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Abstract

To characterize a physical system to behave as desired, either its underlying governing rules

must be known a priori or the system itself be accurately measured. The complexity of full

measurements of the system scales with its size. When exposed to real-world conditions, such

as perturbations or time-varying settings, the system calibrated for a fixed working condition

might require non-trivial re-calibration, a process that could be prohibitively expensive, ineffi-

cient and impractical for real-world use cases.

In this thesis, a learning procedure for solving highly ill-posed problems of modeling a system’s

forward and backward response functions is proposed. In particular, deep neural networks

are used to infer the input of a system from partial measurements of its outputs or to obtain a

desired target output from a physical system.

I showcase the applicability of the proposed methods for inference and control in optical

multimode fibers. Amplitude/phase-encoded input of a multimode fiber is reconstructed

from intensity-only measurements of the outputs. Conversely, the required input of the fiber

for projecting a desired output is obtained using intensity-only measurements of the output.

Next, the stochastic neural network of the retina in Salamander is modeled by a probabilistic

neural network. The model is used to optimize the input stimuli so as to find the simplest

spatiotemporal patterns that elicit the same neuronal spike responses as those elicited by

high-dimensional stimuli.

As demonstrated in this thesis, application of data-driven methods for characterization of

complex large-scale real-world systems has proved useful in simplifying the measurement ap-

paratus, end-to-end optimization of the system and automatic compensation of perturbation.

Keywords: machine learning, deep learning, imaging, forward modeling, multimode fibers,

retina modeling, information bottleneck, system characterization.
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Résumé

Pour caractériser un système physique pour qu’il se comporte comme on le souhaite, soit

ses règles de gouvernance sous-jacentes doit être connu a priori ou le système lui-même doit

être mesuré avec précision. La complexité du plein les mesures du système évoluent avec

sa taille. Lorsqu’ils sont exposés à des conditions réelles, de tels comme des perturbations

ou des paramètres variables dans le temps, le système est calibré pour une condition de

travail fixe pourrait nécessiter un réétalonnage non trivial, un processus qui pourrait être

d’un coût prohibitif, inefficace efficace et peu pratique pour les cas d’utilisation réels. Dans

cette thèse, une procédure d’apprentissage pour résoudre des problèmes très mal posés de

modélisation de la des fonctions de réponse avant et arrière sont proposées. En particulier,

les réseaux de neurones profonds sont utilisés pour déduire l’entrée d’un système à partir

de mesures partielles de ses sorties ou pour obtenir une sortie cible souhaitée d’un système

physique. Je présente l’applicabilité des méthodes proposées pour l’inférence et le contrôle

en optique fibres multimodes. L’entrée codée en amplitude/phase d’une fibre multimode est

reconstruite à partir de mesures d’intensité uniquement des sorties. Inversement, l’apport

requis de la fibre pour projeter une sortie souhaitée est obtenue en utilisant uniquement des

mesures d’intensité de la sortie. Ensuite, le réseau de neurones stochastiques de la rétine de

Salamander est modélisé par un modèle probabiliste réseau neuronal. Le modèle est utilisé

pour optimiser les stimuli d’entrée afin de trouver le plus simple modèles spatio-temporels qui

suscitent les mêmes réponses neuronales que celles suscitées par stimuli de haute dimension.

Comme démontré dans cette thèse, l’application de méthodes basées sur les données pour

la caractérisation des systèmes complexes à grande échelle du monde réel s’est avéré utile

pour simplifier l’approche de mesure paratus, optimisation de bout en bout du système et

compensation automatique des perturbations.

Mots clefs : machine learning, deep learning, imagerie, modélisation directe, fibres multi-

modes, modélisation de la rétine, goulot d’étranglement informationnel, caractérisation du

système.
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1 Introduction

How does one go about solving a problem in natural sciences? This process of problem

solving usually starts with identifying some general rules governing the system in which the

problem is defined. Next step is to understand the inputs to that system. What are they?

How does the system respond to each input? The objective of the problem might be to

obtain the input of the system given its corresponding output or to obtain the required input

for producing a desired output. If the underlying rules governing the system are known a

priori, depending on the complexity of the problem, it might be possible to theoretically

provide answers to the above questions. To make it clear, let us illustrate with an example.

In optical physics, one of the most basic problems is the study of light propagation in a

particular medium. In order to predict the amplitude and phase of the light field in any

plane, one can solve Maxwell equations or use approximations such as the Fresnel-Kirchoff

diffraction formula. When the media features random scatterers that perturb the propagation

of light at the scale of the wavelength, the problem is computationally complex and requires

to solve the full vectorial wave equation. A less computationally intensive alternative is

to consider the light propagation as linear, meaning that the polarizability of the medium

is proportional to the amplitude of the light, which is often the case, and treat the light

propagation as a linear system. In such a system, if one knows the amplitude and phase

in two planes, described by the vector X and Y respectively, the two vectors can be easily

related by a linear transform with a matrix T , Y = T X . However, providing experimental

measurements for X and Y can be challenging. The characterization of the complex set

of amplitude and phase values X and Y is possible with holographic phase measurements.

However, the apparatus needed for such measurements is nontrivial as it requires to handle

and correct for phase drifts of the interference pattern. Using amplitude only measurement via

detecting the light field with a camera is much simpler experimentally, but the measurement

does not produce the light amplitude and phase separately, thus the matrix T cannot be

inferred . Thus, holographic phase measurement has been the gold standard method for

characterizing light propagation in a scattering medium. The reason for that roots from

the fact that with holographic measurements, the system is linear whereas in the latter case

(intensity measurement), the system is nonlinear. Characterizing a linear system is obviously
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simpler than a nonlinear one. So far, we saw that if the underlying rules governing the system

is unknown or the system is too complex to be analytically modelled or when experimental

realization of the problem requires a nontrivial measurement apparatus, resorting to other

techniques might prove more advantageous. The latter is also necessary when the system is

known but perturbations present in the experimental realization of the problem drastically

modify the system.

In this thesis, I propose, for the first time, a statistical and data-driven method to describe

the light propagation in multimode fibers whose light field output resembles the output of a

scattering medium and where only the light intensity is measured. This system represents a

well-defined non-linear system, whose complexity can be modified by suitable choice of the

number of modes in the fiber. In this thesis, I present those data driven methods and provide

a general framework that is applicable not only to optical physics but also can be generalized

to other disciplines such as in neuroscience where I show its potential to characterize the

vision system. Broadly speaking, data-driven methods, henceforth referred to as learning

methods, are techniques that use observations from the system, for example samples of the

inputs and outputs, to hypothesize a statement about the system that is corroborated by the

data. Within this framework, the general approach for learning a physical system starts with

(1) acquiring many samples from the system, for example obtaining input-output examples

from the system. (2) choosing the sample size large enough to represent a general feature of

the system. (3) proposing a quantifiable metric for learning (the error function) that depends

on the application and the question that the experimentalist is trying to provide an answer for

(4) choosing the learning method: parametric or non-parametric. For example, in parametric

methods, usually the parameters of a chosen function f are learned to represent the data. Once

these parameters are available, new data that were not used in the first place for obtaining the

parameters are used to assess the generalizability of the function f on the new data.

Deep learning is a parametric method that is used for learning a general relation between sets

of input-output data, by fitting a large number of learnable variables, known as weights and

biases and referred to collectively as a neural network. Today, a plethora of neural network

architectures ranging from the fully-connected network to more advanced Convolutional

neural networks (CNNs) have been proposed. CNNs are a subclass of neural networks, which

have been proposed and have shown better performance over other neural networks by

decreasing the computation cost of fully connected layers through parameter sharing and

use of sparse filters while, at the same time, increasing the number of layers in the network to

achieve deep networks for solving more complex problems while speeding up computations.

With this new computational power, CNNs have been used in various fields and applications

for example, in optical microscopy to solve for phase recovery in non-linear inverse problems

[1] [2] [3] and many other.

Problems which involve a system that accepts an input and produce a corresponding output

in response to that input can be categorized into two main classes: inference and control

problems. In the former, the goal is to infer the input of the system given several examples of
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the outputs. In the latter, the goal is to obtain the appropriate input that produce a desired

target output. In this case, I assume that the system could be probed as many times as needed.

However, the experimentalist might have only access to partial measurements from the system.

For example, in the optical physics problem, the experimentalist might have access only to

the intensity part of the output field rather than the entire complex (intensity and phase) part.

In this thesis, I study both inference and control using the optical light field propagation in a

multimode fiber . I also show that the developped framework can be applied in neuroscience

to learn the transformation of a optical image to a set of electrical spikes in the vision system

of the retina. I discuss challenges of dealing with real-world systems such as data collection,

robustness and time variations and show real-time application of our proposed methods.

1.1 Inference in physical systems

Reconstructing the inputs of a physical system from measurements of its sensory outputs is a

common practice in various disciplines such as neuroscience [4], microscopy [1], healthcare,

among others. Depending on the number of measurements and partial/full observation of

the system’s states, various methods for recovering the original inputs of the system have

been proposed. For linear and time-invariant systems, the system could be probed with many

inputs and the measuring the resulting outputs. The collected input-output data then could

be used to solve a set of equations to obtain the transfer function of the system in the matrix

form whose successful estimation requires full observation of the system’s outputs. The latter

is often very expensive and requires non-trivial sensory apparatus. In cases where obtaining

data is expensive or the system is nonlinear and/or is only partially observed, other methods

need to be sought. For example, compressed sensing has been adopted for recovery of inputs

in underdetermined systems such as in FMRI where obtaining a large data set is impractical

[5]. Deep learning methods for inference is one technique that has recently been widely used

in many applications such as optical imaging in scattering media [6] [7] [8] [9] [3] [10] [11] [12]

[13]. In this framework, end-to-end deep learning methods have been intensively applied for

information retrieval from partial measurements. In particular, the partially measured output

lacks a portion of data (for example phase information) but are still able to deduce the input

of the system.

1.2 Control in physical systems

In physical system characterization, a fundamental challenge is finding the proper continuous

space input to a system that yields a desired functional output. For example, an open question

in sensory/motor neuroscience is how to determine the input stimulation able to induce

a desired behavior. Another challenging and open problem is to control the output of an

optical system, such as a turbid medium used for imaging, that could be non-linear and

time-varying. In a linear physical system, the problem of finding the input that produces a
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desired output can be determined by monitoring its response to a series of arbitrary inputs

and then computing the inverse of the system’s transmission matrix (a mapping from inputs

to outputs). This entails measuring the responses of the system fully. In practice, physical

systems can only be partially measured and, more importantly, are often nonlinear. So, the

linear transmission matrix formalism cannot be used. Even though the forward path of the

system could be fully characterized, obtaining its inverse for large scale systems involving

millions of variables is computationally intensive if not entirely intractable. Resorting to

data-driven methods that do not require full-measurements or linear approximation of the

system, such as deep learning approaches, have been shown to be successful. Deep learning

techniques proposed for these tasks [14], [15] mostly take advantage of labeled data to do

supervised training. For applications that require control over the response of one or an

ensemble of targets, end-to-end supervised learning can fail due to the lack of labeled data

within the distribution of desired target responses as well as inherent sensitivity of supervised

approaches to perturbations in out-of-training-distribution data.

1.3 Thesis organization

The organization of the thesis as well as a brief overview of the chapters is summarized below.

1.3.1 Chapter 2: inference

I start off by studying the inference for the phase retrieval problem with a sub-Gaussian

measurement matrix. In particular, I use multimode fibers (MMFs), which is a medium akin

to a complex scattering medium for which the transmission matrix can be experimentally

obtained. The phase retrieval problem seeks to find the input information of the system (the

information is complex valued) from intensity-only measurements (the output information

is similarly complex valued but I assume that the experimentalist has access only to the

amplitude information). The cases of 1. amplitude output from amplitude input and 2.

amplitude output from phase input is investigated. The inference is done in a maximum-

likelihood setting using deep neural networks. Two different network architectures are used.

Ultimately, extensions of our results to other inference problems in the field is discussed.

1.3.2 Chapter 3: control

In this chapter, I tackle the challenge of controlling the output of a given system when only

partial measurements from the system is available to the experimentalist. I introduce a

maximum-likelihood model for learning the forward transfer function of the system. A second

network is then trained jointly with the forward model estimator that generates the required

input of the system for producing a desired target output. I test the two-network algorithm

on data obtained with the multimode fiber experimental framework. I showcase the success

of the algorithm for real-time projection of arbitrary images through MMFs. Robustness of
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the algorithm against perturbations is discussed. A probabilistic version of the proposed

algorithm is also proposed.

