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Abstract

In this thesis, we investigate the inverse problem of trees and barcodes from a
combinatorial, geometric, probabilistic and statistical point of view.

Computing the persistent homology of a merge tree yields a barcode B.
Reconstructing a tree from B involves gluing the branches back together. We are
able to define combinatorial equivalence classes of merge trees and barcodes that
allow us to completely solve this inverse problem. A barcode can be associated
with an element in the symmetric group Sym,,, and the number of trees with the
same barcode, the tree realization number, depends only on the permutation type.

We compare these combinatorial definitions of barcodes and trees to those of
phylogenetic trees, thus describing the subtle differences between these spaces.
The result is a clear combinatorial distinction between the phylogenetic tree space
and the merge tree space.

The representation of a barcode by a permutation not only gives a formula for
the tree realization number, but also opens the door to deeper connections between
inverse problems in topological data analysis, group theory, and combinatorics.
Based on the combinatorial classes of barcodes, we construct a stratification of
the barcode space. We define coordinates that partition the space of barcodes into
regions indexed by the averages and the standard deviations of birth and death
times and by the permutation type of a barcode. By associating to a barcode the
coordinates of its region, we define a new invariant of barcodes. These equivalence
classes define a stratification of the space of barcodes with n bars where the strata
are indexed by the symmetric group on n letters and its parabolic subgroups.

We study the realization numbers computed from barcodes with uniform
permutation type (i.e., drawn from the uniform distribution on the symmetric
group) and establish a fundamental null hypothesis for this invariant. We show that
the tree realization number can be used as a statistic to distinguish distributions
of trees by comparing neuronal trees to random barcode distributions.
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Résumé

Dans cette thése, on étudie le probléme inverse des arbres aux codes-barres d’un
point de vue combinatoire, géométrique, probabiliste et statistique.

Le calcul de I’homologie persistante d’un arbre retourne un code-barres B.
Pour reconstruire un arbre & partir de B, on recolle les branches en suivant une
régle simple. On définit des classes d’équivalence combinatoires d’arbres et de
codes-barres qui permettent de résoudre complétement ce probléme inverse. Un
code-barres peut étre associé a un élément du groupe symétrique Sym,,, et le
nombre d’arbres ayant le méme code-barres, le nombre de réalisation, ne dépend
que du type de permutation.

On compare ces définitions combinatoires de code-barres et d’arbre & celle
d’arbre phylogénétique, décrivant ainsi les différences subtiles entre ces espaces. 11
en résulte une distinction combinatoire claire entre ’espace des arbres phylogéné-
tiques et l'espace des arbres.

La représentation d’un code-barres par une permutation donne non seulement
une formule pour le nombre de réalisation, mais ouvre également la porte a des
connexions plus profondes entre les problémes inverses en analyse topologique des
données, en théorie des groupes et en combinatoire. On définit des coordonnées
qui divisent ’espace des codes-barres en régions indexées par les moyennes et les
écarts types des naissances et des morts et par le type de permutation d’un code-
barre. Associer & un code-barres les coordonnées de sa région définit un nouvel
invariant de code-barres. Ces classes d’équivalence définissent une stratification de
I’espace des codes-barres avec n barres ou les strates sont indexées par le groupe
symétrique et ses sous-groupes paraboliques.

On étudie le nombre de réalisation de codes-barres de type permutation
uniforme (tirés de la distribution uniforme sur le groupe symétrique), établissant
une hypothése nulle fondamentale pour cet invariant. On montre que le nombre
de réalisation peut étre utilisé comme statistique pour distinguer les distributions
d’arbres en comparant les arbres neuronaux a des distributions de codes-barres
aléatoires.
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CHAPTER 1

Introduction

1.1 Motivation

Studying populations of trees

Trees have a nearly universal presence as a structure for organizing relationships
between objects. From hierarchical arrangements that are useful in the classifi-
cation of species, to more immediate geometric applications in modeling neuron
morphology [67-69], trees have proved to be an indispensable tool. Different
uses of trees require different types of mathematical definitions. The definition
of phylogenetic trees, used to study ancestor relations in species for instance,
differs from that of merge trees, which represent the connected components in the
sublevel sets of a function. Merge trees can also be used to model geometric trees,
enabling the study of objects such as rivers, roots, neurons, etc.

The main issue when working with spaces of trees is that they are not Euclidean
spaces, making it hard to study their statistics. As a simple example, the “average
tree” of a population is not necessarily defined, or when it is, not unique [99,107].
A standard way to overcome this problem is to define invariants of trees by
simplifying their structures. In this thesis, we focus on an invariant of merge trees
called barcodes, which originates from the field of topological data analysis (TDA).
Simply put, a merge tree is described by two types of information: the length
of its branches and the adjacency relations between the branches. The barcode
of a tree forgets about the adjacency and retains only the information given by
the length between the tips of the branches and the branching points. Barcodes
have been used to study, for instance, populations of trees in neuroscience [67,68]
as well as for roots [39] and plants [76]. They are convenient summaries of trees
because the information that is lost, the adjacency relations of the branches, can
be recovered simply by “gluing” the branches back together. How to do so falls
into the framework of inverse problems. In this thesis, we investigate specifically
the inverse problem of trees and barcodes from several points of view.

Applications of this work are mainly in neuroscience, in particular the study of
neuron morphology. It was shown in [68] that barcodes help distinguish between
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different types of neurons. In follow-up work [67], Kanari et al. developed an
algorithm to reverse-engineer the process of computing barcodes of neurons. The
Topological Neuronal Synthesis (TNS) algorithm stochastically generates new trees
from a barcode. For now, the TNS is used only on barcodes that are computed
directly from existing neurons.

The main motivation behind this work is that, with a complete characteri-
zation of the problem from trees to barcodes and back again, and with a good
understanding of the space of barcodes, one could be able to generate populations
of trees that mimic a given set of trees starting from artificial barcodes. From
that point on, scientists could study the barcodes that represent best their data
using knowledge about the space of barcodes and build the preimage of these
barcodes to obtain artificial trees that have similar properties.

Trees
Neurons

»

Barcodes "
Figure 1.1: Motivation for understanding the preimage of a barcode: Given a
barcode computed from a neuron, what do all of its preimages look like?

The space of barcodes

Geometry has been used to analyze data for many years; however, the first
topological methods for data analysis were developed only recently, e.g., |23,
44,54,101,104,108|. At the intersection of data science and algebraic topology,
topological data analysis (TDA) is a recent field of study, which provides robust
mathematical, statistical and algorithmic methods to analyze the topological and
geometric structures underlying complex data. TDA has proved its utility in
many applications, including biology [22,56,81], material science |72| and climate
science [87], and it is still rapidly evolving.

Barcodes are frequently used invariants in TDA. They provide topological
summaries of the persistent homology of a filtered space, i.e., a sequence of
subspaces X; C X of a topological space X included in one another: X; C Xy if
t < t'. The barcode B = {(b;,d;)}ie(1,....n} associated to the filtration {X;}ier is
a multiset of points (b;, d;) € R? that summarizes the creation and destructions
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of homology classes throughout the filtration. A bar (b;,d;) € B corresponds
to a cycle appearing in X3, for the first time and becoming a boundary in Xg;.
Therefore, the first element of the pair (b;, d;) is called the birth and the second
one the death.

In many applications, it is necessary to study statistics on barcodes. Unfortu-
nately, the space of barcodes is not a Hilbert space, which means that it can be
difficult to study statistics on it. Several ways to overcome this issue exist, such
as the creation of kernels to map barcodes into a Hilbert space [2,21,24,40].

In this thesis, we tackle this issue from a different perspective, by using
combinatorial tools from geometric group theory to define new coordinates on the
space of barcodes. These coordinates partition the space of barcodes into regions
indexed by the averages and the standard deviations of birth and death times
and by a permutation associated to a barcode. By associating to a barcode the
coordinates of its region, we define a new invariant of barcodes.

Inverse problems

Methods of topological data analysis have been successfully applied in a wide
range of fields to provide useful summaries of the structure of complex data
sets in terms of topological descriptors, such as barcodes. While there are many
powerful techniques for computing topological descriptors, the inverse problem,
i.e., recovering the input data from topological descriptors, has proved to be
challenging.

Like all summaries, barcodes forget information about the space they are
computed from. Thus, even when restricting to a specific set of topological
spaces like trees, one may find that many different shapes give rise to the same
barcode. Quantifying this failure of injectivity into a summary space is the
realm of topological inverse problems. Understanding such problems is crucial for
comparing different representations of objects arising in both pure mathematics
and in data science.

A frequent topic of discussion in the context of TDA is how to define an inverse
to the process of associating a particular topological descriptor to a dataset, i.e.,
how to design a practical algorithm to recover the input data from a topological
descriptor, such as a barcode. Oudot and Solomon [92], Leygonie et al. [75]
and Curry et al. [31] have proposed partial solutions to this problem. The main
obstacle that renders this endeavor particularly challenging has proven to be
the computational complexity of the space of inputs considered. To avoid this
obstacle, it is reasonable to constrain the input space and search only for an
inverse transformation that is relevant in a specific context, for instance, to look
for solutions only in the space of embedded graphs, as in [12].
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1.2 Contributions

This thesis is a compilation of several published articles and preprints: [69],
published in Algoritms in collaboration with Lida Kanari and Kathryn Hess, [32]
(under review) with Justin Curry, Jordan DeSha, Lida Kanari, Kathryn Hess
and Brendan Mallery, [20] in collaboration with Benjamin Briick, and [16, 58|,
published in the Young Researcher Forum of SoCG and Springer AWM series,
special issue on Combinatorial Topology respectively, in collaboration with Teresa
Heiss, Kelly Maggs, Bea Bleile and Vanessa Robins. The chapters of this thesis
are re-organized to follow a story-line and not the chronological order in which
the results were published. Note that the notation and some definitions differ
slightly from one paper to another. For this reason, we summarize the notation
and conventions at the beginning of each chapter.

This thesis focuses on the following inverse problem:

Trees

Reconstruction 7\

\
\

Persistent Homology

Barcodes

Stratification '7\

! | Associated permutation

g

Computing the persistent homology of a tree yields a barcode B. To reconstruct
a tree from B, one glues the branches back together. We define this inverse problem
purely combinatorially, based on combinatorial properties of barcodes: a barcode
can be associated with an element in the symmetric group Sym,,, and the number
of trees with the same barcode, the tree realization number (TRN), depends only
on the permutation type. Moreover, each permutation o represents an equivalence
class of barcodes, where the i-th death (in increasing order) is paired with the
o(i)-th birth (idem). These equivalence classes define a stratification of the space
of barcodes with n bars where the strata are indexed by the symmetric group and
its parabolic subgroups.

The main contributions of this thesis fall into six categories, which form the
six following chapters. They also justify the title of this thesis: the first chapter
studies the difference between spaces of trees and barcodes, and the three following
chapters focus each on a different aspect of the inverse problem: combinatorics,
probability and geometric group theory.

The last chapter is self-contained and independent of the rest of this thesis. It
focuses on the persistent homology of dual cell complexes.
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Delineation of the different spaces of trees and barcodes

The first important outcome of our study is a clear combinatorial distinction
between the space of phylogenetic trees (as defined by Billera, Holmes and
Vogtmann [13]) and the space of merge trees. Generic combinatorial phylogenetic
trees on n + 1 leaf nodes fall into (2n — 1)!! distinct strata, but the analogous
number for merge trees is equal to the number of maximal chains in the lattice
of partitions, i.e., (n + 1)n!27". In Chapter 3, we describe the different sets of
trees (combinatorial, phylogenetic and merge trees) and the set of barcodes. We
explain their main differences and characterize each by defining their combinatorial
counterparts. This was joint work with J. Curry, J. DeSha, K. Hess, L. Kanari
and B. Mallery, see [32].

Combinatorial characterization of the inverse problem

The general approach to the merge tree-to-barcode inverse problem can be formu-
lated as follows. Any barcode can be realized by finitely many trees, the number
of which is called the tree realization number (TRN) or simply the realization
number of the barcode. The realization number of a barcode in general position
can be computed by certain containment relations between its bars, viewed as
intervals on the real line. One crucial observation is that these containment
relations partition the set of barcodes (on n bars) into equivalence classes, indexed
by permutations in Sym,,. The representation of a barcode by a permutation
not only gives a formula for the tree realization number (Lemma 5.13), but also
opens the door to deeper connections between inverse problems in TDA, group
theory, and combinatorics. We describe a combinatorial characterization of the
inverse problem in Chapter 5. This is based on joint work with J. Curry, J. DeSha,
K. Hess, L. Kanari and B. Mallery, see [32].

Geometric description of the space of barcodes with n bars

In Chapter 4, we use combinatorial tools from geometric group theory to define
new coordinates on the space of barcodes. These coordinates partition the space of
barcodes into regions indexed by the averages and the standard deviations of birth
and death times and by the permutation type of a barcode. By associating to a
barcode the coordinates of its region, we define a new invariant of barcodes. This
opens the door to doing statistics on barcodes inspired by the field of permutation
statistics. These coordinates define a stratification of the space of barcodes with
n bars where the highest dimensional strata are indexed by the symmetric group.
This part is based on joint work with B. Briick in [20].
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Probabilistic study of the inverse problem

In Chapters 5 and 6 we show that the realization number can be used as a statistic
to distinguish distributions of trees. Figure 1.2 shows (log) realization numbers
computed from different tree distributions, obtained by computing the realization
number either from actual trees, such as neurons, or by randomly generating
barcodes with specific properties. The datasets used were (i) real neurons (basal
and apical dendrites, indicated in red and purple), (i) random barcodes where the
birth b; is picked, then the death d; is chosen to be larger than b;, and (%ii) random
barcodes with separated births and deaths so that the induced distribution on the
symmetric group is uniform (see Chapter 5). The results are striking: barcodes
computed from neurons exhibit a very different distribution than barcodes with
uniformly drawn permutation type; see Figure 1.2 for a graphical comparison.

Max

Random
Separated
Bio_apical
Bio_basal

=~

(=}

[=]
1

600

500 ~

400 -

300 -

200 -

Tree realisation number (log)

0 25 50 7|5 lCIPCI 12‘5 lf;(] 17:’5
Number of bars

Figure 1.2: The log of the tree-realization number for barcodes with varying
numbers of bars for barcodes of basal dendrites (red), apical dendrites (purple)
in comparison with “random” barcodes (green), barcodes with separated births
and deaths such that the distribution induced on the symmetric group is uniform
(blue, see Proposition 5.30), and the maximum tree-realization number (n! for
n + 1 bars) (black).

In this thesis, we study the realization numbers computed from barcodes
with uniform permutation type (i.e., drawn from the uniform distribution on the
symmetric group). We view this as essential for the realization number to be used
for applications, as it establishes a fundamental null hypothesis for the invariant.
Our tools are mainly combinatorial, leading us to discover unexpected connections
between the inverse problem and other classical combinatorial objects.
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Statistical perspectives and stability of a biological inverse problem

We use the TRN as a statistic to study neurons barcodes and the TNS algorithm
in Chapter 6. To compute barcodes of neurons, we use the TMD algorithm of [68].
We also investigate stability properties of the TNS. We study the composite of the
TNS and TMD algorithms from a theoretical perspective, to quantify the extent
to which the TNS acts as an inverse to the TMD. For a given barcode B, we show
that, for a reasonable choice of parameter in the TNS, the probability that the
bottleneck distance between the barcodes B and TMD o TNS(B) is greater than
€ decreases with e, thus establishing a form of stability for the TNS. Our stability
results imply that the TNS is an excellent approximation to a (right) inverse
to the TMD, justifying the use of the TNS to generate artificial neurons [67].
Chapter 6 is joint work K. Hess and L. Kanari see [69].

Duality results in persistent homology

A filtered complex is a pair (X, f) of a cell complex X and a cell-wise constant
function f : X — R such that the sublevel sets of f are subcomplexes. We
call two d-dimensional filtered complexes (X, f) and (X*, f*) dual if (i) each
k-dimensional cell o € X corresponds to a (d — k)-dimensional cell o* € X*,
(ii) the adjacency relations of X are reversed in X* and (iii) the filtration order is
reversed f*(o*) = —f(0).

Chapter 7 studies the relationship between the persistent homology of two
dual filtered complexes. Our results can be seen as versions or extensions of
Alexander duality [86]. We simultaneously generalize existing results for simplicial
or polyhedral complexes [47], which were constrained by a number of restrictions,
including to spheres (instead of general manifolds) [38, 46|, specific functions [46],
or standard homology [38]. While our results are similar to those obtained in the
study of extended persistence 27|, our constructions and proofs differ significantly.
We use a pair of dual complexes filtered by complementary functions, whereas [27]
uses a single simplicial complex filtered by sublevel and (relative) superlevel sets.
Moreover, our results extend to the case of abstract chain complexes derived
from discrete Morse theory [52,88] and refine, for example, the dual V-paths and
discrete Morse functions foreshadowed in [11|. This is joint work with K. Maggs,
T. Heiss, B. Bleile and V. Robins, see [16,58].
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1.3 Related Work

This thesis touches on many classical concepts related to trees, barcodes, geometric
group theory and combinatorics, so the review of the literature done here is not
exhaustive.

Inverse Problems in TDA

We review briefly the literature on inverse problems for TDA. The concept of a
geometric realization of a persistence module was considered in [73] in order to
prove a universality result for the interleaving distance. In [57] the authors initiated
an algorithmic study of how to find a point cloud that realizes a given persistence
diagram. While these articles are concerned with finding single realizations of
persistent signatures, this thesis focuses on the study of the entire pre-image of
the persistent homology pipeline.

In the same vein, there is [31], which focused on the setting of functions on
the interval and their associated merge trees. Some of the results there were
independently discovered and extended in this thesis. The connection between
merge trees and discrete Morse functions is studied independently in [19, 65].

More recent articles that investigate the fiber of the persistence map in settings
that are different from ours include [35, 64, 75].

We note that the study of the (non-)injectivity of certain topological transforms
is also an aspect of topological inverse problems, see [34,60,79,91,103| for a
sampling of these articles and [92] for a recent survey. Better understanding the
precise failure of injectivity of certain TDA invariants led to the development of
enriched topological summaries that remediate these failures, opening a promising
line of research; see |25] and [33| for some examples of these summaries.

Space of Barcodes

The idea of coordinatizing the space of barcodes is not new [40,66]. For example,
the space of barcodes was given tropical coordinates in [66]. In [3], it is mentioned
that the space of barcodes can be identified with the n-fold symmetric product of
R?, and the authors study the corresponding algebra of polynomials associated to
the variety.

In [105], the author also observes a connection between barcodes and symmetric
groups in a different setting, by studying the space of barcode bases using Schubert
cells. Similarly, [64] also studies the space of barcode bases.
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Spaces of Trees

The wide-spread use of trees in today’s research results in countless papers being
published on this subject. As such, it is not realistic to have a complete literature
review of this large domain, but we do our best to cover the work relevant
to this thesis. Defining a polyhedral structure on a space to study statistics
has been done for spaces of (phylogenetic) trees [5,13,53,61]. The connection
between phylogenetic trees, merge trees and barcodes is studied in Chapter 3.
The polyhedral and combinatorial structures defined in this thesis and in [13]
or [53| seem to be related, but we leave this as future work (see Section 8.2).
Work on statistics of phylogenetic trees include [18,42,61,70,84]. A lot of work
has been done on comparing and studying merge trees, but the space of merge
trees is harder to study than that of phylogenetic trees. Defining distances on the
set of merge trees and studying geometric properties such as averages, Fréchet
means, geodesics has been done in [50,51,59,85,94,95,99,107|. Comparing merge
trees and using them as an invariant has been studied in 77,96, 106].



CHAPTER 2

Mathematical Background

This chapter recalls the necessary material for the understanding of this thesis.
Basic knowledge of topology, homology and category theory is assumed. The
first section covers the notions of graph, which is mainly used to describe tree
structures in Section 3.1, and of cell complexes, which take different forms in this
thesis: simplicial, cubical or CW complexes. Section 2.3 introduces notions of
geometric group theory that are used to describe the barcode space in Chapter 4
and relate it to the number of trees that have the same barcode in Chapters 5 and
6. Section 2.2 reviews the basics of posets and lattices, which are used in Chapter
5 to define the combinatorial inverse problem for trees and barcodes. Lastly, we
give a general introduction to the main tool of this thesis, persistent homology, in
Section 2.4.

2.1 Graphs and Cell Complexes

In this section, we introduce the basics of graphs and cell complexes. We start
with notions about graphs, of which trees form a subset. We then extend the
notion of graphs to higher dimensional cell complexes, covering several specific
cases: simplicial, cubical, and CW complexes.

2.1.1 Graphs

Graphs can model a wide range of real-world structures: from brain to social
networks, human interactions and political opinions, graph theory has been used
in many different ways for decades. In this thesis, graphs are mainly used to
describe trees structures, which are very specific types of graphs without loops.
We begin with basic definitions in graph theory.

Definition 2.1. A graph G is a pair (V, E) of sets of vertices, V, and edges
E C P(V) such that |e| = 2 for any e € E. A graph is finite if V and E are finite
sets. If {v,w} € F defines an edge, v and w are called adjacent vertices. The
degree of a vertex v is the number of edges that contain v. If the degree is either 1

10



2. MATHEMATICAL BACKGROUND 11

or 3 for every vertex in GG, the graph is said to be binary. A path in the graph is
a sequence of adjacent vertices vy, ...,v,. A cycle is a path vy,...,v, such that
v; # vj if i # j apart from v; = v,. A graph that does not contain any cycle is
called acyclic.

Graphs are sometimes equipped with additional structure. For example, some
graphs are weighted, that is, there is a map w : £ — R assigning a weight
w(e) € R to each edge e.

Even though a graph G contains only the information of the set of vertices
and the adjacency relations given by the edges, in practice it is easier to index
the vertices. A labelling of a graph is a map £ : V — S from the vertices to a
set of labels S. If S is a subset of the natural numbers N, the labelling is ordered.

A graph can be encoded via an adjacency matriz, a matrix A indexed by the
vertices of the graph, where A;; is the number of edges between vertex v; and
vertex vj, i.e., 0 or 1. Adjacency matrices are symmetric. Technically speaking,
writing down an adjacency matrix of a graph G requires choosing an ordered
labelling of the vertices, which can be arbitrary. This creates difficulties in
identifying adjacency matrices coming from the same graphs, which brings us to
the notion of graph isomorphism.

Definition 2.2. A graph morphism between graphs G = (V, E) and G' = (V', E’),
denoted by f: G — G', is amap f: V — V' such that if {v,w} € E, then
{f(v), f(w)} € E'. Tt is a graph isomorphism if f is a bijection and induces a
bijection between E and E’.

To identify isomorphic graphs, their adjacency matrices turn out to be useful.
Two graphs G, G’ with corresponding adjacency matrices A, A’ are isomorphic if
there exists a permutation matrix P (which contains exactly one 1 per row and
column, and 0 elsewhere) such that PAP~! = A’. In other words, to determine
whether two graphs are isomorphic, one has to find ordered labelling of both such
that the corresponding adjacency matrices agree.

A graph is directed if the pairs of vertices in the set of edges E are ordered,
ie,if E CV x V. In this case, we say that an edge (v,w) goes from v to w.
The adjacency matrix of a directed graph is not necessary symmetric anymore, as
there can be a directed edge from v to w and none from w to v.

The graph path distance is a distance on the vertices of the graph. The distance
d(v,w) between two vertices v, w € V is the minimal number of edges in a path
between v and w.

2.1.2 Cell Complexes

We now introduce the notion of cell complexes, which we will mainly use to describe
polytopes. Polytopes can be viewed as higher dimensional versions of graphs.
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They are geometric objects with “flat” sides. More formally, a (finite) polytope is
the convex hull of a finite number of points in R™. There are several important
classes of polytopes, of which we study simplicial complexes and cubical complexes
in this thesis. We also discuss another type of cell complex, CW complexes, that
we use in Chapter 7.

Simplicial Complexes

Simplicial complexes, like graphs, are built from vertices and edges, but also
from higher dimensional objects, called k-simplices. They can be defined purely
abstractly.

Definition 2.3. A finite abstract simplicial complex is a finite set A together
with a collection K C P(A) of subsets of A such that if 01 € K and 09 C o7 then
o9 € K. To simplify the notation, the pair (A4, K) is usually denoted by K.

If v e Aand {v} € K, v is called a verter.

The sets o € K are called simplices. The dimension of a simplex o is |o| — 1, and
the dimension of the complex K is the maximal dimension of its simplices. The
d-skeleton of K is the set of all simplices of dimension d.

Simplicial complexes can be realized geometrically into geometric simplicial
complexes, which we introduce now.

Definition 2.4. A k-dimensional simplex or k-simplex o in R™ is the convex hull
of k+ 1 affinely independent points zg, ..., z;. A O-simplex is also called a verter,
a 1-simplex an edge, and a 2-simplex a face.

For m < k, a m-face 7 of o, denoted by 7 < o, is the convex hull of a subset of
m + 1 points of the generating set of o. If 7 # o, it is a proper face.

Example 2.5. Figure 2.5 shows examples of simplices for n = 0,1,2,3. A 0-
simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle and a 3-simplex
is a tetrahedron.

.. A A

0-simplex 1-simplex 2-simplex 3-simplex

Figure 2.1: Low dimensional simplices for n =0, 1, 2, 3.

Definition 2.6. A finite geometric simplicial complex K is a finite collection of
simplices satisfying two conditions:

1. For any simplex ¢ € K and m-face 7 < o, 7 € K.
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2. If 01,09 are two simplices of K, then o1 N oy is either empty or a face of
both.

The dimension of a geometric simplicial complex is the maximal dimension of
its simplices. The d-skeleton of K is the set of all simplices of dimension d.

Note that geometric simplicial complexes are topological spaces as they inherit
the ambient topology of the Euclidean space R"™.

The following definition holds for both abstract and geometric simplicial
complexes.

Definition 2.7. A finite simplicial complex K7 is a subcomplex of Ko, denoted
by Ky C Ko, if each simplex of K7 is a simplex of Ks.

Remark 2.8. To describe a finite simplicial complex, one needs only to know its
maximal simplices, the ones that are not proper faces of another simplex. The
others are all included in the maximal ones as faces, because of the first condition
of Definition 2.6.

Remark 2.9. A finite geometric simplicial complex K consists of a set of vertices
A, called the vertex set, with a subset K C P(A) representing the simplices. It
can hence be considered as an abstract simplicial complex if one only sees its
combinatorics and forgets about the ambient space R™. On the other hand, any
finite abstract simplicial complex K can be associated to a geometric simplicial
complex |K| in R™ for n sufficiently large. To do so, index an affinely independent
family of vectors by the set of vertices of K. Then each simplex o = {zy, ...z, }
of K is associated to the convex hull of the corresponding vectors and |K| is the
union of all the geometric simplices, equipped with the subspace topology.

Simplicial complexes are one of the most common ways to discretize topological
objects. A triangulation of a topological space X is a simplicial complex K that
is homeomorphic to X. For instance, every closed compact 2-manifold admit a
triangulation [41]. Moreover, any polytope admits a simplicial decomposition
(this is sometimes even the definition of a polytope).

A simplicial complex is naturally stratified by its simplices. Note that with the
usual topology on the geometric realization of a simplicial complex, the simplices
are closed.

Definition 2.10. [17] A topological space X is stratified over a poset P if there
exists a collection of subsets {X;}iep of X, called the strata, such that:

1. X =, Xi;

2. 4 < jif and only if X; C Xj;

3. if X; N X; # 0, then it is a union of strata;
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z*

4. For every z € X, there exists a unique i, € P such that ﬂxexj X;=X;

The inclusion of strata gives a partial ordering on P: ¢ < j if and only if X; C X.

Cubical Complexes

Cubical complexes are another type of high-dimensional polytopes, where the
building blocks are cubes instead of triangles.

Definition 2.11. An elementary interval is an interval of the form I = [l,1 4 1]
or [I,1]. It is degenerate if I = [I,1]. An elementary k-cube o C R? is a product of
d elementary intervals,

O':Il><IQX...XId

such that d — k of the intervals are degenerate.

A cubical compler X C R% is a cell complex consisting of a set of elementary
k-cubes, such that all faces of o € X are also in X, and such that all vertices of
X are related by integer offsets.

CW Complexes

CW-complexes [78] (C for “closure-finite” and W for “weak topology”) generalize
simplicial complexes and cubical complexes to allow cells that are not necessarily
simplices or cubes but homeomorphic to open disks or balls. They provide a
framework for cellular decomposition of topological spaces.

Definition 2.12. A finite CW complex X of dimension d is defined recursively
by dimension, building the k-skeleton based on the (k — 1)-skeleton.

1. The 0-skeleton X is just a set of points equipped with the discrete topology.

2. The k-skeleton X is built by attaching k-cells (open k-dimensional balls)
DF via attaching maps from the boundary S¥ of the balls to the (k — 1)-
skeleton of X, ¢F : S¥=1 — X*=1 The k-skeleton X* is the quotient
space

Xk = xk1y |_|D§/a: ~ @ao(T),
(0%

where € ODF ~ S*~1 is identified with its image by ©%. The process
stops when k = d.

A CW-complex X is regular if the closure of each k-cell in X is homeomorphic to
the closed k-dimensional ball D*.
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Let X be a CW complex and 7 and o two cells of X. If 7 C 7, then 7 is a
face of o, and o is a coface of T, denoted by 7 < o. The codimension of a pair of
cells 7 < ¢ is the difference in dimension, dim(o) — dim(7). If o has a face 7 of
codimension 1, we call T a facet of o, and write 7 < ¢. A function f: X — R on
the cells of X is monotonic if it increases with the dimension, that is, f(7) < f(0)
whenever 7 < .

Dual cell complexes

The last definition of this section is essential for Chapter 7. It describes dual cell
complexes. Intuitively, two cell complexes X and X* of dimension d are dual if
their cells are “inverted”: for each cell of dimension k in X there is a corresponding
cell of dimension d — &k in X™, and the face relations are also reversed.

Definition 2.13. Two d-dimensional cell complexes X and X* are combinatorially
dual if there is a bijection X — X™ : 0 — ¢* between the sets of cells such that

1. (Dimension Reversal) dim(c*) = d — dimo for all o € X.

2. (Face Reversal) 0 <7 <= 7" < ¢* forall 0,7 € X.

This definition has a more combinatorial interpretation that we describe in
Section 2.2.1.

2.2 Algebraic Combinatorics

In Chapter 5, we identify combinatorial types of trees with maximal chains in a
specific lattice. In this section, we introduce the necessary background on posets
and lattices but keep it as self-contained as possible.

2.2.1 Posets

Definition 2.14. A partially ordered set, or poset, (P,<) is a set P with a binary
relation < satisfying the following conditions for all p,q,r € P:

1. (Reflexivity) p < p,
2. (Antisymetry) if p < g and ¢ < p then p =g
3. (Transitivity) if p < g and ¢ < r, then p < r.
If the set P is finite, then the poset is finite. Given posets (P, <p) and (Q, <g),

amap f: P — Q is order preserving if p <p ¢ implies f(p) <qg f(q) for all
p,q € P, and we write f : (P, <p) — (Q, <q).
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Example 2.15. The natural numbers Z and real numbers R equipped with the
usual order < are infinite posets.

In this thesis, all posets are finite, apart from the two examples above and
their respective subsets N and Q.

For any poset (P, <), we can specify its opposite poset or dual poset (PP, <,,)
as the poset whose elements are the same as P, with order relation given by
p <op ¢ Whenever p > ¢ in P.

