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Abstract

Socioeconomic status (SES) plays a significant role in health and disease. At the same

time, early-life conditions affect neural function and structure, suggesting the brain

may be a conduit for the biological embedding of SES. Here, we investigate the brain

anatomy signatures of SES in a large-scale population cohort aged 45–85 years. We

assess both gray matter morphometry and tissue properties indicative of myelin con-

tent. Higher life course SES is associated with increased volume in several brain

regions, including postcentral and temporal gyri, cuneus, and cerebellum. We observe

more widespread volume differences and higher myelin content in the sensorimotor

network but lower myelin content in the temporal lobe associated with childhood

SES. Crucially, childhood SES differences persisted in adult brains even after control-

ling for adult SES, highlighting the unique contribution of early-life conditions to brain

anatomy, independent of later changes in SES. These findings inform on the biological

underpinnings of social inequality, particularly as they pertain to early-life conditions.
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1 | INTRODUCTION

Low socioeconomic status (SES) contributes to negative health out-

comes (Marmot & Bell, 2012), including cardiovascular disease

(Kanjilal et al., 2006), diabetes (Stringhini et al., 2013), and decreased

life expectancy (Stringhini et al., 2017). SES is further linked to differ-

ences in cognitive function (Aartsen et al., 2019). For instance, disad-

vantaged socioeconomic groups have an increased risk of dementia

(Mayeda, Glymour, Quesenberry, & Whitmer, 2016), underscoring the

putative link between brain health and SES (Resende, Guerra, &

Miller, 2019). Evidence also points to a cumulative effect of socioeco-

nomic disadvantage over time on health outcomes (Pollitt et al., 2008)

highlighting the need to adopt a life course perspective when probing

links between SES and physiological markers of health.

Links between SES and cognition support the notion that the brain

is a plausible candidate for the biological embedding of SES, spurring

several studies on the neural correlates of SES in the past decade. In

the developing brain, childhood SES is tied to brain anatomy

(Moriguchi & Shinohara, 2019) and function (Larsson, Solomon, &

Kohn, 2015), such as reading abilities (Merz, Maskus, Melvin, He, &

Noble, 2020). Specifically, hippocampal volumes correlate positively

with SES (Hanson, Chandra, Wolfe, & Pollak, 2011); (Noble

et al., 2015), as does cortical thickness (Lawson, Duda, Avants, Wu, &

Farah, 2013). These observations suggest childhood SES may be asso-

ciated with effects on language (Sarsour et al., 2011), reading abilities

(Noble, Farah, & McCandliss, 2006), and mental health status

(Reiss, 2013). Studies in adults are more limited, but generally support

a link between SES and regional brain volumes (Elbejjani et al., 2017;

Rzezak et al., 2015; Raizada & Kishiyama, 2010; Jednor�og et al., 2012),

although a recent meta-analysis served to highlight the diversity of

specific SES neural correlates across studies (Yaple & Yu, 2020).

Studies on the neural imprints of SES nevertheless remain com-

paratively sparse (McDermott et al., 2019) and at times yield varied

results (Farah, 2017; Yaple & Yu, 2020). Further, studies have more

often relied on region-of-interest (ROI) analyses rather than a whole-

brain investigation (Farah, 2017; Yaple & Yu, 2020), leaving results

open to bias (Poldrack, 2006). The tendency to limit analyses to spe-

cific regions may reflect the nature of the feature studied. SES pre-

sents a social construct, as opposed to a nosological entity, and

therefore, corollary neural differences in the population should be

subtle, requiring large-scale studies to be identified at the whole-brain

level.

It further remains unclear whether SES-related differences in late-

life reflect traces of childhood SES, as the latter may resolve with a

higher SES in adulthood or maturation, or, conversely, persist into old

age. A large body of literature has identified lingering effects of child-

hood deprivation on adult well-being (Duncan, Ziol-Guest, & Kalil, 2010;

Magnuson & Votruba-Drzal, 2008; Raphael, 2011), but, to date, few

have queried the human brain to assess distal, neural traces of economic

conditions in childhood (Tribble & Kim, 2019). While some studies

uncover a positive association between childhood SES and increased

hippocampal volumes in adulthood (R. T. Staff et al., 2012), others do

not (Elbejjani et al., 2017; Lawson et al., 2017).

Neuroimaging studies on the effects of SES on the human brain

have traditionally assessed morphometry characteristics using

surface- and voxel-based computational anatomy techniques

(Noble et al., 2015; Lawson et al., 2013). Recent advances in quan-

titative magnetic resonance imaging (qMRI) methods allow for a

more direct measurement of brain tissue properties that correlate

with histological measures (Edwards, Kirilina, Mohammadi, &

Weiskopf, 2018; Weiskopf, Mohammadi, Lutti, & Callaghan, 2015).

Specifically, qMRI provides access to brain tissue properties—mye-

lin, iron, and tissue water—that correlate with histological mea-

sures. Beyond this, relaxometry-based qMRI minimizes spurious

findings in voxel- and surface-based morphometry related to spa-

tially distributed intracortical myelin and iron (Lorio et al., 2016;

Natu et al., 2019; Taubert et al., 2020). Thus, qMRI can be used to

measure brain tissue properties with an enhanced precision relative

to traditional anatomical MRI measures (Tabelow et al., 2019;

Trofimova et al., 2021).

Another feature of neuroimaging studies on SES is their focus on

gray matter to detect the effects of exogenous variables on neural dif-

ferences, but white matter may be more susceptible to plastic changes

in adulthood (Fields & Bukalo, 2020) and therefore especially perti-

nent to neural correlates of social adversity (Chahal, Kirshenbaum, Ho,

Mastrovito, & Gotlib, 2021). While some have sought SES-related

white matter differences in children (Ozernov-Palchik et al., 2019) and

adults (Johnson, Kim, & Gold, 2013), they have primarily employed

tensor-based models of diffusion-weighted imaging. Tensor-based

measures of white matter microstructure lack a straightforward

neuro-biological interpretation (Wozniak & Lim, 2006) and are suscep-

tible to inter-site bias (Moyer, Steeg, Tax, & Thompson, 2020). Nonin-

vasive in vivo white matter assessment remains a challenging

endeavor (Heath, Hurley, Johansen-Berg, & Sampaio-Baptista, 2018)

but magnetization-transfer (MT) saturation offers a reliable marker of

myelin content (Mancini et al., 2020; Melie-Garcia et al., 2018; Natu

et al., 2019). MT refers to the magnetization exchange between free

protons and those bound to macromolecules such as myelin (Wolff &

Balaban, 1994). While diffusion imaging indexes myelin via the move-

ment of water in fiber tracts and is thus susceptible to several sources

of measurement error (Tax et al., 2019), MT saturation maps quantify

microstructural properties that are both sensitive and specific to the

myelin fraction, rendering inter-site variability low (Gracien

et al., 2020). Imaging studies have found MT saturation correlates to

ex-vivo histological assessment of myelin in postmortem brains

(Schmierer, Scaravilli, Altmann, Barker, & Miller, 2004; West

et al., 2018), and, in addition, have the added benefit of being less sus-

ceptible to inter-site variance (Lutti, Dick, Sereno, & Weiskopf, 2014).

