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1 Summary of results

Super Yang-Mills with SU(N) gauge group and N = 4 supersymmetry in four dimensions
is perhaps one of the most studied Superconformal Field Theories (SCFTs) of the last
decades. Despite much progress has been made and the theory is well understood in
certain limits, such as large N , large ’t Hooft coupling λ or small gauge coupling gYM,
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there is still much that we do not know about other regions of the parameter space. It is
precisely in these setups, when the absence of perturbative expansion of any kind makes
the theory intrinsically strongly coupled, that the conformal bootstrap can play a major
role (see for instance [1] for a review).

Numerical studies of 4d N = 4 SCFTs were initiated in [2, 3] which applied numerical
bootstrap techniques to study the four-point function of the lowest scalar transforming in
the [0, 2, 0] of SU(4)R, and sitting in half-BPS supermultiplet of the stress tensor. These
works found evidences that upper bounds on operator dimensions at infinite values of N
are saturated by the supergravity solution. Furthermore, the extrapolation of the bounds
to infinite numerical power was consistent with the leading 1/N supergravity corrections.

At small values of N instead the bounds did not seem to correspond to any known
result. On the other hand, the allowed region in the space of the smallest spin-0,2,4 unpro-
tected operator dimension assumed a peculiar cubic-like shape, leading to the conjecture
that, for each given finite N , there exists a value of the gauge coupling that simultane-
ously maximizes these operator dimensions. It was also suggested that this value would
correspond to one of the self-dual points.

In [4] the numerical study was further extended to the correlation function of the
first graviton Kaluza Klein (KK) state, namely a half-BPS operator transforming in the
[0, 3, 0] representation of the SU(4)R R-symmetry. This analysis allowed to access new
unprotected operators but it was not competitive to the previous one due to the more
complicated numerical setup.

In this work we combine the two previous studies in a full mixed system of correlation
functions involving the stress tensor multiplet O(2) and the first graviton KK mode O(3).
Our setup includes all four-point functions of the form 〈2222〉, 〈3333〉 and 〈2233〉. Com-
pared to previous studies, this system has two advantages: i) it allows to access even more
unprotected operators through the Operator Product Expansion (OPE) O(2)×O(3) and ii)
it links the correlation functions in a nontrivial way due to the contribution of protected
operators obtained by solving the Ward identities.1

We should also stress that the present work focuses on Super Yang-Mills with SU(N)
gauge group rather than considering the most general N = 4 SCFT. As we review in the
next section, superconformal symmetry fixes certain three-point function coefficients among
short and semi-short multiplets in terms of few quantities, such as the central charge and
few others.2 Whenever the underlying theory is a gauge theory, it is possible to express
these constants in terms of the rank of the gauge group N . In this work we chose to
focus on SU(N) gauge theory and thus substituted the exact dependence on N . It would
be interesting to use the technology developed in [5] to scan the parameter space of all
possible values of these constants, similarly to what has been done in three dimensions [6]
and search for isolated allowed regions that might signal the presence of new N = 4 SCFTs
with no Lagrangian description.

1The contribution of protected operators is fixed also requiring the absence of higher spin currents,
negative norm states and consistency of various channels. We discuss this in detail in section 3.

2See equations (3.5), (3.6a), and (3.6b).
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Let us review and discuss the main results obtained in this work. Additional details and
all plots can be found in section 6. The first part, sections 2, 3 and 4, is instead dedicated
to set up the formalism, while a few known analytical results are reviewed in section 5.

As a consistency check we reproduced some of the bounds first obtained in [3, 4] and
improved on some of those by pushing the numerics. We also present bounds on the unpro-
tected sector that was not accessible by the previous studies, namely operators transforming
in the [0, 1, 0] representation of SU(4)R. All such bounds on operator dimensions present a
rather common structure: at large values of N , they are a monotonically increasing func-
tion of N ;3 moreover they asymptote to the dimension of the lightest double trace of the
two external operators that are merged in a given OPE channel. In the majority of the
cases this behavior is expected and consistent with our understanding of the large N limit
of the theory. The AdS/CFT correspondence predicts that the large ’t Hooft coupling,
large N limit the theory is dual to a weakly coupled supergravity theory on AdS5 × S5.
One can then compute the dimension of the lightest double trace operator appearing in a
given OPE. These are reviewed in section 5 and at zeroth order in 1/N they have the form

[O(2)O(2)] : ∆ ∼ 4 , [O(2)O(3)] : ∆ ∼ 5 , [O(3)O(3)] : ∆ ∼ 6 .

These values seem to drive the behavior observed in figure 2. On the other hand the super-
gravity dual predicts that the double trace [O(2)O(2)] appears in the OPE O(3) × O(3) as
well, with a O(1/N2) suppressed OPE coefficient. This operator is only absent in the strict
planar limit, but should instead be present at any other finite value of N . The numerical
bounds obtained by bootstrapping the 〈3333〉 correlation function alone are instead not
strong enough to impose the presence of an operator below the [O(3)O(3)] double trace.
This lack of constraining power is a common feature of many numerical bootstrap analyses
where the external operator has dimension considerably away from the unitarity bound.

Next we considered a different approach. Instead of imposing gaps on single operators,
we assumed a twist gap for a given sector, where the twist of an operator O is defined
as τO = ∆O − `O. More specifically, for all the operators in a given representation r of
SU(4)R, we imposed

τO ≥ τgap for any O ∈ r . (1.1)

With this assumption, all the operators in a given sector are lifted together. The main mo-
tivation to this analysis comes from recent works on conformal Regge theory and lightcone
bootstrap [7–25], which showed that CFT operators organize in families, or Regge trajec-
tories. Hence, a twist gap corresponds to imposing that the leading Regge trajectory lies
above a certain line. Moreover, if the leading Regge trajectory is a concave function τ(`),
then the twist gap corresponds to a bound on the lowest spin operator on the trajectory
and can be compared with explicit predictions.

We first performed this analysis using the 〈2222〉 or 〈3333〉 correlation functions alone
and did not find substantial improvements over the previous dimension bounds, except a
faster convergence of the numerics. However, when we considered the full mixed system,
we found a surprising and intriguing result. The plot is shown in figure 1. The main aspect

3This is true for N ≥ 3 which is the smallest values consistent with the existence of O(3).
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Figure 1. Bounds obtained by gapping the twist of all singlets (in yellow) and by gapping the
twist of only the singlets with spin ` ≥ 2 (in blue). The shaded region is allowed. These plots have
been obtained with Λ = 27. The dashed lines correspond to the supergravity prediction for ` = 0
(yellow) and ` = 2 (blue), which can be found in (5.13), with λ ∈ [c/10, c].

to focus on is how the bound approaches the value of τ = 4. However, before making an
interpretation of the result, we should understand the analytical predictions to which it
can be compared.

Let us start by discussing the most natural expectation. As we will see, this picture
creates a tension and must be revisited in light of our results. In the limit of large N
and large λ, the dual theory is described by weakly coupled supergravity. In this regime
it makes sense to classify the operators as single trace, double trace and, more generally,
multi trace. The dimension of the unprotected double traces grows with λ and so they
decouple. Therefore, the leading Regge trajectory is given by the double trace operators
of the schematic form

[O(2)O(2)]0,` ∼ O(2)∂`O(2) . (1.2)

The computation of their anomalous dimension can be done in the gravity side by comput-
ing Witten diagrams. However gravity is the low energy description of a more fundamental
string theory and it is valid up to a certain scale, which is the mass of the massive string
modes. By integrating them out one introduces a cutoff in the low energy theory and this
generates a whole series of higher dimensional operators, suppressed by the string scale, i.e.
inverse powers of the t’Hooft coupling. Therefore, as it is the case for any effective theory,
going beyond tree level forces us to introduce more and more of these higher dimensional
operators in order to cancel loop divergences. This ultimately will give ambiguities for
the anomalous dimensions of the operators under study that cannot be resolved without
addressing the full UV complete string theory.

Recently however, field theory techniques [26–33] have been exploited to compute
subleading orders in the anomalous dimension of the double trace (1.2), which we report
in (5.13), in an expansion in the ’t Hooft coupling and the central charge c = (N2−1)/4. A
few comments about this result are in order: first, beyond the leading order, the analyticity
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in spin down to ` = 0 is broken: at order 1/N4 analyticity extends only to ` ≥ 2.4 This is
a consequence of the higher dimensional operator R4 that contributes to the scalar double
trace anomalous dimension and spoils the Regge behavior at this order. Similar things
happen at higher orders for any spin. Second, equation (5.13) contains terms that naively
diverge in the limit λ → ∞ with N fixed. This is due to the fact that the supergravity
cutoff cannot be removed without reintroducing divergencies and ambiguities. Indeed,
strictly speaking, this limit cannot be taken because one can show that the boundedness
of the double discontinuity of the correlator requires λ ≤ c [21]. Interestingly, if one takes
the upper limit λ ∼ c, some terms that seem to diverge with λ give rise to a contribution
at the same order as a lower loop level.

Despite all the above caveats, one can observe that the inclusion of 1/λ corrections
is parametrically small, at least for the terms that have been computed. Hence it makes
sense to compare our bounds with the leading order prediction

τ[O(2)O(2)]0,0 = 4− 16
N2 + κ0

N4 +O

( 1
N6

)
, (1.3)

where κ0 parametrizes the contribution from the R4 operator discussed before. Here we
face an apparent tension: if we compare the above prediction with the bound in figure 1
we observe a strong disagreement already for N . 160. We also computed twist bounds
including only operators of spin ` ≥ 2, while leaving the scalar unconstrained. Nevertheless,
we still observe a disagreement between the supergravity prediction

τ[O(2)O(2)]0,2 = 4− 4
N2 −

45
N4 + κ2

N6 +O

( 1
N8

)
, (1.4)

and the numerical bound, albeit for somewhat smaller N . As it is clear from (1.4),
[O(2)O(2)]0,2 suffers from the same problems as the scalar double trace, but they start
appearing at order 1/N6.

The observed tension comes from insisting that the double trace operators have the
smallest twist at large N . Let us revise this assumption.

Generically it is a complicated matter to define which operator has the smallest twist
for a given value of the coupling and N . In particular, there are two families of candidates:
the Konishi-like operators, schematically OK` ∼ Tr(ϕi∂`ϕi), whose dimension is ∆K = `+
2+f(λ,N) and the above-mentioned double trace operators with dimension 4+`+g(λ,N).
We know that in the planar limit f(λ,N) ∼ λ1/4, thus the Konishi-like operators become
heavy and the leading twist operators are the double trace ones. Oppositely, for fixed N

and small enough λ the leading twist operators are the OK` .
While at infinite N the two trajectories are allowed to cross without mixing, at finite

N no level-crossing is possible. Nevertheless, the expectation at large N is that, by fol-
lowing the evolution of the Konishi-like operators as the coupling λ grows, one will find a
combination of the two candidates that remains light and one that presumably becomes
heavy. Contrarily, at small N as one moves in coupling space, both towers remain with

4Note the pole at ` = 1 in (5.4).
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twist below four.5 We do not know for which values of N the transition between the two
regimes takes place.

The bounds we presented suggest that there exists an extended intermediate range of
N which is closer to the small N , strong coupling regime, namely with two towers of
operators with twist smaller than four. Only when N is parametrically very large one
tower will decouple; the low dimension spectrum will then contain a single tower of states
that mimic the double trace operators. Notice that the bounds shown have not converged
yet: in particular figure 4 shows that in principle the regime of validity of supergravity
could be restricted to even higher values of N .

In order to get further evidences of this scenario, we extracted the extremal spectrum of
the crossing solution living on the boundary shown in figure 4 using the extremal functional
method [12, 39]. The results are shown in figure 12 and they seem to suggest that for N .
100 there exist two towers6 of operators: one corresponding to the double trace operators
[O(2)O(2)]0,` and one corresponding to operators with twist at the boundary. As N increases
these two towers merge into a single one, with twist approximately 4. Thus, the extremal
spectrum seems to favor this scenario, although we do not claim that it is the correct one.

Other less likely scenarios could also explain the observed tension:

1. In the large λ, large N limit only double trace operators remain, however the large
N expansion is asymptotic: in order to compare our bound with the supergravity
prediction at finite N one should first resum the perturbative series. Moreover, as
shown in equation (5.13), a given order in 1/N receives contribution to higher orders,
once 1/λ corrections are included. It could be that all those higher order terms of
the perturbative expansion, despite they seem negligible at N ∼ 102, once resummed
they do give a finite contribution and make the leading Regge trajectory consistent
with the bound.

