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ABSTRACT

The harmonic analysis of a musical composition is a fun-
damental step towards understanding its structure. Central
to this analysis is the labeling of segments of a piece with
chord symbols and local key information. In this work, we
propose a modular system for performing such a harmonic
analysis, incorporating spelled pitches (i.e., not treating en-
harmonically equivalent pitches as identical) and using a
very large vocabulary of 1540 chords (each with a root,
type, and inversion) and 70 keys (with a tonic and mode),
leading to a full harmonic characterization similar to Ro-
man numeral analysis. Our system’s modular design al-
lows each of its components to model an aspect of har-
mony at an appropriate level of granularity, and also aids
in both flexibility and interpretability. We show that our
system improves upon a state-of-the-art model for the task,
both on a previously available corpus consisting mostly of
pieces from the Classical and Romantic eras of Western
music, as well as on a much larger corpus spanning a wider
range from the 16th through the 20th centuries.

1. INTRODUCTION

The analysis of the harmonic content of a musical compo-
sition or performance is fundamental to the field of MIR.
It can take many forms, depending on the input format and
desired output representation and specificity, but typically
involves two basic steps: the segmentation of a musical
input, and the labeling of each segment with a harmonic
symbol from some vocabulary. The vocabulary is typically
either a key or a chord symbol, but more recent work has
begun to investigate a joint approach, identifying both.

A musical key can be defined by its tonic pitch and a
mode. In this work, like most previous work, we only
consider major and minor mode, but many others exist in
practice (see [1] for a recent discussion). Most work on
key detection, be it from audio [2–4] or some symbolic
format [5–8], only classifies each piece as having a single
key (i.e., its global key), disregarding any modulation to
different local keys that might occur. One reason for this
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is simply the lack of labelled datasets with specific local
key information, and the expertise required to produce (and
evaluate) such annotations. More recently, however, some
systems have addressed the problem of local key changes,
incorporating a segmentation step into the key detection
pipeline [9,10], or producing a continuous distribution over
local keys throughout the duration of a piece [11].

Chord detection (also called chord transcription) and
chord sequence prediction are very widely researched tasks
in MIR, though the vocabulary used can vary dramatically.
At its most basic, each chord in a vocabulary has a root
pitch and a chord type (major triad, minor triad, etc.).
Much existing work only has a limited chord vocabulary
of size 24 (12 semitone pitch classes and either major or
minor triads) [12, 13], often due again to the difficulty of
creating datasets with more specific chord types (and the
difficulty of inducing spelled pitches from MIDI or audio
input). More recently, some work has included common
additional triad types, such as diminished and augmented
triads [14], as well as various 7th chords, and further exten-
sions, like suspended or 9th chords [15, 16]. Additionally,
each chord can have an inversion—describing which of its
pitches is its bass note—the inclusion of which is also be-
coming more common [17].

In this work, we take as input a musical score, and la-
bel each segment with both a key and a chord symbol, in-
cluding a very large vocabulary of 12 different chord types
and inversions for each. As in standard Roman Numeral
Analysis (RNA; [18]), this allows each chord’s root pitch
to be interpreted relative to the corresponding key’s tonic
pitch (including any local key modulations). In fact, our
system’s output is nearly equivalent to a full RNA, lacking
only altered chordal tones such as suspensions, and pedal
tones, which we intend to include in future work. We also
use spelled pitches (where an A] is a different pitch from a
B[), which is still uncommon in existing work.

A few prior models have been proposed for the joint la-
belling of keys (including modulation) and chords. Sta-
tistical models have been used for the purpose [19–21],
though they use an enharmonic MIDI pitch representa-
tion (where A] and B[ are equivalent), a small vocabulary
of chord types, and no inversions. Structurally, however,
these models have somewhat inspired the design of our
system (though they use Markov models instead of neu-
ral networks), explicitly modelling chord and key changes
in a sequential fashion. More recently, deep learning mod-
els have also been proposed which use a large vocabulary



of chord types as well as inversions. In [22], a transformer
model is used, though it takes a piano-roll representation
as input, and therefore uses the more reduced MIDI pitch
representation rather than spelled pitch. This model is ex-
tended in [23] using the same input format, but now us-
ing spelled pitch output, though still using a reduced set
of pitch classes compared to ours. Finally, in [24], a con-
volutional network is proposed for the task. This model
uses the same pitch representation as ours, and roughly the
same chord vocabulary, so we use it for comparison.

