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Abstract

Although inevitable, the process of transforming urban areas into sustainable living environments

presents many challenges. The decentralization of the energy system, the interconnection of

multiple energy carriers, and the need to account for conflicting interests renders it a complex task.

As key stakeholders, authorities often lack appropriate decision tools to frame and encourage the

transition and to monitor the impact of implemented policies.

This work aims to provide useful insights into the role of districts as renewable energy hubs by

showing requirements and highlighting constraints, leading to an increase in renewable energy

penetration. The benefits and trade-offs between centralized and decentralized renewable energy

hubs are emphasized to contribute to the ongoing discussion regarding sustainable urban planning.

Mathematical programming is used to build a multi-objective optimization platform that integrates

several renewable technologies with a special focus on solar integration. Specifically, this approach

includes the role of the orientation of photovoltaic (PV) panels and the use of facades, including

mounting partly shadowed PV panels and receiving solar heat gain. A decomposition algorithm

(Dantzig–Wolfe) is used to bypass the computation effort associated with centralized energy hubs at

the district scale.

The results highlight that a low-emission electrical grid mix has a high impact on sustainable design

of renewable energy hubs at the building scale and led to less independent system configurations.

Optimally integrating of solar systems had a significant impact on their interaction with the electrical

grid: rotating the panels 20° westwards reduced the grid exchange peak by 50% while increasing cost

by only 8.3%. Moreover, the studied district could achieve carbon neutrality based on PV energy

alone, whereas self-sufficiency is more ambitious that confirmed the importance of storage systems:

even with 100% round-trip efficiency of storage systems, the required ratio of area covered in PV

modules to the energy reference area (ERA) was Apv /AER A = 0.44 and 16 % of available facades

were needed to be covered with PV modules. However, energy demand reduction through thermal

renovation would allow self-sufficiency with half of the PV and storage capacity. Overall, this work

demonstrates that moving from a decentralized to coordinated and centralized design strategy allows

a higher electrification rate and an increased integration of renewable energy in the district for

the same total expenses. The centralized investment strategy differed most from the decentralized

strategy for PV panels; using the centralized strategy, a wide range of PV installation on less–optimal

surfaces became economically interesting. The most economically convenient solution to overcome
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transformer limitations were district storage for peak shaving and photovoltaic curtailment. The

cost increase were around 600 CHF per kWyr annual capacity shortage, regardless of the considered

district energy system.

Keywords: District energy system, Multi-objective optimization, Photovoltaics, Renewable energy

integration, Interconnection of energy carriers
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Zusammenfassung
Die Transformation städtischer Gebiete hin zu nachhaltigen Lebensräumen ist unvermeidlich und

der Prozess mit zahlreichen Herausforderungen verbunden. Die Aufgabe ist komplex aufgrund der

Dezentralisierung des Energiesystems, der Verbindung mehrerer Energieträger, sowie der Berück-

sichtigung widersprüchlicher Interessen. Den Behörden als Hauptakteuren fehlen oft geeignete

Entscheidungshilfen, um diesen Übergang zu gestalten, zu fördern und die Auswirkungen der

umgesetzten Maßnahmen zu kontrollieren.

Ziel dieser Arbeit ist es, nützliche Einblicke in die Rolle von Bezirken als renewable energy hubs zu

geben, indem die Anforderungen aufzeigt und die Randbedingungen hervorhoben werden, die

zu einer Erhöhung der Marktdurchdringung von erneuerbaren Energien führen. Die Vorteile und

Kompromisse zwischen zentralen und dezentralen renewable energy hubs werden analysiert, um

einen Beitrag zur laufenden Diskussion über nachhaltige Stadtplanung zu leisten.

Mit Hilfe mathematischer Programmierung wird eine multikriterielle Optimierungsplattform erstellt,

die mehrere erneuerbare Technologien integriert. Besonderer Fokus liegt dabei auf der Integration

von Solarenergie. Der Ansatz umfasst insbesondere die Rolle der Fassaden enschließlich der Aus-

richtung von teilweise beschatteten PV-Paneelen. Ein Dekompositionsalgorithmus (Dantzig–Wolfe)

wird verwendet, um den Berechnungsaufwand zu reduzieren, der mit zentralisierten renewable

energy hubs auf Bezirksebene verbunden ist.

Die Ergebnisse zeigen, dass ein emissionsarmer Strommix einen großen Einfluss auf die nachhaltige

Gestaltung von renewable energy hubs auf der Gebäudeebene hat und zu weniger unabhängigen

Systemkonfigurationen führt. Die optimale Integration von Solarsystemen hatte einen signifikanten

Einfluss in Verbindung mit dem Stromnetz: Eine Drehung der Paneele um 20° nach Westen redu-

zierte Netzaustauschspitzen um 50%, während die Gesamtkosten nur um 8,3% stiegen. Darüber

hinaus konnte der untersuchte Stadtteil allein mit PV -Strom CO2-Neutralität erreichen, wohingegen

die Selbstversorgung ehrgeiziger war, was die Bedeutung von Speichersystemen bestätigte: Selbst

bei einem Gesamtwirkungsgrad der Speichersysteme von 100% betrug das erforderliche Verhältnis

zwischen der mit PV-Modulen bedeckten Fläche und der Gesamtfläche Apv /AER A = 0.44, und es

mussten 16% der verfügbaren Fassaden mit PV-Modulen bedeckt werden. Eine Reduzierung des

Energiebedarfs durch thermische Sanierung würde jedoch eine Selbstversorgung mit bereits der

Hälfte der PV- und Speicherkapazität ermöglichen. Insgesamt zeigt diese Arbeit, dass der Wechsel

von einer dezentralen zu einer koordinierten und zentralisierten Strategie eine höhere Elektrifizie-

rungsrate und eine stärkere Integration erneuerbarer Energien bei gleichen Gesamtkosten im Bezirk
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Zusammenfassung

ermöglicht. Für PV-Paneele is der Unterschied zwischen einer zentralisierten und einer dezentra-

len Investitionsstrategie am größten; mit der zentralisierten Strategie wurde eine Installation von

PV-Anlagen auf weniger optimalen Flächen wirtschaftlich interessant. Die wirtschaftlich günstigste

Lösung zur Überwindung der Transformatorbeschränkungen waren Stadtteil-Speicher zur Spitzen-

lastreduzierung und Beschränkung der PV-Einspeisung. Die Mehrkosten beliefen sich auf etwa 600

Franken pro kWyr jährlicher Kapazitätsknappheit, unabhängig vom Energiesystem des Stadtteils.

Schlüsselwörter: Energiesysteme, multikriterielle Optimierung, Photovoltaik, erneuerbare Energie,

Multienergiesysteme

viii



Contents

Acknowledgments i

Abstract (English/German) v

Table of content ix

List of figures xiii

List of tables xvii

Acronyms and abbreviations xix

List of symbols xxiv

Introduction 1

Environmental impact of district energy systems . . . . . . . . . . . . . . . . . . . . . . . . . 1

What are renewable energy hubs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Contributions and novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 1: Renewable energy hubs at the building scale . . . . . . . . . . . . . . . . . . 5

Chapter 2: Photovoltaic panel orientation in renewable energy hubs . . . . . . . . . . . 5

Chapter 3: Facades in interconnected renewable energy hubs . . . . . . . . . . . . . . . 6

Chapter 4: Computational reduction for renewable energy hubs at the district scale . 6

Chapter 5: Renewable energy hubs at the district scale . . . . . . . . . . . . . . . . . . . 7

1 Renewable energy hubs at the building scale 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Energy system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Energy demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Energy system technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Problem objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.5 Key performance indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



Contents

1.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.1 Global warming potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.2 Impact of system boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.3 Dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Photovoltaic panel orientation in renewable energy hubs 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 State–of–the–art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Multi-objective optimization framework of building energy systems . . . . . . . 42

2.2.2 Simulation and optimization of solar based energy systems . . . . . . . . . . . . 43

2.2.3 Modeling of photovoltaic panel orientation and directed irradiation . . . . . . . 45

2.2.4 Gaps and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Irradiation modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.2 Orientation of PV panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.3 Flat roofs and shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.4 Model integration PV Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 PV panel integration in renewable energy hubs at the building scale . . . . . . . 54

2.4.2 Optimal orientation and the role of self-consumption . . . . . . . . . . . . . . . 56

2.4.3 Comparison with flat roof assumption . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.4 Impact on the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Facades in interconnected renewable energy hubs 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 State–of–the–art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.2 Gaps and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Decentralized district energy system . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2 Expansion of the validity range for PV installations . . . . . . . . . . . . . . . . . 72

3.2.3 Solar irradiation and shading among buildings . . . . . . . . . . . . . . . . . . . 74

3.2.4 Solar heat gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.5 Data-driven approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.6 Case study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 What is the potential of energy generation from PV in the district? . . . . . . . . 80

x



Contents

3.3.2 Are PV installations on facades needed to become carbon neutral? . . . . . . . . 82

3.3.3 How much electricity can be generated locally and cost-efficiently? . . . . . . . 83

3.3.4 How much PV is needed to achieve self-sufficiency? . . . . . . . . . . . . . . . . 85

3.3.5 How much energy storage is needed to achieve self sufficiency? . . . . . . . . . 86

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Computational reduction for centralized energy systems 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Time–series aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 State–of–the–art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Gaps and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.6 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Decomposition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 State–of–the–art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.2 Gaps and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.3 General structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.7 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Renewable energy hubs at the district scale 125

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.1 State–of–the–art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.2 Gaps and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.1 Key performance indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.2 Centralized units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.3 Centralized constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 What is the potential of a centralized design strategy? . . . . . . . . . . . . . . . 134

5.3.2 Optimal investment strategy for photovoltaic panels . . . . . . . . . . . . . . . . 140

5.3.3 Grid–aware integration of renewable energy . . . . . . . . . . . . . . . . . . . . . 147

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xi



Contents

Conclusion 155

Limitations and future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Appendix 161

A (Chapter 1) 163

B (Chapter 2) 171

C (Chapter 3) 175

D (Chapter 4) 179

E (Chapter 5) 181

xii



List of figures

1 Strategy for the development of electricity generation from photovoltaic (PV) systems

in Switzerland through the year 2050. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Schematic overview of a renewable energy hub at the building scale. . . . . . . . . . . 11

1.2 Quality of the data reduction technique for different number of k-medoid clusters . . 28

1.3 Clustering results for external temperature and global irradiation . . . . . . . . . . . . 29

1.4 Trade off between total annual expenses and global warming potential. . . . . . . . . . 30

1.5 Relative share of operational global warming potential (GWP) to the total GWP for

different cost scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Influence of the grid mix on the optimal design of renewable energy hubs. . . . . . . . 32

1.7 Exergy efficiency and renewable energy share for various system configurations of

renewable energy hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8 Impact of system boundaries for evaluation global warming potential (GWP). . . . . . 34

1.9 Variable correlation plot of the principal component analysis of key performance

indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.10 Result of K- medoids clustering of the technology decisions within the 8000 different

optimal solutions for 40 residential renewable energy hubs. . . . . . . . . . . . . . . . 37

2.1 Annual total irradiation, visualized for skydome of Geneva, Switzerland. . . . . . . . . 47

2.2 Annual irradiation on oriented PV modules on the climate zone of Geneva . . . . . . . 49

2.3 Geometric relation between the distance between two modules and the sun elevation. 50

2.4 Distance d between the modules for determining the inter-modular shading depend-

ing on the relative azimuth orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Irradiation loss of PV panel shading for different design limiting angles . . . . . . . . . 51

2.6 Optimal integration of PV panels in renewable energy hubs. . . . . . . . . . . . . . . . . 55

2.7 Optimal distribution of PV installation for different roofs. . . . . . . . . . . . . . . . . . 56

2.8 Optimal PV orientation for different installed capacities on a flat roof. . . . . . . . . . . 57

2.9 Error caused by assuming horizontal PV panels to optimal PV orientation for a district 58

2.10 The need of PV panels of one renewable energy hub at the building scale in Switzerland

to reach self-sufficiency with re-imports. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



List of figures

2.11 Distribution of PV installation and orientation for total cost optimization of 40 build-

ings with individual load profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.12 Distribution of PV installation and orientation for total cost optimization of 40 build-

ings with individual load profiles and real roof orientations. . . . . . . . . . . . . . . . . 63

3.1 Overview of a decentralized district energy system. . . . . . . . . . . . . . . . . . . . . . 71

3.2 Visualization of the need for piece-wise linearization of the cost function for PV panels 73

3.3 Exemplary visualization of the geometry for a Facade to a Building and the sky-limiting

angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Outline sketch of different azimuth angles. . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Details of the case study area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Economically best PV installation for 31 residential buildings. . . . . . . . . . . . . . . 81

3.7 Results of the multi-objective optimization of 31 buildings in one low–voltage grid. . . 82

3.8 Economic analysis of PV panel installation following a centralized investment strategy. 83

3.9 Variation of the PV yearly generation to achieve break-even as a function of feed-in

and demand prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.10 The influence of PV installations to reach self-sufficiency. . . . . . . . . . . . . . . . . . 86

3.11 Key identifiers of a storage system to store surplus PV electricity for different efficiency

strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.12 State of charge of a storage system aiming at self-sufficiency for different levels of PV

penetration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Procedure of time–series aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Overview of the iterative procedure for systematic input data reduction . . . . . . . . . 94

4.3 Key performance indicators (KPIs) of the k-medoids clustering . . . . . . . . . . . . . . 96

4.4 Demonstration of Part 1 of the algorithm, case study with one building . . . . . . . . . 97

4.5 Demonstration of Part 1 of the algorithm, case study with five buildings . . . . . . . . 98

4.6 Overview of unit decisions for the aggregated problem (AP) with a different number of

typical periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Multi-objective optimization of one the energy system for one building . . . . . . . . . 99

4.8 Comparison of multi objective optimization with and without detected outlier . . . . 100

4.9 The role of outliers on the electricity exchange . . . . . . . . . . . . . . . . . . . . . . . . 101

4.10 Computation time of aggregated time–series and operation problem . . . . . . . . . . 101

4.11 Translation of the Dantzig–Wolfe decomposition principle to the design and operation

optimization of centralized energy systems. . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.12 Application of the Dantzig–Wolfe algorithm in multi objective optimization . . . . . . 113

4.13 Dantzig–Wolfe decomposition algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.14 Impact of different strategies on the termination of the iteration. . . . . . . . . . . . . . 117

4.15 Convergence of the Dantzig–Wolfe decomposition. . . . . . . . . . . . . . . . . . . . . . 118

xiv



List of figures

4.16 Computational effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.17 Comparison of the objective function for the compact and decomposed formulation . 120

4.18 Comparison of the unit decisions for the compact and decomposed formulation . . . 120

4.19 Dual variable π and electricity exchange of a district . . . . . . . . . . . . . . . . . . . . 121

4.20 Dual variable β during the multi–objective optimization (MOO) . . . . . . . . . . . . . 122

5.1 Multi–objective optimization of a residential district with 31 buildings. . . . . . . . . . 134

5.2 Single–objective optimization of a residential district with 31 buildings . . . . . . . . . 136

5.3 Electricity exchange in the district from the perspective of the buildings and the

transformer for each design strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Comparison of identical TOTEX optimal solutions for a residential district with 31

buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Comparison of optimal unit decisions for solutions with identical TOTEX but different

design strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Resource exchange of a residential district with 31 buildings. . . . . . . . . . . . . . . . 139

5.7 Economic analysis of PV installations in the district . . . . . . . . . . . . . . . . . . . . . 140

5.8 Order of optimal PV panel installations on roofs in case study district. All buildings are

connected to the same low–voltage transformers. . . . . . . . . . . . . . . . . . . . . . 141

5.9 Economic analysis of PV panel installation following a centralized investment strategy 142

5.10 Variation of the PV yearly generation to achieve break-even as a function of feed-in

and demand prices of electricity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.11 Required PV panel installation to achieve self-sufficiency and carbon neutrality. . . . . 144

5.12 Required PV panel integration for different district scenarios . . . . . . . . . . . . . . . 146

5.13 Analysis of two storage systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.14 Load duration curve on the local low–voltage transformer. . . . . . . . . . . . . . . . . 149

5.15 Peak reduction for decentralized and centralized design strategy. . . . . . . . . . . . . . 150

5.16 Limitation imposed by the local transformer for different self-sufficient district scenarios.151

5.17 Options for overcoming the local transformer limitation. . . . . . . . . . . . . . . . . . 151

5.18 Impact of the Swiss goals for 2050 for PV deployment. . . . . . . . . . . . . . . . . . . . 159

A.1 Relevant building data for different typical days. . . . . . . . . . . . . . . . . . . . . . . . 168

A.2 Contribution of each KPI to dimension 1 and 2 of the principle component analysis. . 169

B.1 Influence of tilt angle orientation on partly shaded panel . . . . . . . . . . . . . . . . . 171

B.2 Footprint of PV panels on roof, visualization of changing limiting angle along panel. . 172

B.3 Clustering results for external temperature, global irradiation, and weekdays. . . . . . 172

B.4 Relevant district data for different typical days. . . . . . . . . . . . . . . . . . . . . . . . 173

C.1 Relevant district data for different typical days. . . . . . . . . . . . . . . . . . . . . . . . 175

xv



List of figures

D.1 Details about detected typical days and outliers. . . . . . . . . . . . . . . . . . . . . . . . 179

E.1 Resource exchanges at district level for the detected TOTEX optimum according to two

different optimization strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

E.2 Resource exchange at transformer level for increasing investment cost. Renewable

energy hub without electricity storage systems. . . . . . . . . . . . . . . . . . . . . . . . 182

E.3 Electricity demand profile at the transformer for different typical days. . . . . . . . . . 182

E.4 Annual electricity demand profile at the transformer. . . . . . . . . . . . . . . . . . . . . 183

E.5 Annual generated electricity per installed area of PV panels. . . . . . . . . . . . . . . . . 183

E.6 Economic analysis of PV panel installation following a centralized investment strategy

for different scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

E.7 Required PV panel installation to achieve self-sufficiency and carbon neutrality for the

district scenario considering a refurbished building stock. . . . . . . . . . . . . . . . . . 185

E.8 Required PV panel installation to achieve self-sufficiency and carbon neutrality for the

district scenario including cogeneration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

E.9 The influence of peak shaving on the optimal orientation of PV panels for the central-

ized design strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xvi



List of tables

1.1 Overview of energy system technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Overview of common KPIs of decentralized energy systems. . . . . . . . . . . . . . . . . 26

1.3 Overview input data of the case study for 40 buildings. . . . . . . . . . . . . . . . . . . 27

2.1 Building parameters for a typical single–family house with large available roof surface. 53

3.1 Literature overview of solar irradiation modeling on buildings. . . . . . . . . . . . . . . 68

3.2 List of necessary data layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Overview input data for 31 buildings. All buildings are connected to the same low–

voltage grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Overview of identified solutions for a future decentralized district. Self-sufficiency

(SS), round–trip efficiency η of the electric storage system. . . . . . . . . . . . . . . . . . 89

4.1 Difference of the CPU time of the proposed approach to the state–of–the–art. . . . . . 102

4.2 Limitation of decomposition approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Dantzig–Wolfe Algorithm and the corresponding part in the decomposition of district

energy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Example of a primal and a corresponding dual problem. . . . . . . . . . . . . . . . . . . 110

4.5 Multi objective optimization with Dantzig–Wolfe Algorithm. . . . . . . . . . . . . . . . 112

5.1 Literature review on the optimization of urban energy system problems. . . . . . . . . 127

5.2 Limits and constraints for the integration of PV panels. . . . . . . . . . . . . . . . . . . 147

A.1 Global warming potential and renewable energy share factors related to the grid. . . . 163

A.2 GWP factor of transmission and combustion of natural gas in Switzerland. . . . . . . 163

A.3 Performance efficiencies for assessing current operating cost based on demand values.164

A.4 Parameter data for modeling photovoltaic panels. . . . . . . . . . . . . . . . . . . . . . . 164

A.5 Global warming potential to the construction of energy system technologies. . . . . . 165

A.6 Economic parameters of energy system technologies. . . . . . . . . . . . . . . . . . . . 165

A.7 Bounds of the unit sizes of the energy system technologies. . . . . . . . . . . . . . . . . 165

A.8 Considered second law efficiency for different temperature levels of the heat pump. . 166

A.9 Considered part load limit for different temperature levels of the heat pump. . . . . . 166

xvii



List of tables

A.10 Annual demand for different building categories and types according to national

standard norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.11 Building details of the case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.12 Weather data clustering results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.1 Weather data clustering results including weekdays. . . . . . . . . . . . . . . . . . . . . 172

C.1 Building related data, building type and category. . . . . . . . . . . . . . . . . . . . . . 176

C.2 Building related data, energy related values are annual. . . . . . . . . . . . . . . . . . . 177

C.3 Available surface share for PV installations on facades and roofs. . . . . . . . . . . . . 177

xviii



Acronyms and abbreviations

ADMM alternating direction method of multipliers

AP aggregated problem

AR annual revenues

AVE avoided emissions

BA battery

BES building energy system

BO boiler

CAPEX capital expenses

CAVE cost of avoided emissions

CC current cost

CHP combined heat and power

COP coefficient of performance

CPT carbon payback time

DES district energy system

DHW domestic hot water

EH electrical heater

EMS energy management system

ERA energy reference area

GHG greenhouse gas

GHI global irradiation

GIS geographic information systems

GM grid multiple

GU grid usage

GWP global warming potential

HP heat pump

HVAC heating, ventilation and air conditioning

IPCC Intergovernmental Panel on Climate Change

IRR internal rate of return

KPI key performance indicator

LCA life cycle assessment

xix



Acronyms and abbreviations

LCoE levelized cost of electricity

LDC load duration curve

MAE mean average error

MAPE mean average percentage error

MILP mixed–integer linear programming

MOO multi–objective optimization

MP master problem

NG natural gas

NLP non linear programming

NPV net present value

OCC occupancy

OGD open government data

OP operating problem

OPEX operational expenses

PHS pumped hydro storage

PV photovoltaic

PVC photovoltaic curtailment

PVP photovoltaic penetration

RES renewable energy share

RMSD root mean square deviation

SC self-consumption

SH space heating

SOFC solid oxide fuel cell

SOO single–objective optimization

SP subproblem

SS self-sufficiency

SSE sum of squared errors

STO storage

TOTEX total expenses

TSA time–series aggregation

xx



List of symbols

Parameters

A area [m2]

C heat capacity coefficient [kW/m2K]

F bound of validity range of unit sizes [¦]

Φ specific heat gain [kW/ m2]

Q thermal power [kW]

T temperature [K]

U heat transfer coefficient [kW/m2K]

V volume [m3]

α azimuth angle [°]

b baremodule [-]

β limiting angle [°]

c energy tariff [currency/kWh]

cp specific heat capacity [kJ(/ (kg K)]

d distance [m]

dp frequency of periods per year [d/yr]

dt frequency of timesteps per period [h/d]

e electric power [kW/m2]

ε elevation angle [°]

η efficiency [-]

fb,r spatial fraction of a room in a building [-]

f s solar factor [-]

f u usage factor [-]

g global warming potential streams [kgCO2,eq /kWh]

γ tilt angle [°]

g g l ass ratio of glass per facades [-]

h height [m]

i interest rate [-]

i c1 fixed investment cost [currency]

xxi



List of symbols

i c2 continuous investment cost [currency/ ¦]

i g 1 fixed impact factor [kgCO2,eq]

i g 2 continuous impact factor [kgCO2,eq/ ¦]

i r r irradiation density [kWh/m2]

l lifetime [yr]

m mass [kg]

n project horizon [yr]

n number/ quantity [-]

pd period duration [h]

φ solar gain fraction [kW/ m2]

q thermal power [kW/m2]

ρ density [kg/m3]

s shading factor [-]

x coordinate, pointing east [-]

y coordinate, pointing north [-]

z coordinate, pointing to the zenith [-]

Variables

C cost [currency]

E electricity [kW(h)]

G global warming potential [kgCO2,eq]

H natural gas or fresh water [kW(h)]

Q thermal energy [kWh]

R residual heat [kWh]

T temperature [K]

f sizing variable [¦]

λ decomposition decision variable, master problem [-]

y decision variable, binary [-]

Dual Variables

[β] epsilon constraint for multi-objective optimization

[µ] incentive to change design proposal

[π] cost or global warming potential of electricity

Superscripts

A appliances

B building

L light

xxii



List of symbols

P people

bat battery

bes building energy system

cap capital

chp combined heat and power unit

cw cold water

− demand

dhw domestic hot water

el electricity

era energy reference area

ext external

gain heat gain

ghi global horizontal irradiation

gr grid

hp heat pump

int internal

inv investment

irr irradiation

max maximum

min minimum

net netto

ng natural gas

op operation

pv photovoltaic panel

r return

ref reference

rep replacement

s supply

SH space heating

stat static

+ supply

tot total

TR transformer

Indexes

0 nominal state

I I ref. to second law of thermodynamics

I ref. to first law of thermodynamics

xxiii



List of symbols

b building

f facades

i iteration

k temperature interval

l linerization interval

p period

pt patch

r replacement

t timestep

u unit

Sets

A set of azimuth angles

B set of buildings

O set of orientation

F set of facades

I set of iterations

K set of temperature levels

L set of linearization intervals

P set of typical periods

R set of units which need replacement

R set of roofs

S set of skydome patches

T set of timesteps

U set of units

Y set of tilt angles

xxiv



Introduction

Overview

# Future perspectives for districts in the context of the energy transition

# Literature gaps in modeling energy hubs

# Definition of renewable energy hubs

# Contributions and novelty of this thesis

This thesis is structured in five chapters. A general overview of the environmental impact of district

energy systems is first provided, including an analysis of the current situation and future perspectives

and aims. This overview then develops into a glimpse into the state–of–the–art of energy hubs,

providing the main literature gaps that are then addressed in this thesis. The novel concept of a

renewable energy hub at different scales is then defined.

Environmental impact of district energy systems

Today, it is broadly acknowledged that climate change is a threat to both human and natural

ecosystems and that the increasing greenhouse gas emissions from anthropogenic activities are

at the root of the warming of the climate [1]. Among all human-related activity sectors, buildings

accounted for 36% of the global final energy use and 39% of the greenhouse gas emissions in 2018 [2].

Among the latter, residential buildings globally accounted for 61% of the final energy use and 41% of

the emissions. Furthermore, over 50% of the global final energy use in residential buildings is related

to space and water heating [2, 3]. Therefore, decarbonizing the building stock requires a holistic

approach, that considers both electrical and thermal end uses of the energy demand.

The consensus among researchers around the globe is that mitigation pathways to limit global

warming should be characterized by the improvement of energy conservation and efficiency, the de-

carbonization of electricity, and the electrification of end–uses [4–6]. Regarding the decarbonization

of the building stock, switching to electrical heating, ventilation and air conditioning (HVAC) systems

allows a higher conversion efficiency and improves the integration of locally generated renewable

energy, such as by installing photovoltaic (PV) panels on rooftops [1, 3]. The building sector has

been forecasted to experience the highest direct electrification rates among energy end-use sectors,
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Introduction

as it is predicted to reach 73% by 2050 from the 2019 32% [5]. As a result, the electricity demand of

buildings is expected to double by 2050 [5]. Electrifying the building stock has the potential to lower

local pollutant emissions and increase the energy system efficiency, especially when coupled with

the use of local renewable energy sources [7, 8]. The installation of rooftop PV is a cost-convenient

choice in many parts of the world, even in absence of subsidies [9]. In Switzerland, the production

of electricity from solar energy is the most cost-effective way of expanding electricity production

capacities in terms of cents per kilowatt-hour [10]. As of 2019, more than 90% of the solar potential

on the top of roofs worldwide remained unexploited [9], whereas only 3.5% of the electricity demand

remained met by photovoltaic electricity, in Switzerland [10].
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Figure 1 – Strategy for the development of electricity generation from photovoltaic (PV) systems in
Switzerland through the year 2050. Plan according to Swiss Federal Office of Energy (SFOE) [11] and
Swisssolar, the Swiss Solar Energy Professionals Association [12].

Therefore, national authorities are aiming to drastically increase the electricity generation from solar

energy resources in the coming years. In Switzerland, the National Energy Act 2050 specified an aim

of more than 11 TWh production of renewable energy excluding hydropower by 2035 [11]. Using the

simplified assumption that 1 MWh electricity is annually generated by 1 kW of installed capacity of

PV systems in Switzerland [12], this extrapolates to an aim of 20 GW of installed PV capacity by the

year 2050 (Figure 1). In contrast, the national association Swisssolar has recommended a drastically

increased aim of 50 GW [12]. The potential of PV systems on building surfaces has been estimated as

approximately 67 GW in Switzerland [12]. Both thus require a drastic increase in exploited capacity

from the 2021 usage of approximately 5% to approximately 30% (SFOE) or 70% (Swisssolar). Further,

these aims demand an investigation of the impact of this strategy on the decentralized energy

systems of districts.
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What are renewable energy hubs?

Volatile power generation caused by the fluctuation of solar irradiation challenges the capacity of

the electrical power grid. Therefore, in addition to maximizing the electricity generated from the

sun, the interaction of the building energy system with the electrical power grid should be reduced

by maximizing self-consumption while decreasing the grid’s energy demand. At the same time,

a holistic approach is necessary to consider multiple energy carriers in order to supply not only

electricity but also the thermal service demand to buildings. These requirements can be fulfilled by

considering renewable energy hubs.

What are renewable energy hubs?

In light of the energy transition, the energy system is moving toward a distributed system character-

ized by a high level of interconnectivity among energy carriers. This transition has led to an increased

popularity in the concept of energy hubs. According to Geigl et al. [13], an energy hub is a unit

where multiple energy carries can be converted, conditioned, and stored. A review on energy hubs

with more than 100 contributions in the field has been provided by Mohammadi et al. [14], where

they define an energy hub as a place where the production, consumption, storage, and conversion

of multiple energy carriers happens. Energy hubs can be classified according to their sector, e.g.,

residential or industrial. Additionally, two scales of energy hubs can be considered, micro or macro

energy hubs, where a macro system comprises a collection of micro energy hubs controlled by a

central unit [14]. The energy system of a residential building is a micro hub; several buildings can be

allocated to one macro hub [15]. Energy hubs have shown a great potential to improve and increase

the usage of renewable energy technology in a system [16], such as the use of the implementation

of regional energy hubs with a high share of wind to avoid the curtailment of renewable energy

sources [16]. Recently, researchers have focused on optimally operating loads within the energy hub,

including scheduling, but without considering the optimal investment of equipment for the energy

hub [15]. However, Maroufmashat et al. [17] analyzed the interactions between collection of energy

hubs while considering differing pre-defined energy hub scenarios. Their result demonstrated an

increasing importance of interaction as the number of hubs considered increased, up to a maximum

of three interconnected energy hubs. Upscaling a collection to contain several interconnected

energy hubs, however, poses a computational problem; solving these optimization problems thus

requires computational reduction methods, such as the alternating direction method of multipliers

(ADMM) [18] or heuristic methods [19].

Different researchers have used slightly varied definitions of an energy hub. The consensus is that an

energy hub is a place that has in-flows and out-flows and considers the interconnection of multiple

energy carriers through conversion and storage units. Another important aspect involves the aim

of optimally controlling the operation of an energy hub to reach a certain goal. In this work, this

concept is expanded to a renewable energy hub.

3



Introduction

A renewable energy hub

# is a center of optimally interconnected energy carriers;

# contains conversion and storage units;

# maximizes its own usage of renewable energy resources;

# is embedded in a superior network;

# is considered at different scales. The decisive factor is the level at which investment

decisions are made.

Although some researchers have recently aimed to use an energy hub to optimize the integration of

renewable energy, the concept of a renewable energy hub is a novel term presented in this thesis. The

definition of a renewable energy hub is further detailed in the following section about contributions

and novelty.

Contributions and novelty

Unlike in prior studies, renewable energy hubs at different scales are addressed in this work. This

work contributes to the state–of–the–art by introducing renewable energy hubs, which is including

investment decisions within the concept of an energy hub and focuses on maximizing the usage of

renewable energy resources.

The level at which the investment decisions are taken is the decisive factor to define the scale of

the renewable energy hub. Two different scales are analyzed within this work: the building and

the district scale. When investment decisions are taken from the perspective of a building owner,

the renewable energy hub is at the building scale. When investment decisions are taken for the

community, the renewable energy hub is considered at the district scale. Therefore, a district can

either be considered as a collection of renewable energy hubs at the building scale or as one energy

hub at the district scale. The former corresponds to a decentralized design strategy, the latter to a

centralized one. Building energy systems are generally considered as decentralized or distributed

energy systems within a city district, where a city district is defined as a collection of buildings that

are all allocated to a single low–voltage transformer of the electrical grid. Unlike current state–of–

the–art, the interactions between decentralized energy systems are highlighted in both versions of

the design strategy of the district energy system and distributed loads are not aggregated.

A renewable energy hub maximizes the usage of energy from renewable sources to satisfy the

self-demand, causing interaction between the renewable energy hub and the superior network.

This work provides a detailed consideration of solar energy within renewable energy hubs, thereby

bridging the gap between studies that consider the accurate simulation of oriented irradiation and

those that optimize solar integration in building energy systems. The resulting approach applied in

this work can clarify the exchanges inside the renewable energy hub. To overcome computational
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issues caused by the large problem size of renewable energy hubs at the district scale, a deterministic

decomposition method is developed to perform the centralized multi–objective optimization (MOO)

of several dozen buildings.

These contributions are outlined in five chapters of the thesis as follows. Perspectives and outlook

are then summarized in the conclusion.

Chapter 1: Renewable energy hubs at the building scale

How are renewable energy hubs defined at the building scale?

What performance indicators should be used to describe renewable energy hubs?

As part of their mission to lead the renewable energy transition and ensure energy independence

and security of supply in the context of decarbonizing the energy mix and/or phasing out nuclear

energy, policy makers and energy operators have the responsibility of selecting indicators. Engineers

have thus been asked to propose key performance indicators (KPIs) that quantify the positive

impact of operation strategies and efficient technology solutions that harvest and distribute more

renewable resources while minimizing the environmental impact and overall costs. In this chapter,

the concept of renewable energy hubs at the building scale is introduced. A wide range of alternative

solutions are generated using mixed–integer linear programming (MILP) and MOO to search the

decision space of decentralized energy systems. Machine learning techniques, including principle

component analysis and k-medoids clustering, are applied to identify major trends, thus supporting

multi–criteria decision making.

Chapter 2: Photovoltaic panel orientation in renewable energy hubs

What is the impact of the orientation of PV panels on renewable energy hubs and the grid?

The integration of renewable energy sources, particularly PV panels, is becoming an increasingly

widespread solution for reducing the carbon footprint of a building energy system (BES). However,

the volatility inherent in their electricity generation and its mismatch with the typical demand

patterns are cause for concern, particularly from the viewpoint of the management of the power grid.

Compared with existing renewable energy hub approaches reported in literature, the contribution

of PV panels is modeled in more detail, including a more accurate solar irradiation model and the

shading effect among panels. Compared with existing studies in PV modeling, the interaction be-

tween the PV panels and the remaining units of the BES, including the effects of optimal scheduling,

is considered.
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Chapter 3: Facades in interconnected renewable energy hubs

What is the role and potential of facades in decentralized energy hubs?

The intersection of BES and the solar potential on building facades has not yet been adequately

investigated. Accordingly, PV panel orientation possibilities are investigated in combination with a

shadow model from the surroundings in the optimization approach of energy hubs at the building

scale in Chapter 3. The economic and environmental rationale for installing PV panels on facades

is also analyzed. The role of PV systems in urban districts, and particularly of facade-mounted PV

systems, is addressed by focusing on the amount of PV that is needed to reach self-sufficiency and

that can be installed while being economically beneficial. The district is optimized in a decentralized

fashion as a collection of renewable energy hubs at the building scale. Thereby, the amount of

electricity generated from the district is estimated that, from the perspective of the electricity grid,

needs to be distributed or stored, as well as the related costs. Although general conclusions cannot

be drawn based on a single study, a methodological approach to address the highlighted gap in the

literature is suggested; the proposed method is then applied to a specific case study to showcase

its potential. The chosen case study area is a typical pri-urban district on the outskirts of Geneva,

Switzerland.

Chapter 4: Computational reduction for renewable energy hubs at the district scale

What is the best method to overcome runtime issues when generating centralized energy hub designs?

The optimal design and scheduling of energy systems with a high share of renewables is a complex

and computationally demanding task. The mismatch of supply and demand of energy requires the

consideration of time–series with a resolution of a few minutes, whereas each system has a lifetime

of multiple decades. Additionally, this chapter aims to tackle renewable energy hubs at the district

scale, which includes several dozen distributed energy systems. Two algorithm are thus proposed

in Chapter 4 to systematically reduce the computational efforts of energy hubs at the district scale.

The first algorithm reduces the input data by exploiting the two-stage nature of the optimal design

and planning of the system and sequentially performing k-medoids clustering. Unlike the state–of–

the–art, the influence of varying the number of typical periods is not examined on the quality of the

clustering algorithm but on the objective function and the integer decisions. The second algorithm

is a decomposition approach of the model formulation itself. The Dantzig–Wolfe decomposition

algorithm is identified to be most suitable for the decomposition of renewable energy hubs at the

district scale. Thus, a direct contribution to the state-of-the-art is a formulation for MOO that also

allows an improvement of the initialization of the algorithm. The method is then validated using the

compact, undecomposed, model formulation of the problem.
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Chapter 5: Renewable energy hubs at the district scale

What are the potential and limitations of centralized renewable energy hubs at the district scale?

The integration of renewable energy technology in district energy systems is a common interest

in order to meet challenges connected to the energy transition. The optimal planning of these

district energy systems is a computational intensive task, as each building in the district has its

own energy system installed that exchanges resources with the community. In this chapter, the

previously proposed and validated Dantzig–Wolfe decomposition is applied to ease the computa-

tional efforts of renewable energy hubs at the district scale. The proposed method contributes to the

state–of–the–art in district energy modeling, as it allows entire low–voltage grids to be considered

in a deterministic approach. Further, this approach includes the MOO of the thermal and electric

systems. The proposed centralized approach furthermore allows the consideration of both central-

ized and distributed energy units in the district, as well as the inclusion of centralized constraints

such as the capacity of the local low–voltage transformer. The resulting centralized design strategy

is compared to the decentralized design strategy presented in Chapter 3, where a collection of

renewable energy hubs are considered at the building scale. To highlight the benefits at the district

scale, both methods are applied to a typical pri-urban district in the area of Geneva, Switzerland.

The benefits of this strategic, community-based design of renewable energy hubs at the district scale

are highlighted. Additionally, the grid–aware integration of solar energy in energy hubs at the district

scale is further analyzed.
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1Renewable energy hubs at the building

scale
Overview

# Modeling and optimization framework of renewable energy hubs at the building scale

# Integration of a smart heating system

# Definition, reduction and correlation of KPIs

# Focus on global warming potential with hourly resolution

The content of this chapter is mainly published in [20] and partly available in the supplemen-

tary information of publication [21].

Policy makers and energy operator have the responsibility to select indicators for their mission to

lead the renewable energy transition ensuring energy independence and security of supply in the

context of decarbonisation of the energy mix and and/or nuclear phase-out with increasing cost

for flexibility. Engineers are therefore asked to propose models and KPIs allowing to quantify the

positive impact of operation strategies and efficient technology solutions to harvest and distribute

more renewable resources, while minimizing the environmental impact and overall costs. The goal

of this chapter is to propose a modeling framework of renewable energy hubs at the building scale

and to classify the performance of possible solutions. A wide-range of alternative solutions are

generated using Mixed Linear Integer Programming (MILP) and Multi Objective Optimization (MOO)

to capture the decision space. Machine learning techniques, like principle component analysis

and k-medoids clustering, are applied to identify the major trends, thus supporting multi – criteria

decision making. Results highlight the importance of (i) setting appropriate system boundaries,

(ii) using at least hourly resolution and (iii) constructional footprint to characterize renewable

energy hubs. Low emission electrical grid mix had a high impact on design strategies and was in

conflict with decentralized, self-sufficient energy systems. Including life cycle assessment (LCA)

of the system showed besides operational emission, the constructional footprint was significantly

contributing to the total Global Warming Potential (GWP), especially in modern energy system

designs.
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1.1 Introduction

Efficient use of energy, promotion of domestic renewable energy and security of supply are recurrent

themes of energy policies with implication in the building sector, which is accountable for around

36% of the total final world energy consumption [2]. In addition, the electricity demand in this sector

is expected to increase by more than 70% by 2050 [5], highlighting the importance to strategically

plan the interaction between households with electricity power grid. The renewable energy hub,

promotes its own consumption of locally produced electricity and therefore aims to minimize the

interaction with the superior network. The first research question, which is addressed in this chapter,

is: How are renewable energy hubs defined at the building scale?. The first chapter of the thesis

is introducing the concept of a renewable energy hub at the building scale. The definition of the

considered energy systems is built upon preceding work from Stadler [22] and Girardin [23]. Thereby,

the aim is to demonstrate a holistic integration of the thermal demand side management, with a

smart heating strategy of the building.

In order to plan, measure, and decide, the framework of a renewable energy hub needs key per-

formance indicators (KPIs). Energy and environment strategies are developed and evaluated with

KPIs, which vary not only in definition but also between stakeholders. The magnitude of available

indicators is immense, research contributions are available that took a subset of the indicators and

focused only on the definition of the KPIs and their comparison [24]. Research groups which focused

on the development of whole frameworks measured the performance with indicators such as total

cost and equivalent CO2 emission [22, 25, 26]. In contrast, researcher focusing on the development

on single energy units favored technical performance indicators [27]. A large diversity exists for

KPIs describing the security of energy supply. Stakeholder distinguish between political relation,

self-sufficiency and also robustness of the system [28]. Some KPIs in this category are introduced

project-specific, which makes it difficult to compare the performances of different frameworks.

