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Abstract
The challenge of defining and cataloging the building blocks of the brain requires a standardized approach to naming neurons 
and organizing knowledge about their properties. The US Brain Initiative Cell Census Network, Human Cell Atlas, Blue 
Brain Project, and others are generating vast amounts of data and characterizing large numbers of neurons throughout the 
nervous system. The neuroscientific literature contains many neuron names (e.g. parvalbumin-positive interneuron or layer 5 
pyramidal cell) that are commonly used and generally accepted. However, it is often unclear how such common usage types 
relate to many evidence-based types that are proposed based on the results of new techniques. Further, comparing different 
types across labs remains a significant challenge. Here, we propose an interoperable knowledge representation, the Neuron 
Phenotype Ontology (NPO), that provides a standardized and automatable approach for naming cell types and normalizing 
their constituent phenotypes using identifiers from community ontologies as a common language. The NPO provides a frame-
work for systematically organizing knowledge about cellular properties and enables interoperability with existing neuron 
naming schemes. We evaluate the NPO by populating a knowledge base with three independent cortical neuron classifica-
tions derived from published data sets that describe neurons according to molecular, morphological, electrophysiological, 
and synaptic properties. Competency queries to this knowledge base demonstrate that the NPO knowledge model enables 
interoperability between the three test cases and neuron names commonly used in the literature.
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Introduction

The modern description and classification of neurons 
and the diversity of their properties began with the work 
of Santiago Ramon y Cajal over 100 years ago. Cajal 

benefitted from a newly discovered technique, the Golgi 
stain, to reveal neurons as individual entities of remark-
ably different shapes, which he described as the “butter-
flies of the soul”. Our knowledge of neuron types (as with 
cell types) has continued to evolve as new experimental 
techniques emerge. For this reason, a centerpiece of the 
US Brain Initiative is to re-examine what constitutes a 
cell type in light of new ways of probing the nervous sys-
tem. Through the BRAIN Initiative Cell Census Network 
(BICCN) researchers are generating large pools of data 
using cutting edge methods that are being integrated across 
data types through the use of standards such as common 
spatial and semantic mappings (Ecker et al., 2017). The 
BICCN joins several other large initiatives such as the 
Blue Brain Project (Markram, 2006), Human Cell Atlas 
(Regev et al., 2017), and SPARC (https:// sparc. scien ce/) 
which also seek to provide foundational knowledge on the 
types of cells that make up the nervous system. As these 
data are analyzed and synthesized, new ways to distinguish 
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among different classes of neurons are being proposed and 
published.

One of the end goals of these large projects is to inte-
grate and analyze large quantities of cellular data to derive 
new taxonomic classification of neurons across neural 
structures and to arrive at a new understanding of what 
constitutes a cell type in the nervous system. To manage 
this process, some have called for a consistent naming 
scheme for neurons, so that as new types are discovered, 
their findings can be reported and compared in an organ-
ized way (DeFelipe et al., 2013; Hamilton et al., 2012; 
Shepherd et al., 2019). Biology has a long history of suc-
cessfully developing and deploying taxonomies and nam-
ing conventions for new entities, e.g., species, enzymes. 
The process usually involves the commissioning of an 
authoritative body that comes up with a regularized 
method and vocabulary for distinguishing among differ-
ent types and applying an appropriate nomenclature. This 
approach has been attempted for neuron types. For exam-
ple, the Petilla terminology proposed a set of criteria and 
controlled terminology for naming cortical interneurons 
based on traditional electrophysiological and morpho-
logical measurements (Petilla Interneuron Nomenclature 
Group et al., 2008). However, developing taxonomies and 
naming conventions pre-supposes that we understand the 
key dimensions across which neurons should be classified 
and the foundations of what constitutes a cell type. If the 
methodological foundations for the classification have not 
yet reached something universally agreed upon as founda-
tional, such as a nucleotide or amino acid sequence, then 
the classification remains technique dependent. Thus, as 
new technologies enable further characterization of addi-
tional dimensions,including some that may be founda-
tional, our concept of cell types is likely to evolve. While 
we know that existing techniques for determining cell type 
have not yet been able to measure something as founda-
tional as a nucleotide sequence, recent large integrative 
data gathering exercises have tended to refine our current 
concepts rather than replace them (Osumi-Sutherland, 
2017). A single cell transcriptomic analysis of retinal 
bipolar cells, (Shekhar et al., 2016), detected 17 different 
types of RBC, 15 of which had been previously described. 
The challenge remains to define a knowledge representa-
tion that can readily adapt to and integrate results from 
new data-driven taxonomic efforts but which still sup-
ports references to classical naming schemes to ensure 
integration with the large amount of historical published 
knowledge. Further, even when foundational techniques 
can be routinely deployed at scale, not all experiments and 
certainly not all clinical use cases will be able to employ 
those techniques directly. Thus, our knowledge manage-
ment systems need to explicitly account for the techniques 

that are required to perform such classification so that 
mappings to other techniques can be developed.

Most proposed schemes, to date, comprise a hierarchical 
method based on various phenotypic properties for their foun-
dation, i.e., key molecular, physiological, and connectivity 
signatures that distinguish a neuron type. Phenotypic proper-
ties are typically properties of a neuron which are consistent 
across a variety of measurements, although many phenotypic 
properties can only be consistently reproduced with a spe-
cific experimental technique or protocol. Given the multiple 
dimensions across which neurons can be differentiated, a 
phenotype-based approach for classification could effectively 
generate an almost infinite number of ways to categorize neu-
rons, depending on the granularity at which the distinctions 
are expressed. A single taxonomy that effectively organizes 
neurons across these dimensions is unlikely. The recent pro-
posal for naming cortical neurons by (Shepherd et al., 2019) 
shows how quickly the number of phenotypes can explode, 
particularly when trying to address the results of dense phe-
notypic sampling such as array expression. Thus for neuronal 
cell types, given the complexity and variety of potentially 
distinguishing features and the likely evolution of these over 
time, any system for communicating and comparing across 
phenotypes will require a firm computational foundation.

Traditionally, such proposed classifications are commu-
nicated through the research paper, where any taxonomy 
proposed is presented in the form a table, dendrogram or 
some other figure (e.g., Paul et al., 2017, Table S7; Markram 
et al., 2015, Table 1). The problem with our traditional way 
of constructing and communicating these taxonomies is that 
they require a human being to understand, compare, and rec-
oncile them (Petilla Interneuron Nomenclature Group et al., 
2008). Anyone who has attempted to read through multiple 
articles, each with their own proposal for classifying cell 
types within a region understands the difficulties in trying 
to reconcile the different schemes, even when they are based 
on limited numbers of data dimensions. The multiplicity 
of papers proposing classification schemes just for cortical 
interneurons illustrates this point (Cauli et al., 1997). With 
the BICCN and other large scale consortia tasked to map 
the cellular landscape of the brain and body, the potential 
number of these taxonomies is likely to explode beyond the 
current already unmanageable number, as researchers apply 
new types of analytics to understand the data. For neurosci-
ence to move beyond paper-based forums for discussion and 
integration, we need to treat taxonomies and names as com-
putable artifacts that comply with the FAIR data principles, 
FAIR = Findable, Accessible, Interoperable and Reusable; 
(Wilkinson et al., 2016).

Towards that end, we have developed an ontology-based 
data model, the Neuron Phenotype Ontology (NPO). The 
NPO aims to provide an interoperable representation of cell 
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types that can evolve as our phenotypic knowledge evolves, 
from initial data gathering to modeling and synthesis 
(Fig. 1). The NPO provides a computable representation of 
cell types defined by collections of phenotypic properties, 
designed to enable interoperability between neuronal tax-
onomies. It is designed to enable scientists to discover which 
cell types (or potential cell types) share similar properties 
and to help scientists understand when the cell types they 
observe are the same or similar to other cell types described 
in the literature or from other laboratories. Here, we show 
how the NPO can be used to express taxonomies proposed 
by different research groups using modern techniques, 
enable comparisons between them, and enable queries with 
commonly used neuron types from the literature.