1.3.3 Chapter 4: vision

The probabilistic model introduced in the previous chapter is used to control the spiking

activities of Retinal Ganglion Cells (RGCs) in the vision system of subjects such as salaman-

der/rat. I investigate if the input-output relationship (visual stimuli and spike activities) in this

system could be encoded in a small number of variables (latent variables) using Information-

Bottleneck formalism. With the proposed method, I show that the complexity of the input

stimuli required for producing RGCs’ spike activities can be substantially reduced while spike

responses remain highly correlated with the original spike activities elicited by the original

high resolution stimuli.

1.3.4 Chapter 5: Conclusion and future work

Finally, I conclude the thesis and provide insights for future work.
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2 Inference in the scattering media

Some of the material presented in this chapter can be found in the following papers:

• B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, "Multimode optical

fiber transmission with a deep learning network", Light: Science Applications, vol. 7,no.

1, pp. 1–11, 20.

• E. Kakkava, B. Rahmani, N. Borhani, U. Tegin, D. Loterie, G. Konstantinou, C. Moser,and

D. Psaltis, “Imaging through multimode fibers using deep learning: the effects of inten-

sity versus holographic recording of the speckle pattern”,Optical Fiber Technology,vol.

52, p. 101 985, 20.

2.1 Multimode fiber characterization

Multimode fibers (MMF) were initially developed to transmit digital information encoded

in the time domain. There were few attempts in the late 1960’s and 70’s to transmit analog

images through MMF [16] [17] using holographic recording in materials. With the availability

of digital spatial modulators and cameras using digital holography, practical image transfer

through MMFs has the potential to revolutionize medical endoscopy. Because of the fiber’s

ability to transmit multiple spatial modes of light simultaneously, MMFs could, in principle,

replace the millimeters-thick bundles of fibers currently used in endoscopes with a single

fiber only a few hundred microns thick. That, in turn, could potentially open up new, less

invasive forms of endoscopy to perform high-resolution imaging of tissues out of reach of

current conventional endoscopes. Methods of imaging in multimode fibers (MMFs) involves

measuring the phase and amplitude of the electromagnetic wave, coming out of the MMF

and using these measurements to infer the relationship between the input and the output

of the MMF. Most notable techniques include analog phase conjugation [17] [18] [19] [20]

digital phase conjugation [21] [22] or the transmission matrix method. The latter technique,

which is the current gold standard, measures both the amplitude and phase of the output
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patterns corresponding to multiple input patterns to construct a matrix of complex numbers

relaying the input to the output [23] [24] [25] [26]. This matrix is then used for imaging of the

output or projection of desired patterns. Other techniques rely on iteratively optimizing the

pixel value of the input image to perform a particular task (such as focusing or displaying an

image) [27] [28] [29] [30] [31]. The dependence of the aforementioned methods on the phase

measurement is also their weakness. This is rooted in two reasons. First is the necessity of

having a non-trivial phase measurement apparatus. A holographic experiment requires an

external reference beam brought to the output of the fiber to generate an interference pattern

from which the complex optical field (amplitude and phase) can be extracted. Although

some work has shown that the reference beam can also be sent through the same MMF [32],

multiple quadrature phase measurements must be done to extract the phase, making the

process computationally intensive.

The second reason is the sensitivity of the phase to external perturbations. Any mechanical

variation or thermal variability, among others, could drift the phase of the reference wave.

Upon significant change of the phase, the calibration process needs to be repeated. Therefore,

careful phase tracking needs to be implemented to correct for phase drift, which further

complicates the implementation. Thereby, a method that can characterize the MMF without

using the phase information of the output wave while at the same time is as general as the

gold standard methods is highly desired. Notably, some works have used convex optimization

to infer the matrix from intensity measurement only [33] [34]. Although these works are

promising steps for phase-independent characterization of the MMF, they lack generalization.

For example, only a limited types of images, mostly sparse, could be imaged through the fibers.

Recently, data driven methods have been applied for characterizing scattering media and

MMFs. These techniques rely on inferring the statistical characteristics of light propagation

through the MMF system through examples. In what follows, I explain the first proposed

data driven work with MMFs for imaging in detail and show that this approach simplifies

considerably the measurement system and experiments while being able to correct external

perturbations.

2.1.1 Optical fibers basics

Figure 2.1 – Guiding mechanism in optical fibers.

Optical fibers, schematically depicted in 2.1 are an example of waveguides that allow light

waves propagate through them. They have a concentric layered structure with an inner core

8



Inference in the scattering media Chapter 2

cylinder made of a higher refractive ncore index material (usually silica) that is sandwiched

by a cladding cylinder of a lower refractive index ncladding. The difference between the two

refractive indices is the core mechanism that guides lights through the optical fiber. The

mechanism, known as total internal reflection, allows any incoming light impinging on the

input facet of the fiber to couple to the fiber provided that the incident angle θinc is lower than

a predefined angle known as critical angle θc. This critical angle depends on the properties as

follows:

n0 sinθinc =
√

n2
core −n2

cladding (2.1)

where n0 is the refractive index of the incident light medium. The right hand side of Eq. 2.1 is

known as the numerical aperture (NA) of the fiber. The light that couples to the fiber is then

decomposed into a number of waves with particular waveforms known as modes. Formally, a

mode is a pattern of light that maintains a constant shape as it travels through the fiber. Each

mode propagates with its own velocity that depends on the properties of the fiber and the

solutions of the fundamental Maxwell equations satisfying the boundary conditions in the

fiber. Single mode fiber allows only one mode to propagate while in MMFs several modes

can propagate at the same time. Simultaneous propagation of several modes is the main

advantage of the MMFs compared to the single mode fibers as the former has the capacity of

transmitting more information. For example, an image that is made of thousands of pixels

could directly be transmitted by a multimode fiber whereas in single mode fibers, the pixels

should be sent through the fiber one at a time. Despite this superiority, MMFs are difficult to

work with in practice. This is due a phenomenon known as modal scrambling. As stated earlier,

an incoming wave (say a 2-dimensional image) that couples into the fiber is decomposed into

the several modes. Each mode propagates with its own propagation constant (or equivalently

with different phase velocity). The decomposed modes reach the output facet of the fiber

accumulating their own phase differences. Accordingly, the output field of the fiber becomes

distorted. With sufficient knowledge, the input wave could still be reconstructed.

2.2 Problem setting

Learning-based methods for imaging through MMFs seek to retrieve the input information

(usually a 2D image) entering the system from intensity-only measurements of the output.

In particular, as the phase information of the complex wave exiting the distal facet of the

fiber is lost due to the squared-law of the detector (a CCD or CMOS camera), these methods

seek to reconstruct the input from statistical characteristics of the system learned from data.

It should be noted that such a problem is highly ill-posed as many inputs can result in the

same amplitude profile at the output of the fiber that only differ in their respective phase

information.

Accordingly, the information retrieval task (generally referred to in the literature as phase

retrieval) is formally formulated as follows. Find the complex input vector of the system,
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X∗ = {x∗
i } ∈Cn , that corresponds to the output, Y∗ = {y∗

µ} ∈Rm , given the partial measurements

of the system as in y∗
µ =

∣∣∣∑i Fµi x∗
i

∣∣∣2
, where x∗

i (and respectively y∗
µ) are elements of the input

(output) vector and Fµi is the complex-value measurement matrix.

The optimization problem can then be re-written as:

L = min
ζ
EX,Y

[
D(Y−Mζ(X))

]
(2.2)

where Mζ is the mapping function parameterized by ζ that retrieves the information and

D is a metric that measures the similarity of the predicted information to the ground-truth.

For D, I either use a 2D Pearson coefficient-based similarity metric, i.e. D = − log[(1+σ)/2]

whereσ is the 2D Pearson coefficient or a l2 norm Mean Squared Error (MSE). By construction,

the observed system’s outputs, y∗
µ , are always positive real values. However, the inputs are

complex in general. I consider two cases where the inputs are either phase-only, x∗
i = eϕ where

ϕ ∈R, or amplitude-only, x∗
i ∈R.

2.3 Spatial light modulator (SLM)

To modulate the input field entering the system (here the MMF), I have used a liquid crystal

phase-only SLM [35]. As the name suggests, the SLM can only modulate the phase of the

incoming light. Applying an electrical voltage to each pixel of the device results in the rotation

of the birefringent crystals in that pixel producing a particular refractive index change and

hence a phase difference for light in that pixel. Upon reflection, the light gets modulated by

a desired phase adjusted on the device. If the device is to be used for complex modulation

(both amplitude and phase), the desired complex field needs to be preprocessed, i.e. the

initial complex field is first mapped into another field with phase-only information (unit

amplitude). This second field then produces the desired complex field only after propagation

of the light. In the literature, a number of methods have been proposed for implementing this

preprocessing step with various optical efficiencies [28] [30] [36]. Gerchberg-Saxton (GS) is

the chosen algorithm throughout the experiments conducted in this thesis. Before starting

the algorithm, the complex field is Fourier transformed and the Fourier components of the

field within the numerical aperture of the MMF is retained. The GS algorithm is conducted

in four steps. (1) The amplitude of the complex field is hard set to unit value (phase-only

constraint) and the resulting field is then Fourier transformed. (2) The components of the new

field that lie within the numerical aperture of the fiber is then replaced with the components

of the original field. (3) The resulting field is then inverse Fourier transformed into the spatial

domain. (4) The amplitude of the new field in the spatial domain is again hard set to unity and

all the steps are repeated for a number of times (50 iterations for example). The final field is

the sought-after phase-only pattern that produces the same field as that of the initial complex
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pattern after propagation into the far field.

2.4 A note on the dimensions of the measurement matrix F

The measurement matrix F can be measured in multiple basis domains including pixel do-

main, MMF’s modal domain or in frequency domain [26] [37]. In frequency domain, to obtain

the output y∗
µ , one needs to take the Fourier(F ) transform of x∗

i , multiply the result by F and

then take the inverse Fourier transform (F−1). SLM images entering the MMF are naturally

low-pass filtered due to the limited bandwidth of the MMF (spatial frequency upper bounded

by the maximum k vector). As such, with a MMF of numerical aperture 0.22, I obtained a

measurement matrix F ∈C512×512
.

2.5 Experiments

The network architectures and optimization scheme is further explained in the Appendices A.

I used various dataset as the inputs of the system: EMNIST dataset [38], ImageNet [39] as well

as data randomly selected from a distribution such as the uniform distribution. Examples of

dataset are depicted in Fig. 2.2. All images are sent through the MMF as depicted in Fig.2.3 to

obtain the output speckle patterns.

In what follows, I report the performance of the information retrieval for amplitude-only/phase-

only inputs for the above dataset and discuss my observations.

Figure 2.2 – Dataset examples for the reconstruction task in MMF.

Amplitude-only input: in this case, the information is entirely encoded into the amplitude

of the system’s input with a global phase constant chosen for all inputs. Hence the system’s

input is of the form x∗
i = a∗

i eϕ0 where a∗
i contains the encoded information. Although the

inference is hard-constraint by the network’s architecture to produce predicted inputs with a

global phase constant zero (ϕ0 = 0) (the network output is by construction real-valued; hence

zero phase), we note that any other global constant phase is also the solution of the inference.

I trained my networks on the Latin alphabet dataset from EMNIST (60000 training, 1000

test data). Inference results for some sample images from in-distribution (test dataset) and

out-of-distribution dataset (non EMNIST images) is depicted In Fig. 2.4 and 2.5, respectively.
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Figure 2.3 – Apparatus for obtaining the MMF output for a given input pattern.

Figure 2.4 – Examples of the output amplitude speckle patterns and the reconstructed fiber
input amplitude patterns produced via the CNN. The fidelity number for each reconstructed
image with respect to its corresponding grayscale label is shown.

Phase-only input: contrary to the previous scenario, the information here is entirely en-

coded into the phase of the system’s input with a global amplitude constant chosen for all

inputs. Hence the system’s input is of the form x∗
i = a0eϕ

∗
i . Although the inference is hard-

constraint by the network’s architecture to produce predicted inputs with a global amplitude

constant unity (a0 = 0), we note that any other global constant amplitude is also the solution

of the inference. As the previous case, I trained my networks on the Latin alphabet dataset

from EMNIST (60000 training, 1000 test data). Inference results for some sample images from

in-distribution and out-of-distribution dataset is depicted In Fig. 2.6 and 2.7, respectively.

Fully-connected vs. convolutional networks: the inference in the previous section was

carried out using convolutional-type neural networks. I hypothesized the same inference

could be implemented with fully-connected neural networks as the underlying physical

system can be approximated with a complex-value transmission matrix as seen in the full-

measurement scenario. I repeated the experiment of amplitude-only information retrieval

with a fully-connected neural network and Relu activation trained on natural images from
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Figure 2.5 – Performance of the network in inference of out-of-distribution samples. Recon-
struction of the input amplitudes from the output amplitude speckle patterns when the CNN
is trained with the handwritten Latin alphabet. The speckle pattern for each image is obtained
using the transmission matrix of the system.