One of the most natural examples of a poset is the collection of all subsets of
a set X ordered by inclusion. We review this example in the next section.

Example 2.16. The faces of a cell complex comprise elements of a poset, serving
as a useful combinatorial summary of the relationships between the cells. Let X
be a regular cell complex. The face poset Face(X) consists of the set of cells of X
with order relation 7 < ¢ if and only if 7 < 0. Moreover, if X and X* are two
dual cell complexes, their face posets are also dual.

We can thus extract a poset from a topological object like a cell complex.
In fact, we can go in the other direction - from any poset, we may construct a
simplicial complex called the order complex. Given any regular cell complex X, it
turns out that the order complex of the face poset is the barycentric subdivision
of the original decomposition [78] and, hence, homotopy equivalent to X.

A totally ordered set is a poset P such that for each p,q € P, either p < q or
qg < p. If a poset P contains a subset C C P that is totally ordered, then C is
called a chain. A chain is maximal if it is of maximal length in P.

A point p € P is said to be covered by ¢ € P, denoted by p < ¢, if p < ¢
and there is no v € P such that p < v < ¢. The partial order in P is completely
determined by the covering relation: the order < is the smallest reflexive and
transitive relation that contains <. In particular, this can be used to define the
Hasse diagram of a poset (P, <). The Hasse diagram H of (P, <) is a (directed)
graph of which the vertices are the elements of P and such that there is an edge
from p to q if p <X q.

We show three Hasse diagrams in Figure 2.2.
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{1,2,3}
[ ]
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A. Subset lattice of {1,2,3} B. Subset lattice of {1,2} C. Partition lattice of {0,1,2}

Figure 2.2: A. The Hasse diagram of the subset lattice of {1,2,3} of Example
2.18 B. Another subset lattice for of {1,2}. C. The Hasse diagram of the partition
lattice of {0, 1,2} of Example 2.20.

2.2.2 Lattices

The theory of lattices is rich and complex. We will not need the abstract definition
of lattice in this thesis but the reader interested in this topic can read [89]. Here,
we will think of a lattice as a poset that has a least upper bound (supremum) and
a greatest lower bound (infimum), defined below.

Definition 2.17. Let (P, <) be a poset and Q C P. A point u € P is called an
upper bound of Q) if ¢ < wu for all ¢ € Q. It is a least upper bound if u < w for all
other upper bounds w € ). Dually, I € P is a lower bound of QQ if | < ¢ for all
q € Q. It is a greatest lower bound if w <[ for all other lower bound w of Q.

We are mainly interested in two specific lattices that we introduce now.

Example 2.18. [Subset Lattice|] Let [n] = {1,...,n} and consider P = P([n]),
the set of all subsets of [n]. Equip P with the partial order C of “being a subset
of”. This forms the subset lattice I1,, of [n]. Figure 2.2A and B show the Hasse
diagram of the subset lattices I3 and Iy of {1,2,3} and {1, 2} respectively.

Definition 2.19. A partition of the set n := {0,1,...,n} is a collection of
pairwise disjoint subsets U = {Uy, ..., U} of n whose union is n. A partition U
refines a partition U’, written U < U’, if every subset of U’ is equal to a union
of elements of U. Said differently, U« < U’ if for each U; € U there exists U]{ e
such that U; C U j’ We denote the set of partitions of n by P,. The refinement
relation endows the set P, with a partial order, which also happens to be a lattice.
A chain in the lattice of partitions is a sequence of comparable partitions

Uy 2 Uy

Such a chain is maximal if it is not a subsequence of any longer chain.
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For the sake of notation, we can always write a partition of n as an ordered list
where each subset is separated by a vertical line. The finest possible partition—and
hence the bottom element of the P,,—is denoted

{O1Lj2]- -+ |n}.

The top element of P, is the set n.

Example 2.20. Figure 2.2C shows Pz, the lattice of partitions of {0, 1,2}.

2.3 Geometric Group Theory

Geometric group theory is a wide field of mathematics studying the “shape” of
groups. In this thesis, we use the symmetric group to identify equivalence classes
of barcodes. Chapter 4 goes further into this study and add a geometric structure
to the equivalence classes. Many tools from geometric group theory can be used
to study barcodes through this identification, and we introduce the necessary
background now.

2.3.1 Presentations of Groups

We start with the notion of a presentation of a group G, which is a method to
represent G with a set of generators S and a set of relations R, which is a subset
of Fg, the free group generated by S. We denote a presentation by G = (S | R).

The group G is the quotient of the free group Fs and the smallest normal
subgroup N of Fg that contains R:

G = (S| R) = Fs/N.

The set S is sometimes called an alphabet, and a word is a sequence of elements
of S or their formal inverses. The set of relations R is a set of words that are
equivalent in the quotient. The length of an element g € GG is the minimal length
of a word representing g. A word representing a certain element is reduced if it is
of minimal length.

Presentations of groups have a nice graphical reprentation as graphs. The
Cayley graph of G = (S | R) is a graph with vertex set G and an edge between
g1 and go if there is an element s € S such that g1 = sg». Figure 3.8 shows
an example of the Cayley graph of the symmetric group Sym, generated by the
adjacent transpositions.

The length of a word corresponds to the shortest path between the word and
the identity id on the Cayley graph. Using the conventions above, one can also
define a partial order on a group as follows.
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Definition 2.21 (Left Bruhat Order). The left Bruhat order on a group G with
representation (S | R) is a partial order on G, specified as follows. If 0,0’ € G,
then o < ¢’ if the length of o is less than that of ¢/, and there exist 7, ..., 7, € S

such that o/ =7, -+ 75, 0.

k

One of the most common examples of a group presentation, and the one we
are mainly interested in in this thesis, is the usual presentation of the symmetric
group Sym,,.

Recall that the symmetric group is generated by elementary transpositions
7; = (4,7 + 1). This implies that any element of Sym,, can be represented using
a word with the alphabet S = {7; ?:_11, although that representation will not be
unique.

Remark 2.22 (Different Notation for Permutations). There are several notational
conventions for elements of the symmetric group. When we use square brackets
or boxes, e.g., the notation [132], then we are listing the images of the ordered
set {1,...,n} under the map o, e.g., for & = [132], one can read off that o(1) =
1, 0(2) = 3 and 0(3) = 2. We also use cycle notation, which describes the
permutation in terms of its orbits and uses parentheses; fixed points are omitted
in this notation. For our example, o = [132] can also be written as the elementary
transposition (23).

2.3.2 Coxeter System and Coxeter Complex
Coxeter groups

Cozeter groups form a family of groups that was defined by Tits in its modern
form. They are abstract versions of reflection groups; in fact, the family of finite
Coxeter groups coincides with the family of finite reflection groups. Besides their
close connections to geometry and topology [36], Coxeter groups have a rich
combinatorial theory [15]. They appear in many areas of mathematics, e.g. as
Weyl groups in Lie theory. We will view Sym,, as one of the most basic examples
of a Coxeter group.

Usually, one does not consider a Coxeter group W by itself but instead a
Cozxeter system (W, S), where S is a generating set of W that consists of involutions
called the simple reflections. In what follows, we will tacitly assume that such
a set of simple reflections is always fixed when we talk about a Coxeter group
W. In the case where W = Sym,,, we will take S to be the set of adjacent
transpositions S = {(i,i+1) |1 <i<n—1}. A rank-(|S| —1— k) (standard)
parabolic subgroup of W is a subgroup of the form Pr = (T'), where T C S'is a
subset of size (|S| —1— k).
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Coxeter complexes

Each Coxeter group W can be assigned a simplicial complex (W), the Cozeter
complex, that is equipped with an action of W. If W is a finite group with set of
simple reflections S, the complex ¥(W) is a triangulation of a sphere of dimension
|S|—1. Coxeter complexes have nice combinatorial properties and are in particular
colourable flag complexes [1, Section 1.6] that are shellable [14].

The top-dimensional simplices of (W) are in one-to-one correspondence with
the elements of the group W. Furthermore, one recovers the Cayley graph of
(W, S) as the chamber graph of (W), i.e., the graph that has a vertex for each
top-dimensional simplex of (W) and an edge connecting two vertices if the
corresponding simplices share a codimension-1 face [1, Corollary 1.75].

More generally, the set of k-simplices in X (W) is in one-to-one correspondence
with the cosets of rank-(|S| — 1 — k) parabolic subgroups of W:

Definition 2.23. The Cozeter complex X(W) of the Coxeter system (W, .S) is
the simplicial complex

S(W) = |J W/Pr={rPr|7€W,T C 5},
TCS

where the simplex 7P has dimension! dim(7Pr) = |S\ T| — 1 and the face
relation is defined by the partial order

TPp < 7'Pp & 7Pp 2 7' Py (2.1)

The group W acts simplicially on (W) by left multiplication on the cosets,
v - (7P) :=~7P.

Remark 2.24. With a slight abuse of notation, we will in what follows often use
the cosets 7P to also denote simplices in the geometric realization of the Coxeter
complex. To be coherent with the definition of a stratification (Theorem 2.10),
we will always consider these simplices to be closed.

'Note that we take the (combinatorial) convention that this simplicial complex has a unique
face of dimension —1. This face does not appear in the geometric realization.
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The Coxeter complex ¥(Sym,,)

% >x, 2341
XLZX]
X1 <X4
2431
X1>X;3

Figure 2.3: The geometric realization of the Coxeter complex ¥(Sym,). The
permutation corresponding to each triangle of the front of the sphere is indicated
in black. The hyperplanes x; = x; depicted in colours correspond to the transposi-
tions (7, 7). The hyperplanes corresponding to adjacent transpositions (i,7+1) are
in boldface. A detailed description of how to obtain such a geometric realization
of the Coxeter complex can be found in Section 4.2.1.

For the case W = Sym,, that we are interested in, the Coxeter complex ¥(Sym,,)
is of dimension n — 2 and is isomorphic to the barycentric subdivision of the
boundary of an (n — 1)-simplex. It can be realized geometrically as a triangulation
of the (n — 2)-sphere. This complex is the dual to the permutohedron of order
n (see Figure 4.5). Figure 2.3 depicts the Coxeter complex ¥(Symy). The
top-dimensional simplices of ¥(Sym,,) are in one-to-one correspondence with the
elements of Sym,,. Two such simplices share a codimension-1 face if and only if the
corresponding permutations differ by precomposing with an adjacent transposition
(i, + 1), i.e., by exchanging two neighbouring entries of the permutation. As
a consequence, if x lies in the interior of a maximal simplex of the geometric
realization of ¥(Sym,,), it can be assigned a permutation 7 € Sym,,. If = lies on
a face of dimension k, then 7 is well-defined only up to multiplying by an element
of a parabolic subgroup P < Sym,, that is generated by [S|—1—k=n—-2—k
adjacent transpositions. A concrete embedding of 3(Sym,,) in R™ will be described
in more detail in Section 4.2.1.

For later reference, we note that the identification S"~2 22 3(Sym,,) gives a
stratification of the sphere by its simplicial decomposition. The strata are the
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(closed) simplices of the geometric realization and the stratification is over the
partially ordered set (poset) specified by Equation 2.1.

2.4 Persistent Homology

In this section, we describe one of the main tool of this thesis, persistent homology.
We give a general introduction here, even though we use a more combinatorial
definition in most of this thesis. Persistent homology is an invariant of a sequence
of subspaces of a fixed space ordered by inclusion. It is a finer invariant than the
homology of a space X, as it encodes the homology at each step of a sequence of
subspaces ending in X and the inclusion maps in between. When working with
data, standard topological quantities such as homology can be highly sensitive
to noise and small geometric fluctuations. Persistent homology addresses this
problem by examining a collection of spaces, indexed by a real variable often
representing an increasing length scale. These spaces are modelled by a cell
complex X with a filter function f : X — R assigning to each cell the scale at
which this cell appears. This process is called a filtration.

2.4.1 Filtrations

Definition 2.25. A filtration of a topological space X is a set of subspaces
{Xi}ter such that X; € Xy C X if t <t/. The set {X;}ier is also called a filtered
space.

A filtration {X;}ier can come from a map f : X — R via its sublevel
sets X; = f~1((—o00,t]). The parenthesis are sometimes omitted to avoid heavy
notation. A function f: X — R is tame if the homology groups of its sublevel
sets have finite rank and change at a finite number of ¢t € R.

When X is a cell complex, the function f is required to be monotonic so that
each sublevel set is a cell complex, leading to the following definition.

Filtrations of cell complexes

Definition 2.26. A filtered (cell) complexr (X, f) is a cell complex X together
with a monotonic function f : X — R. A linear ordering og, 01, ..., 0, of the cells
in X, such that o; < o; implies 7 < j, is compatible with the function f when

floo) < flo1) < ... < f(on).
Note that the monotonicity condition implies that, for » € R, the sublevel set

X = f_l(*oov t]
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is a subcomplex of X. The value f(o) determines when a cell enters the filtration
given by this nested sequence of subcomplexes. The definition of a compatible
ordering also implies that each step in the sequence

0c{oo} C{oo,01} C---C{o0,01,...,0n}

is a subcomplex, and every sublevel set f~!(—oo,t] appears somewhere in this
sequence: f~1(—o0,t] = f~(~o0, f(0;)] = {00,01,...,0;} for i = max{i =
0,..on | flo) < t).

Dual Filtrations

We have already seen the notion of dual cell complexes in Definition 2.13. This
definition can be extended to dual filtered complexes, where the duality is compat-
ible at each step of the filtration functions. The next definition and proposition
are necessary only for Chapter 7.

Definition 2.27. Two filtered complexes (X, f) and (X*,g) are dual filtered
complexes if X and X* are combinatorially dual to one another and if there exists
a linear ordering og, 01, ..., 0, of the cells in X that is compatible with f and
such that its dual ordering o, 0 _,...,0( is compatible with g.

The following lemma gives a simple condition under which the filtration
functions of (X, f) and (X*, f*) are dual filtered complexes.

Lemma 2.28. Suppose two functions f : X — R and f* : X* — R satisfy
f*(e*)=—f(0). Then (X, f) and (X*, f*) are dual filtered complezes.

Proof. Let 0g,01,...,0, be a linear ordering of cells compatible with (X, f) and

oy,00_1,...,04 be the corresponding ordering of the dual X*. Note that o is

the (n — 7)-th cell in the dual ordering. It follows that:
0; < 0j implies i < j < 0 < o7 impliesn —j <n —i
and
i < j implies f(0;) < f(0j) & n —j <n—iimplies f*(0o}) < f*(07).
This shows that the linear ordering on X is compatible with f if and only if the

dual linear ordering on X* is compatible with f*, as required. O

2.4.2 Categorical Definition

We recall here a general categorical definition of persistent homology. We mention
this definition for the sake of completeness, but it is not necessary for the under-
standing of this thesis. We will use the more algebraic notions of this section only
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in Chapter 7. We cover a more combinatorial definition of persistent homology in
the next section.

Given a filtered complex (X, f), there are inclusions f~!(—o0,r] — f~(—00, 3]
of sublevel sets for r < s. Applying degree-k homology with coefficients in a field
K to these inclusions yields linear maps between vector spaces

Hy(f~H(—o00,7]) = Hi(f~(~00, 5]).

The resulting functor H(f) : (R, <) — Veck from the poset category (R, <) to
the category of vector spaces over the field K is called a persistence module. More
generally, a persistence module needs not come from a filtration function.

Definition 2.29. A persistence module is a functor
F: (R, <) — Veck

where (R, <) is the real line with its total ordering < . A persistence module is
pointwise finite-dimensional if all the vector spaces F'(t) are finite-dimensional.
An interval module is a persistence module K; that is rank 1 on an interval I C R
with identity maps internal to I and 0 elsewhere.

In this thesis, all persistent modules come from the sublevel sets of a function
f:+ X — R, that is, F' = Hy(f). By [29] we have the following (fundamental)
decomposition theorem for persistence modules.

Theorem 2.30. (Crawley-Boevey [29]) Any pointwise finite-dimensional persis-
tence module F is isomorphic to a direct sum of interval modules

F = Ply,.a),

leL

and this decomposition is unique up to reordering.

Each interval summand I, 4,) represents a degree-k homological feature that
is born at r = b; and dies at r = d;. If the final space X has non-trivial homology
there are features that never die, then, these have d; = oo, and the interval is
called essential.

Typically, tame functions f : X — R have finitely many critical values
o, -, € R where the homology changes: the sublevel sets Xy, , X, have the
same homology when t1,t2 € (a;, ajt1) for i =0,--- ,n — 1. Therefore, they fall
into the framework of Theorem 2.30.

There are several ways to represent these interval modules. The most commonly
used is the degree-k persistence diagram of f, which is the multiset

Dgm*(f) = {[bi,d) |l € L},
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where Hy.(f) = @, Iip,,q,)- We write [by, di)x € Dgm®(f) to denote the homolog-
ical degree of an interval and define the persistence diagram of f as the disjoint
union over all degrees:

Writing Dgmy(f) for the multiset of finite intervals with d; < oo, and Dgm . (f)
for the remaining essential ones, we obtain Dgm(f) = Dgmg(f) LI Dgm(f).

Later, in Section 3.2 we introduce the notion of barcodes, which is an equivalent
way to represent pointwise finite-dimensional persistence modules.

2.4.3 Computations

In this section, we describe briefly how persistence diagrams are computed in
practice for a filtered cell complex (X, f). We restrict ourselves to the case K = [Fy,
the field of two elements. To compute the persistence diagram Dgm(f), we choose
an ordering o, 01, ..., 0, of the cells in X that is compatible with f. Cells o; and
oj appear at the same step in the nested sequence of sublevel sets ( f (oo, r])r R
if f(o;) = f(o;). For the following computations however, we must add exactly
one cell at every step:

0c{oo}c{oo,o1}C---C{oo,01,....0n-1} C{00,01,...,0n} =X.

When adding the cells one step at a time, a cell of dimension k causes either the
birth of a k-dimensional feature or the death of a (k — 1)-homology class [38], that
is, each cell is either a birth or a death cell. A pair (0;,0;) of cells where o kills
the homological feature created by o; is called a persistence pair. A persistence
pair (o, 0;) corresponds to the interval [f(o;), f(0;)) € Dgmg(f). Note that
this interval can be empty, namely if f(o;) = f(o;). Empty intervals are usually
neglected in the persistence diagram. A birth cell o; with no corresponding death
cell is called essential, and corresponds to the interval [f(0;),00) € Dgm,(f).

Recall that presentations for the standard homology groups are found by
studying the image and kernel of integer-entry matrices that represent the bound-
ary maps taking oriented chains of dimension k to those of dimension (k — 1) [86].
In persistent homology, we work with the Fo total boundary matriz D, which is
defined by D; ; =1 if 0; < 0; and 0 otherwise. Define

rp(i,j) = rank Df — rank Dlj_l — rank Dfﬂ + rank Df_:ll
where Dzj = D[i:n,0: j] is the lower-left sub-matrix of D attained by deleting
the first rows up to ¢ — 1 and the last columns starting from j + 1.
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Theorem 2.31 (Pairing Uniqueness Lemma [28]). Given a linear ordering of
the cells in a filtered cell complex X, (0;,05) is a persistence pair if and only if

TD(iaj) =1

The ranks are usually computed by applying the column reduction algo-
rithm [45] to obtain the reduced matrix R and using the property that rank D] =
rank Rg under the operations of the algorithm. The persistence pairs can then be
read off easily since rg(i,7) = 1 if and only if the ith entry of the jth column of
the reduced matrix is the lowest 1 of this column. However, here, we can work
directly with rp.

Corollary 2.32. If rp(i,j) # 1 and rp(j,i) # 1 for all j then the cell o; is
essential.

Proof. The fact that every cell is either a birth or a death cell implies that o;
must be an unpaired birth or death cell. However, as every filtration begins as
the empty set, there are no unpaired death cells. O



CHAPTER 3

Trees and Barcodes

3.1 Trees

We finally introduce the main topic of study of this thesis: trees. There are
many notions of trees in mathematics. From modeling species genealogy with
phylogenetic trees, modeling roots, neurons or rivers with trees and studying the
sublevel sets of a function using its merge tree, the definition of tree differs a bit
depending on the context or application. Here, we explore several mathematical
definitions of trees and explain their differences. The definitions in this section
have been formalized in [32], together with J. Curry, J. DeSha, K. Hess, L. Kanari
and B. Mallery. All these notions are based on combinatorial trees, which we
introduce now.

3.1.1 Combinatorial Trees

We start with the simplest definition, that of a combinatorial tree.

Definition 3.1. A combinatorial tree T is a connected, acyclic, binary graph.
It is finite if the number of vertices is finite. A rooted tree is a combinatorial
tree with a distinguished vertex of degree 1 called the root. Non-root vertices
of degree 1 are called leaves, and vertices of degree 3 are called bifurcations or
internal nodes. We assume that there are no vertices of degree 2. A combinatorial
tree equipped with an embedding into R3 is called a geometric tree. They inherit
naturally the topology of R3, forming the set of geometric trees that we denote
by T.

A labelling of a combinatorial tree T is a bijective map from its set of vertices
V(T) to a set S of labels. A labelling is ordered if S is a subset of of the natural
numbers N. An ordered labelling of a tree with n vertices gives rise to an n x n
adjacency matrix, of which the (i, j)-coefficient is 1 if there is an edge between
the vertices labelled ¢ and j and is 0 otherwise.

Two combinatorial trees T and T” are isomorphic if they are isomorphic as

27



3. TREES AND BARCODES 28

graphs. Equivalently, T and T” are isomorphic if there exist ordered labellings of
both with respect to which their adjacency matrices are identical.

When rooted trees are considered, there is a natural way to induce an orienta-
tion on the edges of the tree: for each vertex v, there is a unique path from v to
the root r. Every edge of the tree is oriented from the vertex further from 7 to
the closer one (with respect to the graph-path distance).

A vertex v of T is a parent of a vertex w if there is a directed edge from w
to v; the vertex w is then a child of v. If there is a sequence of directed edges
from w to v, then v is an ancestor of w. The least common ancestor between two
vertices w and w’ is the first (in terms of graph-path distance) vertex v that is an
ancestor of both, see Figure 3.1. Each vertex of T" has a unique parent, except for
the root r, which has no parent at all.

N

r

Figure 3.1: A combinatorial tree T seen as a directed graph with its root r. The
least common ancestor of w and w’ is the vertex v. The path-distance between w
and v is 2, as there are two edges on the unique directed path between them.

Remark 3.2. The graph-path distance between two nodes of a graph, sometimes
also called the hop-metric, is the number of edges on the (unique) shortest path
between the two nodes. The notion of v being an ancestor of w is equivalent to v
being on the path between w and the root r, hence the distance between v and r
in the path distance is shorter than the one between w and r.

Note that a finite combinatorial tree T is fully specified by its set of vertices,
equipped with the partial order specified by the “is a parent of” relation. This
turns the set of vertices of a tree V(T') into a poset, which has T as a Hasse
diagram.
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3.1.2 Merge Trees and Combinatorial Merge Trees

The language of “parents” and “children” obviously comes from studying ancestral
relations for people (family trees) and species (phylogenetic trees). There are also
situations where the parent-child relation is determined in part by a notion of
“height,” which is how merge trees are defined.

Definition 3.3. A merge tree is a rooted combinatorial tree T, together with
a function on the vertices h : V(T') — R U {00}, called a height function, that
satisfies two properties.

1. If v is the parent of w, then h(v) > h(w).

2. If r is the root node, then A(r) = oco.

A generic merge tree is a merge tree (T, h) such that the height function h :
V(T) — R is injective. We always assume our merge trees are generic, unless
otherwise indicated.

Two merge trees (T, h) and (T’,h') are isomorphic if there is a graph isomor-
phism ¢ : T — T’ that preserves heights, i.e., h = h’/ o . In this thesis, we will
not make a distinction between merge trees and isomorphism-equivalence classes
of merge trees.

Remark 3.4 (Drawing Conventions for Merge Trees). Many authors choose to
draw merge trees so that the function h : V(T') — R resembles height when
embedded in the page. This has the effect of placing the root node higher than
the leaf nodes, contrary to how trees appear in nature. To honor the natural
orientation and size of trees in nature, we draw our merge trees with the opposite
convention, so that the root is lower than the leaves and so that f(r) = oo is
represented with a finite value.

Remark 3.5 (Alternative Definition of Merge Trees). Another, perhaps more
common, definition of a merge tree is that it is the Reeb graph of the epigraph of
a function. From this point of view, the merge tree T of a real-valued function
f: X — Ris the quotient space of the epigraph I't := {(z,¢) € X xR | f(z) <t}
by the equivalence relation specified by (z,t) ~ (y, s) if and only if s =t and =
and y are in the same path component of the sublevel set filtration of f at ¢, i.e.,
[x] = [y] € mo(f~!(—o0,1]). Since the projection map from I't onto the second
coordinate is constant on equivalence classes, this projection map factors to define
the height function. Under reasonable tameness conditions, the quotient space is
homeomorphic to the geometric realization of a combinatorial tree, where vertices
correspond to connected components of “critical” points.

Example 3.6. A typical example of merge tree is one arising from measuring
height on an embedded manifold X C R™. Here “height” can be thought of as the
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scalar product with a specified unit vector, or as a Morse function. Figure 3.2
shows a simple example of a topological space and the corresponding merge tree.

Figure 3.2: A circle X is embedded in R? and drawn in green to resemble a cactus
with the height function f measuring distance down the page. The corresponding
merge tree (Definition 3.3) is drawn in black. The barcode of the persistence
module in degree 0 (Definition 2.29) associated to (X, f) is shown in red on the
right.

Merge trees defined as quotient of topological spaces can be equipped with a
distance called the interleaving distance [85]. The definition as stated in [85] does
not apply to the setting of Definition 3.3 because it requires the height function h
to be defined on the whole topological space T" and not only on the vertices. For
the following definition, we require that 7" be considered as a embedded tree in
R? (a geometric tree) and that the height function h : T — R is defined on any
point of T', not only on the vertices. We denote such an embedding by |T|. It is
easy to see how a height function can be extended to all the points of an edge: it
suffices to take the interpolation of the function between the two end-vertices of
the edge.

Definition 3.7. [59] Let (T, h), (T’, ') be two merge trees with height functions
h,h'. A e-good map o : (T,h) — (T',h’) is a continuous map such that the
following conditions hold.

1. For every z € |T|, |W(a(x)) — h(z)] < e.

2. For v € Im(), let 2’ be the least common ancestor of a~!(v) € T. Then
|h(z') — h(w)| < 2¢ for all w € a1 (v).
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3. For all v # Im(«), depth(v) < e, where depth(v) is the largest height
difference between v and a node in the subtree rooted at v.

The interleaving distance between two merge trees T and T” is
di((T,h),(T',1')) = inf{e | there is an e-good map between T and T"}.
Example 3.8. Figure 3.3 shows an example of two merge trees at distance .

T h T n

Figure 3.3: Two trees at interleaving distance €. The e-good map « depicted in
green dotted lines sends each point of T' to the corresponding point in 7”, except
the small branch of size € which is sent to the same point in 7”.

There is a natural ordered labelling on the vertices of a generic merge tree
(T, h), inherited from the function h, by ordering the vertices according to their
h-value: the leaf node with lowest h-value is labelled 0, and the remaining nodes
are labelled based thereafter on the order in which they appear. We call the labels
on the leaves the birth labels and the ones on the internal vertices the death labels,
for reasons that will become clear later when we study the relationship between
trees and barcodes.

We are now in a position to state the first novel definition of this section. Recall
that two graphs are isomorphic if they admit ordered labellings with respect to
which their adjacency matrices are the same. A merge tree includes the additional
data of heights of each node. By focusing separately on the order of births and
the order of deaths, along with adjacency data, we have a more flexible notion of
equivalence between merge trees.
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Definition 3.9. Two generic merge trees (T, h) and (1", h') are combinatorially
equivalent if they are isomorphic as graphs via a graph isomorphism preserving
the orders of births and of deaths, respectively. In more detail, (T, h) and (1", ')
are combinatorially equivalent if there exists a graph isomorphism ¢ : T — T’
such that the following conditions hold.

1. For every pair of leaf (birth) nodes v; and v; in T, if h(v;) < h(v;), then
W ((vi)) < h'(e(v;))-

2. For every pair of internal (death) nodes v; and v; in T, if h(v;) < h(vj),
then 1 ((v1)) < R ((05)).

We note that these two conditions specify two different sets for the logical quantifier
and that the total order on vertices need not be preserved; see Figure 3.4 for an
example.

Vi Wy

Vs

W,

V3

Vg A

combinatorially
equivalent
merge trees

Figure 3.4: Two combinatorially equivalent merge trees are shown. Notice that
the total order of the vertices is not preserved, but the orders among leaf nodes
and internal nodes are preserved separately.

Remark 3.10 (Combinatorial Merge Trees). Note that that combinatorial equiv-
alence classes of merge trees are simply combinatorial trees equipped with an
ordered labelling L; of the leaves (a birth label) and an ordered labelling L; of
the internal nodes (a death label) such that the label L;(v) of internal node v is
larger than the label L;(w) of internal node w if v is an ancestor of w. We call
such a tree a combinatorial merge tree.
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Example 3.11 (Translation Invariance). Consider two generic merge trees (T, h)
and (T,h') such that ' = h + A for some real number A. We say (T', /') is
a translation of T. A generic merge tree is combinatorially equivalent to any
translation of itself. However, combinatorial equivalence detects relationships
more general than translation; see Figure 3.4.

3.1.3 Phylogenetic Trees and Combinatorial Phylogenetic Trees

As mentioned earlier, most of the language concerning trees is inspired by the
study of ancestral relationships. Although trees have been used for this purpose for
centuries, a formal definition of a phylogenetic tree—and more importantly a clear
coordinatization on the set of all phylogenetic trees—was given only somewhat
recently in the landmark paper of Billera, Holmes and Vogtmann [13]. We review
some of these definitions, modifying the terminology slightly for our purposes.

Definition 3.12. A (metric) phylogenetic tree is a rooted combinatorial tree T'
endowed with

1. a labelling of the leaf nodes, and

2. a non-negative real number associated to every parent-child pair.

The values assigned to each parent-child pair can be considered as weights on
the graph edges. By contrast, a combinatorial phylogenetic tree is a rooted
combinatorial tree with just a labelling of the leaf nodes.

Example 3.13. Figure 5.5B shows all combinatorial classes of merge trees with
four leaves and Figure 5.5C shows all combinatorial classes of phylogenetic trees
with four leaves.

3.1.4 Different Spaces of Trees

In this section, we describe the difference between phylogenetic trees and merge
trees, which consists of a minor distinction about the labelling that creates
impactful differences between the two spaces. This is based on joint work with J.
Curry, J. DeSha, K. Hess, L. Kanari, and B. Mallery [32].

One of the key differences between metric phylogenetic trees and merge trees is
that phylogenetic trees always have labelled leaf nodes, with labels independent of
the lengths on the edges. This makes sense because the BHV space—the set of all
possible metric phylogenetic trees on n leaf nodes, denoted MPT ,,—documents
all possible evolutionary relationships among n fixed species. The labels matter
because the involved species matter.
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We denote the set of all merge trees with n leaf nodes (Definition 3.3) by
MT,. We consider also the set LMT,, of labelled merge trees with n leaves,
where the labelling is arbitrary (see Definition 3.1). Let

denote the map that sends a labelled merge tree to its corresponding unlabelled
merge tree, forgetting the labels.

We describe the relationship between these two types of tree spaces in the
following proposition.

