
����������
�������

Citation: Meier, K.; Hann, R.;

Skaloud, J.; Garreau, A. Wind

Estimation with Multirotor UAVs.

Atmosphere 2022, 13, 551. https://

doi.org/10.3390/atmos13040551

Academic Editor: James Cizdziel

Received: 18 February 2022

Accepted: 25 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Wind Estimation with Multirotor UAVs
Kilian Meier 1,* , Richard Hann 2,* , Jan Skaloud 1 and Arthur Garreau 3

1 Geodetic Engineering Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Station 18,
CH-1015 Lausanne, Switzerland; jan.skaloud@epfl.ch

2 Centre for Autonomous Marine Operations and System (AMOS), Department of Engineering Cybernetics,
Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

3 Department of Arctic Technology, University Centre of Svalbard (UNIS), NO-9171 Longyearbyen, Norway;
arthurg@unis.no

* Correspondence: kilian.meier@alumni.epfl.ch (K.M.); richard.hann@ntnu.no (R.H.)

Abstract: Unmanned Aerial Vehicles (UAVs) have benefited from a tremendous increase in popularity
over the past decade, which has inspired their application toward many novel and unique use cases.
One of them is the use of UAVs in meteorological research, in particular for wind measurement.
Research in this field using quadcopter UAVs has shown promising results. However, most of
the results in the literature suffer from three main drawbacks. First, experiments are performed
as numerical simulations or in wind tunnels. Such results are limited in their validity in real-
life conditions. Second, it is almost always assumed that the drone is stationary, which limits
measurements spatially. Third, no attempts at estimating vertical wind are made. Overcoming
these limitations offer an opportunity to gain significant value from using UAVs for meteorological
measurements. We address these shortcomings by proposing a new dynamic model-based approach,
that relies on the assumption that thrust can be measured or estimated, while drag can be related to
air speed. Moreover, the proposed method is tested on empirical data gathered on a DJI Phantom 4
drone. During hovering, our method leads to precision and accuracy comparable to existing methods
that use tilt to estimate the wind. At the same time, the method is able to estimate wind while the
drone is moving. This paves the way for new uses of UAVs, such as the measurement of shear
wind profiles, knowledge of which is relevant in Atmospheric Boundary Layer (ABL) meteorology.
Additionally, since a commercial off-the-shelf drone is used, the methodology can be replicated by
others without any need for custom hardware development or modifications.

Keywords: Unmanned Aerial Vehicles (UAV); Unmanned Aircraft Systems (UAS); Atmospheric
Boundary Layer (ABL) meteorology; wind estimation; shear wind profile; UAV motion model; drag
model; Blade Element Momentum (BEM) theory

1. Introduction

Boundary-layer meteorology studies atmospheric processes taking place in the air
layer in contact with the Earth’s surface. One critical parameter required to understand
those processes is wind speed and direction. However, wind observations with high spatial
and temporal resolution are difficult to acquire due to limited mobility of ground-based
sensors, logistical challenges, as well as environmental impact when deploying balloon-
based sensors [1]. Hence, Unmanned Aerial Vehicles (UAVs) (also known as Unmanned
Aircraft Systems (UAS), Remotely Piloted Aircraft Systems (RPAS), or simply drones) for
wind observation represents a flexible, cost-effective, and repeatable tool for observing
the Atmospheric Boundary Layer (ABL) [2,3]. For example, the use of UAVs in remote
areas and in harsh environments, such as polar regions, has gained huge popularity [4].
Moreover, UAVs were already used in various successful missions to study the polar
ABL [5]. Hence, further developing these platforms is of great interest to the research
community to better understand atmospheric but also climatic processes. Additionally,
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UAV-based wind observations are also of great interest to the wind energy production
sector, as it enables flexible observation of wake, e.g., [6–8]. The proposed methodology
also addresses the wider community as educators since it is based on commercial hardware
and its software is open-source, allowing for easy integration in courses and fieldwork.

UAVs can be grouped into two categories: fixed-wing and rotary-wing, both of which
come with unique advantages when it comes to wind estimation [9]. This work will focus
on Multirotor UAVs (MUAVs) (in this manuscript, the expressions UAV, MUAV, and drones
are used interchangeably) due to their ease of operation, allowing for easy deployment, and
due to their ability to follow vertical trajectories, which is interesting for observing shear
wind profiles. (Nevertheless, fixed-wing UAVs should not be forgotten since they feature
sensors for direct airflow observations, such as pitot tubes. Using these observations, shear
wind profiles can be measured by following helical trajectories [10].)

To estimate wind, the research community has taken approaches that can be classified
into two categories: on-board flow sensor based and inertial plus power based [9]. In
the first approach, a flow sensor is mounted directly on the UAV allowing for direct
measurement of airflow, for example with a pitot tube or a sonic anemometer. However,
MUAVs are not well suited for this approach since their propellers heavily impact the
airflow around the drone [8,9]. In the latter approach, which is the one taken in this article,
only inertial and navigation data is used to infer wind speeds. The UAV is considered as a
dynamic system with an input: the autopilot commands; an output: the drone’s position
and attitude, and an external perturbation: the wind. Hence, provided that the drone’s
aerodynamic model, the autopilot commands, the drone’s position, and the drone’s attitude
are known or observed, then the wind can be estimated. This approach has the advantage
that it does not rely on any additional hardware, thus greatly reducing implementation
complexity and costs, while also improving reliability.

The main publications describing multirotor and inertial-based estimations from 2018
onward are listed in Table 1. The publications in the table are classified by the employed
method, type of data the method was tested with, required flight type, and whether vertical
wind speed is also estimated. The publications listed below focus on methods explicitly
developed for wind estimation. However, publications, such as [11,12], employing model-
based/inertial integration that aims at improving UAV navigation with or without satellite
positioning should not be omitted, because the wind-estimation is implicit without the
system even in the absence of differential pressure sensor(s).

Table 1. Most relevant publications using multirotor UAVs to estimate wind (publications on wind
estimation for navigation are not included).

