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A B S T R A C T

This paper addresses the issue of interpretability and auditability of reinforcement-learning agents employed in
the recovery of unsecured consumer debt. To this end, we develop a deterministic policy-gradient method that
allows for a natural integration of domain expertise into the learning procedure so as to encourage learning
of consistent, and thus interpretable, policies. Domain knowledge can often be expressed in terms of policy
monotonicity and/or convexity with respect to relevant state inputs. We augment the standard actor–critic
policy approximator using a monotonically regularized loss function which integrates domain expertise into
the learning. Our formulation overcomes the challenge of learning interpretable policies by constraining the
search to policies satisfying structural-consistency properties. The resulting state-feedback control laws can
be readily understood and implemented by human decision makers. This new domain-knowledge enhanced
learning approach is applied to the problem of optimal debt recovery which features a controlled Hawkes
process and an asynchronous action–feedback relationship.
. Introduction

Reinforcement learning has become a popular computational ap-
roach for solving real-life sequential decision-making problems. Over
he past few years, it has been steadily gaining momentum, especially
ecause of its success in complex high-dimensional control tasks such
s playing the Atari game suite (Mnih et al., 2013) or Starcraft at super-
uman levels (Vinyals et al., 2019). Despite such celebrated break-
hroughs, reinforcement learning has not yet been broadly adopted
y businesses for solving more traditional operations research (OR)
roblems. This is often attributed to the data-hungry nature of these
lgorithms, which makes them suitable only in applications where large
mounts of information can be generated on demand (e.g., in robotics).
urthermore, business applications tend to impose additional require-
ents on machine learning (ML) models that go well beyond mere
erformance goals, such as the interpretability of the resulting decision
ules and thus their comprehensibility for human decision makers
DM). For instance, when deciding on how much credit to extend to
car-loan applicant, we expect this point estimate to be not only suf-

iciently accurate, but also monotonically increasing in the applicant’s
alary and credit rating. However, when training a neural network or
ny other highly flexible approximator on real data, we risk to locally
verfit and thereby obscure this intuitive and important relationship.
onsequently, the local inconsistencies in this dependency produced
y standard ML methods would tend to undermine a decision maker’s
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T.A. Weber).

confidence in the decision rule, and as a result, such a model would
not stand a good chance of getting implemented—despite possibly a
good numerical performance overall. Should the model nevertheless
pass the validation phase and be adopted in practice, it is prone to
produce locally biased predictions, which would predominantly affect
underrepresented subgroups (i.e., minorities) for which the available
data are relatively sparse. Therefore, the notion of interpretability and
systemic consistency is closely connected to the broader challenge of
ethical machine learning (Piano, 2020).

In practice, the challenge of interpretable (ethical) ML – often tied
to monotonicity and/or convexity constraints of the learned policy
with respect to its inputs – has been steadily gaining attention in the
literature (Rudin et al., 2021). For instance, You, Ding, Canini, Pfeifer,
and Gupta (2017) propose a deep lattice framework (as a counterpart to
neural nets) to learn flexible monotonic functions, and Gupta, Shukla,
Marla, Kolbeinsson, and Yellepeddi (2019) regularize the element-
wise loss with local monotonicity constraints to encourage learning of
monotonic neural nets. Similarly, when developing a decision-making
system based on reinforcement learning for business use cases, we
require that learned policies be not only performant but also intuitive
and understandable (i.e., systemically consistent), whence interpretable
by human decision makers. Many practically relevant problems benefit
from an extensive theoretical analysis of the properties of their value
functions and optimal policies. However, this structural knowledge is
https://doi.org/10.1016/j.mlwa.2022.100280
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usually discarded in an ML setting, for a lack of systematic proce-
dure for incorporating structural domain knowledge. In this paper, we
propose an adapted deep deterministic policy-gradient method that
incorporates expert domain knowledge (DK) directly into the learning
process to obtain interpretable policies. By design, we narrow our focus
to quantifiable domain knowledge which can then be embedded into
the learning. For this, we introduce a monotonicity regularizer for
the actor’s loss function which penalizes deviations of policies from
structural properties during the learning procedure. Intuitively, this
regularization filters out undesirable local minima in the policy space
by means of an augmented loss gradient that pushes solutions away
from non-interpretable regions towards complete interpretability, at
comparable performance. As a result, we achieve more stable learning
of desirable and explainable policies with less variance across runs. We
showcase the relevance of our approach in the context of optimal debt
recovery, a practically relevant stochastic control problem which fea-
tures a self-exciting (Hawkes) repayment process and an asynchronous
learning feedback.

2. Background

2.1. Preliminaries

We study a specific type of reinforcement-learning problem, the
solution to which may benefit significantly from structural input pro-
vided by domain experts. This is often the case for control problems
in OR, finance, or economics. Specifically, our method is illustrated by
a problem of optimal debt recovery which bridges these three areas.
The results can be readily applied to other problems where structural
knowledge can be cast in terms of monotonicity constraints.

The debt-recovery problem is an OR problem broached by Mitchner
and Peterson (1957), often aptly compared with the game of poker. The
collector observes a stochastic sequence of marked temporal repayment
events (𝜏𝑖, 𝑏𝑖)𝑖≥1, where 𝜏𝑖 and 𝑏𝑖 denote the 𝑖-th repayment time and
repayment magnitude, respectively. To maximize the present value of
the revenue stream, the collector has the option to perform costly
collection actions, 𝑎𝑡 at time 𝑡 ≥ 0, that temporarily increase the
likelihood of repayment events. Just as in poker, committing to actions
(betting) takes place before the full collection (completion of hand) is
observed. Thus, to stay in the game betting must continue.