MT saturation's enhanced myelin sensitivity relative to diffusion imag-

ing may therefore better serve in highlighting myelin variation in a

population cohort, where differences are expected to be subtle.

In this study, we aimed to identify a neural embedding of child-

hood SES in an older population. To that end, we probed potential dif-

ferences in gray matter and myelin content that correspond to SES

variability in a population cohort of older adults, using quantitative

MRI (Tabelow et al., 2019). We hypothesize that childhood SES will be
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reflected in late-life neural markers even when adjusting for SES in

adulthood. We investigate these differences at both the whole-brain

level, to query differences that may be evoked by qMRI's sensitivity;

and also probe the hippocampus as an a priori ROI. We query this

hypothesis by analyzing a large population cohort (n = 1,166) of older

adults (mean age = 59.65 years) from one scanner site; employing

quantitative neuroimaging using multiparametric maps; applying a

data-driven measure of SES; and exploiting a reliable marker of myelin.

We further hypothesize that such differences will be observed in both

gray and white matter, as quantified by MT saturation mapping. While

previous studies have found mixed results regarding later-life neural

markers of childhood socioeconomic conditions, the characteristics of

a large qMRI dataset may yet identify associated brain markers.

2 | METHODS AND MATERIALS

2.1 | Cohort

The study sample (BrainLaus) is a nested neuroimaging project within

the CoLausjPsyCoLaus general population cohort of the city of Lau-

sanne, Switzerland (Firmann et al., 2008; Preisig et al., 2009). Specifi-

cally, the BrainLaus sample consists of CoLaus participants that were

both eligible and willing to undergo MRI scanning. The BrainLaus

study aims to scan participants at two time points, spaced 5 years

apart. These two time points represent the third and fourth study time

points of the greater CoLaus study. Analyses were performed on

imaging data acquired between 2014 and 2018 and represented the

first BrainLaus time point. A total of 1,274 participants were scanned

at a single MRI site (Figure 1a).

2.2 | Cohort description

The CoLausjPsyCoLaus study was designed to recruit a representative

sample of the general population (Firmann et al., 2008). We sought to

determine if the BrainLaus subset differed from the rest of the cohort

on a number of key dimensions by examining differences between

CoLausjPsyCoLaus participants that were not included in the

BrainLaus cohort (n = 5,401); and the BrainLaus cohort on all mea-

sures available for somatic variables (n = 1,274). (A full list of variables

can be found in Appendix A). There was no significant difference in

sex, education level, or last known occupation distributions between

the two cohorts. We found a significant difference in age between

the two cohorts, with an average age of 63 for CoLausjPsyCoLaus
participants without MRI scan and 59 for BrainLaus participants

(Cohen's d = 0.4). This result underlines the necessity of including age

as a nuisance variable in subsequent neuroimaging analyses that refer

to epidemiological results drawn from the CoLausjPsyCoLaus cohort

(Figure 1b).

2.3 | MRI data acquisition

The scanning protocol included a multiparameter mapping (MPM) rel-

axometry protocol (Taubert et al., 2020) and diffusion-weighted

acquisition that was not used in the current study. Approximate total

scan duration lasted 4 � 5 min. Analyses were performed in SPM12

(http://www.fil.ion.ucl.ac.uk/spm/) using Matlab, 2017. Socioeco-

nomic data were missing for 16 of the n = 1,182 participants whose

neuroimaging data were retained. A total of n = 1,166 participants

(mean age: 59.65 years; 622 females, 544 males) were included in our

analyses.

Quantitative MT maps were calculated using a multi-echo 3D

FLASH (fast low angle shot) protocol at a 1 mm, isotropic resolution

(Weiskopf et al., 2013). The MRI data was acquired with T1-, PD-, and

MT-weighted contrast (respective repetition time/flip angle [FA] of

23.7 ms/21�C, 23.7 ms/6�C, and 23.7 ms/6�C [MT]). For the MT-

weighted contrast, an off-resonance Gaussian MT saturation RF pulse

(4 ms, FA = 220�C, 2 KHz frequency offset) was applied before non-

selective excitation. Multiple echo images were acquired with echo

times ranging from 2.2 to 19.7 ms (except for the MT-weighted scans

F IGURE 1 Cohort
characteristics. (a) The BrainLaus
study comprises a subset of the
PsyCoLaus cohort, which is itself
a subset of the population cohort
(Cohorte Lausanne, CoLaus).
(b) The CoLaus Cohort includes a
representative sample of the
population, which is reflected in
the BrainLaus subset, but for age.
Here, age distributions for
participants in the BrainLaus
study are shown alongside age
distributions for participants that
did not undergo MR scanning
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where the maximum echo time was 17.2 ms, due to the application of

the MT saturation pulse). We used GRAPPA parallel imaging (accelera-

tion factor of 2) in anterior–posterior phase encoding direction and

6/8 partial Fourier acquisitions in the partition direction (left–right).

The protocol also included the acquisition of MRI data for the map-

ping of the radio-frequency excitation field B1 (Lutti et al., 2014). This

data was acquired using the technique described in (Lutti et al., 2012).

Acquisition settings were identical to those described in (Taubert

et al., 2020).

2.4 | MRI data preprocessing

Acquired MRI data underwent automated preprocessing in the multi-

channel unified segmentation Bayesian framework of SPM12 yielding

GM and WM probability maps derived from MT and PD* maps. To

achieve higher anatomical precision, we used additionally the dif-

feomorphic spatial registration DARTEL based on all individual GM

and WM tissue maps (Ashburner & Friston, 2005) to then apply the

derived spatial registration parameters onto gray matter volume and

MT saturation maps and warp these to standard MNI space. Aiming

to preserve the initial total MT saturation signal, we followed the

default settings for implementation of an established weighted-

averaging procedure using in-house software tools (Draganski

et al., 2011 ).

2.5 | Image quality assessment

Data quality assessment in neuroimaging is a crucial antecedent to

data analysis (Alfaro-Almagro et al., 2018; Esteban et al., 2017). Given

the size and average age of the cohort, as well as the plurality of MRI

data acquired, a multistep image quality procedure was applied to our

initial sample of n = 1,274. In a first instance, we computed regional

averages for MT, R2*, and gray matter volumes for each participant

by applying individual inverse deformation fields to anatomical

derived from the MICCAI 2012 Grand Challenge and Workshop on

Multi-Atlas Labeling (https://my.vanderbilt.edu/masi/about-us/

resources-data), yielding 129 values for each participant, for each

dataset. Individual average values falling outside a range of ±4 SDs

from the group mean of a specific brain region were flagged (n = 55).