Year Author Method Data Type Flight Type Vert. Wind

2015 Neumann et al. [13] Tilt Wind tunnel and
Field Hover and Moving No

2017 Palomaki et al. [14] Tilt No wind and Field Hover No

2018 Song et al. [15] Tilt Wind tunnel Hover No

2019 Xing et al. [16] Kalman Filtering Simulation Hover No

2019 Wang et al. [17] Machine Learning Wind tunnel Hover No

2019 Perozzi et al. [18] System Identification Simulation Moving Yes

2019 Qu et al. [19] Kalman Filtering Simulation Moving No

2020 Abichandani et al. [20] Tilt Simulation Hover No

2020 González-Rochaz et al. [21] System Identification Field Hover and Vert. Prof. No

2020 Allison et al. [22] Machine Learning Simulation Hover No

2020 Loubimov et al. [23] System Identification Simulation Hover No
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The tilt method correlates the drone’s attitude to wind speed during hovering. This
method is described in Section 2.2. All other methods are model-based and thus define
a more or less generic [21] or complex [18] systems and estimate the model parameters
using various methods such as machine learning, system identification, or filtering. Data
used for parameter tuning may be produced by simulation, wind tunnel tests, or field tests.
Most of the listed methods assume a stationary drone. Finally, all listed publications but
one do not estimate vertical wind or may even assume it to be zero. Such an assumption
is generally valid as vertical wind typically has a small effect on the drone relative to
the horizontal wind, thus it can be removed as an unknown in model-based approaches
without significant consequence.

We argue, first, that it is important to validate any given method on empirical data;
second, that the need to hover to observe wind severely limits the usefulness of drones;
finally, that vertical winds should be estimated as well. Hence, this paper presents two
original wind estimation methods which address the above-mentioned issues. Additionally,
the methodology is validated on empirical data generated with a DJI Phantom 4, a com-
mercially available drone. Using an off-the-shelf drone has the advantage that the method
can be easily replicated and with very low barriers. This is in contrast to the existing work
in the literature which uses customized UAVs. The methods presented in this work can
essentially be implemented on any DJI Phantom drone and thus have a very low barrier to
implement in research or for teaching methods. This comes at the disadvantage that the
UAV’s autopilot behavior is unknown (black box).

The generated data as well as the software used to process it are publicly available
(see the Data Availability Statement) so that experiments performed in this work can be
verified and the general technique replicated.

The first method is based on the tilt method (Section 2.2) and the second is model-based
(Section 2.3). Note that Appendix A defines the notation conventions used throughout
this work.

2. Methods and Materials
2.1. Wind Triangle

In the methods described hereafter, the air speed vector with respect to the aircraft,
Vb, is estimated. However, the air speed with respect to the local-level frame is needed,
which is the physical (as opposed to geographical wind, the physical wind vector points in
the same direction as the airflow) wind wl. The relation between air speed and wind speed
(known as the aviation triangle) depends on the platform speed ṙl and attitude ql

b :

wl = ṙl + rot(ql
b, Vb) (1)

where rot() indicates the quaternion’s rotation operator.

2.2. Wind Estimation from Tilt (Stationary Drone)
2.2.1. General Description

The idea behind this approach is very elegant in its simplicity. Assuming the drone is
perfectly stationary, i.e., the drone has an autopilot capable of keeping the drone at the same
position regardless of the wind conditions (see Appendix A.3 for a formal definition), then
the tilt angle of the drone is correlated to the wind velocity. Indeed, to remain stationary
under windy conditions, the autopilot has to tilt the drone such that part of the thrust force
compensates for the forces generated by the wind. Figure 1 shows a force diagram of such
a situation. From this figure, it becomes clear that the larger the drag (FD), the bigger the
tilt angle (α).
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Figure 1. Forces acting on a hovering drone in the wind. Where FG is the gravitational force, FT is
thrust, and FD is drag. γ is the incidence angle and α is the tilt angle. Note that in case airflow is
horizontal, γ = α.

2.2.2. Wind Speed

There is a correlation between the drone’s tilt angle and the wind speed it experiences.
According to empirical findings (see Section 3.1), this relation is best captured by a split
regression of the form:

||Vl||2 = ||Vb||2 = V2 =

{
a0 tan2(α) for α < αcrit

a1 tan(α) + a2 for α ≥ αcrit
(2)

where ||.|| represents the Euclidean norm, α is the tilt angle and a0, a1, a2 and αcrit are
parameters to be tuned. Their values are presented in Section 3.1.

2.2.3. Wind Direction

The wind direction in the azimuthal plane is directly given by the tilt direction, i.e., the
direction toward which the drone is facing when tilting.

2.3. Wind Estimation from Dynamic Model (Moving Drone)
2.3.1. General Description

This methodology aims to estimate all wind components (including vertical) and in
dynamic flights. To achieve this, the method establishes a Dynamical Model (DM) of the
flying drone from which wind can be inferred as a difference between model-specified
and observed forces. Two specific forces influencing the drone can be identified: drag and
thrust. Hence, if the total specific force and the thrust are known (observed) then the drag
can be computed (Newton’s second law). Fortunately, the total specific force is known
thanks to the Inertial Measurement Unit (IMU) and thrust can be estimated from the rotor
speed (which is measured). Drag is the product of airflow and the resistance response of
the aircraft structure plus propeller. Hence, if the latter is known thanks to an appropriate
model the former can be estimated. To sum up, in order to compute air velocity one needs:

• a force model, which establishes the relation between forces in their reference frame
(Section 2.3.2),

• a thrust model, which relates rotor speed to thrust (Section 2.3.4), and
• a drag model, which relates drag to air speed (Sections 2.3.5 and 2.3.6).

The physical model proposed hereafter is inspired by the following publications about
model-based navigation on small multirotor UAVs: [24–26]. In this work, two drag models
are considered (linear and quadratic). Additionally, vertical drag is alternatively estimated
or assumed to be zero (the latter removing the need for any thrust model). Hence, there
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are four different combinations resulting in four different estimation methods labeled
as follows:

• DM, Linear and No Vertical Drag
• DM, Linear and Vertical Drag
• DM, Quadratic and No Vertical Drag
• DM, Quadratic and Vertical Drag

2.3.2. Force Model

Two specific forces are considered to act on the aircraft: thrust, which is generated
by the propellers, and drag, which is generated by the flow of air around the drone. Note
that lift, in the sense of deflection of air mass induced by the drone body, is not considered
in this model since there are only very small lift-generating surfaces on the UAV used for
testing (with the obvious exception of the propeller blades, but this is taken into account in
the thrust force). Instead, the lift overcoming gravity is considered to come entirely from
thrust. Hence, the expression of specific force holds:

fb = fb
T + fb

D =
1
m

Fb
T +

1
m

Fb
D (3)

where fb is the total specific force, fb
T is the specific thrust in the body frame, fb

D is the
specific drag in the body frame, Fb

T is the thrust in the body frame acting on the mass m, Fb
D

is the drag in the body frame acting on the mass m, and where the mass of the Phantom 4
RTK UAV m = 1.391 kg. Note, that fb is observed directly by the IMU. Hence, using (3),
the drag force can be expressed as:

Fb
D = mfb − Fb

T (4)

Moving to the local-level frame:

Fl
D = mCl

bfb − Cl
bFb

T = rot(ql
b, mfb)− rot(ql

b, Fb
T) (5)

In this expression, ql
b and fb are known through their observation q̃l

b and f̃b within the
Inertial Navigation System (INS). Thus only the thrust force remains to be determined,
which can be done as described in Section 2.3.4.