We specify the debt-recovery problem as a Markov decision process
(MDP) with a state space , an action space , transition probabilities
𝑃 (𝑠𝑘+1, 𝑠𝑘, 𝑎𝑘), an initial state distribution 𝜌0 (on ), a reward function
 ∶  ×  ×  → R, and a discount factor 𝛾 ∈ (0, 1). The MDP is
a discrete-time counterpart of the continuous-time repayment process
introduced by Chehrazi and Weber (2015) in terms of a stochastic
differential equation (SDE),

𝑑𝜆(𝑡) = 𝜅(𝜆∞ − 𝜆(𝑡))𝑑𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

mean-reversion

+ 𝛿⊤1 𝑑𝐽 (𝑡)
⏟⏟⏟

self-excitation

+ 𝑑𝐴(𝑡)
⏟⏟⏟

collection strategy

, 𝑡 ≥ 0. (1)

This mean-reverting SDE describes the dynamics of the repayment
arrival rate (intensity) for an account placed in collections at time 𝑡 = 0
with (given) initial intensity 𝜆(0) = 𝜆. Eq. (1) can be derived from
a continuous-time hidden Markov process where an account holder
can be in one of two distinct states, ‘‘H’’ or ‘‘L’’. A representative
account holder in state ‘‘H’’ would make random partial repayments
at higher frequency than if he was in state ‘‘L’’. The account holder’s
state evolves according to a generic Markov jump process which can
be positively influenced by the credit-issuer through costly collection
actions. While the state cannot be observed directly by the collector, he
can estimate the likelihood of the account holder’s being in either state
‘‘H’’ or ‘‘L’’—based on the observed repayment history. The Bayesian
dynamics of these estimates translate to the SDE specification in Eq. (1).
In particular, the self-excitation term captures a discrete upward ad-
justment in the collector’s beliefs upon observing a repayment. The

jump is positive, since a repayment is more likely in state ‘‘H’’ than t

2

in state ‘‘L’’. In that description of the intensity dynamics, the vector
𝐽 (𝑡) = [𝑁(𝑡), 𝑍(𝑡)]⊤ consists of an unmarked counting process 𝑁(𝑡) =
∑

𝑖 1{𝜏𝑖 ≤ 𝑡} and its marked counterpart 𝑍(𝑡) =
∑

𝑖 𝑧𝑖1{𝜏𝑖≤𝑡}. The marks
epresent relative repayments, drawn from an empirically identifiable
istribution 𝐹𝑧 on a support in [𝑧m𝑖𝑛, 1], with a positive minimum
m𝑖𝑛. The vector 𝛿⊤1 = [𝛿10, 𝛿11] describes the sensitivity of the process
o repayment events. In the absence of a repayment, the effective
ate of repayment 𝜆(𝑡) declines, since a period of inactivity is more
ikely in state ‘‘L’’ than state ‘‘H’’. This is captured by the first term
n Eq. (1), where the parameter 𝜆∞ denotes the steady-state of the
ffective repayment intensity and 𝜅 the rate of convergence. The latter
arameter, which shapes the autocovariance properties of the process,
etermines how much ‘‘memory’’ the system retains. Unlike the inten-
ity dynamics in Eq. (1) (for 𝜆(𝑡)), the dynamics of the outstanding
alance 𝑤(𝑡) are relatively simple: At any repayment time 𝜏𝑖, the
ccount’s outstanding balance 𝑤(𝜏𝑖) diminishes by the amount 𝑏𝑖 repaid,
o 𝑤(𝜏𝑖) = (1 − 𝑧𝑖)𝑤(𝜏−𝑖 ), where 𝑧𝑖 = 𝑏𝑖∕𝑤𝑖−1 for 𝑖 ≥ 1. Hence,

(𝑡) = 𝑤(𝜏𝑖), 𝜏𝑖 ≤ 𝑡 < 𝜏𝑖+1. (2)

astly, in the absence of a collection strategy 𝐴(𝑡), the Markovian nature
f the process allows for a compact representation,
(

𝑡′|𝜆 (𝑡)
)

= 𝜑
(

𝑡′, 𝜆(𝑡)
)

= 𝜆∞ + (𝜆(𝑡) − 𝜆∞)𝑒−𝜅𝑡
′
, 𝑡′ ≥ 𝑡, (3)

hich describes the law of motion for the intensity starting at 𝜆(𝑡),
rovided no repayments were received on the interval [𝑡, 𝑡′].

To cast the debt-recovery problem into a reinforcement-learning
ramework, the continuous-time Markovian dynamics in Eqs. (1) and
2) must be expressed as a discrete-time Markov chain. In particular,
easuring time in small discrete steps of 𝛥𝑡, we assume – without

oss of generality – that actions are taken at the beginning of an
nterval [𝑘𝛥𝑡, (𝑘 + 1)𝛥𝑡] while repayments, if they occur, are received
t the end of such an interval. In fact, this assumption is required to
ake the discrete-time repayment process non-predictable. From the
oisson dynamics of the repayment process, the likelihood of receiving
repayment at the end of the interval [𝑘𝛥𝑡, (𝑘 + 1)𝛥𝑡], given initial

ntensity 𝜆(𝑘𝛥𝑡) and action 𝑎𝑘𝛥𝑡, is

[𝑁
(

(𝑘 + 1)𝛥𝑡
)

−𝑁(𝑘𝛥𝑡) = 𝑛|𝑘𝛥𝑡]

=

⎧

⎪

⎨

⎪

⎩

1 −
(

𝜆(𝑘𝛥𝑡) + 𝑎𝑘𝛥𝑡
)

𝛥𝑡 + 𝑜(𝛥𝑡), 𝑛 = 0,
(

𝜆(𝑘𝛥𝑡) + 𝑎𝑘𝛥𝑡
)

𝛥𝑡 + 𝑜(𝛥𝑡), 𝑛 = 1,
𝑜(𝛥𝑡), 𝑛 ≥ 2.

(4)

n the preceding equation,1 the discrete-time dynamics of 𝜆(𝑘𝛥𝑡) for
∈ Z+ follow:

(𝑘𝛥𝑡) = 𝜑
(

𝛥𝑡, 𝜆
(

(𝑘−1)𝛥𝑡
)

+𝑎(𝑘−1)𝛥𝑡
)

+(𝛿10+𝛿11𝑧𝑘−1)1{𝑁(𝑘𝛥𝑡)−𝑁((𝑘−1)𝛥𝑡)≠0},

(5)

ith 𝜆(0) = 𝜆0, where we are allowed to use Eq. (3), since no discrete
vent will take place on the interval ((𝑘 − 1)𝛥𝑡, 𝑘𝛥𝑡). Finally, the 𝑧𝑘 are
ndependent and identically distributed (i.i.d.) draws from the relative-
epayment distribution 𝐹𝑧, so the account balance evolves according
o

(𝑘𝛥𝑡) = (1 − 𝑧𝑘−1)𝑤
(

(𝑘 − 1)𝛥𝑡
)

