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Abstract: In this study, we report results of the interaction of titanium (Ti) with human synovial
fluids. A wide palette of electrochemical techniques was used, including open circuit potential,
potentiodynamic methods, and electrochemical impedance. After the electrochemical testing, selected
surfaces were analyzed using Auger Electron Spectroscopy to provide laterally resolved information
on surface chemistry. For comparison purposes, similar tests were conducted in a series of simulated
body fluids. This study shows that compared to the tested simulated body fluids, synovial liquids
show a large patient variability up to one order of magnitude for some crucial electrochemical
parameters such as corrosion current density. The electrochemical behavior of Ti exposed to human
synovial fluids seems to be controlled by the interaction with organic molecules rather than with
reactive oxygen species.

Keywords: human synovial fluid; electrochemistry; Ti

1. Introduction

A general requirement of corrosion testing is to select the proper environment. It has
to be close to the target environment, and sometimes allows for accelerated testing. Many
materials used in the body today are passive materials (CoCrMo, Ti, 316L), and relevant
corrosion testing is primordial for assessing materials’ performance.

Metal implants can lead to harmful release of metal into the blood stream [1–4]
by corrosion. This may cause inflammation, making the body environment even more
aggressive to the implant [5]. From the chemical aspect, synovial liquid mainly consists of
ions such as Na+, Mg2+, Fe3+, K+, HPO4

2−, and Ca2+ [6]. On a molecular-cell level, serum
proteins, lipids, hyaluronic acid, lubricin, and cells are found [7]. The exact composition
varies in principle among patients. To somewhat standardize the testing, solutions to
simulate human synovial liquid have been designed, including isotonic sodium chloride,
phosphate buffers, as well as the more complex Ringer’s and Hank’s solutions. Bovine
serum albumin (BSA) or hyaluronic acid is sometimes added to these variants. The relevant
test temperature is 37 ◦C. Attempts to simulate inflammations have been made by the
addition of hydrogen peroxide (H2O2). Previous research has shown that these constituents
have a various influence on the corrosion behavior of Ti. For example, BSA can inhibit the
reduction reaction by adsorbing onto the metal surfaces [8–13]. However, depending on
the concentration, protein either can accelerate the corrosion rate of metallic implants by
forming soluble complexes with metal ions [11,12,14] or inhibit corrosion by acting as a
physical barrier layer [11,13,15]. Similarly, passivation current density slightly decreases
with the addition of calcium and phosphate ions due to their adsorption onto metal
surface [16–19]. Besides, a number of studies show that H2O2 can strongly increase the
corrosion rate of implants [20–24]. A summary of ex vivo and in vitro studies has been
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written by Espallargas et al. [25]. They found a large variability between surfaces, and
the organic layers found on implant materials sometimes also appeared as graphite for ex
vivo studies. The large variability between patients and surfaces was also confirmed in an
in vivo study by Igual-Muñoz et al. [26] following the electrochemistry of a CoCrMo alloy
when brought in contact with human synovial liquid. This study showed that in particular
the anodic reactivity of CoCrMo was patient dependent and was stronger compared to
in vitro experiments.

However, the electrochemical behavior of Ti and its alloy in human synovial fluids
has not yet been investigated. Hence, it was chosen to study here the interaction of Ti with
synovial liquids extracted directly from the human body for a series of patients at different
stages. For this purpose, a multi-electrode set-up is presented specifically designed to
perform relevant electrochemical tests. This was complemented with surface analysis by
Auger Electron Spectroscopy (AES) to estimate the reactivity of the surface.

2. Experimental
2.1. Materials and Experimental Set-Up

A Ti rod (grade 2: Ti ≥ 98.9, Fe ≤ 0.30, O ≤ 0.25, C ≤ 0.08) supplied by Goodfellow
was used in this study. Samples with 4 mm in diameter and 6 mm in thickness were cut
from the rod. The samples were manually polished with SiC emery paper of 1200, 2400, and
4000 grit in water. In order to get a mirror-like surface, final polishing was carried out on a
polish tissue with an ethanol-based suspension dispersed with diamond particles (0.25 µm
in diameter). The final roughness, as measured by a laser scanning confocal microscope
(KEYENCE VK-X200), was Ra 15 ± 3 nm. After that, the samples were cleaned in the
ultrasonic bath with acetone for 5 min and subsequently sterilized in 70% ethanol for 5 min
and then dried with oil-free compressed air.