ImageNet. As expected the, the information could still be reconstructed with a fairly good

fidelity. The result of the inference on some sample images is plotted in Fig. 2.8. We note that

the method here learns to relate the nonlinear amplitude-to-phase/amplitude inversion in

the real domain. Thus, the network is effectively learning a sub-space, instead of the complete

space, which the matrix learns, by using a much simpler measurement apparatus.

Variation of the training-data size I additionally study how the size of the training dataset

could affect the inference fidelity. I use input data that are sampled separately and indepen-

dently from the uniform distribution x∗ ∼U (0,1). I define the projection (dot product) of the

reconstructed x̂i onto its corresponding ground-truth x∗
i , i.e. x̂i .x∗

i (vectors are normalized

13



Chapter 2 Inference in the scattering media

Figure 2.6 – Examples of the output amplitude speckle patterns and the reconstructed fiber
input phase patterns produced via the CNN. The fidelity number for each reconstructed image
with respect to its corresponding grayscale label is shown.

before dot product), as a measure of the algorithm’s fidelity.

Figure 2.9 plots the MSE and reconstruction projection for various (number of training sam-

ples) 10k, 1000, 100. Note that the number of test samples is always 10 percent of the training

sample number (test and train data are produced independently and from the same distribu-

tion).

2.6 Discussion

Comparing the inference fidelities of the amplitude-only and phase-only scenarios together,

we notice that the former is superior to the latter. This roots from the types of nonlinearities

that are present in each case. In the amplitude-only setting, the nonlinearity is due to the

intensity-only detection at the distal-end of the system (fiber), where the phase information

is mixed with the amplitude. In the phase-only setting, however, an additional source of

nonlinearity is the exponent of the system’s input. Hence, this double nonlinearity renders the

inference more challenging and hence the inference fidelity is worse on average by 11 percent.

The above observation is also manifested in fidelities and convergence times of the inference

carried out by different neural network architectures. The Res-net network which is equipped

with more complex learning architectures than the VGG-net (such as skip connections, etc.)

obtains better performance than its simpler counterpart in the phase-only inference task.

Table 2.1 compares the inference fidelities for both amplitude- and phase-only tasks obtained

by both types of network architecture.
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Figure 2.7 – Performance of the network in inference of out-of-distribution samples. Recon-
struction of input phases from the output amplitude speckle patterns when the CNN is trained
with the handwritten Latin alphabet. The speckle pattern for each image is obtained using the
transmission matrix of the system.

Network architecture amplitude-only phase-only

VGG-net 0.93 0.79
Res-net 0.96 0.88

Table 2.1 – Inference fidelity: Phase/amplitude-only vs. network architecture

2.7 Related works and extensions

This work [15] together with [40] [41] spurred new lines of research within MMF imaging.

Other authors showed the same performance of the inference in MMFs with more complex
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Figure 2.8 – Examples of the reconstructed amplitude images obtained from a fully-connected
network trained on samples from ImageNet [39].

Figure 2.9 – Examples of the reconstructed amplitude images obtained from a fully-connected
network trained on samples from random input.

input images [42]. Authors in [43] use simpler architecture neural networks consisting of single

layer fully-connected networks for reconstruction of the images scrambled through MMF with

comparable fidelity as that of the complex architecture neural networks.

One particular extension was learning the MMF system perturbations. Specifically, authors

therein showed the applicability of the data-driven approaches for long lengths of MMFs up to

1 km where the system is expected to be very sensitive to external perturbations. They showed

that despite the pronounced sensitivity of the fiber to external perturbation specifically in

the case of the long 1 km length, it was observed that the network learns to correct for the

perturbation and successfully reconstruct the information. In keeping with the previous

results, authors in [44] attempted to learn perturbed system of MMFs. In particular, the fiber

was moved around a number of different but fixed configurations where in each position

examples of the input-output of the system were collected. A network was trained with the
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entire dataset (combined dataset from multiple configurations) to reconstruct the input of the

system. Even though the fiber undergoes sever change from one configuration to the other, It

was shown that reconstruction of the input is still possible. This is an evident advantage of

learning-based methods as compared to their non-learning counterparts; for in the latter case,

as soon as the system is moved, a recalibration of the entire system is necessary. Similarly

in [45], authors applied deep learning to the image retrieval problem that shows robustness

to fiber deformations as large as few millimeters. By drawing from a method that combines

data from different configurations of the MMF (configuration learning), images decorrelated

by a factor of 10 (Pearson correlation of 0.1) because of fiber bends, were reconstructed with

high fidelities. The authors attribute this success to CNNs learning invariant properties in the

speckle produced for different fiber conformations. Similar methods have been applied to

larger fiber bends, for example in [46] where authors show successful reconstruction of the

input image for 5 cm fiber bend.

Another source of perturbation is the drift in the wavelength of the laser source that decorre-

lates the output intensity with time. In a series of studies conducted by Kakkava et.al. [47] [48]

[49], it was shown that the DNNs can correct for the decorrelation rendered by the wavelength

change of the fiber with an extended bandwidth. External perturbations that are detrimental

for imaging could be harnessed for sensing in MMFs. Authors in [50] use deep learning for

sensing, such as temperature for example, using the complex optical interference output of a

MMF. The method is shown to work even when the information is buried in strong undesired

noise. In other line of works, the spectral output of the MMF is used for sensing mechanical

perturbations such as bends [51] [52] along the fiber.
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3 Control of the scattering media

Some of the material presented in this chapter can be found in the following papers:

• B. Rahmani, D. Loterie, E. Kakkava, N. Borhani, U. Tegin, D. Psaltis, and C. Moser, “Actor

neural networks for the robust control of partially measured nonlinear systems show-

cased for image propagation through diffuse media”,Nature Machine Intelligence,vol. 2,

no. 7, pp. 403–410, 2.

• B. Rahmani, D. Psaltis, and C. Moser, “Variational framework for partially-measuredphysical

system control”, 4th workshop of Machine Learning for Physical Sciences, NeurIPS, 2021.

3.1 Motivation

Reconstructing the inputs of a physical system from measurements of its sensory outputs

is a common practice in various disciplines such as microscopy [1] and optical tomography

[53], among others. Most learning approaches for information retrieval such as supervised

learning methods, generative networks based on Generative Adversarial Networks (GANs)

[54] or Variational Autoencoders (VAEs) [55] and compressive sensing approaches [56], [57],

[58] rely heavily on labeled data to train deep neural networks that can faithfully recover the

original inputs of the system. The Neural Networks that reconstruct the inputs from output

effectively learn the reverse path i.e. from output to input as illustrated by Fig. 3.1. A more

difficult problem is finding inputs of the system that results in a desired target output. This

effectively means to learn the forward path. This is a common scenario when one is dealing

with the problem of controlling a system when either the system is unknown or is too complex

to be modeled, a setting in which no labeled input-output data from the distribution of target

outputs might be available for supervised learning, a priori. In these settings, imposing a

particular prior on the solutions of the inverse problem, i.e. the mapping from partially

measured output to the input of the system, can encourage solutions whose resulting outputs

lie within the desired part of the system’s support [59], [60], [61]. The physical laws of the
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Figure 3.1 – Reconstruction and generation processes.

system could be leveraged as a prior to find solutions.

In this chapter, I assume the systems I am dealing with are theoretically constant in time.

However, they are allowed to have slow variations with time due to perturbations. We will see

how this affects the performance of the methods proposed.

In this chapter, I first propose a learning framework which involves the construction of a

forward estimator of the system. Once the forward model is obtained, a second estimator is

trained to provide the required input of the system for producing the desired output. This

latter estimator could be constrained so as to promote certain solutions. At the end, I extend

my work and show the proposed model is in fact a special case of the generative probabilistic

models [54], specifically Variational Auto Encoders (VAEs) [55]. I compare the two frameworks

and show their applicability for different scenarios.

3.2 General problem setting

In the most general form, I assume that a given input of a system, xi , is mapped to its output

via the function f as in yi = f (xi ). Therein, xi ∈ Cn and yi ∈ Cm . The function f could be a

(non)linear time-varying function. I assume that all the noise sources are incorporated in

f . Additionally, f can be sampled as many times as needed. In other words, the measured

output of the system, i.e. yi , is available for any given input xi . Furthermore, f might only

be partially measured in the sense that the input-output relationship is modified by another

function ϕ such that ỹi =ϕ[ f (xi )] where ϕ is either identity (fully measured system) or some

other function (for example modulus |.|2 function).

I seek to find the input x∗
i that would produce a desired output y∗

i . It is worth emphasizing
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that the experimentalist might only have access to the partially measured system yi =ϕ[ f (xi )]

while the objective is to obtain the desired output in the fully measured system yi = f (xi ). The

problem, in its most general form, can be formulated to minimize an error function L as

follows:

L = min
ξ,ζ

Exi ,yi ,z

[
D[yi , Mζ(xi )]

]
+Ey∗

i

[
σ[Mζ(Aξ(y∗

i )), y∗
i ]

]
(3.1)

where Mζ :Cn×l →Cm , referred to henceforth as the Model, is a differentiable representation

of f parameterized by ζ and Aξ :Cn×m →Cn , referred to henceforth as Actor, is a mapping that

produces the input that feeds the Model Mζ. The first term of the loss function represents the

minimization of the distance D between sampled output yi (experimentally) from yi = f (xi )

and the output of the Model Mζ. This ensures that the forward model is close to the real

forward propagation. The second term of Eq. 3.1 represents the minimization of the distance

σ between the desired target y∗
i and the predicted output of the Model Mζ given the output of

Aξ. The two-term loss function L is then jointly optimized with respect to the parameters ζ

and ξ. I denote the first term in Eq. 3.1, as the Model’s loss LMζ
and the second term as the

Actor’s loss LAξ
.

3.2.1 Forward estimator learning

The forward mapping Mζ is maximum-likelihood estimator of the outputs given the inputs.

The parameters of this function, i.e. ζ are learned in a supervised manner. The forward model’s

loss function in Eq.3.1 can be written as:

LMζ
= min

ζ
Exi∼ρ(x)

[
log[pθ(yi |xi )]

]
(3.2)

where pζ(.|xi ) is the neural network of the forward model.

3.2.2 Phase retrieval for optical system control

The problem at hand involves controlling the forward propagation of light in a multimode

fiber, which can be considered a stochastic physical system because its scrambled output

is slowly time-varying. The objective is to find the appropriate complex input vector of the

system (amplitude and phase of the light), X∗ = {x∗
i } ∈ Cn , that produces a desired target

output, Y∗ = {y∗
µ} ∈Rm (sampled from a desired distribution ρ, for example the distribution of

MNIST dataset [38] or natural images [39]), given that the measurement of the light field is

carried out with a camera which is an intensity measurement, i.e. y∗
µ =

∣∣∣∑i Fµi x∗
i

∣∣∣2
, where x∗

i

(and respectively y∗
µ) are elements of the input (output) vector and Fµi is the complex-valued

transmission matrix.
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Although the problem is essentially a phase retrieval (PR) problem of the system’s input, there

are key differences with conventional PR settings: specifically, in the original PR problem the

function F is entirely known a priori. In the current setting with MMFs, F is not directly mea-

sured and therefore is unknown. Instead, tuples of an arbitrary inputs X and corresponding

outputs Y are available. Secondly, while in the conventional PR, outputs Y (generated via a

teacher model) always belong to the support of F (the domain of all possible outputs that can

be generated by function F ), the target output Y∗ may not belong to the support of F which

requires finding the input that produces the closest output to the target in some metric. The

optimization problem can then be re-written as:

L = min
ξ,ζ

EX,Y

∥∥∥Y−Mζ(X)
∥∥∥2

l2

+EX∗,Y∗
[
‖Y∗−Mζ(Aξ(Y∗))‖2

l2

]
(3.3)

where I choose the l2 norm for the distance metrics in Eq. 3.1.

3.2.3 Training procedure

The training algorithm for the problem at hand is schematically depicted in Fig. 3.2.

Initially neither of the networks (M and A) is trained; hence I start by collecting examples

for training M . These examples consist of random SLM images and their corresponding

experimentally generated output speckle patterns on the camera. It should be noted that the

goal here is to find a subset domain of SLM images that produce a certain class of images

on the output of the fiber. In the beginning, we have no information about such a domain.

