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1 Introduction and summary of results

The dualities between conformal field theories and higher spin gravity theories in AdS
are one of the most intriguing topics in the AdS/CFT correspondence. Potentially, these
dualities should allow for an improved understanding of the AdS/CFT correspondence,
since both sides of the duality are simple, at least when compared to the more standard
case of N = 4 SYM and type IIB superstring theory.1 Of particular interest are CFT’s
with slightly broken higher spin symmetry, that were studied most notably in the paper by

1See [1] (which builds on the works [2–4]) for recent progress, where the path integral for critical O(N)
models was written in terms of higher spin gauge fields defined in the bulk of AdS.
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Maldacena and Zhiboedov [5], where all three point functions of single trace operators at
the planar level were computed at finite t’Hooft coupling. In our paper, we compute some
four point functions of spinning single trace operators at the planar level at finite t’Hooft
coupling. The formulas we obtain are very simple and our formalism, which is based on
pure CFT arguments in which Mellin space plays an important role, potentially paves the
way for the computation of all spinning four point functions.

CFT’s with slightly broken higher spin symmetry are large N CFT’s where higher spin
symmetry is broken by 1/N effects. There are two such theories, the quasi-boson theory
and the quasi-fermion theory, which are defined in 3 dimensions. We will focus on the
quasi-fermion theory. This theory depends on two parameters, Ñ and λ̃ (we follow the
notation of [5]). We will study the theory at the planar level, i.e. at leading order in Ñ . In
that case the theory interpolates between the free fermion theory at λ̃ = 0 and the critical
point of the O(N) model (critical boson) at λ̃ =∞.

Being a large N theory, the spectrum of the quasi-fermion theory organises into single
and multitrace primary operators. Let us describe the single trace operators. There is one
single trace operator for each even spin s = 0, 2, . . .. The scalar primary, which we will
denote by j0̃, has dimension 2 + O

( 1
Ñ

)
[6]. The spin 2 primary j2 is exactly conserved. A

higher spin primary js of spin s > 2 has dimension s+1 and acquires anomalous dimensions
of O

( 1
Ñ

)
[7, 8].

This theory is believed to be solvable in the planar limit. In [5] three point functions of
single trace operators were computed at the planar level and for finite λ̃ through the use of
slightly broken higher spin Ward identities.2 In [10] four point functions of scalar operators
were computed using the Lorentzian inversion formula and Schwinger-Dyson equations.
In [11] the four point function 〈j2j0̃j0̃j0̃〉 was computed using the pseudo-conservation
equations.3

We obtain a formula for 〈jsj0̃j0̃j0̃〉 for generic spin s ≥ 4:

〈jsj0̃j0̃j0̃〉 = 1
Ñ
√

1 + λ̃2
〈jsj0̃j0̃j0̃〉ff + λ̃

Ñ
√

1 + λ̃2
〈jsj0̃j0̃j0̃〉cb, (1.1)

where 〈jsj0̃j0̃j0̃〉ff is the correlator in the free fermion theory (which is fully known) and
〈jsj0̃j0̃j0̃〉cb is the corresponding correlator in the critical boson theory. The critical boson
theory is the IR fixed point of the theory of Ñ free real scalar fields perturbed by (φiφi)2.

This result agrees with the 3d bosonization picture advanced in [5], where it is proposed
that the quasi-fermionic theory interpolates between a tridimensional theory of Ñ free
fermions and the critical theory of Ñ bosons, in the limits λ̃→ 0 and λ̃→∞ respectively.

We obtain that

〈jsj0̃j0̃j0̃〉cb = |x1 − x3|−4s−2|x2 − x3|2s−1|x2 − x4|−2s−3|x3 − x4|2s−1 (1.2)

×
s∑

k=0

∫ ∫
dγ12dγ14
(2πi)2 M(γ12, γ14; s, k)u−γ12v−γ14V (1; 2, 3)s−kV (1; 3, 4)k,

2This calculation was reproduced using higher spin techniques in [9], where also the parity odd structures
were given.

3Correlators in ABJ theory were computed using slightly broken higher spin symmetry in [12].
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where V (i; j, k) is a conformal structure (see (2.3)) and u and v are the usual conformal
cross ratios. M(γ12, γ14; s, k) is equal to

M(γ12, γ14; s, k) = Γ(−k + γ14 − 1)Γ
(
−k + γ14 + 1

2

)
Γ(s− γ12 − γ14) (1.3)

× Γ
(
s− γ12 − γ14 + 3

2

)
Γ(k − s+ γ12 − 1)

× Γ
(
k − s+ γ12 + 1

2

)
p(γ12, γ14; s, k),

where p(γ12, γ14; s, k) is a polynomial in γ12 and γ14. This polynomial is fully determined
by crossing, pseudo-conservation and Regge boundedness, see equations (2.8) and (2.9),
see (2.11) and see also (3.16), (3.17) and (3.18).

We explain in section 2 how formula (1.1) solves the crossing and pseudo-conservation
equations and correctly accounts for the exchange of single trace operators with the OPE
coefficients derived in [5]. In section 3 we show that formula (1.1) is the unique solution
to the pseudo-conservation and crossing equations which is consistent with the bound on
chaos. In particular we analyse AdS contact diagrams for 〈jsj0̃j0̃j0̃〉 and we conclude that
such diagrams violate the bound on chaos, provided s ≥ 4. In section 4 we discuss open
directions. In appendix A we study the bulk point limit of 〈jsj0̃j0̃j0̃〉. In appendix B we
calculate 〈jsj0̃j0̃j0̃〉 in position space for spins s = 2, . . . , 14. This calculation agrees with
the Mellin space result. In appendix C we recompute 〈j2j0̃j0̃j0̃〉 by solving the higher spin
Ward identities.

2 The bootstrap of 〈jsj0̃j0̃j0̃〉

We will compute 〈jsj0̃j0̃j0̃〉. Let us start by examining the Ñ and λ̃ dependence. It is
expected that the quasi-fermion theory interpolates between a theory of Ñ free fermions
at λ̃ = 0 and the critical boson theory at λ̃ =∞.

We will work in a normalization where 〈jsjs〉 ∼ 1, i.e. two point functions of single
trace operators do not depend on Ñ or λ̃. We use the ∼ sign to mean that we do not
keep track of numerical factors, but we do keep track of the Ñ and λ̃ dependence. Thus,
〈jsj0̃j0̃j0̃〉 ∼ 1

Ñ
. At this order, we can only have exchanges of single trace operators or

double trace operators [j0̃, j0̃] or [js, j0̃].
Let us consider exchanges of single trace operators. The relevant three point functions

are 〈jsj0̃js′〉 and 〈js′j0̃j0̃〉, with s′ ≥ 2. Note that 〈j0̃j0̃j0̃〉 = 0 [5]. From [5] we see that
〈jsj0̃j0̃〉 ∼ 1√

Ñ
. There are two possible structures for 〈jsj0̃js′〉, the fermion and the odd

structure. We have that 〈jsj0̃js′〉fermion ∼ 1√
Ñ
√

1+λ̃2
and 〈jsj0̃js′〉odd ∼ λ̃√

Ñ
√

1+λ̃2
.

Based on this we propose the following ansatz

〈jsj0̃j0̃j0̃〉 = 1
Ñ
√

1 + λ̃2
〈jsj0̃j0̃j0̃〉ff + λ̃

Ñ
√

1 + λ̃2
〈jsj0̃j0̃j0̃〉cb, (2.1)

where 〈jsj0̃j0̃j0̃〉ff is the four point function in the free fermion theory, whose form can be
read in [13]. To the best of our knowledge, 〈jsj0̃j0̃j0̃〉cb has not yet been computed and it

– 3 –
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will be the subject of this section to do precisely that. We attached the subscript cb since
it is expected that it corresponds to a four point function in the critical boson theory.

The reader might be confused about the factor of 1
Ñ
. In our normalization,

limλ̃→0〈jsj0̃j0̃j0̃〉 = 〈jsj0̃j0̃j0̃〉ff
Ñ

and limλ̃→∞〈jsj0̃j0̃j0̃〉 = 〈jsj0̃j0̃j0̃〉cb
Ñ

. Given that the quasi-
fermionic theory interpolates between a theory of Ñ free fermions and the critical theory
of Ñ bosons, the reader might be confused about why there is a factor of 1

Ñ
. There are

two things happening in this context. First, when we write 〈jsj0̃j0̃j0̃〉ff and 〈jsj0̃j0̃j0̃〉cb
we have decided to factor out the dependence on Ñ . Second, the reader might thus have
expected to encounter 〈jsj0̃j0̃j0̃〉 ∼ Ñ , but this is only true when two point functions are
normalized such that 〈jsjs〉 ∼ 〈j0̃j0̃〉 ∼ Ñ , whereas we are using different normalizations,
namely 〈jsjs〉 ∼ 〈j0̃j0̃〉 ∼ 1. This justifies why does 〈jsj0̃j0̃j0̃〉 ∼ 1

Ñ
.

We can write parity even and parity odd structures for the correlator 〈jsj0̃j0̃j0̃〉. The
parity odd structures are realised in the free fermion theory. This is because j0̃ is parity
odd in the free fermion theory. The parity even structures are realised in the quasi-boson
theory. Thus, we write

〈jsj0̃j0̃j0̃〉cb =
s∑

k=0
fk(xij)V (1; 2, 3)s−kV (1; 3, 4)k, (2.2)

where V (i; j, k) is a conformal structure which is given in embedding space [14] by

V (i; j, k) = (Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)
Pj · Pk

. (2.3)

Pi and Zi are null vectors on R3,2. Zi encodes the spinning indices. fk(xij) is a function of
the distances between the points, with appropriate weights on each of the points. We find
it advantageous to consider the Mellin representation

fk(xij) =
∫ [

dγij
2πi

]
M̂(γij ; s, k)x−2γij

ij , (2.4)∑
j 6=1

γ1j = 2s+ 1,
∑
j 6=i

γij = 2, i = 2, 3, 4.

