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Abstract
Heavy impurity accumulation poses a problem for the operation of tokamaks featuring tung-

sten plasma facing components. Early termination of the plasma due to tungsten accumu-

lation is often observed following long living 3D MHD perturbations. Such scenarios are

often observed in present tokamaks like JET and ASDEX-U, and may be of concern for future

machines like ITER and the European DEMO. Finding a way of designing high performance

scenarios while preventing tungsten accumulation is therefore crucial. This thesis aims at

understanding and modelling heavy impurity transport in tokamak plasmas in the presence

of long living 3D MHD ideal perturbations. In the first part of the thesis, we develop the

theoretical framework to treat the problem, building on stellarator theory for the main ions,

while including the effect of strong toroidal rotation that is only present in tokamaks. The

orderings of the background ion species and the heavy impurity species are developed in

detail. The background ions are subsonic which allows for the calculation of their flows using

the stellarator 1/ν collisional regime, while the heavy impurities flow supersonically which

requires the inclusion of centrifugal effects for the impurity description. An expression for

the neoclassical heavy impurity flux is obtained which helps identify the contrasting physics

involved. In the second part of the thesis, we present the development of the numerical tools

used to model the problem according to the theoretical framework presented. The usage of

the VMEC code to obtain suitable 3D MHD equilibria is explained. Also, the development of

new codes for calculating the background ion flow and heat flux of the ions, and the impurity

flow from such magnetic equilbria is described. The heavy impurities are followed in this

background plasma using the VENUS-LEVIS code. This code describes the guiding-center

movement of the heavy impurities, accounting for the centrifugal and Coriolis drifts, as well

as for the correct effect of friction and thermal forces exerted by the background ions on

the impurities through a newly implemented collision operator. Finally, the numerical tools

developed in this thesis are used to model the impact of long living 1/1 internal kink modes

on heavy impurity transport. Heavy impurity accumulation is observed to occur rapidly in

the presence of a 1/1 internal kink mode, contrary to what is observed in axisymmetry, in

which off-axis accumulation occurs due to the strong rotation. These cases agree well with

a JET pulse where tungsten accumulates following rapid growth of a continuous 1/1 mode.

In the weakly 3D phase of the pulse, off-axis accumulation of tungsten is observed, whilst

in the strong 3D phase of the pulse, strong tungsten on-axis accumulation is observed. The

theoretical developments allow us to break down all the relevant physics effects. It is seen that

such on-axis accumulation is due to the synergetic effect of the 1/1 mode, the strong toroidal
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rotation and the NTV ambipolar electric field.

Keywords: Plasma Physics, Nuclear Fusion, Magnetic Confinement, Heavy Impurity Transport,

Neoclassical Transport, 3D MHD, Strong Flows
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Résumé
L’accumulation d’impuretés lourdes pose un problème pour le fonctionnement des tokamaks

contenant composants du tungstène en contact avec le plasma. L’arrêt précoce du plasma,

en raison de l’accumulation de tungstène, est souvent observé à la suite de perturbations

MHD 3D de longue durée. De tels scénarios sont souvent observés dans les tokamaks actuels,

comme JET et ASDEX-U, et peuvent devenir motif de préoccupation pour les machines

futures, comme l’ITER et le DEMO européen. Trouver un moyen de concevoir des scénarios

de haute performance tout en empêchant l’accumulation de tungstène, est donc crucial.

Cette thèse vise à comprendre et modéliser le transport d’impuretés lourdes dans un plasma

d’un tokamak en présence de perturbations MHD 3D idéales à long terme. Dans la première

partie de cette thèse, nous développons le cadre théorique pour traiter le problème, basé

sur la théorie des stellarateurs pour les ions principaux, tandis que l’effet de la rotation

toroïdale forte, présent uniquement dans les tokamaks, est inclus. Les échelles pertinentes

pour les ions de fond et les impuretés lourdes sont développées en détail. Les ions de fond

sont subsoniques, ce qui permet le calcul de ces vitesses de fluide grâce à l’utilisation de la

théorie des stellarateurs dans le régime collisionnel 1/ν, tandis que les impuretés lourdes

s’écoulent de manière supersonique, ce qui demande l’inclusion d’effets centrifuges dans

leur description. Une expression du flux néoclassique d’impuretés lourdes est obtenue, ce

qui permet d’identifier les différents effets physiques impliqués. Dans la deuxième partie de

la thèse, nous présentons le développement des outils numériques utilisés pour modéliser

le problème selon le cadre théorique présenté. L’utilisation du code VMEC pour obtenir des

équilibres 3D MHD appropriés est expliqué. En outre, le développement de nouveaux codes

pour calculer la vitesse du fluide et le flux de chaleur des ions de fond, ainsi que la vitesse

du fluide des impuretés, à partir de tels équilibres magnétiques est décrit. Les impuretés

lourdes sont suivies dans ce plasma d’équilibre à l’aide du code VENUS-LEVIS. Ce code décrit

le mouvement des centres de guidage des impuretés lourdes, en prenant compte des effets

de la dérive centrifuge et de Coriolis, ainsi que l’effet correct de la force de frottement et de

la force thermique exercés par les ions de fond sur les impuretés, grâce à une nouvelle mise

en œuvre d’un opérateur de collision. Enfin, les outils numériques développés dans cette

thèse sont utilisés pour modéliser l’impact des modes de torsion interne de longue durée

1/1 dans le transport d’impuretés lourdes. Une accumulation rapide d’impuretés lourdes est

observé en présence du mode 1/1 de torsion interne, contrairement à ce qui est observé en

axisymétrie, dans laquelle une accumulation hors axe se produit en raison d’une forte rotation.

Ces cas montrent un bon accord avec un tir du JET où le tungstène s’accumule après une
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croissance rapide d’un mode 1/1. Dans la phase du tire faiblement 3D, une accumulation de

tungstène hors axe est observé, tandis que dans la phase d’impulsion fortement 3D, une forte

accumulation de tungstène sur l’axe est observé. Les développements théoriques permettent

de séparer tous les effets physiques pertinents. On constate que la telle accumulation sur l’axe

est due à l’effet synergique du mode 1/1, de la forte rotation toroïdale et du champ électrique

ambipolaire dû à la NTV.

Mots clés : Physique des Plasmas, Fusion Nucléaire, Confinement Magnétique, Transport

d’Impuretés Lourdes, Transport Néoclassique, MHD 3D, Fortes Vitesses des Fluides
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Resumo
A acumulação de impurezas pesadas representa um problema para a operação de tokamaks

que possuem componentes expostos ao plasma compostos por tungsténio. O fim precoce do

plasma devido a acumulação de tungsténio, é frequentemente observado após perturbações

MHD 3D de longa duração. Tais cenários são observados com frequência em tokamaks actuais,

como o JET e o ASDEX-U, e podem constituir uma preocupação para máquinas futuras, como

o ITER e o DEMO europeu. Encontrar uma maneira de projectar cenários de alto desempenho

ao mesmo tempo que se previne a acumulação de tungsténio é portanto, crucial. Esta tese

tem como objectivo compreender e modelar o transporte de impurezas pesadas em plasmas

de tokamaks, na presença de perturbações MHD 3D ideais de longa duração. Na primeira

parte desta tese, desenvolvemos o quadro teórico para tratar o problema, com base na teoria

de stellarators para os iões principais do plasma, enquanto que o efeito da rotação toroidal

forte, apenas presente em tokamaks, é incluída. As escalas relevantes para os iões de fundo e

para as impurezas pesadas são desenvolvidas em detalhe. Os iões de fundo são subsónicos, o

que permite o cálculo das duas velocidades de fluído através do uso de teoria de stellarator

no regime colisional 1/ν, ao passo que as impurezas pesadas fluem supersonicamente, o que

requer a inclusão efeitos centrífugos na sua descrição. Uma expressão para o fluxo neoclássico

de impurezas pesadas é obtida, o que ajuda a identificar os diferentes efeitos físicos envolvidos.

Na segunda parte da tese, apresentamos o desenvolvimento das ferramentas numéricas usadas

para modelar o problema de acordo com o quadro teórico apresentado. O uso do código

VMEC para obter equilíbrios MHD 3D adequados é explicado. Além disso, o desenvolvimento

de novos códigos para calcular a velocidade de fluído e o fluxo de calor dos iões de fundo,

bem como a velocidade de fluído das impurezas a partir de tais equilíbrios magnéticos é

descrito. As impurezas pesadas são seguidas neste plasma de equilíbrio usando o código

VENUS-LEVIS. Este código descreve o movimento dos centros-guia das impurezas pesadas,

tendo em conta os efeitos das derivas centrífuga e de Coriolis, bem como o efeito correcto da

força de fricção e da força térmica exercidas pelos iões de fundo sobre as impurezas mediante

uma nova implementação de um operador de colisão. Finalmente, as ferramentas numéricas

desenvolvidas nesta tese são usadas para modelar o impacto de modos 1/1 de torção interna

e de longa duração no transporte de impurezas pesadas. Acumulação rápida de impurezas

pesadas é observada na presença do modo 1/1 de torção interna, contrariamente ao que é

observado em axi-simetria, em que acumulação fora do eixo ocorre devido à rotação forte.

Estes casos mostram uma boa concordância com um pulso do JET em que o tungsténio

acumula após o crescimento rápido de um modo 1/1 contínuo. Na fase fracamente 3D do
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Resumo

pulso, acumulação de tungsténio fora do eixo é observada, enquanto que na fase fortemente

3D do pulso, uma acumulação forte de tungsténio no eixo é observada. Os desenvolvimentos

teóricos permitem separar todos os efeitos físicos relevantes. É verificado que tal acumulação

no eixo é devida ao efeito sinergético do modo 1/1, da forte rotação toroidal e do campo

eléctrico ambipolar devido à NTV.

Palavras-Chave: Física de Plasmas, Fusão Nuclear, Confinamento Magnético, Transporte de

Impurezas Pesadas, Transporte Neoclássico, 3D MHD, Velocidades de Fluído Fortes
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1 Introduction

1.1 Fusion energy

In today’s society energy is essential to maintain the standards of quality of life. The production

of energy has relied mainly on the usage of fossil fuels. It is well known that these resources

will not last forever. Their use in energy production is detrimental to the environment due to

large emissions of carbon dioxide, contributing to cimate change. Reducing such quantities

of emissions requires the urgent development of alternative processes of energy production.

These energy production methods include renewable energies, nuclear fission, and nuclear

fusion.

Renewable energy methods use virtually infinite sources such as sunlight, wind, hydroelectric,

and geothermal heat. These sources of energy are relatively free of emissions and radioactive

waste products, but large-scale distribution is difficult. Some of them, e.g. solar and wind

energy, are also only capable of producing electricity intermittently, though this can be mit-

igated by the use of batteries. However, batteries are produced with natural resources that

will ultimately also be exhausted. One continuous centralised energy production process is

nuclear fission in which heavy uranium nuclei are broken up by the collision with a neutron

(see figure 1.1). This process generates lighter nuclei and energetic neutrons that can then

collide with other uranium nuclei to produce a fast growing chain of nuclear fission reactions.

This chain reaction and the production of energetic neutrons, together with neutron control,

is the key to electricity production in controlled nuclear fission power plants. Nevertheless, if

uncontrolled, this process can lead to a runaway process that causes nuclear accidents (1).

Furthermore, the lighter nuclei produced are very radioactive, and thus are considered high

level radioactive waste which can be detrimental to the environment over a long timescale

(∼ 10000 years). Both renewable energy methods and nuclear fission are used for energy pro-

duction today, but predictions point out that by 2050, the usage of fossil fuels will still occupy

almost 50% of the total energy consumption even with the active use of these two alternatives

(2). This partly motivates the present effort to develop an efficient way of producing energy

using the third alternative method, nuclear fusion, which would complement the use of both

1



Introduction

Figure 1.1 – The main reaction used to achieve fusion (left) and fission (right). Courtesy of
Eurofusion site (1).

nuclear fission and renewable energies.

Fusion energy, whilst still not achievable in an efficient way, should be made easily available

on a large scale once its technical challenges are overcome. Nuclear fusion is the process in

which light nuclei fuse together to produce heavier nuclei and an energetic neutron (see figure

1.1). This process is difficult to achieve spontaneously because the light nuclei do not possess

enough kinetic energy to overcome the strong Coulomb repulsion force between themselves.

Yet, it is a natural occurring process in the stars, such as the sun in our solar system. The

sun’s environment provides high temperatures and a large gravitational field that help the

light hydrogen nuclei to fuse into a heavier helium nucleus. The sun’s high temperature helps

separate the light atoms of hydrogen into ions and electrons. This mixture, usually called a

plasma, is then confined due to the strong gravitational force it undergoes. The ions can then

fuse together. Our inability of generating such gravitational forces on Earth requires the use

of different strategies to produce fusion reactions. All such strategies heat the hydrogen (or

its isotopes) to create the plasma - they mostly differ in the way the plasma is confined. This

is a difficult process since there needs to be an equilibrium between the outward expansion

(due to the thermal diffusion) and the forces that are confining the plasma. However, it is

exactly this difficulty that grants nuclear fusion its safety compared with nuclear fission, since

if some problem occurs in the operation, the fine balance that allows fusion to occur is lost

and operation stops instantaneously. The concept of a fusion power plant is thus safer than

a fission power plant. Moreover, nuclear fusion produces more energy than nuclear fission

per reaction. These advantages motivate the development of good strategies to confine the

plasma in order to efficiently produce energy by fusion 1.

1There are some disadvantages of fusion, notably high cost, large infrastructure and large quantities of medium
scale radioactive waste

2



1.2. Magnetic confinement reactors

Figure 1.2 – Schematic of a magnetic confinement reactor. This design is called tokamak.
Courtesy of Eurofusion site (1).

B

Figure 1.3 – Geometry of a toroidal plasma. θ is the poloidal angle and φ is the toroidal angle.
The magnetic field B is the sum of a toroidal and poloidal components.

1.2 Magnetic confinement reactors

Up until now, the most successful way of confining the charged particles that constitute the

plasma are magnetic confinement reactors. The work of this thesis is focused in this area

of nuclear fusion. In these machines, the plasma is confined using strong magnetic fields

produced by coils placed (mostly) outside the vacuum vessel containing the plasma. The

magnetic field helps confine the plasma through the magnetic force. The ions and electrons

comprising the plasma, being charged particles, undergo a helical trajectory around the

magnetic field lines. Thus, the main idea for the design of a magnetic confinement reactor is

that of a torus (see figure 1.2). The main particle confining field is thus a toroidal magnetic

field (see figure 1.3). However, this toroidal field is not enough to confine the plasma as the

electric fields present inside the plasma will make the particles drift away from the central

region of the tokamak until they are lost to the walls. Ions and electrons drift in opposite

directions which reinforces the electric field, and the drift itself. It is therefore, necessary to

generate an extra poloidal field to reduce the drifts and keep the plasma better confined. The

two main designs for magnetic confinement reactors are called tokamaks and stellarators.

These devices mainly differ in the way the poloidal magnetic field is generated.

3
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Figure 1.4 – Schematic of the two main designs of a magnetic confinement reactor. Tokamak
on the left and stellarator on the right (1).

Since a plasma is composed of both electrons and ions it can be looked at as a charged fluid.

Magnetohydrodynamics (MHD) (3) is the theoretical framework that describes the behaviour

of the fluid and electromagnetic properties of the plasma. The designs of magnetic fusion

reactors are found by finding a solution to the fine equilibrium between the kinetic pressure of

the plasma and the pressure exerted by the magnetic field energy. In the case of tokamaks the

toroidal design is made such that it is symmetric around the toroidal direction (see figure 1.2).

In order to achieve such design, a toroidal field is generated by identical magnetic coils (called

toroidal coils) placed and spaced symmetrically around the vacuum vessel and along the

entire torus (see figure 1.2). The poloidal field is then obtained by generating a current inside

the plasma inductively. Such current is generated via the plasma behaving as a secondary

circuit in a transformer, in which the primary circuit are poloidal coils placed at the centre of

the machine (see figure 1.2).

The two remaining ways of generating a poloidal magnetic field consist in designing the

toroidal coils and vessel system in such a way that the magnetic axis is non-planar, or the

plasma poloidal cross section rotates along the toroidal direction (4). This implies that a design

employing at least one of these two methods does not necessarily possess any symmetry (see

rigthside of figure 1.4). Such non-axially symmetric (or non-axisymmetric) 3D design is called

a stellarator and does not need any current for generating a poloidal magnetic field.

The poloidal field generation by these three methods in a toroidal plasma device can be easily

compared to that of water flowing in a toroidal pipe. Since the charged particles follow the

magnetic field lines, and a plasma can be modelled by a charged fluid, we can imagine that

a very small tube of plasma fluid is always following a magnetic field line. This means that

the velocity of the small fluid tube is in the same direction as the magnetic field. Thus, the

magnetic field in such a plasma has a role comparable to the velocity of water in a pipe. In a

toroidal pipe, water can rotate poloidally in three ways. One of them is to generate a vortex

that makes the water rotate poloidally. This method is similar to the generation of plasma

current. In fact, a current is a measure of the vorticity of the magnetic field. Another way

to rotate the water is to make the toroidal pipe twisted or rotate its cross section (4). This is

equivalent to the stellarator design.

4



1.3. The importance of heavy impurity transport

The axisymmetric design of tokamaks provides simpler construction of the large coils, and

potentially lower cost. Furthermore, tokamaks provide better particle confinement than

stellerators since the loss of particles due to additional drifts caused by the curvature of the

magnetic field is smaller. However, tokamaks are not inherently steady state devices because

they generally need an induced current to operate. The necessity of the current is also a

source of potential issues for the tokamak design concept. The current can lead to small

perturbations of the magnetic field, which can be described within the MHD formalism.

These perturbations can grow and modify the initially axisymmetric field. In the best case,

these perturbations grow and saturate, generating a new ideal (non-resistive) equilibrium

magnetic field and plasma, that are no longer axisymmetric. In some cases this perturbation

turns out to be too unstable and leads to disruption of the plasma operation. It is easy to

understand that these instabilities should exist for the case of finite vorticity of the magnetic

field when comparing again to the analogy of water flowing in a toroidal pipe. While vorticity

in the water makes the water rotate poloidally, it may also generate instabilities such as the

well-known Kelvin-Helmotz instability. In tokamaks, the current of the different small tubes

of plasma induce a repelling force between them. When the plasma tube is perturbed, this

repelling force can lead to instabilities. Stellarators are less prone to have MHD instabilities

since the plasma current is very small. They are also designed to be inherently steady state

devices. Yet, the complexity of their design makes them very costly and difficult to construct.

They also provide less confinement due to the very complex magnetic curvature they usually

possess. In this thesis we focus on understanding heavy impurity transport in the tokamak

configuration in the presence of ideal 3D MHD perturbations. Indeed, we investigate plasma

scenarios where MHD instabilities in the tokamak have not caused disruptions, but have

saturated. Such scenarios are important because they occur in several tokamak devices in

operation like JET, ASDEX-U, WEST, TCV and EAST. Moreover, the next-step devices, ITER

which is being constructed, and the European DEMO which is in its design phase, are also

tokamaks, in which such operation scenarios may also be important. The description of

heavy impurity transport in 3D tokamak plasmas is one important subject, more complex and

challenging than in intrinsically 3D stellarator plasmas (for which significant research has

already been undertaken). As will be seen, plasmas in tokamaks tend to rotate toroidally, and

the consequent forces (e.g. centrifugal) felt by heavy impurities need to be taken into account

in the physics problem.

1.3 The importance of heavy impurity transport

Both tokamaks and stellarator plasma facing walls are subject to hot temperatures. Sometimes

the jets of plasma coming from the inner region of the plasma (called the plasma core, see

figure 1.5) can hit the wall. Since these jets are at quite high temperatures, it is therefore im-

portant to make the wall able to sustain such hot temperatures. Moreover, it is also important

to exhaust impurities that enter the plasma originating from either fusion products (such

as helium ash), from the vessel wall, or from other plasma facing components. For many
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years the simplest solution used was the inclusion of a so-called limiter. This is usually made

of carbon (graphite) and it is located on the wall of the device along the toroidal direction

and around the mid plane of the device. This wall structure provided direct contact with

the plasma which helped mitigate the degradation of the remaining sections of the wall as

well as recycling of impurities. However, a carbon limiter had the disadvantage of retaining a

large portion of hydrogen, which is the fuel of the fusion reactions, hindering the efficiency of

energy production.

A different approach was implemented during the operation of the ASDEX tokamak. The

ASDEX tokamak used a structure called the divertor. The divertor is composed of two plates

(called ’legs’) located on the lower region of the wall in a tokamak. Contrary to the limiter,

the divertor does not touch the high density plasma. Instead, the heat load is placed on the

diverter plates via a special magnetic field configuration called a separatrix (see figure 1.5).

In this separatrix the magnetic field lines do not close on themselves. These magnetic field

lines are ’open’ and are directed to the divertor legs. This helps redirect the hot jets of plasma

to the divertor plates. This geometry provides less stress on the wall since the heat loads are

localised in the divertor plates (which is a much smaller area than the limiter). It was also

verified with the ASDEX operation that this geometry provides better confinement of the

plasma by achieving a mode of operation called the H-mode (5). Carbon was used in the first

divertor designs and many subsequent machines (including the Swiss TCV machine today).

Unfortunately, carbon cannot be used as a divertor material in a reactor because it will retain

tritium. Tungsten has been chosen instead due to its high heat tolerance (highest melting

point of all metals), low erosion rate and low hydrogen retention (6).

Tungsten ions are usually heavy when compared with the hydrogen and helium ions that

ideally compose the plasma, and are therefore classified as heavy ions. Despite its low erosion

rate tungsten, can still be eroded from the divertor and be transported into the plasma (see

figure 1.6). If tungsten ions reach the core of the plasma, they will radiate due to collisions with

the background plasma, which can excite their large number of electrons. The de-excitation

of such electrons will send out the energy difference as radiation. This radiated energy comes

at the expense of decreasing the thermal energy of the plasma (see figure 1.6) (total energy

conserved). This loss of energy decreases the core temperature of the plasma, and sometimes

it is drastic enough to stop plasma operation. Such situations are currently seen in JET and

ASDEX-U (7). Understanding how to mitigate the transport of tungsten to the core of the

plasma (core accumulation) is therefore crucial for efficient reactor operation of present

tokamaks like JET with ITER-like wall, ASDEX-U and WEST. In fact, this makes it a high priority

for defining operation scenarios for ITER, because its divertor will inevitably be composed of

tungsten to avoid tritium retention while handling heat fluxes (8).
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Core

Edge Separatrix

Divertor 

Figure 1.5 – The two regions of the plasma where the magnetic field lines are closed. The
hotter and most inward region called core (red). The outer region called edge (blue). In orange
we have an open magnetic field line in the sepratrix. The limits of the magnetic field line touch
the divertor (brown).

Separatrix

Divertor 

Plasma

(a)

Separatrix

Divertor 
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(b)

Separatrix

Divertor 

Plasma

Radiation

(c)

Figure 1.6 – Simplified diagram of tungsten (brown circles) accumulation and the resultant
degradation of the plasma. (a) The reactor is designed with a tungsten divertor (brown squares).
(b) The hot plasma may strike the wall and scrape off some tungsten ions. (c) Tungsten ions
are transported through collisions with the plasma. (d) If the tungsten reaches the plasma, the
plasma loses energy by radiation sometimes causing the plasma to terminate.
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B

VV

Figure 1.7 – A charged particle (brown) in a magnetic field will follow a helical trajectory
(orange) around the magnetic field line (black) with a velocity v (blue). We can divide this
movement into a circular movement around the magnetic field line with a radius ρL called the
Larmor radius, and a movement of the center of this circular movement along the magnetic
field lines with a velocity v∥ parallel to the magnetic field line. The center of the Larmor
gyration is called guiding center (red). The typical gyration frequency associated with the
circular movement is called cyclotronic frequencyΩC . Electrons will have a circular movement
in the opposite direction than ions (shown in this figure).

1.4 Orbits of particles in magnetic confinement devices

In order to understand the transport of charged particles in a magnetic confinement device,

it is important to understand the basic movement of these particles under the influence of

magnetic fields. Such particles will follow helical trajectories around a magnetic field line (see

figure 1.7). This movement can be separated in the Larmor radius gyration and the guiding

center movement (see figure 1.7).

The plasma in magnetic confinement devices is under the action of different forces F . These

forces, if perpendicular to the magnetic field (see figure 1.8), can cause the charged particles

to drift away from their original trajectory around a magnetic field line. If there is no perpen-

dicular force then the particle rotates with a constant Larmor radius around the field line (see

1.8). However, if a force perpendicular to the magnetic field line is applied in the plasma the

perpendicular velocity of the charged particle is changed. This change in the perpendicular

velocity causes the Larmor radius to increase (see figure 1.8). Such a modification creates a

8
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deviation of the perfect circular movement around the magnetic field line which effectively

creates a movement of the guiding center of the particle trajectory in the direction perpen-

dicular to the magnetic field and the force F , which is denoted by F ×B (see figure 1.8). Such

movement is called a drift of the guiding center related to the force F . This drift is a movement

of the guiding center, but it is a consequence of the Larmor radius movement of the particles.

A plasma can be subject to different forces in magnetic confinement devices. All these forces

can create a drift of the guiding centres of the particles. The most obvious force is an electric

force since the particles in a plasma are charged. The drift due to the electric force is in fact

the drift that makes it necessary to have a poloidal magnetic field in magnetic confinement

devices. All the particles of a ion species in the plasma have different velocities. However,

under the correct circumstances, on statistically averaging over all the particle velocities, we

may find that the ensemble of particles of one species will move with a mean velocity. We call

this a flow, since the ensemble of particles flow macroscopically at that velocity. In magnetic

confinement devices, the particles of each species can have large flows. For example, heating

the plasma with different mechanisms can make the plasma rotate in the symmetry direction

of the device. In the case of tokamaks the ensemble of particles can often rotate in the toroidal

direction. This rotation can generate a centrifugal force analogous to that felt by a person

driving a car in a curved road. The interaction between this flow velocity and the parallel

velocity (around the magnetic field line) of each particle guiding center can also generate a

Coriolis force. This is the same force that will make the cyclones rotate in different directions

in the North and South hemispheres.

Finally, the magnetic field itself can generate two different forces. The first is caused by

the movement of a particle’s guiding center with a parallel velocity along a magnetic field

line. In such situation, the particle’s guiding center can also feel a centrifugal force. This

happens in magnetic confinement devices, because the magnetic field has a curvature and

thus the particle is moving in a "curved road", the magnetic field. We call this the magnetic

curvature force. The second, less intuitive, force can be exerted by the magnetic field itself. To

understand this force, it is first necessary to look at the Larmor movement of the particle. We

know that currents are generated by the movement of charged particles. A current will generate

a circular magnetic field around itself, as it is the case of generation of a poloidal magnetic

field component in tokamaks due to a toroidal plasma current. The inverse is also true. A

circular current will create a magnetic field that passes through the circular surface defined by

the current. Thus, a particle moving with a Larmor radius will generate a small magnetic field

associated with the particle. We say that the particle has a magnetic moment µ. This means

that the particle undergoing this movement is itself a magnetic dipole. Magnetised materials

gain their properties due to being composed of magnetic dipoles, since unlike electric charges,

magnetic monopoles cannot exist. A magnetic moment µ can be seen as the particle charge

equivalent for magnetic fields. We know that charged particles will move from zones of high to

low electrical charge. Or equivalently, from zones of highest to lowest electric potential. In

magnetic fields, particles with a magnetic moment µ will be forced to go to zones of weaker

magnetic field. This force is usually called magnetic mirror force and is the equivalent of the
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electric force in which the charge is the magnetic moment, and the potential is the magnitude

of the magnetic field. All the perpendicular components of the described forces can generate

drifts of the guiding centers.

A further discussion can be made specifically about the mirror force parallel to the magnetic

field. In tokamaks, for an axisymmetric plasma configuration 2, relevant parameters are

independent of the toroidal direction. Thus, the magnetic field magnitude B varies only in the

radial and poloidal directions and the parallel mirror force points in the poloidal direction

pushing particles from the zone of stronger magnetic field to weaker magnetic field (θ = 0).

Since the magnetic field magnitude is the potential for such a magnetic force exerted on the

particles (with a constant magnetic moment), they can be trapped in wells of the magnetic

field magnitude. This happens because the magnitude of the magnetic field has the form of

a wave with a harmonic component depending of the poloidal angle (see figure 1.9). Thus,

particles that have enough energy to overcome the magnetic well, or in other words the

parallel mirror force, can move in the entire poloidal direction (passing or circulating particles,

see figure 1.10), but particles that do not have enough energy are not able to overcome the

magnetic well, and thus are trapped on the poloidal angles around the minimum of the

magnetic field magnitude (banana particles, see figure 1.10). As both the orbits of these

particles are poloidally symmetric around the θ = 0 plane, the radial drift of both of these

particles averages to zero due to it pointing in different directions above and under the plane

θ = 0). As a consequence, in tokamaks, both passing and trapped particles are well confined

(in the absence of collisions). However, both the magnetic mirror and curvature radial drifts

are larger in the zones of weaker magnetic field. The radial excursion of the trapped (’banana’)

orbits is therefore larger than for the passing orbits, as the trapped orbit is mostly located

poloidally near the zones of weaker magnetic field.

In stellarators, the magnetic field is no longer axisymmetric, having at least one harmonic

which depends on both poloidal and toroidal angles. This can cause several local minima in

the magnetic field magnitude (see figure 1.9). Particles can be trapped in these local minima

which means they are trapped in a helical direction defined by a helical angle α= mθ−nφ

(with n and m integers defining the number of the poloidal and toroidal harmonics). These

are called helically trapped particles or ’superbananas’. Such particles can be trapped in local

minima that are not symmetric around the θ = 0 plane. Over an orbit, the radial drift felt by

these particles does not average to zero and these particles can drift away from the device

even in the absence of collisions. In tokamak plasmas with 3D MHD ideal perturbations, the

same type of particles can be present in the plasma, though in these cases the 3D magnetic

field components are weaker than in stellarators, and thus, there is less helical trapping.