1{𝑁(𝑘𝛥𝑡)−𝑁((𝑘−1)𝛥𝑡)≠0}, 𝑘 ≥ 0, (6)

ith 𝑤(0) = 𝑤0 and 𝑧−1 = 0. Eqs. (4)–(6) fully describe the discrete-
ime dynamics of the debt-recovery process. To simplify the notation,
n what follows we denote the tuple

(

𝜆(𝑘𝛥𝑡), 𝑤(𝑘𝛥𝑡), 𝑎𝑘𝛥𝑡
)

by (𝜆𝑘, 𝑤𝑘, 𝑎𝑘).
n our numerical implementation, the value of (𝜆𝑘, 𝑤𝑘) is discretized
n the set of reachable states (𝜆,𝑤), denoted by  ⊊ R2

+. This last step
urns the discrete-time, continuous-space Markov dynamics of Eqs. (4)–
6) into a discrete-time finite-state Markov chain, but otherwise this

1 𝑡 is the information filtration generated by observable events up to
ime 𝑡.
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Fig. 1. Illustration of a Markov decision process with human oversight. At the end
of the learning, the learned policy 𝜋(⋅) is subjected to a human DM for validation.
Inconsistent and non-interpretable policies undermine the DM’s confidence in the model
and thus are discarded.

computational simplification is not critical for our theoretical devel-
opments. It is important to note that we do not restrict attention to
the discrete grid of states, but rather use it to partition the state-space
exploration. The repayment-process dynamics are illustrated in Fig. 2.

We can now consider the discrete state-space dynamics, introduced
above, as our reinforcement-learning setting. In particular, consider the
behavior of the two parties involved: a decision maker (also referred to
as agent) and an environment that is responsible for providing feedback
on the agent’s action in terms of some reward.2 The environment
behavior is described by Eqs. (4)–(6). The agent, following a policy
𝜋 ∶  → R+ that prescribes his action for a given state, repeatedly
interacts with the environment (see Fig. 1). At each (discretized) time
step 𝑘 ≥ 0, the agent observes the state 𝑠𝑘 = (𝜆𝑘, 𝑤𝑘) ∈ , selects an
action 𝜋(𝑠𝑘) = 𝑎𝑘 ∈  = R+ according to policy 𝜋, and the environment
responds (stochastically) with the subsequent state 𝑠𝑘+1 = (𝜆𝑘+1, 𝑤𝑘+1),
ogether with a random reward 𝑟𝑘 ∈ R associated with the state
ransition from 𝑠𝑘 to 𝑠𝑘+1 which is of the form

𝑘 ≜ (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1) =

{

𝛾𝑧𝑘𝑤𝑘 − 𝑐𝑎𝑘, repayment in [𝑘𝛥𝑡, (𝑘 + 1)𝛥𝑡],
−𝑐𝑎𝑘, otherwise,

(7)

here 𝛾 ∈ (0, 1). The agent’s goal is to find a policy 𝜋 that maximizes
xpected net collections,

𝜋 (𝑠0) = E𝜋

[ ∞
∑

𝑘=0
𝛾𝑘+1𝑤𝑘𝑧𝑘 − 𝑐

∞
∑

𝑘=0
𝛾𝑘𝑎𝑘

|

|

|

0

]

, (8)

ith 𝑎𝑘 = 𝜋(𝑠𝑘) and a given initial state 𝑠0 = (𝜆0, 𝑤0).

emark 1. Chehrazi, Glynn, and Weber (2019) proposed and solved
variation of the debt-recovery problem outlined above. Specifically,

he collector can maintain the intensity at a specific intensity level 𝜆̂
ia a continuous infinitesimal thrust, which captures the effect of the
ction while it is actively pursued, for instance, until an agreement for
repayment plan is reached. The reason for examining an analytically

olved problem is threefold. Firstly, the optimal solution provides a
lear performance benchmark as well as a neighborhood comparison
n the policy space. Secondly, Eq. (1) represents the fundamental
ebt-recovery dynamics which invites further extensions that capture
ore nuanced elements of the repayment behavior. For example, while
onlinear collection actions and debtor responses (e.g., actions with di-
inishing impact, fixed costs, state-dependent repayment distribution)

re perhaps more realistic, they tend to render the problem intractable

2 In engineering applications, the terms system, controller and control signal
are used synonymously for the terms environment, agent, and action employed
here.
3

from an analytical standpoint. Finally, the stochastic differential equa-
tion in Eq. (1) comprises a large class of asynchronous control problems
with self-exciting intensity, so that this model can be viewed as a
template for similar problems, which arise in the accumulation of
innovation, dynamic advertising, and the control of other stochastic
arrival processes, for example, in social networks.

2.2. Deterministic policy-gradient theorem

The Deterministic Policy Gradient (DPG) is a policy-gradient method
suitable for control tasks with continuous action spaces (Silver et al.,
2014). In contrast to the standard stochastic policy gradient, DPG aims
to learn a deterministic policy 𝜋𝜽 ∶  →  with parameter vector 𝜽 ∈
R𝑑1 of dimension 𝑑1 ≪ ||. Let 𝜌𝜋𝜃 (𝑠

′) = ∫
∑∞

𝑡=0 𝛾
𝑡𝜌0(𝑠)𝑃𝑡(𝑠, 𝑠′;𝜋𝜽)𝑑𝑠 be

he distribution of the discounted state visits, where 𝑃𝑡(𝑠, 𝑠′;𝜋𝜽) denotes
he probability of going from 𝑠 to 𝑠′ in 𝑡 steps under a policy 𝜋𝜽,
.e., P(𝑠𝑘+𝑡 = 𝑠′|𝑠𝑘 = 𝑠, 𝜋𝜽).3 We define an optimal policy 𝜋⋆

𝜽 such that
⋆
𝜽 ∈ argmax𝜽 𝐽 (𝜋𝜽), where

(𝜋𝜽) ≜ E𝑠0∼𝜌0 [𝑣𝜋𝜃 (𝑠0)] = ∫
𝜌𝜋𝜃 (𝑠)𝑟(𝑠, 𝜋𝜽(𝑠))𝑑𝑠 = E𝑠∼𝜌𝜋𝜃

[

𝑟(𝑠, 𝜋𝜽(𝑠))
]

