖f0‖2L2(X2,µy)

≤ ‖P1‖2 ‖f0‖2L2(X2,µy) .

Thus, we have that

‖P ‖L0
2(X2,µy) 7→L0

2(X2,µy) ≤ max
k=1,2

{‖Pk‖L0
2(X,µy

k)7→L0
2(X,µy

k)
} < 1.

The previous result can easily be extended toK > 2. Lastly,Lr(XK ,µy)-geometric ergodicity
∀r ∈ [1,∞] follows from Lemma 3.2.1.

We can use the previous result to prove the geometric ergodicity of the UGPT algorithm:

Theorem 4.4.1 (Ergodicity of UGPT ): Suppose Assumption 4.4.1 holds and denote byµy

the invariant measure of the UGPTMarkov operator P(UW). Then, P(UW) has an L2(XK ,µy)-
spectral gap. Moreover, the chain generated by P(UW) isLr(XK ,µy)-geometrically ergodic for any
r ∈ [1,∞].

Proof. Recall that P(UW) := Q(UW)PQ(UW). From the definition of operator norm, we have that∥∥∥P(UW)
∥∥∥
L0
2(XK ,µy)7→L0

2(XK ,µy)

≤
∥∥∥Q(UW)

∥∥∥2
L0
2(XK ,µy)7→L0

2(XK ,µy)
‖P‖L0

2(XK ,µy)7→L0
2(XK ,µy)

≤ ‖P‖L0
2(XK ,µy)7→L0

2(XK ,µy) < 1,

where the previous line follows fromProposition4.4.1 and the fact thatQ(UW) is aweak contraction
in L2(XK ,µy) (see, Equation (3.7)). Lastly, Lr(XK ,µy)-geometric ergodicity ∀r ∈ [1,∞]

follows from Lemma 3.2.1 and the fact that P(UW) isµy-reversible by Proposition 4.3.3.
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We now turn to proving geometric ergodicity for theWGPT algorithm. We begin with an auxiliary
result, lower-bounding the variance of aµy

W-integrable functional f ∈ L2(XK ,µy
W).

Proposition 4.4.2: Letf ∈ L0
2(XK ,µy

W) be aµ
y
W-integrable function such that‖f‖L2(XK ,µy

W) =

1, and denote byVµy
W
[f ],Vµy

σ
[f ] the variance of f with respect toµy

W,µ
y
σ , respectively withσ ∈ SK .

In addition, suppose Assumption 4.4.1 holds. Then, it can be shown that

0 <
Λm

2− Λm
≤ 1

|SK |
∑
σ∈SK

Vµy
σ
[f ] ≤ Vµy

W
[f ] = 1,

withΛm = min
σ,ρ∈SK

{Λσ,ρ} andΛσ,ρ as in Assumption 4.4.1-C3.

Proof. This proof is partially based on the proof of Theorem 1.2 in [106]. Let u,y ∈ XK and
define f̄σ := µσ(f). The right-most inequality follows from the fact that

1 = Vµy
W
[f ] =

∫
XK

f(u)2µy
W(du)

=
1

|SK |
∑
σ∈SK

∫
XK

f2(u)µσ(du)

=
1

|SK |
∑
σ∈SK

(
Vµσ [f ] + f̄2σ

)
≥ 1

|SK |
∑
σ∈SK

Vµσ [f ].

We follow a procedure similar to the proof of [106, Theorem 1.2] for the lower bound on the
variance. We introduce an ordering on SK = {σ1, σ2, . . . , σ|SK |}, define the matrix C ∈
R|SK |×|SK | as the matrix with entries

Cij =

∫
XK

∫
XK

(f(u)− f(y))2µσi(du)µσj (dy),

whereCjj = 2Vµσj
[f ] and

2 = 2Vµy
W
[f ] =

∫
XK

∫
XK

(f(u)− f(y))2

 1

|SK |

|SK |∑
i=1

µσi(du)


×

 1

|SK |

|SK |∑
j=1

µσj (dy)


=
∑
i,j

1

|SK |2
Cij . (4.11)

We thus aim at finding an upper bound of Equation (4.11) in terms of (|SK |)−1
∑

σ∈SK
Vσ[f ].
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By assumption 4.4.1-C3, for any σi, σj ∈ SK the densitiesπσi ,πσj ofµσi ,µσj (with respect to
µpr) have an overlapΛσi,σj > 0. For brevity, in the following we use the shorthand notationΛi,j

forΛσi,σjThus, we can find densities

ηij := Λ−1
ij min

u∈XK
{πσi(u),πσj (u)},ϕi,ψj

such thatπσi = Λijηij + (1− Λij)ϕi, andπσj = Λijηij + (1− Λij)ψj . Thus, integrating
over XK ,we get for the diagonal entries of theC matrix:

Cii = 2Vµσi [f ]

=

∫∫
(f(u)− f(y))2 (Λijηij(u) + (1− Λij)ϕi(u))

× (Λijηij(y) + (1− Λij)ϕi(y))µpr(du)µpr(dy)

=

∫∫
(f(u)− f(y))2Λ2

ijηij(u)ηij(y)µpr(du)µpr(dy)

+

∫∫
(f(u)− f(y))2Λij(1− Λij)ϕi(y)ηij(u)µpr(du)µpr(dy)

+

∫∫
(f(u)− f(y))2Λij(1− Λij)ϕi(u)ηij(y)µpr(du)µpr(dy)

+

∫∫
(f(u)− f(y))2(1− Λij)

2ϕi(y)ϕi(u)µpr(du)µpr(dy)

= 2Λ2
ijVηij [f ] + 2(1− Λij)

2Vϕi [f ] + 2Λij(1− Λij)

×
∫∫

(f(u)− f(y))2ηij(u)ϕi(u)µpr(du)µpr(dy). (4.12)

Notice that equation (4.12) implies that∫∫
(f(u)− f(y))2ηij(u)ϕi(u)µpr(du)µpr(dy) (4.13)

≤
Vµσi

[f ]− Λ2
ijVηij [f ]

Λij(1− Λij)
.
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As for the non-diagonal entries ofC , we have

Cij =

∫∫
(f(u)− f(y))2 [Λijηij(u) (4.14)

+ (1− Λij)ϕi(u)] (Λijηij(y)

+ (1− Λij)ψj(y))µpr(du)µpr(dy)

= 2Λ2
ijVηij [f ]

+ (1− Λij)
2

∫∫
(f(u)− f(y))2ϕi(u)ψj(y)µpr(du)µpr(dy)

+ Λij(1− Λij)

∫∫
(f(u)− f(y))2

× (ηij(u)ψj(y) + ηij(y)ϕi(u))µpr(du)µpr(dy).

We can bound the second term in the previous expression using Cauchy-Schwarz. Let z ∈ XK .
Then, ∫∫

(f(u)− f(y))2ϕi(u)ψj(y)µpr(du)µpr(dy)

=

∫∫∫
(f(u)− f(z) + f(z)− f(y))2ϕi(u)ψj(y)ηij(z)

× µpr(du)µpr(dy)µpr(dz)

≤ 2

∫∫∫ (
(f(u)− f(z))2 + (f(z)− f(y))2

)
ϕi(u)ψj(y)ηij(z)

× µpr(du)µpr(dy)µpr(dz)

= 2

∫∫
(f(u)− f(z))2ϕi(u)ηij(z)µpr(du)µpr(dz)

+ 2

∫∫
(f(y)− f(z))2ψj(y)ηij(z)µpr(dy)µpr(dz). (4.15)
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Thus, from equations (4.13), (4.14), and (4.15) we get

Cij ≤ 2Λ2
ijVηij [f ] + (2(1− Λij)

2 + Λij(1− Λij))

×
(∫∫

(f(u)− f(y))2 (ηij(u)ψj(y)

+ηij(y)ψi(u))µpr(du)µpr(dy))

= 2Λ2
ijVηij [f ] + (2− Λij)(1− Λij)

×

(
Vµσi

[f ]− Λ2
ijVηij [f ] + Vµσj

[f ]− Λ2
ijVηij [f ]

)
Λij(1− Λij)

=
2− Λij

Λij

(
Vµσi

[f ] + Vµσj
[f ]
)
− 4Λij(1− Λij)Vηij [f ]

≤ 2− Λij

Λij

(
Vµσi

[f ] + Vµσj
[f ]
)
, (4.16)

sinceΛij ∈ (0, 1) ∀i, j. Finally, from equations (4.11) and (4.16) we get that

1 = Vµy
W
[f ] =

1

2

∑
i,j

1

|SK |2
Cij

≤ 1

2

1

|SK |2

|SK |∑
i,j=1

2− Λij

Λij

(
Vµσj

[f ] + Vµσj
[f ]
)

≤ 2− Λm

Λm

 1

|SK |

|SK |∑
i=1

Vµσi
[f ]

 ,

withΛm := min{Λij}
i,j=1,2,...,|SK |

> 0, andΛi,j as in Assumption 4.4.1-C3. Notice that we have used

(4.16) for the first inequality, including the case i = j, in the previous equation. This in turn
yields the lower bound

0 <
Λm

2− Λm
≤

 1

|SK |
∑
i∈SK

Vµi
[f ]

 .

We are finally able to prove the ergodicity of the WGPT algorithm.

Theorem 4.4.2 (Ergodicity of WGPT): Suppose Assumption 4.4.1 holds for some r ∈ [1,∞]

and denote byµy
W the invariant measure of theWGPTMarkov operator P(W). Then, P(W) has an

L2(XK ,µy
W)-spectral gap. Moreover, the chain generated by P(W) is Lr(XK ,µy

W) geometrically
ergodic for any r ∈ [1,∞].
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Proof. LetL := {f ∈ L0
2(XK ,µy

W) : ‖f‖L0
2(XK ,µy

W) = 1}, and, for notational clarity, write

‖Pσ‖L0
2
:= ‖Pσ‖L0

2(XK ,µy
σ)7→L0

2(XK ,µy
σ)
.

Then, from the definition of operator norm,∥∥∥P(w)
∥∥∥2
L0
2(XK ,µy

W)7→L0
2(XK ,µy

W)

= supf∈L
∥∥∥P(w)f

∥∥∥2
L2(XK ,µy

W)

= sup
f∈L

∫
XK

∣∣∣∣∣∣
∑
σ∈SK

wσ(u)

∫
XK

f(y)pσ(u, dy)

∣∣∣∣∣∣
2

µy
W(du)

≤ sup
f∈L

∫
XK

∑
σ∈SK

wσ(u)

∣∣∣∣∫
XK

f(y)pσ(u, dy)
∣∣∣∣2µy

W(du)

= sup
f∈L

1

|SK |
∑
σ∈SK

∫
XK

∣∣∣∣∫
XK

f(y)pσ(u, dy)
∣∣∣∣2µy

σ(du), (4.17)

where the second to last line follows from the convexity of (·)2 and the last line follows from the
definition ofwσ andµy

W.Now, let f̄σ := µy
σ(f). Notice that we have∫

XK

∣∣∣∣∫
XK

f(y)pσ(u, dy)
∣∣∣∣2µy

σ(du)

=

∫
XK

∣∣∣∣∫
XK

(f(y)− f̄σ + f̄σ)pσ(u, dy)
∣∣∣∣2µy

σ(du)

=

∫
XK

(∣∣∣∣∫
XK

(f(y)− f̄σ)pσ(u, dy)
∣∣∣∣2 + ∣∣∣∣∫

XK

f̄σpσ(u, dy)
∣∣∣∣2

+2f̄σ

∫
XK

(f(y)− f̄σ)pσ(u, dy)
)
µy
σ(du)

=

∫
XK

(∫
XK

(f(y)− f̄σ)pσ(u, dy)
)2

µy
σ(du)︸ ︷︷ ︸

I

+(f̄σ)
2

+ 2f̄σ

∫
XK

∫
XK

(f(y)− f̄σ)pσ(u, dy)µ
y
σ(du)︸ ︷︷ ︸

= 0 by stationarity

(4.18)

Thus, multiplying and dividing I by(∫
XK

(
f(u)− f̄σ

)2
µy
σ(du)

)
,
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we obtain from the definition of ‖Pσ‖2L0
2
that:

(4.18) =

(∫
XK

(∫
XK (f(y)− f̄σ)pσ(u, dy)

)2
µy
σ(du)∫

XK

(
f(u)− f̄σ

)2
µy
σ(du)

)

×
(∫

XK

(
f(u)− f̄σ

)2
µy
σ(du)

)
+ (f̄σ)

2

≤‖Pσ‖2L0
2

(∫
XK

(
f(u)− f̄σ

)2
µy
σ(du)

)
+ (f̄σ)

2

= ‖Pσ‖2L0
2

(∫
XK

f(u)2µy
σ(du)

)
+
(
1− ‖Pσ‖2L0

2

)
(f̄σ)

2

=

(∫
XK

f(u)2µy
σ(du)

)
−
(
1− ‖Pσ‖2L0

2

)
︸ ︷︷ ︸
:= γ, with γ ∈ (0, 1)

×
(∫

XK

(
f(u)− f̄σ

)2
µy
σ(du)

)
. (4.19)

Replacing Equation (4.19) into Equation (4.17), we get∥∥∥P(W)
∥∥∥2
L0
2(XK ,µy

W)7→L0
2(XK ,µy

W)

≤ sup
f∈L

(∫
XK

f(u)2µy
W(du)

)
− γ

|SK |
∑
σ∈SK

Vµy
σ
[f ]

≤ 1− γ

(
Λm

2− Λm

)
< 1 (by Proposition 4.4.2).

Thus,P(w) has anL2(XK ,µy
W) spectral gap. Once again,Lr(XK ,µy

W)-geometric ergodicity (with
r ∈ [1,∞]) follows from Lemma 3.2.1 and the fact that P(W) is µy

W-reversible by Proposition
4.3.4.

Discussion and comparison to similar theoretical result

Theorems 4.4.1 and 4.4.2 state the existence of anL2-spectral gap, henceLr-geometric ergodicity
for both the UGPT and theWGPT algorithm. Their proof provides also a quantification of the
L2-spectral gap in terms of the L2-spectral gap of each individual Markov operator Pk. Such a
bound is, however, not satisfactory as it does not use any information on the temperature and it
just states that theL2-spectral gap of the UWPT andWGPT chain is not worse that the smallest
L2-spectral gap among the individual chains (without swapping). This result is not sharp, as it can
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be evidenced in the numerical section, where a substantial improvement in convergence is achieved
by our methods.
Convergence results for the standard parallel tempering algorithm have been obtained in the works
[114] and [171]. In particular, the work [114] has proved geometric ergodicity for the pairwise
parallel tempering algorithm using the standard drift condition construction of [113]. It is unclear
from that work which convergence rate is obtained for the whole algorithm. In comparison, our
results are given in terms of spectral gaps. On the other hand, the work [171] presents conditions
for rapid mixing of a particular type of parallel tempering algorithm, where the transition kernel is
to be understood as a convex combination of such kernels, as opposed to our case, where it is to be
understood as a tensorization. Their obtained results provide, for their setting, a better convergence
rate than the one we obtained for the UGPT.We believe that their result can be extended to the
UGPT algorithm, and this will be the focus of future work. On the other hand, the use of the
ideas in [171] for the WGPT algorithm seems more problematic.

4.5 Numerical experiments

We now present four academic examples to illustrate the efficiency of both GPT algorithms
discussed herein and compare them to the more traditional random walk Metropolis and standard
PT algorithms. Notice that we compare the different algorithms in their simplest version that uses
random walk Metropolis as a base transition kernel. The only exception is in Section 4.5.7, which
presents a high-dimensional BIP for which the preconditioned Crank-Nicolson [32] is used as
the base method in all algorithms instead of RWM.More advanced samplers, such as Adaptive
metropolis [63, 64], or other transition kernels, could be used as well to replace RWM or pCN.
Experiments 4.5.3, 4.5.4 and 4.5.5 were run in a Dell (R) Precision (TM) T3620 workstation with
Intel(R) Core(TM) i7-7700 CPUwith 32 GB of RAM. Numerical simulations in Section 4.5.3
and 4.5.5 were run on a single thread, while the numerical simulations in Section 4.5.4 were run
on an embarrassingly parallel fashion over 8 threads using theMessage Passing Interface (MPI)
and the Python package MPI4py [38]. Lastly, experiments 4.5.6 and 4.5.7 were run on the Fidis
cluster of the EPFL. The scripts used to generate the results presented in this section were written
in Python 3.6, and can be found in DOI: 10.5281/zenodo.4736623

4.5.1 Implementation remarks

In most Bayesian inverse problems, particularly those dealing with large-scale computational
models, the computational cost is dominated by the evaluation of the forward operator, which can
be, for example, the numerical approximation of a possibly non-linear partial differential equation.
In the case where all possible permutations are considered (i.e., SK = SK ), there areK! possible
permutations of the states, the computation of the swapping ratio in the GPT algorithms can
become prohibitively expensive if one is to evaluateK! forward models, even for moderate values
ofK . This problem can be circumvented by storing the values− log(πy(unk)), k = 1, . . . ,K,
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Figure 4.1: Cost per sample vsK for SK = SK for the forward model in Section 4.5.5 and the forward
model in 4.5.7.

n = 1, . . . N , since the swapping ratio for GPT consists of permutations of these values, divided
by the temperature parameters. Thus, “only”K forward model evaluations need to be computed
at each step and the swapping ratio can be computed at negligible cost for moderate values ofK .
There is, however, a clear trade-off between the choice ofK (which has a direct impact on the
efficiency of the method), and the computational cost associated to (G)PT. Intuitively, a largeK
would provide a better mixing, however, it requires a larger number of forward model evaluations,
which tends to be costly. We remark that such a trade-off between efficiency and number of
function evaluations is also present in some advanced MCMCmethods, such as Hamiltonian
Monte Carlo, where one needs to choose a number of time steps for the time integration (see,
e.g., [12]). Furthermore, there is an additional constraint when choosing SK = SK , and it is the
permutation cost associated to computing r(UW)(u, σ) andwσ(u). In particular, the computation
of either of those quantities has a complexity ofK! thus, this cost will eventually surpass the cost of
evaluating the forward modelK times. This is illustrated in Figure 4.1, where we plot the cost per
sample of two different posteriors vsK . These posteriors are taken from the numerical examples
in Sections 4.5.5 and 4.5.7. The posterior in Section 4.5.5 is rather inexpensive to evaluate, since
one can compute the forward mapF analytically (the difficulty associated to sampling from that
posterior comes from its highmulti-modality). On the contrary, evaluating the posterior in Section
4.5.7 requires numerically approximating the solution to a time-dependent, second-order PDE,
and as such, evaluating such a posterior is costly. As we can see forK ≤ 6, the computational cost
in both cases is dominated by the forward model evaluation. Notice that forK ≤ 9, the cost per
sample from posterior (4.27) is dominated by the evaluation of the forward model.
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Thus, for high values ofK , it is advisable to only consider the union of properly chosen semi-groups
A,B ofSK ,withA∩B 6= ∅, such thatA,B generatesSK (i.e., if the smallest semi-groups that
containsA andB isSK itself), and |A∪B| < |SK | = K!,which is referred to as partial Infinite
Swapping in the continuous case [49]. One particular way of choosingA andB is to consider, for
example,A to be the set of permutations that only permute the indices associated with relatively
low temperatures while leaving the other indices unchanged, andB as the set of permutations for
the indices of relatively high temperatures, while leaving the other indices unchanged. Intuitively,
swaps between temperatures that are, in a sense, “close” to each other tend to be chosen with a
higher probability. We refer the reader to [49, Section 6.2] for a further discussion on this approach
in the continuous-time setting. One additional idea would be to consider swapping schemes that,
for example, only permute states between µyi and µ

y
i+1, µ

y
i+2, . . . , µ

y
i+` for some user-defined

` ≥ 1 and any given i = 1, 2, . . . ,K − 1. The intuition behind this choice also being that swaps
between posteriors that are at close temperatures are more likely to occur than swaps between
posteriors with a high temperature difference. We intend to explore this further in depth in future
work.
We reiterate that the total number of temperaturesK depends heavily on the problem and the
computational budget available [47, 163, 172] For the experiments considered in the work we
choseK = 4 orK = 5, which provide an acceptable compromise between acceleration and cost.

Remark 4.5.1: It was brought to our attention duing the private defense of this Thesis that in the
case where SK = S̄K (i.e., when allK! permutations of the set {1, 2, . . . ,K} are considered), the
(state-dependent) normalization term Z̃(u) :=

∑
σ∈SK

πy(uσ), can be computed with a much
lower complexity thanO(K!). This can in turn, drastically reduce the computational cost associated
to GPT for the case whereK is large and all possible permutaitons are considered. Indeed, given a
matrixA ∈ RK×K with entriesAi,j , i, j = 1, 2, . . . ,K , we define its permanentA 7→ Perm(A)

as

Perm(A) :=
∑
σ∈SK

K∏
k=1

Ak,σ(k).

Thus, it is easy to see that Z̃(u) is the permanent of the matrix A(u) ∈ RK×K with entries
Ai,j = πyi (uj), i, j = 1, . . . ,K . It is shown in [7, 61, 146] that such an operation can be computed
with complexityO(2K−1K). We intend to include such algorithms for the efficient cmputation of
Z̃(u) in future work.

4.5.2 Experimental setup

We now present an experimental setup common to all the numerical examples presented in the
following subsections. In particular, all the experiments presented in thiswork utilize a basemethod
given by either RWM (for experiments 4.5.3 through 4.5.6) or pCN (used in experiment 4.5.7)
for the Markov transition kernels p. Furthermore, we take SK = SK for all experiments, where
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K = 5 for experiment 4.5.5 andK = 4 for the other 4 experiments. In addition, we follow the
rule of thumb of [52] for the choice of temperatures, setting, for each experiment, Tk = ak−1,

k = 1, . . . ,K , for some positive constanta > 1. The particular choice ofa is problem-dependent
and it is generally chosen so that µyK becomes sufficiently simple to explore. For each experiment
we implement 5MCMC algorithms to sample from a given posterior µy = µy1, namely, the base
(untempered) method (either RWMor pCN), and such a method combined with the standard PT
algorithm (PT) withNs = 1, the PSDPT algorithm of [90], and both versions of GPT. For our
setting, the tempered algorithms have a cost (in terms of number of likelihood evaluations) that is
K times larger than the base method. Thus, to obtain a fair comparison across all algorithms, we
run the chain for the basemethodK times longer. Lastly, given some problem-dependent quantity
of interest QoI, we assess the efficiency of our proposed algorithms to compute the posterior
expectation of QoI by comparing the mean square error (experiments 4.5.3-4.5.5), for which the
exact value ofEµy [QoI] is known, or the variance (experiments 4.5.6-4.5.7) of the ergodic estimator
Q̂oI obtained overNruns independent runs of each algorithm.

4.5.3 Density concentrated over a quarter circle-shaped manifold

Let µy be a probability measure that has density πy with respect to the uniform Lebesgue measure
on the unit squareµpr = U([0, 1]2) given by

πy(u) =
1

Z
exp
(
−10000(u21 + u22 − 0.82)2

)
1[0,1]2 ,

where u = (u1, u2), Z is the normalization constant, and 1[0,1]2 is the indicator function over
the unit square. We remark that this example is not of particular interest per se; however, it can
be used to illustrate some of the advantages of the algorithms discussed herein. The difficulty
of sampling from such a distribution comes from the fact that its density is concentrated over a
quarter circle-shaped manifold, as can be seen on the left-most plot in Figure 4.2. This in turn
will imply that a single level RWM chain would need to take very small steps in order to properly
explore such density.
We aim at estimating Q̂oIi = Eµy [ui] ≈ ûi, for i = 1, 2. For the tempered algorithms (PT,
PSDPT, UGPT, andWGPT), we considerK = 4 temperatures and choose T4 = 5000, so that
the tempered density πy4 becomes sufficiently simple to explore the target distribution. This gives
T1 = 1, T2 = 17.1, T3 = 292.4, T4 = 5000. We compare the quality of our algorithms by
examining the variance of the estimators ûi, i = 1, 2 computed overNruns = 100 independent
MCMC runs of each algorithm. For the tempered algorithms, each estimator is obtained by
running the inversion experiment forN = 25, 000 samples per run, discarding the first 20% of
the samples (5000) as a burn-in. Accordingly, we run the single-chain random walkMetropolis
algorithm forNRWM = KN = 100, 000 iterations, per run, and discard the first 20% of the
samples obtained with the RWM algorithm (20,000) as a burn-in.
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Figure 4.2: Tempered densities (with T1 = 1, T2 = 17.1, T3 = 292.4, T4 = 5000) for the density
concentrated around a quarter circle-shaped manifold example. As we can see, the density
becomes less concentrated as the temperature increases, which allows us to use RWM proposals
with larger step sizes.
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The untempered RWM algorithm uses Gaussian proposals with covariance matrix ΣRWM =

ρ21I2×2,where I2×2 is the identitymatrix inR2×2, and ρ21 = 0.022 is chosen in order to obtain an
acceptance rate of around 0.23. For the tempered algorithms (i.e., PT, PSDPT, and both versions
of GPT), we useK = 4RWMkernels pk, k = 1, 2, 3, 4, with proposal density qprop,k(unk , ·) =
N (unk , ρ

2
kI2×2), where ρk is shown in Table 4.1. This choice of ρk gives an acceptance rate for

each chain of around 0.23 (determined empirically). Notice that ρ1 corresponds to the “step-size”
of the single-temperature RWM algorithm.

k = 1 k = 2 k = 3 k = 4

ρk 0.022 0.090 0.310 0.650

Table 4.1: Step size of the RWMproposal distribution for the manifold experiment.

Experimental results for the ergodic run are shown in Table 4.2. We can see how both GPT
algorithms provide a gain over RWM, PT and PSDPT algorithms, with the WGPT algorithm
providing the largest gain. Scatter plots of the samples obtained with each method are presented
in Figure 4.3. Here, the subplot titled “WGPT” (bottom row, middle) corresponds to weighted
samples from µy

W, with weight ŵ as in (4.9), while the one titled “WGPT (inv)” (bottom row,
right) corresponds to samples from µy

W without any post-processing. Notice how the samples
from the latter concentrates over a thicker manifold, which in turn makes the target density easier
to explore when using state-dependent Markov transition kernels.

Mean MSE MSERWM/MSE
û1 û2 û1 û2 û1 û2

RWM 0.50996 0.50657 0.00253 0.00261 1.00 1.00
PT 0.50978 0.51241 0.00024 0.00021 10.7 11.0
PSDPT 0.50900 0.50956 0.00027 0.00026 9.53 10.2
UGPT 0.50986 0.50987 0.00016 0.00016 16.1 16.4
WGPT 0.51062 0.50838 0.00015 0.00014 16.9 18.4

Table 4.2: Results for the density concentrated around a circle-shaped manifold experiment. As we can see,
both GPT algorithms provide an improvement over PT, PSDPT and RWM. The computational
cost is comparable across all algorithms.

4.5.4 Multiple source elliptic BIP

We now consider a slightly more challenging problem, for which we try to recover the probability
distribution of the location of a source term in a Poisson equation (Eq. (4.20)), based on some noisy
measured data. Let (X,B(X), µpr) be the measure space, set X = D̄ := [0, 1]2, with Lebesgue
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Figure 4.3: Scatter-plots of the samples from µy obtained with each algorithm on a single run. Top, from
left to right: random walk Metropolis, PT and PSDPT. Bottom, from left to right: UGPT,
WGPT (after re-weighting the samples), andWGPT, before re-weighting the samples.

(uniform) measure µpr, and consider the following Poisson’s equation with homogeneous bound-
ary conditions: {

−∆v(x, u) = f(x, u), x ∈ D, u ∈ X,
v(x, u) = 0, x ∈ ∂D.

(4.20)

Such equation can model, for example, the electrostatic potential v := v(x, u) generated by a
charge density f(x, u) depending on an uncertain location parameter u ∈ X. Data y is recorded
on an array of 64× 64 equally-spaced points inD by solving (4.20) with a forcing term given by

f(x) =
4∑

i=1

e−1000[(x1−s
(i)
1 )2+(x2−s

(i)
2 )2], (4.21)

where the true source locations s(i), i = 1, 2, 3, 4, are given by s(1) = (0.2, 0.2), s(2) =

(0.2, 0.8), s(3) = (0.8, 0.2), and s(4) = (0.8, 0.8). Such data is assumed to be polluted by
an additive Gaussian noise with distribution N (0, η2I64×64), with η = 3.2 × 10−6, (which
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corresponds to a 1% noise) and where I64×64 is the 64-dimensional identity matrix. Thus, we
set (Y, ‖·‖Y) = (R64×64, ‖·‖), with ‖A‖ = (64η)−2 ‖A‖2F , for some arbitrary matrix A ∈
R64×64, where ‖·‖F is the Frobenius norm. We assume a misspecified model where we only
consider a single source in Eq. (4.21). That, is, we construct our forward operatorF : X 7→ Y by
solving (4.20) with a source term given by

f(x, u) = e−1000[(x1−u1)2+(x2−u2)2]. (4.22)

In this particular setting, this leads to a posterior distribution with four modes since the prior
density is uniform in the domain and the likelihood has a local maximumwhenever (u1, u2) =
(s

(i)
1 , s

(i)
2 ), i = 1, 2, 3, 4. The Bayesian inverse problem at hand can be understood as sampling

from the posterior measure µy , which has a density with respect to the priorµpr = U(D̄) given
by

πy(u) =
1

Z
exp
(
−1

2
‖y −F(u)‖2Σ

)
,

for some (intractable) normalization constantZ as in (2.7). We remark that the solution to (4.20)
with a forcing term of the form of (4.22) is approximated using a second-order accurate finite
difference approximation with grid-size h = 1/64 on each spatial component.
The difficulty in sampling from the current BIP arises from the fact that the resulting posterior µy

is multi-modal and the number of modes is not known apriori (see Figure 4.4).
We follow a similar experimental setup to the previous example, and aim at estimating Q̂oIi =
Eµy [ui] ≈ ûi, for i = 1, 2. We useK = 4 temperatures andNruns = 100. For the PT, PSDPT
and GPT algorithms, four different temperatures are used, with T1 = 1, T2 = 7.36, T3 =

54.28, and T4 = 400. For each run, we obtainN = 25, 000 samples with the PT, PSDPT, and
both GPT algorithms, andN = 100, 000 samples with RWM, discarding the first 20% of the
samples in both cases (5000, 20000, respectively) as a burn-in. On each of the tempered chains,
we use RWMproposals, with step-sizes shown in table 4.3. This choice of step size provides an
acceptance rate of about 0.24 across all tempered chains and all tempered algorithms. For the
single-temperature RWM run, we choose a larger step size (ρRWM = 0.16) so that the RWM
algorithm is able to explore the whole distribution. Such a choice, however, provides a smaller
acceptance rate of about 0.01 for the single-chain RWM.
Experimental results are shown in Table 4.4. Once again, we can see how both GPT algorithms
provide a gain over RWM and both variations of the PT algorithm, with theWGPT algorithm
providing a larger gain. Scatter-plots of the obtained samples are shown in Figure 4.4.
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Figure 4.4: True tempered densities for the elliptic BIP example. Notice that the density is not symmetric,
due to the additional random noise.

112



4.5 Numerical experiments

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

u1

u
2

RWM

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

u1

u
2

PT

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

u1

u
2

PSDPT

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

u1

u
2

UGPT

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

u1

u
2

WGPT

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

u1

u
2

WGPT (inv)

Figure 4.5: Scatterplots of the samples from µy obtained with different algorithms on a single run. Top,
from left to right: randomwalkMetropolis, PT and PSDPT. Bottom, from left to right: UGPT,
WGPT (after re-weighting the samples), andWGPT, before re-weighting the samples. As we
can see, WGPT (before re-weighting) is able to ”connect” the parameter space.
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k = 1 k = 2 k = 3 k = 4

ρk,Tempered 0.030 0.100 0.400 0.600
ρk,RWM 0.160 - - -

Table 4.3: Step size of the RWMproposal distribution for the elliptic BIP experiment.

Mean MSE MSERWM/MSE
u1 u2 u1 u2 u1 u2

RWM 0.48509 0.51867 0.00986 0.01270 1.00 1.00
PT 0.48731 0.50758 0.00042 0.00036 23.0 29.2
PSDPT 0.48401 0.50542 0.00079 0.00099 12.4 10.7
UGPT 0.48624 0.50620 0.00038 0.00027 25.9 38.2
WGPT 0.48617 0.50554 0.00025 0.00023 38.6 44.9

Table 4.4: Results for the elliptic BIP problem. The computational cost is comparable across all algorithms,
given that the cost of each iteration is dominated by the cost of solving the underlying PDE.