Another important feature of tokamaks is that they allow for strong flows to exist in the toroidal

direction. These strong flows, as discussed before, will exert a centrifugal force on the particles.

This force comprises both a perpendicular force, that can make the particles drift, as well

as a poloidal centrifugal force that may cause particles to be trapped in the outboard of the

2This thesis will consider tokamak steady state plasmas that are not axisymmetric
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Figure 1.8 – Simplified picture of the drift movement of the guiding center of particles moving
in the magnetic field (pointing upward from the paper). (a) Without forces F perpendicular to
the magnetic field the Larmor movement is a perfect circle. (b) A perpendicular force acting
on the particle changes the perpendicular velocity and the size of the Larmor radius ρL . (c)
The change of the Larmor radius size makes the Larmor movement deviate from a perfect
circle and the guiding center moves in the direction perpendicular to both the magnetic field
and the force F ×B .

poloidal cross section - a centrifugal well analogous to the magnetic well. Usually these effects

are weak for hydrogen and helium ions but can be quite strong for tungsten due to their larger

mass. Usually, the analogous centrifugal potential associated with such a strong rotation

behaves in a similar way to the magnetic field magnitude in tokamaks and thus the particles

are still well confined. In general stellarator geometry, strong flows are damped. The culprit of

such a phenomenon is the neoclassical viscosity, which is the effective viscosity acting in the

plasma when the particles flow with a mean flow velocity. It is called ’neoclassical’ because

the viscosity coefficients associated with it depend on the geometry of the magnetic field. The

3D tokamak plasma configurations considered in this thesis also have some flow damping

due to toroidal viscosity but significant residual velocity has to be taken into account.

To sum up, in the absence of collisions, the transport of ions in the presence of toroidal

magnetic geometry effects (that is neoclassical transport in the collisionless limit) is mainly in

the direction parallel to the magnetic field for tokamaks, because the perpendicular transport

(cross-field transport) is averaged to zero. However, in stellarators and 3D tokamak plasmas

the cross-field transport can be finite and cause the particles to be lost to the wall.

1.5 Neoclassical particle transport

The particles in a plasma are subject to collisions. In the presence of collisions, the neo-

classical cross-field transport described above can be non-zero even for tokamak plasmas.

The collisions in the plasma happen due to the Coulomb potential interactions between

the particles in different helical orbits that are separated by up to a Larmor radius. At each

collision, the particles that collide can abruptly change their orbits and, in a configuration

with a constant magnetic field, are transported radially by a distance of a Larmor radius. This

process which happens even in a constant magnetic field (with no curvature) is called classical
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Figure 1.9 – The magnetic field force magnitude B is a potential for the magnetic mirror force
in magnetic confinement devices. (a) In tokamaks, the particles can be trapped (green) in
a symmetric well around the absolute minimum of B at θ = 0. (b) In stellarators, the non-
axisymmetric magnetic field originates different local minima in which the particles can be
trapped (green).

(a) (b)

Figure 1.10 – Passing (green) and trapped (orange) particle trajectory in a tokamak when
projected in the poloidal cross section of a tokamak (black). The trapped trajectories (orange)
are called banana orbits due to their shape.
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transport (9). The trapped particle orbits in tokamaks and stellarators have a radial width

that is usually larger than a particle Larmor radius. Thus, when trapped particles collide,

their guiding centers may change trajectories. This radial movement is of the order of the

width of the trapped orbit. Given the same frequency of collisions as in a configuration with

a constant magnetic field, this radial transport is thus faster than classical transport and it

is called neoclassical (collisional) transport. A third type of transport can occur in fusion

devices and is called anomalous transport. This transport occurs usually due to the turbulence

occurring in the plasma. This turbulence generates large zones (turbulent vortexes or eddies)

in which the macroscopic physical quantities of the plasma have similar structure. These

zones often have a width larger than trapped particle orbits. The particles in these zones can

collide with the particles in a different zone, changing their position. This transport is often

faster than neoclassical transport, because the change of the particle positions can be of the

order of the width of such eddies.

Due to the different type of orbits in tokamaks it is important to distinguish what processes

are important when discussing collisional neoclassical transport. The collisions between

background ions will happen at some collisional frequency which we call νI I . At the same time,

the passing and trapped particles have a characteristic frequency associated with completing

an orbit. For trapped particles, we call this the bounce frequency ωB . For helically trapped

particles (or superbanana particles) that are still confined (i.e. that do not drift away from the

tokamak, and complete an entire orbit), the time they need to travel the full orbit is larger than

for banana particles. Thus, the bounce frequency is smaller for superbananas than bananas.

In axisymmetric tokamaks, for high enough collisionality ν̂= νi i /ωB > 1, the collisions happen

faster than the timescale in which trapped particles complete one banana orbit. In this

regime, the trapped population is not important and the plasma can be treated mostly as a

fluid (Pfirsch-Schlüter regime). If collisionality decreases enough for the banana particles

to complete a banana orbit before a collision, the trapped particles start to be important for

the collisional transport, and we call this low collisionality regime, the banana regime. In

3D plasmas, the Pfirsch-Schlüter regime has the same meaning as in tokamak axisymmetric

plasmas. If we decrease collisionality in such plasmas, the collisions are fast enough to prevent

helically trapped particles from completing their orbits, but not fast enough to prevent the

same for banana orbits. This regime is called 1/ν regime and the banana orbits dominate the

transport processes. If collisionality goes even lower, helically trapped particles start to be

able to complete their orbits before a collision and thus can dominate the transport processes.

We call this low collisionality regime, the
p
ν regime. The equation that describes all the

neoclassical transport physics including collisions is called the drift-kinetic equation.

In this thesis, we are interested in core transport of tungsten. Such transport has been seen to

be predominantly neoclassical in axisymmetry (6). Neoclassical transport theory has been

developed over many years. The drift kinetic equation that describes the particle movement of

the guiding centers has been derived e.g. in (10). A review of the topic of collisional transport

has been written in detail (11), and the topic is also carefully explained in (9) for axisymmetric

devices. The drift kinetic equation in the presence of strong flows has been derived in (12) and
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(13) and the main ion transport in that regime is discussed in (13) and (14). The particular

case of neoclassical axisymmetric transport in the Pfirsch-Schlüter (high collisionality regime)

can also be found in (9) and (11). Work on neoclassical axisymmetric transport in the banana

regime (low collisionality) is found in (15), (16), (17), (11), (18), (9). Aspects of neoclassical

transport theory in 3D magnetic geometry for the background ions and electrons in the plasma

are discussed in (19), (9). A recent review by Shaing et al. (20) covers most of the important

aspects of 3D neoclassical transport, 3D neoclassical flows and neoclassical toroidal viscosity

(NTV) processes. Calculations of neoclassical transport in the several regimes for 3D magnetic

configurations can be found specifically in (21), (22), (23), (24), (25), (26), (27), (28), (29), (30),

(31) and (32). A different and more recent approach to the calculation of the neoclassical

flows and bootstrap current in 3D magnetic field configurations can be found in (33). Work on

neoclassical transport of the background ions in tokamaks with 3D MHD ideal perturbations

can be seen in (34) and for 3D resonant perturbations in (35), (36), (37), (38), (39), (40), (41)

and (42).

1.6 State of the art on heavy impurity transport modelling

The development of the theory of heavy impurity neoclassical axisymmetric transport started

with the understanding that heavy impurity transport at trace density limits was mainly

dictated by background ion density and temperature gradients. These effects are due to the

friction force and thermal force that the main ions exert on the heavy impurities when they

collide. In the Pfirsch-Schlüter (PS) regime, for all species it was seen (43) that both density

and temperature gradients generate radially inward transport of impurities, causing them to

accumulate on axis. Following that, the calculations were extended to treat the banana regime

of the main ions (44). It was seen that, in this regime the thermal force would actually oppose

the friction force. Thus, the background ion temperature gradient provides a thermal screening

effect. Later, it was observed that strong heavy impurity poloidal density asymmetries can

be generated in the plasma. Due to its large mass, heavy impurities like tungsten can feel

a strong centrifugal force that cause them to redistribute poloidally in the plasma. Neutral

beam injection (NBI), which is used to heat the plasma in tokamaks like ASDEX-U and JET,

causes tungsten ions to rotate supersonically along the toroidal direction. In the framework

of axisymmetric neoclassical theory for impurities, these effects were calculated in (45), (46),

(47) and (48). The strong centrifugal force generates an in-out asymmetry of the impurity

density. The heavy ions are then trapped on the outboard side of the device. At this region of

the poloidal plane, the friction force points radially inward contrary to what happens on the

inboard side. Accumulation of impurities is therefore enhanced because most of impurities are

trapped in the region in which the force points radially inward. Strong poloidal asymmetries of

impurities can also be generated due to small perturbations of the background quasi-neutrality

condition. Perturbing this condition creates a small poloidal electric field. Notably, since the

charge of heavy impurities is high, the effect of the small electric field is felt strongly by these

ions. Centrifugal effects also cause a correction in quasi-neutrality. Another mechanism that
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can generate such corrections are the effects of large friction and thermal forces felt in the

edge of tokamaks due to the large background ion density and temperature gradients. Such

effects have been studied in (49) and (47). It was seen that such strong collisional effects could

trap the particles on the inboard side of the poloidal cross section preventing accumulation.

Ion cyclotron radio wave heating (ICRH) is another mechanism that can generate poloidal

asymmetries. ICRH is used to heat the plasma in JET. It was seen in (6) that this mechanism

can perturb the quasi-neutrality condition generating an electric field that often helps reduce

impurity accumulation.

The modelling of neoclassical heavy impurity transport in stellarators has also seen progress in

recent years. The development of neoclassical transport theory for thermal ions and electrons

enabled calculations for the background ion and electron flows and heat fluxes (26), (33) in

stellarators. These flows are important for calculating the friction and thermal forces felt by

the heavy impurities. These results enabled the description of heavy impurity transport in

stellarators. Experimental observations in the LHD stellarator showed that the ambipolar

electric field, which is usually negative, played an important role in pushing impurities radially

inwards, overwhelming the effect of temperature screening. This is in contrast to what happens

in axisymmetric configurations, in which the radial electric field drive of transport vanishes.

Recently it was shown theoretically that for the regime of interest in stellarators such as W7-X,

in which the impurities are highly collisional, and the main ions are in the low collisionality

1/ν regime that, temperature screening may be important when compared to the effect of the

ambipolar electric field (which is seen to be negligible (50)). This result is contrary to most

observations in stellarators where the electric field drive is usually dominant. Indeed, recent

theoretical results show that with the inclusion of parallel impurity density asymmetries in

stellarator configurations, the effect of the ambipolar radial electric field reappears and is

important (51), (52). Finally, impurity density asymmetries were considered due to corrections

to quasi-neutrality when considering helically trapped main ions (51) and fast ions (52) in

W7-X-like configurations.

1.7 Motivation for this thesis

The results described in the previous section show that a good understanding of neoclassical

theory exists for axisymmetric magnetic fields in tokamaks. However, such theory may not

be applicable to 3D tokamak plasmas in which 3D MHD perturbations may exist. These

perturbations can have non-negligeable amplitudes such that, the neoclassical tokamak

related theory just described above may fail. Operational scenarios in tokamaks like JET and

ASDEX-U often feature 3D ideal MHD perturbations, such as long-lived 3D ideal perturbations,

or nonlinear 3D MHD modes with magnetic islands. Experimental studies have reported

heavy impurity behaviour in the presence of both long living MHD perturbations (53) and

magnetic islands due to neoclassical tearing modes (54). Nevertheless, only limited work has

been reported on the effect of 3D long living (n = 1,m = 1) MHD modes on heavy impurity

transport (55), (56). And crucially, stellarator theory is also not entirely applicable to 3D
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tokamak plasmas because plasma flows are strongly damped by the 3D magnetic fields of

stellarators (see section 2.6). In tokamaks, strong toroidal rotation due to NBI is still observable

when 3D long living modes are present, making the modelling of such scenarios a distinct

problem. This combination of physics effects is critical, as will be seen.

Long living MHD modes like the 1/1 internal kink mode can sometimes exist without signif-

icantly deteriorating plasma operation. For this MHD mode, the core of the plasma suffers

a rigid displacement that makes the magnetic axis have a poloidal excursion as we move

around the toroidal direction. It is observed that this type of mode can impact heavy impurity

transport in JET. In figure 1.11, we see a Fourier analysis of the toroidal mode number of

the magnetic field during a JET pulse. It can be seen that the n = 1 mode becomes strong

after t = 46.61s (see figure 1.12), indicating the presence of a strong 1/1 internal kink mode.

To investigate the effect of the mode on tungsten transport, we may look at the soft X-ray

tomography (SXR) diagnostic. This diagnostic provides a measure of X-ray emissions in the

region of the light spectrum that corresponds to the electron transitions in the tungsten ions.

Therefore, a strong signal in this diagnostic corresponds to a strong peak in the density of

tungsten in the plasma. We can see the SXR signal on the poloidal cross section of JET in figure

1.13. At a time t ≈ 45.9s we see that there is off-axis accumulation of tungsten. At this time

the plasma is nearly axisymmetric (see figure 1.12). However, at a time t ≈ 46.63s in which

the 1/1 internal kink mode is strong (see figure 1.12), we observe tungsten accumulating on

axis. Experimentally, it is difficult to understand if this accumulation is indeed due to the 3D

effects, but a clearer view of the physics can be obtained through modelling of such a problem.

Another interesting behaviour of impurity transport can be seen in ASDEX-U experiment with

long living 1/1 internal kink modes. The experimental studies done in ASDEX-U (53) show that

operational scenarios with the presence of a long living 1/1 ideal internal kink mode during

electron cyclotron heating can help prevent impurity accumulation. This scenario could possi-

bly be used in future tokamaks like ITER to prevent impurity accumulation. Understanding the

physics behind these contrasting experimental observations is thus very important. Finally,

the construction of the European DEMO is already being planned. This machine will be used

to demonstrate the viability of fusion energy as a power plant. Operation scenarios with a

confinement mode called QH-mode are being considering to avoid edge localised modes that

can potentially damage such large device. This QH-mode operation features long living 3D

MHD perturbations of the magnetic field in the edge region of the tokamak. It is therefore also

important to understand through modelling how these modes affect heavy impurity transport.

There are indications in ASDEX-U that EHO’s can increase inward transport of impurities,

which is a concern that requires further considerations.

1.8 Outline of this thesis

The work in this thesis focuses on formulating a theoretical framework for the study of heavy

impurity transport in tokamak plasmas with long living 3D ideal MHD perturbations in the

presence of strong flows and the ambipolar electric field. This model is implemented in the
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1.8. Outline of this thesis

Figure 1.11 – Analysis of the toroidal mode number n for JET pulse #92181.

code package composed of existing codes VMEC (57), (58), (59) and VENUS-LEVIS (60), (61).

In chapter 2, we focus on presenting the theoretical framework deployed to treat the type of

problems investigated in this thesis. Both known and novel theoretical results are presented

in this chapter. We start by presenting various important plasma descriptions which are

well known. We then formulate a way of tackling the problem of heavy impurity transport

in the presence of 3D MHD ideal perturbations and strong flows. We start by discussing

the empirically relevant orderings necessary to treat the problems of interest. This ordering

allows the impurities to flow supersonically in the toroidal direction, while the background

ions are treated as strongly subsonic. Thus, impurities feel the effect of strong flows, but the

neoclassical background ion flow calculations for general 3D geometry (e.g. in stellerators)

(26), (33) may be used. The additional effect of strong flows in the impurity physics marks the

difference between tokamaks with 3D ideal perturbations and general 3D stellarator geometry.

We then present the analytical background ion flows and heat flux of interest, as well as the

known geometrical factors (26), (33). The impurity flows and impurity flux are obtained with

the effect of strong flows by extending the formalism in (51) (52).

In chapter 3, the code package composed of the VMEC and the VENUS-LEVIS codes is pre-

sented. The code package is used to numerically implement the framework described in

17



Introduction

Figure 1.12 – Magnetic signal of the n = 1 mode and central SXR tomography signal in JET
pulse #92181.

chapter 2. This chapter again presents both known and new results. We start by explaining the

main concepts behind the VMEC code (57), (58), (59). We then describe how we can model

3D MHD ideal saturated modes such as 1/1 internal kink modes with VMEC. We proceed to

explain how the background ion flow and heat flux is calculated from the numerical equilibria

obtained from the VMEC code. The numerical calculation of the 3D geometrical factors and

background ion flows requires the numerical magnetic field configuration obtained from

VMEC to be transformed to magnetic coordinates. The auxiliary codes developed in this thesis

to convert from VMEC coordinates to Boozer or Hamada coordinates, as well as the codes

developed to calculate the 3D geometrical factors and background ion flows, are presented.

We then explain the guiding center formulation implemented in VENUS-LEVIS that allows

for the following of heavy impurities in the presence of strong flows. A new implementation

(based on (62)) of a suitable collision operator to treat both friction and thermal force between

heavy impurities and main ions is then discussed.

In chapter 4, the main numerical results of our modelling are presented. The background ion

flows in the presence of 1/1 internal kink are presented and discussed. This then facilitates a

study into the effects of a 1/1 internal kink mode on heavy impurity accumulation. The satu-

rated tungsten density is calculated as function of the different physical mechanisms involved

in such operation scenarios. The transient phase of the simulations is analysed in order to

obtain a measure of the diffusion coefficients in the presence of various physical mechanisms.

The implications of these results are discussed in detail, and compared qualitatively with

empirical observations.

Finally, in chapter 5, we summarise the work presented in this thesis and present future

possible applications, such as the modelling of other 3D ideal MHD perturbations (like EHOs),

as well as 3D MHD problems with modified topology (e.g. neoclassical tearing modes).
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1.8. Outline of this thesis

(a) (b)

Figure 1.13 – Soft X-ray (SXR) tomography at different times of JET pulse #92181. (a) SXR
signal at t ≈ 45.9s of fig. 1.12, where the n = 1 magnetic signal is weak and thus the plasma
is essentially axisymmetric. (b) SXR signal at t ≈ 46.63s of fig. 1.12, where the n = 1 magnetic
signal is strong and thus a strong 1/1 internal kink mode is present in the plasma. The axis
position is given by the highest intensity region since impurities follow the axis of the kink.
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2 Analytical model for the study of
heavy impurity transport in the pres-
ence of 3D MHD ideal perturbations
This chapter presents a theoretical framework for studying heavy impurity transport in the

presence of 3D MHD ideal saturated modes, strong flows, and ambipolar electric field. The

chapter reviews known results and novel theories that are crucial for this thesis. The known

results are presented here because they are necessary to understand the new theoretical

formulation presented for heavy impurity transport. We start by presenting the basic equations

for three different ways of describing the plasma. The particle description, the multi-fluid

description and the MHD description. The concept of flux coordinates is then obtained

from the MHD description. Following these basic concepts, we discuss the orderings for the

background ions and heavy impurities that are relevant to treat heavy impurity transport in

tokamak geometry with 3D MHD saturated perturbations. The background ion flow and heat

flux are obtained by following these orderings. The drift kinetic formalism is then presented,

because part of the ion background flows and heat flux results from its usage. A revision of the

meaning of the geometrical factors involved in plasmas with such flows in the context of drift

kinetic theory is performed. A derivation of the heavy impurity flux in tokamak configurations

with 3D MHD ideal saturated modes, strong flows and heavy impurity transport is then made.

The chapter ends with the derivation of the guiding center equations for the heavy impurities

in the presence of strong flows.

2.1 Particle description

The most elementary way of describing a plasma is to describe the trajectories of all the

particles in phase space which comprises both spatial coordinates given by x and the velocity

space v , and the time t . The description of the movement of the particle trajectories in

phase space provides a full description of the plasma. This description is usually called a

kinetic description (9). In this microscopic description, the plasma is fully described by the

distribution function fs(x , v , t) of each species s in the plasma. The distribution function is

a measure of the probability density of a particle of species s being located at the position x

with a velocity v at a time t . The time evolution of such distribution function is given by the
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Boltzmann 1 equation

d fs

d t
=C ( fs)+Ss ⇔ ∂ fs

∂t
+v ·∇∇∇x fs + Fs

ms
·∇∇∇v fs =C ( fs)+Ss , (2.1)

in which the position and velocity coordinates are independent of each other. Here, ms is the

mass of a particle of species s and Fs = qs E +qs v ×B is the Lorentz force felt by a particle of

species s with charge qs in the presence of an electric field E and a magnetic field B . C ( fs)

is the collision operator that describes collisions of the particles of species s with the other

particles present in the plasma, and Ss any possible source terms. This description of the

plasma species is often difficult to solve analytically, and its numerical treatment requires

the usage of immense numerical resources since, a large number of numerical markers have

to be modelled in both time and in 6 phase space coordinates. It is often necessary to find

simplified and reduced methods of describing the plasma.

2.2 Fluid description

A macroscopic description of the plasma can be obtained by averaging the behaviour of each

species over velocity space. The plasma is then described as a being composed of different

fluids. Each fluid associated to species s is described by a macroscopic density ns(x , t ), flow

Us (x , t) and pressure Ps(x , t). The fluid equations are obtained by taking moments of the

Boltzmann equation ((9), (20)), i.e. taking integrals on the velocity space of equation 2.1

multiplied by different powers of v .

The scalar moment of order 0 gives the continuity equation

∂ns

∂t
+∇∇∇· (nsUs ) = Sp , (2.2)

in which ns is defined as

ns =
∫

d v fs , (2.3)

Us as

Us = 1

ns

∫
d v fs v (2.4)

and Sp are possible averaged source of particles. If we take the mv vectorial moment of the

Boltzmann equation, the momentum equation is obtained

1In section 3.2.2 we will use a numerical collision operator that effectively will approximate C ( fs ) by the sum of
a drift and a diffusion operators. In this case, this equation would be called Fokker-Planck equation
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2.2. Fluid description

nsms
∂Us

∂t
+nsmsUs ·∇∇∇Us = qsns(E +Us ×B )−∇∇∇Ps −∇∇∇·←→πs +Frs +Sm , (2.5)

where Ps is the pressure of species s defined as

Ps =
∫

d v
ms w2

3
fs (2.6)

in which w = v −Us . The viscosity force is ∇∇∇ ·←→πs with the viscous-stress (traceless) tensor

defined as

←→πs =
∫

d v
(

w w −w2
←→
I

3

)
fs (2.7)

with
←→
I is the identity matrix. If the plasma fluid has a strong flow velocity such that Us ∼ vths ,

with vths =
√

2Ps
ns ms

the thermal velocity of species s, then this tensor can be written as (9)

←→πs =µd Wi j +µv∇∇∇·Us
←→
I =µd

(∂Usi

∂x j
+
∂Us j

∂xu
+δi j

2

3
∇∇∇·Us

)
+µv∇∇∇·Us

←→
I , (2.8)

in which µd and µv are respectively the sheer and bulk viscoity coefficients (for plasmas,

usually µd ∼ 1 and µv ∼ 0) and Wi j is the rate-of-strain tensor. If Us ¿ vths , the viscosity

tensor in the longitudinal direction can often be approximated by

←→πs =µd Wi j

(
b̂i b̂ j − I

3

)
= (P∥−P⊥)

(
b̂b̂ − I

3

)
(2.9)

in which P∥s
and P⊥s are the components of the pressure tensor in the directions parallel

and perpendicular to the magnetic field, respectively. Repeated indexes means summation

and b̂ = B
B is the unit vector in the direction of the magnetic field. If the pressure is isotropic

(P∥s
−P⊥s = 0) we may define a temperature Ts = Ps/ns . The friction force is obtained from

the distribution function as

Frs =
∫

d v Ms vC ( fs) (2.10)

and Sm are possible averaged sources of momentum. The momentum equation in conjunction

with the continuity equation allow the calculation of flow for species s which obeys to both

quasi-neutrality and ambipolarity provided that expressions for higher moments (pressure,

viscous tensor, and friction force) are given or obtainable through, e.g. from kinetic or fluid

description. The component of the momentum equation perpendicular to the magnetic field

2.5 can be used to obtain the perpendicular flow. The parallel flow can then be obtained from

the continuity equation 2.2. The parallel component of the momentum equation 2.5 allows,

in conjunction with quasi-neutrality, to obtain parallel corrections to the density ns and the

electric field E . At a different ordering, the same parallel component will help obtaining
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constraints to be imposed to the flow, due to the action of the parallel viscosity. And finally,

from taking the toroidal component of the momentum equation, taking an average over the

poloidal and toroidal angles, and summing over all species s, one obtains the ambipolarity

constraint. It is basically an equation which defines the radial ambipolar electric field required

for the sum of the cross-field flux qsΓr multiplied by the charge of the particles to vanish,

.i.e. for the radial current density Jr in the plasma to vanish. Here, the subscript r indicates

the direction of the minor radius of the toroidal section of the toroidal magnetic device. The

cross-field flux is defined for toroidal coordinates as

qsΓr = qsnsUsr . (2.11)

The energy equation is obtained by taking the (v2ms)/2 moment of the Boltzmann equation,

and is written as

∂

∂t

(3

2
Ps+nsmsU 2

s

)
+∇∇∇·

[
qs+(

←→
Πs+Ps

←→
I )·Us+1

2
ns MsU 2

s Us+3

2
PsUs

]
=Q∫+(qsns E+F rs )·Us+SE ,

(2.12)

in which the heat flux is defined as

qs =
∫

d v w
ms w2

2
fs , (2.13)

and where the collisional energy exchange is

Q∫ =
∫

d v
ms w2

2
C ( fs) (2.14)

and SE are possible averaged sources of energy. Taking the moment ms v2

2 v of the Boltzmann

equation, the energy flux equation is obtained and can be written as

∂Qs

∂t
= qs

ms
E ·

[(5

2
Ps + 1

2
nsmsU 2

s

)←→
I +←→πs + 1

2
msnsUsUs

]
+ 1

c

qs

ms
Qs ×B (2.15)

−∇∇∇Rs −∇∇∇·←→Rs + Ps

ns

(5

2
Frs +Hs

)
+Sq

where the energy flux is defined as

Qs =
∫

d v v
ms v2

2
fs = qs + (←→πs +Ps

←→
I ) ·Us + 1

2
nsmsU 2

s Us + 3

2
PsUs , (2.16)
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2.2. Fluid description

the energy stress is

Rs =
5P 2

s

2nsms
, (2.17)

the energy stress anisotropic tensor is approximated by (neglecting off diagonal terms in

coordinates aligned with the magnetic field line):

←→
Rs = (R∥s

−R⊥s )(b̂b̂ −
←→
I

3
), (2.18)

where R∥s
and R⊥s are the longitudinal components of the energy stress tensor. The heat

friction force (or thermal force) is given by

Hs =
∫

d vms v
( v2

v2
ths

− 5

2

)
C ( fs) (2.19)

and Sq are possible averaged energy flux sources. The energy equation 2.12 and the energy

flux 2.15 can be used to obtain the heat flux vector of species s provided a closure is given

for the heat friction, the energy stress anisotropic tensor, the friction force, and the viscosity

tensor. Equation 2.15 alows the perpendicular heat flux qs to be obtained, and equation 2.12

gives the parallel heat flux. We can also write the equation that states the evolution of entropy

in the plasma which in the fluid limit is written (on averaging with ln fs −1) as

∂Ss

∂t
+∇∇∇·Ss =Θs , (2.20)

where the entropy density is approximated on closure as

Ss = ns l n
(T

3
2

s

Ns

)
, (2.21)

the entropy flux vector is

Ss = SnUs + qs

Ts
, (2.22)

and the heat viscosity tensor is

←→
Θs = ms

Ts
(R∥s

−R⊥s )(b̂b̂ − 1

3

←→
I )− 5

2
(P∥s

−P⊥s )(b̂b̂ − 1

3

←→
I ). (2.23)
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The entropy equation 2.20 is used to obtain constraints relating both the density and the

pressure of the fluid. These plasma fluid equations are thus important to obtain the flow and

heat flux of background ions as well as the impurity flow. It is important to remark here that

generally there are an infinite number of fluid equations and they are not closed. For example,

the equations just presented depend on unknown higher moments of the distribution function,

e.g. the viscous tensor as well as the collisional friction force when calculating the v moment

of fs (see equation 2.5). In order to obtain a closed solution for the flows and the heat flux,

further assumptions have to be made about these quantities or they have to be calculated

from a model (simplified) kinetic description (see section 2.6).

2.3 MHD description

The fluid description of the last section simplifies considerably the description of the plasma

compared with the kinetic description (provided a suitable closure is provided). However, a

plasma in the presence of a magnetic field is often described in an even more simplified way,

we can look at the plasma as a single charged fluid with a total mass density

ρ =∑
s

nsms , (2.24)

a plasma velocity

U = 1

ρ

∑
s

nsmsUs , (2.25)

a total current density

J =∑
s

ns qsUs , (2.26)

and a total isotropic pressure

P =∑
s

nsTs . (2.27)

This description of the plasma is called magnetohydrodynamics or MHD (3). The MHD

continuity equation is then obtained by summing the continuity equation 2.2, in the absence

of source terms, for all species s, and is given by

∂ρ

∂t
+∇∇∇· (ρU ) = 0, (2.28)
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2.3. MHD description

The MHD force balance equation is obtained from summing the momentum equation 2.5 for

all species s which yields

ρ
(∂U

∂t
+U ·∇∇∇U

)
= J ×B −∇∇∇P (2.29)

in the absence of pressure anisotropies, source terms and viscous-stress terms. The system of

fluid equations is closed by the adiabatic equation which is written as

d

d t

( P

ργ

)
≡ ∂

∂t

( P

ργ

)
+U ·∇∇∇

( P

ργ

)
= 0. (2.30)

The momentum equation approximation also includes the ideal Ohm’s in the limit of zero

collisional resistivity

E ′′′ = E +U ×B = 0, (2.31)

in which E ′′′ is the electric field felt in the single fluid frame moving with the plasma velocity U .