, (9)

here 𝑟(𝑠, 𝜋𝜽(𝑠)) = E𝑠′∼𝑃1(𝑠,𝑠′;𝜋𝜃 )[(𝑠, 𝜋𝜽(𝑠), 𝑠′)]. By the deterministic
olicy-gradient theorem of Silver et al. (2014), we have

𝜽𝐽 (𝜋𝜽) = ∫
𝜌𝜋𝜃 (𝑠) ∇𝑎𝑞𝜋𝜃 (𝑠, 𝑎)|𝑎=𝜋𝜽(𝑠)∇𝜽𝜋𝜽(𝑠) 𝑑𝑠

= E𝑠∼𝜌𝜋𝜃

[

∇𝑎𝑞𝜋𝜃 (𝑠, 𝑎) ∇𝜽𝜋𝜽(𝑠)|𝑎=𝜋𝜽(𝑠)
]

,

here 𝑞𝜋𝜃 (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∫ 𝑃1(𝑠, 𝑠′, 𝜋𝜽)𝑣𝜋𝜃 (𝑠
′)𝑑𝑠′ is the 𝑞-function

ssociated with Eq. (8) for policy 𝜋𝜃 . A number of extension algorithms
ere derived from the vanilla DPG, arguably the most popular one
eing Deep DPG (DDPG) (Lillicrap et al., 2015), an off-policy actor–
ritic type algorithm that combines DPG and double 𝑞-learning (Hessel
t al., 2017). In this setting, the 𝑞-function (critic) is parametrized using
parameter vector 𝐰 ∈ R𝑑2 , i.e., 𝑞𝜋𝜃 (𝑠, 𝑎) = 𝑞𝜋𝜃 (𝑠, 𝑎;𝐰), and is learned

y sequentially minimizing a loss of the form

(𝐰𝑙) = E(𝑠𝑘 ,𝑎𝑘 ,𝑟𝑘 ,𝑠𝑘+1)∼𝐷

[

1
2

(

𝑟𝑘 + 𝛾𝑞𝜋𝜃 (𝑠𝑘+1, 𝜋(𝑠𝑘+1);𝐰𝑙−1) − 𝑞𝜋𝜃 (𝑠𝑘, 𝑎𝑘;𝐰𝑙)
)2

]

,

(10)

or 𝑙 ≥ 1, where the distribution 𝐷 samples from a memory buffer
f uncorrelated experience samples (Fedus et al., 2020), and 𝐰𝑙−1 is
vector of previously estimated parameters—with 𝐰0 being randomly

nitialized at the start of training. The actor 𝜋𝜽(⋅) then ascends his payoff
n the direction of the gradient of the objective function,

(𝑙)
𝛽 (𝜋𝜽) = ∫

𝜌𝛽 (𝑠)𝑣𝜋𝜃 (𝑠)𝑑𝑠 = E𝑠∼𝜌𝛽 (⋅)

[

𝑞𝜋𝜃 (𝑠, 𝜋𝜽(𝑠);𝐰𝑙)
]

, (11)

here 𝛽 ∶ × → [0, 1] is an arbitrary, possibly stochastic, exploration
istribution (behavioral policy) such that ∫ 𝛽(𝑠, 𝑎)𝑑𝑎 = 1 for all 𝑠 ∈ .
he gradient of this modified objective can still be easily computed,
et the off-policy training implied by the flexible use of 𝛽 provides
better stability and sample efficiency. Furthermore, policy-gradient

lgorithms typically require some sort of importance sampling for both
ctor and critic that reweighs the rewards so as to reflect the fact that
ctions were taken according to 𝛽 rather than 𝜋. However, because
PG uses temporal-difference updates for the critic and the policy is
eterministic (i.e., the integral over the actions in the objective function
isappears), we can avoid importance sampling altogether.

. Incorporating domain knowledge

For the optimal debt-recovery problem, the interpretability of a
iven policy 𝜋 to a human collector is closely linked to the structure

3 By abuse of notation (and terminology), 𝜌𝜋 is an improper distribution, so
generically: ∫ 𝜌 (𝑠)𝑑𝑠 ≠ 1.
 𝜋
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Fig. 2. Controlled state-transition dynamics with two action-induced jumps.
of the action set in the state space. This structure must follow systemic
consistency conditions which can be framed in terms of policy mono-
tonicity: first, actions for a fixed account balance 𝑤 cannot increase
when the repayment intensity 𝜆 increases; and second, the actions can-
not decrease in the account balance 𝑤 when the repayment intensity 𝜆
s held constant. That is,
{

𝑤′ ≤ 𝑤 ⇒ 𝜋𝜽(𝜆,𝑤′) ≤ 𝜋𝜽(𝜆,𝑤)

𝜆 ≤ 𝜆′ ⇒ 𝜋𝜽(𝜆′, 𝑤) ≤ 𝜋𝜽(𝜆,𝑤)

}

. (12)

hese consistency conditions, which impose shape constraints on the
olicy, capture the economic logic that if it is optimal to act for an
ccount in a lower balance state, then it must also be optimal to act (at
east as forcefully) for an account in a higher balance state; similarly, an
ccount in a lower intensity state is less likely to repay, so an optimal
ction has to be at least of the same size. For a detailed analysis of the
heoretical properties of policy and value function, see Chehrazi et al.
2019) who obtain an optimal solution for the debt-recovery problem
n continuous time. The monotonicity constraints in Eq. (12) can be
ncluded in the learning by means of a barrier regularization term,

(𝜋𝜽(𝜆,𝑤)) = 𝜂1 max
{

0,
𝜕𝜋𝜽(𝜆,𝑤)

𝜕𝜆

}

+ 𝜂2 max
{

0,−
𝜕𝜋𝜽(𝜆,𝑤)

𝜕𝑤

}

, (13)

here 𝜂1 and 𝜂2 are positive constants. Similar to a maximum-entropy
olicy-gradient framework where a regularizer encourages learning of
xplorative policies (Haarnoja, Zhou, Abbeel, & Levine, 2018), we add
he regularizer to the off-policy performance metric in Eq. (11), so

̂(𝜋𝜽) = E𝑠∼𝜌𝛽 (⋅)

[

𝑞𝜋𝜃 (𝑠, 𝜋𝜽(𝑠)) −𝐻(𝜋𝜽(𝑠))
]