Methods

Overview of NPO

The NPO as well as all data and code referenced below are 
available for reuse under open licenses (see Data and Code 
availability statement).

The NPO is composed of two parts. A set of core ontol-
ogy files that define a data model for neuron types, and the 
NPOKB, the collection of neuron types defined using the 
NPO core ontology data model. See supplemental methods 
for details.

The NPO provides a data model for modeling a neuron 
type as a “bag of key phenotypes”, that is, neurons are rep-
resented as a collection of phenotypic properties (Fig. 2) 
formalized as Web Ontology Language (OWL) classes. 
These properties can then be used to communicate about 
and compare phenotypes across laboratories, species, and 
experimental techniques. This approach has been demon-
strated previously in the context of text-based queries of 
neuron type mentions (Richardet et al., 2015). The original 
set of object properties for the ontology were sourced from 
the existing NeuroLex (RRID:SCR_005402) model for neu-
rons (Larson & Martone, 2013). As we developed the CUTs 
and EBTs we added new properties as needed based on the 
phenotypes that were measured in particular experiments.

Each of these dimensions is linked to a formal vocabulary 
or ontology, which is used to provide the descriptors for 
qualitative phenotypic attributes (Table 1). When possible, 

Table 1  The current Phenotypic Dimensions of the NPO and the associated ontologies/vocabularies used to populate the data model. When 
NIFSTD appears in this table the terms were nearly always added to support the NPO. Examples are drawn from Fig. 2

1 https:// www. ncbi. nlm. nih. gov/ taxon omy
2 https:// github. com/ SciCr unch/ NIF- Ontol ogy/ blob/ master/ docs/ brain- regio ns. org
3 https:// github. com/ SciCr unch/ NIF- Ontol ogy
4 https:// www. ncbi. nlm. nih. gov/ gene
5 https:// www. ebi. ac. uk/ chebi/
6 https:// proco nsort ium. org/
7 http:// geneo ntolo gy. org/

Phenotypic dimension Definition Vocabularies/ontologies

Taxonomic
Example: Species

The species or taxon rank in which the phenotype inheres NCBI  taxonomy1

Anatomical
Example: Brain Region

The regions of the nervous system containing parts of the 
neuron. Primary location is indicated by the location of 
the cell soma, but anatomical location may be assigned to 
any cell part through a series of predicates

UBERON; various brain atlases via NIFSTD  parcellation2

Morphological Distinguishing morphological characteristics NIFSTD3

Molecular
Example: Expression

Distinguishing molecular constituents NCBI  Gene4,  CHEBI5, Protein  Ontology6

Physiological Expresses a relationship between a neuron type and an 
electrophysiological phenotype concept. This should be 
used when a neuron type is described using a high level 
electrophysiological concept class, e.g., bursting

NIFSTD Petilla Conventions (Petilla Interneuron 
Nomenclature Group, 2008)

Connection Indicates a synaptic relationship between cell types. Further 
elaborated into connectivity determined by different 
techniques, e.g., physiology, electron microscopy

Gene  Ontology7

Circuit role
Example: Projection

Indicates whether the neuron is an Intrinsic neuron (local 
circuit neuron), projection neuron, or sensory neuron

NIFSTD (Bug et al., 2008)

Projection targets
Example: Projection

Expresses a relationship between a neuron type and a brain 
region to which it sends axons. Synaptic relationships are 
represented through the connection relationship

UBERON (Mungall et al., 2012)/various atlases/NIF 
Gross Anatomy (Bug et al., 2008)

https://www.ncbi.nlm.nih.gov/taxonomy
https://github.com/SciCrunch/NIF-Ontology/blob/master/docs/brain-regions.org
https://github.com/SciCrunch/NIF-Ontology
https://www.ncbi.nlm.nih.gov/gene
https://www.ebi.ac.uk/chebi/
https://proconsortium.org/
http://geneontology.org/
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the vocabularies are drawn from community ontologies/
vocabularies in broad use across biomedicine to aid in 
interoperability. Those dimensions that were not covered 
by specific community ontologies were added as classes to 
the appropriate branches of the NIFSTD ontology. NIFSTD 
is a harmonized set of neuroscience relevant ontologies 
developed and maintained by the Neuroscience Information 
Framework (Bug et al., 2008). These dimensions are further 
elaborated in a set of predicates that capture more granular 
aspects of phenotypes. For example, hasMolecularPheno-
type can be further divided into hasNeurotransmitterPheno-
type, hasEpigeneticPhenotype, and hasExpressionPhenotype 
(Fig. 3). hasExpressionPhenotype is further broken down 
into a set of predicates that captures the methodology used 
to reveal the phenotype. In the current version (v1) of the 
NPO, we have not made use of the full set of relationships 
to simplify the reasoning. Relationships that have not been 
used in the current version of the NPO or that are not in the 

NPO core but are planned for inclusion in the future are 
grayed out in Fig. 3.

For negative phenotypes, that is, where the lack of a 
particular phenotype is considered to be a distinguishing 
feature between neuron types, we use negation in OWL 
semantics, e.g., a parvalbumin negative neuron would be 
modeled as “not (hasExpressionPhenotype some 'parval-
bumin alpha')”.

We have also included disjointness axioms1 in cases 
where the strength of the assertions from the EBTs were 
not as definitive as full negation.

For evaluation purposes, we have used the NPO data 
model to construct a knowledge base of neuronal phenotypes 

Fig. 1  Evolution of neuron knowledge  A Common usage types 
(CUTs) emerge in the literature as evidence accumulated for generally 
accepted neuron types with implicitly known properties. Data-driven 
studies generate evidence-based types (EBTs) based on explicitly 

measured standardized properties B The Neuron Phenotype Ontology 
(NPO) provides interoperability between the CUTs from the literature, 
the EBTs from data-driven studies, and new experimental observa-
tions from individual laboratories

1 For an introduction to disjointness axioms in ontologies see Dis-
jointness Between Classes in an Ontology (Stevens & Sattler, 2012) 
http:// ontog enesis. knowl edgeb log. org/ 1260/.

http://ontogenesis.knowledgeblog.org/1260/
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comprising two branches: 1. Phenotypic representations of 
common usage types (CUTs) from classical morphological 
and physiological studies over the past 100 years; 2. Classi-
fication models arising from newer experimental techniques 
tied to individual projects,laboratories or initiatives, termed 

evidence based types (EBTs). The data model is supported 
by computational tools that enable individual researchers 
to compose the complex phenotype of a neuron out of any 
number of individual phenotypes that are tightly linked to 
individual data sets and analyses (Fig. 4). We have created 

Fig. 2  High level data model for 
neuron phenotypes. The Neuron 
Phenotype Ontology character-
izes neuron types as bundles of 
normalized phenotypic proper-
ties. Dimensions that have not 
been used in the current version 
of the NPO or are planned for 
the future are grayed out
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a python library called neurondm that implements Neuron 
Lang, a domain specific language (DSL) for specifying neu-
ron types. Neuron Lang was created as part of this project 
to provide a compact representation that expands into more 
verbose OWL2. The neurondm library provides tools for 
generating human readable neuron names based on these 
OWL semantics as well as tools for mapping to and from 
collections of local names for phenotypes by using ontol-
ogy identifiers as the common language underlying all local 
naming. The tools allow us to automatically generate names 
for neurons in a regular and consistent way using a set of 
rules operating on the neurons' constituent phenotypes. 
Neuron types created using neurondm can be exported to 
Python or to any serialization supported by rdflib, however 
deterministic turtle2 (ttl) is preferred. When neurondm gen-
erates an OWL ontology it tracks provenance by inserting 
the exact path and git commit hash for the source python file 
in the owl:Ontology section via the prov:wasGeneratedBy 
predicate.