Proposition 3.14. For every A € R, there is an injective map from the set of
metric phylogenetic trees with n leaves, MPT,, to the set of labelled merge trees
with n leaves, LMT,,

HA : MPT,, — LMT,.

such that the composite T o HA has a fiber of cardinality n! over generic merge
trees, corresponding to permutations of the labels on the leaf nodes. Moreover, if
A > 0, there is a natural section of T o Hp,

e MTn,genem’c — MPTn»

that sends a generic merge tree to a metric phylogenetic tree that is labelled by
birth order and where the distance from the root node to its child is A.

Proof. Given a metric phylogenetic structure on a rooted tree 1T', we can define a
height function A on T as follows. Every node v that is not the root node r is
assigned the function value h(v) := A — d(r,v), where d is the sum of the weights
of each edge along the unique path connecting r to v. This defines the map Ha
in the statement of the proposition.

As explained earlier, every generic merge tree admits a canonical ordering of
its leaf nodes by height order. If two generic labelled merge trees in the image of
Ha are isomorphic as merge trees, then there is a unique permutation of the n
leaf labels taking one labelling to the other. This proves the second statement.

Finally, the map Ta sends a generic unlabelled merge tree (T, h) to the metric
phylogenetic structure on 7" that has labels given by birth order and where the
weight on an edge is given by the difference in heights of its two vertices. The
distance from the root node to its child is given by A. O

Remark 3.15. Each of the three sets above can be equipped with topologies.
In [13], the space of phylogenetic trees is topologized as a CAT(0) space where
each orthant records a distinct split topology [13]. Both labelled merge trees and
merge trees can be topologized using versions of the interleaving distance [85],
Definition 3.7. Unfortunately, the map Ta is discontinuous with respect to these
topologies, as can be seen from Figure 3.5.
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Ezample 3.16 (Sensitivity to Generators). Although the two merge trees in
Figure 3.5 are isomorphic as graphs, the only possible graph isomorphism reverses
the birth order, hence these generic merge trees are not combinatorially equivalent.
When considering the persistent homology of the height filtration for these two
trees (see Section 2.4), the homology generator of the essential class starts with
the node labelled by 0 or A on the left hand side, while on the right hand side, it
starts with the 0 or B label. This is sometimes called “instability” or “sensitivity”
of generators in TDA. Together with Figure 3.4, these specify the three possible
combinatorial equivalence classes of merge trees with three leaf nodes.

OorA OorB
A _lorB lorA_ [

2orC 2orC

a small change in the height
function yields two combinatorially
inequivalent merge trees

—)

when viewed as phylogenetic trees
these trees are close using
the ABC labels and far apart
using the birth order 012 labels

Figure 3.5: Two generic merge trees that are isomorphic as graphs. When they
are regarded as phylogenetic trees, we fix alphabetical (‘ABC’) names for the leaf
nodes, as if the nodes represented species that went extinct at different times.
With this labelling they are considered close in the phylogenetic tree metric defined
by [13]. When they are regarded as merge trees, they are unlabelled and are close
in the interleaving distance [85]. However, if we use the birth order (‘012’) to
label the leaf nodes and regard them as phylogenetic trees, then they are far apart
in the phylogenetic tree metric. This shows the discontinuity of the map Ta of
Theorem 3.14.

Proposition 3.14 shows that, despite their apparent similarity, there are
significant differences between metric phylogenetic trees and merge trees. Indeed
neither of the maps above is a bijection. However, if one quotients the set of
labelled merge trees by translations of the height function then the map induced
by Ha should be a bijection; alternatively one could modify the definition of merge
trees so that the root node has a fixed height N, as in the drawing convention of
Remark 3.4.

Although the proposition and remark above identify certain differences and
similarities between metric phylogenetic trees and merge trees, for this thesis the
most important distinction is in terms of combinatorial type. In this respect,
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merge trees and phylogenetic trees are distinguished by the explicit ordering of
birth and death nodes. This observation will lead to different formulas for the
numbers of top-dimensional strata in the set of combinatorial phylogenetic trees
PT pn, which is (2n — 1)!!, and in MT,,, which is (n+ 1)n!27™. For now, however,
the reader is encouraged to consult Table 3.1 and Figure 3.6 for two convenient
summaries of the similarities and differences between combinatorial trees, merge
trees, (combinatorial) phylogenetic trees, and barcodes.

A

& a-ws-wy
C
B B of A=W=Wy=W,
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Wa . . " < - A-W.
- Combinatorial tree T Combinatorial tree T s
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A/0 forget weights
0
C/1 We-
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forget death labels WsWqW3
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Figure 3.6: Summary of the different notions of tree studied in this thesis and
their relations, as expressed in part by Proposition 3.14. One can turn a metric
phylogenetic tree (with labels A,B,C in red) into a labelled merge tree. Generic
merge trees can be turned into metric phylogenetic trees by labelling according to
birth order (labels 0, 1,2 in red), but this process is not continuous.

3.2 Barcodes

In Section 2.4, we introduced the notion of persistent homology and persistence
diagrams from an algebraic point of view. Here, we consider a notion equivalent
to that of a persistence diagram but with a more combinatorial approach. For
most of the remainder of this thesis, apart from Chapter 7, we will work with
barcodes instead of persistence diagrams.
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3.2.1 Barcodes and Combinatorial Barcodes

Let (X, f) be a filtered space and Hy(f) its associated persistence module with
decomposition Hy(f) = ®jej K%nﬂ Recall that the k-th persistence diagram,
or barcode, of f is the multiset

Dgm*(f) = {I;}jes-

In most applications, each interval I; is of the form [b;, d;), where b; is the birth of
the homological feature corresponding to I; and d; its death. We call the interval
[bj,d;) a bar in the barcode B. Because this thesis is mainly about combinatorial
aspects of barcodes, we consider only the pairing of the births and deaths, leading
us to work instead with pairs of points instead of intervals.

Definition 3.17. A barcode {(b;,d;)}ics is a multiset of pairs such that —oo <
b; < d; < oo for each i € J. The first coordinate b; is called the birth and the
second one d; is called the death. If there is a bar (bg, dy) that contains all the
others, it is called essential. We denote the set of barcodes with n bars by B,. In
Chapters 3, 5 and 6, B,, consists of the set of barcodes with n 4+ 1 bars, because
we also count the essential bar.

In this thesis, we represent barcodes graphically by drawing the interval
between b; and d; for each index j.

Remark 3.18. The notations for barcodes slightly differ in the chapters of this
thesis depending on the context. When studying the set of barcodes, we do not
need the essential bar (bp,dp). When considering barcodes computed from trees,
such a bar always exists. We recall the main notation at the beginning of each
chapter.

Remark 3.19. Notice that in the new definition, we drop the interval notation to
define a barcode as a pair of birth and death values. The reader familiar with the
algebraic setting of persistent homology will also notice that we suppose that the
bars corresponding to essential classes have finite values instead of being half-open
intervals. In practice, such essential classes are given finite values to be stored in
the computer. Sometimes, we denote dg = oo as well, but the reader should keep
in mind that we are mostly interested in the combinatorial aspects of the pairs

(bi, d;).

Example 3.20. Figure 3.7 shows an example of a barcode with two different
indexings.
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by —d,
b, d,
A p, d
b, d,

b2 dZ
b, dy
dy

Figure 3.7: (A) A barcode with 4 bars. (B) The exact same barcode with a
different indexing where the bars are ordered by increasing birth times.

Although in general a barcode can be a true multiset, in this thesis we are
concerned primarily with barcodes that are actually sets, leading us to formulate
the following definition. In practice, the indexing set J is commonly the set
{1,...,n}. This gives the bars in the barcode an arbitrary but fixed indexing. It
can sometimes be convenient to assume that the indexing is such that the births
are ordered increasingly b; < bs < ... < by, and we will specify when this is the
case.

Definition 3.21. A barcode B is strict if b; # b;, d; # d; if i # j. We denote
the set of strict barcodes with n bars by B:'.

As for merge trees (Remark 3.10), we can combinatorially reduce the informa-
tion of a barcode by computing the ordering of the deaths with respect to the
ordering of the births. This was first observed in [69].

Definition 3.22. Let B = {(b;,d;)}icq1,.. n} be a strict barcode. If we order the
births increasingly such that b;, < ... < b;,, the indexing in {1,...,n} gives a
permutation 7, given by 7,(k) = ix, so that

bry1) <o <bgy(n)- (3.1)

Similarly, ordering the deaths d;, < ... < d;, gives rise to a permutation 74 with
Ta(k) = jx. The permutation op associated to B is defined as op = Tb_le; it
tracks the ordering of the death values with respect to the birth values. Two
strict barcodes are combinatorially equivalent if they have the same associated
permutation.

Though it consists only of a permutation in Sym,,, cp will sometimes be called
a combinatorial barcode, for reasons that will become clear in and Section 3.3.3
and Figure 3.10.

Remark 3.23. The permutations 7, and 74 both depend on the indexing choice of
the b; and d;. However, the permutation ¢ does not depend on any indexing of



3. TREES AND BARCODES 39

the births and deaths, it is intrinsic to the multiset B. Indeed, op can be defined
directly as the permutation that sends the i-th death (in increasing order) to the
o(i)-th birth (idem). If we assume that the births are ordered increasingly, then
T, = id and op can be defined directly by op = [j1j2. .. jn], the indices of the
deaths when they are ordered increasingly.

Example 3.24. Figure 3.7A shows an example of a strict barcode. Its birth
permutation is 7, = [3241], since

b3<b2<b4<b1.

Similarly, its death permutation is 74 = [1342], since d; < d3 < d4 < d3. The
permutation op associated to the barcode of Figure 3.7A is op = [4132] = T{le.
Figure 3.7B shows the same barcode with the bars ordered by birth times. The
corresponding permutations 7, = [1234] and 74 = [4132] are different, but the
product op = 7~ L= [4132] is the same, as it does not depend on the indexing
of the bars. Further examples are depicted in Figure 3.8.

2

1

B 12
B (23)
| NE

Figure 3.8: The Cayley graph of Sym, generated by the three transpositions
(12),(23), (34). Four barcodes are drawn next to the extremities of the graphs
(permutations [1234],[2134], [2143], [1243]) to illustrate a typical barcode corre-
sponding to each permutation. The value next to each permutation is the tree
realization number, introduced in Section 5.1.
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We extend Theorem 3.22 to non-strict barcodes in Section 4.2.3.

3.2.2 Distances for Barcodes

To turn the set B,, of barcodes with n bars into a topological space, one needs
a topology. One way to do this is by introducing the bottleneck or Wasserstein
distances, two commonly used metrics for barcodes. Intuitively, the bottleneck
distance between two barcodes B and B’ tries all possible matchings between the
bars of B and the bars of B’ and chooses the one that minimises the “energy”
required to move the matched pair of bars with maximal separation. However, it
does not consider only matching of bars between B and B’ but also with points
on the diagonal A = {(z,z) | x € R}.

Definition 3.25. Let B = {(bz, di)}ie{l,...,n} and B = {(bivd;)}ze{l,,m} be two
barcodes. The bottleneck distance between B and B’ is

dp(B, B') = min max||z — ()]0,
v zEB

where v runs over all possible matchings, i.e., maps that assign to each bar
(bi,d;) € B either a bar in B’ or a point in the diagonal A, such that no point of
B’ is in the image more than once. Here, ||||o is the [°°-norm on R2.

Remark 3.26. The permutation v acts as a “reindexing” of the indices of B and
B’, and in particular ensures that dg(B, B") does not depend on any indexing of
the bars.

The Wasserstein distance is defined in a similar way by taking the sum over
all lo-distances between x and ~(z) instead:

dw (B, B') = min VEsesle —v(@)[3).

Remark 3.27. Note that in general, the barcodes B and B’ need not have the
same number of bars. The diagonal allows matchings between barcodes with
different number of bars, since “ummatched” bars can be sent to the diagonal. In
this thesis however, we are study the set of barcodes B,, with exactly n bars (for
arbitrary, but fixed n) and restrict ourselves to this case.

We are mainly interested in B, as a set and the main results we prove do
not depend on the metric that is chosen on B,. We will still with a slight abuse
of notation mostly talk of B, as a space, without specifying a specific metric on
it. An exception to that is Section 4.2.4, where we explain how a metric dp on
B, which is closely related to the bottleneck distance, occurs in an alternative
description of the set B, that we work with later on.

An important result in TDA is the stability of persistence homology.
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Theorem 3.28 (Stability of persistence diagrams). [26,102] Let f,g: X — R
be two tame functions on X, a triangulable, compact metric space, and let B, B’
be the barcodes of their respective sublevel sets. Then,

dg(B,B) < |If = gll-

3.2.3 Statistics on Barcodes

Unfortunately, the space of barcodes equipped with the bottleneck or Wasserstein
metric is not a Hilbert space, making it difficult to do statistics. A lot of work has
been done in trying to build kernels to map the space of barcodes into a Hilbert
space, which enables us to turn non-linear methods on a space X into linear ones
in a feature space, a Hilbert space H.

More precisely, a kernel on X is a map

kE:XAxX —R:
k(z,y) = (¢(2), d(y))n,

where ¢ : X — H is a well-chosen map and (-, )y is the scalar product in H.
Using kernels allows us to study statistics on X in the feature space H, which has
a scalar product.

Kernel methods in TDA include persistence images [2] and persistence land-
scapes [21] for example.

In this thesis, we introduce new methods to study statistics on the space of
barcodes based on the field of permutation statistics, see Chapter 4. Here, we
introduce basic statistics on barcodes that will be used later on.

Definition 3.29. Let B = {(bi,d;)}icq1,...n} be a barcode with n bars. The
average of the birth times is
- 1
b= — b;
N2

The standard deviation of the birth times is

n 1/2
[[vs ]| = (Z |bi — b\2>
i=1

and the standard deviation of the death times is

n 1/2
[vall = (Z |di — d!2> :
i=1
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The persistent entropy [8] of B is defined as

Lays l;
E(B) = - Z Zlog (f)’
=1

where [; = d; — b; is the length, or persistence, of the interval corresponding to

(bi, di), and L= Z?:l li.

The last statistic that will be used in this thesis is the tree-realization number
that we define in Theorem 5.1.

3.3 From Trees to Barcodes

In Section 2.4 we recalled the persistent homology of a filtration. In this section,
we restrict ourselves to the specific case of merge trees. As explained in Remark
3.5, a merge tree can be defined as the Reeb graph of the epigraph of a function.
By thinking of a merge tree |T'| embedded in R™ and considering the sublevel sets
of the height function h, one can compute its barcode as in Section 2.4. It can
also be done directly from the tree considered as a cell complex. Both methods
lead to the same barcode.

3.3.1 The Elder Rule and the Combinatorial Elder Rule

Let (T, f) be a merge tree. Regarding 7" as a one-dimensional simplicial complex,
we can linearly interpolate the height function from the vertices to the entire
tree. The barcode of the merge tree (T, f) is the barcode corresponding to the
persistence module

F: (R, <) — Veck where F(t) = Hp (f_l((—oo,t])).

Although the barcode of F' is guaranteed to exist by virtue of Crawley-Boevey’s
theorem, there is a more direct way of constructing the barcode in the special
case of merge trees, called the Elder rule [31].

The Elder rule provides a concrete way to compute the barcode of a merge
tree via decomposition into branches, i.e., each bar in the barcode corresponds
either to a single edge or a list of adjacent edges in the merge tree. According to
the Elder rule, each leaf node marks the beginning of a bar in the barcode at the
height of the leaf node. If two leaf nodes v; and v; such that f(v;) > f(v;) share
an ancestor at vertex k, the branch that was born “earlier" at v; survives as it
is “elder”, and the branch born v; dies, creating an interval [f(v;), f(vg)) in the
persistence diagram.

Under this rule, every bar begins at a leaf node and ends at an internal node
with the sole exception of the bar that is born at the leaf node with the lowest
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height, which is paired with infinity. However, in our figures, in keeping with
Remark 3.4, the lowest leaf node will be paired with dy = f(r), which is the height
of the root node when viewed as an embedded finite tree. A simple example is
illustrated in Figure 3.2.

The Elder Rule can be defined purely combinatorially for combinatorial merge
trees. The output is a set of pairs of labels (the birth and death labels). Recall
from Remark 3.10 that a combinatorial merge tree is a combinatorial tree T’
together with an ordered labelling L; of the leaves and an ordered labelling L;
of the internal nodes, such that L;(v) > L;(w) if v is an ancestor of w. We can
define the combinatorial Elder Rule in the same way as the Elder Rule is defined
in Example 3.3.1 by replacing the function f by the labellings L; and Lj;.

Definition 3.30 (Combinatorial Elder Rule). Let (7, L;, L;) be a combinatorial
merge tree. As in Example 3.3.1, each leaf node v marks the first coordinate of a
pair with the label L;(v). If two leaf nodes v; and v; such that L;(v;) < L;(v;)
share an ancestor v, the leaf with the smallest label, v; gets paired with v,
creating the pair (L;(v;), Li(vg)). Under this rule, the leaf with the smallest label
is paired with the root, which we label by oc.

The pairing obtained from the combinatorial Elder rule leads to a permutation,
where each death label is paired with a birth label. This permutation corresponds
to the one of Definition 3.22, see Corollary 3.33.

3.3.2 Topological Morphology Descriptor

The TMD (Topological Morphology Descriptor) [68]| carries out the process
described above specifically for geometric trees embedded in R3. It was designed
for the study of neuron morphology in [68]. It is a many-to-one function from the
set of geometric trees to the set of barcodes,

TMD: T — B

that encodes the overall shape of the tree, both the topology of the branching
structure of a tree and its embedding in R3. It is defined recursively as follows.

Let T be a rooted tree with root r and set N of vertices, with subset L of
leaves. Let 0 : N — R>¢ be the function that assigns to each vertex its Euclidean
distance to the root r. Notice that ¢ has the required property to be a height
function as defined in Definition 3.3.

Intuitively, the output of the TMD algorithm computes the 0-dimensional
barcode, or persistence diagram, of the distance function §. Each bar (b, d)
corresponds to a connected component in the sublevel sets 6! ([O, t)), that is, a
branch of the tree.
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Remark 3.31. Note that the birth and death roles are reversed in the TMD
algorithm compared to "usual" terminology in persistent homology: the birth
corresponds to the bifurcation and the death to the termination of a branch.
The endpoints of a bar correspond to the distances to the root from the tip of
the branch and from the point where the branch bifurcates from another, longer
branch, see Figure 3.9.

Table 6.1 summarizes the terminology used for the TMD algorithm.

A. Dendritic reconstruction ~ — continuation B. Persistence barcode

® Bifurcation
® Termination

| eo—o—6 ° @
° o e (@

6 ° o—o e 0®
eo ° ®@

] e—— o ®
o ®

2 —o—— o @
— o

0 Ps @

®

Figure 3.9: (Figure from [68]) The algorithm to encode a neuronal tree structure
as a persistence barcode. A. Neuronal tree. B. Persistence barcode generated
with TMD. Each branch in the tree (A) corresponds to a bar in the barcode
(B); the circled numbers encode the correspondence between branches and bars.
Terminations are shown in blue, bifurcations in red, and branches in between in

black.

For each v € N \\ L, let L, denote the set of leaves of the subtree of T with
root at the branch point v. Let u: N — R be the function defined by
() max{d§(l)|l € L,} :veENNL,
V) =
. 0(v) :v € L.

We order the children of any vertex of T" by their p-value: if v1, vy € N are siblings,
then v1 is younger than vg if p(vi) < p(v2).

The algorithm that extracts the TMD of a geometric tree T' proceeds as follows
(Figure 3.9). Start by creating a set A of active vertices, originally set equal to L,
and an empty barcode. For each leaf [, the algorithm proceeds recursively along
its unique path to the root r. At each branch point b, one applies the standard
Elder Rule [31], removing from A all of the children of b, and adding b to A. One
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bar is added to the barcode for each child of b except (any one of) the longest.
Each child removed from A corresponds to a path from some leaf [ to b, which
is recorded in the barcode as a bar (8(b),d(l)). These operations are applied
iteratively to all the vertices until the root r is reached, at which point A contains
only 7 and a leaf [ for which p is maximal among all leaves, which is recorded in
the barcode as a bar (0,4(1)).

If T is a digital reconstruction of a neuron, and the function § is the path
distance from the soma, which is the cell body of the neuron and can be seen as the
root of the tree, then TMD(T) is actually a strict barcode. Indeed, the probability
for two branch points or leaves to be exactly the same distance from the soma
is essentially zero, and TMD(T") always has a longest bar that contains all the
others. This observation justifies our interest in the subset of strict barcodes.

The TMD gives rise to an equivalence relation on 7: two geometric trees
T and T’ are TMD-equivalent, denoted T ~ T', if TMD(T) = TMD(T") as
tm

barcodes. We provide in Chapter 6 an in-depth analysis of the TMD-equivalence
classes of geometric trees.

3.3.3 Spaces of Trees and Barcodes

In this last section we recall and compare the different notions seen so far. Figure
3.6 and Table 3.1 summarize the important characteristics of combinatorial trees,
merge trees, combinatorial phylogenetic trees, and barcodes.

CT | MT | CMT | PT | CPT | B
Height function X X
Labels on leaves (births) X* X* X X | X*
Labels on internal vertices (deaths) X* X* X*
Adjacency X X X X X

Table 3.1: Table summarising the attributes of each object defined in this chapter.
CT stands for combinatorial trees (Theorem 3.1), MT for merge trees (Theo-
rem 3.3), CMT for combinatorial merge trees (Theorem 3.9), PT for (metric)
phylogenetic trees (Theorem 3.12), CPT for combinatorial phylogenetic trees
(Theorem 3.12) and B for barcodes (Theorem 3.17). Labels on leaves and internal
vertices of merge trees and combinatorial merge trees are marked by an asterisk
to indicate that they are inherited from the height function. Similarly, the “labels”
on barcodes (their birth and death values) are inherited from the height function
on the tree.

We conclude this section by clarifying the relationship between the two notions
of combinatorial equivalence of trees and barcodes that are pertinent to the tree
realization problem that we describe in Chapter 5. First, notice that the barcode
of a generic merge tree is always strict. The following lemma describes the
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relationship between the two notions of combinatorial equivalence for trees and
barcodes.

Lemma 3.32. If T and T’ are combinatorially equivalent merge trees, then their
corresponding barcodes B and B’ are combinatorially equivalent as well.

Proof. Since a tree isomorphism ¢ as defined in Definition 3.4 preserves both
birth and death orders, we need to check only that if the Elder rule pairs the ¢-th
birth node with the j-th death node in T, then the same holds for 7”. This is
obvious, however, because the unique sequence of edges connecting a pair of nodes
in 7' must be sent to the same sequence of edges connecting these nodes in T”,
since ¢ is a graph isomorphism and therefore preserves adjacency relations. [

The corollary below follows directly.

Corollary 3.33. Let (T, f) be a merge tree, and let (T, Ly, L;) be its corresponding
combinatorial merge tree (Remark 3.10). Let Br be the barcode of (T, f) obtained
by applying the Elder Rule to (T, f), and op its associated permutation. If one
applies the combinatorial Elder Rule (Definition 3.30), then one can obtains op
from (T, Ly, L;).

In other words, the diagram in Figure 3.10 commutes. Figure 3.10 illus-
trates the relationship between merge trees and their combinatorial equivalence
classes and barcodes and their combinatorial equivalence classes, corresponding
to permutations.

Considering the Elder rule from a purely combinatorial point of view is very
important for the classification of combinatorial merge trees that we describe in
Chapter 5.
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Merge trees Elder Rule Barcodes

- Combinatorial tree T - Pairs of birth/death labels
- Height function on vertices

lEquivaIence relation given

Equivalence relation given
by permutation

by birth order and death order

Combinatorial merge trees |~ rinatorial Elder Rule] Combinatorial barcodes

- Combinatorial tree T - Permutation given by pairing
- Ordered labels on leaves (birth label) of birth and death order
- Ordered labels on internal nodes (death label)

respecting the ancestor relations

0

0

1
2
—_—

21

Figure 3.10: The relationships between merge trees, combinatorial equivalence
classes of merge trees, barcodes and permutations. Birth labels are indicated in
red, and death labels in blue. The largest bar (corresponding to the essential
class) is not taken into account in the combinatorial setting since it is there for
every tree/barcode. Therefore we label it by 0. Considering the pairing of the
i-th death and the j-th birth given by the combinatorial Elder rule (bottom right)
returns the same permutation as the one directly defined from the barcode (top
right).



CHAPTER 4

The Space of Barcodes

In this chapter, we investigate more deeply the space of barcodes and its relation
to the symmetric group. Section 4.1 is based on a project that started with L.
Kanari and K. Hess in [69] and continued when J. Curry, J. DeSha and B. Mallery
joined in [32]|. The rest of the chapter extends the equivalence classes of barcodes
to new coordinates on the space of barcodes with n bars indexed by the symmetric
group. This is joint work with B. Briick.

This chapter focuses on the space of barcodes only, and a barcode need not
to come from a tree. Therefore, the essential bar (bg,dp) need not exist. We
summarize the notation for this chapter in the box below.

Strict barcode: a barcode B = {(b;,d;) }ic(1,...n} such that b; # b;,d; #
d; if i # j. The indexing is arbitrary.

Permutation: Assume that for a strict barcode B one has b;, < ... <b;,
and dj, < ... < dj,. The permutation associated to B is computed via
Tb_le, where Tb(k) = ik and Td(k) = ]k

The space B,,: it consists of all barcodes with n bars. Note that in this
case, there is no essential bar (bg, do).

4.1 Relations to the Symmetric Group

4.1.1 Combinatorial Barcodes as Permutations

The motivation for this work is to understand the space of barcodes from a
combinatorial and geometric point of view. A strict barcode B with n bars can
be associated with a permutation op € Sym,, that tracks the order of the deaths
d; with respect to the order of the births b; (see Theorem 3.22). This decomposes
the set of barcodes with n bars into n! equivalence classes, one for each element
of the symmetric group Sym,,. Based on this observation, one can study the
combinatorial properties of barcodes by describing these equivalence classes—or

48
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equivalently, the elements of Sym,,—and the relations between them.

We can express the relation between barcodes and the symmetric group more
concisely as follows. Let BS' denote the collection of strict barcodes with n bars.
The map that associates to every strict barcode its permutation type defines a
bijection between combinatorial equivalence classes of strict barcodes and elements
of the symmetric group, i.e.,

Bt/ ~ — Sym,, .
Example 4.1. The relation between the space B!/ ~ and the corresponding
elements of Sym, under the bijection given above is shown in the Cayley graph
of Sym, in Figure 3.8. Similarly, Figure 4.1 shows all the permutations of Symj,
and the corresponding persistence diagrams. The Cayley graph of Syms and the
space B§!/ ~ are displayed in Figure 5.5C as well.

(13) or [321]
°
°
(12)7’ o Yg.)*_
(132) or [312] (123) or [231]
° °
° o
° °
(23)*—| |(12)*—
° °
. °
° °
(12) or [213] (23) or [132]
°
(12) * — (23) * —
.
o
id or [123]

Figure 4.1: Combinatorial equivalence classes of barcodes with three non-essential
bars. The associated permutation o is written next to each diagram in both forms
of notation: the image notation is in square brackets, i.e, [0(1)c(2)o(3)], and the
cycle notation in parenthesis. The arrows point in the direction of increasing left
Bruhat order and exhibit Symgs as a poset. Notice that the permutation acts by
switching death order of the bars in the barcode

4.1.2 Convexity of Combinatorial Equivalence Classes

In this section we prove that combinatorial equivalence classes are convex in a
certain sense: if two strict barcodes B and B’ are of the same combinatorial
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type, then they can be connected by a “line segment” of barcodes' all of the same
permutation type.

We prove first that the set B, admits the algebraic structure necessary to
formulate a convexity result.

Lemma 4.2. 1. For all A € Ryg and {(b;,d;)}_, € By, the set
AB := {(Abj, Ad;) }i g
1s also a strict barcode.

2. For all B = {(b;,d;)}y, B = {(b],d;)}_, € B, the set

B+ B :={(bi+ V,di + d;) }i—y

is also a barcode with distinct birth times, which is strict if B and B’ have
the same permutation type.

Proof. The proof of (1) is trivial, since A is assumed to be positive, whence
multiplication by A preserves the order of real numbers.

The only subtlety in the proof of (2) concerns distinct death times. If the
permutation types of B and B’ are different, it could happen that d; < d; and
di > dj, but d; + d; = dj + dj, so that B + B’ would not be strict. If they have
the same permutation type, then this cannot happen. O

Lemma 4.3. For every n and every o € Sym,,, the set of strict barcodes of
permutation type o is convex, i.e., for B and B’ of permutation type o, the
interval

[B,B'] :={tB+ (1 —-t)B"|te]0,1]}

18 contained in the set of barcodes of permutation type o.

Proof. Given the previous lemma, it remains only to prove that the permutation
type of tB + (1 — t)B’ is o, which follows immediately from the observation that

di<dj andd;<d;-:>di+d§<dj+d;.
O

Remark 4.4. We can also formulate the lemma above as saying that there is a
“straight-line path" from B to B/,

BB :[0,1] = B, :t+— B":=tB+ (1 -t)B

LA continuous path of barcodes is sometimes called a vineyard. This terminology arises more
commonly when barcodes are represented using persistence diagrams, as a path in the space of
persistence diagrams is a configuration of paths, some of which enter of exit the diagonal.
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It is not hard to show that this function is indeed continuous with respect to both
the bottleneck metric and the Wasserstein metric on 5,,.

It is interesting also to consider the path BB’ when the barcodes B and B’
are not of the same permutation type. As mentioned in the proof of Lemma 4.2,
not every point of BB’ is necessarily a strict barcode in this case, which allows
the path to connect one permutation type to another. One can show that the
smallest number of different classes that the path goes through is the length of
the shortest path between the two corresponding permutations of B and B’ on
the Cayley graph defined using the generating set of elementary (neighboring)
transpositions 7; = (4,7 4+ 1). This value is related to the Bruhat order. A more
complete explanation involves describing the space of barcodes in terms of a family
of convex sets that fiber over the dual of the permutohedron, which is the purpose
of the next section.

Example 4.5. Figure 4.2 shows an example of the path described in the proof
above, using the representation of barcodes as persistence diagrams. The path
consists of the straight lines between the matched points of the diagrams. Note
that the dotted lines indicating the births and deaths never cross for the same birth
and death order, respectively, because the barcodes stay in the same permutation
class at each step of the path. It is possible for b; to be greater than b, for
example, but the relative order of births and deaths does not change.

dy'

bi' by by' bz bz b3

Figure 4.2: Continuous path between two barcodes in the same combinatorial
class. We show the persistence diagrams of each barcode. The first one B is
indicated by red dots and the second one by green dots, and the path B? is in
purple.

Lemma 4.3 allows us to fix a standardized representative of each combinatorial
barcode type, making the connection to the symmetric group explicit.
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Definition 4.6. A barode B is in standard form if there is a permutation o of
the set {1,...,n} so that

B = {(i,0(i) + 1) }icq1,..n} -

It is clear that B is strict and has permutation type 0. We sometimes write B(o)
for the standard barcode associated to o.

Lemma 4.3 implies that any strict barcode B of permutation type o can be
connected via a straight-line path to the barcode B(o).

4.2 Stratifying the space of barcodes using Coxeter
complexes

Considering the Cayley graph of the symmetric group with respect to the gen-
erating set given by adjacent transpositions (i,7 + 1) yields a combinatorial
representation of the elements of Sym,,. It tells us how a pair of permutations can
be transformed into one another using transpositions one step at a time. However,
it yields no information about “higher order relations” that exist among larger sets
of permutations and it does not offer a way to continuously change permutations
or the associated equivalence classes of barcodes.