2.3.3. Force Model Assuming No Vertical Drag

With the thrust applied along the upward body axis (see Section 2.3.4) and assuming
no drag in the local vertical direction, the horizontal drag components can be estimated by
rewriting (5) as: FD,n

FD,e
0

 = mCl
bfb − Cl

b

 0
0

FT,z

 (6)

and grouping all three unknowns (FD,n, FD,e and FT,z) in a vector x, (6) can be rearranged as:FD,n
FD,e
FT,z

 = x = A−1b (7)

with A given by:

A =

1 0 Cl
b(1, 3)

0 1 Cl
b(2, 3)

0 0 Cl
b(3, 3)

 (8)

and b given by:
b = mCl

bfb (9)
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where A−1 indicates the inverse matrix of A and Cl
b(i, j) designates the component on the

ith line and jth column of the Cl
b matrix.

2.3.4. Thrust

A simple thrust model in the body frame is commonly described by [27]:

Fb
T =

 0
0

−ρb(ηRF
2 + ηLF

2 + ηLB
2 + ηRB

2)

 (10)

where ρ is the air density, b is the thrust constant of a single motor, and ηi is the rotation
rate of the i-th motor. In the case of the considered UAV, the motor thrust constant can
be inferred from data produced in [28]. (The thrust constant could also be measured by
observing a hovering flight with no wind, since, in this situation, thrust corresponds to
weight. However, outdoor flights usually are impacted by some wind and indoor flights
prevent the use of Global Navigation Satellite Systems (GNSS) which is useful for the
control of hovering.) These data contain total force measurements at a given rotor speed η̄
(same for all four rotors) for a DJI Phantom 3 drone. In this case, the model can be expressed
as follows:

Fb
T =

 0
0

−ρb̄η̄2

 (11)

where b̄ = 4b is the total thrust constant (since there are four identical motors) and thus

η̄ =
1
2

√
ηRF2 + ηLF2 + ηLB2 + ηRB2 (12)

is the overall rotor speed (this relation can be found by equaling (10) and (11) and using
the fact that b̄ = 4b).

2.3.5. Quadratic Drag Model

The drag model describes a relation between the force FD and air speed V. Along
the airflow axis, the magnitude of drag can be expressed using the classic Raleigh drag
equation [14]:

FD = ρK(γ, η̄)V2 (13)

where ρ is the air density, K is the drag coefficient which is dependent on the incidence
angle γ (this assumes that the drone has a cylindrical symmetry, i.e., air flowing from the
side or from the front has the same effect on the drone) (see Figure 1), and the overall
rotor speed (12), and finally V is the airflow magnitude. The air speed V is the quantity of
interest. All other quantities are known, except for K which is determined by leveraging
that data from [28]. Selecting an experimental run in [28] with the same incidence angle
and overall rotor speed, one can write:

F′D = ρ′K(γ, η̄)V′2 (14)

where every quantity is known, except for K. The expression of F′D from data in [28] is
described in Section 2.3.7. V can be obtained by dividing Equation (13) by (14):

V =

√
V′2

ρ′

ρ

FD
F′D

(15)
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2.3.6. Linear Drag Model

Alternatively, another empirical drag model is tested where the drag force relates
linearly to the air speed. In this case (13) becomes:

FD = ρK(γ, η̄)V (16)

Thus following the same reasoning as in Section 2.3.5, air speed can be expressed as:

V = V′
ρ′

ρ

FD
F′D

(17)

2.3.7. Drag from Force Data

In [28], the drag force was estimated indirectly, via the forces acting on the body
that were measured. The detailed derivation of the relation between drag magnitude and
measured force is presented in [29]. For a given incidence angle γ and overall rotor speed
η̄, the final expression is:

F′D = F′D(γ, η̄) = F̃x cos(γ)− (F̃z + FT,z(η̄)) sin(γ) (18)

where γ is the incidence angle, F̃b = [F̃x, F̃y, F̃z]T is the measured force acting on the body
and FT(η̄) is the thrust force which can be estimated as described in Section 2.3.4.

2.4. Statistical Performance Metrics
2.4.1. Error, Bias, and Standard Deviation

Performance will be defined as the Euclidean distance between the reference (a) and
the estimated quantity (â). However, since wind processes are different vertically and
horizontally and since two of the estimation methods consider vertical wind to be zero, the
results hereafter will separate the vertical direction (local down axis) from the horizontal
directions (local north and east axes). Hence horizontal wind error is defined as:

ew,h =

∣∣∣∣∣∣∣∣[wn
we

]
−
[

ŵn
ŵe

]∣∣∣∣∣∣∣∣ (19)

and the vertical wind error as:
ew,v = |wd − ŵd| (20)

Based on this error definition, bias and standard deviation are defined as usual.

2.4.2. Ground Truth

As will be discussed in Section 5.2.1, the reference sensors do not measure the wind
exactly at the drone’s position. Hence, to mitigate the impact of local effects the ground
truth wind is defined as the instantaneous mean of the top three sensors on the mast:

wl(t) =
1
3

(
w̃l

14.7m(t) + w̃l
18m(t) + w̃l

21.3m(t)
)

(21)

where w̃l
h(t) is the wind vector as measured by the sensor placed at height h above the

ground at time t.

2.4.3. Filtering in Time

The performance of filtered data will also be evaluated. The chosen filter is a low-pass
finite impulse response filter with a cutoff frequency of 0.1 Hz and of order 50. This filter
is applied twice on the data of interest, once in the forward direction and once in the
backward direction to obtain a zero phase delay and a squared response magnitude.
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2.5. Sensors

Data can be classified into two categories: flight data and reference data. Flight data
contains sensor output generated by an aircraft during flight. This is the data used to make
the wind estimation. Reference data contain readings of stationary wind sensors (weather
stations) and is used to validate and/or calibrate drone-based wind estimations. All data is
time-stamped using Coordinated Universal Time (UTC) time and acquired at a frequency
of 10 Hz.

