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Abstract
With the increasing importance of Computational Thinking (CT) at all levels of ed-
ucation, it is essential to have valid and reliable assessments. Currently, there is a lack of
such assessments in upper primary school. That is why we present the development
and validation of the competent CT test (cCTt), an unplugged CT test targeting 7–
9 year-old students. In the first phase, 37 experts evaluated the validity of the
cCTt through a survey and focus group. In the second phase, the test was administered
to 1519 students. We employed Classical Test Theory, Item Response Theory, and
Confirmatory Factor Analysis to assess the instruments’ psychometric properties. The
expert evaluation indicates that the cCTt shows good face, construct, and content
validity. Furthermore, the psychometric analysis of the student data demonstrates
adequate reliability, difficulty, and discriminability for the target age groups. Finally,
shortened variants of the test are established through Confirmatory Factor Analysis.
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To conclude, the proposed cCTt is a valid and reliable instrument, for use by re-
searchers and educators alike, which expands the portfolio of validated CT assessments
across compulsory education. Future assessments looking at capturing CT in a more
exhaustive manner might consider combining the cCTt with other forms of
assessments.

Keywords
Computational Thinking, assessment, primary education, expert evaluation,
psychometric validation

Introduction and Related Work

The Increasing Position of CT in Research and Formal Education

An international debate sparked with Wing (2006)’s article presenting Computational
Thinking (CT) as a universally applicable attitude and skill set, as important as reading,
writing and arithmetic. While a consensus has not been reached on the definition of CT,
nor on where its boundaries lie, one prominent definition is the one by Brennan and
Resnick (2012). Brennan and Resnick (2012) decompose CT into: (i) computational
concepts (the concepts most closely related to computer science and programming, that
is, “sequences, loops, parallelism, events, conditionals, operators, and data”), (ii)
computational practices (the strategies and practices required to be apply said con-
cepts), and (iii) computational perspectives (“the perspectives designers form about the
world around them and about themselves”). While CT is traditionally considered to be
the “thought processes that facilitate framing and solving problems using computers
and other technologies” (Relkin & Bers, 2021), more and more researchers argue that
CT is not specific to “those interested in computer science and mathematics”. These
researchers consider that CT has a “multi-faceted theoretical nature” and can be
considered more generally as an example of “models of thinking” (Li et al., 2020).
Under this new light, CT is envisioned to have a broader role to play in education, from
STEM-related disciplines (Li et al., 2020; Peel et al., 2020; Weintrop, 2016), to
languages (Rottenhofer et al., 2021), and transversal competences1 such as “creative
problem solving” (Grover et al., 2017; Chevalier et al., 2020). Some researchers thus
consider CT to be one of the fundamental competences that every citizen must acquire
in the 21st century (Li et al., 2020). The growing importance of CT as a transversal
competence has led, in the past decade, to an increase in the research around CT (Ilic
et al., 2018; Li et al., 2020; Tang et al., 2020) as well as in the initiatives seeking to
equip K-12 students with CT competences (Basu et al., 2020). Such initiatives operate
through informal education (Weintrop et al., 2021), extra-curriculars, and formal
education settings (Weintrop et al., 2021), some even starting at the level of kinder-
garten (Bocconi et al., 2016).
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The Need for CT Assessments at all Levels of Education

With this “tremendous growth in curricula, learning environments, and innovations
around CT education” (Weintrop et al., 2021), the design of tools to assess CT
competences in a developmentally appropriate and reliable way throughout compul-
sory education becomes crucial (Hsu et al., 2018). Indeed, “CTassessment is important
[to document] learning progress, [measure] lesson effectiveness, [assist] in curriculum
development and [help] identify students in need of greater assistance or enrichment”
(Relkin & Bers, 2021). As CT is also becoming popular among K-9 educators (Chen
et al., 2017; Mannila et al., 2014), it is also paramount to develop assessments for that
age range. Indeed, as mentioned by Relkin and Bers (2021), “one of the greatest
challenges to integrating CT into early elementary school education has been a lack of
validated, developmentally appropriate assessments to measure young students’ CT
skills in classroom and online settings” (Lockwood & Mooney, 2017; Román-
González et al., 2019). Assessment tools should therefore be adapted for use, not
only by researchers looking to design CT learning experiences (Weintrop et al., 2021)
and investigate how best to foster CT competences (Chevalier et al., 2020), but also by
teachers aiming to ensure that their students are acquiring the desired competences, and
this starting from kindergarten onward (Zapata-Cáceres et al., 2020). Provided the
pressing need to clarify the question about how best to assess CT competences (Tang
et al., 2020; Lockwood & Mooney, 2017; Hsu et al., 2018), it is not surprising to find
that CT assessment “is at the forefront of CT research [and] gathering the greatest
interest of researchers” (Tikva & Tambouris, 2021). However, as stated by Zapata-
Cáceres et al. (2020) and Román-González et al. (2019), most efforts to develop
assessments for CT have focused on secondary school and tertiary education.

The Importance of Validated and Reliable Instruments Which Do Not
Conflate with Programming Abilities

Developing CT assessments must consider, in addition to the developmental appro-
priateness for the target age group, the different assessment formats which exist, their
use cases, and their scalability. From a design perspective, four main formats have been
used to assess CT (Tang et al., 2020): traditional tests (often used in combination with
other assessment methods), portfolios (to “[situate] CT assessment in a real-world
context and further allows teachers and researchers to provide formative feedback”),
interviews (“to support or elaborate on the results of traditional or portfolio assessment
by specifying students’ thinking processes”) and surveys (to assess dispositions and
attitudes towards CT). The most common approach seems to consist in the use of
portfolios to “analys[e] projects performed by students in specific programming en-
vironments” (Tang et al., 2020). Unfortunately, assessment tools following this ap-
proach carry the risk of “conflating CT with coding abilities” (Relkin & Bers, 2021),
which may limit their use in (i) pre-post test designs (Chen et al., 2017), (ii) when
validating new learning environments, and (iii) in cases where Computer Science (CS)
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unplugged activities (Bell & Vahrenhold, 2018) are employed to develop students’ CT
competences2. Because of the transversal nature of Computational Thinking and the
“variety of methods by which CT is taught and contexts in which students learn CT”
(Weintrop et al., 2021), researchers advocate the development of CT tests that go
beyond self-reporting, and are more general (Tikva & Tambouris, 2021). Such as-
sessments should be agnostic of the specific content of the study and the programming
environments. The past few years have thus seen a rise in age appropriate unplugged
CT assessments targeting CT skills3 which

i) Can be administered without employing screens (referring to the definition of
Unplugged provided by Bell & Vahrenhold, 2018) and can thus be easily
deployed in various settings and at a large scale,

ii) Do not require any prior knowledge pertaining to programming or coding
(including that of a specific programming language) and are therefore adapted
for use in pre-post test experimental designs,

iii) Put a strong emphasis on the reliability and validity said instruments (Chen
et al., 2017; Relkin et al., 2020; Román-González et al., 2017, 2018, 2019;
Zapata-Cáceres et al., 2020; Wiebe et al., 2019), something which has been
identified so far as lacking in the CT assessment literature (Tang et al., 2020).

The Lack of Existing Validated and Reliable CT Assessments Spanning
Compulsory Education

Considering the importance of having unplugged CTassessments which are (i) agnostic
of programming skills and (ii) have undergone psychometric analyses for validity and
reliability, we find ourselves lacking full coverage from kindergarten to upper sec-
ondary school (see Table 1).

Starting from the lower end of the spectrum, the TechCheck-K was recently developed
by Relkin and Bers (2021) to assess CT at the level of kindergarten, considering the
requirements of that age group in terms of cognitive, literacy and motor development.