Modeling Decisions

Neuron Class Names

Each neuron in the NPO is identified by a full uniform 
resource identifier (URI) and a compact identifier for 
ease of reference. The compact identifier has the pre-
fix npokb and the ontology is registered in BioPortal3 
(RRID:SCR_002713) using the NPOKB prefix as NPO 
prefix was taken. Each class has multiple human readable 
labels assigned as annotation properties. Neurons are named 
according to the phenotypic properties they display. These 
labels are generated automatically based on the collection 
of phenotypic properties reported for each cell type using 
the neurondm Python library. Phenotypes are expressed as 
OWL2.0 restrictions, and neuron types as equivalent to the 
intersection of those restrictions (Fig. 4). NPO provides two 
versions of these names. Local label records molecular prop-
erties in the native form in which they were measured, e.g., 
genes, proteins, transgenes, while the rdfs:label contains a 
normalized view where molecules are assigned a common 

Fig. 3  The set of predicates employed to define molecular phenotypes. Relationships that have not been used in the current version of the NPO 
or are planned for the future are grayed out

2 https:// github. com/ tgbugs/ pyont utils/ blob/ cc538 d9c79 0d607 cbc8c 
2af8a 3c25f 1bfa3 bfc0b/ ttlser/ docs/ ttlser. md 3 https:// biopo rtal. bioon tology. org/

https://github.com/tgbugs/pyontutils/blob/cc538d9c790d607cbc8c2af8a3c25f1bfa3bfc0b/ttlser/docs/ttlser.md
https://github.com/tgbugs/pyontutils/blob/cc538d9c790d607cbc8c2af8a3c25f1bfa3bfc0b/ttlser/docs/ttlser.md
https://bioportal.bioontology.org/
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molecular abbreviation regardless of the form in which it 
was measured (see below). For ease of reference we also 
preserve the common name for the CUT and the original 
name assigned by the investigator for EBTs if it was pro-
vided. These can be found under origLabel, and they also 
appear as skos:prefLabel when they are present, otherwise 
skos:prefLabel is populated from rdfs:label so there are no 
neurons missing a preferred label.

For the NPOKB, we generally follow the ordering recom-
mended by Hamilton et al. (2012) and Ecker et al. (2017). In 
both papers, the recommendation was to create an ordered 
taxonomy based on key phenotypic features, arranged 
roughly hierarchically, starting from the highest level, spe-
cies, followed by anatomical regions, then a set of stand-
ardized names for morphological, physiological, molecular 
or connectional phenotypes (Fig. 4, lower panel). In this 
way, as proposed originally by Hamilton et al., (2012), it 
is easy to generate a human readable list of neurons from a 
given species or brain region and to compare across complex 
phenotypes. In addition, while we are still sorting out what 
constitutes a cell type, we define the local environment in 
which the neuron resides.

Molecular Indicators

For EBTs, NPO preserves the means by which molecular 
phenotypes are determined. If gene expression is measured, 
we use the identifier for the gene; if the expression of a 
transgene is measured, we include the transgene; if the pro-
tein is measured, we include the protein. For CUTs, we only 
use the protein, peptide or small molecules that are thought 
to define the class. In order to tie together these different 
measurements, we created a class called phenotype indica-
tor (PhenotypeIndicator) that groups together the different 
forms of molecular entities, e.g., a somatostatin indicator 
is equivalent to Sst, SST, SOM, Sst-IRES-Cre, Sst-IRES-
FLpO. A somatostatin neuron is then defined as equivalent 
to any neuron that has some somatostatin indicator as a 
molecular phenotype. In this way, we simplify the reason-
ing required to retrieve all somatostatin neurons, but we also 
clearly preserve the statements made by investigators in their 
instances or model assertions as preserved in the localLabel. 
In addition, to translate all of the different representations 
of a particular molecular entity into a consistent human 
readable label, we have assembled a set of short names that 

Fig. 4  Process used to translate local terminology into ontology-based 
representations and machine-generated names. Using neurondm, phe-
notypes are first mapped by a user into ontology identifiers (top panel). 
Neuron types are constructed and neurondm automatically translates 

these mappings into OWL equivalence statements (middle panel). 
From the same internal representation of these restrictions neurondm 
generates a set of human readable labels (bottom panel)
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represent each class based largely on common conventions 
or the names used in NCBI for mouse genes. These short 
names are used in the skos:hiddenLabel for each class and 
are suffixed with " (indicator)" to create the rdfs:label. For 
example, when generating a label, phenotype indicators for 
parvalbumin are shown as PV. These labels are available 
through the “hidden label” annotation property under the 
ilxtr:PhenotypeIndicator class.

Knowledge Base Construction

The basic process for constructing CUTs and EBTs from 
external sources has four steps where the first three can be 
done in any order. First we identify the names for the cell 
types in the source material. For example, in the Paul et al. 
(2017) paper the header of Table S7 contains the names of 
6 neuron types PVBC, CHC, CCK, MNC, ISC, and LPC. 
Second we identify the phenotype values that are associ-
ated with those cell types. For example, in the Markram 
et al. (2015) paper these include values such as CB, PV, 
CR, NPY, VIP, SOM, bNAC, cAC, dNAC, bAC, cIR, fast 
spiking, non-accommodating, non-adapting, late spiking, 
etc. Third we identify the local names for the phenotypic 
dimensions that are being used and map those dimensions 
to and existing object property or create a new one if we 
determine that the dimensions is determined to be new and 
not captured by an existing object property, or is a speciali-
zation of some more general dimension. For example, for 
the Allen cell types these are sex_full_name, transgenic_
line type,structure, hemisphere, cell_soma_location, and 
dendrite type. Finally we convert all phenotype values to 
ontology identifiers, match the values to the dimensions, 
construct the owl restrictions, and bag them into neuron 
types with a local name that matches the one provided in 
the original source.

For EBTs terms are selected for use as a phenotype 
value as follows. If a term exists and in one of the com-
munity ontologies listed in Table 1 we use it, but in some 
cases (e.g. during development) it is easier to create "new" 
terms (mint new identifiers) that match the local nomen-
clature used in the paper to simplify matching the EBTs to 
the original source. Those "new" terms are then replaced 
or mapped e.g. with NCBIGene identifiers. For anatomical 
phenotypes we use terms from species specific anatomi-
cal atlases (e.g. the Allen Mouse Reference Atlas Ontol-
ogy (RRID:SCR_021000)) whenever the original source 
data mentions them as a reference. Sometimes papers use 
specific terminology that is not contained in a community 
ontology in which case we created a new term. There are 
three areas where new terms were created specifically for 

the NPO: phenotype indicators which are used to subsume 
multiple different types of evidence for a phenotype, neu-
ron morphology (which has been upstreamed to PATO), 
and Petilla electrophysiological classification terms.

For CUTs phenotype indicators are used for molecular 
phenotypes and Uberon identifiers are used for anatomical 
phenotypes. Other phenotypic dimensions such as mor-
phology do not have values with the same diversity of 
indicators and techniques, and thus phenotype classes are 
chosen in the same way as described for EBTs.