The second research question, which is addressed in this chapter is: What performance indicators

should be used to describe renewable energy hubs?. This chapter thus aims at bridging a gap between

identification of a minimum necessary set of indicators and evaluation of the impact of KPIs on the

description of a solution. Therefore, a large variation of common KPIs in the literature is collected

and major trends are analyzed with machine learning techniques. Special focus is on the evaluation

of the global warming potential (GWP). Contribution to the state-of-the-art is the consideration of

hourly values of the electrical grid mix instead of the yearly averages.
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1.2 Method

The goal of this chapter is to introduce a strategic way to generate decentralized energy system

designs and to show their interactions with their environment. Thus, the renewable energy hub

in form of a building energy system (BES) is defined in a first step. To identify a decision space, a

mixed–integer linear programming (MILP) optimization approach is adopted, where the types and

sizes of the different components of the BES are considered as optimization variables.

In a second step, a selection of conflicting KPIs are collected to assist the decision making among

different design proposals. Therefore, multi–objective optimization (MOO) is performed with

ecological, economical, technical and security indicators as objective. In order to be computationally

able to conduct a MOO, data reduction techniques is performed in a final step.
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Figure 1.1 – Schematic overview of a renewable energy hub at the building scale, which is also considered as
a decentralized energy system.

The BES modeling framework is illustrated in Figure 1.1. Heating requirements can be satisfied by

an air-water heat pump (HP), electrical heater (EH), a combined heat and power (CHP) unit in form

of a fuel cell, and a gas boiler (BO). Energy is stored in either a stationary battery (BA), domestic hot

water and buffer storage (STO) or the building envelope. Photovoltaic (PV) panels act as renewable

energy sources. The decentralized energy system is interconnected to the main energy distribution

networks: the natural gas, electricity and fresh water grids.
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Three types of energy demands are considered: space heating (SH), domestic hot water (DHW),

and electricity. Uncontrollable load profiles of electricity and DHW profiles are direct inputs to the

framework and can be generated using standardized profiles according to norms or measurements

in a pre-processing step. In contrast, the SH demand is modelled within the framework itself in

order to include the control strategy of the energy management system (EMS) and the possibility of

a thermal renovation of the building. The SH demand is impacted by factors such as the conductive

heat losses through the building envelope, the heat capacity of the building and the heat gains

from occupants, electric appliances and solar irradiation. Furthermore, space heating demand is

characterized by the desired comfort temperature of the rooms, the nominal return and supply

temperature of the heat distribution system and the control strategy of latter. This work builds

upon the methods developed by [23] for the thermal demand of the buildings and upon [22] for BES

design.

1.2.1 Energy system

The challenge in solving the BES modeling framework relies within identifying both the design

of each conversion and storage unit and the associated yearly load scheduling with sufficient

precision in a reasonable computing time. In addition, the problem formulation should allow

accounting for the existence of competing objectives. For these reasons, the optimal integration

of the building energy technologies is formulated as a MOO problem using MILP. Unit sizes and

installation decisions are used as the main optimization variables of interest. To clearly differentiate

decision variables from input parameters, bold typeset is used to represent all decision variables. As

all sets are predefined, normal and capital typeset is used. The main problem sets are: the set of of

buildings B, the set K of all different temperature levels of the heating system, the set of available

conversion and storage units U; the different days of the year are represented by periods in the set P,

to which hourly timesteps are allocated and contained in set T.

Sizing constraints The main equation for sizing and scheduling problem units are described by

Equations 1.1.

yb,u ·F mi n
u ≤ fb,u ≤ yb,u ·F max

u (1.1a)

fb,u,p,t ≤ fb,u (1.1b)

yb,u,p,t ≤ yb,u (1.1c)

∀b ∈ B ∀u ∈ U ∀p ∈ P ∀t ∈ T

The decision to purchase a unit is represented by the binary variable y , whereas the continuous

variable f represents the unit size. The upper and lower bound (F mi n , F max ) for unit installations
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are also necessary for identifying the validity range for the linearization of the cost function of the

unit [29].

Energy balances The energy system of the building includes all the different unit technologies

that are used to fulfil the building’s energy demand.

Ė g r,+
b,p,t +

∑
u∈U

Ė+
b,u,p,t = Ė g r,−

b,p,t +
∑

u∈U
Ė−

b,u,p,t + Ė B ,−
b,p,t (1.2a)

Ḣ g r,+
b,p,t =

∑
u∈U

Ḣ−
b,u,p,t ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.2b)

The superscript + indicates outgoing flows like the supply of each grid or unit, whereas − marks an

incoming flow, also often referred to as demand unit or feed–in to the grids. The electricity demand

of the building E B is uncontrollable and a input requirement that needs to be satisfied. Energy can

be exchanged with the electricity grid E g r in both ways (Equation 1.2a), whereas water and gas grids

H can only supply (Equation 1.2b).

The heat cascade ensures that heat requirements are supplied, while the second law of thermody-

namic is satisfied. The hot streams Sh and cold streams Sc are sorted in increasing temperature

intervals k [22].

Ṙk ,b,p,t − Ṙk+1,b,p,t =
∑

uh∈Sh

Q̇−
uh ,k ,b,p,t −

∑
uc∈Sc

Q̇+
uc ,k ,b,p,t (1.3a)

Ṙ1,b,p,t = Ṙnk+1,b,p,t = 0 ∀k ∈ K ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.3b)

In Equation 1.3a the residual heat Rk is cascaded to the next interval (k +1). Equation 1.3b closes the

thermal balance by ensuring that no heat is cascaded to the highest or lowest interval [22]. To ensure

that no energy is accumulated between different periods, cyclic constraints are imposed both on the

indoor temperature and on thermal and electrical energy storage systems. Cyclic constraints ensure

that the state is reset to its initial status at the end of each period [22].

Heating distribution system The thermal loads are included into the heat cascade to satisfy the

second law of thermodynamics. As the thermal load of space heating Q̇SH ,− is a variable, variable

return and supply temperatures would lead into non-linearity. Therefore, a set of discretized

substreams are defined which are constrained by the nominal operation of the hydronic heating

system [22]. These discretized thermal streams can be activated or not, and be scaled in magnitude

to correspond in sum to the thermal stream Q̇SH ,−, which is satisfying the space heating demand
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[22]. Thereby, the heat transfer rate cp ·ṁ of the nominal state serves as an upper bound for the sum

of the transfer rates of the substreams. The temperature of the discretized streams is predefined

in fixed intervals around the supply and return temperatures of the nominal state. The nominal

operation is described in its main points in following equations.

Aer a
b · q̇ st at ,SH

b,p,t = cp ·ṁb · (T s
b,p,t −T r

b,p,t ) ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.4)

The nominal return and supply temperatures are obtained with a static heating model q̇ st at ,SH

(Equation 1.4). The static heating model balances the heat gains and losses similar to the energy

balance in the building, but without the influence of capacities or overheating. Thus in the following,

the desired indoor temperature T i nt
0 is fixed.

Aer a
b · q̇ st at ,SH

b,p,t = Q̇g ai n
b,p,t −Ub · Aer a

b · (T i nt
b,0 −T ext

p,t )) ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.5)

The three unknown parameters, the mass flow ṁ and the return and supply temperatures T r and

T s are calculated with two additional assumptions.

cp ·ṁb = Q̇b,0

T s
b,0 −T r

b,0

(1.6a)

Q̇b,0 =Ub · Anet
b · (T i nt

b,0 −T ext
0 ) ∀b ∈ B (1.6b)

First assumption is, that the control strategy aims at keeping the mass flow constant. This allows to

assess the heat transfer fluid rate by the design conditions (Equations 1.6a and 1.6b). The design

condition is determined by the coldest external temperature, for which the heating system is de-

signed and devised without additional internal gains. The nominal supply and return temperatures

at design state vary for each building category and are influenced by the renovation state and age of

the building. The temperatures are derived from the energy signature model, described in detail by

Girardin [23].

Q̇ st at ,SH
b,p,t = (U A)hex

b ·
T s

b,p,t −T r
b,p,t

ln

(
T s

b,p,t−T i nt
0

T r
b,p,t−T i nt

0

) ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.7)

The second assumption is, that the heat exchange model for buildings is describing the thermal

heat transfer [23]. Later assumption allows to calculate the nominal return and supply temperatures.
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This leads to the last Equation 1.7, which is needed to define the nominal state.

(U A)hex
b = Q̇b,0 ·

ln

(
T s

b,0−T i nt
b,0

T r
b,0−T i nt

b,0

)
T s

b,0 −T r
b,0

∀b ∈ B (1.8)

The overall heat transfer coefficient U hex
b and the heat exchange area Ahex

b of the heating system is

characteristic for each building, which are calculated on the design condition (Equation 1.8).

1.2.2 Energy demand

Three types of energy demands are considered in the model: space heating (SH), domestic hot water

(DHW), and uncontrollable electricity (such as for lightning or appliances). These demands are

satisfied within the renewable energy hub, importing energy or exploiting resources that are available.

They are included in the energy balances (Equation 1.2); all thermal loads are also respected in the

heat cascade to satisfy the second law of thermodynamics (Equation 1.3).

Space heating demand The general form of the SH demand can be expressed by the first order

dynamic model of buildings [22].

Q̇S H
b,p,t = Q̇g ai n

b,p,t −Ub ·Aer a
b ·(T i nt

b,p,t −T ext
p,t )−Cb ·Aer a

b ·(T i nt
b,p,t+1−T i nt

b,p,t ) ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.9)

In Equation 1.9, Qg ai n represents internal heat gains from appliance, people and solar irradiation

and Aer a the energy reference area (ERA), which has to be heated. The overall heat transfer coef-

ficient U consists of the heat transfer by conduction and air renewal, whereas the thermal heat

capacity C describes the response time of the internal temperature [30]. The internal building

temperature T i nt is considered as a variable to be optimized. This allows the building heat capacity

to work as an additional, free thermal storage for the building energy system, thus making it possible

to use available surplus electricity, which was generated onsite. Clearly, comfort should also be

taken into account: this is achieved through the introduction of a penalty cost in the optimization

problem objective at each hour when the indoor temperature exceeds pre-defined bounds. These

penalty costs are deduced in a post-computing step.

Q̇g ai n
b,p,t = Q̇ i nt

b,p,t +Q̇ i r r
b,p,t ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.10)

The heat gain has two main contributions: internal gains resulting from the usage of the building

15



1

Chapter 1. Renewable energy hubs at the building scale

(Q̇ i nt ), and solar irradiation (Q̇ i r r ) (Equation 1.10).

Q̇ i nt
b,p,t = Anet

b ·
∑

r∈Rooms
fb,r · f u

r,p · (ΦP
r,p,t +ΦA+L

r,p,t ) ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.11)

The internal gains (Equation 1.11) mainly represent the immediate consequence of people occu-

pancy (superscript P ) and of the usage of electric appliances and lights (superscript A+L). Demand

profiles for the different building and room usages can be found in standard norms [31]. The total

gains for each building result from the sum of the gains of each room in the building. fb,r represents

the fraction of the total building’s surface allocated to each room r . A usage factor f u is used to

account for monthly/weekly variations related to the specific usage of each building and room type

[31]. The internal gains are normalized to the internal net surface of the building Anet , calculated as

the heated surface without the base surface of inner and outer walls.

Q̇ i r r
b,p,t = Aer a

b ·φi r r · ˙i r r
g hi
b,p,t ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.12)

The solar gains are connected to a solar gain factor φ , which describes how much global irradiation

is received as heat by the building.

Domestic hot water demand Typical DHW demand is stated in standardized national norms [31,

32]. Similar to the internal heat gains, the DHW profile is specific to each room type and usage.

Qdhw,−
b = Anet

b ·
∑

r∈Rooms
fb,r · f u

r,p ·V dhw,r e f
r · nr e f

Anet
r

· cdhw
p ·ρdhw (T dhw −T cw ) ∀b ∈ B (1.13)

In Equation 1.13, the factor nr e f /Anet
r expresses the number of reference units per net surface of

the specific room . The cold water temperature is assumed to be constant at T cw = 10°C, whereas

the hot water temperature has to be delivered at T dhw = 60°C to meet sanitary standards. The

thermodynamic properties ρdhw and cdhw
p are the density and the specific heat capacity of water,

respectively. The daily profiles are derived from the occupancy profiles in combination with the

activity profiles of the rooms [31].

Electricity demand When measured data is not available, the electricity demand can be calculated

based on the profiles provided by national standard norm [31].

Ė B
b,p,t = Anet

b ·
∑

r∈Rooms
fb,r · f u

r,p · ė A+L
r,p,t ∀b ∈ B ∀p ∈ P ∀t ∈ T (1.14)
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The electricity demand of the appliances and light of the different rooms are combined in the e A+L

term (Equation 1.14). The net surface of the building Anet , the share of specific room types fb,r and

the usage f u
r,p factor lead to the uncontrollable load of the building E B .

1.2.3 Energy system technologies

The modeling of energy systems technologies of buildings was demonstrated as a contribution to

the state–of–the–art by Stadler [22] and are integrated in the renewable energy hub. In this section

only an overview of the energy system technologies is provided. The nature of the input and output

streams, and the reference unit of each technology are detailed in Table 1.1. The reference unit

is the physical unit of the sizing variable f (see Equation 1.1). The thermal systems for providing

DHW and SH must be separated in order to apply to hygienic standards. Furthermore, both service

requirements are on different temperature levels.

Table 1.1 – Overview of energy system technologies, based on the work by Stadler [22].

technology input stream output stream reference unit

energy conversion technologies

gas boiler natural gas heat [kWth]

heat pump ambient heat, electricity heat [kWe]

electrical heater SH electricity heat [kWth]

electrical heater DHW electricity heat [kWth]

PV panel solar irradiation electricity [kWp]

cogeneration† natural gas electricity, heat [kWe]

energy storage technologies

thermal storage SH heat heat [m3]

thermal storage DHW heat heat [m3]

battery electricity electricity [kWh]

† model based on a solid oxide fuel cell

The gas boiler and the electrical heaters are implemented using a static conversion efficiency of 0.98

and 0.99, respectively. The heat pump is modeled using the ideal coefficient of performance and

the second law efficiency that accounts for irreversibilities. The ideal coefficient of performance

is modeled with variable return and supply temperatures. To avoid non-linearities, the streams

of the heat pump are discretized. The main heat source, which is considered in this work, is

ambient air. Different heat sources can be considered by changing the source temperature and the

second law efficiency. The cogeneration unit is modeled using a nominal thermal and electrical

conversion efficiency of 0.59 and 0.27, respectively. A minimum load of 50% and a minimum

operation duration of 3h is considered. The energy conversion efficiencies decline linearly until the

minimum partload, where the efficiencies are 0.58 and 0.20. The PV panels are modeled considering
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the energy conversion of global solar irradiation to electricity. The reference efficiency is 0.17, which

varies with the temperature of the modules. Thermal solar panels, which can satisfy the demand of

DHW, are also included in the modeling framework presented by Stadler [22]. It was more beneficial

to provide the DHW with the combination of the heat pump and PV panels. Additionally, the

roof surface is limited and the installation of PV panels were prioritized by the solver. Therefore,

the thermal solar panels were only chosen in extreme grid tariff scenarios, where additionally the

installation of heat pumps were prohibited a priori. Hence, thermal panels are not further focused

on in this work.

The thermal storage systems are implemented considering water as medium, which is discretized

in three temperature levels. The electricity storage system is modeled as lithium battery with a

minimum and a maximum state–of–charge of 0.2 and 0.8, respectively. The discharge and charge

efficiency is considered to be 0.9.

1.2.4 Problem objectives

The design of decentralized energy systems can be considered optimal from various perspectives.

In this work, focus lies on minimizing economic indicators (operational expenses (OPEX), capital

expenses (CAPEX) and total expenses (TOTEX)). Additionally, the minimization of the total GWP can

be considered as objective. As objectives can be generally competing (solutions with high CAPEX

have low OPEX, and vice versa), the problem can be approached using a MOO approach. The MOO

problem is implemented using the ε-constraint method to generate Pareto curves. For example,

minimizing OPEX can be considered as the first main problem objective and different optimization

problems are solved, where the CAPEX is constrained at incrementally increasing values. The same

principle is then repeated after inverting the roles of the two objectives.

Annual operating expenses The annual OPEX consist of the expenses and gains related to the

interaction with the local electricity and natural gas grids. The price for fresh water supply is

considered to be neglectfully small and is not included in the calculation of annual OPEX.

C op
b =

∑
p∈P

∑
t∈T

(
cel ,+

p,t · Ė g r,+
b,p,t − cel ,−

p,t · Ė g r,−
b,p,t + cng ,+

p,t · Ḣ g r,+
b,p,t

)
·dt ·dp ∀b ∈ B (1.15)

In Equation 1.15, cel ,+, cel ,− and cng ,+ represent the electricity purchase and selling prices, and the

natural gas purchase price; Ḣ g r,+ represents the energy flow of natural gas purchased from the grid

for building b at time step t and typical period p; similarly, Ė g r,+ and Ė g r,− represent the electricity

flows from and to the grid. Annual values are integrated over each typical period p and accounted

with their frequency d .
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Annual capital expenses The annual CAPEX include the investment and replacement costs of the

unit technologies with different expected lifetimes.

C c ap
b = i (1+ i )

(1+ i )n −1
·
(
C i nv

b +C r ep
b

)
(1.16a)

C i nv
b =

∑
u∈U

bu · (i c1
u · yb,u + i c2

u · fb,u
)

(1.16b)

C r ep
b =

∑
u∈U

∑
r∈R

1

(1+ i )r ·lu
· (i c1

u · yb,u + i c2
u · fb,u

) ∀b ∈ B (1.16c)

In Equation 1.16a, expenses are annualized over the project time horizon n using the project interest

rate i [29, ch. 10 ]. The parameters i c1 and i c2 represent the linear version of the unit cost function

with bare module b [22]. If the project horizon exceeds the lifetime of a unit (l ), the unit must be

replaced and purchased again (Equation 1.16c). For units with a lifetime greater than or equal to the

project time horizon, the total number of replacements (R) is zero.

Annual total expenses The annualized TOTEX is expressed as combination of CAPEX and OPEX

(Equation 1.17).

C t ot
b =C c ap

b +C op
b ∀b ∈ B (1.17)

Global warming potential The Intergovernmental Panel on Climate Change (IPCC) refers to emis-

sions by their CO2 equivalence [3]. Commonly, when investigating the ecological footprint, the

greenhouse gas emissions per unit of final energy (e.g.; gCO2 / kWh of produced electricity) are con-

sidered [26]. In this approach, the footprint of batteries and thermal storage cannot be considered.

Additionally, the impact factors are based on different efficiencies and amortization cannot be

compared to the unit choices.

G t ot
b =Gbes

b +Gop
b ∀b ∈ B (1.18)

To overcome these issues, the GWP is divided into the share coming from the operation Gop and the

construction of the building energy system Gbes to derive the total annual global warming potential

G tot (Equation 1.18).

Gop
b =

∑
p∈P

∑
t∈T

(
g el

p,t · Ė g r,+
b,p,t − g el

p,t · Ė g r,−
b,p,t + g ng · Ḣ g r,+

b,p,t

)
·dp ·dt ∀b ∈ B (1.19)
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Equation 1.19 details the GWP from the system’s operations in CO2,eq , where the period and time-

dependent parameters gp,t are account for the GWP per kWh consumed electricity E [33]. It is

common practice to use average values, as for accounting for the GWP per consumed natural gas

H . Therefore, the different resulting contributions to the GWP are considered. The parameter dt

accounts for the duration of each timestep within a period and dp for the duration or frequency of

each period within one year.

Gbes
b =

∑
u∈U

1

lu
·
(
i g 1

u · yb,u + i g 2
u · fb,u

)
∀b ∈ B (1.20)

The GWP of the building energy system Gbes is expressed in Equation 1.20. The parameters i g 1 and

i g 2 represent the linear unit cost function in terms of GWP. The database ecoinvent documents

the environmental impact of energy processes and materials and provides life cycle assessments

of the different technologies [34]. The allocation system model and when available Swiss data is

chosen. To assess the GWP of different unit technologies, the indicator "GWP 100a" of the method

"IPCC 2013" documented in the online version 3.6 of ecoinvent is adopted. This indicator considers

greenhouse gas emissions based on the GWP published by the IPCC for a time horizon of 100 years.

1.2.5 Key performance indicators

The performance of the renewable energy hub is measured according to large number of different

indicators in the literature. The KPIs vary between studies, which makes it a challenge to compare the

result of different systems. Following section is defining and collecting a comprehensive bandwidth

of KPIs, with the aim to demonstrate their correlations and to reduce their necessary number. The

KPIs are divided in four subgroups: Environmental, economical, technical and security indicators.

All previously mentioned objectives serve as KPI, which are the GWP associated to operation and the

system technologies (Equations 1.18, 1.19,1.20), the OPEX (Equation 1.15), CAPEX (Equation 1.16a)

and TOTEX (Equation 1.17). KPIs are expressed in normal text font in order to distinguish them

from variables and parameters of the model formulation. The following equations are expressed in

annual values to ease readability, although the operation and the exchanges of renewable energy

hub are analyzed in hourly values.

Technical indicators Technical indicators evaluate the performance of the energy system from

the perspective of the energy conversion technologies. In general, these indicators measure the

energetic effort to fulfill the service requirements of SH, DHW and electricity. Common point

of discussion is how and if renewable energy sources should be included in the balance or not.

For this reason, following definitions of energy and exergy efficiency are defined for both system

boundaries, PV panels, or solar irradiation, included (ηpv ) and excluded (η). The energy efficiency is
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the effectiveness of the system or the application of the first law of thermodynamics [35].

ηI =
E B ,−+QS H ,−+Qdhw,−

E g r,++E pv,+−E g r,−+H g r,+ (1.21)

In Equation 1.21, the electricity demand of the building E B is solely the uncontrollable demand,

which is together with the demand for domestic hot water Qdhw , a service requirement. The demand

for space heating QSH is variable as it depends on the heating strategy of the building.

The exergy efficiency is evaluating the thermodynamic performance of the system respecting the

second law of thermodynamics [35]. One challenge for the exergy efficiency is the correct system

boundaries. One possibility is to assume that the space heating services are delivered at the tem-

perature of the room [36]. Another possibility would be to consider supply and return temperature,

which represents a system boundary at the convector itself.

ηI I =
E B ,−+EQS H ,−+EQdhw,−

E g r,++E pv,+−E g r,−+E H g r,+ (1.22)

In Equation 1.22, the exergy content of the DHW demand EQdhw is accounted at 328K and the

one for SH at the current indoor temperature, which depends on the heating strategy. Reference

temperature for the Carnot factor is the time-dependent external temperature. The exergy content of

methane is used for the one of natural gas E H g r,+. Chemical exergy values of methane are available

in [36, ch.11].

Including the PV panels within the system boundaries means not to directly account for the electric-

ity the system receives from the panels but for the incoming energy in form of solar irradiation. This

includes not only the evaluation of the energy conversion efficiency of the PV panels but also the

level of PV curtailment.

η
pv
I = E B ,−+QS H ,−+Qdhw,−

E g r,+−E g r,−+H g r,++ Apv ∗ i r r g hi
(1.23)

In Equation 1.23, the area of installed PV panels and the global solar irradiation i r r g hi are replacing

the former electricity from PV panels (compare Equation 1.21).

η
pv
I I = E B ,−+EQSH ,−+EQdhw,−

E g r,+−E g r,−+E H g r,++E H g r,++ Apv ∗E i r r
(1.24)

In Equation 1.24, the exergy value of solar irradiation E i r r is referenced at the temperature of the

sun 6000K [27].
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For energy systems relying on heat pumps, the coefficient of performance (COP) is an important

metric.

COPb,p,t =
Qhp,+

b,p,t

E hp,−
b,p,t

∀b ∈ B ∀p ∈ P ∀t ∈ T (1.25a)

COPb =
Qhp,+

b

E hp,−
b

∀b ∈ B (1.25b)

In Equation 1.25a, the COP is calculated with the energy consumption E hp,− and the heat delivered

Qhp,+ by the heat pump at every timestep. The COP is changing with the operation condition in each

timestep, but can also be expressed as annual average with the sum over the electric consumption

E hp,− and the annual heat delivered Qhp,+ (Equation 1.25b). The COP is specific to the renewable

energy hub of each building b.

Security indicators The following performance indicators evaluate the security of the supply. This

comprises of two aspects, the degree of autonomy like the self-sufficiency (SS) as well as the stress

level on the distribution grid like the grid usage (GU).

SS = E chp,++E pv,+−E g r,−

E chp,++E pv,+−E g r,−+E g r,+ (1.26)

SS is the share of electricity demand, which can be covered by onsite generated electricity [37] (Equa-

tion 1.26).

SC = E chp,++E pv,+−E g r,−

E chp,++E pv,+ (1.27)

self-consumption (SC) is the share of the onsite generated electricity, which is consumed by the

decentralized energy system itself [37] (Equation 1.27).

GU±
b = max

p,t

 E g r,±
b,p,t

maxp,t

(
E B ,−

b,p,t

)
 ∀b ∈ B (1.28)

The GU describes the interaction with the grid in respect to the maximum uncontrollable load of

the building. The uncontrollable load is excluding the demand for heating. Therefore, this indicator
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evaluates the impact of a system design on the grid. Equation 1.28 defines the GU according to [25].

PVC = E pv,g en −E pv,+

E PV ,g en
(1.29)

The photovoltaic curtailment (PVC) factor is share of the total amount of PV energy that is curtailed

from the PV generation E pv,g en (Equation 1.29) [25].

GM±
b = max

p

 maxt Ė g r,±
p,t

1
pdp

∑
t

(
Ė g r,±

p,t

)
 ∀b ∈ B (1.30)

The grid multiple (GM) limits the peak power of the grid to the average demand of a period [38]. It

constrains the height of the peak demand relative to the average usage during the time. A GM = 2

maximal allows a peak twice as high as average grid supply (+) or feed-in (-). Equation 1.30 defines

the GM, where pd is the total duration of a period.

Economical indicators The net present value (NPV) is the absolute value of the investment in the

present. This KPI is neither accounting for nor evaluating the runtime of the project. Several studies

use NPV to asses the value of the proposed investment plan for energy systems [25, 39] .

NPV =−
(
C i nv +C r ep

)
+ (1+ i )n −1

i (1+ i )n ·
(
−C op +C op,r e f

)
(1.31)

In Equation 1.31, cashflows are balanced in the present. Therefore, the CAPEX does not need to be

annualized, whereas the difference of the proposed OPEX C op, to the of current one C op,r e f needs to

be accumulated over the project horizon n and accounted with the project interest rate i [29, ch. 10].

The internal rate of return (IRR) is the discount rate to which the NPV would become zero, hence

would become profitable. The higher the IRR the more profitable and safer is the planned investment.

IRR = i | NPV(i ) = 0 (1.32)

In contrast to NPV the IRR respects the runtime of the project and is not an absolute value (Equa-

tion 1.32). For example, the IRR can be used as objective to analyse the optimal PV size [40].

Annual revenues (AR) are the benefit from selling the generated electricity to the grid and from

avoiding electricity import [40].

AR = (cel ,+ ·SC+ cel ,− · (1−SC)) ·
(
E pv,++E chp,+

)
(1.33)
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In this study, electricity can be generated by CHP and PV panels, hence their operation is the only

one considered in Equation 1.33. SC is the share of onsite generated electricity which is consumed

by the decentralized energy system itself .

The levelized cost of electricity (LCoE) is the true cost of onsite consumed electricity. It respects

also the investment in the energy system infrastructure. The definition of LCoE is controversial and

therefore included in different versions.

LCoEI = C c ap,pv +C c ap,bat −E pv,+ · (SC · cel ,++ (1−SC) · cel ,−)
E pv,+ (1.34)

The first version (LCoEI ) is balancing the cost of the electricity generated onsite (Equation 1.34).

Operation costs are the annual rewards, similar to Equation 1.33. Degradation and maintenance

is neglected, however replacement costs are included in the capital expenses C cap , in case the

technologies reach their end of life and need to be replaced. If LCoEI is a positive value, the

investment of battery and PV is profitable. LCoEI is only considering the generated electricity and

the investment from PV panels and batteries, as including CHP in the calculation would neglect

combined heating services. The performance indicator is defined according to the review made by

branker et al. [41].

LCoEI I = C c ap,pv +C c ap,bat + cel ,+ ·E g r,+− cel ,− ·E g r,−

E B
(1.35)

Instead of evaluating the electricity cost of a utility, the second definition of LCoE evaluates the

electricity cost of the whole project (Equation 1.35) [25]. However, this definition is only applicable

for systems without CHP and heat services based on electricity.

The cost of avoided emissions (CAVE) are economic value of avoided emission.

CAVE = C tot ,r e f −C t ot

G tot ,r e f −G t ot
(1.36)

Equation 1.36 is closely related to Equation 1.40 and avoided emissions (AVE). The reference system

is the current energy system which is accounted by its current costs C tot ,r e f and connected emissions

G tot ,r e f , which are resulting from satisfying current annual electricity, SH and DHW demand.

Environmental indicators There is a great variety of KPIs to determine and rate ecological perfor-

mance of energy systems in open literature. Some are collected and presented in the review [24].

The focus of this study are energy systems for residential buildings. Therefore, the categories are

reduced to GWP and the use of renewable energy sources.
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The renewable energy share (RES) gives the information to which part renewable energy sources are

used to provide the required energy supply. Additionally, to the grid supply the generated electricity

on site from PV panels is considered to be 100% renewable.

The photovoltaic penetration (PVP) measures how much of the total electricity demand of the build-

ing and the units could be covered by generated electricity from photovoltaic panels (Equation 1.37).

This KPI is not measuring actually self–consumption or includes the operation of the PV panels; it

rather gives information about the installed capacity of renewable energy resources in form of PV

electricity in the renewable energy hub.

PVP = E pv,g en

E pv,++E chp,+−E g r,−+E g r,+ (1.37)

The carbon payback time (CPT) indicates how many years a renewable technology has to be operated

to pay off the GWP, which is connected to its construction.

CPTpv = Gbes,pv∑
b∈B

∑
p∈P

∑
t∈T(g el

p,t ·E pv,+
b,p,t ) ·dt ·dp

(1.38)

In Equation 1.38, the CPT is calculated based on the indirect emissions of all installed PV panels

Gbes,pv and on the avoided emission while operating them [24].

CPTpv,bat = Gbes,pv +Gbes,bat∑
b∈B

∑
p∈P

∑
t∈T(g el

p,t ·E pv,+
b,p,t ) ·dt ·dp

(1.39)

When focusing on the electrical side of the energy system, a common combination are PV panels

together with electrical storage systems. Therefore, the CPT in Equation 1.39 is accounting for the

indirect emission of both installed PV panels Gbes,pv aswell as electric batteries Gbes,bat .

The difference of GWP between the current energy system and the proposed design are the AVE [42,

ch.8].

AVE =G tot ,r e f −G t ot (1.40)

In Equation 1.40, the emissions of the reference system Gop,r e f are calculated based on current

annual energy demand of electricity, SH and DHW in combination with typical impact factors,

which can be found in the appendix.
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Table 1.2 – Overview of common KPIs of decentralized energy systems, including abbreviation (abbr.) used
in this work, symbol, physical unit to associated mathematical equation (equ.), and reference (ref.) to useful
literature. Chosen currency is Swiss Francs (CHF), which corresponds to the currency of the case study.

description abbr. symbol unit equ. ref.

technical indicators

coefficient of performance (HP) COP COPb [-] (1.25) [35]

energy efficiency (1st law efficiency) - ηI [-] (1.21) [36]

exergy efficiency (2st law efficiency) - ηI I [-] (1.22) [36]

energy efficiency, PV panels included - ηI ,pv [-] (1.23) [27]

exergy efficiency, PV panels included - ηI I ,pv [-] (1.24) [27]

security indicators

grid multiple demand GM GM− [-] (1.30) [22]

grid multiple supply GM GM+ [-] (1.30) [22]

grid usage demand GU GU− [-] (1.28) [25]

grid usage supply GU GU+ [-] (1.28) [25]

photovoltaic curtailment PVC - [-] (1.29) [25]

self-consumption SC - [-] (1.27) [37]

self-sufficiency SS - [-] (1.26) [37]

economical indicators

annual capital expenses CAPEX C cap [CHF/yr] (1.16a) [29]

annual operation expenses OPEX C op [CHF/yr] (1.15) [29]

annual investment costs - C i nv [CHF/yr] (1.16b) [29]

annual replacement costs - C r ep [CHF/yr] (1.16c) [29]

annual revenues AR - [CHF/yr] (1.33) [40]

annual total expenses TOTEX C tot [CHF/yr] (1.17) [29]

cost of avoided emissions CAVE - [CHF/kgCO2,eq] (1.36) [42]

internal rate of return IRR - [-] (1.32) [29]

levelized cost of electricity (definition 1) LCoE LCoEI [CHF/kWh] (1.34) [41]

levelized cost of electricity (definition 2) LCoE LCoEI I [CHF/kWh] (1.35) [25]

net present value NPV - [CHF] (1.31) [29]

environmental indicators

avoided emission AVE - [kgCO2,eq/yr] (1.40) [42]

carbon payback time PV systems CPT CPTpv [yr] (1.38) [24]

carbon payback time PV & battery systems CPT CPTpv, bat [yr] (1.39) [24]

global warming potential from operation GWP Gop [kgCO2,eq/yr] (1.19) [43]

global warming potential from BES GWP Gbes [kgCO2,eq/yr] (1.20) [43]

photovoltaic penetration PVP - [-] (1.37) [25]

renewable energy share RES - [-] (-) [24]

total global warming potential GWP G tot [kgCO2,eq/yr] (1.18) [43]
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1.2.6 Case study

The generation of renewable energy hub designs and the evaluation of associated KPIs is demon-

strated by performing MOO of 40 different residential buildings. The main input data are detailed

in Table 1.3. The buildings are defined by their usage type, their renovation stage and their size in

terms of ERA and net surface. The characteristic input parameter are derived from publicly available

databases of the national building stock [44, 45].

Table 1.3 – Overview input data of the case study for 40 buildings. Additional input information is
the current main energy carrier, used for providing hot water and space heating services, considered
carrier: heating oil, natural gas, electricity, solar irradiation.

multi family
house

multi family
house

single family
house

single family
house

building type + I I II II

building category+ existing standard existing standard

number of buildings 8 2 26 4

total net surface Anet 6400 970 6500 1400 m2
net

total energy ref. area Aer a 8000 1200 8200 1800 m2
er a

design supply temperature T s
0 65 41.5 65 41.5 °C

design return temperature T r
0 50 33.9 50 33.9 °C

overall heat transfer factor† U 1.8 ±0.3 0.83 ±0 1.74 ±0.24 0.83 ±0 W/(m2
er a K)

heat capacity factor† C 120 ±0 120 ±0 120±0 120±0 Wh/(m2
er a K)

solar gain factor † φ 0.06 ± 0.015 0.0120 ± 0 0.06 ± 0.013 0.0120 ± 0 -

annual electricity demand E B 22 20 22 19 kWh/m2
net

annual hot water demand Qdhw 25 25 19 19 kWh/m2
net

annual internal heat gain Qi nt 30 32 29 29 kWh/m2
net

annual current cost † C op 27 ± 4 16 ± 3 32 ± 13 20 ± 1 CHF/m2
er a

+ according Swiss standard norm [31]
† average values ± standard deviation. Detailed building data is available in the appendix.

The heating system requirements are characterized by the design return and supply temperatures

of the heating network, the overall heat transfer factor, the capacity factor, and the solargain factor

that are derived by the method developed by Girardin [23]. In a pre-processing step, the annual

demand profiles for domestic hot water and electricity are derived according to previously presented

methods (Section 1.2.2). Additionally, the desired indoor temperature is assumed to be 20 °C for all

buildings. Additional input information is the main energy carrier which is currently used to supply

thermal service demands. This information is used to estimate current cost and GWP of the building

energy system inplace.
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Data reduction The hourly timesteps of a typical annual profile, leads to 8760 data points per

year. This leads, together with the complexity of the model, to computationally untraceable models.

Reducing the size of the data representing the energy demand of the renewable energy hub and

weather conditions is required. The aggregation of time–series to typical periods is specifically

popular, as patterns occur naturally in the supply and demand of energy, which arise in the time

dimension through hourly, daily and seasonal cycles. A recent comprehensive review by Hoffman

et al. [46], who analyzed data reduction techniques that were applied for modeling energy systems

in 130 different publications. Schütz et al. [47] compared different aggregation methods for the

selection of typical demand days, such as k-means, k-medians, k-centers, k-medoids, seasonal and

monthly based classifications. Hoffman et al. and Schütz et al. [46, 47] demonstrated that the more

intuitive aggregation methods of seasons or months led to significantly larger errors than machine

learning methods for the same computation time. Algorithms within the latter category performed

similarly well, although k-medoids were most reliable for approximating costs. Therefore, k-medoids

clustering algorithm is chosen and performed. Typical days are identified based on two variables:

global irradiation and ambient temperature. Typical weather data is available from the EnergyPlus

open source database [48]. Packages in the programming language R are available and used to

perform the clustering [49]. First, the input data is normalized and converted to a distance matrix,

using the function distNumeric, provided by the package kmed. Then, the k-medoids clustering

is performed using the function wcKMedoids of the package WeightedCluster with the method

PAMonce. Figure 1.2 shows the quality of the preformed data clustering on global irradiation and

ambient temperature for Geneva, Switzerland, with different number of clusters.
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Figure 1.2 – Quality of the data reduction technique for different number of k-medoid clusters:
load duration curve (LDC), mean average error (MAE), root mean square deviation (RMSD) and
mean average percentage error (MAPE). Selected number of clusters is 10 additional to two extreme
periods. Typical weather data for Geneva Switzerland [48].

Based on the information presented in Figure 1.2, yearly operation was based on 10 typical days,
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(a) (b)

Figure 1.3 – Clustering results for external temperature and global irradiation [48] a) classification of
different periods over the year b) load duration curve.

since this appears as a good compromise between the key performance indicators and the expected

computational requirements. Figure 1.3 visualizes the reconstructed annual profiles of solar irradia-

tion and outdoor temperature for the result of th k-medoids clustering. To ensure that no energy is

accumulated between different periods, cyclic constraints are imposed both on the indoor building

temperature and on the thermal and electrical energy storage systems. Cyclic constraints reset the

state to its initial status at the end of each period [22].
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1.3 Results and discussion

The aim of the result section is to provide an answer to the research question of this chapter What

performance indicators should be used to describe renewable energy hubs?. The answer is given in

several parts. At first, points concerning single KPIs are discussed. Special focus is thereby given to

controversial aspects of the GWP. Subsequently, dimensional reduction is performed to reveal most

influential measures to describe renewable energy hubs.

1.3.1 Global warming potential

The total GWP is usually in trade-off with TOTEX. Low TOTEX scenarios have high total GWP and

vice-versa (Figure 1.4). For a typical Swiss residential building, the cheapest TOTEX scenario was

around 17 CHF/m2 ERA. This scenario was equipped with a heat pump, a gas boiler for thermal peak

loads, thermal storage, and a few PV panels. The biggest contribution to reduce GWP was the total

replacement of natural gas with electricity, by increasing the installed capacity of the heat pump

and using electrical heaters for thermal peak loads. To reduce the total GWP even further, priority

was given to consuming a higher share of electricity generated on site, by increasing the amount

of PV panels and installing electricity storage in form of lithium batteries (Figure 1.4). Considering

only GWP associated to the operation of the systems was underestimating the total GWP by 5%

for the low cost scenarios (Figure 1.4b). The electrification of the renewable energy hub with the

preference in the self-consumption onsite generated electricity increased the importance of the

GWP associated to the construction of units for the energy system. Neglecting these contributions

caused an annual error of more than 40% for systems with low GWP (Figure 1.4b).
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Figure 1.4 – The trade off between (a) total annual costs and (b) emission for renewable energy hubs.
MOO of a typical Swiss building effected from average emission values of Swiss grid mix (light) and
dynamic profiles (dark)
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Impact of resolution Usual studies do not consider the resolution of the GWP per consumed

electricity from the grid and use annual average values. Figure 1.4b and 1.5 visualize the difference

for assuming annual averages or an hourly resolution. The hourly values were based on the Swiss

grid mix from 2019, which showed a higher related environmental impact during winter days than

during summer [33].
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Figure 1.5 – Relative share of operational global warming potential (GWP) to the total GWP for
different cost scenarios. Impact of different resolution of GWP, which is related to the electricity
consumed from the power grid.

The highest energy demand for renewable energy hubs was noticed during winter, due to the

demand for space heating. As this was concurring with the time of high impact factors of electricity,

the total GWP was generally underestimated by around 10% when assuming an average value

(Figure 1.5). Furthermore, different energy system configurations were identified to be optimal for

the renewable energy hub. To increase the self-consumed electricity in winter months had a higher

priority when an hourly resolution was considered; thus in this situation PV systems and batteries

were chosen to a greater share (Figure 1.4a).

Impact of grid mix The GWP connected to the grid mix had a high impact on the solutions. It

influenced not only the decision making of single renewable energy hubs, but also revealed different

national strategies. Next to the weather, which is impacting the thermal demand or the solar

potential, the grid mix of different countries impacts the solution. For demonstration purposes,

economic input parameters, such as the investment costs of equipment or grid tariffs were assumed

to be identical between the countries. Figure 1.6 shows Pareto optimal configurations for renewable

energy hub at the building scale for four exemplary different European countries.

For countries with high emission mix on the grid, optimal solutions focused on decentralized, local
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Figure 1.6 – Influence of the grid mix on the optimal design of renewable energy hubs. Comparison of
different energy system configurations for a typical residential building in four European countries.
Four Pareto optimal points between (a) total annual costs and (b) annual emission for each country.

generation and consumption of electricity. This strategy accepted the high constructional footprint

of technologies like PV panels and batteries. For countries, like Poland, where the GWP of the

electricity exceeds the impact of burning natural gas, it was suggested to invest into decentralized

cogeneration technologies like solid oxide fuel cells (SOFCs) (Figure 1.6a). Next to the geographical

context, this example can also be understood as the demonstration of the impact of the project

horizon. The project horizon was considered to be 20 years, a time period in which the grid mix is

most likely developing towards a less polluted electricity mix in context of the energy transition. In

this case, a future, low GWP associated grid mix, is presented by the values considered for France

(Figure1.6). In this situation, it was more profitable for both, annual emission and cost, to consume

the electricity from the grid rather than to focus on a decentralized production.