A multi-electrode cell with 2 mL volume was designed to meet the small amount of
synovial fluid (normally around 2–7 mL) extracted from patients. The diagram as well
as the picture of the cell is presented in Figure 1. For each test, two Ti samples were
placed in different positions to test the electrochemical reactions. Stainless steel samples
were inserted in the two remaining working electrode slots but for the sake of clarity,
the measurements obtained on these electrodes are not discussed here. In one patient
only (P17), four Ti samples were measured to check the repeatability of the electrochemical
behavior of Ti in a given synovial liquid, as is shown in the results section. The cell included
an Ag/AgCl (3.5 M KCl) reference electrode (RE) and 12 counter electrodes (platinum rods)
evenly distributed in the vessel cover. The potential of the reference electrode is 0.198 V
relative to the standard hydrogen electrode. In order to check the homogeneity of synovial
fluids, the OCP of each counter electrode was measured at the beginning of the immersion.
After that, all the platinum (Pt) rods were short circuited to serve as the counter electrode
(CE). Prior to any experiment, the CE was polished using diamond paste and subsequently
cleaned and sterilized in 70% ethanol. The RE electrodes were cleaned and also sterilized
in 70% ethanol before and after experiments.

The synovial fluid was extracted and collected with a syringe, and it was directly
transferred from the surgery room to the electrochemical laboratory within 5 min. The
picture of synovial fluid in the syringe was taken right after transfer from the surgery
room. The pH of the fluid was then measured with pH paper (sensitivity is 0.3 pH units)
by depositing a drop from the syringe onto the paper. Subsequently, synovial fluid was
injected into the cell through the injection hole until complete filling. This operation lasted
less than 10 s. A sufficient amount of liquid could be extracted only from certain patients.
Over 18 patients, 2 patients yielded not enough liquid (P16 and P18), while in other patients
no liquid could be found (P7, P9, P12). Liquids from patients P1, P8 and P10 were used for
other experiments. The injection and evacuation holes were closed with silicone caps right
after injection to avoid contamination from the air. The cell was placed in an aluminum
block to maintain the temperature at 37 ± 1 ◦C. The whole set-up was installed in a Faraday
cage to avoid electrostatic interferences.
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Figure 1. (a) Schematic diagram of the three-electrode cell. A: working electrode, B: counter electrode,
C: reference electrode, D: air evacuation hole, E: sealing O-ring, F: tested synovial fluid, G: vessel,
H: injection hole, I: vessel cover. (b) The picture of the cell.

2.2. Electrochemical Experiments

Different electrochemical measurements were carried out sequentially on the samples
with an Ivium potentiostat. (a) Open circuit potential (OCP) between each Pt rod and RE
was measured in sequence every 10 s, and the whole measurement lasted for 100 s; (b) OCP
between working electrodes and the reference electrode was continuously recorded for
20 min. The measurement consists of four loops, and different samples were tested in each
loop; (c) Polarization resistance (Rp) of one Ti and one 316L sample was measured at the end
of each OCP loop by scanning the potential from −20 to 20 mV with respect to OCP with a
scan rate of 2 mV/s; (d) Electrochemical impedance spectroscopy (EIS) was tested on the
same Ti and 316L sample at the OCP. The applied potential amplitude was ±10 mV and the
frequencies ranged from 105 to 1 Hz; (e) Potentiodynamic scan was performed on the same
Ti and 316L sample by scanning the potential from the OCP towards the cathodic direction
to −1 VAg/AgCl and reversing towards anodic direction up to 1 VAg/AgCl with a scan
rate of 2 mV/s. (f) EIS was conducted on Ti and 316L samples after the polarization scan.
After the electrochemical experiments, the pH of tested synovial fluids was measured, and
the samples were cleaned in an ultrasonic bath with 70% ethanol for 2 min and blow-dried
with oil-free compressed air. The whole experiment procedure is shown in Figure 2.

Materials 2022, 15, x FOR PEER REVIEW 3 of 18 
 

 

Figure 1. (a) Schematic diagram of the three-electrode cell. A: working electrode, B: counter elec-
trode, C: reference electrode, D: air evacuation hole, E: sealing O-ring, F: tested synovial fluid, G: 
vessel, H: injection hole, I: vessel cover. (b) The picture of the cell. 

The synovial fluid was extracted and collected with a syringe, and it was directly 
transferred from the surgery room to the electrochemical laboratory within 5 min. The 
picture of synovial fluid in the syringe was taken right after transfer from the surgery 
room. The pH of the fluid was then measured with pH paper (sensitivity is 0.3 pH units) 
by depositing a drop from the syringe onto the paper. Subsequently, synovial fluid was 
injected into the cell through the injection hole until complete filling. This operation lasted 
less than 10 s. A sufficient amount of liquid could be extracted only from certain patients. 
Over 18 patients, 2 patients yielded not enough liquid (P16 and P18), while in other pa-
tients no liquid could be found (P7, P9, P12). Liquids from patients P1, P8 and P10 were 
used for other experiments. The injection and evacuation holes were closed with silicone 
caps right after injection to avoid contamination from the air. The cell was placed in an 
aluminum block to maintain the temperature at 37 ± 1 °C. The whole set-up was installed 
in a Faraday cage to avoid electrostatic interferences. 