Each set of EBTs was constructed from the original 
source using a different approach. For the Allen cell types 
we retrieve the input data in a computationally accessi-
ble form from the Allen REST API. Since the original 
source is computationally accessible there is no issue val-
idating reproducibility of an individual conversion. For 
the Markram and Huang models the original sources are 
opaque and computationally inaccessible. As a result we 
created computationally accessible representations of the 
original figures and tables. For Markram we converted a 
figure into a text representation that could be parsed and 
then manually checked that the accessible version was 
consistent with the opaque version. For Huang we did 
not attempt to convert the original source into a visually 
similar representation and instead encoded the information 
direction in the Python source file because the underlying 
sources were rasterized images and a table in a pdf. The 
effort needed to write custom code for parsing and con-
verting directly from the underlying source could not be 
justified. See the supplemental methods for details.

When modeling CUTs curators try to the best of their 
ability to follow the consensus in the literature if there is one. 
Validation that a CUT is correct is derived from whether the 
neuron types that are inferred to be subclasses of the CUT 
include EBTs that should classify under the CUT, and simi-
larly EBTs that should not classify as a CUT are excluded.

While developing the NPO we routinely checked for 
unexpected classifications, and the competency queries have 
been developed in part to detect such cases. In principle 
careful construction of disjointness axioms could be used 
to cause reasoning errors if an EBT does not classify under 
the expected CUT, however this has not been implemented.

It is not currently possible to run the code to regenerate 
the common usage types from the archive reference in this 
paper because neurondm is configured to pull data from the 
google sheets API v4. Even if we were to make a copy of 
the sheet available publicly users would need to configure 
API access to google sheets which is a significant stumbling 
block. The neurondm code could be updated to transparently 
switch between google sheets and an archival source, how-
ever this has not been done at this time.
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Data and Code Availability

A docker image that captures the environment and code 
for this paper is available at https:// hub. docker. com/ layers/ 
15684 4166/ tgbugs/ musl/ npo-1. 0- neuro ndm- build/ images/ 
sha256- c64fe f99a0 31518 4b604 d20a5 71e68 81de1 7c4da 
201ed d7483 0b616 9ee0d 276a and an archive of that image 
has been archived on Zenodo at https:// doi. org/ 10. 5281/ 
zenodo. 50334 93. The docker files specifying the image  
are part of https:// github. com/ tgbugs/ docke rfiles/ blob/  
d9423 71dc3 99510 914d0 39022 d2b4f 92303 bc120/ source. 
org# npo- 10- neuro ndm- build and the archive is on Zenodo 
at http:// doi. org/ 10. 5281/ zenodo. 50684 91. See supplemental 
methods for how to use the image.

The NPO can be viewed by loading the.ttl file avail-
able at https:// raw. githu buser conte nt. com/ SciCr unch/ NIF- 
Ontol ogy/ npo-1. 0/ ttl/ npo. ttl into the Protégé Ontology Tool 
(RRID:SCR_003299) v5.5.0 or higher. Note that WebPro-
tégé is not capable of running the reasoners required by 
the NPO. As described in the supplemental methods, npo.
ttl is the “light” version of the full ontology that makes it 
less reliant on the full import chain. Additional informa-
tion about the structure of the NPO and working with the 
NPO can be found in the supplemental methods. The NPO 
is distributed under a CC-BY 4.0 Attribution license, but it 
imports community ontologies that may be covered under 
different licenses.

The work here describes v1.0 of the NPO which can be 
accessed at https:// raw. githu buser conte nt. com/ SciCr unch/ 
NIF- Ontol ogy/ npo-1. 0/ ttl/ npo. ttl. In the import closure of 
npo.ttl there are no external imports except for http:// purl. 
oboli brary. org/ obo/ bfo. owl which had versionIri http:// purl.  
oboli brary. org/ obo/ bfo/ 2019- 08- 26/ bfo. owl at the time npo 
1.0 was released. All other ontology iris resolve to the neu-
rons branch of the NIF-Ontology except for http:// ontol ogy. 
 neuin fo. org/ NIF/ ttl/ gener ated/ parce llati on- artif acts. 
ttl. As a result, importing npo.ttl directly in Protégé will 
result in the newest version of the imports on the neurons 
branch being used, which may lead to some small differ-
ences in the results compared to what are presented here. 
However, it is possible to use the NIF-Ontology cata-
log file to load an exact view of version 1.0 of npo.ttl by 
cloning the git repository and checking out the npo-1.0 
tag. In the event that the npo-1.0 tag is somehow lost at 
some point in the future, it names the sha1 commit hash 
7bb15aa5fda9391809032a6765419dfb2486b2fa which is a 
merge commit with parents d6615f8 and cdffa6e. The NIF-
Ontology repository can identified by root commit hash 
sha1 ba8482cfccd934b45591e6bbfd6378ef165d0e31 and/
or 4f3e0493d926a2c42459b8622dda4de148cf2c5d.

The NPOKB is available on BioPortal at https:// biopo rtal. 
bioon tology. org/ ontol ogies/ NPOKB. A loaded graph that can 

be used with SciGraph, a neo4J-based database for serving 
ontologies, is available at https:// github. com/ SciCr unch/ NIF- 
Ontol ogy/ relea ses/ tag/ npo-1.0.

The content of the NPO is also accessible via the UCSD 
SciCrunch SciGraph API at https:// scicr unch. org/ api/1/ 
sparc- scigr aph/. Documentation for access can be found at 
http:// ontol ogy. neuin fo. org/ docs/ NIF- Ontol ogy/ README. 
html# using- nifstd.

The neurondm git repo is https:// github. com/ tgbugs/ 
pyont utils/ tree/ master/ neuro ndm. The pyontutils reposi-
tory can be identified by the root commit hash sha1 
6d96945e85d4e949215910f13f3e620495b5e165.

All python code bears an MIT license and is available on 
the Python Package Index (PyPI) https:// pypi. org/ proje ct/ 
neuro ndm/. It can be installed via `pip install neurondm`. 
Additional instructions are available in the README.4

An archive of the code corresponding to this publica-
tion is also available on Zenodo at https:// doi. org/ 10. 5281/ 
zenodo. 40057 27. Additional release artifacts are also avail-
able on the GitHub release page https:// github. com/ tgbugs/ 
pyont utils/ relea ses/ tag/ neuro ndm-0. 1.3.

The full list of CUTs is available at: https:// github. com/ 
tgbugs/ pyont utils/ relea ses/ downl oad/ neuro ndm-0. 1.3/ data- 
bundle- 2020- 08- 28. zip.

The full datasets produced for the competency queries 
(see Results) are available at: Gillespie et al. (2020) https:// 
zenodo. org/ record/ 40070 65#. X03TD 2dKiAZ.

Results

Common Usage Types

Common usage types represent neuron types that have 
been reliably identified over many years by multiple 
groups using multiple techniques. The criteria we used 
to identify CUTs is provided in Supplementary Table S1. 
Any type that meets these criteria can and (given suf-
ficient resources) will ultimately be included as a CUT. 
A master spreadsheet was created in Google Spread-
sheets and populated with a list of neuron “stubs” that 
were created automatically by taking the list of major 
brain regions in the UBERON ontology and creating 
two classes per region: Region X projection neuron and 
Region X intrinsic neuron. These anatomical regions 
were at a fairly coarse level and comprised the major 
brain and spinal cord regions, but generally not sub-
regions, for example, cerebral cortex and not motor 