1.3.2 Impact of system boundaries

The choice of system boundaries was influencing not only absolute values, but also the relative

trend of performance indicators. Two examples are presented in the following.

The first example is demonstrating the different system boundaries when analyzing the exergy

efficiency of a renewable energy hub. Studies focusing on the energy conversion of solar irradiation

commonly use an average temperature of the sun around 6000K to determine the exergy efficiency

of the system [27, 50]. In contrast, other studies exclude the solar irradiation from the exergy

efficiency and directly balance the exergy generated from the solar system. Figure 1.7 compares both

definitions with respect to the RES and total annual costs of different energy system configurations.

For comparability reason, system solutions using natural gas were excluded and buildings with

similar renovation states were compared.
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Figure 1.7 – Exergy efficiency and renewable energy share for various system configurations of
renewable energy hubs, which consist of different sizes for installed HP, EH, PV panels, STO and
BA. The capacity of installed PV panels is normalized by the energy reference area (ERA) of each
building. Comparison of two different definitions of exergy efficiency: a) Including the conversion
of irradiation, inside the system boundaries and b) Excluding the conversion of irradiation.

For electrical systems without PV panels the RES was constant and the exergy efficiency increased

when substituting electrical heater with heat pumps to satisfy heating demand. Increasing the share

of PV panels, led to an increase in RES and to very different behavior of the exergy efficiency for

the two versions. The low exergy efficiency of the PV panels decreased the overall exergy efficiency

drastically when the solar irradiation was included inside the system boundaries. In that case,

the exergy evaluation of different system configuration was dominated by the installed size of PV

panels per ERA. Solar irradiation is a resource which enters the renewable energy hub free of charge.

Additionally, the exergy efficiency of PV systems is mainly interesting for developer of the solar

system itself. If solar irradiation is nevertheless included in the exergy balance, the exergy efficiency

for generating the electricity on the grid should also be considered to lead to consistent results.

However, latter data at hourly resolution was not publicly available. Therefore, the exergy efficiency

is considered excluding the balance of the energy conversion in PV panels in the rest of the thesis.

The second example is demonstrating the importance of appropriate system boundaries when

evaluating the GWP of energy systems. The total GWP considers the environmental footprint of the

renewable energy hub. As previously demonstrated, the contribution from both, the construction

and the operation of the energy system should be considered. However, there are two different

perspectives possible. One perspective is, to consider the total effort which is needed to satisfy the

energy demand of the renewable energy hub itself. The other option is to include the impact of the

renewable energy hub within its the superior network. The difference lies in accounting the locally

produced and exported resources. Figure 1.8 shows the evaluation of the GWP for TOTEX scenarios
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of one typical renewable energy hub at the building scale.
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Figure 1.8 – Impact of system boundaries for evaluation global warming potential (GWP). Compari-
son of the total GWP as defined in Equation 1.18 to the GWP when exports are not considered as
avoidance.

At around 20 CHF/m2 ERA, the capacity of installing PV panels was exceeded and the focus was on

increasing SC rates by installing storage systems. Nevertheless, the SC rate of the electricity produced

onsite was not exceeding 60% in detected solutions (Figure 1.8). If the total GWP was considering the

exported electricity as avoidance of equivalent emissions, the total annual GWP was approximately

6 gCO2,eq/m2 ERA. If exported electricity was not included in the balance (Equation 1.18), the GWP

was around 12 gCO2,eq/m2ERA, increased by a factor 2. The operation of the electricity grid is

characterized by the synchronization of consumption and generation of electricity. The electricity,

which is fed into the grid by the renewable energy hub, is avoiding the production of same amount

of electricity at current grid mix. Therefore, these exports are always accounted for in the balance of

the GWP in the rest of the thesis.

1.3.3 Dimensional reduction

The aim of this section is to explore the decision space and support the multi–criteria decision

making. Over 8000 different solutions were generated by considering each indicator in a multi–

parametric optimisation framework for 40 renewable energy hubs. Analyzed KPIs are listed in

Table 1.2. In accordance with the results of previous section, the GWP of operation was considered

with dynamic impact profiles only and the exergy efficiency was excluding the energy conversion

in PV panels. The correlation between the different indicators is demonstrated by performing

a principal component analysis of the decision space. The principal component analysis was

performed using the function prcomp provided by the programming language R [51]. A principal

34



1

1.3. Results and discussion

component is a dimension in which the most substantial variance in the data is noticeable. It can

be understood as defining an axis of a new coordinate system, which is used to allocate each data

point. Figure 1.9 shows the correlation plot of the KPIs in the first two dimensions of the principal

component analysis.
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Figure 1.9 – Variable correlation plot of the principal component analysis. Positive correlated KPIs are
grouped together, not correlated are perpendicular, inverse correlated are 180° opposite. Distance
from the origin gives the impact of the KPI itself.

Each dimension corresponds to a principle component, they are ordered with declining significance.

The first dimension was explaining 36.3% of the variance, the second 16.8% (Figure 1.9). The varia-

tions of the following dimensions are even smaller and not very informative, hence the correlation is

further analyzed based on the first two dimensions.

Influential KPIs The distance to the origin reveals the quality of the indicator and its contribution

to define a solution. The longer the arrow in the correlation plot (Figure 1.9), the more specific

is this indicator to describe the performance of the renewable energy hub. In other words, for

the KPIs represented by short arrows, for example concerning the security of the grid (GM,

GU, PVC), many different solutions existed, with the same value of this KPI. These KPIs did

not clearly describe a solution. However, they revealed the potential of a renewable energy

hub to meet these KPIs. For example, in order respecting a limit on the GU, it is possible to
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change the operation for a wide range of detected solutions.

Correlated KPIs Strongly correlated indicators are grouped together, for example Gbes , AR and

Ci nv . This correlation was due to the fact that the system with the highest environmental

footprint allocated to the construction had batteries and PV panels installed, which were also

the most expensive units. The solutions characterized by batteries and PV panels gave priority

to local generation and consumption of electricity from renewable energy sources, which is

also measured by the AR. This correlation also confirmed the previous finding (Figure 1.4).

For more expensive system configurations, which usually consist of a larger share of PV and

battery, constructional emissions could not be neglected.

Another correlation can be observed between the OPEX (Cop ) and the GWP of the operation

(Gop ). Main contributor to both, OPEX and operational GWP, were the resources imported

and exported by the system. However, the vectors were not as close as the previous example

due to the high GWP of natural gas compared to the electricity but the inverse correlation of

cost (1:2.5) in Switzerland.

Inverse correlated KPIs In Figure 1.9, inverse correlated KPIs are visualized by arrows which are

opposite to each other. One example is the correlation of NPV and total costs (Ctot ). The

higher the total cost of the proposed energy system, the lower was the net present value of

the system. The OPEX of the current installed energy system played a minor role in this

context (see Equation 1.31). Figure 1.9 also shows the intuitive relation between systems with

increased RES, which also had a higher PVP but OPEX were reduced as well as the operational

GWP.

Uncorrelated KPIs Uncorrelated KPIs are positioned in an 90°angle from each other in Figure 1.9.

These KPIs are best suited to pin-point a solution. They are also predestined to serve as

objectives during MOO. The sum of replacement and investment cost are CAPEX and were

perpendicular to the operating expenses C op . Therefore, the CAPEX - OPEX pareto curve is

well suited to investigate the decision space of renewable energy hubs.

The value of these results is two-fold: On one hand this method revealed redundant indicators.

Therewith, it supports decision maker to select a subset of essential indicators. On the other hand

the method allowed for the identification, which KPIs contributed the most to define a solution and

should not be neglected. The impact of these results are demonstrated in the following. Typical

solutions were derived by performing a k-medoids clustering of the more than 8000 different MOO

solutions for the 40 buildings of the case study. A subset of uncorrelated indicators were then used

to evaluate the performance of identified typical systems.

The typical energy system configurations which were identified are outlined in the following:

• Medoid 1 - system based on natural gas boiler

• Medoid 2 - heat pump and small installed capacities of PV panels and storage systems

• Medoid 3 - heat pump, PV panels, large electrical and small thermal storage capacities
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Figure 1.10 – Result of K- medoids clustering of the technology decisions within the 8000 different
optimal solutions for 40 residential renewable energy hubs. Visualized building related parameter
are the heated surface [m2] and the heat transfer coefficient U to describe the renovation state [23].
Three uncorrelated KPIs are selected (compare Figure 1.9).

• Medoid 4 - large capacities of installed heat pump, PV panels and storages

• Medoid 5 - related to Medoid 1, instead of gas boiler, based on heat pump and electrical heater

• Medoid 6 - only solution with cogeneration units installed, additional to heat pump, PV panels

and large storage systems.

• Medoid 7 - system based on heat pump and gas boiler. No PV panels or batteries.

• Medoid 8 - system based on heat pump, PV and small storage systems, modern building

These typical solutions can be all well described by the presented KPIs in Figure 1.10 (GWP of

the operation, total costs and self-sufficiency) and the correlation analysis of the remaining KPIs

(Figure 1.9). In the following three examples are provided.

Medoid 1 describes a typical solution for a residential building, which is based on natural gas boiler

(Figure 1.10). The GWP of the operation was highest and the SS lowest among the other medoid

solutions. As demonstrated with Figure 1.9, allocated GWP and costs of the system’s operation were

correlated. Therefore, it can be concluded that the OPEX were also highest for the type of systems,

represented by Medoid 1.

The performance of Medoid 4 is described by the highest total expenses and SS among the typical

solutions. The analysis of the correlation of KPIs (Figure 1.9), allowed for the conclusion that this

system had the lowest net present value, but also highest annual revenues. As the system had low

GWP associated to operation, the OPEX of Medoid 4 was low as well. The system of Medoid 4 had

large capacities of heat pumps, PV and storage systems installed.

The lowest total expenses and GWP of the operation is presented by Medoid 8, which is describing a
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system for a renovated renewable energy hub. Smaller capacities of heat pumps, PV and storage

systems were installed with respect to Medoid 3. Nevertheless, both systems represented by their

medoids led to similar values in SS.

1.4 Conclusion

The renewable energy hub at the building scale was defined in a mixed-integer linear programming

(MILP) approach. The renewable energy hubs were connected to the electricity grid, natural gas

grid and water grid and the aim is to satisfy the demand for space heating, domestic hot water and

electricity. The following conversion technologies were implemented: air-water heat pumps, gas

boiler, PV panels, electrical heater and CHP units in form of solid-oxide fuel cells. Additionally,

renewable energy hubs could be equipped with thermal storage systems and batteries. As the

building was modeled according to the first order dynamic building model, heat can also be stored

in the building itself. A possibility was implemented to include a smart heating strategy, which

preheats the building at times of surplus electricity from renewable sources. Annual time–series in

the input data was reduced to ten typical days with hourly timesteps. A MOO framework was used

to capture the decision space. Considering the state–of–the–art in building energy system modeling,

31 different KPIs were defined. The analysis of these measures was structured in two parts. The first

part was looking at individual KPIs, whereas the reduction of necessary KPIs and typical renewable

energy hub configurations was addressed in the second part.

In the first part, different controversial aspects of describing the GWP of renewable energy hubs

were highlighted. Neglecting the footprint associated to the construction of the energy system

technologies, introduced an error of 5% for basic equipped systems. The error was increasing

in relevance for modern, decentralized systems, where the footprint accounted for more than

40% of the total GWP. The common way of estimating the GWP which is connected to electricity

consumption from the grid is to use average values. The comparison to hourly values associated to

the Swiss grid mix from 2019, showed that this was underestimating the total GWP by more than

10%. With average impact factors, the renewable energy hub gave too little priority to self-consume

generated electricity in winter months, which was influencing the optimal design strategy. The GWP

associated to the electricity exchange to the electrical grid had a great impact on the optimal design

strategy of renewable energy hubs. The lower the imported emissions were of the electricity, the lower

were the incentives to install independent, decentralized solutions, which rely on renewable energies

and storage systems but are high in constructional GWP. Two examples about the importance of

system boundaries were demonstrated: The inclusion of the environmental impact of the energy

conversion in PV panels and the inclusion of the electricity exports when balancing the total GWP

of the system. First part led to the conclusion that the appropriate definition of the GWP should

include the constructional footprint of the energy system equipment, dynamic impact profiles of

the grid, and should consider exports as avoidance of equivalent emission. The exergy efficiency
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of the system was defined without considering the electrical efficiency of the PV panels. Limiting

factor of including this aspect was the missing exergy values associated to the electricity grid.

In the second part, machine learning techniques, like principle component analysis and k-medoids

clustering, were applied to identify the major trends, and supporting multi – criteria decision making.

More than 8000 different solutions were generated by considering 40 typical residential buildings

in a multi parametric optimization framework. Some KPIs were identified to be more influential

(like TOTEX) than other (like GU). Direct and inverse correlation of the KPIs was demonstrated.

This analysis revealed that a few KPIs were enough to give a holistic picture of the performance

of renewable energy hubs. The principle component analysis also clearly identified two separate

dimensions for CAPEX and OPEX. Therefore, they are mainly chosen objectives for the MOO in

the following chapters of this thesis. Eight typical system configurations were identified through

k-medoids clustering of the solutions. It was demonstrated how a selection of uncorrelated KPIs

enables the full evaluation of these different typical solutions.

This analysis is however valid for the considered values of the specific economic costs and environ-

mental impacts. Future extension of this work would be to perform an uncertainty analysis of the

KPIs and their correlation by, for example, carry out a monte carlo analysis. Interesting influences

are for example the CO2-taxes on electricity, which might gain importance over the coming years. At

the same time, the investment costs of PV panels and batteries might decrease. This could change

the fact that some KPIs are correlated and some are not. For example, the emission and the cost

that are related to the operation of the renewable energy hub are likely to still be correlated, even

with higher CO2-taxes. In contrast, the total cost and costs that are allocated to the operation might

become more correlated with the reduction of the investment costs of PV panels and batteries.

Further improvement is to provide a larger variety of social KPIs and to include exergy–based

indicators of the grid mix. The KPIs were focused on considered the optimal inclusion of renewable

energies in form of PV panels. However, the actual available roof area was simplified and considered

as horizontal. The aim of the following Chapter 2 is to overcome this limitation.

39





2

2Photovoltaic panel orientation in

renewable energy hubs

Overview

# Integration of oriented PV panels in MILP for modeling and optimization of BES

# Inclusion of inter-modular shading and load scheduling

# Impact of PV panel orientation on the design strategy of renewable energy hubs

# Different strategies for subsidizing the installation of PV panel impacting the optimal

orientation

The content of this chapter is published in [52] and [53].

The integration of renewable energy sources, and particularly of photovoltaic (PV) panels, is be-

coming an increasingly widespread solution for reducing the carbon footprint of renewable energy

hubs. However, the volatility of the energy generation and its mismatch with the typical demand

patterns are cause for concern, particularly from the viewpoint of the management of the power

grid. This chapter aims to show the influence of the orientation of PV panels and to provide support

to the decision making process. Compared with existing approaches of renewable energy hubs

at the building scale, the contribution of PV panels is modeled in more detail, including a more

accurate solar irradiation model and the shading effect among panels. Compared with existing

studies in PV modeling, the interaction between the PV panels and the remaining units of the

building energy system (BES), including the effects of optimal scheduling is considered. The results

confirmed the relevant influence of PV panels’ azimuth and tilt on the performance of BES. Whereas

south-orientation remained the most preferred choice, west-oriented panels better matched the

demand when compared with east-oriented panels. An appropriate choice of orientation was shown

to benefit the grid: rotating the panels 20° westwards can, together with an appropriate scheduling,

reduce the peak power of the exchange with the power grid by 50% while increasing total cost by

only 8.3%. Including the more detailed modeling of the PV energy generation demonstrated that

assuming horizontal surfaces can lead to inaccuracies of up to 20% when calculating operating

expenses and electricity generated, particularly for high levels of PV penetration.
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2.1 Introduction

It is today widely accepted that climate change is a threat to both human and natural ecosystems,

and that the increasing greenhouse gas emissions from anthropogenic activities are at the root of the

warming of the climate [1]. Among all human-related activity sectors, buildings accounted for 36%

of the global final energy use and 39% of the greenhouse gas emissions in 2018 [2]. Among the latter,

residential buildings globally accounted for 61% of the final energy use and 41% of the emissions.

Furthermore, over 50% of the global final energy use in residential buildings is related to space and

water heating [2, 3].

To decrease carbon emissions, several solutions have been suggested to increase carbon efficiency

while fulfilling heating requirements for residential buildings. Whereas several researchers have

focused on reducing the demand, another solution is to move away from high-carbon fossil fuels,

thereby switching from natural gas and oil to low carbon fuels such as green electricity. In particu-

lar, switching to electrical HVAC systems allows a higher conversion efficiency and improves the

integration of locally generated renewable energy, such as by installing PV panels on rooftops [1,

3]. However, volatile power generation caused by the fluctuation of solar irradiation challenges the

capacity of the electrical power grid. Therefore, in addition to maximizing the energy generated

from the sun, it is important to reduce the interaction of the BES with the electrical power grid. The

renewable energy hub is giving priority to self-consumption of locally produced electricity. The aim

of this chapter is to propose a framework for renewable energy hubs which integrates the aspect of

optimally design and schedule a high share of solar energy resources.

2.2 State–of–the–art

The overview about the state of the art is structured into three research areas of main interest in

the following. The first one is looking at current status of the multi–objective optimization (MOO)

framework of BES, which is the underling system structure of the considered renewable energy

hub. The second part is summarizing the current state of the art of energy systems which focus on

the integration of solar based energy resources. The last and third part is providing an overview of

simulation techniques of oriented irradiation. This section closes with stating the resulting gaps of

the literature and the scientific contribution of this chapter.

2.2.1 Multi-objective optimization framework of building energy systems

The vast number of alternative solutions availible to reduce the carbon footprint of BES makes the

choice of the appropriate system a complex decision. For this reason, several studies dealing with

energy system optimization have focused on it. In particular, when renewable energy generation is

involved, the target is to identify economical and environmental friendly solutions for BESs that
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cover thermal and electricity demand while protecting the grid and therewith secure the supply.

Consequently, many similar BES optimization problems exist and are generally characterized by

having multiple, competing objectives. The most common include capital expenses (CAPEX),

operational expenses (OPEX), and global warming potential (GWP). This forces researchers to adopt

a MOO approach. The MOO of BES has been the focus of extensive research over the past years [22,

26, 38, 54–59].

Within the framework of BES optimization, many models have included PV panels as one alternative

for distributed energy generation. In most cases, the electricity generated by PV panels has been

modeled by an efficiency converting solar radiation to electricity. Because of the need to reduce

model complexity, these models are generally relatively simple. It is common to use the total

irradiation, often referred to as global irradiation, to model the incoming solar radiation, which

corresponds to assuming horizontal panels [60].

In general, studies focusing on the energy system have not accounted for varied panel orientation,

and only the most detailed PV models have included the influence of different ambient condi-

tions (such as external temperature) on the efficiency of the conversion [55, 58, 61] or on panel

degradation [39].

A detailed literature review has revealed no prior investigation on the role of the incident angle of

solar irradiation on PV panels, with the exception of thermal solar panels, where the roof orientation

was set as the orientation of the thermal solar panel [59].

2.2.2 Simulation and optimization of solar based energy systems

The increasing penetration of solar energy in the electricity network has confronted the grid opera-

tors with new challenges. The demand during solar noon hours is decreasing, whereas the demand

after sunset is increasing, causing a sharp ramp in evening hours. Within this context, adapting the

supply to match demand has become a compelling task [62].

Research in the field of solar-based energy systems, however, has shown that panel/roof orientation

and tilt have a substantial influence on the energy generation potential of PV panels, and that altering

these variables can help to provide a better match between the demand and the energy availability

from the PV modules. Thereby, researchers have focused on the optimal sizing of PV panels and

batteries, maximizing objectives like the internal rate of return [40] or minimizing costs [25].

Van der Stel et al. [63] proposed a MILP framework to analyze PV–Battery system in techno-economical

terms based on real demand and PV profiles with different orientations taken from smart meter

measurements of 39 residential buildings in The Netherlands. The authors demonstrated that

although the increased self–consumption was the main contributor to annual saving, centralized
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and decentralized storage systems are economically infeasible. Unsurprisingly, high feed-in tariffs

result in a larger optimal size for PV panels. Similarly, Holweger et al. [25] demonstrated the impact

of different price signals on the optimal unit size and grid impact. Their optimization framework

included storage and curtailment options but the orientation of the PV was fixed. Hartner et al. [40]

have not included storage or curtailment options and used a simulation tool to assess the electricity

profiles generated by PV panels.

Varying the orientation of the PV modules allows for a better match between the demand and

energy availability from the PV modules, thus resulting in higher self–consumption and, hence,

higher revenues, without the need for batteries. The economic advantage of self–consuming the

energy produced by the PV modules instead of selling it to the grid operator largely depends on

country–specific attributes, such as price profiles and the amount of generated electricity [64–

66]. However, given the challenges of grid stability arising from a more widespread adoption of

distributed electricity generation, most countries are reducing the compensation for feeding in

energy to the grid to promote self-consumption and, hence, reduce strong demand variations.

Litjens et al. [64] showed that self–consumption is highest at 212° azimuth and 26° tilt for residential

buildings in Netherlands. Similar results were obtained in the United Kingdom by Mondol et al.

[65] and by Lahnaoui et al. [66], who concluded that west–oriented PV systems have a higher share

of directly consumed electricity than east–oriented systems for residential demand patterns in

Germany. On the other hand, the maximum electricity generation was achieved for south–oriented

systems (approximately 180° azimuth) and with a tilt angle approximately 30°. Although these values

can change based on the system location (latitude and weather patterns), similar results have been

found by researchers in Austria [40], The Netherlands and the UK [64, 65]. A maximum variation of

the optimal orientation of about 7° towards the west and higher tilt angles were identified due to

weather influence [64].

Not all researchers, however, have agreed with the result that slightly west-oriented panels are the

most optimal configuration. A recent study by [67] investigated the impact of the orientation of PV

modules on the grid, including the effects on grid losses and PV curtailment. Their results identified

that the optimal orientation is the one that maximizes the annual generated electricity (south, 35° tilt

in Belgium). Although this high generation also causes the highest curtailment and grid losses,

changing the orientation did not lead to more useful energy. The authors also found, however, that

changing the tilt angle had a higher impact on the grid than on the generation and thus suggested to

lower tilt angles for more constrained grids [67].

Other researchers have confirmed that, although it might not be the most economically conve-

nient choice, it is possible to contribute to preserving grid stability by changing the orientation.

Sadineni et al. [68], referring to a case study in the United States of America (USA), showed that the

combination orientating the PV modules to the west and load scheduling of the cooling demand can
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reduce the peak by more than 60%, although the most economical orientation at flat price profiles

remains south. These results were confirmed by Rhodes et al. [69], who evaluated the optimal place-

ment of PV panels at a national level in the USA. They found that orientating the PV panels towards

the south led to the maximum energy generated. Differently from Sadineni et al. [68], however, they

also showed that shifting the orientation 20°–50°westwards increased the economic value of the

generated PV electricity by 1%–7%. A further increase in the tilt and in the westward orientation was

also identified as the optimal "peak placement", as the system produced 24% more energy during

peak demand hours [69].

However, as the optimal integration of PV and battery systems was the focus in the aforementioned

studies, historical measurements of the electric demand have been commonly applied or the

remaining technologies and the renovation state of the building is fixed a priori, leading to predefined

demand profiles from the buildings.

2.2.3 Modeling of photovoltaic panel orientation and directed irradiation

As highlighted in the previous section, the positioning of the PV modules (orientation and tilt angle)

can significantly impact the model design of how such systems perform once included in the BES.

This highlights the need for including models accounting for these effects on the energy generation

profile of a solar panel.

Accessing the orientation of solar irradiation is important for urban planners to find the best building

concepts and designs and to evaluate the solar potential of surfaces. An overview of detailed models

for determining solar incident values was provided by Hafez et al. [70], who focused on the optimal

tilt angle and on how it varies with the location and season. Starting from the assumption that

orientation is considered as optimal when the received irradiation is maximal, Hafez et al. [70]

presented optimal tilt angles from case studies from all over the world.

Irradiation models are generally classified into two categories. Isotropic models assume a uniform

intensity of diffuse radiation over the skydome, whereas anisotropic sky models do not. Different

models have been proposed [60, 70, 71]. It is unfortunately controversial whether isotropic or

anistropic models are more accurate, and literature in the field shows conflicting results. In general,

anisotropic models are more detailed and computationally intensive, but have been found more

accurate by the majority of case studies (e.g. [72, 73]). However, others, such as Shukla et al. [74],

concluded that isotropic models provide a higher degree of accuracy.

Focusing on solar orientation modeling in an urban context, Freitas et al. [75] provided an overview

of empirical and computational solar radiation models and concluded that numerical radiation

algorithms connected with geographic information systems (GIS) tools represent the most appropri-

ate trade-off between accuracy and computational time. The application of a GIS based approach
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to evaluate solar potential including topographic impact was demonstrated by Bremer et al. [76]

for a city in Austria, by Ko et al. [77] for Taiwan and by Verso et al. [78] for a city in Spain. However,

Verso et al. [78] did not model shading, as only the best roofs were considered for PV installation.

Vulkan et al. [79] developed an open source package in R to model shading effects on building sur-

faces in Israel and concluded that south oriented facades could contribute significantly to annual

electricity generation. The handling of shading on rooftops has been identified to be one of the

main distinction of different assessments of solar potential in Switzerland [80]. Assouline et al. [81]

proposed an approach using machine learning to extrapolate missing data using a combination of

support vector machines and GIS to access the annual potential of Switzerland. Their method to

assess monthly mean values in a high spatial resolution is included in the Swiss national project

to determine the solar potential and to provide guidelines to building owners [82]. Although these

studies have the focus on different orientation of single roofs, the aspect of the connected energy

system remains a minor focus.

2.2.4 Gaps and contributions

Based on the aforementioned literature review, there exists gap in the state-of-the-art at the inter-

section between a) studies focusing on BES, which only include a very simplified representation of

the energy generated by PV panels, and b) studies focusing on the optimal placement of PV panels,

which never include how this affects, and is affected by, the integration with other parts of the BES.

This chapter therefore aims to investigate the following research questions:

What is the impact of the orientation of PV panels on renewable energy hubs and the grid?

– What is an optimal placement of PV panels (orientation and tilt) from the perspective

of renewable energy hubs and of the grid? How does it depend on problem parameters

such as the load profile and the characteristics of the building?

– What are the principles that should be adopted when choosing the placement of increas-

ing quantities of PV panels on the roof of the building?

– What is the magnitude of the error induced by the assumption of only horizontally

installed PV panels in renewable energy hubs at the building scale?

– How are different policies for subsidizing the installation of PV panels impacting the

"optimal" orientation?

2.3 Method

The research questions of this chapter are addressed by integrating a more detailed modeling

framework of the incoming solar irradiation and the orientation of the PV panels in renewable

energy hubs at the building scale. The renewable energy hub is modelled according to mixed–

integer linear programming (MILP) approach presented in Chapter 1.2. This method section is
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first addressing how incoming irradiation is modelled, then how the orientation of PV panels is

considered, followed by the integration of inter-modular shading effects on flat roofs. The method

section ends with the demonstration how the more detailed modeling of oriented PV panels is

integrated in the framework of renewable energy hubs. In the following, parameter are expressed

with normal font, variables in bold font. Additional required sets in this chapter are the set of

considered roofs r ∈R, azimuth angles α ∈A and title angles γ ∈ Y. A pair of azimuth and title angles

is used to describe the orientation of one skydome patch pt ∈ S or defines the set of possible

orientations O of PV modules.

2.3.1 Irradiation modeling

The modeling of the incident solar irradiation is achieved through the discretization of the skydome

into 145 patches, each containing information about the irradiation density in a given time hori-

zon [83]. This approach is based on the anisotropic irradiation model, developed by Perez et al. [84],

which accounts for direct and anisotropic diffuse irradiation from clear to partly clouded skies.

Figure 2.1 visualizes the cumulative sky approach for one typical year in Geneva, Switzerland. Equa-

Figure 2.1 – Annual total irradiation, visualized for skydome of Geneva, Switzerland. Typical weather
data from [48].

tion 2.1 expresses the irradiation coming from one patch i r rpt in the coordinates of the skydome

xsd , ysd , zsd , where α represents the azimuth angle of the sky-direction and ε is the elevation angle

of one patch pt . Thereby, xsd points to the east , ysd to the north and zsd to the zenith, and the az-

imuth angle increases clockwise starting from the north, where α= 0. The elevation angle increases

counterclockwise from ε= 0 for patches with no elevation in the sky (compare with Fig. 2.1).

~i r r pt = i r rpt ·


−sinαpt ·cosεpt

−cosαpt ·cosεpt

−sinεpt

 ∀{(αpt ;εpt )|pt ∈ S} (2.1)
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2.3.2 Orientation of PV panel

If xpv , ypv , zpv define the coordinate system of the PV panel, then zpv is perpendicular to the

panel and represents the direction where the irradiation is of relevance for the photoelectric effect,

and xpv , ypv set up the plane of the PV module itself. Orienting the PV panel in the xsd , ysd , zsd

coordinate system of the skydome means to rotate the PV panel twice. The rotation axis of the

azimuth orientation is always the zsd axis of the skydome. In contrast, the tilt rotation is always

around the xpv of the panel. If the azimuth rotation is carried out first, the second rotation is around

the new x̃pv of the PV panel. If the tilt rotation is carried out first, the zsd axis has to be expressed in

dependence of the first rotation around xpv . Whereas the azimuth rotation is clockwise (negative),

tilt rotation is counterclockwise (positive). This leads to the rotation matrix Γ shown in Equation 2.2.

Γx̃pv ·Γzsd = ΓzsdΓxpv =


cosαpv −sinαpv 0

sinαpv ·cosγpv cosαpv ·cosγpv −sinγpv

sinαpv · sinγpv cosαpv · sinγpv cosγpv


∀αpv ∈ A,∀γpv ∈ Y (2.2)

The combination of Equation 2.1 and the rotation matrix Γ leads to Expression 2.3 for the incident

irradiation density i r r along the negative zpv axis of the PV module. Therefore, the pair (αpt ,εpt )

uniquely defines the position of one patch pt within the skydome and (αpv ,γpv ) the orientation of

the PV panel. Taking only positive values allows filtering out the contribution of irradiation coming

from behind the panel. The irradiation thus calculated is integrated over the whole skydome.

i r rpv (αpv ,γpv ) = (−1) ·
S∑

pt=1
i r rpt (αpv ,γpv )

=
S∑

pt=1
i r rpt ·max[( sinαpv · sinγpv · sinαpt ·cosεpt

+cosαpv · sinγpv ·cosαpt ·cosεpt +cosγpv · sinεpt
)

,0
]

∀αpv ∈ A,∀γpv ∈ Y (2.3)

Figure 2.2 shows the irradiation received by the PV modules, whereas Figure 2.1 shows a visualization

of the irradiation coming from the skydome. For a flat, horizontal panel, the incoming irradiation

is independent of the azimuth angle. For azimuth angles, where the sun is never positioned over

the year, annual irradiation density is strictly increasing with lowering the tilt angle and maximal

for tilt angle γpv = 0 (horizontal panels). The situation changes for PV orientation between east

(azimuth: 90°) and west (azimuth: 270°). Starting from a vertical panel, decreasing the tilt leads to

an increase in the irradiation density. The annual irradiation is maximized at a tilt angle of 35°for
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Figure 2.2 – a) Annual irradiation on oriented PV modules in the climate zone of Geneva. b) An-
nual irradiation on PV modules oriented between azimuth 80°–280°and greater than 950 kWh/m2,
visualization of tilt in 5°steps, azimuth in 1°steps.

azimuth 182°, which is around 10% larger than at horizontal irradiation. Between 35°–0°tilt the

irradiation is decreases again until horizontal irradiation.

2.3.3 Flat roofs and shading

On tilted roofs, the panel is considered to occupy only the size of the module itself. Unlike when

using tilted roofs, the proposed approach takes into account the actual area Apv occupied by the

module on flat roofs. This is calculated as a function of the width of one module wpv , the required

minimum distance dβ between PV modules to prevent shading, and the relative tilt angle to the

surface γpv . The distance between two rows of oriented modules is given by Equation 2.4. Thereby,

hpv is the module height and β is the design limiting angle that avoids shading. The design limiting

angle corresponds to the lowest sun evaluation during solar noon that occurs within a year. Figure

2.3 illustrates this geometric correlation.

Apv (γpv ) = wpv ·d = wpv ·hpv ·
sin(γpv +β)

sin(β)
∀γpv ∈ Y (2.4)

The design limiting angle is not only used for placing the modules on the roof but also for simpli-

fication during the determination of incident irradiation. A common assumption is that there is

no shading between modules if the placing of the modules respects the design limiting angle [85].

Simulations confirmed the hypothesis that the irradiation loss from direct irradiation is small, if the

limiting angle is respected during placement. However, the diffuse component has a significant

share on the losses and leads to a reduction for the tilt with maximum annual yield (e.g., -8°in
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γpv β
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dβ
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z

Figure 2.3 – Distance d between two modules (green) for a given module height hpv , tilt angle γpv ,
and sun elevation/ liming angle β.

Geneva) [86].

This simplification is not needed when modeling the irradiation with the cumulative sky approach,

as described in the previous section. The total irradiation from the partly shaded skydome is reduced

by the patches that are not visible from the perspective of the PV module, i.e. that are below the

limiting angle. The relative limiting angle is different for each skypatch, since the relative azimuth

direction between patch and panel (αpt −αpv ) varies and therewith the relative distance between

the rows dβ,α. Figure 2.4 visualizes this geometric relation and Equation 2.5 expresses the relative

distance between the modules along the relative orientation of the patch.

skydome

PV Modules

z

y

x

αptn −αpv

αptn+1 −αpv

dβ dβ,α

b

b

b

Figure 2.4 – Distance d between the modules for determining the inter-modular shading depending
on the relative azimuth orientation αpt −αpv .

dβ,α = dβ

cos(αpt −αpv )
(2.4)= sin(γpv ) ·hpv

cos(αpt −αpv ) · tan(β)

∀β 6= 0, ∀{pt ∈ S|αpt −αpv 6= ±90◦} (2.5)
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Distance dβ,α yields to the limiting angle βα along the relative azimuth direction (Equation 2.6). The

limiting angle βα is greatest and equal to the design limiting angle β for the patch straight in front of

the panel (αpt =αpv ) and then decreases towards the boundaries of the light capture zone.

tan(βα) = sin(γpv ) ·hpv

dβ,α
= cos(αpt −αpv ) · tan(β)

∀αpv ∈ A,∀γpv ∈ Y, ∀{αpt |pt ∈ S} (2.6)

To determine the shaded irradiation, the irradiation from the one patch is piecewise linearized over

the evaluation angle of the patch, which varies 12°, with εpt marking the central point (Equation

2.7). The shading factor of one patch spt ∈ [0;1] is equal to zero for completely shaded patches and 1

for completely unshaded patches.

spt (β) =


0 εpt ≤βα−6
εpt+6−βα

12 βα−6 < εpt <βα+6

1 εpt ≥βα+6

∀{(αpt ,εpt )|pt ∈ S} (2.7)

Equation 2.8 gives the partly shaded irradiation in dependence of the chosen design limiting angleβ.

i r rpv (αpv ,γpv ,β) =(−1) ·
S∑

pt=1
spt (β) · i r rpt (αpv ,γpv )

∀αpv ∈ A,∀γpv ∈ Y (2.8)

Figure 2.5 is presents a visualization of the relative irradiation loss for different design limiting

angles. Thereby, the unobscured skydome and the panel in the same orientation give the reference

irradiation.
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(c) β= 30°

Figure 2.5 – Irradiation loss of PV panel shading for different design limiting angles β.

The design limiting angle has a significant impact on the received irradiation on the panel. Low
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angles lead to much lower losses (max around 10% for β = 10°) than do high angles (max around

45% for β = 30°) but also require more surface area of the roof. The losses are less for south oriented

panels, since the direct irradiation of the sun from this direction comes from higher elevation angles.

The proposed approach to model the irradiation losses includes both direct and anisotropic diffuse

irradiation, with two simplifications: 1) all rows are considered to be partly shaded, even the front

row, and 2) below βα, the whole panel is receives no irradiation, although this is only true for the

foot of the panel. The latter simplification implies irradiation losses even for very low tilt angles. As

studies show that the electricity generated drastically drops off for partly shaded panels [86], this is

considered a reasonable assumption.

2.3.4 Model integration PV Panel

The unit model of the PV panel is stated in Equations 2.9 to 2.13. The sizing value fpv is integrated

in the sizing equations (Equations 1.1) of each renewable energy hub at the building scale b ∈B.

fb,pv = η
r e f
pv ·hpv ·wpv ·

∑
r εR

∑
o εO

nb,pv,r,o ∀b ∈ B (2.9)

Ab,r >=
∑

o εO
Apv (γpv ) ·nb,pv,r,o ∀b ∈ B ∀r ∈ R (2.10)

Ė+
b,pv,p,t = hpv ·wpv ·

∑
r εR

∑
o εO

nb,pv,r,o ·ηpv,o,p,t · i r rpv,o,p,t (2.11)

∀{o = (αpv ,γpv ) ∈ O|αpv ∈ A,∀γpv ∈ Y},∀p ∈ P,∀t ∈ T

The sizing value fpv represents the total size of PV panels in kWp given by the total number of

installed modules npv , the height hpv and the width wpv of one PV modules, and the reference

efficiency in standard conditions ηr e f
pv (Equation 2.9). The installation of panels is limited by the

available roof area Ar , whereas Apv is the space the modules occupy on the roof (Equation 2.10). Apv

is the same than the product hpv ·wpv only for installation on facades, oriented roofs or horizontal

panels. On flat roofs, inter-modular shading is considered, thus different rows of modules occupy

a greater surface ( Apv > hpv ·wpv ). The generated electricity (Ė
+
pv ) results from the sum over the

electricity from each panel on every roof r and of each orientation o (Equation 2.11). The generated

electricity is included in the energy balance of each building energy system (Equation 1.2a).

ηpv,o,p,t = ηi nv ·
[
η

r e f
pv −δpv · (Tpv,o,p,t −T r e f

pv )]
]

(2.12)

Tpv,o,p,t =
Upv ·T ext

p,t

Upv −δpv · i r rpv,o,p,t
+ i r rpv,o,p,t · (νpv −ηr e f ,pv −δpv ·T r e f ,pv )

Upv −δpv · i r rpv,o,p,t
(2.13)

∀{αpv ∈ A,∀γpv ∈ Y|(αpv ,γpv ) ∈ O},∀b ∈ B,∀p ∈ P,∀t ∈ T
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Equations 2.12 and 2.13 describe the efficiency of the PV panel ηpv,c,p,t as a function of the tempera-

ture of the panel. The PV module temperature is depending on the external temperature T ext and

the oriented irradiation density on the panel i r rpv,o [22, 61]. The module heat transfer coefficient U ,

the absorption coefficient ν, and the temperature coefficient δvar are parameters specific to each

PV panel. The performance in standard test conditions is given by the reference efficiency ηr e f and

the reference temperature T r e f equal to 298 K.

2.3.5 Case study

The proposed method is applied to a case study area in Switzerland. The case study area is the

same than described in Chapter 1.2.6. The whole case study area consists of 40 buildings of different

types. In the first part of the case study, the solar integration of one typical renewable energy hub is

presented. The typical residential building has a heated area of 250 m2 and a large available roof

area consisting of four tilted and one flat surfaces (see Table 2.1).

Table 2.1 – Building parameters for a typical single–family house with large available roof surface.

Description Value Unit Ref.
Energy reference area (ERA) 250 m2 [44]
Domestic hot water demand 292 l/m2 yr [31]
Solar Gains 18 kWh/m2 yr [31]
Heat Gains 24 kWh/m2 yr [31]
Design supply/return temperature 65/50 °C [23]
Heat transfer coefficiant 2.09 W/m2 K [23]
Heat capacity coefficiant 120 Wh/m2 K [31]
Annual Electricity demand 39.5 kWh/m2 yr [87]
Surface Azimuth Tilt Area
North-west roof 352° 48° 29.5 m2

South roof 172° 27° 29.5 m2

East roof 82° 47° 78.6 m2

West roof 262° 47° 89.7 m2

Flat roof (-) 0° 41.8 m2

For determination of the oriented shading losses between PV modules, the design limiting angle β is

set to 20°, which represents the lowest sun evaluation during solar noon for Geneva in Switzerland,

occurring on the 21st of December [88]. This was chosen as an acceptable trade–off between space

requirements and shading losses. Shading losses are below 10% for tilt angles between the horizontal

position and those leading to maximum electricity generation (see Figure 2.5b).

Typical input data is clustered according to Section 1.2.6. However, instead of electrical demand

profiles from national norms, the uncontrollable load is derived from measurements, which are

dis-aggregated at building level by Holweger et al.[87]. As these measurements show differences
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from weekdays to weekends, this aspect is respected in the clustering algorithm.

2.4 Results and discussion

The result section aims at answering the main research question of this chapter What is the impact

of the orientation of PV panels on renewable energy hubs and the grid? Thereby, different analyses

are made, which are structured as follows. At first, the solar integration of individual renewable

energy hubs is considered. Special focus is thereby given to the optimal orientation of the PV panels

and the connected self-consumption (SC). Afterwards, the proposed approach of this chapter is

compared to the state of the art in BES optimization, which assumes horizontal panels. The final

part of the result section discusses the impact of PV panel orientation on the electricity grid.

2.4.1 PV panel integration in renewable energy hubs at the building scale

The optimal PV panel integration in renewable energy hubs is explored by applying a MOO frame-

work. The results of the MOO for the reference building (Table 2.1) are shown in Figures 2.6 and 2.7.

The capital expenses (CAPEX) and operational expenses (OPEX) for each non-dominated solution

on the Pareto front are shown in Figure 2.6a and are divided by the ERA of the building to ease

comparison. The CAPEX ranged from a minimum of 2.8 CHF/m2yr (Scenario 1) to 48 CHF/m2yr

(Scenario 14), whereas the OPEX ranged from 1.9 to 24 CHF/m2yr. The scenario numbers (1–14)

were defined as the points on the Pareto curve, ordered from the lowest to the highest CAPEX.