Hence, in the first iteration, I choose random SLM images to send through the fiber and

measure the amplitude-only images on the camera. I then, train the neural network M with

this dataset. Essentially, the model M is an estimate of the forward physical light propagation

in the MMF and it is estimated using random images. Once the training of M is complete,

I start training the second neural network A by feeding it with the class of images that we

wish to project through the fiber. The weights of the network M are kept fixed. A learns the

mapping from the output amplitude images on the camera to the proper SLM images that

obeys the physical propagation rules of the MMF which is modeled by M . By the end of the

first iteration (i.e. training A and M), the domain of the output SLM patterns generated by

network A must have moved closer in some metrics (Euclidean distance, for example) to the

domain of SLM images that produce the desired images at the output of the fiber. In a second

iteration, the SLM images that were produced by the network A in the previous iteration are

loaded experimentally on the physical SLM and a new set of output images are captured by

the camera. The network M is then retrained with this new dataset. Once completed, the

training of A is carried out in the same way as in the first iteration. Depending on the quality

of images that are projected through the fiber, this process could be repeated a few times. It is

expected that after each iteration, the domain of the SLM patterns generated by A gets closer
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Figure 3.2 – The projector network consists of two subnetworks: the Model (M) and the Actor
(A). Once trained, the subnetwork Actor accepts a target pattern desired to be projected at
the output of the system (here an MMF) and accordingly generates a control pattern (here an
SLM image) corresponding to the target pattern. The role of the subnetwork Model is to help
the Actor come up with control patterns that are bound by the physics of light propagation
through the fiber. NN, neural network. b, The training procedure is carried out in three steps.
(i) A number of input control patterns are sent through the system and the corresponding
outputs are captured on the camera. (ii) The subnetwork Model is trained on these images to
learn the mapping from the SLM to camera, so the Model is essentially learning the optical
forward path of light starting from its reflection from the SLM, propagation through the MMF
and finally impinging on the camera. (iii) While the sub-network Model is being fixed (to
back propagate the error), the Actor is fed with a target image and is asked to produce an SLM
image corresponding to that target image. The Actor-produced SLM image is then passed
to the fixed subnetwork Model now mimicking the fiber. The error between the output of
the Model and the target image is backpropagated via the Model to the Actor to update its
trainable weights and biases. c, The test procedure is carried out by feeding the target image
to the trained subnetwork Actor and acquiring the appropriate SLM image corresponding to
that target image and sending it through the system.

to the domain of SLM images that produce the desired target images at the output of the fiber.

We note that the training of A, i.e. mapping from amplitude patterns to SLM images, cannot
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be straightforwardly carried out because no label (ground truth SLM images) for target output

images exists a-priori (training cannot be performed in a supervised manner in which ground

truth labels are available beforehand). Therefore, the performance of A gets better by working

synergistically with M to generate SLM images that result in output amplitude images with

higher fidelities.

3.3 Experiments

I apply the proposed method of section 3.2 to obtain the required input of the MMF system

for producing the target outputs. I first assume the inputs X∗ are purely real-valued (con-

strain solutions to be amplitude-only). It is worthwhile to visualize a random input and its

corresponding output. Fig. 3.3 depicts such examples.

Figure 3.3 – An example of a random input to the system and its corresponding output.

I seek amplitude-only solutions to produce the target outputs of the system. Fig. 3.4 shows

examples of projected images at the output (on the camera). The fidelity plot in Fig. 3.5

demonstrates the algorithm’s convergence speed in finding an appropriate solution for the

system.

Next I loosen the amplitude-only constraint on the sought-after solutions and seek inputs

with both amplitude and phase information. This requires changing the architecture of the

network. Details of the network architecture and optimization scheme is further explained in

the Appendix B.

I train the networks with 20000 greyscale images of handwritten Latin alphabet characters from

EMNIST as targets. Figure 3.6 shows examples of experimental outputs of the system obtained

by sending the algorithm-found solutions to the system. For the sake of comparison, outputs

obtained by the gold standard transmission matrix method [26], an example of methods that

require full complex field measurement and control of phase information, are also shown.

Without any fine-tuning, the network trained with Latin characters is used directly to project

a different class of images. Examples of these projected images are shown in Fig. 3.7. These

results demonstrate the generalization ability of the neural network and show that it can

extend its ill-posed inverse problem ability to images never seen by the network in the training

step. Comparing the projection performance of the amplitude-only and complex control

patterns shows a roughly 10 percent improvement.
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The performance of the neural network in inferring the required input is correlated with the

complexity of the target images with which the network is trained with. The Latin alphabet

images, used for training the network are of sparse nature, having a constant zero background

and a greyscale feature centered in the middle of the image. Therefore, it is expected that

target images with richer contexts will be more challenging. For example, one iteration was

enough to project Latin images using complex modulation while the more complex images

in Fig. 3.8 needed several iterations (on average 5). I explored this by using my approach to

project continuous grey-scale natural-scene-like pictures. Examples of these are shown in Fig.

3.8. The projected images (for three colors corresponding to three wavelengths red, green,

blue, three-channel RGB and the superposition of all three as one channel) are also depicted.

The complexity in the target images makes the training difficult, but the two networks M

and A are able to provide the appropriate input for producing images of natural scenes with

fidelities on par with those of full-measurement schemes.

Table 3.1 summarizes the projection fidelity of the neural network approach and that of the

transmission matrix approach for various types of target images.

Figure 3.4 – Examples of images projected onto a camera at the output of a MMF (wavelength
780 nm) are shown. The network is forced to generate amplitude-only control patterns. These
patterns are then sent to the system and the outputs on the camera are captured. The network
is trained with target images of Latin characters but it is also used to predict control patterns
for target images from different categories. The visible background of the projected images
accounts for the lower signal to noise ratio of the images (also lower fidelities) as compared
with that of the complex value control patterns. This is attributed to missing out on controlling
the phase of control signals.
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Figure 3.5 – Plot of the convergence speed for amplitude-only input controls in Fig. 3.4

Figure 3.6 – Examples of images projected onto a camera at the output of an MMF are shown.
Projection of images is carried out for three different wavelengths (633, 532 and 488 nm)
corresponding to red (R), green (G) and blue (B), as well as the superposition of those colours
either as a three-channel RGB image or as a one-channel incoherent image produced by
summing R, G and B. The neural network is trained with the EMNIST dataset as target images.
The appropriate SLM patterns generated by the network are sent to the system to obtain the
desired targets on a rectangular area (200 × 200 pixels) on the camera (corresponding to an
area of 19 × 19 µm2 on the output facet of the fiber). This area is shown as a dashed box on
one of the examples. Scale bar, 5 µm. The fidelities of the projected images with respect to the
corresponding target images are shown. The apparatus for this experiment is depicted in Fig.
B.1. We note that each color was trained and tested separately.

3.4 Extension of the forward model to probabilistic models

The forward model proposed in the previous sections was trained to maximize the proba-

bility of the outputs given the inputs. Another useful training framework is to learn a latent
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Figure 3.7 – Examples of images projected onto a camera at the output of an MMF are shown.
The control patterns that produce the output images on the camera (the incoherent summa-
tion of red, green and blue wavelengths as well as the three-channel RGB images) are generated
either via a neural network trained on the dataset of Latin alphabet characters (different from
the category of target images) or via the transmission matrix full measurement approach (TM).
The generalization of the network is demonstrated in its ability to provide control patterns for
target images that come from a different class to that of the images originally used for training.
Scale bar, 5 µm.

representation of the inputs and outputs data that relates the input xi to the output yi by:

xi → zi → yi [62]. This representation may be useful as the underlying rule governing the

system’s propagation is captured by the latent representation in a lower dimensional space.

For example, if the input-output data are noisy, the latent learning framework provides better
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Figure 3.8 – Continuous grey-scale image projection. Examples of natural-scene continuous
grey-scale target and experimentally projected images being sent through the MMF and
captured on the camera for colours red, green, blue and the three-channel RGB as well as
the superposition of all three colours in one channel (sum) are shown. a, Liz (Elizabeth)
Taylor—1964. b, Mickey Mouse—1981. c, Marilyn Monroe—1967. d, Portrait of Albert Einstein.
Scale bar, 5 mm. Credit: a–c, Andy Warhol Foundation for the Visual Arts, Inc./2020, ProLitteris,
Zurich; d, Bachrach/Getty Images

Dataset NN TM Avg-NN Avg-TM Var-NN Var-TM

Latin-alphabet 0.95 0.981 0.924 0.969 3.7 0.8
Digits 0.952 0.982 0.925 0.971 3.5 0.7
Random sketches 0.866 0.839 0.903 0.971 3.9 1.2

Table 3.1 – Neural network and transmission matrix image projection average fidelities for var-
ious datasets. Avg-NN and Var-NN denote the mean and variance of the projection correlation
using the neural network method. Avg-TM and Var-TM denote the mean and variance of the
projection correlation using the holographic transmission matrix method [26].

predictions as noise cannot be fitted to the latent space and is rejected by the model [63]. In

what follows, I first explain how to construct such a model and then use the developed model

for the MMF dataset.

3.4.1 Probabilistic forward estimator

The forward model Mζ introduced in section 3.2.1 can be modified based on the generative

probabilistic VAE models. The reason for this choice of model is two-fold. First, forward

models that are fundamentally stochastic in nature (see example 2 in Results section) could be

better represented by a probabilistic model rather than a ML estimator trained in a supervised

learning manner. Additionally, even if f is deterministic, noise sources incorporated into
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f make it stochastic in practice. Second, the generative sampling feature of VAEs could

be conveniently used to demonstrate how the correct control input x∗
i (that is required to

generate y∗
i ) could be obtained iteratively.

The VAE Mζ consists of two networks, an encoder and a decoder. The encoder is trained

to transform input xi conditioned on the system’s output yi onto the latent vector z that is

enforced to be close to a normal distribution of zero mean and standard deviation unity N (0, I).

That is to say, each variable zi in the latent space has zero mean and standard deviation one.

The weights of the encoder network effectively learns the probabilistic conditional distribution

q : qΦ(z|yi ) parameterized by Φ. The decoder, on the other hand, takes the latent vector z

drawn from the normal distribution parameterized by the encoder outputs µenc and σenc ,

i.e. N (µenc ,σenc ) using reparameterization trick (z = µenc + ε¯σenc where ε is a sample

from normal distribution with zero mean and unit variance) [63]- to generate the output ŷi ;

effectively learning the conditional distribution pθ(yi |z, xi ) parameterized by θ. The training

of the VAE that models the forward Model Mζ is carried out by optimizing the following loss

function w.r.t. ζ : {θ,φ} [63].

LMζ
= min
ζ:{θ,φ}

−Exi∼ρ(x)

[
Ez∼qφ(.|yi ) [log[pθ(yi |z, xi )]]−βEyi∼ρ(.|xi ) [DKL(qφ(z|yi ) ||N (0, I))]

]
(3.4)

where β is the weighting factor between the two terms in the loss function, ρ is to denote a

general purpose probability distribution and KL is the Kullback–Leibler divergence, a measure

of how one probability distribution is different from a second one [64]. Note that, in the first

term of Eq. 3.4, the logarithm of the probability density function is used because it is easier to

compute the derivative of a sum than a product (log of a product is the sum of the log).

We note that setting β to zero in the forward model’s loss function is equivalent to letting go of

the optimization over the posteriors’ latent variables which effectively becomes a maximum

likelihood estimator of the forward model. When beta is not zero, the second term in the

loss function can be treated as a regularization. To minimize the loss, the second term needs

to be as small as possible (KL divergence is always a positive number). Enforcing the latent

space to be normally distributed with zero mean and standard deviation one is equivalent to

minimizing the KL function. Therefore, z solutions from the normal distribution with zero

mean and unit standard variance are encouraged. On the other hand, these solutions cannot

produce the ground truth outputs, resulting in a large loss from the first term. Therefore, the

model opts for solutions that are close to solutions from a normal distribution with zero mean

and unit variance to the extent that the output could be accurately predicted by the input.

This allows the model to learn a simplified (low-dimensional) representation of the inputs

that is necessary for predicting the outputs.
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Figure 3.9 – Forward model architecture. In the figure, the target output is denoted by y∗

3.4.2 Training algorithm

A sketch of the networks and gradient flows is depicted in Fig. 3.9. Algorithm 1 in Appendix B

presents the learning procedure for the system control in mathematical form. The training is

similar to that of the Maximum-likelihood in Fig. 3.2 and involves in computing the variational

updates of the forward model followed by training the backward model.

I again apply this algorithm on the problem of finding the appropriate input for controlling

the output of the randomly scattering media of MMFs.

3.4.3 VAE forward model for phase retrieval control

I tested my algorithm with target outputs Y∗ sampled from MNIST dataset [38]. I used 20000

EMNIST samples for training and 1000 for test. Fig. 3.10 plots the empirical l2 norm as well as

2D Pearson correlation between the system’s outputs and targets versus the iteration number

I in Algorithm 1.

It can be seen that the algorithm reaches a 2D correlation of 0.83 which is close to the value

(∼ 0.9) obtained with the gold-standard full-measurement techniques such as described in

[26] and around the same value obtained by the Maximum-likelihood model reported in Fig.