4.5.5 1Dwave source inversion

We consider a small variation of example 5.1 in [115]. Let (X,B(X),µpr) be a measure space,
with X = [−5, 5] and uniform (Lebesgue) measure µpr, and let I = (0, T ] be a time interval.
Consider the following Cauchy problem for the 1D wave equation:

vtt(x, t, u)− vxx(x, t, u) = 0, (x, t, u) ∈ R× I × X,
v(x, 0, u) = h(x, u), (x, t, u) ∈ R× {0} × X,
vt(x, 0, u) = 0, (x, t, u) ∈ R× {0} × X.

(4.23)

Here, h(x, u) acts as a source term generating a initial wave pulse. Notice that Equation (4.23)
can be easily solved using d’Alembert’s formula, namely

v(x, t, u) =
1

2
(h(x− t, u) + h(x+ t, u)) .

Synthetic data y is generated by solving Equation (4.23) with initial data

h(x, u1, u2) =
1

2

(
e−100(x−u1−0.5)2 + e−100(x−u1)2

+e−100(x−u1+0.5)2 + e−100(x−u2−0.5)2

+e−100(x−u2)2 + e−100(x−u2+0.5)2
)
,

with u1 = −3, u2 = 3 and observed at NR = 11 equally-spaced receiver locations between
R1 = −5 and R2 = 5 onNT = 1000 time instants between t = 0 and T = 5. The signal
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Figure 4.6: Multi-modal potential for the Cauchy problem. Notice theminima aroundu = −3 andu = 3.

recorded by each receiver is assumed to be polluted by additiveGaussian noiseN (0, η2I1000×1000),
with η = 0.01, which corresponds to roughly 1% noise. We set (Y, ‖‖Y ) = (R11×1000, ‖·‖Σ),
with

‖A‖2Σ = (
√
NRη)

−2
NR∑
i=1

NT∑
j=1

A2
i,j ,

A ∈ R11×1000. Once again, we assume a misspecified model where we construct our forward
operatorF : X 7→ Y by solving (4.23) with a source term given by

h(x, u) =
(
e−100(x−u−0.5)2

+e−100(x−u)2 + e−100(x−u+0.5)2
)
.

The Bayesian inverse problem at hand can be understood as sampling from the posterior measure
µy , which has a density with respect to the priorµpr = U([−5, 5]) given by

πy(u) =
1

Z
exp
(
−1

2
‖y −F(u)‖2Σ

)
(4.24)

=
1

Z
exp (−Φ(u; y)) ,

for some (intractable) normalization constant Z as in (2.7). The difficulty in solving this BIP
comes from the high multi-modality of the potentialΦ(u; y), as it can be seen in Figure 4.6. This,
shape ofΦ(u; y)makes the posterior difficult to explore using local proposals.
In this case, we considerK = 5, and set T1 = 1, T2 = 5, T3 = 25, T4 = 125 and T5 = 625.
Notice that from Figure 4.1, the computational cost per sample is dominated by the evaluation of
(4.24) for values ofK ≤ 6. Once again, we obtainN = 25, 000 samples with the PT, PSDPT,
and both GPT algorithms, andN = 125, 000 samples with RWM, discarding the first 20% of the
samples in both cases (5000, 25000, respectively) as a burn-in. On each of the tempered chains,
we use RWMproposals, with step-sizes shown in table 4.5. This choice of step size provides an
acceptance rate of about 0.4 across all tempered chains and all tempered algorithms. The choice
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of step-size for the RWM algorithm is done in such a way that it can ”jump” modes, which are at
distance of roughly 1/2.
We consider QoI = u as a quantity of interest. Experimental results are shown in Table 4.6. Once
again, we can see how both GPT algorithms provide a gain over RWM and both variations of
the PT algorithm, with theWGPT algorithm providing the largest gain. Notice that, given the
high muti-modality of the posterior at hand, the simple RWM algorithm is not well-suited for this
type of distribution, as it can be seen from its large variance; this suggests that the RWMusually
gets ”stuck” at one mode of the posterior. Notice that, intuitively, due to the symmetric nature of
the potential, one would expect the true mean of u to be close to 0. This value was computed by
means of numerical integration and is given byEy

µ[u] = 0.08211.

k = 1 k = 2 k = 3 k = 4 k = 5

ρk,Tempered 0.02 0.05 0.10 0.50 2.0
ρk,RWM 0.5 - - - -

Table 4.5: Step size of the RWMproposal distribution for the Cauchy BIP experiment.

Mean MSE MSERWM/MSE
RWM -0.10120 9.36709 1.000
PT 0.05118 0.03681 254.5
PSDPT 0.15840 0.21701 43.20
UGPT 0.08976 0.03032 308.9
WGPT 0.06149 0.02518 372.0

Table 4.6: Results for the 1D Cauchy BIP problem. The computational cost is comparable across all
algorithms.

4.5.6 Acoustic wave source inversion

We consider a more challenging problem, for which we try to recover the probability distribution
of the spatial location of a (point-like) source term, together with the material properties of the
medium, on an acoustic wave equation (see Eq. (4.25) below), based on some noisy measured data.
We begin by describing the mathematical model of such wave phenomena. Let (X,B(X),µpr)

be the measure space , with Lebesgue (uniform) measure µpr, set D̄ := [0, 3] × [0, 2], ∂D =

Γ̄N ∪ Γ̄Abs, Γ̊N ∩ Γ̊Abs = 0, |ΓN|, |ΓAbs| > 0, and define X = D × Xα × Xβ, where Xα =

[6, 14], Xβ = [4500, 5500]. Here, we are considering a rectangular spatial domainD, with the
top boundary denoted by ΓN and the side and bottom boundaries denoted by ΓAbs. Lastly, let
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u := (s1, s2, α, β) ∈ X. Consider the following acousticwave equationwith absorbing boundary
conditions: 

α2vtt −∇ · (β2∇u) = f, inD × (0, T )× X,
v = vt = 0, inD × {0} × X,
β2∇v · n̂ = 0, on ΓN × (0, T )× X,
β2∇v · n̂ = −αβvt, on ΓAbs × (0, T )× X,

(4.25)

where u = v(x, t, u), and f = f(x, t, u). Here the boundary condition on the top boundary
ΓN corresponds to a Neumann boundary condition, while the boundary condition on ΓAbs

corresponds to the so-called absorbing boundary condition, a type of artificial boundary condition
used to minimize reflection of wave hitting the boundary. Data y ∈ Y is obtained by solving
Equation (4.25) with a force term given by

f(x, t, u) = 1011e
− 1

2·0.12

[
(x1−s1)

2+(x2−s2)
2
]

(4.26)

× (1− 2 · 1000π2t2)e−2·10002π2t2 ,

with a true set of parameters X 3 u∗ := (s1, s2, α, β) given by s1 = 1.5, s2 = 1.0, α =

10, β = 5000, and observed on NR = 3 different receiver locations R1 = (1.0, 2.0), R2 =

(1.5, 2.0), R3 = (2.0, 2.0) at NT = 117 equally-spaced time instants between t = 0 and
t = 0.004. In physical terms, the parameters s1, s2 represent the source location, while the
parameters α, β are related to the material properties of the medium. Notice that, on a slight
abuse of notation, we have used the symbol π to represent the number 3.14159 . . . in equa-
tion (4.26) and it should not be confused with the symbol for density. The data measured by
each receiver is polluted by additive Gaussian noiseN (0, η2I117×117), with η = 0.013, which
corresponds to roughly a 2% noise. Thus, we have that (Y, ‖·‖Y) = (R3×117, ‖·‖Σ), where
‖A‖2Σ := (

√
NRη)

−2
∑NR

i=1

∑NT
j=0A

2
i,j . Thus, the forward mapping operator F : X 7→ Y

can be understood as the numerical solution of Equation (4.25) evaluated at 117 discrete time
instants at each of the 3 receiver locations. Such a numerical approximation is obtained by the finite
element method using piece-wise linear elements and the time stepping is done using a Forward
Euler scheme with sufficiently small time-steps to respect the so-called Courant-Friedrichs-Lewy
condition [134]. This numerical solution is implemented using the Python library FEniCS [101],
using 40×40 triangular elements. The Bayesian inverse problem at hand can thus be understood as
sampling from the posterior measureµy , which has a density with respect to the priorµpr = U(X)
given by

πy(u) =
1

Z
exp
(
−1

2
‖y −F(u)‖2Σ

)
.
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Figure 4.7: Plot of the log-likelihood for different values of s1, s2 and fixed values ofα = 10 and β = 5000.
The magenta points represent the reciever locationsR1, R2, R3. The black point represents the
true location of the source (s1, s2) = (1.5, 1.0).

The previous BIP presents two difficulties; on the one hand, Equation (4.25) is, typically, expensive
to solve, which in turn translates into expensive evaluations of the posterior density. On the other,
the log-likelihood has an extremely complicated structure, which in turn makes its exploration
difficult. This can be seen in Figure 4.7, where we plot of the log-likelihood for different source
locations (s1, s2) and for fixed values of the material properties α = 10, β = 5000. More
precisely, we plot Φ̃((s1, s2); y) := −1

2 ‖y −F(s1, s2, 10, 5000)‖2Σ on a grid of 100 × 100

equally spaced points (s1, s2) inD. It can be seen that, even though the log-likelihood has a clear
peak around the true value of (s1, s2), there are also regions of relatively high concentration of
log-probability, surrounded by regions with a significantly smaller log-probability, making it a
suitable problem for our setting.
Following the same set-up of previous experiments, we aim at estimating Q̂oIi = Eµy [ui] ≈ ûi, for
i = 1, 2. Once again, we considerK = 4 temperatures for the tempered algorithms (PT, PSDPT,
UGPT, andWGPT), and set temperatures to T1 = 1, T2 = 7.36, T3 = 54.28, T4 = 400. We
compare the quality of our algorithms by examining the variance of the estimators ûi, i = 1, 2

computed over Nruns = 50 independent MCMC runs of each algorithm. For each run, we
run the tempered algorithms obtaining N = 7, 000 samples, discarding the first 20% of the
samples (1400) as a burn-in. For the RWM algorithm, we run the inversion experiment for
NRWM = KN = 28, 000 iterations, and discard the first 20% of the samples obtained (5600) as
a burn-in.
Each individual chain is constructed using Gaussian RWMproposals qprop,k(unk , ·) = N (unk , Ck),
k = 1, 2, 3, 4, with covariance Ck described in Table 4.7. The covariance is tuned in such a way
that the acceptance rate of each chain is around 0.2. The variance of the estimators obtained with
each method is presented in Table 4.8. Once again, our GPT algorithms outperform all other
tested methods for this particular setting. In particular, our methods provide huge computational
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gains when compared to RWM and the PSDPT algorithm of [90], as well as some moderate
computational gains when compared to the standard PT.

C1/2
k,Tempered C1/2

k,RWM
k = 1 Diag(0.01, 0.01, 0.2, 5) Diag(0.02, 0.02, 0.2, 5)
k = 2 Diag(0.06, 0.06, 0.4, 14) -
k = 3 Diag(0.3, 0.3, 0.6, 20) -
k = 4 Diag(1, 1, 1, 50) -

Table 4.7: Step size of the RWM proposal distribution for the acoustic BIP experiment. Here
Diag(d1, d2, . . . , dN ) is to be understood as the N × N diagonal matrix with entries
d1, d2, . . . , dN .

Mean Var VarRWM/Var
s1 s2 s1 s2 s1 s2

RWM 1.33801 1.54293 9.86× 10−1 8.21×10−2 1.000000 1.000
PT 1.50121 1.00829 6.61× 10−6 2.77× 10−4 149136.1 296.2
PSDPT 1.39775 1.23119 2.48× 10−1 6.54× 10−2 3.900000 1.200
UGPT 1.50177 1.00711 2.72× 10−6 2.38× 10−4 361744.5 345.0
WGPT 1.50174 1.00601 2.08× 10−6 1.46× 10−4 472133.2 558.6

Table 4.8: Results for the acoustic BIP problem. Once again, we can see that both GPT algorithm provide
an improvement over RWM, PT and PSDPT. The computational cost is comparable across all
algorithms, given that the cost of each iteration is dominated by the cost of solving the underlying
PDE.

4.5.7 High-dimensional acoustic wave inversion

Lastly, we present a high-dimensional example for which we try to invert for the material properties
β2 in (4.25). For simplicity, we will consider fixed values of α = 1, s1 = 1.5, and s2 = 1. In
this case, we set β2 = 10 + β̂2(x), where β̂(x) is taken to be a realization of a random field
discretized on a mesh ofNx ×Ny triangular elements. This modeling choice ensures that β2 is
lower bounded. In this case, we will invert for the nodal values of (the finite element discretization
of) β̂, which will naturally result in a high-dimensional problem. We remark that one is usually
interested in including the randomness in β2, instead of β̂; however, we purposely choose to do so
to induce an explicitly multi-modal posterior, and as such, to better illustrate the advantages of
our proposed methods when sampling from these types of distributions.
We begin by formalizing the finite-element discretization of the parameter space (see e.g., [24] for a
more detailed discussion).
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Let D̄ = [0, 3]× [0, 2], denote the physical space of the problem and letVh be a finite-dimensional
subspace ofL2(D) arising from a given finite element discretization. We write the finite element
approximation β̂h ∈ Vh of β̂ as

β̂(x) ≈ β̂h(x) =

Nv∑
n=1

bnφn(x),

where {φ}Nv
n=1 are the Lagrange basis functions corresponding to the nodal points {xn}Nv

n=1,
(b1, . . . , bNv)

T =: u ∈ RNv is the set of nodal parameters andNv corresponds to the number
of vertices used in the FE discretization. Thus, the problem of inferring the distribution of β
given some data y, can be understood as inferring the distribution of u given y. For our particular
case, we will discretizeD using 28× 28 (non-overlapping) piece-wise linear finite elements, which
results inNv = 841 and as such X = R841. We consider a Gaussian prior µypr,∞ = N (0,A−2)

(c.f Section 2.2.1), whereA is a differential operator acting onL2(D) of the form

A := −a∇ · (H∇) + dI, a, d > 0,

together with Robin boundary conditions∇(·) · n̂+
√
ad(·) = 0, where, following [164],H is

taken of the form

H :=

(
e1 sin2(`) + e2 cos2(`) (e1 − e2) sin(`) cos(`)
(e1 − e2) sin(`) cos(`) e1 cos2(`) + e2 sin2(`)

)
.

Here H models the spatial anisotropy of a Gaussian Random field sampled from µpr,∞. It is
known that for a two-dimensional (spatial) space, the covariance operatorA−2 is symmetric and
trace-class [24], and as such, the (infinite-dimensional) prior measure is well-defined. Thus, we set

β(x) ∼ µpr,∞,

which in turn induces the discretized prior:

β̂h(x) ∼ µpr := N (0,A−2
h ),

whereA−2
h is a finite-element approximation ofA using 28× 28 (non-overlapping) piece-wise

linear finite elements. Samples from µpr are obtained using the FEniCS package [101] and the
hIPPYlib library [164].
We follow an approach similar to our previous example. We collect data y ∈ Y by solving Equation
(4.25) with a force term given by (4.26) and a true field β̂∗h ∼ µpr with a = 0.1, d = 0.5,
` = πy/4, e1 = 2 and e2 = 0.5. Such a realization of β is shown in Figure 4.8.
Furthermore, data is observed atNR = 5 different receiver locations R1 = (1.0, 2.0), R2 =

(1.25, 2.0), R3 = (1.5, 2.0), R4 = (1.75, 2.0), and R5 = (2.0, 2.0) at NT = 600 equally-
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Figure 4.8: True field β(x). Notice the anisotropy on the field. The magenta points represent the receiver
locations. The black line represents the zero-level set of the field.

spaced time instants between t = 0 and t = 0.6. The data measured by each receiver is polluted
by an (independent) additive Gaussian noise η ∼ N (0, σ2noiseI600×600), with σ = 0.021, which
corresponds to roughly a 0.5% noise. Thus, we have that (Y, ‖·‖Y) = (R5×600, ‖·‖Σ). Similarly
as in Section 4.5.6, the forward mapping operatorF : X 7→ Y can be understood as the numerical
solution of Equation (4.25) evaluated at 600 discrete time instants at each of the 5 receiver locations.
Numerical implementation follows a similar set-up as in Section 4.5.6, however, for simplicity, we
use 28× 28 triangular elements to approximate the forward operatorF . The Bayesian inverse
problem at hand can thus be understood as sampling from the posterior measure µy , which has a
Radon-Nikodym derivative with respect to the prior µpr given by

πy(u) =
dµy

dµpr
(u) =

1

Z
exp
(
−1

2
‖y −F(u)‖2Σ

)
. (4.27)

The previous BIP has several difficulties; clearly, it is a high-dimensional posterior. Furthermore,
just as in the previous example, the underlying mathematical model for the forward operator is a
costly time-dependent PDE. Lastly, by choosing to invert for β̂ ∼ µpr (instead ofβ2), and sinceµpr
is centered at zero, we induce a multi-modal posterior, indeed, if the posterior concentrates around
β̂∗h it will also have peaks at any other β̂

j obtained by flipping the sign of β̂∗h in a concentrated
region separated by the zero level set of β̂∗h (we identify 7 regions in Figure 4.8). This can be
seen in Figure 4.9, where we plot 4 samples from µ. Notice the change in sign between some
regions. Lastly, as a quantities of interest, we will consider QoI1 =

∫
D exp(β̂(x))dx and QoI2 =

exp(β̂(1.5, 1)). We remark that, although these quantities of interest do not have any meaningful
physical interpretation, they are, however, affected by the multi-modality of the posterior, and as
such, well suited to exemplify the capabilities of our method.
Given the high-dimensionality of the posterior, we present a slightly different experimental setup
in order to estimate Eµ[QoIi] ≈ Q̂oIi, i = 1, 2. In particular, we will use the preconditioned
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Figure 4.9: Posterior samples obtained with the UWGPT algorithm. Notice the resemblance to Figure 4.8.

Crank-Nicolson (pCN) as a basemethod, instead ofRWM, for the transition kernel p. We compare
the quality of our algorithms by examining the variance of the estimators Q̂oIi computed over
Nruns = 50 independent MCMC runs of each algorithm, withK = 4 temperatures for the
tempered algorithms given by T1 = 1, T2 = 4.57, T3 = 20.89, T4 = 100. For the tempered
algorithms, each estimator is obtained by running the inversion experiment for N = 4, 800

samples, discarding the first 20% of the samples (800) as a burn-in. For the untempered pCN
algorithm, we run the inversion experiment forNpCN = KN = 19, 200 iterations, and discard
the first 20% of the samples obtained (3840) as a burn-in.
Each individual chain is constructedusingpCNproposalsqprop,k(unk , ·) = N (

√
1− ρ2ku

n
k , ρ

2
kA

−2
h ),

k = 1, 2, 3, 4, with ρk described in Table 4.9. The simple, un-tempered pCN algorithm is run
with a step size given by ρ = ρ1. The values of ρk are tuned in such a way that the acceptance rate
of each chain is around 0.3 and are reported in Table 4.9. The variance of the estimators obtained
with each method is presented in Table 4.10. Once again, even for this high-dimensional, highly
multi-modal case, our proposed methods perform considerably better than the other algorithms.

k = 1 k = 2 k = 3 k = 4

ρk 0.1 0.2 0.4 0.8

Table 4.9: Values of ρk for the pCN kernel for the high-dimensional wave inversion problem.

4.5.8 Application to a (semi-)realistic seismic source inversion problem:
Tanzania case study

Lastly, we conclude this chapter by applying our WGPT algorithm to the solution of a BIP arising
in seismic source inversion. Given some noise-polluted data recorded at three different locations,
we are interested in obtaining the probability distribution for the source location of an earthquake
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Mean Var VarpCN/Var
Q̂oI1 Q̂oI2 Q̂oI1 Q̂oI2 Q̂oI1 Q̂oI2

pCN 8.8665 1.5255 5.7362 0.6029 1.00 1.00
PT +pCN 8.7710 1.5311 1.3308 0.1380 4.31 4.36
PSDPT +pCN 8.5546 1.4453 2.1289 0.2666 2.69 2.26
UGPT +pCN 8.7983 1.4614 1.0543 0.1051 5.49 5.73
WGPT +pCN 8.6464 1.4643 1.0126 0.1016 5.74 5.93

Table 4.10: Results for the high-dimensional acoustic BIP problem. As for the previous examples, The
computational cost is comparable across all algorithms.

given that the material properties of the medium are also unknown. Such an experiment is a
computational model of an earthquake that took place on the Tanzania basin on the 12th of
October 2016 at 1:31:53. Given the source-receiver configuration, this seismic source inversion
problem can be well-approximated by a two-dimensional model (c.f. Figure 4.10). We consider a
rectangular domain D̄ = [0, 145000]× [0, 87000]m2, together with a time interval I = [0, T ]

T = 17s. We will model the seismic event as an elastic wave equation (c.f. Equation (1.4)), that we
restate here for convenience. Given some Banach space X (that we will define shortly), the forward
model of the wave phenomena reads as find a displacement fieldw : I ×D × X → R2 such that:{
ρ(x, u)wtt(t, x, u)−∇ · σ(x, u, w) = −M · ∇δ(x− us)S(t), for (t, x, u) ∈ I ×D × X
w(0, x, u) = 0, wt(0, x, u) = 0, for {t = 0}, (x, u) ∈ ×D × X,

where

σ(x, u, w) = λ(x, u)∇ · wI +m(x, u)(∇w + (∇w)T ),

S(t) =
3f0√
2π

exp
(
−2f20 (t+ t0)

2

2

)
, t0 = −0.6s, f0 = 2Hz,

M =

(
5.5895× 1013 7.9762× 1013

7.9762× 1013 −2.5698× 1014

)
,

together with Neumann Boundary conditions at the surface of the domain, and with perfectly
matched layers (a kind of absorbing boundary conditions) on the side and lower boundary, to sim-
ulate the propagation of the wave through a “infinite”, layered medium on those directions. Here,
ρ(x, u), represents the density of the material, λ(x, u),m(x, u) represent the Lamé parameters,
and the forcing termmodels an explosion centered at us ∈ X. We write the material properties
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Figure 4.10: (Top). Aerial view of the source-receiver geometry. Receivers are denoted in red and source
location is in blue. Figure reproduced from [4], with permission from the publisher (Springer
Nature). (Bottom). Depiction of the computational domain of the Tanzania test-case. Blue
represents the PML.

(ρ, λ, µ) of the earth in terms of its density, compressional Vp and shear wave Vs velocities, given
by

Vp(x, u) =

√
λ(x, u) + 2m(x, u)

ρ(x, u)
, Vs(x, u) =

√
m(x, u)

ρ(x, u)
.

Wemake the following simplifying assumptions:

1. The number of layers (7) and their depth are known beforehand.

2. The material properties (ρ, Vp, Vs) are constant on each layer.

3. TheMoment tensorM is known.

These assumptions can be justified by known models for the structure of the Earth (see, e.g., [51]),
and were discussed in collaboration with the Computational Earthquake Seismology group from
the King Abdullah University of Science and Technology (KAUST), lead by Prof. Martin Mai.

124



4.5 Numerical experiments

Such assumptions drastically reduce the number of unknown parameters in the inversion; indeed
wewould have two parameters for the source location+ 3×7 parameters for thematerial properties.
Synthetic data is generated using the values shown in Table 4.11 and recorded by three receivers
located at the top boundary of the domain. 1700 data-points per seismograph are obtained. Syn-
thetic data is polluted by Gaussian additive noise representing 1% of the maximum amplitude
of the recorded signal. We assume there is no correlation on the noise between time instances or
receivers.

Source Location
xs = 54000 zs = 59500

Layer \ Property % Vp Vs

Layer 1 2571 6128 3459
Layer 2 2426 6355 3799
Layer 3 2520 6799 3823
Layer 4 2599 6854 3985
Layer 5 2972 7906 4673
Layer 6 3076 8424 4928
Layer 7 3060 8434 4999

Table 4.11: Set of true parameters, by which the data are synthetically generated, approximated to the closest
unit.

Computationally, The domain is discretized using the spectral element method, using 116× 68

elements, with 5Gauss-Legendre-Lobatto (GLL) nodes per element. We use a leap-frog scheme for
the evolution of the forwardmodel, up to the final time ofT = 17s, and with a time discretization
of∆t = 5× 10−3 s. This is implemented using the software SPECFEM2D [88].
We record (noise-polluted) data and aim to recover the probability distribution of the source
location, as well as the uncertain material properties. Thus, we haveM = 23 total unknown
parameters (2 spatial components + 3× 7material properties), namely

u = (x0, z0︸ ︷︷ ︸
:=us

, %1, Vp1 , Vs1 , . . . , %7, Vp7 , Vs7),

where %i (resp. Vpi , Vsi) represents the density (resp. bulk modulus and compressional velocity)
at the ith layer. For the prior distribution µpr, we set

µpr =
M⊗
i=1

µpri,
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where µpri is the prior of the i
th parameter. In particular, we consider uniform priors for all

components of u, thus making π0i = U(a, b), where a and b are the minimum and maximum
admissible values for ui. For the source location, we set (x0, z0) = us ∼ U(D) where x0, z0
represent the horizontal and vertical component of the source location, respectively. As for the
material properties, following [4], we use the following priors.

%i ∼ U(0.9%truei , 1.1%true),

Vs,i ∼ U(0.95V true
s,i , 1.05V

true
s,i ),

Vp,i ∼ U(1.558V true
s,i , 1.869V

true
s,i ).

Notice that the priors on Vp,i are expressed in terms of Vs,i. This is due to the high correlation
between these parameters in an attenuating medium.

We implement our WGPT algorithm withK = 4 temperatures, with T1 = 1, T2 = 5, T3 = 25

and T4 = 125, obtainingN = 5000 samples, after a burn-in period of 1000 samples. Each kernel
pi is a RWM algorithm with covariance

Σi =

(
Σsource,i 0

0 Σ2
mat

)

whereΣ2
mat = (25)2I21×21, and

Σ
1/2
source,1 =

(
20 0

0 50

)
, Σ

1/2
source,2 =

(
100 0

0 300

)
,

Σ
1/2
source,3 =

(
500 0

0 2000

)
, Σ

1/2
source,4 =

(
5000 0

0 5000

)

We plot the density of the source in Figure 4.11. There we can see, denoted by the “+” symbols
some of the samples obtained from theWGPT algorithm (after re-weighting the samples), and
the blue regions represent the density of the concentration of the points. Notice that, as expected,
there’s a strong concentration of points around the true location of the source (xs = 54000,
zs = 59500). Although in practical applications 5000 is certainly a small number of samples for a
BIP, we can still see that the resulting density is both mutli-modal and heavily concentrated around
an extremely small region of the computational domain; indeed notice that the plot concentrates
on an area that is less than 1% of the total computational domain. On the contrary, given this
multi-modality and concentration of the source location in the domain, running aRWMalgorithm
for this problem (with an equivalent number of samples and usingΣ1 as a covariance) results in
samples that are not able to identify the region of source location (not shown). Once again, we
have seen how these hierarchical methods are well-suited for these types of problems.
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Figure 4.11: Density of source location
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5 A class ofMulti-LevelMCMC
algorithms based on Independent
Metropolis-Hastings

This chapter is mostly the same as the pre-print J.P. Madrigal-Cianci, F. Nobile, and R. Tempone.
Analysis of a class ofMulti-LevelMarkov ChainMonte Carlo algorithms based on Independent
Metropolis-Hastings. arXiv:2105.02035 (2021) [108]. Some modifications have been made with
respect to such a pre-print; some material was removed, as this has already been presented in
Chapters 2 and 3 of this thesis. Furthermore, the theoretical analysis has been greatly simplified
(following the suggestion of anonymous referees). Furthermore, a challenging, high-dimensional
example has been added in Section 5.6.4.
In this work we present, analyze, and implement a class ofMulti-LevelMarkovChainMonte Carlo
(ML-MCMC) algorithms based on independent Metropolis-Hastings proposals for Bayesian
inverse problems. In this context, the evaluation of the likelihood function involves solving a
complex differential model, which is approximated using a sequence of increasingly accurate
discretizations. The key point of this algorithm is to construct highly coupled Markov chains
together with the standard multi-level Monte Carlo argument to obtain a better cost-tolerance
complexity than a single level MCMC algorithm. Our method extends the ideas of [45] to a wider
range of proposal distributions. We present a thorough convergence analysis of the proposed
ML-MCMCmethod and demonstrate that (i) under some mild conditions on the (independent)
proposals and family of posteriors, a unique invariant probability measure exists for the coupled
chains generated by the proposed method, and (ii) that such coupled chains are uniformly ergodic.
We also generalize the cost-tolerance theorem of Dodwell et al., to our wider class of ML-MCMC
algorithms. Finally, we propose a self-tuning continuation-typeML-MCMC algorithm (C-ML-
MCMC). The presented method is tested on an array of academic examples, where some of our
theoretical results are numerically verified. These numerical experiments reveal how the extended
ML-MCMCmethod is robust when targeting some pathological posteriors, for which some of the
previously proposedML-MCMC algorithms fail.
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5.1 Introduction

Multi-Level Monte Carlo (MLMC) methods are well-known computational techniques [59] used
to compute expectations that arise in stochastic simulations in cases in which the stochastic model
cannot be simulated exactly, but can be approximated at different levels of accuracy and different
computational costs. Despite their wide-spread applicability, extending these MLMC ideas to
Multi-Level Markov ChainMonte Carlo (ML-MCMC) methods to compute expectations with
respect to a complex target distribution from which independent (whether exact or approximate)
sampling is not accessible, has only recently been attempted, with only a handful of works dedicated
to this task. This situation arises, for instance, in Bayesian inverse problems (BIPs) where the aim
is to compute the expectationEµy [QoI] of some output quantity of interest QoI with respect to
the posterior measure µy of some parameters u ∈ X given some indirect noise measurements
y = F(u) + η, where η is the additive noise andF is the forward operator, which may involve
the solution of a differential equation (see Chapter 2 for more details). At their core, ML-MCMC
methods for BIPs introduce a hierarchy of discretization levels ` = 0, 1, . . . , L of the underlying
forward operator, which induces a family of posterior probability measures µy` , approximating
µy with increasing levels of accuracy as ` → ∞. Given some µy-integrable quantity of interest
QoI,we can approximate the expectation of QoI over µy by the usual telescoping sum argument
of MLMC,

Eµy [QoI] ' Eµy
L
[QoIL] = Eµy

0
[QoI0] +

L∑
`=1

(
Eµy

`
[QoI`]− Eµy

`−1
[QoI`−1]

)
=

L∑
`=0

∆E`, (5.1)

with∆E` := Eµy
`
[QoI`]− Eµy

`−1
[QoI`−1],∆E0 = Eµy

0
[QoI0] and where, for ` = 0, 1, . . . , L,

QoI` is aµy` -integrable, level ` approximation of the quantity of interestQoI. This telescoping sum
presents the basis for various types of multi-level techniques for BIPs. The work [71], for example,
approximates the expectation (5.1) by splitting each∆E` into three different terms, which are
then computed using a mixture of importance-sampling andMCMC techniques. A multi-index
generalization of such method is presented in [78]. In addition, similar multi-level ideas have also
been attempted in the context of Multi-Level Sequential Monte Carlo (MLSMC) in the works
[13, 79, 96].
In this work, we follow the approach proposed in [45], which is probably the first proposition of
multi-level ideas for BIPs and consists of approximatingEµy

L
[QoIL] using the following ergodic

estimator:

Eµy
L
[QoIL] ≈

1

N0

N∑̀
n=1

QoI0(u
(n)
0,0 ) +

L∑
`=1

1

N`

N∑̀
n=1

QoI`(un`,`)− QoI`−1(u
n
`,`−1)︸ ︷︷ ︸

:= Y n
`

,

130



5.1 Introduction

where {un·,`}
N`
n=0 is an ergodic Markov chain with invariant distribution µy` . The key idea is

to couple the chains {un`,`−1, u
n
`,`}

N`
n=0 so that they are highly correlated and the variance of

the ergodic estimatorV[N−1
`

∑
n Y

n
` ] becomes increasingly smaller as ` increases. By carefully

choosingN`, this method can achieve a much better sampling complexity (in terms of cost versus
tolerance) than its single-level counterparts (see [45]).
Most of the existing literature onML-MCMChas focused on constructing these types of couplings
[35, 45]. In [45], the authors use (an approximation of) the posterior distribution at the previous
discretization level `− 1 as a proposal for level `. This is practically implemented by sub-sampling
from the chain {un`−1,`−1}

N`−1

n=0 .
Such an idea has been recently expanded in [35], where the subsampling idea is combined with
the so-called Dimension Independent Likelihood Informed (DILI) MCMCmethod of [36] to
generate proposed samples at level 0 in theirML-MCMCalgorithm. Some furtherwork combining
multi-levelMonteCarlo ideaswithBayesian inference has beenpresented in [80], where the authors
use rejection-free Markov transitions kernels, such as the Gibbs sampler, in order to couple the
multi-level MCMC chains at two consecutive levels.
However, investigating more theoretical aspects of ML-MCMC algorithms, such as the existence
of an invariant measure for the coupled chains and the type of convergence to such a measure (if it
exists), has been widely overlooked, and one of the aims of this chapter is to fill this gap.
This work presents several novel contributions. First, we present anML-MCMC algorithm where
chains are coupled using Independent Metropolis Hastings (IMH)-type proposals as in [45],
however, allowing for a wider class of admissible proposals. In particular, we show that the sub-
sampling approach in [45] can be replaced by a properly chosen IMH proposal (that is, a proposal
for which the proposed state is independent of the current state of the chain), which proposes
the same state to the two chains {un`,`−1, u

n
`,`}

N`
n=0 targeting µ

y
`−1, µ

y
` respectively, which is then

accepted by the usualMetropolis-Hastings (MH) criterion. This ensures the coupling of the chains.
Such a proposal can be, for example, the prior, a Laplace approximation, or even a kernel density
approximation of the posterior at the previous level. Obviously, the choice of proposal has a direct
influence on the joint invariant distribution ν` of the coupled chain {un`,`−1, u

n
`,`}

N`
n=0 (if it exists),

and thus, on the variance of the ergodic estimatorN−1
`

∑
n Y

n
` .