2.2. Electrochemical Experiments 
Different electrochemical measurements were carried out sequentially on the sam-

ples with an Ivium potentiostat. (a) Open circuit potential (OCP) between each Pt rod and 
RE was measured in sequence every 10 s, and the whole measurement lasted for 100 s; (b) 
OCP between working electrodes and the reference electrode was continuously recorded 
for 20 min. The measurement consists of four loops, and different samples were tested in 
each loop; (c) Polarization resistance (Rp) of one Ti and one 316L sample was measured 
at the end of each OCP loop by scanning the potential from − 20 to 20 mV with respect to 
OCP with a scan rate of 2 mV/s; (d) Electrochemical impedance spectroscopy (EIS) was 
tested on the same Ti and 316L sample at the OCP. The applied potential amplitude was 
±10 mV and the frequencies ranged from 105 to 1 Hz; (e) Potentiodynamic scan was per-
formed on the same Ti and 316L sample by scanning the potential from the OCP towards 
the cathodic direction to −1 VAg/AgCl and reversing towards anodic direction up to 1 
VAg/AgCl with a scan rate of 2 mV/s. (f) EIS was conducted on Ti and 316L samples after 
the polarization scan. After the electrochemical experiments, the pH of tested synovial 
fluids was measured, and the samples were cleaned in an ultrasonic bath with 70% etha-
nol for 2 min and blow-dried with oil-free compressed air. The whole experiment proce-
dure is shown in Figure 2.  

 
Figure 2. Experimental sequence. 

For comparison purposes, the electrochemical behavior of Ti was also tested in sim-
ulated body fluids (composition is given in Table 1) using the same procedure and condi-
tions applied for synovial fluids. NaCl solutions are the simplest fluid used for simulating 
body fluids. Incorporation of bovine serum albumin (BSA) is widely used to assess the 
influence of the organic molecules contained in body fluids [9–13]. H2O2 was added into 
simulated fluid to investigate the influence of reactive oxygen species (ROS) [22–24]. The 
solutions were prepared using reagents: NaCl (Sigma-Aldrich, Gribskov, Denmark), BSA 
(Fisher Scientific AG, Basel, Switzerland), and H2O2 (Reactolab S.A., Servion, Switzer-
land). The pH was adjusted to 7.4 by using small amounts of NaOH. 

Figure 2. Experimental sequence.

For comparison purposes, the electrochemical behavior of Ti was also tested in simu-
lated body fluids (composition is given in Table 1) using the same procedure and conditions
applied for synovial fluids. NaCl solutions are the simplest fluid used for simulating body
fluids. Incorporation of bovine serum albumin (BSA) is widely used to assess the influence
of the organic molecules contained in body fluids [9–13]. H2O2 was added into simulated
fluid to investigate the influence of reactive oxygen species (ROS) [22–24]. The solutions
were prepared using reagents: NaCl (Sigma-Aldrich, Gribskov, Denmark), BSA (Fisher
Scientific AG, Basel, Switzerland), and H2O2 (Reactolab S.A., Servion, Switzerland). The
pH was adjusted to 7.4 by using small amounts of NaOH.
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Table 1. Composition of the simulated body fluids.

Solution NaCl BSA H2O2

NaCl 8 g/L - -
NaCl + BSA 8 g/L 30 g/L -

NaCl + BSA + H2O2 8 g/L 30 g/L 5 g/L

The small volume of the cell may introduce artefacts due to significant modification
of the chemistry of the electrolyte, possibly introduced by the polarization. For example,
hydrogen and oxygen generated at the counter electrode during anodic or cathodic po-
larization may diffuse in the small cell towards the working electrodes, thus disturbing
the electrochemical measurement. Moreover, pH changes due to electrolysis may have a
significant effect because of the small volume of the cell. In order to check for such possible
artefacts, the small cell was validated by comparison with a standard size corrosion cell.
The results are shown in the supplementary materials file (Figures S1–S3, Table S1) attached
to this paper. The results show that no obvious artefacts occurred in this small volume cell
used here.

2.3. Human Synovial Fluids Sampling

Three kinds of patients were selected, and their synovial fluids were extracted by a
skilled surgeon in the surgery room:

- Group 1, Primary surgery patients (PS): patients who do not have an implant but
exhibit different grades of knee inflammation and clinical states.