4 https:// github. com/ tgbugs/ pyont utils/ blob/ master/ neuro ndm/ 
README. md

https://hub.docker.com/layers/156844166/tgbugs/musl/npo-1.0-neurondm-build/images/sha256-c64fef99a0315184b604d20a571e6881de17c4da201edd74830b6169ee0d276a
https://hub.docker.com/layers/156844166/tgbugs/musl/npo-1.0-neurondm-build/images/sha256-c64fef99a0315184b604d20a571e6881de17c4da201edd74830b6169ee0d276a
https://hub.docker.com/layers/156844166/tgbugs/musl/npo-1.0-neurondm-build/images/sha256-c64fef99a0315184b604d20a571e6881de17c4da201edd74830b6169ee0d276a
https://hub.docker.com/layers/156844166/tgbugs/musl/npo-1.0-neurondm-build/images/sha256-c64fef99a0315184b604d20a571e6881de17c4da201edd74830b6169ee0d276a
https://doi.org/10.5281/zenodo.5033493
https://doi.org/10.5281/zenodo.5033493
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https://github.com/tgbugs/dockerfiles/blob/d942371dc399510914d039022d2b4f92303bc120/source.org#npo-10-neurondm-build
https://github.com/tgbugs/dockerfiles/blob/d942371dc399510914d039022d2b4f92303bc120/source.org#npo-10-neurondm-build
http://doi.org/10.5281/zenodo.5068491
https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/npo-1.0/ttl/npo.ttl
https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/npo-1.0/ttl/npo.ttl
https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/npo-1.0/ttl/npo.ttl
https://raw.githubusercontent.com/SciCrunch/NIF-Ontology/npo-1.0/ttl/npo.ttl
http://purl.obolibrary.org/obo/bfo.owl
http://purl.obolibrary.org/obo/bfo.owl
http://purl.obolibrary.org/obo/bfo/2019-08-26/bfo.owl
http://purl.obolibrary.org/obo/bfo/2019-08-26/bfo.owl
http://ontology.neuinfo.org/NIF/ttl/generated/parcellation-artifacts.ttl
http://ontology.neuinfo.org/NIF/ttl/generated/parcellation-artifacts.ttl
http://ontology.neuinfo.org/NIF/ttl/generated/parcellation-artifacts.ttl
https://bioportal.bioontology.org/ontologies/NPOKB
https://bioportal.bioontology.org/ontologies/NPOKB
https://github.com/SciCrunch/NIF-Ontology/releases/tag/npo-1.0
https://github.com/SciCrunch/NIF-Ontology/releases/tag/npo-1.0
https://scicrunch.org/api/1/sparc-scigraph/
https://scicrunch.org/api/1/sparc-scigraph/
http://ontology.neuinfo.org/docs/NIF-Ontology/README.html#using-nifstd
http://ontology.neuinfo.org/docs/NIF-Ontology/README.html#using-nifstd
https://github.com/tgbugs/pyontutils/tree/master/neurondm
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https://github.com/tgbugs/pyontutils/releases/tag/neurondm-0.1.3
https://github.com/tgbugs/pyontutils/releases/tag/neurondm-0.1.3
https://github.com/tgbugs/pyontutils/releases/download/neurondm-0.1.3/data-bundle-2020-08-28.zip
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https://github.com/tgbugs/pyontutils/blob/master/neurondm/README.md
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cortex. Individual brain regions were then augmented 
with the list of neuron types extracted from online 
knowledge bases. We started with the list of approxi-
mately 300 mammalian neurons from Neurolex Wiki 
(RRID:SCR_005402) (Larson & Martone, 2013) that 
had been compiled through expert input via the Neuron 
Registry Task Force of the INCF (Hamilton et al., 2012), 
as well as by community contributions. This list was then 
cross referenced to NeuroElectro (RRID:SCR_006274), 
BAMS Cells  (RRID:SCR_003531),  Hippocam-
pome.org (RRID:SCR_009023),  NeuroMorpho.
org (RRID:SCR_002145) and Blue Brain Project 
(RRID:SCR_002994). All of these sources were 
accessed via the Neuroscience Information Framework 
(RRID:SCR_002894) project to find a set of cells that 
were referenced in multiple databases. As NeuroElec-
tro maps their nomenclature to the Neurolex names, we 
used this database to examine representation of these cell 
types in the neurophysiology literature. We selected all 
neurons that were referenced in more than one paper.

This procedure resulted in a working list of ~ 350 neu-
rons (for full list see Data Availability Statement). From 
this list, we then selected ~ 100 neurons for which we had 
basic morphological and molecular properties available. 
We also included the neurotransmitter for the majority. 
We elected to focus in v1.0 primarily on molecular and 
morphological phenotypes, rather than the full complexity 
available in the NPO (Fig. 2), as these are the most well 
known for CUTs and are the most frequent types encoun-
tered in the EBTs (Zeng & Sanes, 2017). We also elected 
in the modeling to take a minimalist approach, that is, 
our representation is meant not to represent an exhaustive 
list of every molecule that has been identified within a 
neuron, but the minimum set of molecules and morpho-
logical features that are characteristic for that type. This 
decision allowed us to construct OWL equivalence state-
ments for each CUT that defined the necessary and suf-
ficient conditions that would allow EBTs to classify under 
these CUTs. Additional phenotypes were still recorded but 
added through the Subclassof axiom. Subclassof represents 
a weaker form of restriction, representing a necessary but 
not sufficient condition for membership in a class. In order 
to avoid logical inconsistencies that would interfere with 
classification, we only included positive phenotypes in nec-
essary and sufficient conditions for CUTs. If distinguishing 
negative phenotypes were present, they were modeled as 
entailments rather than OWL restrictions.

Following (Larson et al., 2007), the primary anatomical 
location of a neuron is assigned based on the brain region 
in which the soma is located, e.g., cerebellar neuron is 
equivalent to a neuron with a cell soma in any part of the 
cerebellum.

Evidence‑based Types

EBTs represent cell types and taxonomies proposed by a 
single group based on an analysis of experimental evidence. 
In an ideal world the experimental types for every paper 
ever published and every database involving neurons would 
be part of the NPO. For this version of the NPO and for the 
purposes of evaluating our phenotype model, we focused on 
3 projects that have generated cortical classifications based 
on large amounts of experimental data:

A. Cortical cell types proposed by the Blue Brain Project 
(Markram et al., 2015), as elaborated in the text and 
Table 1. In this study, 56 total types across 9 morpho-
logical types are identified and physiologically charac-
terized from cells in cortical area S1 of rats ranging from 
P11-P15 from which they recorded physiological prop-
erties. Cell-specific molecular markers were confirmed 
by immunohistochemistry and RT-PCR. (Markram 
et al., 2015) utilize a nomenclature aligned to the Petilla 
conventions (Petilla Interneuron Nomenclature Group 
et al., 2008) to annotate their physiological properties. 
For NPO V1.0, we included the molecular, morphologi-
cal and electrophysiological phenotypic dimensions.

B. The classification of proposed cortical GABAergic cell 
types from Josh Huang and colleagues as summarized in 
Table S7 of Paul et al. (2017) supplemented with addi-
tional information from Fig. 1. The latter was used pri-
marily to create disjointness axioms (see Fig. 1b). For 
NPO v1.0, we concentrated primarily on the gene expres-
sion phenotypes presented in this table, supplemented 
with information from the rest of the paper, e.g., disjoint-
ness axioms based on Fig. 1b. Synaptic and physiological 
phenotypes will be included in a later version.

C. The ~ 800 cell classes contained in the Allen Cell Types 
database (RRID:SCR_014806), a database of experi-
mental electrophysiological, morphological and tran-
scriptomic data derived from single cell data. In the 
Cell Types database, no classification scheme was pro-
posed; rather the records represent statistical summa-
ries of properties measured from these classes of cells 
identified in transgenic lines. We therefore include this 
as an EBT. For this version, we focused on molecular 
measurements from mouse cortex.

Competency Queries

The NPO was designed to classify neurons according to 
phenotype dimensions, regardless of whether they repre-
sent EBTs or CUTs. To test the integrity of the knowledge 
base and the structure of the ontology, we developed a set 
of competency queries (CQ):
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1. Find all parvalbumin + neurons
  Description Logic (DL) Query: hasPhenotype some 

'parvalbumin (indicator)'.
2. Find all cortical neurons that contain somatostatin
  DL Query: hasPhenotype some 'somatostatin (indica-

tor)' and hasSomaLocatedIn some (neocortex or 'part of' 
some neocortex).