; (14)

his ‘‘domain-knowledge enhanced objective’’ still allows for a straight-
orward computation of the gradient, as

𝜽𝐽 (𝜋𝜽) = E𝑠∼𝜌𝛽 (⋅)

[

∇𝑎𝑞𝜋𝜃 (𝑠, 𝑎)|𝑎=𝜋𝜽(𝑠)∇𝜽𝜋𝜽(𝑠) − ∇𝜃𝐻(𝜋𝜽(𝑠))
]

. (15)

The intuition behind the shape regularizer (which can easily be aug-
mented to also contain higher-order monotonicities, e.g., to capture
the concavity of the action frontier with respect to 𝑤) is to reject
critical points in the policy space that yield locally non-interpretable
policies (i.e., violating Eq. (12)) in favor of parameters satisfying the
systemic consistency constraint while staying within an 𝜖-neighborhood
in the parameter space. For a full learning algorithm of the Domain-
Knowledge Enhanced (deterministic) Policy Gradient (DKEPG), see
Alg. 1.

Remark 2. The applicability of monotonicity, convexity, and other
shape constraints spans far beyond our particular application in debt
recovery and is pervasive in operations research (Chehrazi & Weber,
2010). Thus, our approach may be used for a sizable class of stochastic
accumulation problems which tend to exhibit the aforementioned struc-
tural properties of value function and optimal policy. Alternatively,
4

it can improve model-interpretability (consistency) in decision-making
applications where the agent has an intuitive interpretation of the state
variables in terms of monotone comparative statics; the latter guide an
intuitive understanding of system inputs (states) and their impact on
the value function and/or policy prescriptions. To illustrate the breadth
of applications, consider the following three MDPs:

(i) An agent obtains utility 𝑢(𝑐𝑡) when consuming wealth 𝑐𝑡 at time
𝑡 ∈ {0, 1,…}. The agent receives a random (nonnegative) income
𝑦𝑡 at time 𝑡, and we assume that 𝑦𝑡 is a Markov process described
by a stochastic transition matrix 𝑃 (𝑦𝑡, 𝑦′). Let 𝑤𝑡 denote the total
wealth of the agent at time 𝑡, so 𝑤𝑡+1 = 𝑤𝑡 + 𝑦𝑡 − 𝑐𝑡 for all 𝑡 ≥ 0,
with 𝑤0 ≥ 0 a given initial wealth level. We seek an optimal
consumption 𝑐⋆𝑡 for the value function as a solution to the Bellman
equation

𝑣(𝑤𝑡, 𝑦𝑡) = max
𝑐∈[0,𝑤𝑡+𝑦𝑡]

{

𝑢(𝑐) + 𝛾
∑

𝑦′
𝑣(𝑤𝑡 + 𝑦𝑡 − 𝑐, 𝑦′)𝑃 (𝑦𝑡, 𝑦′)

}

,

for all 𝑡 ≥ 0. Clearly, under the assumption of a (continuous)
increasing utility the value function is increasing in wealth. Our
approach enables the DM to readily embed this specific domain
knowledge into the learning algorithm.

(ii) Transportation platforms, such as Uber or Lyft, need to frequently
solve network-matching problems, which exhibit a monotonic
relationship between the state of the system (e.g., the supply of
drivers and requests for rides) and the value function (e.g., plat-
form profit), as well as the policy (e.g., pricing schedule). For
instance, increasing the demand (i.e., the stochastic number of
ride requests) would tend to drive up the optimal price, whereas
an increase in supply (drivers) would reduce the price, all else
equal. Furthermore, an increase in supply and/or demand should
increase the firm’s profit (the matching problem becomes less con-
strained), barring unexpected (and unusual) effects on demand or
supply elasticity.

(iii) Administering a drug may be a salient strategy in an attempt to
control the spread of a treatable infectious disease. This in turn
may fuel drug resistance, however, because the drug could kill
the susceptible strains allowing the strains which have developed
resistance to become dominant strains. The problem of how to
reduce the social cost of a disease which may include the desire
to prolong the useful life of an effective drug (e.g., an antibiotic)
is a control problem whose value function and optimal policy
would usually exhibit monotonicity in its state variables and key
parameters of the problem (the prevalence of the disease and
effectiveness of the drug). For example, the higher the disease
prevalence, the larger tends to be the social cost of the disease.
Similarly, the higher the drug effectiveness, the lower is the
minimum cost of the disease.
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Algorithm 1: Domain-Knowledge Enhanced Policy Gradient.
Algorithm parameters:
𝜆0, 𝜆∞, 𝜅, 𝛿1)—process parameters; 𝛥𝑡—discretization step;

episodes—number of episodes; 𝜁—exploration noise;
∈ (0, 1)—update-sensitivity coefficient; 𝐿—batch size

Initialize the critic network 𝑞𝜋𝜃 and the actor network 𝜋𝜽 using
randomly generated parameters 𝐰 and 𝜽

Initialize target network 𝑞′𝜋𝜃 and 𝜋′
𝜽 with weights 𝜽′ ← 𝜽 and

𝐰′ ← 𝐰
Initialize the replay buffer 𝐷 [state-transition history with uniform
sampling]
for episode=1:𝑁episodes do

Select a starting state 𝑠0 = (𝜆0, 𝑤0) according to 𝜌0(⋅)
Set 𝑘 = 0 while 𝑠𝑘 is non-terminal (i.e., 𝑤𝑘 ≥ 𝑤min) do

Select action 𝑎𝑘 = 𝜋𝜽(𝑠𝑘) + 𝜁 according to the current
policy and exploration noise

Take an action 𝑎𝑘, observe reward 𝑟𝑘, next state 𝑠𝑘+1, and a
Boolean flag indicating whether 𝑠𝑘+1 is terminal state or
not

Store the transition (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1) in the experience replay
buffer 𝐷

Sample a random minibatch of transitions
𝐵 = {(𝑠𝑙 , 𝑎𝑙 , 𝑟𝑙 , 𝑠𝑙+1)}𝐿𝑙=1 according to 𝐷