The Ampère’s law, is given as usual in the limit of non-relativistic particles as

µ0 J =∇∇∇×B , (2.32)

with µ0 the magnetic permeability of the vacuum. The Gauss law for the magnetic field states

as usual the zero divergence of the magnetic field:

∇∇∇·B = 0. (2.33)

The Gauss law for the electric field on scales larger than a so-called Debye length is

∇∇∇·E = 0, (2.34)

which states thet the plasma is quasi-neutral, giving the the quasi-neutrality condition

∑
s

ns qs = 0. (2.35)

In the stationary limit ( ∂∂t → 0), and in the absence of strong flows and time varying fluctua-

tions, we obtain the simpler form of the MHD force balance equation
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J ×B =∇∇∇P, (2.36)

which is a balance between the magnetic force felt by the plasma and the pressure force exerted

by the plasma. Typically, this is the equation that is solved in order to obtain magnetic config-

urations of equilibrium for magnetic confinement devices such as tokamaks and stellarators.

In such cases, the charged fluid represents the sum of the hydrogen (isotopes) or helium ions,

and electrons composing the background plasma in such fusion devices. The importance

of equation 2.36 will be seen later when describing the numerical tool VMEC which solves

equation 2.36 to obtain numerical solutions of magnetic configurations representing stable

equilibria of tokamak configurations with 3D MHD ideal saturated modes. The existence of a

system of coordinates called flux coordinates is important for simplifying the calculations of

many areas in this thesis.

2.4 Flux coordinates

We can now discuss one important implication of the MHD description due to the fact that

the magnetic field of an MHD equilibrium is constrained by the equations 2.36, 2.32, and 2.33.

Such equations imply that the equilibrium magnetic field configuration established in the

plasma has a special relation to the density current and the pressure of the plasma. This allows

the plasma to be more easily described in a set of spatial coordinates called flux coordinates

(63), (64), (65), (66). These special set of coordinates are important as they often simplify

calculations. Equation 2.32 leads to the constraint

∇∇∇· J = 0. (2.37)

Moreover, 2.36 implies the following constraints

J ·∇∇∇P = 0 (2.38)

and

B ·∇∇∇P = 0. (2.39)

These constraints mean that in a magnetic field configuration which obeys the MHD force

balance equation, the current density and magnetic field vectors lie on surfaces of constant

pressure. This implies that each of these surfaces have an associated magnetic flux and total

current. This is so because the magnetic field and density current vector fields have zero

divergence, and thus the same magnetic field lines and current lines will stay on the same

surface along the entirety of the torus. We then call these surfaces flux surfaces. Another

equivalent meaning of these constraints is that if we describe the magnetic field and current
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density in a set of general flux coordinates (s,θ,φ), where s 2 is a radial coordinate that

labels the flux surface, then the magnetic field and the current density across flux surfaces

vanish which can be mathematically written as B s = 0 and J s = 0. Here, θ and φ can be any

arbitrary poloidal and toroidal angles. Provided the coordinate system chosen is based on

flux coordinates (s,θ,φ) the constraints B s = 0 and J s = 0 greatly simplify the description

of problems in the MHD description. If we assume that the toroidal magnetic equilibrium

described by such equations can be represented by these flux surfaces in a way that they

are nested surfaces with a single magnetic axis, then we can describe the pressure as being

function of only the radial variable s:

P = P (s). (2.40)

Equations 2.33 and 2.39 imply that a potential function v∗ exists such that the contravariant

magnetic field is of the form

B =∇∇∇s ×∇∇∇v∗. (2.41)

Equations 2.37 and 2.38 imply that a potential function w∗ exists such that the contravariant

current density is of the form

J =∇∇∇w∗×∇∇∇s. (2.42)

This form of the current density vector in conjunction with Faraday’s law 2.32 implies that a

potential function u∗ exists such that the covariant magnetic field is of the form

B =∇∇∇u∗+w∗∇∇∇s. (2.43)

The definitions of poloidal and toroidal magnetic flux inside a poloidal and toroidal flux

surface labelled by s are given by

2πΨP (s) =
∫ ∫

Bθd sdφ (2.44)

and

2πΨT (s) =
∫ ∫

Bφd sdθ. (2.45)

As such the form of potential function v∗ has to be

v∗(s,θ,φ) = dΨT

d s
θ− dΨP

d s
φ+ ṽ(s,θ,φ), (2.46)

in which ṽ(s,θ,φ) is an arbitrary periodic function in θ and φ.

2s is not to be confused with the subscript for species
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The definitions of poloidal and toroidal current (multiplied by µ0) passing through a poloidal

and toroidal flux surface labelled by s are given by

2πIP (s) =
∫ ∫

µ0 Jθd sdφ (2.47)

and

2πIT (s) =
∫ ∫

µ0 Jφd sdθ, (2.48)

and lead in a similar fashion to the following form for the potential function w∗

w∗(s,θ,φ) =−d IT

d s
θ− d IP

d s
φ+ w̃(s,θ,φ), (2.49)

in which w̃(s,θ,φ) is again an arbitrary periodic function in θ and φ. Faraday’s law 2.32 then

implies that the potential function u∗ is

u∗(s,θ,φ) = IT θ+ IPφ+ ũ(s,θ,φ), (2.50)

with ũ(s,θ,φ) an arbitrary periodic function in θ and φ. These potential functions define an

arbitrary set of flux coordinates. Choosing specific forms of the functions ṽ(s,θ,φ), w̃(s,θ,φ)

and ũ(s,θ,φ) will lead to different choice of θ and φ coordinates. Each set of flux coordinates

(s,θ,φ) is a valid set of coordinates to describe an equilibrium magnetic field which is a

solution of the MHD force balance equation 2.36. However, some flux coordinates offer

specific advantages. The choice being made depends on the problem that is presented.

Sometimes, we may need to solve magnetic differential equations (see appendix A) which have

a magnetic differential operator B ·∇∇∇. It is clear that this operator is treated in a simpler way

if the contravariant components Bθ(s,θ,φ) = B ·∇∇∇θ and Bφ(s,θ,φ) = B ·∇∇∇φ of the magnetic

field are flux functions such that 〈Bθ〉 = Bθ and 〈Bφ〉 = Bφ. In which case the flux average for a

function κ(s,θ,φ) is defined as

〈κ(s,θ,φ)〉(s) =
∫ 2π

0

∫ 2π
0 κ(s,θ,φ)

p
g dθdφ∫ 2π

0

∫ 2π
0

p
g dθdφ

=
∫ 2π

0

∫ 2π
0 κ(s,θ,φ)

p
g dθdφ

V ′ . (2.51)

Here,
p

g (s,θ,φ) = (∇∇∇s ·∇∇∇θ×∇∇∇φ)−1 is the jacobian in the set of flux coordinates (s,θ,φ) and

V (s) is the volume enclosed by the flux surface labelled by s such that the differential volume

element is dV =p
g d sdθdφ. We also define for an arbitrary flux function υ(s) the following

notation κ′(s) = dκ
d s . The sets of flux coordinates in which the contravariant components of

B x multiplied by the jacobian
p

g are flux functions are called straight field line coordinates as

the representation of the field lines in the (θ,φ) plane are straight lines. Since, from 2.41, the

magnetic field lines are defined by the intersection of a flux surface s and a surface in which

v? is constant it is clear to see that straight field line coordinate systems are obtained when

imposing ṽ = 0. The simplest set of coordinates that can be obtained without considering the
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2.4. Flux coordinates

trivial case (with v? = u? = w? = 0) are obtained by imposing v? = u? = 0 or v? = w? = 0. The

former are called Boozer coordinates (64), (65) and the latter Hamada coordinates (66).

Boozer coordinates (s,θB ,φB ) are straight field line coordinates with a simple representation

of the covariant component of the magnetic field such that

B = dΦT

d s
∇∇∇s ×∇∇∇θB − dΦP

d s
∇∇∇s ×∇∇∇φB =∇∇∇ΦT ×∇∇∇θB − ι∇∇∇ΦT ×∇∇∇φB , (2.52)

J = d IT

d s
∇∇∇s ×∇∇∇θB + d IP

d s
∇∇∇s ×∇∇∇φB +∇∇∇w̃B ×∇∇∇φB , (2.53)

B = w̃B∇∇∇s + IT ∇∇∇θB + IP∇∇∇φB , (2.54)

p
g B = dΦT

d s

IP + ιIT

B 2 , (2.55)

with ι(s) = dΦP
dΦT

= 1
q(s) the rotational transform, q(s) being the safety factor, and w̃B (s,θB ,φB )

the respective function w̃ of Boozer coordinates.

Hamada coordinates (s,θH ,φH ) have the particularity of being straight field line coordinates

in which the current lines are also straight and the jacobian
p

g H is a flux function. In Hamada

coordinates we can write

B =∇∇∇ΦT ×∇∇∇θH − ι∇∇∇ΦT ×∇∇∇φH , (2.56)

J = d IT

d s
∇∇∇s ×∇∇∇θH + d IP

d s
∇∇∇s ×∇∇∇φH , (2.57)

B = ∂ũH

∂s
∇∇∇s +

(
IT + ∂ũH

∂θH

)
∇∇∇θH +

(
IP + ∂ũH

∂φH

)
∇∇∇φH , (2.58)

p
g H = V ′

(2π)2 . (2.59)

Further details on the derivations of these expressions as well as the transformations between

the different sets of flux coordinates can be found in the appendix A. In the remainder of this

chapter, the notation (ψ,θ,φ) for a set of flux coordinates will be used in which ψ=ΨT is the

flux label coordinate (instead of s).

In the case of axisymmetry, the derivatives of all scalars with respect to the toroidal angle

are null ( ∂
∂φ → 0), which means that in general the contravariant and covariant forms of the

magnetic field can be given by

B =
(
q(ψ)+ ∂ṽ

∂θ

)
∇∇∇ΦP ×∇∇∇θ+∇∇∇φ×∇∇∇ΦP , (2.60)

B = ∂ũ

∂ΦP
∇∇∇ΦP +

(
IT + ∂ũ

∂θ

)
∇∇∇θ+ IP∇∇∇φ. (2.61)

In the cylindrical system of coordinates (R,φg eo , Z ), the toroidal angle is chosen to be the
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usual geometrical angle φg eo . Since the potential functions in axisymmetry are independent

of the toroidal angle, we may substitute the general coordinate φ by φg eo in 2.60 and 2.61. This

implies then that Bφg eo = IP (ΦP ), and that the poloidal magnetic field component is then given

from 2.60 by BP =∇∇∇φ×∇∇∇ΦP , since the first term is in the toroidal direction. The magnetic

field in cylindrical coordinates is written as

B = |BR |R̂ +|BZ |Ẑ +|Bφg eo |φ̂g eo = BP +Bφg eo∇∇∇φg eo , (2.62)

which makes the axisymmetric magnetic field in flux coordinates

B =∇∇∇φ×∇∇∇ΦP + IP∇∇∇φ. (2.63)

This is the standard way to write the axisymmetric magnetic field (9). Notice that changing φ

for φg eo changes the θ angle as well as the functions ṽ and ũ, but these changes have no effect

on this way of writing the axisymmetric magnetic field.

2.5 Ordering of the background ions and heavy impurities

In this thesis, we assume the plasma to be composed of a background ion species I , back-

ground electrons e, and a heavy impurity species W (tungsten being the impurity of interest).

One aim of this thesis is to model the particular case of a 1/1 internal kink mode in the core of

a tokamak such as the one shown in section 1.7. The background species are thus assumed

to be in the low collisionality regime as it is often the case in the tokamak core. The high

collisionality is ususally appropriate for the heavy impurities with high charge number ZW

in the core of tokamaks. It is usual to consider that the banana regime (in which trapped

particles have banana trajectories) exists at low collisionality in axisymmetric devices. Nev-

ertheless, axisymmetry can often be broken by the existence of 3D MHD perturbations. In

such cases other types of trapped particles can exist leading to the occurrence of different low

collisionality regimes (26) (see section 1.5). In the presence of 3D MHD ideal perturbations

like the 1/1 internal kink both banana trapped particles and helically trapped particles exist.

We will consider that the collisionality is sufficiently high to not allow for the drift of helically

trapped particles to dominate neoclassical transport of the ions. Neoclassical transport is thus

predominantly due to banana trapped particles. In this way, we can make use of the general

3D geometry formalisms of (33) and (26) to calculate the parallel ion flows. Such a scenario

represents the so-called 1/ν̂i i regime (see section 1.5) and as discussed in (20), it should be

the most appropriate regime when axisymmetry is broken in tokamaks. The collisionality is

here defined as

ν̂I I = νI I
L∥
vTI

, (2.64)

with L∥ the macroscopic length associated with gradients along the magnetic field line, vTs =
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p
2Ts/ms the thermal velocity of species s, and

νsk = ns Z 2
s Z 2

k e4 lnΛ

(4πε0)2m2
s vT>v2

Ts

, (2.65)

is the typical collision frequency between species s and k. Here, vT> is the thermal velocity of

electrons or ions (whichever is larger), ε0 is the vacuum permitivity, Zs is the charge number

of species s, e is the electron charge and lnΛ is the Coulomb logarithm (see tables in (67)).

In the 1/ν̂i i regime, the collisionality ν̂i i satisfies (δB/B AX I )3/2 < ν̂i i < ε3/2, with ε the inverse

aspect ratio, B AX I the magnitude of the axisymmetric magnetic field, and δB the magnitude

of the 3D ideal MHD perturbation (20). Following (49), (47), we use the small parameter δ

describing the smallness of the Larmor radius relative to the scale length of the magnetic field

Ł⊥ as usual for neoclassical transport theory

δ= ρθI

L⊥
¿ 1. (2.66)

We define the square of the toroidal Mach number of a species s as

M 2
s = msΩ

2R2

2Ts
, (2.67)

where R is the cylindrical radial coordinate, and Ω is the common toroidal angular frequency

with which all species rotate due to the balance between the momentum supplied from

neutral beam injection and diffusion due to turbulent sources (68). Tungsten diverted tokamak

experiments with unbalanced beam injection (like in the example in 1.7) show that impurities

rotate toroidally supersonically along the toroidal direction

M 2
W ∼ 1, (2.68)

while main ions are subsonic which means (47)

M 2
I ∼ 1/ZW ∼ δ1/2. (2.69)

The common velocity due to NBI is given by U =ΩRêφ ∼ δ1/4vthI (see equation 2.82). This flow

is a combination of the lowest order E×B velocity and the parallel velocity which is constrained

by strong poloidal damping of the flow. This implies that at lowest order in ion gyro radius, we

have an electric field of order δ−3/4TI /(qI L). It is also known that ambipolarity between ions

and electrons set an electric field which is of order δ0TI /(qI L), which produces an E×B flow of

the order of the diamagnetic velocity, which in turn is of order δvthI . Furthermore, a poloidal
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electric field is generated due to quasi-neutrality and the movement of ions associated with

the poloidal centrifugal force. This poloidal electric field has to be of the order TI /(qI L)M 2
I ∼

δ1/2TI /(qI L). However, the ordering 1/ZW ∼ δ1/2 ¿ 1, implies that qW E1/2 ∼ TI /L and M 2
W ∼ 1,

which means that the poloidal electrical force and centrifugal forces acting on heavy impurities

with charge ZW appear at zeroth order, contrary to what happens for the main ions. These

forces will redistribute the impurity density poloidally around the flux surface. Since the

redistribution appears at zeroth order in δ, we have NW (ψ) ∼ ñw (ψ,θ,φ). Nevertheless, since

qI E1/2 ∼ δ1/2 and M 2
I ∼ δ1/2, the same forces acting on ions will only appear at order δ1/2. We

thus have ñI (ψ,θ,φ) ∼ δ1/2NI (ψ). Here Ns = 〈ns〉 is the contribution to the density of species s

that does not vanish on flux averaging the density, and ñs is the correction to the density, which

necessarily varies along the magnetic field. We also assume NW (ψ)/NI (ψ) ∼ 1/Z 2
W δ ∼ δ2

everywhere in the plasma, i.e. that impurities are in the trace limit and thus we neglect the

effects of self collisions and the feedback of the impurities on the ions due to collisions. The

quantities of interest can now be expanded using the ordering parameter 1/ZW ∼ δ1/2 ¿ 1

defined above.

The electric field can be written as

E (ψ,θ,φ) = E−3/4(ψ)+E0(ψ)+E1/2(ψ,θ,φ)+ ..., (2.70)

the flow of species s as

Us =Us1/4 +Us1 +Us3/2 + ..., (2.71)

the heat flux of species s as

qs = qs1/4 +qs1 +qs3/2 + ..., (2.72)

the density of the ions as

nI (ψ,θ,φ) = NI0 (ψ)+ ñI 1/2(ψ,θ,φ), (2.73)

and the impurity density as

nW (ψ,θ,φ) = nW0 (ψ,θ,φ). (2.74)

The stationary case is considered in which we neglect time derivatives in the bulk plasma and

electromagnetic fields, and we assume that any source terms (e.g. ICRH ) would enter only at
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order δ2. Note that we consider briefly the possibility of a toroidal momentum source due to

ECRH at order δ in chapter 4 to explain ASDEX-U experiments.

2.6 Ion background flows

Following the orderings described above, we obtain the perpendicular components of the

ion flow by forming the cross product of B with the momentum equation 2.5 for the ions. At

lowest order δ3/4, we obtain the flow of equation 2.5, i.e.

UI1/4⊥ = B ×∇∇∇Φ−3/4

B 2 =U1/4⊥ , (2.75)

which corresponds to the perpendicular common flow of all species due to the NBI induced

rotation. At order δ of the momentum equation 2.5 for the ions, we have

UI1⊥ = B ×∇∇∇Φ0

B 2 + B ×∇∇∇PI0 (ψ)

qI NI0 (ψ)B 2 = B ×∇∇∇ψ
B 2 ωI0 (ψ), (2.76)

which includes the E ×B velocity due to the ambipolar electric field (see section 1.5) and the

lowest order diamagnetic ion flow. Here Ps = nsTs is the pressure of species s. At order δ3/2 we

have

UI3/2⊥ = B ×∇∇∇Φ1/2

B 2 + B ×∇∇∇PI1/2 (ψ,θ,φ)

qI nI (ψ)B 2 − mI

qI

B × [UI1/4 ·∇∇∇UI1/4 ]

B 2 , (2.77)

which comprises the ion flow components associated with the centrifugal effects. We need the

background ion flow at this order to allow for the calculation ofΦ1/2 due to the quasi-neutrality

corrections (see section 2.9). However, we neglect this flow as a source of transport drive due

to the subsonic character of the ion flow. This allows for the usage of the usual formalism

to calculate the necessary parallel ion flow from usual drift kinetic formalism (33), (26) (see

equations 2.86 and sections, 2.7 and 2.8). At the order δ−3/4λI /L, where λs is the mean free

path of species s, we find a constraint for the velocity UI1/4 from the flux averaged parallel

component of the momentum equation 2.5 for the background ions.

The constraint is given by the vanishing of the parallel viscosity due to the velocity UI1/4 as

〈B ·∇∇∇·π1/4〉 = 0 (2.78)

where ∇∇∇·π1/4 is the viscosity due to gradients in the common velocity UI1/4 . This constraint

can be used with the continuity equation 2.2 for the ions at lowest order which is given by

∇∇∇· (NI0 (ψ)UI1/4 ) = NI0 (ψ)∇∇∇·UI1/4 = 0. (2.79)
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Due to the incompressibility of UI1/4 the constraint 2.78 can be written (9)

〈B ·∇∇∇·π1/4〉 = 0 ⇔ 3

2
µD〈Wbb b̂ ·∇∇∇B〉

⇒Wbb = 0

⇔ b̂ ·∇∇∇U−1/4 · b̂ −∇∇∇·U−1/4 = 0

⇔ b̂ ·∇∇∇U−1/4 · b̂ = 0 (2.80)

in which Wbb is component b̂b̂ of the rate of strain tensor written in coordinates where the

vertical axis aligns with b̂. This constraint is equivalent to the one found for the parallel

viscosity in (13), (9) in which the flow is considered to be strong. The constraint 2.80 implies

the essential equation for UI1/4 :

UI1/4 ·∇∇∇B = 0, (2.81)

which states that the zeroth velocity exists only in the direction of invariant magnetic field

strength, and thus avoids magnetic pumping. Since the 1/1 internal kink or any other 3D

MHD saturated perturbation in tokamaks is in general not a quasi-symmetric field the only

valid approximation to equation 2.81 is that the strong zeroth order flow will be a toroidal flow,

given by

UI1/4 = E−3/4Rêφ =−Φ′
−3/4Rêφ =−ΩRêφ, (2.82)

where Ω is the toroidal rotation, R is the major radius and the prime denotes the radial

derivative of the flux coordinate ψ. This is a well known result for tokamaks as it is seen that

poloidal strong flows are usually damped at the timescale of ion-ion collisions, which is much

shorter than the cross-field transport timescales. This tokamak result appears to hold for

plasmas with symmetry breaking at realistic amplitudes. The parallel main ion flow at order δ

can also be obtained in the fluid approach from the ion continuity equation 2.2 (at order δ):

∇∇∇· (NI0(ψ)UI1 ) = NI0(ψ)∇∇∇·UI1 = 0. (2.83)

From 2.83, we obtain the parallel ion flow at order δ

UI1∥ =ωI (ψ)
(
u(ψ,θ,φ)+K I (ψ)

)
B , (2.84)

where ωI is defined from equation 2.76, and the function u(ψ,θ,φ) is obtained from the

magnetic differential equation given by
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B ·∇∇∇u =−B ×∇∇∇ψ ·∇∇∇
( 1

B 2

)
, (2.85)

with the constraint u(Bmax (ψ)) = 0 and K I (ψ) an integration constant that is obtainable from

solving the drift kinetic equation for the ions, and therefore depends on the collisional regime

and the collisional operator adopted in any calculations. As we are interested in following the

ions and impurities in the frame flowing with UI1/4 , and since the bulk ion flow is subsonic, we

may use the results obtained in (33) where the ion drift kinetic equation in the low collisional

1/ν regime for general 3D geometry was solved to find that the ion parallel flow at order δ can

be written as

UI1∥ =
Ti

qi
AI 1

(
u + fs

〈B 2〉
)
B + TI

qI
(AI 1 −ηAI 2)

fc ( fs +〈uB 2〉)
〈B 2〉 ft

B , (2.86)

where η≈ 1.17, and fs is given by

fs = 3

4

〈B 2〉
B 2

max

∫ 1

0

〈g4〉λdλ

〈
√

1−λB/Bmax〉
, (2.87)

where g4 is defined below. Also, the effective fraction of circulating particles fc (which often

appears in neoclassical transport, see (9)) is defined as

fc = 3

4

〈B 2〉
B 2

max

∫ 1

0

λdλ

〈
√

1−λB/Bmax〉
, (2.88)

i.e. 2.87 with 〈g4〉 → 1. The effective fraction of trapped particles is ft = 1 − fc , and the

thermodynamic forces which drive ion transport can be written as

AI 1 = d lnPI

dψ
+ qI

TI

dΦ0(ψ)

dψ
, (2.89)

and finally,

AI 2 = d lnTI

dψ
. (2.90)

The function g4 is

g4 = ξ
∫ l

l (Bmax )
b̂ ×∇∇∇ψ ·∇∇∇ξ−1dl ′, (2.91)
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where ξ = (1−λB/Bmax )1/2 is a pitch angle variable and λ = Bmaxε/µ where λ < 1, and the

integration is performed along a magnetic field line parametrised by the variable l . Here,

ε= mw2
∥ +µB +qIΦ0 +qIΦ1/2 and µ= mW w2

⊥/(2B) are respectively the energy and magnetic

moment of a bulk ion in the frame rotating with UI1/4 , since the ions are subsonic. If we define

g4 = ξg5, then the function g5 is obtained from solving the magnetic differential equation

B ·∇∇∇g5 = B ×∇∇∇ψ ·∇∇∇
(1

ξ

)
, (2.92)

with g5(Bmax ) = 0.

The energy flux equation 2.15 for the ions at order δ0 yields the lowest order perpendicular ion

heat flux

qI1⊥ =−5

2
PI

B ×∇∇∇TI

qI B 2 . (2.93)

From the energy equation 2.12 for the ions one obtains

∇∇∇·qI1 = 0, (2.94)

which leads to the lowest order ion parallel flux given by

qI1∥ =−5

2
PI

Ti

qi
AI 2

(
u + fs

〈B 2〉
)
B . (2.95)

Finally, using the entropy equation 2.20 for the ions we get the constraint

B ·∇∇∇TI = 0. (2.96)

which states that the ion temperature is a flux function for any collisionality regime. This

indicates that MHD equilibria with flow should always adopt an isothermal assumption,

though it is not always favoured (e.g. for investigating classes of MHD instabilities in rotating

plasmas). The background ion flow and heat flux are important for capturing the correct

collisional effects between the impurities and the background ions. These flows can be

calculated numerically for general 3D geometry (see section 3.1.5). They can then be used in

the collision operator implementation in VENUS-LEVIS as we will see in chapter section 3.2.2.

2.7 The drift kinetic equation

Since the parallel ion flow 2.84 and ion heat flux 2.95 are obtained ultimately from the drift

kinetic equation, we now briefly introduce the drift kinetic formalism. A fuller derivation
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is given in the appendix B. We have seen that the plasma can be described by following the

trajectories of every particle in the system through a distribution function fs(x , v , t). Such

a distribution obeys, in general, to the Boltzmann equation in 2.1 as mentioned already. A

solution to the distribution function provides knowledge of the movement of the guiding

centers of the helical trajectories of the particles in the plasma as well as the Larmor radius

gyration. However, it is impossible to solve for such a general solution in realistic magnetic

geometry. In order to solve for the distribution function it is often necessary to divide the

distribution function into a part that describes the movement of the guiding centers f̄s , and

a part that describes the Larmor gyration of the particles f̃s . To better understand what this

means, let us write the velocity of a particle following a helical trajectory around a magnetic

field line as follows

v = v∥b̂ +v⊥ = v∥b̂ + v⊥(cosϕê1 + sinϕê2), (2.97)

with (v⊥,ϕ, v∥) a set of cylindrical velocity-space coordinates with the z-direction along the

magnetic field direction b̂. Here v⊥ and v∥ are respectively the magnitudes of the perpen-

dicular and parallel components of the particle velocity with respect to the direction of the

magnetic field line and ϕ is the gyrophase associated with the Larmor gyration. The unit

vectors ê1 and ê2 are orthogonal to b̂, and orthogonal to themselves, which are dependent

on the position of the particle. Thus, the distribution function would in general be written

as fs(x , v⊥,ϕ, v∥, t ). If we are only interested in following the guiding centers of the particles,

then we can take an average along the gyro motion of the particles, which means taking an

average in the gyrophase coordinate. The gyroaverage for a quantity κ is thus defined as

κ̄(v⊥,ϕ, v∥) = 1

2π

∫ 2π

0
υ(v⊥,ϕ, v∥)dϕ. (2.98)

We call f̄s(x , v⊥, v∥, t) the gyroaveraged distribution function. The fluctuating part of the

distribution function is defined as f̃s(x , v⊥,ϕ, v∥, t) = fs − f̄s with the property ¯̃fs = 0. The

position of the particles can also be separated into the guiding center position x̄ and the

Larmor radius position vector ρL :

x = x̄ +ρL = x̄ + b̂ ×v⊥
ΩCs

, (2.99)

with ΩCs = qs B
ms c the cyclotron frequency for a particle of species s. We notice that since

v̄⊥ = 0, then ρ̄L = 0. This means that gyroaveraged distribution function depends only on

the position of the guiding centers such that f̄s(x̄ , v⊥, v∥, t ). Neoclassical transport (which is

studied by the drift kinetic equation) is caused mostly by the movement of the guiding centers,

so the distribution function is also expanded with respect to the usual neoclassical expansion

parameter δ (see equation 2.66). The distribution function expanded in δ is written as
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f = f0 + f1 + ... (2.100)

The temporal derivatives are considered to be second order in δ, and at zeroth order, the

electric field is electrostatic. The zeroth order distribution function can be seen to obey

v∥b̂ ·∇∇∇x f0 =C ( f0). (2.101)

It can be shown that the zeroth order distribution is a Maxellian due to collisions (9). Thus, f0

is given by

f0 = fM (x ,ε) = ns(x)
( ms

2πTs(x)

) 3
2

e−
msε

Ts (x) , (2.102)

in which ε= v2

2 + qs

ms
Φ(x) is the energy (divided by the mass) of a particle of species s and Φ is

the electrostatic potential. The drift kinetic function can then be written as

v∥b̂ ·∇∇∇x f̄1 +vd ·∇∇∇x f0 −
qsE∥v∥

Ts
f0 =C ( f̄1), (2.103)

which is an equation for the first order gyroaveraged distribution function. This equation will

be important for understanding the calculation of the geometrical factors of the background

ion flows in section 2.8. The drift velocity is given to order δ by

vd =− d

d t
ρL =−v2

∥
1

ΩC
κ× b̂ + v2

⊥
2ΩC B

b̂ ×∇∇∇B + c

B 2 E ×B . (2.104)

The drift velocity is thus an gyro averaged measure of the deviation of the guiding center of a

particle from its original trajectory along the magnetic field line due to the gyro movement

of the particle around the magnetic field. This drift does not account for effects such as

centrifugal or Coriolis forces as we are now interested in the treatment of the ions which are

subsonic. Such drifts arise for the guiding center treatment of supersonic species like heavy

impurities as we will see in section 2.12 with the Hamiltonian formalism.