3421 3412
.32
L 3142
3241 . 3214 3124 3;
2341 314
11324 1342
4321;.........4312;
2134) ]
— 52 ...... 1432
-
247 & . 41 :
......... o2 4123
2413 2143 1243 1423

Figure 4.3: The permutohedron [100] of order 4 is a polyhedral decomposition of
the sphere where each vertex corresponds to an element of the symmetric group
Symy. Its 1-skeleton is the Cayley graph of Sym, (see Figure 3.8).

A way to resolve this is to add higher dimensional cells to the Cayley graph and
to consider it more geometrically as a cell complex instead of as a (combinatorial)
graph. A first approach would be to use that the Cayley graph of Sym,, is the
1-skeleton of the permutohedron [100] of order n, see Figure 4.3. This observation
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embeds the Cayley graph into a polyhedral decomposition of the (n — 2)-sphere.
As this is a more geometric object, it allows to continuously “walk” from one
permutation to another. The problem is that only the vertices (and not the
higher dimensional cells) of the permutohedron have an interpretation in terms
of elements of the symmetric group. This makes it unclear how such a walk
would continuously change one permutation into an other. Furthermore, this
representation lacks a notion of “size” for barcodes. For instance, the two barcodes
depicted in Figure 4.4 lie in the same equivalence class and hence have the same
associated permutation.

0 0.2
A 0.18 0.3
' 021l— 0.7
0.8 1.1
100 1000
B. 190 1050
300 1400
400 1600

Figure 4.4: Two barcodes with the same associated permutation (the identity
[1234]) but with large differences in their birth and death values.

The alternative that we suggest to overcome these problems is to work with
Coxeter complexes (see Section 2.3.2) instead of permutohedra. The Coxeter
complex associated to Sym,, is the dual of the permutohedron of order n (Figure
4.5). It forms a simplicial decomposition of the (n — 2)-sphere and is well-studied
in the context of reflection groups and Tits buildings. For us, it has the advantage
that its top-dimensional simplices correspond in a natural way to permutations
and only passing through a face of lower dimension changes such a permutation.
This allows for a better description of continuous changes between different
permutations. It also has the advantage that it comes with an embedding in R"”,
where the additional two real parameters that are needed to describe positions
relative to this (n — 2)-dimensional space have a natural interpretation in terms
of the “size” of barcodes.
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L 13
................ o '
. lme ..

Figure 4.5: The permutohedron of order 4 (black) is the dual of the Coxeter
complex X(Symy) (grey).

In this section, we use Coxeter complexes to develop a description of the set
B,, of barcodes with n bars with coordinates that have natural interpretation
when doing statistics with barcodes. These coordinates define a stratification of
B,, where the highest dimensional strata are indexed by the symmetric group.
The main results of this section can be summarized as follows:

Theorem 4.7. Let B, denote the set of barcodes with n bars.

1. By, can in a natural way be seen as a subset of a quotient Sym,, \R?*".

2. B, is stratified over the poset of marked double cosets of parabolic subgroups
of Sym,,.

3. Using this description, one obtains a decomposition of B, into different
regions. Fach region is characterized as the set of all barcodes having the
same average birth and death, the same standard deviation of births and
deaths and the same permutation type op € Sym,,.

4. This description gives rise to metrics on By that coincide with modified
versions of the bottleneck and Wasserstein metrics.

For more detailed and formal statements of these results, see Theorem 4.14,
Theorem 4.21, Theorem 4.22 and Theorem 4.24.

To obtain this description of B,, we proceed as follows. A barcode is an
(unordered) multiset of n pairs of real numbers (birth and death times). It can
hence be seen as a point in Sym,, \R™ x R", where the action of Sym,, permutes
the coordinate pairs. As for every barcode the birth is smaller then the death, B,
is only a proper subset of this quotient of R?”. Let ¥(Sym,,) denote the Coxeter
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complex for Sym,,. It is homeomorphic to an (n — 2)-sphere, so we can decompose
R" as
" = cone(X(Sym,,)) X R,

where cone(X(Sym,,)) = ¥(Sym,,) x [0,00)/(x,0) ~ (y,0) = R""!. This decom-
position yields coordinates xg, Z, ||vg||, where g specifices a point on the Coxeter
complex, ||v;]|| is the “cone parameter” and & parametrizes the remaining R (for
details, see Theorem 4.9, where the naming becomes clear as well). In summary,
this allows one to describe BB,, as a subset of

B, C Sym,, \[cone(X(Sym,,)) x R X cone(X(Sym,,)) x R].

We call the coordinates that we obtain from this description Cozeter coordinates.
It turns out that for each barcode, these coordinates are by, b, ||vp|| and dy, d, ||vgl|,
where b and d are the averages of the births and deaths, ||vp| and |lvg|| are their
standard deviations, and the coordinates by and dy describe the permutation
equivalence class of the barcode (Theorem 3.22). The stratification one obtains is
induced by the simplicial structure of ¥(Sym,,).

The advantages of these new coordinates are two-fold. Firstly, one obtains
coordinates that uniquely specify barcodes and are yet compatible with the
combinatorial structure of B,, given by permutation equivalence classes. Secondly,
one resolves the earlier-mentioned problem that permutation equivalence classes
themselves carry no notion of “size”. The decomposition of B, into regions
subdivides these equivalence classes by also taking into account the averages
and standard deviations of births and deaths. This makes these regions a finer
invariant than the permutation type. Therefore, they offer a new way to study
statistics of barcodes by taking into account both the average and standard
deviation of births and deaths, which are commonly used summaries in TDA,
and permutation statistics tools, such as the number of descents and inversion
numbers, or the tree realization number that we proved useful for the study of
inverse problem for barcodes and trees in Chapters 5 and 6.

This section is based on joint work with B. Briick.

4.2.1 Coxeter complex coordinates on R"

In this section, we describe R™ as the product of a cone over the Coxeter complex
¥ (Sym,,) with a 1-dimensional space orthogonal to it. This description is based
on a standard way for realising Sym,, as a reflection group [1, Example 1.11].
In terms of Coxeter groups, this is often called the “dual representation”; see
e.g. [1, Section 2.5.2]. Theorem 4.11 below goes through the following steps in
detail for the case n = 3.

In what follows, we will consider R” with the /2-norm ||-|| that is induced by
the standard scalar product (-,-). We let ey, ..., e, denote the standard basis.
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The symmetric group Sym,, acts on R"” by permuting this standard basis. This
action can be expressed in coordinates as

’y-(xl,...,xn) = (1‘7—1(1),...,%7—1(”))‘ (41)

It is norm-preserving and fixes the 1-dimensional subspace L = (e) spanned by
e=e1+---+e, =(1,...,1). Hence, there is an induced action on the orthogonal
complement V = el, which can be described as

V={(z1,...,2,) e R"| ¥}L,2; =0} .

Note that L is the subspace consisting of all (z1,...,2,) € R” where z; = x; for
all 7, 7. So in particular, every (z1,...,z,) € R™\ L has at least two coordinates
that are different from one another.

The subspace V' has a natural structure of a cone over the Coxeter complex
¥ (Sym,,) associated to Sym,,. The transposition (i,j) € Sym,, acts on V by
orthogonal reflection along the hyperplane

{(z1,...,2p) € R" | z; = 25},

permuting the i-th and j-th coordinates. Let H be the collection of all these
hyperplanes, and let S, denote the (n — 2)-sphere of radius r > 0 centered at the
origin in V' (with respect to the norm induced by the restriction of the standard
scalar product on R"), i.e., S, ={v eV ||v|| =r}.

Lemma 4.8 ( |1, Examples 1.10, 1.4.7 & 1.81|). The hyperplanes H induce
a triangulation of S,.. The resulting simplicial complex 3 is isomorphic to the
Coxeter complex ¥(Sym,,) as Sym,,-spaces.

The set of points x € R™ such that all coordinates are different is the configu-
ration space

Conf,(R) = {(z1,...,2n) ER" | i # j = z; # x;}.

The previous lemma describes how a permutation in Sym,, can be associated to
each point x € Conf,(R). To understand why this is true, observe that if C' is a
connected component of S, \ |JH, then for all (z1,...,2,) € C:

o if i £ j, then x; # x;, ie., (21,...,2,) € Conf,(R);
o if (y1,...,yn) € C, then y; < y; if and only if z; < x;.
In particular, there is a unique 7 € Sym,, such that

(1‘1, R ,:Cn) €c(C <— Tr1) < Zr) <0 < Tr(p)- (4.2)
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In other words, the order of the elements xy,...,z, is given by 7((1,...,n)).
See Figure 2.3 above for the case n = 4. The connected components of S\ [JH
are exactly the (interiors of) the maximal simplices of ¥. Sending each such
component C to the facet of ¥(Sym,,) that corresponds to the permutation 7
defined by Equation 4.2 gives the desired isomorphism ¥ = ¥(Sym,,).

Using spherical coordinates, we can express every point v € V in terms of
a radial component r > 0 and an angular component, which is equivalent to
specifying a point vy € S, (i.e., a point in the geometric realization of X(Sym,,)).
The upshot of this is that we obtain a new set of coordinates for points in R™ \ L.

Proposition 4.9. Let n > 2. There exist two projection maps
p:R" — R xRsg:z—, (T, ||vg]),
where =L 3°" z; and ||vl| = (0 |2 — E]2)1/2, and
q:R"\ L — ¥(Sym,,)
that define a bijection
(p|Rn\L,q) R"\ L — R xRy x X(Sym,,).

Let Sym,, act on R™ by permuting the coordinates (Equation 4.1) and on the
product R x Rsg x X(Sym,,) by extending the action on X(Sym,,) trivially on the
first two factors. Then the map (p}Rn\L, q) is Sym,,-equivariant.

Proof. For every x € R", the orthogonal decomposition R™ = (e) @ V gives a
unique way to write t = - e + v, with £ € R and v, € V, where

T = {e, 2) = sz/n = lZ%
(e, €) n =

=1

We can describe the projection v, = x — Z - e € V in spherical coordinates. Its
norm (the radius of the sphere) is

n 1/2
[oz]| = [l =z -ef| = (Z i — f!2> :

=1

S0 v, is determined by this value together with a point g on the (n — 2)-sphere
S|jv,||> OF equivalently on the geometric realization of X(Sym,,). Notice that = € L
if and only if v, = 0, as the line L intersects V at its origin, in which case the
choice of xy is not unique.

We define the map p : R" — R x R>¢ : = — (Z,]||vz]]) and the map
q:R*\ L — S" 2.2+ zp. The point x4 is well-defined since z ¢ L and
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therefore there exist 4, j such that x; # x;. It is easy to see that (p‘Rn\L, q) is a
bijection, i.e., that given ¢; € R, c2 € Ry and ¢3 € X(Sym,,), there is a unique
x € R™\ L such that ¢; = &, ca = ||vg|| and ¢35 = xy.

The fact that (p‘Rn\ 7»4) is Sym,,-equivariant follows from Theorem 4.8 and

because permuting the coordinates of x € R™ changes neither the average % > i Ti

nor the standard deviation (3, |z; — £]2)1/2. O
To summarize, every point © = (x1,...,2,) € R™\ L determines the following
three data:

1. its projection to L, given by & = % Yoz € R,

2. the norm of its projection to V, given by |jvs]| = (X0, |2i — 5]2)1/2 € Rxo;

3. a point xp in the geometric realization of the Coxeter complex ¥(Sym,,)
associated to Sym,,.

Furthermore, x is uniquely determined by these three coordinates.
Remark 4.10. Since R" = R™\ LU L and R~ x X(Sym,,) = cone(X(Sym,,)) \ {*},

the map above gives rise to a decomposition R" = cone(X(Sym,,)) x R. Indeed,
the line L C R™ corresponds to points x € R™ with v, = 0, which could be seen
as “spheres of radius 0” in the projection q.

Example 4.11. We go through the previous construction in detail for the case
of R3 equipped with the natural action of the symmetric group Symg, illustrating
the example in Figure 4.6.

e, /\
Projection to V

‘ X5>X3
Xp>X3 X>=X3
X2=X3 Xy<X3
X5<X3 '
_— €
_—
es s X1<X3 X1>X3
X1<X3 X1>X3 X1=X3
X1=X3

Figure 4.6: Example of the decomposition of R? in Coxeter coordinates.
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Consider R? = (eq, e, e3). The symmetric group Syms acts on R3 by permut-
ing the coordinates of each vector (x1,x9,x3):

v (.1‘1, 9, $3) = (I',y—l(l),.%,771(2),.1‘771(3)).

Each v € Symg can be written as a product of transpositions (i, j), and its action
on R3 is given by the performing the corresponding sequence of reflections along
the hyperplanes z; = ;. The three (2-dimensional) planes corresponding to the
equations x1 = 9, 9 = x3 and x1 = x3 are indicated as lines on the left hand
side of Figure 4.6 to make the picture clearer. The subspace L that is invariant
under this action is spanned by the vector (1,1,1) = e, shown in red in Figure
4.6.

We can define new coordinates on R?, lying in (e) = L and e+ =V, a 2-

dimensional subspace whose affine shift is depicted in green in Figure 4.6, reflecting
the decomposition of R? into a product of (¢) and V. A point z € R3 can now be
written as T - e + v;, where T € R and v, € V.
We show on the right hand side of Figure 4.6 how V, represented as R?, has the
structure of a cone over a Coxeter complex. The figure shows the projections
of the planes z1 = 9, 9 = x3 and 1 = x3 and the intersection of V' with the
subspace (e) (red dot). To obtain the cone structure on V', we give it spherical
coordinates (i.e., polar coordinates in this case). The first coordinate is the radius
r, which determines a 1-sphere centred at the origin (the black circle). On the
circle, a point v, is determined by an angle xy. Intersecting the circle with the
hyperplanes, we decompose it into | Symg | = 6 (coloured) strata indexed by the
symmetric group and forget about the angle 4. For instance, if v = (v1, va, v3)
with v < v3 < vy, the point v lies in the stratum indexed by [231]; this is the
unique region that lies on those sides of the hyperplanes that satisfy x1 > zo,
T < x3 and 1 > x3.

Let v = (12). It acts on v via v - v = (vy-1(1), Vy-1(2), Vy-1(3)) = (2,01, 3).
We denote its image by v7 := - v. The order of the coordinates of v7 satisfies
v] <wvg <0j, so v lies in the stratum indexed by the permutation [132]. The
image v7 of v through the action of v corresponds to the reflection through the

hyperplane x; = xs.

Remark 4.12. There are two special cases in Theorem 4.9, when x; = z; for all 4, j,
ie., (z1,...,2n) € L and when z; # x; for all ¢ # j, i.e, (x1,...,2,) € Conf,(R).
For the former, we have p(z) = (7, ||vz]|) = (x;,0) and xg is not defined. For the
latter, ¢(z) = xg lies in the interior of a top-dimensional simplex of ¥ (Sym,,).
Hence, it determines a unique element 7, € Sym,,. In fact, these are just the two
extremes of a family of situations that can occur.

If z € Conf,(R), then zy lies on an intersection of hyperplanes in H and hence
on a lower-dimensional face of ¥(Sym,,). There exists a permutation 7 € Sym,,
such that
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but 7 is not unique. It is defined only up to multiplication by elements of the
subgroup
P= {fy € Sym,, ‘ Tr() = Ty for all z} .

Note that P is generated by adjacent transpositions (4,7 + 1), i.e., it is of the form
(T"), where T' C S is a subset of the set .S of simple reflections of Sym,,. Hence, it is
a parabolic subgroup of Sym,,. The number of adjacent transpositions generating
P depends on how many coordinates of (x1,...,x,) agree, or, equivalently, the
number of hyperplanes in H it lies on. Intuitively speaking, one could phrase this
as “the more of the x;’s take the same value, the less ‘permutation information’ is
left”. The coset
TP = {p S Symn ‘ Tp(1) <...< xp(n)}v

corresponds to the lowest dimensional face of ¥(Sym,,) that z lies on. It depends
only on the order of the values of the x;, not on the choice of 7. If z € L, then
7P = Sym,,. This could be interpreted as the degenerate case where zy lies on
the unique (—1)-dimensional face of 3(Sym,,) (see Theorem 2.23).

4.2.2 Coxeter coordinates for the space of barcodes
Describing 5,, as a quotient

In this section, we describe B,, as a subset of a quotient of R?". This will be used
in the next section to equip this space with Coxeter complex coordinates.

Let X := Sym, \R" x R™ where Sym,, acts diagonally by permuting the
coordinates, i.e., for v € Sym,,, we set

v (-rla e Ty YLy ey yn) = (x'\/*l(l)a sy Ty=1(n)s Yy=1(1)y - - 7y7*1(n))'

The elements of X are equivalence classes of tuples (z1,...,Zn,Y1,...,Yn) €
R™ x R™, which are denoted by [z1,...,Zn, Y1, ., Yn]-

Remark 4.13. We write X := Sym,, \R™ x R" to emphasize that Sym, acts
from the left on this space. The reason we stress this is that later on, we will
combine the statements here with descriptions of the Coxeter complex. There,
the simplices are given by cosets 7P, and the symmetric group acts on them by
left multiplication.

There is a map ¢ from the space of barcodes with n bars to X given by

¢: B, — X =Sym, \R" xR"
{(bl, di)}ie{l,...,n} — [bl, ey b, dy, . ,dn]
The image of ¢ is independent of the choice of indices for the bars of the barcode

because the action of Sym,, is factored out. The map ¢ is clearly injective, but it
is not surjective as the birth time of a homology class is always smaller than its
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death time, i.e., b —1i < d — i for all i. The image of ¢ is the subspace Y of X
given by

Y = Sym, \ {(z1,...,Tn,Y1,---,Yn) E R" x R" | z; < y; for all i}.
For later reference, we note this observation in the following.

Proposition 4.14. The map ¢ defines a bijection B,, — Y C Sym,, \R" x R".

In Section 4.2.4, we equip B,, with metrics inspired by the bottleneck and
Wasserstein distances. The map ¢ is an isometry with respect to these metrics.

Coxeter complexes for birth and death

We now introduce the Coxeter complex coordinates for B,,. These coordinates are
obtained by applying the map (p‘Rn\ Ix q) of Theorem 4.9 to the two copies of R"
inY.

Theorem 4.15. Every barcode {(bi, di)};cq1, ny € Bn such that at least two of
the b; and two of the d; are different from each other determines the following five
data:

1. its average birth time b= Y""  b;/n € R;

2. its average death time d = > I, d;/n € R;

3. its birth standard deviation [[uy|| = (2, [bi — 52)"/* € Ray;
4. its death standard deviation |Jvg|| = (37, |di — J!2)1/2 € Ruo;
5. an orbit Sym,, -(bg, dg) € Sym,, \X(Sym,,) x 3(Sym,,).

Furthermore, these five data uniquely determine B.

Proof. Let B = {(bi,di)};cq1,. 3 be such that at least two b; and two d; are
different. By assumption, both (by,...,b,) and (dy,...,d,) are points in R™ \ L.
The image of B under ¢ (Theorem 4.14) is

¢(B) = [b1,...,bn,d1, ...,dyp] € Sym,, \(R"\ L x R"\ L).
Since the map (p‘Rn\ 1» ) is Sym,,-equivariant (Theorem 4.9), it induces a bijection
Sym,, \ (R"\ L xR"\ L) = Sym,, \ (R xR0 X (Sym,,)) X (R x R50 X (Sym,,))).
The image of [by, ..., by, d1, ..., d,] under this bijection is the Sym,,-orbit of
(Pl g 1> @) (01, oees by sy d) = (B, ool bo, s [[vall, dp).
The claim now follows since the action of Sym,, on (b, ||vs||, b, d, |[vall, ds) is

trivial on b, ||vp||, d, ||vg|| and is given by the action of Sym,, on the Coxeter
complex Y (Sym,,) for by, dy. O
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4.2.3 A stratification of B,

In this section, we describe the stratification that we obtain from the description
of B,, in terms of Coxeter complexes.

We start by extending Theorem 3.22, the permutation assigned to a strict
barcode, to the general case of B,. For non-strict barcodes, we cannot uniquely
assign a permutation. However, there is a nice description of the set of all possible
such permutations in terms of double cosets of parabolic subgroups:

Definition 4.16. For a barcode B = {(bi7di)}i€{1,...,n} € B, let 7, and 74 be
elements of Sym,, such that b, (1) <... <by () and dry1) < ... <dryp). Let

PbB = {7 € Sym,, ‘ bry (i) = bryy(i Vz} Pd = {7 € Sym,, ’ dry(i) = Aryy(i Vz}
The double coset Dp associated to B is defined as Dg = PfrglrdeB.

Remark 4.17. Note that while 7, and 75 depend on the ordering of the barcode,
PbB and Pf do not. The groups PbB and PdB are parabolic subgroups of Sym,,, as
was observed in Theorem 4.12. The cosets

TbeB = {p S Symn ‘ bp(l) <...< bp(n)}

and

TdeB = {p € Sym,, ‘ dp(l) <...< dp(n)},
which are the sets of permutations that preserve the order of the b; and d;
respectively, do not depend on the indexing of B either. Hence, the double coset
Dp = (TbeB y~L. TdeB is indeed an invariant of the barcode B. Furthermore, if
B is a strict barcode, then PbB ={id} = Pf, so Dg = {Tb_le} = {op} and we
recover Theorem 3.22.

Example 4.18. Let
B = {(b1,d1) = (1,10), (b2, d2) = (2,5), (b3, d3) = (4,5), (ba, da) = (4,7)} € Ba.

Onehasb; <by <bg=bsanddys =d3 <ds <dy. Let 7, = [1234] and 74 = [2341}.
They satisty by, 1) < ... < by ) and dr ;1) < ... < d; 4 respectively, but so do

= [1243] and 7, = [3241]. In this case, one has PP = {id, (34)}, PP = {id, (12)}
and 7, PP = {[1234], [1243]}, 74 PP = {[2341], [3241]}. The double coset

Dp = {wn, ‘1ava|w € Py va € Py}
—{Tb T4, Ty, 1Td,7’b T Ty L
— {[2341], [2431], [3241], [4231]}

is the set of all the permutations o that satisfy that the j-th death (in increasing
order) is paired with the o(j)-th birth.
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Recall that the Coxeter complex ¥(Sym,,) is a simplicial complex with simplices
given by cosets of parabolic subgroups. This simplicial decomposition gives
¥ (Sym,,) the structure of a stratified space over the poset of cosets of parabolic
subgroups equipped with reverse inclusion. Taking the cone and products of these
simplices yields a decomposition of

R?" 2 cone(X(Sym,,)) x R x cone(X(Sym,,)) x R (4.3)

into strata that are compatible with the action of Sym,,, i.e., each stratum is sent
to another stratum of same dimension by the action of Sym,,. This follows from
Theorem 4.10 and the fact that ¥(Sym,,) is stratified and the map (p‘Rn\L,q)
of Theorem 4.9 is Sym,,-equivariant. The strata in Equation 4.3 are indexed by
pairs of cosets (11 P1, 72 P3), where 71,72 € Sym,, and P, P» < Sym,, are parabolic
subgroups®. The partial ordering on these pairs is given component-wise by
reverse inclusion (cf. Equation 2.1).

It follows that the quotient X = Sym,, \R?" is stratified over the quotient P of
this poset by the action of Sym,,. More concretely, P can be described as follows:
The elements of P are orbits of the form Sym,, -(71 Py, 7o P), where 71,72 € Sym,,
and P, P» < Sym,, are parabolic subgroups. The partial ordering is given by

Symn '(TlPlv T2P2) < Symn (Tipllv Tépé)
if there is 7 € Sym,, such that
71 Py D41 P| and 7o Py D Y14 Py.

The poset P has a more explicit description in terms of another poset 9, which
has as elements “marked” double cosets of parabolic subgroups.

Definition 4.19. Let Q be the poset consisting of all triples (P, Pio Py, P),
where o € Sym,, and Py, P, < Sym,, are parabolic subgroups and where

(P17P10P27P2) < (P1/7P{0—P2/7P2/>
if and only if there is component-wise containment in the reverse direction,

P1 2 Pll, PQ 2 P2/ and P10'P2 2 P{O’Pé

A very similar poset is also studied as a two-sided version of the Coxeter
complex by Hultman [63] and Petersen [98]. We remark that Q is different from
the poset of all double cosets of the form PyoPs: There can be Py # P|, P» # P,
such that Pio Py = PjoPj (see [98, Remark 4]).

2Note that, following Theorem 4.12, the points in Conf, (R) x Conf,(R) C R" XxR" are exactly
the ones that belong to the top-dimensional strata. Similarly, the points of L x L C R" x R"
belong to the lowest dimensional strata, corresponding to the cone points in Equation 4.3.
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Lemma 4.20. The map

p:P—=0Q
Sym,, -(11 Py, 72 P2) v (Py, Pim{ ' Py, Po)

18 an isomorphism of posets.

Proof. To see that ¢ is a bijection of the underlying sets, consider the following
map:

Y:Q—=P
(P1, Pio P2, P) — Sym,, -(Py, 0 P).

It is easy to verify that ¢ and v are independent of the choices of representatives
and are inverse to one another. That ¢ is indeed a map of posets, i.e., that it
preserves the partial ordering, follows from elementary manipulations of cosets. [

Theorem 4.21. The set B, of barcodes with n bars is stratified over the poset
Q. The lowest dimensional stratum containing the barcode B is the stratum
corresponding to (PbB,DBJDf) € Q. It is of the form (using the notation of
Theorem 2.23 and Theorem 4.16)

B B
BP0 — (Sym,, -(cone(m P?) x R x cone(raPf’) x R)) NY,

where cone(TP) = 7P x [0,00)/(x,0) ~ (y,0).

Proof. Recall that B,, 2 Y is a subset of X = Sym,, \R?>" (Theorem 4.14). As
observed above, X is stratified over the poset P and, by Theorem 4.20, this poset
is isomorphic to Q. It follows that B, is also stratified over Q. The strata are
obtained by taking the intersection with Y.

This stratification is induced by the simplicial structure of the Coxeter com-
plexes in

X = Sym,, \ (cone(E(Sym,,)) x R x cone(X(Sym,,)) x R).

Hence, the strata that contain a barcode B € B,, depend only on the coordinate
Sym,, -(bg, dg) € Sym,, \X(Sym,,) x X(Sym,,) that B determines by Theorem 4.15.
As explained in Theorem 4.12, the associated points by, dg € 3(Sym,,) lie in the
interior of the simplices 7, PP, TdeB . Hence, the lowest dimensional stratum that
contains B corresponds to the Sym,,-orbit of (7, PP, 74PF). O

Let B be a strict barcode, that is, b; # b; and d; # d; for i # j. Then B is
contained in the top-dimensional stratum

B0 ralidb ) _ g (come(r, {id}) x R x cone(ry {id}) x R)) N Y.
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Changing the representative of the Sym,,-orbit, this can be rewritten as
plidhieshlidh) — (Sym, -(cone({id}) x R x cone(op {id}) x R))NY,

where op = 7, 17'd is the permutation associated to B as in Theorem 3.22. In
particular, the strata containing strict barcodes are in one-to-one correspondence
with the elements of Sym,,.

When one considers the cone and real line parameters in the stratification
of Theorem 4.21, one obtains regions that are determined by the averages and
standard deviations of Theorem 4.15 and by parabolic subgroups.

Corollary 4.22. The Cozxeter coordinates of Theorem 4.15 decompose the space
B, of barcodes with n bars into disjoint regions. The region containing the barcode

B ={(bi,di)}icq1,. ny € Bn is defined as the set of all barcodes B’ such that:

1. its average birth time is the same as that of B, i.e., b’ =b;

2. its average death time is the same as that of B, i.e., d = d;

3. its birth standard deviation is the same as that of B, i.e., ||vy|| = ||vs]|;
4. its death standard deviation is the same as that of B, i.e., ||vg| = [|vdl;
5. PP'= PP, PP = PP and D = Dp'.

For strict barcodes, the information of the last Item 5 is equivalent to specifying
o, the permutation associated to barcodes in Theorem 5.22.

4.2.4 A metric on B,

In this section, we explain how the description of B, given in Section 4.2.2 with
R"™ equipped with the {°°-norm gives rise to a naturally defined metric dg on B,
that is closely related to the bottleneck distance. Similarly, the [?-norm on R”
leads to a modified Wasserstein distance JW on B,.

To describe dg, we equip R?" with the metric dog induced by the [*-norm.
This metric induces a map X x X — R on the quotient by taking the minimum
value over all representatives of the corresponding equivalence classes:

d: XxX >R
([z,9],[",4]) = min  de((Z,9), (@, 7)) (4.4)
(#,9)€[,y],
(CRBISEARTY

We will show that this map restricted to Y agrees with a modified version of
the bottleneck distance.
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Definition 4.23. Let B = {(bi7di)}ie{1,...7n} and B’ = {(b;, d;)}ie{l,..,,n} be two
barcodes in B,,. The modified bottleneck distance between B and B’ is

AN : DO (! !
Go(B.5) = iy, 1600 = 0o

where ||-||oo is the {°°-norm on R2.

Note that the difference between the modified bottleneck distance and the
original bottleneck distance as defined in Theorem 3.25 is that for the modified
version, one is not allowed to match points of the barcodes to the diagonal A (see
Figure 4.7). Furthermore, dg(B, B') is well-defined only if both B and B’ contain
the same number of bars, i.e., if they are both elements of the same B;,. This is not
necessary for the definition of the regular bottleneck distance, cf. Theorem 4.25.

Proposition 4.24. The map d defines a metric on Y with respect to which
¢ (Bn,dp) — (Y,d) is an isometry.

Proof. As observed before in Theorem 4.14, ¢ maps B, bijectively onto Y. Hence,
it is sufficient to show that for arbitrary barcodes B and B’,

dp(B,B') = d(¢(B), p(B')).

This follows from simply spelling out the definitions. For points (x,y) and
(2’,y") in R™ x R™,

doo((xay)v (xlvy/)) = max{|x1 - IIJ‘H, ) |‘T7l - IL’M, |y1 o y“’ T |yn - yé’}
— Ty
e o ) b o]
= max |[(zs,v) — (2}, 9))|loos
i€{l,....,n}

where ||-||oo is the [°°-norm on R2. Combining this with the definition of d on X
(see Equation 4.4), we obtain

A(6(B).6(B) = min du(6(B).7-0(B)

= 1 y y —_ . / .
g e

This is the same as the modified bottleneck distance of Theorem 4.23. O
Similarly, starting with R?" equipped with the [2-norm, one can establish

an isometry between Y and B,, equipped with a modified Wasserstein distance
instead.
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A. Bottleneck/Wasserstein matching B. Modified Bottleneck/Wasserstein matching

Figure 4.7: Two barcodes (red and blue) represented as persistence diagrams in R.
A. The matching that minimises the bottleneck or Wasserstein distance matches
all the bars to the diagonal, as they are all very close to it. B. If bars are not
allowed to be matched with the diagonal, the matching that minimises ||(b;, d;) —
(bfy(i),yfy(i))ﬂoo. fo.r tbe bottleneck or . [|(b;, d;) — (b’w(i),yg(i))ﬂg respectively for
the Wasserstein is different.

Remark 4.25. Forgetting about the diagonal as done above opens the door to
defining new metrics on barcodes by considering distances on R x R™ and then
taking the quotient as was done in this section. It could potentially be extended
to barcodes with different number of bars. One could for instance imagine a
map that forces matchings between as many bars as possible and then adds a
positive weight equal to their distance to the diagonal to the unmatched bars
if there are any. This is different from the bottleneck distance (or Wasserstein
distance), which allows as many matchings as needed with the diagonal, see Figure
4.7. When using barcodes to study data, bars close to the diagonal are usually
considered as related to noise. However, there are cases where all the bars matter,
for instance when the barcode is the one of a merge tree [32,69]. In such a case, a
new metric that does not take the diagonal into account could turn out useful.
We leave this for future work.