Set

𝑦𝑙 =

{

𝑟𝑙 , for terminal 𝑠𝑙+1,
𝑟𝑙 + 𝛾𝑞′𝜋𝜃 (𝑠𝑙+1, 𝜋

′
𝜽(𝑠𝑙+1);𝐰

′), for non-terminal 𝑠𝑙+1.
Update the critic weights
𝐰 ∈ argmin𝐰̂

1
‖𝐵‖

∑𝐿
𝑙=1

[

(

𝑦𝑙 − 𝑞𝜋𝜃 (𝑠𝑙 , 𝑎𝑙; 𝐰̂)
)2
]

Compute the constraint-violation penalty 𝐻(𝜋𝜽(𝑠𝑙))
Update the actor policy using sampled policy gradient:
∇𝜽𝐽 (𝜋𝜽;𝐰) =
1

‖𝐵‖
∑𝐿

𝑙=1

[

∇𝑎𝑞𝜋𝜃 (𝑠𝑙 , 𝑎;𝐰)|𝑎=𝜋𝜽(𝑠𝑙)∇𝜽𝜋𝜽(𝑠𝑙) − ∇𝜃𝐻(𝜋𝜽(𝑠𝑙))
]

Update the target networks:
𝜽′ ← 𝜉𝜽 + (1 − 𝜉)𝜽′

𝐰′ ← 𝜉𝐰 + (1 − 𝜉)𝐰′

end
end

4. Results

Our numerical study contains 50 independent runs of the DDPG
(non-penalized) and DKEPG (penalized) algorithms for the debt-recovery
problem, each executed over 10,000 episodes. An episode consists of a
full collection trajectory from the given initial account state 𝑠0 to its
final state 𝑠𝑇 at the end of the time horizon 𝑇 , where 𝑠0 is randomly
initialized as a uniformly distributed draw from the compact state
space .4 Importantly, in order not to stall learning in early stages,
we turn the monotonicity regularization on from episode 800 onwards
(until then the penalization coefficients are set to zero). To isolate
the exact effect of the interpretability regularizer 𝐻(⋅) on learning,
every pair of DDPG and DKEPG runs is seeded with an identical
randomization seed and initialized using the same network weights.
In our numerical experiment, we consider debt holders with similar
characteristics, i.e., with fixed repayment-process parameters; for an
empirical identification of an impulse-controlled Hawkes process in the
debt-recovery context, see Chehrazi and Weber (2015) or Mark and
Weber (2020). However, we differentiate individual accounts according
to their starting position in the state space, (𝜆0, 𝑤0) ∈ R2

+. That
is, an account perceived as being of a higher quality will have a
higher starting intensity 𝜆0. For evaluation of the learning progress, we

4 For the implementation details and specific parameters, see Appendix.
5

consider systematic learning measures linked to our objectives — policy
quality, speed of convergence, and value-function interpretability. In
addition, to make the result robust with respect to the entire state space
as well as to demonstrate their practical applicability, we consider
given metrics on a portfolio of 200 accounts (see Fig. 4a).

Fig. 5a displays the collection-performance evolution of both agents
as measured in relative collected amount, averaged over all 50 runs
(analogous to learning curves). Since their collection returns are quasi-
identical, we observe no performance-related cost from implementing
policy regularization. In particular, the two learning agents’ perfor-
mance is identical during the first 800 episodes, due to the same
randomization seed and initial network weights, and it starts to differ
only once the policy regularization has been activated.

In Section 3, we provided a link between interpretability and pol-
icy monotonicity in the state-space. Fig. 3 demonstrates the intuitive
meaning of interpretability. The shaded regions represent the action
region  where the collector exerts positive intensity impulses with
magnitude illustrated by the heat map. Arguably the most important
feature of the policy is its action frontier  , i.e., the interface between
 and inaction region . The salient systemic inconsistency of the non-
penalized policy is exhibited by the nonmonotonic and non-concave
shape of the action frontier (resulting in a non-convex action set).
Accordingly, under such a systemically inconsistent policy any accounts
in states 𝑠 outside the closure of , but still in the (closed) convex hull
f , would be discriminated against in treatments. Furthermore, given
he required policy monotonicity in Eq. (12), with increasing balance
resp., intensity) we expect gradually increasing (resp., decreasing)
agnitudes of the actions (i.e., no islands in the heat map), a feature

learly violated by the non-penalized agent in Fig. 3a.
To quantify the level of policy inconsistency described above, we

evelop two distinct metrics. First, we define an interpretability index
with respect to the policy monotonicity required in the application) as

(𝜋𝜽) =
1

‖‖ ∫
1{(

𝜕𝜆𝜋𝜽(𝜆,𝑤)≤𝛿
)

∧
(

−𝛿≤𝜕𝑤𝜋𝜽(𝜆,𝑤)
)}𝑑𝑠, (16)

here 𝛿 > 0 denotes some tolerance for non-monotonicity (zero
eing the most strict), and 𝑑𝑠 = 𝑑𝜆 × 𝑑𝑤 denotes the standard
Lebesgue-)measure on . The monotonicity measure can be inter-
reted as a relative number of non-violations in the action set ,
.e., how many percent of the action set is interpretable. Fig. 5b depicts
he time evolution of the non-violation (compliance) metric against
he number of episodes, averaged over all runs. The penalization
learly brings the desired effect producing interpretable policies almost
mmediately while non-penalized DPG attains only 90% interpretable
olicies at the learning termination with far greater variance among
he runs.

Second, we introduce a systemic consistency index (𝐶𝓁) (again, with
espect to policy monotonicity) so as to connect interpretability to the
gent’s learning stability. For this we consider a learning stopping step
𝛼 such that for all 𝑘 ≥ 𝐾𝛼 (within a sufficiently large learning horizon
) the norm of the gradient does not exceed a given positive threshold
, i.e., ‖∇𝜃𝐽 (𝜋𝑘

𝜽)‖ ≤ 𝛼. This stopping rule uses the fact that the norm
f the learning gradient vanishes approximately near critical points in
he policy space. Given this stopping criterion, 𝐶𝓁 is determined as

𝓁 =
# of policies satisfying

{

𝐼(𝜋𝐾𝛼

𝜽 ) ≥ 𝓁
}

# of independent training instances , (17)

where 𝓁 ∈ [0, 1] is a given level of interpretability. That is, we measure
both the stopping time and the interpretability index at the stopping
episode 𝑘 = 𝐾𝛼 . Fig. 6a depicts this relationship on a comparison graph
in the spirit of the well-known ‘‘q–q plot’’. We observe that both agents
perform similarly in terms of convergence, with a majority of points
being uniformly dispersed around the 45-degree line. However, as for
interpretability only 11 out of the 50 non-penalized runs terminated
with an interpretable policy at the level of interpretability 𝓁 = 95%
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(