2.5.1. Flight Data

Flights were performed in Switzerland and in Norway (see Section 2.6 for flight
details). In Switzerland, a DJI Phantom 4 RTK MUAV was used and, in Norway, a DJI
Phantom 4 Pro MUAV was used. Both drones are the same except for the added Real-
Time Kinematic (RTK) functionality of the Phantom 4. The RTK GNSS function provides
the potential for positioning at centimeter-level accuracy. The RTK was set with respect
to Virtual Reference Stations (VRS) provided by the Swiss Federal Office of Topography
through AGNES [30]. In the rest of this work, it is assumed that both drones are the same
and feature the same performance. Finally, this work uses the navigation solution (position,
velocity, acceleration, and attitude) provided by the proprietary autopilot of the drone from
its sensor inputs.

2.5.2. Reference Data

Reference data were produced by three different sources:

• UNISAWS: University of Svalbard (UNIS) Automatic Weather Station (AWS), situated
in Adventdalen (Norway). The station measures wind at 2 and 10 m above ground
together with several other atmospheric parameters. Its sensor characteristics can be
found in Table 2.

• MoTUS: Urban microclimate measurement mast, situated on the campus of the École
Polytechique Fédéral de Lausanne (EPFL) (Switzerland). The mast features seven
sonic anemometers, spread vertically up to a height of approx. 22 m above ground.
Table 3 details its sensor characteristics.

• TOPOAWS: TOPO Automatic Weather Station. This is a small portable weather station
developed by the Geodetic Engineering Lab (TOPO) at EPFL. Wind is measured
using a cup anemometer and an 8-direction wind vane. Table 4 describes the sensor
characteristics.

Table 2. UNIS AWS sensor set.

Sensor Name Quantity Accuracy Frequency Datasheet

Youg 05103 Wind Speed 0.3 (m/s) 1 (Hz) [31]

Youg 05103 Wind Direction 3 (deg) 1 (Hz) [31]

PT1000 Air Temperature 0.8 (°C) 1 (Hz) [32]

Youg 61302L Air Pressure 0.3 (hPa) 1 (Hz) [33]

Rotronic HygroClip Relative humidity 0.8 (%) 1 (Hz) [34]

Table 3. MoTUS sensor set.

Sensor Name Quantity Accuracy Frequency Datasheet

Gill WindMaster Wind Speed 0.01 (m/s) 10 (Hz) [35]

Gill WindMaster Wind Direction 2 (deg) 10 (Hz) [35]
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Table 4. TOPO AWS Sensor set.

Sensor Name Quantity Accuracy Frequency Datasheet

SparkFun SEN-08942 Wind Speed 0.1 (m/s) 1 (Hz) [36]

SparkFun SEN-08942 Wind Direction 22.5 (deg) 1 (Hz) [36]

Sensirion SHT85 Air Temperature 0.1 (°C) 1 (Hz) [37]

MS5837-02BA Air Pressure 2 (hPa) 1 (Hz) [38]

Sensirion SHT85 Relative humidity 1.5 (%) 1 (Hz) [37]

2.6. Flight Campaign

During this work, two flight campaigns were performed: one in Norway and one in
Switzerland. A total of 75 flights were conducted, where a flight is defined as the time
interval between take-off and landing. The drone used is a DJI Phantom 4 (see Section 2.5.1
for details).

In Norway, 19 flights spread over 12 different days were executed. Flights were
performed in Adventdalen next to the UNISAWS which is the source of the reference
measurements used for these flights. This flight campaign only features stationary flights
at an altitude of 2 m and 10 m above ground and at a distance of 10 m from the weather
station. Figure 2 shows the position of the weather station with respect to Longyearbyen.

In Switzerland, 56 flights spread over 6 different days were executed. Flights were
performed on EPFL’s campus in the flight zone shown in Figure 3. This location was chosen
because of the presence of the MoTUS weather mast from which wind reference measure-
ments were obtained. All flights were performed above roof height, i.e., approximately
15 m above ground or higher, to mitigate the effect of turbulence generated by buildings.

Figure 2. Drone hovering next to the UNISAWS in Adventadlen. The flight zone is at 78°12′10.0′′ N
15°49′41.0′′ E. Photo: Richard Hann.

The flights were performed using the Phantom’s autopilot in waypoint mode, which
allows a set of waypoints to be defined over which the drone will fly as well as a maximal
cruising speed. A waypoint is defined by its latitude, longitude, altitude, and heading. A
set of waypoints and their cruising speed is stored as a flight plan in the drone’s remote
control and will be called a flight type in this work. Ten different flight types were defined
that can be grouped into four categories (see Figure 4):

• Hover: Using two waypoints (a flight plan with only one waypoint is not valid on
the DJI Phantom 4 RTK), the drone moves to an altitude of approximately 20 m above
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ground and 10 m to the south of the weather mast. Once the final waypoint is reached
the drone hovers (holds its position), its body x-axis pointing roughly toward the north.
The pilot decides when the position hold ends, typically after 5 to 10 min.

• Square: The drone moves in an approximate square with a side length of 20 m. The
square is centered on the weather mast. The drone’s attitude is such that the body
x-axis is pointed toward the weather mast during the whole flight (i.e., the drone’s
camera is always looking at the mast).

• Constant speed (cstSpeedXms): The drone moves approximately from the northeast
corner of the flight zone to its southwest corner then back and then to the southwest
corner again (three segments in total). The heading is always in the travel direction.
This flight plan is repeated four times at cruising speeds of 2, 6, 10, and 13 m/s,
respectively (Thus the flights are named cstSpeed2ms, cstSpeed6ms, cstSpeed10ms,
and cstSpeed13ms respectively).

• Vertical (VerticalXms): The drone moves to the same horizontal position as during
the hover flight, but at an altitude of 15 m above ground. Then it moves up and
down three times to approximately 30 m above ground and back to 15 m. During the
maneuver, the body x-axis is always pointing north. This flight plan is repeated four
times at cruising speeds of 2, 3, 4 and 5 m/s, respectively (thus the flights are named
Vertical2ms, Vertical3ms, Vertical4ms, and Vertical5ms respectively).

(a) (b)

Figure 3. (a) EPFL’s flight zone (white rectangle) overview (Switzerland). The center of the zone is at
46°31′17.0′′ N 6°34′02.5′′ E. Copyright swisstopo. (b) Picture of the TOPOAWS weather station (left)
and the MoTUS weather mast (right). Photo: Kilian Meier.