3.5. We note that this is the upper bound of the problem because in [26], the experimentalist

has access to full information, i.e. phase and amplitude of the system’s output (the same

problem but without the modulus |.|2).

3.5 Discussion

Fully-variational vs. Maximum-likelihood Comparison of the results of amplitude-only

input control task carried out by the fully-variational method in Fig. 3.10 and maximum-

likelihood one in Fig. 3.5 shows that both approaches perform fairly similarly. Therefore,
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Figure 3.10 – Performance metric of the algorithm (loss: left axis and Pearson correlation: right
axis) versus iteration number for phase retrieval task. The shades show the standard deviation
of the results in a three-fold repetition of the experiment.

for this particular task, perhaps the maximum-likelihood method is advantageous over its

counterpart as the former is less computationally intensive. The benefit of learning latent

variables of a physical system becomes apparent when they are directly used to infer particular

features of the system required used some tasks or the data are severely corrupted by noise. I

left the analysis of the latent-variables in the MMF’s forward model for future work.

Convergence speed The convergence speed of the proposed algorithms depends on the

complexity of the target images, the modulation scheme (amplitude-only or complex value)

and the extent by which this modulation can be implemented experimentally, and finally the

rate at which the system changes over time. As it is shown in Fig. 3.5, it can be seen that the

number of iterations required to achieve a certain fidelity is higher when an amplitude-only

solution is used. However, the fidelity of the amplitude-only solutions are lower that that of

the complex value. This is attributed to missing out on controlling the phase of control signals.

Robustness The MMF system is also prone to multiple time-dependent processes including

mechanical perturbations, temperature change, instabilities associated with drifts in opti-

cal power and of the source laser wavelength, among others, which influence the learning

trajectory. In a first step to investigate the robustness of the projector algorithm, I use the

measured transmission matrix of the system (measured once) to virtually project the control

patterns provided by the algorithm. Doing this, we are able to obtain the resulting fiber’s

outputs without sending them directly through the fiber. This is useful as it allows us to have a

fixed replica of a experimental system that is not perturbed by external noises and is stable in

time. The projector network is then trained, as before, with this new dataset. After training,

the network is run to produce the SLM patterns that correspond to a user-defined output. The
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patterns are then loaded onto the SLM of the experimental system. The fidelity trajectory of

the projected images is shown in Fig. 3.11c (solid lines) for three colours (red, green, blue).

It can be inferred from the plots that the fidelities of the virtually projected images converge

to slightly higher values than those of the experimentally projected images (filled circles Fig.

3.11 c). The lower fidelity of the latter is because of the degradation due to time variation

and non-perfect modulation scheme. The transmission matrix used for projecting the SLM

patterns was also remeasured after each round of training to take into account the system’s

variation with time (dashed lines). Hence, although the system is changing over time, it is

effectively being corrected. Interestingly, the close overlap between the trajectory of graphs

(dashed lines) and the experimentally projected images (filled circles) shows that the neural

network approach is automatically compensating drifts but without the need to continuously

measure and invert the matrix, as is required in the transmission matrix approach.

Figure 3.11 – a, the fidelity trajectory of experimentally projected images versus the training
iteration number is plotted for all three colors. b, while training, the instability of the system
(estimated as the correlation between instances of the system’s response to a constant input
signal being sent through the system over and over) is monitored over time (If the system is
time-invariant, then the correlation plot holds a value of one continually). c, degradation
in the fidelity of projected images due to the non-perfect modulation scheme as well as the
variation of the system with time is shown by using the experimentally measured transmission
matrix (TM) to forward the neural network’s predicted SLM images for all three colors. The
fidelities in part (a) are redrawn in part (c) for comparison. As observed, the experimentally
projected images (solid circles) closely follow the track of time variant TM-based relayed
projections (dashed lines) and both eventually fall below the track of time-invariant TM-based
relayed projections (solid lines). In the former, what is taken out from the learning algorithm
is only the effect of modulation scheme, whereas in the latter, it is the lumped effect of time
variation as well as the modulation scheme. The ripples in the trajectory of the graphs in (c)
(dashed lines) show that the network is continuously trying to correct for the drifts.
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3.6 Related works

As opposed to the inference problem of estimating the input of the system from noisy sensory

outputs in experimental disciplines such as microscopy [1], optical tomography [53] and

neuroscience [65] which is a fairly well-established technique, learning methods for control

applications in these fields have yet to mature. Closed-loop techniques based on deep net-

works have been proposed for a number of applications, such as for brain neuroscience [66]

wherein authors control the activity of individual neuronal sites in V4 area by optimizing single

input stimuli. Likewise, for optical turbid-medium imaging, authors have used ML-based

estimators for controlling the optical fields [67]. As opposed to the previous works, I propose

joint learning of the forward and backward models of the system with VAEs to implicitly

impose compatibility of the sought-after solutions with the underlying physics of the problem.

The latter, in essence, is akin to technique of untrained neural networks [59], [60], [61] in

denoising.
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4 Information bottleneck of the vision
system

Some of the material presented in this chapter can be found in the following papers:

• B. Rahmani, D. Psaltis, and C. Moser, “Variational framework for partially-measuredphysical

system control”, 4th workshop of Machine Learning for Physical Sciences, NeurIPS, 2021.

• As of this moment, another paper from materials presented in this chapter is in prepara-

tion.

4.1 Introduction

A fundamental challenge in neuroengineering is finding the proper input to a sensory or motor

system that yields a desired functional output. In an unimpaired system, this is achieved

naturally by the underlying physiological circuit. For example, the vision system is an intercon-

nected network of cells starting from light detection and transduction at the photoreceptors

in the retina all the way to the visual cortex. This system, depicted in details in Fig. 4.1, is

extremely complex and nonlinear. When an image is formed onto the photoreceptors, the

electrical neural activity is processed by several layers of neurons within the retina and a train

of electrical neural spikes is sent to the visual cortex via the optic nerve producing a perception

of the visual scene (Fig. 4.2a). A disease may break this flow of information at one point while

the rest of the circuit remaining intact. In this case, prostheses could be used to restore the lost

functionality. For example, when photoreceptors do not function, a visual prosthesis is used

in a diseased retina to artificially stimulate neural cells in the retina. The current technology

in visual prosthesis consists of an array of stimulating electrodes. The number of stimulating

electrodes is ∼ 4 orders of magnitude lower than the number of photoreceptors (120 million

vs 10 thousand artificial electrodes). Given this fact, one can ask the question: Is it possible to

reduce the complexity of the input stimuli and still obtain the same functional behavior? In

other words, what is the reduced spatiotemporal stimuli that elicits the same response as that

of the higher-dimensional original input? (Fig.4.2d). In this case, finding the proper input to
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the system is an extremely ill-posed problem. It is a similar problematic as the control of light

in a multimode fiber as seen in chapter 3.

Figure 4.1 – The multi layer structure of the retina neural network. Retina Ganglion cells
are located near the inner surface (the Ganglion cell layer) of the retina of the eye. Image is
adopted from [68].

In this chapter, I propose a new method for characterizing the response of the retina to

optical stimulation. In particular, motivated by the hypothesise about the redundancy of

the information in the visual stimuli that is relevant for explaining the retina responses, I

propose a model that is able to extract principal features of the complex stimuli-responses

distribution that are sufficient for predicting the retina responses given the input stimuli

(Fig. 4.2c). This model, inspired by the Deep Variational Information Bottleneck (DVIB)

model [69], is a variational approximation to the original Information Bottleneck framework

of Tishby et. al. [70]. The objective of the IB is to obtain a squeezed representation of the

input source that preserves maximum information about the output response. As evident,

the IB objective is conveniently aligned with that of our retina response modeling. The DVIB

model assumes the IB’s squeezed latent codes to be independent and identically distributed.

This is obviously a poor assumption for the retina dataset that consists of time-series input

images and output responses. Modeling the data sample correlations in time may provide

a better model. Gaussian process priors are a good candidate for modeling the data’s time

correlations which happen to be conveniently integrable with the IB model. Accordingly, I

propose a variational model based on the IB that uses a Gaussian Process prior to model the

retina dataset. I subsequently use this model and present an adaptive stimulation algorithm

which employs the prior data and the abstract representation of the IB latent space to generate

redundancy-reduced stimuli that elicits output responses that are highly correlated with the

original responses elicited by the complex input stimuli.

My contributions in this work are:

• A probabilistic model: I propose a new model for the Retinal Ganglion Cells (RGCs) spike
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train in response to the complex natural visual stimuli using the IB framework. The model

integrates a Gaussian process prior into the IB latent code that can learn temporal dynamics

of the data in a lower dimension space. This model outperforms the state-of-the-art models

of the retina responses.

• closed loop stimuli optimization: Using the proposed model allows only principal features

of the stimuli to pass the bottleneck, the original input stimuli is pruned so that it contains

the minimum information required for producing the RGC responses originally elicited by

the complex input stimuli. The resulting reduced-dimension optimized stimuli is used for

the next round of measurements in an iterative process.

IB is a well-established framework that has shown to work for various applications [69]. In

this work, I propose a modified version of IB by incorporating data correlation as prior using

Gaussian processes (GP) IB-GP.

In the following, I start by introducing the general setting of the problem and our model in

section 4.2.1. The closed loop stimuli optimization procedure is outlined in 4.2.2. Experiments

are presented in section 4.3. Related works are presented in section 4.4.

4.2 Method

Figure 4.3 depicts the main structure of the retina forward model. The optical stimuli X,

denoted on the left, are 2-dimensional images entering the network in batches. Each batch

consists of T images, i.e. XM ,1:T . As seen, the images in a batch are similar and hence have

a high correlation with one another. The reason for this is two-fold. First, while observing a

scene, images that are captured by the retina are naturally very similar. Second, during fixation,

eyes undergo dynamic movements which shift the center of the gaze. To simulate this, images

used during experiment have been jittered. Images of a batch are then encoded by the encoder

network into a lower dimensional space. For illustration purposes, in the figure, this space

is made of three variables z1, z2, z3. These latent variables are then decoded by the decoder

into the retinal responses YN ,1:T . The construct of the networks (encoder to low-dimensional

space) allows us to enforce particular assumptions on the underlying biology/physics of the

problem. Accordingly, we can take advantage of the low dimensional space to enforce the

correlation constraint on the data. Doing this in the lower dimensional space requires much

less computation than in the higher dimensional space of the original stimuli (three latent

variables vs. thousands of image pixels). The correlation is constrained using GPs. In a GP

model, data is assumed to be drawn from a multi-variate normal distribution with a particular

mean and covariance. The covariance of this distribution reflects the properties of the data.

the element ki , j of the covariance matrix contains the relation between the i -th and j -th

data. Hence, on-diagonal elements of the covariance matrix must have the highest correlation

(unity). The farther two elements are in time, the lower their correlation is. An example of

such covariance matrix is provided in the Fig. 4.3.
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Figure 4.2 – The flow of information propagated through the visual system starts from the
image impinging onto the retina. The retinal output is a spike-train at the Retinal Ganglion
Cells (RGCs), which is transmitted to cortical neurons to be further processed. The model of
the retinal processing will be evaluated ex-vivo with retinal explants. The end-to-end learning
from the input image to the RGCs is the ex-vivo learning phase. (B, C, D) depicts the process
of acquiring the required input control pattern eliciting the same neuronal activity as that of
a naturally stimulated pattern. The input-output data is first collected (B) and the forward
model of the system is constructed. The stimuli optimizer then explores among reduced-
dimension control patterns and chooses one pattern that when fed to the Model network
produces the largest correlation with the desired target spikes (C). Once trained, the optimizer
network is fed with an arbitrary high-resolution image to produce a control pattern that is
compatible with the resolution of the prosthetic device (D).

In what follows, I explain the mathematical derivation of the forward model’s encoder and

decoder and discuss the prior on the latent variables.
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Figure 4.3 – Retina forward model structure

4.2.1 Problem setting

Input stimuli dataset X ∈RM×T consists of T consecutive spatial inputs X = [xM ,1, xM ,2, · · · , xM ,T ]

that are projected in the retina at a constant rate to elicit electrical responses of the form

Y ∈NN×T , where Y = [YN ,1, xN ,2, · · · , xN ,T ] and N denotes the number of RGCs.

With the above assumptions, I formulate the problem as finding the latent variables Z ∈RL×T

that have maximal mutual information I (Z ,Y ) with targets Y in the Markov setting Y X

Z. We note that Z is comprised of T consecutive data points, i.e. Z = [zL,1, zL,2, · · · , zL,T ]. Z

is simultaneously constrained to have minimal mutual information with X. Therefore, the

constraint optimization problem can be written as

LI B = max
ζ

[
I I B ] where I I B = I (Z,Y)−βI (Z,X) . (4.1)

ζ denotes the parameters of the model and β is used as a trade off to adjust the amount of

reduced and preserved dimensionality of Z. To obtain these latent variables, I approximate

their posterior distribution with a parametric stochastic encoder pφ(Z|X).