Although all scenarios were optimal from a Pareto perspective when looking at CAPEX and OPEX

separately, the analysis of total expenses (TOTEX) told a different story. As shown in Figure 2.6d, the

resulting TOTEX were similar in Scenarios 1 through 9 at around 27 CHF/m2yr (minimum TOTEX

for Scenario 4–6 at 25 CHF/m2yr), whereas they increased rapidly in Scenarios 10–14, reaching a

maximum of approximately 50 CHF/m2y. The increase in TOTEX in Scenarios 9–14 was due to

the fast increase in CAPEX in these scenarios, mostly due to the decision to install batteries (first

appearing in Scenario 10), which was not compensated by a commensurate reduction in OPEX.

The reason for this trend can be seen in Figure 2.6c: in Scenarios 3 to 8, the OPEX were reduced by

installing PV panels, hence reducing the electricity demand from the grid, while gradually increasing

the electricity feed-in. As the PV capacity saturated, OPEX could be further reduced by increasing the

SC, because of the price difference between buying electricity from the grid and selling it to the grid.

This could be achieved by installing batteries, which allowed for a better match between demand

and supply. From Scenario 9 to 14, both the electricity demand from the grid and feed-in decreased,

meaning that the total amount of energy generated locally remained approximately constant, but it

was used for fulfilling the demand rather than sold to the grid.

This can be also observed from the evolution of self-sufficiency (SS) and SC in Figure 2.6b. The SS

gradually increased when the PV panels were installed, and continued increasing even as the PV

54



2

2.4. Results and discussion

5 10 15 20 25
operating cost [CHF/ m2 yr]

10

20

30

40

50

in
ve

st
m

en
t c

os
t [

CH
F/

 m
2

yr
]

1
2

3
45

6
78

9
10

11

12

13

14 objective: CAPEX
objective: OPEX
pareto bounds

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
scenario [-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pe
rfo

rm
an

ce
 in

di
ca

to
r [

kW
h/

kW
h]

self-consumption
self-sufficiency
PV penetration

0

5

10

15

20

25

30

35

40

gl
ob

al
 w

ar
m

in
g 

po
te

nt
ia

l [
g C

O
2/m

2 y
r] 

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
scenario [-]

0

50

100

150

an
nu

al
 e

ne
rg

y 
[k

W
h/

m
2 ]

Electricity demand grid
Electricity self-consumption
electricity feed-in
gas demand

1 2 3 4 5 6 7 8 9 1011121314
scenario [-]

0

20

40
to

ta
lc

os
ts

[C
HF

/m
2 y

r]

gas boiler
heat pump
electrical heater
PV panel

thermal storage
battery
OPEX

0.00

0.25

0.50

0.75

1.00
ex

pl
oi

te
d 

ca
pa

cit
y 

[-]

PV panel
battery

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
scenario [-]

0

50

100

150

an
nu

al
en

er
gy

[k
W

h/
m

2 ]

Electricity demand grid
Electricity self-consumption
electricity feed-in
gas demand

1 2 3 4 5 6 7 8 9 1011121314
scenario [-]

0

20

40
to

ta
l c

os
ts

 [C
HF

/m
2 y

r]

gas boiler
heat pump
electrical heater
PV panel

thermal storage
battery
OPEX

0.00

0.25

0.50

0.75

1.00
ex

pl
oi

te
d 

ca
pa

cit
y 

[-]

PV panel
battery

(d)

Figure 2.6 – Optimal integration of PV panels in renewable energy hubs. Results of MOO of one
residential building: (a) definition of Scenarios on Pareto frontier for investment and operation costs,
(b) performance indicator for each scenario, (c) usage of resources, and (d) distribution of total
annual cost in identified energy system configurations.

penetration flattened, because of the use of batteries. On the other hand, the SC first decreased with

increasing PV penetration (until Scenario 9), and then began increasing again as a result of the use

of batteries.

Figure 2.6b also shows the performance of the Pareto-optimal solutions in terms of global warming

potential (GWP). The main contribution to reduce the environmental impact of the system came

from the use of heat pumps instead of gas boilers for heating, which reduced the GWP from ap-

proximately 37 to 13 gCO2,eq /m2yr. The addition of PV panels provided a significant contribution to

reducing CO2 emissions, which reached a minimum of 3.2 gCO2,eq /m2yr in Scenario 9. From then

onward, the use of batteries had the opposite effect, because of the losses in the charge/discharge

cycle and of the large GHG emissions connected to the battery production process.

55



2

Chapter 2. Photovoltaic panel orientation in renewable energy hubs

Concerning other technologies installed, thermal energy storage was used in most scenarios. A

relatively small thermal storage was installed in Scenarios 2–9; whereas in Scenarios 10–14 larger

systems were installed, following the same principle as for the batteries.
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Figure 2.7 – Optimal distribution of PV installation for different roofs.

Additional information related to the installation of PV panels is provided in Figure 2.7. These

results start providing insights related to the main topic of this chapter. For low installed PV capacity,

panels were equipped on the flat and on the south-oriented roof. On the flat roof, the panels were

positioned with a south orientation and with a 30°tilt, according to common practice. However, at

even a small increase in the total installed PV capacity, the west-oriented roof was used over the

east-oriented roof, and the azimuth and tilt of the panels installed on the flat roof changes. This was

likely because west-oriented panels provided a better match between supply and demand than did

east-oriented panels. Finally, in Scenario 14, the east facing and the north facing roofs were also

covered with PV panels, whereas the panels placed on the flat roof were installed with 0°tilt angle to

minimize shading effects between panels, hence allowed for the installation of more PV modules on

the same roof area.

2.4.2 Optimal orientation and the role of self-consumption

One additional objective of this study was to determine the effect of the interaction between the

hourly variation of the thermal and electrical demand, the energy system, and the choice of the

surface where the solar panels are installed. The results shown in Figure 2.7 serve as an excellent

starting point for this discussion. Although the south-facing rooftops were selected first, west-facing

surfaces were chosen over east-facing surfaces. This was further explored in the case of a building

with no tilted roofs: in this case, the optimizer had full freedom of choice in terms of orientation and

tilt, rather than being forced to choose among a limited set of options, and can therefore provide

more insight.
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These results are presented in Figure 2.8. Figure 2.8a refers to the reference pricing case of 0.24 CHF/kWh

for electricity purchased from the grid and a feed-in tariffs of 0.08 CHF/kWh, whereas Figure 2.8b

refers to the same case but with a 0 CHF/kWh feed-in price. As expected, given its highest yearly

energy generation, south-oriented panels were preferred; however, at feed-in tariffs of 0 CHF/kWh,

the panels were slightly oriented towards the west and had a higher tilt, especially in the cases with a

lower total installed PV capacity.
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Figure 2.8 – Optimal PV orientation for different installed capacities on a flat roof: (a) cost optimal
placement for an electricity price of 0.24 CHF/kWh and feed-in tariffs of 0.08 CHF/kWh, and (b)
optimal placement for self consumption for an electricity price of 0.24 CHF/kWh and feed-in tariffs
of 0 CHF/kWh.

In most residential buildings, the main energy demand is in the evening, when people are at home,

and during the heating season in winter, when the sun is lower in the sky, thus explaining this

orientation shift. However, this effect was minor, since the developed model included optimal

scheduling. This leads to the conclusion that, although this effect did not seem to have a substantial

influence on the overall performance, the common practice of installing PV panels with the azimuth

and tilt that maximizes energy generation may not be the best choice, especially when the objective

is to maximize self-consumption. This trend is only seen for scenarios where only parts of the

roofs were covered with PV panels: when the whole roof is covered, the optimizer prioritized the

maximization of the yearly generation, thus favoring azimuth and tilt angles that minimize shading

among panels.

2.4.3 Comparison with flat roof assumption

This chapter aims to provide also an estimation of the error generated by assuming horizontal panels

on the entire roof surface when attempting to estimate the PV potential from distributed generation.

Although this assumption allows a simpler analysis and can rely on more limited set of information,
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it also introduces error.
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Figure 2.9 – Error caused by assuming horizontal PV panels to optimal PV orientation for a district
(coloured lines) of 40 buildings (grey lines). Installed capacity = 100% when all available roofs are
covered.; Buildings with (a) average behavior (b) outlier behavior.

The extent of the deviation between the "simplified" and "detailed" approaches for the 40 buildings

with individual roofs and load profiles is shown in Figure 2.9a. The PV capacity being 100% was

considered for the case that all available roof surfaces were occupied with PV modules. For low

exploited PV capacity, the general trend was that the best surfaces were used, and, whenever

possible, the tilt angle was selected to maximize the yearly energy generation. As a result, the

simplified assumption of panels installed with zero azimuth and tilt caused an underestimation

of the generated electricity, and a consequent overestimation of the overall operational expenses.

As "worse" roofs were used, the error was reduced, until the error sign reverses; for high levels of

PV penetration, as west-, east- and north-oriented roofs were exploited, the simplified flat panel

assumption instead became an overestimation of the total capacity. While the error largely depended

on the individual case, it generally ranged between -12% and +20% for the generated electricity, and

-20% and +20% for the operational expenses.

Unlike the estimation of generated electricity, the error seen in the estimated operating expenses did

not increase monotonically, but peaked at approximately 50% PV capacity. This can be explained

by the difference in feed–in and electricity prices. The error in the estimation of the operational
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expenses was low in systems with low PV capacity. Here, SC was highest and could be maximized

with the optimal scheduling of electrical loads. At some point, these scheduling measures were fully

exploited in case of the simplified approach, all additional generated electricity was completely

fed into the grid. In contrast, in the full approach "worse" roofs were used, which generated less

electricity but led to a better match of demand and supply profiles. Hence, it led to further increase

of SC, causing the peak of overestimating costs at 50% PV capacity. After this point, the limit of SC in

the full approach was reached and the overproduction of electricity in the simplified approach was

so high, that the revenues from the feed-in tariffs decreased the electricity bill drastically.

Whereas Figure 2.9a shows the behavior of "average" renewable energy hubs at the building scale,

Figure 2.9b shows some outliers, i.e. renewable energy hubs that behaved remarkably differently

from the rest. In the case of renewable energy hubs with very high PV potential, the simplified

approach tended to always underestimate the potential. Renewable energy hubs with large, com-

pletely flat roofs are an example of this case: here, in almost all scenarios, the optimal placement

involved using panels with a 30° tilt, which generated more energy than the flat case. On the other

hand, when the PV potential of the renewable energy hub was very low, the electricity generated in

the simplified approach was always overestimated; this can be the case of a house with a pitched

roof facing east and west, where all available surfaces have a lower potential compared to a flat roof

and, hence, the simplified approach tends to always overestimate the potential.

2.4.4 Impact on the grid

The main rationale for not following the common practice of installing PV panels with azimuth

and tilt that maximize yearly energy generation is related to the benefits that this gives towards

maximizing SC. A renewable energy hub is connected to the grid, maximizing SC helps to balance

loads on the grid and thus avoids excessive swings in the use of centralized power generation units.

This aspect can become crucial once renewable energy sources (especially uncontrollable ones,

such as wind and solar power) take up a significant share of the national energy mix. Figure 2.10

allows getting a better understanding of this point, and of how it is connected to the matter of PV

panels installation on top of roofs. Here, as demonstrated from the deviation between the energy

generated by the optimal system (solid red line) installed on a real roof and the energy generated

by a hypothetical system with all panels oriented south with a 30°angle (dashed red line), the error,

that was generated by not considering the orientation of the PV panels, is apparent. With a ratio of

surface area of installed PV panels to the heated surface of just under 50%, the yearly demand of the

building could be satisfied locally.

However, this perspective considered the grid as a perfect energy storage system. As shown by the

actual value of the PV electricity that was self-consumed, most of the generated electricity was sold

to the grid, and then was purchased back when needed. The share of the demand that was satisfied
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Figure 2.10 – a) The need of PV panels of one renewable energy hub at the building scale in Switzer-
land to reach self-sufficiency with re-imports. b) Revenues as a function of installed PV capacity
and grid efficiency from the perspective of the grid. The grid buys electricity at a feed-in tariffs of
0.08 CHF/kWh and resells for electricity price 0.24 CHF/kWh.

with the energy generated from the PV panels increased with the PV surface installed; however, this

share saturated at around 50% of the demand (Figure 2.10a).

From the point of view of each individual renewable energy hub, the grid can be seen as a battery

that is able to absorb excess energy from distributed generation and sell it back when the demand

exceeds the generation. There are several ways for the grid to fulfill this role: pumped hydroelectric

storage is the most commonly used [89, 90], whereas the use of large battery systems is still limited

to few cases, and other technologies (such as compressed air storage or hydrogen) are yet to reach

market maturity. Based on this an estimation of the PV system size required for a reference residence

to achieve a net zero balance between energy locally generated and consumed for different values

of the average efficiency of the storage is shown in Figure 2.10a. This assumption had a dramatic

influence on the surface required for energy balance: for a round-trip efficiency η = 0.85 (which

would be the case of lithium-ion batteries), the overall surface required would only slightly increase

from the η= 1 assumption. In that case, a equivalent of around half the ERA of PV panel installation

was needed to be self-sufficient. If, however, a much lower round-trip efficiency was assumed

(η= 0.40, which would be in the range of what can be expected when using hydrogen for energy

storage), the surface of PV panels installed to reach self-sufficiency was almost doubled (0.91). This

shows that large surfaces are needed in order to be self-sufficient of PV electricity alone. This study

was based on a single family home, with huge available roof surfaces. It is unrealistic that buildings

have available roof surfaces as large as their ERA at their disposal, especially in high-rise urban

typologies.

The effects of the efficiency of the grid as storage for the grid operators can be observed in Figure
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2.10b based on the assumption of 24/8 ct/kWh for electricity purchased from/sold to the grid. When

the round-trip efficiency η was high, most of the energy purchased from the renewable energy hubs

was able to be sold back, and hence the profit was large. With a lower round-trip efficiency η, the

profits decreased dramatically from the perspective of the grid. The grid revenue peaked at the point

of SS of the renewable energy hub. At this point the share of generated electricity, which was sold to

the grid but bought back at a later time was largest.

The common interest in efficient grid infrastructure is revealed by Figure 2.10 . From the perspective

of the grid operator, profits could be higher as less energy was lost in the charge–discharge cycle,

and these profits could then be used to reinvest into upgrading the grid itself, generating a positive,

cyclic effect. From the perspective of the renewable energy hub, self-sufficiency could be achieved

with a lower surface of PV panels installed (and, hence, with lower investment costs) and the supply

was more secure, since there was 75% less traffic in the network (PV electricity generated = 1.75, with

η = 0.40 at the point 0.91 m2
PV /m2

ER A).

The investigation of a different way to deal with the limitations of the grid is shown in Figure 2.11.

One solution would be to increase the level of self-consumption. The effect of taking into account the

effect of the grid-balance constraint on the installation decision of PV panels and on the preferred

azimuth and tilt is shown in Figures 2.11a and 2.11b. Here, two alternative means are implemented

in order to minimize the perturbations resulting from the exchange of renewable energy hubs with

the superior network: limiting the amplitude of power variations compared with an average value

(GM, Equation 1.30), or reducing ratio εel between the feed-in tariffs and electricity cost. Only one

solution of the Pareto front is included here, i.e., that which minimizes the TOTEX.

The results of the first strategy are shown in Figure 2.11a. When no limitation was applied (left plot),

almost all PV panels were installed facing south: with no limitation to the power exchanged with the

grid, the optimizer selected the configuration that maximized energy generation. When a limited

restriction was applied (GM = 3, center plot), there was a clear shift towards the west; even though

the variation only referred to less then half of the installed PV capacity and for only 10°rotation,a

clear trend was visible. This was confirmed when a stricter limitation on grid exchanges was imposed

(GM = 1.5, right plot), where less than half of the panels were installed towards south and the average

rotation towards the west was even higher. However, this had a relatively small effect on the SC,

which only increased from 0.52 to 0.54.

The results of changing the relative price between energy purchased from and sold to the grid was

shown in Figure 2.11b. The effect on the azimuth was less evident, but still present. However, a more

distinct effect on the tilt angle was seen, which tended to increase (from 30°to 40°). Also, it appeared

that the effect on the SC was higher in this case (it increased from 0.52 to 0.59), which might was

related to the fact that for electrified heating systems, the electricity demand is highest during winter,

where the sun is lower in the sky. Hence, by increasing the tilt angle, SC could be increased.
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Figure 2.11 – Distribution of PV installation and orientation for total cost optimization of 40 buildings
with individual load profiles. Assumption of flat roof with unconstrained orientation possibilities.
a) Three different grid constraints. b) Three different electricity price shares εel = feed-in tariff/elec-
tricity price.

The analysis of a district with 40 buildings with individual roof orientation and demand profiles

demonstrated that the best economic performance was achieved with around 40% rooftop occu-

pancy, as shown in Figure 2.12. Even though the optimal orientation was impacted by the orientation

of available surfaces, the previous trend of different policies can be confirmed in Figure 2.12a as

well as in Figure 2.12b. Imposing a constraint on the maximum peak, resulted in a shift westwards,

whereas changing the relation between electricity supply and feed in tariff has an impacted on the

optimal tilt angle.
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Figure 2.12 – Distribution of PV installation and orientation for total cost optimization of 40 build-
ings with individual load profiles and real roof orientations. Occupancy (OCC) of total available
surfaces. a) Three different grid constraints. b) Three different electricity price shares εel = feed-in
tariff/electricity price.

2.5 Conclusion

In this chapter, the influence of the orientation of PV panels on the design and performance of

renewable energy hubs at the building scale was analyzed. Existing literature in the field of BES

optimization has mainly considered horizontal PV modules and has based the decision of purchasing

them on global irradiation without shadowing effects. This chapter therefore has aimed to estimate

the influence of using different orientations, both from the perspective of the individual renewable

energy hub and of the grid, and provide a methodology for selecting which roofs should be covered

first. The results confirmed the validity of the common assumption of the favorability of south-

oriented modules with an approximate tilt of 30°. However, this did not hold true when resources

were available for more modules or when the focus shifted to a collection of buildings. To optimize

(SC), the optimal orientation was further west and with higher tilt than the standard solution. To

maximize the PV capacity on the roof, the use of horizontal panels maximized the usable roof area.

The most interesting results, however, were related to the interaction with the grid. For higher levels
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of PV penetration, the role of the grid became crucial. Grid operators have the power to influence

the quantity as well as the quality of grid exchange by acting in different directions:

Grid efficiency High grid efficiency was a common interest for both the building owner and the

grid operator. With an 85% grid efficiency, a residential building would need around half of

its heated surface in area of PV modules to be self sufficient. The point of SS also marked

the maximum grid revenue at almost 7 CHF/ m2yr. A lower round–trip efficiency required

more PV panels to achieve SS, generated a greater stress on the grid, and reduced annual grid

revenues.

Feed-in The pricing of the electricity exchange with the grid influenced the feed-in to the grid. For

lower feed–in prices (or higher demand prices), the most economic solution was to increase

tilt angles and slightly lower the PV penetration. This increased SC for a constant level of SS.

Peak power Constraining the peak power of the grid exchange led to a variation in azimuth angles.

By moving panels 20°westward and optimally scheduling the operation, the peak was reduced

by 50% while total costs increase by 8.3%.

Even though the optimal orientation strategy was impacted by the orientation of available surfaces,

the trend of different grid policies was confirmed by analyzing a 40-building district with individual

roof orientation and demand profiles. Comparing the resulting optimally oriented and horizontally

oriented panels indicated that the latter generated high error in the estimation of the PV performance.

Assuming horizontal panels, caused an overestimation in operating costs by approximately 5% and

a 10% underestimation in generated electricity for low PV surfaces. For greater PV surfaces installed,

the trend was reversed, and the relative error could increase to up to 20%.

The need of PV panel installation in order to be self-sufficient with grid re-imports alone, was

analyzed with a building with huge available roof surfaces. The area of the available roof was almost

identical to the ERA, which was useful to study different limits and requirements. This high ratio

between available roof surface and ERA is however not available for most buildings, especially not

for high-rise urban typology. In these cases, the role of facades has to be considered. This aspect is

further analyzed in the following Chapter 3.
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3Facades in interconnected renewable

energy hubs
Overview

# Assessment of solar irradiation on facades including shadows from surroundings

# Analysis of district energy systems as a collection of renewable energy hubs at the building

scale

# Analysis of the needs and limitations for integrating a high share of renewable energy in

renewable energy hubs at the building scale

# Estimation of the amount of electricity generated from the energy hub that needs to be

distributed or stored, and the related costs

The content of this chapter is published in [21].

As a main stakeholder, authorities often lack the appropriate tools to frame and encourage the

transition, and monitor the impact of energy transition policies. Compared to existing literature

in the field, the proposed approach combines an advanced modeling of the energy generation

potential from photovoltaic (PV) panels with a detailed representation of the district energy systems,

thus allowing an accurate representation of the interaction between the energy generation from

PV and the rest of the renewable energy hub. The proposed approach was applied to a typical

residential district in Switzerland. The results showed that the district can achieve carbon neutrality

based on PV energy alone, but that this requires covering all the available district’s rooftops, and part

of the district’s facades. Whereas facades are generally disregarded due to their lower generation

potential, the results also concluded that facade-PV can be economically convenient for a wide

range of electricity prices, including those currently used by the Swiss grid operators. Achieving

self-sufficiency for the district was challenging: it could be achieved by covering approximately

42% to 100% of the available surface when the round–trip efficiency decreased from 100% to 50%.

The results underlined the importance of storage for achieving self-sufficiency: even with 100%

round–trip efficiency for the storage, very large capacities were required. However, energy demand

reduction through renovation would allow for self-sufficiency to be reached with half of the PV and

storage capacity required.
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3.1 Introduction

Political authorities and other stakeholders in the energy value chain have the responsibility to

implement energy transition pathways by increasing decentralized renewable energy generation.

As a main stakeholder, authorities often lack the appropriate tools to frame and encourage the

transition, and monitor the impact of energy transition policies. Network operators as well need

appropriate frameworks and guidelines to implement the transition with a business perspective.

The electrification of the building stock has the potential to lower local pollutant emissions and in-

crease the energy system efficiency, especially when coupled with local renewable energy sources [7,

8]. In terms of small, decentralized renewable energy generation systems, roofs constitute the most

obvious solution for the integration of PV generation in buildings [3]. However, while the recent

decrease in PV systems’ investment costs made rooftop PV a proven, cost-convenient choice in

many parts of the world (even in the absence of subsidies [9]), today more than 90% of the solar

potential on the top of roofs is still unexploited.

In urban environments, however, the limited available space for including locally generated renew-

able energy compared to the energy demand represents an additional challenge towards a complete

decarbonization of the energy system. As a result of this challenge, together with the low cost of PV

modules, research in recent years also investigated the role of facades in urban context.

3.1.1 State–of–the–art

Initial feasibility studies focused on a general estimation of the potential from PV facades, introduc-

ing the concept of vertically oriented surfaces [73]. These early studies, however, did not consider PV

panels or shadow modeling, thus generally overestimating the PV generation potential. However,

even when these aspects were taken into account, existing literature shows that the inclusion of PV

panels from different oriented roofs and facades can be beneficial for matching electricity demand

profiles. As a relevant example, Freitas et al. [91] showed the economic feasibility of facades for the

case of two building blocks in Portugal and demonstrated that including facades has the effect of

reducing the required storage size.

To expand the scope from single buildings to whole districts, 3D simulation software using ray

tracing techniques like LiDAR in combination with geographic information systems (GIS) tools were

developed [92–94] and commonly used to estimate solar potential on all surfaces in a district [78,

95, 96]. The use of these tools also allowed the inclusion of surrounding buildings in the model, a

necessary condition to include the effect of shading on the potential of PV generation from facades.

In addition, the Sky view factor is a commonly used indicator for determining the amount of diffuse

irradiation on the surface [97, 98], whose use becomes even more relevant in the case of PV systems

on facades.
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The solar potential on facades is, in general, lower than on roofs [99]. However, previous research

suggested that facade PV can be crucial to achieve high levels of decarbonization and self-sufficiency

in urban environments. Redweik et al. [92] showed that the combined PV potential on roofs and

facades exceeds the non-baseload demand for a district located in Portugal and could furthermore

contribute up to 75% of the total electricity demand. Also, Aguacil et al. [100] suggested to take

PV installation on facades into account, especially for high–rise buildings. Li et al. [101] and Diez-

Mediavilla et al. [102] even suggested that facades can be competitive with roof installations.

The potential for facades also strongly depends on the location. At lower latitudes (such as in the

case of Portugal [92]) rooftop solar is economically superior to facades, as in the latter case the

payback increased from 10 to 20 years. At higher altitudes, however, the situation can be different.

Horn et al. [103], based on the results of a case-study application in Germany, suggested that the

solar potential on facades can exceed that on roofs during the winter months, as a result of the sun

being low in the sky. Clearly, the orientation of the surface also has a role in the performance of

the system. As a relevant example, Pantic et al. [104] determined a 12-year carbon and a 10-year

payback time of PV panels mounted on south-oriented facades in Serbia.

A comparative analysis of the state–of–the–art of research about the role of facades in urban energy

systems is represented in Table 3.1. The analysis shows one of the main gaps in existing literature:

most available studies only consider facade PV systems on their own, and do not explore the

importance of their interaction with the rest of the building energy system (BES). These studies are

usually conducted from the perspective of urban planners and architects, and are aimed at assessing

the solar potential on the complete envelope in order to find the best concepts and designs.

Conversely, papers focusing on the design of the energy system of buildings, which include irradia-

tion models, are generally focused on two aspects. The first is that irradiation models are required to

assess the solar contribution to the heating and cooling demand [23]. The second is that irradiation

models are also used for modeling the contribution of solar panels (both thermal and electricity )

to BES [26, 38]. However, in most cases, these studies rely on the use of global irradiation to model

the incoming solar radiation. This corresponds to assuming horizontal panels [60], a simplification

that was shown to generate a relevant error (over-estimation or under-estimation, depending on the

case) in the calculation of how much electricity is generated by PV panels [52].
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Table 3.1 – Literature overview of solar irradiation modeling on buildings. 3= yes, aspect included,
7= no, not included, S = simplified, N/A = not answered, PV = Photovoltaic Panels, BAT = Battery,
BES = Building Energy System.

roofs facades shadow PV BAT BES focus method reference

3 3 7 7 7 7 surface simulation [73]

3 3 7 3 7 7 surface simulation [105]

3 3 7 S 7 7 building simulation [102, 104, 106]

7 3 3 7 7 7 building simulation [99]

7 3 3 3 7 7 building simulation [107]

7 3 3† 3 7 7 building simulation [108]

3 3 3† 3 7 7 building simulation [109]

3 3 7 3 7 S? building simulation [110]

3 7 7 3 7 3 building simulation [111]

3 3 N/A 3 7 S? building simulation [103]

3 3 3 S 7 7 building simulation [112]

3 3 3 3 7 7 building simulation [101]

3 3 3 3 7 S? building simulation [113]

3 3 3 3 3 S? building simulation [100]

3 7 7 S 7 7 district simulation [114]

7 3 3 7 7 7 district simulation [98, 115]

3 3 3 7 7 7 district simulation [79, 92, 93, 95]

3 3 3 S 7 7 district simulation [116]

3 7 3 3 7 7 district simulation [78]

3 3 3 3 7 7 district simulation [97]

3 3 3 3 7 7 building genetic algorithm [75]

3 3 3 3 3 7 building genetic algorithm [91]

S+ 7 7 3 7 3 building genetic algorithm [26]

S+ 7 7 3 3 3 building optimization [38]

S+ 7 7 3 7 3 district optimization [58, 117–119]

S+ 7 7 3 3 3 district optimization [55, 120–123]

3† 7 3† 3 3 3 district optimization [63]

3 3 3 3 3 3 district optimization this chapter

† Shadow aspect is included as measurement of the irradiation on actual surface. Shadow influence

is not considered with the help of a replicable model.
? If the building energy system is considered simplified, its size is neither optimized nor designed

and the operation is not optimally scheduled.
+ Roofs are simplified in the sense that they limit bounds for installation and are considered as

being horizontal.
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3.1.2 Gaps and contributions

Based on the aforementioned literature review, there is a gap in the academic literature related to the

intersection of energy system design in buildings and the solar potential on facades. This chapter

accordingly aims to investigate following research contributions and questions:

• What is the role and potential of facades in decentralized energy hubs?

– Close the gap between architects assessing solar potential on building surfaces and

engineers designing solar-based energy systems.

– Integrate different PV panel orientation possibilities together with a shadow model from

the surroundings in the optimization approach of renewable energy hubs.

– What is the optimal investment strategy for PV systems in the district?

– Investigate the needs and limitations for installing PV panels and what is thereby role of

facades?

– Estimate the amount of electricity generated from the district that, from the perspective

of the electricity grid, needs to be distributed or stored, and the related costs.

Whereas it would be impossible to achieve general conclusions based on one single study, this

chapter aims at suggesting a potential methodological approach to address this gap in the scientific

literature, and presents the application to a specific case study in order to showcase the potential of

the proposed approach.

3.2 Method

The aim of this chapter is to integrate PV modules on both roofs and facades in the optimal design

and the scheduling of energy conversion and storage technologies. Furthermore, the aim is to

investigate the response of a fully integrated renewable energy hub at the district level to the

inclusion of high shares of solar energy.

In the proposed approach, renewable energy hubs interact with each other in two ways: 1) by con-

tributing to the overall electricity balance of the district, both consuming and generating electricity,

and 2) by shading neighboring building surfaces and roofs, thus influencing the actual potential for

local solar generation. An overview about the proposed approach is provided in Figure 3.1.

To be able to take both the optimal integration at building level and the behavior of the whole district

into account, a mixed–integer linear programming (MILP) framework is formulated, where unit

sizes and installation decisions in each building are used as the main optimization variables. The

approach is based on the general formulation of the renewable energy hub at the building scale,

which can be then applied to different building types in a district. The model derives from the BES

framework described in Chapter 1. Special attention is dedicated to the further development of the
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oriented irradiation modeling proposed in Chapter 2, which is modified to include the modeling of

shading effects between different buildings in the districts similar to the work of Schüler [124].

To clearly differentiate decision variables from input parameters, bold typeset is used to represent all

decision variables. As all sets are predefined, normal and capital typeset is used. The main problem

sets are: the set of of buildings B and their allocated facades F, the set of available conversion and

storage units U; the different days of the year are represented by periods in the set P, to which hourly

timesteps are allocated and contained in set T. The sets A and Y are used to express the orientation

of the PV panels with azimuth and tilt angles, respectively.

3.2.1 Decentralized district energy system

The district is considered as a collection of renewable energy hubs at the building scale. Each

renewable energy hub includes multiple unit technologies that can contribute to satisfy the different

energy demands (Figure 3.1). Both the space heating (SH) and domestic hot water (DHW) demands

can be fulfilled by a gas boiler, converting natural gas into thermal energy, or by heat pumps (HPs)

and electrical heaters, both converting electricity to thermal energy. PV panels are also considered

as energy conversion units, converting incoming solar irradiation to electricity. The system also

includes storage technologies: thermal and electrical storage. For thermal storage, two different

tanks are considered: one for SH and one for DHW. Electricity energy storage is considered in the

form of lithium-ion batteries.

In the proposed models, buildings are differentiated not only based on their construction charac-

teristics (surface, volume, roof type, etc.) but also by their usage, such as residential or industrial,

and their renovation state. In addition to having an effect on the total yearly demand, these aspects

also influence the hourly energy demand profiles, which in turn have a relevant effect on the overall

energy balance of the district. Energy can be exchanged with the electricity grid in both directions,

whereas hot water and natural gas can only be supplied by the grid to each building.

The MILP problem is defined with the minimization of the BES costs as the main problem objective.

This involves the combination of two separate contributions: operating and capital expenses. As

these two objectives are generally competing (solutions with high capital expenses (CAPEX) have

low operational expenses (OPEX), and vice versa), the problem must be approached using a multi–

objective optimization (MOO) approach. The MOO problem is implemented using the ε-constraint

method, thus considering the OPEX as the main problem objective and solving different optimization

problems where the CAPEX is constrained at incrementally increasing values. The same principle is

then repeated after inverting the roles of the two objectives. The objectives are applied at building

level and are detailed in Section 1.2.4.

In addition to the problem objectives, key performance indicators (KPIs) are defined to provide
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Figure 3.1 – Overview of a decentralized district energy system. Considered aspects in this chapter:
photovoltaic panels on roofs and facades. Interconnection of renewable energy hubs via the grid,
shading of buildings and solar gain from oriented irradiation i r r .

additional information regarding the performance of the system. The KPIs are applied on the entire

district and therefore have to be developed further with respect to Section 1.2.5. The possibility that

electricity can be both generated and consumed in the district itself is accounted for and the load is

balanced at the level of the district’s transformer (Equation 3.1).

Ė T R ,+
p,t − Ė T R ,−

p,t =
∑
b∈B

Ė g r,+
b,p,t −

∑
b∈B

Ė g r,−
b,p,t ∀p ∈ P ∀t ∈ T (3.1)

The electricity supply from the grid E g r,+ and the feed-in electricity E g r,− of each building b are

the result of the electricity balance of each renewable energy hub (Equation 1.2a). The sum of the

interconnections of all renewable energy hubs in the district leads to the electricity exchange at

the transformer E T R,±. The electricity exchange at the transformer is accounted for in the KPIs.

For readability, the following Equations 3.2 and 3.3 are expressed with annual values. The self-

consumption (SC) and the self-sufficiency (SS) are KPIs used to evaluate the performance of the
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system in terms of its interaction with the grid.

SC =
(
∑

b∈B E+
b,pv )−E T R ,−

(
∑

b∈B E+
b,pv )

(3.2a)

SS =
(
∑

b∈B E+
b,pv )−E T R ,−

(
∑

b∈B E+
b,pv )−E T R ,−+E T R ,+ (3.2b)

In Equation 3.2a, SC represents the share of the generated electricity from all PV panels E+
pv con-

sumed within the district [37]. In Equation 3.2b, SS represents the ratio of the onsite generated

electricity consumption to the total electricity demand [37].

The benefit for selling the generated electricity to the grid and for avoiding electricity import is

measured by annual revenues (AR) [40]. In this chapter, electricity can only be generated by PV

panels, hence their associated revenues are the only ones considered in the following Equation 3.3.

AR = (cel ,+ ·SC+ cel ,− · (1−SC)) ·
∑
b∈B

E+
b,pv (3.3)

Additional KPIs are used to evaluate how the system performs in terms of greenhouse gas (GHG)

emissions, included here based on their CO2 equivalence [3]. As shown in Equation 1.17, the total

global warming potential (GWP) is divided into the share coming from the operation and the

construction of the BES (see Section 1.2.5).

Gop =
∑
p∈P

∑
t∈T

(
g el

p,t ·E T R,+
p,t − g el

p,t ·E T R,−
p,t + g ng ·

∑
b∈B

Ḣ g r,+
b,p,t

)
·dp ·dt (3.4)

Equation 3.4 shows how the GWP from the system’s operations is balanced at the transformer T R,

where the volatile emission parameters gp,t are accounted for in the calculation of the GWP per kWh

consumed electricity E [33] or natural gas H . The parameter dt accounts for the duration of each

timestep within a period and dp for the frequency of each period within one year. In addition to the

total GWP of the system, the carbon payback time (CPT) is used as an additional KPI of the system

based on Equation 1.38 in Section 1.2.5.

3.2.2 Expansion of the validity range for PV installations

In this chapter, installation of PV panels are allowed on the full envelope of the buildings. Therefore,

the validity range for PV installations has to be extended in comparison to the previous work in

Chapter 2. Figure 3.2 demonstrates why at least two intervals for the MILP modeling of PV panels
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are required.
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Figure 3.2 – Visualization of the need for piece-wise linearization of the cost function for PV panels.
a) Linearization of different validity ranges, data derived from [125]. b) Annual specific cost of
identified linearizations.

To simply extend the validity range for the identified cost function for installation between 0-15 kWp,

leads to an overestimation of costs for a project with huge PV installations (Figure 3.2a). Whereas

one linearization for the interval 0-150 kWp would penalize, small, mostly roof, PV installations (Fig-

ure 3.2b). To overcome this issue, the cost function (former Equation 1.16b) is piece-wise linearized

for the PV panels (Equation 3.5).

C i nv,u
b =

∑
l∈L

bb,u,i ·
(
i c1

b,u,l · yb,u,l + i c2
b,u,l · fb,u,l

)
∀b ∈ B, u = pv (3.5)

The decision to purchase PV panels is represented by the binary variable y , whereas the continuous

variable f represents the unit size. The parameters i c1 and i c2 are the results of the linearization of

the unit cost function with bare module b in each linearization interval l . Additionally, the sizing

constraints (Equation 3.6) are added to the former sizing constraints from Equations 1.1.

yb,u,l ·F mi n
u,l ≤ fb,u,l ≤ yb,u,l ·F max

u,l (3.6a)

F mi n
u,l=0 = F mi n

u (3.6b)

F mi n
u,l=n = F max

u (3.6c)

∀l ∈ L ∀b ∈ B ∀u = pv

The upper and lower bounds (F mi n , F max ) for unit installations are necessary for identifying the

validity range of the linearization [29]. The lowest bound F mi n has to be equal to the lower bound
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of the first linearization interval (Equation 3.6b). The end of the overall validity range is defined by

parameter F max of the last considered interval (Equation 3.6c)

yb,u =
∑
l∈L

yb,u,l (3.7a)

fb,u =
∑
l∈L

fb,u,l (3.7b)

∀l ∈ L ∀b ∈ B ∀u = PV

Equation 3.7a ensures that only one interval l can be activated. The unit size, which is chosen, is

equal to the total installed size (Equation 3.7b) .

3.2.3 Solar irradiation and shading among buildings

The hourly irradiation is modeled using the anisotrop irradiation model which was first proposed

by [126] and later improved for all sky conditions [84]. The skydome descritization [83] is applied

using the Ladybug plug-in of the Grasshopper suite [127] to include the oriented irradiation into a

MILP formulation. For more information about modeling oriented irradiation in MILP problems,

the reader should refer to Chapter 2.3. In the remaining part of this section, the focus is on the

inclusion of facades, the main element of novelty in this chapter. Compared to roofs, the direct solar

irradiation on facades highly depends on shading from neighboring buildings, making it necessary to

include a detailed shadow modeling. The shadow modeling employed in this study only includes the

shadow from surrounding buildings, not from other obstacles (such as trees). Figure 3.3 visualizes

an exemplary geometric relation between two buildings.

Facade 1

d12

y12

x12

Building 2

Building 1

z

y x

z2

h2

z1d12

β12

z

y

x

Figure 3.3 – Exemplary visualization of the geometry for Facade 1, with distance d 12 to Building 2
and the sky-limiting angle β.

The positions of buildings and facades are given in x,y z coordinates, where y points to the north

and x to the east. The coordinate z is the elevation. The assumption is that the shortest distance is

between the center point of the facades and the center point of the building (Figure 3.3).
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x f ,b = |xb −x f | (3.8a)

y f ,b = |yb − y f | (3.8b)

d f ,b =
√

(y f ,b)2 + (x f ,b)2 ∀ f ∈ F,b ∈ B (3.8c)

Equations 3.8 show how the distance between buildings b and facades f in x and y coordinates is

calculated. The sky-limiting angle β represents the lowest elevation angle from which irradiation

reaches the facades (Figure 3.3).

tan(β f ,b) =
hb + zb − z f

d f ,b
∀ f ∈ F,b ∈ B (3.9)

In Equation 3.9, the reference point for the sky-limiting angle is the bottom of each facade (z f ).

Based on this assumption, the effect of the building’s height on the electricity yield is only based on

its role in the calculation of the total available surface (higher buildings have a larger facade surface

available). A building’s height only influences the shading of other buildings’ solar generation poten-

tial, but not of its own. This is considered a conservative assumption in order to not overestimate

the energy generated by PV panels installed on facades. The facades of high-rise buildings is divided

into several parts, applying the proposed approach. The sky direction is expressed by the azimuth

angle α, which is 0°for north and 180°for south. Figure 3.4 shows the different azimuth angles of the

facades, surrounded buildings and skydome patches.

z

y

x

α f ,d

x f ,d

y f ,d

d f ,d

Skydome

North, αpt = 0

αpt

αpv

Figure 3.4 – Outline sketch of different azimuth angles. The azimuth orientation of the facades
are identical to possible PV modules αPV . α f ,b : azimuth direction of surrounding buildings, αpt :
azimuth direction of each patch of the skydome.
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Equation 3.10 shows how the azimuth position of building b is calculated. Knowing the signs of both

catheti makes it possible to assess the correct quadrant for azimuth angle α f ,b ∈ [0°,360°].

α f ,b = arctan

(
xb −x f

yb − y f

)
∀ f ∈ F,b ∈ B (3.10)

As a building is receiving irradiation from all patches of the skydome (pt ∈ S), the sky-limiting angle

β needs to be calculated for all sky directions.

tan(β f ,b,α) =
hb + zb − z f

d f ,b
·cos(∆α) = tan(β f ,b) ·cos(α f ,b −αpt ) ∀ f ∈ F,b ∈ B,∀pt ∈ S (3.11)

In Equation 3.11, the sky-limiting angle β is greatest in the azimuth direction α f ,b of the building

causing the shadow. Finally, the highest sky-limiting angle β f ,α in each azimuth direction αpt of the

skydome is selected among all surrounding buildings for each facade f (Equation 3.12).

β f ,α = max{β f ,b,α : b ∈ B} ∀ f ∈ F,αpt |pt ∈ S (3.12)

The sky-limiting angle in each azimuth direction is then used to determine the shaded irradiation.

