
RESEARCH ARTICLE

Local invertibility and sensitivity of atomic structure-feature 

mappings [version 1; peer review: 2 approved]

Sergey N. Pozdnyakov 1, Liwei Zhang2, Christoph Ortner 2, Gábor Csányi3, 
Michele Ceriotti 1

1Laboratory of Computational Science and Modelling, Institute of Materials, Federal Institute of Technology (EPFL) CH-1015 
Lausanne, Lausanne, 1015, Switzerland 
2Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada 
3Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK 

First published: 20 Oct 2021, 1:126  
https://doi.org/10.12688/openreseurope.14156.1
Latest published: 20 Oct 2021, 1:126  
https://doi.org/10.12688/openreseurope.14156.1

v1

 
Abstract 
Background: The increasingly common applications of machine-
learning schemes to atomic-scale simulations have triggered efforts to 
better understand the mathematical properties of the mapping 
between the Cartesian coordinates of the atoms and the variety of 
representations that can be used to convert them into a finite set of 
symmetric descriptors or features. 
Methods: Here, we analyze the sensitivity of the mapping to atomic 
displacements, using a singular value decomposition of the Jacobian 
of the transformation to quantify the sensitivity for different 
configurations, choice of representations and implementation details.  
Results: We show that the combination of symmetry and smoothness 
leads to mappings that have singular points at which the Jacobian has 
one or more null singular values (besides those corresponding to 
infinitesimal translations and rotations). This is in fact desirable, 
because it enforces physical symmetry constraints on the values 
predicted by regression models constructed using such 
representations. However, besides these symmetry-induced 
singularities, there are also spurious singular points, that we find to 
be linked to the incompleteness of the mapping, i.e. the fact that, for 
certain classes of representations, structurally distinct configurations 
are not guaranteed to be mapped onto different feature vectors. 
Additional singularities can be introduced by a too aggressive 
truncation of the infinite basis set that is used to discretize the 
representations. 
Conclusions: These results exemplify the subtle issues that arise 
when constructing symmetric representations of atomic structures, 
and provide conceptual and numerical tools to identify and investigate 
them in both benchmark and realistic applications.

Keywords 
atomistic simulations, machine-learning, structural descriptors

Open Peer Review

Approval Status   

1 2

version 1
20 Oct 2021 view view

Reinhard Maurer , Technical University of 

Munich, Munich, Germany 

University of Warwick, Coventry, UK

1. 

Bastiaan Braams, Centrum Wiskunde & 

Informatica (CWI), Amsterdam, The 

Netherlands

2. 

Any reports and responses or comments on the 

article can be found at the end of the article.

Open Research Europe

 
Page 1 of 22

Open Research Europe 2021, 1:126 Last updated: 22 MAR 2022

https://open-research-europe.ec.europa.eu/articles/1-126/v1
https://open-research-europe.ec.europa.eu/articles/1-126/v1
https://orcid.org/0000-0001-5980-5813
https://orcid.org/0000-0003-1498-8120
https://orcid.org/0000-0003-2571-2832
https://doi.org/10.12688/openreseurope.14156.1
https://doi.org/10.12688/openreseurope.14156.1
https://open-research-europe.ec.europa.eu/articles/1-126/v1
https://open-research-europe.ec.europa.eu/articles/1-126/v1#referee-response-27874
https://open-research-europe.ec.europa.eu/articles/1-126/v1#referee-response-27875
https://orcid.org/0000-0002-3004-785X
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.14156.1&domain=pdf&date_stamp=2021-10-20


Corresponding author: Michele Ceriotti (michele.ceriotti@epfl.ch)
Author roles: Pozdnyakov SN: Data Curation, Formal Analysis, Software, Visualization, Writing – Review & Editing; Zhang L: Formal 
Analysis; Ortner C: Conceptualization, Formal Analysis, Writing – Original Draft Preparation, Writing – Review & Editing; Csányi G: 
Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Ceriotti M: Conceptualization, Data Curation, Formal 
Analysis, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 
2020 research and innovation programme (grant agreement Nos 677013 and 101001890). MC and SNP acknowledge support from the 
Swiss National Science Foundation [Project No. 200021-182057] and from the NCCR MARVEL, funded by the Swiss National Science 
Foundation (SNSF). CO is supported by Leverhulme Research Project Grant RPG-2017-191 and by the Natural Sciences and Engineering 
Research Council of Canada (NSERC) [funding reference number IDGR019381]. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Pozdnyakov SN et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Pozdnyakov SN, Zhang L, Ortner C et al. Local invertibility and sensitivity of atomic structure-feature 
mappings [version 1; peer review: 2 approved] Open Research Europe 2021, 1:126 https://doi.org/10.12688/openreseurope.14156.1
First published: 20 Oct 2021, 1:126 https://doi.org/10.12688/openreseurope.14156.1 

 

This article is included in the Excellent Science 

gateway.

Open Research Europe

 
Page 2 of 22

Open Research Europe 2021, 1:126 Last updated: 22 MAR 2022

mailto:michele.ceriotti@epfl.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.14156.1
https://doi.org/10.12688/openreseurope.14156.1
https://open-research-europe.ec.europa.eu/gateways/excellentscience
https://open-research-europe.ec.europa.eu/gateways/excellentscience


Plain language summary
The transformation of the atomic coordinates of a molecule or a material to a more symmetric mathematical form 
is the first step in the application of machine-learning techniques to atomic-scale simulations. The properties of 
such mappings – e.g. how much the symmetric descriptors change upon deformations of the original structure –  
have a knock-on effect on any model built on top of it. We study some of the most widely used families of 
descriptors, revealing how both their fundamental nature and the details of how they are implemented affect the  
sensitivity of the descriptors and thus the accuracy of the subsequent machine-learning models.

Introduction
There has been a tidal wave of interest in the last decade in applying machine learning tools to atomistic model-
ling problems. See for example the recent thematic issue of Chemical Reviews for a collection of review  
articles1. In this first “heroic phase” of the development of this field, authors used a wide variety of encodings of 
atomic structure and regression methods to make models. While it was widely recognized that it is advantageous  
to encode the physical symmetries of translation, rotation and permutation invariance into descriptors of atomic 
structure, there was little enthusiasm (or opportunity) to rigorously evaluate desirable general properties of  
different descriptors, as well as compare them with one another, independently of the regression methods and  
specific applications.

A number of recent papers have taken on such challenges. It is now understood that many of the descriptors based on 
the local neighborhood density are equivalent in the limit of high resolution2 and can be derived from body-ordered 
expansions of a suitably defined atomic density3,4.

In the present paper we will continue our theoretical investigation of representations of local atomic environments, 
A

i
, given in terms of a feature vector ξ = ξ(A

i
) = {ξ

q
(A

i
)}

q=1...nfeat
 that is invariant under rotations, reflections 

and permutations of like atoms. Such a representation immediately leads to the question of whether the atomic 
environment A

i
 can be reconstructed from the features ξ, up to symmetries. In the context of representing 

atomic environments (and global structures) this was first explored in some detail in Ref. 5 where it was  
immediately observed that the invariance of the features under said symmetries makes this a formidable theo-
retical challenge. For example, it was shown that any descriptor based on three-body features cannot uniquely 
identity every configuration containing four or more neighbors, while there are configurations with seven or 
more neighbors that cannot be distinguished by any descriptor based on four-body features. That is, pairs of 
atomic environments can be constructed that are indistinguishable under these descriptors. These observations 
apply to the vast majority of descriptors used in the field, including in particular6,7; see Ref. 2 for an extensive  
discussion.