3. How do basket cells described in Paul et al. (2017) and 
Markram et al. (2015) compare on key dimensions?

  DL Query: (NeuronHuang2017 or Neuron-
Markram2015) and hasPhenotype some 'Basket pheno-
type'.

4. What EBTs are related to the Martinotti cell?
  Determine which neurons classify under the CUT 

Neocortex Martinotti cell
  DL Query: NeuronEBM and hasPhenotype some 

'Martinotti phenotype'

All of the results presented below were produced by issu-
ing OWL DL queries as specified above in Protégé v5.5.0 on 
a MacBook Pro using the ELK 0.4.3 reasoner unless other-
wise noted. More information on loading the ontology into 
Protégé can be found in the Supplemental Methods.

CQ1: Find All Examples of Parvalbumin Neurons

This query should return all neurons that have a pheno-
type associated with parvalbumin, regardless of exactly 
what molecule was measured (DNA, RNA, protein) or how 
it was measured. In this version of the NPO, we achieve 
this by creating phenotype indicators without specify-
ing the relationships between these measures through the 
npokb:parvalbumin (indicator) class. The results of this 
query are summarized in Table 2. A total of 86 neurons are 
returned, including EBTs (Huang, N = 2, Markram, N = 16 
and Allen; N = 59) and CUTs (N = 9). To aid in comparison 
across these classes, we illustrate with one example each 

from the Markram EBTs and Allen data. The complete list of 
neurons is provided in Gillespie et al., (2020). The original 
label is provided for each EBT and the common name for 
the CUT. These are followed by the localLabel names that 
preserve the form of molecule upon which the classifica-
tions were based to illustrate how the NPO can be used to 
compare across different assertions about molecular identity 
(Markram2015, Huang2017, AllenCT). Related phenotypic 
values are color coded to aid in comparison. In this case, 
we use the localLabel that preserves the original type of 
molecule upon which the classifications were based. For a 
complete list of abbreviations, see Table S2.

Three of the neuron classes indicate that the parvalbumin 
cells are basket cells, while the Allen data does not specify 
morphology beyond noting that these cells lack an apical 
dendrite and dendritic spines.

CQ2: Find All Cortical Neurons That Contain Somatostatin

This query should return all cortical neurons that con-
tain somatostatin regardless of cortical subregion or atlas 
brain region. Details about how atlas brain regions are 
handled are provided in the supplemental methods. This 
query returns a total of 100 neurons, including the neo-
cortex Martinotti cell from the CUT and EBTs from the 
three classification schemes (Table 3). For Markram, we 
show only one subtype from each of the 3 main types. 
For Allen, we selected a few representative examples. 
Note that Allen neurons are returned from retrosplenial 
cortex (RSPd2/3) and two areas of primary visual cortex 
(VISal6a, VISl5) while Markram is returned for primary 
somatosensory cortex (S1). Both Huang and Allen cells 
use the same transgenic line for Sst expression, however 
it is extremely difficult to tell by looking at the laboratory 
nomenclatures (as demonstrated by Table 3) because they 
are called SST by Huang and Sst-IRES-FlpO by Allen. 
Thus, while the local labels preserve the nomenclature 

Table 2  Examples of EBT and CUT neurons returned from Compe-
tency query CQ1: Find all examples of parvalbumin containing neu-
rons. The form of the parvalbumin indicator is highlighted in red. 
Only one example is provided from the Allen EBT (total 59). Full 
results are available in Gillespie et  al. (2020). The compact identi-
fier for each class is prefixed (in bold) to the localLabel for ease of 

reference. The local label preserves the form in which the molecule 
was measured. The Common/original name represents the common 
name from the superclass for all of the physiological subtypes for the 
Markram cells. However, for the local label we provide a subtype as 
the superclass does not include the full molecular profile in the name

Type # Common/original name NPO localLabel

CUT 6 nifext:56: Neocortex basket cell nifext:56: Mammalia neocortex L2/3 Basket + PV + GABA intrinsic neuron
EBT 

Markram
16 npokb:112: Nest basket cell npokb:112: Rattus norvegicus S1 Nest basket (intersectionOf AC b) Fast spiking  

+ GABA + calbindin + CR + NPY + PV + VIP -SST intrinsic neuron (Markram2015)
EBT Huang 2 npokb:43: PVBC cortical neuron npokb:43: Mus musculus neocortex Basket + GABA + PV-cre intrinsic neuron 

(Huang2017)
EBT Allen 59 none npokb:434: Mus musculus female left cerebral hemisphere VISrl2_3 -Apical Dendrite 

-Spiny + Pvalb-T2A-FlpO + Vipr2-IRES2-Cre + Ai65(RCFL-tdT) neuron (AllenCT)
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used in the source (Paul et al., 2017 and Allen Cell Types 
Database respectively), they are difficult or impossible to 
use for alignment. The NPO resolves this issue by map-
ping to identifier systems wherever possible by review-
ing the source to see what the local nomenclature actu-
ally means. The default labels for neurons (not shown 
in Table 3) are generated from the underlying identifier 
which makes it possible to see that Huang and Allen use 
the same transgenic line (JAX:028579) developed by the 
Huang lab, regardless of the different local nomencla-
ture. In the NPO, if a transgene is involved, and it was 
derived from a transgenic mouse line, we use the Jackson 
lab stock number to represent transgenic phenotype when 
it is available.

CQ3:How do Basket Cells Described in Paul et al. (2017) 
and Markram et al. (2015) Compare on Key Dimensions?

This query returned EBT cells from the two groups that were 
assigned the morphological phenotype “basket”. A total of 
22 neurons were returned, 20 from Markram and two from 
Huang. A subset are illustrated in Table 4 and related phe-
notypes are color coded across the different types for ease 
of comparison. For the Markram cells, we only show one 
subtype for each main class.

Two classes of basket neurons are returned for Huang, 
while three are returned for Markram. Each of the three 
Markram classes are distinguished by distinct basket mor-
phologies: small basket phenotype, large basket phenotype, 

Table 3  Results for CQ2: Find all cortical neurons containing soma-
tostatin. Full results are available in Gillespie et al. (2020). The com-
pact identifier for each class is prefixed (in bold) to the local label 
for ease of reference. The local label preserves the form in which the 
molecule was measured. The Common/original name represents the 

common name from the superclass for all of the physiological sub-
types for the Markram cells. However, for the local label we provide 
a subtype as the superclass does not include the full molecular profile 
in the name. Similar entities across cell types are color coded. Brain 
region = blue; somatostatin indicator = red

Type # Common/original 
name

NPO localLabel

CUT 1 nifext:55: Neocortex 
Martinotti cell

nifext:55: Mammalia neocortex (unionOf EGL L3 L5) (with-axon-in cortical layer I) 
Martinotti + Sst + GABAR + GluR + GABA intrinsic neuron'

EBT 
Markram

31 • npokb:114: Small 
basket neuron

• npokb:111: Marti-
notti neuron

• npokb:109: Double 
bouquet neuron

• npokb:75: Rattus norvegicus S1 Small basket (intersectionOf NAC d) Fast spiking + GABA + calbindin + NPY + SST + VIP 
-CR -PV intrinsic neuron (Markram2015)

• npokb:89: Rattus norvegicus S1 Martinotti (intersectionOf AC b) Regular spiking non 
pyramidal + GABA + calbindin + NPY + SST -CR -PV -VIP intrinsic neuron (Markram2015)

• npokb:87: Rattus norvegicus S1 Double bouquet (intersectionOf IR c) Regular spiking non 
pyramidal + GABA + calbindin + CR + SST + VIP -NPY -PV intrinsic neuron (Markram2015)