The main contribution of this work is an in-depth convergence analysis of the extended ML-
MCMCmethod. More precisely, we provide sufficient conditions on the (marginal) level ` pos-
terior and proposal probability measureQ` so that a unique joint invariant probability measure
exists for the coupled chain. Such a contribution is presented in Theorem 5.3.1, where it is shown
that, under some mild conditions onQ`, µ

y
` , µ

y
`−1, the presented ML-MCMC algorithm (i) has a

unique, invariant probability measure for the joint chain at level ` and (ii) is uniformly ergodic.
Following the convergence results presented in Chapter 3, we provide computable, quantitative,
non asymptotic error estimators for the ergodic estimator (5.1). These estimators allow us to
generalize the cost-tolerance result of [45] to our extended MLMCMC method and propose
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

an adaptive ML-MCMC algorithm in which the number of levels L and chain lengthsN` are
determined on the fly, in the spirit of the continuationMLMCmethod presented in [31].
The rest of this chapter is organized as follows. In Section 5.2 we present our ML-MCMC
method, and then proceed to analyze its convergence in Section 5.3. Section 5.4 is dedicated to the
generalization to our case of the cost-tolerance analysis result in [45]. In Section 5.5 we discuss
the continuation-type algorithm and implementation details. Lastly, we illustrate our method in
several numerical experiments in Section 5.6.

5.2 Multi-levelMarkov ChainMonte Carlo

Let (X, ‖·‖X) and (Y, ‖·‖Y)be separableBanach spaceswith associatedBorelσ-algebrasB(X), B(Y).
As in Chapter 2, we consider the BIP of finding the posterior distribution µy of some state u ∈ X
given noisy observations y ∈ Y where

y = F(u) + η,

withF : X → Y the forward operator and η ∼ µnoise some polluting noise with known distri-
bution µnoise on (Y,B(Y)). Furthermore, recall that assuming that u follows a prior probability
measure µpr on (X,B(X)) before any data has been observed, it can be shown under some tech-
nical assumptions (c.f. Chapter 2) that µy � µpr with µy(du) = Z−1 exp(−Φ(u; y))µpr(du),
Z =

∫
X e

−Φ(u;y)µpr(du), and Φ(u; y) defined as in (2.6). It is often the case that the forward
mapping u 7→ F(u) involves the numerical approximation of the underlying mathematical model
driving the BIP, and as such, F needs to be approximated at an accuracy level L, i.e., FL ≈ F ,
with FL → F as L → ∞. This induces the discretized posterior µyL, given in terms of its
Radon-Nikodym derivative with respect to the prior by:

πyL(u) :=
dµyL
dµpr

(u) =
1

ZL
e−ΦL(u;y), ZL =

∫
X
e−ΦL(u;y)µpr(du),

with µyL → µy as L → ∞ in some sense. Throughout this chapter we will assume that
Φ(u; y),ΦL(u; y) ≥ 0 ∀u ∈ X and y ∈ Y. The sampling from the posterior µyL will in turn be
done using the Metropolis-Hastings algorithm (c.f. 3.4).
In general, such an algorithm requires running the Markov chain for a long time to obtain a
good approximation of the posterior, and it is not uncommon forN to be of the order of tens of
thousands. Furthermore, such a method requires the evaluation of the posterior density πyL(z)
at each newly proposed state z every time the acceptance rate αL(u

n, z) in the MH algorithm
is evaluated. In PDE-driven BIP, where evaluating πyL(z) implies solving a possibly non-linear
and time-dependent PDE on a sufficiently fine mesh (i.e., with high accuracy), the cost associated
with the MH algorithm can rapidly become prohibitive. One technique to alleviate this issue is to
introducemulti-level techniques. Thus, we let {M`}L

`=0 be a hierarchy of discretization parameters
of the underlying mathematical modelF(·), which could represent, for example, the number of
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5.2 Multi-level Markov ChainMonte Carlo

degrees of freedom used in the discretization of the underlying PDE. We consider only geometric
sequences for {M`}L

`=0 withM` = sM`−1 for someM0 > 0 and s > 1. We denote the
corresponding discretized forward models byF`(·) and the corresponding approximate quantity
of interest by QoI`. We assume that the accuracy of the discretization and the cost of evaluating
the discretized model, increase as ` (and henceM`) increases. This hierarchy of discretizations
induces a hierarchy of posterior probability measures {µy`}

L
`=0 approximating µy with increasing

accuracy and cost. We can write the posterior expectationEµy [QoI], approximated on the finest
available discretization level L, in terms of the following telescoping sum:

Eµy [QoI] ≈ Eµy
L
[QoIL] = Eµy

0
[QoI0] +

L∑
`=1

(
Eµy

`
[QoI`]− Eµy

`−1
[QoI`−1]

)
.

This result motivates introducing the followingMLMCMC ergodic estimator:

Q̂oIL,{N`}L
`=0

:=
1

N0

N0∑
n=1

[QoI0(un0,0)] +
L∑

`=1

1

N`

N∑̀
n=1

(
QoI`(un`,`)− QoI`−1(u

n
`,`−1)

)︸ ︷︷ ︸
:= Y n

`

. (5.2)

where we have introduced the notation u`,` ∼ µy` and u`,`−1 ∼ µy`−1, and u`,j = u`,`−1 if
j = ` − 1 and u`,j = u`,` if j = `. The terms Y n

` are generally small if (u`,`−1, u`,`) are close.
The key to the method is to design a coupledMarkov chain {(un`,`−1, u

n
`,`)n≥0} for which un`,`−1,

and un`,` stay highly correlated and close to each other with high probability for every n, while
keeping the right marginal invariant distributions µy`−1, and µ

y
` , respectively. This is necessary for

the terms in (5.2) to telescope in the mean. Constructing a coupled Markov chain (with marginal
target measures µy`−1, µ

y
` ) for which

∥∥∥un`,`−1 − un`,`

∥∥∥
X
→ 0 in a suitable sense, as `→ ∞, results

inVν` [Y`] → 0 as `→ ∞, where ν` ∈ M(X2) is the invariant measure of the coupledMarkov
chain (if it exists). Hence, by using an adequate proposal distribution and properly choosing L
and {N`}L

`=0 one can obtain a significantly better complexity than that of a single-level MCMC
estimator ( see [45] for a general complexity result of the ML-MCMC approach). To achieve
this, following [45], we will use what we call an IndependentMetropolis-Hastings coupling (IMH-
coupling) of u`,`−1, u`,`. The main idea of such a coupling is to create two simultaneous Markov
Chains {un`,`−1, u

n
`,`}n∈N at two adjacent discretization levels, using as a proposal a probability

measure Q̃` (with µyj � Q̃` j = ` − 1, `), having a (strictly positive) µpr-densityQ`, in such
a way that (i) Q̃` generates proposed states z ∈ X independently of the current state of either
chain, and (ii) at every iteration, the same candidate state z is proposed as the new state of both
chains, which then accept or reject it using the standard MH accept-reject step with the same
uniform random variable u ∼ U(0, 1). This will in turn guarantee that, marginally u`,j ∼ µyj ,
asymptotically for both j = `−1 and j = ` (i.e., themarginal chains follow the right distribution),
and that the pair (un`,`−1, u

n
`,`) is highly correlated for any n ∈ N, provided the acceptance rate is

sufficiently high. A depiction of one step of such a coupling procedure is presented in Algorithm
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

7. We emphasize that such an algorithm also couples the Metropolisation step by comparing the
acceptance probabilities αj , j = `− 1, `, with respect to the same uniform random numberU .
The full ML-MCMC procedure is presented in Algorithm 8. At each level ` = 1, 2, . . . , L, the
coupled chains {un`,`−1, u

n
`,`}

N`
n=0 in Algorithm 8 start from the same state u0`,`−1 = u0`,` (the

diagonal of the set X2).

Algorithm 7 One-step IMH coupling

1: procedure IMH_Coupling({πy`−1, π
y
` }, {u

n
`,`−1, u

n
`,`}, Q`)

2: Sample z ∼ Q`.
3: SampleU ∼ U(0, 1).
4: for j = `− 1, ` do
5: Set un+1

`,j = z ifU < αj(u
n
`,j , z), where

αj(u
n
`,j , z) := min

[
1,
πyj (z)Q`(u

n
`,j)

πyj (u
n
`,j)Q`(z)

]
.

6: Set un+1
`,j = un`,j otherwise.

7: end for
8: Output {un+1

`,`−1, u
n+1
`,` }.

9: end procedure

Algorithm 7 is, effectively a type of independent sampler Metropolis [3] on the marginal chains.
As such, the sampling efficiency of such an algorithm critically depends on how well the proposal
Q̃` approximates µy` and µ

y
`−1. Choosing a proposal Q̃` that closely resembles µy` or µ

y
`−1 reduces

the number of rejection steps, enhancing the mixing of the chains (see [3, 21] for a more in-depth
discussion). In principle, Q̃` can be chosen to be, e.g., the prior, or, an empirical version of the
posterior based on the samples {un`−1}

N`
n=0 collected at the previous level, as originally proposed in

[45]. It can also be any reasonable approximationofµy` , µ
y
`−1 such as, e.g., a Laplace approximation

or a kernel density estimator (KDE), again based on the sample {un`−1}
N`
n=0 collected at the previous

level.
Each step of Algorithm 7 produces 1 out of 4 possible configurations S1, S2, S3, S4 :

S1 : (u
n+1
`,`−1, u

n+1
`,` ) = (z, z) (both chains accept the proposed state),

S2 : (u
n+1
`,`−1, u

n+1
`,` ) = (z, un`,`) (chain at level `− 1 accepts and chain at level ` rejects),

S3 : (u
n+1
`,`−1, u

n+1
`,` ) = (un`,`−1, z) (chain at level `− 1 rejects and chain at level ` accepts),

S4 : (u
n+1
`,`−1, u

n+1
`,` ) = (un`,`−1, u

n
`,`) (both chains reject the proposed state).

134



5.2 Multi-level Markov ChainMonte Carlo

Algorithm 8Multi-level Markov chainMonte Carlo

1: procedureML-MCMC({πy` }
L
`=0, Q, {N`}L

`=0, λ
0)

2: if ` = 0 then
3: {un0,0}

N0
n=0 =Metropolis-Hastings(πy0 , Q,N0, λ

0)
4: Set χ0,0 = {u0,0}N0

n=0.
5: end if
6: for ` = 1, . . . , L do
7: “Construct”Q` (e.g., from χ`−1,`−1).
8: Sample u0`,`−1 ∼ λ0, and set u0`,` = u0`,`−1

9: for n = 0, . . . , N` − 1 do
10: # Create a coupled chain using IMH coupling
11: {un+1

`,`−1, u
n+1
`,` } = IMH_Coupling({πy`−1, π

y
` }, {u

n
`,`−1, u

n
`,`}, Q`)

12: end for
13: Set χ`,j = {un`,j}

N`
n=0, j = `− 1, `.

14: end for
15: Output χ0,0 ∪ {χ`,`−1, χ`,`}L

`=1 and Q̂oIL,{N`}L
`=0

.
16: end procedure

These configurations are illustrated inFigure 5.1. More formally, we setX2 3 un
` := (un`,`−1, u

n
`,`).

Then, for any A ∈ B(X2), Algorithm 7 induces the multilevel Markov transition kernel p` :

X2 × B(X2) 7→ [0, 1] given by the following:

p`(u
n
` , A) :=

∫
X
min{α`−1(u

n
`,`−1, z), α`(u

n
`,`, z)}Q`(z)11{(z,z)∈A}µpr(dz) (5.3)

+

∫
X
(α`−1(u

n
`,`−1, z)− α`(u

n
`,`, z))

+Q`(z)11{(z,un
`,`)∈A

}µpr(dz)

+

∫
X
(α`(u

n
`,`, z)− α`−1(u

n
`,`−1, z))

+Q`(z)11{(un
`,`−1,z)∈A

}µpr(dz)

+ 11{
(un

`,`−1,u
n
`,`)∈A

}(1− ∫
X
max{α`−1(u

n
`,`−1, z), α`(u

n
`,`, z)}Q`(z)µpr(dz)

)
,

where (x)+ := x+|x|
2 , x ∈ R. Each line on the right-hand side of (5.3) corresponds to the

transition kernel proposing to move from the stateun
` to one of the four possible configurations

Si, i = 1, 2, 3, 4. Although p` targets the right marginals, the properties related to the con-
vergence of the chain generated by p`, such as irreducibility, the existence of an invariant (joint)
measure ν`, or geometric ergodicity, are not obvious. We investigate these convergence properties
in the following section.
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

Figure 5.1: Schematic of the possible configurations S1, S2, S3, S4. The sampler moves to the diagonal
∆ = {(u`,`−1, u`,`) ∈ X2 s.t u`,`−1 = u`,`}whenever both chains accept (regardless of their
current state) or when both chains reject, assuming that they were at the diagonal.

5.3 Convergence analysis of theML-MCMC algorithm

Wenowproceed to analyze the convergence of the level-wise coupled chains generated byAlgorithm
7. The main result in this section is stated in Theorem 5.3.1. Loosely speaking, this theorem (i)
provides conditions for the existence and uniqueness of a joint invariant measure of the multi-
level Markov transition kernel (5.3), and (ii) indicates that such a kernel generates a uniformly
ergodic chain under certain conditions (i.e., a chain that converges exponentially fast to its invariant
distribution with a constant that does not depend on the initial state of the chain).
At each level `, Algorithm 7 creates two coupled chains using the same proposalQ`, inducing two
Markov transition kernels, each generating a marginal chain. We formalize this in the following
definition.

Definition 5.3.1 (Marginal kernel): For a given level `, ` = 1, 2 . . . , L and proposal Q`,
we define the µyj -invariant marginal Markov transition kernel p`,j : X × B(X) → [0, 1], with
j = `− 1, `, as

p`,j(u`,j , A) :=

∫
A
αj(u`,j , z)Q`(z)µpr(dz) (5.4)

+ 11{u`,j∈A
} ∫

X
(1− αj(u`,j , z))Q`(z)µpr(dz),

for any u`,j ∈ X, and A ∈ B(X). Similarly, we denote its corresponding marginal Markov
transition operator by P`,j .

The marginal chains {un`,`}
N`
n=0, {un`,`−1}

N`
n=0 generated by (5.4) are indeedMarkov chains. Fur-

thermore, by construction, P`,j is µyj -invariant, (i.e., µ
y
jP`,j = µyj ).

We make the following assumptions on the proposal and the (marginal) posterior densities.
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5.3 Convergence analysis of theML-MCMC algorithm

Assumption 5.3.1 (Assumptions on proposal and posterior densities): The following
conditions hold for all ` = 1, . . . , L:

5.3.1.1. There exists a positive constant c ∈ (0, 1), independent of `, such that

ess inf
z∈X

{
Q`(z)/π

y
j (z)

}
≥ c > 0, j = `− 1, `.

5.3.1.2. For any fixed y ∈ Y, the potential functionΦ`(·; y) : X → R+ is strictly positive.

5.3.1.3. There exist positive constants r > 1, andCr , independent of `, such that
∫

XQ
r
`(u)µpr(du) ≤

Cr, for any `.

Assumption 5.3.1.1 implies that the tails of the proposalQ` must decay more slowly than those of
µy` ,µ

y
`−1 at infinity, (i.e.,Q` has heavier tails thanµyj , j = `−1, `). In practice, this is amoderately

restrictive assumption however, it is crucial for the convergence of both the marginal IMH and
the multi-level algorithm. Assumption 5.3.1.2 requires the potential to be strictly positive in X
(for some fixed y ∈ Y). This assumption is relatively mild, and will be used in the next Section
(c.f. Lemmata 5.4.2 and 5.4.5). Lastly, Assumption 5.3.1.3 is an integrability condition onQ`

with respect to the prior. Just as Assumption 5.3.1.1, this assumption is quite mild and will also
become useful in the next section (c.f. Lemma 5.4.6).

5.3.1 Convergence of the level-wise coupled chain

In most MCMCmethods, one typically designs a Markov chain with a given invariant probability
measure, which automatically ensures the existence of (at least) one invariant probability measure.
However, this is not the case for Multi-level MCMC algorithms (including the one presented
here), and as such, we now proceed to demonstrate that such an invariant measure uniquely exists.
The main result of this subsection is given below.

Theorem 5.3.1: (Uniform ergodicity of the coupled chain) Suppose that Assumption 5.3.1 holds.
Then, for any level ` = 0, 1, 2 . . . , L, there exists a unique invariant probability measure ν` on
(X2,B(X2)) for the Markov transition operator P`. Furthermore, the Markov chain induced by
such an operator is uniformly ergodic, i.e.,

sup
‖f‖L∞(X2,µpr×µpr)≤1

∣∣∣∣∫
X2

f(u`
′)p`

n(u`, du`
′)−

∫
X2

f(u`)ν`(du`)

∣∣∣∣ ≤ 2(1− ρ`)
n, ∀u` ∈ X2, n ∈ N,

with ρ` := c
∫

X min
{
πy` (z), π

y
`−1(z)

}
µpr(dz), and c ∈ (0, 1) as in Assumption 5.3.1.
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Proof. We begin by showing that the whole space X2 is a small set. Indeed, notice that for any
(u`,`−1, u`,`) = u` ∈ X2 andA ∈ B(X2), it follows from Equation (5.3) that

p`(u`, A) ≥
∫

X
min{α`−1(u`,`−1, z), α`(u`,`, z)}Q`(z)11{(z,z)∈A}µpr(dz)

=

∫
X
min

{
1,
πy`−1(z)

Q`(z)

Q`(u`,`−1)

πy`−1(u`,`−1)
,
πy` (z)

Q`(z)

Q`(u`,`)

πy` (u`,`)

}
Q`(z)11{(z,z)∈A}µpr(dz)

≥
∫

X
min

{
1,
πy`−1(z)

Q`(z)
c,
πy` (z)

Q`(z)
c

}
Q`(z)11{(z,z)∈A}µpr(dz) (By Assumption 5.3.1)

≥ c

∫
X
min

{
πy`−1(z)

Q`(z)
,
πy` (z)

Q`(z)

}
Q`(z)11{(z,z)∈A}µpr(dz)

= c

∫
X
min

{
πy` (z), π

y
`−1(z)

}
11{(z,z)∈A}µpr(dz) =: cν̃`(A),

where we have set

ν̃`(A) :=

∫
X
min

{
πy` (z), π

y
`−1(z)

}
11{(z,z)∈A}µpr(dz).

Notice that ν̃` defines then a measure on X2. Thus, since such a minorization condition holds for
the whole space, X2 is a small set and the chain is ν̃`-irreducible and strongly aperiodic. Setting
ρ` := cν̃`(X2), it then follows from Theorem 3.2.2 that the Markov chain generated by P` is
Harris recurrent, and as such, it admits a unique invariant probability measure ν`. Lastly, it follows
from Theorem 3.2.3 (c.f. also [113, Theorem 16.2.4]) that the chain is uniformly ergodic and

sup
‖f‖L∞(X2,µpr×µpr)≤1

∣∣∣∣∫
X2

f(u`
′)p`

n(u`, du`
′)−

∫
X2

f(u`)ν`(du`)

∣∣∣∣ ≤ 2(1− ρ`)
n, ∀u` ∈ X2, n ∈ N,

with ρ` → c as `→ ∞.

We have demonstrated that the joint chain generated by themulti-level algorithmwith independent
proposals (i) has an invariant measure and (ii) is uniformly ergodic.
Notice that the previous theorem is closely related to the following standard result in the theory of
Markov chains (see, e.g., [111]), and which we recall here for convenience.

Theorem 5.3.2 (Uniform ergodicity of IMH): For any ` = 1, 2, . . . , L and j = ` − 1, `,
let p`,j : X × B(X) → [0, 1] denote the µyj -reversible Markov transition kernel associated with an

IMH algorithm with proposalQ`. IfQ` and µyj are such that ess infz∈X

{
Q`(z)/π

y
j (z)

}
> 0,

then p`,j is uniformly ergodic. Conversely, if ess infz∈X

{
Q`(z)/π

y
j (z)

}
= 0, then, p`,j fails to be

ergodic in the sense of (3.15).
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5.3 Convergence analysis of theML-MCMC algorithm

Proof. See [111, Theorem 2.1].

Thus, from Theorem 5.3.2, Assumption 5.3.1.1 also implies uniform ergodicity of the marginal
chains of the ML-MCMC algorithm. We remark however, that such a result cannot directly be
used instead of our Theorem 5.3.1, since it presumes the existence of an invariant probability
measure for the chain.
The choice ofQ` is delicate for the ML-MCMC algorithm to work. For instance, consider the
case L = 1, µy0 = N (1, 1) and µy1 = N (12 , 1). What might initially appear to be a good proposal
for the coupled chain at level (` − 1, `) = (0, 1) is to takeQ1 = µy0, i.e., the (exact) posterior
at the previous level. However, this proposal choice (which is unfeasible in practice, as direct
sampling from µy`−1 is inaccessible) does not lead to a geometrically ergodic chain given Theorem
5.3.1, becauseQ1(z)/π

y
1(z) has essential infimum 0. The idea of proposing from the previous

level is somehow what is advocated in [45], which could work only if ∃c1, c2 ∈ R+ such that
c1 ≤ πy`−1(z)/π

y
` (z) ≤ c2, ∀z ∈ X and ∀`.

Lastly, notice that, by construction, the ML-MCMC algorithm 8 starts from a measure λ̂0(A) :=
λ0(A∆), λ0 � µpr, where, for any setA ∈ B(X2), we defineA∆ := {z ∈ X : (z, z) ∈ A}.
We now show that, for any level ` = 1, 2, . . . , L, λ̂0 � ν`.

Theorem 5.3.3 (Absolute continuity of initial measure): Under the same assumptions as in
Theorem 5.3.1, for any level ` = 1, 2, . . . , L, it holds that λ̂0 � ν`.

Proof. LetA ∈ B(X2) be a compact set such that ν`(A) = 0 (the case for the non-compact set is
shown later). Furthermore, from the tightness of ν`, we have that, given some ε > 0, there exists a
compactKε ∈ B(X2) such that ν`(Kε) ≥ 1− ε. Thus

0 = ν`(A) =

∫
X2

p`(u`, A)ν`(du`)

≥
∫

X2

∫
A∆

min
j

{
min

{
Q`(z),

πyj (z)Q`(u`,j)

πyj (u`,j)

}}
µpr(dz)ν`(du`)

≥
∫
Kε

∫
A∆

min
j

{
min

{
Q`(z),

πyj (z)Q`(u`,j)

πyj (u`,j)

}}
µpr(dz)ν`(du`). (5.5)

By Assumption 5.3.1 and the compactness ofKε andA, we have that there exists a c′ > 0 such

that c′ ≤ minj
{
min

{
Q`(z),

πy
j (z)Q`(u`,j)

πy
j (u`,j)

}}
, ∀u` ∈ Kε, ∀z ∈ A∆. Then, we obtain the

following:

(5.5) ≥ c′(1− ε)µpr(A∆),
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

which implies thatµpr(A∆) = 0. Moreover, because λ0 � µpr, we have λ̂0(A) = λ0(A∆) = 0;
therefore λ̂0 � ν`. SupposeA is not compact. As λ̂0 is a tight probability measure it follows that
(see, e.g., [17]),

λ̂0(A) = sup
K⊂A

K compact

λ̂0(K) = 0,

and we can conclude the proof as in the previous case .

5.3.2 Non-asymptotic bounds on the level-wise ergodic estimator

Recall that given some q ∈ [1,∞], the Lq(X, µ)-spectral gap of P : Lq(X, µ) → Lq(X, µ) is
given by:

γq[P ] := 1− ‖P‖L0
q→L0

q
.

Whenever γq[P ] > 0, ν0Pn converges to µ for any ν0 ∈ M(X) in some appropriate distance for
probability measures (see, e.g., [95, 143]). Recall, furthermore, that the pseudo-spectral gap of a
givenMarkov operatorP` : L2(X2, ν`) → L2(X2, ν`) is given by:

γps[P`] := max
k≥1

{
γ2[(P`

∗)kP`
k]/k

}
, k ∈ N, (5.6)

where P`
∗ : Lq′(X2ν`) → Lq′(X2, ν`) is the adjoint operator of P`. It is shown in [127,

Proposition 3.4] that for a uniformly ergodic chainwithMarkov kernel,P`, it holds that γps[P`] >

0.
For all ` = 1, 2, . . . , L, and for a µyj -integrable quantity of interest QoIj , j = `− 1, `, we write
the following:

Y`(u`) := QoI`(u`,`)− QoI`−1(u`,`−1), u` = (u`,`−1, u`,`) ∈ X2,

Ŷ`,N`
:=

1

N`

N∑̀
n=1

Y`(u`
n+nb,`), un

` ∼ p`(u`
n−1, ·), nb,` ∈ N.

Next, we analyze the level-wise contribution to the ML-MCMC ergodic estimator (5.2), which
we write hereafter in more general terms, including a burn-in phase.
For ` = 1, 2, . . . , L, let QoI` − QoI`−1 =: Y` : X2 → R be a ν` square-integrable function, and
ν0 be a probabilitymeasure on (X2,B(X2)) such that ν0 � ν`. In addition, denote byEν0,P`

[Y`]

(resp Vν0,P`
[Y`]) the expectation (resp. variance) of Y` over the Markov chain generated byP`,

starting from an initial probability measure ν0, and consider the following ergodic estimator:

Ŷ`,N`,nb,`
:=

1

N`

N∑̀
n=1

Y`(u`
n+nb,`), un

` ∼ p`(u`
n−1, ·), (5.7)
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5.3 Convergence analysis of theML-MCMC algorithm

where nb,` ∈ N is the usual burn-in period. This section provides error bounds on the non-
asymptotic statistical Mean Square Error (MSE) of (5.7)

MSE(Ŷ`,N`,nb,`
; ν0) := Eν0,P`

[(
Ŷ`,N`,nb,`

− ν`(Y`)
)2]

= Vν0,P`

[
Ŷ`,N`,nb,`

]
+
[
Eν0,P`

[Ŷ`]− ν`(Y`)
]2

(5.8)

In particular, we aim to obtain a bound of the following form

MSE(Ŷ`,N`,nb,`
; ν0) ≤ Cmse,`

Vν` [Y`]

N`
, (5.9)

for some level-dependent, positive constantCmse,`. Such a bound is presented in Theorem 5.3.4,
the main result of this subsection. A bound of the form (5.9) is required for the cost analysis in
Section 5.4. As discussed in Chapter 3, bounds such as (5.9) exist for geometrically ergodic and
reversibleMarkov transition kernels [143]. However, the chain generated byP` is not ν`-reversible.
Consequently, we can not directly apply the nonasymptotic bounds presented in [143]. Instead,
inspired by the error analysis of [143] and the pseudo-spectral approach of [127], we construct a
bound of the form (5.9) for general (i.e., not necessarily multi-level) nonreversible, discrete-time
Markov chains. To the best of the authors’ knowledge, this result is new.

Theorem 5.3.4 (Nonasymptotic bound on the mean square error): Suppose Assumption
5.3.1 holds. Furthermore, for any ` = 1, 2, . . . , L, let Y` ∈ L2(X2, ν`), and write g`(u`) =

Y`(u`)−
∫

X2 Y`(u`)ν`(du`), and assume theMarkov chain generated byP` starts from ameasure
ν0 with ν0 � ν`, and dν0

dν` ∈ L∞(X2, ν`). Then,

MSE(Ŷ`,N`,nb,`
; ν0) := Eν0,P`

∣∣∣∣∣ 1N`

N∑̀
n=1

g`(u`
n+nb,`)

∣∣∣∣∣
2

≤ Cmse,`
Vν` [Y`]

N`
, (5.10)

whereCmse,` = Cinv,` + Cns,`, with

Cinv,` =

(
1 +

4

γps[P`]

)
, Cns,` =

(
2

∥∥∥∥dν0dν`
− 1

∥∥∥∥
L∞

(
1 +

4

γps[P`]

))
,

where γps[P`] is the pseudo-spectral gap ofP`, defined in (5.6).

Proof. This is an application of Theorem 3.3.2.

Remark 5.3.1: Notice that Assumption ν0 � ν` holds in our setting by Theorem 5.3.3 for
ν0(A) = λ0(A∆).

Moreover, although constantsCinv,` andCns,` depend on the level `, we do not expect them to
degenerate as `→ ∞. In particular, the dependency on the level is given by two terms: γps[P`]
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

and
∥∥∥dν0
dν` − 1

∥∥∥
L∞

. For the first term, we expect γps[P`] to become smaller and smaller as `→ ∞
and for it to converge to a limit value γps[P∞] > 0 (see also the discussion of synchronization of
the coupled chains in Section 5.4). For the second term

∥∥∥dν0
dν` − 1

∥∥∥
L∞

, notice that ν` converges

to a measure that has all of its mass in the diagonal set ofX2. Because ν0 is a finite measure on such
a diagonal, we also expect that this term remains bounded as `→ ∞. However, we are not able to
prove these claims at the moment, thus we formulate the following assumption.

Assumption 5.3.2: There exist a level independent constantCmse such that, for any ` = 0, 1, . . . ,

it holds thatCmse,` < Cmse.

The fact thatCmse,` does not blow-up as `→ ∞ is an important requirement on the asymptotic
analysis of ML-(MC)MCmethods.
The bound (5.10) should be compared to the bound presented in [143, Theorem 3.34]. In
particular, that work presents a sharper bound than (5.10), however, such a bound necessitates
more restrictive assumptions which we list in the next theorem for completeness, whose proof is
an easy adaptation of [143, Theorem 3.34] to our setting and is omitted.

Theorem 5.3.5: Suppose that the Assumptions of Theorem 5.3.4 hold. In addition, assume that
for any ` = 1, 2, . . . , L:

R1. (L2-spectral gap) there exists b` ∈ (0, 1) such that

‖P`‖L0
2(X2,ν`)→L0

2(X2,ν`)
< b`,

R2. (L1-exponential convergence) there exists c̃` ∈ R+, a` ∈ (0, 1) such that

∥∥ν0P`
n − ν`

∥∥
L1(X2,ν`)

:=

∥∥∥∥d(ν0P`
n)

dν`
− 1

∥∥∥∥
L1(X2,ν`)

≤ c̃`a
n
` ,

Then, the non-asymptotic MSE is given by

Eν0,P`

∣∣∣∣∣ 1N`

N∑̀
n=1

g`(u`
n+nb,`)

∣∣∣∣∣
2

≤ Vν` [Y`]

N`

 2

(1− b`)
+

2c̃`

∥∥∥dν0
dν` − 1

∥∥∥
L∞

anb,`
`

N`(1− a`)2

 , (5.11)

where the first term in the parenthesis is associated with the variance contribution to theMSE, whereas
the second term corresponds to the statistical squared bias and is of higher order inN`.

In general, the stronger Assumptions R1 and R2 are known to hold for Markov chains which
are both reversible and geometrically ergodic. However, due to its construction, the Markov
transition kernelP` of the ML-MCMC algorithm is not reversible. Nevertheless, we believe that
the presented algorithm satisfies Assumptions R1 and R2 and as such, a bound on the MSE of the
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5.4 Cost analysis of theML-MCMC algorithm

form (5.11), should hold. However, we are currently unable to verify this claim either, and we will
restrict to the bound of Theorem 5.3.4 and the less restrictive Assumption 5.3.2.

5.4 Cost analysis of theML-MCMC algorithm

For ` = 0, 1, . . . , L, let QoI` : X 7→ R be a µy` -integrable quantity of interest, denote by EML

(resp. VML) the sample mean (resp. variance) of the multi-level ergodic estimator (5.2), and denote
by E = Eν0,P`

(resp. V = Vν0,P`
) the sample mean (resp. variance) with respect to Markov chain

generated by a ν`-invariant Markov kernelP`, started form an initial measure ν0. The TotalMean
Square Error of the multi-level estimator (5.2) is given by the following:

êML(Q̂oIL,{N`}L
`=0

) := EML

[(
Q̂oIL,{N`}L

`=0
− Eµy [QoI]

)2]
.