This challenge points to the fundamental question of under which conditions the feature vector ξ is a coordinate 
system, or in other words, whether its image is a smooth manifold. Since regression, classification and reconstruc-
tion tasks are primarily undertaken in feature space, this would be a highly desirable property for the performance 
of algorithms employed in such tasks. Aside from the injectivity of ξ alluded to in the previous paragraph, and 
which encapsulates the global structure, the immediate next question is to understand its local structure. That 
is, we will investigate whether ξ provides a local coordinate system, i.e. is locally smooth and invertible. This 
can be adressed by studying the sensitivity of ξ through properties of its Jacobian matrix. In the context of atomic  
structures, similar studies were first undertaken in Ref. 8,9, where the sensitivity of ξ was related to the accu-
racy of machine-learning models based on the features, and in Ref. 10, where it was used to identify regions with  
near-constant value of the features ξ

q
.

The purpose of the present work is to explore in more detail the issues of sensitivity, local invertibility, and  
stability of descriptors constructed from symmetrized ν-correlations of the local atomic density. In high  
symmetry configurations a natural loss of sensitivity occurs for all smooth and invariant features (we explain this  
in detail in the main text), which may even be beneficial for regression tasks. A more disturbing observation, 
analogous to the degenerate pairs discovered in Ref. 5, is that certain popular descriptors also exhibit a loss of  
sensitivity in non-symmetric configurations. We will demonstrate that spurious singularities (loss of sensitivity 
in non-symmetric structures) arise by two mechanisms: (1) a lack of numerical resolution in the discretization of 
the atomic density, which is of course easily remedied; and (2) as intersections of degenerate pair manifolds, which  
are more fundamental and non-trivial to remove or rule out.

Page 3 of 22

Open Research Europe 2021, 1:126 Last updated: 22 MAR 2022



Theory
Symmetry-adapted ν-correlations
Our main focus is on a class of representations that correspond to ν-point correlations of the atom density, 
ρ

i
(r), expressed relative to an environment A

i
, a finite neighborhood centered on the i-th atom. The density  

can be written, using the notation introduced in Refs. 3,11, and formalized in Ref. 2, as

                                                                                | | ; ,
i

ji
j A

i gρ
∈

〈 〉 = 〈 〉∑x x r                                                                    (1)

where 〈x|r
ji
; g〉 ≡ g(x – r

ji
) is a Gaussian of width σ

a
 centered on the vector r

ji
 = r

j
 − r

i
 that separates the  

central atom i and its j-th neighbor, with j running over the indices of atoms within A
i
. The symmetrized  

ν-point correlations are obtained by integrating over rotations (and inversion) tensor products of this density

                                                      1 1
ˆ ˆ ˆ; | d | | | | .v

v vi i iR R Rρ ρ ρ⊗〈 〉 = 〈 〉 〈 〉∫x x x x…                                                     (2)

These definitions are quite abstract, but encompass a majority of the representations that have been used in 
the application of machine learning to atomistic problems – including atom-centered symmetry functions6,12,13, 
smooth overlap of atomic positions (SOAP) powerspectrum14, bispectrum7, Faber-Christensen-Huang-von Lil-
ienfeld (FCHL) descriptors15, all of which are limited to low correlation orders, as well as representations  
for which ν can be increased systematically, such as the moment tensor potential (MTP)16, the atomic cluster  
expansion (ACE)4 and the N-body iterative contraction of equivariants (NICE)17.

In practical use, the density-correlation is discretized into a feature vector using a basis, and the choice of basis 
can have an impact on how effectively structural information can be stored in the corresponding feature vec-
tor (see e.g. Ref. 18). However, we shall first focus on the nature of density-correlation representations in the  
complete basis set limit. For instance, it was recently shown that three- and four-body correlations (correspond-
ing to ν = 2, 3) are incomplete, i.e. it is possible to find pairs of degenerate environments, iA+ and iA− that are  

not related by symmetry, but have the same 2| iρ⊗ 〉 or 3| iρ⊗ 〉 representation5. It is important to stress that this is 

true of any descriptor that is a discretized version of these low-order representations, and that non-linear models 
built on top of such descriptors, no matter how complicated or sophisticated, cannot eliminate this fundamental  
shortcoming.

Overlap matrix representations
We also consider a second class of representations of structures that are derived from the eigenvalues of general-
ized distance matrices19, and which are far less well understood both theoretically and in applications. Because 
the distance matrix is non-linearly transformed, and combined with angular terms into a form that resembles 
orbital overlap matrices from quantum chemistry, this representation is usually referred to as “overlap matrix  
fingerprints” (OMFP). It was observed numerically that OMFPs are able to distinguish the degenerate atomic envi-
ronment pairs identified in Ref. 5, which are indistinguishable by low-order correlation features. To the best of 
our knowledge, however, no theoretical framework exists to explain this, nor any results suggesting that this is a  
general property and that no degenerate structures exist for OMFP descriptors.

To construct a set of OMFP, one begins by specifying an overlap matrix, T, analogous to a non-orthogonal 
tight-binding model with N

orb
 artificial orbitals per atom. For an atomic environment A

i
 that has N atoms, T  

has N × N
orb

 rows and columns, and has blocks

                                                        orb orb
cut cut( ) ( ) ( ) ,N N

jj j jj ji iT f r f r t ×
′ ′′= ∈r C                                                               (3)

where t is some non-linear transformation of the interatomic distances. The OMFP is then the ordered spec-
trum orb

1
{ }N N

k kτ ×
=  of T. If T is covariant to rotations then the spectrum will be invariant. In our computational 

experiments in the present work we will use this form, as proposed in 19, in particular using N
orb

 = 4 (s and p  
orbitals). In order to ensure consistency, we compute OMFP with the same implementation used in previous  
studies8,19.

Page 4 of 22

Open Research Europe 2021, 1:126 Last updated: 22 MAR 2022



Due to eigenvalue crossings the spectrum is non-smooth: the derivatives of the ordered set of eigenvalues with 
respect to atomic positions are discontinuous. These discontinuities can be removed by an averaging procedure8  
or – more simply – by projecting the spectrum onto a basis, e.g. of polynomials,

                                                                      | ; : ( ) tr( ).n n
i k

k
n A τ〈 〉 = =∑T T                                                                (4)

More importantly for us, expressing OMFPs in a polynomial basis reveals that the feature 〈n|A
i
; T 〉 can be explic-

itly written as an n-correlation, because it is given by the sum of products of elements of T with n factors (see Sec-
tion 5.3 and Equation (91) in Ref. 2 for the details). That is, the OMFP contain some of the density correlation 
features up to correlation order N. The open question is to understand whether these have genuinely high corre-
lation order or are actually just high-order polynomials of low correlation-order features such as in the example  
discussed in Sec. VI.C of Ref. 2. To the best of our knowledge, all applications of OMFP thus far have used the 
ordered spectrum directly, hence there is no established choice of a basis to obtain smooth features (using the  
monomials in (4) would lead to numerically instabilities). In what follows we will use, as a proof of concept only, a 
naive basis of sine and cosine functions

                                                                   

(2 ) | ; : cos( )/

(2 1) | ; : sin( ,)/

i k
k

i k
k

q A q K

q A q K

τ

τ

〉〈 =

〉〈 + =

∑
∑

T

T
                                                             (5)

where K is a parameter of the order of the range spanned by the spectrum. This enables us to benchmark the 
impact of the lack of smoothness of the ordered spectrum in our tests. A more careful assessment of different bases  
is left for future investigation.