- Group 2, Total Knee Arthroplasty (TKA): patients with a Total Knee Arthroplasty implant.
- Group 3, Revisions (R): patients who will go for revision surgery due to a failure,

rejection, or problem with the implant.

Synovial fluids were extracted during surgery (group 1 and 3) and puncture (group 2).
All care was taken by the surgeon to avoid contamination of the synovial fluid by blood
or other components. The extraction procedure is explained in detail in [26]. The overall
protocol of this study (protocol 208/13) was approved on 28 May 2013 by the ethics
committee for human being studies of the local government (Commission cantonale (VD)
d’éthique de la recherché sur l’être humain) according to the ICH GCP guidelines.

2.4. AES Analysis

The surface composition and film thickness analysis of the non-polarized Ti samples
of P4 and P5 were performed using a PHI 680 scanning Auger microscope (Physical
Electronics, Eden Prairie, USA) equipped with a scanning electron microscope and an
argon ion gun. Before the analysis, the samples were stored in the desiccator for at least
2 weeks. The measurements were done at a voltage of 10 kV and a current of 10 nA for
the electron gun and a voltage of 1 kV and 500 nA for the ion gun with a raster size of
2 × 2 mm. The analysis was conducted with the samples tilted at 30 degrees with respect
to the incident electron beam and 45 degrees with respect to the incident ion beam. Under
these conditions, the sputter rate of TiO2 is 0.6 nm/min (2 nm/min on SiO2).

3. Results
3.1. Human Synovial Fluids

The information of tested synovia is listed in Table 2 and the pictures are shown in
Figure 3. The results show that the pH of most extracted synovia is around 7.4, except for
the fluids from patient 6 (P6), 13, and 16, which are very slightly more acidic or alkaline,
respectively. No significant difference in pH value of the synovial fluids was observed at
the end of the experiment. As shown in Figure 3, the color of the synovial liquids varied
depending on patient, with no obvious correlation. The OCP of the twelve Pt wires used as
counter electrodes was used for assessing the degree of homogeneity of the liquid at the mm
scale. Note that the OCP of electrodes is subject to variations depending on details in sample
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preparation (polishing, cleaning). To take this into account, the standard deviation of OCP
of the Pt electrodes was used as an indicator. For reference, the standard deviation value
measured in 0.8% NaCl solution, taken here as a reference for a homogeneous solution,
was 32 mV. This value varied depending on the patient between a minimum of 20 mV and
a maximum of 65 mV. These values are very close to what is found in the NaCl reference
solution, and it may, therefore, be concluded that the synovial liquids are homogeneous, at
least at the mm scale.

Table 2. Properties of human synovial fluid.

Patient Group Volume/mL pH

2

PS

6 7.4
3 2.5 7.4
4 5.5 7.4
5 4 7.7
11 7 7.4
13 >10 7
14 8 7.4
15 5 7.4
16 1.5 7.9
18 1 7.3
17 TKA 11 7.3
6 R 6 6.8
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3.2. OCP of Ti in Synovial Fluids

The OCP of the Ti electrodes was measured in sequence every 5 min. An example
of OCP evolution with time for P2, P3, and P4 is displayed in Figure 4. The OCP value
slightly varies during immersion time (variation less than 2.5 mV/min). Interestingly, it
can either increase with time (for example patients 2 and 4) or decrease (Patient 3). Similar
trends of OCP were also observed in other tested synovial fluids.

The comparison of the stabilized OCP values measured after 20 minutes’ immersion
in all synovial fluids is presented in Figure 4. The stabilized OCP varies among patients
between a maximum of −151 mVAg/AgCl and a minimum of −529 mVAg/AgCl. In some
cases (P11, P13, and P14), the two Ti electrodes immersed in the same synovial fluid differ
significantly in their OCP value (difference larger than 50 mV). This can be due to slight,
uncontrolled differences in sample preparation or contamination during sample storage
before the experiment.
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3.3. Polarization Resistance

Polarization resistance (Rp) of both Ti was conducted during OCP measurement, and
the result of Ti in synovia from patient 6 was displayed in Figure 5 as an example. A
linear relationship between current and potential was observed only in the anodic current
domain. Rp was determined as the reciprocal of the slope of the linear part section, as
shown in Figure 5. The obtained values for all patients are also plotted in Figure 5. These
results indicate that Rp varies significantly with patients, P4 being the highest and P14 the
lowest. Note that the polarization resistance response differs from an ideal behavior (linear
variation of current across the zero current point) where the current is determined only
by the charge transfer reaction kinetics [27]. Only in this ideal case, the reciprocal of the
resistance is proportional to the corrosion current density. This is not the case in the present
measurements where a linear behavior is only observed in the anodic domain. To interpret
the present results, other effects must be considered, such as capacitive effects potentially
induced by the presence of the passive film and adsorbed organic molecules. These points
will be discussed in Section 4.3.
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3.4. Solution Resistance