Atmosphere 2022, 13, 551 11 of 23

46°31'16"N

46°31'16.5"N

46°31'17"N

46°31'17.5"N

46°31'18"N

La
tit

ud
e

6°34'02"E

Longitude

Hover

© swisstopo © Planet, SITG
- State of Geneva-CH,
Maxar, Microsoft 50 ft 

 10 m 

0 100 200 300

Time [s]

320

330

340

350

360

370

A
lti

tu
de

 [m
]

Flight
Ground Level

46°31'16"N

46°31'16.5"N

46°31'17"N

46°31'17.5"N

46°31'18"N

La
tit

ud
e

6°34'02"E

Longitude

Square

© swisstopo © Planet, SITG
- State of Geneva-CH,
Maxar, Microsoft 50 ft 

 10 m 

0 10 20 30 40

Time [s]

320

330

340

350

360

370

A
lti

tu
de

 [m
]

Flight
Ground Level

46°31'16"N

46°31'16.5"N

46°31'17"N

46°31'17.5"N

46°31'18"N

La
tit

ud
e

6°34'02"E

Longitude

CstSpeed

© swisstopo © Planet, SITG
- State of Geneva-CH,
Maxar, Microsoft 50 ft 

 10 m 

0 50 100

Time [s]

320

330

340

350

360

370

A
lti

tu
de

 [m
]

Flight
Ground Level

46°31'16"N

46°31'16.5"N

46°31'17"N

46°31'17.5"N

46°31'18"N

La
tit

ud
e

6°34'02"E

Longitude

Vertical

© swisstopo © Planet, SITG
- State of Geneva-CH,
Maxar, Microsoft 50 ft 

 10 m 

0 20 40 60 80

Time [s]

320

330

340

350

360

370

A
lti

tu
de

 [m
]

Flight
Ground Level

Figure 4. Flight types. Plots on the upper row show a typical flight as seen from above (see Figure 3).
Plots on the lower row show the drone’s altitude over time. From left to right, plotted flights are
hover, square, cstSpeed2ms, and Vertical2ms.

3. Model Parameters
3.1. Tilt Model

Figure 5 shows the calibration dataset for a DJI Phantom 4 Pro. This dataset is
composed of flights performed in Norway next to the UNISAWS sensors (see Section 2.6).
The figure indicates the correlation between the tangent of the tilt angle, tan(α), and the air
velocity squared ||Vb||2. The tuned parameters to be used in Equation (2) for the Phantom
4 are listed in Table 5.
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V
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Figure 5. Tilt model: tilt to wind correlation for a DJI Phantom 4 Pro.

Table 5. Tilt to air velocity model parameter (see Equation (2)).

Symbol Value Unit

a0 1113.2 (m2/s2)

a1 501.2032 (m2/s2)

a2 −36.2747 (m2/s2)

αcrit 0.091 (rad)
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3.2. Thrust Model

Using a linear least-square regression on the hover data provided in [28] and shown
in Figure 6a, one can estimate b̄ = 4.9 · 10−7 N/RPM2 via Equation (11).

3.3. Drag Model

In each experimental run of [28] air density and wind speed are the same, hence these
parameters in Equation (15) and (17) are: V′ = 6 m/s and ρ′ = 1.22 kg/m3.

Concerning the function F′D(γ, η̄) described in Equation (18), its shape, from wind
tunnel experiments, is shown on Figure 6b. Note, to make the model continuous, values
between measured sample points are linearly interpolated.
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2bar = 6400 [RPM]

(b)
Figure 6. Model parameters: (a) The thrust model is fitted on data from [28]. Note ηbar = η̄. (b) Drag
model. The wind tunnel drag force model is from [28]. Note ηbar = η̄.

4. Results

This section will evaluate the wind estimation of three arbitrarily chosen flights from
the EPFL campaign:

• One hover flight: Figure 7 and Table 6;
• One square flight: Figure 8 and Table 7;
• One vertical flight: Figure 9 and Table 8.

Note that no flight of type cstSpeed is detailed here, as this scenario shows very
similar performance to square flights at high flight speeds and to hover flights at low speed.
Figure 7 shows the wind vector decomposed as horizontal wind speed (top plot), horizontal
wind direction (center plot), and vertical wind (bottom plot). On each plot, the thick blue
curve represents the ground-truth data acquired from the external anemometer and the
other curves represent the data resulting from each estimation method. Table 6 shows the
statistical performance of each method as defined in Section 2.4. It is worth noting that for
the horizontal wind, the norm of the bias is shown (not the bias vector). The three selected
flights will be evaluated individually below.

4.1. Hover

The hover flight type is important to consider as it is the only flight type where the
assumptions underlying the Tilt estimation method (see Section 2.2) are respected. In other
words, it is the only flight type where the tilt estimation method has a “fair” comparison.
On the other hand, any estimation method should perform at least as well as the tilt method
in this simple case. Note that the data plotted in Figure 7 show only three min of the total
flight in order to allow for detailed features of the measurements visible.
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Figure 7. Wind estimation for sample hovering flight. The thick blue line represents the ground truth
and the other lines represent the estimation methods tested. Shaded areas show two examples of
wind gusts (see discussion in Section 4.1.1).

Table 6. Statistical evaluation of the hover flight shown in Figure 7. The lowpass filter cutoff frequency
is 0.1 Hz (see Section 2.4.3).

Horizontal Wind (m/s) Vertical Wind (m/s)

Not Filtered Lowpass Filtered Not Filtered Lowpass Filtered

Bias Std Bias Std Bias Std Bias Std

DM, Linear and No Vertical Drag 0.46 1.08 0.46 0.84 0.04 0.50 0.04 0.44

DM, Linear and Vertical Drag 0.29 1.07 0.29 0.82 1.53 0.82 1.53 0.68

DM, Quadratic and No Vertical Drag 1.90 1.78 1.89 1.25 0.04 0.50 0.04 0.44

DM, Quadratic and Vertical Drag 1.42 1.75 1.42 1.17 2.25 0.98 2.25 0.79

Tilt 0.15 0.93 0.15 0.70 0.04 0.50 0.04 0.44

4.1.1. Horizontal Wind Speed

Starting with the horizontal wind magnitude and looking at the tilt estimation (light
blue curve), it can be seen that it produces a good approximation of the actual horizontal
wind. Variations in the wind speed seem to be reflected in the estimation. An exception
to this could be the small wind gust present around 09:33 (blue highlight in Figure 7). In
the reference data, this gust crosses the 2 m/s mark at 09:32:59, and in the tilt estimation at
09:32:54, this is a difference of 5 s. Knowing that the drone flies approximately 10 m to the
south of the wind reference and that the wind is coming from the south, it seems reasonable
to assume that the cause of this delay is due to the propagation time of this wind gust and
not a data synchronization issue. Considering the proposed estimation methods, they can
be grouped in pairs: the two methods using the linear drag model perform very similarly
and are also a good estimation of the true wind speed (bias of 0.29 m/s and standard
deviation of 0.82 m/s for the filtered DM with vertical drag); the two methods using the
quadratic drag model perform also very similar but seem to feature an important bias
(1.9 m/s for the DM with no vertical drag). This highlights two important observations.
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First, assuming that the vertical wind speed is zero has minimal impact on the estimation
of horizontal wind speed. This will be further discussed in Section 5.1.1. Second, the choice
of drag model has a significant impact on the estimation. This will be further discussed
in Section 5.1.2. Additionally, the filtered estimations show an improved performance of
approximately 20 % on the standard deviation, as could be expected from filtering.