Due to the spatio-temporal nature of the data, assumption of data independence along the

time dimension is not valid. The same is true in the latent space. To account for this fact, I

assume a posterior of the form:

pφ(Z|X) =
L∏

l =1
N (zl |µl

φ,Σl
φ) (4.2)
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where zl denotes the l-th latent vector of size T . In Eq. 4.2, µl
φ and Σl

φ are the outputs of

the encoder neural network. These two outputs estimate the mean and variance of the pφ
distribution. I choose the structure of the covariance of the multivariate normal distribution

in Eq. 4.2 so as to reflect the time correlations of the data. Hence, similar to previous work [71]

[72], I construct the Σl
φ in the model by the product of bidiagonal matrices. Intuitively, the

non-zero adjacent elements of the covariance matrix (bidiagonal) should help to capture the

temporal correlations of the consecutive data samples.

[Σl
φ]−1 = VT

l Vl + I where (4.3)

[Vl ]ττ′ =

v l
ττ′ τ′ ∈ {τ,τ+1}

0 otherwise

I note that the low-rank GP kernel assumption makes the computation required for drawing

samples from q linear in time [71].

Expanding the IB mutual information function in Eq. 4.1 (details in the Appendix), we have:

I I B =
∫

dY dZ p(Y,Z) log
p(Y|Z)

p(Y)
−β

∫
dX dZ p(X,Z) log

pφ(Z|X)

p(Z)
(4.4)

Although all terms in the RHS of Eq. 4.4 are fully defined, computing marginal distributions

p(Z) and p(Y|Z) may be intractable. I use a variational approximation for p(Y|Z) that is

parameterized with θ. On the other hand, the prior on the latent variables, i.e. p(Z), is

modeled using GPs. In particular, I assume a GP prior on Z defined as a multivariate normal:

ρ(Z) =
L∏

l=1
N (zl |0,K) (4.5)

where ρ is the variational approximation for the prior and K is the covariance function that

models temporal covariances in the latent space. In more details, the covariance between τ-th

and τ′-th samples is computed as Kττ′ = K (τ,τ′) where K is the kernel function.

Substituting the variational approximations for the intractable marginals into Eq. 4.4 and

using the fact that the Kullback Leibler (KL) divergence is always positive, I obtain a lower
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bound for the IB objective:

I I B ≈ 1

T

T∑
t=1

[
Epφ(Z|g (x1:τ(t )))[log qθ(yt |Z)]−βDK L[pφ(Z|g (x1:τ(t )))||ρ(Z)]

]
. (4.6)

4.2.2 Closed-loop stimulation

In this section, I take advantage of the model developed in the previous sections to devise an

algorithm that uses the prior recorded data to optimize the stimulation by iteration, in a closed

loop (Fig. 4.4). Specifically, I assume the latent variables of the learned model, henceforth

referred to as the forward model, have captured the principal rules governing the underlying

biological system (Fig. 4.4)a. Now, I intend to find a transformed version of the original input

stimuli that yield a set of latent variables that produce the most correlated responses with the

original target responses in the subsequent round of measurements. Of course, the original

stimuli themselves are one set of solutions that produce the highest correlation (unity) with

the original responses. However, this is not a useful transformation. Instead, I am interested

to obtain the best transformation subject to a constraint on their complexity. Hence, I define

a parametric function fξ : RM×T → RM×T that maps the complex original stimuli X into the

transformed stimuli X∗. Passing X∗ to the forward model, the parameter of the mapping

functions, i.e. ξ, are optimized so as to the forward model’s output responses Y∗ are the

most correlated with the original responses Y. Denoting the original stimuli and responses as

Xorig := X and Yorig := Y, the objective function reads as:

min
ξ

Jadap = D(Yorig,Y∗)

where:

X∗ = fξ(Xorig), Z∗ ∼ pφ(.|g (x∗
1:τ(t ))), Y∗ ∼ qθ(.|Z∗). (4.7)

Therein, pφ and qθ are the encoder and decoder of the forward model trained on the prior

data, D is a distance metric between the original target outputs and the predicted responses

of the forward model. Finally, the optimized stimuli for subsequent measurements can be

obtained by following the procedure: (1) map the original stimuli to the optimized stimuli

using mapping fξ, (2) encode the new input X∗ to the posterior Z∗, (3) decode the latent

variables, (4) construct the metric D and backpropagate the error to fit fξ, (5) once converged,

use the mapping function to obtain the optimized stimuli X∗ (6) send new inputs X∗ to the true

biological system and observe the new true system outputs, (7) to repeat the procedure, use

the new dataset X̂, Ŷ to fine tune the forward model and repeat the procedure. This procedure

is depicted in Fig. 4.4.
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Figure 4.4 – Detailed schematic of the forward and stimuli-optimization models of the system.
(A) Learning the forward mapping of the system. (B) Learning the stimuli optimization so that
the reduced-dimension stimuli elicit the same responses as those of the high-dimensional
ones (blue versus black RGC responses in B). Convolutional architecture of neural networks
well resembles their biological counterparts (as depicted activation functions resemble On/off
bipolar cells [14]).

4.3 Experiments

I focus on applying our model to the time-series dataset containing the 2D train of input

stimuli (images) entering the vision circuit of an example subject and the corresponding

elicited count responses of a group of neurons. Specifically, I use a real-world experimental

dataset Natural-small which contains natural scene images as input stimuli and spike trains
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Table 4.1 – Performance of various methods in the literature used for modeling of the retina
network. Pearson correlation (higher better), KL (lower better), Negative Log Likelihood (NLL)
(lower better)

Natural-small Natural-small-smooth

Model NLL KL Pearson Pearson

Feedforward CNN [14] 0.095 - 0.322 0.416
IB-Disjoint 0.087 3.279 0.396 0.494
IB-GP 0.089 1.672 0.375 0.475

from nine RGCs in Salamander [14] I.

I start with the end-to-end modeling of the forward path of information transmission through

the vision circuit. I compare our proposed model against the maximum likelihood-trained

CNN baseline and show that it can consistently outperform the baseline method. I attribute the

superior performance of our model to the reduced redundancy of latent variables constraint

to learn only the principal features necessary for generating target outputs from source inputs.

4.3.1 Methods considered

Below, I summarize additional methods including some variations of the original proposed

method that I used for the task.

• Maximum likelihood feedforward CNN is used as a comparison baseline. I use the same

CNN network that was shown in the previous work to obtain state-of-the-art results on

larger version of Natural-small dataset [14]. The predicted outputs of the network are the

averaged maximum likelihood estimation of the targets given the inputs. To account for the

variability in retinal spiking, artificial noise is injected into the model during optimization.

• IB-Disjoint optimizes the objective from Eq. 4.6 using the same training procedure as that

of the original method. The difference lies in that the IB-Disjoint assumes latent samples

are temporally independent. Accordingly an isometric Gaussian distribution is employed as

the prior in Eq. 4.6. This model is akin to the standard VAE (no latent GP) in which samples

in the data and latent space are assumed to be independent.

4.3.2 Forward modeling

I used the models outlined above to fit the data pairs X and Y. Natural-small dataset contains

359000 input-output samples in the training set, of which 20% was randomly chosen for

II have made my own prototype experimental apparatus for obtaining retina dataset of Rat that is still to be
tested. However, all results shown in this chapter are from Salamander dataset [14].
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validation. The test set contains 5000 averaged repeated trials of novel stimuli. We note that

the outputs (spiking responses) were binned at 10ms. I also build a preprocessed version of the

dataset in which the outputs are smoothed using a Gaussian filter with a standard deviation of

10ms.

To account for the discrete nature of the output responses (count time series), I employed a

Poisson regression model for the decoder, i.e. qθ(yt |Z) = Po(yt | fφ(Z)) where fφ is the paramet-

ric network. The architecture of networks and the training setup is explained in greater details

in the Appendix C.

I report the models’ normalized negative log likelihoods on the ground truth data and the nor-

malized KL divergences between the latent posterior and the prior. I interpret the latter metric

as a measure of reduced redundancy or abstraction in the data representation. Moreover, I

use the Pearson correlation [73] between the ground truth data and the networks’ prediction

as another metric for evaluating the performance of the models. Table 1 reports on the results

of our analysis.

4.3.3 Adaptive stimulation

As we saw in the previous sections, the IB framework by construction is able to learn an

abstract representations of the joint distribution of the input stimuli and the target responses.

These representations were in turn used to generate transformed stimuli that elicited re-

sponses fairly correlated with the responses of the original stimuli. In this section, I use the

adaptive stimulation procedure to optimize the stimuli based on the feedback from previous

measurements. To show the effectiveness of the proposed method, I used simulated data to

allow for multiple repetitions of closed loop procedure comprising of stimuli optimization

and evaluation. Details for generation of simulated data is discussed in the Appendix. I used

the IB-GP model as the forward model and optimized the stimuli in a three phase closed-loop

experiment.

Fig. 4.5 Plots the correlation of the responses elicited by the optimized-stimuli with those

elicited by the original stimuli at each phase of the closed-loop experiment. It can be seen

that the algorithm almost reaches the maximum possible performance of the system (1D

correlation ∼ 0.3) within three iterations. The latent vector of the forward Model (shown in

Fig. 4.6) is sampled at each iteration and projected to a 2-dimensional (2D) embedding using

t-SNE [74]. The true latent vector distribution required for obtaining the desired outputs is

also shown (orange circles). Examples of the final (iteration 3) reduced-dimensional stimuli

obtained by the proposed algorithm and the original stimuli as well as their elicited responses

are shown in Figs. 4.7 and 4.8, respectively.
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Figure 4.5 – Performance metric of the algorithm (loss: left axis and Pearson correlation: right
axis) versus iteration number for closed-loop stimuli optimization task. The shades show the
standard deviation of the results in a three-fold repetition of the experiment.
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Figure 4.6 – The Latent vector evolution as 2D embedding (blue). Orange dots denote the
latent vector of the true system.

Figure 4.7 – Examples of the optimized stimuli (bottom row) and their original high-
dimensional counterparts (top row). We note the significant reduction of complexity in
the obtained solutions. The boxed area denotes the locations of neurons’ receptive fields.

4.4 Related work

Ensemble response modeling of the retina dates back to the early work by Chichilnisky where

RGCs responses to white noise was captured by averaging the stimuli inducing spikes [75]
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Figure 4.8 – Spike responses of an example neuron elicited by the original and optimized
stimuli in Fig. 4.7

and later on by Pillow et. al. using spatiotemporal filters followed by a single nonlinear unit

[76] [77]. Although successful in explaining some of the nonlinear responses of the retina, the

proposed models could not explain other nonlinear behavior induced by natural visual stimuli.

The first model capable of such computation was first proposed by McIntosh et. al. using

convolutional neural networks (CNNs) [14] [78]. Other efforts for retina response modeling

use other variants of CNNs or training formalism for example by employing recurrent neural

networks [79] to fit the input-output data. On the contrary to our model which maximizes

the probability of the output responses through learning of the posterior of the inputs, all

models above maximize the likelihood of a neuron emitting a spike given the input stimuli in a

supervised fashion (maximum-likelihood setting). To account for the stochastic nature of the

retina responses, authors in [14] added raw noise to the activations of the CNN’s intermediate

layers. This is readily accommodated by the probabilistic latent codes of our IB model.

In the closed loop input optimization literature, our work is related to [67][80][81][66]. In

particular, authors in [66] control the activity of individual neuronal sites in V4 area by opti-

mizing single input stimuli whereas in our work, thanks to the learned latent code of the entire

population of the targeted neurons, all stimuli are optimized together.

In the work of Shah et. al. [80], the RGCs’ responses to electrical stimulation was optimized

by first developing an model for the electrical stimuli and the spiking probabilities and then
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using the model for adaptive stimulation. The model is obtained by parameterizing the spike

amplitude and electrical stimulation threshold by very few parameters and then maximizing

an evident lower bound on the spiking probabilities. Intended for a different application, our

work does not assume any relevant relation between the input stimuli and a property of the

spiking probabilities but instead, the relevant parts of the input for predicting the output is

automatically discovered.
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5 Conclusion and future work

This thesis presents a neural-network based learning framework for solving highly ill-posed

problems to predict a system’s forward and backward response functions. Such an approach

has applications in inference and target-oriented system control in fields such as optics and

neuroscience.