Two assessment tools exist for lower primary school: the TechCheck (Relkin et al.,
2020) and the Beginner’s CT test (BCTt, Zapata-Cáceres et al., 2020). The TechCheck
(Relkin et al., 2020) was developed for grades 1–2 and proved reliable through Classical
Test Theory and Item Response Theory and valid in comparison with the original
TACTIC-KIBO instrument (Relkin et al., 2020), thus speaking to the instruments’
convergent validity. The BCTt draws inspiration from the CT test (CTt, Román-González
et al., 2017; 2019), specifically adapting the original CTt in terms of format and content to
take into account students’ limited reading and understanding skills (Tikva & Tambouris,
2021; Zhang&Nouri, 2019) and ensure the use of “developmentally appropriate language
and tasks to assure that factors such as literacy and fine motor skills are not limiting”
(Relkin et al., 2021). The instrument, which follows a multiple choice format, was
validated with both experts and primary school students (ages 5–10) without prior coding
experience, but showed a ceiling effect for students aged 7–10, with the developmental
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appropriateness in regards to the length of the test (45minutes) for lower primary being put
into question by (Relkin et al., 2021). Indeed, provided the objective of having devel-
opmentally appropriate instruments, which can also be used in a diverse range of settings,
including researchers in pre-post intervention study designs, and practitioners evaluating
the impact of educational reforms (notably digital and computing education), length of
administration also becomes a major factor of adoption.

While certain researchers have looked into developing assessments for upper primary
school (Gane et al., 2021; Parker et al., 2021), they suffer from numerous limitations. The
Bebras challenge (Román-González et al., 2017), for example, is an international
competition for students throughout compulsory school. While it is sometimes used to
assess CT skills, it has undergone limited psychometric validation (Hubwieser &
Mühling, 2014; Bellettini et al., 2015). At the same time, the assessment by Gane
et al. (2021) requires manual grading and multiple annotators, limiting the test’s scal-
ability. Finally, the assessment by Parker et al. (2021), which relies on a combination of
block-based and Bebras-style questions, has been piloted with just 57 4th graders.

Lastly, we find the CTt by Román-González et al. (2017, 2018, 2019), a multiple
choice test designed and adapted for secondary school (ages 10–16). The CTt has
undergone several stages of validation (including reliability, criterion validity in re-
lation to other cognitive tests Román-González et al., 2017, predictive validity Román-
González et al., 2018, and convergent validity Román-González et al., 2019).

There thus appears to be a gap in validated unplugged assessments for students in
upper primary school (ages 7–9, Román-González et al., 2017).

Research Questions

Therefore, to expand the portfolio of validated CT tests across compulsory education,
specifically filling the gap in upper primary school, in this article we present the
competent CT test (cCTt), the steps undertaken to develop it on the basis of the BCT
test, and its psychometric validation with 37 experts and 1519 students. In the fol-
lowing, we specifically consider the following research questions:

· RQ1: Is the cCTt a valid measure of CT skills for students in third and fourth
grade (aged 7–9)?

· RQ2: Is the cCTt a reliable measure of CT skills for students in third and fourth
grade (aged 7–9)?

· RQ3: Is the length of the cCTt developmentally appropriate for students in third
and fourth grade? If not, can it be shortened?

Methodology

The objective of the study was to design a CT assessment adapted for students in upper
primary school, with adequate psychometric properties: the competent CT test (cCTt).
In section The competent Computational Thinking Test, we describe the format of the

8 Journal of Educational Computing Research 0(0)



cCTt and its development, before presenting its validation in section Validation of the
competent Computational Thinking Test. Validation was done in two stages. First, the
cCTt underwent an expert evaluation (see section Expert evaluation). Subsequent
adjustments were made based on their recommendations before administering the cCTt
to 1519 students to evaluate the psychometric properties of the test (see section
Psychometric reliability and construct validation from student data).

The competent Computational Thinking Test

The cCTt was developed by adapting the BCTt in terms of format and content to the
target age group, as was done by researchers to develop the TechCheck-K from the
TechCheck (Relkin et al., 2021) and to develop the BCT test from the CT test (Zapata-
Cáceres et al., 2020). Both the BCTt and the cCTt are unplugged (i.e., paper-based)
multiple choice exams composed of 25 questions of progressive difficulty which
employ questions in two formats (see Figure 1). The majority of questions (21 out of
25) use a 3×3 or a 4×4 grid that a chick must navigate to reach a hen, possibly satisfying
side-goals as well, such as picking up a flower or avoiding a cat. The remaining
questions are canvas-type questions where students have to replicate a drawing pattern.
In both formats, each question presents itself with four possible answers from which the
students must choose from. As shown in Table 2, both tests address CT concepts, as
defined by Brennan and Resnick (2012), by successively assessing notions of se-
quences, simple loops, nested loops, conditionals (if-then and if-then-else), and while
statements, but with varying number of questions per concept. While designing the
cCTt, adaptations in terms of content aimed at rendering the test more complex by

i) Mainly employing 4 × 4 grids,
ii) Removing questions of low difficulty (i.e., which exhibited notable ceiling

effects in Zapata-Cáceres et al., 2020, in particular questions on 3 × 3 grids and
questions involving sequences and simple loops)

Figure 1. The two main question formats of the cCTt: grid (left) and canvas (right).

El-Hamamsy et al. 9



iii) Adding more questions related to complex concepts (e.g., while statements)
iv) Creating a new subset of questions which looks to determine whether students

had assimilated the range of concepts addressed in the test (referred to as
“combinations”)

v) Altering the disposition of objects (starting point, targets and or obstacles) on
the grid, and/or the selection of responses students could choose from, so that
identifying the correct response requires more reflection on the students’ part.

Adaptations in terms of format primarily concerned the while statements: to convey
the notion of repetition, and to make the statement more clearly distinct from the simple
sequences, the symbols were adapted as shown in Figure 2.

The individual questions of the cCTt are described in Table 3 and the full subset of
questions is provided in appendix A.

Validation of the competent Computational Thinking Test

The validation of instruments generally falls under the field of psychometrics, which we
briefly introduce here before detailing the approach undertaken for the cCTt.

Psychometric theories are part of a field which seeks to understand the structure of
intelligence and “portrays intelligence as a composite of abilities measured by mental
tests”4. Psychometric theories help evaluate the quality of assessments through two
main properties: validity and reliability. Reliability is “the ability to reproduce a result
consistently in time and space”. Validity on the other hand “refers to the property of an
instrument to measure exactly what it proposes” (Souza et al., 2017) and is typically
presented under four forms (Taherdoost, 2016):

Table 2. Comparison between the BCTt and the cCTt in terms of question concepts and
question types.

BCTt cCTt

Blocks Grid
(3×3)

Grid
(4×4)

Canvas Total Grid
(3×3)

Grid
(4×4)

Canvas Total

Sequences 3 1 2 6 1 1 2 4
Simple loops 3 2 0 5 0 4 0 4
Complex loops 0 5 2 7 0 5 2 7
Conditional
statements

1 3 0 4 1 3 0 4

While
statements

1 2 0 3 1 3 0 4

Combinations 0 0 0 0 0 2 0 2

Total 8 13 4 25 3 18 4 25
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· Construct validity, or the “extent to which there is evidence consistent with the
assumption of a construct of concern being manifested in subjects’ observed
performance of the instrument” (Raykov & Marcoulides, 2011). Simply put,
does our test measure the skills/abilities it intends to measure?

· Content validity, or the “degree to which test components represent adequately a
performance domain or construct of interest” (Raykov & Marcoulides, 2011),
that is, “whether the particular items in the test adequately represent the domain
of possible items one could construct” (Raykov & Marcoulides, 2011). Simply
put, is the test fully representative of the content it aims to measure?

· Criterion validity, or how closely the results of the test correspond to the results of
a different test.

· Face validity, or the extent to which the content of the test appears to be suitable
to its aims.