4.1.2. Horizontal Wind Direction

Observing the wind direction on the middle plot, it can be seen that all five estimation
methods perform very similarly and give a fairly good estimation of the wind direction.
The only slight difference concerns the two methods using the quadratic drag model, which
have higher variability. There seems to be a “directional wind gust” around 09:32 (red
highlight in Figure 7), which results in what appears to be a timing mismatch between
estimation and measurement. However, as for wind speed, it seems fair to assume that
this is due to wind gust propagation time between the respective position of the drone and
its reference.

4.1.3. Vertical Wind

Finally, looking at the vertical wind speed, it can first be seen that even if the vertical
wind speed is not zero, in the evaluated use case it remains close to 0 m/s. Thus, assuming
that there is no vertical wind speed is a reasonable assumption. In this case, the methods
estimating vertical wind have worse performance than the errors caused by the assumption
of the vertical wind being null.

4.2. Square

The square flight is interesting due to its dynamics: accelerations are high when
reaching or leaving the corner of the square thus inducing tilting of the UAV due to forward
motion. The first obvious observation to be made about the estimations seen in Figure 8,
is that the tilt estimation is failing at estimating wind speed and direction in such a flight
scenario, which is expected. The error peaks (as for example in the blue highlight in
Figure 8) can be traced back to the moments of drone acceleration or deceleration. On the
other hand, the dynamic model-based methods, seem to be able to filter out the impact of
the vehicle acceleration. Although this comes at the cost of some loss in accuracy, as can be
seen by comparing Tables 6 and 7. Wind direction seems to be estimated correctly most
of the time by the dynamic model-based methods, except for some occurrences where its
estimation is completely wrong, such as around 09:38:30 (red highlight) or 09:38:40 (yellow
highlight). It is unclear why this is happening. However, the low wind speed estimated
(less than 1 m/s) during both time intervals may have reduced the reliability of this polar
parameterization. Concerning vertical wind, the same observations can be made as those
in the hover flight.

Table 7. Statistical evaluation of the square flight shown in Figure 8. The lowpass filter cutoff
frequency is 0.1 Hz (see Section 2.4.3).

Horizontal Wind (m/s) Vertical Wind (m/s)

Not Filtered Lowpass Filtered Not Filtered Lowpass Filtered

Bias Std Bias Std Bias Std Bias Std

DM, Linear and No Vertical Drag 0.93 1.84 0.90 1.32 0.46 0.54 0.46 0.46

DM, Linear and Vertical Drag 0.69 1.68 0.68 1.09 1.42 1.55 1.40 0.92

DM, Quadratic and No Vertical Drag 1.51 2.47 1.50 1.64 0.46 0.54 0.46 0.46

DM, Quadratic and Vertical Drag 1.14 2.31 1.14 1.44 1.90 1.42 1.87 0.80

Tilt 0.40 7.94 0.39 4.34 0.46 0.54 0.46 0.46
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Figure 8. Wind estimation for sample square flight. Thick blue line represents the ground truth
and the remaining lines represent the estimation methods tested. The blue highlight shows one
occurrence of the tilt estimation failing during an acceleration phase. The red and yellow highlights
show two occurrences of non successful estimation of wind (see discussion in Section 4.2).

4.3. Vertical

The vertical flight is interesting for its application in shear wind estimation. The
most important observation to make in Figure 9 is that there are three phases where
the estimation significantly deviates from the reference. These phases are highlighted in
red and correspond to the moments where the drone is descending. Moving downward
is notoriously difficult for a drone since it flies inside the downwash produced by its
propellers. For this reason, the downward flight is very unstable, resulting in large and fast
attitude variation, in turn leading to poor wind estimations. However, estimation during
the ascending phase (highlighted in blue) seems to produce accurate results, in particular
for tilt and linear drag dynamic model estimation methods.

Table 8. Statistical evaluation of the vertical flight shown in Figure 9. The statistics are evaluated
only during the ascension phases of the flight. The lowpass filter cutoff frequency is 0.1 Hz (see
Section 2.4.3).

Horizontal Wind (m/s) Vertical Wind (m/s)

Not Filtered Lowpass Filtered Not Filtered Lowpass Filtered

Bias Std Bias Std Bias Std Bias Std

DM, Linear and No Vertical Drag 0.44 0.95 0.38 0.59 0.05 0.33 0.03 0.26

DM, Linear and Vertical Drag 0.66 0.82 0.59 0.52 0.28 0.67 0.36 0.31

DM, Quadratic and No Vertical Drag 1.18 1.70 1.20 1.00 0.05 0.33 0.03 0.26

DM, Quadratic and Vertical Drag 0.53 1.22 0.51 0.78 0.78 1.00 0.43 0.51

Tilt 0.73 0.93 0.63 0.57 0.05 0.33 0.03 0.26
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Figure 9. Wind estimation for sample vertical flight. Thick blue line represents the ground truth and
remaining lines represent estimation methods tested. Blue and red highlights correspond to time
intervals in which the drone is ascending and descending, respectively (see discussion in Section 4.3).

5. Discussion
5.1. Outcomes
5.1.1. Impact of Vertical Wind Estimation

As presented in Section 1, vertical wind is rarely considered in the literature, either to
reduce estimation complexity or to remove the need for rotor thrust estimations. It also
removes the need to have a reference capable of measuring vertical wind, such as a through
use of a sonic anemometer. Two important observations can be made based on the results
presented in Section 4. First, horizontal wind estimation performance for the methods
assuming no vertical wind is not different from those which estimate vertical wind. This
is likely due to the fact that the vertical wind was close to zero during all flights which
were conducted at low altitudes. Thus estimating thrust using the wind tunnel data leads
to similar results as computing it from Equation (7). However, before choosing methods
including vertical drag over methods assuming no vertical drag, it would be relevant to
compare the performance of both approaches on data featuring significant vertical wind.
Second, for methods estimating vertical wind, the estimation is rather poor. The error is
smaller by assuming the value of vertical wind to be zero. This is somewhat surprising as
air speed is computed in the body frame, and thus one should assume that the estimation
accuracy of vertical and horizontal wind should be similar. The observed discrepancy may
be due to the fact that the thrust is much larger than the drag in the vertical direction but
not in the horizontal direction. Hence, even a small error in thrust estimation leads to a
large error in vertical wind estimation.