CHAPTER 5

Inverse Problem: From Trees to
Barcodes and Back Again

As described in Section 3.3, every merge tree has an associated barcode. It is
natural to ask whether the map from merge trees to barcodes determined by
the Elder rule is injective, but it is not hard to see that it is not. A somewhat
more surprising result, proven independently in [31] and [69], is that the failure
of injectivity of the Elder rule map can be quantified combinatorially for generic
barcodes. In this chapter, we study the inverse problem of trees and barcodes
from a combinatorial point of view, using the identification of barcodes with
elements of the symmetric group studied in Chapter 4. This chapter is based on
joint work with J. Curry, J. DeSha, K. Hess, L. Kanari, B. Mallery, [32,69].

We summarize the notation for this chapter in the box below.

Strict barcode: a barcode B = {(b;,d;)}ic{o,....n} such that the essential
bar (bg,dp) contains all the others bars and b; # b;, d; # d; if i # j. The
birth values are assumed to be ordered by < ... < by,.

Births: they correspond to the termination points of the branches, i.e.,
the tips of the branches.

Deaths: they correspond to the bifurcation points of the branches, i.e.,
the internal nodes.

Permutation: the permutation associated to a strict barcode B with
ordered birth times is computed via op(i) = #{j < i | d; < d;}. The
essential bar (by, dy) is not considered.

The space B,,: it consists of all barcodes with n 4+ 1 bars, including the
essential one (bg, dp).

68
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5.1 The Tree Realization Number

5.1.1 Realizing Barcodes as Trees

We say that a merge tree (T, h) realizes a barcode B if the barcode of (7', h) is B.

Definition 5.1. The tree realization number (TRN) R(B) of a strict barcode B
is the number of combinatorial trees T admitting a height function A such that

(T, h) realizes B.

We show later in this chapter that this number depends only on the combina-
torial type of barcode, i.e., the permutation associated to it. For the remainder of
this chapter, we assume, for convenience, that the bars are ordered by birth times.

Example 5.2. Examples of tree-realizations are provided in Figure 5.1B. We
encode the combinatorial structure of the tree, i.e., how the branches may be
attached to each other, in an adjacency matrix in which the (i, j) coefficient is
non-zero if the Elder Rule allows bar i to be connected to bar j. For example,
in Figure 5.1A, bars 1 — 3 may all be connected to the black bar 0, thus the
coefficients (0, 1), (0,2), (0,3) are all non-zero in the corresponding adjacency
matrix. Note that in each realization only a subset of these possible attachments
is actually made (Figure 5.1B), since each branch can be attached to only one
other branch. The connectivity diagram (bottom of Figure 5.1A) provides another
representation of the pairs of branches that may be connected, in agreement with
the Elder Rule. The arrow on an edge in the diagram indicates the direction of
the connection. In this example, there are arrows from 0 towards 1, 2, and 3, from
1 to 2 and 3, and from 2 to 3.

We provide a formula for R(B) in terms of the index of each bar (b;,d;), i.e.,
the number of bars that include the i-th bar (b;,d;) strictly:

indexi(B) = #{j ’ bj <b <d; < dj} = #{j <1 ’ d; < dj}.
A version of this formula was established independently by Curry in [31].

Proposition 5.3. Let B = {(b;, d;)}icqo,..n} be a strict barcode. Its tree-realization
number is equal to the product of the indices of its bars, i.e.,

R(B) = H index;(B).

1<i<n

Proof. Because of the Elder Rule, one branch can be attached to another only if
its corresponding bar is included in the other bar. This simple observation enables
us to prove the lemma by a straightforward recursion on the number of bars. [
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A. Notation B. Examples
Persistence barcode Connect to eldest branch
|

Adjacency matrix

Connect to youngest branch

K | -

Connectivity diagram

Connect to random branch

X [

:
:
"
:
:
: ||
X

RCLLLIE W
-

Figure 5.1: A strict barcode, whose bars are ordered according to birth times
(greyscale), defines a unique ordering of death times. This ordering and the Elder
Rule constrain the possible combinatorial types of trees that can be realized from
this barcode. A. The notation that derived from a barcode that corresponds
to an adjacency matrix of possible connectivities. Equivalently the possible
connectivities are presented in the connectivity diagram. B. Examples of possible
tree realizations.



5. INVERSE PROBLEM: FROM TREES TO BARCODES AND BACK AGAIN 71

In particular, the maximum tree-realization number for a strict barcode with
n + 1 bars is n!, in the specific case where d,, < ... < d; < dg. We call this case
the Russian doll barcode.

Example 5.4. Consider the strict barcode B = {(O, 10),(1,8),(2,7),(3,6), (4, 5)}
According to the formula in Proposition 5.3,

I] index;(B)=1-2-3-4=4!.

1<i<n

Based on Proposition 5.3, there is a recursive process to build all trees realizing
a given barcode. As we formalize in Section 5.2.1, it depends only on the
permutation type of barcode. Figure 5.2 shows a graphical representation of
this process to obtain all trees that have the same barcode up to combinatorial
equivalence class.

We provide a brief sketch here for the sake of intuition. Start by setting
To = Iy = (bo, dp), the trunk of the tree corresponding to the essential bar. Since
the merge tree T  is connected, we can recursively attach bars by death time, first
to Ty and then in the j** step to T; to get Tj41, according to the Elder rule. Each
possible choice of attachment then gives a particular merge tree isomorphism
class.

Note that the tree-realization number does not satisfy
R(B)=R(B') = B~ DB

in general, i.e., the tree-realization number is not a complete invariant of the
barcode equivalence relation. For instance, the barcodes corresponding to per-
mutations [231] and [312] in Figure 5.2 both have R(B) = 2 but have different
permutation types. The inverse clearly does hold, however:

R(B) #R(B)) = B % B,

enabling us to detect non-equivalence of barcodes.

5.1.2 Combinatorics of the TRN

In Chapter 6, we use the TRN as an invariant to detect whether the type of
barcodes has changed. For the specific cases studied in Chapter 6, it is usually true
that if barcodes have same TRN, then they are equivalent. Therefore, the TRN is
useful to detect equivalence of barcodes in these special cases. In particular, if a
new bar is added to a barcode or two deaths are transposed and no other changes
take place, then the tree-realization number does change. Lemma 5.5 enables us
to quantify how adding a new bar changes tree-realization number.
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Figure 5.2: Recursive construction of all trees realising barcodes with three non-
essential bars. At each bifurcation, the number of new branches corresponds to the
index of the branch that is added. Each time we add a new branch, we multiply
the number of possibilities by its index, illustrating the result of Proposition 5.3.
The colored indices show the pairs of different combinatorial type of merge trees
which have the same combinatorial type of phylogenetic trees.
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Lemma 5.5. Let B = {(bi,d;)}icqo,...ny and B" = B U {(bpy1,dny1)}, where
bpt1 > b; for all 0 < i < n, be strict barcodes. If d;; > ...d;, | > dpi1 > diy, >
...d; , then

in

Proof. The condition on d,,41 implies that the new bar (by,41,dp+1) is included
in exactly k other bars, so its index is k. O

Example 5.6. Let B be a barcode with four bars such that by < b1 < by < b3
and dy > dy > dy > ds, i.e., its equivalence class is [312]. It is easy to see that
R(B) = 3 (see Figure 5.3). If we add a new bar (by,d4) such that d; > dy > ds,
the equivalence class of the new barcode B’ is [3412], and bar (b4, d4) is included
in (b, do), (ba,d2) and (b1,d;), but not in (b3, ds) because dy > ds. Therefore, its

index is 3, whence R(B’) =3-3=0.

Figure 5.3: A barcode B in equivalence class [312] is shown in black. There are
three possible combinatorial equivalence classes of trees whose TMD barcode is
B, also represented in black. After adding the extra bar in red, we obtain a new
barcode B’, in the equivalence class [3412]. In a tree-realization of B’, the branch
corresponding to the red bar can be attached to any of the branches corresponding
to the Oth, 1st, and 2nd bars, represented on the trees by the red branches. This
leads to nine possible combinatorial equivalence classes of trees for the barcode

[2412].

We can also apply Proposition 5.3 to determining how switching the order of
two consecutive deaths in the barcodes affects the tree realization number.

Proposition 5.7. Let B = {(b;, di) }ic{o,....n} be a strict barcode in the equivalence
class [i1...in], that is, diy < di, < ... <d;,. Let B' = {(b},d;)}icqo,...n} be a new
barcode obtained by permuting the deaths d;, and d;, ., i.e., by = b for all i and
d; = dj for all i # i, ixt1, while d;, = dék—o—l and d

. _
Ue+1 — dz‘k'

1. If ig <'ipy1, then index;, , (B') = index;, , (B) + 1, and

R(B)(index;,,,(B) + 1)

B') =
R(B) index;, , , (B)
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2. If iy, > igq1, then index;,  (B') = index;, ,(B) — 1, and

R(B) = R(B)?indexikH(B) — 1)'

index;, ., (B)
Proof. 1t is enough to prove (1), since (2) then follows by switching the roles of
B and B’.

If ix < irq1, then b; < b;,,. Since B is in the equivalence class [i1...i],
di, < d;, ., whence (b, ,,di,.,) ¢ (b, ds,). On the other hand, (b;kﬂ,d;k“) C
(b'ik , d’ik)7 but otherwise respects all of the same inclusion relations as (b;,,,,d;, ),
so that

index;, ,, (B') = index;, , , (B) + 1,
as desired. Moreover, (b, ,d; ) ¢ (b,  d. ), so (b ,d. ) respects exactly the

) ; ) 1) T U171 17 Tk
same inclusion relations as (b;, ,d;, ), i.e.,

index;, (B") = index;, (B).
Because no other bars are affected when passing from B to B’, we can conclude. []

Example 5.8. In Figure 3.8, we show all the possible death-transpositions in a
strict barcode with five bars with their TRN indicated next to each permutation
type. As an example, take the two barcodes of Figure 5.4. Barcode B is in the
equivalence class [4312], so the barcode satisfies dy < d3 < d; < d2. The index
of (by,dy) is 4, because it is included in all the other bars. Permuting d3 and dy4
leads to a barcode B’ in the equivalence class [3412]. The index of the last bar is
now 3 because it is no longer included in the third bar.

b@b dO
1 T d,
B b'E ! d; “
3 5 -
[4312] b4 3 ....... .,...d4
blob' d'o
B' lb'z i ‘ 1d’z
[3412] b's — T -d’;
b 4 3 = dl4

Figure 5.4: Illustration of Proposition 5.7. Two barcodes B and B’ that have the
same birth and death values apart from ds and dy, which are switched to dj and
dy in B'. The index of each bar is indicated in purple below.
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The reader might have noticed that for the last examples, we used barcodes
up to combinatorial equivalence class. The reason for this slight abuse is that the
TRN depends only on the type of permutation of the barcode, which we prove in
the next section.

We illustrate the results of Lemma 5.5 and Proposition 5.7 on the Cayley
graphs of Syms and Sym, in Figures 5.5B and 3.8.

Figure 5.5 shows the Cayley graph of Symgs generated by the permutations
(12) and (23) and the corresponding equivalence classes of barcodes. The vertices
of the graph correspond to the permutations in the symmetric group and their
corresponding barcode types, and the edges between them to the transpositions
transforming one permutation into another. The number next to each bar is its
index. The trees that return a given barcode are sketched next to each vertex of
the Cayley graph of Syms.

5.2 Combinatorial Perspective

In this section, we finally formalize the inverse problem of trees and barcodes from
a combinatorial point of view: the TRN depends only on the permutation type of
barcodes. The commuting diagram of Figure 3.10 makes even more sense in this
setting. To understand how many combinatorial trees have the same barcodes,
one can look only at the bottom part of the diagram, the combinatorial Elder rule
between combinatorial merge trees and permutations. This suffices to determine
the TRN for the whole equivalence class of a barcode.

We then go on to study more combinatorial properties of the TRN: since it
depends only on the combinatorial type of barcode, i.e., the permutation type, we
show that it can be computed from a commonly studied object for permutations:
the left inversion vector. It follows easily that the TRN preserves the Bruhat
order. Finally, we use this combinatorial knowledge about the TRN to study the
sum of the realization numbers, i.e., the number of combinatorial merge trees.
We show that this number is different from the number of phylogenetic trees, as
foreseen in Chapter 3.

5.2.1 The Combinatorial Inverse Problem

We show here that the study of the trees that have the same barcodes reduces
to a combinatorial study of the type of barcodes: the TRN depends only on the
permutation type of barcodes.

For any strict barcode B, let T (B) denote the set of combinatorial equivalence

classes of tree-realizations of B, i.e.,

T(B) = TMD Y(B)/ ~

comb
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A. Combinatorial types of trees

444444
4444 :
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C. Rooted phylogenetic trees with 3 leaves per combinatorial type A

dy<d, <dy
dy<d;<d,
231
s<di<d, V

B. Cayley graph of S; with the corresponding barcodes and realized trees
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Figure 5.5: A. Combinatorial types of rooted trees with three leaves and the
corresponding adjacency matrices. B. Cayley graph generated by the two adjacent
transpositions of Sym; and the corresponding barcodes, together with all the
combinatorial types of trees that realize a barcode. Colored letters correspond to
different types of merge trees that are the same as phylogenetic trees (indistin-
guishable trees), illustrating the result of Section 5.2.5. C. Rooted phylogenetic
trees with three leaves. We represent these phylogenetic trees organized by the
cominatorial types of barcodes they would have if they had death labels as well.
The three pairs of trees within colored squares correspond to the indistinguishable
trees defined in Section 5.2.5: the internal nodes are incomparable, so they can
have two different death values that lead to different merge trees. In phylogenetic
trees, the label order does matter: for instance, in the first column, all the trees
are of the same combinatorial type A but correspond to different phylogenetic
trees. To go from the space of phylogenetic trees to the space of combinatorial
trees, one forgets the labels and considers the adjacencies only, see Figure 3.6.
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We can characterize the equivalence relation on strict barcodes in terms of 7 (B).

Lemma 5.9. If B and B’ are two strict barcodes with the same number of bars,
then
B~ B' < T(B)=T(B).

Proof. The order of the deaths in a strict barcode B completely determines the
set of combinatorial equivalence classes of its possible tree realizations.

Indeed, the two pairs of bars in Figure 5.6(2) lead to the same adjacency pos-
sibilities for their respective branches. Only move (1) in Figure 5.6, corresponding
to switching the order of the deaths of the two bars, modifies the permutation
equivalence class of the barcode, hence also the set of trees that return the given
barcode.

(1)

(2)

Figure 5.6: The two possible moves that respect the condition of a realisable
barcode. Move (1) modifies the barcode’s ordering, whereas move (2) does not
change the order of the deaths.

5.2.2 The TRN and the Left Inversion Vector

Inspection of the definition of the index of a bar (b;, d;) in a barcode B reveals that
it is given by the number of bars born before b; and that die after d;. Thinking in
terms of the permutation associated to a barcode, this index counts the number
of inversions of birth-mapping-to-death order. More precisely, for a permutation
oof {1,...,n}if i < j and o(i) > o(j), then either the pair of places (7, j) or the
pair of elements (o(i),0(j)) is called an inversion of o—the usual order i < j has
been “upset” or inverted here. We now modify the usual notion of an inversion
vector so that it is defined for strict barcodes and makes our theorem statements
as tidy as possible.

Definition 5.10. Let B = (bo,do) U {[bi, d;) }icqu,... ny be a strict barcode with
b; < bj for i < j. The left inversion vector of B is the n-vector [(B) whose i-th

coordinate is
lZ(B) = #{j < ) ’ dj > dl} = indexi(B).
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We note that, for this formula, the index j = 0 is used for computation although
it is not given a position in the n-vector {(B), since the vector would have length
n + 1. When we calculate the left inversion vector of a permutation o associated
to a barcode, we use the slightly modified definition

li(o) :=#{j <ilo(j) = 0(i)}

in order to make sure that I(o) = I(B).

® ° ° ° ° o
' ° (] L 4 * *
® ° ° ° ° o
permutation  id (23) (12) (123) (132) (13)
left inversion
vector (1,2,2) (1,2,2) (1,2,1) (1,1,3) (1,.2,2) (1,23)
tree realization 2 2 3 4 6

number

Figure 5.7: Persistence diagrams associated to the six elements of Symj, along
with their inversion vectors and tree realization numbers.

Example 5.11. One can easily compute the left inversion vector of the following
barcode:

B ={(0,10),(1,7),(2,6),(3,5),(4,8)} = 1(B)=(1,2,3,1).

The permutation associated to this barcode is o = [3214] because the first bar to
die corresponds to the third birth, the second to the second, the third to the first
and the fourth to the fourth. Clearly, I(0) = (1,2,3,1) as well.

Example 5.12. For the left inversion vectors associated to the six elements of
Symgs, along with their tree realization numbers, see Figure 5.7.

To define coordinates on the space of left inversion vectors, we use the the
totally ordered sets
k] ={l<2<--- <k}

for k a positive natural number. It is easy to see that the left inversion vector con-
struction establishes a bijective correspondence between Sym,, and the Cartesian
product of sets of the above form, i.e., there is a bijection

l:Sym, — [1] x [2] x -+ x [n — 1] X [n] where o~ (o).

The next lemma, which is crucial for the rest of this section, follows immediately
from this observation.
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Lemma 5.13. If B = {(b;, d;) }icqo,..,n} 15 a strict barcode, then
R(B) = [[l(o(B)).
i=1

An immediate consequence of this lemma, which we already stated in the
previous section, is that if B and B’ are combinatorially equivalent barcodes, then
their realization numbers are the same. It follows that the tree realization number
induces a function on the symmetric group, i.e.,

n
R:Sym, - N:o— Hli(a).
i=1
Before analyzing this function on the symmetric group, we identify some interesting
properties of the set of barcodes under the combinatorial equivalence relation, to
prepare our exploration of the combinatorics of the TRN in earnest in subsequent
sections.

5.2.3 The TRN preserves the Bruhat Order

It is interesting to study both the tree realization number from a combinatorial
point of view via the symmetric group and the symmetric group from a “barcode”
point of view via the realization number. To the best of our knowledge, the
product of the components of the left inversion vector is not a very commonly
used statistic on symmetric groups, so we take this opportunity to study some of

its properties.

Observe first that two adjacent permutations in the Cayley graph (i.e., two
permutations that differ by left multiplication by one elementary transposition
7; = (i,7+1)) never have the same realization number. This follows easily from the
definition. As a consequence, the realization number is locally injective, although
it is not globally injective, since barcodes of type (12) and type (23) have the
same TRN. In this section we extend this local injectivity observation, proving
that the TRN defines an order-preserving map from the symmetric group to the
natural numbers, when the symmetric group is equipped with the appropriate
Bruhat order.

Example 5.14. In Sym; we note that (123) > (23) under the left Bruhat order
because (123) = (12)(23), where we use cycle notation and where composition is
read from right to left. In the left Bruhat order (123) and (12) are not comparable;
see Figure 4.1.

The next lemma shows that the realization number increases with increasing
left Bruhat order. We remark that this lemma can be viewed as a consequence
of a classical result, which is mentioned in [43]: if o < ¢/, then the number of
inversions in o’ is greater than the number of inversions in o.
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Lemma 5.15. If 0,0’ € Sym,, are such that o < ¢’ in the left Bruhat order, then
R(c) < R(d’).

Proof. Since o < o, there exist 7;,,...,7, € A such that ¢/ = 7, ---7,0. If
k =1, then o and ¢’ are adjacent on the Cayley graph, i.e., ¢/ = 7;0 for some i.
By assumption, the length of ¢’ is greater than that of o.

Translating Proposition 5.7 into the language of permutations, we deduce that

R(o)(lix1(0) +1)
liv1(o)

R(o") = > R(o).

The result now follows by induction on the number of transpositions ;. O

Example 5.16. One can see the Cayley graph of Sym, in Figure 3.8. Notice
that two permutations o, ¢’ satisfy o < ¢’ in the Bruhat order if and only if the
shortest path from ¢’ to the identity contains the shortest path from o to the
identity. The realization number increases along such paths.

Remark 5.17. It is interesting to consider the TRN as a discrete Morse function [52]
on the order complex of Sym,,. We note that the TRN has a unique max and min
on Sym,,, which appear to be the only critical points, recovering the known result,
e.g. |43], that the order complex of Sym,, is homotopy equivalent to a sphere.

5.2.4 The Sum of Realization Numbers and Chains in the Lat-
tice of Partitions

Given that the tree realization number on the set of strict barcodes induces a
function R : Sym,, — N, it is natural to study the sum:

Z R(0).

oE€Sym,,

This sum is equal to the number of combinatorial classes of merge trees (Definition
3.9) and provides another quantitative characterization of the difference between
merge trees and phylogenetic trees, which is explored further in the next section.

The sum of TRNs also connects this work with a classical object of study
in algebraic combinatorics: each combinatorial equivalence class of merge trees
corresponds to a maximal chain in the lattice of partitions, ordered by refinement.
For topologists this should make intuitive sense: as two connected components
merge this coarsens the partition of a sublevel set into connected components.
Enumerating these components leads naturally to the study of the partitions of the
set of {0,1,...,n}. We study this correspondence in more details in Section 5.2.6.

We start now by showing that this sum counts combinatorial equivalence
classes of merge trees, but first prove a preparatory lemma.
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Lemma 5.18. If (T,h) and (T', 1) are combinatorially equivalent merge trees
with associated barcodes B and B’, then the straight-line path BB’ from B to B’
lifts to a continuous path (with respect to the interleaving distance) connecting T
and T'.

Proof. Lemma 3.32 guarantees that the barcodes B and B’ associated to T and T’
have the same permutation type, so that the straight-line path BB’ of Remark 4.4
does indeed exist, and every point on the path is a barcode of that permutation
type by Lemma 4.3. We now apply the Elder Rule to construct a one-parameter
family of merge trees

[0,1] = MT, : t— (T hY)

that lifts the path BB'.

Since (T, h) and (T, h') are combinatorially equivalent, the trees T and T" are
isomorphic as graphs. Without loss of generality, we can suppose that T = T".

To define our one-parameter family of merge trees, we set T¢ = T for all
t € [0,1] and specify the height function k! : V(T) — R as follows. We have no
choice but to set hi(r) = oo, where r is the root, so it remains only to define h'
on the non-root nodes.

If v; is the i-th leaf node by birth order in 7', and therefore corresponds to
the i-th bar of B!, then the h'(v;) is chosen to be the birth time of this bar, i.e.,

Rt (v;) = bi(1 — t) + bit.

Similarly, if w; is the internal node corresponding to the i-th bar in BY, then
ht(w;) is chosen to be the death time of this bar, i.e.,

ht(wl) = dl(l - t) + Cl;t
By construction, the barcode associated to (T, ht) is clearly B!.

It was shown in [85] (Theorem 2.2) that the interleaving distance between
two merge trees in bounded by the maximal difference between the two height
functions. Since T = T2 for all t; € [0,1] and the height functions h! change
continuously with respect to the [, norm, it follows that the path defined by
t — (Tt h') in the space of trees is continuous. O

Definition 5.19. We say that a generic merge tree (7', h) with n + 1 leaves is in
standard form if its height function h maps its leaf nodes onto {0, 1,...,n} and
its internal non-root nodes onto {n + 1,...,2n}.

It is clear that a merge tree in standard form has a barcode in standard form
(Definition 4.6).

Lemma 5.20. For all 0 € Sym,,, the tree realization number R(c) is equal to
the number of combinatorial equivalence classes of merge tree whose barcode has
permutation type o.
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It follows immediately from this lemma that

Z R(0) = #{combinatorial classes of merge trees},
o€Sym,,

since barcode permutation type is also an invariant of the combinatorial equivalence
type of the merge tree.

Proof. By Lemma 5.18 there is a path in MT, from any merge tree whose barcode
is of permutation type o to one that is in standard form (Definition 5.19).

The tree realization number R(o) counts the number of merge trees in standard
form with the standard form barcode B(o); see Definition 4.6. If two different
merge trees (T, h) and (T’,h') are both in standard form with the same barcode
B(o), then they cannot be combinatorially equivalent. The inductive construction
that created T and 7" must have differed in a choice for some i € {1,...,n} of
where to attach a branch with leaf node at height i: to a branch with leaf node
at height j or height 5/, with 0 < j # j' < i. An isomorphism of merge trees from
(T, h) to (T',h') would have to exchange the order of of the leaf nodes at heights
j and j’, which is prohibited by the definition of combinatorial equivalence of
merge trees (Definition 3.9). O

Since every merge tree is combinatorially equivalent to one in standard form,
where leaf nodes are at heights {0, 1,...,n}, we can use this positioning to relate
merge trees to maximal chains in the lattice of partitions of n, Definition 2.19.

Theorem 5.21. Combinatorial equivalence classes of merge trees with n + 1
leaf nodes are in bijective correspondence with maximal chains in the lattice of
partitions Py. As a consequence, the sum of realization numbers is given by the
following closed form formula:

B S (n+ Dl
>, Rloy= > [[ul0)="—F—

oE€Sym,, o€Sym,, i=1

Proof. Given a merge tree (7', h) in standard form with n + 1 leaves, we explain
first how to construct an associated maximal chain in the lattice of partitions,
Pr. We then show that every maximal chain is associated to some merge tree
and that non-equivalent trees gives rise to distinct maximal chains.

Since (T, h) is in standard form, all of the merge events (bifurcations) happen
after (are at greater height than) all the birth events. It follows that the sublevel
set of h: V(T') — R at any value in the interval (n,n + 1) C R consists of n + 1
components, corresponding to the finest partition S(7"); := {0[1|2|-- - |n}.

As we cross height n + 1, the definition of the standard form implies that a
merge event of two components, born at heights ¢ and j, occurs. This merge event
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has the effect of coarsening the partition S(7")1, placing the two elements i and j
into a single set of the partition. This defines the next, coarser partition S(7")2.

In general the i-th partition associated to the tree 1" is the partition of the
leaf nodes into connected components at height n + i. At height 2n the sublevel
set of the tree is connected, which corresponds to the top element in P,,.

Each standard form merge tree thus gives rise to a chain of 2n elements in
Pr, which is obviously maximal. Moreover, from any maximal chain

U =2 =2Uy

in P, one can always build a merge tree that realizes the chain as follows. Start
by defining a filtration of the set of subsets of [n], where a subset V' C n enters the
filtration at n -+ i, where 7 is the smallest index such that V' C U for some U € U;.
This defines a function from the set of subsets of [n] (of which the geometric
realization is the n-simplex) to R. Taking the merge tree of this function as in
Remark 3.5 associates a merge tree to a chain in P,.

Injectivity of the map from standard form merge trees to maximal chains is
also clear. If two merge trees in standard form produce the same maximal chain,
then their heights and adjacency relationships must be the same, i.e., they must
be combinatorially equivalent.

The number of maximal chains in P,, was determined by Erdds and Moon [4§]
to be (n + 1)n!27™. This number is easily understood in the setting of merge
trees. First, one chooses two of the n + 1 connected components to merge at
height n + 1. Then one chooses two of the remaining n connected components to
merge at height n + 2. This process repeats until we run out of options at height
2n. The number of ways of constructing standard form merge trees is thus

(n—2|—1> <Z>(§> _ (n—;l)n.n(nZ—l)'”2él _ (n—;i)!n!'

Example 5.22. Figure 5.8 shows the lattice of partitions on the set {0,1,2}
together with the three possible merge trees corresponding to the maximal chains
in the lattice.

O
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{0,1,2}
|
o, 1}{2}/{0, 20 }\{1 2)0) / /
~_ | | - /

{0112

Figure 5.8: Left: The lattice of partitions of the set {0,1,2}. Right: The three
possible merge trees corresponding to the maximal chains in the lattice, illustrating
Theorem 5.21.

Remark 5.23 (Expected Tree Realization Number). It is very convenient that n!
appears in the numerator of the sum of realization numbers. As we explain in
greater depth in the section on statistics for the realization number, this allows

us to compute the expected realization number when Sym,, is equipped with the
uniform measure, for which the probability of a permutation o is P(o) = =

n!
Indeed, by rearranging terms slightly, we see that the expected realization number
is determined by the ratio of (n 4 1)! and 2™:

E[R] = Z R(0)P(o) = 1 (n+1)n! _ (n—l—l)!.

n! AL AL

o€Sym,,

Before studying the probabilistic aspects of the realization number more fully,
we first compare Theorem 5.21 with analogous counting results for phylogenetic
trees in the next section.

5.2.5 Counting Merge Trees versus Phylogenetic Trees

In this section, we compare two counting results for combinatorial merge trees

and for phylogenetic trees. On the one hand, Theorem 5.21 implies that there
n+1)n! . . :

are (T) different combinatorial merge trees with n 4+ 1 leaves. On the

other hand, it was shown in [49] that there are (2n — 1)!! distinct combinatorial

phylogenetic trees with n + 1 leaves. In general, there are more classes of merge

trees than there are phylogenetic trees. In the next example, we work through

the case n = 3 in detail.

Example 5.24. For n = 3, i.e., 4 leaf nodes, these formulas imply that there are
18 different classes of merge trees, but only 15 classes of phylogenetic trees, shown
in Figure 5.9. In Figure 5.5C, one can see the 18 different classes of merge trees,
arranged by row according to their permutation type in Syms;. There are three
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pairs of merge trees highlighted with colored boxes that correspond to the same
combinatorial type of phylogenetic tree.

VN

D
D

Sy
D5
Sy
Sy

Figure 5.9: [Wikipedia, "Double Factorial", "Unordered binary trees with 4
leaves", n.d.|. The 15 different binary rooted trees with four labelled-by-color leaf
nodes. The top node should be regarded as the unique child of the root node.
This should be compared with the 18 different merge trees in Figure 5.5C, as
discussed in Example 5.24.

As the example above shows, the essential difference between classes of merge
trees and classes of phylogenetic trees is that merge trees are sensitive to relative
heights of internal (death) nodes, whereas phylogenetric trees are not. This also
explains why two combinatorially equivalent metric phylogenetic trees (7', m) and
(T",m') may be associated to different permutation types, if one uses Proposition
3.14 to define a height function on each and compute a barcode according to the
Elder rule. However there are certain orders of births and deaths that must be
preserved. As one can see in Figure 5.5C, the pair of trees in the purple box under
column B both have the blue bar being born before and dying after the purple
bar; the relative positioning of the death time associated to the red bar is the
only thing that changes.

In this section we pinpoint more precisely how many different classes of merge
trees can produce the same class of phylogenetic tree. As one might imagine,
this is dictated in part by certain subgroups of the symmetric group, determined
essentially by the number of incomparable internal nodes in the natural partial
order on the tree nodes specified by p < ¢ if p is on the unique path from ¢ to the
root. Our bound on the number of classes of merge trees that define the same
class of phylogenetic trees is formulated as follows. Recall that we assume that
the root of any rooted tree has a unique child.

Proposition 5.25. Let T be a combinatorial phylogenetic tree. Let ¢ denote the
unique child of the root vertex. Let A; be the set of internal nodes of T that are i
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hops away from c in the path metric (in particular, Ao = {c}).

If n(T) denotes the number of combinatorial equivalence classes of merge trees
indistinguishable from T when regarded as combinatorial phylogenetic trees, then

k
n(T) > [T 140"
5=0

Proof. We prove our result by induction on the maximum path distance in T
from the child c. If the maximum path distance to the child is 0, then T" has a
unique internal node ¢, i.e., T" has three nodes: the root r, its child ¢, and two
leaves. This tree admits unique combinatorial merge and phylogenetic strucures,
whence n(T) =1 =0!.