Both validity and reliability must be considered to adequately validate an assessment
instrument. As such, we employ expert evaluation to look into the face, construct and
content validity of the test (see section Expert evaluation) and analyse student per-
formance to establish both construct validity and reliability of the cCTt (see section
Psychometric reliability and construct validation from student data). Criterion validity,
generally established by comparing the assessment with other validated instruments
(Román-González et al., 2017, 2019), is lacking in the present study.

Expert evaluation is an approach that has been used by many researchers to validate
CT assessments (Djambong et al., 2018; Zapata-Cáceres et al., 2020; Relkin et al.,
2021). That is why, prior to administering the test to the students, a panel of experts was
organized to (i) “evaluate if the test [content corresponds] to the intended constructs”
(Tang et al., 2020, construct validity), (ii) if the test is an adequate measurement of CT
competence (content validity), and (iii) whether the test appears adequate for students in
upper primary school (face validity). In total, 37 experts of diverse backgrounds

Figure 2. Example of a format and content adaptation (Q24 in the BCTt on the left, which
became Q21 in the cCTt on the right), including the recommendations made by the experts.

El-Hamamsy et al. 11
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participated in the evaluation of the cCTt (see Table 4). The experts were recruited
from:

1. The panel of experts having participated in the validation of the BCTt (Zapata-
Cáceres et al., 2020).

2. Researchers in education and computer science working on the question of
fostering and/or assessing CT.

3. Practitioners involved in the local digital education reform to gain additional
insight into the developmental appropriateness of the instrument. These in-
cluded (a) experts in assessment from the department of education, (b) pro-
fessors from the university of teacher education, and (c) teachers having been

Table 4. Experts’ profiles. Note that the experts had the possibility to select multiple
occupations. Two early childhood education teachers were part of the experts who have been
teaching CT to their students for years and participated in the evaluation of the BCTt
(Zapata-Cáceres et al., 2020), while the other one is a former primary school teacher who is
presently working as a teacher trainer and doing a PhD in a CT-related field.

Occupation and Expertise Number of Experts

Early childhood education teacher 3
Elementary education teacher 5
High school teacher 1
Teacher in the field of computer science or information technology 4
Teacher trainer 5
Background in computer science or information technology (or related) 4
PhD student in education 5
Researcher in education 10
Teacher/Professor at a University 13
Professor at a teacher education University 1
Undisclosed 7

Age Number of experts

≤30 2
Between 31 and 45 21
Between 46 and 60 8
Undisclosed 6

Gender Number of experts

Female 15
Male 16
Undisclosed 6

Expertise teaching computer science, programming and/or
Computational Thinking

5-point Likert scale

(From 1 = no knowledge to 5 = expert) μ = 3.7
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trained to introduce digital education (including computer science and CT) and
presently teaching said concepts to students in the target age group.

The expert evaluation was conducted in two stages. First, the experts were asked to
respond to the survey described in Table 5, with the possibility to leave comments and
provide suggestions for improvements after each block of questions. In a second stage,
the experts were invited to a short presentation of the development of the test and
objectives, which was followed by an unstructured focus group to discuss the experts’
impressions of the test and their suggestions for improvements.

Psychometric reliability and construct validation from student data. Administration of the
cCTt was done after implementing the adjustments suggested by the experts (see
section Expert validation). Using a paper-based format, generated with the Auto-
Multiple-Choice software6, 1519 students (77 classes) in grade 3 and grade 4 (ages 7–9)
did the cCTt in February 2021 (see Table 6). The students belonged to 7 establishments

Table 5. Questions used in the expert evaluation survey.

Question Validity Type Format

Evaluation of the
individual
questions
of the cCTt

Please select the correct response Multiple
choice

Indicate in your opinion the level
of difficulty of the question for
students aged 7–10

Face 7-Point
Likert

Evaluation of the
individual blocks
of the cCTt

In your opinion, the questions you
just did are adapted to measure
students’ knowledge of the [concept]

Construct 7-Point
Likert

In your opinion, the questions you just
did are relevant to evaluation
Computational Thinking skills5

Content 7-Point
Likert

Have clear illustrations and instructions Face 7-Point
Likert

We are open to any suggestions you
may have to help improve the
quality of the test

Face, construct,
and content

Open-
ended

Evaluation of the
cCTt

Do you think the number of questions is
adequate? (yes, too much, not enough)

Face Multiple
choice

Indicate, in your opinion, the level of
adequacy of the test for students
aged 7–10

Face 5-Point
Likert

Demographics Indicate your knowledge in terms of teaching
computer science and or programming,
and Computational Thinking

5-Point
Likert

Age, gender, occupation Checkboxes
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in the Canton Vaud in Switzerland that were selected to be representative of the
demographics of the region (El-Hamamsy, Chessel-Lazzarotto, et al., 2021). Due to
COVID-19 restrictions the researchers could not be present to administer the tests,
which is why a detailed protocol was provided to teachers. In particular, teachers were
asked to demonstrate an explanatory example (see appendix B) on the board for each
computational concept, and adhere to the recommended time frame (i.e., 40 minutes
and 1.5 hours maximum as in the BCTt). The data was then scanned and integrated into
a spreadsheet using the Auto-Multiple-Choice software. Additional data pre-processing
for the validity and reliability analyses included replacing the lack of responses, “I don’t
know” and multiple checked-boxes with a score of 0.

Construct validity was assessed through factor analysis, a technique which groups
“observed variables [(here, the questions of the test)] into latent [variables, (here, the
associated concept)] based on commonalities within the data” (Atkinson et al., 2011).
Two main approaches exist for factorial analyses (exploratory and confirmatory).
Confirmatory Factor Analysis (CFA) is used when there is an assumption about the
underlying structure of the data and to “confirm the structural model of an instru-
ment” (de Souza et al., 2019), while exploratory factor analysis is usually used to
explore the dimensionality of the data at hand. In our case, the objective being to
evaluate whether the blocks of questions presented in Table 3 constitute coherent
groups of questions (i.e., factors, or latent variables which cannot be directly
observed—e.g., intelligence, motivation, happiness—but are inferred from others),
we employed CFA. When conducting CFA one must employ multiple fit indices as
they provide “a more holistic view of goodness of fit, accounting for sample size,
model complexity, and other considerations relevant to the particular study” (Alavi
et al., 2020). Two types of fit indices exist and must be employed in parallel: (i) global
model fit indices assess “how far a hypothesized model is from a perfect model” (Xia
& Yang, 2019) (such as the chi-square χ2 statistic, the root mean square error of
approximation or RMSEA, and standardized root mean square residual or SRMR),
while (ii) local or incremental fit indices “compare the fit of a hypothesized model
with that of a baseline model (i.e., a model with the worst fit)” (Xia & Yang, 2019)
(such as the comparative fit index CFI and the Tucker-Lewis index TLI). Cutoffs
frequently employed for these metrics are (Hu & Bentler, 1999; Xia & Yang, 2019)
CFI and TLI > 0.95, RMSEA < 0.06, SRMR < 0.08 px2 > 0.05. It is important to
point out that these thresholds are conventional and were established in a specific
context, thus meaning that they should be considered as indicative of levels of miss-
specification, rather than absolute judges of bad model fit (Xia & Yang, 2019).

Table 6. Student demographics.

Grade 3 Grade 4 Grade 3–4 (Mixed Classrooms)

Female 337 372 28
Male 386 385 31

El-Hamamsy et al. 15



Additionally, the χ2 statistic is sensitive to sample size, with larger samples de-
creasing the p-value (Alavi et al., 2020; Prudon, 2015), and should thus not be
considered as “the final word in assessing fit” (Alavi et al., 2020). Some authors
therefore suggest employing the ratio between the χ2 statistic and the degrees of
freedom with a cutoff at χ2 /df ≤ 3 (Kyriazos, 2018). Finally, as the input data is binary
(with a score of 0 or 1 per question), the CFA analysis is conducted using an estimator
which is adapted to non-normal data and employs diagonally weighted least squared
to estimate the model parameters and tetrachoric correlations (Rosseel, 2020;
Schweizer et al., 2015).