The electrical resistance of the synovial fluids was extracted from the impedance
spectra measured before potentiodynamic polarization and after all measurements were
completed, and this is for checking possible changes of the synovial fluids induced by the
polarization. A typical Bode plot is presented in Figure 6. The resistance at a frequency
of 105 Hz was considered as representative of the ohmic resistance of the synovial fluids.
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They are plotted in Figure 6 for the different patients and, as a reference, for the 0.8% NaCl
solution. For P3 and P17, the software suddenly broke down, thus the solution resistance of
synovial fluid was not measured at the end of the measurement. Clearly, synovial fluids are
conductive and present a resistance similar to a simple 0.8% NaCl solution. Moreover, no
significant difference in the solution resistance tested before and after PD scan was obtained.
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Figure 6. (a) Bode plot of Ti in synovia from P3 and (b) Rs of synovial fluids from different patients
(initial: before potentiodynamic polarization, final: after all measurements completed).

3.5. Potentiodynamic Polarization Curve

Potentiodynamic polarization was measured by first cathodically polarizing the sam-
ples and reversing the scan to the anodic direction when a potential of −1 VAg/Ag/Cl was
reached. Figure 7 shows the measured cathodic scans. The current density varies signifi-
cantly depending on the patients. Particularly low current densities are found in the case
of P2 and P4. All curves except P5 exhibit a linear part approximately 100–200 mV below
the OCP. P13–17 exhibit a second linear part at higher polarization with a slightly different
slope. This indicates that the cathodic kinetics is under charge transfer control and could
involve the reduction of oxygen, protons and/or water.
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Figure 7. Cathodic polarization curves (logarithmic scale of the absolute current density) of Ti tested
in synovial fluids from PS, TKA (P17) and R (P6) group.

Anodic polarization curves of Ti for the PS group are displayed in Figure 8. Three
reaction domains were observed in polarization curves: the cathodic domain below the
corrosion potential (Ecor) where the current density is mainly determined by the reduction
reaction, the cathodic/anodic transition at Ecor and, at higher potentials, the anodic domain.
This domain is typically characterized by an initial steady increase in current followed
by a plateau. Only P11 does not show any plateau in the investigated potential range.
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The anodic branch of the polarization curves of P11 and P17 exhibit a sudden current
oscillation, for which the origin is not clear. Interestingly, there is a certain proportional-
ity between cathodic and anodic current densities, i.e., patients exhibiting larger anodic
current also exhibit larger cathodic current densities. This suggests that both cathodic and
anodic kinetics are affected by common factors. Interestingly, the two polarization curves
measured on two Ti samples in the same fluid from P17 exhibit very similar behavior in
the anodic domain (Figure 8), while in the cathodic domain (Figures 7 and 8), some small
differences appear between the two measurements. This good repeatability confirms the
pertinence of electrochemical measurements in synovial fluids. Not surprisingly, Figure 8
also exhibits large differences in results among patients, as already observed in the cathodic
polarization curves.
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Figure 8. Anodic polarization curves (logarithmic scale of the absolute current density) of Ti tested in
synovial fluids from PS, TKA (P17 with two repetitions), and R (P6) group.

In order to quantitatively assess this scatter, characteristic parameters such as OCP, the
cathodic current density ic measured at a potential of −0.9 VAg/AgCl in the anodic scan, the
corrosion potential Ecor, and the anodic current density ipp measured in the passive range at
a potential of 0.5 VAg/AgCl were extracted from Figure 8 and listed in Table 3. The Ecor value
ranges between a maximum of −0.334 VAg/AgCl up to a minimum of −0.636 VAg/AgCl.
The cathodic current densities listed in Table 3 may vary among patients by two orders of
magnitude while the anodic values exhibit less variation (one order of magnitude).
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Table 3. Electrochemical parameters extracted from the anodic polarization curves of Ti samples.