In a second instance, we examined differences between individual

GM, WM, and CSF segmentations and corresponding canonical tissue

probability maps. We first binarized individual tissue segmentations

before conducting this procedure. Resulting images were then vec-

torized, assigned a value of 1 for all voxels >0 and summed. Partici-

pants for whom this total difference exceeded the group's average

difference by 2 SDs were subsequently flagged (n = 31). Finally, we

performed a visual inspection of datasets that showed high SDs of the

R2* parameter in white matter. This index has been shown to exhibit

a high correlation with motion history during data acquisition (Castella

et al., 2018). The criterion for a high SD was set to a conservative cut-

off, which flagged approximately 500 potentially problematic datasets.

As our cohort tended toward an older population, we expect more

movement than average. Therefore, we visually examined these

500 datasets to identify gross movement, physiological anomalies, or

other artifacts. This visual rating identified n = 25 problematic

datasets. Neuroimaging datasets that failed one or more of the above

quality check were excluded from analysis (n = 80). An additional six

participants did not have complete neuroimaging datasets, and a fur-

ther six were found to have been scanned with a different head coil

and were also excluded from the data analysis pool. Finally, SES data

were missing for n = 16 of the retained neuroimaging datasets, leav-

ing a total of n = 1,166 participants included in the final analysis

(Appendix D).

2.6 | Neuroimaging data analysis

Analyses were performed in SPM12, using Matlab, 2017. We

designed three multiple regression analyses in SPM for each neuroim-

aging dataset to examine brain differences linked to SES in the cohort.

In the first two models (Model 1 and Model 2), we included either

adult SES (aSES) or childhood SES (cSES) as a covariate of interest.

For the third (Model 3), we designed a full model that included both

aSES and cSES. By including the two SES variables, we can assess the

unique contribution of one or the other to neural outcome variables.

Importantly, we did not orthogonalize these two measures as no firm

principle can attribute primacy to one or the other. Finally, age, sex,

and total intracranial volume (TIV)—a proxy for head size—were

included in the design as nuisance variables (Peelle, Cusack, &

Henson, 2012).

Our approach to statistical analysis was informed by a desire to

balance both Type I and Type II errors (Eklund, Nichols, &

Knutsson, 2016; Kang, Blume, Ombao, & Badre, 2015; Noble,

Scheinost, & Constable, 2020). Therefore, we performed both whole-

brain and ROI analyses, detailed below. We tested for the overall con-

tribution of SES to differences in neural data by estimating coeffi-

cients using threshold-free cluster enhancement (TFCE) and applying

nonparametric tests (5,000 permutations) to probe for significance

(Smith & Nichols, 2009). Analyses were performed with a significance

threshold of p = 0.05, FWE corrected for multiple comparisons across

the whole search volume, comprising either the brain's entire gray

matter or white matter (Ashburner & Friston, 2005). For the whole

brain analysis, we report TFCE and t-statistic results that survive FWE

correction with a threshold of p = 0.05.

In a second instance, we performed a small volume correction

(SVC) analysis focusing on the hippocampus, a region that consistently

emerges in studies probing the neural correlates of SES (Hanson

et al., 2011; Jednor�og et al., 2012; Ursache & Noble, 2016; Elbejjani

et al., 2017; Piras, Cherubini, Caltagirone, & Spalletta, 2011; Yaple &

Yu, 2020; R. T. Staff et al., 2012; Lawson, Mathys, & Rees, 2017) in

Model 3. Coefficients were estimated using the TFCE methods

applied to a hippocampal mask comprised of left and right hippo-

campi. We constrained our a priori region set to the hippocampus to

minimize the risk of errors of reverse inference (Poldrack, 2011).
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Regional masks applied in the SVC analysis were derived from the

MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling

(https://my.vanderbilt.edu/masi/about-us/resources-data).

2.7 | SES variables

The CoLausjPsyCoLaus longitudinal cohort study collected a wide

range of sociodemographic variables from which we derived SES mea-

sures. SES can be indexed in several ways; however, consensus holds

that three observable variables can serve as valid measures of the

underlying construct, namely, education, income, and occupation

levels (Winkleby, Jatulis, Frank, & Fortmann, 1992; Oakes &

Rossi, 2003). Because SES is a multifactorial construct, it is commonly

indexed by composite measures (Shavers, 2007; Mueller &

Parcel, 1981; Stumm et al., 2020) that can be weighted empirically

before being aggregated into one score (Cowan et al., 2012; United

Nations Economic Commission for Europe, 2018). In this study, we

focused on the above three facets of SES to construct a composite

measure. CoLausjPsyCoLaus demographic data included information

on mean income (in six intervals), education (three levels), and self and

partner's last known occupation. Education levels were ranked

according to highest level completed in the following manner: manda-

tory school or apprenticeship (low); high school diploma or upper sec-

ondary education (middle); and university degree and above (high).

Occupations were ranked according to the European Socioeconomic

Classification (ESEC) scale (https://www.iser.essex.ac.uk/archives/

esec/user-guide) (nine levels) and assigned a corresponding numerical

value; own income was taken to be highest household income

between spouses, where applicable. Measures of childhood SES

included father's occupation (ranked according to the ESEC scale);

highest parental education (three levels); and a measure of childhood

household financial status as proxy of childhood income (Appendix B).

This last measure included a sum of nine positive and negative

answers for family lifestyle and conditions, such as ownership of a car

and having insufficient heating. The following variables were scaled

into tertiles and assigned values ranging from 0 to 2. Adult occupa-

tion, taken as highest household occupation, mean income, paternal

occupation, and childhood finances. To further obtain a precise, data-

driven measure of adult and childhood SES constructs specific to our

cohort, we extracted variance contributions from each of the SES

components listed by performing two PCAs for the trio of adult and

childhood SES variables. We found that, in adulthood, education

explained most of the variance (63.7%), followed by income (21.84%)

and occupation (14.5%). In childhood, household income explained

most of the variance (70.39%), followed by education (16%) and occu-

pation (13.6%). We then created a composite measure of adult SES

and one of childhood SES by weighting tertile measures of income,

education, and occupation with their respective variance contribu-

tions before summing them. This procedure allowed for the range of

possible SES variables to increase from 3 to 48, with a concomitant

increase in information, as formalized by entropy, from 1.58 to 4.68

and 1.55 to 3.67 bits, for adult and childhood SES, respectively. By

weighting the SES composite measure components by their respective

variance weights, we produced a single, precise, sample-specific mea-

sure of SES to include as an independent variable in our analyses (see

Appendix E for analyses on unweighted composite SES).