These existing deep learning models consider sequen-
tial information either at the frame level (an eighth or 16th
note) [22, 24], or by grouping frames together into larger
blocks [23]. Our modular design is such that each compo-
nent models one specific aspect of the full harmonic analy-
sis task at the appropriate level, receiving only input that is
relevant to that aspect, and at the appropriate step length.
For example, the component which models chord progres-
sions sees only chord symbols as input, once per chord,
while the component that performs the chord segmenta-
tion sees individual notes as input. Our hypothesis is that
this design allows each component to better capture the
patterns relevant to the task at hand.

The modular design also gives a practical, benefit over
the single-model end-to-end design that is common in ex-
isting work. Its output is highly interpretable, which has
helped significantly in its development (we note a few spe-
cific instances of this in the paper). In particular, it enabled
the following development process: (1) locate mislabeled
segments in its output; (2) examine the outputs of each
component for that segment, comparing them to our intu-
ition about the analysis (this is easy because each compo-
nent corresponds to a well-defined aspect of the analysis);
and (3) integrate additional features into the corresponding
component, depending on our analysis.

2. PROPOSED MODEL

2.1 Vocabulary

We use a large vocabulary of chords and keys as they ap-
pear in scores, taking on a full characterization as used in
music theory [18]. Chord roots may be any pitch A–G,
double-flat to double-sharp (35 total), and we include 12
chord types: major, minor, augmented (each as a triad, or
with a major or a minor 7th), and diminished (as a triad, or
with a minor or diminished 7th). Each chord can be in any
inversion (3 for triads, 4 for tetrads), for a total of 1540 pos-
sible chords. Keys may be major or minor with the same
pitch range, for a total of 70 possible keys. Our model does
not output applied chords (e.g., secondary dominants like
V/V) directly. Rather, we treat them as brief, potentially
recursively embedded, key changes as in [25].

2.2 Overview

Our system is composed of 6 modules, each with a well-
defined input and output (see Figure 1). The system’s input
is a sequence of notesN ordered temporally by onset posi-
tion, where notes with equal onset position are ordered by

Figure 1. Overview of our fully integrated system. Each
component depends on the component directly below it,
and additional dependencies are indicated by arrows.

increasing pitch. The ith note in this sequence is denoted
by ni, and a note’s onset position is denoted by on(ni).
Specific implementation details (e.g., the precise encoding
of each note) are explained in Section 2.3.

The Chord Transition Model (CTM) takes this sequence
N and predicts whether each note is the first (temporally)
of a new chord. We denote cti as the ith output of the
CTM. Of these outputs, the first (ct0) is set to 1, and any
cti where on(ni) = on(ni−1) are set to 0. Thus, chord
transitions correspond with vertical slices in the musical
score.

The Chord Classification Model (CCM) takes a sub-
sequence of notes from N , and outputs a distribution over
all 1540 possible absolute chord symbols for it. We denote
the sub-sequence from the ith to the jth note as ni...j .

The Chord Sequence Model (CSM) takes a sequence of
relative chord symbols (whose roots are represented as an
interval above the tonic, not as an absolute pitch class),
and outputs a distribution over the next relative chord in
the sequence. We denote the ithe relative chord symbol
in this sequence as c_reli. At inference time, it’s output
always assumes that the key will not change on the next
chord, and is unused in the case of a key change.

The Key Transition Model (KTM) takes as input a se-
quence of relative chord symbols starting from the begin-
ning of the piece (c_rel0...i, i > 1, denoting the first i+ 1
relative chord symbols), and predicts whether chord c_reli
is in a different key than c_reli−1. At inference time,
c_reli is initially represented relative to the key tonic of
c_reli−1. Then, in the case of a key change, the hidden
state of the KTM (if there is one) is reverted to its previous
state, and given c_reli in the new key.