Reliability was evaluated through two means: Classical Test Theory and Item
Response Theory (IRT), as recommended in the context of instrument validation
(Cappelleri et al., 2014; Embretson & Reise, 2000; Relkin et al., 2020). Classical Test
Theory “comprises a set of principles that allow us to determine how successful our
proxy indicators are at estimating the unobservable variables of interest” (DeVellis,
2006) and focuses on test scores (Hambleton & Jones, 1993). Main metrics include (i)
difficulty (proportion of students responding correctly), (ii) reliability (proportion of
the item’s variation that was shared with the true score, often computed using
Cronbach’s alpha when considering scale reliability), and (iii) discrimination (i.e., to
what extent the question helps distinguish between the top performers and the low
performers, estimated using the Point-biserial correlation). Unfortunately, Classical
Test Theory suffers from several limitations. As its focus is at the test level, the
observed scores and true scores are test-dependent, and sample-dependent
(Hambleton & Jones, 1993). In other words, “different samples with different var-
iances will not yield equivalent data or data that can easily be compared across
samples” (DeVellis, 2006). While Classical Test Theory can be used to compare
groups against one another, this can also put into question the reliability of the test.
Moreover, “a score value on one item should mean the same thing as the same score
value on another item of the same scale” (DeVellis, 2006), which is not necessarily
true when we consider assessments that have questions of increasing difficulty. That
is why researchers have advocated the use of ability scores which are test inde-
pendent. Item Response Theory (IRT) addresses this limitation, as it helps estimate
the ability of an examinee, which is test independent. IRT is based on latent trait
theory and assumes that there is an underlying student ability which leads to con-
sistent performance, that is, that the probability of a student getting a given item
correct is a function of said students’ ability. IRT thus operates at the item level and
estimates parameters for the population (and not just the sample), but is based on high
assumptions which are often hard to meet (Hambleton & Jones, 1993).

The data analysis was conducted in R (version 3.6.0, R Core Team 2019) using R
Studio (version 1.2) with the lavaan (version 0.6–7, Rosseel, 2012), CTT (version
2.3.3, Sheng, 2019), psych (version 2.1.3, Revelle, 2021) and ltm (version 1.1.1,
Rizopoulos, 2006) packages.
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Shortening the competent Computational Thinking Test

A further objective of our work is to determine whether the length of the test if de-
velopmentally appropriate through the expert evaluation and by gathering feedback
from teachers in the field having participated in the test’s administration. Provided their
responses, if inadequate, the objective is to propose several versions of the cCT test
which can be selected according to researchers’ and/or practitioners’ needs. To that
effect, Confirmatory Factor Analysis will be employed once more, this time not to
validate the underlying structure of the test, but to identify questions exhibiting high
correlations with other factors or other questions. Indeed, CFA fit indices tend to
improve with parsimonious models, that is, which are less complex (Alavi et al., 2020).

Results

RQ1: Validity of the competent Computational Thinking Test

As anticipated, we establish the validity of the cCTt through two means: expert
validation, reported in section Expert validation, and Confirmatory Factor Analysis,
detailed in section Confirmatory Factor Analysis for construct validity. Considering the
validity measures, the experts appear in agreement on the face and content validity of
the test, and both the expert validation and the factor analysis point to adequate
construct validity. While content validity is evaluated positively, the experts highlight
that the test is best suited for computational concepts and does not measure the full
range of competences related to CT, notably computational practices (i.e., thought
processes) and computational perspectives (i.e., perception). This is indeed an iden-
tified limitations of summative assessments (Román-González et al., 2019), which, if
one desires a more exhaustive CTassessment, may be addressed by combining multiple
assessment methods (Grover et al., 2015; Román-González et al., 2019).

Expert validation. Face Validity of the cCTt was evaluated based on several criteria (see
Figure 3). The evaluation of each individual question’s difficulty points to a progressive
increase in difficulty as intended, with an average overall difficulty of �0.4 ±1.0%
(between “neither easy nor difficult” and “somewhat difficult” on a scale of �3 to +3).
The experts, unaware that there was a protocol with examples that was provided to
teachers at the time of the survey administration, believed that the symbolism would be
difficult to understand without prior explanations, notably in the case of the for loops,
the if-else statements, while statements and their combinations. This accounts for the
more negative ratings obtained in terms of illustrations for those blocks of questions,
and confirms the importance of providing examples to the students beforehand to grasp
the key mechanics of the test. As for the test length, 52% of respondents believed it was
adequate, 41% that it was too long, and 7% that it was not enough. All in all, 63%
believed the test was adequate to measure upper primary school students’ CT skills,
26% were neutral, and just 11% were in disagreement.
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Construct validity is established in Figure 4. The experts were asked to what extent
they believed the blocks of questions adequately measure the concepts defined in
Table 3. In the worst case, that is, for the while statements, 76% of the experts agreed
that the block of questions adequately measures the targeted concept, with an average
agreement of 1.2 ± 0.4% (between “agree” and “totally agree” on a scale of �3 to +3).
This seems to point to an adequate construct validity.

Content validity was assessed on the basis of whether the experts believed each
block of questions was an adequate representation of CT skills. Results were mainly
positive with an average approval rating of 1.5 ± 0.3% (on a scale of �3 to +3). In the
worst case, a 71% approval was obtained for the conditional statements (see Figure 4).
The experts provided additional insight into their perception of the content validity of
the test through the open comments, and in particular in the focus group. The latter,
which was unstructured, was primarily focused on what it entails to assess CT con-
sidering the fact that (i) CT highly multi-dimensional, (ii) suffers from a lack of
consensus around what CTencompasses, and (ii) can be considered both in disciplinary
and non-disciplinary contexts. For the experts, the cCTt, although it assesses ade-
quately computational concepts, it does not assess CT in all its dimensions. The cCTt,
like the CTt and the BCTt before it, mainly focuses on computational concepts and
while it includes certain notions of computational practices, it disregards computational
perspectives. Indeed, the cCTt does not provide insight into students’ thought processes
when engaged in CT-related problem solving tasks (Chevalier et al., 2020), their

Figure 3. Face Validity of the cCTt.
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transversal competences (both inter-personal and intrapersonal), and their perception of
“of themselves and their relationships with others and the technological world” (Lye &
Koh, 2014). This is a limitation of most summative assessments (Román-González
et al., 2019) which, despite having excellent adequacy for computational concepts and
little adequacy for computational practices, are considered inadequate for computa-
tional perspectives. Indeed, both the literature and the experts highlighted the im-
portance of combining the cCTt with other instruments in a system of assessments to
get a comprehensive evaluation of CT interventions (Grover et al., 2015; Román-
González et al., 2019). Multiple assessment methods help provide complementary
information on the acquisition of CT competences. In particular, computational
practices relate to processes and are best assessed through direct observations as in the
case of the study by Chevalier et al. (2020) who looked into the students’ thought
processes using the Creative Computational Problem Solving model.

Other suggestions, both in terms of format and content, emerged from the focus
group discussion and open questions of the survey. While we will not detail the format
related suggestions that were implemented, we present the remaining content related
suggestions that were provided. A primary school educator recommended adding an “I
don’t know” option so students would not feel pressured into selecting a response. Such
an addition also helps distinguish between students who did not have time to answer the
question and those who did not know what the correct answer was. Another expert with
experience in didactics, pedagogy, research and teacher training also emphasized the
importance of establishing error profiles in the selection of responses. Concretely, the
idea is that each response should correspond to a type of error, so teachers may also use
the test to identify specific learning difficulties and intervene accordingly. Ideally, a
teacher would like to know where the students are struggling in order to remedy the

Figure 4. Construct and content validity of the cCTt.
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situation. Both suggestions were included in the version of the cCTt that was ad-
ministered to the students (see Table 3 for the error profile attributed to each response).