Anodic Curve

Patient OCP/mV ic (−0.9 V)/µA/cm2 Ecor/VAg/Ag/Cl ipp (0.5 V)/µA/cm2

PS

2 −386 −1.2 −0.636 6.29
3 −340 −13.3 −0.425 16.41
4 −514 −0.2 −0.843 5.23
5 −391 −31.8 −0.508 81.91

11 −246 −10.3 −0.439 10.46
13 −216 −34.6 −0.378 40.91
14 −254 −35.1 −0.334 52.16
15 −282 −26.8 −0.377 18.47

TKA 17 −201 −25.8 −0.346 47.06
R 6 −348 −6.7 −0.487 4.22

Average −318 −19.35 −0.46 31.13

STDEV 101 12.62 0.15 24.46

Error 0.6 0.89 0.56 1.23

Note that in the Table 3, OCP values differ from Ecor values. This is not surprising,
since they are obtained under different experimental conditions. OCP is measured in
absence of any imposed external current. The Ecor corresponds to the potential in the
polarization curves when the current changes the sign, typically at the cathodic to anodic
transition. Thus, Ecor depends on experimental parameters, such as scan rate, current
sensitivity, and feedback loop of the potentiostat, that do not affect OCP measurement.
From an electrochemical point of view, OCP is the potential spontaneously attained by the
electrode immersed in the solution. Note that OCP may change with time due to possible
variation of electrolyte, electrode surface and interface (double layer). During measurement
of Ecor, the electrode has already experienced polarization typically at cathodic potential,
changing the original electrode state established at OCP. For example, cathodic polarization
may modify the passive film and/or adsorbed layers. Thus, during measurement of
Ecor, the electrode is experiencing the dynamic situation imposed by the potentiostat and
the associated test parameters. This electrochemical situation is very different from the
OCP measurement conditions. The difference between OCP, Ecor, and other potentials is
extensively discussed in the reference [28].

3.6. Surface Analysis

AES analysis was carried out on samples exposed for a total duration of 1.5 h at OCP
to the synovial fluids of patients P4 and P5, patients that showed the lowest and highest
current densities in the polarization curves (Figure 8). Figure 9 represents the secondary
electron images (a,d) of the analyzed surface with the AES measurement points marked 1
to 4. The depth profiles measured on points 1 and 3 of each sample are also shown. The
measurement on points 2 and 4 yielded similar results as points 1 and 3. The P5 surface
is extensively covered with a deposit appearing dark grey in Figure 9a. According to the
AES depth profiles (Figure 9c) this layer is thicker than approximately 30 nm and is mainly
composed of carbon with small amounts of nitrogen and oxygen. It is likely to be formed
by adsorption or precipitation of organic molecules from the synovial fluids. Note that this
precipitation can occur during immersion in the synovial fluid or during cleaning with the
alcohol/water solution. On P5 this relatively thick carbonaceous layer is not observed and,
instead, a thin carbon layer of thickness of a few nanometers thickness (varying between
locations) appears. Similar carbon contamination is observed in the locations of P4 where
the thick carbonaceous layer was absent. The oxide film formed on Ti is very similar in
both patients as would be expected for a passive film formed during exposure at similar
potentials as the case for both P4 and P5. Interestingly, P5 shows surface contamination by
Si, which is an element reported to appear in blood plasma [29] and synovial fluid [30].
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depth profile.

3.7. Electrochemical Results for Simulated Fluids

The electrochemical behavior of Ti was tested in the three different simulating body
fluids listed in Table 1. Each measurement was repeated 3 times. The representative
polarization curves are presented in Figure 10. From this Figure, it appears that the solution
composition mainly affects the cathodic reactivity (differences in cathodic current up to two
orders of magnitude) while the anodic behavior is less affected (current densities within
the same order of magnitude). As previously reported, albumin acts as an inhibitor of the
oxygen reduction reaction [9–13]. This explains the significant lowering of the cathodic
current density observed in the BSA solution. The increase of current density in the cathodic
domain by adding H2O2 is expected because of the strong contribution of H2O2 reduction.
The slightly enhanced corrosion in the anodic domain could be attributed to the formation
of thicker and porous passive film because of the large amount of OH−, which leads to
the release of Ti [22,31–33]. Contrary to the cathodic domain, the BSA slightly lowers the
anodic current density.

The same parameters extracted from ex vivo, were extracted from cathodic and anodic
polarization curves and summarized in Table 4. The standard deviation (STDEV) and error
were calculated to assess the reproducibility of the polarization curve. As is shown in the
table, the corrosion behavior of Ti in BSA containing solution shows the best reproducibility.
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Table 4. Electrochemical parameters extracted from the anodic polarization curves.