The Key Sequence Model (KSM) takes as input the same
sequence of relative chord symbols as the KTM (c_rel0...i,
i > 1), and outputs a probability distribution over a new
key for c_reli, including both the mode (major or minor)
and a tonic pitch class (represented as an interval over the
previous key’s tonic pitch class). It’s output is only used
when there is a key change and ignored otherwise. Simi-
larly to the KTM, at inference time, c_reli is initially rep-



resented relative to the key tonic of c_reli−1. Then, after
the key change, the hidden state of the KSM (if there is
one) is reverted to its previous state, and given the updated
c_reli in the new key.

Finally, the Initial Chord Model (ICM) outputs a prior
probability distribution over the first relative chord of a
piece c_rel0 given a mode, and is used in combination
with the first absolute chord symbol to generate a distri-
bution over possible first absolute keys for the annotation.
For example, the ICM may determine that the c_rel0 in
major mode has a 0.4 probability of being a I chord. It is
used as a replacement for the CSM for the first chord.

2.3 Implementation

Due to the modular design of our system, the precise im-
plementation of each model (including the representations
used therein) is very flexible. For example, although the
CTM is well-defined to take as input a sequence of notes
in a particular order, the precise way in which each note
is represented is left as an implementation detail, and can
easily be changed without affecting the other models. Such
details, as well as the design of each model individually,
are described in this section.

As input to the CTM, each note ni is represented as the
concatenation of one-hot vectors (or scalars) encoding cer-
tain musical features of each note: the note’s pitch class
A–G, double-flat to double-sharp (one-hot of length 35);
the note’s octave 0–11, where C4 is in octave 6 to allow
for negative octaves (one-hot of length 12); the note’s nor-
malized MIDI pitch height (0–1), where C-1 (MIDI note 0)
= 0 and G9 (MIDI note 127) = 1 (scalar); the metrical lev-
els of the note’s onset and offset positions (downbeat, beat,
sub-beat, or other; two one-hots of length 4); the duration
of the note, where a whole note has duration 1 (scalar);
and the duration from the note’s onset to that of the previ-
ous note and that of the following note, again measured in
whole notes (two scalars).

Our CTM is a neural network composed of a single
feed-forward layer followed by a Bi-LSTM (each using
ReLU activation). At each step, the LSTM’s outputs are
concatenated together and fed into two additional feed-
forward layers (the first with ReLU activation and the last
with sigmoid activation to produce a probability value).

As input to the CCM, each note vector is embedded into
its musical context in two ways. First, we append to this
sub-sequence the vectors of the two notes on each side of
this sub-sequence (or vectors of zeros if this goes beyond
the range of the piece). Second, we append to each note
vector more musical features related to the note’s context:
onset and offset position relative to the chord window on a
linear scale where the beginning of the chord is at position
0 and the end of the chord is at position 1 (2 scalars); du-
ration as a proportion of the chord’s duration (scalar); rel-
ative normalized pitch, where instead of C-1 being 0 and
G9 being 1, the minimum pitch of a note in the window is
0 and the maximum pitch is 1 (scalar); and relative octave,
where the octave of the lowest note in the window is sub-
tracted from each note’s octave before embedding (one-hot

of length 12). The relative pitch and octave are examples of
where our system’s interpretability helped in its design: we
noticed that the CCM was struggling to output the correct
inversions when a passage doesn’t contain any notes in a
low octave (it had learned to depend on bass notes for this),
and therefore added the relative features, which helped in
that regard.

Its output is a distribution over all 1540 absolute chord
symbols. It would be possible to treat each aspect of a
chord symbol (root, type, and inversion) as a separate fea-
ture of each chord, and have the CCM output one dis-
tribution over each, as has been done in previous work
(e.g., [24, 26]). However, while this approach makes sense
in terms of reducing the size of a model, it doesn’t make
sense conceptually: there may be a situation in which the
model sees a C in the bass, and thinks the chord is either
a C major triad in root position or an A minor 7th chord
in 1st inversion. In cases such as this, it is important that
every feature of a chord is considered holistically as a unit,
rather than potentially classifying the chord as a C minor
7th chord in 1st inversion.