2.8 Understanding flows associated with geometry

The background parallel ion flow and heat flux are exactly obtained from this drift kinetic

equation for subsonic main ions. A detailed derivation was done in (33). Here, we will discuss

the meaning of the different components of the main ion parallel flows at order δ (see equation

2.84). The drift kinetic equation that is solved for resolution of the parallel ion flows and heat

flux (33) is

40



2.8. Understanding flows associated with geometry

v∥b̂ ·∇∇∇x f1 +vd ·∇∇∇x f0 =C ( f1). (2.105)

This equation is solved by dividing the gyroaveraged distribution function into a part that

is even in v∥, which is notated f +
1 and a part that is odd in v∥ which is f −

1 . Since we want

to calculate the parallel flow of the ions we are interested in the odd part of the distribution

function. The odd part of the distribution function can be shown to be given by

f −
1 (ψ, l ,ε,µ,σ) =

∫
dl ′

v∥
vd ·∇∇∇x f0 +K (ψ,ε,µ,σ), (2.106)

with l the arc length along the magnetic field line and σ indicates the sign of v∥ such that

v∥ =σ|v∥|. The function K (ψ,ε,µ,σ) is a constant of integration which is independent of l and

is in general obtained from the constraint

〈 B

v∥
C−( f1)

〉
= 0. (2.107)

The parallel flow is then obtained by

U∥ =
∫

d 3v v∥ f −
1 (ψ, l ,ε,µ,σ) =

∫
d 3v

∫
dl ′vd ·∇∇∇x f0 +

∫
d 3v v∥K (ψ,ε,µ,σ) =UD +UK .

(2.108)

It is clear that the flow has two contributions. The UD contribution, which is simply due to the

geometry of the magnetic field and is related to the drift of the main ions from their original

orbits. This contribution is related to the function u obtainable in the fluid description from

the continuity equation (see equation 2.85). The second contribution UK is due to geometrical

and collisional effects and it is related to the geometrical factor fs , the parameter η which

depends on the collisionality regime and the effective fraction of circulating particles fc . Both

these contributions are important for the bootstrap current. The first component of the

flow UD is associated to the Pfirsch-Schlüter flow. This flow is the parallel extension of the

perpendicular diamagnetic effect, which has its contribution mostly from a diamagnetic effect

generated mainly by the banana orbits which are the ones that deviate the most from their

original trajectory along the magnetic field lines due to the magnetic drift velocity. The second

contribution UK is carried mostly by the circulating main ions which modify their flow velocity

due to the collisional equilibrium set between them and the trapped banana ions (indeed UK

depends on fc ). The collisional equilibrium is written mathematically by the constraint 2.107.

The flux average of U∥ is usually called ’bootstrap’ flow, due to its contribution to the bootstrap

current.
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2.9 Quasi-neutrality and ambipolarity

In order to have a full description of the background plasma we still need to determine the

electric fields at orders δ0 and δ1/2 in the expansion 2.70. The zeroth order electric field E0

can be determined from the ambipolarity constraint. The flux averaged toroidal momentum

equation 2.5 in the absence of time derivatives or inductive electric fields can be written for a

species s as

qs〈Γsψ〉 = 〈Bφeφ ·∇∇∇·πs1〉−〈Bφeφ ·Frs 〉−〈Bφeφ ·Sms 〉, (2.109)

and is an equation for the flux averaged cros-field flux. Here, Γsψ = Γs · ∇∇∇ψ = nsUs · ∇∇∇ψ.

Ambipolarity between ions and electrons implies

qI 〈ΓIψ〉+qe〈Γeψ〉 = 0. (2.110)

Thus, in the absence of strong sources of toroidal momentum the sum of equation 2.109 for

ions and electrons at order δ is equivalent to

〈Bφeφ ·∇∇∇·πI1〉−〈Bφeφ ·∇∇∇·πe1〉 = 0. (2.111)

The viscous tensor πs1 is now associated with the flows at order δ for species s. Thus, the

tensor is not written easily in terms of the rate of strain tensor. Its form has to be calculated

from the kinetic equation. However, we know that that the non-ambipolar flux of species

s in the regime 1/ν is driven by the toroidal viscosity 〈Bφeφ ·∇∇∇ ·πs1〉 (24), thus, the two are

proportional. This also implies that the toroidal viscosity has to scale with ν in the the same

way as the non-ambipolar fluxes, that is with 1/ν. The electron viscosity is thus, much smaller

than the ion viscosity since both terms are proportional to the square root of the mass of

the respective species (20). Equation 2.111, and the associated solution for the electric field

corresponds therefore to an ion root due to the fact that the ambipolar electric field is set by

the ion flux in the absence of strong sources of momentum. The ambipolar electric field is in

this case negative. The considerations just described imply that the constraint 2.111 can be

written as (see equation 2.86)

〈Bφeφ ·∇∇∇·πI1〉 = qI 〈Γ1/ν〉∝ 〈BUI1∥〉 = 0 (2.112)

and thus the zeroth order electric field is given by

〈BUI1∥〉 ≈ 0 ⇔ E0 =−∂Φ0

dψ
≈ 1

qI NI0

∂PI0

dψ
−1.17

1

qI

dTI

dψ
, (2.113)
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in order to maintain ambipolarity. If a strong source of ECRH is present a strong electron

flux will exist due to the interaction of such fast electrons and the 3D perturbed magnetic

field, which can create a strong non-ambipolar electron flux. This situation often happens in

stellarators, which can thus be the origin of a solution for ambipolarity with a positive electric

field, which is usually called electron root. It is possible that in ASDEX-U tokamaks with 1/1

internal kinked plasmas, the process electron root generation could occur due to ECRH (53).

The electric field at order δ1/2 can be determined by the quasi-neutrality constraint at order

δ1/2, which can be written as

ñi (ψ,θ,φ) ≈ ñe (ψ,θ,φ). (2.114)

Using quasi-neutrality with the parallel momentum equations for ions and electrons at order

δ1/2, we obtain the following equation involving the magnetic differential operator:

B ·∇∇∇Φ1/2(ψ,θ,φ) =− mI TI

qI Te +qe TI
B · [U1/4 ·∇∇∇U1/4]. (2.115)

Substituting 2.82 into 2.115, we obtain the well known result for tokamaks

eE1/2

Te
=−eΦ1/2

Te
=− mI Te

2(TI +ZI Te )
Ω2(R2 −〈R2〉), (2.116)

where we have used 〈Φ1/2〉 = 0 to set the constant of integration. The electric field at this

order is important as its effect on the heavy impurity density asymmetries is of order δ0 due to

the large mass of such impurities. This field will thus have an impact in obtaining the heavy

impurity flow at order δ1 (see next section 2.10), and will appear as a guiding center drift at

order in the guiding center equations used to follow heavy impurities (see section 2.12) in the

VENUS-LEVIS code (see section 3.2.1). We remark here that the presence of impurities could

in principle change the quasi-neutrality constraint and therefore E1/2. However, in the trace

limit, considered in this thesis, such effect should be small.

2.10 Heavy impurity flow

Heavy impurities are in the regime of high collisionality both in the core and in the edge of

tokamaks. We may therefore use only a fluid description for heavy species. Heavy impurities

flow with the common flow U1/4. However, since v2
thW

∼ v2
thI

/ZW , the impurities will flow

supersonically with this common velocity, i.e. M 2
W ∼ 1 or larger. Under this condition, the first

order perpendicular flow of the impurities is obtained from taking the B ×∇∇∇ψ component of

the momentum equation 2.5 for the impurities at order δ1/4. It is given by
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UW1/4⊥ = B ×∇∇∇Φ−3/4

B 2 =U1/4⊥ , (2.117)

which corresponds to the perpendicular common flow of all species due to the NBI induced

rotation (as is the case for the lowest order flow of the bulk ions). At order, δ1 we can write

UW1⊥ = B ×∇∇∇Φ0

B 2 , (2.118)

which is the E ×B velocity due to the ambipolar electric field (for e.g. NTV, see equation 2.113).

At order δ3/2, we have

UW3/2⊥ = B ×∇∇∇Φ1/2

B 2 + B ×∇∇∇PW0 (ψ,θ,φ)

qW nW B 2 − mW

qW

B × [UW1/4 ·∇∇∇UW1/4 ]

B 2 . (2.119)

This flow is important to be retained in the case of impurities because they are often supersonic

and we want to retain the effect of the radial centrifugal force. We need to retain the impurity

density gradient term for providing steady state analytical solutions as well. We may obtain

the same constraint as the one obtained in 2.80 at order δ1/4λW /L. At order δ5/4 (the lowest

order), we have the continuity equation 2.2 for the impurities

∇∇∇· (nW UW1/4 ) = 0, (2.120)

which is different from the lowest order continuity equation for the ions, since the impurity

flow has not at this point been shown to be incompressible. However, using the lowest order

energy flux equation 2.15 for impurities, we have

qW

mW
(qW1/4 ×B ) = 0, (2.121)

and the energy equation 2.12 for the impurities at lowest order can be written as

∇∇∇·qW1/4 =−∇∇∇·
(3

2
PW UW1/4

)
−PW ∇∇∇·UW1/4 , (2.122)

and from the lowest order entropy equation 2.20, we obtain

B ·∇∇∇TW = 0. (2.123)

This implies that the temperature of impurities is at lowest order a flux function, which finally

yields that the flow UW1/4 is incompressible:
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2.10. Heavy impurity flow

∇∇∇·UW1/4 = 0. (2.124)

This simply confirms that UW1/4 is the same as that for bulk ions, that it obeys to the same

constraints, and it is indeed a common flow, as clear from 2.75. At higher order the tungsten

temperature is not necessarily a flux function and the impurity flow at order δ obeys the

continuity equation at the next order

∇∇∇· (nW UW1 ) = 0. (2.125)

This equation may then be solved to find the first order parallel impurity flow if we know

the form of the impurity density. The part of the impurity density varying in the direction

tangential to the magnetic field may be obtained from the parallel component of the impurity

momentum equation at order δ3/2. If the ion density and temperature gradients are not very

large, collisional effects between impurities and ions are not enough to generate poloidal

impurity density asymmetries. In such cases we have ∆= Z 2
W δν̂I I ¿ 1 (47) i.e. we may neglect

impurity density asymmetries due to collisions, by neglecting the effect of the friction force

on the parallel component of the impurity momentum equation. Solving this equation, we

obtain the impurity density

nW (ψ,θ) = NW (ψ)exp[M 2
W /2(ψ,θ)−qWΦ1/2/TW (ψ)] = NW (ψ)exp[M 2(ψ,θ)]. (2.126)

However, we point out that the ordering considered, i.e. 1/ZW ∼ δ1/2 used in this thesis

allows for the treatment of poloidal impurity density asymmetries which are self-generated

by impurity-ion collisions (since we allow for ∆= Z 2
W δν̂I I ∼ 1 as in (47)). Such effect may be

important in the treatment of modes like edge harmonic oscillations.

Using this result in 2.125, we obtain the parallel impurity flow given by

UW1∥ = w
[dΦ0

dψ
+ TI

qW NW

d NW

dψ
+ mWΩR2

qW

dΩ

dψ

]
B + KW B

nW
. (2.127)

where the radial friction and flux were neglected. We also neglected the terms proportional

to the impurity temperature gradient. The constant of integration KW in equation 2.127 is

obtained from conservation of collisional momentum between ions and impurities, and the

function w obeys the magnetic differential equation written as

B ·∇∇∇(nW w) =−B ×∇∇∇ψ ·∇∇∇
(nW

B 2

)
. (2.128)
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In the limit of M 2
W ¿ 1, there are no impurity asymmetries and the function w is identical to

the function u for the ion flow. In axisymmetry, the functions u, w and fs may be obtained

analytically (see later, section 2.11). However, in general 3D geometry, a numerical solution is

necessary to describe these functions (see section 3.1.5).

2.11 Heavy impurity neoclassical flux

The impurity neoclassical flux is related to the parallel friction between impurities and ions

(52) in the following way:

qW 〈ΓW ·∇∇∇ψ〉Neo = 〈B wRW∥〉. (2.129)

The friction force may be obtained for a Coulomb operator in the form of the sum of a Lorentz

operator and a momentum restitution term and is composed of both a drag force and a

thermal force (49),(9):

RW∥ =−mI NIνIW

(
UW∥ −UI∥ −

3

5

qI∥

PI

)
. (2.130)

The final form of the impurity-ion friction is obtained by substituting the values of the flows

and the firs order heat flux,

RW∥

νIW NI mI
=−

[
w− 〈wB 2〉

nW 〈 B 2

nW
〉
][∂Φ0

∂ψ
+ TI

qW NW

∂NW

∂ψ

]
B−

[ wR2

〈R2〉 −
〈wR2B 2〉

nW 〈R2〉〈 B 2

nW
〉
]mWΩ〈R2〉

qW

∂Ω

∂ψ
B

+
[

u − 〈uB 2〉
〈B 2〉 +

( 1

〈B 2〉 −
1

nW 〈 B 2

nW
〉
)
( fs +〈uB 2〉)

( fc

ft
+1

)][∂Φ0

∂ψ
+ TI

qI NI0

∂NI0

∂ψ

]
B

−
[3

2
u − 3

2

〈uB 2〉
〈B 2〉 +

( 1

〈B 2〉 −
1

nW 〈 B 2

nW
〉
)
( fs +〈uB 2〉)

(
1.17

fc

ft
+ 3

2

)] 1

qI

∂TI

∂ψ
B , (2.131)

where momentum conservation was used by applying the constraint

〈
RW∥

B

nW

〉
= 0. (2.132)

Thus, the impurity flux is written as
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2.11. Heavy impurity neoclassical flux

〈ΓW ·∇∇∇ψ〉Neo

〈nW 〉〈B 2〉 = DNeo
Φ

qI

TI

∂Φ0

∂ψ
−DNeo

NW

qI

qW

∂ ln NW

∂ψ
−DNeo

Ω

qI mWΩR2

qW TI

∂Ω

∂ψ
−DNeo

NI

∂ ln NI0

∂ψ
−DNeo

TI

∂ lnTI

∂ψ
,

(2.133)

where the diffusion coefficients are defined as (52)

DNeo
Φ (ψ) = Dcl ass

[
〈nW w(u −w)B 2〉+ 〈wB 2〉2

〈 B 2

nW
〉

− 〈uB 2〉〈nW wB 2〉
〈B 2〉

+
( 〈nW wB 2〉

〈B 2〉 −〈wB 2〉
〈 B 2

nW

〉−1)
( fs +〈uB 2〉)

( fc

ft
+1

)]
, (2.134)

DNeo
NW

(ψ) = Dcl ass

[
〈nW w2B 2〉− 〈wB 2〉2

〈 B 2

nW
〉

]
, (2.135)

DNeo
Ω (ψ) = Dcl ass

[ 〈nW w2R2B 2〉
〈R2〉 − 〈wB 2〉〈wR2B 2〉

〈R2〉〈 B 2

nW
〉

]
, (2.136)

DNeo
NI

(ψ) =−Dcl ass

[
〈nW wuB 2〉− 〈uB 2〉〈nW wB 2〉

〈B 2〉

+
( 〈nW wB 2〉

〈B 2〉 −〈wB 2〉
〈 B 2

nW

〉−1)
( fs +〈uB 2〉)

( fc

ft
+1

)]
, (2.137)

and

DNeo
TI

(ψ) = 1

2
Dcl ass

[
〈nW wuB 2〉− 〈uB 2〉〈nW wB 2〉

〈B 2〉

+
( 〈nW wB 2〉

〈B 2〉 −〈wB 2〉
〈 B 2

nW

〉−1)
( fs +〈uB 2〉)

( fc

ft
(2η−3)+ 1

ft

)]
. (2.138)

Here, the classical diffusion coefficient is written as

Dcl ass =
νIW NI0 mI TI

〈nW 〉〈B 2〉qI qW nW
(2.139)

and we used the fact that νIW
nW

is a flux function. In the saturated state, the flux averaged flux of

impurities 〈ΓW ·∇∇∇ψ〉Neo vanishes by definition. We may obtain an approximated expression

for the time invariant impurity density radial profile from equation 2.133. The impurity flux

2.133 is similar to the expressions of (51) and (52). The usual transport drives due to the main
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ion density and temperature gradients are observed, as well as the drive due to the ambipolar

electric field. However, an extra drive due to the strong radial centrifugal force felt by the heavy

impurities is present in this case, contrary to what happens in stellarators [(51), (52)] in which

strong rotation is not possible.

It is worth exploring the limits of M 2
W ¿ 1 in a 3D plasma, and separately M 2

W ∼ 1 in the

axisymmetric limit, since these simple cases can be understood more easily and analytic

solutions are already known. We will then be able to see how the transport coefficients 2.134-

2.138 are modified by strong flows and 3D. In the limit of no sonic flows, we have that there

are no impurity asymmetries which means nW = Nw (ψ) and w = u. We therefore find that the

transport coefficients under the limit of sub-sonic flows and axisymmetry are

DNeo
Φ (ψ) = 0, (2.140)

DNeo
NW

(ψ) = DNeo
Ω (ψ) = Dcl ass

[
〈u2B 2〉− 〈uB 2〉2

〈B 2〉
]

, (2.141)

DNeo
Ω (ψ) = Dcl ass

[ 〈u2R2B 2〉
〈R2〉 − 〈uB 2〉〈uR2B 2〉

〈R2〉〈B 2〉
]

, (2.142)

DNeo
NI

(ψ) =−DNeo
NW

(ψ) (2.143)

and

DNeo
TI

(ψ) = 1

2
DNeo

NW
(ψ). (2.144)

In this limit, we see that there is no transport due to the ambipolar electric field since

DNeo
Φ (ψ) = 0. Even though DNeo

Ω does not vanish, there is no important transport driven

by rotation since all of the transport coefficients are of the same magnitude in this limit, and

thus the driving term due to rotation in 2.133 is now small when compared with the other

driving terms since M 2
W ¿ 1. We may also note that the factor fs +〈uB 2〉 associated with

the mean part of the parallel flow of the bulk ions vanishes in the expressions 2.140-2.144.

This means that the mean parallel flow does not influence impurity transport in this limit.

We remark here that this limit is similar to stellarator applications for cases where there is

no source of impurity density asymmetries from e.g. ICRH, ECRH or strong trapping of the

bulk ions. However, sonic flows, which are prohibited in stellarators, provide also a driving

term of transport in the form of the radial centrifugal force (third term in 2.133), which can be

important in tokamaks in the presence of 3D long lived modes.
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In the limit of axisymmetry, but large flows, we find the following analytical solutions for the

functions u, w and fs :

uB 2 =−Bφ(ψ)

ι(ψ)

(
1− B 2

Bmax (ψ)2

)
, (2.145)

wB 2 =−Bφ(ψ)

ι(ψ)

(
1− B 2nwmax (ψ)

nw Bmax (ψ)2

)
, (2.146)

fs =
Bφ(ψ)

ι(ψ)

(
fc − 〈B 2〉

Bmax (ψ)2

)
. (2.147)

Using 2.145 and 2.146 in 2.134-2.138 we obtain the diffusion coefficients for strong flows in

axisymmetry

DNeo
Φ (ψ) = 0 (2.148)

DNeo
NW

(ψ) = Dcl ass

B 2
φ

ι2

[〈nW

B 2

〉
−

〈 B 2

nW

〉−1]
, (2.149)

DNeo
Ω (ψ) = Dcl ass

B 2
φ

ι2
〈R2〉−1

[〈R2nW

B 2

〉
−

〈 B 2

nW

〉−1〈R2〉

+ nWmax

B 2
max

(〈R2nW

B 2

〉〈 B 2

nW

〉−1 −〈R2〉
)]

, (2.150)

DNeo
NI

(ψ) =−Dcl ass

B 2
φ

ι2

[〈nW

B 2

〉
−

〈 B 2

nW

〉−1]
, (2.151)

and

DNeo
TI

(ψ) = 1

2
Dcl ass

B 2
φ

ι2

[〈nW

B 2

〉
−

〈 B 2

nW

〉−1

+
( 〈nW 〉
〈B 2〉 −

〈 B 2

nW

〉−1)
fc (2η−3)

]
. (2.152)

Again DNeo
Φ (ψ) = 0 (equation 2.148). Hence, the analysis of the 2D limit with strong flows and

3D with no flows, leads to the conclusion that the radial ambipolar electric field (e.g due to

NTV) can only drive impurity transport when there is both M 2
W ∼ 1 and 3D effects. We may
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also see from 2.148-2.152 that the classic diffusion coefficient may be enhanced by a factor
B 2
φ

〈B 2〉ι2 in the limit of M 2
W ¿ 1. If M 2

W ∼ 1, the enhancement of the diffusion coefficient may be

of order ˜nW = exp[M 2(ψ,θ)], which can be quite large. We may also observe that the diffusion

coefficients 2.149, 2.151 and 2.152 agree with the results obtained in (47) and (48), but an extra

diffusion coefficient 2.11 associated with the drive of the strong radial centrifugal force felt by

the impurities appears here, which was not considered in (47) and (48).

2.12 The guiding-center equations of motion in the presence of strong

flows

In order to model numerically impurity physics associated with neoclassical transport it is

convenient to use the guiding-center description . From the orderings presented in this

chapter, we know that we have to consider the effects of supersonic flows. The hamiltonian

formalism (69) allows for such strong flows. The guiding-center Hamiltonian of a heavy

impurity particle in the presence of a strong flow U1/4 and a velocity UW1 (which we choose to

keep, due its importance for collisions with main ions) is given by

H = mW (w∥+U1/4 +UW1 )2

2
+qW (Φ−3/4 +Φ0 +Φ1/2)+µB. (2.153)

We remind here that this ordering agrees with (69) since the Larmor radius for the impurities

is smaller by δ1/4 than the Larmor radius of the ions. The Hamiltonian equations are from the

formalism in (69) are written as

˙̄x = B∗

mW B ·B∗
∂H

∂w∥
+ B ×∇∇∇H

qW B ·B∗ (2.154)

and

ẇ∥ =
BB∗ ·∇∇∇H

mW B ·B∗ , (2.155)

with

B∗ = B + mW

qW
∇∇∇× [U1/4 +UW1 +w∥]. (2.156)

Inserting the Hamiltonian 2.156 in equation 2.154 and 2.155 yields, after some algebra, an

equation for the guiding-center position x̄ in the lab frame and an equation for the parallel

velocity in the rotating frame w∥

˙̄x =U1/4 +UW1 +w∥+
Fd ×B

qW B ·B∗ , (2.157)

ẇ∥ =− Fd ·B∗B

mW B ·B∗ , (2.158)
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in which Fd can be written as

Fd =−µ∇B −mW w2
∥ b̂ ·∇b̂−mZ

∂w∥
∂t

−mW w∥ ·∇U∗−mW U∗ ·∇w∥−mW U∗ ·∇U∗−qW ∇Φ1/2

(2.159)

where U∗ =U1/4 +UW1 . The drifts in equation 2.159 are, by order of appearance, due to the

magnetic mirror force, the curvature force, the Coriolis force, the parallel acceleration force,

the centrifugal force, and the electric force due to E1/2. We can however, neglect the Coriolis

and centrifugal force due to the impurity flow UW1 because it is much smaller than U1/4.

Therefore, the force exerted in the guiding centers becomes

Fd =−µ∇B−mW w∥·∇w∥−mZ
∂w∥
∂t

−mW w∥·∇U1/4−mW U1/4·∇w∥−mW U1/4·∇U1/4−qW ∇Φ1/2.

(2.160)

Here, we see that indirect dependence on the E−3/4 through the centrifugal and Coriolis effects

due to U1/4. The qW E1/2 appears as the electric force felt by the impurities in the rotating frame.

The ambipolar electric field E0 is not obvious however. This is because its effect comes mainly

in the collisions with the background ions. The Hamiltonian formulation does not provide

such collisional forces. The numerical implementation of the guiding-center equations 2.157

and 2.158 are explained in the next chapter. They are solved using the VMEC and VENUS-

LEVIS code packages. The VMEC code provides the suitable magnetic configuration given

by B in these equations as well as a way to calculate the background ion UI1 and impurity

UW1 flows. Then, VENUS-LEVIS follows the tungsten particles by solving the equations just

described with a suitable collision operator that has a proper friction force and thermal force.

Such an operator can be obtained from a perturbed Maxwellian for the main ions which can

be written as

f I = f I0 (ψ,θ, v)
[

1−
(Uback

v2
th I

− qI

PI v2
th I

(
1− w2

5v2
th I

))
·v

]
, (2.161)

in which Uback =UI1 −Uw1 is the main ion velocity in the frame rotating with U∗ =U1/4+UW1 .

Thus, the background flows UI1 , Uw1 (which incorporate the effect of the ambipolar electric

field E0) and the ion heat flux qI1 obtained in this chapter are of great importance to properly

described the impurity physics.

2.13 Conclusion

By realizing that the background ions and the heavy impurities obey different orderings this

chapter develops a systematic set of equations for the study of heavy impurity transport in

the presence of 3D MHD perturbations and strong toroidal rotation. The model extends well

known stellarator theory for heavy impurity transport, by considering the effect of strong

rotation (which is not present in stellarator physics). This effect of rotation is important in

tokamaks because, strong toroidal rotation (for the heavy impurities) is observed empirically,

even when a long living mode, like for example, the 1/1 internal kink mode, is present, as

we will see in chapters 3 and 4 . The background ion flow 2.86 and heat flux 2.95, as well as
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the impurity flow 2.127 are developed in detail in this chapter. These are important for the

numerical modelling of such problems, as they are crucial for the new implementation of the

collision operator in VENUS-LEVIS (see section 3.2.2) which complements the guiding center

description presented in section 2.12. We also obtain an analytical expression for the heavy

impurity flux which captures both the 3D and strong rotation effects. This expression can be

used to gain insight on the behaviour of heavy impurity transport in tokamak plasmas with

3D MHD perturbations and strong toroidal rotation.
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3 Numerical tools for the study of heavy
impurity transport in the presence of
3D MHD ideal perturbations
In this chapter, we present the numerical implementation of the theoretical framework de-

scribed in the previous chapter using the VMEC and VENUS-LEVIS code. The main workflow

of the overall code package can be seen in figure 3.1. We start the chapter by explaining how

the VMEC code solves the MHD force balance equation 2.36 using a variational approach

to minimise the MHD energy. We then explain how we use VMEC to obtain the magnetic

configurations of interest, particularly tokamak plasmas with a 1/1 internal kink mode. It

follows the explanation of the new auxiliary codes developed in this thesis to obtain the

geometrical factors associated with the background ion flows. First, we transform the mag-

netic geometry obtained from VMEC to straight field line coordinates (Boozer or Hamada).

Then, the magnetic configuration in one of these set of coordinates can be used to solve the

necessary magnetic differential equations for a solution of the geometrical factors. The 3D

magnetic configuration and associated background ion flow and heat flux can be used as an

input for the VENUS-LEVIS code. VENUS-LEVIS can then follow the minority species, such as

heavy impurities, in the background just described. The VENUS-LEVIS implementation of

the guiding center formalism shown in section 2.12 is described. Finally, we explain the new

collision operator implemented in VENUS-LEVIS to capture both friction and thermal forces

acting on heavy impurities.
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Figure 3.1 – Schematic of the overall code package used for obtaining numerical results in
this work. The auxiliary codes to convert to Boozer or Hamada coordinates and to calculate
the 3D ion flows and heat flux were developed in this thesis. The guiding center equations in
VENUS-LEVIS were adapted and a new collision operator was implemented to properly model
heavy impurity transport in the presence of 3D MHD ideal perturbations and strong flows.

3.1 The VMEC code

To obtain the magnetic equilibrium configurations obeying the MHD force balance equation

2.36, we make use of VMEC (57), (58). It is worth noting here that according to the orderings

described in section 2.5, the background ions are subsonic and thus we treat the MHD force

balance equation in the absence of strong flows. VMEC is an invaluable tool for these type

of problems as it is an ideal MHD equilibrium code that can find solutions of the MHD force

balance equation by minimising the MHD energy through a variational method. The possi-

bility of giving as input the current profiles of the prescribed external coils allows it to solve

for the MHD force balance without a fixed plasma boundary, which is of great importance to

study both stellarator and 3D tokamak plasmas (with 3D MHD ideal saturated perturbations).

A last remark is made here about the existence of nested closed flux surfaces in 3D magnetic

equilibria. It is not possible to show their existence in a rigorous way for general 3D magnetic

configurations. However, it was shown in (70) that 3D force balance solutions with nested

flux surfaces are possible under certain constraints. We assume that this is the case for the

experimental cases we want to treat.

3.1.1 VMEC coordinates

VMEC provides a description of a magnetic equilibrium configuration solution as an output.