Notice that the estimator Q̂oIL,{N`}L
`=0

also depends on {P`}L
`=1, the burn-in, and initial measure

for each level; however, for the sake of readability, we opted not to write these dependencies
explicitly throughout this section. The previous term can be upper bounded by

êML(Q̂oIL,{N`}L
`=0

) = VML[Q̂oIL,{N`}L
`=0

] +
[
EML

[
Q̂oIL,{N`}L

`=0

]
− Eµy [QoI]

]2
≤ VML[Q̂oIL,{N`}L

`=0
]︸ ︷︷ ︸

Variance contr.

+2
[
EML

[
Q̂oIL,{N`}L

`=0

]
− Eµy

L
[QoIL]

]2
︸ ︷︷ ︸

MCMC bias contr.

+2
[
Eµy

L
[QoIL]− Eµy [QoI]

]2
︸ ︷︷ ︸

Discretization contr.

.

Notice that

VML[Q̂oIL,{N`}L
`=0

] =

L∑
`=0

V[Ŷ`] + 2
∑

0≤`≤`′≤L
Cov(Ŷ`, Ŷ`′) ≤ 2(L + 1)

L∑
`=0

V[Ŷ`].

Furthermore, we have that

2
[
EML

(
Q̂oIL,{N`}L

`=0

)
− Eµy

L
[QoI]

]2
≤ 2(L + 1)

L∑
`=0

(
E[Ŷ`]− Eν` [Y`]

)2
.

Thus, recognizing from Equation (5.8) the level-wise (statistical) MSE of Ŷ` as

MSE(Ŷ`) = V[Ŷ`] +
(

E[Ŷ`]− Eν` [Y`]
)2
,
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

we then have that

êML(Q̂oIL,{N`}L
`=0

) ≤

2(L + 1)
L∑

`=0

MSE(Ŷ`)︸ ︷︷ ︸
Total statistical error

+2
[
Eµy

L
[QoIL]− Eµy [QoI]

]2
︸ ︷︷ ︸

Discretization error

=: eML(Q̂oIL,{N`}L
`=0

). (5.12)

For some tolerance tol > 0, we denote the minimal computational cost required to obtain
eML(Q̂oIL,{N`}L

`=0
) ≤ tol2 by C

(
eML

(
Q̂oIL,{N`}L

`=0

)
, tol2

)
. The focus of this section is to

provide upper bounds on this computational cost, while quantifying the computational advantage
of the ML-MCMCmethod over its single-level counter part (at level L). In particular, our result
can be thought of as an extension of [45, Theorem 3.4]. Themain result of this section is presented
in Theorem 5.4.1. To establish a cost-tolerance relation, we must first make assumptions on the
decay of the discretization error and the corresponding increase in computational cost for the
evaluation ofF` as a function of the discretization parameterM` = s`M0.

Assumption 5.4.1: For any ` ≥ 0, the following hold:

5.4.1.1. There exist positive functions CF , CΦ : X → R+ independent of `, and positive constants
Ce, α independent of u and ` such that

a) ‖F`(u)−F(u)‖Y ≤ CF (u)s
−α`, ∀u ∈ X.

b) |Φ`(u; y)− Φ(u; y)| ≤ CΦ(u) ‖F`(u)−F(u)‖Y , ∀u ∈ X,
c)
∫

X exp(CF (u)CΦ(u))µpr(du) ≤ Ce <∞.

5.4.1.2. Given a µy` -integrable quantity of interest QoI`, there exits a function Cq : X → R+

independent of ` and positive constants C̃q, αq, Cm, andm > 2, independent of u and `
such that

a) |QoI`(u)− QoI(u)| ≤ Cq(u)s
−αq`, ∀u ∈ X.

b)
∫

XC
2
q (u)µpr(du) ≤ C̃2

q <∞.

c)
(∫

X |QoI`(u)|mµpr(du)
)1/m ≤ Cm <∞.

5.4.1.3. There exist positive constants γ andCγ , such that, for each discretization level `, the computa-
tional cost of obtaining one sample fromaµy` -integrable quantity of interestQoI`(u`,`), u`,` ∼
µy` , with u`,` generated by Algorithm 7, denoted by C`(QoI`), scales as

C`(QoI`) ≤ Cγs
γ`.

Remark 5.4.1: With a slight abuse of notation, we have used the symbol α to denote the (strong)
rate in 5.4.1.1, and α`(·, ·) to denote acceptance probability at level `. We hope this does not create
any confusion.
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5.4 Cost analysis of theML-MCMC algorithm

We state the main result of this section.

Theorem 5.4.1 (Decay of errors): For any ` = 0, 1, . . . , L, letQoI` be anL1(X, µy` )-integrable
quantity of interest and suppose Assumptions 5.3.1, 5.3.2, and 5.4.1 hold. Then, there exist positive
constantsCw, Cv, Cmse, independent of ` such that:

T1. (Weak convergence)
∣∣∣Eµy

`
[QoI`]− Eµy [QoI]

∣∣∣ ≤ Cws
−αw`,

T2. (Strong convergence)Vν` [Y`] ≤ Cvs
−β`.

T3. (MSE bound) MSE(Ŷ`,N`
) ≤ N−1

` CmseVν` [Y`].

Here,αw = min{αq, α} andβ = min{2aq, α(1−2/m)},withα, αq, andm as inAssumption
5.4.1.

The proof of Theorem 5.4.1 is presented in Section 5.4.1. In [45, Theorem 3.4], it has been
shown that, if anML-MCMC algorithm satisfies conditions T1-T3, then it has a complexity (cost-
tolerance relation) analogous to a standard MLMC algorithm to compute expectations (when
independent sampling from the underlying probabilitymeasure is possible) up to logarithmic terms.
This result is stated in Theorem 5.4.2 below. The purpose of Theorem 5.4.1 is to demonstrate
that our class of ML-MCMC algorithms does actually fulfill conditions T1-T3.

Remark 5.4.2: Throughout this work, we have the tacit assumption that the chain at level 0 (i.e.,
the one that does not require an IMH sampler, is geometrically ergodic with respect to µy0).

Theorem 5.4.2: ([45, Theorem 3.4]) Under the same assumptions as in Theorem 5.4.1, with
αw ≥ 1

2 min{γ, β}, for any tol > 0 there exist a number of levelsL = L(tol), a decreasing sequence
of integers {N`(tol)}L

`=0, and a positive constantCML independent of tol, such that theMSE bound
of the multilevel estimator, eML(Q̂oIL,{N`}L

`=0
), satisfies

eML

(
Q̂oIL,{N`}L

`=0

)
≤ tol2,

whereas, the corresponding totalML-MCMC cost is bounded by

C
(
eML

(
Q̂oIL,{N`}L

`=0

)
, tol2

)
≤ CML


tol−2| log tol| if β > γ,

tol−2| log tol|3, if β = γ,

tol−2−(γ−β)/αw | log tol|, if β < γ.

Proof. See [45].

The rates in Theorem 5.4.2 are independent of the dimension of X. In [45] it is shown that the
cost of obtaining an equivalent single-level (at level L) mean square error of an estimator Q̂oIN
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

based on a single-level MCMC algorithm (e.g., standardMH) (denoted by eSL), generated by a
reversible and geometrically ergodic Markov kernel is given by

C
(
eSL
(

Q̂oIN
)
, tol2

)
≤ CSLtol−2−γ/αw , CSL ∈ R+,

where αw and γ are the same constants as in Theorem 5.4.1, and CSL is a positive constant
independent of the tolerance tol.

5.4.1 Proof of Theorem 5.4.1

We decompose the proof of Theorem 5.4.1 in a series of auxiliary results. Further, T3 is obtained
from Theorem 5.3.4 with a level dependent constant and we postulated in Assumption 5.3.2 that
this constant can be bounded by a finite, level-independent constantCmse, and as such, we can use
it in T3. Thus, we just need to prove that T1 and T2 hold, which is done in Lemmata 5.4.3 and
5.4.7. We first prove some auxiliary results needed to prove implication T1.

Lemma 5.4.1: Suppose Assumption 5.4.1 holds. Then, for ` = 1, 2, . . . , L it holds

cI ≤ Z` ≤ Ce,

where cI =
∫

X exp(−Φ(u; y)− CF (u)CΦ(u))µpr(du) andCe as inAssumption 5.4.1.

Proof. From Assumption 5.4.1.1, for all ` ≥ 0, and u ∈ X,

Φ(u; y)− CΦ(u)CF (u) ≤ Φ`(u; y) ≤ Φ(u; y) + CΦ(u)CF (u).

Hence,

Z` =

∫
X
exp(−Φ`(u; y))µpr(du) ≤

∫
X
exp (−(Φ(u; y)− CΦ(u)CF (u)))µpr(du)

≤
∫

X
exp(CΦ(u)CF (u))µpr(du) = Ce,

where the last step follows from the assumption of nonnegativity of Φ(θ; y). Similarly, Z` ≥∫
X exp(−Φ(u; y)− CΦ(u)CF (u))µpr(du) = cI , independently of `.

Lemma 5.4.2: SupposeAssumption 5.4.1 holds. Then, for any ` ≥ 1, there exist positive functions
Cπ,`(u) : X → R+, C̃π,`(u) : X → R+, such that

|πy` (u)− πy`−1(u)| ≤ Cπ,`(u)s
−α`, ∀u ∈ X, (5.13)

|πy` (u)− πy(u)| ≤ C̃π,`(u)s
−α`, ∀u ∈ X. (5.14)
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Moreover,Cπ,`(u) = (πy` (u) + πy`−1(u))Kπ,`(u), C̃π,`(u) = (πy` (u) + πy(u))K̃π,`(u), with

K̃π,`(u) = CΦ(u)CF (u) + c−1
I Ce,

Kπ,`(u) = (1 + sα)K̃π,`(u).

Furthermore, for any p ∈ [1,+∞),

Kp :=

(∫
X
|Kπ,`(u)|pµpr(du)

)1/p

< +∞,

K̃p :=

(∫
X
|K̃π,`(u)|pµpr(du)

)1/p

< +∞.

Proof. We begin with the proof of (5.13). We consider first the caseΦ`(u; y) ≤ Φ`−1(u; y).

|πy` (u)− πy`−1(u)| =

∣∣∣∣∣e−Φ`(u;y)

Z`
− e−Φ`−1(u;y)

Z`−1

∣∣∣∣∣
≤

∣∣∣∣∣e−Φ`(u;y)

Z`
− e−Φ`−1(u;y)

Z`

∣∣∣∣∣︸ ︷︷ ︸
I

+

∣∣∣∣∣e−Φ`−1(u;y)

Z`
− e−Φ`−1(u;y)

Z`−1

∣∣∣∣∣︸ ︷︷ ︸
II

.

We first focus on I . A straightforward application of the mean value theorem (c.f. Assumption
5.3.1.2) results in the following:∣∣∣e−Φ`(u;y) − e−Φ`−1(u;y)

∣∣∣ ≤ e−Φ`(u;y)|Φ`(u; y)− Φ`−1(u; y)|. (5.15)

Thus, from (5.15), together with Assumptions 5.4.1.1 we have the following:

I = Z`
−1
∣∣∣e−Φ`(u;y) − e−Φ`−1(u;y)

∣∣∣ ≤ πy` (u)|Φ`(u; y)− Φ`−1(u; y)|

≤ πy` (u) (|Φ`(u; y)− Φ(u; y)|+ |Φ`−1(u; y)− Φ(u; y)|)
≤ πy` (u)CΦ(u) (‖F`(u)−F(u)‖Y + ‖F`−1(u)−F(u)‖Y)

≤ πy` (u)CΦ(u)CF (u) (1 + sα) s−α`. (5.16)
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We shift our attention to II . Following a similar procedure as for I , we have the following:

II ≤
πy`−1(u)

Z`

∫
X

∣∣∣e−Φ`(z;y) − e−Φ`−1(z;y)
∣∣∣µpr(dz)

≤
πy`−1(u)

Z`

∫
X
e−min{Φ`(z;y),Φ`−1(z;y)} |Φ`(z; y)− Φ`−1(z; y)|µpr(dz)

≤ πy`−1(u) (1 + sα) s−α`c−1
I

∫
X
CΦ(z)CF (z)e

−min{Φ`(z;y),Φ`−1(z;y)}µpr(dz)

≤ πy`−1(u) (1 + sα) s−α`c−1
I

∫
X
CΦ(z)CF (z)µpr(dz)

≤ πy`−1(u) (1 + sα) s−α`c−1
I Ce, (5.17)

where in the last step we used the fact that∫
X
CΦ(u)CF (u)µpr(du) ≤

∫
X
exp(CΦ(u)CF (u))µpr(du) ≤ Ce.

Adding (5.16) and (5.17) provides the desired result with

C ′
π,`(u) =

(
πy` (u)CΦ(u)CF (u) + πy`−1(u)c

−1
I Ce

)
(1 + sα) .

The caseΦ`(u; y) > Φ`−1(u; y) can be treated analogously by considering the alternative splitting

|πy` (u)− πy`−1(u)| ≤

(∣∣∣∣∣e−Φ`(u;y)

Z`
− e−Φ`(u;y)

Z`−1

∣∣∣∣∣+
∣∣∣∣∣e−Φ`(u;y)

Z`−1
− e−Φ`−1(u;y)

Z`−1

∣∣∣∣∣
)
,

which yields the constantC ′′
π,`(u) =

(
πy`−1(u)CΦ(u)CF (u) + πy` (u)c

−1
I Ce

)
(1 + sα). Thus,

one can obtain the desired bound |πy` (u)− πy`−1(u)| ≤ Cπ,`(u)s
−α` with

Cπ,`(u) = (πy`−1(u) + πy` (u))Kπ,`(u),

Kπ,`(u) = (CΦ(u)CF (u) + c−1
I Ce)(1 + sα).

A similar procedure reveals that the bound (5.14) holds with

C̃π,`(u) = (πy(u) + πy` (u))K̃π,`(u),

K̃π,`(u) = CΦ(u)CF (u) + c−1
I Ce.
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5.4 Cost analysis of theML-MCMC algorithm

Finally,

Kp :=

(∫
X
|Kπ,`(u)|pµpr(du)

)1/p

= (1 + sα)

(∫
X
(CΦ(u)CF (u) + c−1

I Ce)
pµpr(du)

)1/p

≤ (1 + sα)
(p
e

)(∫
X
exp
{
CΦ(u)CF (u) + c−1

I Ce

}
µpr(du)

)1/p

(using xp ≤
(p
e

)p
ex)

≤ (1 + sα)
(p
e

) (
Ce exp

{
c−1
I Ce

})1/p
< +∞.

A similar calculation for K̃π,` leads to the following:

K̃p =

(∫
X
|K̃π,`(u)|pµpr(du)

)1/p

≤ (p/e)
(
Ce exp

{
c−1
I Ce

})1/p
< +∞.

Thus, we can show implication T1.

Lemma 5.4.3: Suppose Assumption 5.4.1 holds. Then, for any ` = 0, 1, . . . L, there exists a
positive constantCw ∈ R+, independent of `, such that:

|Eµy
`
[QoI`(u)]− Eµy [QoI(u)]| ≤ Cws

−αw`,

with αw = min{αq, α} and αq, α as in Assumption 5.4.1.

Proof. We follow an approach similar to that of [45].∣∣∣Eµy
`
[QoI`(u)]− Eµy [QoI(u)]

∣∣∣ ≤ ∣∣∣Eµy
`
[QoI`(u)]− Eµy

`
[QoI(u)]

∣∣∣
+
∣∣∣Eµy

`
[QoI(u)]− Eµy [QoI(u)]

∣∣∣ .
For the first term:∣∣∣Eµy

`
[QoI`(u)]− Eµy

`
[QoI(u)]

∣∣∣ ≤ Eµy
`
[|QoI`(u)− QoI(u)|]

≤
(∫

X
Cq(u)µ

y
` (du)

)
s−αq` ≤ s−αq`

Z`

∫
X
Cq(u)µpr(du) ≤ c−1

I C̃qs
−αq`. (5.18)

For the second term:∣∣∣Eµy
`
[QoI(u)]− Eµy [QoI(u)]

∣∣∣ = ∣∣∣∣∫
X

QoI(u)[πy` (u)− πy(u)]µpr(du)
∣∣∣∣

≤
∫

X
|QoI(u)| (πy` (u) + πy(u))K̃π,`(u)µpr(du)s−α`. (5.19)
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

Working on the first termof the previous integral, we obtain the following fromHölder’s inequality:∣∣∣∣∫
X

QoI(u)πy` (u)K̃π,`(u)µpr(du)
∣∣∣∣

≤
(∫

X
|QoI(u)|mµpr(du)

)1/m(∫
X
(πy` (u))

m|K̃π,`(u)|m
′
µpr(du)

)1/m′

≤ Cmc
−1
I K̃m′ ,

where we have takenm as in Assumption 5.4.1,m′ = 1− 1/m and K̃m′ as in Lemma 5.4.2. A
similar bound holds for the second term in (5.19), thus leading to∣∣∣Eµy

`
[QoI(u)]− Eµy [QoI(u)]

∣∣∣ ≤ 2c−1
I CmK̃m′s−α`. (5.20)

The desired result follows from (5.18) and (5.20), withαw = min{αq, α}, and a level independent
constantCw = c−1

I (2CmK̃m′ + C̃q).

We now turn our attention to implication T2. We first prove several auxiliary results.
For any given level ` = 0, 1, . . . , L, we say that the joint chains created by Algorithm 7 are
synchronized at step n if un`,` = un`,`−1. Conversely, we say they are unsynchronized at step n if
un`,` 6= un`,`−1. Notice that if the chains are synchronized at a state un`,` = un`,`−1 = u, and the
new proposed state at the (n+ 1)th iteration of the algorithm is z ∈ X, they de-synchronize at
the next step with probability |α`(u, z)− α`−1(u, z)| (c.f. Figure 5.1). Intuitively, one would
expect that such a probability approaches 0 as `→ ∞. We formalize this intuition below.

Lemma 5.4.4: Suppose Assumptions 5.4.1.1 hold. Then, the following bound holds

|α`(u, z)− α`−1(u, z)| ≤ h`(u, z)s
−α`, u, z ∈ X,

with

h`(u, z) :=
Q`(u)

Q`(z)

1

πy` (u)π
y
`−1(u)

∣∣πy` (z)Cπ,`(u) + πy` (u)Cπ,`(z)
∣∣

andCπ,`(·) as in Lemma 5.4.2.
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5.4 Cost analysis of theML-MCMC algorithm

Proof. From the definition of α`, and the fact that ψ(x) := min{1, x} is Lipschitz continuous
with a constant of 1, it can be seen that

|α`(u, z)− α`−1(u, z)| ≤

∣∣∣∣∣Q`(u)

Q`(z)

πy` (z)

πy` (u)
− Q`(u)

Q`(z)

πy`−1(z)

πy`−1(u)

∣∣∣∣∣ = Q`(u)

Q`(z)

∣∣∣∣∣πy` (z)πy` (u)
−
πy`−1(z)

πy`−1(u)

∣∣∣∣∣
=
Q`(u)

Q`(z)

1

πy` (u)π
y
`−1(u)

∣∣πy` (z)(−πy` (u) + πy`−1(u)) + πy` (u)(π
y
` (z)− πy`−1(z))

∣∣
≤ Q`(u)

Q`(z)

1

πy` (u)π
y
`−1(u)

(
πy` (z)Cπ,`(u) + πy` (u)Cπ,`(z)

)
s−α`.

Lemma 5.4.5: Suppose Assumptions 5.3.1 and 5.4.1 hold. Furthermore, denote the diagonal set
of X2 as∆ := {(u, z) ∈ X2 s.t. u = z}. The transition probability to∆c for the coupled chain of
Algorithm 7 is such that

p`(u`,∆
c) ≤ R`(u)s

−α`, ∀u` = (u, u) ∈ ∆,

with

R`(u) =
Q`(u)

πy` (u)π
y
`−1(u)

(
Cπ,`(u) + πy` (u)K1

)
,

andCπ,`(·) andK1 as in Lemma 5.4.2. Moreover, wheneveru` ∈ ∆c,

p`(u`,∆
c) ≤ 1− c

∫
X
min{πy` (u), π

y
`−1(u)}µpr(du),

where c is the same constant as in Assumption 5.3.1.1. Furthermore, ∃δ > 0 independent of ` such
that

inf
`∈N

∫
X
min{πy` (u), π

y
`−1(u)}µpr(du) > δ > 0. (5.21)

Proof. We begin with the first inequality. Foru` ∈ ∆ and from the definition of p` we obtain the
following

p`(u`,∆
c) =

∫
X
(α`−1(u`,`−1, z)− α`(u`,`, z))

+Q`(z)11{(z,u`,`)∈∆c
}µpr(dz)

+

∫
X
(α`(u`,`, z)− α`−1(u`,`−1, z))

+Q`(z)11{(u`,`−1,z)∈∆c
}µpr(dz),
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

where the first and last term in (5.3) are both zero. Writing u`,` = u`,`−1 = u, it then follows
from Lemma 5.4.4 that:

p`(u`,∆
c) ≤

∫
X
|α`−1(u, z)− α`(u, z)|Q`(z)µpr(dz)

≤ Q`(u)s
−α`

πy` (u)π
y
`−1(u)

∫
X

∣∣πy` (z)Cπ,`(u) + πy` (u)Cπ,`(z)
∣∣µpr(dz)

≤ Q`(u)s
−α`

πy` (u)π
y
`−1(u)

(
Cπ,`(u) + πy` (u)

∫
X
Cπ,`(z)µpr(dz)

)
≤ Q`(u)s

−α`

πy` (u)π
y
`−1(u)

(
Cπ,`(u) + 2c−1

I K1π
y
` (u)

)
Thus, ∀u` ∈ ∆,

p`(u`,∆
c) ≤ R`(u)s

−α`,

with

R`(u) =
Q`(u)

πy` (u)π
y
`−1(u)

(
Cπ,`(u) + 2πy` (u)c

−1
I K1

)
.

Next, we focus on the second inequality which holds for u` ∈ ∆c. Thus, from the fact that
max{a, b} − |a− b| = min{a, b} ∀a, b ∈ R, using Assumption 5.3.1.1, we obtain

p`(u`,∆
c) ≤

∫
X

(
1− min

j=`−1,`
{αj(u`,j , u)}

)
Q`(u)µpr(du)

≤ 1−
∫

X
min

j=`−1,`

[
min

{
1, c

πyj (u)

Q`(u)

}]
Q`(u)µpr(du)

= 1−
∫

X
min

j=`−1,`

[
min

{
Q`(u), cπ

y
j (u)

}]
µpr(du)

= 1−
∫

X
min

j=`−1,`

[
min

{
Q`(u)

πyj (u)
, c

}
πyj (u)

]
µpr(du)

≤ 1− c

∫
X

min
j=`−1,`

{
πyj (u)

}
µpr(du).

where c is the same constant as in Assumption 5.3.1.1 (notice that c < 1).
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5.4 Cost analysis of theML-MCMC algorithm

Finally, we demonstrate that the integral term in the previous equation is lower bounded by a
strictly positive constant independent of the `. First notice that

lim
`→∞

∫
X

min
j=`−1,`

{
πyj (u)

}
µpr(du) = 1− lim

`→∞

1

2

∫
X
|πy` (u)− πy`−1(u)|µpr(du)

≥ lim
`→∞

(1−K1s
−α`) = 1,

and, by definition, ∫
X

min
j=`−1,`

{
πyj (u)

}
µpr(du) ≤ 1, ∀` ∈ N

Thus, the sequence {
∫

X minj=`−1,`

{
πyj (u)

}
µpr(du)}`∈N has 1 as an accumulation point, as

`→ ∞, and, fixed anyδ ∈ (0, 1), there exists `′ ≥ 0 such that, for any ` ≥ `′,
∫

X minj=`−1,`

{
πyj (u)

}
µpr(du)} ≥

δ′. Lastly, recall that by Assumption 5.3.1.2 πy` and πy`−1 are continuous and strictly positive.
Thus, for any compact setA ⊂ X with µpr(A) > 0, and for any ` = {0, 1, . . . , `′}, we have∫

X
min

j=`−1,`

{
πyj (u)

}
µpr(du) ≥

∫
A

min
j=`−1,`

{
πyj (u)

}
µpr(du) =: δ` > 0.

Thus setting δ̂ = min0≤`≤`′{δ`}, and δ = min{δ̂, δ′}we obtain that, for any ` ≥ 0∫
X

min
j=`−1,`

{
πyj (u)

}
µpr(du) ≥ δ > 0.

Remark 5.4.3 (On the dependence of the TV distance between posteriors): Notice that
the term

∫
X min{πy` (u), π

y
`−1(u)}µpr(du) can be written as∫

X
min{πy` (u), π

y
`−1(u)}µpr(du) = 1− 1

2

∫
X

∣∣πy` (u)− πy`−1(u)
∣∣µpr(du) = 1− dTV(µ

y
` , µ

y
`−1).

Furthermore, it is a consequence of Lemma 5.4.2 that dTV(µy` , µ
y
`−1) → 0 as ` → ∞. Thus, a

bound on δ depends on the largest TV distance between two consecutive posteriors, which, intuitively,
one would expect to occur at the coarser discretization levels.

Lemma 5.4.6: Suppose Assumptions 5.3.1 and 5.4.1 hold. Then, for all ` = 1, 2, . . . , L, there
exist a positive constantCr,` withCr,` → C∗

r > 0 as `→ ∞, such that

Pν`(u
n
`,` 6= un`,`−1) ≤ Cr,`s

−α`, ∀n ∈ N,

with c as in Assumption 5.3.1.1 and r as in Assumption 5.3.1.3.
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

Proof. For notational simplicity, for the remainder of this proofwewill writePn := Pν`(u
n
`,`−1 6=

un`,`), u
n
`,`−1, u

n
`,` ∈ X, n ∈ N. Let Z∆,` :=

∫
∆ ν`(du`) = (1− Pn). From Lemma 5.4.5 we

obtain, for any n ∈ N

Pν`(u
n+1
`,` 6= un+1

`,`−1|u
n
` ∈ ∆) = Z−1

∆,`

∫
∆
p`(u`,∆

c)ν`(du`)

≤ s−α`

Z∆,`

∫
∆
R`(u)ν`(du`) (withu` = (u, u) on∆)

≤ s−α`

Z∆,`

∫
∆

Q`(u)

πy`−1(u)
(Kπ,`(u) + 2c−1

I K1)ν`(du`)︸ ︷︷ ︸
I

+
s−α`

Z∆,`

∫
∆

Q`(u)

πy` (u)
Kπ,`(u)ν`(du`)︸ ︷︷ ︸

II

We begin with integral I:

I =
∫

X2

Q`(u`,`−1)

πy`−1(u`,`−1)
(Kπ,`(u`,`−1) + 2c−1

I K1)11{(u`,`−1,u`,`)∈∆
}ν`(du`)

≤
∫

X

Q`(u`,`−1)

πy`−1(u`,`−1)
(Kπ,`(u`,`−1) + 2c−1

I K1)

∫
X
ν`(du`)

=

∫
X
Q`(u`,`−1)(Kπ,`(u`,`−1) + 2c−1

I K1)µpr(du`,`−1)

≤
(∫

X
|Q`(u`,`−1)|rµpr(du`,`−1)

)1/r
(
2c−1

I K1 +

(∫
X
|Kπ,`(u`,`−1)|r

′
µpr(du`,`−1)

)1/r′
)

= Cr(2c
−1
I + 1)Kr′.

Similarly, for II, we get:

II =
∫

X2

Q`(u`,`)

πy` (u`,`)
Kπ,`(u`,`)11{(u`,`−1,u`,`)∈∆

}ν`(du`)

≤
∫

X
Q`(u`,`)Kπ,`(u`,`)µpr(du`,`) ≤ CrKr′ .

Setting Ĉ = 2CrKr′(c
−1
I + 1), one then has

Pν`(u
n+1
`,` 6= un+1

`,`−1|u
n
`,` = un`,`−1) ≤ ĈZ−1

∆,`s
−α` := Z−1

∆,`s`,

where we have set s` = Ĉs−α`. Similarly, lettingZ∆c,` :=
∫
∆c ν`(du`), one has

Pν`(u
n+1
`,` 6= un+1

`,`−1|u
n
` ∈ ∆c) = Z−1

∆c,`

∫
∆c

p`(u`,∆
c)ν`(du`)

≤ 1− c

∫
X
min{πy` (u), π

y
`−1(u)}µpr(du) =: c̃` (from Lemma 5.4.5).
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Wewrite the de-synchronization probability at the (n+ 1)th step as follows:

Pn+1 = Pν`(u
n+1
`,` 6= un+1

`,`−1) = Pν`(u
n+1
`,` 6= un+1

`,`−1|u
n
`,` = un`,`−1)Pν`(u

n
`,` = un`,`−1)

+ Pν`(u
n+1
`,` 6= un+1

`,`−1|u
n
`,` 6= un`,`−1)Pν`(u

n
`,` 6= un`,`−1)

≤ Z−1
∆,`s` (1− Pn)︸ ︷︷ ︸

= Z∆,`

+c̃`Pn

≤ s` + c̃`Pn. (5.22)

However, by stationarity, Pn+1 = Pn =: P. Thus, from Equation (5.22),

Pν`(u
n
`,`−1 6= un`,`) = P ≤ Ĉs−α`

1− c̃`
=

Ĉ

c
∫

X min{πy` (u), π
y
`−1(u)}µpr(du)

s−α`.

By (5.21) the integral term in the denominator is lower bounded by a constant δ independent of
the level. Furthermore, this integral converges to 1 as `→ ∞.

We are now ready to prove implication T2.

Lemma 5.4.7: Suppose Assumptions 5.4.1 and 5.3.1.2 hold. Then, for any ` ≥ 1, there exists a
positive constantCv such that

Vν` [Y`] ≤ Cvs
−β`,

where β = min {2αq, α(1− 2/m)} , and α, αq ,m as in Assumption 5.4.1.

Proof. We follow an argument similar to that of [45, Lemma 4.8]. From Young’s inequality we
have

Vν` [Y`] ≤ Eν`

[
(QoI`(u`,`)− QoI`−1(u`,`−1))

2
]

≤ 2Eν`

[
(QoI`(u`,`)− QoI`(u`,`−1))

2
]
+ 2Eν`

[
(QoI`(u`,`−1)− QoI`−1(u`,`−1))

2
]
.

In the case in which QoI`(·) and QoI`−1(·) are the same (which could happen when the quantity
of interest, seen as a functional, is mesh-independent), the second term vanishes. Otherwise, we
have, using Assumption 5.4.1.2, that

Eν`

[
(QoI`(u`,`−1)− QoI`−1(u`,`−1))

2
]
≤ 2C̃2

q (1 + s2αq)s−2αq`.

The first term is only nonzero when u`,` 6= u`,`−1. Thus, it can be rewritten as

2Eν`

[
(QoI`(u`,`)− QoI`(u`,`−1))

2
]
= 2Eν`

[
(QoI`(u`,`)− QoI`(u`,`−1))

2
1{u`,` 6=u`,`−1}

]
.
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By applying Hölder’s inequality, we can write the above expression as follows:

2Eν`

[
(QoI`(u`,`)− QoI`(u`,`−1))

2
1{u`,` 6=u`,`−1}

]
≤ 2Eν`

[
|QoI`(u`,`)− QoI`(u`,`−1)|2m/2

]2/m
Eν` [1

m′

{u`,` 6=u`,`−1}]
1/m′

(withm′ = m/(m− 2))

= 2Eν` [|QoI`(u`,`)− QoI`(u`,`−1)|m]2/m Pν`(u`,` 6= u`,`−1)
1/m′

. (5.23)

From Assumption 5.4.1.2c, it follows that we can bound the first term in Equation (5.23) by

Eν` [|QoI`(u`,`)− QoI`(u`,`−1)|m]2/m

≤
(
Eµy

`
[QoI`(u`,`)m]

1
m + Eµy

`−1
[QoI`(u`,`−1)

m]
1
m

)2
≤ 4c

−2/m
I C2

m.

Moreover, from Lemma 5.4.6, we have that Pν`(u`,` 6= u`,`−1) ≤ Cr,`s
−α`. Thus,

Vν` [Y`] ≤ Cvs
−β`,

whereCv = 8c
−2/m
I C2

mmax
`∈N

{Cr,`}+ 4C̃2
q (1 + s2αq).