Solution OCP/mV
Anodic Curve

ic (−0.9 V)/µA/cm2 Ecor/VAg/Ag/Cl ipp(0.5 V)/µA/cm2

NaCl (8 g/L)
Average −201 −46.70 −0.3 7.9
STDEV 61 17.65 0.06 3.39
Error 0.36 0.49 0.27 0.54

NaCl + BSA (30 g/L)
Average −357 −3.68 −0.59 4.46
STDEV 47 0.35 0.08 1.31
Error 0.13 0.09 0.14 0.29

NaCl + BSA + H2O2 (5 g/L)
Average −62 −968 −0.09 12.44
STDEV 67 94.39 0.05 4.17
Error 1 0.10 0.54 0.31

4. Discussion
4.1. Electrochemical Reactions of Ti in Synovial Fluids

As shown in Figures 7 and 8, the electrochemical behavior of Ti is patient dependent,
especially for the cathodic reaction. The cathodic current is given in principle by the
reduction of water, dissolved oxygen, and protons. However, the contribution of proton
reduction is estimated to be lower than 0.1 µA/cm2 at pH 7 [34], thus proton reduction can
be disregarded in the following discussion. The presence of dissolved molecular oxygen in
the synovial fluid was reported by Lund-Olesen, who measured partial pressures in the
range 20–87 mm Hg depending on the clinical state of the patient [35]. For comparison,
the partial pressure of oxygen in the air is 160 mm Hg, corresponding to an equilibrium
concentration of dissolved oxygen in the water of 8 mg/L at 25 ◦C. So, the oxygen reduction
reactions are expected to significantly contribute to the electrochemical behavior in synovial
fluids. The electrochemical reduction kinetics of dissolved molecular oxygen is controlled
by a number of phenomena, such as the charge transfer at the electrode-solution interface
and the mass transport of oxygen from the bulk solution to the interface [27]. Moreover,
in body fluids, adsorption of organic molecules may also affect the oxygen reduction by
acting as a barrier preventing oxygen from reaching the electrode surface [12,15]. As is
shown in AES depth analysis results, various organic adsorption was observed on the
sample surface, depending on the patients. In conclusion, the oxygen contribution to the
reduction kinetics depends on its concentration and the concentration of adsorbing organic
species and can thus vary among patients depending on their clinical state. This explains
the large scatter in the cathodic kinetics observed in the present study.

Corrosion studies of Ti in simulated fluids have shown that the passive film of Ti mainly
consists of Ti2O3 and TiO2, with the TiO2 concentration increasing with potential [36,37]. The
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passive current density is determined by the rate of ion transportation through the passive
film and the stability of the film against dissolution. TiO2 is thermodynamically stable
in the pH ranging from 2 to 12, and only dissolves in the presence of specific species,
such as HF and concentrated H2SO4 [38], thus the influence of pH on anodic reaction can
be negligible. This deduction can be confirmed by the results in the literature that the
anodic current density varies little with pH from 2 to 7 [39,40]. The variation of passive
current density was observed to depend on the protein concentration [11,13,14,38]. At
low concentration, protein can interact with metal ions by forming soluble complexes,
thus increasing the dissolution rate of metal, while at high concentration its adsorption
inhibits the corrosion [11]. Dissolved ions may also influence the passive current of Ti.
For example, it was reported that Ca ions reduce the cathodic current of Ti by adsorbing
onto metal surface [12,18], while it has little influence on anodic corrosion behavior [12].
The presence of phosphate contributes to the formation of a protective layer and thus
increases the corrosion resistance of Ti [18,41]. Silicates inhibit the corrosion of Ti in alkaline
hydrogen peroxide solutions [42]. According to the AES analysis, the difference in anodic
and cathodic current density seems to be determined by the formation of the organic layer
on the Ti surface.

4.2. Corrosion Current Density

The corrosion current density icor can be obtained by extrapolating the linear part
of the logarithmic plots illustrated in Figure 7 to the OCP potential. Depending on the
patient, the icor values range between the extremes of 0.025 (P4) and 2 (P5) µA/cm2 with
however most of the patients lie in the narrower range 0.1 to 0.5 µA/cm2. Corrosion current
densities of Ti measured in body simulated fluids span in a very similar range from 0.02
to 0.6 µA/cm2, but relatively high corrosion current densities observed in P5 were never
reported [12,43].

In order to compare the corrosion rate with real conditions, the corrosion current
density (A m−2) can be converted to mass loss mcor (mg dm−2 day−1) through Faraday’s
law with the equation as below:

mcor = Micor/(8640 nF) (1)

where M is the atomic mass of Ti: 48 g mol−1, F is Faraday constant: 96,485 A s mol−1,
and n is its oxidation valence which is assumed to be 4. The mass loss obtained from
the equation varies depending on the patients from a minimum of 0.06 to a maximum of
2.58 mg dm−2 day−1.