This output is thus comprised of the major radius R measuring the distance from the center

of the tokamak, the vertical cylindrical coordinate Z measuring the distance relative to the

plasma midplane (θ = 0), and the magnetic field magnitude B . These quantities are described

in a set of flux coordinates (sV ,θV , φV ) in which the poloidal angle is chosen in such a way as

to allow for a good convergence of the solution (57), as we will see in next section. This set of
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coordinates is called VMEC coordinates. The flux label coordinate sv is given by

sV = ΨT

ΨTed g e

, (3.1)

which is thus the toroidal flux normalized to its value ΨTed g e at the last closed flux surface

(boundary of the plasma). The toroidal VMEC angle is chosen to be the toroidal cylindrical

geometrical angle in the counter-clockwise direction (left-handed system), and so we have

φV =−φGeo , (3.2)

as per the definitions in section 2.4 and appendix A. Thus, the contravariant magnetic field, the

contravariant density current, and the covariant magnetic fields are given in VMEC coordinates

as

B =
(dΨT

d sV
+ ∂ṽV

∂θV

)
∇∇∇sV ×∇∇∇θV +

(
− dΨP

d sV
+ ∂ṽV

∂φV

)
∇∇∇sV ×∇∇∇φV , (3.3)

J =
( d IT

d sV
− ∂w̃V

∂θV

)
∇∇∇sV ×∇∇∇θV +

(dΨP

d sV
− ∂w̃V

∂φV

)
∇∇∇sV ×∇∇∇φV , (3.4)

B = ∂ũV

∂sV
∇∇∇sV +

(
IT + ∂ũV

∂θV

)
∇∇∇θV +

(
IP + ∂ũV

∂φV

)
∇∇∇φV , (3.5)

in which ṽV , w̃V , ṽV are the periodic potential functions defined in appendix A for VMEC

coordinates. In addition to R, Z and B , the full output of VMEC provides the components of

3.3, 3.5 and 3.4

BθV =
dΨT
d sV

+ ∂ṽV
∂θVp

g V

, (3.6)

BφV =
−dΨP

d sV
+ ∂ṽV
∂φVp

g V

, (3.7)

JθV =
d IT
d sV

− ∂w̃V
∂θVp

g V

, (3.8)

JφV =
d IP
d sV

− ∂w̃V
∂φHp

g V

, (3.9)

Bs = ∂ũV

∂sV
, (3.10)

BθV = IP + ∂ũV

∂θV
, (3.11)
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BφV = IT + ∂ũV

∂φV
, (3.12)

as well as the jacobian
p

g V (sV ,θV ,φV ) = (∇∇∇sV ·∇∇∇θV ×∇∇∇φV )−1 of VMEC coordinates. Since

these scalars are periodic functions of (θV ,φV ) they can be expanded in a Fourier series. This

is done in VMEC for a periodic function X in such a way that

X (sV ,θV ,φV ) = ∑
m,n

[X c
mn(sV )cos(mθV −nφV )+X s

mn(s)sin(mθV −nφV )], (3.13)

in which m and n are respectively the poloidal and toroidal mode numbers associated with

VMEC coordinates. The superscripts c and s indicate respectively the cosine and sine Fourier

components of X . The choice of θV is thus more specifically associated with the convergence

of such a Fourier series expansion of the VMEC solution (57). If up-down symmetry (which

is a special case of stellarator symmetry) is assumed, then R, B ,
p

g V , BθV , BφV , BθV , BφV are

written simply as a cosine series, while Z and Bs can be written as a sine series only. All these

quantities and relations will be useful for obtaining the geometrical factors for the background

ions as well as for following the tungsten particles with VENUS-LEVIS.

VMEC solves the MHD force equation via a user defined flux averaged equlibrium pressure

profile P (sV ) and a user defined measure of the poloidal magnetic field. This measure can be

provided by giving the total toroidal current profile It (sV ) or the rotational transform ι(sV ),

which is equivalent to the safety factor profile q(sV ) = 1/ι(sV ). Note that we neglect centrifugal

effects in the magnetic equilibria since the ions are strongly subsonic. Hence, the rotation

profile is not an input to the VMEC code. After processing the equilibrium, we consider the

effects of such equilibrium and the rotation on impurities, as described in chapter 2. The

pressure and, current or safety factor, profiles can be input to VMEC in several ways. The

methods of choice are either a 20 degree polynomial power series (with a maximum of 20

powers) or a cubic spline approximation. We use the polynomial approximation for the

pressure and the cubic spline approximation for the rotational transform. The magnetic field

due to the external coils can be provided as an input for free-boundary simulations. The

vacuum magnetic field generated by these coils is obtained with the auxiliary code MAKEGRID.

MAKEGRID uses the Biot-Savart law

B (x) = µ0

4π

∫
V

J (x ′)
x −x ′

|x −x ′|dV ′ (3.14)

to calculate an externally applied magnetic field from prescribed currents flowing through

each coil.
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3.1.2 VMEC’s variational formulation of ideal MHD

In order to find solutions of the MHD force balance equation, VMEC uses a variational for-

mulation instead of directly solving the MHD force balance equation 2.36. This means that a

variation of the MHD plasma energy is done, until it is minimised. Following (57), the MHD

plasma energy for a static equilibrium is composed of magnetic energy and fluid energy, which

can be written in VMEC coordinates as

W =Wm+W f =
∫ ( B 2

µ02
+P (sV )

Γ−1

)p
g V d sV dθV φV =

∫
B 2

µ02

p
g V d sV dθV φV +

∫ 1

0

M(sV )

Γ−1
V ′1−Γd sV

(3.15)

where, in the second equality, we have used the fact that the equilibrium pressure is a given

flux function. We also used the adiabatic closure given by equation 2.30 in the absence of

strong flows. M(sV ) is the mass function. We can then take the variation of the energy 3.15

relative to an artificial time parameter t . It is worth noting here that the VMEC coordinates are

fixed, because we want these coordinates to be our independent variables. During the process

of energy minimisation, the energy will be changed by changing the plasma shape which is

given by the variation of the cylindrical coordinates (R,φg eo , Z ). Nevertheless, φV = −φg eo

and thus the ’time’ variation of the cylindrical angle φg eo is also taken to be zero. An additional

quantity is assumed to vary in time. This quantity is the function ṽV appearing in contravariant

magnetic field representation 3.3. Therefore, every equilibrium solution provided by VMEC

will have a specific ṽV , and thus a specific poloidal angle θV associated with it. This angle

is the one that most efficiently minimises the solution, and converges the equilibrium. The

variation of a general quantity κ in the variation of energy in VMEC is thus taken as

δκ = dκ
d t

= ∂κ
∂R

∂R

∂t
+ ∂κ
∂Z

∂Z

∂t
+ ∂κ
∂ṽV

∂ṽV

∂t
. (3.16)

Using equation 3.16, the variation of the energy is given by (57)

dW

d t
=−

∫ (
FR

∂R

∂t
+FZ

∂Z

∂t
+FṽV

∂ṽV

∂t

)
d sV dθV φV (3.17)

−
∫

sV =1
|pg |V

( B 2

µ02
+ P (s)

Γ−1

)(∂sV

∂R

∂R

∂t
+ ∂sV

∂Z

∂Z

∂t

)
dθV φV (3.18)

in which the second term gives the energy at the boundary (last closed flux surface). In fixed

boundary simulations this term vanishes, as the boundary does not vary, but in free boundary

cases this term is nonzero. The forces are given by
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FR =− ∂

∂sV

[
|pg V | ∂s

∂R

( B 2

2µ0
+P

)]
− ∂

∂θV

[
|pg V |∂θV

∂R

( B 2

2µ0
+P

)]
− ∂

∂φV

[
|pg V |∂φV

∂R

( B 2

2µ0
+P

)]
+ |pg V |

µ0
∇∇∇· [(B ·∇∇∇R)B ]

+ |pg V |
µ0

( B 2

2µ0
+P − R2(BφV )2

µ0

)
, (3.19)

FZ =− ∂

∂sV

[
|pg V | ∂s

∂Z

( B 2

2µ0
+P

)]
− ∂

∂θV

[
|pg V |∂θV

∂Z

( B 2

2µ0
+P

)]
− ∂

∂φV

[
|pg V |∂φV

∂Z

( B 2

2µ0
+P

)]
+ |pg V |

µ0
∇∇∇· [(B ·∇∇∇Z )B ], (3.20)

FṽV = dΨT

d sV

|pg V |
µ0

p
g V

(BφV

∂θV
− BθV

∂φV

)
. (3.21)

The minimisation of energy in the fixed boundary case is equivalent to minimising the varia-

tions of the plasma shape given by

∂R

∂t
= FR , (3.22)

∂Z

∂t
= FZ , (3.23)

∂ṽV

∂t
= FṽV . (3.24)

The minimised state results when these forces are null. The precision to which these con-

straints have to be satisfied can be given as an input in VMEC.

3.1.3 VMEC equilibrium for modelling a JET pulse with 1/1 internal kink

In this thesis, we use VMEC to model tokamak plasmas with long living non-resonant 3D MHD

saturated perturbations and obtain a suitable magnetic configuration. Particularly, we are

interested in modelling long living 1/1 internal kink modes that can be present during hybrid

plasma scenario operation. These modes of interest are used tokamaks, like JET and ASDEX,

and will be used in ITER (see section 1.7).

The 1/1 internal kink mode is a rigid shift of the flux surfaces near the magnetic axis of the

plasma. The displacement makes the plasma have one poloidal excursion while going one

time along the toroidal direction, being thus characterised by a poloidal mode number m = 1

and toroidal mode number n = 1 in the magnetic field spectrum. It usually happens when the

safety factor q(sV ) near the plasma center relaxes from higher values than unity (71). If the
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safety profile reaches q = 1 or lower, it usually leads to a nonlinear evolution of the mode with

the generation of a magnetic island. It is often the case in hybrid scenario operation that a

long living 1/1 mode is present with flat or reversed (non-monotonic) safety factor profiles.

These profiles usually have their minimum value qmi n > 1 indicating that they are saturated

and no magnetic island is present. The mode can thus live during operation without further

deterioration via reconnection. We are interested in such scenarios. One of these scenarios

can be seen in JET pulse #92181 (see figure 3.2).

In figure 3.2a, we see the timetrace of the line averaged electron density, central electron tem-

perature and central SXR (soft X-ray) tomography signal for JET pulse #92181. This experiment

is a hybrid pulse with H-mode configuration, with axial magnetic field B ≈ 2.11T , plasma

current Ip ≈ 1.82M A, Ohmic power POH M ≈ 3.5MW , NBI power PN B I ≈ 22MW , and ICRH

power PIC RH ≈ 1.5MW . In figure 3.2b, the time evolution of the toroidal mode number of

the magnetic field perturbation is shown. In the time interval 45s −46.66s relevant for the

transport times considered in this thesis, the toroidal mode number evolution (see fig. 3.2b)

shows three distinct phases. In an initial phase, the plasma is weakly 3D and thus essentially

axisymmetric (before t = 46.51s). This phase is followed by the appearance of growing fish-

bones (between t = 46.51s and t = 46.61s), and then culminates in a third phase in which

a strong continuous 1/1 internal kink mode is established in the plasma (after t = 46.61s).

The SXR tomography is an experimental diagnostic which uses the direct measure of the

radiation emitted by the heavy impurity ions in the plasma. As stated in figure 1.6 when

the tungsten ions reach the core region of the plasma they can collide with the background

ions. As a consequence the thermal energy is transformed into radiation. This is because the

thermal energy of the plasma excites some of the electrons still bound to the tungsten ions

(the ones with the most energetic orbits), which in the de-excitation phase will emit in the soft

X-ray spectrum. The line of sight intensity of such radiation is directly measured by the SXR

diagnostic and then an Abel inversion is made to construct a 2D map of the SXR emissivity on

the poloidal cross section of the plasma. Such emissivity is thus a measure of the position of

the tungsten ions in the plasma. It is seen from figure 3.2a that the SXR radiation (measured at

the center of the plasma) becomes large at around 46.6s. This indicates the appearance of a

strong long living 1/1 mode. Relevant comparisons for the work in this thesis are therefore

to be made between the first and the third phases just described. Indeed, at these times, we

see different SXR radiation patterns possibly linked to (causing or affected by) the enhanced

kink amplitude. For example, figures 3.3a and 3.3b show, respectively, the SXR tomography for

JET pulse #92181 at an early time when the pulse is mostly axisymmetric, and at a time within

the phase in which a strong 1/1 mode is present in the plasma. We see, in figure 3.3a that

impurities accumulate off-axis, while in figure 3.3b impurities accumulate on-axis. Although

the temperature and density change slightly over the three phases (see fgure 3.2), we neglect

these effects in favour of isolating the 3D effects1. The rotation profile throughout the relevant

time interval is found to be almost unchanged. Indeed, the magnetic equilibrium can ’slip’

1The neglect of the effects in thermal and density profiles on the impurity transport will be justified later, where
we will see that such effect cannot cause transport on the timescales observed.
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to a new 3D state quite quickly, but the temperature, density and rotation profiles change on

slower timescales (cross-field transport timescales).

In order to model such a mode with VMEC, we need to provide a suitable pressure profile, the

safety factor (or equivalently a rotational transform), and a guess of the geometry of the last

closed flux surface. While the pressure profile and the last closed flux surface geometry are

easily obtained from experimental reconstruction, the safety factor reconstruction is often not

good enough in the core. To match the amplitude of the 1/1 internal kink displacement in

VMEC with the experimental measurement of the 1/1 kink mode, we may adjust the safety

factor profile in VMEC. By moving the low shear region of the q-profile increasingly close to

unity (from above), the amplitude of the kink mode increases. We select the q-profile that

yields a VMEC generated kink amplitude that best agrees with soft X-ray tomography for a

pulse with a 1/1 continuous mode, and observed tungsten accumulation. Experimental soft

X-ray (SXR) tomography identifies the magnetic axis position, and its deviation from a similar

axisymmetric plasma defines the 1/1 kink amplitude. In order to obtain the displacement of

the saturated kink mode displacement we may look at tomography during the third phase, in

which the 1/1 mode is strong. The impurities will rotate in the poloidal direction following

the helical excursion of the kink mode. Thus, the hot light spot in the SXR tomography will

rotate in the poloidal direction with time. This helical movement of the light spot can be used

to approximately obtain the kink mode displacement, which as mentioned can be reproduced

with VMEC.

We use the safety factor and pressure profiles in figure 3.4 to obtain a 1/1 internal kink mode

(see figures 3.7 and 3.6), to model the time at 3.3b in the phase of the pulse in which the plasma

is strongly 3D. To compare with the time phase in which the plasma is mostly axisymmetric,

we obtain an axisymmetric equilibrium (see figure 3.5) with the same profiles, but imposing

axisymmetry (by setting the only possible toroidal mode number n to zero). We could instead

allow weak 3D associated with large qmi n , but the mentioned approach is clearer and easier.

The radial displacement between the two equilibria is approximately 9cm in order to best

match the experiment. We can see the evolution of the magnetic axis and the last closed

flux surface along the toroidal angle for the axisymmetric equilibrium and 1/1 internal kink

respectively in figures 3.5a and 3.6a. We see that the magnetic axis for the axisymmetric

equilibrium is always on the Z = 0 plane, while for the 1/1 internal kink it has a helical

excursion as expected. The boundary does not change in both cases. The flux surfaces for

sV = 0.0391, sV = 0.1261, and sV = 0.8652 can be seen for the axisymmetric equilibrium in

figure 3.5c. All the surfaces are axisymmetric and symmetrical relative to the Z = 0 plane. We

can see the same view of such surfaces for the 1/1 internal kink mode in figure 3.6c. We see

that the innermost surfaces in the core region of the tokamak are helically kinked as expected.

A poloidal cross section of the flux surfaces at φV = 0 can be seen for the axisymmetric

in figure 3.5c. It is identical for every toroidal angle. The vertical and horizontal red lines

mark the magnetic axis for the axisymmetric case. Such cross section is shown for the 1/1

internal kink mode at four different toroidal angles in figure 3.7, in which we can see the

helical displacement of the core region of the plasma. The spectrum of different modes of the
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magnetic field magnitude of the 1/1 internal kink equilibrium are presented in figure 3.8. We

can see that that the (m,n) = (1,1) mode is observed with stronger amplitude in the zone in

which the safety factor is close to unity.

(a) (b)

Figure 3.2 – Timetraces for JET pulse #92181. (a) Electron density and temperature close to the
magnetic axis, and SXR signal at the central region of the plasma. (b) Evolution of the toroidal
mode number frequency for different toroidal mode numbers n.

(a) (b)

Figure 3.3 – Soft X-ray (SXR) tomography at different times of pulse #92181. (a) SXR signal at
t ≈ 45.9s of fig. 3.2, where the n = 1 magnetic signal is weak and thus the plasma is essentially
axisymmetric. (b) SXR signal at t ≈ 46.64s of fig. 3.2, where the n = 1 magnetic signal is strong
and thus a strong 1/1 internal kink mode is present in the plasma. The axis position is given
by the highest intensity region since impurities follow the axis of the kink.
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Figure 3.4 – Input profiles of VMEC to obtain the main 1/1 internal kink mode studied in this
thesis. (a) Safety factor profile. (b) Pressure profile.
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Figure 3.5 – Axisymmetric equilibrium obtained with the same profiles (see figure 3.4) as
the 1/1 internal kink mode in figures 3.7 and 3.6, but imposing the toroidal mode numbers
n = 0. (a) Flux surface evolution along the toroidal angle θV . (b) Flux surfaces sV = 0.0391,
sV = 0.1261 and sV = 0.8652 (ZY-plane view). (c) Poloidal cross-section of flux surfaces at
θV = 0◦.
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Figure 3.6 – Flux surfaces sV = 0.0391, sV = 0.1261 and sV = 0.8652 for the largest displacement
1/1 internal kink mode studied in this thesis. This mode is used to model the JET pulse #92182
in the strong 3D region and it is obtained with the profiles in figure 3.4. (a) Flux surfaces
sV = 0.0391, sV = 0.1261 and sV = 0.8652 (XY-plane). (b) Flux surfaces s = 10, s = 30 and
s = 200 (ZY-plane). The black arrows indicate the movement of the kinked magnetic axis from
axisymmetry to 3D. (c) Flux surface evolution along the toroidal angle θV .
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Figure 3.7 – Flux surfaces for the largest displacement 1/1 internal kink mode studied in this
thesis. (a) At θV = 0◦. (b) At θV = 86.4◦. (c) At θV = 172.8◦. (d) At θV = 273.6◦.
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Figure 3.8 – Non-axisymmetric modes for the 1/1 internal kink mode studied in this thesis and
used to model the pulse #92181.
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The numerical magnetic equilibria just described (see figures 3.5, 3.6 and 3.7) can be used as a

direct input for the VENUS-LEVIS code to follow the tungsten particles as it is, i.e. using VMEC

coordinates. Nevertheless, we still need to calculate the background ion flow and the heat

flux (see section 2.6) from these magnetic configurations. Calculating the geometrical factors

necessary to solve for such quantities is more easily achieved by transforming the numerical

magnetic equilibria from VMEC coordinates to Boozer or Hamada coordinates. In order to do

this, auxiliary codes have been developed which are described in the next two sections 3.1.4

and 3.1.5.

3.1.4 Converting from VMEC to Boozer and Hamada coordinates

In order to convert VMEC coordinates to Boozer or Hamada coordinates, we start by noticing

that the VMEC coordinates can be made straight by redefining the poloidal coordinate (see

section 3.1.1). Notice that we do not have to redefine the toroidal coordinate for the procedure

of developing VMEC-like straight field line coordinates. Hence, the new poloidal coordinate is

θ∗V = θV + dΨT

d sV

−1

ṽV (sV ,θV ,φV ). (3.25)

In this new set of coordinates the jacobian can be written as

p
g∗

V =
p

g V

1+ dΨT
d sV

−1 ∂ṽ
∂θV

. (3.26)

These quantities are easily obtained from the VMEC output. And thus, we can transform

all quantities from VMEC coordinates into this set of VMEC straight field line coordinates.

These quantities are computed in Fourier space for the poloidal and toroidal angles, and

for the flux coordinate sV , a cubic spline interpolation is made. In these coordinates, the

magnetic operator B · ∇∇∇ has already been simplified. However, the right hand side of the

magnetic differential equation necessary to be solved to obtain the geometrical factors u and

g4 (see equations 2.85 and 2.92 in section 2.6) are further simplified by working in Boozer or

Hamada coordinates. Transforming from VMEC-like straight field line coordinates to Boozer

or Hamada coordinates, is easier than directly from VMEC coordinates. The reason being that

in order to do such a transformation we also have to solve magnetic differential equations

which feature the magnetic differential operator. Such magnetic differential equations are

B ·∇∇∇w̃∗
V (sV ,θ∗V ,φ∗

V ) = dP

d sV
+ d IT

d sV
Bθ∗V + d IP

d sV
Bφ∗

V , (3.27)

B ·∇∇∇ũ∗
V (sV ,θ∗V ,φ∗

V ) = B 2 − IT Bθ∗V − Ip Bφ∗
V . (3.28)
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These magnetic differential equations are valid in any set of flux coordinates and its derivation

can be seen in appendix A. They are here used to obtain the functions w̃∗
V and ũ∗

V for the

VMEC straight field line coordinates. These functions are important for the calculation of the

generator functions of Boozer and Hamada coordinates that can be written (see appendix A

for more details) respectively as

GB (sV ,θ∗V ,φ∗
V ) = ũ∗

V (sV ,θ∗V ,φ∗
V )

dΨT
d sV

(Ip + ιIT )
, (3.29)

GH (sV ,θ,φ) =− w̃∗
V (sV ,θ∗V ,φ∗

V )
dΨT
d sV

(Ip + ιIT )
. (3.30)

These generators are used to obtain the Boozer angles

θB = θ∗V + dΨP

d sV
GB (sV ,θ∗V ,φ∗

V ), (3.31)

φB =φV + dΨT

d sV
GB (sV ,θ∗V ,φ∗

V ), (3.32)

and Hamada angles

θH = θ∗V + dΨP

d sV
GH (sV ,θ∗V ,φ∗

V ), (3.33)

φH =φV + dΨT

d sV
GH (sV ,θ∗V ,φ∗

V ). (3.34)

The magnetic differential equations 3.27 and 3.28 are solved in the Fourier space by inverting

the magnetic differential operator. In straight field line coordinates, the operator is written in

Fourier space as (m dΨP
d sV

−n dΨT
d sV

)/
p

g . At rational surfaces in which the safety factor is q = m/n,

the operator can be zero, which causes numerical singularities. The 3D 1/1 internal kink

equilibrium obtained with VMEC avoids q = 1. However, other small residual exactly resonant

3D modes are present in the equilibrium (see figure 3.8). These 3D residual modes may cause

current sheets that, in the framework of ideal MHD will manifest themselves as singularities.

To remove such residual singularities we use a resonance detuning operator ∆mn (55). The

detuning operator is written as

∆mn =∆
[

(m +1)
dΨP

d sV
−n

dΨP

d sV

]
, (3.35)

with ∆ an input parameter usually taken to be ∆ = 10−4 as it provides the most efficient

calculation, i.e. it efficiently smooths the undesirable residual singularities without having a

noticeable effect on the overall behaviour of the solution. The inverted magnetic operator in
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Fourier space is thus redefined as

p
g

m dΨP
d sV

−n dΨT
d sV

→
p

g (m dΨP
d sV

−n dΨT
d sV

)(
m dΨP

d sV
−n dΨT

d sV

)2 +∆2
mn

. (3.36)

This procedure is applied for solving all magnetic differential equations in this thesis. The

Boozer angles and Hamada angles can be used to reconstruct all the quantities of interest.

Since for the calculation of geometrical factors, we need the poloidal and toroidal covariant

components of the magnetic field, we need the Hamada coordinates description to be com-

plete, and thus we need to calculate the ũH (sV ,θH ,φH ) in Hamada coordinates (see equation

2.58). This function can be obtained by solving the following magnetic differential equation

B ·∇∇∇ũH (sV ,θH ,φH ) = B 2 −〈B 2〉 (3.37)

in Hamada coordinates.

(a) (b)

(c)

Figure 3.9 – Magnetic field magnitude in Boozer coordinates for the θφ-plane for the 1/1
internal kink presented in figure 3.7. (a) At sV = 0.0391, there is no symmetry on the magnetic
field. (b) At sV = 0.1261, the field still does not possess any symmetry. (c) At sV = 0.8652, the
field is axisymmetric.

For the 1/1 internal kink equilibrium presented in 3.7 the relative error calculated according to
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L∞ norm is for the Boozer transformation of e∞ = 0.25%, and for the Hamada transformation

of e∞ = 0.31%. Contour plots in the θ−φ plane of the magnetic field magnitude in Boozer

coordinates are presented in figure 3.9. It is observed that no symmetry is present in the

1/1 internally kinked region of the plasma, so that it can be expected that significant NTV

will occur. The main velocity profile U1/4 will be assumed toroidal in this 3D equilibrium,

with 3D effects appearing at order U1 and U3/2 as explained earlier. We remark here that

the ions are strongly subsonic M 2
I ∼ δ1/2 and as such the toroidal rotation is still consistent

with the general observation that 3D plasmas cannot flow strongly. This is so because the

MHD magnetic configuration is essentially established by the main ions which are not flowing

supersonically. The impurities are of trace density and thus they can flow supersonically in

this 3D magnetic configuration without affecting the common flow which is dominantly set

by the ion species. This can be understood by the fact that the ion-ion collision frequency

is much larger than impurity-impurity collision frequency, due to the trace impurity limit

being considered. Therefore, the parallel viscosity of the impurity population which provides

a contribution to the common flow, will act on a much slower timescale than that of the ions.

Thus the common flow is essentially set by the subsonic bulk ions.

The magnetic field configuration in Hamada or Boozer coordinates may now be used to fully

define the geometrical factors u, fc and fs needed for the background ion flows at each order.

3.1.5 Numerical calculation of geometrical factors and background flows

The geometrical factors u, fc , fs which have to be calculated to describe completely the

background ion flows and heat flux were described in section 2.6. The geometrical factor

w necessary to obtain the heavy impurity flow Uw1 was presented in section 2.10. The geo-

metrical factor u is obtained from the solution of the magnetic differential equation given

by

B ·∇∇∇u =−B ×∇∇∇ψ ·∇∇∇
( 1

B 2

)
, (3.38)

in which the integration constant is chosen to be u(Bmax ) = 0. The effective fraction of

circulating particles is written as

fc = 3

4

〈B 2〉
B 2

max

∫ 1

0

λdλ

〈
√

1−λB/Bmax〉
. (3.39)

The geometrical factor fs is written as

fs = 3

4

〈B 2〉
B 2

max

∫ 1

0

〈g4〉λdλ

〈
√

1−λB/Bmax〉
, (3.40)

68



3.1. The VMEC code

in which the g4 = ξg5, with g5 obtained from solving the magnetic differential equation

B ·∇∇∇g5 = B ×∇∇∇ψ ·∇∇∇
(1

ξ

)
, (3.41)

with g5(Bmax ) = 0. The geometrical factor w can be obtained from solving

B ·∇∇∇(nW w) =−B ×∇∇∇ψ ·∇∇∇
(nW

B 2

)
. (3.42)

The magnetic differential equations 3.38 and 3.41 are solved in the same way as the ones

described in section 3.1.4, either in Boozer or Hamada coordinates. The integrals in the

equations 3.39 and 3.40 are performed over λ and the integrand is singular when approaching

λ= 1. A hyperbolic tangent quadrature is used to numerically integrate the integrals. Such

quadrature allows a better resolution in λ when approaching λ = 1. This value of λ marks

the boundary layer between passing and trapped particles domains. The resonance present

for passing particles in such a layer plays a key role in the neoclassical enhancement of the

transport when compared to classical transport. The gain in resolution is thus important

because it allows for a better numerical measure of the effect of the resonance as the ion

diamagnetic flow UI1 , and as a consequence it allows to obtain a better description of its

impact on heavy impurity transport. The geometrical factor fs + 〈uB 2〉 obtained for the

axisymmetric equilibrium presented in figure 3.5 and the 1/1 internal kink presented in figure

3.7 are shown in figure 3.10. The axisymmetric case is compared against the analytical solution

and a good agreement is found.

The magnetic differential equation 3.42 can also be solved as 3.38 and 3.41. However, this

equation has the particularity of depending on the impurity asymmetries. The drive of such

asymmetries can depend on the case we are interested in study. In the cases of interest in this

thesis the mechanism of interest is the presence of strong flows. Thus, in order to obtain the

impurity density asymmetries that are necessary to solve equation 3.42 we need a model for

the strong rotationΩ(sv ) or equivalently the electric field E−3/4 (see equation 2.82). This value

can be used to obtain the electric field E1/2 (see equation 2.116). With E−3/4 and E1/2 one is

able to obtain the impurity asymmetries from equation 2.126. The rotation profileΩ(sV ) can

be obtained from the specific experiment in study. More details on such profile are given in

next chapter (see section 4.2).

With u, fc , fs and w obtained, the background ion flow UI1 and heat flux qI1 (see section 2.6),

as well as the the impurity flow UW1 (see section 2.10) can be easily obtained. These quantities

and the magnetic equilibrium obtained with VMEC can then be input in the VENUS-LEVIS

code to serve as an equilibrium in which we can follow the tungsten particles. The VMEC

equilibrium is important in most computations in VENUS-LEVIS because it provides the

magnetic field B , while the flows and heat flux are of great importance when performing

collisions of tungsten particles with the background. The next section will describe this code

and how we use it to study tungsten transport.
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Figure 3.10 – Numerical solutions of the goemetrical fs +〈uB 2〉 for the axisymmetric equilib-
rium in figure 3.5 and the 1/1 internal kink in figure 3.7. The numerical axisymmetric solution
agrees well with the analytical solution (black). The geometrical factor inverts its sign in the
internal kink region when compared to the axisymmetric case. This has an important effect
on the flux average parallel ion flow UI1 as we will see in chapter 4.

3.2 VENUS-LEVIS for tracing heavy impurity guiding centers in the

presence of strong flows and 3D geometry

The VENUS-LEVIS code is used to follow minority species in a bulk ion and electron back-

ground. In VENUS-LEVIS the minority impurity species is treated as in a full-f PIC code.

However, the bulk species are treated as a static background and we neglect the effect of the

minority species on themselves and on the background through collisions. Thus, we will treat

impurities in the trace limit (as mentioned in section 2.5) which is a valid assumption in the

core of a tokamak prior to strong radiation and temperature hollowing. VENUS-LEVIS has

the possibility of following minority species with a guiding center description or with full 6D

trajectories. We use the guiding center formalism in this work, as the heavy impurity Larmor

radius is smaller than the Larmor radius of the bulk ions by a factor of δ1/4. Since heavy

impurities flow supersonically, it is convenient to follow them in the frame rotating with the

common velocity U1/4. It is also convenient to treat collisions in the frame where the bulk ions

are flowing with their diamagnetic velocity. Nevertheless, it is important to capture the effect

of the ambipolar electric field due to the different geometrical factors present in both ion flow

UI1 and impurity flow UW1 . We thus have to follow impurities in the frame rotating with both

the common velocity U1/4 and the velocity UW1 , because this is the frame that can account

properly (through the collision operator, see section 3.2.2), for the effect of the diamagnetic

flows of the ions, and the difference between the ion and impurity flow components, that

70



3.2. VENUS-LEVIS for tracing heavy impurity guiding centers in the presence of strong
flows and 3D geometry

depend on the ambipolar electric field E0. Notice that in axisymmetry this difference is zero

and effectively only the ion diamagnetic effect is finite and we could follow the impurities

in the the frame moving only with U1/4 as done in ((55), (56)). The guiding center equations

implemented in VENUS-LEVIS use the formalism described in (69), allowing for the required

strong flow corrections (see section 2.12). At each time step in VENUS-LEVIS, the guiding

center equations are solved for obtaining the position of the particle guiding centers and their

parallel gyroradii. Then, collisions with the background are performed with a collision oper-

ator. We present the implementation of this guiding center formalism in the VENUS-LEVIS

code in the next section. The following section 3.2.2 will explain the new implementation in

VENUS-LEVIS of a collision operator which captures both the chosen background flow and

heat flux.