5.5 Implementation

We discuss how to choose the optimal number of samplesN`. For ` = 0, . . . , L, we denote the
total cost of producing one coupled sample of (QoI`−1,QoI`) at level ` using Algorithm 8 by C`.
The total cost of the multi-level MCMC estimator is calculated as follows:

C
(

Q̂oIL,{N`}

)
=

L∑
`=0

C`N`. (5.24)

To bound the statistical contribution of the total error bound, from (5.10) and (5.12),we have the
following constraint:

2(L + 1)
L∑

`=0

Cmse
Vν` [Y`]

N`
≤ tol2

2
,

where tol is a user-prescribed tolerance. However, it is generally not a simple task to compute or
estimate the constantCmse. We ignore it hereafter, and aim at bounding the following quantity:

2(L + 1)

L∑
`=0

Vν` [Ŷ`]

N`
≤ tol2

2
. (5.25)
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5.5 Implementation

To that end we will use the so-called batched means estimator ofVν` [Ŷ`] denoted by σ̂2` (see [54]
for further details). In this case, treatingN` as a real number and minimizing (5.24) subject to
(5.25), gives the optimal samples sizes

N` =

2tol−2
√
σ̂2` /C`

 L∑
j=0

√
σ̂2jCj

 , (5.26)

where d·e is the ceiling function. Lastly, we must also ensure that the second contribution to the
total error (i.e., the discretization bias at level L), is such that∣∣∣Eµy

L
[QoIL]− Eµy [QoI]

∣∣∣ ≤ tol√
2
.

From T1 it follows

∣∣∣Eµy
L
[QoIL]− Eµy [QoI]

∣∣∣ =
∣∣∣∣∣∣

∞∑
j=L+1

Eµy
j
[QoIj ]− Eµy

j−1
[QoIj−1]

∣∣∣∣∣∣
≈

∣∣∣[Q̂oIL − Q̂oIL−1]
∣∣∣

1− s−αw
.

Thus, to achieve a total (estimated) MSE of the ML-MCMC estimator less than tol2, we must
check that

2(L + 1)

( L∑
`=0

σ̂2`
N`

)
+ 2


∣∣∣[Q̂oIL − Q̂oIL−1

∣∣∣
1− s−αw

2

≤ tol2.

In practice, the set of parameters P := {Cw, αw, {σ̂2` }L
`=0, Cσ, β, Cγ , γ} must be estimated

with a preliminary run over L0 levels, using Ñ`, ` = 0, 1, . . . , L0 samples per level. However,
the main disadvantage of this procedure is that this screening phase can be quite inefficient for
computationally expensive problems. In particular, if L0 is chosen too large, then the screening
phase might be more expensive than the overall ML-MCMC simulation on the optimal hierarchy
{0, 1, . . . , L}. On the other hand, if L0 (or Ñ`) is chosen too small, the extrapolation (or estima-
tion) of the values of P might be quite unreliable, particularly at higher levels. In the MLMC
literature, one way of overcoming these issues is with the so-called continuationMulti-level Monte
Carlo method [31]. We will present a continuation-typeML-MCMC (C-ML-MCMC) algorithm
in the following subsection, based on [31, 132].
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

5.5.1 A continuation-typeML-MCMC

The key idea behind this method is to iteratively implement an ML-MCMC algorithm with a
sequence of decreasing tolerances while, at the same time, progressively improving the estimation of
the problem-dependent parametersP . As presented, these parameters directly control the number
of levels and sample sizes. Following [31], we introduce the family of tolerances toli, i = 0, 1, . . . ,

given by

toli =
{
riE−i
1 r−1

2 tol i < iE ,

riE−i
2 r−1

2 tol i ≥ iE ,

where r1 ≥ r2 > 1, so that toliE−1 ≥ tol > toliE , with

iE :=

⌊
− log(tol) + log(r2) + log(tol0)

log(r1)

⌋
. (5.27)

The idea is to iteratively run theML-MCMCalgorithm for each of the tolerances toli, i = 0, 1, . . .

until the algorithm achieves convergence, based on the criteria defined in the previous subsection.
Iterations for which i < iE , are used to obtain increasingly more accurate estimates ofP . Notice
that when i = iE , the problem is solved with a slightly smaller tolerance r−1

2 tol for some carefully
chosen r2. Solving at this slightly smaller tolerance is performed to prevent any extra unnecessary
iterations due to the statistical nature of the estimated quantities. Furthermore, if the algorithm
has not converged at the ithE iteration, it continues running for even smaller tolerances toli, i > iE ,
to account for cases where the estimates ofP are unstable. Thus, at the ith iteration of the C-ML-
MCMC algorithm, we run Algorithm 8 with an iteration-dependent number of levels Li, where
Li is obtained by solving the following discrete constrained optimization problem:


arg min

Li−1≤L≤Lmax

{
2tol−2

i 2(L + 1)
(∑L

j=0

√
Cβs−βjCj

)2}
,

s.t. Cws
−αwL ≤ toli√

2
,

(5.28)

where, L−1 = L0 is the givenminimum number of levels, Lmax, is chosen as the maximum number
of levels given a computational budget (which could be dictated, for example, by the minimum
mesh size imposed by memory or computational restrictions). Notice that (5.28) is easily solved
by exhaustive search.
We now have everything needed to implement the C-ML-MCMC algorithm, which we present in
the listing 9.
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5.5 Implementation

Algorithm 9 ContinuationML-MCMC

1: procedureC-ML-MCMC({πy` }
L
`=0, Q, Ñ , L0, Lmax, {ν0` }L

`=0, tol0, tol, r1, r2)
2: # Preliminary run
3: Compute iE according to Equation (5.27). SetN` = Ñ , ` = 0, 1, . . . , L0,
4: {{un`,`}Ñn=0, {un`,`−1}

Ñ`
n=0}

L0
`=0=ML-MCMC({π

y
` }

L0
`=0, Q, {N`}L0

`=0, {ν
0
` }

L0
`=0).

5: Compute estimates for the parametersP using least squares fit
6: set i = 1 and te = ∞.
7: # Starts continuation algorithm
8: while i < iE or te > tol do
9: Update tolerance toli = toli−1/rk,where k = 1 if i < iE and k = 2 otherwise.
10: Compute Li = Li(Li−1, Lmax, toli,P) using (5.28)
11: ComputeN` = N`(Li, toli,P) for ` = 0, 1, . . . , Li, using (5.26), for unexplored

levels, extrapolateVν` [Y`] from previous points
12: # Q can be constructed using samples from previous iterations
13: {{un`,`}

N`
n=0, {un`,`−1}

N`
n=0}

Li
`=0=ML-MCMC({π

y
` }

Li
`=0, Q, {N`}Li

`=0, {ν
0
` }

Li
`=0))

14: Update estimates forP using least squares fit
15: Update total error te = 2(L + 1)

(∑Li
`=0 σ̂

2
` /N`

)
+ 2

(
Cws

−αwLi
)2

16: i = i+ 1
17: end while
18: Return Q̂oIL,{N`}L

`=0
computed with (5.2).

19: end procedure
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5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

5.6 Numerical experiments

We first present two “sanity check” experiments to verify the theory presented in previous sections
numerically.
In the following two experiments we compare our proposedML-MCMC algorithm to that in [45],
which, by construction, does not satisfy our Assumption 5.3.1.1. The aim of these experiments is
to verify the theoretical results of the previous sections, as well as to provide a setting for which our
methods might be better suited than the sub-sampling approach of [45]. For ease of exposition,
we consider as a quantity of interest QoI(u) = u, u ∼ µy , and we assume that the cost of
evaluating the posterior density at each level grows as 2γ`, with γ = 1. For both experiments, we
implement the sub-sampling ML-MCMC algorithm of [45] with a level-dependent sub-sampling
rate t` := min

{
1 + 2

∑N`
k=0 %̂k, 5

}
, where %̂k is the so-called lag-k auto-correlation time and

1 + 2
∑N`

k=0 %̂k is the so-called integrated auto-correlation time [21].

5.6.1 Nested Gaussians

We begin with a scenario for which both ML-MCMCmethods can be applied. In this case we
aim at sampling from the family of posteriors µy` = N

(
1, 1 + 2−`

)
, ` = 0, 1, 2, . . . , which

approximate µy = N (1, 1) as ` → ∞. For the ML-MCMCmethod proposed in the current
work, we will use a fixed proposal across all levels given byQ` = Q = N (1, 3). Such proposal
is chosen to guarantee that Assumption 5.3.1.1 is fulfilled. The family of posteriors and the
proposalQ used in ourML-MCMC algorithm are depicted in Figure 5.2. For both algorithms, the
proposal distribution at level ` = 0 is a randomwalkMetropolis proposalQ0(u

n
0 , ·) = N (un0 , 1).

This proposal is chosen to guarantee an acceptance rate of about 40%, the value deemed close to
optimum for MCMC in one dimension [21].
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Q

Figure 5.2: Family of posteriors µy
` and fixed proposal distributionQ for the nested Gaussians example.

As a sanity check, we begin by verifying that both algorithms target the right marginal distribution
at different levels. This can be seen in Figure 5.3, where the histograms of samples obtained with
a simple ML-MCMC algorithm with proposalQ and prescribed number of levels L = 7 and
number of samplesN` = 50000 for ` = 0, 1, . . . , L (top row) and the algorithm of [45] (bottom
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5.6 Numerical experiments

row) are shown for levels ` = 0, 3, 6. The true posterior at level ` is shown in red. As it can be seen,
both methods are able to sample from the right marginal distribution for the family of posteriors
considered here-in.
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Figure 5.3: True posterior µy
` for different levels ` = 0, 3, 6 and histogram of the samples of u` ∼ µy

`

obtained with the ML-MCMC algorithm described herein withQ` = N (1, 3) (Top row)and
the sub-sampling ML-MCMC algorithm (Bottom row). Both methods are able to obtain
samples from the right posterior distribution.

Wenow aim at verifying the rates presented inTheorem5.4.1. To that end, we run theML-MCMC
algorithm 100 independent times. For each independent run, we obtained 50,000 samples on each
level and investigate the behavior of |Eν` [Y`]| (Figure 5.4 (left) ) andVν` [Y`] (Figure 5.4 (right) )
with respect to the level `. As it can be seen from Figure 5.4, both |Eν` [Y`]| andVν` [Y`] decay with
respect to `with nearly the same estimated rate≈ −1.34 for theML-MCMC algorithm discussed
in this current work, close to the predicted one in Theorem 5.4.1. It can be seen, however, from
Figure 5.4 (right), that the variance decay of the sub-sampling algorithm is slightly better than the
one obtained by the method presented herein. This, in turn, results in a smaller overall sample size
at each level for a given particular error tolerance, as it can be seen in Figure 5.5 (left). We believe
that this difference in rate is due (i) to the slightly higher synchronization rate of the sub-sampling
ML-MCMC algorithm (Figure 5.5 (right)) and (ii) to the fact that the convergence rate of the
marginal chain in the sub-sampling algorithm also increases with level, which is not necessarily the
case for our method. These results suggest that, for this particular case, it is more cost-efficient to
use the sub-sampling ML-MCMC algorithm.
We plot sample size vs level (Figure 5.5 (left)) and synchronization rate vs. level (Figure 5.5 (right)).
Both figures were obtained from 100 independent runs: solid lines indicate the average value
and dashed lines indicate 95% confidence intervals. The computation ofN` for each level ` =
0, 1, . . . , L was done by estimating σ̂` with 50,000 samples per level and a tolerance tol = 0.07.
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Figure 5.4: (Left) |Eν`
[Y`]| Vs. level. (Right) Vν`

[Y`] Vs. level. In both figures, the rates were estimated
over 100 independent runs, with 50,000 samples per level, on each run. Solid lines indicate the
average value, dashed lines indicate 95% confidence intervals.

It can be seen from Figure 5.5 (left) that the sub-sampling algorithm requires a smaller number of
samples per level. FromFigure 5.5 (right) we can see that both algorithms tend to a synchronization
rate of 1, as expected. It can be seen that the sub-sampling algorithm provides a slightly higher
synchronization rate for the problem at hand.
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Figure 5.5: (Left) Number of samples, Vs. level for both algorithms. (Right) Synchronization rate vs level
for both algorithms.

Lastly, we perform some robustness experiments for our C-ML-MCMC algorithm. To that end,
we run Algorithm 9 using the same level independent proposalsQ` = Q = N (1, 3) for three
different prescribed tolerances tol = {0.025, 0.05, 0.1}. The algorithm is run for a total of 100
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independent times. At each run k, we compute the total squared error of the multi-level estimator
obtained from the kth run of the C-ML-MCMC algorithm given by

er2k :=

(
Q̂oI

(k)

L,{N`}L
`=0

− µy(QoI)
)2

(5.29)

and plot it in Figure 5.6. As we can see, we obtain estimators whose mean square error is less than
the prescribed tolerance, as desired. This result evidences the robustness of Algorithm 9 when
computing quantities of interest for a given tolerance.
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Figure 5.6: Total squared error er2 vs tol for the nested Gaussians example. Here, we used 100 independent
runs of the full C-ML-MCMC algorithm for three different tolerances; tol = 0.025, 0.05, 0.1
(black circles). The red cross denotes the estimatedMSE over the 100 runs.

5.6.2 Shifting Gaussians

We now move to a slightly more challenging problem, which is better suited for our proposed
method. In this case, we aim at sampling from the family of posteriors µy` = N

(
2−`+2, 1

)
,

` = 0, 1, 2, . . . , L, which approximate µy = N (0, 1) as ` → ∞. Once again, for the ML-
MCMCmethod proposed in the current work, we will use a fixed proposal across all levels given by
Q` = Q = N (2, 3). Such a proposal is chosen to guarantee that Assumption 5.3.1.1 is fulfilled.
The posterior and proposal densities are shown in Figure 5.7. Just as in experiment 5.6.1 the
proposal distribution at level ` = 0 for both algorithms is a random walk Metropolis proposal
Q0(u

n
0 , ·) = N (un0 , 1). This proposal is chosen to guarantee an acceptance rate of about 40%.
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Figure 5.7: Illustration of the posterior densities π` and the proposalQ for the moving Gaussians example.

Once again, we begin by investigating the correctness of the corresponding marginals. Therefore,
we run both algorithms for L = 6, obtaining 50, 000 samples per level and plot the resulting
histograms of µy` for levels ` = 0, 3, 6. Such results are presented in Figure 5.8. As it can be seen,
the presentedML-MCMC (Figure 5.8, top row) is able to sample from the correct marginals. In
contrast, the sub-samplingML-MCMC algorithm is not able to produce samples from the correct
distributions, at least for the number of samples considered, as it can be seen in Figure 5.8 (Bottom
row). We believe that this is because Assumption 5.3.1.1 not being satisfied due to the very small
overlap between the posterior at level 0 and the posteriors at higher levels. Sampling from the
wrong marginal distribution results in biased estimators when using the sub-sampling method
[45].
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Figure 5.8: Sample histograms for one ML-MCMC run at levels ` = 0, 3, 6 (Top row): Fixed Gaussian
proposal . (Bottom row): Sub-sampling approach. As it can be seen, the sub-sampling approach
is not able to properly sample from the posterior at higher levels.
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Next, we verify the converge rates stated in Theorem 5.4.1. For this particular setting we have
|Eµy

`
[QoI`] − Eµy [QoI]| = 2−`+1. We run Algorithm 8 100 independent times, obtaining

50,000 samples on each level for every run. The accuracy of the theoretical rates in Theorem 5.4.1
is numerically verified in Figure 5.9. However, the sample mean of QoI` obtained with the sub-
sampling algorithm does not decay as 2−`, confirming the bias of the sub-sampling ML-MCMC
algorithm (Figure 5.9, top left). The decay ratesαw and β, corresponding to the decay in weak and
strong error, respectively, are verified to be 1 for the ML-MCMC algorithm with fixed proposals,
as theoretically expected (Figure 5.9, top right and bottom left). The optimal number of samples
per level is presented in Figure 5.9 (bottom left). Again, the sub-sampling ML-MCMC provides a
smaller number of samples and variances than the proposed method, but at the cost of a biased
estimator. Furthermore, Figure 5.10 reveals that the synchronization rate of both methods tends
to 1 with `, as expected.
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Figure 5.9: (Top left) Estimated expected value of QoI` for both ML-MCMC algorithms and the true
mean of QoI` for different values of `. (Top right) Expected value of Y` = QoI` − QoI`−1

obtained with both algorithms for different values of `. (Bottom left): Variance of Y` obtained
with both algorithms for different values of `. (Bottom right): Number of samples per level for
each method with tol = 0.07.On all plots, dashed lines represent a 95% confidence interval
estimated over 100 independent runs of each algorithm.
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Figure 5.10: Synchronization rate for both algorithms. Dashed lines represent a 95% confidence interval.
As expected, the chains become more and more synchronized as the number of levels increases.

Lastly, we once again perform some robustness experiments for our C-ML-MCMC algorithm.
We run Algorithm 9 using the same level independent proposalsQ` = Q = N (2, 3) for three
different prescribed tolerances tol = {0.1, 0.07, 0.06} for a total of 100 independent runs. Similar
as in the previous example, for each independent run k of the C-ML-MCMC algorithm, we
compute er2k as in (5.29) and plot it in Figure 5.11. Once again, we obtain estimators whose mean
square error is close to the prescribed tolerance, as desired. This further evidences the robustness
of Algorithm 9.
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Figure 5.11: Total squared error er2 vs tolerance tol for the moving Gaussian example.

5.6.3 Subsurface flow

We consider a slightly more challenging problem in which we aim to recover the probability
distributionof the stochastic permeability field inDarcy’s subsurface flowequation (5.30), basedon
some noise-polluted measured data. In particular, let D̄ = [0, 1]2, X = R4, (x1, x2) =: x ∈ D̄,
∂D = ΓN ∪ ΓD, with Γ̊N ∩ Γ̊D = ∅,where ΓD := {(x1, x2) ∈ ∂D, s.t. x1 = {0, 1}}, and
ΓN = ∂D\ΓD. Darcy’s subsurface equation is given by

−∇x · (κ(x, u)∇xp(x, u)) = 1, x ∈ D, u ∈ X,
p(x, u) = 0 x ∈ ΓD, u ∈ X,
∂np(x, u) = 0 x ∈ ΓN , u ∈ X,

(5.30)

where p represents the pressure (or hydraulic head), and we model the stochastic permeability
κ(x, u) for (u1, u2, u3, u4) =: u ∈ X, as

κ(x, u) = exp
(
u1 cos(πx) +

u2
2

sin(πx) +
u3
3

cos(2πx) +
u4
4

sin(2πx)
)
,

with ui ∼ N (0, 1), i = 1, 2, 3, 4.Data y is modeled by the solution of Equation (5.30) observed
at a grid of 9 × 9 equally-spaced points inD (hence Y = R9×9) and polluted by a normally-
distributed noise η ∼ N (0, σ2noiseI81×81), with σnoise = 0.004, which corresponds to approx-
imately 1% noise and I81×81 is the 81-dimensional identity matrix. At each discretization level
` ≥ 0, the solution to Equation (5.30) is numerically approximated using the finite element
method on a triangular mesh of 2` · 16× 2` · 16 elements, which is computationally implemented
using the FEniCS library [101]. Such a library includes optimal solvers for the forward model, for
which γ can be reasonably taken equal to 1. Thus, the map u 7→ F`(u) is to be understood as the
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numerical solution of Equation (5.30) at a discretization level `, observed at a grid of 9× 9 equally
spaced points, for a particular value of u ∈ X. This, in turn, induces a level dependent potential

Φ`(u; y) :=
1

2σ2noise
‖y −F`(u)‖2 ,

and prior µpr = N (0, I4×4). In the above expressions, ‖·‖ denotes the Frobenius norm onR9×9.
Given that we are on a finite-dimensional setting, µpr has a density with respect to the Lebesgue
measure, and as such, we can define the un-normalized posterior density π̃y` : X 7→ R+ w.r.t the
Lebesgue measure given by

π̃y` (u) = exp
(
−Φ`(u; y)−

1

2
uTu

)
.

As a quantity of interest we consider the average pressure over the physical domain, that is,
QoI(u) =

∫
D p(x, u)dx. We implement our ML-MCMC algorithm to approximateEµy [QoI].

In particular, we use RWM at level 0 with Gaussian proposalsN (0, σ2rwmI4×4) with step-size
σrwm = 0.05, which produces an acceptance rate of about 24%. For the proposalQ` at higher
levels ` ≥ 1, we use a mixture between the prior and a KDE obtained from the samples obtained
at the previous level `− 1. This choice of mixture is made so that Assumption 5.3.1 holds.
We begin by numerically verifying the converge rates stated in Theorem 5.4.1. To that end, we run
Algorithm 8 20 independent times, obtaining 10,000 samples per run at each level ` = 0, 1, 2, 3.
Weplot the obtained rates in Figure 5.12. Aswe can see, wenumerically verify thatαw ≈ β(≈ 2.0),
as predicted by our theory; this follows since QoI is smooth, and as such, one should expect the
number of momentsm to be large, and since α = 2 for our FE implementation (see, e.g., [20]).
Lastly, we once again perform some robustness experiments for ourC-ML-MCMCalgorithm,with
Lmax = 3. To that end, we first estimate Eµy [QoI] ≈ µy4(QoI4) by performing 50 independent
runs of a single-level MCMC algorithm at a discretization level ` = 4, obtaining 2000 samples on
each simulation. In particular, each independent run implements a RWMsampler, using proposals
given byN (0, σ2rwmI4×4)with step-sizeσrwm = 0.05, which produces an acceptance rate of about
21%. We run Algorithm 9 using the same mixture of independent proposals as before for different
tolerance levels tol = {1.1× 10−4, 2.0× 10−4, 3.0× 10−4}. The C-ML-MCMC algorithm is
run 20 independent times for each tolerance toli. For each independent run k = 1, 2, . . . , 20,

let Q̂oI
(k)

L(k)(toli),{N`}L(k)
`=0 ,toli

,with L(toli) ≤ 3, denote the ML estimator obtained from the kth

run at tolerance toli. We compute the (approximate) total error squared ẽr2i,k at the kth run with a
tolerance toli as

ẽr2i,k =

(
Q̂oI

(k)

L(k)(toli),{N`}L(k)
`=0 ,toli

− µ̃y4(QoI4)
)2

, (5.31)
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and plot it vs a given tolerance in Figure 5.13. As expected, the MSE of the obtained estimators is
less than the prescribed tolerance. This further evidences the robustness of Algorithm 9.
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Figure 5.12: Decays of Eν`
[Y`] andVν`

[Y`] vs level `.As we can see, both quantities decay with the same
rate, as predicted by the theory.
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Figure 5.13: Computed squared error er2 (using Equation 5.31) vs tol for the elliptic PDE example.

5.6.4 High dimensional subsurface flowwith Laplace’s approximation

Lastly, let us consider a more interesting problem given by a high dimensional example. Consider
once again the same setting as in Section 5.6.3 namely the Darcy’s subsurface flow (5.30) with
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κ(x, u) = eu(x), with u(x) ∼ N (0,A−2) = N (0, C) = µpr where the precision operator is
the square of the differential operatorA acting on a dense subspace Dom(A) ⊂ L2(D) of the
form

A = −∆+
1

2
I,

together with Robbin boundary conditions ∇(·) · n̂ +
√
2
2 (·) = 0 (c.f. Sections 2.2.1 and

4.5.7). We assume that the data y is generated by solving equation (5.30), using a realization
utrue ∼ µpr, and observing it at a grid of 10 × 10 equally spaced points in [0.1, 0.9]2, polluted
by some normally distributed noise η ∼ N (0, σ2noiseI100×100) with σnoise = 9.61 × 10−5,
corresponding to roughly 1% noise. Denoting by u 7→ F(u) the mapping associated to solving
Equation (5.30) with κ(x, u) = eu(x) and observing the solution at the given grid of points, we
can then pose our BIP as sampling from µy with

dµy

dµpr
(u) =

1

Z
exp
(
−‖y −F(u)‖2Σ

)
, Σ = σ2noiseI100×100.

Once samples from µy have been obtained, we aim at approximatingEµy [QoI]where the quantity
of interest QoI : X → R is the log-flux through the bottom boundary Γb := {(x1, x2) ∈
∂D s.t. x2 = 0} defined as

QoI(u) := log
(∫

Γb

eu(x)∇p · n̂ ds
)
,

where p is the solution to (5.30) and n̂ denotes the unit normal vector toΓb. In order to implement
this, we introduce a sequence of discretization levels ` = 0, 1, 2, 3 = L of the forward mapping
operatorF by numerically approximating Equation (5.30) using the finite-element method with
16 · 2` × 16 · 2` piece-wise-linear finite elements. We denote by {X`}L

`=0 the sequence of finite-
element spaces and by {F`}L

`=0 the sequence of approximate forward operators. We also introduce
afinite-dimensional approximationu`,` ∈ X` of the state variable using theprojectionoperatorPA

`

introduced in Section 2.2.3, namely, u` = PA
` u is such that 〈Au`,`, v`〉 = 〈Au, v`〉, ∀v` ∈ X`,

where 〈·, ·〉 denotes the duality pairing betweenH1(D) and its dual, and 〈A·, ·〉 can be understood
as

〈Au, v〉 =
∫
D
∇u(x) · ∇v(x) + 1

2
u(x)v(x)dx+

∫
∂D

√
2

2
u(x)v(x)dx ∀u, v ∈ H1(D).

Together,F` andPA
` induce a sequence of approximate potentialsΦ`(u; y) = Φ̃(F`(PA

` u); y),
` = 0, 1, . . . , L, and a corresponding sequence of posterior measures {µy`}

L
`=0 defined on the

whole state space X, which can however be factorized for u`,` = PA
` u and z` = u− u`,` as

µy` (du) = µy` (du`,`, dz`) = µ̂y` (du`,`)µ̂pr(u`,`, dz`),
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with µ̂y` (du`,`) = Z−1
` exp

(
−Φ̃(F`(u`,`); y)

)
µpr`(du`,`). We finally consider a sequence of

approximations QoI` of QoI, given by QoI`(u) = QoI(u`,`). Notice that

Eµy
`
[QoI`] =

∫
X

QoI(PA
` u)µ

y
` (du) =

∫
X

QoI(u`,`)µ̂pr(u`,`, dz`)µ̂y` (du`,`)

=

∫
X`

QoI(u`,`)µ̂y` (du`,`) = E
µ̂y
`

[QoI],

i.e., with the goal of computing the posterior expectation of QoI`, only the posterior measure µ̂y`
on X` matters, so that we can forget about the conditional distribution µ̂pr(u`,`, dz`) and restrict
our analysis to just the finite-dimensional space X`. In view of constructing coupled chains on
levels `, ` − 1, we also remark that u`,`−1 = PA

`−1u = PA
`−1u`,` so that, to build the posterior

measure µy`−1 at level `− 1 on the full space X reads

µy`−1(du) =
1

Z`−1
exp
(
−Φ̃(F`−1(PA

`−1u); y)
)
µpr(du)

=
1

Z`−1
exp
(
−Φ̃(F`−1(PA

`−1u`,`); y)
)
µpr`(du`,`)µ̂pr(u`,`, dz),

and we can restrict the measure to X` giving a posterior

µ̂y`,`−1(du`,`) :=
1

Z`−1
exp
(
−Φ̃(F`−1(PA

`−1u`,`); y)
)
µpr`(du`,`).

Our goal is then to construct the coupled chains at levels `, `− 1, ` ≥ 1 in the higher dimensional
space spaceX`×X`, which is achieved byusing a high-dimensional proposal z` ∈ X` for both chains,
in such a way that the state z` is “down-sampled” (i.e., projected onto X`−1, deterministically)
when evaluating the posterior density and the quantity of interest at level `− 1. Denoting by πy` ,
π̄y`−1 andQ` the µpr`-densities of µ̂

y
` , µ̂

y
`,`−1 and of the proposal, respectively, one then has that

the MH acceptance ratios are given by

α`(u`,`, z`) = min
{
1,

πy` (z`)

πy` (u`,`)

Q`(u`,`)

Q`(z`)

}
,

α`−1(u`,`−1, z`) = min

{
1,

π̄y`−1(z`)

π̄y`−1(u`,`−1)

Q`(u`,`−1)

Q`(z`)

}
.

Remark 5.6.1: Alternatively, one could construct an “up-sampled” approach, where one aims at
generating coupled chains in the space X`−1 × X`−1, using an IMH proposalQ`−1 on the coarse
space X`−1 as follows:

1. Sample z`−1 ∼ Q`−1, z`−1 ∈ X`−1.
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2. Given the coarse state z`−1 =: z`,coarse, generate its complement on the fine-state by, e.g., a
Gaussian process regression conditioned on z`,coarse, i.e., z`,fine ∼ GP(·|z`,coarse).

3. Set z` = (z`,coarse, z`,fine).

4. Accept or reject zj , j = `− 1, `, withMH acceptance probabilities given by

α`(u`,`, z`) = min
{
1,

πy` (z`)

πy` (u`,`)

Q`−1(u`,`,coarse)

Q`−1(z`,coarse)

GP(u`,`,fine|u`,`,coarse)
GP(z`,fine|z`,coarse)

}
,

α`−1(u`,`−1, z`−1) = min

{
1,

πy`−1(z`−1)

πy`−1(u`,`−1)

Q`(u`,`−1)

Q`(z`−1)

}
,

where we have set u`,` := (u`,`,coarse, u`,`,fine), with u`,`,coarse in X`−1, and u`,` ∈ X`.

However, we chose not to investigate this approach further.

Constructing an efficient Laplace approximation

We follow the procedure of [23, 24], where a Laplace-approximation to µy` is constructed using
a low-rank covariance matrix. For each level ` = 0, 1, . . . , L, we aim at constructing a proposal
Q̃` = N (mmap,`, CLap,`), where

mmap,` = argmin
u∈X

(
1

2
‖y −F`(u)‖2Σ +

1

2
‖u‖2C`

)
, (5.32)

CLap,` =
(
H`(mmap,`) + C−1

`

)−1
,

whereH`(mmap,`) ∈ RK`×K` is the Hessian ofΦ(u; y) = ‖y −F`(u)‖2Σ evaluated atmmap,`,
and C` ∈ RK`×K` is the symmetric positive-definite matrix representing the covariance operator
C at discretization level ` (i.e.,C−1

` = A−1
` M`A

−1
` , whereA` andM` are the stiffness and mass

matrices defined in 2.2.3. Notice that the optimization problem (5.32) can be understood as
minimizingΦ(u; y)with Tykhonov regularization [158] given by 1

2 ‖u‖
2
C` , and as such, such an

optimization problem is well-posed, provided that the regularization is strong enough ([85, 158]).
The computation of the gradient, together with the Hessian of the misfit H`(mmap,`) can be
computed using adjoint statemethods, togetherwith a Lagrangian formulation of the optimization
problem (see, e.g., [164]).
It is typically inefficient to construct CLap,` directly; instead, the work [23] overcomes this issue by
proposing a low-rank approximation, summarized as follows (see, e.g., the works [23, 164] for a
detailed derivation). WriteH` = H`(mmap, `), and consider the following generalized symmetric
eigenproblem

H`vi = λiC−1
` vi, λ1 ≥ λ2 ≥ . . . λK`

, vi ∈ RK` .
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It is known [164] that under some technical conditionsλi decays rapidly. Thus, choosing r` � K`

such that λr`+1 � 1, and defining

Vr` := [v1, v2, . . . , vr` ], Λr` := diag(λ1, λ2, . . . λr`), with Vr`C
−1
` V T

r`
= Ir`×r` ,

it then follows from the Sherman-Morrison-Woodbury formula [161] that one can construct the
following low-rank approximation of CLap,`:

CLap,` =
(
H`(mmap,`) + C−1

`

)−1
= C` − Vr`Dr`V

T
r`

+O

 K∑̀
i=r`+1

λi
λi + 1


≈ C` − Vr`Dr`V

T
r`

=: C̃Lap,`,

whereDr` := diag(λ1/(λ1+1), . . . , λr`/(λr` +1)) ∈ Rr`×r` . It is known that the generalized
eigenpairs (λi, vi), i = 1, . . . ,K` can be efficiently obtained using randomized eigensolvers
[67, 148], provided that the spectrum of H` decays sufficiently fast. From a computational
perspective, the minimization procedure, together with the low-rank approximation of CLap,` is
efficiently implemented using the hiPPYlib library [164] of the FEniCS package [101].

Construction of the sampler

At each iteration of the coupledMCMC algorithm we sample as a proposal

z` ∼ N (mmap,`, C̃Lap,`),

where the efficient sampling fromN (mmap,`, C̃Lap,`) can also be efficiently implemented using
hiPPYlib library [164]. We constrct the level-wise MH acceptance probability. Write H` =

C̃−1
Lap,`−C−1

` . It is shown in [129, Lemma3.3] and [130, Section3.2] that Q̃` = N (mmap,`, CLap,`) '
µpr,` with

dQ̃`

dµpr,`
(u`,`) = exp

(〈
u`,` −mmap,`,mmap,`

〉
C`

− 1

2

∥∥u`,` −mmap,`
∥∥2
H−1

`
+

1

2

∥∥mmap,`
∥∥2
C`

)
=: Q`(u).