Suppose now the result holds whenever the maximal path distance from the
child ¢ is less than k, for some k > 1. Decompose the internal nodes of 1" into k
sets Ay, Ag, ..., Ag. All nodes in Ay have only (two) leaf descendents, as otherwise
there would exist an internal node further away from ¢ than some node in Ag, so
the maximal path distance to ¢ would be greater than k.

Let Ay = {q1,42,...,qs}. If we remove the leaf nodes attached to each ¢; €
Ay, we obtain a phylogenetic tree 7" with internal nodes partitioned into sets
Aq, Ay, ..., A;p_1. By the induction hypothesis, there are at least Hf;% |A;|!
combinatorial equivalence classes of merge trees indistinguishable from 7" when
considered as phylogenetic trees.

For each such equivalence class, we can obtain merge trees indistinguishable
from T as phylogenetic trees by reattaching the leaves to each ¢; and choosing
any ordering on A, which we may do because all ¢; are at the same distance
from ¢, and hence are incomparable nodes. Since there are |Ag|! possible total
orders on the set of ¢;, we can conclude. O

5.2.6 A Lattice-Theoretic Perspective on the Persistence Map

To end this section, we characterize the persistence map from combinatorial merge
trees to combinatorial barcodes in terms of monotone maps between two lattices:
the subset lattice and the partition lattice. We show that a maximal chain in
the subset and partition lattices corresponds to a combinatorial barcode and
combinatorial merge tree respectively, and that one may incrementally construct
solutions to the inverse problem using this correspondence.

In this section, we denote a combinatorial barcode (i.e., the permutation
associated to it) by B = {(i, )} if the 5" birth endpoint is matched with the j**
death endpoint.

Let (P, <) be a poset. Recall that a totally ordered subset C C P is called
a chain. An interval is a subset Z C P where if p,g € 7 and p < r < ¢, then
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r € Z. A path 7 is a chain that is also an interval. A path is based at x¢ € P if
the lowest element in v is xg. If P has a unique lowest element 0 (e.g. a lattice),
we write P as the poset of paths based at 0, which is a poset via containment
of paths. There is a unique surjective map 7wp : PP sending a path to its
endpoint. Furthermore, if f : P — () is a monotone map of posets, there is a
unique map f : P — Q such that forp = Qo f. We call f the lift of f.

Recall from Section 2.2.1 that the subset lattice on [n] = {1,...,n} is II,, =
P([n]), the set of all subsets of [n], including the empty set (), equipped with the
partial order C of “being a subset of”. The poset of paths in II,, based at 0 is
II,. A partition of the set n := {0,1,...,n} is a collection of disjoint subsets
U ={Ui,...,U;} of n whose union is n. A partition U refines a partition U’,
written U < U’, if every subset of U’ is equal to a union of elements of U. Recall
that this forms the lattice of partitions P,. The poset of paths based at the finest
partition of n, {{0},...,{n}}, is P,.

We can filter a combinatorial barcode B with n bars into sets By C --- C
B,, := B where By, is the set of pairs {(7,7)}j<x. We refer to By, as a partial
(combinatorial) barcode. The set of all partial barcodes with at most n bars
forms a poset by containment, which we denote by PCB,,. Similarly, a partial
(combinatorial) merge tree is a filtration of a combinatorial merge tree 7" with
n + 1 leaves by subgraphs Ty C 71 C --- C Ty, := T where T}, is the full subgraph
supported on the set of leaf nodes and all internal nodes with label less than
or equal to k. Partial merge trees also forms a poset by subgraph containment,
denoted PCT,; see Figure 5.10. The persistence map between combinatorial
merge trees and barcodes extends to a map from PCT,, to PCB,,, which we also
call the persistence map.

Theorem 5.26. The poset of partial merge trees PCT, and barcodes PCB,, are
isomorphic to Pp and 1, respectively. Furthermore, there is a monotone map
H : P, — II,, whose lift H : P,, — 11, is naturally isomorphic to the persistence

map from PCT,, — PCB,.

Proof. Every partial merge tree Ty C --- C T defines a path Uy < -+ < Uy,
where U; is the partition of the leaf node labels induced by connected components
in the graph Tj;; see Figure 5.10. Every partial barcode By C - -+ C By defines a
path ) := Ay C --- C A, where Ay, is the set of birth labels whose deaths occur
by time k. These specify the isomorphisms.

Define H : P,, — II,, as follows: Let (Ui, Us,...,Uy) be a partition of n. For
each Uj, let U] := U; \ {min{z € U;}}. Let H((U1,Uz,...,Ux)) = UicnU; € II,,.
This map is monotone, since if (Uy, Us, ...,U) < (V1, Va, ..., V}), then the latter
partition is obtained by collapsing parts of the first, which can only add elements
to H((Uy1,Us, ...,Ug)). Tt is easy to see that this map is also surjective. This lifts
to a natural map H, defined on paths.

The maximal element (endpoint) of a path v € P,, corresponds to a partition



5. INVERSE PROBLEM: FROM TREES TO BARCODES AND BACK AGAIN 88

(Uy,Us, ..., Ug) that indexes the leaf labels of the connected components of T}, the
kth stage in a partial merge tree.

The Elder Rule (Section 3.3.1) maps each of the U; to U/ as min U; encodes
the oldest leaf node, which goes unpaired by the persistence algorithm. The image
is the union B = U,y B; of leaf node labels that have been killed by stage k.

The combinatorial barcode is encoded by the successive differences between
Bi and Bi+1~ ]

Elder rule b e
c d
e Merge trees /\ Barcodes
" (n+1 leaves) \_/ (n bars)
Realization
0
1
2 . 0
Combinatorial Elder rule
- - - " 1 2
Combinatorial Combinatorial 21
1
merge trees \J barcodes 1h=2
2 N . 21
Realization
{0,1,2} . {1,2}
P Equivalent Equivalent hd
/ Covering
.02 {03, {1,215 {0,2}{1} Partition lattice \_/ Subset lattice {1y, {2}

NV

{03 {1h{2}

JMaxima\ chains

Fiber

Induced covering

Maximal chains in

Maximal chalnSJ

Maximal chains in

Partition lattice
¢ Induced fiber

Subset lattice

2 N .
{0,1,2} s s {0,1,2} 0 0
r L] [ 1 1 T 42
2 2 - .
, \. . e 2 1
L ] [ ] [ ] L ]
{0,142} {0,2}{1}
AN ./' s {1,2) ) ) @ , {2 11,2}
o o3, 413,(2}
1 B ——— ] 1
2 22— Je—
® o012
R

0,1,2
0 @ (0,12}

1
2

Figure 5.10: Illustration of Theorem 5.26. On the left hand side, combinatorial
merge trees and the correspondence with maximal chains in the partition lattice.
On the right hand side, combinatorial barcodes and the correspondence with
maximal chains in the subset lattice. The inverse problem can be expressed using
the lattice covering and the induced covering on the maximal chains posets.
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5.3 Statistical and Probabilitstic Perspectives

5.3.1 Probabilistic Study of the TRN

As already foreshadowed by Remark 5.23, the formula in Theorem 5.21 provides
us with an unexpected gift in the study of statistics for realization numbers.
Assuming that every combinatorial type of barcode is equally likely, so that each

1
permutation type o has probability —, we calculated that the expected tree
n!

realization number (TRN) is

E[R] = Z R(g)P(U):i(n—i—l)!n!:(n—i—l)!.

n! 2n AL

o€Sym,,

We regard the assumption that each barcode permutation type is equally likely
as a sort of “null hypothesis” to be tested against. Even if one considers Gaussian
perturbations to data, characterizing the image of this measure on the space of
merge trees and hence (combinatorial types) of barcodes is an open problem.
Depending on the setup, it may be the case that features tend to die in the order
in which they are born (a sort of “topological first in first out” queue) or it might
be the case that features die in the opposite order in which they are born (a “first
in last out” queue). In general, for real data, it is unlikely that the distribution
of permutation types of (barcodes of) merge trees will be uniform. Regardless,
characterizing the distribution of TRNs in terms of the output of the function
R : Sym,, — N when Sym,, is equipped with the uniform measure provides an
important null hypothese against which to test real data.

In this section we start with a brief outline of computational methods for
generating random barcodes and compare the corresponding distribution of per-
mutation types with the uniform distribution. We then provide formulas for first
and second moments of the pushforward distribution 7, := Ry, where p, is
the uniform measure on Sym,,. This allows us to calculate the variance of the
TRN, which opens the door to hypothesis testing whenever the map from trees to
barcodes is of interest to scientific applications.

Somewhat surprisingly, Theorem 5.27 says that the exact value for the measure
7, can be determined from 7,_; and Dirichlet convolution with the uniform
distribution on S,,_1, enabling us to study the entire distribution of TRNs as the
number of features varies. To conclude, we provide a novel closed-form formula for
the expected log-realization number, which allows us to characterize the empirical
data in Figure 1.2 in a more analytical manner.

Let w, denote the uniform distribution on Sym,,. By our correspondence,
this is also a distribution on combinatorial equivalence classes of barcodes. The
tree realization number R : Sym,, — N then defines a random variable where
the probability P(R = t) is determined by the number of permutations n; with
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realization number ¢. The following theorem states that this probability can be
computed recursively via convolution with the uniform distribution on 1,...,n.

Theorem 5.27. For any k > 1, let py, denote the uniform distribution on Sym,,
and m, = R.(un) its pushforward onto N via R : Sym,, — N. Let Uy denote the
uniform distribution on {1,2,...,k}.

The probability mass function of m, can be recursively computed as follows.
o m = Uj.

e For k> 1, mp = Uy *x mp_1, where x indicates Dirichlet convolution, i.e,.

mr(c) = Z Uk(a)mi—1(b) for all c € N.

ab=c
It follows immediately from this theorem that
T =Up*Up_1%...xUp

for all n > 1.

Proof. We prove this theorem by induction on k. It holds trivially for k = 1.
Suppose that it holds for £ — 1 for some k > 2. Each number that has positive
probability under 71 corresponds to R(c) = Hf:_ll li(o) for some o € Sym,,_; .

Consider the map ni_l : Symy,_; — Sym,, that meeds Symy,_; into Sym,, as
follows. For every o € Sym;,_, the permutation Ki_l(a) is specified by

| j ifi==k
K1 (0)(0) = qo(i) +1 if o(i) > j
o (i) if o(i) < 3.

In other words, /{i_l sends o € Sym;,_; to the permutation Ii‘]i_l(O') € Sym,, that
maps the k-th object to j and then “bumps up” by one the assigned value of
elements in {1,2, ...,k — 1} that are mapped to an element greater than or equal
to j.

Each map in the collection {ni_l}?zl is injective and collectively their images
surject onto Symy. To determine the realization numbers for Sym,, we therefore
need only compute the realization number of k], (o) for all j € {1,...,k} and
o€ Symy,_;.

Consider R(/iiil(d)) = Hle l; (Hiil(U)). Since

Li(o)=|{r <i|o(r)>a(i)}
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for any permutation o, it follows that
li(k)_,(0)) = li(0)
for all i < k. On the other hand, since r < k for all r € {1, .., k},
{r <kl wj_y(o(r) = wl_y (o)} = [{r | o(r) 2} =k —j+1.

We conclude that R(/{i_l(a)) =(k—j+1)R(0).

By the construction of Iii_l,

w\H

k
Z’%kl ,Ukl

91

where (f@i_l)*(uk,l) is the pushforward of ug_1 by K,i_l, since each pushforward

assigns mass ﬁ to each element of a unique subset of size (k — 1)! in Symy,.

We are now prepared to compute 7. Let x € N.

(7)) = Ru(p) (x) = pip (R~ ()
k
= ()l ) (R @)
j=1
1< :
=% Z HE—1 ((”ifl)_l (R_l(x)»
j=1
k
= 13 e ()™ (fo € Sy | (o) = )
j=1
k
_ %ZMH({& €Symy_, | (k—j+1) R(5) = z})

=1

k
- %Zﬂk—l({f} € Symy,_y | j - R(5) = x})

j=1

- % D> m-1({0 € Symyy | R(5) = b}) Ly (7)
jb=z

= abzzxﬂk_l({& € Sym;_, | R(5) = b}) Jl[k;{:(a)

= > Uk(a)mi—1(b)

ab=x

(5.1)

(5.2)



5. INVERSE PROBLEM: FROM TREES TO BARCODES AND BACK AGAIN 92

where the second line follows from the identity pp = %2?21(%71)*(#1«71)7 the

fifth line follows from R(/ii_l(O'» = (k— 74 1)R(0), and the sixth and seven
lines are simple changes of variables. O

For what follows, it is useful to consider for each n the multiset II,,, which is
the range of R : Sym,, — N, taking into account multiplicities. Let m,, : N — Z>¢
be the multiplicity function of II,,, i.e., my,(x) is the number of times z € N
appears in II,, which is the number of permutations in Sym,, that have realization
number z. In particular, m,(z) = 0 if and only if = ¢ II,,.

Since 7y, is the pushforward of the uniform distribution on Sym,,, the prob-

ability of each z is determined by dividing the multiplicity function by n!,

e, my(x) = m"Tsx) The following corollary follows directly from the construction

of m,.

Corollary 5.28. The multiset I1,, can be constructed recursively as follows:

o 11, = {1}.

o Fori> 1, II; is the multiset with multiplicity function specified by

ma(x) = Y m(b)Lg(a)n, , (b).

ab=x

In other words, II,, can be defined as a [k] * II,,_1, where [k] = {1,...,k} and
* is the Dirichlet convolution of multisets.

Realization Number Distribution
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B bars
50004 @ 7 bars

4000 4

3000 A
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N T

0 50000 100000 150000 200000 250000 300000 350000
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Figure 5.11: Distribution of Realization Numbers for 7,8,9 bars.
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Example 5.29. We now explicitly describe II; for ¢ € {1,2,3,4}. For conve-
nience we write the mutisets II; as sets with repetition. Counting the number of
appearances of a number k determines m; (k).

I = {1}

I, = {1,2}

I3 = {1,2,2,4,3,6}

I, = {1,2,2,2,3,3,4,4,4,4,6,6,6,6,8,8,8,9,12,12,12, 16, 18, 24}

To conclude this section, we consider the moments of m,. We explicitly
calculate its first and second moments, obtaining the mean and variance of m,, as
corollaries, and outline a general formula for the higher moments. Recall that by
knowing these two moments one can use Chebyshev’s inequality to calculate the
probability of observing some deviation from the mean, an important first pass at
hypothesis testing.

Proposition 5.30. E(m,) = %

Proof. This is the content of Remark 5.23, which establishes this proposition as a
consequence of Theorem 5.21. [l

Proposition 5.31. E(n2) = %

Proof. We prove the result by induction on n. The base case (n = 1) holds
trivially, so assume that the formula holds for n = k.

Consider E(m, ) = e R(b)?. Since

(E+ 1! RO = (k+ 1)E(mpy) = > mpga(2)?,
beB, zeN

to prove our result, we need only show that

> (@)’ (n+ 1!2n + 1)

- 127
reN

We call the quantity on the left E(IIZ, ,):

k+1 k+1 k+1

EMZ,) = S R0?=3 3 (arR®)*=Ya> Y RE)? = 3 E(L).

bEBk+1 a=1 bEBk a=1 bEBk: a=1
By the sum of squares formula, we can rewrite this as

<(k: +1)(k +62)(2k;+ 3)>E<Hz)
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(k+1)(k +2)(2k + 3)(2k + 2)
- < (2k + 2)6 >E(H%)

_ ((k: + 2)(21;:62)(21@ +3)>E(Hz)

_ ((k + 2)(2k1+22)(2k + 3)> <(k: + 1)1léik: + 1)!)

(E+2)12k+3)!  ((k+1)+1)!2(k+1) + 1)!
192k+1 - 192k+1 )

Corollary 5.32. The variance of m, is

Vi) = B(r) — B2 = ((E D DL (s DYy,

" n!

12n nl4qn
Remark 5.33 (Higher Moments of the TRN). In general, we can define the k-th

moment E(7%) by rewriting n!E(7%) = E(IIF) = (3.'_, a®)E(ITX~!) and using
this recursive relationship to compute a formula. We note that by Faulhaber’s

formula,
n k k—i
ke (21 k il
>oat =3 E (M) pe,
a=1 =0

where By_; is the k — ¢ Bernoulli number.

One can view the results above as a complete characterization of TRNs under
the null hypothesis that combinatorial classes of barcodes are distributed uniformly
or as part of the growing literature on statistics on the symmetric group, see
e.g., [7T1]. We now investigate another such statistic.

Since the maximum realization number for a barcode with n non-essential bars
is n!, it is convenient to work instead with the logarithm of the realization number,
which we call the log realization number. The log realization number is used in
Chapter [67] as a statistic on barcodes obtained from dendrites; see Figure 1.2 for
a reminder. In particular, we can distinguish between apical and basal dendrites.
Of course, the process of taking the logarithm affects the distribution of TRNs.
Jensen’s inequality provides a way to bound the expected log realization number.
In this section we compute the expected log realization number of uniformly
drawn barcodes.

Proposition 5.34. The expected log realization number for a combinatorial class
B of barcodes drawn from the uniform distribution on Sym,, is

n

B, (log (R(B))) _ Z log_(i!).

- 1
=1
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Proof. Recall that the set of left inversion vectors can be coordinatized as [1] X
[2] X ... X [n]. Since this Cartesian product has size n!, a uniform distribution on
Sym,, can be viewed as a uniform distribution on the set of left inversion vectors.
Let the notation P(B ~ u,) denote the probability of a combinatorial equivalence

class of barcodes B under the uniform distribution, that is % It follows that

By, (log (RB)) = > los([JLB)EB ~ p)

= O Y tos(®).

" i=1 Be[1]x...x[n]

Since B ~ p,, and each coordinate in [1] x [2] X ... X [n] is independent, the
interior sum (for fixed ) is equal to %!(log(l) +log(2) + ... +log(i)). Hence

n n

E,, (log(R(b)) = > log(1) +log(2) + ... +log(i) _ $ log(!)

- 1 - 1
=1 =1




CHAPTER 6

A Biological Inverse Problem

This chapter concerns a different inverse problem relating trees and barcodes.
While the previous chapter considered the “real” inverse problem of how many
combinatorial trees have the same barcodes and how to build these trees from a
given barcode, here we investigate a stochastic inverse, the topological neuronal
synthesis (TNS) algorithm [67]. The TNS takes as input a barcode B and returns
a single tree T. However, the barcode of TNS(B) needs not be the same as B,
due to the stochasticity of the TNS. The TNS was used in [67] to build artificial
populations of neurons based on biological trees.

In this chapter, we study the composite of the TNS and TMD algorithms
from a theoretical perspective, to quantify the extent to which the TNS acts as
an inverse to the TMD. For a given barcode B, we show that, for a reasonable
choice of parameter in the TNS, the probability that the bottleneck distance
between the barcodes B and TMD o TNS(B) is greater than e decreases with ¢,
thus establishing a form of stability for the TNS. We prove, moreover, that the
probability that two bars of a barcode B will be permuted by applying TMD o TNS
decreases exponentially with the distance between the terminations of the two
bars, which is another form of stability. Together these stability results imply
that the TNS is an excellent approximation to a (right) inverse to the TMD.

Finally, we present computational results that illustrate the complex relation-
ship between a barcode and its possible tree-realizations. In particular, we study
the distinguishing characteristics of “biological” geometric trees, i.e., those that
arise from digital reconstructions of neurons, as opposed to arbitrary geometric
trees. We also show that both the combinatorial type and the TMD-type of a
geometric tree can change significantly when applying the composite TNS o TMD,
from which it follows that the TNS is not a left inverse to the TMD.

This chapter is based on joint work with K. Hess and L. Kanari [69].

96
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TNS TMD
Barcodes ——> Trees ———> Barcodes
Neurons
TMD TNS
Trees ——> Barcodes —> Trees

s =

Figure 6.1: The two composites of TMD and TNS. (Left) An illustration of
how a neuron (black) is modeled as a tree (dashed red lines). Recall that we
describe this process and how to extract a barcode from a tree in section 3.9.
(Top) The composite TMD o TNS applied to a barcode B. The new barcode
B’ = TMD o TNS(B) is indicated in dashed lines on top of the barcode B on the
right. We show in section 6.2 that the barcodes B and B’ will almost certainly be
very similar and quantify this similarity. (Bottom) The composite TNS o TMD
applied to a tree T'. The tree T that we start with is indicated in dashed red
lines under the new tree 77 = TNS o TMD(T'). The trees T and 7" can be quite
different combinatorially, as seen on the right.

Remark 6.1 (Different Notation for Births and Deaths). This chapter follows the
convention of [67-69] and considers persistence diagrams in a slight different way
than in the rest of this thesis. Bifurcations in trees usually correspond to the death
times in the barcodes and the termination to the birth times (see Figure 3.2 for
instance). However, in [67-69], motivated by applications in the study of neuron
populations, births and deaths’ roles are switched so that the births correspond
to bifurcations and deaths to terminations of branches. Hence, persistence
diagrams are “upside down” with respect to the usual convention in TDA: the
birth times/terminations are on the y-axis and the death times/bifurcations are
on the z-axis, resulting in points of the persistence diagrams being under the
diagonal. Note that switching the role of birth and death times does not influence
the tree realization number of the barcode. The notation for this chapter are
summarized in the box below.
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Strict barcode: a barcode B = {(b;, d;)}ic{o,....ny such that the essential
bar (bg, dp) contains all the others bars and b; # b;, d; # d; if i # j.
Births: they correspond to the bifurcation points of the branches, i.e., the
internal nodes.

Deaths: they correspond to the termination points of the branches, i.e., the
tips of the branches.

Permutation: it is computed from a barcode B with ordered birth times
via o0p(i) = #{j <i|d; < d;}. The essential bar (by, dp) is not considered.
The space B,,: it consists of all barcodes with n 4 1 bars, including the
essential one (bg, do).

6.1 The TNS: A Stochastic Inverse

The topological neuron synthesis (TNS) algorithm [67] stochastically generates
synthetic neurons, in particular for use in digital reconstructions of brain circuitry
[80]. In this thesis, we focus on the sub-process of the TNS that stochastically
generates a geometric tree from a strict barcode, in such a way that if a tree T’
is generated from a barcode B, then TMD(T) is “close to” to B, with respect
to the bottleneck metric on the set of barcodes, up to some stochastic noise, c.f.
Section 6.2. Henceforth, when we refer to the TNS, we mean this sub-process.

We summarize the TNS algorithm below, following [67]. To grow geometric
trees, the TNS algorithm first initiates growth, then loops through steps of
elongation and branching/termination. Each branch of the tree is elongated as a
directed random walk [7] with memory. At each step, a growing tip is assigned
probabilities to bifurcate, to terminate, or to continue that depend on the path
distance from the root and on a chosen bar of the selected barcode. Once a bar
has been used, it is removed from the barcode. The growth of a tree terminates
when no bars remain to be used. We now provide further details of the two steps
in this process.

Bifurcation / Termination

The branching process in the TNS algorithm is based on the concept of a Galton-
Watson tree [55], which is a finite rooted tree recursively generated as follows. At
each step, a number of offspring is independently sampled from a distribution.
Since a geometric tree consists only of bifurcations, terminations, and continua-
tions, the accepted values for the number of offspring are: zero (termination), one
(continuation), and two (bifurcation). The Galton-Watson algorithm generates
only a combinatorial tree, with no embedding in space, so the traditional process
is modified to introduce a dependency of the tree growth on the embedding, so
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that the bifurcation/termination probabilities depend on the path distance of the
growing tip from the root.

The bifurcation /termination step of the growth process of a geometric tree with
associated barcode B proceeds as follows. Each growing tip of the tree is assigned
a bar (b;, d;) sampled from the barcode B and a bifurcation angle a;. The growing
tip first checks the probability to bifurcate, then the probability to terminate.
If the growing tip does not bifurcate or terminate, then the branch continues
to elongate. The probability to bifurcate depends on b;: as the distance from
the root to the growing tip approaches b;, the probability to bifurcate increases
exponentially until it attains a maximum of 1 at b;. Similarly, the probability to
terminate depends exponentially on d;.

The probabilities to bifurcate and terminate are sampled from an exponential
distribution e ™%, whose free parameter X should be wisely chosen. A very steep
exponential distribution (high value of ) reduces the variance of the population
of geometric trees synthesized based on the same barcode. On the other hand, a
very low value of X results in trees that are almost random, since the dependence
on the input persistence barcode is decreased significantly. If we assume that
growth takes place in discrete steps of size L, the value of the parameter A\ should
be of the order of the step size L, to ensure biologically appropriate variance [67].
Assuming L = 1 in some appropriate units, we usually select A & 1, so that the
bifurcation and termination points are stochastically chosen but still strongly
correlated with the input persistence barcodes.

The Elder Rule and TNS

The TNS provides a sort of right inverse to the TMD. To recreate a tree that is
close to the original, the branch corresponding to a particular bar (b;,d;) in the
barcode can be attached only to branches corresponding to bars (bj, d;) such that
d; < dj and b; > bj. This rule ensures that the Elder rule (at a bifurcation, the
longer component survives) holds in the TMD transformation. As a result, only a
subset of trees with n branches can be generated by the TNS from a given strict
barcode with n bars.

TMD TNS
Goal Compute the barcode of a tree based on a distance function | Grow a new tree from a barcode
Directionality | From leaves to root From root to leaves
Domains {geometric trees} — {barcodes} {barcodes} — {geometric trees}

Table 6.1: Summary and terminology of the TMD and TNS algorithms. The
TMD computes the barcode of a tree from the tips of branches towards the root,
whereas the TNS grows the tree in the opposite direction, from the root to the
leaves.
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6.2 Stability of the TNS

In this section, we investigate the effect of the composition of the TNS and
TMD algorithms from a theoretical perspective. Given a strict barcode B =
{(bi, d:) }iego,....n}» We apply the TNS to B, for a fixed choice of the parameter A,
obtaining a tree Tz, and then compute the barcode of Tp, TMD(T5), which we
denote by B" = {(b}, ;) }icqo,....n}- To quantify to what extent the TNS acts as an
inverse to the TMD, we are interested in determining how similar B and B’ are.

Expressing the similarity between B and B’ in terms of the (modified) bottle-
neck distance (Theorem 4.23) enables us to establish one form of stability for the
TNS in the first part of this section. We establish another type of stability for the
TNS in the second part, when we show that the probability that the order of two
specific bars will be altered upon applying TMD o TNS decreases exponentially
with the distance between the death times of the two bars.

6.2.1 Modified Bottleneck stability

We call the endpoints of the bars of the barcode B targets, as the TNS algorithm
either creates a new branch or terminates a branch when the distance from the
root approaches a birth or death point, respectively.

By definition of the TNS algorithm, when approaching a target, there is an
exponential probability to bifurcate (create a new branch) or terminate, depending
on . It follows that for any bar (b;, d;) of a given barcode B, the distance between
b; and b, (the bifurcation distance and the target bifurcation distance of the
ith branch) and the distance between d; and d; (the termination distance and
the target termination distance of the i*® branch) should follow an exponential
distribution of parameter A,

|b; — b}] ~ Exp(\) and |d; — d}| ~ Exp(\).

The notion of similarity between barcodes that we consider here is the modified
bottleneck distance, Definition 4.23, which we denote simply by d in the rest of
this chapter. We recall the definition here:

Definition 6.2. Let B = {(b;,d;)}icqo,...ny and B' = {(b},d;) }icqo,....n} be two

177

barcodes in B,,. The modified bottleneck distance between B and B’ is

d(B,B) = min e [|(bi, di) 5y iy lloo-
where ||-||oo is the [*°-norm on R2.
Lemma 6.3. Let B be a strict barcode with n bars, and let B = TMD o TNS(B).
If B~ B, then

P(d(B,B’) > £) <1— (1 —exp(—Ae)(Ae + 1))". (6.1)
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Proof. Considering the case where 7 is the identity, we see that

d(B, B') < sup |b; — by| + |d; — di].

If B ~ B’, the differences between the new and original values of the births and
deaths all follow an exponential distribution,

|b; — b}] ~ Exp(\) and |d; — d}| ~ Exp(\).

The cumulative probability distribution function of |b; — b;| + |d; — d| is thus
given by an Erlang(2, A) distribution [10]

P(lb; — )] + |di — d!] <) =1 — (14 Ae) exp(—Ae).

Because we consider the supremum over ¢ of the sum |b; —b}| 4 |d; — d|, and all
of the |b; — bl| + |d; — d}| are i.i.d, it follows from the theory of order statistics [4]
that

P(d(B, B') <€) > P(sup |b;—bi|+|di—di| < e) = (1—exp(—Ae)(Ae+1))". (6.2)

Considering the probability of the complement leads to the result in Equation
6.1. O

Lemma 6.3 implies that the TNS is stable with respect to the modified
bottleneck distance, in a manner dependent on the parameter A. To illustrate
this dependence, we plot the function of Equation 6.1 for different values of A in
Figure 6.2. The curve obtained for A = 1 (blue in Figure 6.2) makes it clear that
setting A = 1 ensures that the TNS gives rise to a diverse family of new trees that
are nonetheless topologically not significantly far from the original ones, which is
the desired goal from a biological perspective. Making an appropriate choice of
the parameter A is thus essential.
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Bound on the probability that the bottleneck distance is larger than ¢

1.0

0.8

06 — A=0.05

’ A=0.1
— A=05

0.4 — A=l

7 — A=10

0.2

0.0 {

Figure 6.2: Upper bound on the probability that the modified bottleneck distance
between B and TNS o TMD(B) is larger than ¢ (Equation 6.1) for various values
of A and for n = 10.

If B ~ B’, the bound by v = id in the formula for the modified bottleneck
distance is computed between pairs of points that follow the same exponential
law, as the order of bars is preserved. If B « B’ for example when a switch of
bars occurs, then we cannot assume that the distances between matched pairs of
points in the computed modified bottleneck distance follow the same law. Change
of permutation type between B and B’ is more frequent for small A (Figure 6.6).
Therefore, the previous lemma is usually not applicable for small values of A, for
which it is any case not particularly useful, as shown in Figure 6.2. In Figure
6.3 we summarize graphically the discussion above. The transposition of bars is
studied in detail in the next section.
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A. Distance between (b,d) and (b',d")  B. Endpoints of B well spaced C. Endpoints of B close
if B is equivalent to B'

B

-~ Exp(X)

< '“ o

N Erlang(2, \)

Figure 6.3: A. The ¢;-distance between the black bullet and the diamond follows
an Erlang(2, A) distribution. The interior of the green square defines a bound for
the £1-distance from the black bullet that depends on the value of the parameter \.
B. If the endpoints of the bars of B are sufficiently far away from each other and
B ~ TMD o TNS(B), then, with high probability, taking v = id will minimize
the ¢1-distance between pairs of endpoints of bars. C. If the endpoints of B are
instead close to each other, then it is more likely that B « TMD o TNS(B), so
that the optimal choice of v (represented by red segments) is not the identity.
The red distances do not necessarily follow exponential distributions, so the proof
of Lemma 6.3 does not apply.

We perform two experiments to illustrate our theoretical results computation-
ally. First, we compute the modified bottleneck distance between input barcodes
B and output barcodes B’, for increasing values of lambda A from 0.01 to 2 (see
Figure 6.4A). The computational results (average modified bottleneck distances
in red, Figure 6.4A2) fit the curve of the expected mean of the probability density
function! well (blue curve).