Thereby, the method is similar to the calculation of inter-modular shading of PV modules on flat

roofs, described in Chapter 2.3.

s f ,pt =


0 εpt ≤β f ,α

εpt+6−β f ,α

12 β f ,α−6 < εpt <β f ,α+6

1 εpt ≥β f ,α+6

∀ f ∈ F,(αpt ,εpt )|pt ∈ S (3.13)

The skydome is piece-wise linerized over the evaluation angle of one patch, which varies 12°, with

εpt marking the central point of each patch (Equation 3.13). The resulting shading factor of of one

patch spt ∈ [0;1] is equal to zero for completely shaded patches, 1 for completely unshaded patches.

i r r f ,pv (αpv ,γpv ) = (−1) ·
∑

pt∈S
s f ,pt · i r rpt (αpv ,γpv ) ∀αpv ∈ A,∀γpv ∈ Y (3.14)

Equation 3.14 shows how the irradiation on facades is calculated when taking into account shading

from neighboring buildings. As possible PV panels can only have the same orientation of the

facades they are installed on, the azimuth and tilt orientation of the facades are equivalent to the
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orientation of the PV panel. In contrast to the azimuth angle, tilt angle of the facades is always the

same γPV = 90°. The irradiation of each oriented patch of the skydome i r rpt is transferred to the

perpendicular irradiation, which is received on the PV panels. This is achieved using the principle of

a two-stage rotation in a three-dimensional space, which is treated in detail in Chapter 2.3.

3.2.4 Solar heat gains

The heat gains in each building are partly a result of solar irradiation. Common practice is to

use a fixed share, which describes how much of the global irradiation is converted to heat gain

(Equation 1.12). This approach can be improved with the oriented irradiation and the detailed

knowledge of the geometry and the shadow on the buildings’ envelope (Equation 3.15).

Q̇ i r r
b,p,t =

∑
f ∈F

Ag

A f ,b
· f s · g g l ass · i r r f ,p,t (α f ,γ f ) ∀b ∈ B ∀p ∈ P ∀t ∈ T (3.15)

Perez [128] details typical ratios of glass-to-facades surface Ag /A f for each building type (Equa-

tion 3.15). The g-values measures the amount of solar irradiation which is transferred to heat. It is

assumed that shading devices are used for irradiation greater than 200 W/m2 [128]. f s is a constant,

0.9, accounting for dirt and non-perpendicular irradiation on the windows [31]. The solar irradiation

on the facades i r r f depends on the facade’s azimuth orientation α f and the tilt angle γ and is a

result of previous Section 3.2.3.

3.2.5 Data-driven approach

The data layers of Table 3.2 are used to represent multiple configurations of decentralized energy

demand and generation. Except for the grid topology and measurement [87], the approach uses

Open Government Data (OGD) including the climatic conditions, building database [45] with roof

and facade geometries [129, 130], energy demand standards [31, 131] and statistical values [23].
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Table 3.2 – List of necessary data layers.

Type Data Description

Environment Weather data Temperature and solar irradiation [48, 132]

Land registery Cadastre Footprint area [44, 133]

Buildings

Official Buildings Registry Usage, construction/renovation date, heating
system, height, number of floors, reference
energy area [44, 45]

3D model 3D surfaces [129]

Solar roof and facade 2D surface area and orientation [130, 134]

Energy statistics and standards Overall heat transfer coefficient, heat capacity,
people presence, electrical loads, internal and
external gain [31, 131]

Grid
Grid topology Location and parameters of transformer, lines

and injection points [135]

Load measurements Hourly load aggregated at the transformer [87,
135]

3.2.6 Case study area

The method is demonstrated on a typical, central European, peri-urban, residential area comprising

31 buildings, mostly single and multi-family houses (Figure 3.5a). The buildings considered are all

connected to the same measured transformer, the other buildings of the district being used solely for

their shadowing effect. Figure 3.5b shows that, whereas the largest share of the PV generation poten-

tial lies in the building roofs, facades also have a significant potential. As expected, south-oriented

facades have the largest potential, followed by east- and west-oriented facades. It is interesting to

notice that the specific solar potential of the most promising south-oriented facades is higher than

that of the least promising roofs. The large amount of annual input profiles requires clustering of

the solar irradiation and the external temperature. The k-medoids clustering, commonly applied to

combined heat and power systems [136] allows for the identification of 10 typical days and 2 extreme

periods. While detailed information is available in the appendix, Table 3.3 provides an overview of

the main building-related parameters. In all buildings the desired indoor temperature is set to 20 °C

and the hotwater is supplied at 60 °C.
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Figure 3.5 – Details of the case study area. a) Map of the area, a typical central European peri-urban
residential area. b) Solar PV potential on roof and facade as a function of the orientation.

Table 3.3 – Overview input data for 31 buildings. All buildings are connected to the same low–voltage
grid.

Multi family
house

Multi family
house

Single family
house

Building type + I I II
Building category+ existing standard existing
Number of buildings 11 2 18
Total net surface Anet 9200 1100 5600 m2

Total energy ref. area Aer a 11500 1400 7000 m2

Total roof area? As 4200 560 4400 m2

Total facade area? As 7700 870 5900 m2

Annual electricity demand† E B 37 ± 17 50 ± 21 60 ± 60 kWh/m2
net

Annual hot water demand† Qdhw 25±0 25±0 19±0 kWh/m2
net

Annual internal heat gain† Q i nt 30 ±2 32 ±0 29 ±2 kWh/m2
net

Solar heat gain† Q i r r 22 ±6 20 ±3 31 ±10 kWh/m2
er a

Design supply temperature T s
0 65 41.5 65 °C

Design return temperature T r
0 50 33.9 50 °C

Heat transfer factor† U 1.74 ±0.24 0.83 ±0 1.84 ±0.21 W/(m2
er a K)

Heat capacity factor† C 118 ±5 120 ±0 120±0 Wh/(m2
er a K)

+ according Swiss standard norm [31]
? Area available for PV installation. Details available in [82].
† Average values ± standard deviation. Detailed building data is available in the appendix.
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3.3 Results and discussion

The role of PV integration in decentralized energy systems is addressed in this section. The optimal

integration strategy of PV panels is analyzed and the need of facades in order for the district to

become carbon neutral and self-sufficient is highlighted. Thereby, economical feasibility of PV

installations is analyzed and required storage capacity are then further detailed.

3.3.1 What is the potential of energy generation from PV in the district?

The results of the optimization confirmed what was observed about the per-surface generation

potential. The conclusions resulting from the analysis of the potential from installing PV on facades

were different depending on what perspective was being considered. The general trend, as expected

from what is shown in Figure 3.5b, was that rooftop-PV had a much better performance compared

to facade-installed PV, which is clearly shown by the fact that panels were first installed on roofs

(Figure 3.6a). The comparison of Figure 3.6a and 3.6b shows clearly the reason: in cost intensive

solutions, the cost for facades dominated the total PV-related investment, while it still provided less

than half of the total energy generated. However, looking at the same figures from another perspec-

tive, facades had the potential to increase the total energy generation from PV by approximately

97%. While they might not represent the most cost-efficient solution, they certainly can play an

important role in improving the SS of the district.
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Figure 3.6 – Economically best PV installation for 31 residential buildings, normalized to total energy
reference area in the district. a) Area of installed modules sorted by orientation type, PV modules
with tilt = 0°are horizontal, tilt angles = 90°are facades, oriented modules summarize all other tilt
angles. b) Annual generated electricity and shading losses depending on surface type. c) Orientation
of economically best PV installation.

Looking more in detail at the surfaces where PV panels were installed depending on the optimization

scenario, it can be noticed that some of the vertical surfaces were used even when roofs were not

fully exploited yet. This is a consequence of two factors: first, the fact that (as shown in Figure 3.5b)

some facades had a higher specific PV generation potential than some roofs, as in the case of

south-oriented facades compared to tilted, north-oriented roofs; second, the fact that the CAPEX-

constraint was not enforced at district level, but at building level. This implies that when at district

level there might still be 10% of roofs available, this might not be true at building level, where the

optimizer is then "forced" to start using facades instead.
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3.3.2 Are PV installations on facades needed to become carbon neutral?

The results of the optimization for a list of Pareto-optimal solutions is shown in Figure 3.7. More

specifically, Figure 3.7a shows that the district could become approximately carbon-neutral already

for a overall investment cost (approx. 12 CHF/m2yr). This result was achieved also thanks to

a significant contribution of energy generated from the PV panels installed on facades, which

contributed to approximately 40% of the total PV surface installed, or 60% of the available facade

area, corresponding to PV deployment on all well-oriented facades.

(a) (b)

Figure 3.7 – Results of the MOO of 31 buildings in one low–voltage grid, normalized to total energy
reference area in the district. a) performance indicators and cost distribution of identified energy
systems b) electricity exchange and gas imports for the district.

Further increasing the allowed CAPEX only led to a limited improvement in terms of total GWP of the

solution, that capped at a total CAPEX of approximately 20 CHF/m2yr. Beyond this limit, the overall

GWP of the solution actually worsened: the increase in PV surface installed was compensated by the

lower specific generation of PV panels installed on facades, and on the increasing battery capacity,

which had little contribution to the overall energy balance, but increased costs and GWP potential.

As current tariffs (electricity cost = 20ct/kWh and feed-in price = 8 ct/kWh) favor self-consuming

locally generated energy over selling it to the grid, solutions with an increased CAPEX bound tended

to shift towards the increase of battery capacity as to reduce energy exchanges with the grid. This
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is shown clearly in Fig 3.7b: moving towards high-CAPEX solutions, the imports and exports at

the district transformer decreased. At the same time the energy locally generated increased only

marginally, while the focus was shifted towards using it locally to maximize revenues.

3.3.3 How much electricity can be generated locally and cost-efficiently?

The results presented in Figure 3.7 represent Pareto-optimal solutions for the two competing ob-

jectives of minimizing OPEX and CAPEX. However, the choice of the individual prosumer will be

influenced by the profitability of the investment, which is a result of the combined effects of CAPEX

and OPEX. Policy makers and grid operators might be interested in knowing how different energy

prices can influence the profitability of a PV investment, and hence the amount of PV installed and

of resulting electricity generated. From the prosumer perspective, this translates into the question

"how many PV panels can I install if I aim for the investment to pay back by the end of the PV panels’

lifetime?". From the policymaker perspective, the question instead is "how should tariffs be set in

order to achieve the desired electricity generation from PV panels?". The extent to which facade

solutions are cost efficient depended on the installed surface, as shown in Figure 3.8. The Point A

represents the surface of installed PV panels for which lifetime revenues and investment are equal.

This showed that with current tariffs large surfaces of facades could be covered with PV panels, while

still achieving a positive economic performance. This was strongly influenced by the choice of tariffs

by the system operator.
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Figure 3.8 – a) PV investment per generated PV electricity E PV ,g en and implicit revenues for different
feed-in/demand prices. Economic point: investment in PV and connected revenues are balanced.
Point A - current tariffs (8ct Feed-in, 20 ct demand price); points B1 and B2- exemplary tariffs with
two break-even points. b) Annual benefits, which are the annual revenues subtracted by the PV
investment.

At current tariffs (0.20/0.08 CHF/kWh) large facade surfaces could be covered with PV panels in
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conditions where lifetime revenues were larger than the investment cost. Lowering the purchase

price (e.g. 0.15/0.08 CHF/kWh) tended to worsen the economic performance in the whole surface

range, as it affected the portion of the generated electricity that is self-consumed. In this case,

according to the optimization’s results, there was a limited window where PV was convenient: for

installed surfaces below Point B1 (Figure 3.8) the fixed component of the investment was predomi-

nant. For installed surfaces higher than B2 the combination of two factors made these solutions

economically unfavourable. First, new PV panels were installed on surfaces that generated less

electricity per unit of surface installed. Second, every new panel mostly contributed to the annual

revenues with electricity that is sold to the grid (and not self-consumed)in which, less is paid to the

prosumer. Finally, the effect of decreasing feed-in tariffs to 0 CHF/kWh was shown by the dotted

line. In this case, facades should be discarded: only self-consumed electricity mattered, so the most

economically convenient choice was to install only a few panels and only on roofs.

(a) (b)

Figure 3.9 – Variation of the PV yearly generation to achieve break-even as a function of feed-in and
demand prices. a) first break-even point (B1) b) last break-even point (B2 or A) in Figure 3.8.

Evidently, the location of the economic break-even point depended on a combination of the two

tariffs. This can be seen more clearly in Figure 3.9, where Subfigure 3.9a shows the position of

point B1 (lowest installed surface that makes the installation of PV panels economically favourable).

Moving towards the upper white area would substantially mean eliminating the entry barrier to new

producers, especially smaller ones. This can be achieved by a combination of feed-in and purchase

tariffs. It is however more interesting to look at the position of point B2 (highest economically

favorable surface) in Figure 3.9b. This figure shows the importance of increasing feed-in prices if

the objective is to maximize generation. For instance, even at today’s demand price, increasing the

purchase price from 0.08 CHF/kWh to 0.10 CHF/kWh would theoretically make all roof and facade

surfaces economically convenient. The results also show the extent of the variation. The average

annual electricity generation from installed PV ranged between 100 and 280 kWyr/yr, showing that
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appropriately choosing electricity tariffs could lead to an increase of almost 200% of the yearly

energy generated by PV panels in the district. In Figure 3.9, the dashed line represents the tipping

point between the end of the roof surface available and the start of using facade surfaces. As it can

be seen, even with today’s energy prices, facades (at least the ones with the highest solar irradiation)

could be used for PV generation profitably. Understandably, increasing demand and feed-in prices

both play in favor of an increased profitability of facade surfaces. As mentioned above, at (0.20/0.10

CHF/kWh) tariffs, also north-oriented facades became potentially valid for PV panel installation

from an economic perspective.

3.3.4 How much PV is needed to achieve self-sufficiency?

In previous results, it was shown that the district can achieve carbon neutrality relatively easily and

with current tariffs most facades are economically feasible. But how much PV is actually needed to

cover the electricity demand at all times? In fact, not all generated energy is used locally. As shown in

Figure 3.7a , the SC was below 60% for all scenarios, while a significant part of the generated energy

was sold to the grid and was later purchased back, thus using the grid as electricity storage. Including

re-imports in the definition of SS and assuming that the grid-as-storage works with 100% round-trip

efficiency led to the minimum required area of PV per energy reference area (ERA) = 0.44 (point S) to

achieve self-sufficiency. Depending on the efficiency that was assumed for the grid-as-storage, the

amount of surface covered by panels increased.

If the storage is assumed to be lithium-ion batteries (which would be the most likely case for district-

level storage, connected to the same low-voltage grid as the district), it is possible to assume a

relatively high round-trip efficiency for the grid-as-storage. In Figure 3.10 a the line for η= 0.85 can

be used as reference, showing that in this case the PV surface needs to be increased only marginally.

Another relevant point in Figure 3.10 is represented by the "last economic point", that is the largest

amount of PV panels that can be installed with the expectation of recovering the investment within

the panels’ lifetime with current tariffs. The efficiency of the grid-as-storage that allows SS in

this point was approximately 0.59. Incidentally, this is quite similar to the round-trip efficiency of

pumped hydro storage (PHS), today the most common way of doing grid-level storage in Switzerland.

Further insights about storage systems for electricity are available at [137, 138]. Finally, the case of

η= 0.40 is shown in Figure 3.10, a relatively optimistic example of round-trip efficiency of power-

to-gas storage systems. In this case, the results showed that the available surface was simply not

sufficient, and even covering all roofs and facades with PV panels would not allow to reach SS of the

district. The actual minimum efficiency that needed to be achieved by the selected combination of

storage technologies to achieve SS was η= 0.50.

Figure 3.10b shows the perspective of the grid operator, when looking at the importance of the

efficiency of the grid-as-storage. Grid revenues are obtained from to the difference between feed-
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Figure 3.10 – a) The need of PV panels of 31 buildings balanced at the transformer to reach self-
sufficiency (SS) with re-import for different round-trip efficiencies η. Point S: full SS with ideal
storage (η = 100%) in place. b) Revenues as a function of installed PV capacity and grid efficiency
from the perspective of the grid. The grid buys electricity at a feed-in tariffs of 0.08 CHF/kWh and
resells for electricity price 0.20 CHF/kWh

in and purchase electricity prices, but also depend on the amount of energy that is lost in the

irreversibilities of the storage charge/discharge process. The results show that the grid could have

positive income even with low storage efficiency. However, the clear interest in working with high

round-trip efficiency was also demonstrated from the perspective of the grid. The highest grid

revenues were achieved at the point of complete SS. When the PV capacity was exceeding the need,

the district did not need to purchase extra electricity but continued to sell surplus electricity, hence

the grid revenues only decreased.

3.3.5 How much energy storage is needed to achieve self sufficiency?

The results shown in the previous sections highlight the fact that the district required a relevant

amount of storage in order to become self-sufficient, in addition to the thermal and electricity

storage systems installed in individual buildings. The actual amount of district storage required

is shown in Figure 3.11b, relative to the total amount of energy locally generated by PV panels.

The results show that the storage capacity required in the case of ideal storage (100% round-trip

efficiency) to achieve SS was prohibitive: more than 35 kWh/m2.
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There are different ways to decrease the need of storage. One is to increase the energy conversion

efficiency (e.g. a district heating network using CO2 HPs [7]), another possibility is to decrease the

demand by retrofitting the buildings [139]. The results of this analysis are shown in Figure 3.11a.

Three main scenarios are addressed:

• baseline scenario (air-source HP, actual building stock) referring to the results shown in the

previous part of this section;

• improved HP case, where high-efficiency HPs using a CO2 network as cold source; The annual

coefficient of performance (COP) for the HPs in the district increased from 3.25- 3.9 to 4.1 - 4.5

by switching from ambient air to CO2. The value depended on different operation strategies

in Pareto-optimal solutions.

• renovated building stock case, with standard HPs but with isolated buildings (achieved with

assumed heat transfer factor U = 0.8 W/(m2K) and design return/supply temperatures T r /s
0 =

41.5/ 33.9 °C [23]);

The results show, as expected, that increasing the efficiency of the building stock, a very expensive

measure [139], was the most efficient solution to decrease the amount of district-level storage

required to achieve SS. For all three scenarios the maximum storage time, that is the longest time of

a positive state of charge, was several months, meaning that seasonal storage was required.
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Figure 3.11 – Key identifiers of a storage system with round–trip efficiency η= 100% (equivalent to
point S in Figure 3.10a) to store surplus PV electricity for different efficiency strategies. a) Required
storage size and time. b) Directly available price form buying at feed-in tariff of 0.08 CHF/kWh and
selling at for electricity price 0.20 CHF/kWh

Regardless of the type of retrofitting solution, is this much storage in the system affordable? Grid

operators recur to a variety of means to store energy (from existing PHS to simply balancing the grid
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with centralized power generation). However, the capacity of the medium–voltage grid is limited

to host high level of PV penetration in the low–voltage grid [140]. It can be worth answering this

question by looking at how much money would be directly available in the district by using the

revenues generated by the different demand/feed-in electricity prices. The results of this analysis

are shown in Figure 3.11b. Only the scenario with very limited PV panels installed generated notable

revenues. In this case, the storage had multiple annual cycles and generated more revenues.
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Figure 3.12 – State of charge of a storage system aiming at self-sufficiency for different levels of PV
penetration.

The reason behind the sharp increase in required storage size when the PV surface installed increases

can be seen in Figure 3.12. At the low range, storage was only used for daily balancing purposes,

thus requiring a very limited amount of storage size. In Figure 3.12, the first line appears flat, as

the required daily storage capacity was low. At higher PV surfaces installed, achieving SS requires

seasonal storage. All solutions where the ratio between PV installed surface and heated surface is

above approximately 20% show a demand for seasonal storage. The state of charge of the storage

peaks in the end of the summer, and then gradually decreases during the winter.

3.4 Conclusion

This chapter aimed at investigating the potential of facades in interconnected renewable energy

hubs. Thereby to analyse the requirements to achieving carbon neutrality and SS, by using a

combination of PV electricity generation and different energy conversion units. The problem was

addressed with a decentralized design strategy of a residential district, which considered a collection

of renewable energy hubs at the building scale. The OPEX and CAPEX of the system were considered

competing objectives, and the installed sizes and operating load of the different energy conversion

units (including PV panels and batteries) as main optimization variables.

Compared to existing literature in the field, the proposed approach combines an advanced modeling
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of the energy generation potential from PV panels with a detailed representation of the district energy

systems, down to the system of each individual building, thus allowing an accurate representation

of the interaction between the energy generation from PV and the rest of the system. The proposed

approach was applied to a typical, central European, residential district located in Switzerland, in

the proximity of the metropolitan area of Geneva. The results of the application of the proposed

method are summarized in Table 3.4.

Table 3.4 – Overview of identified solutions for a future decentralized district. Self-sufficiency (SS),
round–trip efficiency η of the electric storage system.

solutions
PV coverage

APV /AER A roof facade total

full PV roof coverage, SS= 75% 0.32 100.0% 0.0% 30.5%

full SS,η=100% 0.44 100.0% 16.4% 41.9%

full SS, η=85% 0.53 100.0% 28.8% 50.5%

carbon-neutrality 0.62 100.0% 41.0% 59.0%

full SS, η=59% 0.81 100.0% 67.1% 77.1%

full PV coverage, SS with η=50% 1.05 100.0% 100.0% 100.0%

full SS solutions with η = 100% storage capacity PV coverage

Air HP 35.0 kW h/m2
ER A 41.9%

CO2 HP 29.0 kW h/m2
ER A (-17.1%) 36.2% (-13.6%)

Building envelope renovation 18.8 kW h/m2
ER A (-46.3%) 23.8% (-43.2%)

Facade PV specific energy potential Facades had a high theoretical potential, based on their sur-

face compared to roofs: the total facade surface in the district summed to about twice as much

than that of rooftops. However, the less optimal orientation towards the sun and the shading

among buildings had the effect of significantly worsening their electricity generation potential.

Overall, however, the installation of PV panels on facades had the potential of increasing the

total energy generated by approximately 97%.

PV placement order The results of the multi-objective optimization showed that, as excepted,

PV panels were prioritized on roofs (first horizontal, then south-west-east-north) and only

then on facades (south, west/east, north). This was clearly due to the higher specific energy

generation potential of roofs compared to facades. The moment of the day when solar power

is generated counted only to a smaller extent.

Solar-driven district carbon neutrality Facades could play an important role in the energy sys-

tems of districts. The results of the multi-objective optimization showed that it was relatively

cost-efficient to achieve carbon neutrality, but that this was only possible if PV panels were

also installed on facades, based on the current energy conversion units and building stock.

Further additions of PV panels and batteries allowed for the reduction of operating costs but
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had little effect a further reduction of the total GWP of the energy system.

Economic convenience of facade PV Facades were costly, and less cost-efficient compared to

rooftop solar. However, the results of the analysis of the influence of electricity prices (both for

purchasing electricity from the grid and feed-in) showed that there were many combinations

of tariffs that make facades economically convenient over their lifetime. These results thus

highlighted the influence that electricity prices have on the maximum PV surface that can be

covered while still being economically viable. Current tariffs would allow up to 80% of the

total available surface to be covered.

Achieving district self-sufficiency Reaching SS based on PV electricity alone requires the installa-

tion of storage systems. Depending on the assumption for the round-trip efficiency of the grid

considered as a storage unit, it was more or less challenging to achieve SS for the district. SS

could be achieved by covering from approx. 40% to 100% of the available surface when the

round–trip efficiency decreased from 100% to 50%.

Storage requirements The results underlined the importance of storage for achieving SS, and the

fact that even when assuming a 100% round–trip efficiency for the storage, very large storage

capacities were required. The results also showed that the grid revenues generated by the

difference between retail and feed-in prices were not sufficient to pay for the storage that is

required to make the district self-sufficient, suggesting that public funding would be crucial for

supporting these developments. This was true already at relatively low installed PV capacity

(APV /AER A = 0.2), when storage started to be required for seasonal instead of daily storage,

thus increased dramatically the required capacity and storage time.

The role of building renovation Of the solutions tested in this study, building renovation, with its

important effect of energy demand reduction, was identified as the most promising in synergy

with PV generation. This is because building renovation allowed for the reduction of both the

required installed PV and storage capacity to achieve SS by half.
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4Computational reduction for centralized

energy systems

Overview

# Two methods to reduce computational effort for complex energy systems

# First method: time–series aggregation (TSA), with simultaneous detection of outliers

# Second method: decomposition algorithm for multi-objective optimization of district

energy systems

# Runtime reduction for calculating districts on the scale of low–voltage grids

The content of the first part of this chapter is published in [141, 142]. The second part is

submitted to [143] (in Review).

Optimal design and scheduling of energy systems with a high share of renewables is a complex

and computationally demanding task. The mismatch of supply and demand of energy requires the

consideration of timeseries with a granularity of a few minutes, which is in contrast to the lifetime of

the system of multiple decades. This chapter proposes two algorithms for systematically reducing

computational efforts of district energy system (DES). The first algorithm reduces the input data by

exploiting the two-stage nature of the optimal design and planning of the system and sequentially

performing k-medoids clustering. Unlike the state–of–the–art, the influence of different numbers

of typical periods is not examined on the quality of the clustering algorithm but on the objective

function and the integer decisions. The solution time of the multi–objective optimization (MOO)

could be reduced by approximately 90%, while diverting less than 2% on Pareto-optimal solutions.

However, the comparison of two case studies with different levels of complexity demonstrated that

this method was not reducing the computational effort sufficiently enough. Therefore, a second

algorithm is proposed, which is a Dantzig–Wolfe decomposition. Contribution to the state–of–the–

art is a formulation for multi-objective optimization, which also allows an improvement of the

initialization of the algorithm. The method is validated with the compact model formulation of the

same problem. Results show that the decomposition method diverted less than 0.02% but reduced

the solution time sufficiently in order to calculate whole low-voltage distribution grids.
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4.1 Introduction

The energy sector is currently facing multiple transforming forces. In the context of rising concerns

for anthropogenic CO2 emissions, the integration of renewable energy sources is becoming an

increasingly widespread solution for reducing the carbon footprint of energy systems [144]. The

optimal integration of renewable resources in energy systems is a complex task, as both aspects,

optimal scheduling of operation as well as strategic planning of system design, have to be considered

side by side. Energy system optimization using mixed–integer linear programming (MILP), where an

integer represents the decision for or against installing a technology, is a widely adapted framework.

The mismatch of availability of renewable energy sources and demand of energy requires the

consideration of time–series data with a resolution of a few minutes, which is in contrast to the

lifetime of the system of multiple decades. The challenge of the inclusion of unit decisions, a project

horizon of several decades as well as hourly time–series results in not only the need of a large amount

of data. It also leads to extensive computational problems.

To make the problem computationally tractable, simplifications have to be either made in the

spatio-temporal dimension, that is reducing input data, or in techno-economic dimension [46].

Latter is corresponds to the reduction of complexity of the modeling framework itself. This chapter

considers both aspects. In the first part, a novel time–series aggregation method is introduced to

systematically reduce input data. In the second part the Dantzig–Wolfe decomposition approach is

applied, which splits the complex problem into several pieces. Hence, it reduces the complexity of

each single problem.

4.2 Time–series aggregation

This section proposes an algorithm for systematically reducing the input data and therefore the

computational effort for solving MILP of energy systems. Before the method is detailed, an overview

of the state–of–the–art is provided. The section finishes with a demonstration of the algorithm on

two case studies with different complexities.

4.2.1 State–of–the–art

The aggregation of time–series to typical periods is specifically popular, as patterns occur naturally

in the supply and demand of energy, which arise in the time dimension through hourly, daily and

seasonal cycles. A recent comprehensive review by Hoffman et al. [46] analyzed TSA methods for

modeling energy systems applied in 130 different publications. Schütz et al. [47] compared differ-

ent aggregation methods for the selection of typical demand days, such as k-means, k-medians,

k-centers, k-medoids, seasonal and monthly based classifications. Hoffman et al. and Schütz et

al. [46, 47] showed that the more intuitive aggregation methods of seasons or months led to signifi-
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cantly larger errors than machine learning methods for the same computation time. Algorithms

within the latter category performed similarly well, although k-medoids were the most reliable for

approximating costs.

The first challenge of aggregation of time–series is usually to identify the optimal number of typical

periods. State–of–the–art approaches in modeling complex energy systems almost exclusively based

their decision on key performance indicators (KPIs) of the clustering algorithm itself, e.e., the sum of

squared errors (SSE), root mean square deviation (RMSD), mean average percentage error (MAPE)

or silhouette index for defining the length and amount of typical periods [22, 145, 146]. However,

this procedure dis not provide sufficient guarantee of aggregation quality with respect to application

to the energy system optimization. This procedure considered neither the influence on its optimal

objective value, nor the unit choices. Therefore, Brodrick et al. [147] considered the change of unit

decision while increasing the amount of typical periods next to the SSE of the k-means algorithm.

Schütz et al. [47] showed that the typically applied assessment of the aggregation by using SSE

was not sufficiently suitable for energy system synthesis problems. Therefore, Bahl et al. [148]

developed a systematic method for bounding the error of the aggregation in the objective function.

This has laid the foundation for a rigorous formulation of time–series relaxation and aggregation

comprising a method for effectively including seasonal storage [149, 150]. The mathematically

rigorous formulation [149] creates an upper and lower bound of the objective function and iterates

the procedure by increasing the resolution of TSA until an optimal gap criterion is met.

As a final step, extreme periods are added to the aggregated time–series [145]. These extreme periods

serve as protection or guarantee that the energy system can still provide the required services in

these extreme situations. Therefore, extreme periods were often given by national regulations and

were added in a post-processing step and were not further analyzed [38, 146, 151].

4.2.2 Gaps and contributions

Previous review of the state–of–the–art allows concludes that machine learning algorithms for data

reduction techniques are not very well integrated in the optimization technique of complex energy

systems. Thus, a new iterative procedure of TSA is proposed, which evaluates the influence of the

clustering algorithm on the objective function as well as on integer variables.

weather or
measurnement profiles

input data from reference
0. Time series definition 1. Time series

preprocessing

length of typical periods
definition of amount and

extreme periods

3. Including additional
information
addition of

2. Aggregation
algorithm

k - medoids on objective function
and unit decision

aggregation
4. Evaluation

Figure 4.1 – Procedure of TSA with steps discussed in this chapter highlighted in red

An overview of the usual steps involved in TSA is provided in Figure 4.1. In the figure, the steps, which
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are modified in comparison to the current state–of–the–art, are highlighted. Recent work identified

the k-medoids algorithm as the most reliable for economic evaluation of energy systems [46, 47].

Hence, the k-medoids algorithm is chosen as the aggregation method in step 2 (see Figure 4.1).

Another challenge is TSA for complex energy systems is in general overlooked: the role of extreme

periods. The extreme periods have an influence on the installed capacity of energy technologies.

This chapter additionally investigates the role of outliers, which serve as extreme situations for the

energy system. In this chapter, the aggregated problem (AP) is the energy system optimization based

on typical periods, whereas the operating problem (OP) is the optimization of only the operation,

with fixed unit decisions, on a full time–series.

4.2.3 Method

An overview of the proposed algorithm is displayed in Figure 4.2. It consists of two parts; of which

the first focuses on the objective function evaluation, whereas the second evaluates the integer

decision variables.

input data (GHI, T)

solve aggregated problem

solve operating problem

unit decision changed?

start

end

k- medoids clustering

ǫb satisfied?
convergence criteria

ǫa satisfied?
convergence criteria

k- medoids clustering

solve aggregated problem

add unit desgin to solution space

yes

no

yes

yes

no

no

n = n+1

n = 2

[n, n+m]

Part I

Part II

m = 2m
n = m

Figure 4.2 – Overview of the iterative proce-
dure for systematic input data reduction

Algorithm part 1 The first part is characterized by

an iterative process with two separate convergence

criteria on the value of the objective function. With

every iteration the percentage change between the

solution of the aggregated problem (AP) based on

k-medoid clustering between n and n-1 clusters is

calculated. Only when the first convergence crite-

rion, |εa | ≥ APn−APn−1
APn

, is met, the operating problem

(OP) on the full time–series but with fixed unit sizes

is solved. Subsequently, the second convergence cri-

terion |εb | ≥ OPn−APn
APn

is evaluated. The iteration con-

tinues with the calculation of both problems until

the second criterion is also valid. Finally, the sizing

and selection variables are added as a result to the

solution space.

Algorithm part 2 The second part is initiated with

the first element, characterized by n clusters in the

solution space. The purpose of the second part is to

compare the integer decisions and possibly add new

elements to the solution space that provide different

unit choices, but have a similar value of the objective function. Therefore, the AP is calculated with
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n + m steps. If the unit decisions remain unchanged, the TSA is terminated with n typical periods.

The following list details the definition and a possible choice of tuning parameters:

• Convergence criterion |εa | ≥ APn−APn−1
APn

: Variation between the solution of the aggregated

problem between n and n-1 clusters;

• Convergence criterion |εb | ≥ OPn−APn
APn

: Variation between the solution of the aggregated prob-

lem of n clusters and the non-aggregated operating problem with fixed unit decisions from

the aggregated synthesis;

• Number of additional iterations comparing unit decisions m.

Outlier detection Similar to the method developed by Liu et al. [152], outliers are detected during

the process of clustering. The procedure is as follows:

1. Clustering of the data set

2. Calculation of the Euclidian distance from all periods to their centroid

3. Removal of o outlier periods with the largest distance to their centroid from the data set

4. Repetition of steps 1-3 until centroids do not change anymore.

The detected number of o outliers are added as individually occurring typical periods to the opti-

mization problem. In contrast, demand peaks remain as extreme periods. As the current standard in

the optimization of energy systems, presented by Stadler,[22], one cold weather and one hot weather

period is added, both consisting of one single timestep.

4.2.4 Case study

Two case studies with different levels of complexity demonstrate the usefulness of proposed pro-

cedure. The first case study is a typical Swiss building located in the climatic zone of Geneva. The

building is a residential, single-family home with 2 floors and in total 250 m2 energy reference

area (ERA), built around 1950. The considered energy demands are: electricity demand, thermal

demand for space heating and hot water. The optimization is formulated as a MILP problem with

the aim of finding the optimal sizing and operation among nine energy conversion and storage

technologies. For further insights on the modeling approach of the building energy system (BES),

the reader is referred to Chapter 1. Potential installation of photovoltaic (PV) panels are assumed

to be horizontally oriented. Over a full time–series of one year, this case study leads to over 830

thousand constraints and 780 thousand variables, among which are almost 9000 binaries.

The second case study includes the same building plus the 4 neighboring buildings, all residential

buildings, among which one multi-family home and 3 additional single family homes built between

1950-2000. Additionally, all allocated roof surfaces are considered for possible PV panel installations,

95



4

Chapter 4. Computational reduction for centralized energy systems

leading to 24 different roofs and their orientations to choose from. The modeling approach for

orienting PV panels is reported in Chapter 2. The second case study, for a full time–series of one year,

sums up to over 4.1 million constraints, almost 4 million variables among which are almost 44000

binaries.

The tuning parameters of the algorithm are set to be εa = 5%,εb = 5% and m = 3. The k-medoids

clustering with the R package wcKMedoids is performed for aggregating one typical year [48]. The

problem is formulated in AMPL and solved with CPLEX 12.9.0.0 on a local machine with the following

processor details: Intel(R) Core (TM) i7-8559U CPU @ 2.70GHz. The relative tolerance between the

relaxed linear problem and the best integer solution is set to mipgap = 5e-7. The remaining CPLEX

settings are equal to the default settings reported in [153].

4.2.5 Results and discussion

In a pre-processing step, global irradiation (GHI) and the external temperature (T) are clustered to

different numbers of k-medoids. The length of one typical period is chosen to be 24h. Figure 4.3

displays the quality of the aggregation. The common procedure for selecting the amount of typical

periods is to define a slope threshold of the KPIs. A slope threshold of 10% would lead to around

10 typical periods. Thus, the result of the proposed TSA is compared to 10 typical periods in the

following.

2 7 12
number of clusters [-]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ke
y 

pe
rfo

rm
an

ce
 in

di
ca

to
r (

KP
I) 

[-]

KPI
RMSD (GHI)
RMSD (T)
LDC (GHI)
LDC (T)

(a)

2 7 12
number of clusters [-]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n 
av

er
ag

e 
pe

rc
en

ta
ge

 e
rro

r  
[-]

KPI
MAPE  (GHI)
MAPE  (T)

(b)

2 7 12
number of clusters [-]

0.03

0.04

0.05

0.06

0.07

0.08

0.09

m
ea

n 
av

er
ag

e 
er

ro
r (

M
AE

)  
[-]

KPI
MAE (GHI)
MAE (T)

(c)

Figure 4.3 – Key performance indicators (KPIs) of the k-medoids clustering of global irradiation
(GHI) and the external temperature (T). a) Root mean square deviation (RMSD) and difference on
the load duration curve (LDC) b) Mean average percentage error (MAPE) c) Mean average error
(MAE).

96



4

4.2. Time–series aggregation

Algorithm part 1 First, the AP with an increasing number of clusters is solved. The objective func-

tion is total expenses (TOTEX), which is equally weighting the two conflicting objectives, operational

expenses (OPEX) and capital expenses (CAPEX), of the MOO. Figure 4.4 demonstrates Part 1 of the

proposed algorithm for the first case study, about one typical residential building.
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Figure 4.4 – Demonstration of Part 1 of the TSA algorithm, case study with one building and TOTEX
objective. Impact of a different number of clusters on a) the objective function b) the convergence
criteria εa and εb , as well as deviation of CAPEX and OPEX to n −1 clusters.

The algorithm started with two clusters. To be able to observe the relative change of the objective

function, the AP was immediately solved for three typical periods. Already, after three clusters the

convergence criterion εa was approximately 5%. The unit decisions were fixed and OP on the full

time–series was solved. The second convergence criterion εb was also below 5% and therefore three

typical periods were chosen as result of Part 1. For demonstration purposes, the AP and OP on

the full time–series was solved up to 12 typical days. After seven typical days, the difference of the

objective functions, which is the second convergence criterion, remained below 1%.

Figure 4.5 visualizes the demonstration of Part 1 of the algorithm for the second and more complex

case study.
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Figure 4.5 – Demonstration of Part 1 of the algorithm, case study with five buildings and TOTEX
objective. Impact of a different number of clusters on a) the objective function b) the convergence
criteria εa and εb , as well as deviation of CAPEX and OPEX to n −1 clusters.

For three clusters the first convergence criteria εa was over 30% and not satisfactory. Thus, one

additional cluster was added. For four clusters εa was reaching 5%. Hence, the OP was solved, which

led to εb = 4%. For the second case study, four typical days seemed appropriate for initiating the

second part of the algorithm.

Algorithm part 2 The aim of Part 2 of the algorithm is to confirm that the unit decisions are

sufficiently taken with the detected number of typical periods (see Figure 4.2). Figure 4.6 shows the

unit decisions, which are taken for different number of clusters.

For the first case study (Figure 4.6a), an heat pump in combination with an electrical heater and

thermal storage tanks was detected as the most economical decision for two clusters. For three

clusters, PV modules were additionally installed. This configuration stayed the same for all further

investigated number of clusters. Therefore, the three typical periods could be confirmed and further

used during MOO. Figure 4.6b visualizes Part 2 of the algorithm for the more complex case study of

5 residential buildings with individual roof orientation. For the suggested number of four clusters,

the unit decisions were heat pumps, additional electrical heaters for peak loads, thermal storage

tanks and PV panels. These decisions stayed the same for the observation period of m = 3 and the

TSA could be ended with four typical periods for the second case study.

Multi-criteria decision making The overall goal is to propose a TSA method, which is usable not

for only a single run of one objective, but which can be used for all further investigations in the MOO

domain. Therefore, this section is presenting the performance of the demonstrated TSA in context
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Figure 4.6 – Overview of unit decisions for the aggregated problem (AP) with different number of
typical periods for minimizing TOTEX. a) Case study with 1 residential building. b) Case study with
5 residential buildings. Total costs are normalized by the ERA.

with the MOO of case study 1. Figure 4.7 compares the Pareto frontiers of aggregated problems to

their corresponding, not aggregated, problem, which is the operating problem on a full time-series.

Additionally, the difference of two APs is analyzed; The result of the proposed TSA method (three

typical periods) is contrasted with the result of state–of–the–art approach (10 typical periods).
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Figure 4.7 – Multi-objective optimization of one the energy system for one building. a) CAPEX -
OPEX Pareto frontier; Aggregated problem (AP) with 10 typical periods (x) and 3 typical periods (•).
b) Unit choices along Pareto frontier scenarios.

The CAPEX ranged from approximately 3 CHF/m2 (Scenario 1) to almost 30 CHF/m2 (Scenario

8). The unit decision of Scenario 1 was based on natural gas, only using a gas boiler and small

thermal storage tanks. For this Scenario, the AP and its linked OP was almost identical on the Pareto

frontier (Figure 4.7a). In contrast, the unit decision for Scenario 8 was more diverse and included
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renewable energy sources such as PV panels and a heat pump but also thermal and electrical storage

systems (Figure 4.7b). The performance of these units were all depending on the weather data or, in

terms of the storage, the optimal scheduling within one typical period. Nevertheless, comparing

the OPEX of the AP and the linked OP showed a deviation by only 3%. The difference among the AP

with three typical periods and with 10 typical periods was less than 2%. Also in this comparison,

the maximum difference was occurring in higher investment scenarios, which was based more on

renewable energy sources.

The role of outliers K-medoids clustering is a method, which is itself robust to outliers. Therefore,

the centroid is not changing during the detection of outliers. Nevertheless, seven outliers have been

identified and added to the typical periods. Figure 4.8 demonstrates the impact of outliers on the

MOO of the energy system.
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Figure 4.8 – Comparison of multi objective optimization with and without detected outliers. a)
CAPEX- OPEX Pareto frontier b) Parity plot of all unit decisions along the Pareto frontier.

Along the Pareto frontier, identical unit decisions were taken and the Pareto frontier with and without

seven outliers were identical. Outliers did not seem to have influence on the techno-economic

assessment of the energy systems. However, Figure 4.9 shows an important impact of outliers.

Figure 4.9 vizualizes the electricity exchange with the local distribution grid for both a low-investment

and a high-investment scenario. The difference between these scenarios was not only related to

costs, but furthermore to the increased share of renewable energy sources and the installed storage

capacity. Both latter aspects led to reduced grid exchange. Outliers revealed electricity peaks of the

grid exchange, which were higher than during typical periods. Hence, outliers may not be relevant

for the thermal energy side of the system nor the unit decisions. But in future energy systems with a

high share of renewable energy sources, they might need to be considered for a secure integration of

decentralized energy systems.
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Figure 4.9 – The role of outliers on the electricity exchange for energy system designs with a) a lower
investment and b) higher investment and greater share of renewable energy integration.