2. The anomalous dimension of the leading Regge trajectory could receive sizeable non-
perturbative contributions that modify the prediction of the large N expansion. We
believe this possibility is quite unlikely.

3. As we discuss in the next sections, the four-point functions of half-BPS operators
receive contribution from both short and long multiplets. We computed the con-
tribution of the protected operators using free theory [34] and chiral algebra tech-
niques [35]. Our results agree with the several other works in the literature [36–38].
Still, it could be that the setup used in the present work misses something. For
instance there could be operators whose dimension is dynamically protected: in this
case our bound would be trivially satisfied.

The above scenarios are quite peculiar and it will be fundamental to gather additional
evidences to support one or the other, and eventually formulate alternative explanations.

All in all, we discovered a tension between the common lore about the validity of large
N expansion and non-perturbative bootstrap results. It will be interesting to understand

5See also discussion in section 4.3 of [3].
6Due to trucation in Λ and numerical precision these towers appear incomplete.
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the source of the discrepancy, which hopefully will lead to a better understanding of this
class of SCFTs.

In this work we also explored bounds on OPE coefficients in various sector. We first
computed upper bounds on OPE coefficients and then lower bounds by assuming a gap to
the next operators in the same sector.

As a first example we considered the lowest dimensional scalar O in the [0, 0, 0] rep-
resentation. Because this operator appears both in the O(2) ×O(2) and O(3) ×O(3) OPE,
there are two independent OPE coefficients associated to it. We explored bounds on the
norm of the vector of OPE coefficients as a function of their ratio, parametried by an
angle θ, and the dimension of O. For concreteness we fixed N = 20 and assumed a gap to
the next scalar singlet ∆ ≥ 4.2. As a function of θ and ∆O the upper and lower bounds
describe a somewhat thin three-dimensional region, see figure 9. Although this is not a
conclusive evidence, this analysis points in the direction of a two dimensional allowed re-
gion, rather than a three dimensional one. This is in agreement with the expectation that
the conformal manifold of N = 4 SYM is also two dimensional, since it is parametrized by
the gauge coupling gYM and the ϑ-angle.7 It is tempting to conjecture that in the limit of
infinite numerical power, the upper and lower bound will coincide and the allowed region
will shrink to a two dimensional surface. If this is the case, then specifying say θ and ∆O
we would be able to completely fix all other CFT data.

A similar analysis was carried out also for the lowest scalar in the [0, 1, 0] and [0, 2, 0]
representation and it is shown in figure 10. In that case we do not scan over two parameters
since there is a single OPE coefficient.

2 Set up

In this section we keep the discussion as general as possible and we will specialize later to
the case at hand. Our object of study is the four-point function of non identical half-BPS
operators O(p) in four dimensional N = 4 SCFT. These are scalar operators, of protected
dimension ∆ = p and transforming in the [0, p, 0] representation of the SU(4) R-symmetry
group. They can be written as

O(p)(x, t) = ti1 · · · tipOi1...ip(x) , (2.1)

where Oi1...ip is a symmetric traceless tensor of SO(6) and t is a null, complex six di-
mensional vector which encodes the R-symmetry polarization. Supersymmetry guarantees
that both two- and three-point functions of half-BPS operators are protected. Four-point
functions are nontrivial and, due to superconformal symmetry, can be written as

〈O(p1)(x1, t1)O(p2)(x2, t2)O(p3)(x3, t3)O(p4)(x4, t4)〉

=
(
t1 · t2
x2

12

)Σ−p4 ( t3 · t4
x2

34

)p3 ( t1 · t4
x2

14

)p1+p4−Σ ( t2 · t4
x2

24

)p2+p4−Σ

×F (p1,p2,p3,p4)(u, v;σ, τ) ,

(2.2)

7This is the coupling in front of the FF̃ term in the Lagrangian, not to be confused with the angle
parametrizing the ratio of OPE coefficients defined above.
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where Σ = 1
2(p1 + p2 + p3 + p4) and the function F (p1,p2,p3,p4)(u, v;σ, τ) contains dynamical

information. We have introduced space-time cross ratios

u = zz̄ = x2
12x

2
34

x2
13x

2
24
, v = (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
, (2.3)

as well as harmonic cross ratios

σ = αᾱ = t1 · t3 t2 · t4
t1 · t2 t3 · t4

τ = (1− α)(1− ᾱ) = t1 · t4 t2 · t3
t1 · t2 t3 · t4

. (2.4)

For brevity we will often replace superscripts (p, p, p, p) by (p). The function
F (p1,p2,p3,p4)(u, v;σ, τ) is a polynomial in σ and τ of degree p ≡ min(Σ − p4, p3). In
the following we will consider a specific ordering such that p1, p2, p3 ≤ p4. The function
F (p1,p2,p3,p4)(u, v;σ, τ) admits a conformal partial wave decomposition in both harmonic
and space-time cross ratios

F (p1,p2,p3,p4)(u, v;σ, τ) =
∑
∆,`

∑
0≤m≤n≤p

c
[n,m]
∆,` Y (a,b)

nm (σ, τ)G(`)
∆ (u, v; p21, p43) , (2.5)

where pij ≡ pi − pj , a = 1
2(p43 − p21), b = 1

2(p43 + p21). The labels (n,m) parametrize
the SU(4) representations under which intermediate operators belonging to the OPE of
O(p1) ×O(p2) transform, and the OPE reads (for p1 ≤ p2)

[0, p1, 0]⊗ [0, p2, 0] ∼
⊕

0≤m≤n≤p1

[n−m, 2m+ p2 − p1, n−m] , (2.6)

There are (p1+1)(p1+2)
2 representations, each of them is associated to a specific combination

of Jacobi polynomials P (a,b)
n

Y (a,b)
nm (y, ȳ) =

P
(a,b)
n+1 (y)P (a,b)

m (ȳ)− P (a,b)
m (y)P (a,b)

n+1 (ȳ)
y − ȳ

, (2.7)

where y = 2α − 1 and ȳ = 2ᾱ − 1 The remaining part of (2.5) depends only on the cross
ratios u and v and it is the usual four dimensional conformal block

G
(`)
∆ (z, z̄; p21, p43) = (zz̄)

1
2 (∆−`−p43)

z − z̄
(2.8)

×
((
−1

2z
)`
z Fp21,p43

[∆ + `

2 , z

]
Fp21,p43

[∆− `− 2
2 , z̄

]
− (z ↔ z̄)

)
,

with
Fp21,p43 [λ, z] = 2F1

(
λ+ p21

2 , λ− p43
2 ; 2λ; z

)
, (2.9)

2F1 being the hypergeometric function. The structure of the conformal partial wave decom-
position (2.5) is dictated only by conformal invariance. However we would like to consider
the implication of the full N = 4 superconformal symmetry. In particular we will use
two consequences of superconformal symmetry. The first is the fact that each conformal
primary operator belongs to a superconformal multiplet which relates specific ranges of
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conformal dimension ∆ and spin `. Such supermultiplets have highest weight states which
are called superconformal primaries. The challenge is then to reorganize the conformal
partial wave into a superconformal partial wave. The second is the presence of protected
operators in the OPE O(p1)×O(p2). As already mentioned, this fact simplifies extremely the
superconformal block decomposition, since both dimensions and OPE coefficients of such
operators are protected from quantum corrections and are explicitly known. In analogy
with the conformal case, the most efficient method to combine these constraints is to find
solutions of the superconformal Ward identities. We will now review briefly the logic, which
was first developed in [40]. The Ward identities on the correlator 〈O(p1) · · · O(p4)〉 imply

F (p1,p2,p3,p4)(z, z̄;α, ᾱ)
∣∣∣
z̄=1/ᾱ

= f(z, α) , (2.10)

together with the other combinations of α or ᾱ and z or z̄. By consistency f (z, z) must be
a constant, which we denote by k. If one regards z, α as “chiral” variables and z̄, ᾱ as “an-
tichiral”, this identity suggests that the four-point function, when restricted to the region
z̄ = 1/ᾱ, acquires a chiral structure. This is indeed a feature of all four dimensional N = 2
theories [35]. Such a chiral structure is related to an exactly solvable subsector of the theory,
dual to a non-unitary two dimensional SCFT, which in principle allows us to compute the
exact form of f(z, α). From the knowledge of f(z, α) we can compute all OPE coefficients of
the protected (or short) operators, which is precisely what we need in order to write down
the bootstrap equations. This can be done for any pi and the general solution is of the form

F (p1,p2,p3,p4) = F (p1,p2,p3,p4)
f̂

(z, z̄, α, ᾱ) + s(z, z̄, α, ᾱ)H(p1,p2,p3,p4)(z, z̄, α, ᾱ) . (2.11)

The function F (p1,p2,p3,p4)
f̂

contains information only from the protected sector of the OPE
and it is written as

F (p1,p2,p3,p4)
f̂

(z, z̄, y, ȳ) (2.12)

= −k + (ᾱz − 1)(αz̄ − 1) (f(z, α) + f(z̄, ᾱ))− (αz − 1)(ᾱz̄ − 1) (f(z, ᾱ) + f(z̄, α))
(z − z̄)(α− ᾱ) ,

where the superscript (p1, p2, p3, p4) on f are implicit and

f(z, α) = k +
(
α− 1

z

)
f̂(z, α) . (2.13)

The remaining part, which we call H(p1,p2,p3,p4), contains the contribution to the OPE of
unprotected operators. It is multiplied by the function s(z, z̄, α, ᾱ), which must be always
zero when z = 1/α (or z̄ = 1/ᾱ, z = 1/ᾱ and z̄ = 1/α). We define the function s(z, z̄, α, ᾱ)
to have this form

s(z, z̄, α, ᾱ) = (αz − 1)(ᾱz − 1)(αz̄ − 1)(ᾱz̄ − 1) . (2.14)

Notice that s(z, z̄, α, ᾱ) is a polynomial of degree two in σ and τ , thus H(p1,p2,p3,p4) is a
polynomial of degree p−2 where p = min(Σ−p4, p3). This allows writing a superconformal
partial wave decomposition involving H(p1,p2,p3,p4)

H(p1,p2,p3,p4)(u, v;σ, τ) =
∑

0≤m≤n≤p−2

∑
∆,`

a
[n,m]
∆,` Y (a,b)

nm (σ, τ)G(`)
∆ (u, v; p21, p43) , (2.15)
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where G(`)
∆ (u, v; p21, p43) = u−2G

(`)
∆+4(u, v; p21, p43) is the superconformal block which

repackages the contributions of superdescendants of a given superprimary of dimension
∆, spin ` and transforming under the [m,n] representation.8 This decomposition might
seem in contradiction with (2.5), since the possible representation are reduced to p1(p1−1)

2 .
The key is that the sum in (2.15) runs over superconformal primary operators, and those
will transform under fewer representations of SU(4) R-symmetry. In particular for the
case pi = p = 2, H(2,2,2,2) does not depend on the polarizations and this means that all
superconformal primaries of the exchanged long multiplets are singlets.

There is a decomposition for the function f̂ which reads

f̂ (p1,p2,p3,p4)(x, y) =
p−1∑
n=0

∑{
`≥−1 n even
`≥0 n odd

bn,` P
(a,b)
n (y) g(p21,p43)

` (x) , (2.16)

where P (a,b)
n (y) are the Jacobi polynomials and g(p21,p43)

` (x) are defined as

g
(p21,p43)
` (x) = (−x)`+2Fp21,p43

[
`+ p43

2 + 2, x
]
. (2.17)

The four-point function is constrained by crossing symmetry as

F (p1,p2,p3,p4)(u, v, σ, τ ) =
(
u

v

)Σ−p4

τΣ−p4F (p3,p2,p1,p4)
(
v, u,

σ

τ
,

1
τ

)
= up3σp3F (p4,p2,p3,p1)

(1
u
,
v

u
,

1
σ
,
τ

σ

)
.

(2.18)

Similar relations hold for the unprotected function H(p1,p2,p3,p4). Let us consider only the
(13) permutation. First we define the crossing of the Ff̂ functions as follows

∆(p1,p2,p3,p4)≡ 1
s(u,v,σ,τ )

[(
u

v

)Σ−p4

τΣ−p4F (p3,p2,p1,p4)
f̂

(
v,u,

σ

τ
,
1
τ

)
−F (p1,p2,p3,p4)

f̂
(u,v,σ,τ )

]
.