3 | RESULTS

There was no significant difference in sex, education level, or last

known occupation distributions between the CoLausjPsyCoLaus and

the BrainLaus subsample. We found a significant difference in age

between the two subsamples, with an average age of 63 for CoL-

ausjPsyCoLaus participants without MRI scan and 59 for BrainLaus

participants (Cohen's d = 0.4). This result underlines the necessity of

including age as a nuisance variable in subsequent neuroimaging ana-

lyses that refer to epidemiological results drawn from the CoL-

ausjPsyCoLaus cohort (Figure 1b).

3.1 | Model 1—Brain differences associated with
adult SES

3.1.1 | MT differences associated with adult SES

Adult SES was tied to decreases in MT density in the right entorhinal

cortex (Table 1; Figure 2).

3.1.2 | Gray matter volume differences associated
with adult SES

Adult SES correlated positively with gray matter volume in several

regions, including right postcentral gyrus, left precuneus, left thala-

mus, and right cerebellum (exterior) (Table 1; Figure 2). SVC analyses

on the hippocampus reveal greater bilateral gray matter in association

with SES (Table 4).

We also probed the possible interaction of SES with age to query

a differential aging effect modulated by SES (Steptoe &

Zaninotto, 2020), but found no results in either MT or gray matter,

when correcting for multiple comparisons.

3.2 | Model 2—Brain differences associated with
childhood SES

3.2.1 | MT changes associated with childhood SES

Childhood SES (cSES) correlated significantly positively with MT in

right superior parietal lobule. In white matter, cSES correlated posi-

tively with MT near the pallidum/ventral tegmentum and bilateral

precentral gyrus (Table 2). The pattern found in MT notably delineates

the sensorimotor network (van den Heuvel & Hulshoff Pol, 2010)

(Table 2; Figure 3).
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3.2.2 | Gray matter volume differences associated
with childhood SES

Childhood SES correlated positively with gray matter volume in sev-

eral regions, including right cerebellum, left postcentral gyrus, right lin-

gual gyrus, brainstem, left precentral gyrus, left inferior temporal

gyrus, and left occipital fusiform gyrus (Table 2; Figure 3). SVC ana-

lyses reveal significant associations with cSES in the left hippocampus

(Table 4).

As with adult SES, no results emerged for an age by childhood

SES interaction in either MT or gray matter, when correcting for multi-

ple comparisons.

3.3 | Model 3—Full model

To better inform our hypothesis, we further analyzed both child- and

adulthood-SES in the same model. These two variables are signifi-

cantly correlated (r = 0.536, p < 0.001), and thus we computed their

variance inflation factor (VIF) to determine if the presence of

multicollinearity could be tolerated, finding a value of 1.40, which falls

below a conservative cutoff of 5 (Mumford, Poline, & Poldrack, 2015).

At the whole brain level, significant results were found for positive

associations between childhood SES and MT in the left pallidum and

precentral gyrus, and gray matter in bilateral cerebellum, left cuneus,

left postcentral gyrus and right thalamus, and middle temporal gyrus

(Table 3; Figure 4).

3.3.1 | Small volume correction analysis, model 3—
Adult SES

SES correlated positively with the left hippocampus gray matter vol-

ume (Table 4).

3.3.2 | Small volume correction analysis, model 3—
Childhood SES

Childhood SES correlated positively with the left hippocampus in

white matter. Childhood SES further correlated negatively with right

hippocampal volume (Table 4).

4 | DISCUSSION

In this study, we examined the relationship between life-course SES

and structural brain properties using MRI-derived estimates indicative

TABLE 1 Whole brain voxel level analysis of MT load and gray matter in relation to adult SES (aSES)

Region Cluster size k p(FWE-corr) t
Coordinates

x y z mm

MT aSES negative correlation

R Entorhinal cortex 73 0.005 4.84 20 0 �45

Region
Cluster size k p(FWE-corr) TFCE

Coordinates

GM aSES positive correlation x y z mm

L thalamus 13,311 0.001 2147.37 �12 �22 �8

0.001 2093.13 �18 �24 �18

0.001 2043.74 0 �27 �12

L precuneus 2,692 0.003 1683.40 �6 �54 72

0.005 1660.89 �8 �50 63

0.012 1408.12 9 �52 74

R cerebellum 1,665 0.010 1429.71 34 �75 �56

0.027 1190.74 42 �78 �44

R middle occipital gyrus 237 0.047 1070.21 45 �82 20

0.048 1061.22 34 �92 10

0.050 1035.24 39 �92 3

R cerebellum exterior 54 0.049 1040.59 15 �62 �62

L postcentral gyrus 11 0.050 1030.87 �24 �28 74

6 0.050 1029.47 �15 �34 78

Note: Results shown above are significant at a threshold of p = 0.05, FWE corrected for multiple comparison using the TFCE method.

Abbreviations: GM, gray matter; MT, magnetization transfer.

6 LOUED-KHENISSI ET AL.



of myelin content and gray matter volume in mid- and old-age individ-

uals from the general population. In contrast to previous studies, we

adopted a life-course perspective and hypothesized that neural traces

of childhood SES remain when controlling for adult SES. We found

that both childhood and adult SES separately correlated with gray

matter volume and myelin differences. The effect of childhood SES on

gray matter volume and myelin content was independent of adult SES

circumstances. Childhood SES was associated with robust neural dif-

ferences even when controlling for adult SES. Our results support the

hypothesis that childhood SES leaves a neural imprint even in adult-

hood and more generally, corroborate the latent effect model for the

impact of childhood SES on adult outcomes (Nelson & Gabard-

Durnam, 2020).

Studies on neural imprints of SES have yielded variable results, as

highlighted in a recent meta-analysis (Yaple & Yu, 2020), which may

be due in part to limited sample sizes and acquisitions across different

sites. Two key studies have attempted to overcome this problem

(Noble et al., 2015; McDermott et al., 2019), finding, in the first, a pos-

itive correlation between parental education and hippocampal volume,

without adjusting for family income, and an association between corti-

cal surface area and both parental income and education. In the sec-

ond study, widespread cortical surface area and hippocampus similarly

correlate with higher SES, as assessed by the Hollingshead score.

While these two studies yield concordant results, they are both found

in pediatric cohorts and do not investigate white matter measures.

Our results support hippocampal involvement in SES differences, with

higher bilateral hippocampal gray matter correlating with higher adult

SES. However, only left hippocampal gray matter and myelin corre-

lated with childhood SES; right hippocampal gray matter displayed a

negative association with childhood SES, and at the same time, a posi-

tive association between MT and the same variable. This discrepancy

in the relationship between hippocampus and SES may highlight a

specificity in effects on brain tissue properties, as hippocampal vol-

ume may cede to increases in myelination (Natu et al., 2019).