Eq. (2.2) can be rewritten as

〈jsj0̃j0̃j0̃〉cb = |x1 − x3|−4s−2|x2 − x3|2s−1|x2 − x4|−2s−3|x3 − x4|2s−1 (2.5)

×
s∑

k=0

∫ ∫
dγ12dγ14
(2πi)2 M̂(γ12, γ14; s, k)u−γ12v−γ14V (1; 2, 3)s−kV (1; 3, 4)k.

We will call M̂(γ12, γ14; s, k) the Mellin amplitude.4

4Spinning Mellin amplitudes are analysed in [15–17]. The definitions slightly differ among these works,
but at least concerning conformal four point functions the basic idea is to decompose the correlator in a
basis of spinning structures and take the Mellin transform with respect to each function of the positions
multiplying each structure. Up to now all works use the embedding space formalism, which has the serious
drawback of involving many degeneracies for arbitrary spinning correlators. For generic spinning correlators,
we think it would be interesting to define Mellin amplitudes with the conformal frame formalism [18, 19],
which does not have the problem of degeneracies. We think that it is an interesting problem to work out the
poles and residues of the Mellin amplitude for spinning correlators using the conformal frame formalism.

– 4 –
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The location of the poles of the Mellin amplitude is related to the operator product
expansion of the external operators. Let us make this point explicitly. Consider two
external operators O1, O2 of dimensions ∆1, ∆2 and spins s1, s2 and suppose they exchange
an operator of dimension ∆ and spin s. Then the most singular term in the lightcone OPE is

Oµ1...µs1
(x)Oν1...νs2

(0) ⊃ Oρ1...ρs(0)xρ1 . . . xρs

(x2)
∆1+∆2+s1+s2

2 − τ2
x{µ1...µs1}x{ν1...νs2}

(
1 +O(x2)

)
, (2.6)

where τ = ∆ − s. From this logic we expect the Mellin amplitude to have poles at
γ12 = ∆1+∆2+s1+s2

2 − τ
2 − n, where n is a nonnegative integer.

For 〈jsj0̃j0̃j0̃〉 all OPE channels are equal. To order 1
Ñ

there can be exchanges of higher
spin currents and double traces [js, j0̃] and [j0̃, j0̃], which have twist 1, 3 and 4 respectively.
This motivates the following ansatz

M̂(γ12, γ14; s, k) = Γ(−k + γ14 − 1)Γ
(
−k + γ14 + 1

2

)
Γ(−s+ γ13 − 1) (2.7)

× Γ
(
−s+ γ13 + 1

2

)
Γ(k − s+ γ12 − 1)

× Γ
(
k − s+ γ12 + 1

2

)
p(γ12, γ14; s, k),

where γ13 = 2s+ 1− γ12 − γ14. The Γ functions contain all the poles implied by the OPE.
For this reason we assume that p(γ12, γ14; s, k) is a polynomial in the Mellin variables.

The bound on chaos [20] bounds the degree of the polynomial p(γ12, γ14; s, k). This is
worked out in section 3, see (3.16), (3.17) and (3.18) for the precise formulas. Furthermore,
〈jsj0̃j0̃j0̃〉 is constrained by invariance under interchange of points 2↔ 3 and 2↔ 4. This
crossing symmetry implies the equations

p(γ12, γ14; s, k) =
s∑

k2=k
(−1)k2

(
k2
k

)
p(2s+ 1− k2 − γ12 − γ14, γ14 − k + k2; s, k2), (2.8)

p(γ12, γ14; s, k) = p(γ14, γ12; s, s− k). (2.9)

〈jsj0̃j0̃j0̃〉 is constrained by pseudoconservation of js. We implement this condition in
embedding space. The differential operator for conservation is ∂

∂PA1
DA, where

DA =
(
d

2 − 1 + Z1 ·
∂

∂Z1

)
∂

∂ZA1
− 1

2(Z1)A
∂2

∂Z1 · ∂Z1
. (2.10)

Since ∂ · js is a primary operator of spin s−1 and dimension s+2, then 〈∂ · jsj0̃j0̃j0̃〉 is
a conformal four point function of primary operators. 〈∂ · jsj0̃j0̃j0̃〉 factorizes into products
of a two point function times a three point function. Such a four point function is made
up of powers of u and of v and so its Mellin amplitude vanishes.

Four point functions of scalars with vanishing Mellin amplitudes were analysed in [21],
see in particular section E.E.1. A similar analysis can be performed for the spinning
case, though we will not pursue it here. The important conclusion is that in Mellin space
pseudoconservation is the same as conservation. In other words, 〈∂·jsj0̃j0̃j0̃〉 has a vanishing
Mellin amplitude.

– 5 –
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Pseudoconservation implies the equation

1∑
i1=−1

1∑
i2=−1

2∑
i3=−1

ai1,i2,i3(γ12, γ14)p(γ12 + i1, γ14 + i2; s, k + i3) = 0. (2.11)

The coefficients are written in the appendix D, see formula (D.1).
The crossing equations (2.8), (2.9), the pseudoconservation equation (2.11) and Regge

boundedness (3.16), (3.17) and (3.18) determine p(γ12, γ14; s, k) up to a multiplicative con-
stant. This has to do with the fact that we have not picked a normalization for the higher
spin current js. It is simple to solve this set of equations in a computer algebra system for
each spin s. We find that the solution always has the form

p(γ12, γ14; s, k) =
k∑

k1=0

s−k∑
k2=0

b(s, k; k1, k2)γk2
12γ

k1
14 , k ≤ s

2 (2.12)

p(γ12, γ14; s, k) = p(γ14, γ12; s, s− k), k >
s

2 . (2.13)

p(γ12, γ14; s, k) turns out to have degree s. Using a laptop we generated solutions up to
spin 40. Picking a normalization in which p(γ12, γ14; s, k = 0) ⊃ 1, we find as an example
that for s = 4 we have

p(γ12, γ14; s = 4, k = 0) = 1− 19γ12
20 + 119γ2

12
360 − γ3

12
20 + γ4

12
360 , (2.14)

p(γ12, γ14; s = 4, k = 1) = − 8
15 + 4γ12

9 − 11γ2
12

90 + γ3
12

90 +
(

2
5 −

11γ12
30 + γ2

12
9 −

γ3
12

90

)
γ14,

p(γ12, γ14; s = 4, k = 2) = 1
5 −

4γ12
15 + γ2

12
15 +

(
− 4

15 + 11γ12
36 − 13γ2

12
180

)
γ14

+
( 1

15 −
13γ12
180 + γ2

12
60

)
γ2

14,

p(γ12, γ14; s = 4, k = 3) = − 8
15 + 4γ14

9 − 11γ2
14

90 + γ3
14

90 +
(

2
5 −

11γ14
30 + γ2

14
9 −

γ3
14

90

)
γ12,

p(γ12, γ14; s = 4, k = 4) = 1− 19γ14
20 + 119γ2

14
360 − γ3

14
20 + γ4

14
360 .

We write this correlator in position space in appendix D, see formula (D.2).
In appendix B we implement an algorithm to compute 〈jsj0̃j0̃j0̃〉 in position space. We

managed to determine 〈jsj0̃j0̃j0̃〉 in position space for spins 2, . . . , 14 using this algorithm.
We write the formulas for the correlators in position space in an accompanying notebook.
Taking the Mellin transform we get precisely the same as we get with the procedure in
Mellin space. The advantage of Mellin space is that it allows to write equations (2.8), (2.9)
and (2.11) that determine the solution for generic s.

Let us mention some checks on our solution. One such check is compatibility of the
pseudo-conservation equations with conformal symmetry. ∂ · js is a conformal primary at
leading order in 1

Ñ
. ∂ · js can have contributions coming from [js1 , j0̃] and [js1 , js2 ]. Only

– 6 –
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the former matter since we are interested in 〈jsj0̃j0̃j0̃〉. More precisely,

∂ · js ⊃
s−2∑
s1=2

s−s1−1∑
m=0

cm∂
mjs1∂

s−s1−1−mj0̃. (2.15)

The coefficients cm are fixed by conformal symmetry (see formula (B.7)). When we run
our algorithm in position space we do not need to input the values of cm, we prefer to keep
them unknown. It turns out that our algorithm fixes cm in agreement with (B.7). This is
an important check on our results.

We also checked that the short distance limit of our expression for 〈jsj0̃j0̃j0̃〉cb agrees
with the correct three point structures for the exchange of higher spin currents. Let us take
s = 4 for concreteness. The short distance limit u→ 0 captures the exchange of the higher
spin currents in the s-channel. If afterwards we take v → 1, we find that the correlator
behaves as

lim
v→1

lim
u→0
〈jsj0̃j0̃j0̃〉cb ∼

∞∑
J=2

1
u5

x7
34

x7
13x

11
14x

4
23

(1− v)JV (1; 2, 3)4 (2.16)

The ∼ sign means that we just keep track of the conformal structure that appears, but
we do not keep track of numerical coefficients. Eq. (2.16) is matched by the behaviour of
conformal blocks of higher spin currents in the same limit.

Formula (1.1) correctly accounts for the exchange of single trace operators in 〈jsj0̃j0̃j0̃〉.
However, it is not obvious that it correctly accounts for the exchange of double trace
operators. Indeed, one can imagine adding to (1.1) AdS contact diagrams, which are
solutions to crossing that only involve the exchange of double trace operators. By taking
linear combinations of AdS contact diagrams one can furthermore obtain solutions to the
conservation equations. However, in the next section we consider such linear combinations
and show that they always violate the bound on chaos. For this reason, it is not legal to
add them to (1.1).