Furthermore, setting Q̃` = Qref,` = ν̃` in the notation of Lemma 3.4.1, it then follows that
dµy

`
dν̃` (u) =

dµy
`

dQ̃`
(u`,`) =

dµy
`

dµpr,`
(u`,`) ·

(
dQ̃`
dµpr,`

(u`,`)
)−1

, and the MH algorithm with target

measure µy` induced by taking Q̃` as an independent proposal is well defined, with

α`(u`,`, z`) = min
{
1,

πy` (z`)

πy` (u`,`)

Q`(u`,`)

Q`(z`)

}
,

α`−1(u`,`−1, z`) = min

{
1,

π̄y`−1(z`)

π̄y`−1(u`,`−1)

Q`(u`,`−1)

Q`(z`)

}
,
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Furthermore, we assume that for any level `,Φ`(u`,`; y) grows such that

ess inf
u`,`∈X`

Φ`(u`,`; y) +
〈
u`,` −mmap,`,mmap,`

〉
C − 1

2

∥∥u`,` −mmap,`
∥∥2
H−1 +

1

2

∥∥mmap,`
∥∥2
C > a > −∞,

thus, satisfying Assumption 5.3.1.1. Intuitively, one would expect this to happen whenever the
posterior measure is more concentrated than the Laplace approximation proposal.

Results

We follow a similar procedure as in previous examples, and proceed to numerically verify the
converge rates stated in Theorem 5.4.1. To that end, we run Algorithm 8 50 independent times,
obtaining 2,000 samples per run at each level ` = 0, 1, 2, 3, using as a proposal the Laplace-
approximation of the posterior at level ` = 0, 1, 2, 3 to construct the coupled chain, obtain-
ing an acceptance rate and synchronization rate shown in Figure 5.17, where dim(X0) = 289,
dim(X1) = 1089, dim(X2) = 4225 and dim(X3) = 16641. As we can see, the synchronization
rate increases rapidly with `, while the (marginal) acceptance rates converge quickly to the same
dimension-independent value of around 0.56. As an illustration, we plot the MAPmmap,` at each
level in Figure 5.15, where the difference in dimensionality between spaces is clearly appreciable.
Notice that the MAP at each level is able to capture the main features of utrue. We remark that we
use hiPPYlib [164] and FEniCS [101] to efficiently construct the Laplace approximation (i.e.,
to solve the minimization problem (5.32) and to construct the low-rank approximation of the
covariance, taking r` = 100 for all ` = 0, 1, 2, 3). We depict three samples fromµy` , ` = 0, 1, 2, 3

obtained with our method in Figure 5.16. We plot the obtained rates for Eν` [Y`] and Vν` [Y`]

in Figure 5.17, where transparent colors represent a 95% confidence interval. As we can see, we
have that αw ≈ 1.4, β ≈ 1.4. Furthermore, we plot the joint distribution of (QoI`−1,QoI`) for
` = 1, 2, 3 on Figure 5.18. It is clear then that the samples become increasingly concentrated in the
diagonal, as expected. Lastly, once again under the assumption that γ = 1, we estimate the number
of required samples per level for different levels of tolerance, together with the total computational
cost of the algorithm and plot them in Figure 5.19. The number of required samples per level at a
given tolerance are shown in Figure 5.19 (left). As it can be seen, the amount of samples required
decreases with `. Notice that there is a rather small decrease between the number of samples at
level ` = 0 and level ` = 1; this suggests that coarsest discretization level was, perhaps, too coarse.
in Figure 5.19 (right), we plot the complexity of theML-MCMCmethod, compared to that of the
standard, single level MH’s algorithm. As it can be seen, our proposed method has a much better
complexity than its single level counterpart.
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Figure 5.14: Plots of synchronization and acceptance rates using the Laplace-approximation proposal
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Figure 5.15: Realization of utrue and the MAPmmap,` at each level.

176



5.6 Numerical experiments

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy3

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy3

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
u ∼ µy3

Figure 5.16: Three samples from u ∼ µy
` per each level; from top to bottom ` = 0, 1, 2, 3.

177



5 A class of Multi-Level MCMC algorithms based on IndependentMetropolis-Hastings

1 1.5 2 2.5 3

−6

−4

−2

0

level `

Eν` [Y ]
Slope -1.4
Vν` [Y ]
Slope -1.4
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Figure 5.18: Joint samples of (QoI`−1,QoI`) for different levels ` = 1, 2, 3.

178



5.6 Numerical experiments

0 1 2 3 4

102

104

106

`

N
`

tol=0.168
tol=0.03
tol=0.015

10−1.5 10−1
102

104

106

tol

C
PU

tim
e(
se
co
nd

s) ML-MCMC
MCMC

Figure 5.19: Costs for the high-dimensional example. Left: number of samples vs level for different toler-
ances. Right: complexity of ML-MCMC vs a single-level MCMC estimator.
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6 Multi-levelMarkov chainMonte
Carlo method based on maximally
coupled proposals

6.1 Introduction

As discussed in Chapter 5, the crux of the ML-MCMC algorithm relies upon introducing a corre-
lation between the chains {ui`,`}

N`
i=1, {ui`,`−1}

N`
i=1, at each given level `. In the previous chapter,

we introduced such a correlation by proposing the same state for both chains at each step in the
MH algorithm, using an IMH sampler. In this chapter we present a novel type of ML-MCMC
algorithms for which the correlation between chains is introduced by using a Metropolis-Hastings
algorithm for each marginal chain {ui`,`}

N`
i=1, {ui`,`−1}

N`
i=1, in such a way that the proposal dis-

tributions for each chain are coupled using a so-calledmaximal coupling of the proposals. Such
an algorithm allows for state-dependent proposals in the context of ML-MCMC. Being able to
construct state-dependent proposals (like, e.g., RWM or pCN) in the context of ML-MCMC
algorithms is particularly useful in those cases in which constructing a suitable IMH proposal
(as discussed in the previous chapter), is difficult in some sense. This can occur, e.g., in the sub-
sampling algorithm, whenever Assumption 5.4.1 is not satisfied by the posterior at the previous
level (or more precisely, by the empirical measure approximating it), or when the Gaussianmeasure
arising from the Laplace’s approximation to the posterior measure is not sufficiently accurate, due
to having fewmeasurements or extremely noisy data. Also, our proposed methodology can also
be of interest when solving the optimization problem associated to the construction of such an
approximating measure (i.e., finding the MAP and the Hessian) is not feasible, which could be the
case, e.g., when the forward mapping is computationally implemented using a so-called “black-
box” and no information on the gradient of the cost-functional for the minimization problem is
available.
In short, ourmethoduses the followingprocedure. Supposing the chains are at a state (un`,`−1, u

n
`,`),

and each marginal chain is being constructed using possibly state-dependent proposalsQ`(u
n
`,`, ·)

andR`−1(u
n
`,`−1, ·), our proposed method samples a coupled state (v′, u′), from a maximal cou-
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pling ofQ`(u
n
`,`, ·) andR`−1(u

n
`,`−1, ·). In practice, this means that (v′, u′) are sampled in such a

way thatu′ ∼ Q`(u
n
`,`, ·) andv′ ∼ R`−1(u

n
`,`−1, ·), withP(u′ 6= v′) =

∥∥∥Q`(u
n
`,`, ·)−R`−1(u

n
`,`−1, ·)

∥∥∥
tv
,

where ‖·‖tv is the total variation distance. Each candidate state then gets accepted or rejected by
its respective chain with the usual MH acceptance-rejection step. This procedure, allows us to
use more flexible, non-necessarily independent proposals for each chain, such as RandomWalk
Metropolis (RWM) or preconditioned Crank Nicholson (pCN) (c.f. Section 3.4.1), while at the
same time, creating chains that are highly correlated, as required by theML-MCMC algorithm
(see discussion on Section 5.2 ). More importantly, this type of ML-MCMC based on maximally
coupled proposals, allows for more “flexibility” in the choice of proposals, while at the same time
being easy to implement and for which marginal chains are geometrically ergodic under mild
conditions. We show by numerical experimentation the effectiveness of our approach. Moreover,
we present some elements of analysis, proving, in particular, the existence of a unique invariant
measure for the level-` coupled sampler.
The rest of this Chapter is organized as follows. We begin Section 6.2 by introducing an algorithm
to sample from a maximal coupling between Gaussian probability measures (c.f. Algorithm 11),
and then proceed to introduce our proposed method in Section (c.f. Algorithm 12). We present
an analysis of the existence of and convergence to an invariant measure for the proposed algorithm
in Section 6.3, and present some numerical experiments in Section 6.4.

6.2 ML-MCMC based onMaximal Coupling

We begin this section by recalling some basic concepts on the coupling of probability measures. We
follow closely some of the theory presented in [19, 53, 76, 99]. Let X be a separable Banach space
with associated Borelσ-algebraB(X), define the product spaceX2 := X×X, and denote byM(X)
the set of probability measures on (X,B(X)). For any two probability measuresQ,R ∈ M(X),
we say that a measure γ′ ∈ M(X2) is a coupling ofQ andR if for any setA ∈ B(X),

γ′(A× X) = Q(A) and γ′(X ×A) = R(A).

In words, we say that a probability measure γ′ is a coupling ofQ andR if its marginals areQ and
R. It is known (see, e.g., [159]) that for any such coupling γ′ it holds that

‖Q−R‖tv ≤ Pγ′(ξ 6= ζ) (ξ, ζ) ∼ γ′. (6.1)

We say that γ′ is amaximal coupling ofQ andR if γ′ is a coupling such that equality holds for
equation (6.1). It is always possible to find such a coupling under the assumption that X is a Polish
space, as shown in [99, Theorem 5.2]. We remark, however, that such a maximal coupling is not
necessarily unique.
Suppose, for the time being, that there exists an algorithm to efficiently sample from a maximal
coupling between two (possibly state-dependent) proposal kernels Q(u`,`, ·) and R(u`,`−1, ·)
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(such as, e.g., RWMorpCN), in such away thatR(u`,`−1, ·), Q(u`,`, ·) are theproposal kernels for
a MH algorithm with invariant measure µy`−1, µ

y
` , respectively. Denoting this sampling procedure

as Coupled-chain-MCMC, one can then use such a coupling to create a ML-MCMC algorithm as
shown in Algorithm 10. We will discuss next a possible way to generate such a coupling.

Algorithm 10Multi-level MCMC

1: procedureML-MCMC({µy`}
L
`=0, {N`}L

`=0, µpr, {Q`, R`}L
`=0)

2: if ` = 0 then
3: # Create a chain at level ` = 0 using any suitable MCMC algorithm
4: {un0} =MCMC(µy0, N0, . . . ). Set χ0,0 = {un0}.
5: end if
6: for ` = 1, . . . , L do
7: Sample u0`,`−1 ∼ µpr, and set u0`,` = u0`,`−1

8: for n = 0, . . . , N` − 1 do
9: # Create a coupled chain using some coupling
10: {un+1

`,`−1, u
n+1
`,` } = Coupled-chain-MCMC({µy`−1, µ

y
`}, {u

n
`,`−1, u

n
`,`}, {R`, Q`})

11: end for
12: Set χ`,` = {un`,`}

N`
n=0, and χ`,`−1 = {un`,`−1}

N`
n=0.

13: end for
14: Output χ0,0 ∪ {χ`,`−1, χ`,`}L

`=0 and Q̂oIL,{N`}L
`=0

.
15: end procedure

6.2.1 Reflection maximal coupling for Gaussian proposals

We recall a technique used to sample from a given maximal coupling [76, 99, 100] between two
Gaussian distributions. Further coupling strategies are presented in, e.g., [76]. We will focus our
attention to couplings in finite-dimensional Hilbert spaces. This setting applies, e.g., when:

Case I. X itself is a finite-dimensional space, i.e., X = RK , for someK ≥ 1.

Case II. X is an infinite-dimensional Hilbert space that can be decomposed as XL ⊕ X⊥
L with X⊥

L ⊥
XL, where XL is aKL-dimensional subspace of X, for someKL ≥ 1. This is the case, e.g.,
where we model u`,`, u`,`−1 in terms of their Karhunen-Loeve expansion, and aim at only
coupling the proposal distribution of the firstKL terms in the expansion.

Case III. A similar case occurs when X`−1 ⊂ X` and one tries to couple the proposals for the first
K`−1 components of u`,` with all theK`−1 components of u`,`−1, while the fine modes
of u`,` evolve independently of the coarse modes of u`,`−1.

For notational simplicity and with a slight abuse of notation, hereafter we will denote by X
either the K−-dimensional space of Case I, the KL-dimensional subspace of Case II, or the
K`−1-dimensional subspace of Case III. For any ` = 1, 2 . . . , L and any given step n ∈ N, let
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

(un`,`−1, u
n
`,`) be the current state of the joint chain constructed by Algorithm 10 with marginals

µy`−1, µ
y
` . Furthermore, suppose that each marginal chain is being constructed following the usual

Metropolis-Hastings algorithmwithproposalmeasuresQn := Q`(u
n
`,`, ·),Rn := R`−1(u

n
`,`−1, ·)

in (X,B(X)). We aim at coupling proposalsQn andRnwhenever these proposals are of the general
form

u′`,` ∼ N (m(un`,`), C̃) = Qn,

u′`,`−1 ∼ N (m(un`,`−1), C̃) = Rn,
(6.2)

wherem : X → X, is some B(X)-measurable function and C̃ is some symmetric, positive-definite
covariance matrix in RK×K . Proposals of this form are commonly used in MCMC; for some
z ∈ X, one could have, e.g.,m(z) = z, if the corresponding proposal scheme corresponds to a
RWM, or in the casewhereµpr = N (0, C), one can setm(z) =

√
1− ρ2z,with someρ ∈ (0, 1)

and C̃ = ρ2C if one is using pCN proposals instead. Letϕ0 = N (0, I), and with a slight abuse of
notation, denote by ϕ0 : X → R its Lebesgue density. Clearly, one can generate coupled samples
with marginals (6.2) by sampling (ξ, ζ) ∼ γ′, where γ′ is a coupling of ϕ0 with ϕ0, and setting

u′`,` = m(un`,`) + C̃1/2ξ, u′`,`−1 = m(un`,`−1) + C̃1/2ζ, ξ, ζ ∼ N (0, I).

Thus, by carefully choosing how ξ, ζ are generated, one can generate maximally coupled proposals
(u′`,`−1, u

′
`,`) with the desired distributions; indeed, one could (trivially) generate a maximal

coupling of ϕ0 with itself by sampling ξ ∼ ϕ0, and then setting ζ = ξ, which produces (ξ, ζ) as
sample from a maximal coupling. However, this will be a maximal coupling of ϕ0 with itself, but
will not lead, in general, to a maximal coupling ofQn, Rn. To that end, for any un`,`−1, u

n
`,` ∈ X,

let zn := C̃−1/2(m(un`,`)−m(un`,`−1)) and define

en :=

{
zn/ ‖zn‖X if zn 6= 0,

0 otherwise.
(6.3)

The reflection maximal coupling algorithm proceeds by first sampling ξ ∼ ϕ0 and then setting

ζ =

ξ + zn, with probability min
{
1, ϕ0(ξ+zn)

ϕ0(ξ)

}
(case I),

ξ − 2〈en, ξ〉Xe
n, otherwise (case II).

Thus, intuitively, if zn ≈ 0,meaning thatm(un`,`),m(un`,`−1) are relatively close to each other,
then, with high probability, ζ = ξ + zn, and as such, u′`,`−1 = u′`,`. Otherwise, the algorithm
produces ζ which is a reflection of ξ with respect to the plane orthogonal to en defined in (6.3).
Theorem6.2.1 states thatAlgorithm11 samples (u′`,`−1, u

′
`,`) from amaximal coupling ofQn, Rn.
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Algorithm 11 Reflection maximal coupling.

1: procedure reflection-coupling(ϕ0,m(un`,`−1),m(un`,`))
2: Set zn = m(un`,`)−m(un`,`−1) and set e

n from (6.3).
3: Sample ξ ∼ ϕ0, andw ∼ U([0, 1]).
4: ifw ≤ min

{
1, ϕ0(ξ+zn)

ϕ0(ξ)

}
then

5: Set ζ = ξ + zn. . case I
6: else
7: Set ζ = ξ − 2〈en, ξ〉Xe

n. . case II
8: end if
9: Set u′`,` = m(un`,`) + C̃1/2ξ and u′`,`−1 = m(un`,`−1) + C̃1/2ζ
10: Output (u′`,`−1, u

′
`,`).

11: end procedure

Theorem 6.2.1: Let un`,`−1, u
n
`,` ∈ X. Algorithm 11 produces a coupled sample (u′`,`−1, u

′
`,`) ∼

γn where γn is a maximal coupling ofQn = N (m(un`,`), C̃) andRn = N (m(un`,`−1), C̃), i.e.,
Pγn(u′`,` 6= u′`,`−1) = ‖Rn −Qn‖tv, with u′`,` ∼ Qn and u′`,`−1 ∼ Rn.

Proof. See [76].

We reiterate that this coupling is induced by the coupling between the spherically symmetric
measureϕ0 with itself. This technique can only be used to couple spherically symmetric proposals,
such as (but not limited to) Gaussians [76]. Many commonly-usedMCMC algorithms for PDE-
based BIPs utilize proposals that arise from a spherically symmetric measure . Thus, we will
primarily focus on this type of coupling for the work presented herein. An additional coupling
technique based on rejection sampling is presented in [76, 159], but we will not investigate it in this
work, since we believe it is less efficient than the reflection coupling in the ML-MCMC context.

6.2.2 Generating coupled chains

Let γn be the reflection maximal coupling of Qn, Rn induced by Algorithm 11. Once such
a coupling has been constructed, one can use γn as a proposal in a Metropolis-Hastings algo-
rithm with marginals µy`−1, µ

y
` , with ` ∈ {0, 1, 2, . . . , L}. The procedure is relatively straight

forward; given a joint state (un`,`−1, u
n
`,`) =: u`

n and (possibly state-dependent) marginal pro-
posals probability measures Qn and Rn, the algorithm begins by generating a joint proposal
u`

′ := (u′`,`−1, u
′
`,`) ∼ γn = γn (where γn can possibly depend on the joint state u`, i.e.,

γn(u`, ·)) together with a random number w ∼ U([0, 1]). and it then proceeds to accept or
reject u′`,`−1 and u

′
`,` as the new states of the respective marginal chains, following the usual MH

accept-reject rule where, for each marginal chain, the MH acceptance probability α`(u
n
`,`, u

′
`,`)

and α`−1(u
n
`,`−1, u

′
`,`−1) are compared to the same random numberw. Furthermore, since γn is
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

a maximal coupling ofQn, Rn, meaning, in particular, thatQn andRn are the marginals of γn,
the MH acceptance rate αj , j = `, `− 1, is of the form

α`−1(u`,`−1, u
′
`,`−1) = min

{
1,
πy`−1(u

′
`,`−1)r(u

′
`,`−1, u

n
`,`−1)

πy`−1(u
n
`,`−1)r(u

n
`,`−1, u

′
`,`−1)

}
, (6.4)

α`(u`,`, u
′
`,`) = min

{
1,
πy` (u

′
`,`)q(u

′
`,`, u

n
`,`)

πy` (u
n
`,`)q(u

n
`,`, u

′
`,`)

}
, (6.5)

where πyj : X → R+, j = `− 1, ` are the densities of the posterior at level j with respect to some
suitable reference measure (e.g., the prior), and similarly, r : X2 → R+ and q : X2 → R+ are
the densities of the proposal measuresRn,Qn with respect to some suitable reference probability
measure (c.f. Section 3.4.1). This procedure is depicted in Algorithm 12. Once again (c.f. Chapter
5), we emphasize that such an algorithm also couples the Metropolisation step by comparing the
acceptance probabilities αj , j = ` − 1, `, with respect to the same uniform random number
w. It is important to remark that, even though we use a maximal coupling as a proposal, the
resulting joint Markov chain has marginals that are not, in general, maximally coupled, because of
the Metropolization step.

Algorithm 12 Coupled chainMCMC.

1: procedureCoupled-chain-MCMC(µy` , µ
y
`−1,u`

n, Rn, Qn,m, ϕ)
2: # Produces one sample u`

n+1 = (un`,`−1, u
n
`,`) ∼ ν`, with un+1

`,` ∼ µy` and u
n+1
`,`−1 ∼

µy`−1, given some current stateu`
n = (un`,`−1, u

n
`,`).

3: Sampleu`
′ =reflection-coupling(ϕ0,m(un`,`−1),m(un`,`)).

4: Samplew ∼ U([0, 1])
5: Compute α`−1(u

n
`,`−1, u

′
`,`−1), and α`(u

n
`,`, u

′
`,`), as in Equations (6.4), (6.5).

6: ifw ≤ α`(u
n
`,`, u

′
`,`) then

7: Set un+1
`,` = u′`,`.

8: else
9: Set un+1

`,` = un`,`.
10: end if
11: ifw ≤ α`−1(u

n
`,`−1, u

′
`,`−1) then

12: Set un+1
`,`−1 = u′`,`−1.

13: else
14: Set un+1

`,`−1 = un`,`−1.
15: end if
16: Outputu`

n+1 = (un+1
`,` , un+1

`,`−1).
17: end procedure
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6.2 ML-MCMC based onMaximal Coupling

For anyA ∈ B(X2), Algorithm 12 induces aMarkov transition kernel p` : X2 ×B(X2) → [0, 1]

given by

p`(u`
n, A)

=

∫
X2

min{α`(u
n
`,`, u

′
`,`), α`−1(u

n
`,`−1, u

′
`,`−1)}11{u′

`∈A
}γn(un

` , du`
′)

+

∫
X2

(
α`(u

n
`,`, u

′
`,`)− α`−1(u

n
`,`−1, u

′
`,`−1)

)+ 11{
(u′

`,`,u
n
`,`−1)∈A

}γn(un
` , du`

′)

+

∫
X2

(
α`−1(u

n
`,`−1, u

′
`,`−1)− α`(u

n
`,`, u

′
`,`)
)+ 11{

(un
`,`,u

′
`,`−1)∈A

}γn(un
` , du`

′)

+ 11{u`
n∈A}

(
1−

∫
X2

max{α`(u
n
`,`, u

′
`,`), α`−1(u

n
`,`−1, u

′
`,`−1)}γn(un

` , du`
′)

)
,

(6.6)

where we have used (b)+ = b+|b|
2 , ∀b ∈ R. In words, (6.6) gives the probability of moving to a set

A given a joint stateun
` . We associate a Markov transition operatorP` : L2(X, ν`) → L2(X, ν`)

to p`, where ν` is the invariant probability measure of the Algorithm, provided it exists.

6.2.3 Re-synchronizing the chains

So far, we have proposed a method to generate coupled MCMC chains by sampling from a
maximal coupling of the proposals of each marginal chain. However, it is still possible for the
chains to uncouple and stay de-synchronized for a long period of time. In the setting for which
one constructs each marginal chain using localized Gaussian proposals (such as RWM and pCN),
where each proposal is a Gaussian centered at somem(u`,`),m(u`,`−1) ∈ X, such a prolonged
stage of de-synchronization is likely to occur whenm(u`,`) andm(u`,`−1) are sufficiently far
apart. This is a situation that could potentially happen whenever the posterior is e.g., multi-modal
or high-dimensional, as suggested by the numerical experiments in [76]. Ideally, we would like
for the chains generated by our algorithm to avoid such a situation, since long periods of de-
synchronizations will, in general, reduce the correlation between chains at level ` and `− 1, and
could eventually result in having Vν` [Y`] = O(1). One possible way to avoid this undesirable
situation is to construct the coupled chains at level `, using the following convex combination of
Markov transition operators:

P̂` := (1− ω`)P` + ω`P`
sync, ω` ∈ (0, 1), ` = 0, 1, . . . , L.

Here, P` denotes one step of Algorithm 12 andP`
sync is a synchronization Markov transition

operator, which at each step, proposes to both chains a common candidate state, which then gets
accepted or rejected by each marginal chain with the usual Metropolisation step. Thus, for some
fixed ω`, P̂` can be understood as sampling from Algorithm 12 with probability 1 − ω`, and
otherwise sampling fromP`

sync. This synchronization operator can be understood as a one step
of IMH as in Chapter 5, proposing a candidate state from, e.g., the prior µpr or a KDE of the
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

previous samples, a sub-sampled approximation of µy`−1 as in [45], or a sample from µy` or µ
y
`−1

obtained from a chain with invariant measure µy` or µ
y
`−1 run independently and in parallel. One

could, alternatively, propose to synchronize the chains (i.e., attempt to have un+1
`,` = un+1

`,`−1 with
some probability) by performing one full iteration of the multi-level delayed-acceptance algorithm
presented in [105].
This re-synchronization procedure yields the following alternative one-step re-synchronized cou-
pled chainMCMC algorithm which can also be used inside Algorithm 8.

Algorithm 13 Resync. Coupled-chain-MCMC.
1:
2: procedureResync. Coupled chainMCMC(p`, p

sync
` , (un`,`−1, u

n
`,`), ω`)

3: # Produces one sampleu`
n+1 = (un+1

`,`−1, u
n+1
`,` ) ∼ ν`, with un+1

`,` ∼ µy` and u
n+1
`,`−1 ∼

µy`−1, given some current stateu`
n = (un`,`−1, u

n
`,`).

4: SampleU ∼ U(0, 1)
5: ifU ≥ ω` then
6: Sampleu`

n+1 ∼ p`(u`
n, ·)

7: else
8: Sampleu`

n+1 ∼ psync
` (u`

n, ·) , i.e., do one step of IMH as described above.
9: end if
10: Outputu`

n+1 = (un+1
`,`−1, u

n+1
`,` ).

11: end procedure

6.3 Convergence of the level-wise coupled pCN chain

Wenowproceed to analyze the convergence of the level-wise coupled chains generated byAlgorithm
12. The main result of this section is stated in Theorem 6.3.1, which provides conditions for the
existence and uniqueness of an invariant measure ν`. We will limit ourselves to the particular
case where X = RK , µpr = N (0, C) and Q`(u, ·) = N (

√
1− ρ2u, ρ2C). Here K ≥ 1 is

independent of the level, C is a symmetric positive definite matrix inRK×K and ρ ∈ (0, 1). This
setting corresponds to a pCN algorithm in a finite-dimensional space. In this case, the acceptance
rate for the marginal chain at level ` is of the form α`(u, u

′
`,`) = min{1, eΦ`(u;y)−Φ`(u

′
`,`;y)},

∀u, u′`,` ∈ X. We believe that our setting can be easily extended to other MCMC algorithms,
however, we choose not to pursue such an analysis in this work.
Similarly as in theprevious chapter, our goal is then to show that, under some technical assumptions,
ourML-MCMCalgorithm satisfies the assumptions ofTheorem3.2.4. To that end, wewill require
the following assumptions to hold:

Assumption 6.3.1 (Assumptions on the potential): The following conditions hold for all
` = 1, . . . ,L :

6.3.1.1. Φ`(u; y) is strictly positive ∀u ∈ X, y ∈ Y.
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6.3 Convergence of the level-wise coupled pCN chain

6.3.1.2. There existsR > 0,Aλ`
> −∞ and a function r : R+ → R+ satisfying r(s) = r̂sa for

all |s| ≥ R, r̂ > 0, a ∈ (12 , 1), such that for all u ∈ BR(0)c, it holds that

inf
u′
`,`∈Br(‖u‖)(

√
1−ρ2u)

α`(u, u
′
`,`) > exp(Aλ`

).

Assumption 6.3.1.1 is mild and easy to satisfy. Assumption 6.3.1.2 is more complicated to verify,
however, it is needed to establish the convergence of the marginal pCN algorithm (see [65]). We
now present the main result of this section.

Theorem 6.3.1: (Existence of a unique invariant measure and geometric ergodicity) Suppose
that Assumption 6.3.1 holds. Then, for any level ` = 1, 2, . . . , L,

1. The jointMarkov chain generated byP` in (6.6) has a unique stationary probability measure
ν` on (X2,B(X2)).

2. The joint Markov chain generated by P` is geometrically ergodic. That is, there exists a
ν`-integrable, bi-variate Lyapunov function V`−1,` : X2 7→ [1,∞], an r ∈ (0, 1) and
M ∈ R+, such that

sup
|f |≤V`−1,`

∣∣∣∣∫
X2

f(u`
′)pn` (u`, du`

′)−
∫

X2

f(u`)ν`(du`)

∣∣∣∣ ≤MV`−1,`(u`)r
n,

∀u` ∈ X2, n ∈ N, where the supremum is taken over all ν`-measurable functions f : X2 7→
R satisfying |f(u`)| ≤ V`−1,`(u`).

We postpone the proof of Theorem 6.3.1 to the end of the this subsection. We begin by showing
the irreducibly of the chain generated by (6.6). For notational simplicity, for the remainder of
this subsection we will write u` = (u`,`−1, u`,`), u`

′ = (u′`,`−1, u
′
`,`), and q(u`,`, u

′
`,`) and

r(u`,`−1, u
′
`,`−1) as the Lebesgue densities ofQ`(u`,`, ·),R`−1(u`,`−1, ·) respectively, evaluated

at u′`,`−1, u
′
`,` ∈ X. Furthermore, we denote by γ(·) = γ(u`, ·) the maximal coupling of

Q`(u`,`, ·) andR`−1(u`,`−1, ·) obtained with Algorithm 11.

Lemma 6.3.1: (Irreducibility) Suppose Assumption 6.3.1 holds. Then, for any ` = 1, 2, . . . , L,
the jointMarkov transition kernel p` defined in (6.6) is ψ-irreducible.

Proof. Take any compact setK ∈ B(X)with non-zero Lebesgue measure, setK2 = K ×K and,
for any setA ∈ B(X2), denoteAK = A ∩K2. Foru` ∈ X2, one has that

p`(u`, A) ≥ p`(u`, AK)

≥
∫

X2

min{α`(u, u
′
`,`), α`−1(v, u

′
`,`−1)}11{u`

′∈AK}γ(u`, du`
′), (6.7)
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

Since we are using pCN kernels on both marginals, we obtain:

min{α`(u`,`, u
′
`,`), α`−1(u`,`−1, u

′
`,`−1)}

=min

{
1,
e−Φ`(u

′
`,`;y)

e−Φ`(u`,`;y)
,
e−Φ`−1(u

′
`,`−1;y)

e−Φ`−1(u`,`−1;y)

}
≥min

{
e−Φ`(u

′
`,`;y), e−Φ`−1(u

′
`,`−1;y)

}
=: α̂`(u`

′). (6.8)

Furthermore, sinceAK is a compact set andΦj , j = `−1, ` is a continuous and positive function,
then, there exists δ` > 0 such that α̂`(u`

′) ≥ δ`, ∀u`
′ ∈ AK . Thus, we obtain

(6.7) ≥ δ`

∫
X2

11{u`
′∈AK}γ(u`, du`

′)

= δ`

∫
X2∩∆

11{u`
′∈AK}γ(u`, du`

′) +

∫
X2∩∆c

11{u`
′∈AK}γ(u`, du`

′)

≥ δ`

∫
∆
11{u`

′∈AK}γ(u`, du`
′), (6.9)

where∆ = {(u`,`−1, u`,`) ∈ X2 : u`,`−1 = u`,`}. Notice that the integral in Equation (6.9) is
over the diagonal set of X2, i.e., over the set {u`

′ ∈ X2 : u`,`−1 = u`,`}, which can only occur
when Algorithm 11 finalizes in case I. Thus, writing u′`,`−1 = u′`,` = u′, and observing that since
u′ = m(u`,`) + C̃1/2ξ, ξ ∼ ϕ0, we have

ξ = C̃−1/2(u′ −m(u`,`)), ξ + C̃−1/2(m(u`,`)−m(u`,`−1) = C̃−1/2(u′ −m(u`,`−1)),

it then follows that

(6.9) = δ`

∫
X
11{(u′(ξ),u′(ξ))∈AK}min

{
ϕ0(ξ), ϕ0(ξ + C̃−1/2(m(u`,`)−m(u`,`−1)))

}
dξ

=| det C̃−1/2|δ`
∫

X
11{(u′,u′)∈AK}min

{
ϕ0(C̃−1/2(u′ −m(u`,`))), ϕ0(C̃−1/2(u′ −m(u`,`−1)))

}
du′.

Furthermore, since
∥∥∥C̃−1/2(u′ −m(u`,`))

∥∥∥2
X
≤ 2

∥∥∥C̃−1/2u′
∥∥∥2

X
+ 2

∥∥∥C̃−1/2m(u`,`)
∥∥∥2

X
, it then

follows from the previous equation that

(6.9) ≥ | det C̃−1/2|min{e−
∥∥m(u`,`−1)

∥∥2
C̃ , e−

∥∥m(u`,`)
∥∥2
C̃}δ`

∫
X
11{(u′,u′)∈AK}ϕ0

(√
2C̃−1/2u′

)
du′

where ‖·‖C̃ =
∥∥∥C̃−1/2·

∥∥∥
X
. Setting

ψ(A) :=

∫
X
11{(u′,u′)∈A∩K2}ϕ0

(√
2C̃−1/2u′

)
du′
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gives the desired result.