Solution time The computational effort of the proposed approach is shown in Figure 4.10.
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Figure 4.10 – Computation time of aggregated time–series including unit decisions (red line) and the
operation problem of the full time–series, without unit decision (black line) a) Case study 1 (one
building) b) Case study 2 (five buildings).

Applying the method proposed by Bahl et al. [151], the solution of the AP took seconds or up to a

few minutes, whereas the solution of OP consistently took about four times longer. Due to a simple

elimination of time consuming computing steps, the proposed framework reached lower total

computational times. Table 4.1 summarizes the CPU time for the TSA as well as for the application

during the presented MOO and compares it to the respective state-of-the-art.

The proposed method for TSA was reducing the CPU time by 40% and even for 61% for the more
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Table 4.1 – Difference (Diff.) of the CPU time of the proposed approach to the state–of–the–art.

Case study 1 Case study 2
CPU time [s] Diff. [%] CPU time [s] Diff.[%]

TSA state–of–the–art [151] 72 100 2570 100
proposed approach 43 60 1000 39

MOO state–of–the–art [22] 96 100 2870 100
proposed approach 9 9 380 13

complex case study 2. This demonstrates the benefit of the method particularly for complex energy

systems. Furthermore, the proposed approach led to a significantly lower number of required

typical periods than what was reported in the state–of–the–art procedure. Using the k-means

aggregation method on the annual heating demand, Fazlollahi [146] identified 13 typical days,

whereas k-medoids clustering of the weather data revealed eight typical days for Stadler [22]. The

proposed TSA algorithm detected three and four typical periods for Case study 1 and Case study 2,

respectively. This reduction of the required typical periods led to a decreased CPU time of around

90% for the application to MOO. However, even when applying the proposed TSA, the run-time

increased by over a factor 40 due the increase in complexity between the case studies.

4.2.6 Main findings

This chapter proposes a novel method for TSA of complex energy systems. Compared to state–of–

the–art approaches in this field the CPU time was reduced by 40% in the presented case studies.

This was achieved by using two convergence criteria, which avoided the computationally intensive

computation of the OP at each iteration step. An additional innovation is to take unit decisions into

account, which allows for the application of the TSA method to MOO problems.

In contrast to comparable work in MOO of energy systems, the selection of the appropriate number

of typical days is not based on KPIs evaluating the underlying machine learning algorithm. Hence,

the presented TSA method allowed for a significant reduction in the runtime, by more than 90%,

while diverting less than 2% on optimal solutions. The impact of the TSA on optimal solutions

was greater, the more renewable energy technologies were included in the system. For systems

with a high share of renewables, outliers revealed electrical peaks, which were greater than during

typical periods. Outliers were however neither impacting the thermal energy side nor economic

evaluation of presented MOO problems. One possible extension of this work is to analyze the impact

of the tuning parameter of the proposed TSA method. Additionally, the usage of one typical year to

represent a project horizon can be questioned. This includes the challenge of predicting changing

weather, which is subject to climate change. The comparison of the solution time between the

two case studies shows that the runtime increased by a factor of 40 by adding only four buildings.

Calculating an entire district, which consists of 30 or more buildings seems computationally not
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affordable, even with the proposed TSA. The problem needs to be decomposed to reduce solution

time even further. The decomposition is addressed in the next Section 4.3.
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4.3 Decomposition algorithm

This section proposes a reduction of complexity in order to overcome the runtime issue of MILP

energy system models. In contrast to reducing input data, this section details a decomposition

strategy of the model formulation. Before the method is detailed, an overview of the state–of–the–art

is provided. The section finishes by the validation of the decomposition approach. The application

of the method is then demonstrated in Chapter 5.

4.3.1 State–of–the–art

The options for reducing the complexity of renewable energy hubs at the district scale, which are

referred to as DESs optimization models in this chapter, can be divided into four categories: 1)

aggregation of buildings 2) pre-selection of equipment 3) heuristic methods, including the bi-level

decomposition 4) all other decomposition methods. All four categories are detailed in the following

with the goal to identify the best method to simultaneously design and schedule DESs.

One option to overcome runtime issues is to consider a top-down approach, which is based on

aggregated economic and socio-demographic indicators and was demonstrated by Li et al. [154].

This approach was a convenient way to estimate the energy consumption of large urban areas and

usually used for energy policies [154]. The top-down approach had a low spatial resolution and the

energy needs were often assumed to be supplied by centralized units. An alternative was applied

by Stadler [22]; the reduction of the spatial resolutions and aggregate typical buildings. Whereas

it effectively decreased the computation time, it oversimplified the problem and rendered the

individual BES design impossible. Neglecting for example individual roof surfaces for the installation

of PV panels led to an error which ranges from -12% to +20% for the generated electricity [52].

Therefore, this approach is not suitable for distributed energy systems that require a low–level

detailed formulation.

Another option is to pre-select equipment, and hence reduce the complexity. In the context of DES,

the distributed equipment was usually pre-selected in the literature. The resulting load curves were

fixed as in the work of Lu et al. [155] or fixed and aggregated by Ma et al. [55]. The demonstrated

benefit was that it allowed a detailed focus on the network, to optimize control strategies or design

centralized plants. This strategy however neglected the optimal design and operation of distributed

units. Another form of pre-selection is applied in two-stage approaches, which leverages on the two-

level character between design and operation variables of the MILP framework. Wakui et al. [156]

designed the units in the energy system in the first stage, which were then fixed in the second step.

The second step is to optimize the operation of the network.

Heuristic methods are commonly used to solve large-scale problems which include renewable

energies [157]. The advantage is that they allow a simultaneous optimization of design and operation.
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A generic algorithm was identified as a robust method for solving MOO problems of complex thermal

power plants by Wang et al. [158]. The disadvantage of heuristic methods is, that they are not

guarantee to find the global optimum and the convergence time remains elevated [159].

Decomposition methods are seen as the best candidates to handle the increasing complexity of

energy system models. A good overview about mathematical decomposition methods was provided

by Grossmann [160]. The main and most common approaches are bi-level, Benders, Lagrangean

decomposition and the rolling horizon strategy [160]. In a bi-level decomposition, the optimization

of decision variables is split into two problems, the upper and lower level. At each level, only one

part of the variables are optimized, while the other part is fixed as parameter. The advantage is

the reduction of the problem size at each level. However, the lack of optimization coordination

between the two levels resulted in the same drawbacks as the heuristic methods [159]. The difference

between Benders and Lagrangean is that the former treats linking variables and the latter linking

constraints. The problem would be fast to solve without these linking terms. Hence, the master

problem (MP) in these decomposition problems handles the linking terms and the subproblems

(SPs) are the independent sub-parts of the original problem. The advantages of these methods

are the convergence guarantee and speed, and the ease to scale up the optimization problem with

the parallelization of the SPs [161]. The drawback of the Benders decomposition is the inability to

handle integer variables in the SPs [162]. The proposed solutions overcame the issue for a limited

amount of integers [163], but remained insufficient for the optimization of DES.

Ondeck et al. [164] applied the Lagrangean method to simultaneously design and operate a com-

bined heat and power (CHP) plant in a residential district. For the application in distributed energy

systems, the Lagrangean decomposition was further developed into the alternating direction method

of multipliers (ADMM) and the Dantzig–Wolfe decomposition [165]. The ADMM is an extended

version of the augmented Lagrangean method, solving optimization problems that can be split

into two main objective functions. The shared decision variables are duplicated and linked with an

equality constraint. The advantages are the convergence guarantee and speed [166, 167]. However,

the number of splits, which can be performed is limited to two [168]. Additionally, the ADMM was

outperformed by the Dantzig–Wolfe decomposition [169].

In the Dantzig–Wolfe decomposition, the linking constraints are not limited to the objective function

and are forming the MP. The independent SPs are generating the decision space for the MP in

an iterative process. This method allows for the individual design and scheduling of distributed

and centralized energy units, and overcomes the scalability issue of the ADMM [161]. Also, the

Dantzig–Wolfe decomposition is intentionally designed for linear problems. However, Schütz et

al. [122] demonstrated that integers in SPs led to near optimal solutions, diverting less than 1.8% in

calculations with a MIP gap of 1%.

Also, the rolling–horizon strategy deals with linking constraints. In contrast to constraints related

to Lagrangean methods, these linking constraints are generated by the decomposition strategy

itself. The idea is to divide the project horizon into smaller periods, for which the problem is solved
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individually [170]. Linking constraints connect the different considered time-periods. The strength

of this approach is to efficiently solve scheduling problem of networks under uncertainty, as demon-

strated by Kopanos et al. [170] and Silvente et al. [171]. The simultaneous design of distributed and

centralized energy systems was not focus in their work applying this method.

4.3.2 Gaps and contributions

The main limitations of previously discussed options to reduce solution time are summarized in

Table 4.2. None of the presented options are sufficient in order to integrate the optimal design

and operation of decentralized buildings in DES. The option that allows for the consideration of

simultaneous optimization at both the building and the district level are the heuristic methods.

They, however, do not guarantee a global optimum and additionally are leading to an increased

runtime [159].

Table 4.2 – Limitation of decomposition approaches (SP: sub-problem).

simplification approach limitation source

aggregation top-down approach,
aggregated buildings

oversimplification,
no interaction in network

[154]

pre-selection fixed and/or aggregated
loads, pre-selected units

no optimal design of decentralized units

heuristic search genetic algorithm,
bi-level decomposition

no guarantee for global optimum,
increased runtime

[159]

decomposition Benders limited handling of integer in SPs [162]

ADMM maximum two SPs possible [168]

The most promising option is the Dantzig–Wolfe algorithm, as it allows the individual consideration

of BESs as well the optimization of the whole DES. Thereby, applications reported low CPU time, the

advantage to use parallel optimization, and the ability to increase the scope as the number of SPs

are not limited [161]. The approach was first introduced by G.B. Dantzig and P. Wolfe in 1959 [172].

In recent years this method has become popular for solving complex optimization problems in a

variety of fields such as bio-refining [173], oil refinering [174] or model predictive control of chemical

processes [175]. Finally, Harb et al. [176] applied the Dantzig–Wolfe decomposition for optimal

scheduling of district heating networks. This method was further developed by Schütz et al. [122] to

not only optimize the operation but also the design of DESs, but their study did not include MOO.

The objective of the following section is to apply and validate the Dantzig–Wolfe decomposition to

complex, distributed energy systems. An additional contribution is to develop a MOO framework

for the Dantzig–Wolfe decomposition of energy systems.
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4.3.3 General structure

Similar to other decomposition strategies, the problem is split into a MP and several SPs, when

performing the Dantzig–Wolfe decomposition. The master problem is a reformulation of the orig-

inal problem, whereas the subproblems are independent parts within the original problem. The

independent SPs are usually linked with only a few constraints to the overall problem. Thus, inde-
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(b) Application to centralized energy systems.

Figure 4.11 – Translation of the Dantzig–Wolfe decomposition principle to the design and operation
optimization of centralized energy systems.

pendent subblocks and their linking constraints need to be identified in the compact formulation in

a first step. In the case of district energy systems, that translates to BESs as subblocks and network

balances as their linking constraints (Figure 4.11). In a second step, the SPs are substituted in the

MP by a linear combination of their extreme points. The Minkowski’s representation theorem states

that a bounded problem is identical, when only described with its extreme points [161]. In the

Dantzig–Wolfe method, this behavior is exploited for moving all constraints and variables to the

SPs, leaving only the linking constraints and the linear combination of extreme points in the MP.

For the application to district energy systems, this translates in the network model as MP, which

considers different optimal solutions from the SPs (Figure 4.11b). The connection of the MP to the

SPs is established in two ways: SPs send their optimal design proposals to the MP, whereas the MP

sends price signals to the SPs. The price signals resemble incentives to change the operation and

design of the SPs.

The advantage of this method is that it exploits the natural structure of a district energy system

and single buildings can be included with their own characteristics. Furthermore, this structure

conveniently leaves the decentralized problems untouched, only the objective functions have to

be adjusted in order to become SPs and be linked to the MP. The application of the Dantzig–Wolfe

Algorithm to the case of district energy systems is summarized in Table 4.3. The main parts are

detailed in the following.
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Table 4.3 – Dantzig–Wolfe Algorithm and the corresponding part in the decomposition of district
energy systems. Interpretation of dual values depends on the corresponding constraints.

Dantzig–Wolfe algorithm application district energy systems

master problem (MP) network model
linking constraints network constraints
independent subproblems (SPs) building energy system (BES) models
solution candidates design proposal BES
dual values of linking constraints e.g., microgrid tariff or investment sensitivity

Master problem The MP constitutes all aspects which are connecting or linking the SPs. Thus, in

the application of centralized planning of a DES, the MP contains all network-related equations, such

as the electricity grid, and centralized units or constraints. The overall aim of the MP is to coordinate

the exchange from the district to the next level of the grid and to decide for or against design

proposals within the district. The design proposals are both investment decisions of technologies

and the schedule how the SPs exchange electricity within the district network.

In the following, the MP is detailed with all its equations. The main sets remain unchanged, all

timesteps are allocated to set T of each typical period P, and all buildings are contained in set B of

the district. The Dantzig–Wolfe Decomposition is an iterative algorithm, the set I keeps track of all

iterations. Dual variables, which are important in the algorithm, are linked to their specific equation

with the expression v [] and addressed later in this section.

0 ≤λi ,b ≤ 1 ∀i ∈ I, ∀b ∈ B (4.1a)∑
i∈I
λi ,b = 1 ∀b ∈ B v [µb] (4.1b)

The new decision variable of the MP is λ, which decides for (λ = 1) or against proposals (λ = 0).

The optimal solution of the whole district is a linear combination of these extreme points [161].

Convexity Equations 4.1a and 4.1b ensure that a proposal can be chosen maximally once and the

linear combination of all selected proposals does not exceed one. The dual variable associated to

Equation 4.1b is µ.

∑
i∈I

∑
b∈B

λi ,b ·
(
Ė g r,+

i ,b,p,t − Ė g r,−
i ,b,p,t

)
·dp ·dt = E T R ,+

p,t −E T R ,−
p,t ∀p ∈ P, ∀t ∈ T v [πp,t ] (4.2)

The main linking constraint is the electricity balance at the transformer T R of the district (Equa-

tion 4.2). The MP receives the grid exchange E g r,± from each building b in each iteration i , and

balances the load at the transformer level. The associated dual variable of the network constraint

is π. As π is in dependence of each typical period p and each timestep t , the frequency dp of the
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period and timestep duration dt have to be considered already in the electricity the balance. In this

way, π and electricity exchange at the transformer E T R,± are considered with their annual impact.

C el =
∑
p∈P

∑
t∈T

(
cel ,+

p,t ·E T R ,+
p,t − cel ,−

p,t ·E T R ,−
p,t

)
(4.3)

The annual cost for electricity C el of the district is calculated by using Equation 4.3. The costs are

associated with the total electricity purchase of the system E g r,+ and the purchase price cel ,+ as well

as the feed-in revenues cel ,− ·E g r,−.

Gel =
∑
p∈P

∑
t∈T

(
g el

p,t ·E T R ,+
p,t − g el

p,t ·E T R ,−
p,t

)
(4.4)

Similar to the annual cost of electricity, the annual global warming potential (GWP) associated with

the electricity consumption is calculated in Equation 4.4. The impact of the electricity g is the same

for the demand and the feed-in, as the feed-in electricity is consumed elsewhere in the distribution

grid and avoids the generation at the current grid-mix.

C op =C el +
∑
i∈I

∑
b∈B

λi ,b ·C g as
i ,b (4.5a)

C c ap =
∑
i∈I

∑
b∈B

λi ,b ·C cap
i ,b (4.5b)

C t ot =C c ap +C op (4.5c)

G t ot =Gel +
∑
i∈I

∑
b∈B

λi ,b ·
(
Gg as

i ,b +Gbes
i ,b

)
(4.5d)

The possible objectives of the MP are presented in Equations 4.5. Similar to the objectives of decen-

tralized systems, objectives can be the OPEX (Equation 4.5a), the CAPEX (Equation 4.5b), the TOTEX

(Equation 4.5c) or the GWP (Equation 4.5d). Input parameters coming from the design proposals of

the SPs are the costs and GWP of each building energy system (C cap and Gbes , respectively) and the

operational expenses and the GWP connected to the purchase of natural gas (C g as and Gg as) .

Dual variables The Dantzig–Wolfe decomposition leverages the duality concept of the problem.

The dual problem is a twin problem to the original or primal problem. If duality applies and both

problems are feasible, the objective value of the primal and the dual problem are identical. The two

problems are inverted and (1) a minimization in the primal problem is a maximization in the dual

problem and vice versa, (2) variables in the primal problem become constraints in the dual problem

and each primal constraint a dual variable [161].
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Table 4.4 – Example of a primal and a corresponding dual problem. The parameters of the problem
are given in A as an m ×n matrix, a vector b ∈Rm

+ and a vector c ∈Rn
+.

primal problem dual problem

objective function min c ′ · x max b′ · y
constraints s.t. A · x ≥ b v [y] s.t. A′ · y ≤ c v [x]
variables x ∈Rn

+ y ∈Rm
+

dual variables [y] ∈Rm
+ [x] ∈Rn

+

There are many additional interesting correlations between the primal and its dual problem, an

exemplary pair is shown in Table 4.4. The correlations of particular interest in the Dantzig–Wolfe

decomposition are the dual variables of the primal linking constraints. The dual values can be

interpreted as Lagrange multipliers, which are applied to the primal constraints, and also called

shadow prices or marginal values [177]. Dual variables measure the sensitivity of constraints with

respect to the optimal objective function of the primal problem [177].

In the example in Table 4.4, the dual variable y indicates the sensitivity of the objective value to

the right side of the primal constraints b. In other words, y expresses how much the objective

function would improve by relaxing bound b. In the minimization of the exemplary primal problem,

relaxing bound b means to decrease the value b, so x might take a smaller value, which would

improve the objective function. The dual variables in the Dantzig–Wolfe decomposition are used as

communication between the MP and the SPs. They signal each SP, how the overall objective value

of the MP would improve, if they change their contribution to a specific linking constraint.

[µb] = ∆obj

∆
(∑

i∈Iλi ,b
) ∀b ∈ B (4.6)

The dual variable [µ] corresponds to Equation 4.1b and has the same physical unit as the objective

function. As Equation 4.1b is valid for each building b, each constraint translates to a dual variable,

which is specific to each building b and indicates how the network objective value changes if the SP

modifies its design proposal (Equation 4.6).

[πp,t ] = ∆obj

∆
(
E T R ,+

p,t −E T R ,−
p,t

) ∀p ∈ P, ∀t ∈ T (4.7)

The dual variable [π] in Equation 4.7 is related to the electricity balance at the transformer (Equa-

tion 4.2). It indicates how much the overall objective function changes if the electricity exchange of

the whole district varies in that specific timestep t in period p. If the objective function of the MP is

related to OPEX, the variable [π] can be interpreted as electricity price (currency / kWh) within the
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network. In this case, the lower bound of [π] is the feed-in tariff and the upper bound is the retail

tariff. For example, in times of net-import at the transformer, the district purchases electricity for

the retail tariff. Additional electricity would need to be purchased for the retail tariff. In contrast,

if a building is consuming less (or even is feeding in) electricity, it would, overall, save the amount

corresponding to the retail tariff.

Subproblem One major advantage of the Dantzig–Wolfe decomposition is that the BES can remain

individual and unchanged with respect to decentralized energy systems. The only adjustments

required in order to include them in the centralized formulation of the decomposition are related to

their objective functions, all other functions remain unchanged. The basis of the BES is described

in Chapter 1.2, individual orientation of the roof surfaces are detailed in Chapter 2.3 and shadow

casting among buildings and solar integration can be considered according to Chapter 3.2. In the

following the modified objective functions, previously described in Section 1.2.4, are detailed.

objb = min(C op
b −µb) ∀b ∈ B (4.8a)

C op
b =

∑
p∈P

∑
t∈T

(
πp,t · Ė g r,+

b,p,t −πp,t · Ė g r,−
b,p,t + cng ,+

p,t · Ḣ g r,+
b,p,t

)
·dt ·dp ∀b ∈ B (4.8b)

The dual variables π replace the electricity tariffs in the calculation of operational costs C op (Equa-

tion 4.8b). The objective function for each SP (Equation 4.8a) are the OPEX subtracted the dual

variable µ, which is also called the reduced cost of operation. The SP can still improve the overall

objective of the MP, if the objective value is negative. In contrast, the SP is not able to propose a

solution to further improve the objective value of the MP in case of a positive value [161].

objb = min(C c ap
b −µb) ∀b ∈ B (4.9)

The only change, which is necessary to minimize capital expenses C cap , is to formulate the latter

as the reduced cost of investment with the help of the dual variable µ. The capital expenses are

calculated in Equation 1.16a. As the linking constraint of the electricity grid plays no role in this

investigation, a problem with Equation 4.9 as the objective is independent from the dual variable π.

objb = min(C op
b +C c ap

b −µb) ∀b ∈ B (4.10)

The reduced cost of total expenses is detailed in Equation 4.10. The incentive to change the operation

schedule is accounted for with the dual variable π in the operational costs C op , which are calculated

according to Equation 4.8b.
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objb = min(Gop
b +Gbes

b −µb) ∀b ∈ B (4.11a)

Gop
b =

∑
p∈P

∑
t∈T

(
πp,t · Ė g r,+

b,p,t −πp,t · Ė g r,−
b,p,t + g ng · Ḣ g r,+

b,p,t

)
·dt ·dp ∀b ∈ B (4.11b)

The optimization of the total GWP of the system, is in principle very similar to the TOTEX mini-

mization. The dual variable π accounts for the price, this time in terms of environmental impact

per unit of consumed electricity ( kgCO2eq/kWh). The operational GWP Gop balances the envi-

ronmental impacts from the electricity exchange E g r,+/− and the natural gas consumption H g r,+

(Equation 4.11b). The Objective Function 4.11a is the sum of all contributions to the total GWP,

resulting from operation Gop and construction Gbes of the BES (Equation 1.20). It is reduced by the

incentive to change the system proposal µ.

Multi-objective optimization Multi-objective optimization is, in general, necessary if two, or more,

conflicting objective functions have to be considered. It is also possible to detect pathways to reach

an ultimate goal. For example, in order to reduce the total GWP, the TOTEX - GWP Pareto frontier

reveals actions, which should be considered first. Furthermore, the MOO results in a schedule for

how to reach the best environmentally friendly system with incrementally increasing costs. The

MOO of compact models is an algorithm, which is using epsilon constrains to generate a Pareto

frontier. While the first objective is optimized, epsilon constrains serve as incrementally increasing

upper bound of the second objective function. Afterwards, the position of the first and second

objective is inverted. For the Dantzig–Wolfe decomposition, the epsilon constraint translates into a

linking constraint, which is impacts the whole network.

Table 4.5 – Adjustments for MOO with Dantzig–Wolfe Algorithm. Example of the CAPEX - OPEX
Pareto frontier, using ε constraints. Objective of the MP remains unchanged, one additional linking
constraint, ε - constraint, is added to the MP and its dual variable is included in the objective
function of the SPs.

OPEX minimization CAPEX minimization

CAPEX constrained OPEX constrained

Objective MP min(C op ) min(C c ap )

ε- constraint MP C c ap ≤ εcap · Atot v [βcap ] C op ≤ εop · Atot v [βop ]

Dual variable [βcap ] = ∆obj
∆εcap ·Atot = ∆C op

∆εcap ·Atot [βop ] = ∆obj
∆εop ·Atot = ∆C c ap

∆εop ·Atot

Objective SPs min(C op
b +βcap ·C c ap

b −µb) ∀b ∈ B min(βop ·C op
b +C c ap

b −µb) ∀b ∈ B

Table 4.5 provides an overview about the changes, which are necessary for generating the OPEX -

CAPEX Pareto frontier. The objective function of the MP needs no adjustments. The ε - constraint
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is added to the MP. Its connected dual variable β, which indicates how much the overall objective

value of the MP improves, in case the the respective ε limit is relaxed. The dual variable β is inserted

in the corresponding objective function of the SPs, where it serves as weight between the conflicting

objectives. Figure 4.12 visualizes the role of the dual variableβ. The dual variable gives the gradient of

·

OPEX

CAPEX

βcap ≪ 1
βop ≫ 1

βcap ≫ 1
βop ≪ 1

βcap = 1
βop = 1

minimum
TOTEX

∆ OPEX

∆ǫcap

∆ CAPEX

∆ǫop

βcap = ∆OPE X
∆ǫcap

βop = ∆C APE X
∆ǫop

OPEX minimization

CAPEX minimization

x

x

x

Figure 4.12 – The role of the dual variable β, when applying the Dantzig–Wolfe algorithm for MOO.
Example of CAPEX- OPEX Pareto frontier [currency/m2], dual variableβ to communicate ε constraint
to subproblems, see Table 4.5.

the Pareto frontier itself. The more β increases, the more importance is given to the second objective.

Near the bounds of the Pareto frontier, one objective function has steep change, whereas other the

objective function changes slowly. For example, the minimum of CAPEX, is the maximum of OPEX.

The relaxation of the constraint on CAPEX (expressed by βcap ) allows for a drastic improvement of

OPEX. Therefore, βcap takes a much bigger value than 1. The contrast is βop , increasing the OPEX

even more would not lead to a further reduction in the CAPEX. Therefore βop takes a small value,

close to 0. In the middle of the curve, the objective of the SP becomes an unweighted sum of both

conflicting objectives, CAPEX and OPEX, both related dual variables are β = 1, which results in a

TOTEX optimization.

4.3.4 Algorithm

The Dantzig–Wolfe decomposition is an algorithm, where the set of possible choices in the MP is

increasing each iteration. The options increase at each iteration, until the best possible combina-

tion is detected and the algorithm stopped. The complete algorithm is visualized in Figure 4.13.
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end

starti = 0

i = i + 1
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of all subproblems
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with binary λ
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OPEX optimization
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masterproblem with 0 ≥λ≥ 1
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Approach - decentralized
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Formulation - decomposed

Formulation - compact
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Figure 4.13 – Dantzig–Wolfe decomposition algorithm.

Design proposals: E g r,±- electricity exchange schedule

with the grid, C cap - capital costs of each building en-

ergy system, C g as - cost for the purchase of natural gas.

Dual variables: π- incentive to change the electricity

schedule, µ- incentive to change the design proposal.

Decision variable: λ-proposal decision variable of the

MP/network, f , y-decision variable for energy system

technologies.

There are two different approaches possible

in order to optimize a district energy system.

The first approach is to optimize each building

individually and one after the other. In this

way, the approach is decentralized. In contrast,

the approach is centralized when the district is

optimized by considering all buildings at once

and balancing the operation at the transformer

of the low–voltage grid. The whole optimiza-

tion algorithm can be separated in three main

parts, the initialization, the iteration and the

finalization, each part is further discussed in

the following paragraphs.

Initiation The goal of the initiation is to de-

tect the first values of the dual variables. There

are two different initiation strategies imple-

mented, which differentiate in the objective

function of the first step. The initiation of the

iterative process is a decentralized and com-

pact optimization of all buildings in the district.

The first strategy is to use the same objective

function for each building than for the district

optimization, e.g., if the TOTEX of the district

has to be optimized, the initiation optimizes

the TOTEX of all decentralized energy systems

individually according to Equation 1.17. The

second initiation strategy is to use the objec-

tive function, which is implemented for MOO

and initialize β to generate 3 different solu-

tions (see Table 4.5). This latter strategy has

to be used to initialize the MOO. Thereby, the

dual variable β is initialized with 50, 1, and 0.1

to mark the characteristic points of the Pareto

frontier (see Figure 4.12). In that way, infeasi-

bilities, which are resulting from the constraint
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of the second objective, are avoided. The limit on the second objective is imposed on the district

as a whole but might be infeasible for single SPs. The second strategy can also be used to initialize

single- objective optimization. For example, in case of a TOTEX optimization, β can be initialized

with the values 0.8, 1 and 1.1. The result is communicated as first design proposals to the MP. The

MP is optimized with continuous variables λ, which is also called the relaxed MP optimization. The

λ variables select design proposals for each SP. The dual variables are calculated from the result of

the MP.

Iteration The iteration process is, in principle, what is described in Figure 4.11. The dual variables

are sent to the SPs as incentive to change their proposals. All SPs are optimized, with the dual

variables on linking constraints and modified objective functions (Equations 4.8, 4.9, 4.10, 4.11 or as

in Table 4.5). The new design proposals of each SP are added to the pool of design proposals to the

MP. The design proposals are electricity exchange schedules with the grid E g r,±, the related costs, as

well as GWP of investment decisions (C cap and Gbes) and of purchasing and consuming natural gas

(C g as and Gg as). Afterwards, the relaxed optimization of the MP is executed and dual variables are

calculated with the results. As long as no termination criterion is fulfilled, the dual variables are sent

to the SPs and a new iteration circle starts.

Termination criteria Four termination criteria are implemented. In order to check the optimality,

the reduced cost of each SP is calculated based on their last optimal solution but with the updated

dual variables. The case of the reduced costs of every SPs being greater or equal to zero, translates

into the fact that no building energy system can improve the overall objective any further by changing

their design proposal. Thus, the optimum is found and the algorithm terminated [161].

The remaining three termination criteria are implemented for security reasons, to terminate the

process without an optimal solution. The iterative algorithm is terminated in case:

• the total CPU time reaches a predefined limit.

• the total number of iterations reaches a predefined limit. Schütz et al. [122] uses 10 iterations

as Sokoler et al. [169] demonstrated a few are enough.

• the last n iterations did not lead to a significant improve of the overall objective function.

Finalization When one termination criterion is satisfied, the iteration breaks and the algorithm

enters its final stage. The MP is executed one more time, this time with binary decision variables

λi ∈ {0;1}. This step is necessary to choose discrete the integer decision of the SPs. The integrality

constraints are already respected in the SPs, this final step also respects them in the MP [122].

The decision for a design proposal is returned, for which the unit choices are transferred to the

centralized and compact formulation of the district. This last step is not necessary and is optional.
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It does not change the value of the detected optimum, nor the electricity exchange schedule. It is

used to post-calculate KPIs describing the whole district. In case of MOO, each Pareto point is one

execution of the algorithm visualized in Figure 4.13 . All detected proposals are kept between the

points and are sent to each optimization of the MP. After the first execution of the algorithm, they

are also used to initialize the iteration.

4.3.5 Case study

The decomposition algorithm is applied to optimize the same district, which is reported in Chap-

ter 3.2.6. All buildings are residential buildings, a mix between single- and multi-family houses.

The district is located in the climatic zone of Geneva, Switzerland, weather data is clustered to ten

typical days as described in Chapter 1.2.6. All 31 buildings are connected to the same low–voltage

transformer of the electricity distribution grid. Each building energy system is modeled according

to Chapter 1. The space heating and domestic hot water demand can be supplied by a gas boiler,

a heat pump or two electrical heaters, one for each thermal demand. Electricity can be generated

from PV Panels on the roofs of the building. All roof surfaces of the district are integrated with

their individual orientation as described in Chapter 2. Batteries and two water tanks, one for each

thermal demand, can serve as energy storage. The validation of the algorithm is achieved by the

comparison to the same problem, which is not decomposed. As it is computationally impossible

to calculate the whole district without applying the decomposition algorithm, a maximum of nine

buildings are considered in the district. The four termination criteria are set to 1) a maximum of 9

iterations 2) maximum runtime of 20 minutes 3) not more improvement than 0.005% during the last

5 iterations and 4) the reduced costs of all SPs are greater or equal to 0. The problem is formulated in

AMPL Version 20210220 and solved with CPLEX 20.1.0.0 on a local machine with following processor

details: Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz. The relative tolerance between the relaxed

linear problem and best integer solution is set to mipgap = 5e-7. The remaining CPLEX settings are

equal to the default settings reported in [153].

4.3.6 Results and discussion

The goal of the results section is, to demonstrate how the decomposition algorithm works and to

validate it. The validation is carried out by comparing the result of the decomposed optimization to

the corresponding result of the compact formulation. The compact model is the same optimization

problem, however not decomposed. Hence, it has another solving strategy but it should ideally

result in the same outcome.

Initiation and finalization In an iterative process, the initiation or the quality of the first guess

impacts the number of iterations needed to find the optimal solution. Figure 4.14 shows the influ-

ence of different initialization strategies on the example of a single–objective optimization (SOO).
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Additionally, it presents from which iteration the proposal is chosen in the final execution of the

binary MP. The first initialization strategy is to use the same objective for each SP than for the MP.
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Figure 4.14 – Impact of different strategies on the termination of the iteration. The crosses visual-
ize from which iteration the final design proposal is chosen. a) First initiation strategy with one
single solution from each SP. b) Additional criterion: minimum iterations 4 b) Initialization with 2
additional near optimal solutions.

The result is visualized in Figure 4.14a. For a district size of five, six and nine buildings, the maximum

number of iterations (=9) was reached and the algorithm was terminated. In contrast, the district size

of three buildings was terminated after one iteration. The algorithm might have been terminated

too early if the reduced costs were calculated based on too less design proposals. In that case, the

number of design proposals do not allow for the capture the decision space and to sufficiently

calculate the dual problem. An extreme example is the case of one point, the optimum of one point

is the point itself. This problem exists only in the first iterations and only for small district sizes. The

first try to overcome this issue is to not only include a maximum but also a minimum of required

iterations. The case of an implemented minimum of four iterations is presented by Figure 4.14b.

This method increased the solution time of the algorithm. For not one analyzed district, a solution

was chosen from their final iterations. Hence, a minimum of the number of iterations addressed

the problem of too little design proposals, but also increased the solution time with unnecessary

iterations. The second initialization strategy is to use the objective function of the MOO (Table 4.5)

and to initialize the dual variable β with three different values. Afterwards, all three design proposals

are sent to the first optimization of the MP (see Figure 4.13). Figure 4.14c confirms that this strategy

was overcoming the issue of termination after the first iteration. Furthermore, it demonstrates how

an improved initiation strategy was improving the entire algorithm. The iteration was terminated

after a maximal six iterations and no optimization reached the maximum allowed nine iterations.
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Convergence Several TOTEX optimization problems with different sizes, which means with differ-

ent numbers of buildings connected to the district, are compared. Figure 4.15 shows the convergence

of the iterative decomposition process. The percentage error of the objective function at different

iteration steps is visualized in Figure 4.15a. The termination criteria for optimality is shown in

Figure 4.15b.
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Figure 4.15 – Convergence of the Dantzig–Wolfe decomposition. a) Percentage error of the objective
function with respect to the corresponding compact model for each iteration. b) Average reduced
cost normalized to the total energetic reference area of the district, error bars show the min/max
value of the reduced cost occurring in the district at each iteration.

At each iteration, the current objective function is compared to the final objective function of

the corresponding compact formulation (Figure 4.15a). The initialization was already close to the

optimum with less than 2% divergence. It can be observed that, the bigger the problem size, the

smaller the error in the first iterations. In general, the error dropped below 0.25% already in the

first two iterations. The algorithm was terminated after between five and nine iterations, which was

the maximum of allowed iterations, hence a termination criterion. In Figure 4.15a, one additional

iteration is added for each optimization to visualize the impact of the finalization. During the

finalization, the MP is executed one more time with binary and non-continuous variables. This

introduced an error which is neglectfully small and decreased with an increase of the problem size.

Figure 4.15b shows the reduced costs at each iteration step. The reduced costs are the modified

objective functions of the SPs and therefore individual for each building. In this example, the

reduced costs associated with TOTEX are considered (Equation 4.10). The average reduced costs

are visualized with error bars resembling the minimum and maximum occurring value within the

district. When all values were positive, the criterion for optimality was fulfilled and the iteration was

terminated.
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Validation The motivation to use a decomposition algorithm is to ease computational effort

while keeping the optimality and accuracy of the solution. Figure 4.16 shows the solution time

of the compact formulation in comparison with the corresponding decomposed problem. The
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Figure 4.16 – Comparison of the computational effort with and without decomposition of the
problem.

solution time of the compact formulation followed an expotential trend, whereas the effort of the

decomposed formulation increased linearly (Figure 4.16). Minor variations of the CPU time from

the linear trend line are explained by the different number of iterations needed to terminate the

algorithm. To consider a whole low–voltage grid, several dozen buildings need to be included in

the analysis. The expotential trend prognoses, that this scale is computationally untraceable for a

compact formulation of the problem. However, the decomposition has the potential to overcome

this issue due to the presented linear trend of the CPU. At the same time, the value of the objective

functions were almost identical (Figure 4.17).

Figure 4.17a visualizes the result of the TOTEX optimization for different districts sizes. The course of

the presented result was individual to the district size, as it was depending on the included buildings.

It ranged between 18 CHF/m2yr and 22 CHF/m2yr. Thereby, the value of the decomposed and the

compact formulation was identical. The result of the MOO of CAPEX and OPEX for a district, which

contains eleven buildings, is shown in Figure 4.17b. The decomposition could be validated, and

the frontier itself was well detected. In addition to the value of the objective, the decisions taken by

the solver are a matter of interest in MILP optimization problems. In the case of optimizing energy

systems, the decisions are the choice to purchase and install a unit. Figure 4.18 presents the number

of required iterations before the algorithm is terminated (Figure 4.18a) as well as an comparison of

unit decisions (Figure 4.18b).
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Figure 4.17 – Comparison of the objective function for the compact and decomposed formulation. a)
Single objective TOTEX b) CAPEX - OPEX Pareto frontier of the MOO for a district size of 11 buildings.
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Figure 4.18 – a) Required iterations in the decomposed formulation for different district sizes. The
crosses show from which iteration the design proposal for a building is chosen at the finaliza-
tion stage. b) Comparison of the unit sizes for a district of nine buildings between compact and
decomposed formulation.

Figure 4.18a shows that for the district size of six buildings, only five iterations were needed. In

contrast, the optimization problem with nine buildings was terminated at one security termination

criteria, the maximal allowed nine iterations. Although the process was not stopped because of

the optimality criterion, Figure 4.15a shows that the difference to the optimum was less than 0.1 %.

Furthermore, the installed unit sizes for the district size of nine buildings are compared for both

formulations in Figure 4.18b. The comparison allows for the conclusion that almost identical unit

decisions were taken. Therefore, it can be confirmed that the termination with the security indicator

still leads to acceptable results. Figure 4.18a additionally presents from which iteration the proposal
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was chosen in the final execution of the binary MP. In small district sizes, more iterations than

necessary were executed. For a district size of two buildings, the algorithm reached the maximum

number of nine iterations, however chose the design proposal from iteration four and three. For a

higher number of included buildings, this behavior was not observed.

Dual variables Different dual variables are used in the decomposition, one for each linking con-

straint. The dual variable µ is linked to the objective function and is individual for each SP (compare

Equation 4.6). It is a constant value, which is subtracted from the objectives of the SPs and used to

assess the termination criterion. The related criterion are the reduced cost, which are presented

in Figure 4.15b. However, a constant parameter value, which is subtracted from a minimization

problem, has no impact on the result of the optimization.

The dual variable π is linked to the electricity exchange and is used to communicate price signals

between the MP and the SPs in order to change the operation schedule (compare Equation 4.7).

Figure 4.19 presents the dual variable for optimizing OPEX on one typical day in winter (Figure 4.19a)

and one in summer (Figure 4.19b).
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Figure 4.19 – Dual variable π and electricity exchange of a district on a typical a) winter period and
b) summer period.

The district was a net-importer during the whole winter period (Figure 4.19a). There was only

electricity demand and no feed-in from the district. If the SP can change its operation schedule

and save. for example 1 kWh of electricity, the total objective function is reduced by the cost of

that 1 kWh of electricity. Since it would need to be imported, the related costs which can be saved

is the retail tariff. Therefore, the dual variable took the retail tariff for the whole winter period. In

contrast, Figure 4.19b shows the situation in case there is surplus electricity, which is exported from

the district. During mid-day, the electricity from the installed PV panels were exported. In that

time, the 1 kWh of electricity from the previous example costed only the amount of the feed-in
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tariff. Therefore the dual variable π took the feed-in tariff. Before and after the period of feed-in, the

situation was the same as during the winter day and the district was a net-importer. Hence, the dual

variable π took the retail tariff.

The last dual variable, which is introduced in this chapter is the dual variable β. The dual variable β

is associated to the constraint on the second objective function during MOO (compare Table 4.5).

This constraint is valid for the whole district, hence a linking constraint. Figure 4.20 displays the

result of a MOO of eight buildings.

5 10 15 20 25
operational expense [CHF/m2yr]

0

5

10

15

20

ca
pi

ta
l e

xp
en

se
 [C

HF
/m

2 y
r]

49.24
0.020.42

0.55
1.611.01

0.871.24

0.75

0.15

0.08
12.49 Values of op Values of cap

decomposed formulation

Figure 4.20 – Dual variable β during the MOO of a district with eight buildings. β is dimensionless
(see Figure 4.12).

The stricter the limit on the second objective, the greater the possible improvement on the first ob-

jective by loosening this limit. The greater the sensitivity on the objective, the greater the related dual

variable. Hence, β was greatest close to the minimum of the second objective. For example, CAPEX

was the first objective and OPEX was the second objective. An OPEX limit of around 7 CHF/m2yr led

to βop around 12. (Figure 4.20). This means, relaxing the ε- limit of the OPEX by 1 unit, the CAPEX

could have improved by 12 units. Close to the CAPEX optimum, the situation was the reverse. A

relaxation of the OPEX constraint could not significantly improve CAPEX and therefore β took small

values like 0.02 (Figure 4.20).