Fig. 3. Interpretability of a state-control feedback policy.
Fig. 4. (a) Portfolio of accounts used for evaluation of learning metrics. Accounts are drawn from a uniform distribution with a support on [0.2, 1.2] × [50, 200]. (b) Optimal policy
𝜋𝜽(𝜆,𝑤) ∈ [0, 5].
Fig. 5. Comparison of learned policies under DKEPG and standard DDPG. The shaded area represents one standard deviation computed from 50 independent learning instances.
corresponding to 𝐼(𝜋𝜽) = 95%), so 𝐶95% = 11∕50 = 22%. For 𝓁 =
99%, the systemic consistency of the non-penalized agent drops to
zero. By contrast, the penalized agent terminated with an interpretable
policy at the 99% level in all 50 runs, thus attaining perfect systemic
consistency at 𝐶99% = 𝐶95% = 100%. This indicates that incorporat-
ing the interpretability regularizer rendered all policies interpretable,
without any noticeable loss in average performance or convergence
speed.
Comparison with the theoretical optimum. To highlight and address
deficiencies of data-learned policies, we purposefully selected an ana-
lytically well-explored practical problem. Indeed, Chehrazi et al. (2019)
derive an optimal solution for the debt-recovery problem with a value
function in semi-closed form (see Fig. 4b for the corresponding optimal
state-feedback control law). However, despite knowing the theoretical
optimum in this particular setting, the reinforcement-learning approach
goes one step further by easily carrying over to analytically intractable
variants of the problem (e.g., with state-dependent repayment dis-
tributions or actions with memory). Given a theoretical solution in
our setting it is possible to compare the performance of both agents
6

against this exact benchmark. From a perspective of accounts outside
of the action region the only relevant part of the policy is the action
frontier. Therefore, in Fig. 7a we measure mean squared error (MSE)
of both agent-learned frontiers 𝜆̂DDPG(𝑤) and 𝜆̂DKEPG(𝑤) using our 50
independent runs. Additionally, in Fig. 7b we compute the variances
of 𝜆̂DDPG(𝑤) and 𝜆̂DKEPG(𝑤), respectively. From Fig. 7a, we observe a
noticeable reduction in MSE (on average 0.4, see Table 1) when balance
𝑤 is not too small. From bias–variance decomposition of MSE, part of
this reduction is due to reduction in the variance and the rest is due
to reduction in the bias. Fig. 7b indicates that most of the reduction
in MSE is due to reduction in the bias. This is because the average
reduction in the variance is roughly 0.05 (see Table 1) which only
captures 12% of the reduction in MSE.

Finally, Fig. 6b showcases effects of the treatments on the rev-
enue distribution. Indeed, the repeated reassessment of the collection
strategy brought in up to 23% of extra revenue over the autonomous
laissez-faire policy. Furthermore, in terms of net present value, a col-
lection schedule following a DKEPG or DDPG produces a first-order
stochastically dominant shift in the revenue distribution. In addition,
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Fig. 6. (a) Each point marks a termination of DKEPG and DDPG learning according to the stopping criterion ‖∇𝜃𝐽 (𝜋𝑘
𝜽 )‖ ≤ 10−3 colored based on the interpretability (or not) of

the respective DDPG runs at termination (blue if 𝐼(𝜋𝜽) ≥ 95% and red otherwise). (b) Histograms represent normalized bin counts, solid lines depict the cdf and the dashed lines
mark the first moment of the respective empirical distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 7. Comparison of the dispersion in the policy domain for DKEPG vs. DDPG.
c
t
n

Table 1
Average performance summary at learning termination.

DPG DKEPG

Interpretability index 89.37% 99.46%
Systemic consistency index (𝐶95%∕𝐶99%) 22%/0% 100%/100%
Averaged MSE of the learned frontier 1.093 0.648
Averaged variance of the learned frontier 0.284 0.228

return variance decreases, thus producing a less uncertain higher-yield
security, that is, a strict increase in the asset quality of an overdue
account.

5. Conclusion

Contributions. This paper discusses the problem of optimal recovery of
unsecured consumer debt using a novel interpretable reinforcement-
learning technique, called Domain-Knowledge Enhanced (determinis-
tic) Policy Gradient (DKEPG). This augmented reinforcement-learning
approach naturally incorporates structural knowledge, thus enabling
the learning of fundamentally interpretable and intelligible policies.
The domain expertise is thereby formulated in terms of monotonic-
ity constraints on the policy, and is incorporated into the learning
algorithm using a barrier regularizer that imposes penalties for policy
7

violations. Our results demonstrate that penalizing for the monotonicity
does not impact learning speed, convergence, or performance; fur-
thermore, it provides quantifiable guarantees of interpretability in the
policy space.

Societal implications and broader impact. In contrast to a theoretical
reinforcement-learning setting where an agent interacts directly with
the learning environment to produce policy updates using quick sim-
ulated feedback, in many practical applications a learned policy is
subject to a human decision maker’s oversight and will need to be
validated in a real-world setting. Thus, outside a lab environment,
a decision maker needs consistency—even at the price of somewhat
suboptimal performance, for this provides not only interpretability and
understandability as mentioned at the outset, but also forms the basis
of auditability. That is, provided complete interpretability (and systemic
onsistency) of a learned policy, the decision maker is able to explain
he policy to a third party (including a benevolent court of law if
ecessary) and can therefore provide a clear rationale (be it ex ante

or ex post) for the implementation of machine-learned actions. In the
setting of a stochastic control problem with asynchronous rewards we
have shown that interpretability regularization, that is the inclusion
of penalty terms for deviations from policy shape constraints, may
guide the learning agent to fully interpretable policies. To quantify
the generic suitability of a learned policy, we have proposed two
quantitative measures, namely an interpretability index (as percentage
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of shape-constraint adherence on the learned action set) and a systemic
consistency index, which measures interpretability at a defined point
of policy convergence. The hope is that these results may contribute to
the reduction of the ‘‘lawlessness of machine algorithms’’ by allowing
external parties to verify objective measures of interpretability and
systemic consistency. In this way, the paper contributes to the broader
discussion on ethical machine learning and its implications for business
applications.
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ppendix. Implementation details