(2.19)
Then the crossing equation for the unprotected function reads

H(p1,p2,p3,p4)(u, v, σ, τ ) =
(
u

v

)Σ−p4

τΣ−p4−2H(p3,p2,p1,p4)
(
v, u,

σ

τ
,

1
τ

)
+ ∆(p1,p2,p3,p4) .

(2.20)

3 Multiplet recombination

Thanks to N = 4 supersymmetry, the contributions of the short multiplets to the OPE
O(p) × O(q) can be exactly computed, namely both the dimension and the OPE coeffi-
cient are fixed. In order to fully exploit the constraints of maximal supersymmetry, it is
important to input this information into the bootstrap problem. This will be the goal
of the present section. Since the short multiplets are protected, we can compute their
contribution to the four-point function by considering the theory at exactly zero coupling

8We will often abbreviate [m,n] ≡ [n−m, 2m+ p21, n−m].

– 10 –



J
H
E
P
0
5
(
2
0
2
1
)
1
1
1

gYM = 0. An alternative derivation which makes use of the chiral algebra [35] is presented
in appendix B. However, this is not enough: the result from the free theory is ambiguous
due to the impossibility of distinguishing between long operators at the unitarity threshold
and direct sums of short operators. What typically happens is that if some short multiplets
can make up a long multiplet when combined, then they will do so and gain an anomalous
dimension when the coupling is turned on. This phenomenon is usually referred to as
“multiplet recombination.” However, there are some situations where this does not happen
and some short multiplets that could recombine actually remain protected. Multiplets that
exhibit this behavior are called “dynamically protected” [41, 42]. After carrying out the
analysis of the free theory we will address this issue.

3.1 Short multiplets from the free theory

The free theory result is obtained by doing Wick contractions. A field O(p) is realized as
the normal ordered product

Oi1...ip(x) = : Trϕ{i1 · · ·ϕip} : , (3.1)

where the curly brackets indicate a projection to the symmetric traceless tensor. A con-
traction of p lines is denoted as

pxi xj =
(
ti · tj
x2
ij

)p
. (3.2)

For simplicity let us use the shorthand

s = σu , t = τu
v . (3.3)

The free theory result is readily obtained as

F (2,2,2,2) = a1(1 + s2 + t2) + a2(s+ t+ st) =

= a1

( x4 x3

x2x1

+ +
)

+ a2

(
+ +

)
.

(3.4a)

F (3,3,3,3) = b1(1 + s3 + t3) + b2(s+ s2 + t+ t2 + s2t+ st2) + b3st =

= b1

(
+ +

)

+ b2

(
+ + + + +

)
+ b3 .

(3.4b)

F (2,2,3,3) = c1 + c2(s2 + t2) + c3(s+ t) + c4 st

= c1 + c2

(
+

)
+ c3

(
+

)
+ c4

(3.4c)

F (2,3,2,3) = c1 s
2 + c2(1 + t2) + c3(s2 + st) + c4 t . (3.4d)
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The various coefficients ai, bi and ci are fixed by the gauge group G. For F (2,2,2,2) we have

a1 = 1 , a2 = 4
dim(G) . (3.5)

For SU(N), dim(G) = N2 − 1. The other correlators instead exist only when the cubic
Casimir dabc = 2 Tr({ta, tb}tc) is non vanishing. The case of SU(N), which is the one we
are interested in, has dabc 6= 0 and we have

b1 = 1 , b2 = 9
N2 − 1 , b3 = 18(N2 − 12)

(N2 − 4)(N2 − 1) , (3.6a)

c1 = 1 , c2 = 0 , c3 = 1
2 c4 = 6

N2 − 1 . (3.6b)

From the free theory expressions for F (p1,p2,p3,p4) we can deduce H(p1,p2,p3,p4) and
f̂ (p1,p2,p3,p4), which we will not report here for brevity. The latter will maintain its form in
the interacting theory, whereas the former will change. However some contributions in H
must remain fixed even in the interacting theory. They are divided in two classes

1. Multiplets below threshold: by expanding f̂ in conformal blocks we will discover
some operators with conformal dimension below the unitarity bound. Their contribu-
tion can be canceled by introducing other non-unitary contributions to H. These are
of course already present in the free theory result, but they must remain unchanged
even at nonzero coupling.

2. Multiplets at threshold: these are the multiplet that give rise to the free theory
ambiguity discussed at the beginning of this section.

Before studying both cases we need to expand the functions H and f̂ in superconformal
blocks, as in (2.15) and (2.16). This can be done using the results of [34, 36]. In appendix A
we will work out explicitly the case (2, 3, 2, 3) and present the results for all bn,` coefficients.
For brevity we will not report the coefficients a[m,n]

∆,` .

3.2 Multiplets below threshold

The contributions to f̂ that correspond to operators below unitarity are bn,` for 0 < n ≤ p.9

These can be canceled by adding to H blocks of twist 2t+p43, with 0 ≤ t ≤ n transforming
in the [n−m, 2m+p43, n−m] of SU(4). As anticipated, these contributions are not unitary
because the lower bound on the twist for those long operators is

τ ≡ ∆− ` ≥ 2n+ p43 + 2 > 2t+ p43 . (3.7)

The non unitary sector of H(2) reads

H(2) ⊃
∑

`≥0 even
A0,` G

(`)
` (u, v) , (3.8)

9Recall p = min( 1
2 (p1 + p2 + p3 − p4), p3).
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where the value of A0,` will be given shortly. Similarly for the other correlators one has

H(2,2,3,3) ⊃
∑

`≥0 even
A

(2,2,3,3)
0,` G(`)

` (u, v) , Similarly for (2, 3, 2, 3) , (3.9a)

H(3) ⊃
∑

0≤m≤n≤1
t≤n

∑
`≥0

`≡n+mmod 2

A
[n,m]
t,` Yn,m(σ, τ)G(`)

2t+`(u, v) . (3.9b)

The coefficients are fixed as follows

A0,` = 2`+1b1,` ,

A
(2,3,2,3)
0,` = 2`+1b

(2,3,2,3)
1,` ,

A
(2,2,3,3)
0,` = 2`+1b

(2,2,3,3)
1,` ,

A
[0,0]
0,` = 2`+1b

(3)
1,` ,

A
[1,0]
0,` = 2`+1b

(3)
2,` , A

[1,0]
1,` = 0 ,

A
[1,1]
0,` = 0 , A

[1,1]
1,` = −1

4A
[1,0]
0,`+1 ,

(3.10)

where the bn,` coefficients are given in table 2.
The introduction of such long multiplets in H does not only have the effect of removing

the unwanted contributions in f̂ , it also implies the presence of other protected multiplets.
For example, the recombination rule

A`[0,0]` ' D[0,0]` ⊕ C[1,1]`−2 , (3.11)

says that after the cancellation of the D non unitary multiplet, a C multiplet appears with
coefficient given by A0,`. All other cases can be read from table 1.

3.3 Multiplets at threshold: recombination

As explained previously, the free theory presents an ambiguity. Namely it is impossible to
distinguish a long operator at threshold from a sum of protected operators. This is due to
representation theoretic recombination rules such as

A`+2
[0,0,0]` ' C[0,0,0]` ⊕ C[1,0,1]`−1 . (3.12)

We can make use of two criteria to resolve the ambiguity

1. InH(2), H(3) andH(2,2,3,3) we find C[0,0,0]` multiplets. These contain (for ` > 2) higher
spin conserved currents, which are known to constitute a decoupled free subsector of
the theory [43, 44]. We will thus impose that such multiplets are absent and resolve
the ambiguity for all operators of twist 2.

2. The knowledge of the number of protected operators in a given representation gives
an useful equality that can be used to fix the ambiguity [42]. Assuming for example
that there is only one protected operator in a given representation γ ≡ (∆, `, [p, q, k]).
Then the following equality between OPE coefficients must hold

c(p1,p1,p1,p1)
γ c(p2,p2,p2,p2)

γ =
(
c(p1,p1,p2,p2)
γ

)2
, (3.13)
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simply because c(p1,p1,p2,p2)
γ = λp1p1O(γ)λp2p2O(γ) . This identity with p1 = 2, p2 =

3, γ = (` + 4, `, [n − m, 2m,n − m]), n > 0 can be used to fix the contributions of
twist 4 in H(3).

The correlator H(2,3,2,3) contain multiplets of twist 3 which are not fixed by the two criteria.
We will thus not make any assumption on their OPE coefficient other than its positivity.
The contribution from operators at threshold reads

H(2) ⊃
∑

`≥0 even
A1,` G

(`)
`+2(u, v) , Similarly for (2, 2, 3, 3) and (2, 3, 2, 3) , (3.14a)

H(3) ⊃
∑

0≤m≤n≤1

∑
`≥0

`≡n+mmod 2

A
[n,m]
n+1,` Yn,m(σ, τ)G(`)

2n+`+2(u, v) . (3.14b)

And the coefficients are given by

A1,` = 2`b0,`+1 ,

A
(2,3,2,3)
1,` = 2

32`b(2,3,2,3)
`+1 ,

A
(2,2,3,3)
1,` = 2`b(2,2,3,3)

0,`+1 ,

A
[0,0]
1,` = 2`b(3)

0,`+1 ,

A
[1,0]
2,` = −1

32`b(3)
0,`+2 + Ã

[1,0]
` ,

A
[1,1]
2,` = − 1

24A
[0,0]
0,`+2 + Ã

[1,1]
` .

(3.15)

where the bn,` coefficients are given in table 2 and

Ã
[1,0]
` = 2`

3

(
b
(2,2,3,3)
0,`+2

)2
b
(2)
`+2

,

Ã
[1,1]
` = 1

24

(
A

(2,2,3,3)
0,`+2

)2
A

(2)
0,`+2

.

(3.16)

The precise recombination rules that take place are written in table 1. In the last two lines
of (3.15) the recombination rules would have set Ã[n,m]

` to zero so this is an example of a
dynamically protected multiplet.

4 Numerical implementation

4.1 Crossing equations

The goal of this section is to write down the crossing equations for the set of correlators

〈O(2)O(2)O(2)O(2)〉 , 〈O(2)O(2)O(3)O(3)〉 , 〈O(2)O(3)O(2)O(3)〉 , 〈O(3)O(3)O(3)O(3)〉 .
(4.1)

This will translate then in a set of equations for the unprotected part of the correlators
H. In this section we will use “×” as a shorthand for (2, 3, 2, 3) and “q” as a shorthand for
(2, 2, 3, 3). In order to fully exploit the information about supersymmetry it is necessary to
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Coeff. Decomposition used Multiplet associated
A0,` A`[0,0,0]`

∼= D[0,0,0]` ⊕ C[0,2,0]`−2 C[0,2,0]`−2 (B[0,2,0] ⊕ B[0,4,0] if ` = 0)
A1,` A`+2

[0,0,0]`
∼= C[0,0,0]` ⊕ C[1,0,1]`−1 C[1,0,1]`−1 (B[2,0,2] if ` = 0)

A
[0,0]
0,` A`[0,0,0]`

∼= D[0,0,0]` ⊕ C[0,2,0]`−2 C[0,2,0]`−2 (B[0,2,0] ⊕ B[0,4,0] if ` = 0)
A

[1,0]
0,` A`[1,0,1]`

∼= D[1,0,1]` ⊕D[0,2,0]`−1

C[0,4,0]`−2 (B[0,4,0] ⊕ B[0,6,0] if ` = 0)
A

[1,1]
1,` A`+2

[0,2,0]`
∼= D[0,2,0]` ⊕ C[0,4,0]`−2

A
[0,0]
1,` A`+2

[0,0,0]`
∼= C[0,0,0]` ⊕ C[1,0,1]`−1 C[1,0,1]`−1 (B[2,0,2] if ` = 0)

A
[1,0]
2,` A`+4

[1,0,1]`
∼= C[1,0,1]` ⊕ C[2,0,2]`−1 C[1,0,1]` ⊕ (C[2,0,2]`−1 or B[3,0,3] if ` = 0)

A
[1,1]
2,` A`+4

[0,2,0]`
∼= C[0,2,0]` ⊕ C[1,2,1]`−1 C[0,2,0]` ⊕ (C[1,2,1]`−1 or B[2,2,2] if ` = 0)