Sensitivity and the Jacobian
We want to assess whether the mapping from structure to features results, at least locally, in a coordinate  
system, i.e., whether it is possible to relate changes in the features to changes in the structure in a one-to-one  
manner. This question is directly connected to the question of the sensitivity of the features to a deformation of the  
structure, which has been the subject of recent investigation8,9. The central quantity that contains the answer to  
these questions is the Jacobian J, which for the environment-centered density |ρ

i
〉 reads

                                 2, ( ) | | ; | ; | ; ,ji
j ji ji jiii

aj j

x r
J g g g

r r

α α

α αα αρ ρ
σ

−∂ ∂= 〈 〉 = 〈 〉 = 〈 〉 ≡ 〈 〉∂
∂ ∂x x x r x r x r

                              
(6)

where j enumerates the neighbors of the central atom, α indicates one of the x, y or z Cartesian coordi-
nates, and the notation ∂αg indicates the derivative of a 3D Gaussian with respect to the α direction. J

jα,x 
is an  

infinite-dimensional operator, a generalization of the Jacobian matrix, that for a finite feature vector ξ of  
length n

feat
 contains 3N rows, corresponding to the coordinates of the N neighboring atoms, and n

feat
 columns,  

corresponding to the number of indices that enumerate the features for a given discretization of the repre-
sentation. Note that this is the transpose of the most common definition of the Jacobian, which we chose due  
to the analogy with a design matrix where each column corresponds to a feature.

The singular values, s
k
 ≥ 0, k = 1, . . . , 3N, of the Jacobian matrix (or operator) J can be obtained by perform-

ing a singular value decomposition, or by computing the square root of the eigenvalues of JJ* (the “sensitiv-
ity matrix” of Ref. 8), and identify the principal modes of variation of the representation. These singular values  
indicate how much the features change when the atoms are distorted by an infinitesimal amount according to  
the displacement patterns associated with the corresponding singular vector (i.e., eigenvector of JJ*).

Sensitivity, local invertibility and global invertibility
Consider a smooth descriptor ξ : ℝ3N → ℝd, d ≥ 3N, with Jacobian J : ℝ3N → ℝ3N×d. We use 1{ }N

jji =≡u r  to indi-
cate the Cartesian coordinates of the neighbors within A

i
. If J(u

0
) has full rank 3N, then the image of ξ is a smooth 

manifold locally around ξ(u
0
) and the mapping ξ is locally invertible around u

0
. In other words, ξ is a coordinate 

system, locally around u
0
. We can also say in this case that ξ is sensitive to small perturbations. The degree of  

sensitivity may be measured in terms of the singular values of J.

By contrast, in Ref. 5 we explored the seemingly much more stringent condition of global invertibility 
of a descriptor, i.e., injectivity of the mapping u ↦ ξ(u) on the set of all admissible configurations (atomic  
environments).

Page 5 of 22

Open Research Europe 2021, 1:126 Last updated: 22 MAR 2022



Sensitivity of ρi and its discretization
Although this work is primarily concerned with sensitivity of symmetry-adapted features, it is nevertheless 
instructive to first consider the sensitivity of ρ

i
 itself. We will briefly summarize the effect that the smearing 

σ
a
 and the discretization have on the sensitivity of 〈x|ρ

i
〉, which highlight important considerations for practical 

implementation. For the sake of clarity of presentation we will consider the specific case when g is a Gaussian,  
but our analysis applies whenever g is analytic and rapidly decaying, i.e. a “smeared Dirac delta”.

To that end, we compute the scalar product of two rows in the Jacobian of the neighbor density (6):

                                 

2

22

2 3/2 4

( )

4 2 ( )( )
d ; | | ; .

(4 ) 4

ji j i

a a ji jij i j i
jij i

a a

r r r regg
α α α ασ αα

αα

σ δ

πσ σ

′−
− ′ ′

′ ′ ′
′ ′

− − −
〈∂ 〉 〈 ∂ 〉 =∫

r r

x r x x r

                            

(7)

In the limit in which the contributions to the density from individual atoms do not overlap ( j j′r /σ
a
 → ∞), the Gaussian  

term tends to jjδ ′, and the scalar product reduces to 3/2 5(16 )./jj aααδ δ π σ′ ′  Thus, the rows of J are orthogonal 

in this limit, and all the singular values of J are equal to 3/2 51/ 16 .aπ σ . In particular we obtain that the condition  

number of the Jacobian cond(J(ρ
i
)) → 1, which is indeed the strongest notion of sensitivity we can hope for.

In other words, in this regime where all atoms do not overlap relative to the smearing parameter σ
a
, |ρ

i
 〉 is equally  

sensitive to the displacement of each neighbor, independent of the structure considered.

In practical simulations, the density ρ
i
 will be discretized by projecting it onto an orthogonal basis {φ

q
},

                                                      | ( ) | d = ( ) ( )d ,j
j

q q iiiq gρ ρ〈 〉 = 〈 〉 −∑∫ ∫x rx x x x xφ φ                                                      

and denote the finite feature vector with 
feat feat

11
{ } { | }

n n
q q qiq ρ= == ξ = 〈 〉ξ  where q ranges over a finite index-set. 

We must now consider whether the perfect sensitivity of ρ
i
 (in the regime j j′r /σ → ∞) survives under this  

discretization. A straightforward calculation yields

                               ,

| ( )
( ) ( )d ( )d | ; .j

j jj

i i
q qj q ji

q g
J q g

r r r αα α α α
ρ ρ∂ 〈 〉 ∂ −∂

= = = ≡ 〈 ∂ 〉
∂ ∂ ∂∫ ∫

x r
x x x x rφ φξ                               (8)

Observe that J
jα, q

 are the L2-projection coefficients of 
j

i
rα
ρ∂

∂
, hence it is natural to consider the projection, Π,  

over the finite basis set

                                            
feat feat

1 1
,( ) : | ; ( ) ( ) ( ).

j

n n
i

j q qqji
q q

q g J
r ααα
ρ

= =

 ∂
∏ = 〈 ∂ 〉 = ∂  

∑ ∑ xx r xφ φξ                                             (9)

With this definition we obtain that we can rewrite the inner product of two rows of J(ξ), which is now a sum  
over the features, as

                                               
feat

1
, ,,( ) ,

j j

n
ii

j q j qj j
q

JJ J J r rα αα αα α

ρρ

′

∗ ∗
′ ′ ′′ ′

=

 ∂∂ 
 = = ∏ ∏ ∂ ∂     

∑ ∫                                               (10)

which is now identical to (7) except for the projection error. Standard approximation theory results (e.g., 20) imply 

that this error will decay with a rate that depends on the smoothness of 
j

i
rα
ρ∂

∂
, i.e., on the smoothness of g, and on the 

choice of basis φ
q
.

For simplicity let us assume that g is analytic (though a Gaussian would be entire and yield even stronger results), 

and that φ
q
 is a basis of polynomials which is the most common choice in this field ˆ ˆ( ( ) ( ) ( )),m

nq lx R x Y=x xφ  then 

the error will be exponentially small. Taking into account also the rescaling of space via the smearing width σ
a
, and  

the domain encoded in the cut-off radius, one can obtain that

                                                         max maxexp ( min( , )),
j j

i i
ac n lr rα α

ρ ρ
σ

 ∂  ∂
∏ − < − ∂ ∂                                                   (11)
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for a constant c that depends on g and has unit of inverse distance. From this, we can conclude again that 
cond(J(ξ)) → 1 at an exponential rate as the discretization parameter min(n

max
, l

max
) increases. Recalling the con-

dition number estimate in terms of smearing width (7) and a brief argument detailed in the Extended data21  
yields the combined estimate

                                                         
2

0
2 maxmax8 min( , )cond( ) 1 ,aa

r
c n le eσ σ− −− < +J

�
                                                         (12)

where r
0
 = ,min j j jjr′ ′ . These estimates are illustrated, confirmed, and explored more quantitatively in Figure 4.