3 Bound on chaos for 〈jsj0̃j0̃j0̃〉

The bound on chaos [22] constrains the Regge limit of 〈jsj0̃j0̃j0̃〉. In this section we review
the bound on chaos and derive its consequences for 〈jsj0̃j0̃j0̃〉. There are two possible
structures one can write for 〈jsj0̃j0̃j0̃〉. One structure involves the ε tensor and the other
one does not. We examine the two cases separately in sections (3.2) and (3.4) and derive
bounds on the Regge growth of the Mellin amplitude for both of these cases.

Solutions to crossing that only involve the exchange of double twist operators are
given by AdS contact diagrams. This was proven in [23], for the special case of four point
functions of external scalars. We will assume that such a result holds for any n-point
function of spinning conformal primaries. We study AdS contact diagrams in sections (3.3)
and (3.4). Our main conclusion is that AdS contact diagrams for 〈jsj0̃j0̃j0̃〉 are incompatible
with the bound on chaos, provided s ≥ 4. For s = 2 we construct the contact diagrams that
are compatible with the bound on chaos, see formulas (3.37) and (3.52). This completes
the proof of formula (1.1).

– 7 –
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x+x−

x1x2

x4

x3

Figure 1. The Regge limit corresponds to taking t→∞ in (3.1).

3.1 Review of the bound on chaos and Rindler positivity

Conformal field theories are constrained by the Regge behaviour of Lorentzian correlators.
For nonperturbative CFT’s, correlators in the Regge limit are bounded by the Euclidean
OPE in the first sheet. For large N CFT’s one needs to use the bound on chaos to bound
correlators in the Regge limit. In this subsection we review the bound on chaos [22].

We will consider the following kinematics for a four point function, in which we set all
four points on the same plane (x± = t± x)

x±1 = ±1, x±2 = ∓1, x±3 = ∓eρ±t, x±4 = ±eρ±t, (3.1)

see figure 1.
The bound on chaos applies for systems at finite temperature with a large number of

degrees of freedom. For the case of a large N conformal field theory, a correlation function
of single trace primaries 〈V (x1)V (x2)W (x3)W (x4)〉 obeys

〈V (x1)V (x2)W (x3)W (x4)〉 ≈ 〈V (x1)V (x2)〉〈W (x3)W (x4)〉
(

1 + α
eλLt

N

)
, (3.2)

where the Lyapunov exponent λL obeys the bound λL ≤ 2πT , where T is the temperature
of the system. The proportionality constant α does not depend on t. The bound on chaos
can be applied to large N CFT’s in Minkowski space, in which case we should consider the
temperature T = 1

2π of the Rindler horizon.
We cannot apply directly (3.2) to 〈jsj0̃j0̃j0̃〉. However, we can use Rindler positiv-

ity [24] to bound 〈jsj0̃j0̃j0̃〉 by 〈jsjsj0̃j0̃〉 and 〈j0̃j0̃j0̃j0̃〉 and use the bound on chaos to
bound the latter two quantities, as we will explain next.

The Rindler conjugate Ō of an operator O is defined as Ōµ,ν...(t, x, ~y) =
O†µ,ν,...(−t,−x, ~y), where ~y refers to a transverse coordinate relative to the plane of fig-
ure 1. Furthermore we have that O1O2 = Ō1Ō2. Rindler positivity and Cauchy-Schwarz
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inequalities imply that

|〈ĀB〉|2 ≤ 〈ĀA〉〈B̄B〉. (3.3)

where A and B are operators (that might be composite) defined on a single Rindler wedge.
Let us define A = j0̃(x3)js(x2), B = j0̃(x2)j0̃(x3). Then, the time-ordered correlation

function in the configuration (3.1) is given by

〈T [js(x1)j0̃(x2)j0̃(x3)j0̃(x4)]〉 = 〈ĀB〉 (3.4)

≤
√
〈j0̃(x4)js(x1)j0̃(x3)js(x2)〉 × 〈j0̃(x1)j0̃(x4)j0̃(x2)j0̃(x3)〉

The bound on chaos on the r.h.s. of the previous expression implies a bound on 〈jsj0̃j0̃j0̃〉.
In terms of σ = e−t:

lim
t→∞
〈T [js(x1)j0̃(x2)j0̃(x3)j0̃(x4)]〉 ∼ σλ1

N
+O

( 1
N2

)
, (3.5)

where λ1 ≥ −1.

3.2 Consequences for 〈jsj0̃j0̃j0̃〉cb

Let us work out the consequences of the bound on chaos for the Mellin amplitudes of
〈jsj0̃j0̃j0̃〉. In the critical boson theory,

〈js(x1)j0̃(x2)j0̃(x3)j0̃(x4)〉cb (3.6)
= |x1 − x3|−4s−2|x2 − x3|2s−1|x2 − x4|−2s−3|x3 − x4|2s−1

×
s∑

k=0

∫ ∫
dγ12dγ14
(2πi)2 M̂(γ12, γ14; s, k)u−γ12v−γ14V (1; 2, 3)s−kV (1; 3, 4)k.

where V (i; j, k) was defined in (2.3) and

M̂(γ12, γ14; s, k) = Γ(γ12)Γ(∆1 − γ12 − γ14)Γ(γ14)Γ
(
γ12 + ∆3 + ∆4 −∆1 −∆2

2

)
(3.7)

Γ
(∆1 + ∆2 −∆3 + ∆4

2 − γ12 − γ14

)
Γ
(
γ14 + ∆2 + ∆3 −∆1 −∆4

2

)
M(γ12, γ14; s, k),

∆1 = 2s+ 1, ∆2 = 2, ∆3 = 2, ∆4 = 2.

We call M(γ12, γ14; s, k) a Mellin amplitude. The arguments of the Γ functions are just the
Mellin variables defined in (2.4).

In the limit t → ∞ of the kinematics (3.1), the conformal cross-ratio v acquires a
monodromy v → ve2πi. Furthermore

u ≈ 16σ2 +O(σ3), v ≈ 1− 8σ cosh ρ+O(σ2), σ → 0. (3.8)

– 9 –
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The polynomial growth of the Mellin amplitude is related to the Regge limit, in a
manner that we explain next, following appendix C of [25]. Let us consider the limit

lim
σ→0

∫ ∫
dγ12dγ14
(2πi)2 M(γ12, γ14; s, k)Γ(γ12)Γ(∆1 − γ12 − γ14) (3.9)

Γ(γ14)e−2πiγ14Γ
(
γ12 + ∆3 + ∆4 −∆1 −∆2

2

)
Γ
(
γ14 + ∆2 + ∆3 −∆1 −∆4

2

)
Γ
(
−γ12 − γ14 + ∆1 + ∆2 −∆3 + ∆4

2

)
σ−2γ12(1− 8σ cosh ρ)−γ14 .

The factor e−2πiγ14 becomes very large in the regime γ14 → i∞. This is cancelled by the
exponential decay of the Γ functions. Let us suppose that the Mellin amplitude grows
polynomially as γα(s,k)

14 f(γ12), when γ14 is large and imaginary and γ12 is fixed. In this
regime we can rewrite (3.9) as

∼
∫
dγ12
2πi Γ(γ12)Γ

(
γ12 + ∆3 + ∆4 −∆1 −∆2

2

)
σ−2γ12f(γ12) (3.10)∫ ∞

M1

dm1
2π m

−2−2γ12+∆1+∆2+α(s,k)
1 eim1(8σ cosh ρ+O(σ3)),

where M1 is an irrelevant large number. If we substitute m1 → m1
σ we get that the

integral (3.9) scales like σ1−∆1−∆2−α(s,k). In order to compare (3.6) with (3.5), we should
furthermore take into account the prefactor and the structures in (3.6), which scale with σ.
Our conclusion is that α(s, k) = 1− λ1 − k ≤ 2− k.

We can use the crossing symmetry equations

M̂(γ12, γ14; s, k) =
s∑

k2=k
(−1)k2

(
k2
k

)
M̂(2s+ 1− k2 − γ12 − γ14, γ14 − k + k2; s, k2), (3.11)

M̂(γ12, γ14; s, k) = M̂(γ14, γ12; s, s− k). (3.12)

to derive the following bounds on the polynomial growth of the Mellin amplitude

lim
β→∞

M(γ12, βγ14; s, k) ∼ βα1(s,k), α1(s, k) ≤ 2− k (3.13)

lim
β→∞

M(βγ12, γ14; s, k) ∼ βα2(s,k), α2(s, k) ≤ 2− s+ k (3.14)

lim
β→∞

M(iβ + γ12,−iβ + γ14; s, k) ∼ βα3(s,k), α3(s, k) ≤ 2 + s. (3.15)

We can apply these bounds to the ansatz (2.7). We conclude that

lim
β→∞

p(γ12, βγ14; s, k) ∼ βη1(s,k), η1(s, k) = 2 + 2k + α1(s, k) ≤ 4 + k (3.16)

lim
β→∞

p(βγ12, γ14; s, k) ∼ βη2(s,k), η2(s, k) = 2 + 2s− 2k + α2(s, k) ≤ 4− k + s

(3.17)
lim
β→∞

p(iβ + γ12,−iβ + γ14; s, k) ∼ βη3(s,k), η3(s, k) ≤ 4 + s. (3.18)

The solution that we found respects this bound.

– 10 –
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Figure 2. AdS contact diagram for 〈jsj0̃j0̃j0̃〉.