Our CCM is a neural network composed of a single
feed-forward layer followed by a Bi-LSTM (each using a
ReLU activation). The outputs from the last LSTM state
in each direction are concatenated together and fed into a
single feed-forward layer with softmax activation.

The CSM, KTM, and KSM all take the same input,
where each relative chord is encoded as a vector of con-
catenated musical features: the root pitch class and bass
note pitch class, each represented as the interval above
the key tonic on the line of fifths (-14–14; two one-hots
of length 29); the chord type (one-hot of length 12); the
inversion (one-hot of length 4); the metrical levels of the
chord’s onset and offset positions (same as for the note en-
coding; two one-hots of length 4); the duration of the chord
in whole notes (scalar); and a flag indicating the current
key’s mode (1 for major; 0 for minor). At every chord at
which there is a key change, we also append a key change
vector, which encodes the following: the tonic of the new
key, represented as the interval above the previous key’s
tonic on the line of fifths (-14–14; one-hot of length 29);
the mode (major or minor; one-hot of length 2); and a flag
indicating that this is a key change (binary 1). For each
chord at which the key does not change, this key change
vector is filled with all 0s.

The CSM’s output is a distribution over chord symbols
consisting of a root (-14–14 on the line of fifths from the
key tonic), chord type, and inversion (1276 chords in to-
tal). Some of these chords may correspond with a valid
absolute chord symbol (e.g., one with relative root -14 in
the key of B[[). These are simply ignored. Likewise, some
valid chords are not covered by the CSM’s range (e.g.,
a B] chord in the key of B[[, which is exceedingly un-
likely [27]). The prior for these chords is 0. Similarly, the
KSM’s output is a distribution over key symbols consist-
ing of a tonic (-14–14 on the line of fifths from the previ-
ous key tonic) and a mode (58 keys in total). Invalid (e.g.,
14 fifths below B[[ major) and uncovered (e.g., 20 fifths



above B[[ major) key changes are treated in the same way.
Each of these models has a single feed-forward layer,

followed by an LSTM whose last output is sent through
another feed-forward layer (all with ReLU activations). A
final feed-forward layer is then used, with softmax activa-
tion in the CSM and KSM, and sigmoid in the KTM.

Since there can be many reasonable choices for the next
chord in a sequence, we noticed when inspecting the sys-
tem’s outputs that the CSM’s distribution was more flat
than desired. Therefore, we compare two additional ver-
sions of it: an inversion invariant CSM-I, which outputs a
distribution over relative roots and chord types (348 chords
in total), in which case probabilities are shared between
different inversions of the same chord; and a triad-reduced
CSM-T, which is includes the CSM-I’s inversion invari-
ance, and further shares weights between chords built upon
the same triad (e.g., a V7, Vmaj7, and V all share outputs).

The ICM is a much simpler model than the rest, and we
simply count the proportion of each chord—grouped by
chord type, inversion, and relative root—as the first chord
of a piece in our training data. We then apply additive
smoothing to this estimate, adding 1

1540 (where 1540 is the
number of chords in our vocabulary) to each count.

2.4 Inference

Given the interactions between the modules of our system,
the inference procedure required to use it to label a score is
not trivial. However, since each component can be treated
as a black box, once such a process is defined, we can flex-
ibly use different modules interchangeably. This section
gives an overview of the inference process, which, at its
core, is the process of finding the most probable labeling
of the musical score according to our system. We explore
the search space iteratively using beam search decoding.

First, we run the CTM on the full input sequence N ,
generating cti for each note ni. Next, we find all valid
chord windows for the piece. For a chord window from
ni...j to be valid, six conditions must be satisfied: (1) cti ≥
ctmin, where ctmin is a minimum threshold for a chord
change; (2) ctj+1 ≥ ctmin (unless j = |N |−1); (3) ctk ≤
ctmax for all i < k ≤ j (ctmax is a maximum threshold for
allowing a note to not be a chord change); (4) the duration
of the resulting chord window (i.e., on(nj+1) − on(ni))
must be less than a maximum value C_durmax; (5) a valid
chord window exists which ends at ni−1 (unless i = 0);
and (6) a valid chord window exists which begins at nj+1

(unless j = |N | − 1). (1)–(3) together ensure that the
CTM is not ignored; (4) ensures that the resulting chord
labeling is well-formed (extremely long passages with no
chord changes are quite rare); and (5) and (6) ensure that
each chord window can be part of a complete labeling of
the musical score.