While (7) is exact, experience from approximation theory is that our estimates are close to sharp. This strongly 
suggests that to obtain a discretization of ρ

i
 one must first choose σ

a
 such that r

0
/σ

a
 ≫ 1, and then choose the  

discretization parameters such that min(n
max

, l
max

) ≫ 1/(cσ
a
). In this regime, we expect that cond(J(ξ)) will be  

close to one. However if these requirements are not satisfied then we would expect poor sensitivity encoded 
in the fact that singular values of J will be close to zero. More generally, (12) strongly hints that there is an 
optimal balance between the smearing and discretization parameters: given a smearing width σ

a
 there is a  

minimal resolution that is required but increasing it may not produce a descriptor with more uniform sensitiv-
ity. Vice versa, given a minimal distance r

0
 and a resolution min(n

max
, l

max
) of the basis, there is an optimal choice 

of smearing width that minimizes the condition number. See in particular the right-hand panel of Figure 4 for  
a quantitative illustration of this effect.

For the remainder of the theoretical discussion we shall assume that σ
a
 is chosen sufficiently small and  

min(n
max

, l
max

) sufficiently large so that the resolution of ρ
i
 will not affect the results.

Loss of sensitivity after symmetrization
The case of the symmetrized density correlations is more complicated. Given that | v

iρ⊗ 〉 features are invariant 
with respect to rotations, the Jacobian has three singular values associated with a rigid rotation of the environ-
ment. When investigating the singular behavior of J it is then useful to work in a basis of atomic displacements 

that removes rigid rotations. The translational symmetry of |ρ
i
〉, which is carried over to | v

iρ⊗ 〉, is taken care  
of by discarding from the Jacobian the row associated with the central atom i. If one considers ν = 1 features 
that only depend on the distances of the neighbors to the central atom, it is clear that perturbations of the struc-
ture in which each neighbor is moved without changing r

ji
 will not result in a change of the feature values, and 

that J has at most N non-zero singular values, reflecting the fact that a two-body description of the environment  
is highly incomplete.

In the remainder of the paper we perform a numerical and geometric analysis of the behavior of J, focusing 
in particular on ν = 2 features, corresponding to distances and angles at the central atom. We will see that in  
certain symmetric configurations all symmetric features will have “degenerate” directions corresponding to singu-
lar values s

k
 = 0 – and that this may in fact be beneficial in terms of using these features to learn structure-property  

relations. However, more importantly, we will construct examples of configurations without such natural  
symmetries where two-correlations still have degenerate directions and thus any descriptor based on two-correlations 
inherits this degeneracy. In particular this means that the descriptor does not define a local coordinate system,  
which can have severe consequences for reconstructing atomic environments and for regression tasks.

We say that these structures or environments are linearly degenerate, or linearly degenerate singularities, to dis-
tinguish them from the discrete pairs of degenerate structures discussed in Ref. 5. By contrast, when a zero  
singular value is caused purely by a symmetry in the structure we will call such a structure a symmetric singularity.

Pedagogical example
As a pedagogical example consider the case of a single particle on the real axis, described by its coordinate x. 
Suppose we are interested in properties of this particle that are invariant under reflection, i.e. O(1) symmetry. In 
this case we may decide to choose ξ = x2 as a feature (or, 1-dimensional feature vector) describing the posi-
tion. Clearly, knowledge of ξ allows us to reconstruct x up to a sign (the reflection), even near x = 0 where the  
feature ξ is singular, i.e. ∂

x
ξ = 0. This is a symmetric singularity since it is induced by the symmetry group and 

generic to all symmetric functions. In that point (and only in that point) we cannot even invert the descriptor 
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locally, i.e., ξ does not supply a local coordinate system. However, if y is a reflection-symmetric property, then its  
Taylor expansion,

                                                                        2 42 4
0( ) ~

2 4!

c c
y x c x x+ + +…

has only even terms, and hence can be expressed as a smooth function of ξ, y(x) = y(ξ). This suggests  
that ξ is well-suited for representing structure-property relationships.

Now suppose we make the less fortunate choice ξ = cos(x). By analogy with the power spectrum descrip-
tor, ξ is not injective, i.e. we can find pairs of structures (in fact infinite tuples) that map to the same descriptor 
value, e.g., if x

±
 :=π±ϵ then ξ(x

+
) = ξ(x

−
). As this degenerate pair meets at x

0
 := π we obtain a linearly degenerate  

singularity expressed by the fact that ∂
x
ξ(x

0
) = 0. Of course we could have immediately seen this root of ∂

x
ξ. How-

ever, we emphasize the intersection of degenerate pairs as it appears to be the generic mechanism underlying  
such linear degeneracies even in the much more complex case of symmetry adapted ν-correlations.

A general symmetric property y of course need not be symmetric about x
0
 = π and hence has a general Taylor  

expansion,

                                                  
3322

1 0 0 00( ) ~ ( ) ( ) ( )
2 6

aa
y x a a x x x x x x+ − + − + − +…

If (a
1
, a

3
, . . .) ≠ 0, it will be impossible to represent y(x) = y(ξ) in a (potentially small) neighborhood  

of the degenerate point x
0
.

Symmetries and singularities of density-correlation features
We now proceed to demonstrate the general concepts we introduced in the previous section for an actual  
atomistic system, and for a (highly converged) discretization of different classes of representations. As an exem-
plar system we use C-centered environments of CH

4
 configurations, which were used in Ref. 5 to construct  

concrete realizations of the degeneracies that are observed for low-body-order density correlation features. 
We consider different types of configurations to illustrate the various cases in which null singular values of the  
Jacobian can appear. We compare ν = 2 features, ν = 3 features, as well as OMFP and their projection on a smooth 
basis. We also plot the change in energy of the system as a function of molecular distortions, as an indication  
of the behavior one should expect for a typical molecular modeling target.

Directionally-resolved sensitivity analysis
For a feature vector containing a finite number n

feat
 of components, describing an environment with N neigh-

bors, the Jacobian is a 3N × n
feat

 matrix. Its singular value decomposition, J = UDiag(s)VT identifies the principal 
modes of variation of the representation. s is a vector containing n

J
 principal values (usually 3N, assuming 

the typical case in which n
feat

 ≫ 3N) that indicate how much the various features change when the atoms are  
distorted by an infinitesimal amount according to the displacement patterns associated with each left singu-
lar vector contained in the columns of U. The columns in the matrix V describe what feature distortion pattern is  
associated with each principal component; note that this construction implies that if n

feat
 ≫ 3N, the right  

singular vectors V span a subspace of dimension smaller than n
feat

, and so there are some changes in the feature  
vectors that cannot be realized by distortions of the structure. A crucial observation is that any orthogonal  
transformation of the features changes the right singular vectors V, but not s or U. Thus, in the complete basis set 
limit, one can characterize the sensitivity of representations in a way that is independent of the choice of basis,  
and so the analysis we carry out in this section is (largely) independent on the details of the discretization.