While concentrations of metallic ions in serum, plasma, whole blood, and urine
are largely reported in the literature, no information on actual in vivo corrosion rates of
titanium can be found. The corrosion rate can be tentatively estimated by considering that,
in case of no further ion accumulation in the body, it corresponds to the release rate of
titanium through urine. This is a coarse assumption, as ions can be eliminated through
other ways, such as sweat and hair growth [3]. The typical urine release rate of human
bodies is approximately 1.5 l per day. Titanium concentration in urine was reported by
Matusiewicz [2] to range from 2 × 10−4 mg/L to 0.65 mg/L for hip and knee titanium
bearing implants. Considering an approximative titanium exposed implant surface of
1 dm2 this yields an elimination rate of Ti through urine in the range 0.003 to 1 mg dm−2

day−1. This range corresponds well to the corrosion rates observed here. This suggests that
corrosion is an important factor responsible for the release of Ti ions from metallic implants.

4.3. Comparison with Tests in Simulated Fluids

Representative polarization curves measured in the different solutions were plotted in
Figure 11, together with the polarization curves measured for P4 and P5. These patients
define the envelope of all the curves measured on patients (see Figure 8). Interestingly the
cathodic part of the curve measured in the NaCl solution lies outside the envelope of the
ex vivo measurements. Adding BSA moves the polarization curve (cathodic part) into the
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ex vivo domain. The addition of H2O2 generates very high cathodic currents. This is not
surprising as hydrogen peroxide is a strong oxidizing agent. This may indicate that the
cathodic reactivity of Ti in synovial fluids is mainly determined by the presence of organics
species that likely affect the reduction rate, and thus the corrosion rate, by adsorbing on the
surface of the metal. In situ measurements of the extent of adsorption, for example using
EQCM, should be carried out to confirm this hypothesis.

Interestingly, the anodic domain is less affected by the nature of the environment than
the cathodic one. The results for simulated fluids do not allow to reproduce the high anodic
current densities observed in P5, even when adding a strong oxidizing agent. This indicates
that the oxidative strength of the solution is not necessarily the key parameter. Possibly, the
large anodic currents obtained in P5 are due to specific molecules in synovial fluid, such as
protein [11,14], that promote passive film dissolution.

The peculiar behavior observed in Figure 5 during the measurement of polarization
resistance can also be attributed to an effect of protein. Figure 12 compares the obtained
results for P4 and P5 as well as the corresponding results obtained in 0.8% NaCl and in
0.8% with 30 g/L BSA. For the sake of clarity, the polarization (E-Ecor) was reported in the
abscissa instead of the actual electrode potential E. In the simple NaCl inorganic solution, a
well-defined linear behavior crossing the zero current is observed. Deviations from linearity
are observed at the onset of polarization at the cathodic potential. This is likely related to
the capacitive effects due to double layer and passive film charging. Indeed, tests carried
out at a lower scan rate (0.6 mV/s) showed an identical behavior but with a much smaller
deviation from linearity at the onset of polarization. Interestingly, the response of P5 is
quite close to the behavior observed for NaCl solution (same slope in the anodic domain)
with, however, a larger deviation from linearity in the cathodic domain possibly due to
differences in open circuit potential (nearly 200 mV) and the associated differences in the
double layer structure, adsorption, and passive film properties. Compared to P5, P4 shows
a higher polarization resistance (reciprocal of the slope in the anodic domain). Interestingly,
the same trend is found when adding BSA to the NaCl solution. This further supports the
interpretation of Figure 11, indicating that the organic substances play a key role in the
electrochemical response of titanium exposed to synovial fluids.
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5. Conclusions

This study is the first systematic investigation of the electrochemical response of Ti exposed
to human synovial fluids extracted from various patients. It leads to following conclusions:

• The electrochemical response of Ti in both cathodic and anodic domains was found to
significantly (several orders of magnitude) vary among patients.

The calculated corrosion rate extracted from the polarization curves varies depending on
the patients from a minimum of 0.025 to a maximum of 2µA/cm2 (0.06 to 2.58 mg dm−2 day−1).
These values were found to be consistent with the Ti release rate from hip and knee artificial
joints implanted in humans.

• Ex situ AES surface analysis of Ti samples exposed to synovial fluids extracted from
two patients revealed a similar passive film thickness but a large difference in the
surface coverage by organic species. Interestingly, the polarization curves of Ti in these
two synovial fluids were very different. This indicates that organics play a crucial role
in the electrochemical responses of Ti exposed to synovial fluids.

• The previous conclusion is supported by the fact that simulated body fluids containing
organic molecules such as BSA can better simulate the ex vivo electrochemical behavior
of Ti than those containing BSA or oxidizing agents such as H2O2.
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