An innovative feature of our study is the use of MT saturation

maps to extract estimates of gray matter volumes (Helms, Draganski,

Frackowiak, Ashburner, & Weiskopf, 2009) and myelin content

(Melie-Garcia et al., 2018), which in part serves to dampen scanner

site variability (Focke et al., 2011; Gracien et al., 2020). Our results

therefore offer an added reliability over findings obtained with tradi-

tional MRI methods, particularly with regards to myelin quantification

methods. Further, myelin may be a more pertinent metric for function

across the lifespan (Ziegler et al., 2019; Chen, Chen, Hsu, &

Tseng, 2020).

4.1 | SES differences in brain's myelin

Most studies on in vivo structural brain properties linked to SES focus

on gray matter volume or cortical thickness measures. However,

F IGURE 2 Results of GLM 1 (adult SES). (a) Results of a negatively signed one-sample t test (t-statistic) of adult SES on MT. (b) Results of a
positively signed one-sample t test of adult SES on gray matter volume (TFCE). Colorbars indicate t values. All maps shown are thresholded at
p = 0.05, FWE-corrected for multiple comparisons
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myelin plays a crucial role in brain function and dysfunction (Fields &

Bukalo, 2020) and therefore should not be neglected. As shown in our

study, MT values covaried with SES in regions distinct from gray mat-

ter volume changes, highlighting myelin's independent status in the

brain. Our results support a recent study showing a relationship

between neighborhood deprivation, and rate of myelination, as

assessed by MT, across childhood and adolescence (Ziegler

et al., 2019). Further, we find a positive association of myelin in

regions comprising the sensorimotor network with SES. This network

has previously been associated to cognitive impairment (Agosta

et al., 2010) and MT in old age correlated with motor performance

(Seidler et al., 2015). Aging induces cognitive decline (Park, O'Con-

nell, & Thomson, 2003), even in early adulthood (Salthouse, 2009) as

well as decreases in motor performance (Thompson, Blair, &

Henrey, 2014). Converging evidence highlights the increasing associa-

tion between cognitive and sensorimotor functions with aging (Li &

TABLE 2 Whole brain voxel level analysis of MT load and gray matter volumes in relation to childhood SES (cSES)

Region Cluster size k p(FWE-corr) t
Coordinates

x y z mm

MT CSES positive correlation

R superior parietal lobule 40 0.006 4.77 21 �45 68

Region
Cluster size k p(FWE-corr) TFCE

Coordinates

MT CSES positive correlation x y z mm

R Precentral gyrus 35,076 0.010 1729.76 22 �26 68

0.010 1725.54 15 �28 70

0.010 1717.47 9 �30 76

L precentral gyrus 10,208 0.013 1542.19 �14 �16 72

0.017 1472.27 �30 �24 58

0.017 1461.96 �18 �28 68

L pallidum 1,435 0.025 1312.31 �14 0 �6

0.025 1305.36 �3 0 �3

0.038 1138.80 �20 �3 3

R inferior temporal gyrus 1,429 0.034 1187.24 58 �40 �16

0.034 1178.01 63 �22 �16

0.034 1177.60 62 �33 �15

L middle frontal gyrus 534 0.047 1056.57 �30 26 16

0.047 1045.03 �26 32 6

0.050 1024.23 �42 22 26

MT CSES negative correlation

R temporal pole 7 0.035 4.48 21 8 �45

GM CSES positive correlation

R cerebellum 75,617 0.001 3478.54 18 �62 �62

0.001 3435.18 �34 �75 �54

0.001 3431.38 �21 �58 �62

L postcentral gyrus 19,385 0.001 2365.76 �9 �34 78

0.001 2289.61 9 �40 78

0.001 2261.26 �21 �30 75

L inferior temporal gyrus 617 0.019 1159.46 �22 �6 �50

0.043 1019.08 �38 2 �48

0.048 987.69 �15 0 �44

R occipital fusiform gyrus 34 0.043 1013.19 24 �70 �14

R posterior cingulate gyrus 1 0.043 1009.62 9 �51 �27

Note: Results shown above are significant at a threshold of p = 0.05, FWE corrected for multiple comparison using the TFCE method.

Abbreviations: GM, gray matter; MT, magnetization transfer.
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Lindenberger, 2002). One possibility is that childhood SES may pro-

vide a buffer to functional decline in old age via increased myelination

of the sensorimotor network.

4.2 | Regional specificity of SES neural differences

Brain regions found to covary with SES play important roles in cogni-

tion, memory, and motor function. The pallidum plays a role in reward

and motivation (Smith, Tindell, Aldridge, & Berridge, 2009), as well as

motor function (Gillies et al., 2017). The hippocampus plays a signifi-

cant role in memory (Knierim, 2015) as do regions of the temporal

lobe (Wong & Gallate, 2012), also implicated in language functions

(Davey et al., 2016). The hippocampus in particular has previously

been found implicated in psychosocial adversity (Tottenham &

Sheridan, 2009) and is also known to be especially susceptible to plas-

ticity (Leuner & Gould, 2010). Differences in any of these structures

may therefore have considerable functional implications. The nature

of the study prevents claims of causality between SES and implicated

regions. Further, neuroimaging studies are prone to errors of reverse

inference (Poldrack, 2011). The exact biological pathway between

childhood economic status and health in adulthood remains ill-defined

(Matthews & Gallo, 2011; Foulkes & Blakemore, 2018). Nonetheless,

we speculate that the hippocampus in particular may be related to

SES by way of enriched environments in childhood (Cassarino &

Setti, 2015). SES effects on hippocampal volumes in children are

mediated by caregiver quality (Luby et al., 2013) and higher SES may

stem stress-related effects on the hippocampus (McEwen, 2012).

SES-related access to extracurricular activities in childhood and green

space may also enhance cognition by way of the temporal lobe

(Hillman, Erickson, & Kramer, 2008), a link that may be mediated by

motor regions (Voss, Nagamatsu, Liu-Ambrose, & Kramer, 2011). SES

is also related to aberrant reward responses (Hanson et al., 2016;

Oshri et al., 2019), which may reflect our findings in the pallidum.