If a structure A
i
 is distorted according to a small Cartesian displacement du, the features change according to

                                                                      | .( ) ki k qk
k

d q A sd V〈 〉 = ⋅∑ u U                                                                  (13)

The magnitude of change of a feature indexed by q is given by the projection of the Cartesian displacement on the 
left singular vector U

k
, scaled by the associated singular value s

k
, and then multiplied by the right singular vectors 

V
k
. Only the latter term depend on the discretization of |A

i
〉, while in the complete basis set limit the left singu-

lar vectors U
k
 and the singular values s

k
 can be converged with respect to n

max
 and l

max
. Here we use an optimized 

radial basis22 with n
max

 = 20 components, built using the implementation in librascal23 as the principal components  

Page 8 of 22

Open Research Europe 2021, 1:126 Last updated: 22 MAR 2022



computed based on 1000 structures from the random CH
4
 dataset, and starting from 100 Discrete Variable Repre-

sentation (DVR) features, a large angular cutoff l
max

 = 20 and a very sharp density smearing σ
a
 = 0.05 Å to approach 

the complete basis limit of the density correlation features. In order to reduce the dependence of the sensitivity anal-
ysis on the discretization of the features we do not plot an arbitrary component of 〈q|A

i
〉, but write the Cartesian  

displacement around the reference structure in terms of distortions ∆
k
 projected along the left singular vectors

                                                                            ( ),ik k
k

A∆ = ∆∑u U                                                                          (14)

and report on the finite changes of the features projected on the right singular vectors

                                                        | ( ) [ | ( ) | ].( )qk i ii i
q

k q A q AA V A∆〈 ∆ 〉 ≡ 〈 ∆ 〉 − 〈 〉∑u u                                                 (15)

Equation (15) can also be used when the features that are being probed differ by those that define the left singular 

directions and ∆u – for instance, in what follows we deform the structure along left principal directions for 2| ; iA ρ⊗ 〉, 
but then inspect the change in 3| ; iA ρ⊗ 〉 and OMFP. It suffices to define the directional derivative of the features along 
the Cartesian displacement associated with one of the left singular vectors, and normalize it

                                                              
| ( )

; / .i
k k kqk

k

q A
V

∂ 〈 ∆ 〉
= ←

∆∂
u

V V V   

A subtle but important aspect is that symmetry-invariant features have some “trivial” zeros among the singular 
values, associated with rigid translations and rotations of the environment. These singularities should be resolved 
as a preliminary step, because otherwise non-trivial s

k
 = 0 directions would mix with the trivial ones, obfuscat-

ing the analysis. Singularities associated with a rigid translation of an environment are easily eliminated by only 
considering the Jacobian for the N atoms that are not the environment center. Rotations require more attention. A 
basis of 3N − 3 displacements that are orthogonal to each other and to the displacements corresponding to infini-
tesimal rigid rotations of the environment around its center can be built based on purely geometric arguments, and  
the Jacobian should then be projected in this basis. The left singular vectors can be converted to build full  
Cartesian displacements by multiplying them by the transpose of the rotation-less basis matrix.

General structure
The left column of Figure 2 shows the changes in features associated with the largest and smallest singular val-
ues of the ν = 2 Jacobian for a CH

4
 structure corresponding to the optimal tetrahedral geometry, with H atoms 

distorted at random by 0.3Å. In the small-displacement regime, the changes in the representation |A
i
〉 are  

linear, and the slope corresponds to the associated singular value. The energy has a non-zero gradient along the  
two directions, and the relative slope along the two directions reflects, at least qualitatively, the trend seen for  
all the choices of features except for the smooth OMFP.

Symmetric structure
Consider an environment A

i
 = {r

ji
}

j
 that is left unchanged by application of a symmetry operation Ŝ, so that ŜA

i
 = A

i
, 

with atoms indices mapped as j → Ŝ j, i.e. Ŝr
ji
 = Ŝ jir . A general infinitesimal distortion of the atoms du will generate 

an environment A
i
(du) = r

ji
 + du

j
 that is not left invariant by the symmetry. If one can find a displacement pattern such 

that
                                                                                  

ˆ
ˆ

j S jSd d= −u u
                                                                            (17)

then ŜA
i
(du) = A

i
(−du). Any symmetric set of features should be equal for A

i
(du) and A

i
(−du), meaning that the fea-

ture gradient along du has to be zero: the Jacobian must have one additional singular value equal to zero – or more 
if several orthogonal displacements satisfying (17) can be found. A couple of simple examples of these symmetric  
distortions are shown in Figure 1b.

In the middle column of Figure 2 we show the sensitivity of different kinds of representations for two types of dis-
tortion of a minimum-energy CH

4
 structure. The red curve corresponds to a symmetric breathing mode, in which 

all CH bonds are stretched in phase. This corresponds to the only non-zero singular value of the Jacobian for this 
configuration, and all descriptors change linearly along this direction. The blue curve, instead, corresponds to a 
stretch mode in which two CH bonds contract, and two dilate by the same amount. This deformation is symmetric 
in the sense of Equation (17), which leads to a symmetric behavior of the descriptors response. The case of OMFP  
merits further discussion: due to the eigenvalue sorting that guarantees atom index permutation invariance, 
the response has a cusp for ∆

2
 = 0. A similar cusp will be present for every symmetric deformation, which in 
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the case of the minimum-energy CH
4
 structure implies all but one degree of freedom. Fortunately, it is simple to 

solve this problem: when using smooth OMFP, computed projecting the spectrum on a smooth basis follow-
ing Equation (5), the cusp is removed, and the descriptors have zero gradient as required by the combination of  
symmetry and smoothness.

A quadratic behavior along the symmetric direction is consistent with the changes in energy, which follow a para-
bolic trend. For this minimum-energy configuration, the trend is parabolic along both directions. For the red curve, 
however, this quadratic behavior is a consequence of the CH bond length being the equilibrium one: if one changed 
it, or re-computed this same configuration at a different level of theory, there would be a non-zero slope for the  
energy around ∆

1
 = 0. The blue curve, instead, is a consequence of symmetry, and the trend would be quadratic 

for this stretch deformation even if the CH bonds were not the minimum-energy ones – provided that they were  
all equal.

Degenerate structure
For ν = 2 features (three-body atom-centered symmetry functions (ACSF), SOAP powerspectrum . . .) one can 
also find configurations with zero singular values that are not associated with a symmetry, but rather with degener-
ate structures of the kinds discussed in Ref. 5. In short, one can find pairs of environments, iA+ and –

iA , that have  

exactly the same 2| iρ⊗ 〉 features, although they are not equivalent and in general have different physical proper-

ties. If the environments iA± belong to manifolds i
±A  that cross then this gives rise to a “doubly-degenerate” envi-

ronments 0
iA , for which there is at least one direction such that 0( )i iA d +∈u A  and 0( ) iiA d −− ∈u A . Thus, the value of 

the 0 2| ( ); iA d ρ⊗ 〉u  features is identical to those of 0 2| ( ); iA d ρ⊗ 〉− u . As a consequence, the Jacobian J( 0
iA ) has a  

spurious zero among its singular values, leading to quadratic (or higher) variation of 〈k|A
i
(∆u)〉 when dis-

placing the atoms along the coordinate associated with it. This behavior is very clear in the right column of  
Figure 2. For a structure sitting at the intersection of the i

+A  and i
−A  manifolds, ν = 2 density features have 

a spurious zero singular value, and the corresponding component of 
2| iρ⊗ 〉 change quadratically when dis-

placing the atoms along the left singular vector. The pathological nature of this behavior is apparent in the 
fact that both OMFP and the ν = 3 density representation vary with non-zero slope along the same geo-
metric deformation, and so does a physical property such as the molecular energy. This shortcoming of  
low-body-order features is a direct consequence of the lack of injectivity discussed in Ref. 5.