EBT Huang 4 • npokb:42: MNC 
neuron

• npokb:45: LPC 
neuron

• npokb:42: Mouse Neocortex Martinotti + GABA 
(intersectionOf + Adcy2 + Calb2 + Grin3a + Inhbb + Nppc + Pde2a + Rgs6 + Rgs7 + Sst + Zip1 + Znt3) + CR + SST  
interneuron (Huang2017)

• npokb:45: Mouse Neocortex + GABA (intersectionOf + Calca + Chrm2 + Cort + Gpr88 + Gucy1a3 + Gucy1b3 + Hcrtr1 +  
Kcnmb4 + Nos1 + Opn3 + Oxtr + Pde1a + Penk + Prkg2 + Ptn + Rln1 + Slc7a3 + Sst + Syt4 + Syt5 + Syt6 + Tacr1 + Trpc6 +  
Unc5d + Wnt2) + SST + NOS1 projection (Huang, 2017)

EBT Allen 64 none • npokb:296: Mus musculus female right cerebral hemisphere RSPd2_3 -Apical Dendrite (intersectionOf Spiny sparse) + Sst- 
IRES-FlpO + Nos1-CreERT2 + Ai65(RCFL-tdT) neuron (AllenCT)

• npokb:415: Mus musculus female left cerebral hemisphere VISl5 -Apical Dendrite -Spiny + Sst-IRES-Cre + Ai14(RCL-tdT)  
neuron (AllenCT)

• npokb:412: Mus musculus female right cerebral hemisphere VISp6a -Apical Dendrite (intersectionOf Spiny sparse) + Sst- 
IRES-Cre + Ai14(RCL-tdT) neuron (AllenCT)

Table 4  Neurons that have a basket phenotype. Similar entities across 
the cell are color coded to aid in comparison. The full results list is 
available in Gillespie et  al (2020). Similar entities are color coded 

across cell types: blue = brain region; green = morphology; pur-
ple = neurotransmitter; dark red = parvalbumin indicator; red = soma-
tostatin indicator

Original name NPO ID NPO Label

PVBC Neuron (Huang2017) npokb:43 Mus musculus neocortex Basket + GABA (intersectionOf + Adm + Cckbr + PV + ilxtr:Kv3 + Rspo2 + Adcy8 +  
Cox6c + Gabra1 + Gabra4 + Gabrd + Gria1 + Gria4 + Mef2c + Pparg + Ppargc1a + Rgs4 + Slit2 + Slit3 + Tac1 + Arh-
gef10 + Esrrg + Nefh + Adcy1 + Rasl11b) + PV intrinsic neuron (Huang2017)

CCKC Neuron (Huang2017) npokb:40 Mus musculus neocortex Basket + GABA (intersectionOf + Crh + Cck + Cck + Cnr1 + Edn3 + Htr3a + Igf1 + VIP +  
VIP + Vipr1 + Adcy9 + Chrm3 + Cplx2 + Htr2c + Pnoc + Npy1r + Tac2 + Cplx3 + Pde7b + Prok2 + Hs6st3 + Syt10 + Rgs12)  
+ Cck + VIP intrinsic neuron (Huang2017)

Large basket cell (Markram2015): 
subtype

npokb:59 'Rattus norvegicus S1 Large Basket (intersectionOf AC b) Fast Spiking + GABA + Calb + Calb2 + Npy + PV + VIP -Sst 
interneuron (Markram2015)'

Nest basket cell (Markram2015): 
subtype

npokb:65 ‘Rattus norvegicus S1 Nest Basket (intersectionOf AC b) Fast Spiking + GABA + Calb + Calb2 + Npy + PV + VIP -Sst 
interneuron (Markram2015)'

Small basket cell (Markram2015): 
subtype

npokb:73 ‘Rattus norvegicus S1 Small Basket (intersectionOf AC c) Fast Spiking + GABA + Calb + Npy + Sst + VIP -Calb2 -PV 
interneuron (Markram2015)'
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and nest basket phenotype. These morphologies are modeled 
as subtypes of BasketPhenotype.

For these types of comparisons, the NPO facilitates com-
parison across diverse experimental techniques and anatomi-
cal nomenclatures and can help to generate testable hypoth-
eses regarding phenotypes. In this example, it is difficult to 
tell from the information provided whether there is a 1:1 cor-
respondence between any of the Huang and Markram cells. 
The only molecules mentioned by all 5 cells are GABA, PV 
and VIP. The Huang PVBC neuron is PV + while the CCKC 
neuron is VIP + . Two Markram neurons are positive for both 
PV and VIP, while the small basket cell is asserted to be 
PV + and VIP-. No negative phenotypes were recorded for 
the Huang neurons, as we based the equivalence classes on 
the information available in Table S7 which only included 
positive phenotypes. In the NPO, we operate under an open 
world assumption, that is, unless there is an explicit state-
ment that a molecule is lacking, we do not assume that it is 
absent. We do provide additional information in the form of 
disjointness axioms based on Fig. 1b of Paul et al. (2017) 
that the PV-containing and the VIP-containing cells are 
non-overlapping. This approach dovetails with EBTs mak-
ing assertions about disjointness of cell types within a spe-
cies which can be true even if there is not a universal axiom 
about molecular constituents. Disjointness therefore doesn’t 
mean that there is no expression, but an inspection of the 

data provided in Fig. 1e indicates that expression of PV in 
the CCKC neuron is very low. Inspecting the data therefore 
suggests that the CCKC neuron is VIP + and PV-, consistent 
with the small basket cell of Markram.

This example illustrates some of the difficulties involved 
in comparing across phenotypes, particularly when the dif-
ferent phenotypes are measured across experiments. It also 
illustrates the importance of tying EBTs to experimental 
data, so that predictions generated from these comparisons 
can be explored. In this case, Paul et al. (2017) provided 
expression data for several key molecules in Fig. 1e. This 
figure shows that while the CCKC neuron expresses lit-
tle to no PV, consistent with the small basket cell, it also 
expresses little to no Sst and detectable Calb2, in contrast to 
the small basket cell. However, as is easily seen in the labels, 
the Huang and Markram cells come from mouse and rat 
respectively and how complex molecular phenotypes com-
pare across species is unknown (Yuste et al., 2020).

CQ4: What EBTs are Related to the Martinotti Cell?

To address this competency query, we reasoned over the 
ontology to determine which neurons would classify under 
the Neocortex Martinotti neuron CUT. For a neuron to be 
classified as a type of Martinotti cell, it has to share nec-
essary and sufficient conditions of that class as coded in 

A

B

C

Fig. 5  Inferred hierarchy after reasoning over the ontology for the 
Martinotti cell. Panel A shows the hierarchy generated under the 
NeuronCUT class. The position of the Marinotti CUT is indicated by 

the lower red arrow. An enlargement of the Martinotti classification 
is shown in panel B. Panel C shows the OWL representation of the 
Martinotti CUT 
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the equivalence statements. As discussed in the methods, 
we deliberately chose to model a minimum of properties as 
necessary and sufficient due to the large variability in the 
number of phenotypes recorded for the EBTs. Additional 
properties are included (Fig. 5C) but not in the form of 
OWL restrictions, so they do not factor into the reasoning. 
We also only represent the major classes of CUTs and do 
not include subtypes, as these are less well agreed upon. In 
OWL, if we were to require that a Martinotti neuron must 
have calretinin,then if a given EBT did not state that cal-
retinin was a defining characteristic, the neurons would not 
classify. In fact, according to Rudy et al. (2011), Martinotti 
cells contain two subclasses, one that contains calretinin and 
one that does not. In the NPO, the NeuronHuang2017 EBT 
notes the presence of calretinin (+ Calb2), while the Neu-
ronMarkram2015 EBT says it is absent (-Calb2), perhaps 
representing these two subclasses.