A
(2,3,2,3)
0,` A`+1

[0,1,0]`
∼= D[0,1,0]` ⊕ C[0,3,0]`−2 C[0,3,0]`−2 (B[0,3,0] ⊕ B[0,5,0] if ` = 0)

A
(2,3,2,3)
1,` A`+3

[0,1,0]`
∼= C[0,1,0]` ⊕ C[1,1,1]`−1 C[1,1,1]`−1 (B[2,1,2] if ` = 0)

A
(2,2,3,3)
0,` A`[0,0,0]`

∼= D[0,0,0]` ⊕ C[0,2,0]`−2 C[0,2,0]`−2 (B[0,2,0] ⊕ B[0,4,0] if ` = 0)
A

(2,2,3,3)
1,` A`+2

[0,0,0]`
∼= C[0,0,0]` ⊕ C[1,0,1]`−1 C[1,0,1]`−1 (B[2,0,2] if ` = 0)

Table 1. Summary of semishort multiplets arising from the recombination described in the previous
paragraphs. Now the notation [n,m] ≡ [n − m, 2m + p43, n − m] has been expanded in order to
avoid confusion. These results can be found in [45] and appendix D of [40].

separate the contributions of long and of short multiplets. The latter will be given by the
coefficients computed in the previous section while the former will appear with arbitrary
coefficients a∆,`. Concretely one can write10

H(2)(u, v) =
∑
∆,`

a∆,` G
(`)
∆ (u, v) +

∑
`≥0 even
t=0,1

At,` G
(`)
`+2t(u, v) , (4.2a)

Hq(u, v) =
∑
∆,`

aq∆,` G
(`)
∆ (u, v) +

∑
`≥0 even
t=0,1

Aqt,`G
(`)
`+2t(u, v) , (4.2b)

H×(u, v) =
∑
∆,`

a×∆,` Y
(0,1)

00 G(`)
∆ (u, v; 1, 1) +

∑
`≥0
t=0,1

A×t,` Y
(0,1)

00 G(`)
`+2t+1(u, v; 1, 1) , (4.2c)

H(3)(u, v;σ, τ) =
∑
∆,`

∑
0≤m≤n≤1

a
[n,m]
∆,` Ynm(σ, τ)G(`)

∆ (u, v)+

+
∑

`≥0 even
t=0,1

A
[0,0]
t,` Y00(σ, τ)G(`)

`+2t(u, v)

+
∑

`>0 odd
t=0,2

A
[1,0]
t,` Y10(σ, τ)G(`)

`+2t(u, v)

+
∑

`≥0 even
t=1,2

A
[1,1]
t,` Y11(σ, τ)G(`)

`+2t(u, v) . (4.2d)

10Note Y (0,1)
00 = 3

2 .
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The crossing equations for H are not be homogeneous due to the transformation prop-
erty of Ff̂ . In order to take this into account it will be convenient to define the following
quantities

∆(2)(u, v) = (u− v)(a2 + a1(u+ v)) , (4.3a)

∆q(u, v) = c1 − c2 + u2 − 1
v2 c2 + uc3 − c4

v
, (4.3b)

∆×(u, v) = (u− v)(c3 + c1(u+ v)) , (4.3c)

∆(3)(u, v;σ, τ) = b3
(
τu2 − v2

)
+ b1

(
− σu4 − τu4 + u4 + σu3 + 2τu3 + 2σu3v + τu3v

− u3v − u3 − 2σuv3 + τuv3 − uv3 + σv4 − τv4 + v4 − σv3 + τv3 − 2v3)
+ b2

(
− σu3 + τu3 + u3 + 2τu2 + σu2v + σu+ τu− σuv2 − τuv + uv

− u+ σv3 − τv3 − v3 − 2v2 − σv + τv − v
)
. (4.3d)

The following combinations of conformal blocks will appear in the crossing equations:

F
(p)
∆,`(u, v) = upG(`)

∆ (v, u)− vpG(`)
∆ (u, v) ,

H
(p)
∆,`(u, v) = upG(`)

∆ (v, u) + vpG(`)
∆ (u, v) ,

I∆,`(u, v) = u2G(`)
∆ (v, u; 1, 1)− v2G(`)

∆ (u, v; 1, 1) ,

F×,±∆,` (u, v) = (−1)`
(
u2G(`)

∆ (v, u; 1,−1)± v2G(`)
∆ (u, v; 1,−1)

)
,

F q,+∆,` (u, v) = (−1)`H(2)
∆,`(u, v) ,

F q,−∆,` (u, v) = (−1)`F (2)
∆,`(u, v) .

(4.4)

In the 〈3333〉 case we have a σ, τ dependence. This means that we should first project
onto SU(4) structures (i.e. the Ynm polynomials). Crossing acts linearly on them in the
following way

τYa
(
σ

τ
,

1
τ

)
= Mab Yb(σ, τ) , where ~Y = {Y00, Y10, Y11} . (4.5)

The eigenvalues of Mab are 1,1 and −1. The matrix that diagonalizes it is

PMTP−1 = diag(1, 1,−1) , P =


−1 0 −5
0 −1 −1
−1 −3 4

 . (4.6)
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We also define the vector ~∆(3) as ∆(3) = ~∆(3) · ~Y. Let us first write the vectors associated
to the short multiplets.

F
(2)
short(u, v) = ∆(2)(u, v)−

∑
`≥0 even
t=0,1

At,`F
(2)
2t+`,`(u, v) , (4.7a)

~F
(3)
short(u, v) = P · ~∆(3) −

∑
t=0,1
` even

A
[0,0]
t,`


−F (3)

2t+`,`

0
H

(3)
2t+`,`

− ∑
t=0,2
` odd

A
[1,0]
t,`


0

−F (3)
2t+`,`

3H(3)
2t+`,`



−
∑
t=1,2
` even

A
[1,1]
t,`


−5F (3)

2t+`,`

−F (3)
2t+`,`

−4H(3)
2t+`,`

 ,

(4.7b)

Ishort(u, v) = ∆×(u, v)−
∑
t=0,1
`≥0

A×t,`I2t+`+1,`(u, v) , (4.7c)

F±short = ∆q
(
u

v
,

1
v

)
±∆q

(
v

u
,

1
u

)
−
∑
`≥0

A×0,`F
×,±
`+1,` ±

∑
t=0,1
` even

Aqt,`F
q,±
2t+`,` . (4.7d)

Now we can finally state the seven crossing equations in the following compact vector
form.11

∑
∆≥`+2
` even

[
λ22(∆,`) λ33(∆,`)

]
~V∆,`

 λ22(∆,`)

λ33(∆,`)

+
∑

∆≥`+2,`
a×∆,`

~V∆,`;×+

+
∑

∆≥`+4
` odd

a
[1,0]
∆,`

~V∆,`;[1,0] +
∑

∆≥`+4
` even

a
[1,1]
∆,`

~V∆,`;[1,1] = ~Vshort .

(4.8)

In the above equation all vectors are seven dimensional and ~V∆,` is a vector of 2×2 matrices.

11We call λpp(∆,`) the coefficient of O(∆,`,[0,0,0]) in the OPE O(p) ×O(p). We still allow for degeneracies
in the spectrum, but we did not take this into account in (4.8) simply for notational convenience.
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The coefficients a×∆,`, a
[m,n]
∆,` are positive. The explicit definitions of the vectors ~V and ~V is

~V∆,` =




F

(2)
∆,`

0...
0





0
−1

2F
q,+
∆,`

1
2F

q,−
∆,`

0...
0




0
−1

2F
q,+
∆,`

1
2F

q,−
∆,`

0...
0





0...
0

−F (3)
∆,`

0
H

(3)
∆,`





,

~V∆,`;× =



0
1
2F
×,+
∆,`

1
2F
×,−
∆,`

I∆,`

0
0
0


,

~V∆,`;[1,0] =



0...
0

−F (3)
∆,`

3H(3)
∆,`


,

~V∆,`;[1,1] =



0...
0

−5F (3)
∆,`

−F (3)
∆,`

−4H(3)
∆,`


,

(4.9)

~Vshort =
(
F

(2)
short, F

+
short F

−
short, Ishort, F

(3)
short,1, F

(3)
short,2, F

(3)
short,3

)T
. (4.10)

4.2 Numerical bootstrap techniques

The crossing equations in (4.8) may be studied by means of a numerical method called
conformal bootstrap [1, 46]. We will briefly review it in this subsection. The following
general introduction is not specific to supersymmetry and, in fact, applies to all conformal
field theories.

The first step is to discretize the equations. This is done by Taylor expanding the
functions F (z, z̄) that appear in the crossing equations around a fixed point, retaining
only a finite number of coefficients. This still leaves an infinite sum over ∆ and `. The
sum is thus truncated to a maximal value of the spin Lmax and the Taylor coefficients
(∂nz ∂mz̄ F (z, z̄))

∣∣
z=z̄= 1

2
are approximated by rational functions of ∆ [47]. The details of the

approximation are given in appendix D. After the truncation we end up with a system of
equation of the form12 ∑

ρ

∑
i,j

(λρ)i (Vρ,I)i,j (λρ)j = VI , ∀ I . (4.11)

12λρ represents the OPE coefficient of the representation ρ. E.g. λ∆,`,[0,1,0] =
√
a×∆,` and λ∆,`,[0,0,0] is

the 2-vector (λ22(∆,`), λ33(∆,`)).
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The index ρ = (∆, `, R) runs over the finite sum over spins and R-symmetry represen-
tations and over the infinite sum over conformal dimensions. The index I runs over all
crossing equations (in our case seven) times the number of Taylor coefficients kept in the
discretization of F (z, z̄). Finally, the indices i and j run over the space of independent
OPE coefficients in the same representation. In our case they take either two values or just
one. The right hand side of the equation is obtained from the vector Vshort (4.10). The
strategy of the conformal bootstrap is to try and to rule out possible candidate solutions
to (4.8) by showing that they lead to a contradiction. One typically starts from a set of
assumptions that depend on a small number of parameters and tries to “carve out” regions
in parameter space. The contradictions may be found with the following general strategy:
suppose that there exists a linear functional αI such that∑

I

αI Vρ,I � 0 , ∀ ρ ∈ {assumptions} ,∑
I

αI VI = −1 .
(4.12)

This looks like an infinite set of constraints because we have not restricted the conformal
dimensions ∆ to a finite set, therefore ρmay assume a continuum of values. But, in fact, the
functions that appear in V are rational and their denominator is known. So one simply has
to impose positivity on a polynomial in ∆ over some interval, typically of the form [∆0,∞).
This can be done rigorously with a computer. If there exists such an α, then, by contracting
αI with (4.11), one would obtain 0 ≤

∑
ρ λ

T
ρ (α · Vρ)λρ = −1, namely a contradiction. The

problem now consists in implementing a numerical algorithm that searches for a functional
α with the property described above. If such a functional is found, then the assumptions
made are inconsistent. To this end, we use the program sdpb13 [48] which is a semidefinite
program solver optimized for the conformal bootstrap. The parameters used and various
details of the numerical implementation are given in appendix D.

According to the kind of assumptions that we make, the bootstrap problems that we
need to solve can be quite different. We will now explain the various approaches used
to make the plots that will be presented in the next section. First we start with the
assumptions of the type

Given a fixed value of N , all operators in a representation (∆, `, R) have con-
formal dimension ∆ ≥ ∆`,R.

Where ∆`,R is a function that we can choose. In the most common case it is

∆`∗,R∗ = ∆∗ ,

∆`,R = ∆unitarity
`,R , ∀ `, R 6= `∗, R∗ ,

(4.13)

for a chosen representation `∗, R∗ and a real number ∆∗. We defined ∆unitarity
`,R as the

unitarity bound for the representation with spin ` and R-symmetry R.14 The goal in this
13https://github.com/davidsd/sdpb.
14Since we only consider unitary theories, the assumption ∆ ≥ ∆unitarity is always the default one.
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kind of problem is to find an upper bound on ∆`,R, as a function of N . This can be done by
a simple binary search. Namely one fixes two values ∆max and ∆min, which are respectively
disallowed and allowed. Then, iteratively, the interval is divided in half and either ∆max

or ∆min is updated according to whether the middle point results allowed or disallowed by
the bootstrap.