F IGURE 3 Results of GLM 2 (Childhood SES) in MT maps and gray matter volumes. (a) Results of both positively (TFCE) and negatively (t-
statistic) signed one-sample t tests of childhood SES on MT. (b) Results of both positive (TFCE) one-sample t tests on childhood SES on in gray
matter. All maps shown are thresholded at p = 0.05, FWE-corrected for multiple comparisons
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4.3 | SES differences and the hippocampus

Differences in hippocampal gray matter volume associated with SES

have previously been reported in a number of studies (Jednor�og

et al., 2012; R. T. Staff et al., 2012). Our results partially support this

relationship, but we detect an inverse relationship between right hip-

pocampal gray matter and childhood SES. We otherwise find positive

relationships between bilateral hippocampal gray matter and adult

SES. Childhood SES in our cohort was nonetheless also associated

negatively with MT in bilateral temporal pole, which, like the hippo-

campus, forms part of the temporal lobe system, and is uniquely sensi-

tive to age-related decline (Pelletier et al., 2017). Childhood SES

further correlates positively with greater MT in left hippocampus (and

right hippocampal gray matter), raising the possibility of interplay

between myelin and gray matter. For instance, cortical gray matter

reduction occurs in healthy adolescence along with an increase of

myelination (Giorgio et al., 2010). In the same model, adult SES corre-

lated with increased left hippocampal volume. Our results thus

TABLE 3 Whole brain voxel level analysis of MT and gray matter in relation to SES in a full model including both childhood and adult SES

Region Cluster size k p(FWE-corr) TFCE
Coordinates

x y z mm

MT cSES positive t test

L pallidum 1,311 0.033 1,173.28 �12 �2 �6

0.033 1,167.98 �6 �6 �9

0.038 1,137.08 �14 �9 �12

L precentral gyrus 992 0.041 1,086.14 �30 �24 58

0.041 1,073.47 �15 �16 68

0.043 1,056.36 �18 �32 66

L precentral gyrus 104 0.048 1,018.33 �44 �15 44

0.049 1,016.70 �38 �12 48

GM cSES positive t test

l cuneus 24,255 0.001 2,604.20 �4 �93 12

0.001 2,419.18 3 �60 4

0.001 2,415.93 �9 �93 26

L cerebellum 5,861 0.002 2026.42 �21 �62 �58

0.002 1938.24 �33 �75 �52

0.030 1,066.86 �46 �64 �34

R cerebellum 3,596 0.002 1929.93 20 �60 �62

0.007 1,469.33 36 �74 �52

0.007 1,450.83 27 �72 �52

L postcentral gyrus 663 0.018 1,252.65 �8 �36 78

0.022 1,145.61 �21 �32 75

0.048 951.81 �30 �33 58

R middle temporal gyrus 707 0.031 1,055.50 57 �4 �16

0.031 1,052.70 51 �6 �10

0.033 1,039.95 54 0 �26

Brainstem 548 0.033 1,034.89 6 �30 �9

0.039 994.53 �4 �30 �8

R postcentral gyrus 84 0.044 965.48 9 �40 78

R thalamus 224 0.047 953.73 24 �28 9

0.048 951.87 16 �28 12

R inferior temporal gyrus 77 0.048 948.40 54 �54 �16

L thalamus 56 0.049 938.82 �10 �30 14

R superior parietal lobule 30 0.050 927.97 22 �42 72

R transverse temporal gyrus 16 0.050 926.23 46 �10 6

Note: Results shown above are significant at a threshold of p = 0.05, FWE corrected for multiple comparison using the TFCE method.

Abbreviations: GM, gray matter; MT, magnetization transfer.
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F IGURE 4 Results of GLM 3 for childhood SES including adult and childhood SES as covariates in MT maps and gray matter volumes.
(a) Results of positive childhood SES correlates in MT. (b) Results of t tests on childhood SES in gray matter. Colorbars indicate TFCE-values. All
maps shown are thresholded at p = 0.05, FWE-corrected for multiple comparisons

TABLE 4 Small volume correction
analysis of MT load and gray matter
volumes in relation to childhood and
adult SES in Model 3

Region Cluster size k p(FWE-corr) TFCE
Coordinates

x y z mm

MT cSES

Positive T test

L hippocampus 1 0.021 153.18 �16 �16 �16

L hippocampus 1 0.022 151.26 �15 �14 �16

L hippocampus 2 0.024 144.55 �18 �18 �15

L hippocampus 1 0.026 138.78 �18 �14 �14

GM aSES

Positive T test

L hippocampus 256 0.011 203.06 �16 �9 �22

L hippocampus 3 0.045 125.61 �20 �27 �10

GM cSES

Negative T test

R hippocampus 301 0.016 205.34 36 �28 �9

Note: TFCE analysis results constrained to an anatomical mask for the hippocampus (left and right).

Results shown above are significant using a threshold of p = 0.05, FWE corrected for multiple

comparisons constrained to the search volume.
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suggest a more complex interaction in temporal lobe regions in rela-

tion to SES, with differential effects of myelin, gray matter and early

or late-life SES implicated in disparate neural profiles.

4.4 | Limitations of the study

Here, childhood SES was assessed using adult recall that is susceptible to

faulty memories (Havari & Mazzonna, 2015). Household income in child-

hood and adulthood are further indexed by different measures and it can

be argued that the one for childhood skews towards assessing disadvan-

tage, although this bias may be redressed as retrospective assessments

tend to favor a more optimistic view of how things were (Mitchell,

Thompson, Peterson, & Cronk, 1997). We also define SES with a com-

posite measure, which does not identify unique risk factors (Hackman,

Farah, & Meaney, 2010). Further, we cannot associate function to SES-

related neural differences, as the current dataset does not include cogni-

tive or behavioral variables, nor does it include mother's occupation as a

potential indicator. Finally, our study design precludes the possibility to

control for context beyond SES in early life that can impact neural struc-

ture. In spite of these limitations, our results are based on a precious

dataset, as not all large-scale neuroimaging data have childhood, or con-

versely, adult data, and few include quantitative MRI maps.

5 | CONCLUSIONS

Our study adds to the growing literature on brain correlates of SES.

Known associations between childhood adversity and late-life out-

comes strongly suggest a causal process set into the arrow of time. By

highlighting a neurophysiological embedding of childhood SES in old

age, our results add credence to the lasting physical incorporation of

exogenous social factors into the brain.
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APPENDIX A

COHORT DESCRIPTION (Tables A1, A2, A3)

The CoLaus cohort is a representative sample of the Lausanne popula-

tion (Firmann et al., 2008). However, the cohort investigated herein

represents a subset of the CoLaus cohort, namely individuals who par-

ticipated in the PsyColaus substudy; and who further participated in

the neuroimaging study (BrainLaus). To date, the CoLaus study includes

three timepoints: Baseline, Timepoint 1 and Timepoint 2. Neuroimaging

data was collected at Timepoint 2.To determine if the BrainLaus cohort

remained a representative cohort, we examined somatic variables in the

CoLaus cohort (excluding BrainLaus participants) against the BrainLaus

Cohort, finding significant differences with an effect size exceeding a

Cohen's d of 0.2 only for age. We performed chi-square tests on cate-

gorical variables; and two sample t-tests on continuous ones. Below is a

list of the variables compared between the two cohorts (code available

at https://github.com/LLouedKhen/CoLausBrainLausComparison).