As Fig. 5 shows, the Allen EBTs do not classify under 
the Martinotti CUT. In v1.0 of the NPO, we only model 
morphological phenotypes at a coarse level, e.g., Martinotti 
phenotype, which is assigned to the level of the entire cell. In 
contrast, NeuronACT provided morphological information 
only for the dendrites of each cell. For the cortical somato-
statin containing cells, it was noted that they lack an apical 
dendrite and dendritic spines, but no assertion was made 
about a Martinotti phenotype, unlike in the other two clas-
sifications. In the future, the NPO will include additional 
defining features of a Martinotti phenotype.

FAIR Properties of the NPO

The NPO was designed to be consistent with the FAIR prin-
ciples. In Table 5, we show how the NPO achieves FAIR 
using the rubric in Hodson et al. (2018). The key features 
are machine readability, the use of identifiers (FAIR vocabu-
laries), common knowledge representation languages and 
community standards. We provide a comparison with other 
cellular ontologies in Table S1.

Discussion and Conclusion

The NPO provides a semantically-enriched, FAIR data 
model for representing the complex cellular phenotypes 
being generated by neuroscientists involved in individual 
and large scale brain initiatives. It allows the creation of 
machine generated taxonomies, and provides a consistent 
naming convention that is machine configurable. Using the 
NPO, we showed that we could take cellular data arising 
from high throughput activities, e.g., the Allen Cell Atlas, 
large projects like the Blue Brain Project, and from indi-
vidual investigators to cross between different techniques to 
show areas of agreement and non-alignment. This exercise is 

not trivial, as the multiplicity of techniques, the incomplete 
sampling, and the complex nomenclature present challenges. 
However, the NPO helps to mitigate these by allowing trans-
lation of custom lab nomenclature and experimental results 
into a common, semantic, and computable representation 
using community ontologies. The names themselves can be 
customized to conform to any nomenclature standard that 
might emerge for human consumption (e.g., Shepherd et al., 
2019), but this process is managed as a formal specification 
rather than through agreed upon naming conventions.

We have focused our efforts on addressing the problem 
of cell classification vs the issue of determining neuronal 
types by providing a means to compare our current knowl-
edge about cell types (our common usage types) with the 
many different classifications being generated by data driven 
methods and other experimental techniques. The distinction 
between a neuron type vs a neuron class is not entirely clear, 
and the terms are often used interchangeably. We use class 
here to refer to a set of neurons that satisfy a set of criteria, 
e.g., GABAergic neurons = all neurons that use GABA as 
a neurotransmitter. The number of potential classes given 
the number of phenotypic dimensions measured is therefore 
very large. Types, however, refer to neurons that are suf-
ficiently distinct that the presence of a given set of features 
will reliably predict the presence of additional features that 
have not been measured. For example, when a cerebellar 
Purkinje cell is identified by a Nissl stain based on its size, 
shape, and location, we can reliably infer that it contains 
parvalbumin and calbindin, has dendrites densely covered 
in dendritic spines, and uses GABA as a neurotransmitter 
whether or not we explicitly measure them. This definition 
is similar to that proposed by Zeng and Sanes (2017) who 
propose that types represent discrete groups which notion-
ally serve a specific function while classes represent aggre-
gates of types that share common features. Types are also the 
categories of cells that must be accounted for when building 
circuit diagrams of the nervous system (Luo et al., 2008).

The NPO allows us to communicate about and com-
pare measured neuronal phenotypes in a way that reflects 
human understanding but that can also be fully managed 
using modern computational methods. Genomics benefitted 
enormously from a community ontology for annotation of 
experimental results that allowed them to be communicated 
in a consistent and machine-processable manner. The issue 
of neuron typology will also benefit from a consistent anno-
tation framework. Although there are challenges, phenotypes 
lend themselves to a consistent annotation framework, e.g. 
genes and morphological features. However, the issue of 
cell type itself is more fluid. Thus the NPO implements a 
model that distinguishes between observations in single 
cells (instances), proposals about cell types derived from 
computational analyses (EBTs), and cell types that have 
been recognized by one or more criteria across multiple 
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labs and techniques (CUTs). None of these categorizations 
represent ground truth. Nevertheless, transcriptomics com-
bined with data driven approaches have shown promise as a 
unifying technique that may allow stable cell populations to 
be described within a probabilistic framework (Yuste et al., 
2020). Such abstractions will still likely reference entities 
such as brain regions, marker genes, morphology, and con-
nections. Likewise many of these abstractions will map onto 
well-known cell types (Yuste et al., 2020). Disagreements 
are still likely to arise about the nature of these populations, 
particularly at finer levels of granularity. The NPO and the 
associated knowledge environment provide a bridge between 
classifications generated using high throughput and integra-
tive techniques and our accumulated knowledge over the past 
100 years on cell types in the nervous system.

Looking to the future, extension of the NPO beyond 
the contents described in this paper is already underway. 
We have started to create new evidence based types for 
the peripheral nervous system as part of the NIH SPARC 
consortium (Osanlouy et  al., 2021). Application to the 
peripheral nervous system is an extension along the loca-
tion dimension. Extensions along other dimensions are also 
possible. The taxonomic dimension is an obvious candidate. 
The inclusion of invertebrate and avian neuron types would 
significantly broaden the generality of the content of the 
NPO and further test the flexibility of the approach. To truly 
understand the nervous system we will likely need to study it 
in all its variation across a menagerie of clades and dimen-
sions. We designed the NPO to have a flexible data model so 
that it could not only accommodate such diversity, but also 
be enhanced by it. The ongoing initiatives to exhaustively 
catalog neuron types for Drosophila melanogaster seem like 
they could provide a tractable testing ground for applying the 
NPO at scale and for the infrastructure that will be needed 
to manage the flood of vertebrate data that will be collected 
over the coming years.

The work reported here should be considered a proof-
of-concept; in order for the NPO to be used at the scale we 
envision significant additional tooling would be required. 
Currently, the Python code can be used by a researcher to 
translate their phenotypes into NPO and they can compare 
their neurons locally to the NPOKB using Protégé. To gain 
traction, increase ease of use, and populate the knowledge 
base, we envision a set of on-line tools that would assist 
researchers in translating their phenotypes into the NPO, 
along with a web-accessible growing knowledge base with 
visualization and analysis tools for researchers to com-
pare their neurons to what is known. Yuste and colleagues 
(2020) also envision an online community knowledge base 
where information on cell types is accumulated and linked. 
In addition, the NPO currently only provides the skeleton 

of discrete types on top of which the continuous nature of 
measurements needs to be integrated. Nonetheless, the goals 
of the BRAIN initiative and other large scale data projects 
are to transform our understanding of the brain using new 
technologies and data science and understanding the “parts 
list” of the nervous system is a key objective (Zeng & Sanes, 
2017). If we accept the premise that no single project or 
group can do it alone, then neuroscientists must produce data 
and knowledge artifacts like atlases and taxonomies in a way 
that is amenable to computation. The FAIR data principles 
outline some of the basic ways to do that (Table 5). Integral 
to FAIR is the use of community standards that make the 
process of searching, aggregating, and reusing data more 
tractable. The proposed methods do not require that we all 
think alike, rather, they ensure that we can employ compu-
tational methods to compare and contrast across different 
classification schemes. Although the proposed approaches 
would require a significant investment by funders and 
researchers alike to develop and adopt these methods, we 
have to measure this against the time we currently spend 
trying to reconcile computationally opaque and un-FAIR 
neuroscience data. In an ideal world, we would focus our 
resources on grappling with the innate complexity of the 
issue of cell types in the brain, rather than having to focus 
on reconciling the myriad number of ways we can refer to 
common entities in neuroscience.
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