3.3 The Regge limit of AdS contact diagrams for the parity even structure in
〈jsj0̃j0̃j0̃〉

We will study the Regge limit of a generic AdS contact diagram for 〈jsj0̃j0̃j0̃〉 (see figure 2),
using the methods of [26]. We use vectors Pi and Zi in embedding space to describe the
position and polarization vectors of an operator Oi defined on the boundary of AdS. For
tensor fields defined on the bulk of AdS, we use vectors Xi and Wi to denote the position
and the polarization. The following identities are obeyed:

Z2
i = P 2

i = Zi · Pi = X2
i + 1 = W 2

i = Xi ·Wi = 0. (3.19)

We denote the bulk to boundary propagator of a dimension ∆ and spin J field by
Π∆,J(X,P ;W,Z). Its formula is

Π∆,J(X,P ;W,Z) = C∆,J
((−2P ·X)(W · Z) + 2(W · P )(Z ·X))J

(−2P ·X)∆+J , (3.20)

where C∆,J is a proportionality constant (whose value will not be relevant for us).
An important class of contact diagrams contributing to the parity even structure in

〈jsj0̃j0̃j0̃〉 is given by∫
AdS

dX Π∆1=s+1,s1=s(X,P1,K, Z1)(W · ∇)s2Π∆2=2,s2=0(X,P2) (3.21)

(W · ∇)s3Π∆3=2,s3=0(X,P3)Π∆4=2,s4=0(X,P4),

where s1 = s2 + s3. There are other contact diagrams one can write by contracting more
derivatives among the propagators, but such diagrams will diverge more in the Regge limit,
which is the issue we wish to discuss here. The covariant derivative is given by

∇A = ∂

∂XA
+XA

(
X · ∂

∂X

)
+WA

(
X · ∂

∂W

)
. (3.22)
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The operator K is given by

KA = d− 1
2

(
∂

∂WA
+XA

(
X · ∂

∂W

))
+
(
W · ∂

∂W

)
∂

∂WA
(3.23)

+XA

(
W · ∂

∂W

)(
X · ∂

∂W

)
− 1

2WA

(
∂2

∂W · ∂W
+
(
X · ∂

∂W

)(
X · ∂

∂W

))
,

where for our purposes d = 3.
The following identity

Π∆1,s1(X,P1,K, Z1)(W · ∇)s2Π∆2,s2(X,P2)(W · ∇)s3Π∆3,s3(X,P3) (3.24)

= C(∆1,∆2,∆3, s1, s2, s3)Ds2
12D

s3
13

(
Π∆1,0(X,P1)Π∆2+s2,0(X,P2)Π∆3+s3,0(X,P3)

)
.

is useful for us. Dij is an operator that only acts on the external points. It increases
the spin at position i by 1 and it decreases the conformal dimension at position j by 1.
C(∆1,∆2,∆3, s1, s2, s3) is a constant of proportionality, which will not be relevant for us.
The precise definition of Dij is

Dij = (Pj · Zi)Zi ·
∂

∂Zi
− (Pj · Zi)Pi ·

∂

∂Pi
+ (Pj · Pi)Zi ·

∂

∂Pi
. (3.25)

We confirmed the identity (3.24) for a few values of the external spins using Mathematica.
So, with the help of identity (3.24) we can perform the integration in (3.21) using only

scalar propagators and afterwards we act with the differential operators D12 and D13. The
AdS integral with only scalar propagators corresponds to a contact quartic scalar diagram,
whose Mellin amplitude is a constant. Afterwards we act with the differential operators
and obtain an expression in the form of (2.5).

Let us exemplify what we mean for the case of 〈j2j0̃j0̃j0̃〉. Let us take s2 = 1 and
s3 = 1 in (3.21). Up to a proportionality constant, the contact diagram is given by

D12D13

∫
AdS

dX Π∆1=3,s1=0(X,P1)Π∆2=3,s2=0(X,P2)Π∆3=3,s3=0(X,P3)Π∆4=2,s4=0(X,P4)

∼ D12D13
x34

x23x6
13x

5
24

∫ ∫
dγ12dγ14
(2πi)2 Γ(γ12)Γ(3− γ12 − γ14)Γ(γ14)

Γ
(
γ12 −

1
2

)
Γ
(5

2 − γ12 − γ14

)
Γ
(
γ14 + 1

2

)
u−γ12v−γ14 , (3.26)

where the ∼ symbol means that we neglected a numerical factor. We now act with the
differential operators D12 and D13 and reorganise the result into the form (3.6), (3.7).5 For
this contact diagram, we conclude that

M(γ12, γ14, s = 2, k = 0) = (−4 + γ12)(3− 8γ14 + 4γ2
14)

(−4 + γ12 + γ14) (3.27)

M(γ12, γ14, s = 2, k = 1) = −2(−2 + γ12)(−3 + 2γ12)(−3 + 2γ14)
(−4 + γ12 + γ14)

M(γ12, γ14, s = 2, k = 2) = γ12(3− 8γ12 + 4γ2
12)

(−4 + γ12 + γ14)
5The step where we gather different terms into the same contour may give rise to subtractions. These

do not change our main conclusion, which is that any finite linear combination of AdS contact diagrams for
〈jsj0̃j0̃j0̃〉 with s ≥ 4 does not obey the bound on chaos.
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This contact diagram obeys the chaos bounds (3.13), (3.14) and (3.15). We found that
contact diagrams of the type (3.21) obey the bound on chaos for spin 2, but violate the
bound on chaos for spin s ≥ 4.

Our goal is to investigate if there are extra solutions to crossing, conservation and
Regge boundedness for 〈jsj0̃j0̃j0̃〉. AdS contact diagrams are solutions to the crossing
equations, however they are not necessarily conserved, nor Regge bounded. To see that
contact diagrams are not necessarily conserved, let us consider a generic contact diagram∫

AdS
dX Π∆=s+1,s(X,P1,W,Z1) J(X,Pi,K, Zi) (3.28)

where we denoted by J(X,Pi,W,Zi) the dependence on the other AdS fields. It turns
out that the action of the conservation operator (2.10) on Π∆=s+1,s gives a pure gauge
expression

∂

∂P
· DZΠ∆=s+1,s(X,P,W,Z) (3.29)

= −2−2−ss2W · ∇X
(
(−P ·X)−2s−1((−P ·X)(W · Z) + (P ·W )(X · Z)

)s−1) (3.30)
≡W · ∇XF (X,P,W,Z). (3.31)

Thus,

∂

∂P1
· DZ1

∫
AdS

dXΠ∆=s+1,s(X,P1,W,Z1) J(X,Pi,W,Zi) (3.32)

= −
∫

AdS
dXF (X,P1,W,Z1)W · ∇XJ(X,Pi,K, Zi)

This vanishes only if J(X,Pi,K, Zi) is conserved in the bulk of AdS, i.e. a contact diagram
involving a bulk to boundary propagator is conserved only when the bulk to boundary
propagator is coupled to a conserved current. Clearly, this is not the case for a generic
contact diagram (3.21).

So, we consider instead linear combinations of AdS contact diagrams. The most eco-
nomical way of doing this is to notice that the Mellin transform of any contact diagram,
or any linear combination of contact diagrams, can be written as

M̂(γ12, γ14; s, k) = Γ(−k + γ14)Γ
(
−k + γ14 + 1

2

)
Γ(−s+ γ13) (3.33)

× Γ
(
−s+ γ13 + 1

2

)
Γ(k−s+ γ12)Γ

(
k−s+ γ12 + 1

2

)
pdt(γ12, γ14; s, k).

where pdt(γ12, γ14; s, k) is a polynomial. Let us explain this important formula. If we act
with the differential operators on the scalar contact diagram, they will shift the arguments
of the Γ functions by integers. So, the Mellin transform of an AdS contact diagram will
involve 6 Γ functions times a polynomial. The arguments of the Γ functions are related to
the operators that appear in the OPE of the external operators. Thus, we arrive at (3.33).
Notice that pdt(γ12, γ14; s, k) will eventually have zeros.
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The chaos bound for pdt(γ12, γ14; s, k) is

lim
β→∞

pdt(γ12, βγ14; s, k) ∼ βη1(s,k), η1(s, k) = 2 + 2k + α1(s, k) ≤ 2 + k (3.34)

lim
β→∞

pdt(βγ12, γ14; s, k) ∼ βη2(s,k), η2(s, k) = 2+2s−2k + α2(s, k) ≤ 2−k + s

(3.35)
lim
β→∞

pdt(iβ+γ12,−iβ+γ14; s, k) ∼ βη3(s,k), η3(s, k) ≤ 2 + s. (3.36)

We imposed crossing and conservation on (3.33). We find solutions that always violate
the chaos bound, for all spins s ≥ 4. For s = 2 we find a solution that respects crossing,
conservation and Regge boundedness, which is given by

pdt(γ12, γ14; s = 2, k = 0) = γ4
12γ14

9 + γ4
12

24 + γ3
12γ

2
14

9 − 5γ3
12γ14
8 − 5γ3

12
12 −

7γ2
12γ

2
14

24 (3.37)

+ 35γ2
12γ14
36 + 35γ2

12
24 + 7γ12γ

2
14

72 − 5γ12γ14
24

− 25γ12
12 + γ2

14
12 −

γ14
4 + 1,

pdt(γ12, γ14; s = 2, k = 1) =− 2γ3
12γ

2
14

9 + 5γ3
12γ14
4 − 37γ3

12
36 − 2γ2

12γ
3
14

9 + 13γ2
12γ

2
14

4

− 331γ2
12γ14

36 + 37γ2
12

6 + 5γ12γ
3
14

4 − 331γ12γ
2
14

36 + 77γ12γ14
4

− 407γ12
36 − 37γ3

14
36 + 37γ2

14
6 − 407γ14

36 + 37
6 ,

p(γ12, γ14; s = 2, k = 2) = γ2
12γ

3
14

9 − 7γ2
12γ

2
14

24 + 7γ2
12γ14
72 + γ2

12
12 + γ12γ

4
14

9 − 5γ12γ
3
14

8

+ 35γ12γ
2
14

36 − 5γ12γ14
24 − γ12

4 + γ4
14

24

− 5γ3
14

12 + 35γ2
14

24 − 25γ14
12 + 1.