5.1.2. Linear or Quadratic Drag Model

Two drag models were explored during this work: a quadratic model, presented
in Section 2.3.5 and a linear model, presented in Section 2.3.6. The quadratic model is well
tested for spherical objects and widely used to model drag forces on MUAVs [39]. However,
in this work, for low wind speeds (less than 10 m/s), the linear drag model performs better
in the estimation of wind speed. This is somewhat surprising given that all publications
presented in Section 1 which employ a physical model for drag, use a quadratic drag model.
However, this observation is not new in MUAV modeling: for example [39] analytically
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derives and experimentally validates a linear drag relation using Blade Element Momentum
(BEM) theory. Plus, the well-known open-source Gazebo simulator also implements a linear
drag model for MUAVs [40]. According to this model the total drag force is dominated by
drag generated by air passing through the rotors in the xy-body-plane, i.e., perpendicularly
to the thrust direction. More explicitly, the drag model for a single rotor is given by:

Fb
D = ηKBEM

Vx
Vy
0

 (22)

This is not the linear model implemented in this work, but both models are equivalent
under the assumptions that the rotor angular rates are constant and the drone is not tilting.
Note also that BEM-based approaches start to fail at high air speeds and other approaches
are needed to correct drag modeling, see for example [41], where BEM is combined with a
neural network trained to estimate drag residuals that BEM theory is not able to predict.

5.2. Dataset Limitations
5.2.1. Distance to Reference Sensors

Reference measurements in UAV based wind measurements are always a challenge
since there is a geometrical separation between the UAV’s position and the reference sensor.
Additionally, the further the reference sensor is placed from the drone, the higher the
chances that local wind gusts affect either only the drone or the reference sensor or affect
both at different times. In an extreme case, when the flow is purely turbulent, it is not
meaningful to compare wind speed from two sensors if they are not at the same position (if
the experiment takes place in a wind tunnel providing good laminar flow, these problems
can be avoided at the cost of a less realistic wind behavior). In this dataset, the drone
was flying approximately 10 to 15 m away from the reference sensor. This separation
ensured the safety of hardware and infrastructure but constitutes a significant distance
to the reference sensors. For example, at a wind speed of 2 m/s, this can represent a
propagation delay of 5 s.

5.2.2. Environmental Variability

The validation dataset was acquired over one flight zone (Figure 3), which has its
typical environmental conditions. It would be interesting to introduce more variability of
environmental conditions to explore their effects. Interesting environments to explore could
be for example open field (without buildings), high altitude above sea level and above
ground, low temperature (close to freezing), high latitude, terrain with high convection
current, etc. Obviously, the main challenge in such experiments is to obtain a reliable refer-
ence measurement that allows the evaluation of the estimation performance. Additionally,
acquisitions in stronger winds would also improve the dataset.

5.2.3. Ground Truth Quality

The quality of ground truth was assessed by computing the difference between each
of the three reference sensors and their mean. In other words, the error (as defined
in (19) and (20)) for all the reference sensors. Let this error be the ground truth error.
The reference sensor data is shown in Figure 10 and the ground truth error statistics are
shown in Table 9. The ground truth error is expected to be small if there is no turbulence
and no local effects, which is a necessary assumption to compare the drone’s wind estima-
tion to the reference. However, the ground truth error can get large. In this sample flight,
the difference between the mean and a given sensor can be on the order of 1 m/s (yellow
highlight in Figure 10). Note also that the wind gusts identified in Figure 7 also correspond
to moments of high ground truth error (blue and red highlight in both figures). This leads
to the conclusion that the impact of turbulence might have been underestimated in the test
environment and that many cases are approaching the accuracy of the reference.
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Figure 10. Reference data for sample hovering flight. Thick blue line represents the instantaneous
mean of all three reference sensors and the other lines represent each individual sensor. All three
highlights show occurrences of high ground truth error (see discussion in Section 5.2.3).

Table 9. Statistical evaluation of the reference data of the flight shown in Figure 7.

Horizontal Wind Vertical Wind

Not Filtered Lowpass Filtered Not Filtered Lowpass Filtered

Bias Std Bias Std Bias Std Bias Std

Sensor at 21.3 (m) 0.21 0.61 0.21 0.43 0.04 0.37 0.04 0.25

Sensor at 18.0 (m) 0.19 0.49 0.19 0.27 0.00 0.30 0.00 0.15

Sensor at 14.7 (m) 0.13 0.62 0.13 0.44 0.04 0.39 0.04 0.27

The quality of the reference represents a hard limit to the development of new estima-
tion methods because it prevents the evaluation of their performance beyond the reference
accuracy. It is essential to find some alternative reference, that provides measurements that
are closer to the aircraft body. This remains an open question, but two possible approaches
can be explored here. First, consider only time-averaged data over longer periods (aver-
aging time greater than one min): this approach is easy to implement and should remove
most of the high-frequency variability, at the cost of reducing the estimation’s bandwidth.
Second, perform indoor flights where there is no wind: in this scenario, the air speed is
equal to the vehicle speed, thus the method can be validated by verifying how well it
estimates vehicle speed for which a ground truth can be provided by a motion capture
system. This approach is similar to what is done in [41]. However, this solution assumes
that the effect of traveling at a given speed in still air is the same as hovering in a wind
of the same speed. Plus, the used drone must be able to navigate without access to GNSS
positioning, since the reception of satellite signals is not available indoors.
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5.3. Method Trade-Off

This section lists pros (+) and cons (−) of the tested estimation methods. The estimation
methods using the quadratic drag model are not included since, within the conducted
experiments, they are out-performed by the other methods. Still, these may be worth
considering at higher wind speeds than those encountered in this work.

• DM, Linear without Vertical Drag

+ Most precise and accurate during dynamic maneuvers, thus enabling continu-
ous profiling.

+ Does not need to estimate thrust.
+ Relies only on pose estimation not on the drone’s control loop.
– Does not estimate vertical wind, which may impact estimation accuracy.
– Less precise than tilt method in hovering conditions.
– Needs wind tunnel data (for each UAV type) to compute drag coefficients.

• DM, Linear with Vertical Drag

+ Most precise and accurate during dynamic maneuvers, thus enabling continu-
ous profiling.

+ Relies only on pose estimation not on the drone’s control loop.
(+) Attempts to estimate vertical wind, but results are poor.
– Less precise than tilt in hovering conditions.
– Needs wind tunnel data (for each UAV type) to compute drag coefficients.