Next, we would like to discuss a slightly different setup that allows us to find upper and
lower bounds on OPE coefficients without having to make multiple runs of the semidefinite
solver [47, 49]. Indeed sdpb can also maximize a given objective vector, subject to certain
semidefinite positiveness conditions. Suppose we are interested in the OPE coefficients of
a certain operator in the representation ρ∗ = (∆∗, `∗, R∗). The crossing equations can be
rewritten to isolate the contribution of that operator

|λρ∗ |2 n̂Tθ · ~Vρ∗ · n̂θ +
∑

∆,`,R 6=ρ∗
λTρ · ~Vρ · λρ = ~Vshort . (4.14)

If R∗ is not the singlet, then the unit vectors are trivial (i.e. n̂ = 1). Then we search for
functionals α satisfying

α[n̂Tθ · ~Vρ∗ · n̂θ] = ±1 ≡ s ,

α[~Vρ] � 0 , ∀ ρ 6= ρ∗ ,

α[~Vshort] = B ,

(4.15)

and minimize the value of B. This yields an upper or lower bound on |λρ∗ |2, namely

|λρ∗ |2 ≤ B , if s = 1 ,
|λρ∗ |2 ≥ −B , if s = −1 .

(4.16)

Finally we briefly introduce the extremal functional method [12, 39]. It is a technique
that can be used to extract an approximation of the spectrum (conformal dimensions and
OPE coefficients) of the theory that lives at the boundary of an allowed region in param-
eter space. First notice that the functional α takes its normalization from the condition
α[Vshort] = 1. We can relax this to α[Vshort] > 0 while still getting a contradiction when α
is found. The boundary of this region in functional space is given by all α∂ that satisfy

α∂ [~Vρ] � 0 ∀ ρ , α∂ [~Vshort] = 0 . (4.17)

This implies that the only terms that can contribute to the sum of a consistent theory at
the boundary must satisfy

α∂ [n̂Tθ · ~Vρ · n̂θ] = 0 . (4.18)

For simplicity, let us consider only the simpler case where all Vρ are one-by-one matrices.
The equality above together with the positivity constraint implies that the function f`,R
defined by

f`,R(∆) ≡ α∂ [~V∆,`,R] , (4.19)

has even order zeros (typically double zeros) only on those values of ∆ that belong to
the physical spectrum of operators with spin ` and R-charge R. Naturally in a numerical
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computation we will only find a finite number of such zeros. Then, in order to find the
OPE coefficients, we can truncate the crossing equation to that finite number of operators
and solve the linear system of equations∑

∆,`,R∈{f`,R(∆)=0}

~V(∆,`,R)a(∆,`,R) = ~Vshort , (4.20)

with aρ = λ2
ρ. If we find a forbidden point in parameter space very close to the allowed

region,15 the functional α that excludes it will be a very good approximation of α∂ . We can
therefore use it to define the function f`,R(∆) and extract the spectrum. For the results
to be meaningful one needs to both be very close to the boundary and to observe that the
position of the boundary remains stable if the size of the numerics is increased.

5 Known analytic results

In this section we summarize some results for OPE coefficients and conformal dimensions at
large N obtained through the supergravity description of N = 4 SYM. In the large N limit
the operators on the OPE O(p1)×O(p2) organize in double trace towers [O(p1)O(p2)]n,` whose
conformal dimensions are p1 + p2 + 2n+ ` plus 1/N corrections. It should be stressed that,
strictly speaking, the operators [O(p1)O(p2)]n,` are not simply given by O(p1)∂`�nO(p2).
Instead, at each order in the 1/N expansion, the operators with the same twist mix with
each other. For example, [O(2)O(2)]n,` will be a linear combination of

{O(2)∂`�nO(2), O(3)∂`�n−1O(3), . . . ,O(n+2)∂`O(n+2)} . (5.1)

Solving this mixing is important for deriving the higher order corrections to the anomalous
dimension. This problem is addressed in [37, 50–52] and in the references specified later in
this section. Here we will report only the averaged anomalous dimensions

〈γO〉 = 1∑
O′ aO′

∑
O′
aO′γO′ , (5.2)

where the sum ranges over the operators O′ that have the same quantum numbers as O at
tree level. We will omit the angle brackets when the operator is non degenerate.

We first show the results in the supergravity limit, namely λ =∞ and N large. Then
we present some corrections in 1/λ for the operator [O(2)O(2)] at lowest twist.

5.1 Double traces [O(2)O(2)]

Let us start by showing the results at first order in 1/N2 and at λ strictly infinity. The
anomalous dimensions at order 1/N2 of the long singlet operators with twist 2t and spin `
in the OPE O(2) ×O(2) have been computed in [53].16 For t = 2, 3, . . . and ` even one has

〈γt,`〉 = −4(t− 1)t(t+ 1)(t+ 2)
(`+ 1)(`+ 2t+ 2)

1
N2 , (5.3)

15This can be done by either running a binary search to very high accuracy or by extremizing an OPE
coefficient with the methods explained before.

16For t = 2 the results first appeared in [26, 27, 54].
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where the conformal dimension is given by ∆t,` = 2t+ `+ γt,`. The anomalous dimensions
of the operators of twist four and spin ` ≥ 2 are available also up to order 1/N4. They
were obtained independently in [31, 50]

γt=2,`
∣∣
1/N4 =

( 2688(`− 7)(`+ 14)
(`− 1)(`+ 1)2(`+ 6)2(`+ 8) −

4608(2`+ 7)
(`+ 1)3(`+ 6)3 −

96
(`+ 1)(`+ 6)

) 1
N4 .

(5.4)
The OPE coefficients17 at order 1/N0, for t = 2, 3, . . . and ` even, are given by

a2t+`,` = 2`+1(t!)2((`+ t+ 1)!)2

(2t)!(2`+ 2t+ 2)! (`+ 1)(`+ 2t+ 2) , (5.5)

while for t = 1 at order 1/N2 we have

a`+2,` = 2`((`+ 2)!)2

(2`+ 4)!

(
(`+ 1)(`+ 4)− 12

N2

)
= A1,` . (5.6)

The OPE coefficient for t = 1 is precisely the one described in (3.15) and thus it cancels
exactly the contribution from the short C[0,0,0]` multiplets. This means that at this order
only the long multiplets with twist at least four gain anomalous dimension, whereas the
ones of twist two are absent.

5.2 Double traces [O(2)O(3)]

The double trace operators in the OPE O(2) × O(3) were studied in [52]. The anomalous
dimensions at order 1/N2 for all ` and t = 2, 3, . . . read

〈
γ

(23)
t,`

〉
=


− 4(t− 1)t(t+ 2)(t+ 3)

(`+ 1)(`+ t+ 2)
1
N2 ` even ,

− 4(t− 1)t(t+ 2)(t+ 3)
(`+ t+ 2)(`+ 2t+ 3)

1
N2 ` odd ,

(5.7)

where now the dimension is given by ∆t,` = 2t+ `+ 1 + γ
(23)
t,` . For spin greater or equal to

two and twist five (t = 2) there are also results at order 1/N4

γ
(23)
t=2,`

∣∣
1/N4 =


640(9`4 + 68`3 − 1151`2 − 5738`− 3688)

(`− 1)(`+ 1)3(`+ 4)3(`+ 8)
1
N4 ` = 2, 4, . . . ,

640(9`4 + 140`3 − 487`2 − 11262`− 29400)
`(`+ 4)3(`+ 7)3(`+ 9)

1
N4 ` = 3, 5, . . . ,

(5.8)

The OPE coefficients at order 1/N0 for twist five or greater coincide with the free theory,
as before. Namely, for t = 2, 3, . . .

a
(2323)
2t+`+1,` = 2l((t+ 1)!)2((`+ t+ 2)!)2

3(2t+ 1)!(2`+ 2t+ 3)! (`+ 1)(`+ 2t+ 3) . (5.9)

And the OPE coefficients at threshold exactly match the protected contribution at order
1/N2 so that the corresponding operators decouple

a
(2323)
`+3,` = A

(2323)
1,` . (5.10)

17The coefficients a∆,` are defined as in (2.15), ommitting the implied [0, 0] superscript in this case.
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5.3 Double traces [O(3)O(3)]

The anomalous dimensions of the analogous operators in the OPE O(3) × O(3) were
computed in [55]. In this case the long multiplet can transform in the representations
[0, 0], [1, 0], [1, 1].18 The first and last equations are for ` even while the second is for ` odd.
In all cases t = 3, 4, . . .

〈
γ

[0,0]
t,`

〉
= −4(t+ 2)(t+ 1)t(t− 1)

(`+ 1)(`+ 2t+ 2)

(
1 + 5(t− 2)(t+ 3)

(`+ t− 1)(`+ t+ 4)

) 1
N2 , (5.11a)

〈
γ

[1,0]
t,`

〉
= −4(t+ 3)(t+ 1)t(t− 2)

(`+ t)(`+ t+ 3)
1
N2 , (5.11b)

〈
γ

[1,1]
t,`

〉
= −2(t+ 3)(t+ 2)(t− 1)(t− 2)((2`+ 3t+ 4)(`+ t+ 1)− `t)

(`+ 1)(`+ t+ 1)(`+ t+ 2)(`+ 2t+ 2)
1
N2 , (5.11c)

where ∆t,` = 2t+`+γt,`. The OPE coefficients of the operators at threshold exactly cancel
the respective short contributions and the contribution of twist four in [0, 0] vanishes. This
means that only the long operators with twist at least six gain anomalous dimensions while
the others decouple, as in the previous case. Let us show the results for twist two and four
at order 1/N2 and the results for higher twists at order 1/N0. The spin parity and the
values of t in the following equations are the same as above

a
[0,0]
`+2 =A

[0,0]
1,` ,

a
[0,0]
`+4 = 0 ,

a
[0,0]
2t+` = 2`−2(t!)2((`+ t+1)!)2

3(2t)!(2(`+ t+1))! (`+1)(t−2)(t+3)(`+ t−1)(`+ t+4)(`+2t+2) ,

(5.12a)

a
[1,0]
`+4 =A

[1,0]
2,` ,

a
[1,0]
2t+` = 2`−2(t!)2((`+ t+1)!)2

3(2t)!(2(`+ t+1))! (`+1)(t−1)(t+2)(`+ t)(`+ t+3)(`+2t+2) ,
(5.12b)

a
[1,1]
`+4 =A

[1,1]
2,` ,

a
[1,1]
2t+` = 2`−2(t!)2((`+ t+1)!)2

3(2t)!(2(`+ t+1))! (`+1)t(t+1)(`+ t+1)(`+ t+2)(`+2t+2) .
(5.12c)

Note that the Ã[n,m]
` contributions that appear in A[n,m]

2,` (see (3.15)) may be neglected at
this order.

5.4 Corrections 1/λ

The 1/λ corrections to the CFT data of [O(2)O(2)]t,` at generic twist are not known.19

However, for the lowest twist operators (t = 2) one does not need to solve any mixing
problem and thus it was possible to obtain several orders in 1/λ and 1/N . The latest
results can be found in [33], part of which had been already obtained in [26–32]. We will

18See footnote 8.
19The 1/λ correction to the [LL] double trace operator was computed in [28], where L is the Lagrangian

operator: a descendant of O(2). In order to relate that result to what we need one would still need to solve
a mixing problem.
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write γ2,` as an expansion on 1/c rather than 1/N2. The parameter c is the central charge
and it is defined as c = (N2 − 1)/4. The anomalous dimensions read

γt=2,`= 1
c

[
− 24

(`+1)(`+6)−
4320ζ(3)

7λ
3
2

δ`,0−
ζ(5)
λ

5
2

(
30600δ`,0+ 201600

11 δ`,2

)
−ζ(3)2

λ3

(
172800δ`,0+ 2419200

11 δ`,2

)
+O(λ−

7
2 )
]

+ 1
c2

[
−45
√
λ

14 δ`,0+ 24(7`4+74`3−533`2−4904`−3444)
(`−1)(`+1)3(`+6)3(`+8) − 135

7 δ`,0

]

+ 1
c3

[
−λ

3
2

( 85
768δ`,0+ 35

528δ`,2
)

+O(λ)
]
+ 1
c4

(
5λ3

16896δ`,2+O(λ)
)

+O(c−5),

(5.13)

where for convenience we have repeated the results (5.3) for t = 2 and (5.4).
In the expression above one can observe that at each order in the 1/c expansion after

tree level there are contributions diverging as λ→∞ which have support on a finite number
of spins. These terms are those that make the extrapolation to supergravity ambiguous
because one would need to renormalize those divergences with some counterterms in the
supergravity effective action. The finite part of the counterterm is what gives the ambiguity.
We can also expect that such ambiguities will appear on more and more spins as we go
further in the 1/c expansion. This means that ultimately the supergravity extrapolation of
the CFT data at finite N will be ambiguous for all spins, but the effects of this ambiguity
will be apparent only at smaller and smaller values of N as the spin is increased. As we have
anticipated in the introduction (see figure 1) this is indeed compatible with what we oberve,
even though one could have expected the effects to be noticeable at much lower values of N .