We also compute the cumulative density function for 0 < € < 200 and 0 <
A <2, which we compare to the computational results (red points, Figure 6.4A3),
showing that they match the theoretical prediction (blue colormap) very closely
for a wide range of sufficiently large A (zoom-in, Figure 6.4A3). However, for very
small values of A, the condition B ~ B’ is not always satisfied, leading to the
observation that for A < 0.2, the computationally computed modified bottleneck
distances are larger than the theoretically expected values.

Second, we compute the modified bottleneck distance between input and
output barcodes for various fixed values of A, where the input barcodes arise by
gradually decreasing the death time of one bar of an initial barcode B and thus
increasing the distance to the next death time in the sequence (see Figure 6.4B).
All other bars of the initial barcode B remain the same. We observe that the
modified bottleneck distance depends only on the value of A and not on the
distance between the bars of the input barcode.

!The PDF can be deduced from Equation 6.2 in the proof of Lemma 6.3 by taking the
derivative of (1 —exp(—Xe)(Ae + 1))".
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Al Bottleneck distance of (B, B')

A2 Probability distribution A3 Cumulative distribution
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BT distance
BT distance

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 1.0 2.0

Lambda Lambda

B1 Bottleneck distance for different distances (d_i, d_j)

) —————— >

B2

—+— LAMBDA 0.1
20.0 - —+— LAMBDA 0.2
' — LAMBDA 1.0

LAMBDA 10
17.5 4 -+

15.0 A

|

10.0 -

-

2.5

BT distance

Pt + —+ + + + ——

0.0 +

0 20 40 60 80 100
Distance between bars (um)

Figure 6.4: A. Modified bottleneck distance as a function of A. We compute
the modified bottleneck distance between an input barcode B and an output
barcode B’ for A = 0.01 — 2. Al. From barcode B (in black), a tree (in red) is
generated using the TNS which results in a new barcode B’ = TMD o TNS(B)
(in red). A2. The average modified bottleneck distance (red points) is compared
to the expected mean of the probability distribution function found in Lemma 6.3
(blue curve). A3. The modified bottleneck distances (red) are compared to the
cumulative distribution probability for 0 < ¢ < 200 and 0 < XA < 2 (blue). B.
Modified bottleneck distance between B and B’ as a function of distances between
bars in B. B1. We consider barcodes of the same permutation type for different
distances between two bars (b;,d;) and (b;, d;) of the initial barcode B that are
consecutive in the order of deaths. B2. For each input barcode with increasing d;,
distance between death times presented in x-axis, 100 synthesized barcodes are
generated and the modified bottleneck distance between the input and output
barcodes is computed (y-axis), which depends only on the value of A and not on
the distance between the bars.
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6.2.2 Transposition stability

As the TNS algorithm is a stochastic process, the image of any strict barcode
B = {(b;,d;)} under the composite TMD o TNS essentially always differs at
least slightly from B. Here we determine the probability that the orders of the
death times of two specific bars of B and TMD o TNS(B) = B’ = {(¥},d})} are
different, so that B and TMD o TNS(B) are not combinatorially equivalent, i.e.,
the associated permutations are different, as long as the birth times are not also
transposed.

dg- d’

) 1

&

--@ &
Y

|di — dj| ~ Exp(})
|dj — dj| ~ Exp(})

Figure 6.5: We are interested in the case where d;- < d}; when we start from d; < d;.
The distances |d; — d;| and |d; — d| both follow an exponential law of parameter
A. The probability to terminate increases exponentially when approaching d; and
d;, as represented by the blue arrows.

Lemma 6.4. Let B be a strict barcode, and let (b;,d;), (bj,d;) be bars of B
such that d; < dj. Let (b},d;) and (b},d}) denote the corresponding bars in
B’ =TMD o TNS(B). The probability that d; < d; is

1
P(d) < d}) = 5 exp(-A(d; — ).

The TNS thus exhibits a sort of “transposition stability”: the probability that
the death times of two bars will be transposed decreases exponentially with the
distance between those death times.

Proof. We compute P(d}; < d}) = P(d}; < d}|d; < dj), the probability that d; < d;
given that d; < d;j. Denote the random variable d; — d; by X;. Observe first that

]P’(d;- < d;) = ]P’(dj + (di — d;) <d; + (dj — d;))
= P(dj + X; < d; —i—Xj) = P(Xj - X; > dj — dz)

Let Y = X; — X;. As X; and X; both follow an exponential law, the density
function of their difference, Y, is given by fy(t) = %exp(—)\t) when ¢ > 0.
Therefore,

e 1
]P)(d; < d;) = ]P)(Xj - X; > dj — dz) = / fy(t)dt = §exp(—/\(dj — dl))
d;j—d;
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Remark 6.5. Since the TNS is based on a stochastic process, multiple transpositions
can occur when generating a new tree from a barcode. This makes it challenging to
determine the overall probability of changing equivalence classes when computing
the composite TMD o TNS. Note that the TNS might also affect the birth
order, but we will not discuss this possible effect in this thesis. For the following
experiments, the selected examples do not experience birth-switches, as the
neurons from which we computed the barcodes were chosen with sufficient gaps
between birth values to avoid such switches.

We perform the following computational experiment to evaluate the transposi-
tion stability results. We systematically vary the distance between two bars by
changing the death time of a bar in the input barcode and compute the percentage
of order changes that occur for different values of lambda(see Figure 6.6). We com-
pare the theoretical results (solid lines) to the computational experiment (scatter
points) for five different values of lambda. Note that for this experiment, the birth
times are chosen to be sufficiently distinct, and only the number of switches due
to permutations that correspond to death changes are counted. The experimental
results match the theoretical prediction with high accuracy, where we compute
the error as the average distance of the computational points from the theoret-
ical curve (A = 10,error = 0%, A = 5,error = 0.02%, A = 1,error = 0.5%,
A =0.5,error = 0.9%, A\ = 0.1,error = 3%, A = 0.05, error = 5%). Note that
the error increases for smaller values of A, due to the computational artefacts
introduced when X is small.

6.3 Computational Exploration of the TRN

In this section we present computational results that illustrate the complex
relationship between the equivalence class of a barcode and its possible tree-
realizations.

We first present four results concerning all geometric trees: a computation of
the distribution of tree-realization numbers across the set of equivalence classes
of strict barcodes for various numbers of bars, a computation of the empirical
distribution of combinatorial types of geometric trees in a synthesized population
as a function of the equivalence class of the input barcode, a measurement of the
diversity of TMD-equivalence classes among the realizations of a fixed barcode,
and simulations of the fluctuations in tree-realization number that can occur as
two bars gradually switch the order of their deaths.

We conclude by reporting on an experiment that sheds light on the distin-
guishing characteristics of “biological” geometric trees, i.e., those that arise from
digital reconstructions of neurons.
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A. Two bars changing order

B. Percentage of order changes -vs- bar distance
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Figure 6.6: A. Example of two bars changing order, which results in switching
of classes. We show here a tree, its barcode, and the corresponding persistence
diagram when two consecutive deaths switch their order. The impact of the
change is illustrated by the red arrows. B. Percentage of order changes per 100
repetitions for varied distance between death times of two consecutive bars of
the input barcode. Comparison of theoretical results (solid lines) to simulations
(scatter plot) for different values of lambda.
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6.3.1 The distribution of tree-realization numbers

We illustrate here how the number of tree-realizations of strict barcodes with n+1
bars depends on n. In Figure 6.7 we present the distribution of tree-realization
numbers across equivalence classes of barcodes with n + 1 bars, for 1 <n < 10.
As mentioned in Chapter 5, the tree-realization number is maximal for a fixed
number of bars if and only if the barcode is strictly ordered. We observe an
exponential-like behavior in the distribution of tree-realizations with the increase
of the number of bars. This illustrates the results of Section 5.3.
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Figure 6.7: Histogram of tree-realization numbers for equivalence classes of
barcodes with n + 1 bars (1 <n < 10). The maximal tree-realization number for
a fixed number of bars can be achieved with exactly one equivalence class, that of
the strictly ordered Russian doll barcode.

6.3.2 Empirical distributions of combinatorial types of trees

In this section, we explore computationally the probability to generate different
combinatorial tree types (see Figure 5.5) with the TNS. We observe that this
probability depends on the choice of the parameter A\. When A\ > 2, the TNS is
more likely to generate trees with all branches connected to the longest branch,
due to the design of the algorithm. On the other hand, for smaller values of A,
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the probability to generate different types of trees is approximately uniform.

Focusing on our preferred value of A, we generated 1000 trees for A = 1 and
computed the percentage of each combinatorial tree type that is realized for
each equivalence class of barcodes with four bars (Figure 6.8). There are six
possible equivalence classes of strict barcodes with four bars and six combinatorial
equivalence classes of geometric trees with four branches.

248841

H m B EHEm
(132) . . . .
H m B

(213)

(231)

(312)

(321)

h:h

Occurence percentage (normalized)

Figure 6.8: Empirical distribution (percentage of 1000 trees) of synthesized
geometric trees with four branches by combinatorial tree type (columns A - F)
for a given input barcode equivalence class (rows), when A = 1. We observe that
the distribution is approximately uniform.

6.3.3 Diversity of realized TMD-equivalence classes

Recall that two trees are TMD-equivalent if applying the TMD to both returns the
same barcode. We explore the diversity of TMD-equivalence classes of geometric
trees that can be synthesized from a fixed barcode, in the particular case of the
TMD of a biologically meaningful tree. For a fixed geometric tree with eight
branches arising from a digital reconstruction of a layer 4 pyramidal neuron, we
computed its TMD barcode, to which we applied the TNS with A = 1 to generate
a set of 100 geometric trees. We computed the barcode-type and the persistence
diagrams of the synthesized trees (Figure 6.9).
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In agreement with the results presented in Figure 6.4, the persistence diagrams
of the synthesized trees (Figure 6.9B, in blue) are essentially indistinguishable from
the persistence diagram of the original barcode (Figure 6.9B, in red). On the other
hand, the TMD-equivalence class of a synthesized tree is not necessarily equal to
that of the original tree (Figure 6.9A). Here we represent the TMD-equivalence
class of a tree in terms of the permutation op corresponding to the equivalence
class of its TMD barcode B.

A. Permutation order of trees B. Persistence diagram of trees
500 | @ Biological tree
e o © © 0 o o o o o N @ Synthesized tree P
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Figure 6.9: Barcode-equivalence class, represented by the corresponding permu-
tation, (A) and persistence diagram (B) of 100 synthesized neurons based on
a geometric tree with eight branches, extracted from a layer 4 pyramidal cell.
The barcode-equivalence classes of the synthesized trees (represented by blue
dots) can differ from that of the original tree due to the stochastic nature of
synthesis algorithm. The persistence diagrams of the synthesized trees (B, blue)
are essentially indistinguishable from those of the original tree (B, red).

6.3.4 Statistics of changing classes

Motivated by the theoretical results on the probability to change classes in section
6.2.2, we analyze here several simulations of gradual switching of death order of
two bars and the resulting effect on tree realizations and their associated barcodes.

Let B be a strict barcode, and let (b;,d;), (bj,d;) be bars of B such that
d; < dj. By Lemma 6.4, for a fixed choice of the parameter A, the probability that
the order of the death times is reversed in TMD o TNS(B) depends exponentially
on the distance between d; and d;:

1
]P’(d; < d;) = 5 exp(—/\(dj — dz))

Thus, when the distance between d; and d; decreases, the probability that the
order of bars changes increases. When there is no k£ such that d; < di, < d;,
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Proposition 5.7 provides a formula for the tree-realization number of the new
barcode obtained when such a switch happens, as long as the order of the birth
times is not also reversed.

We start with a geometric tree T' extracted from a digital reconstruction of a
neuron and compute its associated barcode B = TMD(T'). We choose two bars
(bi,d;) and (bj,d;) of B that are consecutive in the order of deaths and divide the
interval (d;,d;) into 50 equally sized subintervals. For 0 < k < 50, let By, be a
barcode that is identical to B, except that its " bar is (b;,d; + k(d; — d;)/50)
and its 5 bar is (bj,d; — k(d; — d;)/50). An interesting way to visualize this
change is to think of By as migrating along the edge between B and the barcode
with d; and d; permuted in the corresponding Cayley graph as k increases. The
middle point of the edge corresponds to the non-strict barcode for which the two
deaths are equal.

Let B, = TMD o TNS(By,) for all k. Because of the stochastic nature of
the TNS algorithm, the permutation equivalence class of Bj may be different
from that of By. Figure 6.10 provides an example of this construction, where the
barcodes are represented as persistence diagrams for visualization purposes.

Evolution of PD(B') when bars 4 and 5 switch
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Figure 6.10: We begin with a barcode with 8 bars. The death times d;, and d;;
(i.e., the 4th and 5th largest death times) are slowly switching as k increases,
represented by red-shifting of the color of the points in the persistence diagram.
When k& = 0 (in red), we have the original barcode B, and when k& = 50 (in blue)
we obtain a barcode identical to the original, except that (b;,,d;,) is replaced by
(biy dis) and (bis, di;) by (bis, di, ).

To test whether the barcode By, is equivalent to the original barcode B, we
compute its tree-realization number: if R(Bj,) # R(B), then B and By, are not
equivalent. Note that for the specific process that gives rise to By, it is likely that
only the studied death-switch could lead to a difference between the tree-realization
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numbers of the input and output barcodes, unless two other deaths are too close
to each other in the input barcode, as in the last row of Figure 6.11, which we
explain further below. Therefore, the tree-realization number provides a very good
indication of whether the switch of deaths took place, i.e., if B ~ B} or not. Indeed,
two barcodes that are the same except for two deaths that switched have different
tree-realization number, cf. Proposition 5.7. Figure 6.11 shows several examples of
the endpoint-switching process described above and the corresponding evolution
of the tree-realization number as k increases. The corresponding permutation
type and tree-realization number of each initial barcode, and the bars that are
switched are listed in Table 6.2.

The top row of Figure 6.11 illustrates very well the exponential behavior of
changing classes. When the distance between the death times of the two bars
is very small (they are the closest when k = 25), the tree-realization number
oscillates between its values for two different classes and otherwise stays constant.

The two middle rows come from the same biological tree and hence have
the same starting barcode. The difference is that in the second row, the death
times of the two bars are already very close, leading to more frequent changes of
equivalence class than in the third row.

The bottom row illustrates Remark 6.5 well. Since several bars are close to
each other (represented here by several points in the persistence diagram that
are close to each other), applying the TNS algorithm leads to frequent changes
in equivalence classes, leading to the oscillatory behavior of the tree-realization
number curve.

Permutation TRN | Bars that switch
B' | [2,6,8,1,5,7,4,3] | 810 4 and 5
B! | [2,6,8,5,1,7,4,3] | 540 4 and 5
B? | [5,7,6,4,2,1,3] 12 2 and 3
B? | [56,7,4,2,1,3] 18 2 and 3
B3 [5,7,6,4,2,1, 3] 12 3 and 4
B3| [5,7,4,6,2,1,3] 18 3 and 4
B*|1[8,6,7,4,3,1,2,5] | 20 1 and 2
B* | [6,8,7,4,3,1,2,5] | 40 1 and 2

Table 6.2: For each example displayed in Figure 6.11, we list the permutation
type and the tree-realization number of the original barcode B and of B = Bx,
and the indices of the bars that are switched. The superscript i in B indicates
the corresponding row of Figure 6.11. For example, the largest death time of
barcode B! is the second bar (in order of birth times), and its shortest death is
the third one. When we switch the 4th and 5th (from largest to smallest) death
times in B! and Bl, the TRN changes from 810 to 540.
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Evolution of PD(BK) when bars 4 and 5 switch TRN(BJ) as 4 and 5 switch
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Figure 6.11: On the left, evolution of PD(B),) as k increases (represented by
red-shifting of the point color, from red & = 0 to blue k£ = 50), for various pairs of
bars. When not clear, we circle in orange the two points that switch. On the right,
the corresponding evolution of the tree realization number R(B},) as k increases.
For instance, as indicated in Table 6.2, the tree-realization number of B! is 810
and that of B! = B%O is 540. The barcodes B, exhibit the behavior described
in Lemma 6.4, except for the last row, in which death times that are too close
to each other (circled in purple and green) interfere with the process. Without
this interference, the tree-realization numbers should oscillate between 20 and
40. When k gets close to 50 (blue), the death time d;, (largest death time) starts
interfering with the third one d;, (circled in purple) in the tree synthesis process.
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6.3.5 Tree-realizations of biological barcodes

Since the original objective in developing the TMD was to classify digital re-
constructions of neurons, it is natural to ask whether those barcodes that arise
biologically exhibit any special characteristics compared to those arising from
other sets of geometric trees. In Figure 6.12 we employ the graphical representa-
tion of permutations introduced in Section 6.3.3 to display as red dots all possible
permutations corresponding to TMD-barcodes of biological trees with at most 30
branches arising from a population of digital reconstructions of neurons. Clearly,
only a small fraction of the set of all possible permutations can be realized as the
barcode-equivalence classes of geometric trees extracted from digital reconstruc-
tions of neurons, as every black dot in this plot can arise as a pair (k, U(kz)) for
some permutation o.

To provide further insight into the subset of TMD-equivalence classes of
biological geometric trees within the set of all possible TMD-equivalence classes,
we computed the tree-realization number as a function of the number of bars,
for a population of barcodes obtained by applying the TMD to geometric trees
extracted from a population of digitally reconstructed neurons. We compared
the values obtained to the maximum tree-realization number and to the tree-
realization numbers of randomly chosen barcodes with the same number of bars
(Figure 6.13). This is a similar study that was shown in the introduction, Figure
1.2. Interestingly, the barcodes that correspond to apical dendrites (relatively
complex neural trees that perform significant processing tasks) exhibit a more
narrow range of possible tree-realization numbers than random barcodes of the
same size. On the other hand, barcodes of basal dendrites (less complex neuronal
trees) exhibit tree-realization numbers similar to those of the randomly generated
barcodes.
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A. Biological (red) -vs- all possible permutations
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Figure 6.12: (A) TMD-equivalence classes of a population of biological geometric
trees with at most 30 bars (red dots), represented by their associated permutations.
(B) Examples of TMD-equivalence classes of individual biological geometric trees
with eight branches, extracted from layer 4 pyramidal neurons (red dots).
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Figure 6.13: The log of the tree-realization number for barcodes with varying
numbers of bars. (A) The log of tree-realization number for barcodes of basal
dendrites (in blue) in comparison with random barcodes (in yellow) and the
maximum tree-realization number (n! for n + 1 bars) (in red). (B) The log of the
tree-realization number for barcodes of apical dendrites (in blue) in comparison
with random barcodes (in yellow) and the maximum maximum tree-realization

number (in red).
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6.3.6 Comparison with Random Barcodes

Motivated by the results in Figure 6.13, we go further in the comparison of
distributions of barcodes coming from neurons and artificially generated barcodes.
The computations in this section were done by two interns at EPFL, Jeanne
Fernandez and Ettore Gran.

For normalization purposes, all the methods to generate barcodes take values
in [0,100]2. The barcodes of neurons are computed computed from publicly
available data on NeuroMorpho.org [6]. The four data set we study in this section
are fly neurons [30], mouse basal glanglia cells [97], mouse neocortex cells [97]
and rat neurons [80]). We use the TMD [68| to compute the barcodes, which we
normalize by dividing the endpoint values in each barcode by its maximal death
time. We compare these biological barcodes with artificially generated barcodes.

We describe several methods to generate artificial barcodes below.

e To generate a barcode with n bars, the first method (m1) repeats n times
the following procedure: pick b; € [0,100), then pick d; € (b;,100]. Because
the latter distribution is conditioned on d; > b;, the induced distribution on
the symmetric group is not uniform, as seen in Figure 6.14 (green).

e The second method (m2), picks two values z;,y; € [0,100] and defines
b; = min{z;,y;} and d; = max{x;,y;}. This method also does not induce a
uniform distribution on the symmetric group. Indeed, the distribution of
the minimum or maximum of two uniform random variables is not uniform.

e The third method (m3) is designed to induce a uniform distribution on the
symmetric group. The birth b; is always given the value ¢ and the death
values are picked uniformely in (n, 100].

e The fourth method (m4) is similar to (m1), but starts with the death values.
It picks d; € (0,100] and then conditions b; € [0,d;). It is used in Figure
1.2 (green curve) and Figure 6.13 (yellow curve) to study the distribution of
the tree-realization number for populations of neurons.

e Another method (separate) designed to induce a uniform distribution on
the symmetric group is to pick the birth and death times seperately: pick
b; € [0,50) and d; € (50,100]. Figure 6.14 shows the distribution induced
on Syms by this method and the method (m1). This method is used in
Figure 1.2 to compare the tree-realization number of random barcodes and
neurons. It corresponds to the blue curve.

e The last method (plane) that we use picks a point randomly in the region
of the plane defined by [0,100]? N {(z,y) € R? | z < y}. To do so, one

generates polar coordinates with an angle between 7 and 5 and a radius in

[0, 100].
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Figure 6.14: Two distributions on Syms induced by distributions of barcodes with
three non-essential bars. The elements of Syms are indexed by the integers 0, ..., 5.
Green (ml): we first pick uniformly the birth times b; in the interval [0, 100],
then choose uniformly the death times d; € [b;, 100]. Blue (separate): We pick
uniformly three birth times b; € [0,49] and three death times d; € [50, 100], which
induces a uniform distribution on the symmetric group S3.

In the following figures, we compare populations of neurons to artificially
generated barcodes using different statistics. To generate barcodes with the
methods described above, we first studied the distribution of the number of bars
of each population of neurons. We mimic these distribution for our artificially
generated barcodes by generating five barcodes with n bars for each barcode with
n bars in the population of neurons.

We first show a summary of the data of each population of neurons of rats,
mice (neocortex and basal ganglia cells) and flies in Figure 6.15.

General statistics - Real Neurons

Summary 1 birth 1 death 1 Iifespan 1 entropy a birth a death a lifespan

143.104 2.684 253.573 255.614 11.764
| oo | swom |
| e [ westast [ weew | sos | woaasss | wosssss [ wam |
| omose [ _pesses | e | ase | e | gese [ s ]

Figure 6.15: Table summarizing the normalized births, deaths, lifespans (d; — b;)
and entropy averages (u) and standard deviations (o) for the fly data set, mouse
basal ganglia (mouse BG), mouse neocortex mouse_ NC) and rat data set.
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The next table 6.16 shows the same summaries for the normalized barcodes
of rat neurons. They are compared with the same summaries for the methods
described above to generate artificial barcodes.

General statistics - Rat

Summary 4 birth 4 death 1 lifespan W entropy o birth a lifespan

36.264 19.27 2.684 27.573 12.817
74.951 50.213 3.141
49.753 75.362 26.879

.05 T
0
TR YT YN e S MY S

Figure 6.16: Table summarizing the normalized births, deaths, lifespans (d; — b;)
and entropy averages (1) and standard deviations (o) for the rat data set compared
to randomly generated barcodes.

Figures 6.17, 6.18, 6.19 and 6.20 show box plots of the births and deaths
for each population of barcodes of neurons compared to each method described
above. For each plot, the values are represented with dots, the median, upper
and lower quartiles with boxes and the upper and lower extremes with whiskers.
For artificial barcodes, the birth and death boxes are in the same color, the left
box corresponds to the births and the right one to the death, since b; < d; for all
1. These plots show that the methods to generate artificial barcodes are not a
good approximation of the neurons’ barcodes. This is not surprising due to the
simplicity of these methods.
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Figure 6.17: Box plot of the birth and death values for the normalized barcodes
of the fly data set and the methods to generate artificial barcodes.
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Boxplot Births/Deaths - Rat

Generation methods
Separate
Separate

m1

Rat (Births)

m1
m2
m2
m3
m3
ma ma
ma
Planar
Planar

m o
s . Rat (Deaths)

Separate

Rat (Deaths)

Planar.

°
N
5
2
B

60 80 100

Figure 6.18: Box plot of the birth and death values for the normalized barcodes
of the rat data set and the methods to generate artificial barcodes.

Boxplot Births/Deaths - Mouse_NC

‘Generation methods
Separate
Mouse_NC (Births) Separate

Mouse_NC (Deaths)

EEEEEEEEEN
3
o

. " et temothi, A o w e ¢ m2
Planar 3
m3
ma ma
* o CnABBRES ot & ® wwmi Foniipe P oo ma
) ) Planar
m3) Planar
. (I N =TT LT " e *e 0 @2 0uth A Idh Fflee w LI - . B Mouse_NC (Deaths)
m2 Mouse_NC (Births)
* MOONENES et o Genns GEEBEre” -
mi
CECTE Y~y TP LT " ws cPAPRINS w0 o
Separate I—-—| I—-—i
L 2 ‘e AmEEEe - .
0 20 40 60 80 100

Figure 6.19: Box plot of the birth and death values for the normalized barcodes of
the mouse basal ganglia data set and the methods to generate artificial barcodes.
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Figure 6.20: Box plot of the birth and death values for the normalized barcodes
of the mouse neocortex data set and the methods to generate artificial barcodes.

We now compare the (log of) tree-realization number with the persistent
entropy (Theorem 3.29) of the different neuron types and then compare the rat
and mouse basal ganglia data sets with the different generation methods. The
plots ressemble those for the TRN and the number of bars of Figures 1.2 and 6.9.
Both the TRN and persistent entropy are correlated with the number of bars.
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Figure 6.21: Log of the tree-realization number versus entropy of the barcodes for
the neurons data set.
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Figure 6.22: Log of the tree-realization number versus entropy of the barcodes for
the rat data set compared with artificially generated barcodes.
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Figure 6.23: Log of the tree-realization number versus entropy of the barcodes for
the mouse basal ganglia data set compared with artificially generated barcodes.

Another combinatorial statistical study

While the permutation type of barcode and tree-realization number have been
shown to have interesting properties with respect to the inverse problem, they
yield little infomation about the “overlapping” properties of births and deaths.
Indeed, a barcode that has the identity permutation can have alternating birth
and deaths times, as in Figure 6.24A, or all the births separated from the deaths,
as in Figure 6.24B. There is a family of possible “overlapping behavior” in the
middle. The Russian doll barcode, on the other hand, can only have all births
separated from the death times.
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Let B = {(b;,di)}icqo,...n} € Bn. In order to understand the overlapping
behavior of the births and deaths, we order all the values in a labelled list
(z,y) € R*" x {b,d}*". The value z; € {b;};eq0,..n} U{dj}ieqo,. n} is either a
birth or a death, z; < x; for i < j, and y; € {b,d} is a binary variable indicating
whether z; is a birth or a death. Keeping only the second coordinates y; yields
an ordered list in {b,d}?" that summarizes the “alternating behavior” of the
births and deaths. We represent this information graphically in what we call a
path diagram. The x-axis represents the births and the y-axis the deaths. We
draw a path that goes right if y; indicates a birth and up if y; indicates a death.
Therefore, a path close to the diagonal indicates an alternating behavior such as
(b,d,b,d,b,d,b,d) (Figure 6.24B) and a path that first follows the z-axis then goes
up would indicate a separate birth/death behavior such as (b,b,b,b,b,d,d,d,d,d),
as in Figure 6.24A.

A. A barcode with (b,b,b,b,d,d,d,d) B. A barcode with (b,d,b,d,b,d,b,d)
and its corresponding path diagram. and its corresponding path diagram.

Figure 6.24: The two extreme types of paths. (A) A barcode with all births
separated from the deaths (b, b,b,b,d,d,d,d) and its corresponding path diagram.
The path goes first 4 times to the right for all the births, then 4 times up for the
deaths. (B) A barcode with alternating births and deaths (b, d, b, d, b, d, b, d). The
corresponding path goes right, up, right, up, right, up, right, up.

The plot of Figure 6.25 shows the path diagrams for several neurons of the
rat data set chosen for their low number of bars.
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Figure 6.25: The path diagrams of several neurons from the rat data set.

The heat map corresponding to Figure 6.25 is shown in Figure 6.26. It shows
the coordinates (z,y) € R? which are contained in the most number of paths
(yellow).
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Figure 6.26: Heat map corresponding to Figure 6.25.

Based on Figures 6.25 and 6.12, one can formulate the following hypothesis for
(rat) neuron’s barcodes. They have the tendency to have permutations that are
close to the identity (see Figure 6.12) but still have a rather alternating behavior
of birth and death times (see Figure 6.25). Such an hypothesis is formulated
purely from the combinatorics of the barcodes, using tools developed in this thesis.
We discuss future work related to combinatorial properties of barcodes and trees
in the conclusion.



CHAPTER 7

The Persistent Homology of Dual
Filtered Complexes

The purpose of this chapter is to present results on the persistent homology of
dual cell complexes. It is self-contained (following the definitions of Sections 2.4
and 7.1) and independent of the other results of this thesis. The results presented
are based on two papers [16,58|, and are joint work with K. Maggs, V. Robins,
T. Heiss and B. Bleile. In [16]|, we apply these results to the computation of
persistent homology for the two types of cubical complexes built from images.

In this chapter, a cell complex is a finite regular CW complex or a simplicial
or cubical complex. Given a d-dimensional complex X, recall that, when it exists,
its dual X* is a complex whose k-dimensional cells correspond bijectively to the
(d — k)-dimensional cells of X, and the adjacency relations are reversed. It was
observed in [27], [9] that a Morse function on a manifold satisfies some duality
relations. Here, we show that the persistent homology of two dual cell complexes
satisfies similar relations. These relations can be lifted to the chain complex level,
by exhibiting a shifted filtered chain isomorphism between the absolute filtered
cochain complex of X and the relative filtered chain complex of X*. This induces
a natural isomorphism between the absolute persistent cohomology of X and the
relative persistent homology of X*.

In [37], it is shown that the persistent homology and cohomology of a space
have isomorphic barcodes, and that there is a bijection between the relative
persistent homology and absolute persistent homology barcodes. Using these
bijections, we extend our results to a bijection between the (absolute persistent
homology) barcodes of X and X*. Moreover, we formalize the notion of dual in the
context of discrete Morse theory. The filtered chain isomorphism described above
is on the Morse chain complexes, generalising results of [27] to cell complexes.

We start by giving a brief introduction to discrete Morse theory.

125
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7.1 Background on Discrete Morse Theory

Discrete Morse theory is a version of Morse theory for discrete structures such as
simplicial or cubical complexes. The notion of a discrete Morse function on a cell
complex generalizes that of a Morse function on a manifold. Discrete Morse theory,
as for Morse theory, studies the critical cells of a complex K. The homology (and
persistent homology) of K can be computed directly from the critical cells and
the discrete gradient vector field, illustrating the power of (discrete) Morse theory.

From a discrete Morse function, one can build an algebraic Morse chain
complexr and compute its homology. This construction can be found in detail
in [52|. If one has a filtered cell complex and a discrete Morse function on it, one
can also compute its persistent homology, which was shown in [88| to correspond
to the persistent homology of the underlying filtration.

7.1.1 Discrete Gradient Vector Fields

Let K be a finite cell complex whose cells will be denoted by a or g,with
superscripts denoting the dimension of the cell. A pair of cells («, 5) is called a
free pair if o < B (here, < denotes "is a proper face of") and « has no other coface
in K. One calls K \ {«, 8} an elementary collapse of K. A function f: K — R
is a discrete Morse function if for all o € K:

L [ {a® <@t | f(a) > f(B)} |< 1, and
2. | {a® > P~V | f(a) < f(B)}|< 1.

If both sets have cardinality O for some «, then « is called a critical cell of f. The
set of critical cells is denoted by Crit(f).