Figure 1. (a) Construction of a basis-set independent sensitivity analysis of the representation: linear perturbations of 
the feature vector are described by a Jacobian J that couples changes in the 3N Cartesian coordinates to changes in 
the features; right singular vectors project the basis-dependent features into a 3N-dimensional space that describes 
the intrinsic sensitivity of the representation. (b) Examples of a symmetric environment, and two deformations that 
lead to symmetric pairs of structures, and should therefore be associated with a zero singular value. (c) Schematic of 
the origin of spurious zero singular values associated with pairs of degenerate environments A±: if the twin manifolds 
meet, their intersection produce a “degenerate singular point” A0. A small deformation that moves along A± leads to 
finite separation (and finite feature derivatives) in a non-degenerate feature space, but not when using an incomplete 
representation. (d) An example of the construction of a degenerate singularity A0 based on the same family of 
degenerate structures discussed in Ref. 5.
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Figure 2. Changes in the components of features and properties when displacing the H atoms of a CH4 
molecule along selected principal directions. Results are shown for distortions along two principal directions 
(determined for ν = 2 SOAP features), corresponding to the displacement patterns indicated at the top of the figure, 
where the color of arrows matches the color of curves. The columns correspond, left to right, the top and bottom 
singular values of a distorted, asymmetric CH4 structure; the symmetric and one asymmetric breathing mode of the 
ideal methane structure; a “doubly-degenerate” structure at the intersection of the two branches of the manifolds 
discussed in Ref. 5. Rows show, top to bottom, projected variations of ν = 2, ν = 3, OMFP and smooth OMFP features, 
and the total energy of the molecule.
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Similar to the order-zero degeneracies discussed in Ref. 5, information on the features centered on other 
atoms may be sufficient to break the tie, and lift the singularity, resulting in non-zero gradient of models of 
molecular properties. Any set of discrete degenerate structures can generate a spurious singularity whenever 
the degenerate manifolds cross. This is also true for the construction, discussed in Ref. 5, of a pair of structures  
that have the same ν = 3 features and so also the bispectrum, and similar four-body features, can have linearly 
degenerate structures. We could not determine – but cannot rule out – the existence of additional manifolds, or 
isolated structures, which have a spurious zero in the eigenspectrum of J and are not the result of the intersection  
of those associated with discrete degeneracies.

Accuracy of regression models
To investigate the relationship between the mathematical properties of the structure-feature mapping and the 
behaviour of a regression model that uses them, we fit the energy of the example CH

4
 configurations shown in  

Figure 2. We chose kernel ridge regression (KRR) based on a squared exponential kernel as a simple model 
with universal approximation properties. The elements of the kernel matrix between training configurations are  
defined as:

                                                                  2( ( ) ( ))
k( , ) ,

q qi iq
A A

i iiiK A A e
γ− −ξ ξ ′

′

∑
= ≡′

                                                     (18) 

where ξ
q
(A

i
) indicates one of the entries in the feature vector associated with an environment A

i
. The representation  

may be either a discretization of 
2ρ⊗

, 
3ρ⊗

 or a set of OMFP.

The predictions for a new environment A
*
 can be written as

                                                          2 1( ) k( , ) , ( )i i
i

E A A A b σ −
∗ ∗= = +∑ b K I E                                                     (19)

where K is the kernel between train configurations, and E is the vector of the energies associated with the training 
structures. The model is entirely determined by the training set, the features, and two hyperparameters – the 
scale of the squared exponential kernel γ and the regularization σ2. We optimize γ and σ2 by grid search, mini-
mizing the error of the predictions on the structure that are not used for training (further details are given in  
the Extended data21). Even though this procedure implies some information leaking from the test structures, doing  
this consistently for all models ensures a fair, and deterministic, comparison.

The overall errors of the different models are shown in Table 1, and the errors along the two one-dimensional 
cuts associated with the displacement patterns in Figure 2 are plotted in Figure 3. For the generic, asymmetric 
structure the three representations perform similarly. Errors are larger in the direction of u

1
 – which also  

Table 1. Accuracy of regression models for the energy 
across a grid of 21 × 21 points along the two selected 
directions, as a function of the regular n × n sub-grid 
used for training. The same structures, distortions and 
representations are used as those shown in Figure 2. Errors 
are given in µeV (such small values are possible because we 
are effectively fitting a 2D function with a range of a few 10s 
of meV) and correspond to root mean square errors on the 
test points. OMFP = overlap matrix fingerprints.

Structure and grid 2|ρi
⊗ 〉 i

3|ρ⊗ 〉 OMFP s-OMFP

asymmetric, 3 × 3 89 48 230 16

asymmetric, 7 × 7 0.3 5.6 0.06 0.1

symmetric, 3 × 3 49 140 570 48

symmetric, 7 × 7 5.8 5.4 37 5.3

degenerate, 3 × 3 9600 150 6.5 1.4

degenerate, 7 × 7 5700 0.42 0.11 0.06
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corresponds to the highest singular value for 
2| iρ⊗ 〉 – than in the direction of u

2
 – which we selected as the lowest 

singular value. For the symmetric CH
4
 structure, the global minimum of the methane molecule, the energy model 

displays a very interesting behaviour. The two deformations correspond to similar displacement-energy curves  
(Figure 2, bottom panel), but the model errors are very different. This is because the symmetric breathing 
mode u

1
 is an “accidental” energy minimum, and so the model predictions yield a small, but non-zero, force 

for ∆
1
 = 0. On the other hand, u

2
 = 0 is required to be an extremal point due to symmetry, and so all symmetric 

features predict, by construction, a symmetric curve with no force for ∆
2
 = 0 and achieve a much lower predic-

tion error. The error of the OMFP-based model is considerably higher than the others. This is because of the  
non-smooth behavior in ∆

2
 = 0, which means that even if the curve is symmetric, the force in ∆

2
 → 0± is 

not zero. Indeed, the smooth version of the OMFP has performance comparable to those of the power spec-
trum. Finally, displacements around the structure associated with a degenerate singularity result in a potential  

energy surface that cannot be fitted using 
2| iρ⊗ 〉 features. Even though being incapable of reproducing the non-zero 

force for ∆
2
 = 0 is a serious shortcoming of 

2| iρ⊗ 〉, the effect is dwarfed by the impact of the discrete degeneracies: 
the model displays an enormous error also for ∆

2
 = ±1, even though those displacements corresponds to two of the  

training points. The OMFP model performs better than 
3| iρ⊗ 〉 features, which are, however, perfectly capable of  

resolving the degeneracy. When increasing the training grid to 7 × 7 points, all features except for 
2| iρ⊗ 〉 converge,  

with only a small residual error.

Figure 3. Error in fitting the energy of a CH4 molecule when the atoms are displaced along the directions 
show in Figure 2. All models are trained using a 3 × 3 grid of points along u1 and u2, and the line dashing indicates 
the features used for the model. The two rows correspond to cuts along the directions corresponding to the two 
separate components.
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Finite basis set
In the discussion this far we have been careful to use a highly-converged discretization of the density-correlation 
features, so that our numerical results are representative of the intrinsic nature of the representation, rather than 
of specific parameters, or implementation choices. Considerations on the “physical” and “degenerate” singu-
larities, and the smoothness of the structure-feature mapping, applies equally well to SOAP, ACSF, FCHL, 
etc. However, implementation details – in particular the type and size of the basis used to discretize density  
correlations – do matter, as they affect the condition number of the Jacobian, possibly introducing numeri-
cal instabilities and near singularities. This is easy to see by considering an overly parsimonious discretization, in 
which the number of features is smaller than 3N − 3: then, J has a rank that is insufficient to fully characterize  
structural distortions.

We can then consider a more realistic example, taking a database of CH
4
 environments with the H atoms  

randomly distributed in a sphere of 3Å radius around the central carbon, and assessing the condition number of 
the Jacobian for the expansion coefficients of the C-centered density, as a function of the basis type and size. As 
shown in Figure 4, a large basis set size is needed to approach the theoretical condition number, which should be 
one for the non-symmetrized density expansion coefficients as discussed in Sensitivity of ρ

i
 and its discretization. 