From an effective field theory perspective we can always estimate the value of these
ambiguities because the cutoff of the theory is given by the single trace gap ∆gap = λ1/4.
As explained in [21], the gap cannot be taken bigger than c1/4 in order for the double
discontinuity dDisc[F ] to remain bounded by 0 and 1. Thus we can take the worst case
scenario and set λ = c. This, by dimensional analysis, implies a contribution at two loop
of the order of 1/c7/2. In [21] it is also argued that such correction to the CFT data are,
in any case, bounded by 1/c3/2, as a consequence of the inequality satisfied by dDisc[F ]
for theories with a large gap [20].20 This is clearly in accord with the effective field theory
estimate, but it is not saturated.

As the reader will see in the next section, the numerical results are actually quite
far from the supergravity values, even by taking into account an error of the order of the
estimates discussed above.

6 Numerical results

6.1 Bounds on the dimension as a function of N

We start by showing some simple binary searches for the conformal dimension of the lightest
operators in the various representations. The different lines are associated to a different

20More generally, the bound for the ambiguities arising at spin ` is given by 1/c
3+`

2 .
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(a) Mixed correlator system.
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(b) Only O(3).

Figure 2. In the left we see the upper bound for the gap on the dimension of the scalar singlet as
a function of N . The different curves are the different values of Λ = 19, 23, 27. The right shows the
same plot using only 〈O(3)O(3)O(3)O(3)〉 (note the difference in the scale).
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(a) Only O(2).
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(b) Only O(3).

Figure 3. Upper bound for the gap on the twist of all singlets as a function of N . The different
curves are the different values of Λ = 19, 23, 27. Here we pushed to much higher N to show where
it starts converging to τ = 4. The left plot uses only 〈O(2)O(2)O(2)O(2)〉 while the right plot uses
only 〈O(3)O(3)O(3)O(3)〉 (note the difference in the scale).

value of Λ (defined in the appendix D) which is related to the maximal order of the
Taylor expansion. The shaded areas are the allowed values for the gap imposed on the
representation considered.

In figure 2 we show an upper bound for the gap on the conformal dimension of the
scalar singlet sector. The left plot uses the mixed correlator system. We also looked at
higher values of N , namely 200 ≤ N ≤ 1000 and the bound remains very close to 4 for all
the N ’s we checked in that range. The correlator 〈O(3)O(3)O(3)O(3)〉 on the other hand
(on the right) has a much weaker bound. It does not seem to asymptote to ∆gap = 6 at
large N , which would be the supergravity solution. It was conjectured in [3] that indeed
the theory on the boundary in the limit N → ∞,Λ → ∞ should be planar supergravity.
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Figure 4. Upper bound for the gap on the twist of all singlets as a function of N , using the full
system of correlators. The different curves are the different values of Λ = 19, 23, 27.

It seems that this plot does not follow this expected behavior. However we can try to
make another kind of assumptions in our bootstrap problem. Instead of assuming a gap
on ∆ in a given channel we can impose a twist gap in all spins of a given R-representation.
This gives certainly more stringent bounds and, remarkably, they saturate the supergravity
solution with very high precision. In figure 3 on the left we have the plot for the O(2) single
correlator which approaches ∆gap = 4 at large N . On the right instead we have the O(3)

single correlator which also approaches its supergravity solution ∆gap = 6. The bound
can be observed to converge to 6 even at intermediate values of N . However one would
expect the bound to drop to 4 because the OPE coefficient λO(3)O(3)[O(2)O(2)]0,0 becomes
non negligible. It seems that the crossing equations of the single correlator alone are not
strong enough to require the presence of the twist four operator at finite N .

Building on this idea of simultaneously gapping the twist of all operators in a given rep-
resentation, we considered the entire system of mixed correlators. The result is given in fig-
ure 4. As we discussed in the introduction, the curve now drops more rapidly below the su-
pergravity, large N , prediction of τ ∼ 4−O(1/N2) and, in fact, it is in disagreement with it
for somewhat large values of N (N ∼ 160), see figure 1. Moreover, the numerics are not yet
converged, and the tension will likely become more severe at higher values of Λ. In the in-
troduction we also showed a bound on the twist of all operators with ` ≥ 2, while leaving the
scalars unconstrained. Some possible scenarios to resolve this puzzle were also discussed.

We would also like to discuss the bounds on the representation [0, 1, 0]. We considered
for simplicity just a scalar and put a gap on the lightest such operator. According to the
discussion of section 3.3, we cannot know the exact value of the dynamically protected
OPE coefficient for a [0, 1, 0] operator at twist 3. Thus we made two plots in figure 5: one
where we assume that there are no such dynamically protected operators at all (namely
we cancel their contribution exactly in Fshort and we do not require their presence in the
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Figure 5. Upper bound for the gap on the dimension of the scalar transforming in the [0, 1, 0] as
a function of N . The different curves are the different values of Λ = 19, 23. The first imposes a gap
while the second allows for the presence of an operator sitting at ∆ = 3. This accounts for possible
“dynamically protected” operators as discussed in section 3.3.

bootstrap equations), and one where we allow for an operator at ∆ = 3 with positive but
unknown OPE coefficient. We see that both cases are consistent and, as expected, the
bounds for the latter case are less stringent.

In figure 6 we show plots for some other values of the spin and the R-symmetry
representation. In order from the top left we have a singlet of spin 2, spin 4, a [1, 0, 1] of
spin 1 and a [0, 2, 0] of spin 0. Similarly, in figure 7 we show bounds on the representations
[1, 0, 1] and [0, 2, 0] but this time assuming gaps on the twist. All plots take into account
the constraints of the entire system of mixed correlators.

6.2 Behavior at large N

As we have observed in the previous subsection, by assuming gaps on the entire Regge
trajectory we get very close to an integer value of ∆. In particular the bound for the singlet
in the 〈O(2)O(2)O(2)O(2)〉 gets very close to the supergravity solution ∆ = 4. This was also
observed in [3]. Here we provide a numerical fit for this case, plus other representations in
the 〈O(3)O(3)O(3)O(3)〉 correlator. However, instead of assuming a gap on the dimension
of the lightest operator in the OPE, we assume a twist gap.

In figure 8a we show the twist gap on the singlet sector in the correlator of four O(2)’s.
In figure 8b and 8c we instead show, respectively, the even spins trasforming in the [0, 2, 0]
and the odd spins transforming in the [1, 0, 1], both in the correlator of four O(3)’s. Both
axes are in logarithmic scale and the vertical one is translated by the offset value of the fit
(called β0 in (6.1)). We looked for fitting functions of the form

∑
a kaN

−2a and observed
that stopping at order N−6 yielded a good approximation of the numerical data. We
therefore chose the following parametrization

τmax = β0 + β1
N2 + β2

N4 + β3
N6 . (6.1)
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(c) [1, 0, 1] of spin 1.
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Figure 6. Bounds on the gap of the lightest operator for other representations of spin and R-
symmetry with the mixed correlator. In order from the top left we have a singlet of spin 2, spin 4,
a [1, 0, 1] of spin 1 and a [0, 2, 0] of spin 0.
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Figure 7. Bounds on the twist gap for other R-symmetry representations with the mixed correlator.
We have a [1, 0, 1] on the left and a [0, 2, 0] on the right.
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(a) Twist gap in the singlet channel, with spin even, for the correlator of four O(2).
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(b) Twist gap in the [0, 2, 0] representation, with
spin even, for the correlator of four O(3).
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(c) Twist gap in the [1, 0, 1] representation, with
spin odd, for the correlator of four O(3).

Figure 8. Numerical fit in logarithmic scale following (6.1) of the smallest twist gap allowed in the
respective channels. The numerical values of the curves in green is shown in equation (6.2a), (6.2b)
and (6.2c) respectively. The yellow band is the error bar at 99% confidence level.

With this definition, these are the result for, respectively, the singlet, the [0, 2, 0] and the
[1, 0, 1]

Singlet: β0=4+9.696×10−6, β1=−0.8942, β2=−4541., β3=8.752×105, (6.2a)
[0,2,0]: β0=6+5.441×10−4, β1=−0.8455, β2=822.4, β3=−1.201×106, (6.2b)
[1,0,1]: β0=6+7.702×10−4, β1=−0.8367, β2=28.25, β3=−1.212×105. (6.2c)

Unfortunately, at this value of Λ, the predictions for the large N expansion coefficients are
not reliable enough to make any conclusive statements. A possible improvement could be
obtained by computing them with several values of Λ and extrapolating to Λ =∞, but we
did not attempt to do this.
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Figure 9. Upper and lower bounds for the OPE coefficient (λ2
22(∆,0) + λ2

33(∆,0))1/2 as a function
of the dimension of the scalar singlet ∆ and of the angle θ defined in (6.3). It is assumed a gap
on the next scalar singlet of 4.2. For this plot we fixed N = 20. The angle θ ranges from 0 to 1.1
because for higher angles the theory is disallowed. The red dot marks the free theory lowest twist
OPE coefficient (5.5) (at t = 2 in the free theory θ = 0).
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Figure 10. Upper and lower bounds of the OPE coefficient a∆,` of the lightest scalar in a given
representation. We fixed N = 20.
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(a) Singlet spectrum for N = 30.
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(b) Singlet spectrum for N = 100.
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(c) Singlet spectrum for N = 200.
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(d) [1, 0, 1] spectrum for N = 30.
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(e) [1, 0, 1] spectrum for N = 100.
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(f) [1, 0, 1] spectrum for N = 200.
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(g) [0, 2, 0] spectrum for N = 30.
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(h) [0, 2, 0] spectrum for N = 100.
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(i) [0, 2, 0] spectrum for N = 200.

Figure 11. Zeros of the functionals at the boundary of the singlet twist gap exclusion plot. The
first one uses only the 〈O(2)O(2)O(2)O(2)〉 which sits very close to 4. Whereas the other two show
the representations [1, 0, 1] and [0, 2, 0], respectively. They are obtained by bounding the singlet
twist gap on 〈O(3)O(3)O(3)O(3)〉 which sits very close to 6.

6.3 Bounds on OPE coefficients

Now we study the upper and lower bounds on the OPE coefficients. In order to scan over
the possible values of the OPE coefficients of the singlet, we introduce θ defined by

tan θ =
λ33(∆,`)
λ22(∆,`)

. (6.3)

The first plot that we discuss is the one for the scalar singlet in figure 9. The bound is on
the norm of the vector (λ22(∆,0), λ33(∆,0)) where the angle θ in (6.3) is varied.

Next we show upper and lower bounds on the OPE coefficients of operators that
transform in other representations. Those can be seen in figure 10. In this case there is no
angle to scan over so the plots are two dimensional.

The motivation behind the exclusion plot in figure 9 is to look for hints of a conformal
manifold. Indeed fixing the value of ∆ and λ should, in principle, be enough to fix the

– 31 –



J
H
E
P
0
5
(
2
0
2
1
)
1
1
1

● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ●

●

●

●
●

● ● ● ●

● ● ● ●
●

●

●
●

●

●

●
● ● ●

●
●

● ●

●

● ● ● ● ● ●

● ●
●

●
●

●
●

●

● ● ●

●

●●
● ●

●
●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

□□
□
□□
□
□□
□□□□□□□

□□
□□□□□□□□□

□

□ □□□ □ □

□

□□□□□
□
□□□

□□□□□□

□

□

□

□□ □□□□□□
□

□□□
□□

□

□

□

□
□

□
□ □□□

□□
□

□

□□
□□

□
□

□
□□
□

□

□

□

□

□

□

□

□

□

□

◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆

◆

◆

◆

◆ ◆ ◆ ◆ ◆

◆
◆

◆

◆

◆ ◆ ◆

◆

◆
◆ ◆ ◆ ◆

◆
◆

◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

◆◆

◆◆

△ △ △ △ △ △ △ △
△ △ △ △△ △ △ △ △ △ △ △

△
△ △△

△ △ △ △ △ △ △

△

△
△
△
△

△

△ △

△

△

△

△
△

△

△ △

△

△

△△△

0 10 20 30 40

5

10

15

20

25

spin ℓ

Δ
-
ℓ,
S
in
g
le
t

(a) Spectrum for N = 20.
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(b) Spectrum for N = 50.
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(c) Spectrum for N = 100.
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(d) Spectrum for N = 200.