5.1 Summary of the results

The inference for the phase retrieval problem in a MMF was studied. State-of-the-art deep

neural networks were used to retrieve the input information of a MMF using intensity-only

measurements of the output. In particular, I used two variants of convolutional neural net-

works (CNNs). Residual neural networks and VGG-nets. The former network obtained average

reconstruction correlation of nearly 90 percent. I saw that phase-encoded information is more

difficult to reconstruct than amplitude-encoded information.

Conversely, controlling the output of a MMF was then investigated. The proposed method for

this task was shown to find the appropriate continuous space input of a system that resulted

in a desired output, despite the input-output relation being nonlinear, the system being slowly

time-varying and with incomplete measurements of the systems variables and lack of labeled

data required for supervise learning. The proposed approach consists of modeling the forward

and backward propagation of the MMF using two separate neural networks that are trained

jointly. The proposed method was then used to project arbitrary images through the MMF.

The proposed control learning framework was then applied to the retina network to obtain

the simplest visual spatiotemporal control patterns that elicit RGCs spiking responses that are

elicited by high-dimensional stimuli.
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5.2 Future work

In the course of this work, several aspects of data-driven physical system learning were identi-

fied that could be the topic of future work.

Studying the latent space of the variational autoencoder (VAE) model of the MMF in chapter 3

is an interesting future work. We hypothesized that latent variables learn the governing rules of

the system in a lower dimensional space. This should make the system more robust to noise. It

might be that VAEs show better generalization as they interpolate in a lower dimensional space.

This could be useful for imaging with memory effect without the requirement to scan all angles.

The proposed method for controlling the retina spike trains could be extended to primary

cortex level. Additionally, other control methods such as Reinforcement Learning (RL) could

be combined with the redundancy reduction technique of chapter 4.

Feed forward networks that are often used in the construct of forward models work better in

the slowly varying settings (so that the forward model could be updated and used before the

system changes again). Accordingly, I intend to study the use of memory-based RL solutions

based on recurrent neural networks (RNN) and meta-RL solutions that require few data for

rapid training.

Another exciting line of work is to use inverse RL (IRL) methods for better transferability and

generalization. With IRL, it is possible to decouple the goal and dynamics of a control problem

so that the agent could still reach its goal even when the dynamics of the environment have

changed. Comparing a normal vision system with a perturbed one (e.g. when a portion of the

photoreceptors are impaired), the objective is to find a policy that could still reach the goal of

producing the same sensation at the cortex level as that of the normal system. In this setting,

methods based on Max-Entropy and adversarial IRL are beneficial.
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A.1 Experimental setup for data acquisition

The optical setup for the transmission of light through the fiber is depicted in Fig. A.1. The

system here is a step-index (length = 0.75 m) MMF with a 50 µm diameter silica core and a

numerical aperture of 0.22 (1055 number of fiber modes). The inputs correspond to 2D phase

patterns displayed on a phase only SLM, which are then demagnified on the MMF entrance

facet by the 4F system composed of lens L1 and OBJ1. The MMF output facet is imaged onto

a camera. The light source is a continuous wave source at 532 nm with a power of 100 mW,

which is attenuated with a variable attenuator to deliver only 1 mW for the acquisition of the

images. The light source is coupled into a single mode fiber. The light beam coming out of

the SMF1 (object beam) is filtered by the polarizer LP1, collimated by the lens L4 and directed

on the SLM, which can spatially modulate the impinging light. The pattern created by the

SLM is imaged through the relay system (lens L1 and objective lens OBJ1) at the MMF input.

The quarter wave plate (QWP1) before the fiber input changes the polarization from linear to

circular (this polarization is better preserved in step-index fibers). Then, light travels through

the fiber and at the output, an identical relay system (OBJ2 and L2) magnifies the image of the

output and projects it on the camera plane (the QWP2 converts the circular polarization back

to linear) is imaged onto a camera.

A.2 Neural network architecture

Two types of convolutional neural networks, VGG-net and Res-net, have been used for the in-

ference problem introduced in chapter 2. The architecture of the two networks is schematically

shown in Figs. A.2 and A.3.

VGG-net The network consists of 12 blocks, in which the first and the last are the input and

output units that are responsible to encode and decode data to the network, respectively.

The input block maps the grayscale input images (one channel) to 64 channels (stack of
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Figure A.1 – Schematic of the experimental setup for the transmission of light through the fiber.
The pattern created by the SLM is imaged through the relay system (lens L1 and objective
lens OBJ1) at the MMF input. An identical relay system (OBJ2 and L2) magnifies the image
transmitted through the fiber and projects it on the camera plane. Image produced by Dr.
Damien Loterie.

processed images) via a trainable convolutional unit. The middle 10 blocks constitute the

20 hidden layers of the neural network, wherein each block is formed by two convolutional

entities that are individually followed by an element of the rectified linear unit (Relu) with

a mapping functionality Relu(x) = max(0, x). The convolutional layers within each block

take the convolution of the stack of input feature map X q
k using weights W q

k and biases B q
k

complying with the formula X q
k = ConvW q

k
(X q

k )+B q
k , where the subscript k indicates the

layer number and the superscript q = {1,2} corresponds to the first and second convolution

operations in each and every block. I have used only 3×3 convolution kernels. At the output

of each block, an additional Max-pooling unit is considered. Max-pooling units help to avoid

overfitting and therefore are essential parts of the network. These units decrease the widths

and heights of the images passing through them by a factor of two. To keep the dimension

of the images constant throughout the network, additional reshaping units are placed just

before the Max-pooling units. These units reorder the stack of 256 M ×M images into 64

2M × 2M images where M is the size of the image in both dimensions at the time of that

particular operation. The Max-pooling units then downsample the 2M ×2M images back to

M ×M images. The final block is made of a convolutional layer that simply decodes back the

images from 64 channels to the original single-channel grayscale images. The architecture of

the network in this work follows the standard block-structure (Conv-Relu)→(Conv-Relu)→
MaxPool, which is adopted from VGG-Nets (VGG19) [82] and customized by adding the

reshaping units before the Max-pooling units.

Increasing the number of layers or the number of channels (very deep and wide architectures)

adds to the complexity of the network. It is a well-known fact from the generalization theory

in machine learning that more complex networks require more training data to overcome

overfitting. On the other hand, the ability of the network to generalize degrades when shal-

low/thin networks are used. Therefore, the number of hidden layers, herein 20 for the VGG-net

architecture, as well as the number of output (input) channels in the input (output) block, i.e.,

64 channels, is empirically chosen based on a trade-off among the network’s complexity, the
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Figure A.2 – Detailed schematic of the CNN used for training and testing. IB (Input Block),
OB (Output Block), Bi (Block i, where i = 1,2,3, ...,10), Pool (Max-pooling), Reshape (reshaping
unit). The input block maps the input images via 64 convolutional filters. Each middle block
(B1-B10) contains two convolution layers followed by a reshape and max-pooling layer, which
together downsample the widths and heights of the images by a factor of two. A rectified linear
unit (Relu) transform is placed after each convolution unit in the hidden layers. The images
are then mapped to the output channel via the convolution filters in the output block. The
MSE between the labels and the processed images is then calculated and back propagated to
the network to update the learnable variables.

number of training data, and the level of accuracy desired to obtain the optimal results. Addi-

tionally, more complex networks require processing units that are able to do computationally

intensive calculations more rapidly. Therefore, the complexity of the network is also balanced

here with the available hardware power as well as the image output time.

Res-net The architecture of the Res-net CNN is schematically shown in A.3. It consists of

9 blocks; of which, the first and the last are made of a single convolution layer followed by

a non-linear rectified linear unit (Relu) which, respectively, takes one channel (64 channel)

grayscale input images (output images) and maps them to 64 channels (1 channel) of stack of

images. A batch-normalization [83] unit is considered after all convolutional layers throughout

the network and also one at the very beginning of our architecture. I only have used 3×3-
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kernel convolutional layers. The 6 blocks in the middle of the network, known hereafter as

residual blocks 1 to 6, are made of two convolution layers that are both followed by Relus.

The architecture of the network is based on Residual neural networks [84]; hence, a skip

connection is added to the output of the second convolution layer at the end of each and

every residual block and before the Relu. In the case where dimensions of feature maps

after convolutional layers increase (residual block 3), extra zero entries are added to match

dimensions. Max-pooling units with sizes 2×2 and strides of 2 are considered after residual

blocks 1 to 4. In a similar fashion, up-sampling units are added after residual blocks 5, 6 and

block 7. Note that block 7 does not have any skip connections and therefore, is not a residual

bock. I have used the proposed Res-net for the task of output speckle amplitude to input

amplitude and output speckle amplitude to input phase conversions similarly to what I did

using VGG-net CNN. The learning rate is also similar to the learning rate of VGG-net (10−4)

to ensure a fair comparison in terms of the convergence rate and training time for the two

architectures. Comparison between the training time and fidelity number between the two

structures reveals the superiority of Residual architectures for these tasks.

Training Once the images are obtained in the final layer of the CNN (feed-forward step), they

are compared with their corresponding labels in a MSE sense. The MSE in this comparison

that is used for updating the learnable parameters is minimized with stochastic gradient de-

scent. Adaptive moment estimation optimization (ADAM) algorithm [85]. To obtain accurate

results within a reasonable time, I empirically choose a learning rate parameter of 10−4 in the

optimization algorithm and a mini-batch size of 64.
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Figure A.3 – Detail schematic of the Res-net architecture.
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B.1 Experimental setup for data acquisition

The experimental set-up for image transmission through the fibre is presented in Fig. B.1.

Three continuous input beams at wavelengths of 488, 532 and 633 nm are delivered, one at a

time, to the system via a single-mode fibre. The beam entering the system (attenuated to an

average power of 4 mW) is collimated by lens L2 (f = 100 mm) and then directed to the SLM.

The beam spatially modulated by the phase-only SLM (HOLOEYE PLUTO) is imaged on the

input facet of an MMF using a 4–f system composed of L3 (f = 250 mm) and objective (OBJ) 1

(×60, NA = 0.85). After transmission through the graded-index fibre (length L = 75 cm, core

diameter D = 50µm and NA 0.22; corresponding to 1,050 fibre modes for one polarization), the

output field is imaged onto the camera using an identical 4–f configuration. The experimental

set-up for measuring the transmission matrix of the system requires the extra reference path

(shown faded in the schematic). The beam in the reference path is superimposed to the main

path’s beam on the camera via a series of mirrors and a beam splitter. A number of input

patterns (basis vectors) modulated with either phase, amplitude or both are then sent through

the fibre, and their corresponding complex output fields are measured. The transmission

matrix is then constructed using these input–outputs.
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Figure B.1 – Detailed diagram of the optical setup. Control patterns are generated via the SLM,
guided through the fiber and captured by the camera. L1: Aspheric lens, L2: f = 100 mm lens;
L3: f = 250 mm lens; L4: f = 250 mm lens; OBJ1, OBJ2: 60x microscope objective; SLM: spatial
light modulator; M1: mirror; FM: flip mirror; SMF: single mode fiber; MMF: multimode fiber,
BS: beam splitter.

Algorithm 1
Input: Data tuples (xi , yi ) sampled randomly from partially measured system yi = ϕ[ f (xi )], target

outputs y∗
i , K1 and K2 (number of training steps for Mζ and Aξ, respectively), I (number of going

back and forth between training the entire networks and experimenting the obtained solution in

the true system)

Output: The control input x∗
i required for generating y∗

i

1: Initialization Variational parameters ζ : {θ,Φ} and ξ

2: for iter ∈ {1,2,3, ...I } do

3: for i∈ {1,2,3, ...K1} do
4: ζ← ζ−α∇ζLMζ

(xi , yi , z)

5: end for
6: for i∈ {1,2,3, ...K2} do
7: ξ← ξ−α∇ξLAξ (y∗

i )

8: end for
9: Sample new (xi , yi ) from xi ← x̂i = Aξ(y∗

i ), and yi ← ŷi = f (Aξ(y∗
i ))

10: Calculate empirical performance metric 1
N

∑N
i =1σ(ŷi , y∗

i )

11: if System’s desired performance is achieved then
12: End training

13: end if
14:

15: end for
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B.2 Variational Autoencoder training

In the training of the variational Autoencoder, first the forward model Mζ is learned through

optimizing LMζ
in the general loss function in Eq. 3.1 for some number of steps K1 (note the

gradient flow in the sketch). Once done, the backward model Aξ is learned via optimizing the

loss function LAξ
for K2 number of steps (gradients flow through the fixed Model to reach the

Actor).

After K1 +K2 steps, I assess the performance by sampling some targets (x∗
i , y∗

i ) and using the

learned Actor Aξ(x∗
i , y∗

i ) to obtain the system estimated inputs x̂i . Finally, I compute how the

predicted control patterns are performing in the experimental system and reiterate the entire

process this time with the solutions obtained by the backward model and their corresponding

true system outputs as the inputs for training the forward model if the performance is not

satisfactory.