Confirmatory Factor Analysis for construct validity. Based on the test results, a CFA analysis
was conducted on the 25 items of the cCTt-25 using the blocks of questions (i.e., CT
constructs) as latent factors (see Table 3). This analysis was conducted on three subsets
of the data (full, grade 3 and grade 4) to ensure the construct validity was adequate both
in general, and for each grade individually. The Kaiser-Meyer-Olkin (KMO) Measure
of Sampling Adequacy and Bartlett’s test of sphericity were computed to determine
whether the data was suitable for structure detection (see Table 7). KMO values were
above 0.8 indicating that the sampling is adequate (superior to the 0.5 acceptable limit,
Field et al., 2012). Bartlett’s test of sphericity is significant with p-values below 0.05,
indicating that a factor analysis may be used. Multiple fit indices are then provided for
the cCTt-25 model for the different data subsets (see Table 7). The χ2 statistic is
significant in all three cases although this is likely due to the large sample size. That is
why the χ2/df is considered and is below three in all cases indicating an adequate fit. The
RMSEA and the SRMR are also below their cutoffs and indicate a good fit. This is also
the case for the CFI and TLI which are above the 0.95 cutoff.

Table 8 provides, for each question in the test, its factor and factor loadings. The
factor loadings are positive and significant for all questions, with standardized coef-
ficients ranging from 0.540 for question 17 to 0.867 for question 2. Table 9 shows that
there are significant positive correlations between the factors themselves. As each
factor is related to the performance in a given block of the cCTt, these correlations
indicate that students who perform well in one block are likely to perform well in the
others.

Table 7. Confirmatory Factor Analysis for the cCTt-25, with latent variables and observed
variables corresponding to the distribution in Table 3.

cCTt-25

Initial Conditions (KMO:
Kaiser, Meyer, Olkin
Sampling Adequacy)

Robust Model Fit Indices (CFI:
Comparative Fit Index, TLI: Tucker-Lewis
Index, RMSEA: Root Mean Square Error
of Approximation, SRMR: Standardized
Root Mean Square Residual)

KMO
Bartlett’s Test of
Sphericity χ2 χ2/df CFI TLI RMSEA SRMR

All .90 χ2 (300) = 7106,
p < .001

χ2 (260) = 551,
p = .000

2.1 .978 .974 .027 .052

Grade 3 .88 χ2 (300) = 3101,
p < .001

χ2 (260) = 378,
p = .000

1.45 .977 .974 .025 .061

Grade 4 .88 χ2 (300) = 3614,
p < .001

χ2 (260) = 403,
p = .000

1.6 .975 .971 .027 .070
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These results indicate that the cCTt-25 fits well, and that the blocks are repre-
sentative of the CT concepts they intend to measure.

RQ2: Reliability of the cCTt

Reliability of the cCTt was established through two means which are considered
complimentary: Classical Test Theory (see section Reliability through Classical Test
Theory and item analysis) and Item Response Theory (see section Reliability through
item response theory). Both approaches appear to indicate that the test has a wide range
of question difficulties and adequately discriminates between students. The IRT
contributes to this by showing that the test is best suited to discriminate between
students with low and medium abilities, while Classical Test Theory adds that the cCTt

Table 8. cCTt-25 Factor Loadings for CFA on the full dataset.

Latent Factor Question
B (Factor
Loading)

Standard
Error of B Z-scores

Beta
(Standardized
Factor Loading) Significance

f1 (sequences) 1 0.699 0.053 13.154 0.699 ***
2 0.867 0.039 22.216 0.867 ***
3 0.596 0.041 14.504 0.596 ***
4 0.694 0.033 20.775 0.694 ***

f2 (simple loops) 5 0.738 0.027 27.415 0.738 ***
6 0.778 0.031 24.868 0.778 ***
7 0.635 0.030 21.125 0.635 ***
8 0.792 0.025 31.521 0.792 ***

f3 (complex loops) 9 0.608 0.032 19.013 0.608 ***
10 0.715 0.025 29.122 0.715 ***
11 0.771 0.021 36.155 0.771 ***
12 0.769 0.021 36.626 0.769 ***
13 0.844 0.019 45.050 0.844 ***
14 0.612 0.027 22.423 0.612 ***
15 0.768 0.022 34.956 0.768 ***

f4 (conditionals) 16 0.721 0.030 24.231 0.721 ***
17 0.540 0.047 11.494 0.540 ***
18 0.688 0.029 23.688 0.688 ***
19 0.652 0.030 21.765 0.652 ***

f5 (while statements) 20 0.626 0.032 19.645 0.626 ***
21 0.765 0.026 29.423 0.765 ***
22 0.576 0.034 16.903 0.576 ***
23 0.540 0.034 15.862 0.540 ***

f6 (combinations) 24 0.547 0.049 11.102 0.547 ***
25 0.836 0.050 16.786 0.836 ***
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has a good level of internal consistency and exhibits no clear ceiling or flooring effects,
with students in grade 4 scoring significantly better than students in grade 3.

Reliability through Classical Test Theory and item analysis. The distribution of scores
obtained by the students is shown in Figure 5. Students score on average 14.14 ±
5.22 out of a total of 25, with no evident ceiling effect, and 8% of students scoring
below chance (i.e., < 25/4). Considering the minimum effect size that can be
considered in the study to achieve a power of 0.8 (Cohen’s D = 0.14), significant
differences are observed between grades (p < 0.001, +2.9pt in grade 4, Cohen’s
D = 0.57), and gender (p = 0.013, +0.6pt for boys, Cohen’s D = 0.15). Although the
effect size for gender is small, this brings up the question of when (and why) gender
differences arise in STEM and disciplines related to Computer Science (CS), and
the need to effectively addressed them in ongoing CS and CT curricular reforms
(El-Hamamsy, Chessel-Lazzarotto, et al., 2021). Provided the small effect size for
gender, we only distinguish between grades in the rest of the Classical Test Theory
analysis.

Table 9. cCTt-25 Latent Factor Correlations for CFA on the full dataset.

Factor 1 f1 f1 f1 f1 f1 f2 f2 f2 f2 f3 f3 f3 f4 f4 f5

Factor 2 f2 f3 f4 f5 f6 f3 f4 f5 f6 f4 f5 f6 f5 f6 f6

Correlation .686 .663 .559 .489 .367 .758 .552 .559 .426 .607 .583 .510 .803 .671 .808
Significance *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Figure 5. Score distribution per grade and gender.
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Figure 6 shows the proportion of correct responses for students in grade 3, grade
4 and for the full sample. The questions appear to be increasingly difficult with certain
earlier questions being too easy (difficulty index > 0.85 for questions 1 and 2 for all,
and question 6 for grade 4), and later questions being too hard (difficulty index <
0.25 for question 17 and 24 for all, and question 25 for grade 3). Students in grade
4 appear to score consistently better than students in grade 3 over all questions. Looking
at the point-biserial correlation, which is the difference between the high scorers and the
low scorers of the sample population, all questions score above 0.2 which is considered
acceptable.

Finally, we consider the reliability of the cCTt with respect to Cronbach’s αmeasure
of internal consistency. The overall test reliability is high (Taherdoost, 2016) with an
alpha of .85 for the full sample and .84 for grade 3 and grade 4 individually. The drop
alpha was computed for each question in the test to determine whether removing a
given question would improve the internal consistency of the test. The results in
Table 10 show that internal consistency does not improve when removing questions.
When considering the reliability of the individual blocks of questions, whether for the
full sample of each grade, the reliability is high for blocks 1–3 and 5 (0.7< α< 0.9), and
moderate for 4 and 6 (0.5 < α < 0.7), according to the thresholds of Hinton et al. (2014)
(referenced by Taherdoost, 2016), yielding acceptable levels of internal consistency for
psychological assessments (Relkin et al., 2020).