Figure 12. Zeros of the functionals at the boundary of the twist gap exclusion plot
in figure 4. The values of N shown are, from the top left to the bottom right,
N = 20, 50, 100, 200. We used the bound obtained with Λ = 27. The different
markers are used to indicate the representation exchanged. They are defined as follows

→ Singlet , → [1, 0, 1] ,
→ [0, 1, 0] , → [0, 2, 0] .

value of the complex coupling τ . Therefore one expects, in the limit of infinite numerical
precision, a two-dimensional allowed region (∆(τ), λ(τ)). The plot obtained is compatible
with this scenario, but we do not consider it to be a conclusive evidence.

6.4 Spectrum extraction

By studying the zeros of the functionals that exclude theories very close to the bound we
can get information on the spectrum. In particular here we take the bound on the twist
gap of the first scalar singlet using only the 〈O(2)O(2)O(2)O(2)〉 correlator (figure 3a) and
the bounds on the twist gap of the singlet using only the 〈O(3)O(3)O(3)O(3)〉 correlator
(figure 3b). In the latter we extract the spectrum in the other two representations [1, 0, 1]
and [0, 2, 0]. For both cases we consider 20 ≤ N ≤ 200 and, for all N in this range, the
twist gap is very close to 4 for the 〈O(2)O(2)O(2)O(2)〉 and to 6 for 〈O(3)O(3)O(3)O(3)〉.
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(a) Spectrum for N = 20.
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(b) Spectrum for N = 50.
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(c) Spectrum for N = 100.
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(d) Spectrum for N = 200.

Figure 13. Close-up of the plot in figure 12 retaining only the singlet spectrum. The values of N
shown are, from the top left to the bottom right, N = 20, 50, 100, 200. We used the bound obtained
with Λ = 27.

In figure 11 we show the zeros of the functionals at the boundary for some values of N .
The thin lines represent the expected Regge trajectories given in (5.3), (5.11b) and (5.11c).
The dots are colored according to how many zeros have been found in the same functional.
For instance, a blue dot is the first zero while a purple dot is the fifth one.

Finally, we consider the mixed correlator. Specifically, we take some values of N in
the range 20 ≤ N ≤ 200 and extract the spectrum from the bound in figure 4. The
results are shown in figure 12. Note that in this case the functionals are two-by-two
matrices. The plotted points are the zeros of the determinant. In the plots in figure 12
we superimposed the different representations by using different markers (see the caption).
Then in figure 13 we show a close-up of the low lying singlet operators since they were
important for a resolution of the mismatch between numerics and large N that we proposed
in the introduction. We have tried to extract the spectrum from different functionals
obtained at different threshold values for the bisection and observed that the discrepancies
between them are well within the size of the markers.
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Value Parity
b
(2)
0,`

((`+1)!)2

(2`+2)! (`(`+3)a1−3a2) odd
b
(2)
1,`

((`+1)!)2

(2`+2)! ((`+1)(`+2)a1 +a2) even
b
(3)
0,` − ((`+1)!)2

6(2`+2)!
(
(`−1)(`+4)(`(`+3)b1−8b2)−12b2 +6b3

)
odd

b
(3)
1,` − ((`+1)!)2

4(2`+2)!
(
(`+1)(`+2)((`−1)(`+4)b1−4b2)−8b2−4b3

)
even

b
(3)
2,` − ((`+1)!)2

12(2`+2)!(`+1)(`+2)(`(`+3)b1 +4b2) odd

b
(2,3,2,3)
0,`

(−1)`+1(`+2)!(`+1)!
3(2l+3)! ×

both
×
(
`(`+4)c2−(−1)`(`+2)(`(`+4)c1−4c3)−2c3−3c4

)
b
(2,3,2,3)
1,`

(−1)`(`+1)!(`+2)!
6(2`+3)! ×

both
×
(
2((`+1)(`+3)c2 +c3)+(−1)`(`+2)((`+1)(`+3)c1 +2c3)

)
b
(2,2,3,3)
0,`

((`+1)!)2

(2`+2)! (`(`+3)c2−2c3−c4) odd
b
(2,2,3,3)
1,`

((`+1)!)2

(2`+2)! ((`+1)(`+2)c2 +c4) even

Table 2. Coefficients bn,` for the expansion of f̂ functions in atomic blocks. The last column refers
to the parity of `.
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A Expansion of the free theory into atomic blocks

The expansion in atomic blocks g(0,0)
` (x) has been carried in appendix B of [34]. Here

we repeat the same computation for g(1,1)
` (x). For brevity and compatibility with their

notation we define for this section g(1,1)
` (x) ≡ g̃`+2(x).

Let us find the expansion coefficients for xn and x′n, where x′ = x
x−1 .

xn+1 =
∞∑
`=n

pn,` g̃`+1(x) , x′
n+1 =

∞∑
`=n

p′n,` g̃`+1(x) . (A.1)
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From the definition of g̃`(x) we see:

g̃`+1(x) = (−)`+1
∞∑
n=`

(`+ 1)n−`(`+ 2)n−`
(2`+ 3)n−`

xn+1

(n− `)! . (A.2)

Define thus21

αn,` = (`+ 1)n−`(`+ 2)n−`
(2`+ 3)n−`

1
(n− `)! . (A.3)

The problem now translates in finding a set of coefficients βn,` with the property

j∑
k=`

βj,kαk,` = δj` ,
n∑

k=m
αn,kβk,m = δnm . (A.4)

From this follows
∞∑
`=n

β`,n g̃`+1(x) =
∞∑
`=n

∞∑
m=`

(−)`+1αm,`β`,n x
n+1 , (A.5)

and then the property of the coefficients β`,n together with the identity
∑∞
`=n

∑∞
m=` =∑∞

m=n
∑m
`=n yields

xn+1 =
∞∑
`=n

(−)`+1β`,n︸ ︷︷ ︸
pn,`

g̃`+1(x) . (A.6)

The coefficients β`,n can be found to be

βj,k = (−)j−k (k + 2)j−k(k + 1)j−k
(2 + j + k)j−k

1
(j − k)! . (A.7)

The case with x′ requires the use of the Pfaff transformation

2F1(a, c− b; c;x) = 1
(1− x)a 2F1

(
a, b; c; x

x− 1

)
. (A.8)

This translates on g̃`(x) as

g̃`(x′) = x`2F1(`, `; 2`+ 1;x) = (−)`+1
∞∑
n=`

α′n,` x
n+1 , (A.9)

where it has been defined, in analogy as before,

α′n,` = (−)`+1 [(`+ 1)n−`]2

(2`+ 3)n−`
1

(n− `)! . (A.10)

Using the simple observation x′′ ≡ (x′)′ = x we can write

g̃`(x) = (−)`+1
∞∑
n=`

α′n,` x
′n+1

. (A.11)

21The Pochhammer symbol (a)n is defined as (a)n = Γ(a+n)
Γ(a) = a(a+ 1) . . . (a+ n− 1).
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Now by following the same steps as before, the coefficients p′n,` are given by

p′n,` = (−)`+1β′`,n , (A.12)

the inverse coefficients being

β′j,k = (−)k−1 [(k + 1)j−k]2

(2 + j + k)j−k
1

(j − k)! . (A.13)

Now now we can simply expand every x and every x′ in the expression for f̂ (2,3,2,3) (which
we report below) with the coefficients pn,` and p′n,` and add up the results. The list of
coefficients for all cases is summarized in table 2. The expression for f̂ is

f̂ (2,3,2,3)(x, y) = y + 1
2

(
c1x

2 + c2x
′2 − c3(x+ x′)

)
−
(
c2x
′2 − (c1 + 2c3)x+ (c2 + c4)x′

)
.

(A.14)

B Short multiplets from the chiral algebra

In this appendix we will derive the expression for f̂ (3) using the two dimensional chiral
algebra described in [35]. The same computation has been done for f̂ (2) in [3] with a
different notation.

Two dimensional chiral algebras arise in theories with at least N = 2 supersymmetry.
It will be useful then to decompose our operators in terms of this smaller superalgebra.
A representation of su(4) decomposes into su(2)F ⊕ su(2)R ⊕ u(1)r. The last two factors
constitute the N = 2 R-symmetry and the first is an additional flavor symmetry. Now
consider the cohomology of the nihilpotent supercharge Q given by this combination of the
charges Q and S:

Q = Q1
− + S̃2−̇ . (B.1)

A certain class of operators termed Schur operators survives in the cohomology of Q and
they will be the generators of the chiral algebra. The conditions for an operator to be of
the Schur type can be expressed in N = 2 language

1
2 (∆− (j + ̄))−R = 0 , r + (j − ̄) = 0 . (B.2)

where ∆ is the dimension (j, ̄) the spin and R, r are the charges under su(2)R ⊕ u(1)r.
Once we have identified the operators of this kind we can define the map χ that relates
the four dimensional N = 2 algebra to a N = (0, 4) two dimensional chiral algebra.

χ : 4d N = 2 7−→ 2d N = (0, 4)
O(x) 7−→ χ[O(x)] = O(z) .

(B.3)

This mapping is realized in three steps: first restrict xµ to the plane z = x3 + ix4 and
z̄ = x3 − ix4. Next consider a “twisted translation” of the operator to the point z, z̄. If we
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represent an operator in the spin k representation of su(2)R as a symmetric tensor with k
indices I = 1, 2, this is explicitly realized as

O(z, z̄) ≡ uI1(z̄) · · ·uIk(z̄)OI1...Ik(z, z̄) , (B.4)

where uI(z̄) = (1, z̄). In the language of this paper the last two steps are equivalent to
sending x̄→ 1/ᾱ as in (2.10),22 but we will make this statement more precise in a moment.
Finally consider the Q cohomology class of O(z, z̄).

[O(z, z̄)]Q ≡ O(z) . (B.5)

The result O(z) is what we define to be χ[O(x)].
We proceed then by decomposing the O(3) operator into N = 2 language. We use

the notation (jR, jF )r where jR(F ) is the spin under the su(2)R(F ) factor and r the charge
under u(1).

[0, 3, 0]su(4) → (0, 0)±3 ⊕ (0, 0)±1 ⊕
(1

2 ,
1
2

)
±2
⊕
(1

2 ,
1
2

)
0
⊕ (1, 1)±1 ⊕

(3
2 ,

3
2

)
0

(B.6)

The only one with Schur quantum numbers is
(

3
2 ,

3
2

)
0
, which in the two dimensional theory

is an h = 3
2 operator in a flavor four-plet. In N = 2 language, N = 4 Super Yang-Mills

decomposes into a vector multiplet and two hypermultiplets with SU(2)F flavor symmetry.

V = (Φ, Aµ, λ1,2
α , . . .) , Hi = (Qi, ψiα, . . .) , i = 1, 2 . (B.7)

Accordingly, two of the six scalars contribute to the flavor singlet Φ and the other four to
the flavor doublet Qi. Recall that all these fields carry an implicit SU(N) adjoint index
(the gauge group). In [35] the following mapping was shown

qAi (z) = χ[QAi ] , A = 1, . . . , N2 − 1 . (B.8)

where A is the gauge group index. The field qAi (z) has the following OPE

qAi (z)qBj (0) ∼ εijδ
AB

z
. (B.9)

Which implies that the holomorphic dimension of qi is h = 1
2 . Thus we can identify the

Schur operator in the
(

3
2 ,

3
2

)
0
as Bijk defined as

Bijk(z) = Tr :qiqjqk(z) : = χ[TrQiQjQk] , (B.10)

where the trace is over SU(N). Using this definition we now want to compute the four-point
function of four B’s

〈Bi1j1k1(z1)Bi2j2k2(z2)Bi3j3k3(z3)Bi4j4k4(z4)〉 . (B.11)

The result is fixed by the singular part of the OPE, therefore the computation is done with
the prescription of performing all Wick contractions between the q’s at different points.