Furthermore, the nature of the radial basis is very important. A basis optimized to maximize the information con-
tent for a given n

max
 approaches the limiting value for n

max
 ≈ 8, even though a very large l

max
 has to be used, in 

addition. A Gaussian type orbitals (GTO) basis converges more slowly, and the DVR basis leads, for n
max

 = 4,  
to a mean condition number above 106. These numerical results closely match but quantify more precisely the  
theoretical predictions made in Sensitivity of ρ

i
 and its discretization, and further strengthen the importance of imple-

mentation details: even in a case in which one would expect a perfectly-conditioned Jacobian, near-singularities 
can arise when using a small, or sub-optimal, discretization of the representation. The right panel of Figure 4  
demonstrates the role of the Gaussian width as well as its interplay with the discretization in determining the  
condition number of J. As predicted theoretically by Equation 12, the resolution of the individual particles and thus 
the condition number initially improves with decreasing smearing width, but eventually the numerical discretiza-
tion is no longer sufficient to resolve the narrow Gaussian, at which point the condition number increases again. 
The optimal value of σ

a
 is shifted to the left as the discretization is refined. This analysis supports – at least in terms  

of achieving a uniform sensitivity of the density expansion coefficients to atomic displacements – the choice 
of a Gaussian smearing of the density that is about half of the minimal interatomic separation, a practice that is 
often adopted by practitioners when constructing Gaussian approximation potentials24. It moreover highlights the  
importance of the discretization parameters when a small smearing width is employed.

Results for density-correlation features are qualitatively similar (which is unsurprising, given that they are com-
puted from combinations of density expansion coefficients) but deserve further comments. As shown in Figure 5, 
the mean condition number of ν = 2 features is higher than of |ρ

i
〉, and we could not reduce it below 10-20. At the 

same time, the dependence of the condition number on n
max

 is sharper than for the density expansion coefficients: 

the presence of products of radial functions, which is implicit in the definition of 1 2
2; ; | in n l ρ⊗ 〉〈 , implies that fewer 

starting basis functions are needed to reach a satisfactory description of radial degrees of freedom. Similar observa-
tions can be made for the ν = 3 correlations: the condition number decreases quickly with both n

max
 and l

max
 – the  

Figure 4. Mean condition number (CN) for the Jacobian of |ρi〉 features, computed from random CH4 
configurations25, for C-centered environments. Left: mean CN as a function of nmax and lmax, for an optimal radial 
basis22 and a density smearing σa = 0.1Å. Center: mean CN as a function of nmax, for two selected values of lmax and 
comparing three different choices of basis, for σa = 0.1Å. Right: mean CN as a function of σa, using an optimal radial 
basis for different values of (nmax, lmax).
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correlations involve products of multiple radial and angular terms – but it is very difficult to reduce the mean 
condition number below ≈ 10. The question is whether the higher condition number of ν = 2, 3 invariant fea-
tures is due to the amplification of the singular values associated with the fact that density correlations are prod-
ucts of the expansion coefficients, or is associated with the proximity to the geometric singularities discussed in  
Symmetries and singularities of density-correlation features. To elucidate this point, we show in Figure 6 an anal-
ysis of the condition numbers computed for a random subset of 100 representative CH

4
 structures extracted from 

the dataset in 25. For a given discretization, the condition number of the symmetrized features is consistently  
higher than that of the underlying |ρ

i
〉 expansion coefficients. However, ν = 3 features have consistently a lower 

condition number than the powerspectrum features, which indicates that the relationship between body order 
and the condition number is not as simple as if it reflected just the products that enter the definition of high-ν  
representations. In addition, ν = 2, 3 features have a more pronounced high-condition number tail. The correspond-
ing structures have a low condition number for J( |ρ

i
〉) (Figure 6, center), suggesting that the large condition number 

is not a consequence of the discretization, but is linked to proximity to symmetric (or degenerate) singular points.  
To determine the nature of the singularities we use a similar strategy to that adopted in Ref. 5 to study dis-

crete power spectrum degeneracies. We compare the condition number of 2(| )iρ⊗ 〉J  against that of 3(| )iρ⊗ 〉J .  

Structures that approach a degenerate singularity should have a large cond( 2(| )iρ⊗ 〉J ), and a much smaller cond  

( 3(| )iρ⊗ 〉J ). As shown in Figure 6 (right), all the structures we considered with a high condition number for  

Figure 6. A comparison of the condition numbers (CNs) of the Jacobian of |ρi
〉, 2|ρi

⊗ 〉, i
3|ρ⊗ 〉, computed from 

random CH4 configurations25, for C-centered environments. Left: histogram of the CN of different structures 
for typical discretization parameters (nmax = 8, lmax = 6; dashed lines), and parameters that lead to the best CN for 
ν = 3 features (nmax = 4, lmax16; full lines). Center: parity plot of the condition number for 100 random structures, 
comparing the values for density expansion coefficients (x-axis), and those for ν = 2, 3 density correlations (y-axis), using  
nmax = 4, lmax = 16 consistently. Right: parity plot of the condition number for the same 100 random structures,  
comparing the values for ν = 2 (x-axis), and those for ν = 3 (y-axis) density correlations.

Figure 5. Mean condition number (CN) for the Jacobian of | ⊗ 〉ρ v
i  features, computed from random CH4 

configurations25, for C-centered environments. Left: mean CN as a function of nmax and lmax, for smooth overlap of 
atomic positions (SOAP, ν = 2) features, an optimal radial basis22 and and a density smearing σa = 0.1Å. Right: mean CN 
as a function of lmax, for different values of nmax, comparing ν = 2 and ν = 3 features.
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powerspectrum features also have a comparatively high condition number for the bispectrum features, which indi-
cates that they are (close to) symmetric singularities, and that none of the 100 random structures we considered are 
close to a degenerate singularity. Overall, this numerical analysis supports the analytical estimates in Symmetries  
and singularities of density-correlation features: the basis set and the density smearing must be converged 
(and balanced) to obtain neighbor density coefficients with a uniform sensitivity to deformations. For some  
configurations, symmetric representations exhibit (near) singular behavior, which is, at least for this dataset,  
consistent with physical constraints and not a manifestation of pathological behavior.

Conclusions
We have investigated, both analytically and numerically, the sensitivity to structural distortions of a family 
of symmetric representations of atomic environments that can be interpreted as a hierarchy of ν-point correla-
tions of the neighbor density, and compared it with that of OMFP, an alternative set of features that incorporates 
some of the components at each order of correlation. Some of the results we show are intrinsic properties of the 
mathematical structure that underlies density-correlation representations, and independent of the discrete basis 
used to compute them as a finite-dimensional vector. In the limit of a complete basis, and for a sharp density, the  
mapping from coordinates to translationally invariant environment features has uniform sensitivity with respect to  
the displacement of any of the neighbors, as measured in terms of the Jacobian. Enforcing O(3) group  
symmetries, however, introduces some symmetric singular points – configurations for which symmetry 
implies that the Jacobian has fewer than 3N − 3 non-zero singular values. These symmetric singularities 
are physically meaningful, and beneficial to the regression of properties of the structures that are bound by  
symmetry to have critical points for those configurations. For low orders of correlation, we also find that the  
symmetric density correlation features present degenerate singularities, which are directly linked to the  
discrete degenerate structures that have been recently shown to be a manifestation of the incompleteness of the  
structure-feature mapping5. These singularities are unphysical, and detrimental to the construction of energy  
models – although potentially less so than the discrete degenerate manifolds they derive from.