Reliability through Item Response Theory. Item Response Theory complements the results
of the Classical Test Theory analysis by considering the relationship between (a) the
probability that a student answers a question correctly and (b) an underlying latent
ability. Two models were tested: (i) the one-parameter model (called 1-Parameter
Logistic, or 1-PL) which considers that only difficulty varies between items, and (ii) the
two-parameter model (called 2-Parameter Logistic, or 2-PL), which considers that both
difficulty and discrimination varies across items. Table 11 shows the comparison
between the two models. Here, the test is significant (p < 0.001) indicating that one

Figure 6. Question difficulty and point-biserial correlation distribution per question. Items with
a difficulty below .25 are considered too hard while items with a difficulty above .85 are
considered too easy. A point-biserial correlation between .2 and .3 is considered good, and
above .3 excellent.
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Table 10. Classical Test Theory item analysis. Items with a difficulty below .25 are considered
too hard while items with a difficulty above .85 are considered too easy. A point-biserial
correlation between .2 and .3 is considered good, and above .3 excellent. Q: question, 3P: grade
3, 4P: grade 4.

Block Q

Block alpha

1. Difficulty
(or p-values,
mean)

2. Standard
Deviation

3. Point-biserial
correlation (or
item
discrimination,
item-total
correlation)

Individual drop
alpha

all 3P 4P all 3P 4P all 3P 4P all 3P 4P all 3P 4P

1 1 .94 .91 .97 .23 .28 .17 .26 .25 .22 .85 .84 .84
2 .91 .88 .94 .28 .33 .24 .36 .37 .31 .85 .84 .84
3 .76 .75 .79 .8 .77 .83 .4 .42 .38 .3 .33 .25 .85 .84 .84
4 .75 .71 .79 .43 .46 .41 .36 .36 .34 .85 .84 .84

2 5 .73 .65 .8 .44 .48 .4 .43 .43 .4 .84 .84 .84
6 .86 .82 .9 .34 .38 .3 .39 .42 .33 .85 .84 .84
7 .78 .77 .77 .66 .59 .73 .47 .49 .44 .39 .38 .38 .85 .84 .84
8 .69 .59 .78 .46 .49 .41 .48 .46 .44 .84 .83 .84

3 9 .77 .7 .83 .42 .46 .38 .38 .37 .34 .85 .84 .84
10 .45 .35 .54 .5 .48 .5 .48 .45 .48 .84 .83 .83
11 .5 .41 .58 .5 .49 .49 .51 .5 .5 .84 .83 .83
12 .83 .81 .83 .63 .55 .7 .48 .5 .46 .49 .45 .49 .84 .83 .83
13 .52 .41 .62 .5 .49 .49 .56 .51 .57 .84 .83 .83
14 .47 .36 .56 .5 .48 .5 .41 .34 .42 .85 .84 .84
15 .46 .33 .57 .5 .47 .5 .51 .44 .53 .84 .83 .83

4 16 .61 .55 .67 .49 .5 .47 .43 .44 .4 .84 .83 .84
17 .14 .14 .14 .34 .34 .35 .26 .31 .23 .85 .84 .84
18 .67 .7 .62 .64 .58 .7 .48 .49 .46 .41 .4 .39 .85 .84 .84
19 .52 .44 .6 .5 .5 .49 .39 .37 .37 .85 .84 .84

5 20 .36 .32 .39 .48 .47 .49 .36 .32 .4 .85 .84 .84
21 .51 .46 .56 .5 .5 .5 .45 .41 .48 .84 .84 .83
22 .72 .7 .73 .4 .38 .41 .49 .49 .49 .34 .34 .36 .85 .84 .84
23 .44 .38 .48 .5 .49 .5 .32 .33 .28 .85 .84 .84

6 24 .57 .58 .57 .12 .12 .12 .32 .33 .33 .21 .23 .24 .85 .84 .84
25 .25 .22 .28 .43 .41 .45 .38 .35 .41 .85 .84 .84

Overall .85 .85 .83 .59 .53 .65 .49 .50 .48 - - - - - -
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model offers a better fit. As lower AIC and BIC scores are obtained with the 2-PL
model, this indicates that the 2-PL model is to be preferred.

The IRT analysis results with the 2-PL model are shown in Figure 7, 8 and 9. The
Item Characteristic Curves (or ICC) show the probability of selecting the correct
response for a given question of the cCTt with respect to the students’ ability. In
Figure 7, easier questions are those with a curve which begins to increase already at
lower abilities. Additionally, questions which better discriminate between students
with high and low ability are those with a steeper slope. The objective is to have a
test that is composed of questions with varying degrees of difficulty, thus covering a
wide spectrum of abilities, and which discriminate well (steep slopes). The ICCs in
Figure 7 show curves at varying levels of ability, with easy and medium ques-
tions discriminating better than harder ones. Indeed the average test difficulty is
equal to 0.032 ± 1.2 on the logit scale, with the easiest question yielding a difficulty
index of �2.4 and the hardest a difficulty index of 2.8 (see Table 12). The Item
Information Curves (IIC) in Figure 8 offer complementary information by indi-
cating the amount of information that each question provides for a given ability.
This means that more precise items at a given ability level are higher on the IIC
scale. As higher peaks appear in the low to medium ability range, the test would
appear to be better suited to discriminate between students at that level. This is
confirmed by the Test Information Function (TIF, sum of the IICs, Hambleton &
Jones, 1993) in Fig. 9 which is centered around 0 (medium ability) and slightly
higher on the left than on the right, thus providing more information about students
with lower abilities than with higher abilities.

RQ3: Shortening the cCTt through Confirmatory Factor Analysis

Administration times lasted on average 35 minutes for students in grade 3 and
30 minutes for students in grade 4, according to an estimation with 453 grade 3 students
and 680 grade 4 students. Teachers reported having taken a an average of 65 ± 35minutes
(minimum 25 minutes, median of 50 minutes, and a maximum of 4 sessions) to
administer the test, including explanations, examples provided to students and
breaks. Provided the expert evaluation where 41% of experts considered that the test
was too long, as well as the teachers’ feedback following the test administration, in
addition to the reported duration of administration, it is important to consider how the
test may be shortened. Since the results of the Classical Test Theory analysis (see
section Reliability through Classical Test Theory and item analysis) showed that the

Table 11. Comparison of the 1-PL and 2-PL model.

Model AIC BIC Log Likelihood LRT df p.value

1-PL 39156.40 39294.87 �19552.20
2-PL 38904.32 39170.61 �19402.16 300.08 24 <0.001
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Table 12. IRT Item difficulty and discrimination indices.

Question IRT Item difficulty index IRT item discrimination index

1 �2.40 1.18
2 �1.67 1.70
3 �1.42 1.03
4 �1.01 1.07

5 �0.63 1.28
6 �1.28 1.75
7 �0.43 1.03
8 �0.37 1.41

9 �0.92 1.13
10 0.57 1.43
11 0.30 1.68
12 �0.19 1.44
13 0.32 1.78
14 0.69 0.95
15 0.67 1.42

16 �0.23 1.18
17 2.07 1.08
18 �0.37 1.01
19 0.29 0.93

(continued)

Figure 9. 2-PL model IRT Test Information Function (TIF).
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Table 13. Iterative procedure to shorten the cCTt based on CFA.