More explicitly, the spin 2 parity even contact term in position space is given by

〈j2j0̃j0̃j0̃〉 = |x1−x3|−10|x2−x3|3|x2−x4|−7|x3−x4|3
s∑

k=0
fk(u, v)w(1; 2, 3)s−kw(1; 3, 4)k,

(3.38)

where w(i; j, k) = (xij)µx2
ik

x2
jk

− (xik)µx2
ij

x2
jk

and the indices are symmetrized and their traces
removed. For example w(1; 2, 3)2 = w(1; 2, 3)µw(1; 2, 3)ν − ηµν

3 w(1; 2, 3)ρw(1; 2, 3)ρ. Also,6

fk(u, v) =
∫ 7

3−k+i∞

7
3−k−i∞

dγ12
2πi

∫ 1
3 +k+i∞

1
3 +k−i∞

dγ14
2πi M̂(γ12, γ14, s=2, k)u−γ12v−γ14 (3.39)

M̂(γ12, γ14; s=2, k)= Γ(−k + γ14)Γ
(
−k + γ14 + 1

2

)
Γ(3− γ12 − γ14) (3.40)

×Γ
(7

2−γ12−γ14

)
Γ(k−2+γ12)Γ

(
k+γ12−

3
2

)
pdt(γ12, γ14; s=2, k),

where pdt(γ12, γ14; s = 2, k) is given by (3.37).
6There is some arbitrariness in the choice of the contour. What is important is that it passes to the

right of the poles in γ12, γ13 and γ14, see [21].
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3.4 The Regge limit of AdS contact diagrams for the parity odd structure in
〈jsj0̃j0̃j0̃〉

The parity odd structure is

〈js(x1)j0̃(x2)j0̃(x3)j0̃(x4)〉odd = |x1 − x3|−4s−2|x2 − x3|2s−2|x2 − x4|−2s−4|x3 − x4|2s−2

×
s−1∑
k=0

∫ ∫
dγ12dγ14
(2πi)2 M̂odd(γ12, γ14; s, k)u−γ12v−γ14ε

× (Z1, P1, P2, P3, P4)V (1; 2, 3)s−1−kV (1; 3, 4)k. (3.41)

We define the Mellin amplitude Modd(γ12, γ14; s, k) in the following manner

M̂odd(γ12, γ14; s, k) = Γ(γ12)Γ(∆1 − γ12 − γ14)Γ(γ14)Γ
(
γ12 + ∆3 + ∆4 −∆1 −∆2

2

)
Γ
(∆1 + ∆2 −∆3 + ∆4

2 − γ12 − γ14

)
Γ
(
γ14 + ∆2 + ∆3 −∆1 −∆4

2

)
Modd(γ12, γ14; s, k), (3.42)

∆1 = 2s+ 1, ∆2 = 3, ∆3 = 3, ∆4 = 3.

The following equations encapsulate crossing symmetry:

M̂odd(γ12, γ14; s, k) =
s−1∑
k2=k

(−1)k2

(
k2
k

)
M̂odd(2s+ 1− k2 − γ12 − γ14, γ14 − k + k2; s, k2),

(3.43)
M̂odd(γ12, γ14; s, k) = M̂odd(γ14, γ12; s, s− 1− k). (3.44)

Let us use the bound on chaos to derive a bound on the polynomial growth of the
Mellin amplitude. Let us define the exponent α(s; k) such that limβ→∞M(γ12, βγ14; s, k) ∼
βα(s;k). In the Regge limit, the Mellin integral goes as σ−2s−3−α(s;k). The prefactor times
the structure goes as σ3+2s−k. So, (3.41) behaves as σ−k−α(s;k). By comparing with the
bound on chaos (3.5) and using (3.43), (3.44) we conclude that

lim
β→∞

Modd(γ12, βγ14; s, k) ∼ βα1(s,k), α1(s, k) ≤ 1− k (3.45)

lim
β→∞

Modd(βγ12, γ14; s, k) ∼ βα2(s,k), α2(s, k) ≤ 2− s+ k (3.46)

lim
β→∞

Modd(iβ + γ12,−iβ + γ14; s, k) ∼ βα3(s,k), α3(s, k) ≤ s. (3.47)

The Mellin amplitude of an AdS contact diagram of the type (3.41), or of a linear
combination of contact diagrams, is given by

M̂odd(γ12, γ14; s, k) = Γ(γ12 + 1 + k − s)Γ
(
γ12 + 1

2 + k − s
)

(3.48)

Γ(γ14 − k)Γ
(
γ14 − k −

1
2

)
Γ(γ13 + 1− s)

Γ
(
γ13 + 1

2 − s
)
pdt(γ12, γ14; s, k),
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where γ13 = 2s+ 1− γ12 − γ14. The bound on chaos for pdt(γ12, γ14; s, k) is

lim
β→∞

pdt(γ12, βγ14; s, k) ∼ βλ1(s,k), λ1(s, k) ≤ 2 + k (3.49)

lim
β→∞

pdt(βγ12, γ14; s, k) ∼ βλ2(s,k), λ2(s, k) ≤ 1 + s− k (3.50)

lim
β→∞

pdt(iβ + γ12,−iβ + γ14; s, k) ∼ βλ3(s,k), λ3(s, k) ≤ 1 + s. (3.51)

pdt(γ12, γ14; s, k) can be found by imposing crossing and conservation. We found that
for s ≥ 4 all solutions violate the bound on chaos.

However, for s = 2 there is one solution that respects the bound on chaos. This
solution is

pdt(γ12, γ14; s = 2, k = 0) = γ2
12
4 + γ12γ14

2 − 5γ12
4 − γ14

2 + 1, (3.52)

pdt(γ12, γ14; s = 2, k = 1) = γ12γ14
2 − γ12

2 + γ2
14
4 −

5γ14
4 + 1.

4 Open directions

The methods developed in this paper potentially pave the way to compute all four point
functions in conformal field theories with slightly broken higher spin symmetry. We believe
that the next steps in this program are the following:

1. Compute 〈jsj0j0j0〉 in the quasi-boson theory. The conformal structures involved are
the same as in this paper, so the calculation should be very similar.

2. Demonstrate that AdS contact diagrams are not present in 〈j0̃j0̃j0̃j0̃〉 and 〈j2j0̃j0̃j0̃〉
in the quasi-fermion theory using pure CFT arguments. The chaos bound allows
for contact diagrams in 〈j0̃j0̃j0̃j0̃〉 and 〈j2j0̃j0̃j0̃〉. Their absence for 〈j0̃j0̃j0̃j0̃〉 was
demonstrated in [10] using Feynman diagrams. It should be possible to give a pure
CFT demonstration of this fact. The idea is to write down the higher spin Ward
identity that connects 〈j0̃j0̃j0̃j0̃〉 and 〈j2j0̃j0̃j0̃〉, plug the AdS contact diagrams mul-
tiplied by arbitrary functions of the t’Hooft coupling and obtain that the only way
for the Ward identity to be satisfied is if such functions vanish.

Let us mention some more ambitious problems:

1. Develop a code that computes all spinning four point functions in CFT’s with slightly
broken higher spin symmetry. Such a code should:

• generate the structures involved for a given four point function
• generate an ansatz for the Mellin transform, which should be a product of 6

Gamma functions (whose arguments are determined by the lightcone OPE,
which is known) times polynomials

• impose crossing, pseudo-conservation and Regge boundedness to fix all the un-
determined coefficients in the polynomials.
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What differs from what we did here is that for generic spins we should not use
embedding space, since the conformal structures in embedding space are generically
linearly dependent on each other. It is best to use conformal frame techniques instead.
Concretely, one would need the 3 dimensional version of [19] (see also [18]).

2. Demonstrate that AdS contact diagrams are not present in four point functions in
CFT’s with slightly broken higher spin symmetry. As above, the hurdle should be in
adapting our formalism to use the 3d conformal frame.

Recently, a new formalism for correlators of conserved currents was proposed in [27].
The idea is to write the conformal structures in a helicity basis. It would be very interesting
to apply this idea to correlators in CFT’s with slightly broken higher spin symmetry.

Ultimately, one would like to understand higher spin symmetry from the point of view
of the bulk of AdS. We hope that our CFT computations can be of some utility for this
ultimate goal.
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A Bulk point limit

Correlation functions of conformal field theories in Lorentzian signature may diverge even
when none of the distances between the points vanish. At the moment a full classification of
the singularity structure of correlation functions in conformal field theories does not exist.

One such singularity is the so called “bulk point singularity”. In terms of cross ratios,
we can obtain such a singularity in the following manner. In Lorentzian signature z and z̄
are independent real numbers. The four point function has branch points. When z and z̄
go around the branch points the four point function may develop a divergence when z = z̄.
More specifically, suppose z goes around the branch point at 1, z̄ goes around ∞ and now
take z → z̄. We generically expect the four point function to diverge in this limit. A
detailed examination of the bulk point limit for a four point function of equal scalars was
carried out in [20].