Having found all possible chord windows, the search
process involves finding the most probable complete and
labeled path through the score. A complete path C is a
sequence of consecutive chord windows c0...|C|−1, where
cm = nim...jm (i0 = 0, j|C|−1 = |N | − 1, and ∀m, im =
jm−1 + 1). A labeled path is a complete path where each

chord window cm therein is labeled by assigning it a chord
(Ch(cm)) and a key (K(cm)), with the constraint that no
chords are repeated (i.e., ∀m,Ch(cm) 6= Ch(cm+1)).

One exception to the above constraints is the merge
rule, which allows the CCM to override the CTM’s ctmin
threshold in some cases. It is legal for two consecutive
chord windows cm and cm+1 to be merged if: (1) the re-
sulting chord window’s duration (on(njm+1+1)−on(nim))
is still less than C_durmax; and (2) Ch(cm) = Ch(cm+1)
(which only occurs if the CCM assigns each a high prob-
ability). The merge step can be repeated as many times as
possible as long as the two constraints are still met. This
rule is another example of the interpretability of our system
helping in its development: we noticed that the CTM was
over-segmenting the input, and the thresholds were diffi-
cult to tune. However, the CCM’s outputs were relatively
accurate. Thus, we created the merge rule, which allows
us to tune the CTM thresholds to over-transition, letting
the more accurate CCM merge windows later.

Given a complete labeled path through a score, its prob-
ability is the product of the probabilities of each chord win-
dow cm, where an individual chord window’s probability is
calculated as a product of its CTM probability Pct(cm), its
CCM probability Pcc(cm), its KTM probability Pkt(cm),
and its sequence probability Pseq(cm), as shown in Eqn. 1.
The exponent |cm| is used so that each path’s probability
is a product of an equal number of probabilities, no mat-
ter the number of chord windows (without this exponent, a
path with fewer, longer windows would be preferred).

P (cm) = Pct(cm)
(
Pcc(cm)Pkt(cm)Pseq(cm)

)|cm| (1)

A window’s CTM probability is calculated as in Eqn. 2
(ctjm+1 is ignored if m = |C| − 1).

Pct(cm) = ctimctjm+1

jm∏
k=im+1

(1− ctk) (2)

A window’s CCM probability is the CCM prior for the
range nim...jm for the assigned chord Ch(cm). A win-
dow’s KTM probability is likewise taken directly from the
KTM: it is either the KTM’s output at that window (if
K(cm) 6= K(cm−1)), or one minus the KTM’s output (in
all other cases). The first KTM probability (Pkt(c0)) is al-
ways 1, since the key will never change on the first chord.

A window’s sequence probability (the probability of a
chord and key given the previous) is taken from the ICM
(Pic(cm)) for m = 0, the KSM (Pks(cm)) if there is a key
change, or the CSM (Pcs(cm)) otherwise, as shown in Eqn.
3. Initially, the system predicted far too many key changes,
and inspecting its output, made the cause clear: since the
KSM outputs a distribution over 70 keys, while the ICM
and CSM output distributions over more than 1000 chords,
the KSM’s outputs will naturally be greater. Thus, we in-
troduced a parameter α, ensuring that the values output by
each model lie in a similar range.

Pseq(cm) =


Pic(cm) if m = 0

Pks(cm)α if K(cm) 6= K(cm−1)

Pcs(cm) otherwise

(3)



3. EXPERIMENTS

3.1 Setup

We use two different corpora: (1) an internal corpus of har-
monic annotations, including the publicly available Mozart
[28] and ABC [29] corpora, and additional pieces which
are private, but pending future release; and (2) functional-
harmony (F-H) [24], consisting of a combination of prior
existing corpora: TAVERN [30], BPS-FH [22], and Ro-
man Text [31]. The internal corpus contains a much
wider range of composers: 742 pieces from the 16th
to the 20th centuries, with J.S. Bach, Couperin, Grieg,
Beethoven, Schütz, Mozart, Corelli, Chopin, Kozeluh,
Monteverdi, Mendelssohn, and Schubert all having more
than 20 pieces, and 99 by other composers. F-H is smaller:
201 pieces in total, with 119 by Beethoven, 29 by Schubert,
24 by J.S. Bach, and 19 by other composers. We treat the
two corpora separately, and in each, randomly take 80%
for training, and 10% each for testing and validation.