4.3.7 Main findings

In the second part of this chapter, the Dantzig–Wolfe decomposition approach is applied to the

case of district energy system optimization. This decomposition approach allows for the splitting

of the original, compact formulation into several smaller parts and thereby reduces the overall

runtime. The approach is similar to the method described by Schütz et al. [122]. Contribution to
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the state–of–the–art is the implementation of the Dantzig–Wolfe method to MOO of DES. In a first

step, the different parts of the decomposition algorithm are identified: the MP which contains the

network model and its linking constraints and the SPs, which are the individual BESs within the

district. Dual variables serve as communication between the MP and the related SPs. In a second

step, the MOO is implemented. The usual procedure of generating Pareto frontiers with the help of

ε- constraints of the second objective [178] translates into one additional linking constraint and one

additional dual variable. The dual variable related to the MOO also allowed for the improvement of

the initialization strategy of the algorithm itself. The decomposition approach is validated with the

related compact formulation of the same problem. The results showed an error less than 0.02 % on

the objective function and identical unit decisions. The computational effort of the decomposition

followed a linear trend when adding buildings to the district, whereas the solution time of the

compact formulation increased exponentially. Therefore, the presented decomposition has the

potential to ease the computational effort sufficiently in order to calculated whole low–voltage

electricity grids with several dozen buildings connected. The centralized optimization of renewable

energy hubs of low–voltage electricity grids are further analyzed in the following chapter.
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5Renewable energy hubs at the district

scale
Overview

# Application of the centralized design strategy to several dozen buildings connected to the

same low–voltage grid

# Comparison of the centralized and decentralized design strategies, methods proposed in

Chapters 4 and 3, respectively

# Analysis of the needs, limitations, and solutions for integrating a high share of renewable

energy in in renewable energy hubs at the district scale

The content of this chapter is submitted partly to [143] (in Review).

Integrating renewable energy technologies in district energy systems is a common interest in order to

meet the challenges associated with the energy transition. The optimal planning of these renewable

energy hubs at the district scale is a computationally intensive task, as each building in the district

has its own energy system installed that exchanges resources with the community. In this chapter, the

proposed and previously validated Dantzig–Wolfe decomposition is applied to ease computational

efforts. The resulting centralized design strategy was then compared with the decentralized design

strategy, where each building is optimized sequentially. Both methods were applied to a typical pri-

urban district in the area of Geneva, Switzerland. Results show that the coordinated investment and

operation strategy of the centralized approach allows a higher electrification of the system, leading

to an increase of photovoltaic penetration (PVP) by 40%, to PVP = 0.6. to This reduced the total

global warming potential by 20% for the same total expenses. The centralized investment strategy

differed most from the decentralized strategy for photovoltaic (PV) panels; using the centralized

strategy, a wide range of PV installation on less–optimal surfaces became economically interesting.

Economically feasible self-sufficiency was achieved by installing 0.39 to 0.98 m2 PV panels per

energetic reference area, when the round-trip efficiency of the storage systems decreased from 100%

to 45%. For the examined district to become carbon neutral using only solar energy, 73% of available

surfaces must be covered with PV panels; refurbishing the building stock can reduce this value by

55%. The most economically convenient solution to overcome transformer limitations were district

storage for peak shaving and photovoltaic curtailment. The cost increase were around 600 CHF per

kWyr annual capacity shortage, regardless of the considered district energy system.

125



5

Chapter 5. Renewable energy hubs at the district scale

5.1 Introduction

Efforts to decentralize the energy system in the context of the energy transition require optimally

integrated distributed energy systems in a network infrastructure. Distributed energy systems, such

as single buildings in a district, do not only require energy in the form of electricity or heat but

also generate and feed into the network. Planning the optimal integration of renewable energy

technologies is a complex and multi-layered task that requires the analysis of the impact of their

integration on the network, the interaction between buildings, and the design and scheduling

of energy system itself. These different aspects and perspectives are discussed in this chapter.

First, an overview of the state–of–art of modeling of district energy systems is provided. A concise

methodology section is then presented in Section 5.2; this chapter focuses on the application of

the methods developed in previous chapters. The methods are then applied to a residential urban

district comprising over 30 buildings and is detailed in the results provided in Section 5.3.

5.1.1 State–of–the–art

District energy systems are commonly optimized using a mixed–integer linear programming (MILP)

framework. MILP optimization was used in all contributions listed in Table 5.1, except for those

by Fazollahi [179], who employed a mixed–integer non–linear framework. Generally, the integer

variables are used to model part-load stages of technologies or the decision to choose equipment.

The volatile nature of renewable energy technologies and the dependence of the energy demand on

ambient weather requires the consideration of annual time-series. The resulting modeling frame-

works are computationally untraceable optimization models [180]. Therefore, it is current standard

to perform time–series aggregation (TSA), which clusters annual profiles to typical periods [46].

TSA was applied in all presented contributions in Table 5.1. When the only simplification made to

the model was the aggregation of time-steps, very few periods were used, generally representing

one for each season [117, 123, 181]. Researchers performing comprehensive reviews regarding TSA

have concluded that seasonal averages lead to considerably higher errors than machine-learning

techniques, such as k-medoids clustering [46, 47]. Furthermore, as demonstrated in Chapter 3,

applying only TSA cannot overcome computational issues on large–scale applications. Therefore,

the model complexity must be reduced further by either reducing the problem size or decomposing

the solution strategies.

One option is to pre-calculate building scenarios and optimize the selection of these scenarios

at the district level. Pickering et al. [182] applied this strategy on two case studies containing

12 and 17 buildings, respectively. The first case study considered a district with cooling demand

but no heating demand in India, whereas the second case study had the reverse situation in the

UK [182]. The method employed for aggregating scenarios did not allow building interaction to

be considered. Therefore, their results indicated that district energy system solutions were not
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Table 5.1 – Literature review on the optimization of urban energy system problems.

simplification approach focus (buildings) MOO source

aggregation† temporal district (5) 7 [181]

temporal district (10) 7 [117]

temporal district (35) 7 [123]

scenarios district (16) 7 [182]

spatial country (5–800) 7 [183]

spatial district (4) 7 [119]

spatial district (3) 3 [22]

pre-selection fixed loads grid+ 7 [155, 184]

aggregated loads grid+ 7 [55, 185]

two-stage district (4) 3 [156]

heuristic bi-level city (13)? 3 [179]

bi-level district (20) 3 [186]

bi-level district (5) 3 [118]

decomposition Rolling horizon district (30) 7 [171]

Benders grid+ 7 [187]

ADMM grid+ 7 [188–190]

Dantzig–Wolfe district (3–100) 7 [122]

Dantzig–Wolfe district (31) 3 this work

† all of presented approaches use time series aggregation, explicitly presented
use it exclusively

? buildings are aggregated to 13 districts
+ focus is the grid, without designing or controlling decentralized loads

economic feasible and individual building systems should be preferred [182]. Stadler [22] also

used this method to assess the energetic impact of the building stock of Switzerland. The entire

building stock was presented using three building types and nine different renovation stages; pre-

calculated scenarios of each building type were then aggregated to analyze the national system.

These scenarios were developed using an MILP optimization framework that considers one building

at a time. Stadler [22] furthermore demonstrated a multi-building example, in which one rural and

one urban case study was analyzed with 13 and 5 buildings, respectively. The buildings in both

case studies were aggregated to three buildings, which similarly made it impossible to assess the

interconnection of buildings. This simplification was then furthered by aggregating the distributed

loads of the entire district, resulting in a purely centralized energy system design [55]. Similarly, Liu

et al. [184] and Lu et al. [155] presented a detailed focus on network modeling and design for both a

district heating network and electricity grid. However, their work was not focused on the design of

the building energy systems (BESs); rather, the distributed loads were integrated on network nodes,
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and the layout of the two grids was designed and optimized.

Unlike these methods, decomposition allows both decentralized and centralized equipment designs

to be considered while focusing on the operation of the network. A popular method to investigate

this is bi-level decomposition. Fazlollahi [179] aggregated buildings to districts and then applied

bi-level decomposition to optimize the energy system of Geneva, Switzerland. The bi-level decom-

position of five buildings in a district with integrated grid constraints demonstrated the potential of

a coordinated equipment design and scheduling [57]. Grid operation scheduling allowed a higher

share of renewables to be integrated, thereby decreasing the global warming potential by 40% [57].

However, the bi-level method is a heuristic approach with no guarantee that the global optimum

will be found [159]. Furthermore, this solution strategy still had an increased runtime. Morvaj

et al. [118] reported a runtime between 12–30h for a single–objective optimization (SOO) of five

buildings. Therefore, deterministic decomposition approaches, such as the alternating direction

method of multipliers (ADMM) have gained popularity [188–190]. However, the ADMM can only

be applied to two subproblems (SPs) [168]; researchers have thus used this technique to consider

the control of microgrids, not the design of distributed energy systems [188–190]. Furthermore, the

ADMM is outperformed by the Dantzig–Wolfe method [169], which was applied by Schütz et al. [47]

to optimize over 100 residential buildings. Their result demonstrated the potential of a coordinated

optimization approach and reduced the total expenses (TOTEX) by 4% and the global warming

potential (GWP) by 23.7%.

5.1.2 Gaps and contributions

A review of the literature in the field of the coordinated design and operational scheduling of district

energy systems reveals that the computational effort remains a major hurdle. Even after aggregating

four buildings, Yang et al. reported [119] a runtime of 5 h 48 min. Applying decomposition strategies,

Wakui et al. [191] reported a runtime of 2–55.5 h for a single optimization of 5–100 buildings. Schütz

et al. [122] required 2.6 h for the single optimization of 10 buildings. Prior researchers have either

oversimplified the model or considered only the grid operation; further, researchers performing a

multi–objective optimization (MOO) have only considered heuristic approaches. In this chapter,

therefore, a centralized, deterministic MOO strategy of all buildings connected to the same low–

voltage grid is proposed to address the following questions:

• What is the benefit of considering renewable energy hubs at the district scale, which comprises

a centralized, coordinated scheduling and investment approach?

• How do different design strategies influence the integration of renewable energy technologies

in the district?

• What are the needs and limitations to become self-sufficient or carbon neutral in the district?

• How can the detected limitations be overcome?
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5.2 Method

To highlight the benefits of a coordinated design of distributed energy systems, two possible design

strategies of a renewable energy hub are compared in this section. On one side, the design strategy

is decentralized, on the other, centralized., as presented in chapters 3 and 4, respectively. Because

the focus here is on the application and comparison of the developed methods, only the necessary

changes to the previously presented method are discussed.

Decentralized design strategy In the decentralized design strategy, MOO of BESs are considered

with the perspective of individual buildings and preformed sequentially. The district is modeled as a

collection of renewable energy hubs at the building scale. Once the optimal design and operation is

identified, the electrical loads are balanced within the district. This design strategy is identical to the

one proposed and described in Chapter 3.

Centralized design strategy In the centralized design strategy, the distributed energy systems

within the district are designed and operated according to a common, central objective. Decisions

regarding investment and operations are taken with respect to the community, not individuals. This

strategy is to consider one renewable energy hub at the district scale. The decomposition method

developed and described in Chapter 4 was applied to overcome runtime issues for in centralized

design strategy.

5.2.1 Key performance indicators

Regardless of the design strategy, two perspectives must be considered when describing the results of

the design and operation of an renewable energy hub: that of the perspective of the building owners

and of the community. The difference between these two perspectives can be characterized by what

is generated and consumed in the district itself, also called the effect of pooling. For example, if

a building imports electricity produced by a neighbor, this electricity for accounted in building’s

perspective but is not recognizable at transformer level.

The key performance indicators (KPIs) that are considered in this chapter and are not influenced by

the different perspectives are the annual revenues (AR) (Equation 1.33) and photovoltaic curtailment

(PVC) (Equation 1.29). The KPIs that are impacted by the two perspectives are further detailed using

the general notation, where bold typesetting indicates variables and normal typesetting indicates pa-

rameters. In the centralized strategy, this classification changes during the decomposition algorithm,

as detailed in Chapter 4.
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Building perspective Here, each BES is analyzed independently from the network. BESs were de-

fined in more detail in Chapter 1. In this chapter, the building perspective is analyzed by aggregating

building–specific values.

E g r,± =
∑
b∈B

∑
p∈P

∑
t∈T

Ė g r,±
b,p,t ·dt ·dp (5.1)

The electricity E imports (superscipt +) and exports (superscript −) in the district can be represented

by the sum of the exchanges over all buildings in the district (Equation 5.1).

The annual operational expenses (OPEX) are the costs related to the interaction with the local

electricity and natural gas grids. From the building perspective, these expenses are the sum of all

yearly bills that building residents receive for consuming electricity E or natural gas H .

C op =
∑
b∈B

∑
p∈P

∑
t∈T

(
cel ,+

p,t · Ė g r,+
b,p,t − cel ,−

p,t · Ė g r,−
b,p,t + cng ,+

p,t · Ḣ g r,+
b,p,t

)
·dt ·dp (5.2)

In Equation 5.2, the annual expenses on the level of single buildings (Equation 1.15) are summed

over all buildings b in the district. Thereby, the electricity exchange Ė g r,± from the buildings to the

district is considered. The electricity exchange at the local transformer does not influence the OPEX

when this KPI is analyzed from the perspective of the buildings.

Community/Transformer perspective The community perspective considers the district as a

whole. In contrast to the building perspective, exchanges between buildings in the district are not

specifically evaluated; rather, the focus is on exchanges between the community and the outside

world. The only resource that can be both imported and exported is electricity. Therefore, this

perspective is also called the transformer perspective.

Ė T R ,+
p,t − Ė T R ,−

p,t =
∑
b∈B

Ė g r,+
b,p,t −

∑
b∈B

Ė g r,−
b,p,t ∀p ∈ P ∀t ∈ T (5.3)

The electricity exchange from each building is balanced at the transformer T R (Equation 5.3).

C op =
∑
p∈P

∑
t∈T

(
cel ,+

p,t · Ė T R ,+
p,t − cel ,−

p,t · Ė T R ,−
p,t +

∑
b∈B

cng ,+
p,t · Ḣ g r,+

b,p,t

)
·dt ·dp (5.4)

The annual OPEX from the perspective of the community includes pooling. Fees for using the

community network are not considered. Hence, only the electricity exchange at the transformer is
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accounted in the annual expenses (Equation 5.4).

ψ=
∑

p∈P
∑

t∈T

((∑
b∈B Ė g r,−

b,p,t

)
− Ė T R ,−

p,t

)
·dp ·dt∑

b∈B
∑

p∈P
∑

t∈T Ė g r,−
b,p,t ·dp ·dt

(5.5)

However, the exchanges between the buildings and the grid are acknowledged in the share of

electricity re-imports ψ ( Equation 5.5), which represents the share of electricity that is exported by

buildings ( Ė g r,−
b ) and then re-imported by neighbors. Thus, this electricity stays within the district,

is not exported at transformer T R, and is used to cover a part of the electricity demand. Hence,

the high share of re-import decreases the demand at the transformer, which reduces the OPEX of

the district. The share of re-imports is a KPI that can be used to measure how well the generated

electricity is used within the district. A related KPI is the self-consumption (SC), which represents

the share of the total generated electricity that is consumed by the renewable energy hub, and can

be expressed as[37] (Equation 5.6).

SC =
E+

chp +E+
pv −E T R ,−

E+
chp +E+

pv
(5.6)

Here and Equations 5.7 and 5.8, annual values are used to increase readability. In studied the district,

electricity can be generated by PV panels and combined heat and power (CHP) units.

SS =
E+

chp +E+
pv −E T R ,−

E+
chp +E+

pv −E T R ,−+E T R ,+ (5.7)

Self-sufficiency (SS) is the share of electricity demand that is covered by onsite generated electric-

ity [37] (Equation 5.7).

PVP =
E g en

pv

E+
pv −E T R ,−+E T R ,+ (5.8)

The PVP indicates how much of the total electricity demand of the district could be covered by

generated electricity from photovoltaic panels (Equation 5.8). In the value for PVP, electricity is

evaluated that can potentially be generated by installed PV panels (E g en
pv ). The difference to the
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actually generated electricity E+
pv is the curtailed electricity (Equation 1.29).

G t ot =Gbes +
∑
p∈P

∑
t∈T

(
g el ,T R

p,t

(
·Ė T R ,+

p,t − Ė T R ,−
b,p,t

)
+

∑
b∈B

g ng
p,t · Ḣ g r,+

b,p,t

)
·dp ·dt (5.9)

The total GWP is calculated using to Equation 5.9. The period and time-dependent parameters gp,t

account for the GWP per kWh of consumed electricity at the transformer [33]. The GWP of the

energy system Gbes is calculated according to Equation 1.18. Thereby, the centralized district units,

detailed in the following section, are included.

5.2.2 Centralized units

The centralized design strategy enables the optimal sizing and scheduling of central district units.

In this chapter, the considered district storage system uses a centralized lithium battery and was

modeled according to the framework, described by Stadler [22]. This modeling framework includes

the constant discharge and charge efficiency (0.9), battery efficiency (0.99), and limits for the state

of charge (0.2–0.8). The cost of the batteries (441 CHF/kWh) were modeled according to the review

of cost projections for utility–scale lithium-ion batteries, presented by Cole et al. [192].

Ė T R ,+
p,t − Ė T R ,−

p,t =
∑
b∈B

Ė g r,+
b,p,t −

∑
b∈B

Ė g r,−
b,p,t + Ė bat ,−

p,t − Ė bat ,+
p,t ∀p ∈ P ∀t ∈ T (5.10)

The difference to the storage systems, which are included in BESs, is that the unit is allocated to the

district level. The electricity charge and discharge from the central battery E bat ,± is included in the

electricity balance of the district (Equation 5.10) rather than the energy balance of the buildings

(Equation 1.2).

C c ap = i (1+ i )

(1+ i )n −1
·
(
C i nv,bat +C r ep,bat

)
+

∑
b∈B

C c ap
b (5.11)

The capital cost of the battery is is accounted for at the community level (Equation 5.11). All other

modeling constraints concerning the unit sizing or the energy storage system remained unchanged

with respect to the method that was detailed in Chapter 1.

5.2.3 Centralized constraints

A centralized design strategy enables the usage of centralized constraints and limitations. Here, the

maximum capacity of the local low–voltage transformer is considered. The electricity export and the
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import is constrained within the feasibility range of the transformer (Equation 5.12).

Ė T R ,±
p,t ≤ Ė T R,max

p,t ∀p ∈ P ∀t ∈ T (5.12)

The centralized constraint (Equation 5.12), a linking constraint included in the master problem (MP)

of the decomposition, can cause infeasibilities in the initiation of the decomposition algorithm. The

MP is initialized by design proposals from the SPs. First design proposals, which are sent to the MP

of the decomposition, do not necessarily respect the centralized constraints. As a result, the MP is

unable to choose design proposals within the limit of the constraints.

GU± =
Ė T R,max

p,t

maxp,t

(∑
b∈B Ė B ,−

b,p,t

) (5.13)

To overcome this issue, the equivalent grid usage (GU) (Equation 1.28) is calculated as the ratio

of the transformer capacity to the maximum occurring uncontrollable load of the buildings E B

(Equation 5.13).

Ė g r,±
b,p,t ≤ GU± ·max

p,t

(
Ė B ,−

b,p,t

)
∀b ∈ B ∀p ∈ P ∀t ∈ T (5.14)

The SPs of the decomposition are the optimization of individual BESs. Hence, the grid usage is

included in the SP formulation of each building (Equation 5.14). This constraint is only needed

during algorithm initiation and can be dropped during the iterative process.

5.2.4 Case study

The proposed method was then applied to the same case study as detailed in Chapter 3 for the

decentralized design strategy to demonstrate the potential of the centralized design strategy. This

case study district is a typical peri-urban European district located in the metropolitan area of

Geneva, Switzerland. All 31 buildings considered, are connected to the same low–voltage transformer.

Further details about the case study are provided in Section 3.2.6.
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5.3 Results

The benefits of a centralized district energy design, while focusing thereby on the grid-aware integra-

tion of solar energy, are highlighted in this section. First, the centralized design strategy, in which the

renewable energy hub is optimized from the perspective of the entire community is compared with

the decentralized design strategy, in which optimal solutions are considered from the perspective of

each building individually and then afterwards balanced at transformer level in an aggregation step.

The centralized optimization strategy is then further analyzed to reveal the optimal integration of

renewable energy technologies. Thereby, the influence on the electrical grid and required storage

capacities are also analyzed.

5.3.1 What is the potential of a centralized design strategy?

Given that the optimization problems created by the centralized design strategy are more complex

and therefore computationally more expensive to solve, the potential of a centralized optimization

strategy is highlighted in this section.

Multi–objective optimization MOO using both optimization strategies demonstrated minimum

annual capital expenses (CAPEX) of approximately 1.4 CHF per energy reference area (ERA), as

shown in Figure 5.1.
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Figure 5.1 – Multi–objective optimization (MOO) of a residential district with 31 buildings. a)
Comparison of the CAPEX–OPEX Pareto curve resulting from the decentralized and centralized
optimization strategies. Minimum total expenses (TOTEX) marked on both curves. b) TOTEX and
share of re-imports of generated electricity for increasing OPEX.

This is because there are no centralized or interacting units between buildings in the solution with

lowest CAPEX. As a result, that the cheapest investment for each building is also the cheapest
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investment for the community. The energy system with a minimum CAPEX uses natural gas boilers

in each building that are not connected to the electricity grid or a district heating network and

thus can be operated independently. Increasing the investment in the energy system clarifies the

difference between the two strategies. Using the centralized strategy, a 5% increase in the CAPEX

allowed for a 30% decrease in the OPEX. In contrast, the decentralized design strategy required an

increase in the CAPEX by more than 180% (from 1.4 CHF/m2 to 4 CHF/m2) for the same reduction

in the OPEX. This difference decreased between the two strategies when further reducing the OPEX;

lowering the OPEX requires less dependency on purchasing resources from the grid but requires the

installation of CAPEX–intensive equipment (i.e., local heat and electricity generation and storage

systems). Therefore, these systems are more independent. This was observed for each building as

well as for the community as long as there are no centralized units or requirements. Therefore, the

resulting low–OPEX scenarios were similar using both strategies. However, the centralized strategy

remained non-dominated in each scenario along the Pareto curve (Fig. 5.1a). This behavior can be

explained in part by how generated electricity is used in both strategies (Figure 5.1b). The annual

OPEX ranged from 30 to 10 CHF per ERA. Initial reductions in the OPEX were characterized by

switching from natural gas resources to electricity, followed by the integration of renewable energy

sources, and finally by the installation of electricity storage systems (i.e., batteries). The centralized

design strategy produced results with a higher share of re-imports. Hence, the centralized strategy

allowed an improved coordination of the district. The share of re-imports remained higher for the

centralized design strategy, even when electricity production is increased in the district (Figure 5.1b).

To decrease the annual OPEX below 12 CHF/m2, electrical storage systems were used, demonstrating

another benefit of the centralized approach: whereas re-import share further decreased to 0 when

using the decentralized strategy, the coordinated operation allowed the share of re-imports to be

increased to 30%. The minimum TOTEX obtained both optimization strategies is marked on the

Pareto–optimal frontiers in Figure 5.1 and further discussed in the following paragraphs.

Single-objective optimization SOO resulted in similar objective values (TOTEX minimization)

using both strategies, as shown in Figure 5.2. The objective value is similar for both optimization

strategies. The centralized strategy led to an annual TOTEX 1.1% lower than the decentralized

strategy. However, the use of the centralized strategy significantly changed other KPIs, including a

lower CAPEX investment, a 25% lower PVP, and a 10% lower SS.
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Figure 5.2 – Single–objective optimization (SOO) of a residential district with 31 buildings. Compari-
son of centralized and decentralized design strategy according to a) objective value (total expenses
(TOTEX) and key performance indicators (KPIs): global warming potential (GWP), photovoltaic
penetration (PVP), self-consumption (SC), and self-sufficiency (SS). b) Relative difference between
the decentralized and centralized methods c) Installed units.

Comparing the configurations of the optimized renewable energy hubs (Figure 5.2c) gives further

insight to the two solutions and confirms the analysis of the KPIs. Whereas the majority of the nine

unit decision for each of the 31 buildings were identical, more PV panels were installed when the

decentralized system was used. The decentralized investment strategy was developed from renew-

able energy hub at the building scale and does not take investment decisions for the community

into account. The surface that is chosen for installing PV panels can be sub-optimal, as there might
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be better-oriented surfaces in the district available. Therefore, the optimization of the renewable

energy hub at the district scale resulted in fewer but larger PV investment decisions.

The two gas boilers that are additionally installed in the optimum obtained using the centralized

strategy (Figure 5.2c) accounted most of the 20% increase in the GWP (Figure 5.2a). The electricity

exchange at the transformer also contributed to the GWP. Whereas the electricity import at the

transformer was almost identical in both cases (Figure 5.3a), more electricity was exported in the

result obtained using the decentralized strategy, which also had a higher PVP and lower SC.

The variation in electricity exchange and allocated OPEX from the two perspectives analyzed are

shown in Figure 5.3.

electricity import electricity export
0

10

20

30

40

50

en
er

gy
 [k

W
h/

m
2 y

r]

design strategy
centralized
decentralized

perspective
building
transformer

(a)

electricity
 import

electricity
 export

OPEX
35

30

25

20

15

10

5

0

 d
iff

er
en

ce
 p

er
sp

ec
tiv

e 
[%

]

design strategy
centralized
decentralized

(b)

Figure 5.3 – Electricity exchange in the district from the perspective of the buildings and the trans-
former for each design strategy. a) Absolute exchange values. b) Relative difference between
perspectives.

The difference between these two perspectives was, in general, much larger for the centralized design

strategy. Almost 35% of the electricity exported at building level remained within the district and was

not exported at transformer level, which confirms the analysis regarding re-imports in Figure 5.1b).

This electricity met 10% of the total electricity demand of the buildings thereby decreasing the

electricity import at transformer level by 10%. This difference in electricity exchange led to a

monetary difference in OPEX. To be able to compare this difference in OPEX the same electricity

tariffs were assumed for feed-in and demand at the transformer and buildings. The result of the

centralized strategy shows OPEX which are 5.4% reduced, when accounted at the transformer.

This saving can be directly translated into the benefit of centralized strategy. The saving of the

decentralized design strategy at the district scale is 0.7%.

Previously, the resulting optimum using two different design strategies were compared. Although
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their objective value (TOTEX) were similar, they were not the same. In MILP optimization, even

a small difference in objective values can lead to very different system configurations. To have a

clearer picture of the potential of the centralized design strategy, the previous analysis was repeated

with identical objective values. As the centralized strategy was non-dominated along the Pareto

(Figure 5.1a), the accepted value of the objective of the centralized strategy was increased to meet

the identified minimum TOTEX of the decentralized strategy.
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Figure 5.4 – Comparison of optimal solutions with identical TOTEX for a residential district with 31
buildings. Comparison according to key performance indicators: GWP,PVP, SC and SS. a) Absolute
comparison. b) Relative difference between the methods.

The KPIs obtained from this analysis are shown Figure 5.4. The PVP and SS of the centralized solution

was 40% and 20% higher than the solution identified using the decentralized strategy, respectively.

The centralized design strategy of the distributed energy system allowed a reduction of the GWP

of more than 20% for the same TOTEX. A comparison of both energy system designs, visualized in

Figure 5.5, provides one part of the explanation for the decrease in the GWP and the increase in the

PVP. The coordinated investment strategy of PV panels and the improved utilization of generated

electricity allowed for an electrification of the system without increasing the TOTEX. The centralized

design strategy improved PV inclusion, thereby increasing the size of PV modules using surfaces in

the district. To use a higher share of locally generated electricity, the size of natural gas boilers was

reduced and the size of the heat pumps was increased.

Electrifying the renewable energy hub reduced the gas demand by 40% and increased the electricity

export by 80% (Figure 5.6). Analyzing optimal systems with the same TOTEX but different opti-

mization strategies revealed another benefit of the centralized design strategy: an improved and

increased inclusion of renewable energy technologies in the district. Therefore, the PV investment

strategy that was identified with the coordinated, centralized design strategy is further analyzed in

the next section.
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Figure 5.6 – Resource exchange of a residential district with 31 buildings. Comparison of optimal so-
lutions with identical TOTEX but different design strategies. a) Absolute values b) Relative difference
between the design strategies.
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5.3.2 Optimal investment strategy for photovoltaic panels

Optimizing a renewable energy hub requires a holistic approach that accounts for both electricity

demand and generation opportunities. Thereby, one challenge is to close the gap between the

temporal availability of the generation and demand of electricity. The economic feasibility of PV

panel investment strategies can be analyzed by asking two questions: (1) Which surfaces are optimal

for PV panel installations? (2) What portion of these surfaces are economically convenient to cover

and what is the influence of grid tariffs? Additionally, the required PV coverage to reach SS or carbon

neutrality in the district is then discussed.
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Figure 5.7 – Economic analysis of PV installations in the district a) Economic area covered with
PV modules according to surface type. PV modules with tilt = 0°are horizontal, tilt angles = 90°are
facades, oriented modules summarize all other tilt and azimuth angles. b) Comparison of the
investment strategy with decentralized district optimization (compare to Figure 3.6) c) Orientation
of economically PV installation.
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Which surfaces are optimal for PV installations? The PV panel installation order with increasing

investment cost is shown in Figure 5.7. As detailed in Figure 5.7a), horizontal and oriented roofs were

selected first. For a given investment, the surface covered is not necessarily the same as the area of

purchased PV modules. The surface coverage also accounts for the space between rows of oriented

modules on flat roofs. At a roof coverage of 50%, facades started to be identified as the best choice

economically. 40% of the facades were filled before the last roof was covered with PV panels. This

is clearly against the strategy to pick the surface with highest solar potential. Only south–oriented

facades had a higher annual potential than north–oriented roofs (see Figure 3.5). However, when

the sun is lower in the sky during winter, when the heating demand is highest, the solar potential of

facades can exceed that of roofs.
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Figure 5.8 – Order of optimal PV panel installations on roofs in case study district. All buildings are
connected to the same low–voltage transformers. The colors indicate at which level of PV integration
the roofs are chosen for the first time.

When the decentralized optimization strategy was employed, nearly 90% of roofs were filled be-

fore considering PV modules on facades (Figure 3.6). In early investment stages, the centralized

strategy allowed for a greater surface to be covered, as shown in Figure 5.7b. In these early stages

of PV integration, little distinction seems to have been made between different roof orientations

(Figure 5.7c). Whereas building owners would start by investing in PV panels on southern–oriented

surfaces (see Figure 3.6c), analysis from the district perspective indicates that the entire roof should

be covered. On a typical pointed roof choosing a southern–oriented surface would thus lead to

use north–oriented surface areas, which have a much lower solar potential but optimizes fixed

installation costs. Thus, for the same investment cost, more surfaces are covered with PV modules.
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Along with the tilted south (and connected north-facing) roofs, horizontal roofs were fully covered.

The order in which roofs were chosen is shown in Figure 5.8. The optimal strategy for the roof

coverage was as follows. 1) Big roof with large south oriented surfaces were identified. The entire

roof was used, regardless orientation of remaining surfaces. 2) Horizontal roofs were then fully

exploited. 3) The remaining roofs were chosen in the order of their solar potential, south–facing

facades were preferred to north–facing roofs. 4) The optimal placement of facades modules was

according to their solar potential: in order, south, west, east, and north.

How much PV solar energy can be generated locally and cost-efficiently? During the MOO, the

operation and investment of the entire renewable energy hub was considered. To increase the share

of renewable energy sources, the economically feasible range of solar energy in the district is a

matter of interest. From the perspective of the investors, this includes the number of PV panels

that can be fully paid back by the end of their lifetime. From the perspective of policymakes, this

translates into the question, how to establish energy tariffs to create incentives for a desired PVP in

the electricity grid.
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Figure 5.9 – a) PV investment per generated PV electricity E g en
pv and implicit revenues for different

feed-in and demand prices. Economic point: Investment in PV and connected revenues are balanced.
Point A: current tariffs (8 ct feed-in, 20 ct demand price). Point B: break-even point for exemplary
tariffs. b) Annual benefits, which are the annual revenues subtracted by the PV investment.

An economic analysis of PV panels in the district is summarized in Figure 5.9b. The cost of PV

panels increased per generated kWyr electricity with the magnitude of PV investments. The first

installed modules were cheapest per generated kWyr of electricity. In later investment stages, all

profitable surfaces were covered and less profitable surfaces, like north–facing facades, were the

only option left. At the same time, the annual revenues decreased with increasing investment into
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PV panels. This development can be explained by the higher self-consumption in the early stage.

For investigated tariffs in Figure 5.9b, self-consumption was more beneficial than selling electricity,

as it avoids paying higher prices to buy electricity from the grid. The last economically feasible point

occurs when the investment cost of the PV panel and their revenues break-even. At current tariffs (20

and 8 ct/kWh), almost all surfaces in the district were financially sustainable in a centralized design

strategy of the district. Lowering the electricity demand price by 5 ct/kWh reduced the economically

feasible PV investment by 20%. The annual benefits depended on self-consumption in the scenario

where no feed-in is reimbursed. Even if the electricity demand price is increased by 5 ct, much less

PV investments are economically feasible.

Figure 5.10 – Variation of the PV yearly generation to achieve break-even as a function of feed-in and
demand prices of electricity. SS with ideal storage, round-trip efficiency η = 100%. Carbon neutrality
with dynamic emission profiles (Equation 5.9). Economic bounds from decentralized design strategy
(see Figure 3.9b).

This economic analysis was extended to a wide range of tariffs in Figure 5.10. The analysis shows that

PV investments became economically feasible at tariffs as low as 0 and 12 ct/kWh or 3 and 10 ct/kWh

for feed-in and demand price, respectively. At a feed-in price of 12 ct/kWh, all PV installations were

economically feasible, even at a demand price as low as 10 ct/kWh. The economic bounds of the

decentralized design strategy are also indicated in Figure 5.10. The economically feasible region

begins at much higher tariffs (10/10 ct/kWh and 0/22 ct/kWh), further demonstrating the benefit

of a centralized, coordinated design strategy. Three points of interest are added in Figure 5.10:
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available roof surfaces are fully covered, SS , and carbon neutrality are achieved. As the amount

of electricity generated, was linearly correlated with the electricity tariffs, these points lie along

a straight line. To achieve SS with PV panels alone, storage systems are required to balance the

mismatch of electricity generation and consumption. The point of SS therefore depends on the

round-trip efficiency of these storage systems. The SS was considered with ideal storage systems in

Figure 5.10. More realistic cases of SS lie above the indicated line (8/10 ct/kWh and 0/25 ct/kWh for

combination of feed-in/demand price), and are discussed in more detail in the next section.

How much PV is needed to achieve self-sufficiency or carbon neutrality? Although PV panel

installation has been demonstrated to be economically feasible, reaching electrical SS from PV panels

requires the installation of storage capacities to overcome the mismatch of electricity generation

and consumption.
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Figure 5.11 – Required PV panel installation to achieve a) self-sufficiency, using the grid as battery
for different round-trip efficiencies η, and b) carbon neutrality. Point S: Self-sufficiency considering
ideal storage with η = 100%. Related emission intensity values based on the Swiss grid mix from
2019 [33].

Installing more PV panels, even in different sky orientations, cannot close this gap. Rather, SS could

only be achieved using the grid as storage (i.e., by selling electricity to the grid to purchase it back

at a later time), as shown in Figure 5.11a. All presented values are normalized to the electricity
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demand of the building. A maximum of 45% of the electricity demand can be covered by direct

self-consumption of generated electricity; the difference must be re-imported from the grid. The

minimum area of PV panels per ERA required to achieve SS was 0.4 for a round-trip efficiency of

100% (Point S). At this point, facades were already required. As the round-trip efficiency decreases,

the required level of PV installation increases. In the case of highly efficient storage systems, such as

lithium batteries, an efficiency of 85% was considered. In this case, the centralized and decentralized

design strategies led to a required ratio of 0.45 m2 PV panels per ERA. For the decentralized method,

this value was identified slightly increased (0.53 m2
PV /m2

ER A , see Figure 3.10) for the decentralized

design strategy. The difference between these two strategies here can be explained by the higher

degree of pooling of electricity within the district involved in the centralized design strategy, which

led to a smaller registered electricity demand at the transformer. The ratio of electricity generated

per electricity demand was thus increased, reducing the required value for the point of SS. With

current tariffs, the last point that was economically feasible was at 0.98 m2
PV /m2

ER A (Figure 5.9). To

realize SS at that point, the round-trip efficiency of connected storage assets could be as low as 45%.

In case there is no storage system accounted for in the system, the SS reaches a maximum of 45%

(Figure 5.11b), when covering all available surfaces with PV panels. In this case, the self-consumption

saturates at around 27%. Carbon neutrality is defined as the point where the overall GWP becomes

zero. The first drop seen in Figure 5.11 from 30 to 15 gCO2 /m2
ER A was mainly due to the electrification

of the system, i.e, switching from natural gas boilers to heat pumps. Self-consumption of on-site

generated electricity further reduced the GWP. However, as the SC decreasing with increasing PV

installations, the share of GWP which is deduced due to the feed-in is gaining significance. When

the carbon intensity of the electrical grid was considered volatile, 0.77 m2 PV panels per m2 ERA

were necessary to achieve carbon neutrality. In contrast, assuming an annual average grid emission

intensity required only 0.48 m2
PV /m2

ER A of installed PV panels to meet carbon neutrality. The carbon

intensity of the grid is lowest during the day in summer. However, this is when the PV panels generate

the most electricity. Hence, with average values the carbon emission were underestimated leading

to a smaller required PV installation.

Given that the need of PV panel integration to achieve SS and carbon neutrality depends on the

electricity demand of buildings, a reduction in the electricity demand would also reduce the required

number of PV panels. The electricity demand can be lowered in multiple ways, such as improving the

efficiency of energy conversion units, lowering the end–use demand of the buildings, or switching

to other energy resources. The analysis presented was based on the current building stock until

now; the identified points were all in high–CAPEX scenarios, where heat pumps were used for

heat generation. The PV panel requirement found in this analysis can be influenced by: 1) to

co-generating electricity with different equipment, 2) to refurbishing the building stock, and 3) to

relying more on natural gas. The prior analysis was thus repeated considering these three scenarios;

the resulting correlation between annual generated electricity and the area of required PV panels
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for each scenario is detailed in Figure 5.12. Here, the ratio of electricity generated per area of PV

module decreases as the solar potential of available surfaces decreases. In early PV investments,

south–oriented roofs were available, in later investments, only north-facing facades were available.
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Figure 5.12 – Required PV panel integration for different district scenarios: current building stock,
renovated building stock, and a scenario on the current building stock with cogeneration and gas
boilers. a) Annual generated electricity from PV panels and b) area of installed PV modules per
heated surface area.

Among the scenarios, the natural gas-based system required the smallest area of PV panels to

become electrically self-sufficient (Figure 5.12). This energy system was based on a combination

of heat pumps and gas boilers and resembles the BESs of today. However, the requirements for

natural gas were increased, which made it impossible to become carbon neutral. The most feasible

path to reach carbon neutrality involved renovating the building stock and relying on an electric

energy system. Refurbishing the building stock reduces the supply and return temperatures as

well as the amount of heat required for space heating. This process reduces the electricity demand

required by the heat pumps. Here, the annual electricity that is needed to achieve SS decreased by

35% with respect to the same installed system without renovating the building stock. This translates

to a 40 % reduction of required PV panels to 0.29 APV /AER A . To achieve carbon neutrality, the

influence of the renovation is even greater. The PV panel installations could be reduced by 55%

to 0.35 APV /AER A . The inclusion of cogeneration in the form of solid oxide fuel cells (SOFCs) did

not lead to a remarkable difference with respect to the scenario based on an electric system in the
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current building stock. With current tariffs (6 ct/ kWh natural gas, 8/24 ct/ kW electricity feed-in

and demand) the SOFC was only used to cover peak loads. SOFCs only became optimal investments

in high-investment scenarios after most well-oriented surfaces were covered with PV panels; only

west, east, and north-facing facades were available at this point. Therefore, the SS point assuming

ideal storage systems was identical (0.39 m2
PV per heated surface), but SS requirements assuming a

70% round-trip efficiency were slightly reduced.

Table 5.2 – Limits and constraints for the integration of PV panels.

available surfaces

on roofs

available surfaces

on facades

biggest economic

PV installation

lowest round-trip

efficiency

[m2
PV / m2

ER A] [m2
PV / m2

ER A] [m2
PV / m2

ER A] [-]

current

building stock
0.32 0.73 0.98 0.45

with

cogeneration
0.32 0.73 0.88 0.31

gas based

system
0.32 0.73 0.83 0.20

refurbished

building stock
0.32 0.73 0.88 0.25

Reducing the electricity demand effects the bounds for economically feasible PV installation and the

minimum round-trip efficiency to achieve SS (Table 5.2). For considered grid tariffs, self consump-

tion was more beneficial than selling electricity. As the total self-consumption of kWh electricity

decreased, the generated annual revenues equally decreased. For the same cost of PV modules per

generated electricity, the last economical point reduced with the reduction of electricity demand. At

the same time, the reduction of electricity demand requires less re-imports of electricity to achieve

SS. The minimum required round trip-efficiency was thus reduced.

5.3.3 Grid–aware integration of renewable energy

Given that SS and carbon neutrality were demonstrated to require large but economically feasible

capacities of PV panels, this section aims to identify the requirements of storage systems and analyze

the feasibility of the integration of a large amount PV panels into the power grid.

What type of storage is needed? One benefit of centralized optimization is the inclusion of cen-

tralized units, which can be financed once for the entire district, rather than purchased by each
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building. A central lithium battery that can be used for daily storage unit was added to the unit

choices during MOO of the district.
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Figure 5.13 – Analysis of two storage systems: a) optimal investment strategy including daily district
storage and b) state of charge of an ideal storage system aiming for SS for different levels of PV
penetration.

The results of a MOO of the district, including a district storage system, are summarized in Fig-

ure 5.13a. The optimized result with the lowest CAPEX included natural gas boilers in combination

with thermal storage tanks. The OPEX could be reduced by investing in heat pumps, followed by the

investing in PV panels. The district battery was chosen as a last resort to further reduce the OPEX.

Thus, the system did not profit from electricity storage enough to justify the investment at an earlier

stage. As detailed in Figure 5.13b, this was due in part because the centralized storage should be a

seasonal storage. The assumed storage system in Figure 5.13b had a round trip efficiency of 100%

and was connected to the district. The state of charge is expressed as charged electricity per annual

electricity generated from PV panels in the district. Different levels of PV penetration were analyzed.