In the bulk point limit a d dimensional conformal block where the external opera-
tors are scalars diverges as 1

(z−z̄)d−3 [20]. For this reason it is expected that a generic
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nonperturbative four point function of scalars diverges as

〈OOOO〉 ∼ 1
(z − z̄)d−3 . (A.1)

However, when the CFT has a local bulk dual, then we expect the divergence to be
more severe. For example, a contact quartic diagram in AdS diverges as

〈OOOO〉 ∼ 1
(z − z̄)4∆−3 . (A.2)

The plan for this section is the following. In A.1 we calculate the bulk point singularity
of an AdS contact diagram for a scalar four point function of unequal primaries. The
result is a trivial generalisation of (A.2), however to our knowledge its derivation had not
appeared before in the literature. We need such a result in order to calculate the bulk point
singularity of an AdS contact diagram for 〈jsj0̃j0̃j0̃〉, which we do in appendix A.2. Finally,
in appendix A.3 we calculate the expected bulk point divergence of 〈jsj0̃j0̃j0̃〉 in CFT’s with
slightly broken higher spin symmetry. We assume that 〈jsj0̃j0̃j0̃〉 does not diverge more
than conformal blocks in the bulk point limit. We conclude that AdS contact diagrams
diverge more severely in the bulk point limit than what is expected for 〈jsj0̃j0̃j0̃〉 for s ≥ 2
in CFT’s with slightly broken higher spin symmetry. Thus, bulk point softness implies that
we cannot add AdS contact diagrams to the solution to the pseudo-conservation equations
that we found in section 2.

Let us add a caveat. Our result for 〈jsj0̃j0̃j0̃〉 does not rely on assuming bulk point
softness and is independent of it. Nevertheless, we choose to keep this appendix, because
it was useful for us to think in terms of the bulk point limit in the early stages of our work,
and maybe this can be of use to someone else.

A.1 Bulk point singularity of an AdS contact diagram for a scalar four point
function of unequal primaries

A quartic contact diagram has a Mellin amplitude equal to 1. We will use this to compute
the bulk point divergence, proceeding similarly to section 7.5.1 in [21]. Upon analytic
continuation, the diagram is given by

〈O1O2O3O4〉
p

=
∫ ∫

dγ12dγ14
(2πi)2 Γ(γ12)Γ(γ13)Γ(γ14)Γ(γ12 + a34)

× Γ(γ13 + a24)Γ(γ14 + a23)u−γ12v−γ14 (A.3)

→
∫ ∫

dγ12dγ14
(2πi)2 Γ(γ12)Γ(γ13)Γ(γ14)Γ(γ12 + a34)

× Γ(γ13 + a24)Γ(γ14 + a23)u−γ12v−γ14e−2πi(γ12+γ14),

p = |x1 − x3|−2∆1 |x2 − x3|−2a23 |x2 − x4|−2a24−2∆1 |x3 − x4|−2a34

where aij = 2(∆i + ∆j)−
∑
k ∆k and γ13 = ∆1− γ12− γ14. The integral diverges when γ12

and γ14 have a very big and positive imaginary part. We can use Stirling’s approximation
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for the Γ functions. Indeed suppose we take γ12 = isβ and γ14 = is(1− β). Then for very
large s we have

〈O1O2O3O4〉 ≈ p
∫ ∞
s0

ds

s

∫ 1

0
dβs

∑
i

∆i
2 −1f(β) (A.4)

× exp
(
is
(
− 2(β − 1) log(1−β) + 2β log(β)− β log(u) + (β − 1) log(v)

))
,

where f(β) is a function of β that will not play any role. The integral has a saddle
point for β → βs =

√
u√

u+
√
v
. In that case the exponential dependence of the integrand

becomes e
is

(
(√u+

√
v)2

√
u
√
v

(β−βs)2−2 log(√u+
√
v)
)
. The integral in β is Gaussian and can be readily

evaluated. Furthermore, the phase is stationary when
√
u+
√
v = 1. In that case we have

log(
√
u+
√
v) ∼ (z − z̄)2. So, we conclude that

〈O1O2O3O4〉 ∼
∫ ∞
s0

ds

s
s

∑
i

∆i
2 − 3

2 eis(z−z̄)
2 ∼ 1

(z − z̄)
∑

i
∆i−3

. (A.5)

A.2 Bulk point singularity of AdS contact diagrams for 〈jsj0̃j0̃j0̃〉

Identity (3.24) allows us to obtain spinning contact AdS diagrams from scalar contact AdS
diagrams. So, with the help of identity (3.24) we can perform the integration in (3.21)
using only scalar propagators and afterwards we act with the differential operators D12
and D13. The scalar propagators cause a divergence like 1

(z−z̄)
∑

i
∆i−3+s

, see formula (A.5).

After acting with the differential operators, we find that the bulk point divergence of the
integral (3.21) is 1

(z−z̄)
∑

i
∆i−3+3s

= 1
(z−z̄)4s+4 .

A.3 Bulk point singularity of 〈jsj0̃j0̃j0̃〉 in CFT’s with slightly broken higher
spin symmetry

Conformal field theories with slightly broken higher spin symmetry have an infinite number
of light single trace operators. For this reason, they are not expected to be dual to a local
theory in AdS. Thus, their bulk point singularity should not be enhanced with respect to
that of an individual conformal block.

We want to calculate the bulk point divergence of 〈jsj0̃j0̃j0̃〉. For our discussion, it is
useful to introduce the operator

d11 = (P1 · P2)Z1 ·
∂

∂P2
− (Z1 · P2)P1 ·

∂

∂P2
− (Z1 · Z2)P1 ·

∂

∂Z2
+ (P1 · Z2)Z1 ·

∂

∂Z2
,

(A.6)

where we used embedding space coordinates [14]. This operator acts on conformal blocks
where the operator exchanged is symmetric and traceless. It increases the spin of the
operator in position 1 by 1 and it decreases its conformal dimension by 1 also. It turns out
that ds11(z− z̄)a ∼ (z− z̄)a−2s, i.e. the action of ds11 increases the divergence by a power of
2s. For this reason, we expect the divergence of 〈jsj0̃j0̃j0̃〉 to be

〈jsj0̃j0̃j0̃〉 ∼
1

(z − z̄)2s (A.7)
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since the scalar conformal block diverges logarithmically. We could have picked other
differential operators than d11 to create spin from the scalar conformal block. Since such
operators only contain first derivatives of Pi (and not higher derivatives), they lead to the
same divergence (A.7).

B Algorithm for computing 〈jsj0̃j0̃j0̃〉 in position space

We will implement an algorithm in position space to calculate 〈jsj0̃j0̃j0̃〉cb. The results
match with the Mellin space calculation.
〈jsj0̃j0̃j0̃〉cb is constrained by conformal symmetry, crossing, consistency with OPE and

the pseudo-conservation equation that js obeys. Conformal symmetry implies that

〈jsj0̃j0̃j0̃〉cb = p
s∑
j=0

fj(u, v)w(1; 2, 3)jw(1; 3, 4)s−j , (B.1)

where

p ≡ (x2
23x

2
24x

2
34) s3− 5

6

(x2
12x

2
13x

2
14) 2s

3 + 1
3
, u ≡ x2

12x
2
34

x2
13x

2
24
, v ≡ x2

14x
2
23

x2
13x

2
24
, (B.2)

w(i; j, k) ≡ (xij)µ
x2
ik

x2
jk

− (xik)µ
x2
ij

x2
jk

and we use the notation (xij)µ = (xi)µ − (xj)µ, xij = |xi − xj |. The indices are symmet-
ric and traceless. fj(u, v) is a function of the cross ratios not determined by conformal
symmetry.

We write the following ansatz.

fj(u, v) = ua(j)vb(j)

(1 +
√
u+
√
v)s

N(j)∑
nj=0

M(j)∑
mj=0

cnj ,mju
nj
2 v

mj
2 , (B.3)

where cnj ,mj are parameters that will be fixed by crossing and the pseudo-conservation
equation. The values of a(j), b(j), M(j) and N(j) will follow from consistency with the
operator product expansion.

Let us motivate the preceding ansatz. The spinning four point functions are related to
the scalar four point functions by slightly broken higher spin Ward identities. The scalar
four point function is a linear combination of powers of u and of v. So, it is natural that
fj(u, v) is made up of powers of u and of v.

We will see below that the contribution to the operator product expansion of a certain
operator goes as ∼ u

τ
2 , where τ is the twist, which is defined as the conformal dimension

minus the spin. Since all operator dimensions are integers, it is natural that the ansatz
involves semi-integer powers of u and of v. The denominator 1

(1+
√
u+
√
v)s diverges in the

bulk point limit as 1
(z−z̄)2s , which agrees with the discussion in A.3.

We can fix a(j), b(j), N(j),M(j) by consistency with the lightcone operator product
expansion. Let us explain the general idea. Consider two primary operators Oµ1...µl1

(x),
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Oν1...νl2
(0) of conformal dimensions ∆1 and ∆2 and spins l1 and l2 and suppose they

exchange a primary operator Oρ1...ρl of dimension ∆ and spin l. The most singular
term due to Oρ1...ρl that can appear in the lightcone operator product expansion is
Oρ1...ρlx

ρ1 ...xρlx{µ1 ...xµl1}
x{ν1 ...xνl2}

|x|∆1+∆2+l1+l2+l−∆ ∼ (x2)−
∆1+∆2+l1+l2

2 + τ
2 , where the µ and ν indices are

traceless symmetric and τ = ∆− l.
For 〈jsj0̃j0̃j0̃〉 the primary operators exchanged can have twist 1 (higher spin currents),

3 + 2n (double traces [js, j0̃]) and 4 + 2n (double traces [j0̃, j0̃]), where n is a nonnegative
integer. There is no primary operator of twist 2 being exchanged. This is an important
condition that we impose in our algorithm.