For evaluation, we use a type of Chord Symbol Recall
(CSR) [32]: for each piece, the proportion of time dur-
ing which the estimated label matches the ground truth la-
bel. Given our large vocabulary, we apply CSR at vari-
ous levels of specificity, similar to [24] 1 . We report CSR
with regards to the chord root, chord root+type, chord
root+type+inversion (the full chord), key (ignoring the
chord), and full (including chord and key). We intend to
investigate more advanced metrics (e.g., where some label
substitutions are penalized less than others) in future work.

All components of our system were trained with Adam
[33] and a learning rate of 0.001. A scheduler cut the learn-
ing rate in half when the validation loss didn’t improve for
10 epochs, and training was stopped when the validation
loss failed to improve for 20 epochs. When training the
CCM, we transposed each input and target by -7–7 fifths
(a similar data augmentation technique was used by [24]).

For this study, we did not perform a large grid search
over deep model structures (e.g., more feed-forward lay-
ers). Rather, we grid searched over layer sizes of 64, 128,
and 256 for each of the feed-forward and LSTM layers of
each model. The system-wide inference parameters were
set using a grid search on the validation set of each corpus,
resulting in ctmax and ctmin of 0.3 and 0.4 for the F-H cor-
pus, and 0.35 and 0.55 for the internal corpus; C_durmax
of 10 for both corpora (this parameter has little effect); and
α of 30 for the F-H corpus and 50 for internal corpus. α has
by far the largest effect of any parameter, where low values
result in much more frequent key changes. We leave an in-
vestigation of the performance of each module for future
work, concentrating here on overall performance.

3.2 Results

We compare versions of our system using the standard
CSM, the inversion invariant CSM-I, and the triad-reduced
CSM-T. As a baseline, we use the pre-trained model of
[24], computing new results on our internal corpus, and

1 In the metrics reported in [24], applied roots are not considered key
changes as they are here, but instead included in the “Degree” metric.

Model Root +Type +Inv. Key Full

In
te

rn
al

[24] 57.0 47.7 37.6 64.9 29.0
CSM 76.6 68.8 62.1 66.9 44.7
CSM-I 76.5 68.7 62.0 69.0 46.3
CSM-T 77.6 70.0 62.8 70.2 46.9

F-
H

[24] 2 — — — — 42.8
CSM 73.3 65.4 55.6 60.8 40.5
CSM-I 75.0 66.8 56.9 67.0 44.6
CSM-T 75.4 67.8 58.1 69.4 45.9

Table 1. The results of our system compared to the model
of [24] on our internal corpus of annotations (top), and the
functional-harmony meta-corpus used in [24] (bottom).

using the full CSR from [24] for the F-H corpus (the
component-wise metrics are calculated differently). The
results can be found in Table 1. Here, we can see that our
modular system outperforms the baseline on both the in-
ternal corpus and, more notably, on the F-H corpus.

There seems to be a systematic difference between the
annotations of the two corpora, given the relatively poor
performance of the pre-trained baseline [24] on the internal
corpus. We would expect this to be due to the wider range
of styles, but while this does appear to play some role, the
baseline actually performs worse (22.9 overall) on a subset
of the internal corpus’ test set including only Beethoven
pieces. We plan to more thoroughly investigate differences
between the annotations of the two corpora in future work.

Interestingly, the baseline performs relatively well on
key detection (even on our internal corpus), which points
to one downside of our modular approach: the key depends
on outputs from the other components, adding noise to the
process, which isn’t a factor for the end-to-end baseline.