Already at a low level of PV integration, excess electricity was charged in the summer months and

discharged in autumn. The curve takes the form of a typical seasonal storage system, not a daily

storage, like those included in the analyses visualized in Figure 5.13a. The curve reached its peak at

0.4 m2 PV panel per m2 ERA. At this point, more than 40% of the generated electricity was stored

in the storage system. This point corresponds to the SS point with ideal storage (Figure 5.11a). A

further expansion of PV systems was not needed to satisfy the electricity demand of the district.

Hence, the level of stored electricity per generated electricity declined.

What is the influence of capacity constraints imposed from the electrical grid? Another benefit

of the centralized design strategy is the possibility to include centralized requirements that concern

the entire system, such as the maximum capacity of the local low–voltage transformer.
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Figure 5.14 – Load duration curve on the local low–voltage transformer. Comparison of three
different system scenarios: the current system, an identified self-sufficient system with a round-trip
efficiency = 0.70%, and this latter system with modifications to be feasible at the transformer.

The load duration curve for different energy system scenarios is shown in Figure 5.14. The energy

system design, which is currently installed in the district, lied clearly within the feasibility range of

the transformer. The current system is characterized by the usage of gas boilers, a few heat pumps,

and PV penetration so low that generated electricity is mainly consumed within the district. Aim

of coming years is to drastically increase the level of PV integration, as it has been identified to be

key on the way towards carbon neutrality [10]. Recent studies have demonstrated that the medium

voltage level of the grid cannot host a large amount of PV installations [140]. Hence, the previously

identified self-sufficient system including grid-aware PV integration and a storage system with a

round-trip efficiency of η= 0.7 (Figure 5.12) is further analyzed here. With a peak feed-in of 1200

kW, the system exceeds the 400 kW capacity of the local transformer. A central grid constraint

limiting the exchange to a maximum of 400 kW was imposed while maintaining the PV panel

integration. This analysis provided feasible results using the centralized design strategy, as shown

in Figure 5.14; however, this central constraint cannot be imposed using the decentralized design

strategy. Therefore, the grid usage limit was split according to the magnitude of the uncontrollable

load of the buildings (Equation 5.14). This procedure did lead to feasible solutions on the transformer

but over-constrainted the system. Imposing the transformer limits allowed feasible integration of

PV, but came with certain costs, which are further detailed in Figure 5.15.

Peak reduction techniques are compared in Figure 5.15. The cost–optimal solution for the decentral-

ized design strategy was to curtail excess electricity. More than 25% of PV electricity was curtailed,
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Figure 5.15 – Peak reduction for decentralized and centralized design strategy. a) Different measures
for peak reduction: photovoltaic curtailment (PVC), resulting photovoltaic penetration (PVP) and
storage system installations. b) Impact on related costs of the system.

which decreased the PVP by 4% and increased the OPEX by 70% at current feed-in tariffs of 8 ct/kWh.

Using the centralized design strategy, however, allowed the peak exchange to be reduced by 25% by

strategically operating the district, without requiring additional PVC or storage units. In this case,

the capacity of the thermal tanks was marginally increased. The remaining reduction was achieved

by a coordinated operation of the heat pumps, preheating the buildings, and using west-facing

facades instead of south-facing facades as the preferred choice for PV panel installations. However,

PV curtailment was still required, as this was not enough to be feasible at the transformer. However,

the most cost-effective solution was not to curtail the excess completely, but purchase a central

battery for peak shaving. This purchase increased the overall CAPEX of the energy system by less

than 1% (Figure 5.15).

The baseline system is the already analyzed system, considering the current building stock with a

high level of electrification. Additionally to this baseline scenario, the need of PV panels to become

self-sufficient was analyzed for different district scenarios (Figure 5.12). The identified energy

systems that are required to meet SS with a round-trip efficiency of 70% all exceeded the capacity of

the transformer (Figure 5.16).

Furthermore, the capacity shortage of the transformer was correlated to the annual generated

electricity within the district, as shown in Figure 5.16. The electricity demand of the baseline

scenario and the scenario with cogeneration units installed was identical. However, part of the

electricity demand was covered by cogeneration units instead of PV panels, which reduced the peak

power and the annual capacity shortage marginally. The lowest capacity shortage was experienced

using systems that reduced the overall electricity demand and, therefore, the amount of required PV

panels to reach SS.
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5.3. Results
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Figure 5.16 – Limitation imposed by the local transformer for different self-sufficient district scenar-
ios with storage systems that have a round trip efficiency of 70% (see Figure 5.12).
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Figure 5.17 – Options for overcoming the local transformer limitation: a) required storage size for
peak shaving and photovoltaic curtailment and b) additional efforts in terms of increased operation
costs and round-trip efficiency for the district to remain self-sufficient.

Imposing transformer limitations during the centralized design of the district scenarios allowed

solutions to be identified and the infeasibilities at the transformer to be overcome (Figure 5.17). The

most economic solution involved installing a small district battery (size between 10 and 50 kWh)

and curtailing remaining surplus electricity. The PV curtailment for the scenario with a renovated

building stock was less than 10%, whereas the gas-based system required less than 5%. In contrast,

25% of all PV power was curtailed in the baseline scenario. Given that the curtailed electricity

cannot be sold at feed-in price to the grid, the OPEX increased (Figure 5.17b). Regardless of the

energy system, the cost increase was 600 CHF/kWyr/yr of capacity shortage at the transformer.

This is a benchmark price for the reinforcement the system or for additional investments, which

make a better use of the curtailed electricity. As electricity was curtailed in all analyzed systems,

the round-tip efficiency needed to be increased to allow the system to remain self-sufficient. The

baseline scenario required an ideal storage system to reach SS, whereas refurbishing the building
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stock led to a more realistic required round-trip efficiency of 0.85 (Figure 5.17b). The PVC was the

most economic solution. However, once the PV panels are purchased, curtailing the electricity or

using it within the district has the same outcome. For example, the electricity can be used to power

already installed heat pumps in reverse mode to supply cooling demand in summer. Since summer

is when most solar peaks occur, the PVC decreased during this time by 10% (Figure 5.17a). As cooling

must also be supplied during hours that are feasible at the transformer, the cost increase of this

solution compared to the baseline scenario, without cooling is 800CHF/kWyr/yr(Figure 5.17b).

5.4 Conclusion

The aims of this chapter were two-fold: demonstrating the benefit of a strategic community-based

design of distributed district energy systems and analyzing the grid-aware integration of solar energy

in these renewable energy hubs at the district scale. To address the first of these aims, the proposed

centralized design strategy was applied to a MOO framework of a typical central European residential

district in Switzerland; the results were then compared with those obtained using a decentralized

strategy, which focuses on the optimal design and operation of single buildings. The findings of a

detailed analysis of the results are summarized below.

Objective The centralized strategy led to only non-dominated solutions on the Pareto frontier and

outperformed the decentralized strategy in each scenario. This improvement was especially

apparent in low-investment scenarios; Because the buildings become more independent

from the community in high-investment scenarios, their results were more similar. To better

compare these strategies no centralized units were considered, such as a combined heat and

power plant, which led to the same unit investments in high-CAPEX and low-OPEX scenarios.

Unit selection and sizing The renewable energy hub with the lowest CAPEX was identical using

both design strategies and was based on natural gas boilers. A similar approach was taken

in both design strategies to reduce the OPEX of this system, i.e., switching from natural gas

boilers to heat pumps. However, the centralized strategy allowed a better order of investment

to be found: to achieve a 30% reduction in OPEX, the decentralized method required a 180%

increase in CAPEX, whereas the centralized method required only a 5% increase in CAPEX.

Moreover, the optimal sizing of units within the renewable energy hub was vastly improved by

strategically sizing and placing the PV panels. Other equipment, such as heat pumps, electrical

heaters, or distributed storage systems, could then be sized according to the computationally

less-intensive decentralized optimization strategy.

Operation The centralized optimization of the operation led to an improved utilization of generated

electricity in the district. Electricity pooling allowed for higher re-imports of electricity in all

scenarios. For the same TOTEX, the centralized system led to a greater electrification of the

system, increasing the PVP by 40% while reducing the total GWP by 20%.
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5.4. Conclusion

The proposed method of analyzing grid-aware solar energy integration in renewable energy hubs at

the district scale contributes to the state–of–the–art in district energy modeling, as entire low–voltage

grids can be considered in a deterministic approach that includes the MOO of the thermal and

electricity systems. Furthermore, the proposed centralized approach allows the consideration of

centralized and distributed energy units in the district. Additionally, special focus was given here

to highlight the needs and limitations of PV panel integration. The main findings are summarized

below.

Placement strategy of PV panels The centralized strategy prioritized the largest, south-oriented

surfaces in the district and filled the entire roof with PV panels, even if less optimal surfaces

were present on the same roof. Horizontal roofs were then filled. The optimal surfaces were

then chosen according to their solar potential: west, east, and finally north. South-facing

facades were preferred to north-facing roofs.

Economic feasibility The price of PV panels per unit of generated electricity increased linearly as

available surfaces in the district were filled. Less optimal surfaces were more costly than more

optimal surfaces, such as south-oriented roofs. However, with the centralized, coordinated

investment and operation strategy, PV panel installations were economically feasible for a

wide range of tariffs, starting as low as 10 and 3 ct/kWh and 0 and 12.5 ct/kWh for feed-in

and demand prices, respectively. This range was extended with respect to the decentralized

strategy. At current tariffs, 93% of all surfaces were economically feasible, including all roof

surfaces and almost all facades.

Achieving self-sufficiency and carbon neutrality PV panel integration can provide a route for the

district to become carbon-neutral or self-sufficient. According to the presented results, both

needs can be satisfied within the bounds of economic feasibility. Meeting SS using only PV

panel installations requires the installation of storage systems. As the round-trip efficiency

of the storage system increased from 45% to 100%, the required PV coverage decreased from

93% to 37%. Without storage systems, SS saturated at 45%. At this point, the SC was 27%.

To achieve carbon neutrality, 73% of surfaces were covered with PV panels. This point was

identified including a life cycle assessment of the equipment and hourly electricity grid-mix

values from the year 2019.

The role of renovation Renovating the building stock drastically reduced the electricity demand,

thereby decreasing the PV panel requirements and decreasing the economic bound by 10%

to 84% (0.88 Apv / AER A). Furthermore, the lowest possible round-trip efficiency required to

meet SS within economic bounds decreased from 45% to 25%. District SS was reached by

covering 25% to 84% of available surfaces with PV panels as the round-trip efficiency was

decreased from 100% to 25%. Further, refurbishing the district allowed for a 55% reduction in

the PV requirements to meet carbon neutrality (i.e., 0.35 Apv / AER A).

Technical feasibility The feasible integration of self-sufficient renewable energy hubs using the

superior network as a storage system with a round-trip efficiency of 70% were then analyzed.
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Additional the the baseline scenario, three different district scenarios were considered: a

scenario with refurbished building stock, a system with additional cogeneration, and a system

with an increased reliance on natural gas. The optimal, self-sufficient energy system for

each scenario was infeasible at the district transformer without additional efforts. Necessary

storage sizes for peak shaving ranged from 10 kWh to 40 kWh. Additionally, a PVC between

5% and 25% was required. These measures led to a cost increase of 600 CHF/kWyr/yr of

capacity shortage, which is a benchmark price for the reinforcement of the system or for other

investments.

Here, the only units considered as centralized units were daily storage systems. However,the pre-

sented analysis of the needs and limitations of solar integration demonstrate that seasonal storage

systems with round-trip efficiency of greater than 0.45 for the current building stock and greater

than 0.20 for a refurbished building stock would be required for the district to become self-sufficient.

Thus, future work should consider the integration of seasonal storage systems or the inclusion

of district heating and cooling network, which would allow centralized CHP units and thermal

energy exchange between buildings. The charging infrastructure of electric vehicles could also be

embedded in renewable energy hubs at the district scale. Additionally, the proposed approach also

allows the investigation of tariffs or fees, when re-importing electricity from the community. These

fees could be included in the economic analysis of investments at the district scale.
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Overview

# General summary of developed methods

# Key answers to research questions

# Limitations and future perspectives

Although conclusions, including limitations and possible extension of the work, have been made in

each chapter individually, the key findings and main perspectives are summarized in this chapter.

Chapter 1 "How are renewable energy hubs defined at building scale?" A mixed–integer linear pro-

gramming (MILP) approach was used to define renewable energy hubs at the building scale. Energy

carriers considered to satisfy the demand for space heating, domestic hot water, and electricity

included solar irradiation, air, water, natural gas, and electricity. Air–water heat pumps, gas boilers,

photovoltaic (PV) panels, electrical heaters and combined heat and power (CHP) units in the form

of solid-oxide fuel cells were considered as conversion technologies. Electricity could be stored

in batteries, thermal energy in separate a tank for space heat and domestic hot water, and in the

building itself. The building was modeled according to the first-order dynamic building model

(1R1C), with the a possibility to include a smart heating strategy in which the building is preheated

in times of surplus electricity from renewable sources. Multi–objective optimization (MOO) was

implemented to search the decision space of the renewable energy hubs, considering the objectives

of minimizing operational expenses (OPEX), capital expenses (CAPEX), total expenses (TOTEX), and

global warming potential (GWP) of the building energy system (BES), which was used to define the

scope of the renewable energy hub at the building scale.

"What performance indicators should be used to describe renewable energy hubs?" Considering the

state–of–the–art in BES modeling, 32 key performance indicators (KPIs) were collected, including

controversial aspects, such as (i) appropriate system boundaries, (ii) resolution time, (iii) and the

environmental impact of the energy conversion and storage units. The analysis of the measures was

structured in two parts. In the first part, individual KPIs are investigated; in the second, an analysis

of the correlation of KPIs is performed.
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The analysis of KPIs in the context of the environmental impact provided three main findings.

First, constructing modern, decentralized systems requires an analysis of emissions associated with

construction, where these emissions can account >40% of the total GWP. This contrasts with the

GWP associated with constructing basic renewable energy hubs (e.g., not comprising PV panels

and batteries), which is often neglectable (<5% of the total GWP). Second, the grid mix has a great

impact on the optimal strategy of renewable energy hubs. The lower the imported emissions of the

electricity, the lower the incentives are to install independent, decentralized solutions, which rely

on renewable energies and storage systems but are high in constructional GWP. Third, the usage

of annual average values of the grid mix underestimates the GWP of renewable energy hubs by

approximately 10%. Therefore, the GWP should be calculated including the constructional foot

print of the energy system equipment and dynamic impact profiles of the grid.

Machine learning techniques, including principle component analysis and k-medoids clustering,

were then applied to identify the major trends, thus supporting multi–criteria decision making.

Several measures (e.g., OPEX) were identified to contribute more to the defined design of renewable

energy hubs than others (e.g., levelized cost of electricity). An examination of the correlation between

the identified KPI clarified that the performance of a renewable energy hub can be evaluated using

three indicators.

Chapter 2 "What is the impact of the orientation of PV panels on renewable energy hubs and the

grid?" Researchers in the field of BES optimization have mainly considered horizontal PV modules

and based purchasing decisions on global irradiation without shadowing effects. The influence of

including different panel orientations, both from the perspective of the individual building and

of the grid, was analyzed and used to provide a methodology for selecting which roofs should be

covered first. Incident solar irradiation was modeled by discretizing the skydome into 145 patches,

each containing information about the irradiation density in a given time horizon. This approach

was based on an anisotropic irradiation model that accounts for direct and diffuse irradiation. On

horizontal roofs, shadow casting among rows of PV modules was also taken into account. The results

confirmed the relevant influence of PV panels’ azimuth and tilt on the performance of the renewable

energy hub. Whereas south-oriented panels remains the preferred choice, west-oriented panels

better match the demand when compared with east-oriented panels. Apart from the direct benefits

for renewable energy hubs at the building scale, the interaction with the overlaying grid was also

analyzed. When combined with appropriate scheduling, rotating the panels 20° westwards can

reduce the peak power of the exchange between the renewable energy hub an the power grid by

50% while increasing the TOTEX by only 8.3%. Including a more detailed modeling of the PV energy

generation demonstrated that assuming horizontal surfaces can lead to inaccuracies of up to 20%

when calculating operating expenses and electricity generated, particularly for high levels of PV

penetration.
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Chapter 3 "What is the role and potential of facades in decentralized energy hubs?" To address

this question, the assessment of the solar irradiation on facades, including the shadow cast from

the surrounding buildings was assessed. The incoming solar irradiation was considered in two

aspects: generating electricity on facade-mounted PV modules and the assessinng solar heat gains.

The proposed approach was applied to a typical, central European, peri-urban district located in

Switzerland. The district was considered as a decentralized collection of renewable energy hubs at

the building scale. In the proposed approach, buildings interact with each other: 1) by contributing

to the overall electricity balance of the district, both consuming and generating electricity, and

2) by shading neighboring surfaces and roofs, thus influencing the actual potential for local solar

generation. The results indicated that the district could achieve carbon neutrality based on PV energy

alone, but that this requires covering all the available district’s rooftops and part of the district’s

facades with PV panels. Whereas facades are generally disregarded due to their lower generation

potential, facade-mounted PV panels can be economically convenient for a wide range of electricity

prices, including those currently used by the Swiss grid operators. Achieving self-sufficiency at in

the district is challenging, as it would require approximately 42% to 100% of all available surfaces

to be covered (including facades) as the round trip efficiency decreases from 100% to 50%. These

results underline the importance of storage for achieving self-sufficiency: even with 100% round trip

efficiency for the storage, the required ratio of area covered in PV modules to the energy reference

area (ERA) was Apv /AER A = 0.44. In this case, 16% of available facades in the district were needed to

be covered with PV modules. However, energy demand reduction through renovation would allow

self-sufficiency to be reached with only half of this PV and storage capacity.

Chapter 4 "What is the best method to overcome runtime issues when generating centralized energy

hub designs?" Two methods were considered to tackle the computational reduction for centralized

energy hubs at the district scale. The first one is a novel approach involving the time–series aggrega-

tion (TSA) of input data that evaluates the performance of the renewable energy hub rather than

the one of the clustering algorithm. Although this approach has been able to reduce computational

effort by 90% while diverting less than 2% from Pareto-optimal solutions, it is not suitable to tackle

large–scale problems. The second method involves the decomposition of the compact model for-

mulation into several smaller, connected problems. A literature review revealed the Dantzig–Wolfe

decomposition method as the most promising for this purpose. This decomposition method uses

one master problem on the network level and several sub problems, one for each building energy

system. The method leverages on the concept of duality, which communicates the centralized

design strategy from the master problem to the sub problems. This approach is as highly scalable,

robust to integer decisions in the sub problems, and able to track interactions among the distributed

energy hubs in the district. An additional contribution to the state–of–the–art is the implementation

of MOO, which so allowed an improvement in the initialization of the decomposition algorithm.

Validating the decomposed formulation against the compact formulation showed an error of less

than 0.02% and identical unit decisions.
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Chapter 5 "What are the potential and limitations of centralized renewable energy hubs at the

district scale?" To answer this research question, the decomposition method developed and validated

in Chapter 4 was applied to the same peri-urban district investigated in Chapter 3, thus allowing

a direct comparison between the centralized and decentralized district design strategies. In all

scenarios along the Pareto frontier, the centralized strategy outperformed the decentralized one.

The coordinated investment strategy in low-CAPEX scenarios and the improved interaction among

buildings were especially apparent. For the same TOTEX, the centralized system led to a greater

electrification of the system, increasing the PV penetration by 40% while reducing the total GWP by

20%. Unlike in the decentralized strategy, where only optimal surfaces were selected (see Chapter

3), the centralized approach instead tended to select entire roofs to be covered, regardless of the

requirements of that specific building, thereby better utilizing the district’s surface resources and

reducing the CAPEX per building overall. As a result, the economic feasibility range was expanded

for PV installations for the renewable energy hub at the district scale. The round-trip efficiency,

required to achieve self-sufficiency must also be considered; using the centralized approach, the

coordinated operation in the district allows this efficiency to be 25%, whereas the decentralized

approached required a minimum round-trip efficiency of 45%.

Furthermore, considering renewable energy hubs at the district scale allows centralized units and

constraints to be included in the approach. By considering the local grid transformer limitations,

it was shown that further efforts are required to include a high share of renewable energies. To

reach electrical self-sufficiency, the economically best solution involves installing central storage

systems for peak shaving and between 5% and 25% curtailment of the PV electricity. This solution

requires an improved round-trip efficiency to the district to remain self-sufficient. The only feasible

solution that also had the the potential to be carbon neutral required renovating the building stock

and increasing the round-trip efficiency from 70% to 85%.

Limitations and future perspectives

In the introduction, future perspectives about the goal of PV deployments using Switzerland as an

example were stated, and questions on the impact of these goals on building energy systems were

raised. These questions were then addressed through the proposal and application of an analysis

method. In Chapter 5, PV panel integration requirements were demonstrated for different district

scenarios.

Comparing these results with the goals set by the Swiss Federal Office of Energy (SFOE; [11]) and the

Association of Swiss Solar Energy Professionals (Swisssolar; [12]) demonstrated that the goal stipu-

lated by the SFOE is not sufficient reach self-sufficiency or carbon neutrality in the building sector,

even if the entire building stock is renovated (Figure 5.18). However, combining Swisssolar’s goal with

refurbishing the building stock, would allow both principles; however, reaching carbon neutrality
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Figure 5.18 – Impact of the Swiss goals for 2050 for PV deployment. Goals according to Swiss Federal
Office of Energy (SFOE) [11] and Swisssolar, the Swiss Solar Energy Professionals Association [12].
These goals involve an exploited capacity of 30% and 70%, respectively.

would require a reduction in the natural gas demand of building energy systems (Figure 5.18).

In the presented results, renewable energy sources were optimally integrated based on the concept

of renewable energy hubs at the district scale. This process demonstrated, that a high share of

renewable energy sources are economically feasible but not necessary technically feasible. However,

the integration of renewable energies can be further improved. The developed method allows

the consideration of thermal networks in the district. In this case, central CHP units and thermal

exchanges among the buildings enhance further exploration of the renewable energy hub at the

district scale. Further, an analysis of storage requirements demonstrated that seasonal storage

should be considered, which can be also integrated in proposed approach.

The developed method was based on the typical building categories detailed by the national standard

norm SIA [31]. However, the case study only considered a residential peri-urban area. This method

should be applied to more diverese city districts, including those containing a higher share of

industrial, public, or office buildings, as such an application might reveal interesting correlations

and synergies among the diverse prosumers in the district. Analyzing more diverse energy prosumers

would also allow renewable energy hubs to be defined at the national or regional scale, with typical

renewable energy hubs at the district scale as a collection of sub systems.

In the future, extreme weather events are likely to increase and the average temperature is expected

to increase [43]. This aspect could be reflected in the definition of typical time periods; here, they

were defined based on one typical year, although the project horizon was on the magnitude of

multiple decades. The ambient weather impacts the thermal demand and cooling demand is
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expected to gain importance. Additionally, charging of electric vehicles will become a challenge that

can be investigated in district energy systems.
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Table A.1 – Global warming potential (GWP) and renewable energy share (RES) impact factors related
to the grid, yearly average values of the profiles derived from the method provided by Kantor et al.
[33].

GWP RES ref.

electricity mix, Switzerland+ 0.134 kgCO2/kWh 0.42 [33]

electricity mix, France+ 0.072 kgCO2/kWh 0.20 [33]

electricity mix, Poland+ 0.933 kgCO2/kWh 0.13 [33]

electricity mix, Germany+ 0.508 kgCO2/kWh 0.40 [33]

natural gas † 0.214 kgCO2/kWh 0 [193]

heating oil† 0.322 kgCO2/kWh 0 [193]

thermal solar† 0.034kgCO2/kWh 1 [193]

electricity from photovoltaic (PV) panels? 0.043kgCO2/kWh 1 [194]

+ Values associated to consumption, reference year: 2019
† Reference: useful heat. Further details in Table A.2
? Reference: final energy. Including life cycle assessment (LCA) of the tech-

nologies. Used only for calculating current state of the system.

Table A.2 – GWP factor g ng of transmission and combustion of natural gas in Switzerland [34]

combustion emissions gCO2-eq/m3 1837
transmission emission gCO2-eq/m3 484
heating value MJ/m3 39

GWP factor g ng gCO2-eq/kWh 214
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Table A.3 – Performance efficiencies for assessing current operating cost based on demand values.
Considered services: space heating (SH) and domestic hot water (DHW). Reference resource costs:
natural gas 10 ct, electricity from the grid 20 ct, electricity from PV panels 0ct, heating oil 11ct, solar
heat 0ct.

technology service ηmi n ηmax

gas boiler SH 0.8 0.85
oil boiler SH 0.8 0.85
district heating gas SH 0.93 0.97
electric boiler SH 0.93 0.97
air/water heat pump (HP) SH 2.8 3.7
ground/water HP SH 3.4 4.4
water/water HP SH 3.4 4.7
solar heat SH 1 1
electric boiler DHW 0.9 0.95
gas boiler DHW 0.8 0.85
oil boiler DHW 0.8 0.85
district heating gas DHW 0.93 0.97
air/water HP DHW 2.2 3
solar heat DHW 1 1
dhw storage and distribution DHW 0.55 0.75

Table A.4 – Parameter data for modeling photovoltaic panels.

description symbol value unit ref.

panel height hpv 1 m -

panel width w pv 1.6 m -

inverter efficiency ηi nv 0.97 - -

reference efficiency ηr e f ,pv 0.17 - [125]

temperature coefficient δpv 0.0012 K−1 [22]

absorption coefficient νpv 0.9 - [22]

module heat transfer coefficient U pv 29.1 W/m2K [22]

cost parameter i c1,pv 6556 CHF [125]

cost parameter i c2,pv 1978 CHF/kWp [125]

baremodule bpv 1.0 - [22]

lifetime l pv 20 yr [22]
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Table A.5 – Global warming potential to the construction of energy system technologies. Linearized
according to values taken from ecoinvent [34], fixed impact factor i g 1, continuous impact factor i g 2,
see Equation 1.20

technology [r] i g 1 [kgCO2
] i g 2 [kgCO2

/r]

batteries [kg] 0 7.8106

cogeneration unit [kWe] 460.55 0

electrical heater [kWth] 2.04 0.41

gas boiler [kWth] 253.27 11.62

heat pump [kWe] 0 138

photovoltaic panels [m2] 0 78.711

thermal storage [m3] 0 1204

Table A.6 – Economic parameters of energy system technologies according to Stadler [22], lifetime
lu , baremodule bu , fixed cost factor i c1, continuous cost factor i c2, see cost equations 1.16

technology [¦¦¦] i c1 [CHF] i c2 [CHF/¦] bu [-] lu [yr]

gas boiler [kWth] 3800 105 1.8 20

cogeneration [kWe] 15442 2100 1.8 20

heat pump [kWe] 5680 1240 1.8 20

electrical heater [kWth] 968 13 1 20

thermal storage SH [m3] 760 1040 1.87 20

thermal storage DHW [m3] 295 6100 1.68 20

batteries [kWh] 620 970 1.33 10

Table A.7 – Bounds of the unit sizes of the energy system technologies, see sizing equations 1.1.

technology ref. unit Fmin Fmax

heat pump kWe 1.5 1e5

gas boiler kWe 0.1 1e5

cogeneration kWe 0.7 2.5

battery kWh 0.1 100

thermal storage (SH) m3 0.1 10

thermal storage (DHW) m3 0.06 10

electrical heater kWth 0 100

165



A

Appendix A. (Chapter 1)

Table A.8 – Considered second law efficiency for different temperature levels of the heat pump.
Temperatures in °C.

T sour ce -20 -15 -10 -7 -2 2 7 10 15 20

T si nk = 35 0.0 0.464 0.458 0.458 0.469 0.462 0.435 0.416 0.370 0.307

T si nk = 45 0.0 0.445 0.463 0.464 0.460 0.446 0.439 0.436 0.430 0.396

T si nk = 55 0.0 0.0 0.0 0.421 0.423 0.416 0.439 0.436 0.412 0.395

Table A.9 – Considered part load limit for different temperature levels of the heat pump. Tempera-
tures in °C.

T sour ce -20 -15 -10 -7 -2 2 7 10 15 20

T si nk = 35 0.00 0.62 0.65 0.65 0.65 0.65 0.68 0.68 0.68 0.68

T si nk = 45 0.00 0.74 0.74 0.74 0.76 0.79 0.82 0.82 0.79 0.79

T si nk = 55 0.00 0.00 0.00 0.91 0.94 0.97 0.97 0.97 1.00 1.00

Table A.10 – Annual uncontrollable load E , annual demand for space heating QSH , annual demand
for domestic hot water Qdhw for different building categories and types according to national
standard norms [31] and [131]. All values in [kWh/m2].

standard existing

affiliation type E QSH Qdhw E QSH QD HW

multi-family home I 20 18 17.8 21.7 103.3 17.8

single-family home II 19.2 28.8 13.5 21.8 172.7 13.5

administration III 44.4 12.7 2.1 61.8 56.9 2.1

school IV 26.6 22 3.2 27.2 101.8 3.2

shop V 140.4 6.5 1.51 160.5 37.1 1.5

restaurant VI 85.2 23.7 65.5 109.5 117.2 65.5

assembly hall VII 45.1 20.2 4.5 57.6 101.3 4.5

hospital VIII 40.6 14.8 34 40.1 79 34

industry IX 52.9 18.2 1.8 74.5 82.4 1.8

warehouse X 21.6 16.9 0.9 20.3 76.3 0.9

gymnasium XI 24.6 17.8 37 20.7 78.8 37

swimming pool XII 39.9 27.9 104.7 47 114 105

hall XIII 22 18 0.9 19 85 0.9
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Table A.11 – Building details of the case study. Building category according to standard norm [131],
energy reference area (ERA) Aer a in [m2], current installed resources for SH and DHW, ground area
Ag r in [m2] , design supply/return temperature T s/r

0 in °C, overall heat transfer factor U in [W/(m2

K)], heat capacity factor C in [Wh/(m2 K)], solar gain factor φ. Source: databases of the national
building stock [44, 45]. Temperatures and heat transfer parameters [23].

ID date category type Aer a SHres DHWres Ag r T r
0 T s

0 C U φ

1 1974 existing I 1123 oil oil 225 50 65 120 2.09 0.078

2 1974 existing I 1098 oil oil 220 50 65 120 2.09 0.078

3 1981 existing I 1544 oil oil 386 50 65 120 1.52 0.048

4 1981 existing I 842 oil oil 211 50 65 120 1.52 0.048

5 1981 existing I 848 oil oil 212 50 65 120 1.52 0.048

6 1972 existing I 1531 oil oil 383 50 65 120 2.09 0.078

7 1935 existing I 333 oil oil 111 50 65 120 2.02 0.074

8 1995 existing I 719 gas gas 240 50 65 120 1.52 0.048

9 2013 standard I 609 hp solar 213 33.9 41.5 120 0.83 0.012

10 2014 standard I 598 gas solar 250 33.9 41.5 120 0.83 0.012

11 1940 existing II 1158 oil oil 386 50 65 120 1.52 0.048

12 1960 existing II 412 gas gas 206 50 65 120 2.02 0.074

13 2001 existing II 263 gas gas 131 50 65 120 1.52 0.048

14 2005 existing II 260 elec. elec. 87 50 65 120 1.52 0.048

15 1985 existing II 267 elec. elec. 89 50 65 120 1.52 0.048

16 1982 existing II 157 elec. elec. 78 50 65 120 1.52 0.048

17 1982 existing II 157 elec. elec. 79 50 65 120 1.52 0.048

18 1985 existing II 267 elec. elec. 89 50 65 120 1.52 0.048

19 1980 existing II 199 elec. elec. 66 50 65 120 2.09 0.078

20 1980 existing II 202 elec. elec. 67 50 65 120 2.09 0.078

21 1980 existing II 201 elec. elec. 67 50 65 120 2.09 0.078

22 1981 existing II 202 elec. elec. 67 50 65 120 1.52 0.048

23 2003 existing II 456 elec. elec. 152 50 65 120 1.52 0.048

24 1920 existing II 129 oil oil 65 50 65 120 1.81 0.063

25 2004 existing II 204 elec. elec. 68 50 65 120 1.52 0.048

26 1908 existing II 372 oil elec. 124 50 65 120 1.81 0.063

27 1910 existing II 251 gas gas 125 50 65 120 1.81 0.063

28 1900 existing II 580 gas gas 193 50 65 120 1.81 0.063

29 1955 existing II 422 oil oil 211 50 65 120 2.02 0.074

30 1977 existing II 183 gas gas 92 50 65 120 2.09 0.078

31 1930 existing II 210 oil oil 105 50 65 120 2.02 0.074

32 1936 existing II 228 gas gas 114 50 65 120 2.02 0.074

33 1991 existing II 328 gas gas 109 50 65 120 1.52 0.048

34 1999 existing II 491 hp hp 164 50 65 120 1.52 0.048

35 1994 existing II 271 oil oil 90 50 65 120 1.52 0.048

36 1790 existing II 310 gas gas 155 50 65 120 1.81 0.063

37 2013 standard II 519 elec. elec. 158 33.9 41.5 120 0.83 0.012

38 2007 standard II 294 elec. elec. 98 33.9 41.5 120 0.83 0.012

39 2009 standard II 527 elec. elec. 67 33.9 41.5 120 0.83 0.012

40 2012 standard II 435 elec. elec. 67 33.9 41.5 120 0.83 0.012
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Table A.12 – Weather data clustering results.

Period Frequency [d/yr] Period duration [h] Date
1 59 24 02/22
2 46 24 02/14
3 23 24 02/09
4 35 24 05/01
5 40 24 10/05
6 37 24 04/06
7 16 24 05/14
8 42 24 08/26
9 24 24 09/18
10 43 24 08/17
11 1 1 -
12 1 1 -
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Figure A.1 – Relevant building data for different typical days: a) global irradiation [48], b) a)external
temperature [48] c) uncontrollable load of one building according to [31], d) emission impact factors
of the grid [33].
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(a)

(b)

Figure A.2 – Contribution of each key performance indicator (KPI) a) to dimension 1 b) dimension 2
of the principal component analysis. For details about the abbreviations and the KPI , see Table 1.2.
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The limiting angle along the y-axis on the panel is decreasing from βdesg i n to zero degree (Figure

2.3). Equation B.1 gives the limiting angle for each position along the y-axis on the panel.

tan(β) = (1− y)
1

tan(βα) +
y

tan(γpv )

= (1− y)
1

cos(αpt−αpv )·tan(β) +
y

tan(γpv )

(B.1)

Figure B.1a visualises Equation B.1 for a south oriented panel and the design limiting angle of 20°.

For small tilt, below 5°, the limiting angle is dropping rapidly, while the other tilt angles show a nearly

linear trend.
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Figure B.1 – Influence of tilt angle orientation on partly shaded panel oriented azimuth 180°and
βdesi g n = 20°, tilt in 1°steps for γpv ∈ [1;5], in 5°steps for γpv ∈ [5;90]; Figure B.1a: Limiting angle
along y- axis (see Figure B.2) Figure B.1b: Annual irradiation density along y-axis.
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Figure B.2 – Footprint of PV panels on roof, visualization of changing limiting angle β along panel.

Table B.1 – Weather data clustering results including weekdays.

Period Frequency [d/yr] Period duration [h] Date Weekday
1 35 24 02/20 0
2 74 24 12/28 1
3 47 24 03/14 1
4 22 24 03/28 1
5 20 24 03/12 0
6 28 24 09/03 0
7 35 24 04/07 1
8 37 24 08/26 1
9 22 24 08/07 0
10 45 24 08/16 1
11 1 1 - -
12 1 1 - -

(a) (b)

Figure B.3 – Clustering results for external temperature, global irradiation, and weekdays [48] a)
classification of different periods over the year b) load duration curve.
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Figure B.4 – Relevant district data for different typical days: a) global irradiation [48], b) a)external
temperature [48] c) uncontrollable load at transformer, disaggregated from measurements by [87],d)
emission impact factors of the grid [33].
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Figure C.1 – Relevant district data for different typical days a) uncontrollable load at transformer.
Disaggregated from measurements by [87], d) global irradiation [195].
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Table C.1 – Building related data, building type and category according to [131], ERA Aer a in [m2],
building height in [m2], heat transfer factor U in [W/m2

er aK], heat capacity factor C in [Wh/m2
er aK],

design supply temperature T s
0 in [°C ], design return temperature T r

0 n [°C ].

Building type category period Aer a h U C T s
0 T r

0
1 II existing <1919 349 8 1.81 120 65 50
2 II existing <1919 346 11 1.81 120 65 50
3 I existing <1919 538 9 1.81 121 65 50
4 II existing 1971-1980 257 12 2.09 120 65 50
5 II existing 1919-1945 318 8 2.02 120 65 50
6 II existing 1946-1960 589 8 2.02 120 65 50
7 II existing 1971-1980 307 8 2.09 120 65 50
8 II existing 1981-1985 376 9 1.90 120 65 50
9 I existing 1981-1985 335 7 1.93 119 65 50
10 I existing 1981-1985 479 9 1.49 118 65 50
11 I existing <1919 1217 9 1.55 112 65 50
12 II existing 1991-1095 304 10 1.52 120 65 50
13 II existing <1919 1083 9 1.81 120 65 50
14 II existing 1986-1990 244 9 1.52 120 65 50
15 II existing <1919 718 8 1.81 120 65 50
16 I existing 1919-1945 428 5 1.69 106 65 50
17 I standard 2011-2015 664 11 0.83 121 41.5 33.9
18 I existing 1991-1095 893 11 1.52 121 65 50
19 II existing 1946-1960 251 9 2.02 120 65 50
20 II existing 1919-1945 293 10 2.02 120 65 50
21 I existing 1919-1945 310 12 2.02 121 65 50
22 I standard 2011-2015 700 10 0.83 121 41.5 33.9
23 II existing 1981-1985 564 9 1.64 120 65 50
24 I existing 1971-1980 1839 17 2.05 117 65 50
25 II existing 1981-1985 227 9 1.83 120 65 50
26 II existing 1981-1985 146 6 1.52 120 65 50
27 I existing 1981-1985 1436 15 1.52 121 65 50
28 I existing 1981-1985 1967 16 1.52 121 65 50
29 II existing 1971-1980 283 6 2.09 120 65 50
30 II existing 1996-2000 305 8 1.52 120 65 50
31 I existing 1971-1980 2069 16 2.09 121 65 50
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Table C.2 – Building related data, energy related values are annual. Electricity demand of building E B

in [kWh/m2
net ], space heating demand QSH in [kWh/m2

er a], demand for domestic hot water Qdhw in
[kWh/m2

net ], internal heat gains Q i nt in [kWh/m2], roof area Ar oo f in [m2], surface area As in [m2].

Building E B QSH Qdhw Q i nt Ar oo f As

1 37 110 19 32 227 349
2 35 115 19 27 198 297
3 32 114 25 32 324 420
4 109 131 19 27 140 309
5 20 135 19 27 201 239
6 12 140 19 27 294 311
7 44 132 19 32 219 317
8 86 121 19 27 218 336
9 30 123 25 28 229 317
10 28 90 25 32 290 329
11 61 99 25 32 711 637
12 31 86 19 32 147 311
13 4 122 19 27 475 613
14 57 80 19 32 196 326
15 17 117 19 27 537 537
16 7 119 25 28 392 166
17 69 36 25 32 294 472
18 48 94 25 32 327 527
19 37 126 19 27 162 291
20 18 127 19 32 163 288
21 18 128 25 28 143 316
22 39 39 25 32 266 395
23 26 107 19 27 220 331
24 40 140 25 32 469 1062
25 226 102 19 32 228 336
26 202 74 19 32 286 248
27 57 92 25 28 411 1169
28 53 95 25 32 414 1079
29 30 141 19 27 220 210
30 84 87 19 32 263 291
31 35 138 25 32 476 1638

Table C.3 – Available surface share for PV installations on facades and roofs. [82]

Facades Roofs γ≤ 10° Roofs γ> 10°
Single Family House 0.45 0.7 0.7
Multi Family House 0.60 0.6 · 0.7 0.7
MFH ≥ 1000 m2 roof 0.60 0.6 · 0.8 0.7
All other buildings 0.55 0.7 0.7
All other buildings ≥ 1000 m2 roof 0.55 0.8 0.7
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Figure D.1 – Details about detected typical days and outliers a)ambient temperature b) global
irradiation
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Figure E.1 – Resource exchanges at district level for the detected TOTEX optimum according to two
different optimization strategies. District with 31 buildings. a) Absolute resource exchange at district
level and b) relative difference between both design strategies.
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(a) decentralized design strategy (b) centralized design strategy

Figure E.2 – Resource exchange at transformer level for increasing investment cost. Renewable
energy hub without electricity storage systems.
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(a) typical summerday
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Figure E.3 – Electricity demand profile at the transformer for different typical days. Considered
scenario: same TOTEX ( = 17.5 CHF/m2) of both design strategies.
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Figure E.4 – Annual electricity demand profile at the transformer. Considered scenario: same TOTEX
(= 17.5 CHF/m2) of both design strategies.
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Figure E.5 – Annual generated electricity per installed area of PV panels.
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(b) refurbished building stock
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Figure E.6 – Economic analysis of PV panel installation following a centralized investment strategy
for different scenarios. PV investment per generated PV electricity E g en

pv and implicit revenues for
different feed-in and demand prices. Economic point: Investment in PV and connected revenues
are balanced. Point A: current tariffs (8 ct feed-in, 20 ct demand price). Point B: break-even point for
exemplary tariffs. Consideration of different district scenarios.
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Figure E.7 – Required PV panel installation for the district scenario considering a refurbished building
stock to achieve a) self-sufficiency, using the grid as battery for different round-trip efficiencies η,
and b) carbon neutrality. Point S: Self-sufficiency considering ideal storage with η = 100%. Related
emission intensity values based on the Swiss grid mix from 2019 [33].
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Figure E.8 – Required PV panel installation for the district including cogeneration to achieve a) self-
sufficiency, using the grid as battery for different round-trip efficiencies η, and b) carbon neutrality.
Point S: Self-sufficiency considering ideal storage with η = 100%. Related emission intensity values
based on the Swiss grid mix from 2019 [33].
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Figure E.9 – The influence of peak shaving on the optimal orientation of PV panels for the centralized
design strategy.
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