The main idea of discrete Morse theory is to define a discrete gradient vector
field (DGVF) on a complex, which can be used to simplify the complex without
changing its homotopy type. A DGVF is a discrete version of a gradient vector
field in differential geometry. A discrete vector field V' is a partition of the cells
into singletons or pairs such that each pair consists of a cell and one of its faces
of co-dimension 1.

Definition 7.1. [52] Let X be a cell complex. A discrete vector field V is a
collection of facet/cofacet pairs {(7§ < O'];—H)} » such that each cell belongs to at
most one pair. Cells that are not paired are called critical, and the set of critical
cells is denoted by Crit(V).

A pair (7§ < af\“) in V' can be represented visually as an arrow going from 7

to 0. The condition of having each cell in at most one pair implies that each cell
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of X either is the head or the tail of an arrow or is critical.

Flow-lines of a Morse function in the smooth category have a discrete analogue
in V-paths, where we piece together pairs of cells in the discrete vector field.

Definition 7.2. [52] Given a discrete vector field V', a k-dimensional V-path is
a sequence of cells
(o<tog>1 <o > ...>Ty)

such that for all 0 < i < n, we have (1; < 0;) € V, 7; # 7,1 and dim(7;) = k.

A discrete gradient vector field is a vector field that does not admit any closed
V-path, i.e., there is no V-path of which the first and last cells are the same,
0O = Tn-

If two cells 7 and o are critical, we say that a V-path v goes from o to 7 if ~
starts at a cell in the boundary of o and ends with 7.

Remark 7.3. Given a discrete gradient vector field V', one can always build a
discrete Morse function f such that (7 < o) € V implies f(7) > f(o) and
(t <o) ¢ Vimplies f(1) < f(o) |52]. Therefore, Crit(f) = Crit(V'). Conversely,
given a discrete Morse function f, there is a unique discrete gradient vector field
V such that Crit(f) = Crit(V).

The collapse theorem (Theorem 6.3 and 6.4 in [52]) states that a cell complex
X equipped with a DGVF V is homotopy equivalent to a complex composed of
the critical cells of V', via a series of elementary collapses.

A discrete gradient vector field pairs cells in a cell complex X. However, if X
is filtered, it might happen that two cells that are paired do not appear at the
same time in the filtration. Therefore, we add a coherence condition for vector
fields in the filtered case.

Definition 7.4. Given a filtration of cell complexes { X; }icr, a filtered discrete
gradient vector field, or filtered vector field for short, is a discrete gradient vector
field V on X such that for each pairing of cells 7 <1 0, 0 € X, if and only if
T e X;.

Since each pairing occurs only at a single filtration step, one can compute the
persistent homology of the filtration using only the critical cells of X and the
DGVF, as can be done for the homology of X. It was shown in [83] that this
computation produces the usual persistent homology. In particular, only critical
cells induce a change in (persistent) homology.

7.1.2 Morse Chain Complex

One of the purposes of discrete Morse theory is to simplify computations. Theorem
2.5 in [52] states that for a cell complex X together with a discrete Morse function
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f, there exists a cell complex X’ homotopy equivalent to X consisting of exactly
one cell of dimension p for each critical cell of dimension p in X.

The information about critical cells can be packaged together into an algebraic
chain complex, which computes the homology of the space, significantly reducing
the computations.

Let V' be a discrete gradient vector field over a cell complex X, and let I'(7, o)
denote the set of V-paths from 7 to . Here, we work only with Fa-coefficients,
so we do not need to define orientation of V-paths. However, the interested
reader can consult [52] to see how the following definitions can be extended to
Z-coefficients.

Definition 7.5. [52] Let X be a cell complex and V' a DGVF on X. The
algebraic Morse complex M of (X, V) is a chain complex given by the following
data:

1. The chain groups

Cn(M;Fq) := @ Fy - o™
o) eCrit(V)

2. The boundary operators O : C,,(M;Fq) — Cp,_1(M;Fy) given by
oM™= Y oD,
v(n=DeCrit(V)
where [0 : v] is the number of V-paths from ¢ to v modulo 2.
The n-th homology of M is computed via Ker(9)1)/Im(941,), which we
denote by H,(M;TFy).

The homology of the Morse chain complex is isomorphic to the singular
homology of X.

Theorem 7.6. [52] (Discrete Morse Homology Theorem)
Hp(M;F2) = Hy (X5 F2).
Moreover, if the DGVF is filtered, an analogue of Theorem 7.6 is true for
persistent homology using the filtered chain complexes [88|. Therefore, the filtered

Morse chain complex can be used to compute the persistent homology of a filtered
cell complex, which we take advantage of in the last section of this chapter.

7.2 Persistent Homology of Dual Filtrations

Recall again that in singular homology and cohomology with field coefficients, the
coboundary map is isomorphic to the adjoint of the boundary map. In particular,
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given a consistent choice of bases for the chain and cochain groups, their matrix
representations are transpose of each other.

In [37|, another algebraic relationship is established between persistent homol-
ogy and persistent relative cohomology, based on the observation that the filtration
for relative cohomology reverses the ordering of cells in the total (co)boundary
matrix. The same reversal of ordering holds for the dual filtered cell complexes
defined here, so we obtain a similar relationship between the persistence diagrams.
Our proof of the correspondence between persistence pairs in dual filtrations uses
the matrix rank function and pairing uniqueness lemma in a way similar to the
combinatorial Helmoltz-Hodge decomposition of [47].

Suppose (X, f) and (X*,g) are dual filtered cell complexes with n + 1 cells.
Suppose that a linear ordering og,o1,...,0, of the cells in X is compatible
with the filtration (X, f), and that 0,07 _,,..., 04 is the dual linear ordering

compatible with g. Let D be the total boundary matrix of X and D* the total
boundary matrix of X*, with respect to their respective orderings.

Remark 7.7. A useful indexing observation is that o} is the (n — 7)-th cell of the
dual filtration.

We denote by D+ the anti-transpose of the matrix D, that is the reflection
across the minor diagonal: Df-’j = Dy_jn—i. Anti-transposition is also the compo-
sition of standard matrix transposition with a reversal of the order of the columns
and of the rows.

Lemma 7.8. The matriz D* is the anti-transpose D of D, that is,
DZj = DiL,j = Dy_jn—i for alli,j.

Proof. The equivalences below follow from the definition of D, of dual cell com-
plexes, and the remark above.

*
n—

<ok

Dy jni=lsopjdop_iso0o hej & D;-jj =1

Lemma 7.9. The sub-matrices defined in Section 2.4.3 satisfy

(D) = (D)5

and thus .
rank D] = rank (DJ‘)z:;
and
rp(i,j) =rpi(n—j,n—1i).
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Proof. The first statement follows from

(D))*: = (D[i : n,0: j))* = DH(n—j) :n,0: (n —i)] = (DH)nl.

The second statement follows because anti-transposition is performed by com-
posing the rank preserving operations of transposition and row and column
permutations. The third statement follows from the second by:

rp(i,j) = rank D{ — rank Dg_l — rank DfH + rank Di;ll
= rank(D); 7 — rank(D)375 ) — rank(D)Z + rank(D4)Z5
=rpi(n—j,n—1).
O

Proposition 7.10 (Persistence of Dual Filtrations). Let (X, f) and (X*,g) be
dual filtered complexes with compatible ordering og, 01, ...,0,. Then

1. (04,04) is a persistence pair in the filtered complex (X, f) if and only if

(07,07) is a persistence pair in (X*,g), and

2. 0y is essential in (X, f) if and only if o} is essential in (X*,g).
Proof. Lemma 7.9 implies that rp(i,j) = rp=(n — j,n — i). Therefore,
rp(i,j) =1<rp«(n—j,n—1)=1.

By the Pairing Uniqueness Lemma 2.31, the equivalence above implies that (o, 0;)
is a persistence pair whenever the (n — j)-th cell of the dual filtration (X*, g) is
paired with the (n — )-th, thus proving Part (1). For Part (2), Lemma 7.9 also
tells us that the following two statements are equivalent.

e Both rp(i,j) # 1 and rp(j,i) # 1 for all j.
e Both rp«(n —j,n—1i) # 1 and rp«(n —i,n — j) # 1 for all n — j.

By Corollary 2.32, this means that o; is an essential cell in (X, f) if and only if
the (n —i)-th cell o} is essential in the dual filtration (X*, g). O

Corollary 7.11. Let (X, f) and (X*,g) be dual filtered complexes. Then

1.
[f(04), F(05)) € Dgmi(f) & [9(07), 9(07)) € Dgmg ™" (g),

and

[f(0:),00) € Dgm¥ (f) < [g(0]),00) € Dgm*(g).
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Proof. Note that for a persistence pair (o4, 0;), found for an ordering compatible
with the function f, the birth value is f(o;) and the death value is f(o;). The
result then follows directly from Theorem 7.10. O

Remark 7.12. Tt is worth noting that there is a dimension shift between essential
and non-essential pairs coming from the fact that the birth cell defines the
dimension of a homological feature. For finite persistence pairs, the birth cell
changes from o; (of dimension k) to o} (of dimension d — (k + 1)) in the dual,
while for an essential cycle, the birth cell in the dual is o}

7.2.1 Dual Discrete Morse Filtrations

We describe explicitly the dual relations between V-paths in X and V-paths in
X* which allows us to construct a dual filtered discrete gradient field on X* from
a given DGVF on X. We would first like to mention [11], in which the author
forsees the beginning of some of the results about dualising vector fields in discete
Morse theory that we formalize here.

For a cell complex X with dual X*, we describe the relations between the
(persistent) homology of X and X*, using discrete Morse theory. We extend
some known results in Morse theory to the context of discrete Morse theory. The
following definition describes how a dual discrete gradient vector field is induced
on the dual complex of X.

Definition 7.13. Let X be a d-dimensional cell complex and X* its dual. Assume

there is a discrete gradient vector field V = {(T)(\k) < Jg\k+1))} a» on X. Then

we define the corresponding dual discrete gradient vector field V* on X* as

Lemma 7.14 (V-path Duality). The dual discrete gradient vector field is indeed
a discrete gradient vector field. Moreover,

1. if (1 < o) is a pair in (X,V) then (6 > 1) is a pair in (X*,V*), and

2. V-paths from 19 to oy, correspond bijectively to V -paths from o}, to 7.

Proof. By definition of the dual X*, V* also defines a discrete gradient vector field,
since we invert the face relation in the dual complex ¢* <1 7* if and only if 7 < 0.
Moreover, Crit(V) = Crit(V*), i.e., 7 € Crit(V) if and only if 7" € Crit(V*), as
the critical cells are the unpaired ones, and there is a bijection between the pairs.

For the second claim, a k-dimensional V-path
(o <<og> T <o1 > ...>Ty)

corresponds to a (d — k)-dimensional V-path
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(h>op 1 <ATh_1 > ...> 05 <Ty),
where each (77 > o) is paired in (X*,V*) by the previous argument. O

Remark 7.15. If f: X — R is a discrete Morse function, then

ff:X*—>R
o= —f(0)

defines a discrete Morse function on X* such that o* is f*-critical if and only if o
is f-critical. Indeed, as f*(c*) = —f(0), it follows that f*(c*) < f*(7*) if and
only if f(o) > f(7), so

f(r)> f(o)and T < o if and only if ") < f*(o") and 7 > 0",

Hence,

Ho* e X*| 7" > o and f*(77) < f*(
=HoeX|7t<oand f(r) > f(o) }

and
{p' € X |7 ap’ and f(%) = (7)) < 1.

So our function f*: X* — R is indeed a discrete Morse function. Further, since
the cardinalities of the sets of cells above always agree, it follows that dual cell of
a critical cell is also critical.

If f induces a discrete gradient vector field V', then f* induces V*. Hence, the
previous lemma is the discrete Morse theory analogue of the smooth case: for
f: M — R a Morse function on a manifold M, if we consider — f, then the flow
lines are reversed and the critical values are switched.

Our discrete Morse theory results are summarized in the table below.

cell complex X

Dual cell complex X*

Cell %) o*(d=F)
Filtration
. . f: X—R X" —R
Filtration o f(o) ot > —f(0)

Filtered vector field

V={(n" a1,

V= {0y D a0y

V-path

(oo ... Ty)

(o 1 Q...>of <7)

Critical cells

a1,02,...0p,

* * *
Ay Ay 15+ -
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7.3 Absolute Persistent Cohomology and Relative Per-
sistent Homology of the Dual

Theorem 7.10 can be proven more algebraically, explicitly exhibiting a shifted
chain isomorphism between the absolute persistent homology of X and the
relative persistent cohomology of X* and then applying results of [37]. To prove
Theorem 7.10 based on this isomorphism we compose the following isomorphisms
of persistent modules, perhaps shifted:

Prop. 2.3 in [37
absolute persistent homology M absolute persistent cohomology

shifted chain isomorphism, Theorem 7.17

relative persistent homology of the dual

Prop. 2.4 in [37
w absolute persistent homology of the dual.

Let X be a regular cell complex of dimension d. Suppose we have a filtration
{X;}icr on X and a filtered discrete gradient vector field V' that is coherent with
the filtration. We denote the n critical cells of (X, V) as {a1,...,an}, in order of
appearance in the filtration.

Let C}' be the restriction of the algebraic Morse chain complex of X to
the critical cells of dimension k, and denote by C; C C}!, the vector space of
k-dimensional critical cells up to filtration step X;.

The boundary operator 0} : C}} — C}'_; restricts to the i-th level (i.e., to
the cells in C}), to define the boundary operator

ol Cl — Ci_,.

We denote the filtered Morse chain complex of (X, V') by:
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[ I

a1 i—1

i-1 %1, ~ie1 %% i—1
N WL NYo s B NSt S
(C,0) = e . TS e R SN
,0) = k+1 k k-1

it+1

Lo L]

Lo .
L O = ot = gt ——

[ | I

where k € {0, ...d} stands for the dimension of the cells and i € {1,...n} for the
index in the filtration of chain complexes. We denote the i-th row of this diagram
by C?, the chain complex at filtration step i.

We use the notation D? for the chain complex of the i-th step in the filtration
of (X*,V*). We let D}l =< ay,...aj|dim(aj) =k >. The restriction of D! to
the ¢ first cells of the filtration of X™* is then:

D} =< o, ..ok dim(aj) =k > .

We set DY = {0} for any k =0, ...d.

We now need the notion of relative persistent homology, which was introduced
in [37]. The relative filtered chain complex of (X*, V*) is defined as

T R

- —— Di /DSy — DR/D = Dy /DT ——
I
(D", D) = .. —— DR /Di  —*% DU/Di —*—~ DI /Di | —— ...

T

n i+1 k+1 n i+1 k n +1
. Dk+1/Dk+1 Dk /Dk Dk‘—l/Dk‘—l

l } !
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where the maps (5}% are now the induced boundaries on the quotient spaces. The
i-th row of this diagram is denoted by the pair (D", D).

Let E®* = Hom(C~*,F2). We now show that E® = (D", D"**), where C is the
filtered Morse chain complex of (X, V) and D that of (X*, V*). Intuitively, the
isomorphism follows from the following observation. The coboundary map maps
every cell o to the weighted sum of the cofacets of o that have already appeared
in the filtration. The relative boundary map maps every cell ¢* to the sum of
facets of o* that have not been quotiented out yet. These two collections are dual
to each other. The key argument is based on the following lemma.

Lemma 7.16. For any i =1,...n and any dimension k =0, ...d, there exists a
linear isomorphism @;y, : DYy, /Di~} — Hom(C},Fy) such that the following
diagram commutes.

Cékﬂ) Oék) B:F
Hom(C} 1, F2) ¢ Hom(Cj, Fa) > a
(O41)
%T@i,kfl %T‘Pi,k /[
Dj /Dy G Dj /Dy, > a*

Proof. We first prove that the quotient vector space D}}_, / Dg:,i is isomorphic to
Hom(C},F2). Indeed, by definition,
(o, ..af|dim(af) = d — k)

ny e

(ag,...afy|dim(a}) = d — k)

D} /D) =

= (aj,...aj| dim(aj) = d — k)
~ (a1, ...as| dim(a;j) = k) = C}, ~ Hom(C}, Fa),
via the map o] — «a; — d;, where @; denotes the corresponding representative of

«; through the identification C} = Hom(C%,F2). Denote this composite by ¢; k.
To show that the diagram commutes, we proceed as follows.

Using the result on V-paths duality of Lemma 7.14, and the fact that [a* :
* 7 T * 7 *
0*] = [0 : a], we show that (8k+1) (pik(a”) = pik-1(64_1(a")):
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@ik—1(85_(@®)) = pig—1( Z [a* : 0%|o")

o*eDg 1/LM k—1

= Z [a* :o"]o

&GHom(Cé+PFﬂ

G€Hom(C},
- (8k+
(8k+1

h1F2)

@zk

) (@
)T

It follows in particular that
Sq_y : D"/Dq_, — D"/D§_y_4
is the same as

(OI?H)T : Hom(C}!, Fa) — Hom(Cy, 1, Fa).

This identification leads to the existence of a filtered chain isomorphism
between the cochains of X and the relative chains of X*.

Theorem 7.17 (Duality of the filtered Morse chain complexes). Let X and X*
be dual cell complexes and V a filtered gradient vector field on X. Let (C,0) be the
corresponding Morse chain complex of (X, V') and (D, d) that of (X*,V*). There
exists a shifted filtered chain isomorphism

Eo o~ (Dn7Dn+.),

where E®* = Hom(C™°*,Fy). In particular, it induces a natural isomorphism between
the absolute cohomology of (C,0) and the relative homology of (D, ).

Proof. Filtering the the diagram of Lemma 7.16 leads to a new commutative

diagram that describes the isomorphism E® = (D", D"**) explicitly. The following
diagram commutes for any k =0,...d, any it =1,..nand any 1 —i <p < n —
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Hom(C,i+1,F2) Hom( ]i,Fg)
_— T "

Hom(C! 2 Fy) < Hom(C} ™, IFy)

k+1°
| Pik-1 | Pik
n n—i . n n—i
Ddfkfl/Dd—k—l N Ddfk/Dd—k
= %’-&-p,k—l/w = | Pitp.k /
n ’n—i—p n n—i—p
Dd—k—l/Dd—k—l Dd—k;/Dd—k

where the surjective maps are induced by the inclusions C* C C**P. The natural
isomorphism between the absolute cohomology of (C, d) and the relative homology
of (D, 9) is obtained by applying the homology functor to this diagram. O]

In particular, there is a bijection between the persistent cohomology pairs
of critical cells of (X, V') and the relative persistent homology pairs of (X*, V*),
defined by
(d(k), B(kJrl)) PR (6*(d7k71)7 a*(dfk))

and, for essential cycles,
(3, 00) ¢ (—00,7*M).

Here, & denotes the representative of a cell al®) e Cr.

Suppose a critical cell a®) of dimension k appears at step i for the first time in
the filtered Morse chain complexes of X and creates a k-cycle, which is destroyed
by the appearance of a cell 3*+1) at step i + p, that is, o) is the boundary of
B+ Hence, we have the pair (a®), f(5+1)) in the absolute persistent homology
of X.

In cohomology, that means that &%) disappears after step 4, so that the cocycle
B*+1) is no longer a boundary. When S*+1 disappears after step i + p, this
cocycle disappears as well. The pair in the absolute cohomology of X is then
(a), fE+1))

In the relative sequence of the dual chain complex of X*, 3*(@=5=1) disappears
first after the step n — i — p, so that a*(?~*) becomes a (d — k)-cycle. This (d — k)-
cycle dies when a*(4=%) disappears after step n — 7. Hence, the pair (éy(k), B(k+1))
in the absolute cohomology of X corresponds to the pair (B*(d*kfl), a*(d*k)) in
the relative homology of the dual X*.

To provide intuition for why the natural isomorphism relates the absolute
cochains of X and the relative chains of X*, we show what happens to a complex
whose dual is not well defined.
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A. B. C.

Figure 7.1: A. A non dualizable cell complex made of three 0-cells, three 1-cells
and one 2-cell. B. What would be its dual: it does not define a cell complex. C.
Another descriptions of the cells in (B).

In Figure 7.1, we show a complex (A) and what its dual should be (B). The
middle object (B) is not a cell complex — it lacks its boundary. (C) shows another
representation of (B) as a set of cells. If we consider the chain complex generated
by the cells in (B), we realize that it is the chain complex generated by all the
cells of the closure of (B) quotiented by its boundary (C). That illustrates where
the relative homology comes from.

Example 7.18. We now illustrate the duality results. We start with a dualizable
cell complex X with a function f defined on the vertices and its dual X* with the
function f* defined on the top-dimensional cells (Figure 7.2). We can extend the
values of f to all the cells by assigning a cell the maximum value of its vertices. The
dual function f* is defined on the top-dimensional cells of X* by: f*(c*) = —f(0).
To extend it to the full complex X*, we assign to a cell the minimum of its cofaces.
Note that this corresponds to defining f* by f*(¢*) = —f(o) on all the cells
directly.

An example of a filtered vector field V' compatible with the filtration f and
the corresponding dual vector field V* compatible with f* can be seen in Figure
7.3 and Figure 7.4 respectively. Both of their sets of critical cells are illustrated
in Figure 7.5 and Figure 7.6.

We then describe the absolute filtered cochain complex of X and the relative
filtered chain complex of X* in parallel to make the isomorphism of Theorem 7.17
explicit. Finally, we compute the barcodes of the absolute persistent homology of
both, providing an example of Theorem 7.11.
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X

Figure 7.2: On the left, a cellular decomposition of a sphere X with a function f
defined on the vertices. We do not represent the 2-cells for visibility reasons (they
are the faces of the cube). On the right, the dual complex X*. We only represent
the values of f* on the top-dimensional cells (faces), to avoid confusion. In red,
we show the values of the 2-cells that are in the front, and in blue the 2-cells in
the back.

Figure 7.3 shows the filtration on X of Figure 7.2, along with a corresponding
filtered vector field V. The corresponding dual filtration on X*, along with the
dual filtered vector field V*, is shown in Figure 7.4.

1 2 3 4 5 6 7 8
/[ "1[/’1[4 ETN

Figure 7.3: A filtration of a cellular decomposition of a sphere X and a filtered
vector field V.

8 7 6 -

L4 LeePPO

Figure 7.4: The dual filtration of the complex X* and the dual filtered vector
field V*.
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The critical cells of V and V* are in bijection and they appear in reversed
order. Figure 7.5 and 7.6 show the critical cells of X and X*, that is, the cells
that are not paired by the vector fields.

a*©)

Figure 7.5: A filtered vector field
on X respecting the filtration of
Figure 7.3 and the correspond-
ing critical cells (the highlighted
top left vertex (a(?)) and bottom
left edge (b(M)) and two faces (left
hand side: ¢(?) and bottom: d(%)).

The critical cells of V" are (in order
of appearance):

Crit(V) = {a@,pM 2 @ 3.

Figure 7.6: The dual complex of
Figure 7.5, with the dual critical
cells induced by the dual vector
field V* (a*(?) the top 2-cell, b*(1)
the bottom edge, ¢*(©) the left ver-
tex and d*(®) the bottom vertex).

The critical cells of V* are (in or-
der of appearance):

Crit(V*) = {d*(0)7c*(0)’ b*(l),a*@) .

We now build the Morse filtered chain complexes of X and X*. To illustrate
the filtered chain isomorphism between the absolute cochains of (X, f) and the
relative chains of (X*, f*), we build the respective filtered complexes.



The cochains of the corresponding
Morse filtered chain complex of X

0 0 0
[ I I
0 0 [Fya]
T 1] T]
0 Fo|b] < Fsla
1] 1]() W]

Fy[é Folb] «—— Fyla
1 | (1) T (2)

Fslé, d] Fo[b] < Fala)
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The relative chains of the
corresponding Morse fil-
tered chain complex of X*
1
(2) !

Fg[a*] — Fg[b*] — FQ[C*,d*]
l () l (1) l
Fg[a*] E— Fg[b*] e ]FQ[C*]
N A (2) l l
Fala*] —— Fa[b*] ——— 0
Fala*] 0 L

0 0 > 0

Applying the homology functor to Applying the homology functor to
the previous chain complex, one gets the previous chain complex, one
the absolute persistent cohomology gets the relative persistent homology

module of X:
0 0 0
0 0 Fo[a]
S LS
0 0 Fyla]
Falé + d 0 Fya]

The corresponding persistence pairs
are:

(al?, 00), (b, @), (d?), 00).

And the absolute persistent cohomol-
ogy barcode with the f-values:

[1, OO)(), [6, 7)1, [8, 00)2.

module of X*:

Fala] 0
Fala*] 0
Fyla*] Fa[b*]
Fyla*] 0

0 0

]FQ [C* + d*]

0

O«

O«

The corresponding persistence pairs

are:

(_007 d*(O))’ (C*(O

And the relative
barcode with the

) 5* M), (=00, a*@).

persistent homology
f*-values:

[—OO, —8)0, [—7, —6)1, [—OO, —1)2.
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Applying the bijections of [37], we obtain the absolute persistent homology
barcodes of (X, f) and (X*, f*):

ng(Xv f) = {[17 00)07 [67 7)1a [87 00)2}
ng(X*v f*) = {[_87 00)07 [_77 _6)07 [_1’ 00)2}7

illustrating the results of Theorem 7.10.



CHAPTER 8

Discussion

8.1 Conclusion

This thesis focuses on the inverse problem of reconstructing trees from barcodes.
We started by delineating the different spaces of trees and barcodes and described
how the main difference between the space of merge trees and phylogenetic trees
is the labeling of the leaves.

We discussed two inverse problems. The “real” inverse problem consists of how
many trees realize the same barcode. This tree-realization number is computed
purely from combinatorial properties of barcodes, in particular their associated
permutations. We showed how the TRN can be used to do statistics on barcodes
and allows to distinguish biological barcodes from artificial ones. The other inverse
problem relates to a biological problem: how to construct artificial neuronal trees
that have properties similar to those of neurons. The TNS algorithm, developed
in [67], is proven to be stable with respect to the modified bottleneck distance.

Applying the TNS to real neurons’ barcodes leads to trees that mimic neurons.
However, to build such an artificial tree, one needs to start from a biological
barcode. To be able to study distributions of barcodes, in the hope of one day
being able to build artificial barcodes that have identical properties to biological
ones, we developed tools to analyse the space of barcodes from a more geometric
point of view. The study done in Chapter 4 opens the door to a new way of
doing statistics on barcodes. The stratification that one obtains from the Coxeter
coordinates looks very similar to combinatorial and geometric objects that one
observes in tree spaces (see Section 8.2 below).

The grounds and aims of this thesis were the understanding of the relation-
ship between (merge) trees and barcodes, which has been mainly successfully
accomplished through this work. Nonetheless, there is still a lot to learn in this
field, the ultimate objective being to generate trees that follow a given set of
(biological) properties. We hope that, with the work done in this thesis, we are
one step closer to understanding biological barcodes and generating artificial trees
that mimic real life properties.

143
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8.2 Perspectives

This work opens up new questions, relating to inverse problems in general as well
as the characterization of spaces of trees and barcodes. More specifically, several
open questions and perspectives are elaborated here.

Statistics of Barcodes

We showed in Chapter 5 and Chapter 6 that the permutation op associated to a
strict barcode B gives nice combinatorial insight into the number of merge trees
that have the same barcode. The TRN is derived directly from the permutation,
which can also be used to do statistics on barcodes. In this thesis, we focused on
the analysis of neurons and demonstrated that the TRN enables us to distinguish
different types of neuron barcodes from artificial barcodes. There are other data
structures that can be represented as trees, such as rivers, roots, plants, etc. A
deeper statistical study of tree-like data using the statistics developed here is a
natural follow-up step to consider.

Furthermore, the coordinates of (Theorem 4.22) extend this permutation
to any (possibly non-strict) barcode and return a finer invariant than just the
permutation. A future direction would be to study this finer invariant defined by
(b,d, ||vp]l, |lvall, 75). It might be well-suited for studying statistical questions: the
first four elements already have descriptions as averages and standard deviations.
The behaviour of the permutation op could be studied using other tools from
permutation statistics, such as the number of inversions or descents.

Generating artificial barcodes

One of the main motivations behind this thesis was to develop tools that could
lead to the generation of artificial barcodes that mimic real-life data properties. As
shown in Section 6.3.6, we are far from a successful method to generate barcodes
that have similar behavior to neuron barcodes. The description of the space of
barcodes given in Chapter 4 offers new perspectives on this problem. Indeed, this
thesis shows that the inverse problem of trees and barcodes is closely related to
the perrmutation type of barcodes. Chapter 4 gives a geometric description of the
space of barcodes, stratified by permutations. Studying distributions of barcodes
in the coordinates defined in Chapter 4 offers potential new ways of generating
artificial barcodes.

The final study of Chapter 6, Figure 6.25, shows that there are other combi-
natorial properties of barcodes that can be explored. They could also be used to
develop new methods of generating artificial barcodes.



8. DISCUSSION 145

Combinatorial tools for barcode space

In Chapter 4, we showed that the space B, of barcodes with n bars is stratified
over the poset of marked double cosets of parabolic subgroups of Sym,,. A question
that arises is how this could be extended to the whole space of barcodes, i.e., to
the union |J,,cny Bn- An approach here would be to use appropriate inclusions
B, — By for m < n. Note that on the group level, there are natural injections
Sym,,, < Sym,, and also on the level of simplicial complexes, ¥(Sym,,) contains
copies of ¥(Sym,,) for m < n.

In a different direction, the description of B, in terms of Coxeter complexes
allows the rephrasing of these combinatorial questions in more geometric terms.
Using this geometric perspective might give new ways for studying invariants and
statistics on barcodes.

It would be interesting to see if the geometric and combinatorial tools developed
here can help to understand other inverse problems in TDA as the ones in [31,75].
Since the merge tree-to-barcode problem is related to the symmetric group, it is
also natural to ask whether the stratification that we obtain in Theorem 4.21 can
be extended to the space of merge trees with n leaves. We discuss this question
in the next section.

A lattice version of the inverse problem

There are many similarities between the tree-to-barcode projection and the
covering of the subset lattice by the partition lattice, as we saw in Section 5.2.6.

Theorem 5.26 is still in need of a full geometric description that accounts for
actual positions and lengths of bars in a barcode and edges in a merge tree. In
Section 4.2.2 a novel coordinatization of barcode space was given based on the
relation with the symmetric group. However, a similar picture for merge tree
space that uses the connection with the partition lattice is unknown. Additionally,
the lattice structure on these “skeletonizations” of barcode and merge tree space
has not been fully explored. As noted in [62,82,93], M&bius inversion provides
another way of summarizing topological changes in a filtration, which suggests
that inverse problems, lattice theory, and M&bius inversion may occupy a rich
intersection of ideas.

Tree-based Topological Loss

On the more applied side, we are interested to see if the TMD can be differentiated
to create a tree-based topological loss function for training deep networks. TDA
and persistent homology combined with deep learning is an up and coming field
with a lot of potential [74]. While many topology-based loss functions are based
either on point clouds or on images, it could be useful to develop one based on
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tree structures using barcodes. Indeed, many applications involve trees, when the
underlying structure of the data is a tree or the merge tree of the data is a good
summary. While a topology-based loss was developed in collaboration with the
Computer Vision Lab at EPFL in [90] to study road networks and neurons in
particular, directly using the tree-structure has not yet been considered.

New distances for barcodes

Finally, the modified bottleneck and Wasserstein distances (Theorem 4.23) seem
to behave differently from the usual ones. A deeper study of their properties and
their potential extension to the space of barcodes (see Theorem 4.25) is a natural
next step to consider.
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