22The cross ratios z, z̄ in (2.3) should not be confused with the complex coordinates z, z̄ of this appendix.
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Moreover it will be convenient to contract all su(2)F indices i, j, . . . with commuting Weyl
spinors vi, e.g.

B(z1, v1) ≡ vi11 v
j1
1 v

k1
1 Bi1j1k1(z1) . (B.12)

Before embarking on this computation however let us define the precise mapping between
four dimensional and two dimensional correlators. We want to compare the chiral algebra
result with F (3)(x, α, x̄, ᾱ) restricted to the plane x1 = x2 = 0 and on the four dimensional
subspace for the scalars φi corresponding to t5 = t6 = 0. If we introduce the complex
coordinates mentioned earlier for the two space time dimensions z = x3 + ix4 and z̄ =
x3 − ix4 we can write the cross ratios as

u = xx̄ = |z1 − z2|2|z3 − z4|2

|z1 − z3|2|z2 − z4|2
, v = (1− x)(1− x̄) = |z1 − z4|2|z2 − z3|2

|z1 − z3|2|z2 − z4|2
. (B.13)

Thus, clearly, the first entry in our dictionary is (calling zij = zi − zj)

x→ z12 z34
z13 z24

≡ ζ ,
(

1− ζ = z14z23
z13z24

)
. (B.14)

Where we introduced the chiral cross ratio ζ. Next we consider the SO(6) polarizations.
Any four-vector can be split in bispinor notation

tµ = viσµiI ṽ
I , (B.15)

with µ = 1, . . . , 4 an SO(4) index. Consistently with the previous notation upper case
(lower case) indices correspond to the su(2)R (su(2)F ) subalgebra. Moreover σµiI = (i1, ~σ)iI
are standard four dimensional (Euclidean) Pauli matrices. Following the convention of [56]
(with minor changes due to the signature and α→ i, α̇→ I) one has

ta · tb = 2 viavbi ṽaI ṽIb ≡ 2 vab ṽab . (B.16)

where a, b label the four-points in the correlator. This means that we can write the cross
ratios as

σ = αᾱ = v13v24
v12v34

ṽ13ṽ24
ṽ12ṽ34

, τ = (α− 1)(ᾱ− 1) = v14v23
v12v34

ṽ14ṽ23
ṽ12ṽ34

. (B.17)

Two dimensional spinors satisfy the Schouten identity v14v23 = v13v24−v12v34. This means
that the second entry in our dictionary is

α→ v13v24
v12v34

≡ ν ,
(
ν − 1 = v14v23

v12v34

)
. (B.18)

Where we introduced the su(2)F cross ratio ν. According to the statement of the Ward
identity (2.10), in the limit x̄ = 1/ᾱ the x̄, ᾱ dependence drops out and we end up with a
function of x and α only. Therefore it is consistent to require the matching

F (3)
(
x, α,

1
ᾱ
, ᾱ

) ∣∣∣
x→ζ
α→ν

= f(3)(ζ, ν) , (B.19)
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where we defined

〈B(z1, v1)B(z2, v2)B(z3, v3)B(z4, v4)〉 =
(
v12 v34
z12 z34

)3
f(3)(ζ, ν) . (B.20)

As a warm up let us show this computation for p = 2. The relevant four-point function
is

f(2)(ζ, ν) ≡
(
z12 z34
v12 v34

)2
〈J(z1, v1)J(z2, v2)J(z3, v3)J(z4, v4)〉 , (B.21)

where
J(z, v) = 1

2
√
κ
vivj :qAi qAj (z) : , κ = N2 − 1

2 . (B.22)

The factor 1/
√
κ makes the OPE of J canonically normalized, while the 1/2 comes from

the convention Tr tAtB = δAB/2. The four-point function is readily computed

f(2)(ζ, ν) = 1 + ν2 ζ2 + (1− ν)2 ζ ′
2 + 2ν(2− ν)

κ
ζ + 2(1− ν2)

κ
ζ ′ , (B.23)

where we defined ζ ′ = ζ/(ζ − 1) with ζ as in (B.14). According to (3.4a) F (2) is given by

F (2)(u, v, σ, τ ) = a1

(
1 + (σu)2 + (τu)2

v2

)
+ a2

(
(σu) + τu

v
+ (σu)τu

v

)
. (B.24)

A direct straightforward computation shows that f(2)(ζ, ν) = F (2)(ζ, ν, 1/ᾱ, ᾱ) requires

a1 = 1 , a2 = 2
κ
. (B.25)

as in (3.5).
The case for p = 3 follows the same logic, though the combinatorics is a bit heavier

and one needs to use some trace identities for SU(N) matrices, which can be found in
appendix C. We performed this computation by implementing the OPE (B.9) and the
SU(N) trace identities in Mathematica. The result, modulo an overall factor which can be
fixed by normalizing B, is

f(3)(ζ, ν) = 1 + f1 ζ
3 + f ′1 ζ

′3 + f2 ζ
2 + f ′2 ζ

′2 + f3 ζ + f ′3 ζ
′ . (B.26)

Where, as before, ζ ′ = ζ/(ζ − 1) and the fk are defined as

f1 = ν3 , f2 = 9ν2(2− ν)
N2 − 1 , f3 = 9ν

(
N2 − 4 + (3N2 − 28)(1− ν)

)
(N2 − 4) (N2 − 1) ,

f ′i = fi
∣∣
ν→1−ν .

(B.27)
This has to be compared, as explained before, with

F (3)(u, v, σ, τ ) = b1

(
1 + (σu)3 + (τu)3

v3

)
+ b3 σu

τu

v

+ b2

(
(σu)2 τu

v
+ (σu)2 + σu

(τu)2

v2 + σu+ (τu)2

v2 + τu

v

)
.

(B.28)
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By matching f(3)(ζ, ν) = F (3)(ζ, ν, 1/ᾱ, ᾱ) we can fix the coefficients c0, c1 and c2:

b1 = 1 , b2 = 9
N2 − 1 , b3 = 18(N2 − 12)

(N2 − 4)(N2 − 1) . (B.29)

And this result agrees with (3.6a).

C SU(N) trace identities

We define the generators of SU(N) as N2 − 1 hermitian traceless matrices labeled by
A,B, . . . and normalized as

Tr(tAtB) = 1
2δAB . (C.1)

The commutation and anticommutation relations are

[tA, tB] = ifABCt
C , {tA, tB} = 1

N
δAB1 + dABCt

C . (C.2)

Where dABC is totally symmetric and fABC totally antisymmetric. From this follows

Tr(tAtBtC) = 1
4(dABC + ifABC) . (C.3)

Using the identity above the computation in appendix B for p = 3 yields various contrac-
tions of the tensors fABC and dABC . Some of the identities needed are the following (they
can be found in [57, appendix B]):

δAA = N2 − 1 ,
fAAB = dAAB = 0 ,
dABCfABD = 0 ,

dABCdABD = N2 − 4
N

δCD ,

fABCfABD = N δCD .

(C.4)

For the contraction of four different tensors additional identities are needed. Those can be
found in [58, appendix A]. First let us define the matrices

(FA)BC = −ifABC , (DA)BC = dABC . (C.5)
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The possible traces of four F or D matrices are

Tr(FAFBFCFD)=δABδCD+δADδBC+N

4 (dABEdCDE−dACEdBDE+dADEdBCE),

Tr(FAFBFCDD)= iN

4 (dABEfCDE+fABEdCDE),

Tr(FAFBDCDD)=
(
N2−8

4N

)
(dABEdCDE−dACEdBDE)+

+
(
N2−4
N2

)
(δABδCD−δACδBD)+N

4 dADEdBCE ,

Tr(FADBFCDD)=N

4 (dABEdCDE−dACEdBDE+dADEdBCE),

Tr(FADBDCDD)= 2i
N
fADEdBCE+i

(
N2−8

4N

)
fABEdCDE+ iN

4 dABEfCDE ,

Tr(DADBDCDD)=
(
N2−16

4N

)
(dABEdCDE+dADEdBCE)+

+
(
N2−4
N2

)
(δABδCD+δADδBC)−N4 dACEdBDE .

(C.6)

The contractions appearing in the correlator f(3)(ζ, ν) can be then obtained by contracting
the indices A,B,C,D in (C.6) and, if needed, using again (C.4). E.g.

fAEF fBFGdAGHdBHE = −Tr(FAFBDADB) . (C.7)

D Numerical implementation

The Taylor expansion of the superconformal blocks is obtained from the one of usual scalar
blocks by shifting the value of ∆ and inserting the factor of u−2.23 We used the code
in https://gitlab.com/bootstrapcollaboration/scalar_blocks. The code uses a recursion
relation to generate a better and better approximation of the true function. If we solve the
recursion relations up to order N we obtain an expression which schematically reads

∂nz ∂
m
z̄ F∆,`(z, z̄)

∣∣
z=z̄= 1

2
' r∆

0
Pn,mN (∆)∏N
k=0(∆−∆∗k)

, (D.1)

where r0 = 3− 2
√

2 is a constant and P is a polynomial of order N . The set of poles ∆∗k is
fixed by representation theory and will be given later. In order to optimize the performance
of sdpb while keeping a good precision in the approximation, we keep only the poles for
k ≤ κ < N . Then the residues in Pm,nN are shifted by means of a Padé-like approximation

23Recall that the usual scalar blocks are G(`)
∆ (u, v; ∆12,∆34) as in (2.8), while the superconformal block

is given by u−2G
(`)
∆+4(u, v; ∆12,∆34).
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Λ 11 19 23 27
Lmax 50 60 60 60
N 50 60 60 60
κ 10 14 14 18

Table 3. Values of the various parameters for the bootstrap problem.

in order to compensate the effect of the missing poles. The denominator in (D.1) presents
a peculiarity in even spacetime dimensions because there are double poles. This makes
the recursion relations more involved [59]. Here are the values of ∆∗k for the single poles
(∆−∆∗k)

∆∗k ∈ {1− `− k}κk=max(1,bκ−2`−2
2 c+1)

∪ {3 + `− k}min(κ,`)
k=1

∪ {3 + `− k}min(κ,2`+2)
k=`+2 ,

(D.2)

and for the double poles (∆−∆∗k)2

∆∗k ∈ {1− `− k}
bκ−2`−2

2 c
k=1 . (D.3)

We choose the size of the numerical problem by increasing the number of components of
the vectors of Taylor coefficients, namely the range of values for m and n in ∂nz ∂mz̄ F . All
other parameters are adjusted accordingly. We keep the derivatives for which n + m ≤ Λ
and vary Λ as a parameter. Often in the literature an alternative definition is used: Λ =
2nmax− 1. Due to the symmetry z ↔ z̄ and to the symmetry or antsymmetry properties
under z, z̄ → 1−z, 1− z̄ the possible values that one needs to compute are those for n > m

and with n+m even or odd according to whether F (v, u) = ±F (u, v).

Now we discuss the parameters used for the plots presented in this paper. The param-
eter Lmax is the maximal value of the spin for any exchanged operator in any OPE channel,
whereas N and κ have been defined previously. In table 3 we describe their values. Instead
in table 4 we describe the parameters for the sdpb jobs.

All computations have been done using sdpb 1 since the project started prior the
release of sdpb 2 [60]. However, we double checked a few random points with the newer
version and the results agree.

– 42 –



J
H
E
P
0
5
(
2
0
2
1
)
1
1
1

Parameter feasibility OPE
maxIterations 500 500
maxRuntime 86400 86400
checkpointInterval 3600 3600
noFinalCheckpoint True False

findDualFeasible True False

findPrimalFeasible True False

detectDualFeasibleJump True False

precision 850 850
maxThreads 28 28
dualityGapThreshold 10−20 10−20

primalErrorThreshold 10−60 10−60

dualErrorThreshold 10−20 10−20

initialMatrixScalePrimal 1020 1020

initialMatrixScaleDual 1020 1020

feasibleCenteringParameter 0.1 0.1
infeasibleCenteringParameter 0.3 0.3
stepLengthReduction 0.7 0.7
choleskyStabilizeThreshold 10−70 10−70

maxComplementarity 10200 10200

Table 4. Parameters used in sdpb for the feasibility problem used in the binary search or grid
search (feasibility) and for the OPE coefficient maximization or minimization (OPE).

Open Access. This article is distributed under the terms of the Creative Commons
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