3.2.1 The guiding center description with strong flows

The guiding center equations implemented in VENUS-LEVIS uses the formalism described in

(69) which was presented in section 2.12, allowing for the necessary strong flow corrections.

VENUS-LEVIS evolves both the guiding center position x̄W in the lab frame and the parallel

gyroradius ρW∥ of the impurities in the frame rotating with U∗ = U1/4 +UW1 . The parallel

gyroradius is used instead of the parallel velocity in the rotating frame for convenience (the

total vector B appears explicitly instead of b̂ inside the differential operators). These quantities

are evolved at each time step according to the equations

˙̄xW =
(
U1/4 +UW1 +

qW

mW B
ρW∥

) B∗

b̂ ·B∗ + E∗×B

B ·B∗ , (3.43)

˙ρW∥ =
E∗ ·B

B ·B∗ , (3.44)

in which the modified magnetic field (see section 2.12) and the modified electric field are

written as

B∗ = B +ρW∥∇∇∇×B + mW

qW
∇∇∇× [U1/4 +UW1 ], (3.45)

E∗ = E−3/4 +E1/2 −
( µ

qW
+ qW

mW B
ρ2

W∥B
)
∇∇∇B − mW

qW

∇∇∇(U1/4)2

2
−ρW∥∇∇∇(U1/4 ·B ), (3.46)

where the centrifugal and Coriolis terms due to the velocity UW1 are neglected as they are

small when compared with the other terms. The time integration of these equations at each

time step is achieved using a 4th order Runge-Kutta algorithm with an adaptative timestep.

The method has been shown to preserve energy and momentum to machine precision (60) for

axisymmetric equilibria. We have also observed conservation of energy and momentum in the

presence of strong flows for axisymmetric equilibria. The strong flow terms were implemented

in VENUS-LEVIS for a general flow U1/4
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U1/4 =Uθv
1/4eθV +Uφv

1/4eφV , (3.47)

allowing for the possibility of poloidal and toroidal flows. This implementation of the different

terms follows from the their definitions in curvilinear coordinates, and are given by

∇∇∇(U 2
1/4)

2
=U1/4 ·~∇U1/4 =U k

1/4∂kU1/4 j −U k
1/4Γ

i
j ,kU1/4i , (3.48)

∇∇∇(U1/4 ·B ) = B ·~∇U1/4 +U1/4 ·~∇B = B k∂kU1/4 j −B kΓi
j ,kU1/4i +U k

1/4∂k B j −U k
1/4Γ

i
j ,k Bi , (3.49)

∇∇∇×U1/4 = εi j k

p
g
∂iU1/4 j ek (3.50)

in which identical indexes are understood to indicate summation over all coordinates, and the

Christoffel symbols of second kind are given by

Γi
j ,k = 1

2
g mi (∂k g j m +∂ j gkm −∂k g j k ), (3.51)

with gi j the metric tensor. εi j k is the Levi-Civita symbol.

The implementation of such general flows was used to account for the possibility of a symmetry

direction of the 1/1 internal kink mode or other saturated modes of interest. However, as it

could be seen in 3.9, the 1/1 internal kink does not possess any symmetry. We thus consider the

common flow velocity to still be toroidal (as for axisymmetry), and to still exist, as observed in

the experiment. Thus, for the simulations presented in this thesis we consider UI1/4 =−Ωeφ as

per equation 2.82. The terms 3.48, 3.49 and 3.50 are computed in VMEC coordinates to use in

the guiding-center equations. Nevertheless, for solving 2.115 for such a general 3D flow, Boozer

or Hamada coordinates are used to simplify the magnetic differential equation. The guiding-

center equations themselves do not take into account any collisional effects. Such effects are

accounted for by a collision operator within the VENUS-LEVIS code. Its implementation will

be discussed in next section 3.2.2. We now briefly discuss the particle initialisation for the

sake of completeness. The impurity markers are initialised in VENUS-LEVIS using a rejection

method to sample the following Maxwellian

f0 = fM (sV ,θV , w∥, w⊥) = NW (sV )
(mW

2π

) 3
2

TW (sV )−
3
2 e−

mW (w2
∥+w2

⊥)

Ts (x) e−10sin(θV ), (3.52)

in which the factor e−10sin(θV ) is added to mimic the fact that the tungsten enters the plasma

from the divertor plates located in the bottom of the poloidal cross section (see figure 1.6).
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3.2.2 Collisions between impurities and the background plasma

A realistic description of collisional neoclassical transport on heavy impurities requires a

numerical description that has an accurate model for the parallel friction force and parallel

thermal force between ions and impurities. In order to account for the effect of the ambipolar

electric field on collisions we need to account for the difference between the components

of the ion flow UI1 and impurity flow UW1 (see equations 2.86 and 2.127) that depend on the

ambipolar electric field. If we follow the impurities in the frame moving with U∗ =U 1/4 +UW1

(see previous section 3.2.1), the flow of the background ions is effectively Uback =UI1 −Uw1 ,

and thus accounts not only for the diamagnetic effects of the ion flow, but also for the difference

between the ion and impurity flows due to the ambipolar electric field term. We may then

write the bulk ion distribution in the frame rotating with U∗ as a perturbed Maxwellian given

by

f I = f I0 (ψ,θ, v)
[

1−
(Uback

v2
th I

− qI

PI v2
th I

(
1− v2

5v2
th I

))
·v

]
, (3.53)

where f I0 (ψ,θ, v) is the background ion Maxwellian and v is the velocity of the bulk ions in

the frame rotating with U∗. We then solve the Langevin equation at each timestep to obtain

the velocity of each heavy impurity particle after a collision with the background ions. The

Langevin equation to be solved can be written as

d wcol l =A W I d t +σW I
i j dW (3.54)

where d wcol l is the impurity velocity displacement after a collision with the bulk ions, A W I

is the drift vector associated with the bulk ions background, and the tensor σW I
i j is related tto

the diffusion matrix of the bulk ions DW I
i j by

DW I
i j = 1

2
σW I

i j σW I
i j

T
. (3.55)

Here, dW is a vector of the independent Wiener processes. The drift vector and diffusion

matrices can be obtained in terms of the Rosenbluth potentials ϕI and ψI :

A W I =
(
1+ mZ

mI

)
LW I∇∇∇wϕI (3.56)

and

DW I
i j =−LW I∇2

wψI , (3.57)

where LW I = (qI qW /(mW ε0))2 lnΛ and the Rosenbluth potentials are defined (9) as

ϕI (w ) =− 1

4π

∫
1

|w −v ′′′| f I (v ′′′)d 3v ′ (3.58)

ψI (w ) =− 1

8π

∫
|w −v ′′′| f I (v ′′′)d 3v ′. (3.59)
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For the background ion distribution function of interest 3.53, the Rosenbluth potentials are

written as

ϕI (w ) =− NI

4πβ1/2

[ζ(wb)

wb
+Uback ·wβ

(ζ(wb)

w3
b

− ζ′(wb)

w2
b

)
− 4

5

qI ·wβ2

mI NI
ζ′(wb)

]
, (3.60)

ψI (w ) =− NIβ
1/2

8π

[ζ(wb)+wbζ(wb)

2w2
b

+ ζ′(wb)

2

+Uback ·wβ
(ζ(wb)+x2ζ(wb)

2w3
b

− ζ′(wb)

2w2
b

)
− 4

5

qI ·wβ2

mI NI

(ζ(wb)

2w3
b

− ζ′(wb)

2w2
b

)]
. (3.61)

with β= v−2
th I

, ζ(wb) the error function and wb = w/vth I . The drift vector is thus given by

A W I =−
(
1+ mZ

mI

)
LW I NIβ

3/2

4π

{ζ′(wb)wb +ζ(wb)

w3
b

+Uback ·wβ
[−3ζ(wb)+ (3wb +2w2

b)ζ′(wb)

w5
b

}
− 4

5

qI ·wbβ
2

mI NI
4ζ′(wb)

]
w

−
(
1+ mZ

mI

)
LW I NIβ

1/2

4π

[
Ubackβ

(ζ(wb)

w3
b

− ζ′(wb)

w2
b

)
− 4

5

qIβ
2

mI NI
ζ′(wb)

]
, (3.62)

and the diffusion matrix by

DW I
i j = LW I NIβ

1/2

8π

{ζ′(wb)wb + (2w2
b −1)ζ(wb)

2w3
b

+Uback ·wβ
[ (2w2

b +3)ζ(wb)+3wbζ
′(wb)

w5
b

]
− 4

5

qI ·wβ2

mI NI

[−3ζ(wb)+ (2w3
b +3wb)ζ′(wb)

2w5
b

]}(
I − w w

w w

)
+LW I NIβ

1/2

8π

{−wbζ
′(wb)+ζ(wb)

w3
b

+Uback ·vβ
[ (6+2w2

b)ζ(wb)− (2w3
b +6wb)ζ′(wb)

w5
b

]
− 4

5

qI ·wβ2

mI NI

[6ζ(wb)− (2w5
b +4w3

b +wb)ζ′(wb)

w5
b

]} w w

w w

+LW I NIβ
1/2

8π
β
[ (2w2

b −3)ζ(wb)+3wbζ
′(wb)

w5
b

(Uback ·w +w ·Uback )β

+ −3ζ(wb)+ (2w3
b +wb)ζ′(wb)

w5
b

( qI ·w +w ·qI

mW

)
β2

]
. (3.63)

These expressions for the drift vector 3.62 and diffusion matrix 3.63 are simpler to treat if

the initial velocity of the particle before a collision is aligned with one axis of the local frame

chosen to perform the collision (in velocity space). Thus, we use the frame (x ′, y ′, z ′), shown in

figure 3.11, in which the velocity w of the heavy impurity particle before a collision is aligned
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Figure 3.11 – Frame (x ′, y ′, z ′) in which the velocity of the particle before collision is aligned
with the z ′ axis.

with the z ′ axis. After the collision, the velocity in this direction will change and there will

be a variation of the velocity in the x ′ and y ′ directions. However, VENUS-LEVIS only has

information about the parallel velocity w∥ and the magnitude of the perpendicular velocity w⊥
of the particle. To map the final velocity variations back in the in this magnetic-field-aligned

velocity coordinates we need to define for each particle undergoing a collision, which is their

initial velocity components along each of the perpendicular (relative to the magnetic field)

directions, the directions ∇∇∇ψ and b̂ ×∇∇∇ψ. We only know the parallel velocity and the strength

of the perpendicular velocity when in the guiding center formalism, and we do not follow the

gyroangle coordinate. We thus, for each collision, generate a random uniform gyroangle φw

between [0,2π]. The angle θw (see figure 3.11) between the initial parallel velocity w∥ and the

total velocity vector w is defined before the collision as

θw = cos−1
( w∥

w

)
, (3.64)

the perpendicular velocity magnitude in the ∇∇∇ψ and b̂ ×∇∇∇ψ directions are respectively

w⊥1 = w sin(θw )cos(φw ). (3.65)
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w⊥2 = w sin(θw )sin(φw ). (3.66)

In the frame (x ′, y ′, z ′) the drift vector components are

A W I
x ′ = 0 (3.67)

A W I
y ′ =−w⊥Uback∥β

(ζ(wb)+wbζ
′(wb)

w4
b

)
+ 4w⊥qI∥

5mI NI
β2 ζ

′(wb)

wb

)
(3.68)

A W I
z ′ = w⊥Uback∥β

(−ζ(wb)+ (2wb +2w3
b)ζ′(wb)

x4

)
+ 4w⊥qI∥

5mI NI
β2

(2w2
b −1)ζ′(wb)

wb
(3.69)

and diffusion matrix entries can be written as

DW I
x ′y ′ =


DW I

y ′y ′ 0 0

0 DW I
y ′y ′ DW I

y ′z ′

0 DW I
z ′y ′ DW I

z ′z ′

 (3.70)

with

DW I
y ′y ′ =

(2w5
b −1)ζ(wb)+wbζ

′(wb)

2w3
b

+w∥Uback∥β
( (2w3

b −3)ζ(wb)+3wbζ
′(wb)

2w5
b

)
(3.71)

+ 4w∥qI∥

5mI NI
β2

(−6ζ(wb)+ (4w3
b +6wb)ζ′(wb)

2w5
b

)
(3.72)

DW I
y ′z ′ =−w⊥Uback∥β

( (2w2
b −3)ζ(wb)+3wbζ

′(wb)

2w5
b

)
+ 4w⊥qI∥

5mI NI
β2

(3ζ(wb)− (2w2
b +3)ζ′(wb)

2w5
b

)
(3.73)

DW I
z ′z ′ = ζ(wb)−wbζ

′(wb)

x3 −w∥Uback∥β
(3ζ(wb)− (2w3

b +3wb)ζ′(wb)

w5
b

)
+ 4w∥qI∥

5mI NI
β2

(3ζ(wb)− (2w5
b +2w3

b +3wb)ζ′(wb)

2w5
b

)
. (3.74)

Since this matrix is not diagonal, the matrix σW I
i j is not directly obtainable. One must first

diagonalize the matrix DW I
x y . We thus have σW I

i j =P V P T in which

Vi j =


√

DW I
y ′y ′ 0 0

0
√
λ+ 0

0 0
√
λ−

 (3.75)
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and the proper values of the matrix DW I
i j are defined as

λ1 =DW I
y ′y ′ (3.76)

λ2 =λ+ =
DW I

y ′y ′ +DW I
z ′z ′ +

√
(DW I

y ′y ′ −DW I
z ′z ′ )2 +4DW I 2

y ′z ′ )

2
(3.77)

λ3 =λ− =
DW I

y ′y ′ +DW I
z ′z ′ +

√
(DW I

y ′y ′ −DW I
z ′z ′ )2 +4DW I 2

y ′z ′ )

2
(3.78)

and the orthogonal matrix Pi j of the proper vectors of DW I
i j is

Vi j =



1 0 0

0
DW I

y ′z′√
(λ+−DW I 2

y ′ y ′ )+DW I 2

y ′z′

DW I
y ′z′−λ+√

(λ+−DW I
y ′ y ′ )

2+DW I 2

y ′z′

0
λ+−DW I

y ′z′√
(λ+−DW I

y ′ y ′ )
2+DW I 2

y ′z′

DW I
y ′z′√

(λ+−DW I
y ′ y ′ )

2+DW I 2

y ′z′

 (3.79)

Finally, the velocity variation due to collisions in the (x ′, y ′, z ′) coordinates is given by

d wcol l x =A W I
x ′ d t +σW I

x ′x ′dWx ′ (3.80)

d wcol l =A W I
y ′ d t +σW I

y ′y ′dWy ′ (3.81)

d wcol l =A W I
z ′ d t +σW I

z ′z ′dWy (3.82)

with dWi independent random numbers sampled from a gaussian of zero mean and variancep
d t and a fixed timestep is used. The velocity variations due to the collisions in the magnetic

field aligned coordinate system are then obtain by

d w⊥1 = cos(φw )d wcol l x − sin(φw )cos(θW )d wcol l y + sin(φw )sin(θW )d wcol l z , (3.83)

d w⊥2 = sin(φw )d wcol l x +cos(φw )cos(θW )d wcol l y −cos(φw )sin(θW )d wcol l z , (3.84)

d w∥ = sin(θw )d wcol l y +cos(θw )d wcol l z . (3.85)

These velocity variations correctly account for both the effects of a friction force and thermal

force acting on the minority species, due to collisions with a background species with both a

flow and heat flux. The previous collision operator implemented in VENUS-LEVIS only took

into account collisions with a background species s, for which the distribution function was a

Maxwellian with a possible mean flow ((55), (56)). Such, collision operator did not capture

any thermal force effect and accounted only in part for the effect of a friction force. The

effect of the thermal force can be seen in figure 3.12 for an axisymmetric simulation with no

density gradient and a finite temperature gradient. We can see the particles being transported
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radially outward due to the effect of the thermal screening. The asymmetries due to collisional

effects can also be seen which cause an up-down asymmetry usual of collisional neoclassical

transport. The collision operator just described and the guiding center equations with strong

flow corrections should thus contain all the physics to study neoclassical transport of heavy

impurities. Next chapter, will make use of the numerical tools described in the present chapter,

to properly model heavy impurity transport in the presence of a 1/1 internal kink mode of

interest in tokamak operation (see section 1.7)

(a) (b)

Figure 3.12 – Effects of the thermal force due to heat flux of the background ions for an
axisymmetric equilibrium with only a ion temperature gradient. Such effects are only possible
due to the newly implemented collision operator. (a) The thermal force pushes the tungsten
out screening it from the core as expected. (b) Up-down poloidal asymmetries are generated
due to the collisional forces.

3.2.3 Conclusion

In this chapter, we presented the numerical tools developed to model heavy impurity trans-

port in tokamaks with 3D MHD ideal perturbations, strong rotation and ambipolar electric

field. The way the VMEC code is used to obtain the 3D magnetic equilibrium of interest was

explored. It was then shown how we use such magnetic equilibria to obtain the corresponding

background ion flow and heat flux, as well as the heavy impurity flow. Then, it was shown how

we make use of all these quantities in the VENUS-LEVIS code used to construct the popula-

tion of heavy impurities. We explained how we use this code to calculate the guiding-center

equations for the heavy impurities. The implementation was shown to capture all the relevant

drifts for heavy impurity physics, such as the centrifugal and Coriolis drifts. Finally, a new

collision operator implementation was presented. This collision operator captures the friction
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and the thermal forces felt by impurities when colliding with the background ions (which were

not correctly captured in the previous implementation). The background ion flow, heat flux,

and the impurity flow are crucial elements of the collision operator. Following the impurities

in the frame rotating with the common flow U1/4 and the impurity flow UW1 is crucial for

capturing the effect of the ambipolar electric field on the collision operator. The calculation of

such flows and heat flux was made possible by the development of the auxiliary codes. The

numerical tools described and presented in this chapter are therefore suitable for the study of

heavy impurity transport in the presence of 3D MHD ideal perturbations, strong flows and

ambipolar electric field, and will be used to study the particular and important case of the 1/1

internal kink mode in the next chapter.
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4 The effect of 3D MHD ideal perturba-
tions on Heavy impurity transport

This chapter presents numerical results obtained from simulating the behaviour of strongly

rotating tungsten in the presence of a 1/1 internal kink plasma and ambipolar electric field.

To accomplish this, we make use of the numerical tools presented in chapter 3. First, we

analyse the behaviour of the flux averaged neoclassically resolved flow of the background

ions in a 1/1 internal kink. This interesting novel flow components presented affects impurity

transport in the kinked region of the plasma. It is seen that inconsistent modelling of flows

and in particular the flow associated with the ambipolar electric field, has a crucial impact on

impurity transport. This is shown by breaking down the physics of interest when solving for the

saturated impurity density states obtained from VENUS-LEVIS simulations. We first analyse

the behaviour of heavy impurities for the axisymmetric case presented in figure 3.5. Then we

analyse the effect that the 1/1 internal kink mode equilibrium has on tungsten transport in

the presence of other physical mechanisms like strong rotation and ambipolar electric field.

To do this analysis we use the 1/1 internal kink shown in figure 3.7, which models the strong

3D phase of JET pulse #92181. We then analyse the transitory phase of the VENUS-LEVIS

simulations, before the tungsten density saturates. This analysis allows for a calculation

of the tungsten diffusion coefficients under the effect of different physcial mechanisms of

interest. We then, analyse how the change of amplitude of the kink perturbation impacts the

tungsten density. Finally, we allow the ambipolar electric field to be positive in the kink region

(electron root) in order to mimic the effect of electron cyclotron heated (heated with ECRH)

1/1 internally kinked plasmas on heavy impurity transport. This model allows for gaining

some insight on the physics seen during certain interesting operational scenarios on ASDEX-U

(53). In order, to make a comparison against the analytical results presented in chapter 2, we

present here again the impurity friction force
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for which the terms which will be important for the discussions in this chapter are highlighted

with different colours.

4.1 The background ion flow

The geometrical factors obtained numerically for VMEC equilibrium configurations (see

section 3.1.5) can be used to calculate both the background ion flow and heat flux. Here,

we analyse the differences between the flux averaged parallel bulk ion diamagnetic flow

obtained for the axisymmetric equilibrium in figure 3.5 and the 1/1 internal kink equilibrium

in figure 3.7. This particular part of the diamagnetic flow is quite interesting as it impacts

heavy impurity transport only when heavy impurity density asymmetries are present. We

may observe, from equation 2.86, that the averaged parallel diamagnetic flow is proportional

to both the geometrical factor fs +〈uB 2〉, and the background ion density and temperature

gradients. Thus, its effect is associated with the terms in orange in the impurity ion friction

force 4.1, which vanishes when no impurity asymmetries are present in a flux surface (nW =
〈nW 〉, and thus

(
1

〈B 2〉 − 1

nW 〈 B2

nW
〉

)
= 0). This means that for the case studied here, that when no

externally generated strong glows (due to NBI) are present in the plasma, this component of the

diamagnetic flow has no effect on the transport of tungsten. The effect of this flow on impurity

collisional transport may also change drastically for different 3D perturbations, because the

geometrical functions u and fs depend mainly on the geometry of the magnetic configuration.

Moreover, this effect exists even when no ambipolar electric field is considered, and can

therefore be used to understand if the VENUS-LEVIS code implementation is capturing the

correct effects in such case.
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Figure 4.1 – Background ion mean diamagnetic parallel flow obtained numerically for the
axisymmetric case in figure 3.5 and for the 1/1 internal kink in figure 3.7. The flow for the
axisymmetric equilibrium agrees well with the analytical solution (black line).

In figure 4.1, the analytically known flux averaged parallel bulk ion diamagnetic flow for the

axisymmetric case is compared against the numerical calculation. Both profiles are in perfect

agreement as expected. The numerical flux averaged parallel bulk ion diamagnetic flow for

the axisymmetric and 3D cases are also compared in figure 4.1. We see that outside the

region of influence of the 1/1 internal kink the flows are identical due to the fact that the

equilibrium outside the kinked core region is essentially axisymmetric. However, we also see

that in the kinked region, an inversion of the sign of the flow is observed, which is expected as

the geometrical factor fs +〈uB 2〉 was seen to invert its sign in the kinked region (see figure

3.10 of section 3.1.5). In the axisymmetric case, these terms produce inward and outward

transport of impurities for a density and a temperature gradient respectively. However, the

inversion of sign of the averaged parallel bulk ion diamagnetic flow in the region of the kink

can cause a density gradient to instead provide a screening of impurities from the axis, while a

temperature gradient can cause inward transport of impurities. The same type of effect can

be seen for the flux averaged ion background ion heat flux which is also proportional to the

factor fs +〈uB 2〉 and the background ion temperature gradient.

4.2 Axisymmetry with strong flows

In this thesis, we want to understand the effect that a 1/1 long living internal kink mode like

the one present in JET-pulse #92181 (see figures 3.2 and 3.3) can have on heavy impurity

transport. We are thus interested in comparing the weakly 3D phase of figure 3.3a (in which

83



Chapter 4

the plasma is mostly axisymmetric) and the strong 3D phase of figure 3.3b. Thus, we model

the behaviour of tungsten in the presence of the axisymmetric VMEC equilibrium shown in

figure 3.7 and the 1/1 internal kink VMEC equilibrium in figure 3.7. As stated before (see

section 3.1.3), these two equilibria are obtained using exactly the same pressure and safety

factor profiles except that the axisymmetric one is constrained to have no 3D perturbations

(we impose a toroidal mode number n = 0 only). These equilibria can be used as an input in

VENUS-LEVIS to follow the tungsten particles, together with the background ion flow UI1 and

heat flux qI1 , and the impurity flow UW1 . The electric field E−3/4 necessary for the calculation

of the impurity flow UW1 (see section 3.1.5) is established from the experimental measurement

of the NBI induced toroidal rotation (see eq. 2.82) which is also important for the centrifugal

forces entering the guiding center equations 3.43 and 3.44. The core rotation due to NBI

can be identified correctly from the frequency of the n = 1 mode. Such information can be

obtained from the MHD coil spectrogram from JET pulse #92181 which can be seen in figure

4.2. We see that the n = 1 mode has a rotation of approximately fmode = 15KHz throughout the

pulse. We consider the NBI generated rotation profile to be given by Ω(sV ) = 2π fmode (1− sV ),

which is similar to the one observed in the pulse #92181 (see definition of sV below). The

higher order electric field profileΦ′
0(ψ) is also needed. This profile can in general be affected

by the existence of strong additional sources of toroidal momentum like ECRH. For the JET

related simulations presented here, we neglect the effect of strong sources and consider that

the profileΦ′
0(ψ) is due to NTV, obtained from the temperature and pressure profiles through

equation 2.113. The rotation profile as well as the background ion density and temperature

profiles can be seen in figure 4.3. The background ion temperature and density were obtained

from equilibrium reconstruction from JET pulse #92181, according to the background ion

pressure profiles used in VMEC and shown in figure 3.4. We choose to plot these quantities

against the radial coordinate
p

sV =
√
ΨT /ψTed g e = r /a, with r being the minor radius of the

tokamak and a its value at the last closed flux surface. All the simulations in this chapter use

a number of markers Nmar ker s = 30720 to simulate the tungsten particles. A larger number

of markers has not seen to changed the saturated impurity density states. Furthermore, the

tungsten particles simulated have a ionization state with ZW = 40 and a mass number of 184.
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4.2. Axisymmetry with strong flows

(a)

Figure 4.2 – MHD coils spectrogram for JET pulse #92181. A mode frequency of fmode = 15KHz
for the n = 1 mode is observed.
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Figure 4.3 – Background ion density NI and temperature TI , and toroidal rotation used for the
simulations of JET pulse #92181.

We consider first the axisymmetric equilibrium where we present two simulations with and

without rotation (see fig. 4.4a). In the axisymmetric case we do not consider the ambipolar

electric field (from NTV) as a parameter since it can be seen from equation 2.148 that the

effect of the electric field associated withΦ0 vanishes in the axisymmetric limit. We present in

figure 4.4a the flux averaged saturated tungsten density in the axisymmetric case, with rotation

(red line) and without rotation (black line). The impurity density is considered saturated if it

does not change significantly after the characteristic time of cross field transport, which is of

the order of 0.1s. In the axisymmetric case without rotation (described by the black line in

figure 4.4a), the profile peaks on the axis (sV ≈ 0) which means that impurities accumulate

on-axis for the axisymmetric case without rotation. This is due to the fact that the friction

effect due to the density gradient of the bulk ions overcomes the thermal screening due to the

bulk ion temperature gradient (see blue terms in the friction force 4.1) for pulse #92181 (see

figures 4.3a and 4.3b). The red line in figure 4.4a corresponds to the axisymmetric case with

the rotation profile of figure 4.3c. In this case, the rotation is strong enough to drive outward
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transport due to a radial centrifugal force (see red term in equation 4.1). This means that if no

3D effects are considered, axisymmetric theory dictates off-axis impurity density peaking for

background temperature, density and rotation profiles similar to the ones of the pulse #92181.

This is indeed the case in the early phase of #92181 where the plasma is 2D (see figures 3.2

and 3.3a). A better comparison with the experimental SXR tomography 3.3a is made via the

poloidal contour plot shown in figure 4.4a. Here, we the accumulation off-axis which is due

to the strong radial centrifugal force as well as the poloidal trapping of impurities due to the

poloidal centrifugal force. Figure 4.4b compares reasonably well with the experimental SXR

tomography in figure 3.3a.
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Figure 4.4 – Saturated flux averaged radial profiles of the heavy impurity density obtained with
VENUS-LEVIS showing the effect of rotation in axisymmetry.

4.3 Synergetic effect of the 1/1 internal kink mode with rotation on

heavy impurity transport

We consider now how the 1/1 internal kink long living mode like the one in the pulse #92181

affects heavy impurity transport. First, the effect of the NTV electric field is neglected. While

this case is inconsistent, it allows to isolate the effect of the flux averaged diamagnetic flow and

heat flux, which was discussed in section 4.1. Figure 4.5 presents the flux averaged saturated

tungsten density for various simulations, which helps in understanding the effect of this 3D

diamagnetic flow, while changing the main NBI induced toroidal rotation.
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Figure 4.5 – Saturated flux averaged radial profiles of the heavy impurity density obtained with
VENUS-LEVIS showing the effect of the 1/1 internal kink mode on heavy impurity transport,
while changing the rotation. The NTV electric field is not included in these simulations.
The off-axis accumulation observed for finite rotation is due to the background ion parallel
diamagnetic mean flow (see figure 4.1) and heat flux.

The blue line in figure 4.5 is obtained in the presence of an equilibrium with a 1/1 internal kink,

but we do not include any rotation. We may see that for this case impurities accumulate on-

axis. This is a consequence of having zero strong rotation and thus no poloidal asymmetries

of the impurity density in the system. The effect of the bulk ion parallel diamagnetic mean

flow on heavy impurity transport vanishes in this limit, as was discussed in section 4.1 (see

orange terms in equation 4.1), and can be observed in equations 2.140-2.144. Since the NTV

electric field is also neglected the transport is only driven by balance between the bulk ion

density and temperature gradients (blue terms in equation 4.1) which is the same as for the

axisymmetric case without rotation (black line) of figure 4.5. This is because, in the absence of

density asymmetries (see 2.140-2.144), the diffusion coefficients associated with the density

and temperature gradients have the same dependence on the geometrical functions u and w

for both axisymmetric and 3D cases. Therefore, the result for this case (blue line) is similar for

the 2D case without rotation (black line of figure 4.5).