We now proceed to show that Assumption 6.3.1 implies that all compact subsets of X2 are small
sets.

Lemma 6.3.2: (Existence of small sets) Let Ŝ` ∈ B(X2) be a compact subset and suppose Assump-
tion 6.3.1 holds. Then, Ŝ` is a small set for theMarkov kernel p`.

Proof. We proceed similarly to the proof of Lemma 6.3.1. Notice that for any A ∈ B(X2), it
holds that

p`(u`, A) ≥
∫

X2

min{α`(u, u
′
`,`), α`−1(v, u

′
`,`−1)}11{u`

′∈A}γ(u`, du`
′)

≥
∫

X2

α̂`(u`
′)11{u`

′∈A}γ(u`, du`
′),

with α̂`(u`
′) as in (6.8). Minorizing once again by the probability of Algorithm 11 finishing on

the first case (i.e., proposing the same state for both chains), we obtain:

p`(u`, A) ≥ | det C̃−1/2|

×
∫

X
α̂`(u`

′)11{(u′,u′)∈A}min
{
ϕ0(C̃−1/2(u′ −m(u`,`))), ϕ0(C̃−1/2(u′ −m(u`,`−1)))

}
du′.

Moreover, since Ŝ` is compact and ϕ0(·) (when seen as a density) is a positive, continuous, and
bounded function, then, there exists a continuous and bounded function δ̂ : X → R+ such that

0 < δ̂′(u′) ≤ min
{
ϕ0(C̃−1/2(u′ −m(u`,`))), ϕ0(C̃−1/2(u′ −m(u`,`−1)))

}
∀u` ∈ Ŝ`.

Thus, setting ν(A) :=
∫

X δ̂
′α̂`(u

′)11{(u′,u′)∈A}ϕ0

(√
2C̃−1/2u′

)
du′ gives the desired result.

Aperiodicity follows from Lemmata 6.3.1 and 6.3.2 since ν(Ŝ`) > 0 as long as Ŝ`,∆ = {u ∈ X :

(u, u) ∈ Ŝ`} has non-zero ϕ0-measure.
We now focus on the existence of a drift condition (c.f. Definition 3.2.8) for our ML-MCMC
kernel. We recall the following auxiliary result from [65], which states the existence of such a drift
condition for the marginal pCN algorithm.

Lemma 6.3.3: (convergence of the marginal pCN kernel) Suppose Assumption 6.3.1 holds. Then,
the pCNalgorithmwith invariantmeasureµy` is geometrically ergodic and satisfies the drift condition
as in (3.14) with a Lyapunov function V` : X → [1,∞) of the form V`(u`,`) = exp(k` ‖u`,`‖X),
for some k` > 0.

Proof. See [65, Theorem 2.12]
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

Remark 6.3.1: The work [65] states the previous result in terms of Lyapunov functionV satisfying
the slightly different drift condition:

(P`V`)(u`,`) ≤ λ′`V`(u`,`) +K`, λ′` ∈ (0, 1), K` <∞,

i.e., without an explicit dependency on a small set. It can be shown, however, that the function V in
the previous Lemma also satisfies our drift condition. To that end, set S` = {u ∈ X : V`(u) ≤ L},
for someL sufficiently large so that λ` := λ′` +K`/L < 1. Notice that since V` has compact level
sets and, by Lemma 6.3.2, compact sets are small, S` is then a small set. We then have that

(P`V`)(u`,`) ≤ λ′`V`(u`,`) +K` = λ′`V` +K`11{u∈S`} +K`11{u/∈S`}

≤ λ′`V` +K`11{u`,`∈S`

} +

(
K`

L
11{u`,` /∈S`

})V`(u`,`)
=

(
λ′` +

K`

L

)
V`(u`,`) +K`11{u`,`∈S`

}
= λ`V`(u`,`) +K`11{u`,`∈S`

}.
Notice that from the previous theorem, it follows that, given some Γ ∈ R+, the set Ŝ` = {u`,` ∈
X : V`(u`,`) ≤ Γ} is compact (and hence, a small set, from Lemma 6.3.2). We will use this in the
proof of Lemma 6.3.4. We define the joint function V`−1,` : X2 → [1,∞) by

V`−1,`(u`) :=
1

2
(V`(u`,`) + V`−1(u`,`−1)). (6.10)

The next Lemma shows that V`−1,` is a Lyapunov function for the joint kernel p`. Since the
marginal kernels of p` are p` and p`−1 respectively, one then has, for Ṽ`(u`) = V`(u`,`) that
P`Ṽ` = P`V` =

∫
X V`(u

′
`,`)p`,`(u`,`, du

′
`,`) (where p`,` is the Markov transition kernel corre-

sponding to the marginal chain with invariant measure µy` ) and similarlyP`Ṽ`−1 = P`V`−1, that
is, the joint kernel acts on the marginal Lyapunov function exactly as the marginal kernel does. In
light of this, we now show that our joint kernel p` satisfies a drift condition of the form (3.14).

Lemma 6.3.4 (Drift condition): Suppose Assumption 6.3.1 holds. Then, the kernel p` in (6.6)
satisfies a drift condition of the form (3.14) with Lyapunov function V`−1,`(u`) =

1
2(V`(u`,`) +

V`−1(u`,`−1)).

Proof. From Lemma 6.3.3, it follows that for j = `− 1, `, the marginal kernel p`,j , satisfies a drift
condition of the form∫

X
Vj(u

′
`,j)p`,j(u`,j , du

′
`,j) ≤ λjVj(u`,j) + κj11{u`,j∈Ŝj

}, ∀u`,j ∈ X,

for someλj ∈ (0, 1), κj ∈ (0,∞) and for a small set Ŝj := {u`,j ∈ X : Vj(u`,j) ≤ Γ}, Ŝj ⊂ X,
with Γ > 0 sufficiently large such that max{λ`, λ`−1} + 2max{κ`,κ`−1}

1+Γ < 1. Notice that this
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6.3 Convergence of the level-wise coupled pCN chain

Figure 6.1: Depiction of a two-dimensional small set.

choice of small set is motivated since, by Lemma 6.3.3, the Lyapunov function Vj : X → [1,∞)

, j = ` − 1, `, has compact level sets. Furthermore, define S` := Ŝ` × Ŝ`−1. We remark that
Ŝj (and hence S`) is compact since the function Vj given in Lemma 6.3.3 has compact level sets,
and as such S` is a small set. We will now show thatP` satisfies a drift condition with Lyapunov
function given by (6.10) and small set S`. Consider first the case whereu` ∈ Sc

` . Notice that the
set Sc

` can be written as the union of three non-overlapping regions; Sc
` = R1 ∪ R2 ∪ R3, where

R1 = {u` ∈ X2 : u`,` /∈ Ŝ`, u`,`−1 ∈ Ŝ`−1}, R2 = {u` ∈ X2 : u`,` ∈ Ŝ`, u`,`−1 /∈ Ŝ`−1},
and R3 = Sc

`\(R1 ∪ R2), as depicted in Figure 6.1.
Foru` ∈ R1 we have that

(P`V`−1,`)(u`) ≤
1

2
(λ`V`(u`,`) + λ`−1V`−1(u`,`−1)) +

κ`−1

2
. (6.11)

Since u` ∈ R1, it then holds that V` ≥ Γ. Furthermore, since Vj ≥ 1, we then have that
V`−1,`(u`) = 1

2 (V`(u`,`) + V`−1(u`,`−1)) ≥ 1
2(1 + Γ), which in turn implies that 1

2 ≤
V`−1,`(u`)

1+Γ . Thus, from (6.11), one obtains that

(6.11) ≤ 1

2
(λ`V`(u`,`) + λ`−1V`−1(u`,`−1)) +

κ`−1

1 + Γ
V`−1,`(u`)

≤
(
max{λ`, λ`−1}+

κ`−1

1 + Γ

)
︸ ︷︷ ︸

< 1

V`−1,`(u`). (6.12)

Similarly, foru` ∈ R2 it holds that

P`V`−1,`(u`) ≤
(
max{λ`, λ`−1}+

κ`
1 + Γ

)
︸ ︷︷ ︸

< 1

V`−1,`(u`), (6.13)
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

and foru` ∈ R3 we simply have:

P`V`−1,`(u`) ≤ (max{λ`, λ`−1})V`−1,`(u`). (6.14)

Thus, from (6.12), (6.13), and (6.14) it follows that

P`V`−1,`(u`) ≤
(
max{λ`, λ`−1}+

max{κ`, κ`−1}
1 + Γ

)
︸ ︷︷ ︸

=: Λ` < 1

V`−1,`(u`), ∀u` /∈ S`. (6.15)

Lastly, foru` ∈ S` we have

P`V`−1,`(u`) ≤
1

2
(λ`V`(u`,`) + λ`−1V`−1(u`,`−1)) +

κ`−1

2
+
κ`
2

≤ Λ`V`−1,`(u`) + κ̂`, (6.16)

with κ̂` := 1
2(κ`−1 + κ`).Thus, from (6.15) and (6.16), we have that the joint kernel satisfies a

drift condition of the form (3.14), namely:

P`V`−1,`(u`) ≤ Λ`V`−1,`(u`) + κ̂`11{u`∈S`}.

We now have all the required results to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. The proof of Theorem 6.3.1 follows immediately from Theorem 3.2.4
and Lemmata 6.3.1, 6.3.2, and 6.3.4.

Corollary 6.3.1: Under the same assumptions as in Theorem 6.3.1, theML-MCMC algorithm
induced by a maximal coupling of the gpCNmethod of [144] also has a unique invariant joint
measure; this follows form the fact that both pCN and the gpCN samplers have the same MH
acceptance probability α(u, v).

Remark 6.3.2 (On the proof of the complexity result of [45]): We remark that we are
currently unable to prove that conditions T2 and T3 of Theorem 5.4.1 in Chapter 5 for the complexity
result of Dodwell et. al. ([45, Theorem 3.5]) hold true for the currently proposed method, under
reasonable assumptions (one can show that T1 holds true under similar conditions to that of Lemma
5.4.3, however, this condition alone is not sufficient for the complexity result of Dodwell. et. al. to
hold true). We expect however, that, by including a re-synchronization kernel, as in Algorithm
13 the convergence properties of the ML-MCMC algorithm are “inherited” from the IMH part.
Furthermore, the numerical results in the following sections suggest that T2 holds, indeed, true (with
and without re-synchronization). Furthermore, it is a consequence of Theorem 5.3.4 that T3 also
holds true provided that the (joint) chain is mixing sufficiently fast. We investigate this in further
detail in the Appendix of this chapter.
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6.4 Numerical experiments

6.4 Numerical experiments

6.4.1 Moving Gaussians, revisited

We return to the sanity check experiment of Section 5.6.2 to verify the capabilities of our pro-
posed method. In this case, we aim at sampling from the family of probability measures µy` =

N
(
2−`+2, 1

)
, ` = 0, 1, 2, . . . , L,which approximateµy = N (0, 1) as `→ ∞.As discussed in

Chapter 5, such a family of probability measures poses a problem to someML-MCMC algorithms
due to the relatively small overlap between the posterior measure at level ` = 0 and those at higher
accuracy levels. In particular, we aim at comparing our method with the sub-sampling algorithm
of [45]. To that end, we first implement our ML-MCMCAlgorithm 8 from Chapter 5 together
with Algorithm 12 (that is, we are not using a re-synchronization kernel). At any given level `,
the proposed coupled state at the (n+ 1)th step is given by (u′`,`−1, u

′
`) ∼ γn` , where u

′
`,`−1 ∼

N (un`,`−1, σ
2),u′`,` ∼ N (un`,`, σ

2), andP(u′`,`−1 6= u′`) =
∥∥∥N (un`,`−1, σ

2)−N (un`,`, σ
2)
∥∥∥
tv
.

Here, (un`,`−1, u
n
`,`) denotes the current state of each chain with invariant measure µy`−1, µ

y
` re-

spectively. At each level, the step-size of the RWM algorithm, σ2 = 1 is chosen such that each
chain has an acceptance rate of about 40%. We compared our proposed approach to the meth-
ods and experimental setting of Section 5.6.2, i.e., (a) the sub-samplingML-MCMC algorithm
of [45] with a level-independent sub-sampling rate t` = max

{
1 + 2

∑N
k=0 %̂`(k), 5

}
, where

1 + 2
∑N

k=0 %`(k) is the integrated auto-correlation time of Y`(u`) at level `, and (b) our IMH
algorithm with a level-independent proposalQ` = Q = N (2, 3). For all methods, the proposal
distribution at level ` = 0 is a random walkMetropolis proposalQ0(u

n
0 , ·) = N (un0 , 1), which

yields an acceptance rate of about 40%.
We begin by investigating the correctness of the corresponding marginals obtained with our
method, and compare such results to those obtainedwith the the previously discussedML-MCMC
algorithms. To that end, we run all algorithms with L = 7, obtaining 20, 000 samples per level,
and present the histograms of the samples obtained with all methods at levels ` = 2, 4, 7 in Figure
6.2. The left column of Figure 6.2 shows the histograms of the samples from µy`−1, µ

y
` obtained

with the maximal coupling algorithm, the middle column of Figure 6.2 shows the histograms
of the samples from µy`−1, µ

y
` obtained with the sub-sampling algorithm, and the right column

corresponds to the histograms of µy`−1, µ
y
` obtained with the IMH algorithm. For either column,

each row represents a different level ` = 2 (top), ` = 4 (middle) and ` = 7 (bottom). As it can
be seen from Figure 6.2 (left), the maximal coupling algorithm is able to target the right marginal
distributions at any level. This should not be a surprising fact, since each marginal chain is being
created using RWMproposals.
We now investigate the coupling between chains, i.e., how often are the chains coupled when using
ourmethod. To that end,wedefine the synchronization rate at level `byS` :=

1
N`

∑N`−1
n=0 11{

un
`,`=un

`,`−1

},
which is an ergodic estimator of Pν`(u`,` = u`,`−1) (with ν` the joint probability measure with
marginals µy`−1, µ

y
` , induced by the ML-MCMC algorithm with maximal couplings). We run our
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Figure 6.2: Histograms of samples obtained with a (left) maximal coupling of the proposals (center) with a
sub-sampling algorithm and (right) with the independent Metrpolis-Hastings algorithm, for
different pairs of accuracy levels. Each histogram is obtained with 20000.
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Figure 6.3: Average synchronization rate for the chains generated with maximally coupled proposals (blue)
those generated by the sub-sampling algorithm (orange), and those obtained with IMH (bur-
gundy). 95% confidence intervals are shown in dashed lines.

ML-MCMCAlgorithm 8 together with Algorithm 12M = 50 independent times, where each
independent run has L = 7,N` = 20, 000, ` = 0, 1, . . . , L. Furthermore, for each independent
run k = 1, 2, . . . ,M , we computeS

(k)
` . We plot the estimatedS` :=

1
M

∑M
k=1 S

(k)
` at each

level, together with a 95% confidence interval, in Figure 6.3. As we can see, the synchronization
rates of all algorithms increase with `, with the synchronization rate of the sub-sampling algorithm
increasing faster.

Samplingwith a re-synchronization kernel

The (simple) numerical experiments conducted so far show that ourML-MCMCmethod (a) is able
to sample from the right marginal probability measures at each level ` and (b) the synchronization
rate increases with `. However, as evidenced in Figure 6.3, the synchronization rate for our method
increases at slower rate than that of the sub-sampling or IMH algorithm. Ideally, one would like to
have a coupled sampler that fulfills (a), while at the same time having a higher synchronization rate.
As discussed in Section 6.2.3, this can be achieved by using a convex combination of our coupled
sampler together with a re-synchronization kernel.

Remark 6.4.1 (On the use of re-synchronization kernel): One should not expect to introduce
an additional bias on the marginal chains when using a combination of jointMarkov operators of
the form P̃ = ωP 1

` + (1− ω)P 2
` , ω ∈ (0, 1), provided that µyjP

i
` = µyj , j = `− 1, `, i = 1, 2.

Indeed, since for i = 1, 2, P i
` is aMarkov operator, it follows that

∥∥P i
`

∥∥
L2

= 1 thus for ω ∈ (0, 1)

P̃ = wP 1
` + (1 − ω)P 2

` =⇒
∥∥∥P̃∥∥∥

L0
2

≤ ω + (1 − ω)
∥∥P 2

`

∥∥
L0
2
= a, with a < 1 provided∥∥P 2

`

∥∥
L0
2
< 1 (i.e., the marginal max. coupling has a positiveL2 spectral gap). The choice of weight

ω does affect the convergence rate though.

Motivated by this, we shift our attention to the performance of our method when combined with
either the sub-sampling algorithm of [45] or our IMHalgorithmpresented in the previous Chapter
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

as a re-synchronization kernel. To that end, we implement our ML-MCMCAlgorithm 8 together
with Algorithm 13. This induces two different Markov operators, PSS

sync
` , corresponding to the

Markov operator which induces the re-synchronization via the sub-sampling algorithm (by using
the emperical distribution form the samples obtained at level `− 1 as a proposal), and PIMH

sync
` ,

which induces it using the IMH algorithm.
Weconsider a level independentweightω` = ω, for different values ofω ∈ {0, 0.1, 0.2, 0.5, 0.7, 0.9},
where the level ` synchronization operator P(·)

sync
` is to be understood as a step of the either the

sub-sampling algorithm of [45] or our IMH algorithm presented in the previous section, with
Q` = Q = N (2, 3). We first verify the accuracy of a ML-MCMC estimator of the form

Q̂oIL,{N`}L
`=0

:=
1

N0

N0∑
n=0

[QoI0(un0,0)] +
L∑

`=1

1

N`

N∑̀
n=0

(
QoI`(un`,`)− QoI`−1(u

n
`,`−1)

)︸ ︷︷ ︸
:= Y n

`

.

(6.17)

(6.17) obtained with our mixed algorithm. We begin by first focusing only in the results gen-
erated by PSS

sync
` , since, as previously discussed, the sub-sampling algorithm by itself tends to

give biased results for this particular hierarchy of posteriors. Setting QoI = u, we clearly have
thatEµy

`
[QoI`] = Eµy

`
[u] = 2−`+2. Thus, one can investigate the accuracy of the ML-MCMC

estimator, by computing Q̂oIL,{N`}L
`=0

and comparing it to Eµy
L
[u]. To that end, for each value

of ω, we run ourML-MCMC algorithmM = 50 independent times, where each independent
simulation is run with L = 7 levels, usingN` = 20, 000, ` = 0, 1, . . . , L, samples per level, per

run. For each ω we computeM independent level ` estimators Q̂oI
(ω,k)

`,{N`′}``′=0
, k = 1, 2, . . . ,M ,

and compute, for each value of ω, QoI(ω)` := 1
M

∑M
k=1 Q̂oI

(ω,k)

`,{N`′}``′=0
. For illustrative purposes,

we plot QoI(ω)` v.s ` for each value of ω in Figure 6.4. As we can see, for values of ω ≤ 0.7, there
does not seem to be any noticeable bias with respect to the true estimator. This is further confirmed
in Figure 6.5, where the histograms of the resulting samples from ourML-MCMC algorithm are
presented for ω = {0.1, 0.5, 0.7} (top, middle, and bottom row, respectively). As we can see, the
histograms match the densities of µy` for different levels `.
Lastly we plot, for both synchronization kernels (subsampling and IMH), the synchronization
rate for each ω in Figure 6.6. As we can see from Figure 6.6 (left), for all values of ω > 0, we
obtain synchronization rates that go to 1much faster than the one corresponding to ω = 0. This
result, together with the ones presented in Figures 6.4 and 6.5, suggest that one can combine
the sub-sampling approach of [45] with our ML-MCMC based on maximal couplings using the
convex combination of kernels presented in Section 6.4.1 with some carefully-chosen weights.
Similarly, we can see from Figure 6.6 (Right) that introducing such a re synchronization kernel
noticeably improves the synchronization between chains at two consecutive levels. Although, for
this particular case there does not seem to be much difference between the synchronization rate
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Figure 6.6: Mean synchronization rate for different values of ω and different synchronization kernels. (Left)
re-sync. via sub-sampling kernel. (Right) re-sync using IMH kernel. Dashed lines represent 95%
confidence intervals.

induced by two values ω1, ω2 ≥ 0.1, we believe this to be problem dependent, and affected by
several factors, such as dimensionality, multi-modality and choice ofQ.

6.4.2 Subsurface flow: moderate-dimensions

We consider a more interesting example for which we try to recover the probability distribution
of the permeability field κ in Darcy’s subsurface flow equation, given some measurements of
the hydraulic head on the physical domain. Let D̄ = [0, 1]2, X = RK , (x1, x2) =: x ∈ D̄,
∂D = ΓN ∪ ΓD, with Γ̊N ∩ Γ̊D = ∅,where ΓD := {(x1, x2) ∈ ∂D, s.t. x1 = {0, 1}}, and
ΓN = ∂D\ΓD. Darcy’s subsurface equation is given by

−∇x · (κ(x, u)∇xp(x, u)) = 1, x ∈ D, u ∈ X,
p(x, u) = 0 x ∈ ΓD, u ∈ X,
∂np(x, u) = 0 x ∈ ΓN , u ∈ X,

(6.18)

where p represents the pressure (or hydraulic head), and we simulate the stochastic permeability
κ(x, u) as a mean-zero stationary Gaussian field written in terms of its Karhunen-Loève expansion
as

log(κ(x, u)) =
∞∑

m=1

∞∑
n=1

√
λm,nφm,n(x)um,n, un,m ∼ N (0, 1) (6.19)

withλm,n = 1
πm2

1
πn2 , andφm,n(x) = sin(mπx1) sin(nπx2),∀x ∈ D̄,m, n ∈ N. Notice that

the random permeability field can be recovered given the set of random parameters {um,n}m,n∈N.
For computational purposes, we reorder Equation (6.19) in terms of a single index j in such a way
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that λm,n =: λj ≤ λj+1 (in case of equal values the order is chosen arbitrarily), and truncate
such an expansion afterK terms, thus obtaining the following approximation:

log(κ(x, u)) ≈
K∑
j=1

√
λjφj(x)uj , uj ∼ N(0, 1), j = 1, . . . ,K. (6.20)

Equation (6.18) can then be numerically approximated at a discretization level ` ≥ 0 using the
finite element method on a triangular mesh of 2` · 22× 2` · 22 piece-wise linear elements. Such a
numerical approximation is done using the FEniCS package [101].
Data y is generated from the numerical solution of (6.18) observed at a grid of 4× 4 uniformly
spaced points insideD, polluted by a normally-distributed noise ε ∼ N (0, σ2noiseI16×16), where
I16×16 is the 16-dimensional identity matrix. In particular, the solution to Equation (6.18) is
numerically approximated at a discretization levelL∗ = 6, using a truncation parameterK∗ = 150

in Equation (6.20), with a true set of parameters u∗j ∼ N(0, 1), j = 1, 2, . . . ,K∗. Moreover,
we set σnoise = 0.01, which corresponds to, roughly, 1% measurement noise.
We setK = 50, ` ∈ {0, 1, 2, 3, 4}, L = 4, and define the map u 7→ F`(u) as the numerical
approximation of the solution to Equation (6.18) at a discretization level `, using a log-permeability
field modeled by (6.20), and observed at a grid of 4 × 4 equally spaced points inside D, for a
particular value of u ∈ X` = RK . Thus, the level-dependent potential is given by

Φ`(u; y) =
1

2σ2noise
‖y −F`(u)‖2 .

Furthermore, setting µpr =
⊗K

i=1N (0, 1),we can then define the level-` posterior µy` in terms
of its Radon-Nykodim derivative with respect to the prior as:

dµy`
dµpr

(u) =
1

Z`
exp (−Φ`(u; y)) , Z` =

∫
X
exp (−Φ`(u; y))µpr(du).

The BIP thus consists of sampling from the probability distribution log(κ(x, u)) (parameterized
in terms of {uj}Kj=1) conditioned on the noise-polluted observed data y.
We implement ourML-MCMC algorithm to sample from µyL and compute posterior expectations
at level L of a quantity of interest

QoI(u) := ln

(
−
∫
ΓD1

κ(x, u)∇p(x, u) · n ds

)
, (6.21)

where ΓD1 denotes the rightmost boundary of the domain and n is the unit normal vector to ΓD1 .
We will denote by QoI` as (6.21) computed with a level ` approximation of p.
We implement our method together with a re-synchronization kernel, where, similar to Sec-
tion 6.4.1, we use the sub-sampling algorithm of [45] as a re-synchronizing kernel, with a level-
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Figure 6.7: (Left) true log-field log(κ(x, u∗)). (Right) Posterior mean estimator of log(κ(x, u)) at level
L = 4.

dependent sub-sampling rate of t` = max
{
1 + 2

∑N
k=0 %̂`(k), 5

}
,where 1+ 2

∑N
k=0 %`(k) is

the integrated auto-correlation time of {QoI`−1(u
n
`,`−1)}Nn=0 at level `− 1. We do not compare

our results to those of algorithm [45] since such a method can produce biased results when used
by itself (c.f. Section 5.6.2). We implement the re-synchronization kernel with level-dependent
weights ω` given by ω1 = 0.1, and ω2 = ω3 = ω4 = 0.5. This choice of weights was made in
such a way that, at the coarsest level, the coupling is mostly driven by localized proposals, while
the choice of higher weights for the higher levels is made in such a way that it favors “desirable”
properties for the chains, such as having a rapidly decaying ACF for the marginal chains, or a
rapidly increasing synchronization rate for the joint chains (c.f. Figure 6.9). An alternative (and
certainly more systematic) approach for the selection of {ω`}L

`=0 could be to include a Bayesian
update on their value inside a continuation-type ML-MCMC algorithm. Further investigation on
the choice of these values will likely be the subject of future work.
As a verification of our method, we run our ML-MCMC algorithm 50 independent times, where
each simulation is run withN` = 5000 samples per level, for each level ` = 0, 1, . . . , 4. The true
log-permeability field, together with the level L posterior mean are shown in Figure 6.7. As it can
be seen, the level-L estimator is able to capture some of the more representative features of the true
permeability field.
We begin by investigating the synchronization of the chains. In Figure 6.8 we plot QoI`−1 Vs QoI`
for ` = 1, 2 (top row, from left to right) and ` = 3, 4 (bottom row, from left to right). As expected,
samples become increasingly more concentrated on the diagonal as ` increases. Furthermore, we
consider once again the synchronization rate at level ` given byS` =

1
N`

∑N`−1
n=0 11{

un
`,`=un

`,`−1

},
and compute S

(k)
` for each independent run k = 1, . . . , 50. We plot 1 − S`, with S` =

1
M

∑M
k=1 S

(k)
` , at each level, together with a 95% confidence interval, in Figure 6.9 (left). As

we can see, the synchronization rates increase with `. Notice that 1 − S` can be understood
as an estimator of P = Pν`(u`,` 6= u`,`−1). Furthermore, under the same setting, we plot the
autocorrelation function (ACF) of QoI` fo each level ` = 0, 1, 2, 3, 4 on Figure 6.9. The weights
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Figure 6.8: Diagonal plots of QoI` vs QoI`−1 for ` = 1, 2, 3, 4.
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Figure 6.9: (Left) Estimated synchronization rate vs level. (Right) Mean autocorrelation plot (ACF) at lag
100. In bothplots, dashed lines represent a 95%confidence interval obtained over 50 independent
runs.
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Figure 6.10: Convergence vs level. (Left) weak convergence, (right) strong convergence (log2 scale in y axis).
Dashed lines represent a 95% confidence interval obtained over 50 independent runs.

are chosen so that they produce a decay on the ACF with respect to `, while at the same time
conserving the explorability associated to our maximal coupling algorithm.
We now proceed to numerically investigate the rates α and β in the complexity theorem reported
in Chapter 5 (c.f. Theorem 5.4.1). To that end, we estimate α and β using the same set-up
as before (i.e., 50 independent runs with N` = 5000 per level, per run) and plot estimates of
|Eµy

`−1
[QoI`−1]−Eµy

`
[QoI`]| andVν` [QoI` −QoI`−1] versus `, together with a 95% confidence

interval, in Figure 6.10 (right). As we can see, we obtain a weak decay rate αw ≈ 1.0 and a strong
decay β ≈ 1.96. This in turn verifies numerically Assumptions T1 and T2 in Theorem 5.4.1.
Lastly, following the same discussion as in Section 5.5, we have that the optimal hierarchy of
samples in our ML-MCMC algorithm for a given tolerance tol is given by

N` =

2tol−2

√
σ2`
C`

 L∑
j=0

√
σ2jCj

 ,
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Figure 6.11: (Left). Number of samplesN`(toli) for a given tolerance toli, i = 1, 2, 3, 4. (Right). Com-
parison of the cost against a single-level MCMC algorithm.

with σ2` = Vν` [Y`]which can be estimated, for instance, by a batched means estimator (see e.g.,
[54]) andwhereC` is the cost of obtainingone independent sample of (QoI`−1(u`,`−1),QoI`(u`,`))
using our ML-MCMC algorithm. We plot the hierarchy of samples {N`(toli)}L

`=0 for different
tolerances toli ∈ {0.029, 0.019, 0.011, 0.006} in Figure 6.11 (left), and the total computational
cost (in seconds) vs tolerance of ourML-MCMC estimator vs that of its single-level counterpart in
Figure 6.11 (right) . Figure 6.11 (left) suggests the computational advantage of usingML-MCMC;
indeed for a tolerance of tol = 0.007, a single-level MCMC algorithm would need over 106

(correlated) samples at level L = 4. Meanwhile, the ML-MCMC algorithm, requires around
102 (correlated) samples at this level, since most of the computational effort is being done at the
low discretization levels, where samples are inexpensive to obtain. These results are consistent
with those of [45]. This is further corroborated in Figure 6.11 (right), where we plot the cost (in
seconds) vs tolerance for both our ML-MCMC and a single level MCMC, where the number of
samples necessary for the single-level (at level ` = `(tol)) chain to achieve an error smaller than
tol was estimated from 10 independent pCN runs of the single-level MCMC algorithm using
5000 samples per run. As it can be seen from such a figure, the ML-MCMC has a much smaller
complexity than its single-level counterpart.

6.5 Appendix

6.5.1 A.1. Higher-dimensional subsurface flow revisited: some numerical
results

Lastly, we revisit the same problem studied in in Section 5.6.4. In particular, we are interested in
testing our maximal coupling algorithm without re-synchronization for this large-dimensional
problem using a ν-pCN algorithm (c.f. Section 3.4.1) as a proposal. As we will see on this example,
the maximal coupling algorithm can show promise on problems where the coupling is done in
rather large dimensions. We remark however that this last section is rather exploratory in nature,
and further investigation is needed.
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

We recall the formulation of the problem at hand for convenience. Consider once again the same
setting as in Section 6.4.2, namely the Darcy’s subsurface flow (6.18) with κ(x, u) = eu(x),
with u(x) ∼ N (0,A−2) = N (0, C) = µpr where the precision operator is the square of the
differential operatorA acting on a dense subspace Dom(A) ⊂ L2(D) of the form

A = −∆+
1

2
I,

together with Robbin boundary conditions ∇(·) · n̂ +
√
2
2 (·) = 0 (c.f. Sections 2.2.1 and

4.5.7). We assume that the data y is generated by solving equation (6.18), using a realization
utrue ∼ µpr, and observing it at a grid of 10 × 10 equally spaced points in [0.1, 0.9]2, polluted
by some normally distributed noise η ∼ N (0, σ2noiseI100×100) with σnoise = 9.61 × 10−5,
corresponding to roughly 1% noise. Denoting by u 7→ F(u) the mapping associated to solving
Equation (6.18) with κ(x, u) = eu(x) and observing the solution at the given grid of points, we
can then pose our BIP as sampling from µy with

dµy

dµpr
(u) =

1

Z
exp
(
−‖y −F(u)‖2Σ

)
, Σ = σ2noiseI100×100.

Once samples from µy have been obtained, we aim at approximatingEµy [QoI]where the quantity
of interest QoI : X → R is the log-flux through the bottom boundary Γb := {(x1, x2) ∈
∂D s.t. x2 = 0} defined as

QoI(u) := log
(∫

Γb

eu(x)∇p · n̂ ds
)
.