• Tilt

+ Most accurate and precise during hovering.
+ Simple to describe and implement.
+ Simple to extrapolate to other platforms, provided calibration flights are possible.
– Limited to hovering and slowly ascending flights.
– Does not estimate vertical wind, which may impact estimation accuracy.
– Depends on the performance of autopilot control.

5.4. Comparison with On-Board Flow Sensor Approach

Here we relate the performance of the proposed methods to that presented in [8] that
employs dedicated wind sensor (four-hole pressure probe, pitot tube) mounted far away
from the rotor-blades on a MULTIROTOR G4 Eagle drone. The comparison with this work
is especially relevant since the experiments took place at the same location on the campus
(see Figure 3) and using the same sonic anemometers as a reference. Table 10 compares the
statistical evaluation of the hover wind estimation within the flight presented in Section 4.1
with the performance obtained in [8] (only DM, Linear wind, No Vertical Drag is shown for
clarity). Test 4, presented in Table 2 of [8], was chosen for comparison since it featured the
most similar wind conditions.

Table 10. Statistical evaluation of the hover flight presented in Table 6 compared with statistical
evaluation of Test 4 described in Table 2 of [8]. Note, in the latter, sampling frequency is 20 Hz
whereas this work uses 10 Hz.

Horizontal Wind (m/s) Vertical Wind (m/s)

Not Filtered Lowpass Filtered Not Filtered Lowpass Filtered

Bias Std Bias Std Bias Std Bias Std

DM, Linear and No Vertical Drag 0.46 1.08 0.46 0.84 0.04 0.50 0.04 0.44

Tilt 0.15 0.93 0.15 0.70 0.04 0.50 0.04 0.44

On-board flow sensor [8] 0.2 0.23 N/A N/A 0.02 0.05 N/A N/A
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It is interesting to see that both approaches feature a similar bias, but the precise
onboard flow sensor has a considerably lower standard deviation. Overall, the performance
of the two approaches is very similar. However, the approach presented in this work does
not require the additional integration of a custom-made special sensor on the UAV. This
impacts the cost, size, and reliability of the instrumentation. Additionally, the necessity of
the long arm on which the wind sensor needs to be mounted is likely to make the drone
less stable. Additionally, the use of a single pressure probe makes the navigation more
complex since the sensor must always point upstream. For all of the above-listed reasons,
the authors believe that the presented inertial-based approach represents an interesting
alternative that can be further developed.

6. Conclusions
6.1. Summary

The main contributions of this work are:

• Validating the tilt method with empirical data using an off-the-shelf drone, making it
easily implementable by others.

• Proposing a novel and more general estimation scheme, usable on a commercial drone,
which performs similarly to the tilt approach in hovering conditions while at the same
time capable of producing wind estimations during dynamic flights.

• Empirically assessing the impact of ignoring the vertical wind component on horizon-
tal wind estimation.

6.2. Perspectives

Future work should focus on three main aspects. First, further validate the quality
of the proposed estimation methods. This can be achieved by addressing the ground
truth quality issue discussed in Section 2.4.2. Additionally, increasing the test dataset size
with new flights performed in different environmental conditions (e.g., in stronger wind,
in presence of convection, at higher altitude, at lower temperatures, etc.) to confirm the
method’s generality.

The second aspect which deserves further attention is the improvement of the drag
model. As discussed in Section 5.1.2, different theories may be more suitable to model the
drag of small MUAV. Additionally, acquiring a dataset of varying wind in a wind tunnel
may also help to identify a suitable drag model. A Computational Fluid Dynamics (CFD)
simulation could also be performed to attempt to better understand the impact of drag on
the UAV.

Following up on [24,42], the results of this work will be of use in the improvement of
the model-based navigation developed by one of the co-authors. This development was so
far based on simulations, but this study provides empirical data on which the navigation
solution can be tested. Additionally, a dedicated (non-commercial) UAV platform was
developed that is expected to overcome some limitations of the current hardware. Namely,
this UAV features direct thrust sensors and an inertial sensor of better quality. An evalua-
tion of the performance improvements due to improved sensor quality is planned in the
near future.

Finally, future work may aim at developing an application with a user-friendly inter-
face, such that this estimation method can be easily shared within the research community.

The authors recommend continuing the development of this estimation scheme as it
has demonstrated promising results and has the potential to be applied in various fields.
As already discussed in Section 1, such applications include boundary layer measurements,
wind turbine wake measurements, weather observations, to name a few. The approach also
can also serve as an alternative to disposable weather balloons.
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Abbreviations
The following abbreviations are used in this manuscript:

ABL Atmospheric Boundary Layer
BEM Blade Element Momentum
CFD Computational Fluid Dynamics
DM Dynamic Model
FRD Front-Right-Down
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
INS Inertial Navigation System
MoTUS Urban Microclimate Measurement Mast
MUAV Multirotor UAV
NED North-East-Down
RPAS Remotely Piloted Aircraft Systems
RTK Real-Time Kinematic
TOPOAWS TOPO Automatic Weather Station
UAS Unmanned Aircraft Systems
UAV Unmanned Aerial Vehicles
VRS Virtual Reference Station

Appendix A. Notations

This appendix will briefly introduce the notation conventions used throughout this
work. Detailed notation and definitions of reference frames can be found in [44,45].

Appendix A.1. Vectors

Vectors are noted using a single lowercase letter in bold. The letter may feature a
superscript indicating the frame the vector is expressed in (ri).

Appendix A.2. Rotation Matrices and Quaternions

Rotation matrices are denoted using the uppercase C character in bold. Quaternions
are noted using a lowercase q character written in bold. The respective superscript and
subscript indicate the two frames the rotation is relating to. For example, a rotation matrix
defining the rotation from frame i to j is written as Cj

i and a quaternion as qj
i.

Appendix A.3. Reference Frames and Hovering

Three main frames are used in this work:

https://github.com/meierkilian/WEMUAV
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• Inertial frame (i-frame): a non-accelerating and non-rotating frame in which Newto-
nian mechanics holds (up to the observation precision).

• Local-level (l-frame): local-leveled geodetic frame such that its axes point respectively
North, East, and Down (NED), with respect to the reference surface (e.g., ellipsoid).

• Body frame (b-frame): frame fixed to the drone such that its axes point Forward, to
the Right and Downward (FRD).

Hovering is thus defined as a constant position in the local-level frame (ṙl = 0), i.e.,
stationary with respect to the ground. The expressions “hovering” and “stationary flight”
are used interchangeably.
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