More explicitly

js(x)j0̃(0) ∼ (x2)−s−1js′ + (x2)−s[js, j0̃] + (x2)−s+
1
2 [j0̃, j0̃], (B.4)

j0̃(x)j0̃(0) ∼ (x2)−
3
2 js′ + (x2)−

1
2 [js, j0̃] + (x2)0[j0̃, j0̃], (B.5)

where we wrote the most singular powers of the distance that can appear in the lightcone
operator product expansion. Our ansatz (B.3) needs to be compatible with (B.4), (B.5).
This fixes a(j), b(j), N(j),M(j).

The final ingredient is compatibility with pseudo-conservation. ∂ · js can have contri-
butions coming from [js1 , j0̃] and [js1 , js2 ]. Only the former matter since we are interested
in 〈jsj0̃j0̃j0̃〉. More precisely,

∂ · js ⊃
s−2∑
s1=2

s−s1−1∑
m=0

cm∂
mjs1∂

s−s1−1−mj0̃. (B.6)

Since the right-hand side must be a conformal primary, this implies [8]

cm = −(m− s+ s1)(m− s+ s1 − 1)
m(m+ 2s1) cm−1. (B.7)

Thus 〈∂ · jsj0̃j0̃j0̃〉 is a linear combination of terms of type ∂n1〈j0̃j0̃〉∂n2〈js1j0̃j0̃〉.
Crossing and compatibility with pseudo-conservation fix all coefficients in (B.3) up to

a number. This number is related to the normalizaton of js. In fact we did not even need to
input formula (B.7), we kept the coefficients cm as unknowns and our algorithm correctly
returns (B.7). This serves as a check on our results. We checked that the algorithm fixes
the solution for s = 2, . . . , 14. Afterwards the computation becomes heavy for our laptop.

C Mixed Fourier transform

We will solve the higher spin Ward identities to compute 〈j2j0̃j0̃j0̃〉. This is a rederivation
of the main result of [11]. Our method involves the use of a mixed Fourier transform,
see [27] and [28].

We use the metric ds2 = −dx−dx+ + dy2. We will take all indices lowered and in the
minus component. We will study the action of the charge

Q =
√
Ñα4

∫
x+=const.

dx−dyj−−−− (C.1)
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on the four point function 〈j0̃j0̃j0̃j0̃〉. We make use of equations [5, 10]

∂ · j4 = α
λ̃√

Ñ
√

1 + λ̃2

(
: ∂−j0̃j2 : −2

5 : j0̃∂−j2 :
)
, (C.2)

[Q, j0̃] = ∂3
−j0̃ + β√

1 + λ̃2
(∂−∂−j−y − ∂−∂yj−−). (C.3)

α, α4 and β are numerical coefficients that can be obtained from solving Ward identities
at the level of three point functions.7 We will not need their precise value in what follows.

The scalar four point function obeys the slightly broken spin 4 Ward identity

〈[Q, j0̃]j0̃j0̃j0̃〉+ . . . =
√
Ñα4

∫
d3x〈∂ · j4(x)j0̃j0̃j0̃j0̃〉, (C.4)

where by . . . we mean the permutations (12), (13), (14). Note that

〈j0̃j0̃j0̃j0̃〉 = 〈j0̃j0̃j0̃j0̃〉disc + 1
N
〈j0̃j0̃j0̃j0̃〉ff , (C.5)

where 〈j0̃j0̃j0̃j0̃〉ff denotes the connected piece in the free fermion theory and 〈j0̃j0̃j0̃j0̃〉disc
denotes the disconnected piece. The disconnected piece obeys

〈∂3j0̃j0̃j0̃j0̃〉disc + . . . = 0, (C.6)

where we summed over all permutations. For this reason the disconnected piece drops out
of (C.4). Using our ansatz (2.1) we conclude that

〈[Q, j0̃]j0̃j0̃j0̃〉+ . . . = 1
Ñ
〈∂3j0̃j0̃j0̃j0̃〉ff + β

Ñ(1 + λ̃2)
(
〈(∂−∂−j−y − ∂−∂yj−−)j0̃j0̃j0̃〉ff

+ λ̃〈(∂−∂−j−y − ∂−∂yj−−)j0̃j0̃j0̃〉cb
)

+ . . . (C.7)

From the Ward identities in the free fermion theory this becomes

〈[Q, j0̃]j0̃j0̃j0̃〉+ . . . =− λ̃2β

Ñ(1 + λ̃2)
〈(∂−∂−j−y − ∂−∂yj−−)j0̃j0̃j0̃〉ff (C.8)

+ λ̃β

Ñ(1 + λ̃2)
〈(∂−∂−j−y − ∂−∂yj−−)j0̃j0̃j0̃〉cb + . . .

Using (C.2) in the right-hand side of (C.4) we get√
Ñα4

∫
d3x〈∂ · j4(x)j0̃j0̃j0̃j0̃〉 = αα4

λ̃√
1 + λ̃2

∫
d3x

(
〈∂−j0̃(x)j0̃〉〈j2(x)j0̃j0̃j0̃〉 (C.9)

− 2
5〈j0̃(x)j0̃〉〈∂−j2(x)j0̃j0̃j0̃〉+ . . .

)
We use the decomposition (2.1) to obtain that (C.9) is equal to

αα4
λ̃

Ñ(1 + λ̃2)

∫
d3x

(
〈∂−j0̃(x)j0̃〉〈j2(x)j0̃j0̃j0̃〉ff −

2
5〈j0̃(x)j0̃〉〈∂−j2(x)j0̃j0̃j0̃〉ff + . . .

)

+ αα4
λ̃2

Ñ(1 + λ̃2)

∫
d3x

(
〈∂−j0̃(x)j0̃〉〈j2(x)j0̃j0̃j0̃〉cb −

2
5〈j0̃(x)j0̃〉〈∂−j2(x)j0̃j0̃j0̃〉cb + . . .

)
(C.10)

7We normalised the charge such that the coefficient multiplying ∂3
−j0̃ in (C.3) is 1.
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Let us equate (C.8) and (C.10). We see that the dependence on Ñ and λ̃ matches on
both sides provided

β〈(∂−∂−j−y − ∂−∂yj−−)j0̃j0̃j0̃〉ff + . . . (C.11)

= −αα4

∫
d3x

(
〈∂−j0̃j0̃〉〈j2j0̃j0̃j0̃〉cb −

2
5〈j0̃j0̃〉〈∂j2j0̃j0̃j0̃〉cb + . . .

)
,

β〈(∂−∂−j−y − ∂−∂yj−−)j0̃j0̃j0̃〉cb + . . . (C.12)

= αα4

∫
d3x

(
〈∂−j0̃j0̃〉〈j2j0̃j0̃j0̃〉ff −

2
5〈j0̃j0̃〉〈∂j2j0̃j0̃j0̃〉ff + . . .

)
.

We solved (C.11) and (C.12) using a mixed Fourier transform. We define the mixed
Fourier transform of a four point function 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 →
∫
d3x2d

3x3
(2πi)2 〈O1(0)O2(x2)O3(x3)O4(∞)〉ei(p2·x2+p3·x3).

(C.13)

The advantage of the mixed Fourier transform with respect to a usual Fourier transform
is that by placing an operator at the origin and another one at ∞ we take advantage of
conformal symmetry.

In mixed Fourier space we can get rid of the integrals in equations (C.11)
and (C.12). For example, it is simple to see that the mixed Fourier transform of∫
d3x〈j0̃(x)j0̃〉〈j2(x)j0̃j0̃j0̃〉 is equal to∫
d3x〈j0̃(x)j0̃(x1)〉〈j2(x)j0̃(x2)j0̃(x3)j0̃(x4)〉 (C.14)

→
(∫

d3x〈j0̃(x)j0̃(0)〉ei(p2+p3)·x
)∫ ∫

d3x2d
3x3e

i
(
p2·x2+p3·x3

)
〈j2(0)j0̃(x2)j0̃(x3)j0̃(∞)〉

which is just a product of mixed Fourier transforms.
It turns out that 〈j2j0̃j0̃j0̃〉ff is very simple in mixed Fourier space. Let us define

up = p2
2
p2

1
, vp = p2

3
p2

1
, where p1 = −p2 − p3 . Then,

〈Tµν(0)j0̃(p2)j0̃(p3)j0̃(∞)〉ff = f(up, vp)
p4

1

(
(p2)(µεν)αβ(p2)α(p3)β

)
(C.15)

+ f(vp, up)
p4

1

(
(p3)(µεν)αβ(p3)α(p2)β

)
,

where f(up, vp) = 32
3 π

2
(
− 1
up

+ 1
vp
− 1

upvp

)
. Plugging this into (C.11) and (C.12) we obtain

〈Tµν(0)j0̃(p2)j0̃(p3)j0̃(∞)〉cb = 1
|p1|3

(
(p2)(µ(p3)ν) −

p2 · p3
3 ηµν

)
f1(up, vp) (C.16)

+ 1
|p1|3

(
(p2)µ(p2)ν −

p2
2

3 ηµν
)
f2(up, vp)

+ 1
|p1|3

(
(p3)µ(p3)ν −

p2
3

3 ηµν
)
f2(vp, up),
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where

f1(up, vp) = 1
2

(
up
vp

+ vp
up

)
+
(

1
up

+ 1
vp

)
− 3

2upvp
, (C.17)

f2(up, vp) = up
4vp

+ vp
4up

+ 1
4upvp

+ 3
2up
− 1

2vp
.