Successive Editions to the cCTt-
25

Model Fit
Statistics

Model χ2
χ2/
df CFI TLI RMSEA SRMR

cCTt-17 1. Removing Q17: Correlates
with Q24 and has a high
difficulty

χ2 (237) = 464,
p = .000

1.96 .982 .979 .025 .047

2. Removing Q22: Correlates
with Q2 and also loads on
factor 4

χ2 (215) = 394,
p = .000

1.83 .985 .983 .023 .045

3. Removing Q9: Also loads on
factors 1 and 2

χ2 (194) = 336,
p = .000

1.73 .988 .986 .022 .044

4. Removing Q10: Correlates
with Q4 and loads on factors 1
and 2

χ2 (174) = 294,
p = .000

1.69 .989 .986 .021 .043

5. Removing Q2: Correlates with
Q4, and is too easy

χ2 (155) = 260,
p = .000

1.68 .989 .987 .021 .041

6. Removing Q4: Loads on
factors 4, 5 and 6

χ2 (137) = 228,
p = .000

1.66 .990 .988 .021 .040

7. Removing Q8: Also loads on
factor 3

χ2 (120) = 201,
p = .000

1.68 .991 .988 .021 .040

8. Removing Q14 (last remaining
canvas question)

χ2 (104) = 176,
p = .000

1.69 .991 .988 .021 .040

cCTt-15 9–10. Removing Q24 and Q25
(block 6, the combination of
constructs)

χ2 (80) = 137,
p = .000

1.71 .992 .989 .022 .038

Table 12. (continued)

Question IRT Item difficulty index IRT item discrimination index

20 1.04 0.80
21 0.16 1.03
22 0.66 0.83
23 0.65 0.83

24 2.80 0.79
25 1.47 1.06

μ ± σ 0.032 ± 1.2 1.2 ± 0.31
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problematic questions were the same for students in grade 3 and grade 4 alike (despite
students in grade 3 scoring less), we believe that there is not enough difference to
justify having an ad-hoc test for each grade. That is why we chose to apply the same
shortening procedure, independently of the students’ grade, to propose several shorter
versions of the cCTt which we validate on the full dataset. The chosen approach is
Confirmatory Factor Analysis, more specifically using the provided modification
indices (i.e., the amount by which the χ2 statistic would improve) to identify questions
which are highly correlated and thus redundant, or load on other factors (and thus
reduce the model’s fit). Therefore, taking into consideration that we would like to
have blocks which are somewhat balanced in length, we iteratively removed
questions as described in Table 13. The resulting variants of the test are presented in
Table 14:

· The cCTt-25, the longest version of the test which meets all the traditional
thresholds for the model fit statistics.

· The cCTt-17, which covers the same breadth of constructs of the cCTt-25
but lacks a certain number of redundancies over the different blocks of
questions.

· The cCTt-15, the fastest and most focused test, which does not include the final
block of questions that evaluate the combination of concepts and were the most
difficult for students.

Discussion and Conclusion

With the introduction of CT in curricula worldwide, there is a pressing need to have
validated and reliable instruments to assess Computational Thinking throughout
mandatory schooling. It is not surprising to see that CT assessment is one of the most
prominent topics in CT research (Tikva & Tambouris, 2021), with researchers working
to develop instruments from kindergarten (Relkin et al., 2021), through primary school
(Relkin et al., 2020; Zapata-Cáceres et al., 2020) and up to middle school (Román-
González et al., 2017, 2019). However, and to the best of our knowledge, none have
proven to be both valid and reliable measurements of CT in upper primary school.
Therefore, building up on the CT test (Román-González et al., 2017, 2019) designed for
middle school, and the subsequent BCT test which adapted the CT test and validated it
for use in lower primary school, we developed the cCT test to pally the lack of validated
instruments in upper primary school.

The cCT test is an unplugged CT assessment adapted from the BCT test in terms of
format and content, to be administered to students in the 7–9 age range regardless of
their prior coding experience. The test is composed of 25 multiple choice questions of
increasing difficulty and addressing notions of sequences, loops, conditionals and while
statements. To assess the tests’ validity (face, construct, and content validity) we
conducted an expert evaluation with 37 participants. The survey results and focus group
indicate that the test has good face, content and construct validity. Then, to validate the
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psychometric properties of the cCTt (in terms of validity and reliability), the test was
administered to 1519 students from 77 classes in grades 3 and 4 (ages 7–9) enrolled in
7 schools of the same region. The analysis of the results involved three stages and the
outcomes can be summarized as follows. In the first stage, Confirmatory Factor
Analysis confirmed the construct validity of the different blocks of the test. In the
second stage, the results from Classical Test Theory showed that there was no evident
ceiling or flooring effect, with scores distributed around 14/25, although students in
grade 3 score significantly lower than those in grade 4. The Classical Test Theory
analysis also indicated adequate reliability with good internal consistency (Cronbach’s
α = 0.85), levels of discrimination (Point-biserial correlations > 0.2) and a wide range
of question difficulties (proportion of correct responses). In the final stage, the Item
Response Theory analysis supported these findings and further indicated that the test
was better suited at evaluating and discriminating between students with low and
medium abilities. In addition to the psychometric analyses, and to pally the limitations
posed by administration time that were brought up both by teachers and experts, several
shortened versions of the cCT test are proposed (cCTt-17 and cCTt-15), having been
established through an iterative shortening procedure using Confirmatory Factor
Analysis.

While the test has adequate face, content, and construct validity, as determined
through expert validation, and good psychometric properties, there are two main
limitations. Firstly, to achieve a more exhaustive measurement of CT is important
to consider combining assessments such as the cCTt with other forms of as-
sessments (Grover et al., 2015; Román-González et al., 2019), thus improving the
content validity of the overall assessment scheme. This is because the cCTt, as a
paper-based test, does not measure all aspects of CT. The cCTt specifically focuses
on computational concepts and practices while lacking computational perspec-
tives (Román-González et al., 2019), and more generally competences (Lye &
Koh, 2014), an identified limitation of many summative CT assessments. Sec-
ondly, criterion validity needs to be established with respect to a “gold standard”.
Three main approaches exist. Typically, researchers make a comparison with other
assessment methods (convergent validity, Relkin et al., 2020, 2021; Román-
González et al., 2017). More classically however, criterion validity is estab-
lished through

i) Determining the test’s predictive validity (i.e., does the test predict something
that it should predict, such as academic performance and coding achievement,
as done in Román-González et al., 2018)

ii) Determining its concurrent validity (can the test distinguish between two
populations that are distinct, for example, can we distinguish between students
who partake in CT-related activities and those who don’t?).

Provided that validation is a multi-step process which requires “collect[ing] multiple
sources of evidence to support the proposed interpretation and use of assessment result
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[s]” and “multiple methodologies, sources of data, and types of analysis” (Gane et al.,
2021), future work should continue to validate the instrument in consideration of the
test’s content and criterion validity, for both the target and older age groups (namely
grades 5 and 6).

To conclude, the cCTt appears to be a valid and reliable instrument for CT as-
sessment in grades 3 and 4 (students aged 7–9), which should be combined with other
assessments to include computational perspectives and practices. The test is easy to
administer and score on a large scale. With this work, we therefore extend the
portfolio of CT assessments designed for use by researchers and teachers in formal
education. In particular, the BCTt, cCTt, and CTt now jointly cover the range needed
for CT assessment throughout primary and secondary school, by means of unplugged
tests. It would be desirable, however, to extend the study by applying the cCTt to
other populations, and to specifically study the age limits for using one test or the
other.

Appendix A

cCTt-25 question set

Figure A1. Questions of the block 1 (sequences) of the cCTt.
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Figure A2. Questions of the block 2 (simple loops) of the cCTt.

Figure A3. Questions of the block 3 (complex loops) of the cCTt.
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Appendix B

cCTt Example questions

Appendix C

cCTt-17

Figure B1. Example questions of the cCTt. C Factor Loadings for the Confirmatory Factor
Analysis of the cCTt variants.
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Table 16. cCTt-17 Latent Factor Correlations for CFA on the full dataset.

cCTt-15

Table 17. cCTt-15 Factor Loadings for CFA on the full dataset.