It is important to stress that, even though both kinds of singularities can occur arranged along continuous mani-
folds, these are distinct from the manifolds of “quasi-constant features” observed in Ref. 10. In all cases we have 
observed so far the features are not constant along the manifold. Instead, structure along the manifold only share 
the lack of invertibility of the linearized structure-feature mapping, along one or more directions orthogonal  
to the manifold. Higher-order correlations, either from a systematic expansion or from OMFP, cure these problems. 
In the latter case the lack of smoothness in the feature mapping has a negative impact on the accuracy of models  
close to symmetric structures, which is easily cured by projecting the spectrum on a smooth basis.

We also consider how these general results change when using a finite discretization of the features. We find that 
the use of a small basis means that even the Jacobian of the mapping between atomic coordinates and neigh-
bor density coefficients – that ought to have uniform sensitivity – can have a large condition number, which 
depends on the type and number of basis functions as well as on the smearing of the atom density, with optimal 
results obtained for an intermediate smearing of a fraction of the minimum interatomic separation. Symmetrized  
features computed with a limited basis, too sharp or too broad Gaussian smearing, inherit the anisotropic 
response to atomic deformations from the expansion coefficients they are built from. Even when using converged  
density coefficients, however, configurations with a high condition number can be found, corresponding to struc-
tures that are close to one of the symmetric singularities. We find instead that – at least in the benchmark dataset  
we consider – degenerate singularities are much rarer.

This local analysis of the nature of the structure-features mapping complements the geometric arguments of 
our previous work, and clarifies that the presence of structures or manifolds in which the Jacobian is low rank 
(or with a very large condition number) can be physical, but also the result of artifacts introduced by the incom-
pleteness of the low-order descriptors or the excessive truncation of the basis used to discretize the density- 
correlation features. While we focus on applications to chemical and materials sciences, our results have  
obvious implications for any framework based on a description of point clouds, and the increasingly popular  
equivariant neural network frameworks. The challenges we discuss in the present work also appear in other con-
texts, for example in signal processing in relation to the “phase recovery” problem26,27 (see also 28 for an extensive  
review) or in distance geometry where a closely related challenge is the “unassigned distance geometry  
problem”29,30. From a mathematical perspective, there are several open questions, which are closely related to those  
that arise for discrete degeneracies. The existence of classes of degenerate singularities different from those we  
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present, the frequency of problematic structures in realistic scenarios, whether and how many degeneracies remain 
as the body order of the descriptors is increased, and more generally the role of symmetries in changing the  
topology of the structure-feature mapping are all aspects for which further investigation is needed, and for  
which this work provides useful conceptual and numerical tools.

Data availability
Underlying data
The randomly-distorted CH

4
 structures used in Finite basis set are a random representative subset of those  

distributed in the following data record.

Materials Cloud: Randomly-displaced methane configurations. https://doi.org/10.24435/materialscloud:qy-dp25.

This project contains the following underlying data:

•   �methane.extxyz.gz - 7732488 random methane molecules along with their dft energies and forces in the  
extended xyz format

The data used to generate Figure 2, including molecular geometries, reference energies and projected feature  
displacements, are stored in the following data record.

Materials Cloud: Sensitivity benchmarks of structural representations for atomic-scale machine learning. https://doi.
org/10.24435/materialscloud:7z-g631.

This project contains the following underlying data:

•   �*.chemiscope.json.gz. (2D manifolds corresponding to the plots in Figure 2)

Data are available under the terms of the Creative Commons Attribution-NonCommercial 4.0 International license  
(CC BY-NC 4.0).

Extended data
Figshare: Local invertibility and sensitivity of atomic structure-feature mappings, Supporting information. https://doi.
org/10.6084/m9.figshare.16734562.v121.

This project contains the following extended data:

•   �SI.pdf (text file containing derivations and model details)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Powerspectrum and bispectrum features used in this work were generated using librascal, a library to compute  
representations for atomic-scale machine learning.

Source code available from: https://github.com/cosmo-epfl/librascal/tree/open-research-europe-2021

Archived source code at time of publication: https://doi.org/10.5281/zenodo.554785632

License: GNU Lesser General Public License v3.0 (LGPL 3.0)
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The research article under review concerns issues of uniqueness and conditioning of atomic 
structure feature mappings that are used in machine-learning of molecular energies and force 
fields. The paper elaborates on an earlier more accessible presentation by an overlapping group 
of authors [1] (ref. [5] in the present article) and I recommend to readers to start with [5] as an 
introduction to the present article. The feature maps are classified with respect to the degree of 
the involved correlations: one-point (\nu=1) features involving distances to the central atom only, 
two-point features involving distances and plane angles, three-point features also solid angles, 
and so on; and note that the points in this language are arbitrary points in the neighborhood of 
the central atom, they are not neighboring atoms. For any fixed degree \nu the correlation 
depends on \nu spatial coordinates and the level of discretization is another parameter; in the 
paper the complete basis set limit is emphasized at first and then numerical experiments are 
provided for specific discretizations using the potential energy surface of methane (CH4) as the 
primary example. Altogether the article offers an important contribution to the understanding of 
accuracy of machine-learned atomic force fields based on atomic neighborhood feature 
mappings. 
 
In motivating the study the authors emphasize the diversity of approaches relying on local feature 
mappings, and it may be useful to point out that not all machine learning methods for large 
molecules and materials fall in that category. In particular I highlight the SchNet approach [2] that 
is a forerunner of a large class of methods for machine learned force fields under the umbrella 
name of graph convolutional neural networks (GCNN); see the review [3] and many references 
therein. In the GCNN approach the identity of atoms is retained and one works with functions of 
the local internuclear distances. As noted also in the present paper, the matrix of internuclear 
distances provides a good coordinate system as the Jacobian of this feature vector is singular only 
when it is mandated by symmetry. Replacing each internuclear distance rij by some f(rij) where f is 
monotone, smooth and compactly supported, going to zero at some modest distance, one obtains 
a sparse edge-weighted graph with the number of edges bounded linearly in the number of 
atoms. This representation seems to avoid the possible ill-conditioning associated with the atomic 

Open Research Europe

 
Page 19 of 22

Open Research Europe 2021, 1:126 Last updated: 22 MAR 2022

https://doi.org/10.21956/openreseurope.15263.r27875
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


feature mappings. (For present purposes we ignore issues of long-range electrostatics; they are a 
special concern in any case.) However, a comparison of methods relying on atomic feature 
mappings with methods from the GCNN class is outside the scope of the present work. 
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The manuscript studies important mathematical properties of atomic symmetry functions that are 
commonly used in atomistic machine learning applications. A sensitivity analysis of common 
atomic structure-feature mappings is introduced to assess if such mappings retain their sensitivity 
to capture changes in atomic configuration in scenarios with high symmetry and when a finite 
basis representation is applied. The theory and analysis are described in great detail, which I have 
found to be highly educational. 
 
The authors show that symmetry-induced singularities and lack of local invertibility can limit the 
ability to represent energy landscapes and lead to errors, which reveals interesting variations in 
the quality of different features in Figure 3. Particularly the failure of the power spectrum to 
describe discplacements of a degenerate singularity structure is fascinating. 
 
The manuscript offers a comprehensive and compelling analysis of fundamental mathematical 
aspects, while also discussing how artefacts can materialise in realistic calculations where finite 
truncated basis sets are employed. It is also commendable that all underlying data and the 
employed software has been made available.  
 
I recommend acceptance of the study. My only suggestion would be to revisit some of the figure 
captions to better describe individual subpanels (as for example done in Figure 1).
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