To ensure the reproducibility of the simulation results in Section 4
e now provide an exhaustive list of the hyperparameters used, fol-

owed by some practical considerations for the implementation of the
KEPG agent discussed in the main text. The debt holders in our

etting feature similar characteristics, and thus fixed repayment-process
arameters. The heterogeneity in account quality is captured by the
nitial intensity 𝜆0 ∈ R++. That is, an account perceived as high
uality will have a larger starting intensity in comparison with a low-
uality account. Due to the nonconvex nature of likelihood estimation
f the repayment-process parameters (which are observed as part of
n impulse-controlled Hawkes process during ongoing collections), an
fficient identification usually needs additional considerations such
s a Cramér–von Mises goodness-of-fit criterion (Chehrazi & Weber,
015) or the branching structure in an expectation–maximization al-
orithm (Mark & Weber, 2020).

.1. Repayment-process specification

The repayment process in an MDP environment is described in Sec-
ion 2.1. It features a uniform distribution 𝜌0(𝜆,𝑤) of initial states on the

rectangular support 0 = [𝜆∞, 𝜆max] × [𝑤min, 𝑤max] ⊂ . The support 0
lso serves as an invariant set that contains all active states. That is, an
ction (or event) that would risk pushing the agent out of 0 is bound
o receive a capped intensity increment (to ensure that the repayment
ntensity after the control impulse does not exceed 𝜆max). The corre-
ponding bounds are 𝑤min = 1 and 𝑤max = 200 (in dollars), and 𝜆max =
6.6. The minimal balance implies that any account with 𝑤 < 𝑤min is
onsidered fully collected, thus defining [𝜆∞, 𝜆max]× [0, 𝑤min) as the set
f terminal states which stop the debt-recovery procedure. The relative-
epayment distribution is uniform on the support [𝑧min, 1], where 𝑧min =
.1 designates the minimal relative repayment. The chosen repayment-
rocess parameters correspond to the practical setting with a unit
ime period commensurate to a three-month (single-quarter) collection

eriod. The mean-reversion constant 𝜅 is set to 0.7, and the long-run

8

teady state is 𝜆∞ = 0.1. Intuitively, the mean-reversion parameter 𝜅
etermines the autocovariance properties of the process and can be
nterpreted in terms of how much memory the system retains (a larger 𝜅
ncreases the speed of repayment-intensity dissipation, thus decreasing
he system memory). Therefore, in the absence of repayment events
nd account-treatment actions, the repayment intensity of an untreated
ccount decays by 𝑒−0.7𝛥𝑡 after each time step. The step size 𝛥𝑡 = 0.05

was chosen as a maximum step size that still produces a sequence
of arrivals statistically indistinguishable from a self-exciting Hawkes
process with a 99% confidence level. The sensitivity of the repayment
process with respect to jumps (willingness-to-repay) is 𝛿10 = 0.02 and
with respect to relative-repayment sizes (ability-to-repay) is 𝛿11 = 0.5.
All admissible actions 𝑎𝑘 are contained in the interval [0, 5]; they are
ostly with a constant marginal cost of 𝑐 = 1 (in dollars) for providing
n intensity boost. The time value of money is captured by the discount
actor 𝛾 = 0.9925. The exact algorithm governing the MDP collections

environment is sketched in Alg. 2. We note that the chosen parameters
are in line with debt-recovery practice as reported by Chehrazi and
Weber (2015), and the results presented in Section 4 are robust with
respect to their particular values. Different runs were performed at
different parameter configurations with qualitatively identical results.

A.2. Learning hyperparameters and architecture

Our actor implementation features a deep neural net (DNN)
parametrization with two hidden layers, each spanning 64 individual
neurons, as shown in Fig. A.8a. The critic network is also parametrized
with a DNN. States are fed into a DNN with two hidden layers of
size 16 and 32, respectively. Actions are fed into a different DNN
with one hidden layer of size 32. The output of these two DNNs are
combined to pass through two hidden layers of 256 neurons each;
see Fig. A.8b. Training is performed in batches of 512 samples using
a uniform experience replay buffer at a maximum total capacity of
1,000,000 transitions. Both the critic and actor networks use an Adam
optimization algorithm with a learning-rate parameter that decays
linearly from 10−4 (resp., 2 × 10−3) to 10−6 (resp., 2 × 10−6). The
penalization coefficient is 0 for the first 800 episodes of the training
and 0.1 thereafter, with equal penalization for intensity and balance
monotonicity (i.e., 𝜂1 = 𝜂2 = 0.1). The random exploration noise 𝜁 is
ndependently drawn from a Gaussian distribution with mean 0 and
tandard deviation 0.83. Finally, to update the target networks at each
tep, the update-sensitivity coefficient 𝜉 is set to 0.005.

Algorithm 2: Discrete-Time Simulation of the Repayment Process
in (1).
Algorithm parameters:
(𝜆0, 𝜆∞, 𝜅, 𝛿1) — process parameters; 𝛥𝑡 — discretization step;
𝜋 — policy
Initialize the current time 𝑡 = 0, 𝑤𝑘 = 𝑤0, 𝜆𝑘 = 𝜆0
while 𝑤𝑘 > 𝑤min do

Select 𝑎 according to a policy 𝜋, i.e., 𝑎 = 𝜋(𝑠𝑘)
Set 𝜆𝑘 = 𝜆𝑘 + 𝑎
if 𝜆𝑘𝛥𝑡 ≥ 𝑈 [0, 1] then

Draw a relative repayment 𝑧𝑘 according to 𝐹𝑧
Set 𝜆𝑘 = 𝜑(𝛥𝑡, 𝜆𝑘) + 𝛿10 + 𝛿11𝑧

else
Set 𝑧𝑘 = 0
Set 𝜆𝑘 = 𝜑(𝛥𝑡, 𝜆𝑘)

end
Set 𝑟𝑘 = (𝑧𝑘𝑤𝑘 − 𝑎𝑐)
Set 𝑤𝑘 = (1 − 𝑧𝑘)𝑤𝑘
Set 𝑘 = 𝑘 + 1

nd
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Fig. A.8. DNN actor–critic architecture.
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