Table 18. cCTt-15 Latent Factor Correlations for CFA on the full dataset.

Factor 1 f1 f1 f1 f1 f1 f2 f2 f2 f2 f3 f3 f3 f4 f4 f5

Factor 2 f2 f3 f4 f5 f6 f3 f4 f5 f6 f4 f5 f6 f5 f6 f6

Correlation .792 .615 .528 .365 .300 .676 .554 .517 .407 .561 .551 .474 .730 .569 .756
Significance *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Latent Factor Question
B (Factor
Loading)

Standard
Error of B Z-scores

Beta
(Standardized
Factor loading) Significance

f1 1 0.697 0.067 1.350 0.697 ***
(Sequences) 3 0.609 0.051 11.909 0.609 ***

5 0.759 0.030 25.492 0.759 ***

f2 6 0.808 0.034 24.118 0.808 ***
(Simple loops) 7 0.636 0.033 19.141 0.636 ***

11 0.788 0.023 34.896 0.788 ***

f3 12 0.809 0.021 38.214 0.809 ***
(Complex loops) 13 0.856 0.021 41.606 0.856 ***

15 0.780 0.024 33.123 0.780 ***
16 0.721 0.031 22.954 0.721 ***

f4 18 0.716 0.030 23.730 0.716 ***
(Conditionals) 19 0.654 0.032 20.496 0.654 ***

20 0.643 0.035 18.635 0.643 ***

f5 21 0.788 0.030 26.665 0.788 ***
(While statements) 23 0.596 0.035 16.989 0.596 ***

Factor 1 f1 f1 f1 f1 f2 f2 f2 f3 f3 f4

Factor 2 f2 f3 f4 f5 f3 f4 f5 f4 f5 f5

Correlation .792 .616 .530 .366 .676 .553 .519 .561 .552 .731
Significance *** *** *** *** *** *** *** *** *** ***
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Notes

1. A competence refers to “the proven ability to use knowledge, skills and personal, social and/or
methodological abilities, in work or study situations and in professional and personal de-
velopment” (European Union, 2006).

2. Computer Science Unplugged activities (Bell & Vahrenhold, 2018) are defined as activities
which develop core CS competences without using screens. These activities have numerous
advantages including i) making use of embodied cognition, ii) being adapted to a wide range
of learners by reducing the cognitive load pertaining to use of technological devices and
programming artefacts (Romero et al., 2018), iii) saving time pertaining to the mastery of
specific tools and programming interfaces (Webb et al., 2017), and iv) not requiring any
specific technological devices. Owing to these benefits, CS unplugged activities have gained
in popularity over the past two decades, with the term “unplugged” now referring to a type of
pedagogy (Bell & Vahrenhold, 2018) with a wide range of applications in outreach initiatives
and more recently teacher training and classrooms to support formal curricula. Once example
which can be cited is the case of Switzerland where the lower primary school (grades 1–4) CS
curricular reform is heavily focused on unplugged content which teachers favor and employ
more largely than their plugged counterparts (El-Hamamsy, Bruno, et al., 2021) in big part due
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to a reticence towards the presence of screens in classrooms (Negrini, 2020). While there is
often a debate around the relevance of such types of activities to develop CT competences,
there is an increasing amount of research being done on the topic. While certain small scale
studies were undertaken and showed that CS Unplugged activities could be as effective as
traditional approaches (Thies & Vahrenhold, 2013; 2016; Hermans & Aivaloglou, 2017),
more and more large scale studies at the level of primary school show the benefits of CS
Unplugged activities compared to traditional approaches for learning (Brackmann et al., 2017;
del Olmo-Muñoz et al., 2020; Sun et al., 2021; Zhan et al., 2022; Kirçali & Özdener, 2022), in
addition to the benefits in terms of motivation and gender issues (del Olmo-Muñoz et al.,
2020), engagement (Zhan et al., 2022), and self-efficacy (Hermans & Aivaloglou, 2017), thus
contributing to the promotion of CS for all and the development of CT competencies (Huang
& Looi, 2021).

3. CT skills here refers to the definition of skills provided by the European Union (2006) as “the
ability to apply knowledge and use know-how to complete tasks and solve problems”.
Measuring CTskills thus implies assessing the outcome of the application of the knowledge of
the underlying CT concepts, without looking into the processes involved. Such assessments
therefore do not evaluate the full range of CT competences involved in the resolution of CT-
tasks.

4. See the section of the Encyclopedia Britannica on Psychometric Theories here https://www.
britannica.com/science/ human-intelligence-psychology/Psychometric-theories.

5. Please note that experts considered this question from a content perspective, that is, whether
the test grasps all facets of CT, despite the use of the word “evaluation”.

6. See https://www.auto-multiple-choice.net/index.en for the link to the Auto-Multiple-Choice
software.
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Thinking through unplugged activities in early years of primary education. Computers &
Education, 150, 103832. https://doi.org/10.1016/j.compedu.2020.103832.

DeVellis, RF (2006). Classical Test Theory.Medical Care, 44(11 Suppl 3), S50-S59. https://doi.
org/ 10.1097/01.mlr.0000245426.10853.30.

Djambong, T., Freiman, V., Gauvin, S., Paquet, M., & Chiasson, M. (2018). Measurement of
Computational Thinking in K-12 education: the need for innovative practices. In D.
Sampson, D. Ifenthaler, J. M. Spector, & P. Isaı́as (Eds.), Digital technologies sustainable
innovations for improving teaching and learning (pp. 193–222). Springer International
Publishing. https://doi.org/10.1007/978-3-319-73417-0_12.

El-Hamamsy, L., Bruno, B., Chessel-Lazzarotto, F., Chevalier, M., Roy, D., Zufferey, J. D., et al.
(2021). The symbiotic relationship between educational robotics and computer science in

El-Hamamsy et al. 43

https://doi.org/10.1016/j.clinthera.2014.04.006
https://doi.org/10.1016/j.clinthera.2014.04.006
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1186/s40594-020-00238-z
https://doi.org/10.1109/access.2019.2924343
https://doi.org/10.1016/j.compedu.2020.103832
https://doi.org/%2010.1097/01.mlr.0000245426.10853.30
https://doi.org/%2010.1097/01.mlr.0000245426.10853.30
https://doi.org/10.1007/978-3-319-73417-0_12


formal education. Education and Information Technologies, 26(5), 5077–5107. https://doi.
org/10.1007/s10639-021-10494-3.

El-Hamamsy, L., Chessel-Lazzarotto, F., Bruno, B., Roy, D., Cahlikova, T., Chevalier, M., et al.
(2021). A computer science and robotics integration model for primary school: evaluation of
a large-scale in-service K-4 teacher-training program. Education and Information Tech-
nologies, 26(3), 2445–2475. https://doi.org/10.1007/s10639-020-10355-5.

Embretson, S. E., & Reise, S. P. (2000). Item Response Theory for psychologists. Item Response
Theory for psychologists. Lawrence Erlbaum Associates Publishers.

Field, A. P., Miles, J., & Field, Z. (2012). Discovering statistics using R. Sage.
Gane, B. D., Israel, M., Elagha, N., Yan, W., Luo, F., & Pellegrino, J. W. (2021). Design and

validation of learning trajectory-based assessments for Computational Thinking in upper
elementary grades. Computer Science Education, 31(2), 141–168. https://doi.org/10.1080/
08993408.2021.1874221.
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Lausanne (EPFL) in the Computer- Human-Interaction in Learning and Instruction
CHILI lab, working on technology-enhanced vocational training. After 4 years in a
R&D role in the educational technology industry, she is now executive director of the
EPFL Center for Learning Sciences.

Barbara Bruno is a post-doctoral researcher at the École Polytechnique Fédérale de
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