The orange line in figure 4.5 considers finite rotation with the 1/1 internal kink equilibrium. A

rotation profile with fmode = 5kH z is chosen, which is a moderate level of rotation, and thus,

it is not strong enough to drive drive outward transport due to the radial centrifugal force.

Nevertheless, off-axis accumulation is still observed for the orange line in figure 4.5a. The
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cause is the bulk ion diamagnetic mean parallel flow, whose effect arises for finite poloidal

asymmetries of the impurity density. While the smaller rotation does not provide a strong

radial force, it still provides a poloidal centrifugal force which causes enhanced trapping of

impurities. The poloidal asymmetry of the density activates the effect of the diamagnetic

mean flow in the collisional force felt by the impurities (see orange terms in equation 4.1). As

seen in figure 4.1, the background ion mean parallel flow inverts its sign in the 1/1 internal

kink region, when compared to the axisymmetric case. The same happens to the background

ion mean parallel heat flux. As a consequence, bulk ion density gradient now screens the

impurities from the core and the bulk ion temperature gradient pushes the impurities to

the core, contrary to what usually happens in axisymmetry. Since the density gradient wins

over the temperature gradient for the profiles in figure 4.3, we observe off-axis accumulation.

Finally, the magenta line of figure 4.5 is a 3D case with the same rotation amplitude as the one

observed experimentally (with fmode = 15kH z). A slightly stronger outward flux of impurities

is observed for this case in comparison with the previous case (orange line). The stronger

rotation provides now a strong radial force as in the axisymmetric case (red line of figure

4.5a), which further pushes the impurities radially outward when compared to the orange line.

These cases are however not consistent, because no ambipolar electric field was considered.

We include the NTV electric field effect in the next section.

4.4 Synergetic effect of the 1/1 internal kink mode, rotation and

NTV electric field on heavy impurity transport

The effect of the NTV electric field is now included in order to model the rotating 3D case

consistently. We compare this 3D consistent case with the axisymmetric case with rotation in

figure 4.6. The green line in 4.6 includes the effect of the 1/1 internal kink equilibrium, a strong

rotation with fmode = 15kH z and the finite effect of the ambipolar electric field due to bulk

ion NTV. The effect of the NTV electric field in the presence of the strong flow asymmetries

(see green term in equation 4.1) is enough to drive strong on-axis accumulation as we see from

the green line in figure 4.6. The green case is therefore very important as it shows that with all

the effects of interest considered for the 3D case we observe on-axis impurity accumulation, in

contrast with the axisymmetric case shown by the red line in figure 4.6. This accumulation is

consistent with the experiment, in the phase of discharge #92181 during which the rotating 3D

1/1 kink has developed (see figure 3.3b). It is noted here that we kept the density, temperature

and rotation profiles constant when comparing the 2D and 3D phases of the experiment.

This is necessary to identify the role of 3D physics effects, at the cost of detailed modelling

of the experiment at different times in the pulse. Although, the density and rotation do not

change much between the two phases according to experiment (see figures 3.2 and 4.2), the

temperature changes slightly between these two phases of the pulse (see figure 3.2).The reason

for the small change in the profiles is due to the fact that the different MHD phases of the

operations are short. The neglect of the change in the temperature profiles will be justified

in section 4.6 by analysing the transport coefficients. It will be seen that the transport in the

88



4.4. Synergetic effect of the 1/1 internal kink mode, rotation and NTV electric field on
heavy impurity transport

presence of 3D effects, strong flow and ambipolar electric field is fast enough to explain the

transport timescales observed empirically.
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Figure 4.6 – Saturated flux averaged radial profiles of the heavy impurity density obtained with
VENUS-LEVIS showing the synergetic effect of the 1/1 internal kink mode and strong rotation
on heavy impurity transport. The NTV electric field is enough to drive strong accumulation
on-axis (green line), in contrast with the axisymmetric case with strong rotation (red line)
which shows off-axis accumulation. The red curve is the same as the red curve in 4.4a.

The impurity density behaviour can be better compared to the experimental SXR tomography

measurements by observing the poloidal contour plot of the impurity density (at toroidal

angle of φ= 90◦) for the two cases shown in figure 4.6. Thus, in the same figure we show again

the poloidal contour plot for the axisymmetric case with rotation 4.7b and the 1/1 internal

mode with rotation and NTV electric field effects 4.7b. We see that for the 1/1 internal kink

case in figure 4.7b the NTV induced electric field is enough to drive a radial inward transport

that de-traps the impurities from the centrifugal trapping observed in the 2D case of figure

4.7a. The impurities then accumulate on-axis and follow the kink (as can be seen in figure 4.8).

The results of figure 4.7 compare well with the SXR tomography for the weakly 3D 3.3a and

strong 3D 3.3b phases of JET pulse #92181.
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(a) (b)

Figure 4.7 – Poloidal contour plot of the saturated heavy impurity density at a toroidal angle
of φV = 90◦ obtained with VENUS-LEVIS. (a) Axisymmetric equilibrium. Models the initial
phase of pulse #92181 (see fig. 3.3a). (b) Self consistent 3D case with rotation and NTV, which
models the strongly 3D phase of JET pulse #92181 (see fig. 3.3b).

4.5 Heavy impurity density hole in the presence of a 1/1 internal

kink mode and ECRH

We now present a simulation of the 1/1 internal kink mode, with the same strong rotation

( fmode = 15K H z), but we use an ambipolar electric field E0 = −EN T V . This electric field is

chosen to better understand the heavy impurity behaviour in the presence of a 1/1 internal

kink mode, strong rotation and an ambipolairty electric field set by an electron root solution

of the ambipolarity constraint 4.2. This ad-hoc model of the electric field can be used to gain

insight into the operational scenarios in ASDEX-U in which a long living 1/1 internal kink is

present at the same time as ECRH heating is applied. In these scenarios, the simultaneous

presence of these two effects is seen to help screen tungsten (53). This screening of the

tungsten ions is not explainable via a poloidal electric field correction due to quasi-neutrality,

because the impurity density asymmetry seems to be mainly due to strong rotation (53).

However, the presence of ECRH and the 1/1 mode could in principle create a strong electron

flux, which would possibly change the solution of the ambipolarity constraint 4.2 to an electron

root (72). Such a scenario places the hot electrons in the superbanana collisional regime. With

the electrons in such a regime, the approximation of equation 2.112 is not valid. Indeed, in

this case the flux of hot electrons is faster than the flux of ions because it is proportional to the

electron-ion collision frequency. In the presence of ECRH the ambipolity constraint is given
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4.5. Heavy impurity density hole in the presence of a 1/1 internal kink mode and ECRH

(a) (b)

(c) (d)

Figure 4.8 – Poloidal contour plot of the saturated heavy impurity density obtained with
VENUS-LEVIS for the self-consistent 1/1 internal kink case with rotation and NTV. (a) At
θV = 11.4◦. (b) At θV = 90.0◦. (c) At θV = 180.0◦. (d) At θV = 270.0◦.
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by

qe〈Γeψ〉 ≈ 0, (4.2)

which has a positive ambipolar electric field as a solution Er > 0 (72), usually called electron

root. This is so because the fast radial movement of the hot electrons will generate a loss of

electrons, which itself generates a charge separation. This charge separation is counteracted

by the generation of a positive electric field. This electric field solution can be calculated via a

neoclassical calculation. We currently do not have access to such a calculation (though there

are some estimates in (72)). Nevertheless, by simply swapping the sign of the NTV electric

field used in the last subsection, while maintaining the same amplitude, we hope to gain

some insight into the possibility that the physics processes investigated in this thesis may

explain the impurity behaviour observed in these ASDEX-U scenarios, in particular the effects

of 3D, flows and ambipolar electric field. This is relevant when comparing to the work in (72),

because in that work the focus was mainly on obtaining a estimate for the ambipolar electric

field, while the impurity behaviour with such an estimate of the ambipolar electric field is not

investigated in detail. The poloidal contour plots of the saturated tungsten density at different

toroidal angles φV can be seen in figure 4.9. We see that setting EEC RH = −EN T V is indeed

capable of generating a screening of the impurities from the core, qualitatively consistent with

the impurity density ’hole’ observed in such ASDEX-U scenarios (53). In fact, in the kinked

core region in which the effect of the ambipolar electric field is felt, the magnitude of the

ad-hoc electric field EEC RH =−EN T V is smaller than the estimate found in (72). This indicates

that even a small electric field will generate an impurity density ‘hole’. The electron root effect

is not considered in the remainder of this chapter because in the JET experiments we are

primarily interested in modelling, ECRH is not available. However, the ECRH simulation is

still shown here because the results could be relevant for future studies regarding ASDEX-U

experiments and ITER scenarios in which ECRH will be available.
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4.6. Heavy impurity diffusion coefficients

(a) (b)

(c) (d)

Figure 4.9 – Poloidal contour plot at of the saturated heavy impurity density for the 1/1 internal
kink equilibrium of figure 3.7, the rotation profile of figure 4.3c, and an ambipolar electric field
EEC RH =−EN T V . (a) φV = 0◦. (b) φV = 90◦. (c) φV = 180◦. (d) φV = 270◦.

4.6 Heavy impurity diffusion coefficients

The saturated heavy impurity density profiles are the most important results produced in

our study into the effect of a 1/1 internal kink mode on heavy impurity transport. This is

because they provide knowledge about the possible accumulation of heavy impurities on

axis for different physics mechanisms. However, studying what happens in the transient

phase between the initial impurity density configuration and the final saturated state is still of
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interest as it may provide us with information about how fast the impurities accumulate in the

presence of the different physics effects.

We may start by analysing the differences between parallel (relative to the magnetic field)

and cross field impurity transport. In figure 4.10, we observe the poloidal contour plots

showing the evolution of the heavy impurity density for the axisymmetric case with a rotation

of fmode = 15kH z. As stated in section 3.2.1, we have chosen to initialize the impurities at

s = 0.9, localized around θ =−π/2 in order to model impurities that are being detached from

a JET-like divertor configuration. This initial configuration can be seen in figure 4.10a. The

impurities are transported rapidly along the field lines, and are trapped in the outboard region

of the flux surface due to centrifugal effects. This configuration can be seen in 4.10b which

represents the impurity density t = 0.04s. As expected we verify that parallel transport of

impurities is faster than cross-field transport. Impurities are trapped poloidally before any

cross-field transport is observed. In fact, we may observe that parallel transport due to the

poloidal centrifugal force occurs at a time scale of around τ∥ ∼ 0.01−0.1s. In figure 4.10c we see

the impurity density at t = 0.8s, at which time the impurities were already transported across

the flux surfaces and have started to accumulate off-axis. From 4.10c we see that cross-field

transport for axisymmetry occurs over a time scale of τ⊥ ∼ 0.1−1.0s for this axisymmetric

rotating case.

(a) (b) (c)

Figure 4.10 – Poloidal contour plot at φ = 0 of the heavy impurity density obtained with
VENUS-LEVIS at different times for the axisymmetric case with a rotationΩmax = 15kH z. (a)
At t = 0.0s (initial configuration). (b) At t = 0.04s. (c) At t = 0.8s.

A further analysis can now be undertaken to obtain the approximate time needed for the

impurity density to saturate. This provides a numerical estimate of the cross-field diffusion

coefficients in the presence of different physics mechanisms. To perform this study, we show

in figure 4.11 the normalized flux averaged impurity density at different times for different

mechanisms. The normalization factor 〈NW 〉0 is the maximum of the flux averaged impurity

density profile for the initial configuration at t = 0.0s which also corresponds to the black line

in figures 4.11a, 4.11b and 4.11c. In figure 4.11a we analyse the axisymmetric case without
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4.6. Heavy impurity diffusion coefficients

rotation. From 2.151 and considering the plasma parameters of #92181 we obtain that the

diffusion coefficient associated with the density gradients is DNeo
NI

∼ 0.01m2/s. As we see

from figure 4.11a the impurity density takes around 12s to reach the final state in which it

accumulates on axis. Since it takes around 6s for the impurities to move across half the minor

radius we obtain a numerical diffusion coefficient of DNeo
num ≈ 0.0726m2/s which is of the same

order of magnitude as the analytical estimation. In the axisymmetric case with rotation of

fmax = 15kH z, which is presented in figure 4.11b, we see that in order to reach the final off-axis

peak from a density peaking at (r /a)2 = 0.9 a time interval of around 1.8−2.0s is necessary.

This implies that the diffusion coefficient for this case is DNeo
num ≈ 0.4737m2/s. This value is

one order of magnitude larger than the axisymmetric case without rotation, which is expected

because the rotation enhances heavy impurity cross-field transport.

The last case in figure 4.11c shows the 1/1 internal kink case with a rotation of fmode = 15kH z,

and taking into account the self consistent effect of the NTV electric field. We observe that it

takes around 1.2−1.4s for the impurities to saturate on axis from an initial density peaking at

s = 0.9. Using this time interval an estimate for the diffusion coefficient including 3D effects

would be DNeo
num ≈ 0.69m2/s. However, this time interval should not be used to obtain an

estimate of the 3D modified transport diffusion coefficient, as in 4.11c all the impurities were

initialised in the axisymmetric region. Thus, the transport is mainly unaffected by 3D effects

until some of the particles start to reach the 3D core region around s = 0.4. In fact, in figure

4.11c we see that as the first impurities reach this area around t = 0.2s, they quickly start to

strongly accumulate on axis (orange curve), whilst in the axisymmetric case (see orange curve

of figure 4.11b) the impurities that reach this area are still not accumulating off-axis. A better

estimate of the 3D modified diffusion coefficient can be obtained from figure 4.12). In this

case the impurities are initialised around (r /a)2 = 0.5 (black curve). Thus, roughly half of the

impurities are initialised inside the 3D region. The blue curve shows the impurity density at

t = 0.1s for the axisymmetric case with rotation and the red curve the 3D case with rotation

and NTV electric field. We see that 0.1s is enough for the particles to strongly accumulate on

axis and obtain the same accumulation shown in the saturated state of figure 4.11b, while for

the axisymmetric case (blue curve of figure 4.11c) the off-axis accumulation level is not the

same as that observed in the saturated state of figure 4.11b. Considering the time interval of

0.1s and (r /a)2 = 0.5 we conclude that the transport due to the synergy of 3D effects, rotation

and NTV is fast. The diffusion coefficient for this case is DNeo
num ≈ 5.0m2/s i.e. two orders of

magnitude larger than the axisymmetric case without rotation, and one order of magnitude

larger than the rotating axisymmetric case. In addition, the final state of the 3D rotating case

is much more peaked than the other two cases.
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Figure 4.11 – Flux averaged radial profiles of heavy impurity density obtained with VENUS-
LEVIS at different times normalized against the maximum 〈NW 〉0 of the flux averaged density
profile for the initial configuration (t=0.0s). This allows an investigation into the radial speed
of impurities in the presence of the different physics effects. (a) Axisymmetry without rotation.
(b) Axisymmetry with rotation mode = 15kH z. (c) 1/1 internal kink with fmode = 15kH z and
NTV electric field. The initial flux averaged density profile is approximately the same (black
data points) in (a), (b) and (c).
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4.7. Impact of the 1/1 internal kink amplitude on heavy impurity transport
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Figure 4.12 – Flux averaged radial profiles of heavy impurity density obtained with VENUS-
LEVIS at different times normalized against the maximum. The particles are initialised around
(r /a)2 = 0.5.

4.7 Impact of the 1/1 internal kink amplitude on heavy impurity

transport

Simulations were performed with various kink perturbation amplitudes in order to see if

the kink amplitude is the main player in setting the very fast transport described above.

The amplitude of the m = 1,n = 1 radial displacement ξ (and associated perturbed poloidal

magnetic field δB(1,1)) used for the equilibrium in figure 4.11c was reduced to 74.91%, 53.53%,

29.60%, 16.22% and 12.15% while maintaining other conditions (see figure 4.13). The values of

ξ were taken at the position of the minimum of the safety factor profile. In figure 4.13a we can

see the heavy impurity density normalized against 〈NW 〉0 at t = 0.2s for the different levels of

reduced kink amplitude. The results indicate that the levels of transport are reduced as the

kink amplitude is decreased. The peaking of the saturated heavy density profile also decreases

with a decrease of the kink amplitude as expected. This can be seen in figure 4.13b in which

the saturated heavy impurity density normalized against 〈NW 〉0 is shown for different values

of the kink amplitude. At kink amplitudes of 16.22% and 12.15% (relative to the amplitude

of the kink shown in figure 4.11c) the transport is as slow as the axisymmetric transport with

rotation (see figure 4.13a). However, the kink amplitudes of 16.22% and 12.15% seem to still

have a non-negligible impact in the peaking of the saturated density. The saturated states for

these two cases, respectively curves red and blue of figure 4.13b are slightly deviated from the

axisymmetric case (black curve). It is also interesting to note that in figure 4.13b the behaviour

of the saturated density in the region 0.6 < r < 1 for the 3D cases with largest perturbation

amplitudes is different from the axisymmetric case. It is important to point out that although
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the amplitude of the 1/1 mode is much larger in the core region, there is still a residual nonzero

amplitude of this mode in the outer region. Moreover, residual amplitudes of other modes

with n 6= (0,1) exist throughout the plasma for the 3D simulation (see figure 3.8). However,

no distinct behaviour was seen when artificially setting these residual 3D modes in the outer

region. The same transport characteristics were still observed for the region 0.6 < r < 1. This

means that this behaviour is due to the transport caused by the n = 1 moode extending into

the outer region. The overall saturated density profile is affected by the extra transport due to

the NTV electric field.
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Figure 4.13 – Effect of reducing the amplitude of the kink displacement of figure 3.7 (δB =
δB(1,1)). (a) Normalized impurity density at t = 0.2s. (b) Saturated normalized impurity
density.

Instead of a 3D effect, one might think that the experimentally observed fast transport is due

to an increase of the main ion density gradient, or due to a hollow main ion temperature

profile in the kink region caused by the effect of the 3D field on profiles. The case of a hollow

temperature profile is of particular interest as the on-axis plasma temperature decreases

slightly between the times t = 45.9s and t = 46.63s for the JET pulse #92181, which can be

seen in figures 3.2 and 3.3. Axisymmetric simulations were thus performed with increased

normalized main ion density gradient in the kink region. A normalized main ion density

gradient of one order of magnitude larger than the one used in figure 4.11b was considered.

Impurity accumulation on axis was observed after 0.5s for particles initialised around s = 0.9,

which leads to a diffusion coefficient of DNeo
num ≈ 1.8m2/s which is still slower than the diffusion

coefficient DNeo
num ≈ 5.0m2/s observed for the 3D case with δB = δB(1,1). A similar result was

obtained when considering a hollow main ion temperature profile in the core region with a

normalized temperature gradient of one order magnitude larger than the gradient used in
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4.8. Conclusion

figure 4.11b. This is expected since both diffusion coefficients 2.151 and 2.152 associated with

main ion density and temperature gradients have the same magnitude.

It is worth noting that the increased impurity accumulation on axis could also lead to a large

impurity density gradient. This gradient, if large enough, could be a source of a secondary

stage of fast transport. This effect is not taken into account in VENUS-LEVIS. For the trace

limit which we consider in VENUS-LEVIS this drive of impurity transport should be smaller by

a factor of 1/ZW than the other drives. Dropping the trace limit could in principle enhance

or decrease the diffusion coefficient associated with the impurity density gradient as well

as any of the other diffusion coefficients. However, such a study is out of the scope of the

work of this thesis. From the simulations performed, we conclude that the fast transport

observed in figures 3.2 and 3.3 (JET) is best explained by 3D effects when the trace limit is a

good approximation. And when it is not a good approximation, the 3D effects considered here

establish rapidly peaked conditions from which self collision effects may then take over later.

4.8 Conclusion

This chapter focused in applying the numerical tools developed and presented in chapter 3

to gain a better understanding of how a saturated 1/1 internal kink mode can impact heavy

impurity transport.

We first recover the well known physics of axisymmetric heavy impurity transport in the

absence of strong rotation. The friction force, in an axisymmetric equilibria, pushes the

impurities radially inward while the thermal force provides a screening effect of impurities

(44). When including strong toroidal rotation, similar to that observed experimentally for the

JET pulse of interest (see figures 3.2, 3.3 and 4.2), the usual poloidal centrifugal trapping of

the impurities is observed (see 4.4b) which enhances the heavy impurity transport driven by

the friction and thermal forces (see figure 4.11) (46), (47), (48). However, for the experimental

case of interest the rotation is strong enough for the radial centrifugal force to be important

in driving radially outward transport of impurities (as studied in (46)), which makes them

accumulate off-axis (see figure 4.4a), contrary to what would happen if no rotation was present

(see figure 4.4a).

We then analysed the effect of the 1/1 internal kink on the heavy impurity behaviour. We first

studied the interesting case (though not completely consistent) of no ambipolar electric field.

In this situation the background ion mean parallel diamagnetic flow and heat flux is seen

to play an important role on heavy impurity transport if impurity density asymmetries due

to centrifugal effects are present. The flow inverts its sign in the region of the kinked core,

when compared with its axisymmetric value. As a result, the friction force in the kinked region

will act to screen impurities from the core while the thermal force will act to push them to

the axis if strong rotation is present (see figure 4.5). The fully consistent 3D case with the

effect of the 1/1 internal kink, strong rotation and ambipolar electric field is then considered.

It is seen that the electric field due to NTV is enough to drive strong accumulation of the
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impurities, contrary to what is seen in the consistent axisymmetric case (see figure 4.7). The

impurity accumulation is generated by the synergy between the effects of the 1/1 internal kink,

strong rotation, and ambipolar electric field, thus explaining the observed accumulation of

impurities in the strong 3D phase of the JET pulse #92181 (compare figures 3.3 and 4.7). The

transport due to the consistent treatment of 3D effects is seen to be enhanced when compared

to the case of axisymmetry with rotation (see figure 4.11). We also conclude that decreasing

the size of the 1/1 internal kink perturbation decreases this enhancement of the impurity

transport, but even small 1/1 internal kink amplitudes can have an effect on the final saturated

heavy impurity state. Finally, we also try to postulate the physical mechanism behind the

tungsten density ’hole’ observed in ASDEX-U (53). We use an ad-hoc model for an ambipolar

electric field associated with an electron root that could appear in ECRH heated operational

scenarios, which is similar to previously suggested models (72) but with a smaller magnitude.

However, in (72) the heavy impurity physics was not described in detail, whilst in this thesis we

can make use of the tools developed to model and understand the impurity behaviour in the

presence of such an ambipolar electric field, flows and 3D effects. A hollow tungsten density

is observed as a result. While better modelling of the electric field in such cases is necessary

in the future, the calculations presented here give some insight into the behaviour of heavy

impurity transport in the presence of an electron root solution for the ambipolarity electric

field, strong rotation and a 1/1 internal kink mode. Such a situation is useful for understanding

ASDEX-U experiments and future ITER scenarios in which such scenarios can be present.

To summarize, the results obtained in this chapter provide a better understanding of the

impact of long living 1/1 internal kink modes on heavy impurity transport. This understand-

ing should help provide ways of designing operational scenarios to prevent heavy impurity

accumulation, either by avoiding such modes or making use of them to help screen impurities.

Indeed, we see that reducing the 1/1 internal kink amplitude to small values can reduce accu-

mulation drastically (see figure 4.13b). Furthermore, the interesting effect of the ion parallel

mean flow as well as the screening effect of an electron root solution of the ambipolar electric

field could in principle be manipulated to design operational scenarios in the presence of a

long living 1/1 internal kink mode to screen impurities from the core.
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5 Conclusions and Outlook

This thesis pursued modelling of heavy impurity transport in the presence of long living

saturated 3D MHD perturbations. Such features are important in tokamaks with tungsten

divertors. Although, mostly axisymmetric, the plasma in these devices can often present long

living 3D saturated perturbations, like for example the 1/1 internal kink. However, the effect

of such 3D structures is often not considered when modelling the behaviour of heavy impurity

transport. Historically, this has been presumably in order to focus on other important physics

properties such as strong toroidal rotation, ICRH heating and the evolution of the background

ion density and temperature profiles. Another reason for this could be simply that 3D transport

with rotation has been considered too complex. However, we know from stellarator devices

that 3D geometry strongly impacts impurity transport. It is thus not obvious why the same

should not happen in tokamak plasmas with 3D MHD perturbations. Nevertheless, it is

not possible to just assume that the same impurity behaviour observed in stellarators will

be observed in tokamaks with 3D perturbations, because stellarators lack strong plasma

rotation. It is known that rotation has an important impact on heavy impurity transport even

in axisymmetric tokamak plasmas. Crucially, we have shown in this thesis that the synergetic

effect of strong toroidal rotation and 3D MHD perturbations are crucial for fully describing

heavy impurity transport in tokamaks with long living 3D perturbations.

The analytical descriptions and models of interest to study heavy impurity transport in such

scenarios are presented in chapter 2. These results are needed to further develop the code

packages composed of VMEC, VENUS-LEVIS and auxiliary codes, as addressed and presented

in chapter 3. Finally, in chapter 4, we used the numerical tools described in chapter 3 to model

heavy impurity transport in the presence of a 1/1 internal kink mode. The main objective of

this study was to model the weakly and strongly 3D phase of JET pulse #92181 in which a long

living 1/1 mode was present. Due to the existence of such an experimental scenario, such

studies provide a ‘benchmark’ of the code against experiment, as well as to better understand

the different physics involved in such scenarios. As such, we start by modelling the weakly

3D phase with an axisymmetric equilibrium. The usual inward radial transport due to the

friction force is observed, despite the screening provided by the thermal force. However,
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the strong rotation force observed in such experiments provides both poloidal asymmetries

as well as screening due to the strong radial centrifugal force. The screening provided by

the radial centrifugal force is enough to accumulate the impurities off-axis, which agrees

with the experimental observations in the weak 3D phase of JET pulse #92181. Contrary

to the axisymmetric case, the consistent model of a 1/1 internal kink mode shows on-axis

accumulation of heavy impurities due to the synergetic effect of the 3D geometry, rotation

and NTV ambipolar electric field. Such strong accumulation agrees with the experimental

observations of the strongly 3D phase of JET pulse #92181. Furthermore, the synergy between

3D, rotation and NTV ambipolar electric field is observed to enhance the heavy impurity

diffusion coefficient by an order of magnitude when compared with the axisymmetric case

with the same rotation. These results are thus a step forward in understanding the importance

of the effect of the 1/1 internal kink mode on heavy impurity transport through modelling.

In particular, these results help in the understanding of heavy impurity behaviour during

JET hybrid scenarios in which the 1/1 internal kink is present. Previous modelling had been

undertaken in (55) and (56), but important effects such as the thermal force and the ambipolar

electric field were not taken into account in a consistent way.

Since the results are systematically studied by investigating the effect of every physics mecha-

nism involved on heavy impurity transport one might hope to isolate the physics mechanisms

observed in ASDEX-U experiments as well as possible ITER and DEMO scenarios with 1/1

kink modes. However, these tokamaks have (or will have) the possibility of heating the plasma

through ECRH. Such a heating system, not present in JET experiments, may add extra impor-

tant physics when considering the behaviour of heavy impurity transport (53). In order to gain

some physical insight a simple model for an ECRH ambipolar electric field was considered.

The model consisted of simply choosing the ambipolarity electric field as EEC RH =−EN T V .

This was done to model the electron root solution (positive electric field) often associated with

such scenarios due to the loss of hot electrons. While the choice of such an electric field seems

a rather crude approximation, it is not much more crude than previous proposed analytical

solutions (72). In the latter paper (72), the ambipolar electric field solution is found to be

approximately constant in the core region and positive, but the heavy impurity physics is not

modelled in detail. The electric field EEC RH chosen for our simulation is almost constant,

albeit of smaller magnitude than in (72), and with that electric field, the simulations in this

thesis provide an extra insight into how the heavy impurities actually behave in the presence

of the ambipolar electric field. The results are in agreement with the observations seen in an

ASDEX-U scenario in which a 1/1 internal kink mode and ECRH heating are simultaneously

present (53). This is an interesting result in itself as it shows that screening of the impurities

from the kinked region should occur for a positive ambipolar electric field. Nevertheless, to

better compare against the ASDEX-U experiments more precise modelling of the ambipolar

electric field is necessary. Such an extension of this work could indeed be important as it also

has implications for better understanding of future ITER scenarios in which ECRH may be

applied during hybrid operation with a 1/1 internal kink mode. The extension of this work may

be achieved by using a better electric field estimate of ASDEX-U experiments, in particular via
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dedicated simulations.

Whilst the results presented in this thesis are focused on understanding the effect of the

1/1 internal kink mode on heavy impurity transport, both the theoretical and numerical

frameworks in chapters 2 and 3 can be used to consider long lived 3D ideal MHD saturated

perturbations beyond that of the 1/1 internal kink. For example, edge harmonic oscillations are

quite important in the present panorama of tokamak physics. These 3D MHD perturbations

are present in QH-mode operation scenarios. Such scenarios are being considered for the

European DEMO design because they avoid edge localised modes which are intolerable for

a machine the size of DEMO (and most likely ITER). The presence of such modes, though

beneficial in this way, could indirectly lead to strong transport of heavy impurity from the edge

region to the core region. Indeed, there may be indications that EHOs in ASDEX-U can cause

inward transport of impurities. The numerical tools presented in this thesis could be used to

study such a problem and help understanding the effect of such modes on heavy impurity

transport. Such modelling has already been started, but the results are still inconclusive as

the heavy impurity transport in such cases depends greatly on the choice of the background

ion density and temperatures. Furthermore, the importance of self-induced impurity density

asymmetries due to collisions seem to be quite important due to the strong gradients present

in such experiments. For some cases a radially inward transport of impurities has been seen,

but for other cases the opposite occurs. More modelling on this subject is thus necessary.