Finally, we can transform back to position space to get

〈Tµνj0̃j0̃j0̃〉cb = p×
(
g1(u, v)

(
V (1, 2, 3)µV (1, 2, 3)ν −

V (1, 2, 3)2

3 ηµν

)
(C.18)

+ g2(u, v)
(
V (1, 2, 3)(µV (1, 3, 4)ν) −

V (1, 2, 3) · V (1, 3, 4)
3 ηµν

)
+ g3(u, v)

(
V (1, 3, 4)µV (1, 3, 4)ν −

V (1, 3, 4)2

3 ηµν

))
,

where p = 1
(x12x13x14)

10
3 (x23x24x34)

1
3
, V (i; j, k) = x2

ij(xik)µ−x2
ik(xij)µ

x2
jk

and

g1(u, v) = u2/3v2/3

4π3 − v2/3

4π3u4/3 + v5/3

2π3u4/3 −
v8/3

4π3u4/3 + v2/3

2π3 3
√
u

+ v5/3

2π3 3
√
u
, (C.19)

g2(u, v) = u2/3v2/3

2π3 + u2/3

2π3 3
√
v

+ u5/3

4π3 3
√
v

+ v2/3

2π3 3
√
u

+ v5/3

4π3 3
√
u
− 3

4π3 3
√
u 3
√
v
,

g3(u, v) = u2/3v2/3

4π3 − u2/3

4π3v4/3 + u5/3

2π3v4/3 −
u8/3

4π3v4/3 + u2/3

2π3 3
√
v

+ u5/3

2π3 3
√
v
.

The result agrees with [11]. For correlators of type 〈jsj0̃j0̃j0̃〉 with s ≥ 4, the mixed Fourier
transform is not so simple, so in practice it was not useful.

D Miscellaneous formulas

In this appendix we write some formulas we used in the text. The nonzero coefficients in
equation (2.11) are

a1,−1,−1 =− (γ14−1)
(
2γ2

14 − γ14(4k + 5) + 2k2+ 5k + 2
) (
k2− 2ks− k + s2 + s

)
, (D.1)

a0,0,0 =− 1
2
(
2γ2

14 − γ14(4k + 5) + 2k2 + 5k + 2
)

× (−2γ12(k + s) + γ14(2k − 2s+ 1) + s(2s+ 1))(k − s),

a1,−1,0 =− 1
2(2γ2

12 + γ12(4k − 4s− 1) + 2k2 − k(4s+ 1) + 2s2 + s− 1)(γ14 − 1)

×
(
2k2 − 4ks+ k + s(2s− 1)

)
,

a0,−1,0 = 1
2(γ14 − 1)

(
2k2 − 4ks+ k + s(2s− 1)

)
× (2γ2

12 + γ12(4γ14 − 4s− 3) + 2γ2
14 − γ14(4s+ 3) + s(2s+ 3)),
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a−1,0,1 =− 1
2(γ12 − 1)

(
2k2 + 3k + 1

)
× (2γ2

12 + γ12(4γ14 − 4s− 3) + 2γ2
14 − γ14(4s+ 3) + s(2s+ 3)),

a−1,1,1 = 1
2(γ12 − 1)

(
2k2 + 3k + 1

) (
2γ2

14 − γ14(4k + 5) + 2k2 + 5k + 2
)
,

a0,0,1 = 1
2(k + 1)

(
2γ2

12 + γ12(4k − 4s− 1) + 2k2 − k(4s+ 1) + 2s2 + s− 1
)

× (2γ12k + γ12 − 2γ14(k − 2s+ 1)− s(2s+ 1)),

a−1,1,2 = (γ12 − 1)
(
k2 + 3k + 2

)
× (2γ2

12 + γ12(4k − 4s− 1) + 2k2 − k(4s+ 1) + 2s2 + s− 1).

The position space correlator 〈j4j0̃j0̃j0̃〉cb is given by (2.2), with

(1 +
√
u+
√
v)3 × p× f0(u, v) (D.2)

= −(
√
v − 1)2 (

√
v + 1)4

10u9/2v
+ (17v −

√
v + 17) (

√
v + 1)2

60u7/2v

+ 3v + 2
√
v + 3

30u5/2v
+ 1

90u3/2v
− (
√
v − 1)2 (

√
v + 1)5

30u5v
+ (v + 6

√
v + 1) (

√
v + 1)3

30u4v

+ 47v3/2 + 42v + 42
√
v + 47

180u3v
+
√
v + 1

30u2v
,

(1 +
√
u+
√
v)3 × p× f1(u, v)

= 7v + 6
√
v + 11

45u3/2v2 +

(
3v3/2 − 3v + 7

√
v − 7

)
(
√
v + 1)3

10u7/2v2

+ 22v3/2 + 17v2 + 32v + 44
√
v + 17

30u5/2v2 +

(
3v3/2 − 3v + 7

√
v − 7

)
(
√
v + 1)4

30u4v2

+

(
47v3/2 − 7v + 91

√
v − 35

)
(
√
v + 1)2

90u3v2

+ 16v3/2 + 15v + 27
√
v + 31

45u2v2 +
√
v + 1

15uv2 + 1
45
√
uv2 ,

(1 +
√
u+
√
v)3 × p× f2(u, v)

=
(
10v2 + 28v − 35

)
(
√
v + 1)2

30u5/2v3

+ 69v3/2 + 49v2 + 172v + 168
√
v + 49

90u3/2v3 +
(
10v2 + 28v − 35

)
(
√
v + 1)3

90u3v3

+ 172v3/2 + 46v5/2 + 78v2 + 196v − 21
√
v − 77

90u2v3 + 23v + 30
√
v + 29

45
√
uv3

+
√
u

9v3 + 49v3/2 + 78v + 114
√
v + 94

90uv3 +
√
v + 1
3v3 ,

f3(u, v) = f1(v, u), f4(u, v) = f0(v, u),

where p = |x1 − x3|−18|x2 − x3|7|x2 − x4|−11|x3 − x4|7.
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E Contact interactions for scattering amplitudes

In section 3 we analyse contact interactions in AdS. We conclude that AdS contact diagrams
for 〈jsj0̃j0̃j0̃〉 violate the bound on chaos if s ≥ 4, whereas for s = 2 there is one parity
even and one parity odd contact term that does not violate the bound on chaos.

In this appendix we consider the same problem at the level of 4 dimensional scatter-
ing amplitudes. We consider on-shell 2 → 2 scattering amplitudes of the type 〈Φsφφφ〉,
where the particle Φs at position 1 is massless and has spin s and the three other par-
ticles are identical massive scalars φ of mass m. It is expected that there is a bijection
between contact terms for d-dimensional CFT’s and d+1 dimensional flat space scattering
amplitudes [14].

For scattering amplitudes the analog of the bound on chaos is the statement that the
amplitude cannot grow more than quadratically in the Regge limit [29, 30]. This is the
Classical Regge Growth (CRG) conjecture of [30] which states that the S- Matrix of a
consistent classical theory never grows faster than s2 at fixed t — at all physical values of
momenta and for every possible choice of the normalized polarization vector ζi.

In this appendix we perform some calculations for contact scattering amplitudes that
support the results of section 3. We construct contact scattering amplitudes for 〈Φ2φφφ〉
and conclude that there is only one parity even and only one parity odd contact scattering
amplitude compatible with the CRG conjecture.8

Let us discuss the parity even case. In that case the scattering amplitude T (ζ, p1, p2, p3)
is a function of the polarization ζ and the momenta. Notice we used momentum conserva-
tion to eliminate p4. Furthermore the polarization obeys ζ · ζ = p1 · ζ = 0. Thus we have

T (ζ, p1, p2, p3) = (ζ · p2)2f1(s, t) + (ζ · p3)2f2(s, t) + (ζ · p2)(ζ · p3)f3(s, t), (E.1)

where we define the Mandelstam invariants as

s = −(p1 + p2)2, t = −(p1 + p3)2, u = −(p1 + p4)2. (E.2)

The amplitude is constrained by crossing symmetry and gauge invariance. Gauge invariance
is the statement that the amplitude is invariant under ζ → ζ+λ1p1, where λ1 is an arbitrary
real number. Crossing symmetry and gauge invariance lead to the constraints

f2(s, t) = (m2 − s)2

(m2 − t)2 f1(s, t), f3(s, t) = 2(s−m2)
(m2 − t) f1(s, t) (E.3)

f1(s, t) = (m2 − t)2

(m2 − s)2 f1(t, s), f1(s, t) = f1(u, t). (E.4)

We solved the above expressions using polynomials fi(s, t) = ∑
cin1,n2,n3s

n1tn2mn3 .
The solution with polynomials of lowest degree is

T = (ζ · p2)2(p1 · p3)2 + (ζ · p3)2(p1 · p2)2 − 2(ζ · p2)(ζ · p3)(p1 · p2)(p1 · p3). (E.5)
8A similar analysis for the case of four scalars was done in [10]. There it was found that there are three

contact diagrams that do not violate the Regge bound, whose scattering amplitudes are given by 1, s× t×u
and s2 + t2 + u2 respectively.
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Let us analyse the Regge limit of this expression in light of the CRG conjecture. We
need to parametrize ζ, which we do in the following manner [30]

ζ = ζ⊥ + ζ‖, ζ‖ = α1

√
st

u

(
p2

s−m2 −
p3

t−m2

)
+ a1p1. (E.6)

ζ⊥ is the component of ζ that is perpendicular to the plane generated by p1, p2 and p3,
ζ‖ is the parallel component. Let us explain the logic for this parametrization. A priori,
ζ depends on 4 independent parameters, but due to the conditions ζ2 = ζ · p1 = 0 it only
depends on two, which we call α1 and a1. However, the component a1 is not physical due
to the gauge symmetry of the S-Matrix.

We can now take the expression (E.6) for ζ, plug it into (E.5) and consider the limit
s → ∞ with t fixed. We find that the amplitude grows like s2. Thus, it obeys the CRG
conjecture.

A similar analysis can be performed for the parity odd contact term. The term that
is Regge bounded is

T = εµ1µ2µ3µ4ζ
µ1pµ2

1 pµ3
2 pµ4

3

(
(p1 · p3)(ζ · p2)− (p1 · p2)(ζ · p3)

)
. (E.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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