B.3 Neural network architecture

The hyperparameters of the forward and backward networks, optimizers as well as training

epochs is summarized in Table B.1 for both cases full-variational algorithm (case β 6= 0) and

Maximum-likelihood version (case β = 0). Architecture of the networks in each case is also

presented in Tables B.2 and B.3.

As opposed to the fully-variational case where the model network has two units encoder and

decoder, for β = 0 case, I opted to use a single fully-connected unit for the M network (no latent

variable is learned). Also, to allow complex-valued modulation of the inputs and outputs

of the system, so as to be able to closely mimic the complex-valued physical fields entering

the system and hence taking advantage of the higher degree of freedom in shaping the input

fields, the Actor and Model themselves are made of two smaller sub-networks (Areal, Aimag)

and (Mreal, Mimag). The real and imaginary part of the A predict the real and imaginary part

of the input control patterns, respectively. Each part is then sent to the corresponding real

and imaginary part of the M that independently relates the real and imaginary part of the

input field to the output. The training of pair Mimag, Aimag is always carried out separately,

immediately after training pair Mreal, Areal in an identical manner. Accordingly, I only refer to

them collectively as the Actor and Model. Each of the sub-networks has the architecture of a

fully connected neural network, with the Sigmoid activation.

59



Chapter B Appendix for chapter 3

Fully-variational Maximum-likelihood

Optimizer Adam Adam
Learning rate 10−4 10−4

VAE’s β 500/450 -
Latent space dim. 100 -
Train/val/test batch size 20/- /1 32/-/1
Train/val/test batch num. 103/- /103 103/- /103

Table B.1 – Training details

Actor Encoder Decoder

Input 100×100 imgs Input 51×51 imgs Input latent dim. vector
F.C. output 51×51 Sigmoid F.C. output 2× latent dim. no activ. F.C. output 51×51 Sigmoid

F.C. output 100×100 Sigmoid

Table B.2 – Fully-variational network architecture

Actorreal/imag Modelreal/imag

Input 200×200 imgs Input 51×51 imgs
F.C. output 51×51 Sigmoid F.C. output 200×200 Sigmoid

Table B.3 – Maximum likelihood network architecture
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C.1 Information-bottleneck formalism

To obtain a bound on the IB objective, we use the Markov chain constraint and the factorized

joint distribution:

p(X,Y,Z) = p(Y|X,Z)p(Z|X)p(X) = p(Y|X)p(Z|X)p(X) (C.1)

to expand the mutual information terms in LI B = max
[

I (Z,Y)−βI (Z,X)
]
. Henceforth, we use

the stochastic encoder pφ(Z|X) parameterized by φ as an approximation for p(Z|X). Starting

with I (Z,X), we have:

I (Z,X) =
∫

dX dZ p(X,Z) log
p(X,Z)

p(X)p(Z)

=
∫

dX dZ p(X,Z) log p(Z|X)−
∫

dX dZ p(X|Z)p(Z) log p(Z)

=
∫

dX dZ p(X,Z) log p(Z|X)−
∫

dZ p(Z) log p(Z)

(C.2)

where the second term on the RHS of Eq. C.2 is the entropy H(Z). In practice computation

of H(Z) might be intractable (even though P (Z) is well defined). Therefore, a variational

approximation ρ(Z) is used in place of p(Z) such that KL(p(Z),ρ(Z)) is minimal. Therefore,
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with KL(p(Z),ρ(Z)) ≥ 0, we have:

I (Z,X) =
∫

dX dZ p(X,Z) log p(Z|X)−
∫

dZ p(Z) log p(Z)

≤
∫

dX dZ p(X,Z) log p(Z|X)−
∫

dZ p(Z) logρ(Z)

=
∫

dX dZ p(X|Z)p(Z) log
p(Z|X)

ρ(Z)
=

∫
dX dZ p(Z|X)p(X) log

p(Z|X)

ρ(Z)
.

(C.3)

Using the stochastic encoder pφ(Z|X), an upper bound on I (Z,X) reads as:

I (Z,X) ≤
∫

dX dZ pφ(Z|X)p(X) log
pφ(Z|X)

ρ(Z)
. (C.4)

Moving on to the term I (Z,Y), we have:

I (Z,Y) =
∫

dY dZ p(Y,Z) log
p(Y,Z)

p(Y)p(Z)

=
∫

dY dZ p(Y,Z) log p(Y|Z)−
∫

dY p(Y) log p(Y)
(C.5)

where the second term on the RHS of Eq. C.5 is the entropy H(Y). In practice computation

of p(Y,Z) and p(Y|Z) might be intractable (even though they are well defined). From Eq. C.1,

p(Y,Z) is written as p(Y,Z) =
∫

dX p(Y|X)pφ(Z|X)p(X). Additionally, a variational approxima-

tion qθ(Y|Z) is used in place of p(Y|Z) such that KL(qθ(Y|Z), p(Y|Z) is minimal. Therefore, with

KL(qθ(Y|Z), p(Y|Z)) ≥ 0, we have:

I (Z,Y) =
∫

dY dZ p(Y,Z) log p(Y|Z)+H(Y)

≥
∫

dY dZ dX p(Y|X)pφ(Z|X)p(X) log qθ(Y|Z)+H(Y)
(C.6)

With the bounds on I (Z,Y) and I (Z,X), the IB objective reads as:

LI B = max
[

I (Z,Y)−βI (Z,X)
]≥ max

θ,φ

[
I I B

]
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where

I I B =
∫

dY dZ dX p(Y|X)pφ(Z|X)p(X) log qθ(Y|Z)−β
∫

dX dZ pφ(Z|X)p(X) log
pφ(Z|X)

ρ(Z)
(C.7)

As explained in the main text, we assume the joint distribution p(X,Y) is approximated by:

p(X,Y) =
1

T

T∑
t=1
δ(X− g (x1:τ(t )))δ(Y− yt ), (C.8)

which allows the lower bound I I B to be approximated by:

I I B ≈ 1

T

T∑
t=1

[∫
dZ pφ(Z|g (x1:τ(t ))) log qθ(yt |Z)−β

∫
dZ pφ(Z|g (x1:τ(t ))) log

pφ(Z|g (x1:τ(t )))

ρ(Z)

]
=

1

T

T∑
t=1

[
Epφ(Z|g (x1:τ(t )))[log qθ(yt |Z)]−βDK L[pφ(Z|g (x1:τ(t )))||ρ(Z)]

]
(C.9)

Finally, we enforce the Gaussian Process (GP) prior to derive the IB lower bound:

I I B ≈ 1

T

T∑
t=1

[
Epφ(Z|g (x1:τ(t )))[log qθ(yt |Z)]−βDK L[pφ(Z|g (x1:τ(t )))||GPZ(0,Σ)]

]
. (C.10)

Z l ∼N (0,K) ∈RT

C.2 Network architecture and optimization

The hyper parameters of the forward and backward networks, optimizers as well as training

epochs used for training is summarized in Table C.1. Architecture of the networks is presented

in Table C.2.
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Retina stimuli optimization

Optimizer Adam
Learning rate 10−4

VAE’s β 500/450
Latent space dim. 100
Train/val/test batch size 20/- /103

Train/val/test batch num. 103/- /1

Table C.1 – Training details

Actor Encoder Decoder

Input 50×50×1000 seq. of imgs Input 50×50×1000 seq. of imgs F.C. output 16×12×12 Relu
3×3 conv. 64 s. 1 same Relu 3×3 conv. 64 s. 1 same Relu 3×3 conv. 32 s. 1 same Relu

2×2 maxpool 2×2 maxpool 2×2 Upsampling
3×3 conv. 32 s. 1 same Relu 3×3 conv. 32 s. 1 same Relu 4 sided zero pad.

2×2 maxpool 2×2 maxpool 3×3 conv. 64 s. 1 same Relu
3×3 conv. 16 s. 1 same Relu 3×3 conv. 16 s. 1 same Relu 2×2 Upsampling

F.C. output Bottleneck(1/4/9) No activ. F.C. output 2× Latent dim. No activ. 3×3 conv. 1 s. 1 same Sigmoid
F.C. output 16×12×12 21×21 conv. 4 s. 1 no pad. no activ.

3×3 conv. 32 s. 1 same Relu 40×1 1D-conv. 4 s. 1 same Relu
2×2 Upsampling 15×15 conv. 4 s. 1 no pad. Relu
4 sided zero pad. F.C. output 9 Exponential activ.

3×3 conv. 64 s. 1 same Relu
2×2 Upsampling

3×3 conv. 1 s. 1 same Sigmoid

Table C.2 – Retina network architecture
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[47] E. Kakkava, N. Borhani, B. Rahmani, U. Teğin, C. Moser, and D. Psaltis, “Deep learning-

based image classification through a multimode fiber in the presence of wavelength

drift,” Applied Sciences, vol. 10, no. 11, p. 3816, 2020.

[48] ——, “Wavelength independent image classification through a multimode fiber using

deep neural networks,” in The European Conference on Lasers and Electro-Optics, Optical

Society of America, 2019, ci_2_1.

[49] E. Kakkava, N. Borhani, B. Rahmani, U. Tegin, C. Moser, and D. Psaltis, “Efficient image

classification through a multimode fiber using deep neural networks in presence of

wavelength drifting,” in Computational Optical Sensing and Imaging, Optical Society of

America, 2019, CW1A–4.

[50] Y. Luo, S. Yan, H. Li, P. Lai, and Y. Zheng, “Towards smart optical focusing: deep learning-

empowered dynamic wavefront shaping through nonstationary scattering media,” Pho-

tonics Research, vol. 9, no. 8, B262–B278, 2021.

[51] M. Wei, G. Tang, J. Liu, L. Zhu, J. Liu, C. Huang, J. Zhang, L. Shen, and S. Yu, “Neural

network based perturbation-location fiber specklegram sensing system towards ap-

plications with limited number of training samples,” Journal of Lightwave Technology,

vol. 39, no. 19, pp. 6315–6326, 2021.

[52] Y. Liu, G. Li, Q. Qin, Z. Tan, M. Wang, and F. Yan, “Bending recognition based on the

analysis of fiber specklegrams using deep learning,” Optics & Laser Technology, vol. 131,

p. 106 424, 2020.

68



BIBLIOGRAPHY Chapter C

[53] T. Würfl, F. C. Ghesu, V. Christlein, and A. Maier, “Deep learning computed tomogra-

phy,” in International conference on medical image computing and computer-assisted

intervention, Springer, 2016, pp. 432–440.

[54] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[55] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,

2013.

[56] A. Mousavi and R. G. Baraniuk, “Learning to invert: signal recovery via deep convolu-

tional networks,” in 2017 IEEE international conference on acoustics, speech and signal

processing (ICASSP), IEEE, 2017, pp. 2272–2276.

[57] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative

models,” arXiv preprint arXiv:1703.03208, 2017.

[58] V. Shah and C. Hegde, “Solving linear inverse problems using gan priors: an algorithm

with provable guarantees,” in 2018 IEEE international conference on acoustics, speech

and signal processing (ICASSP), IEEE, 2018, pp. 4609–4613.

[59] D. Van Veen, A. Jalal, M. Soltanolkotabi, E. Price, S. Vishwanath, and A. G. Dimakis,

“Compressed sensing with deep image prior and learned regularization,” arXiv preprint

arXiv:1806.06438, 2018.

[60] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 9446–9454.

[61] R. Heckel and P. Hand, “Deep decoder: concise image representations from untrained

non-convolutional networks,” arXiv preprint arXiv:1810.03982, 2018.

[62] B. Rahmani, D. Psaltis, and C. Moser, “Variational framework for partially-measured

physical system control,” 4th workshop of Machine Learning for Physical Sciences

NeurIPS, 2021.

[63] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and

A. Lerchner, “Beta-vae: learning basic visual concepts with a constrained variational

framework,” 2016.

[64] H. C. Carver, A. O’TOOLE, and T. RAIFORD, The annals of mathematical statistics.

Edwards Bros., 1930.

[65] N. Parthasarathy, E. Batty, W. Falcon, T. Rutten, M. Rajpal, E. Chichilnisky, and L. Panin-

ski, “Neural networks for efficient bayesian decoding of natural images from retinal

neurons,” Advances in Neural Information Processing Systems, vol. 30, pp. 6434–6445,

2017.

[66] P. Bashivan, K. Kar, and J. J. DiCarlo, “Neural population control via deep image synthe-

sis,” Science, vol. 364, no. 6439, 2019.

69



Chapter C BIBLIOGRAPHY

[67] B. Rahmani, D. Loterie, E. Kakkava, N. Borhani, U. Teğin, D. Psaltis, and C. Moser,
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