We determined whether the BrainLaus sample differed from the

initial CoLausjPsyCoLaus cohort by examining differences in a number

of key variables between participants and nonparticipants of

BrainLaus. (A full list of variables can be found in Table A1). There was

no significant difference in sex, education level, or last known occupa-

tion distributions between the two cohorts. However, there was a sig-

nificant difference in age between participants and nonparticipants of
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BrainLaus, with an average age of 59 years in participants and

63 years in nonparticipants (Cohen's d = 0.4). This result underlines

the necessity of including age as a nuisance variable in subsequent

neuroimaging analyses.

B | COHORT CHARACTERISTICS

Below we detail the frequencies and distributions of certain demo-

graphic variables as well as individual measures of socioeconomic sta-

tus present in our cohort (Figure B1).

C | CHILDHOOD FINANCIAL SITUATION (Table C1)

Parental education and parental occupation were coded in the same

way as own education and occupation. However, while own household

income was ascertained by a direct question, its childhood equivalent

was estimated by asking the following questions about the financial sit-

uation of the childhood home. Each “yes” answer was coded as 1. A

cumulative score was then assigned by summing values (Table C1).

D | IMAGE QUALITY ASSESSMENT

In order to secure reliable findings in a population study, particularly

in an older age group, it is crucial to have in place a quality assessment

and control protocol in place. Gross deformations, artifacts, and

movement can, even with large sample sizes, significantly impact

results. We implemented a four-stage QC-QA pipeline to control for

outliers in the data pool (Figure D1)

1. Compute index of image quality based on movement (Castella

et al., 2018). Flag data-sets >4 as 0.

2. Obtain average individual regional values (based on the Neu-

romorphometrics Atlas). Flag participants whose values lie beyond

±4 SD of grand mean of regional value and exclude from further

processing.

TABLE A1 Demographic and somatic measures at baseline

Variable Timepoint

Sex Baseline

Age Baseline

How many years lived in Switzerland Baseline

Marital status (married, single, divorced, widowed) Baseline

Education level (low, mid, high) Baseline

Education level (years) Baseline

Occupation level (low, mid, high) Baseline

Number of children Baseline

Swiss born (yes or no) Baseline

Date of arrival in Switzerland Baseline

Mini-mental state exam score (>60 years only) Baseline

Minutes walked to work per day Baseline

Physical activity (weekly frequency of activity >20 min,

five categories)

Baseline

Height Baseline

Weight Baseline

BMI Baseline

Adiponection levels Baseline

Leptin levels Baseline

Ferritin levels Baseline

Transferrin levels Baseline

c-reactive protein levels Baseline

Interleukin 1 levels Baseline

Interleukin 6 levels Baseline

Tumor necrosis factor alpha levels Baseline

TABLE A2 Demographic and somatic measures at timepoint 1

Variable Timepoint

Age Timepoint

1

Occupation level (9 categories, ESEC) Timepoint

1

Occupation position (low, mid, high, not working) Timepoint

1

Occupation position (low, mid, high, not working,

housewife)

Timepoint

1

Last known occupational position (low, mid, high, not

working)

Timepoint

1

Social benefits (yes or no) Timepoint

1

Cardio-myopathy (yes or no) Timepoint

1

Valvular heart disease Timepoint

1

Heart failure Timepoint

1

Arrythmia Timepoint

1

Coronary artery disease Timepoint

1

Angina (yes or no) Timepoint

1

Myocardial infarction Timepoint

1

Mini-mental state exam score (>60 years only) Timepoint

1

Height Timepoint

1

Weight Timepoint

1

BMI Timepoint

1

Insulin levels Timepoint

1

Adiponection levels Timepoint

1

Leptin levels Timepoint

1
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3. Compute difference between individual tissue masks (white mat-

ter, gray matter, CSF) and DARTEL population template. Exclude

subjects whose differences exceed the grand mean of differences

+2 SD (https://github.com/LLouedKhen/QCQA_MPM_DATA).

4. Of remaining subjects, identify those flagged as “0” in step 1. Visu-

ally rate these datasets (1–4, with four being excellent quality).

Exclude those subjects ranking 1.

E | COMPARISON OF WEIGHTED SES COMPOSITE SCORE

VERSUS UNWEIGHTED COMPOSITE SCORE IN NEUROIMAGING

RESULTS (Table E2)

SES measures used in our study are comprised of weighted compos-

ite measures of SES, with weighting factors determined by a PCA on

the dataset. This procedure's net quantitative effect is to increase

the amount of information within the general linear model, allowing

for gradient differences in the brain to emerge. We further com-

pared brain imaging results in unweighted versus weighted compos-

ite SES scores, to ensure that these two measures would not yield

fundamentally different results (e.g., regional clusters in one and not

the other).

Below, we show, as examples, results for weighted versus

unweighted childhood SES results in MT maps (within gray matter

masks). Weighted scores yield more higher T-thresholds but show the

same spatial pattern of results (results below thresholded at

p = 0.001, uncorrected) (Figure E1; Table E1).

For completeness, we show an example of weighted versus

unweighted adult SES scores, this time in gray matter volumes.

While the weighted SES measures yields slightly lower Z

TABLE A3 Demographic and somatic measures at timepoint 2

Variable Timepoint

Age Timepoint 2 (brain imaging timepoint)

Date of exam Timepoint 2 (brain imaging timepoint)

Social benefits disability Timepoint 2 (brain imaging timepoint)

Social benefits retirement Timepoint 2 (brain imaging timepoint)

Employment status (currently working, yes/no) Timepoint 2 (brain imaging timepoint)

Occupation position (ESEC category) Timepoint 2 (brain imaging timepoint)

Hypertension (yes or no) Timepoint 2 (brain imaging timepoint)

Diabetes (yes or no) Timepoint 2 (brain imaging timepoint)

Cardio-myopathy (yes or no) Timepoint 2 (brain imaging timepoint)

Valvular heart disease Timepoint 2 (brain imaging timepoint)

Heart failure Timepoint 2 (brain imaging timepoint)

Arrythmia Timepoint 2 (brain imaging timepoint)

Coronary artery disease Timepoint 2 (brain imaging timepoint)

Angina (yes or no) Timepoint 2 (brain imaging timepoint)

Myocardial infarction Timepoint 2 (brain imaging timepoint)

Alcohol consumption (yes or no) Timepoint 2 (brain imaging timepoint)

Alcohol consumption, weekly rate Timepoint 2 (brain imaging timepoint)

Smoking status (smoker, non-smoker, former smoker) Timepoint 2 (brain imaging timepoint)