Following Section 5.6.4, we introduce a sequence of discretization levels ` = 0, 1, 2, 3 = L of
the forward mapping operatorF by numerically approximating Equation (6.18) using the finite-
element method with 16 ·2`×16 ·2` piece-wise-linear finite elements. This hierarchy of {F`}L

`=0

induces the family of of potential {Φ`(u; y)}L
`=0, withΦ`(u; y) = Φ̃(F`(PA

` u); y), which in
turn induces the family of posteriors {µ̂y`}

L
`=0, witch each posterior defined on (X`,B(X`)),

approximating µy as `→ ∞, with

µ̂y` (du`,`) =
1

Z`
exp
(
−Φ̃(F`−1(u`,`); y)

)
µpr`(du`,`)

with µpr` the discretized prior, induced by the approximation of the operator A, as discussed
in Section 5.6.4. We are interested in investigating how, (or whether) we can use our proposed
algorithm in such a (high-dimensional) case. To reiterate, this is of interest if, e.g., a sufficiently
accurate Laplace approximation can not be built in this rather large number of dimensions, or if
the sub-sampling approach of [45] cannot be applied. At each level ` = 0, 1, 2, 3, we generate a
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Figure 6.12: Rates for cost-tolerance theorem for the high-dimensional example with maximal-coupling.
(log2-scale in the y-axis)

coupling of two proposal measuresQ`(u`,`, ·)R`(u`,`−1, ·) in X` ( i.e., the higher dimensional
space induced by the FE discretization of the operatorA), where

Q`(u`,`, ·) = N (mmap,` +
√
1− ρ2(u`,` −mmap,`), ρ

2CLap,`)

R`(u`,`−1, ·) = N (mmap,` +
√
1− ρ2(u`,`−1 −mmap,`), ρ

2CLap,`),

We implement our proposedML-MCMC algorithm forM = 10 independent runs, obtaining
N = 2000 samples per level, per run. We obtain the following results. We estimate the rates for
the cost-tolerance result of [45] (c.f. Theorem 5.4.2) in Figure 6.12. As we can see, although it
is clear that there is indeed a decay on the rates for the variance and expected value of Y`(u`) =

QoI`(u`,`)−QoI`−1(u`,`−1), this decay is not as fast as in the case of IMH.WeplotQoI`−1vsQoI`
in Figure 6.13. We remark that, although there is no actual coupling between the chains such that
u`,`−1 = u`,` (indeed, the proposed maximal coupling algorithm is designed to work in finite-
dimensions), there is still a clear correlation between samples, which become increasingly more
concentrated around the diagonal∆. Lastly, we plot the number of samples and the computational
cost of our ML-MCMCmethod compared to its single level counter part in Figure 6.14. As we
can see, even in this case where we pay the extra price of not using an IMH, we can see that the
total computational cost associated to the ML-MCMC algorithm has a much better complexity
than its single-level counterpart.
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals
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Figure 6.13: Diagonal plots of QoI`(u`,`)− QoI`−1(u`,`−1)
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6.5 Appendix

6.5.2 A.2. Some results towards the complexity study of the maximal
coupling algorithm

As mentioned in Section 6.3 we were, at the time of the writing of this thesis, unable to show that
the conditions required for [45, Theorem 3.5] to hold are satisfied under reasonable assumptions.
It is known from Theorem 3.3.2 that Assumption T3 holds true provided that the join chain is
mixing sufficiently fast (i.e., that it has finitemixing time, see [127] for more details), however,
verifying this is highly technical, and as such, we will consider it to hold true. Wewill limit ourselves
to verifying that Assumptions T1 and T2 hold for our setting, the latter of which would require
some additional, potentially restrictive conditions. As we will see, in our formulation verifying this
latter condition will require that

∫
∆c p`(u`,∆)ν`(du`) 6→ 0 as `→ ∞, roughly understood as

the chains always having a positive probability of re-synchronizing,and which we will assume to
hold true. We formalize this discussion below.

Assumption 6.5.1: For any ` ≥ 0, the following hold: There exist positive functionsCF , CQ, CΦ :

X → R+ independent of `, a positive constantC ′
e, α independent of u and `, and a positive constant

c`
`→∞
6→ 0 such that

1.
∫

X(CF (u
′)CΦ(u

′))Q`(u, du′) ≤ CQ(u) <∞,

2.
∫

XCQ(u)µpr(du) ≤ C ′
e <∞.

3.
∫
∆c p`(u`,∆)ν`(du`) > c`.

We remark that while Assumption 6.5.1.1-2 are relatively mild, Assumption 6.5.1.3 is difficult to
verify and perhaps, too strong. For this reason we decided to include the following results as an
appendix, as they possibly need further investigation. Our results will also rely upon Assumption
5.4.1, introduced in Chapter 5, on the potentialΦ`, the forward operatorF` and the quantity of
interest QoI` for ` ≥ 0.

Theorem 6.5.1: Suppose Assumptions 5.4.1 and 6.5.1 hold. Then, Assumptions T1 and T2 are
satisfied.

Corollary 6.5.1: Suppose additionally that Assumption T3 holds true. Then, theML-MCMC
algorithm based on maximally coupled proposals satisfies the conditions for Theorem 5.4.2 to hold.

The proof of Theorem 6.5.1 is decomposed in a series of results and is given at the end of the
section. It has been shown in Lemma 5.4.3 that T1 holds under Assumption 5.4.1. We recall such
a result, for convenience.

Lemma 6.5.1: Suppose Assumption 5.4.1 holds. Then, for any ` = 0, 1, . . . L, there exists a
positive constantCw ∈ R+, independent of `, such that:

|Eπy
`
[QoI`(u)]− Eπy [QoI(u)]| ≤ Cws

−αw`,

with αw = min{αq, α} and αq, α as in Assumption 5.4.1.
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

Recall that for any given level ` = 0, 1, . . . , L, we say that the joint chains created by the ML-
MCMC algorithm are synchronized at step n if un`,` = un`,`−1 = u. We say that they are unsyn-
chronized otherwise. Notice that, in our setting, if the chains are synchronized, Algorithm 11 will
propose the same candidate state u′ to both chains with probability 1. Thus, assuming that the
chains are synchronized at step n, they will become unsynchronized at step n+ 1with probability
|α`(u, u

′)− α`−1(u, u
′)|. We now show that such a probability approaches 0 as `→ ∞, using a

simplified version of Lemma 5.4.4 in Chapter 5.

Lemma 6.5.2: Suppose Assumptions 5.4.1.1 hold. Then, the following bound holds∣∣α`(u, u
′)− α`−1(u, u

′)
∣∣ ≤ h′`(u, u

′)s−α`, u, u′ ∈ X,

with

h′`(u, u
′) :=

[
e−Φ`(u

′;y) + e−Φ`−1(u
′;y)

e−Φ`(u;y)
CΦ(u

′)CF (u
′)

+e−Φ`−1(u
′;y)
(
eΦ`−1(u;y) + eΦ`−1(u;y)

)
CΦ(u)CF (u)

]
s−α`

Proof. From the definition of α`, and the fact that ψ(x) := min{1, x} is Lipschitz continuous
with a constant of 1, it can be seen that

∣∣α`(u, u
′)− α`−1(u, u

′)
∣∣ ≤ ∣∣∣∣∣e−Φ`(u

′;y)

e−Φ`(u;y)
− e−Φ`−1(u

′;y)

e−Φ`−1(u;y)

∣∣∣∣∣
≤ eΦ`(u;y)

∣∣∣e−Φ`(u
′;y) − e−Φ`−1(u

′;y)
∣∣∣+ e−Φ`−1(u

′;y)

e−Φ`(u;y)e−Φ`−1(u;y)

∣∣∣e−Φ`(u;y) − e−Φ`−1(u;y)
∣∣∣ .

(6.22)

AssumingΦ`(u
′) ≤ Φ`−1(u

′), a straightforward application of the mean value theorem gives∣∣∣e−Φ`(u
′;y) − e−Φ`−1(u

′;y)
∣∣∣ ≤ e−Φ`(u

′;y)
∣∣Φ`(u

′; y)− Φ`−1(u
′; y)

∣∣ . (6.23)

Similarly, for the caseΦ`(u
′) ≥ Φ`−1(u

′), we obtain∣∣∣e−Φ`(u
′;y) − e−Φ`−1(u

′;y)
∣∣∣ ≤ e−Φ`−1(u

′;y)
∣∣Φ`(u

′; y)− Φ`−1(u
′; y)

∣∣ . (6.24)

Thus, from (6.23)-(6.24) it follows that∣∣∣e−Φ`(u
′;y) − e−Φ`−1(u

′;y)
∣∣∣ ≤ (e−Φ`−1(u

′;y) + e−Φ`(u
′;y)
) ∣∣Φ`(u

′; y)− Φ`−1(u
′; y)

∣∣ .
(6.25)
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Thus, from (6.22), (6.25) and Assumption 5.4.1, we obtain:

(6.22) ≤

[
e−Φ`(u

′;y) + e−Φ`−1(u
′;y)

e−Φ`(u;y)
CΦ(u

′)CF (u
′)

+e−Φ`−1(u
′;y)
(
eΦ`−1(u;y) + eΦ`−1(u;y)

)
CΦ(u)CF (u)

]
s−α`

Lemma 6.5.3: Suppose Assumptions 5.4.1 and 6.5.1 hold, and denote the diagonal set of X2

as ∆ = {(u, u′) ∈ X2 s.t. u = u′}. The transition probability to ∆c for the coupled chain of
Algorithm 12 is such that

p`(u`,∆
c) ≤ h`(u)s

−α`, ∀u` = (u, u) ∈ ∆,

with

h`(u) =
[
2CQ(u)e

Φ`(u;y) +
(
eΦ`−1(u;y) + eΦ`(u;y)

)
CΦ(u)CF (u)

]
.

Proof. Since u` ∈ ∆, we set u`,` = u`,`−1 = u. Furthermore, in this case, we have that
u′`,` = u′`,`−1 since only Case I in Algorithm 11 will happen. It then follows from Lemma 6.5.2
that:

p`((u, u),∆
c) =

∫
X
|α`−1(u, u

′)− α`(u, u
′)|Q`(u, du′)

≤ s−α`

∫
X

e−Φ`(u
′;y) + e−Φ`−1(u

′;y)

e−Φ`(u;y)
CΦ(u

′)CF (u
′)Q`(u, du′)

+ s−α`

∫
X
e−Φ`−1(u

′;y)
(
eΦ`−1(u;y) + eΦ`(u;y)

)
CΦ(u)CF (u)Q`(u, du′).

(6.26)

Since from Assumption 6.5.1 we have that
∫

X e
−Φ`(u

′;y)CΦ(u
′)CF (u

′)Q`(u, du′) ≤ CQ(u), it
then follows that

(6.26) ≤ s−α`
[
2CQ(u)e

Φ`(u;y) +
(
eΦ`−1(u;y) + eΦ`(u;y)

)
CΦ(u)CF (u)

]
.

Setting h(u) =
[
2CQ(u)e

Φ`(u;y) +
(
eΦ`−1(u;y) + eΦ`−1(u;y)

)
CΦ(u)CF (u)

]
gives the desired

result.
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6 Multi-level Markov chainMonte Carlo method based on maximally coupled proposals

Lemma 6.5.4: Suppose Assumptions 5.4.1 and 6.5.1 hold. Then, there exists a positive constant
Ch independent of the level such that∫

∆
h`(u`)ν`(du`) ≤ Ch,u` = (u, u) ∈ ∆,

Proof. Sinceu` ∈ ∆, we have∫
∆
h`(u`)ν`(du`) =

∫
X2

eΦ`−1(u`,`−1;y)CΦ(u`,`−1)CF (u`,`−1)ν`(du`)︸ ︷︷ ︸
=I1

+

∫
X2

eΦ`(u`,`;y)CΦ(u`,`)CF (u`,`)ν`(du`)︸ ︷︷ ︸
=I2

+ 2

∫
X2

eΦ`(u`,`;y)CQ(u`,`)ν`(du`)︸ ︷︷ ︸
=I3

Since u ∈ ∆, we can marginalize over each component on both I1 and I2. We begin with I1,
integrating over u`,`:

I1 =

∫
X2

eΦ`−1(u`,`−1;y)CΦ(u`,`−1)CF (u`,`−1)ν`(du`)

= Z−1
`−1

∫
X
CΦ(u`,`−1)CF (u`,`−1)µpr(du`,`−1)

≤ Cec
−1
I (from Assumption 5.4.1 and Lemma 5.4.1).

A similar procedure for I2, also yields I2 ≤ CeC
−1
I . Lastly, we focus on I3. Integrating over

u`,`−1 gives

I3 =

∫
X2

eΦ`(u`,`;y)CQ(u`,`)ν`(du`) = Z−1
`

∫
X
CQ(u`,`)µpr(du`,`)

≤ C ′
ec

−1
I (from Assumption 6.5.1 and 5.4.1).

TakingCh = c−1
I (C ′

e + 2Ce) gives the desired result.

Lemma 6.5.5: Suppose Assumptions 5.3.1, 5.4.1 and 6.5.1 hold. Then, for all ` = 1, 2, . . . , L,
there exist a positive constantCr independent of ` such that

Pν`(u`,` 6= u`,`−1) ≤ Crs
−α`, ∀n ∈ N.
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Proof. SinceP` is ν`-invariant, we can write

Pν`(u`,` 6= u`,`−1) =

∫
∆c

ν`(du`) =

∫
X2

p`(u`,∆
c)ν`(du`)

= 1−
∫

X2

p`(u`,∆)ν`(du`)

= 1−
∫
∆
p`(u`,∆)ν`(du`)−

∫
∆c

p`(u`,∆)ν`(du`).

≤ 1−
∫
∆
p`(u`,∆)ν`(du`)− c`Pν`(u`,` 6= u`,`−1) (from Assumption 6.5.1)

=

∫
∆
p`(u`,∆

c)ν`(du`)− c`Pν`(u`,` 6= u`,`−1).

It then follows from Lemmata 6.5.3 and 6.5.4 that

Pν`(u`,` 6= u`,`−1) ≤
Ch

c`
s−αw` ≤ Ch

c′
s−αw`,

where 0 < c′ := inf`∈N{c`}, by Assumption 6.5.1.

Lemma 6.5.6: Suppose Assumptions 5.4.1, 5.3.1 and 6.5.1 hold. Then, for any ` ≥ 1, there exists
a positive constantCv such that

Vν` [Y`] ≤ Cvs
−β`,

where β = min {2αq, α(1− 2/m)} , and α, αq ,m as in Assumption 5.4.1.

Proof. Having shown Lemma 6.5.5, the proof of this Lemma becomes the same as that of Lemma
5.4.7.
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The last chapter of this thesis is divided into two parts. In the first one, we summarize and draw
some conclusions from the material presented in Chapters 4 through 6. In the second part we
identify and discuss several possible research directions extending the work presented in previous
chapters.

7.1 Summary and conclusions

In this thesis, we have developed, analyzed and implemented different novel hierarchical MCMC
techniques with the aim of alleviating some of the computational challenges arising in modern,
large scale Bayesian inverse problems.
The first hierarchical method we presented was theGeneralized Parallel Tempering method, an
extension of the well-known parallel tempering algorithm [52], used primarily to sample from
probability distributions that are multi-modal or that concentrate around a lower-dimensional,
non-linear manifold. Inspired by the infinite swapping methodology of Doll et. al., [47] (who
propose an algorithm aimed at improving the efficiency of continuous-timeMarkov chains arising
in the field of molecular dynamics), we introduced two tempering techniques based on state-
dependent kernel swaps. We provided a thorough convergence analysis of these methods; indeed,
we were able to show that under some technical conditions on the marginal Markov transition
kernels and marginal (in the context of tempering) probability measures, both of our proposed
methods are reversible and convergent with respect to their own invariant measure. Furthermore,
we implemented and successfully applied these methodologies to sample from several multi-modal
probability distributions arising in the context of BIP. In addition, we presented an extensive
discussion on the implementation and potential shortcomings of these methods. We were able to
see that, at the experimental level, our proposedmethodologies clearly outperform (in terms of total
computational cost VS. variance of a given estimator) several competing algorithms. An additional
advantage of our proposed algorithms is that they can be seen, to some extent, as “self-tuning”,
since the choice of swaps between chains (in UGPT) or kernels (in WGPT), is done automatically,
eliminating the need of fixing this swapping schedule apriori, as it has been typically done in the
parallel-tempering literature. Lastly, we also implemented these methods for the solution of a
high-dimensional BIP based on a hyperbolic (i.e., acoustic wave) PDE. To the best of the author’s
knowledge, tempering techniques have seldom been applied to tackle such high-dimensional
problems, and even more so to those arising from wave phenomena, for which the literature on
BIP is rather scarce.
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Weremark that the framework considered inChapter 4 canbe combinedwith other,more advanced
MCMC algorithms, such as, e.g., the Metropolis-adjusted Langevin algorithm (MALA) (c.f.
Section 3.4.1), or the Delayed Rejection Adaptive Metropolis (DRAM) [63]. Furthermore, in
principle, such a method can also be combined with geometry-informed, dimension-independent
samplers such as the ones presented in [12, 36].
The second hierarchical method we presented in this work was a class of multi-level MCMC algo-
rithms based on independent Metropolis-Hastings proposals. We presented several contributions
to the emerging sub-field of ML-MCMC.
From a methodological perspective, we extended the seminal work of [45], by devising a ML-
MCMCmethod based on a class of independent Metropolis Hastings proposals fulfilling certain
technical conditions. This is an important contribution in the sense that, previous ML-MCMC
algorithms based solely on sub-sampling the posterior distribution at the previous accuracy level,
could lead to biased results for a certain class of problems. In addition, we presented a continuation-
type ML-MCMC algorithm in the spirit of [31, 132], in the hope of making the ML-MCMC
procedure both efficient and robust.
From a theoretical perspective we investigated the existence and uniqueness of a joint invariant
measure for this class of techniques, and presented conditions on the level dependent posteriors
and proposal kernels under which such a joint invariant measure exists. Furthermore, we were
able to show that the joint ML-MCMC algorithm has a uniformly ergodic convergence to such a
probability measure, a generally desirable attribute forMCMC samplers. In addition, we extended
the complexity results of [45] to our setting; indeed, their result was formulated specifically for
their choice of proposal. Lastly, we implemented our proposed methodology on an array of BIP,
of both low and high dimensionality, where we validated some of our theoretical results. Once
again, we can see that there is a clear computational and methodological advantage to the methods
we advocate in this work.
In the last part of this thesis we presented a novel ML-MCMC based on maximally coupled
proposals. This setting can be though of as a generalization of our previous methodology, in
the sense that it allows for both state-dependent and state-independent proposals; indeed, the
way coupled chains are being generated in Chapter 5 (and in [45]) can be thought of as a (rather
trivial) maximal coupling of an independent proposal kernel Q`(·) with itself. Being able to
construct ML-MCMC algorithms with state-dependent proposals is of great interest from a
methodological perspective, as it can overcome some of the drawbacks associated to previous
ML-MCMC methodologies. We presented guidelines on how to construct this ML-MCMC
sampler using maximal coupling techniques, and, although the focus of this chapter was more
on the methodological aspect, we showed that under certain technical conditions there exists a
unique invariant joint measure for this type of ML-MCMC algorithms, similarly to the case of the
ML-MCMC based on independent proposals. Although at the time of the writing of this thesis,
we were unable to analytically verify that the complexity results of [45] could be extended to this
method (under reasonable assumptions), numerical simulations suggest that our method presents
a clear computational advantage with respect to its single-level counterpart.
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7.2 Perspectives

As evidenced by the previous subsection, the proposedmethods on this thesis show a lot of promise
for their application to large-scale BIP. However, there is, of course, plenty of room for future work
both on the theoretical and practical side. The theoretical analysis on the presented methodologies
could (and should) be refined.
Our convergence results for the GPT show that the rate of convergence is no worse than that of
the slowest-converging chain, however, experimental results suggest that there is a much more
dramatic improvement in the convergence of the algorithm.
Concerning the ML-MCMC algorithms, although it is clear that the invariant joint measure
induced by the ML-MCMC algorithms depends heavily on the choice of proposal mechanism
(contrary to the single-level MCMC case), a more precise description of this dependency is not
available at the time of the writing of this work. Further developing and understanding the
theoretical aspects behind such methodology would be an interesting continuation of this work.
Additionally, from a methodological perspective, a natural question that arises in the use of ML-
MCMCmethods is their extension tomulti-fidelity techniques, where, instead of constructing the
hierarchy of forward mapping operators {F`}L

`=0 based on several levels of discretization accuracy
`, one constructs it using a hierarchy of so-called “fidelity models” of F ; which could be, e.g.,
models using increasingly refined physics, Gaussian processes, or low-rank approximations ofF .
Using multi-fidelity models in the context of statistical inference has been discussed in, e.g., [128,
Section 4 ]. Similarly, one could try to devise a multi-indexMarkov chainMonte Carlo method
based on the ideas presented in [66, 78] and the work presented in this thesis.
From an application perspective, it would be desirable to see the methods discussed in this work
applied to other large-scale and potentially more realistic simulations.
In addition to the perspectives discussed in the previous paragraphs, we identify and discuss in
slightly more detail the following research directions.

7.2.1 Normalizing flows andML-MCMC

A drawback associated to ourML-MCMC approach based on IMH is that, in general, it is not
easy to find suitable (IMH) proposals. This is particularly true whenever the underlying posterior
is high-dimensional and not well-approximated by a Gaussian probability measure. One possible
way of alleviating this issue is to construct said proposals using normalizing flows (c.f. Section
2.3.2). In this context, one could visualize a novel ML-MCMC algorithm as follows. Suppose
that, at a given level `, we have already collected samples from µy` , on all levels ` = 0, 1, 2, . . . L,
which could have been achieved, e.g., by a previous iteration of C-ML-MCMC algorithm (c.f.
Section 5.5). Given a stateun

` we could generate a coupled sampleun+1
` with un+1

`,`−1 ∼ µy`−1 and
un+1
`,` ∼ µy` , using the following procedure:

1. Sample un+1
`,`−1 ∼ µy`−1, using, e.g., sub-sampling approach [45].
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2. Obtain u′`,` = T`(u
n+1
`,`−1), where for all ` ≥ 0, T` is a normalizing flow in the sense of

Section 2.3.2 (i.e., a class of bijections from X` to X` whose determinant is, in some sense,
inexpensive to compute) that maps µy`−1 into µ

y
` , built in such a way that T` becomes easier

to compute as ` → ∞. As an ansatz one could take, e.g., T` = I + δ`, where I is the
identity transformation and δ` → 0 as `→ ∞.

3. Set un+1
`,` = u′`,` as the new state of the chain with marginal µy` with probability

α`(u
n
`,`, u

′
`,`) = min

{
1,
µy` (u

′
`,`)

µy` (u
n
`,`)

ρ`(u
n
`,`)

ρ`(u
′
`,`)

}
,

where
ρ`(x) := µy`−1(T

−1(x))| det JT−1
`

(x)|,

otherwise set un+1
`,` = un`,`.

We illustrate the potential use of these techniques in the following (borderline trivial) example.
Suppose we are interested in sampling from the family of distributions

µy` = N (2−`+2, 1),

which approximate µy = N (0, 1) as ` → ∞. For this particular case, one has that for any
u, v ∈ X, T`(u) = u−m`−1 +m`, where for any ` ≥ 0,m` = 2−`+2. Similarly, T−1

` (v) =

v +m`−1 −m` and | det JT−1
`

(u)| = 1. We implement a ML-MCMC algorithm using this
method, the sub-samplingML-MCMC algorithm of [45], and the maximal coupling algorithm.
For all algorithms we take L = 2 andN` = 5000, ` = 0, 1, 2, 3. Results are shown in Figures
7.1 and 7.2. As it can be seen in Figure 7.1 where we plot the histograms of the samples obtained
with each method for different levels, the proposed approach is able to correctly sample from the
right marginals. However, and perhaps more interestingly, is Figure 7.2, where we plot u`,`−1 vs
u`,` for different levels. As it can be seen, the correlation between the samples from the proposed
method is stronger than those from the sub-sampling and the maximal-coupling methodologies.
Although Figures 7.1 and 7.2 show some promising results, there are still some open questions
regarding this approach. We identify the following:

1. There is a large overhead cost for training (deep) neural networks. In many cases such
networks are trained using specialized clusters of graphical processing units (GPUs), which
are currently more expensive that CPU clusters. As an example, the samples obtained from
a normalizing flow depicted in Figure 7.3 were obtained by implementing RealNVP on a
single 12GBNVIDIATeslaK80GPU (implemented via theGoogleColabTM platform) and
required a little over two hours to train. Such transformation was trained using prevously
obtained posterior samples .
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2. Given that T` will usually have an extremely complex structure, it might be difficult to
guarantee that the induced proposal ρ = T`]µ

y
`−1 satisfies the Assumptions necessary for

its chain to be (uniformly) ergodic.

3. Currently, our theoretical results rely upon showing that Pν`(u`,` 6= u`,`−1) → 0 as
` → ∞. This is not the case with this proposed methodology, as one would have that
Pν`(u`,` 6= u`,`−1) = 1, however, with ‖u`,` − u`,`−1‖X < ε` for some ε` → 0 as
` → ∞. This implies that the theoretical analysis is slightly more involved that the one
presented in Chapter 5.

7.2.2 On the use and analysis of more efficient couplings

The maximal coupling ML-MCMC algorithms discussed so far have been constructed using a
maximal coupling of the proposal kernels for each individual chain. We have also limited our case
to only using diffusion-based proposals (c.f. Section 3.4), such as pCN, to create the coupled
chains. These ideas can be extended based on the recent works [19, 70, 169]. More precisely, [19]
introduces a coupling between chains using a mixture between HamiltonianMonte Carlo and a
spherical coupling, such as the one presented in Algorithm 11 (c.f. Section 3.4). Their results seem
to suggest that such a mixture of methods is more robust with respect to the dimensionality of
the target measure when compared to just using spherical couplings, in the sense that the average
meeting time between two chains having the same invariantmeasure, started at two different points
in space seems to increase with the dimension of the space at a significantly slower rate (if at all) than
that of Algorithm 11 (see, e.g., [70, Section 5.2]). The work [169] presents a way of generating
maximal couplings betweenMarkov transition kernels; as opposed to just coupling the proposals,
by modifying the algorithms presented in [76]. Intuitively, this would result in a “stronger” type
of coupling (i.e., increasing the probability of the event u`,` = u`,`−1), thus making this approach
interesting to our ML-MCMC setting.

7.2.3 Towards a multi-level generalized parallel tempering

A natural extension to the work presented in this thesis is to combine both our proposed gener-
alized parallel tempering and the discussed ML-MCMCmethods; indeed, by introducing and
exploiting hierarchies in both temperature and discretization, one could, in theory, propose a
multi-level MCMC algorithm that is robust to multi-modality or measure concentration, i.e.,
a novel MCMC algorithm exploiting the attractive points of both approaches. This is not,
however, a trivial extension of these works, as we shall discuss shortly after introducing some
notation. For any ` = 0, 1, 2, . . . L, let K = K(`) denote the (level-dependent) number of
temperatures T1, . . . , TK , (inducingK(`) parallel chains), let SK(`) denote the subset of pos-
sible permutations at level ` of cardinality |SK(`)| ∈ N, and for any j = 1, 2, . . . ,K , write
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Figure 7.1: Histograms of samples for different ; from top to bottom: ` = 0, 1, 2.
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Figure 7.3: (Left). Samples fromN (0, I17×17). (Middle) posteriors samples form a subsurface flow BIP.
(Right) Samples obtained with a normalizing flow.

222



7.2 Perspectives

µy`,j(du) = exp(−Φ`(u; y)T
−1
j )µpr(du). Furthermore, letu` = (u`,1, u`,2, . . . , u`,K) and for

some σ ∈ SK(`) letu`,σ = (u`,σ(1), u`,σ(2), . . . , u`,σ(K)). Lastly, define

µy
` := µy`,1 × µy`,2 × · · · × µy`,K ,

µy
`,σ := µy`,σ(1) × µy`,σ(2) × · · · × µy`,σ(K),

µy
W,` :=

1

|SK(`)|
∑

σ∈SK(`)

µy
`,σ.

Given an accuracy level L and a µyL-integrable quantity of interest QoI, we are interested in com-
puting Eµy

L
[QoI], which can be done via, e.g., the WGPT approach (c.f. Section 4.3.4) using an

estimator of the form:

Eµy
L
[QoIL] = [QoIL(uL)] = Eµy

L
[QoIL(uL,1)]

=
1

|SK(`)|
∑

σ∈SK(`)

Eµy
W,L

[
QoI(uL,σ(1))

dµy
L

dµy
W,L

(uL,σ)

]

=
1

|SK(L)|
∑

σ∈SK(`)

Eµy
W,L

[fL(uL,σ)] uL,σ ∼ µy
W,L,

where we set fL(uL,σ) = QoI(uL,σ(1))
dµy

L
dµy

W,L
(uL,σ). Under the convention that QoI−1 := 0,

this previous expectation can in turn be written in terms of the usual telescoping sum associated to
multi-level techniques as:

Eµy
L
[QoIL] =

L∑
`=0

1

|SK(`)|

 ∑
σ∈SK(`)

Eµy
W,`

[f`(u`,σ)]− Eµy
W,`−1

[f`−1(v`−1,σ)]

 , (7.1)

whereu`,σ ∼ µy
W,` and v`−1,σ ∼ µy

W,`−1. Given that samples fromµy
W,`−1 are generated with

a kernel of the form
p(W),`(u`, ·) :=

∑
σ∈SK

w`,σ(u`)p`,σ(u, ·),

with

w`,σ(u`) =
dµy

`,σ

dµy
W,`

(uL),

one then needs to devise a clever way of generating samples from this mixture of kernels, while
at the same time keeping the terms f`, f`−1 in the ergodic estimator of Equation (7.1) highly
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correlated. Perhaps a simpler approach is to consider the UGPT algorithm to generate samples, in
which case one would obtain the simpler expression

Eµy
L
[QoIL] =

L∑
`=0

(
Eµy

`
[QoI`]− Eµy

`−1
[QoI`−1]

)
,

however, in this case one would still need to be careful when constructing the coupling between
samplers, since these tempering methods tend to propose rather “large” jumps in the state space,
which could rapidly become problematic if, e.g., the chain targeting µy`,1 makes a large jump and
the chain targeting µy`−1,1 does not (which could happen, e.g., when the swapping kernel of the
UGPT algorithm samples two permutations ρ, σ ofu` andu`−1 respectively, with ρ(1) 6= σ(1))

as it would “inflate” the variance between chains.
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watch?v=-DsUjUzOA0Q

13. Talk. Multi-level Markov chain Monte Carlo us-
ing maximally-coupled proposals to be presented
at MCM21 conference, Mannheim, virtually. Au-
gust 2021.

14. Talk. Generalized parallel tempering for Bayesian
Inverse problems. To be presented in a workshop
entitled “Accelerated statistical inference for the
sciences”, at the University of Bern, Switzerland,
September 2021.

Upcoming:

15. Talk. Generalized parallel tempering for Bayesian
Inverse problems. To be presented at the CILAMCE-
PANACM 2021 conference. Virtually. November
2021.

16. Talk. multilevel MCMC methods for large scale
Bayesian inverse problems. To be presented in SIAM
UQ22, Atlanta, GA, USA, April 2022.

Events Organized
1. Mini-symposium co-organizer. Accelerating sam-

pling strategies for large-scale Bayesian inverse prob-
lems Applied Inverse Problems (AIP) 2019. Co-
organizer, together with Prof. Fabio Nobile (EPFL),
Prof. Kody Law (University of Manchester), and
Dr. Anamika Pandey (RWTH Aachen). July, 2019,
in Grenoble, France. The mini-symposium con-
sisted of 7 speakers.

2. Mini-symposium co-organizer. Multilevel and Mul-
tifidelity approaches for forward/inverse Uncertainty
Quantification and optimization under uncertainty,
part 3. SIAM UQ 2020. Co-organizer, together
with Dr. Panagiotis Tsilifis (General Electric Re-
search), Dr. Gianluca Geraci, Dr. Michael Eldred,
Dr. John Jakeman (Sandia National Laboratories),
and Prof. Alex Gorodetski (University of Michi-
gan). Canceled amid increasing Covid-19 concerns.

3. Mini-symposium co-organizer. Recent advances in
sampling techniques for large-scale Bayesian inverse
problems SIAM CSE 21. Co-organizer, together
with Prof. Fabio Nobile (EPFL) and Prof. Kody
Law (University of Manchester). March, 2021, vir-
tually. The mini-symposium consisted of 10 invited
speakers.

Supervised Master’s Students
1. Marc Witkowski. Monte Carlo methods for contact

problems with rough surfaces. Master’s thesis in
mathematics. February 2018.

2. Mathieu Odobez. The zig-zag method. Master’s
thesis in mathematics. July 2018.

3. Paride Passelli. Deterministic mehtods for seismic
source inversion. Master’s semester project in com-
putational science and engineering. January 2019.

4. Gavin Lee. Transport maps in Bayesian inverse
problems. Master’s semester project in computa-
tional science and engineering. July 2019.

5. Bruno Rodriguez. Multi-level Monte Carlo meth-
ods for coupled dynamics. Co-supervisor together
with M.Sc., Sundar Ganesh. Master’s semester
project in computational science and engineering.
June, 2021.
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