We have seen that the results of this thesis demonstrate the importance of considering 3D MHD

perturbations in tokamak plasmas when studying heavy impurity transport. The theoretical

understanding obtained from this work may help provide insight into how to mitigate heavy

impurity accumulation during other saturated modes like EHOs in the future. However,

the study of the effect of nonlinear island perturbations on heavy impurity transport is also

very important because high performance pulses often have neoclassical tearing modes

and we have seen devastating inward impurity transport in JET (54). Treating these types

of structures with the formalism in this thesis is a more difficult subject, but it should be

possible provided a way of calculating the background ion flow and heat flux exists. The drift

kinetic equation for the main ions has to be solved in the presence of such structures to obtain

the necessary geometrical factors. While some existing analytical calculations (35) provide

approximated formulas for the geometrical factors for such cases, a general formula does

not exist. Nevertheless, an alternative method to obtain the required flow and heat flux may

exist. Indeed, it should be possible to obtain the ion and electron flows as well as the ion

heat flux by successively following bulk ions and electrons numerically, and to sample the

flow and heat flux of the ions from the velocity distribution obtained. This would have to be

undertaken in a magnetic configuration which includes the effects of a magnetic island. Once

this has been accomplished it should be easy to then undertake the remaining modelling for

the heavy impurity transport. Such an approach may be beneficial not only for the studying of

nonlinear MHD tearing modes, but also to obtain more exact numerical solutions for the ion

and electron flow in the presence of 1/1 non-resonant internal kink modes or EHOs. This fully

consistent methodology would also make possible to obtain a more accurate solution of the
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ambipolar electric field for all applications.

We conclude by saying that the work of this thesis has successfully explained the accumulation

of impurities during 1/1 experiments JET and ASDEX-U, but also lays down the foundations

for exciting and important applications in the future.

104



A Considerations on flux coordinates

We present here some details on how to transform between general flux coordinate system

to Boozer and Hamada coordinates. This derivation is based on the one presented in (63). It

is presented here to help understand the numerical auxiliary code developed to transform

between VMEC coordinates and Booozer or Hamada coordinates. Part of this discussion was

done in section 2.4.

A.1 Flux coordinates

As stated in section 2.3 the equilibrium magnetic field in the MHD description of a plasma

obeys to the following equations in the absence of strong flows

J ×B =∇∇∇P, (A.1)

µ0 J =∇∇∇×B , (A.2)

∇∇∇·B = 0. (A.3)

Such equations imply that the equilibrium magnetic field configuration stablished in the

plasma has a special relation with the density current and the pressure in the plasma. This

special relation allows the plasma to be more easily described in a set of spatial coordinates

called flux coordinates (63), (64), (65), (66). These special set of coordinates are important as

they often simplify calculations. Equation A.2 leads to the constraint

∇∇∇· J = 0. (A.4)

Moreover, 2.36 implies the following constraints

J ·∇∇∇P = 0 (A.5)
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and

B ·∇∇∇P = 0. (A.6)

These constraints mean that in a magnetic field configuration obeying to the MHD force

balance equation, the current density and magnetic field vectors lie in surfaces of constant

pressure. This implies that each of these surfaces have an associated magnetic flux and total

current associated with them. This is so because the magnetic field and density current vector

fields have zero divergence, and thus the same magnetic and current lines will stay in the

same surface along the entirety of the torus. We then call these surfaces, flux surfaces. Another

equivalent meaning of these constraints is to state that if we describe the magnetic field and

current density in a set of flux coordinates (s,θ,φ), where s is a radial coordinate that labels

the flux surface, then the magnetic field and current density vanish across flux surfaces which

can be mathematically written as B s = 0 and J s = 0. These constraints greatly simplify the

description of problems in the MHD description. If we assume that the toroidal magnetic

equilibrium described by such equations can be represented by these flux surfaces in a way

that they are nested surfaces with a single magnetic axis, then we can describe the pressure as

being function of the single radial variable:

P = P (s) (A.7)

Equations A.3, A.6 and A.7 implies that a potential function v∗ exists such that the contravari-

ant magnetic field is of the form

B =∇∇∇s ×∇∇∇v∗. (A.8)

Equations A.4, A.5 and A.7 implies that a potential function w∗ exists such that the contravari-

ant current density is of the form

J =∇∇∇w∗×∇∇∇s. (A.9)

This form of the current density vector in conjction with Faraday’s law A.2 implies that a

potential function u∗ exists such that the covariant magnetic field is of the form

B =∇∇∇u∗+w∗∇∇∇s. (A.10)

The definitions of poloidal and toroidal magnetic flux inside a poloidal and toroidal flux

surface labeled by s are given by

2πΨP (s) =
∫ ∫

Bθd sdφ (A.11)
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and

2πΨT (s) =
∫ ∫

Bφd sdθ. (A.12)

As such the form of potential function v∗ has to be

v∗(s,θ,φ) = dΨT

d s
θ− dΨP

d s
φ+ ṽ(s,θ,φ), (A.13)

in which ṽ(s,θ,φ) is an arbitrary periodic function in θ and φ.

The definitions of poloidal and toroidal current (multiplied by µ0) passing through a poloidal

and toroidal flux surface labeled by s are given by

2πIP (s) =
∫ ∫

µ0 Jθd sdφ (A.14)

and

2πIT (s) =
∫ ∫

µ0 Jφd sdθ (A.15)

and lead in a similar fashion to the following form for the potential function w∗

w∗(s,θ,φ) =−d IT

d s
θ− d IP

d s
φ+ w̃(s,θ,φ), (A.16)

in which w̃(s,θ,φ) is again an arbitrary periodic function in θ and φ. Faraday’s law A.2 then

implies that the potential function u∗ is

u∗(s,θ,φ) = IT θ+ IPφ+ ũ(s,θ,φ), (A.17)

with ũ(s,θ,φ) an arbitrary periodic function in θ and φ. These potential functions define an

arbitrary set of flux coordinates. Chosing specific forms of the functions ṽ(s,θ,φ), w̃(s,θ,φ)

and ũ(s,θ,φ) will lead to different choice of θ and φ coordinates. Each set of flux coordinates

(s,θ,φ) is a valid set of coordinates to describe a equilibrium magnetic field which is a solution

of the MHD force balance equation A.1. Substituting A.13, A.16 on A.8 and A.10 and using

these formulas on the MHD equilibrium equation A.1 one obtains the follow equations

B ·∇∇∇w̃(s,θ,φ) = dP

d s
+ d IT

d s
Bθ+ d IP

d s
Bφ, (A.18)

B ·∇∇∇ṽ(s,θ,φ) = dP

d s
− dΨT

d s
Jθ+ dΨP

d s
Jφ, (A.19)

B ·∇∇∇ũ(s,θ,φ) = B 2 − IT Bθ− Ip Bφ, (A.20)

which can be used to obtain the function w̃ and hold in any flux coordinate system. These

equations are magnetic differential equations due to the presence of the magnetic differential

operator B ·∇∇∇. Such type of equations can be written generally as
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B ·∇∇∇F (s,θ,φ) =S , (A.21)

with S a single-valued periodic function. Such type of equations have the two following

solvability conditions (63)

〈S 〉 = 0, (A.22)∫
dl

B
S = 0 (A.23)

in which the flux average for a function X (s,θ,φ) is defined as

〈X (s,θ,φ)〉(s) =
∫ 2π

0

∫ 2π
0 X (s,θ,φ)

p
g dθdφ∫ 2π

0

∫ 2π
0

p
g dθdφ

=
∫ 2π

0

∫ 2π
0 X (s,θ,φ)

p
g dθdφ

V ′ . (A.24)

Here,
p

g (s,θ,φ) = (∇∇∇s ·∇∇∇θ×∇∇∇φ)−1 is the jacobian in the set of flux coordinates (s,θ,φ) and

V (s) is the volume enclosed by the flux surface labeled by s such that the differential volume

element is dV =p
g d sdθdφ. dl is the line element along a closed magnetic field line. Applying

these two solvability constraints to either equation A.18 or A.19 yields the two following

equations

dP

dV
=−4π2

(d IT

dV

dΨP

dV
+ d IP

dV

dΨT

dV

)
, (A.25)

∫
dl

B
= NT

2π

dΨT

dV
, (A.26)

in which NT is the number of toroidal rotations that a closed magnetic field line undergoes.

Equation A.25 states the flux averaged MHD balance equation. Applying the same solvability

constraints to A.20 holds the following equations

〈B 2〉 = 4π2 dΨT

dV
(IP + ιIT ), (A.27)∫

Bdl = 2πNT (IP + ιIT ), (A.28)

in which ι(s) = dΦP
dΦT

= 1
q(s) the rotational transform, q(s) the safety factor. The constraints A.25,

A.26, A.27 and A.28 have to hold in a system of flux coordinates (s,θ,φ) in order for such coordi-

nate system to exist. It is of often the case in which is interesting to work with flux coordinates

with distinct properties. Such case is when we want to solve magnetic differential equations

like the ones just presented which have a magnetic differential operator B ·∇∇∇. General flux

coordinates already simplify this operator by ensuring B s = 0. Nevertheless, it is clear that this

operator is treated in a simpler way if the poloidal and toroidal contravariant components of
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the magnetic field are flux functions such that 〈Bθ(s,θ,φ)〉 = Bθ(s) and 〈Bφ(s,θ,φ)〉 = Bφ(s). In

which we define for an arbitrary function flux function X (s) the following notation X ′(s) = d X
d s .

The sets of flux coordinates in which the contravariant components of B are flux functions are

called straight field line coordinates as the representation of the field lines in the (θ,φ) plane

are straight lines. Since from A.8 the magnetic field lines are defined by the intersection of

a flux surface s and a surface in which v? is constant it is clear to see that straight field line

coordinates are obtained when imposing ṽ = 0. The simplest set of coordinates that can be

obtained without considering the trivial case (with v? = u? = w? = 0) are obtainined by im-

posing v? = u? = 0 or v? = w? = 0. The first set of coordinates are called Boozer coordinates

(64), (65) and the second Hamada coordinates (66).

A.2 Boozer coordinates

Boozer coordinates (s,θB ,φB ) are straight field line coordinates with a simpler representation

of the covariant magnetic field and jacobian. Imposing v? = u? = 0 leads to the following forms

of the potential fuctions v∗(s,θB ,φB ), u∗(s,θB ,φB ) and w∗(s,θB ,φB ) in Boozer coordinates

v∗(s,θB ,φB ) = dΨT

d s
θB − dΨP

d s
φB , (A.29)

u∗(s,θB ,φB ) = IT θB + IPφB . (A.30)

w∗(s,θB ,φB ) =−d IT

d s
θB +−d IP

d s
φB + w̃B (s,B ,φB ). (A.31)

with w̃B (s,B ,φB ) the w̃ function of Boozer coordinates. Since the potential functions v∗, u∗

and w∗ are scalars they have to be identical they are identical evenwhen described in different

system of coordinates. We can thus match equations A.29 to A.13 and A.30 to A.17 to obatin

the gerneral the angle transformation between a general set of flux coordinates (s,θ,φ) and

Boozer coordinates (s,θB ,φB ).

θB = θ+ dΨT

d s

−1

ṽ(s,θ,φ)+ dΨP

d s
GB (s,θ,φ), (A.32)

φB =φ+ dΨT

d s
GB (s,θ,φ), (A.33)

with the Boozer coordinates generator function given by

GB (s,θ,φ) =− IT
dΨT

d s

−1
ṽ(s,θ,φ)− ũ(s,θ,φ)

dΨT
d s (Ip + ιIT )

. (A.34)

Matching A.48 to A.16 and using defnitions A.32, A.33 and A.34 one obatins
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w̃B (s,θ,φ) = w̃(s,θ,φ)+
d IT
d s

dΨT
d s

ṽ(s,θ,φ)+ dΨT

d s

(d IP

d s
+ ιd IT

d s

)
GB (s,θ,φ). (A.35)

Inserting A.13, A.16 and A.17 in A.8, A.9 and A.10 we obtain

B = dΨT

d s
∇∇∇s ×∇∇∇θB − dΨP

d s
∇∇∇s ×∇∇∇φB =∇∇∇ΨT ×∇∇∇θB − ι∇∇∇ΨT ×∇∇∇φB , (A.36)

J = d IT

d s
∇∇∇s ×∇∇∇θB + d IP

d s
∇∇∇s ×∇∇∇φB +∇∇∇w̃B ×∇∇∇φB , (A.37)

B = w̃B∇∇∇s + IT ∇∇∇θB + IP∇∇∇φB . (A.38)

It is clear that the contravariant and covariant forms of the magnetic field are simpler in Boozer

coordinates. Since ũB = 0 in Boozer coordinates, equation A.20 delivers a form for the jacobian

in these coordinates

p
g B = dΨT

d s

IP + ιIT

B 2 , (A.39)

and equation A.18 in Boozer coordinates holds a magnetic differential equation for w̃B (s,θ,φ)

B ·∇∇∇w̃B (s,θ,φ) = dP

d s

(
1− B 2

〈B 2〉
)
. (A.40)

Using the transformation equations A.32 and A.33 one obtains a relation between the jacobians

in the general system of coordinates (s,θ,φ) and the Boozer coordinate system (s,θB ,φB ) which

can be written as

B ·∇∇∇GB (s,θ,φ) = 1p
g B

− 1p
g

(
1+ dΨT

d s

−1 ∂ṽ(s,θ,φ)

∂θ

)
. (A.41)

If ṽ(s,θ,φ),
p

g (s,θ,φ) and B 2(s,θ,φ) are known in (s,θ,φ), equations A.40 and A.41 can be

used to construct the Boozer coordinate system.

A.3 Hamada coordinates

Hamada coordinates (s,θH ,φH ) have the particularity of being straight field line coordinates

in which the current lines are also straight and the jacobian
p

g H (s,θH ,φH ) is a flux function.

Imposing v? = w? = 0 leads to the following forms of the potential fuctions v∗(s,θH ,φH ),

u∗(s,θH ,φH ) and w∗(s,θH ,φH ) in Hamada coordinates

110



A.3. Hamada coordinates

v∗(s,θH ,φH ) = dΨT

d s
θH − dΨP

d s
φH , (A.42)

u∗(s,θH ,φH ) = IT θH + IPφH + ũB (s,θH ,φH ), (A.43)

w∗(s,θH ,φH ) =−d IT

d s
θH +−d IP

d s
φH . (A.44)

with ũB (s,B ,φB ) the ũ function of Boozer coordinates. We can thus match equations A.42 to

A.13 and A.44 to A.16 to obatin the general angle transformation between a general set of flux

coordinates (s,θ,φ) and Hamada coordinates (s,θH ,φH ).

θH = θ+ dΨT

d s

−1

ṽ(s,θ,φ)+ dΨP

d s
GH (s,θ,φ), (A.45)

φH =φ+ dΨT

d s
GH (s,θ,φ), (A.46)

with the Hamada coordinates generator function given by

GH (s,θ,φ) =− IT
dΨT

d s

−1
ṽ(s,θ,φ)+ w̃(s,θ,φ)

dΨT
d s (Ip + ιIT )

. (A.47)

Matching A.43 to A.17 and using defnitions A.55, A.56 and A.47 one obatins

ũH (s,θ,φ) = ũ(s,θ,φ)− IT
dΨIT

d s

ṽ(s,θ,φ)− dΨT

d s

(
IP + ιIT

)
GH (s,θ,φ). (A.48)

Inserting A.13, A.16 and A.17 in A.8, A.9 and A.10 we obtain

B =∇∇∇ΨT ×∇∇∇θH − ι∇∇∇ΨT ×∇∇∇φH , (A.49)

J = d IT

d s
∇∇∇s ×∇∇∇θH + d IP

d s
∇∇∇s ×∇∇∇φH , (A.50)

B = ∂ũH

∂s
∇∇∇s +

(
IT + ∂ũH

∂θH

)
∇∇∇θH +

(
IP + ∂ũH

∂φH

)
∇∇∇φH , (A.51)

which implies that the contravariant magnetic field and current density are straight lines.

Since w̃H = 0 in Hamada coordinates, equation A.18 and A.25 implies the following form for

the jacobian in these coordinates

p
g H (s) = V ′

(2π)2 = 〈pg (s,θ,φ)〉. (A.52)

Equation A.20 in Hamada coordinates holds a magnetic differential equation for ũH (s,θ,φ)
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B ·∇∇∇ũH (s,θ,φ) = B 2 −〈B 2〉. (A.53)

Using the transformation eqautions A.55 and A.56 one obtains a relation between the jacobians

in the general system of coordinates (s,θ,φ) and the Hamada coordinate system (s,θH ,φH )

which can be written as

B ·∇∇∇GH (s,θ,φ) = 1p
g H

− 1p
g

(
1+ dΨT

d s

−1 ∂ṽ(s,θ,φ)

∂θ

)
. (A.54)

As in the Boozer case, if ṽ(s,θ,φ),
p

g (s,θ,φ) and B 2(s,θ,φ) are known in (s,θ,φ), equations

A.53 and A.54 provide a way to construct the Hamada coordinate system.

A.4 Transformation between straight field line coordinates

Let’s suppose we want to transform from a general known system of flux coordinates (s,θ,φ)

to Boozer or Hamada coordinates (s,θN ,φN ) as in the last two sections. But now we know

that the original system is also a straight field line coordinate system. Then all the relations

presented in the previous sections hold, but now we impose ṽ(s,θ,φ) = 0. So that we have

θN = θ+ dΨP

d s
GN (s,θ,φ), (A.55)

φH =φ+ dΨT

d s
GN (s,θ,φ), (A.56)

with GN (s,θ,φ) given by the Boozer or Hamada generator function (see equations A.34 and

A.47) with ṽ = 0 The equation for the generator is then given in general by

B ·∇∇∇GN (s,θ,φ) = 1p
g N

− 1p
g

. (A.57)

A.5 Axisymmetry

In the case of axisymmetry the derivatives of all quantities in order to the toroidal angle are null

( ∂
∂φ → 0), which means that in general the contravariant and covariant forms of the magnetic

field can be given by

B =
(
q(s)+ ∂ṽ

∂θ

)
∇∇∇ΨP ×∇∇∇θ+∇∇∇φ×∇∇∇ΨP , (A.58)

B = ∂ũ

∂ΦP
∇∇∇ΦP +

(
IT + ∂ũ

∂θ

)
∇∇∇θ+ IP∇∇∇φ. (A.59)
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In the cylindrical system of coordinates (R,φg eo , Z ) the toroidal angle is chosen to be the

geometrical angle φg eo . Since the potential functions in axisymmetry are independent of

the toroidal angle, we may substitute the general coordinate φ by φg eo in 2.60 and 2.61. This

implies then that Bφg eo = IP (ΦP ) and that the poloidal magnetic field component is then given

from A.58 BP =∇∇∇φ×∇∇∇ΦP , since the first term is in the toroidal direction. The magnetic field

in cylindrical coordinates is written as

B = |BR |R̂ +|BZ |Ẑ +|Bφg eo | ˆφg eo = BP +Bφg eo∇∇∇φg eo , (A.60)

which make sthe axisymmetric magnetic field in flux coordinates

B =∇∇∇φ×∇∇∇ΨP + IP∇∇∇φ, (A.61)

which is the typical form of the axisymmetric magnetic field (9). It can be noted that the by

changing φ for φg eo will still change the θ angle as well as the functions ṽ and ũ but these

changes have no effect on this way of writing the axisymmetric magnetic field.
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B Derivation of the drift kinetic equa-
tion

We present here a derivation of the drift kinetic equation (10), (9). Part of this topic is discussed

in sections 2.1 and 2.7. We have seen in section 2.1 that the plasma can be described by

following the trajectories of every particle in the system through a distribution function

fs(x , vs , t ). Such distribution obeys in general to the Boltzmann equation given by

d fs

d t
=C ( fs) ⇔ ∂ fs

∂t
+vs ·∇∇∇xs fs + E +vs ×B

ms
·∇∇∇vs fs =C ( fs), (B.1)

A solution to such distribution would allow us to know both the movement of the guiding

centers of the helical trajectories of the particles in the plasma as well as the Larmor radius

gyration. However, it is impossible to solve for such a general solution. In order to solve for

the distribution function it is often necessary to divide this distribution function in a part that

describes the movement of the guiding centers f̄s and and a part that describes the Larmor

gyration of the particles f̃s . To better understand what this means let us write the velocity of a

particle following a helical trajectory around a magnetic field line as follows

v = v∥b̂ +v⊥ = v∥b̂ +|v⊥|(cosϕê1 + sinϕê2) (B.2)

with (v ,ϕ, v∥) a set of cylindrical velocity-space coordinates with the z direction along the

magnetic field direction or along b̂. Here v⊥ and v∥ are respectively the magnitudes of the

perpendicular and parallel components of the velocity with respect to the direction of the

magnetic field line and ϕ is the gyrophase associated with the Larmor gyration. ê1 and

ê2 are orthogonal unit vectors to b̂, which are dependent of the position of the particle.

Thus, the distribution function would in general be written as fs(x , v⊥,ϕ, v∥, t ). If we are only

interested in following the guiding centers of the particles we can take an average along the

gyro movement of the particles which means taking an average in the gyrophase coordinate.

The gyroaverage for a quantity X is thus defined as
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X̄ (v⊥,ϕ, v∥) = 1

2π

∫ 2π

0
X (v⊥,ϕ, v∥)dϕ. (B.3)

We call f̄s(x , v , v∥, t) the gyroaveraged distribution function. f̃s(x , v⊥,ϕ, v∥, t) = fs − f̄s is the

remainder part of the distribution function. The postion of the the particles can also be

devided in the guiding center position Xg and the Larmor radius position vector ρL as

x = Xg +ρL = Xg + b̂ ×v⊥
ΩCs

(B.4)

withΩCs = qs B
ms c the cyclotronic frequency for a particle of species s. We can notice that since

v̄⊥ = 0, then ρ̄L = 0 and thus x̄ = Xg . This means that gyroaveraged distribution function

depends only on the position of the guiding centers such that f̄s(Xg , v⊥,ϕ, v∥, t ). Neoclassical

transport (which is studied by the drift kinetic equation) is caused mostly by the movement of

the guiding centers so the distribution function is also expanded in order to the smallness of

the Larmor radius such that the expansion parameter is

δ= ρθI

L⊥
¿ 1, (B.5)

so that

f = f0 + f1 + ... (B.6)

The temporal derivatives are considered to be second order in δ. At zeroth order the electric

field is electrostatic so that E = −∇∇∇Φ0 +E∗∗∗ with the elecctromagnetic part E∗ ∼ δE . The

constants of motion of the particles trajectories are not the velocities but the magnetic moment

and energy defined (when divided by the mass ms of the particle) as

µ= v2
⊥

2B
(B.7)

and

ε=
v2
∥

2
+ v2

⊥
2

+ qs

ms
Φ0(x). (B.8)

The Boltzmann equation can in these coordinates be written as

∂ fs

∂t
+vs ·∇∇∇xs fs + dµ

d t

fs

∂µ
+ dε

d t

fs

∂ε
+ dϕ

d t

fs

∂ϕ
=C ( fs), (B.9)

where the derivatives of fs are done holding µ, ε and ϕ fixed. By noting that we can choose the

unit vectors ê1 and ê2 to be in the the radial direction of v⊥ (in the velocity space) and in the
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diamagnetic direction defined by b̂ ×v we can write

∇∇∇vs f = ∂ f

v∥
b̂ + ∂ f

v⊥
v⊥
v⊥

+ ∂ f

vϕ

b̂ ×v⊥
v⊥

. (B.10)

Using this result we may write

dµ

d t
=−µ

B
v ·∇∇∇B − v∥

B
v v : (∇∇∇b̂)+ qs

ms
v ·E , (B.11)

dε

d t
= qs

ms
v ·E∗∗∗,(B.12)

dϕ

d t
=ΩC +O (ρLΩC ). (B.13)

Where : indicates a tensor product and v v is a tensor. Dividing the distribution function into

f̄ and f̃ we obtain

∂ f̄

∂t
+v ·∇∇∇x f̄ + dµ

d t

∂ f̄

∂µ
+ dε

d t

∂ f̄

∂ε
+ dϕ

d t

∂ f̄

∂ϕ
+ d f̃

d t
=C ( f̄ + f̃ ). (B.14)

We then can apply a gyroaverage to get

∂ f̄

∂t
+v∥ ·∇∇∇x f̄ + q

m
E∗
∥ v∥

∂ f̄

∂ε
+ dϕ

d t

∂ f̄

∂ϕ
+ d f̃

d t
=C ( f̄ + f̃ ), (B.15)

where we have used
dµ

d t
= 0, (B.16)

since v⊥ = 0, B ·∇∇∇B = 0, and

v v = v2
∥ b̂b̂ + v2

⊥
2

(I − b̂b̂), (B.17)

with b̂b̂ : ∇∇∇b̂ = 0, and where we have used

dε

d t
= q

m
E∗
∥ v∥. (B.18)

Subtracting equation B.15 from B.9 we obatin

v⊥ ·∇∇∇x f̄ + q

m
E∗
⊥ ·v⊥

∂ f̄

∂ε
+ dµ

d t

∂ f̄

∂µ
+ d f̃

d t
− d f̃

d t
=C ( f̄ + f̃ )−C ( f̄ + f̃ ), (B.19)

The leading term in equation B.9 implies
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Appendix B. Derivation of the drift kinetic equation

−ΩC
∂ f0

∂ϕ
= 0 (B.20)

which states that f̃0 = 0 and thus f0 = f̃0 and f̃ ∼ δ f̃ . The leading terms in B.15 are of order

O (ρLΩC f ) which gives the equation

v∥ ·∇∇∇x f0 =C ( f0), (B.21)

Since we may always linearize the collision operator we may write C ( f0) =C ( f0) =C ( f0). The

solvability equation for the magnetic differential equation B.15, can be shown to hold only if

C ( f0) = 0, which happens only if f0 is a Maxellian (H-theorem) such that

f0 = fM (x ,ε) = ns(x)
(ms

2π

) 3
2

Ts(x)−
3
2 e−

msε
Ts (x) , (B.22)

and

v∥ ·∇∇∇x f0 = 0. (B.23)

The O (ρLΩC f ) order terms in B.19 hold the equation

v⊥ ·∇∇∇x f0 −ΩC
∂ f̃1

∂ϕ
= 0 (B.24)

which can be integrated to obtain

f̃1 =−ρL ·∇∇∇x f0 (B.25)

since

v⊥ = ∂

∂ϕ
(v × b̂) = ∂

∂ϕ

(
− ρL

ΩC

)
. (B.26)

The drift kinetic equation is the equation which is given by the terms of order O (ρ2
LΩC f ) in

the gyroaveraged boltzmann equation B.15 and is written as

∂ f̄

∂t
+v∥ ·∇∇∇x f̄1 + q

m
E∗
∥ v∥

∂ f0

∂ε
+ d f̃1

d t
=C ( f̄1). (B.27)
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The term d f̃1

d t can be simplified by using B.25 which implies

d f̃1

d t
=− d

d t

(
ρL ·∇∇∇x f0

)
=−dρL

d t
·∇∇∇x f0 −ρL · d

d t

(
∇∇∇x f0

)
(B.28)

The second term B.28 is proportional to

d

d t

(
∇∇∇x f0

)
=

(
v ·∇∇∇x + dε

d t

∂

∂ε

)
∇∇∇x f0 = v ·∇∇∇x∇∇∇x f0 + qs

ms

∗

∥
v∥

∂

∂ε
(∇∇∇x f0) ≈ v ·∇∇∇x∇∇∇x f0 (B.29)

as the terms multiplied by E∗ are of higher order than the others in B.28 and can be neglected.

The second term of B.28 can thus be written as

−ρL · d

d t

(
∇∇∇x f0

)
=−ρL v ·∇∇∇x∇∇∇x f0. (B.30)

Since

ρL v = v2
⊥

2ΩC
(ê2ê1 − ê1ê2) (B.31)

is antisymmetric and ∇∇∇x∇∇∇x f0 is symmetric then

−ρL · d

d t

(
∇∇∇x f0

)
= 0. (B.32)

The first term in B.28 is proportional to the gyroaverage of

d

d t
ρL = v ·∇∇∇x

( b̂ ×v

ΩC

)
+ qs

ms
(E +vs ×B ) ·∇∇∇v

( b̂ ×v

ΩC

)
= v ·∇∇∇x

( b̂

ΩC

)
×v − c

B 2 E ×B , (B.33)

which is written as

d

d t
ρL =

(
v2
∥ − v2

⊥
)
b̂ ·∇∇∇x

( b̂

ΩC

)
× b̂ + v2

⊥
2

3∑
i

êi ·∇∇∇x

( b̂

ΩC

)
× êi − c

B 2 E ×B = (B.34)

=
(
v2
∥ − v2

⊥
) 1

ΩC
κ× b̂ − v2

⊥
2ΩC

∇∇∇× b̂ − v2
⊥

2ΩC B
b̂ ×∇∇∇B − c

B 2 E ×B . (B.35)

and thus
d

d t
ρL =−vd (B.36)

is the drift velocity of the particle following the magnetic field. The drift velocity is thus an

gyro averaged measure of the deviation of the guiding center of a particle from its original

trajectory along the magnetic field line and it is due to the gyro movement of the particle

around the magnetic field. The drift kinetic eqaution can then be written as
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Appendix B. Derivation of the drift kinetic equation

v∥b̂ ·∇∇∇xs f̄1 +vd ·∇∇∇xs f0 −
qsE∥v∥

Ts
f0 =C ( f̄1). (B.37)

It is an equation for the first order gyroaveraged distribution function. It is this part of the

distribution function that can be used to obtain the parallel part of the background ion flows

in section 2.8.
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