For our system, we see that the three versions per-
form similarly on the internal corpus, but the two invariant
CSMs outperform the standard one—significantly on the
F-H corpus. Interestingly, this difference mainly shows
in a more accurate key labelling, rather than chord. In-
specting the results, we see that the standard CSM usually
assigns a low probability to the more rare chords like mi-
nor 7th chords or inverted chords. This makes the model
prefer key changes in these cases, which avoid using the
CSM’s output distribution. The CSM-I and CSM-T avoid
this problem due to their invariances. In future work, we
intend to investigate alternate reductions where, for exam-
ple, dominant 7th chords (which are quite common) are not
reduced to major in the CSM-T.

Figure 3 shows the CSM-I’s chord classification perfor-
mance on the internal corpus as a confusion matrix. It per-
forms best on major triads, minor triads, and dominant 7th
chords, which comprise 44%, 22%, and 18% of the cor-
pus, respectively. For the less common chord types, when
the root is correct, the system often misclassifies the chord

2 The values in [24] are calculated slightly differently: applied chords
are included in Root (rather than Key here), and Type and Inversion refer
to only those features of a chord (in [24]), rather than in combination with
those to their left. “Full” is comparable.



Figure 2. The CSM-I system’s output (below) for bars 3–5 of Grieg’s Notturno, Op. 54, No. 4, given the annotations
(above). Green indicates a correct label, red is incorrect, and blue is partially correct. Inversions are indicated by the
figured bass after each colon.

Figure 3. A confusion matrix of the CSM-I system’s chord
classifications on the internal corpus. “Incorrect Inv.” in-
dicates the proportion of otherwise correct labels with an
incorrect inversion.

type as the corresponding triad (e.g., MM7 chords are clas-
sified as major triads). In the rightmost column, we see that
if the system gets the correct root and type, the inversion is
usually correct, with the largest proportion of errors occur-
ring for diminished and half-diminished 7th chords.

Figure 4 shows CSR split by mode and chord type,
where it performs slightly better in minor keys, particu-
larly for minor triads and diminished triads and 7th chords.
Overall, it achieves 44.6 CSR in minor keys but only 40.9
in major. Chord inversions also have a large effect on per-
formance, with our system classifying 71.5% of root posi-
tion chords correctly, but only 54.4%, 38.3%, and 40.5% of
1st, 2nd, and 3rd inversion chords correctly, respectively.
This makes sense, because root position chords make up
38% of the corpus, while 1st, 2nd, and 3rd inversion chords
comprise 25.4%, 8.8%, and 3.7% respectively.

An example output of the CSM-I is shown in Figure 2,
for bars 3–5 of Grieg’s Notturno, Op. 54, No. 4. The anno-
tations (in C major) are shown above the staff, and outputs
are below it. The outputs are correct in bar 3, finding the
applied dominant V2/IV as a key change to F. In bar 4,

Figure 4. The CSM-I system’s full CSR (including key
and chord) per mode and chord type on the internal corpus.

it incorrectly classifies the augmented A[ triad (a [VI, un-
common prior to the late Romantic era) as a C major triad,
ignoring the A[. It over-segments bar 5, finding an inverted
A minor triad (ignoring the F]) followed by an F] dimin-
ished triad (since it has missed the C from the downbeat),
and modulates to G major (essentially, it has classified this
chord as a ]viio/V, which is possible, but incorrect here).

4. CONCLUSION

We have presented a modular system for the harmonic
analysis of musical scores. We showed how the system’s
modularity, in addition to the theoretical benefit of mod-
elling each aspect at the appropriate level, makes its output
interpretable, describing where this property helped in its
design. All code and models are available online. 3

In future work, we will leverage the system’s modular-
ity further. We intend to apply the system to MIDI and au-
dio input, in which case we would only need to retrain the
CTM and CCM with new data, while the other components
can remain the same, or be supplemented with additional
training data from the MIDI and audio files. We also in-
tend to design a human-in-the-loop annotation tool using
this system, where expert annotators can first get the sys-
tem’s output, change some labels as they see fit, and then
re-run the search process, constraining the system to a path
that includes the manually corrected labels. This process
could be faster than the current fully manual approach to
harmonic annotation.

3 http://github.com/apmcleod/harmonic-inference
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