Weight Timepoint 2 (brain imaging timepoint)

Height Timepoint 2 (brain imaging timepoint)

BMI Timepoint 2 (brain imaging timepoint)

BMI category (underweight, normal, overweight) Timepoint 2 (brain imaging timepoint)

Bioimpedance measure Timepoint 2 (brain imaging timepoint)

High density lipoprotein cholesterol Timepoint 2 (brain imaging timepoint)

Low density lipoprotein cholesterol Timepoint 2 (brain imaging timepoint)

Triglycerides level Timepoint 2 (brain imaging timepoint)

Glucose level Timepoint 2 (brain imaging timepoint)

c-reactive protein levels Timepoint 2 (brain imaging timepoint)

Interleukin 1 levels Timepoint 2 (brain imaging timepoint)

Interleukin 6 levels Timepoint 2 (brain imaging timepoint)

Tumor necrosis factor alpha levels Timepoint 2 (brain imaging timepoint)
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scores, the two measures nonetheless give the same

clusters with only very minor variations in statistical results

(Table E2).

F | SUPPLEMENTARY AXIAL IMAGES OF MODELS 1–3, FOR

MT AND GRAY MATTER (Figures F1-F6)

The images below provide additional information on the localization

of results found in Models 1, 2, and 3 for MT and gray matter.

F IGURE B1 Frequency distributions of population demographics, including marital status, birthplace, retirement status, own and parental
education, income and occupation

TABLE C1 Financial status in childhood, questionnaire

Question
Numerical
coding

Family owning a car during participant's childhood Yes = 1

Family owning a TV during participant's childhood Yes = 1

Family employing a maid during participant's

childhood

Yes = 1

Family owning a dish-washer during participant's

childhood

Yes = 1

Family owning a telephone during participant's

childhood

Yes = 1

Family having enough heat when cold during

participant's childhood

Yes = 1

Family member participating to social/cultural

association during participant's

Yes = 1

Family going on holidays (outside of home) during

participant's childhood

Yes = 1

Family owning their home during participant's

childhood

Yes = 1
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Preprocessed MPMs Compute average regional value Compute individual tissue mask 
deviation from tissue priors

 Visual Rating of Images with
High Movement Index

Automatic Image 
movement QA  

Discard 
Participants

with regional 
averages > +/- 4SD

Remove 
Participants 

where difference 
>  (mean + 2SD) 

 QA index > 4

   Participants included
   in analysis

F IGURE D1 Schematic representation of the quality control process undertaken to retain images. In a first instance, preprocessed MPMs are
automatically assigned a movement index. In parallel, average values for each MPM map (PD, R2*, R1, and MT) are computed and compared to
the group averages.Values across the group and within a region that fall outside 4 SD of the group mean are flagged and the associated dataset
discarded. Individual tissue class masks are then compared with the canonical masks for gray matter, white matter and csf. Individual deviations
greater than 2 SD from the mean are flagged and related datasets discarded. Finally, those participants remaining who have an automated
movement index greater than 4 are visually inspected for excessive head movement

TABLE E2 Gray matter volume statistics for weighted versus un-weighted childhood SES composite score

Gray matter volumes

Weighted childhood SES Unweighted childhood SES

Cluster p(FWE) Cluster k Peak Z Coordinates Cluster p(FWE) Cluster k Peak Z Coordinates

x y z mm x y z mm

0.002 150 5.12 �6 �54 72 0.001 235 5.45 �6 �54 72

0.01 54 4.79 �12 �21 �6 0.019 25 5.14 �18 �22 �18

0.035 6 4.66 �18 �24 �18 0.012 45 4.71 15 �50 75

0.045 1 4.52 9 �52 74 0.025 16 4.67 32 �78 �54
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F IGURE E1 Comparison of statistical maps for weighted vs non-
weighted childhood SES associations in myelin load. (a) Statistical map
of significant voxels for weighted childhood SES composite score.
(b) Statistical map of significant voxels for un-weighted childhood SES
composite score
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TABLE E1 MT statistics for weighted vs un-weighted childhood SES composite score

MT values in gray matter masks

Weighted childhood SES Unweighted childhood SES

Cluster p(FWE) Cluster k Peak Z Coordinates Cluster p(FWE) Cluster k Peak Z Coordinates

x y z mm x y z mm

0.371 366 4.62 21 �45 68 0.751 147 4.1 21 �45 68

0.846 100 3.87 34 36 14 0.961 31 3.52 34 36 14

0.711 166 3.86 68 �26 �26 0.975 19 3.46 �34 32 14

3.25 60 �30 �15 0.88 82 3.44 15 �98 4

0.17 592 3.8 �2 �4 �8 0.978 16 3.43 �45 �58 38

3.51 �12 �2 0 0.969 24 3.36 60 �46 �21

0.748 148 3.79 2 �88 6 0.936 49 3.34 �6 �3 �4

3.1 2 �93 �4 0.984 10 3.21 26 �34 68

0.507 274 3.74 22 �92 3 0.976 18 3.2 6 �3 �4

3.59 32 �94 3 0.99 4 3.15 �12 �4 �4

3.57 16 �98 6 0.992 2 3.1 68 �26 �26

0.903 69 3.61 14 �4 42 0.993 1 3.09 �14 �86 20

0.878 83 3.59 54 28 �4

0.665 189 3.54 6 �24 69

3.44 12 �34 72

0.97 23 3.44 �56 �45 27

0.931 52 3.44 �64 �15 �27

0.94 46 3.44 38 �54 34

0.981 13 3.43 �24 �16 57

0.98 14 3.39 �12 �4 39

0.975 19 3.36 32 26 33

0.942 45 3.33 26 - 33 68

0.973 21 3.33 60 �46 �21

0.949 40 3.33 21 �22 56

0.979 15 3.3 �57 �50 �4

0.985 9 3.28 51 �76 �2

0.883 80 3.26 �28 �30 60

0.984 10 3.23 30 �15 63

0.979 15 3.22 �12 �36 72

0.991 3 3.21 58 48 0

0.984 10 3.18 �2 �90 26

0.99 4 3.16 �34 33 15

0.982 12 3.13 �3 �24 74

0.993 1 3.11 39 3 �24

0.993 1 3.09 0 �87 33

0.993 1 3.09 �14 �86 20

LOUED-KHENISSI ET AL. 21



F IGURE F1 Axial slices of results for aSES in MT for Model 1

F IGURE F2 Axial slices of results for aSES in gray matter for Model 1
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F IGURE F3 Axial slices of results for cSES in MT for Model 2
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F IGURE F4 Axial slices of results for cSES in gray matter for Model 2

F IGURE F5 Axial slices of results for cSES in gray matter for Model 3
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F IGURE F6 Axial slices of results for cSES in MT for Model 3
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