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Predictions of relative stabilities of (competing) molecular
crystals are of great technological relevance, most notably for
the pharmaceutical industry. However, they present a long-
standing challenge for modeling, as often minuscule free energy
differences are sensitively affected by the description of electronic
structure, the statistical mechanics of the nuclei and the cell, and
thermal expansion. The importance of these effects has been
individually established, but rigorous free energy calculations for
general molecular compounds, which simultaneously account for
all effects, have hitherto not been computationally viable. Here
we present an efficient “end to end” framework that seamlessly
combines state-of-the art electronic structure calculations,
machine-learning potentials, and advanced free energy methods
to calculate ab initio Gibbs free energies for general organic
molecular materials. The facile generation of machine-learning
potentials for a diverse set of polymorphic compounds—benzene,
glycine, and succinic acid—and predictions of thermodynamic
stabilities in qualitative and quantitative agreement with exper-
iments highlight that predictive thermodynamic studies of indus-
trially relevant molecular materials are no longer a daunting task.

statistical mechanics | machine learning | ab initio thermodynamics |
polymorphism

Molecular crystals are ubiquitous in the pharmaceutical in-
dustry (1) and show great promise for applications in

organic photovoltaics (2); gas adsorption (3); and the food, pesti-
cide, and fertilizer industries (4). Their tendency to exhibit poly-
morphism, i.e., to exist in multiple crystal structures, on one hand
provides a mechanism to tune properties by controlling crystal
structure (5) and on the other hand introduces the challenge
of synthesizing and stabilizing crystal structures with desired
properties (6). While thermodynamic stability at the temperature
and pressure of interest is sufficient (although not necessary) to
ensure long-term stability, simply understanding thermodynamic
stability already poses a formidable challenge.* This is partic-
ularly true for pharmaceuticals, where free energy differences
between drug polymorphs are often smaller than 1 kJ/mol (7),
leading to the risk of the drug transforming into a less soluble and
consequently less effective form during manufacturing, storage,
or shelf life (8, 9). Indeed, the problem of late-appearing drug
polymorphs is widespread (10, 11).

The pharmaceutical industry therefore spends considerable re-
sources on high-throughput crystallization experiments to screen
for polymorphs (12), into which the target structure may decay.
However, crystallization experiments do not probe thermody-
namic stability, and conclusive studies of the impact of temper-
ature changes after crystallization on the stability of polymorphs
(i.e., their monotropic or enantiotropic nature) (13) are often
prevented by limited sample quantities. Hence, there is the ap-
peal of theoretical crystal structure prediction (CSP) (14) based

*Kinetics may protect thermodynamically metastable structures from decaying almost
indefinitely.

on the thermodynamic stability, which promises to complement
crystallization experiments (15) by exhaustively searching for
competing polymorphs.

Despite the demonstrable value of CSP for many classes of
materials (16–21), and the continuing progress evidenced by a
series of blind tests (15), the success of CSP for molecular crystals
has been limited by the inability to routinely predict the relative
stability of competing candidate structures (22). This is largely
because the methods used for stability rankings typically ignore
or approximate the subtle interplay of several effects, such as in-
tricate intermolecular interactions (23), the (quantum) statistical
mechanics of the nuclei (24) and the unit cell (25), and thermal
expansion (26), thereby incurring errors larger than the free
energy differences of interest. The importance of each of these
effects has been demonstrated in isolation, but predictive stability
rankings must also comprehensively account for their interplay.

Recent implementations of advanced path-integral (PI) ap-
proaches (27, 28) allow exactly accounting for the quantum
statistical mechanics of the nuclei and the unit cell (29, 30) for ar-
bitrary potential energy surfaces (PESs). At the same time, mod-
ern machine-learning potentials (MLPs) (31) permit accurately
reproducing ab initio PESs and dramatically reduce the cost
of performing simulations approaching ab initio accuracy (32).
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Despite these advances, calculations of rigorous thermodynamic
stabilities for general molecular materials have been complicated
by the absence of an integrated framework, which facilitates both
the rapid development of MLPs and free energy calculations
including all physically relevant effects, while ensuring universal
applicability to diverse systems.

In this work we present an efficient framework for ranking
candidate structures of arbitrary compounds using rigorous ab
initio Gibbs free energy calculations, based on the streamlined
development of MLPs and their integration with PI methods.
Our approach builds upon our previous work on combining PI
approaches with MLPs for ice polymorphs (29, 33), but greatly
enhances its accuracy, efficiency, and robustness for out-of-the-
box applications to general compounds. In particular, we simplify
the development of MLPs using a straightforward and inexpen-
sive protocol for compiling ab initio reference data, which is
designed to work for general organic compounds and accounts
for (the often-neglected) cell flexibility and quantum nuclear
motion. Additionally, robust data-driven techniques minimize
the human effort involved in training the MLPs. In contrast to
previous CSP ranking methods that use MLPs (34, 35), we exactly
account for the quantum statistical mechanics of the nuclei and
the cell and use MLPs only as a stepping stone for computing
ab initio Gibbs free energies, eliminating all dependence on the
MLPs and their limitations.

The reliability and general applicability of our approach are
showcased by the rapid development of MLPs and correct sta-
bility predictions for crystal polymorphs of three prototypical
compounds: benzene, glycine, and succinic acid. These bear the
hallmarks of more complex biomolecular systems—molecular
flexibility, competing polymorphs, and intermolecular interac-
tions ranging from weak dispersive to hydrogen bonded and
ionic. Importantly, the relative stability of their polymorphs is

well established (36–38). We further assess the temperature and
pressure dependence of relative stabilities based on gradients of
Gibbs free energies, which correspond to indicators widely used
by experimentalists to predict the monotropic or enantiotropic
nature of the polymorphs.

Our work complements state-of-the-art CSP methods, which
efficiently survey structural space to extract small sets of promis-
ing candidate structures using ab initio calculations and/or MLPs
(34, 35), but struggle to reliably resolve subtle differences in
stability among them (22). Combining rigorous free energy calcu-
lations, as demonstrated here, with structure searching and inex-
pensive CSP ranking methods constitutes an avenue to predictive
CSP for complex molecular crystals of industrial importance.

Computational Framework and Systems
To predict rigorous relative stabilities, we combine PI thermody-
namic integration (29) (referred to as quantum thermodynamic
integration [QTI]) in the constant pressure ensemble (thereby
accounting for anharmonic quantum nuclear motion and the
fluctuations and thermal expansion of the cell) with density-
functional-theory (DFT) calculations with the hybrid PBE0 func-
tional (39, 40) and the many-body dispersion (MBD) correction
of Tkatchenko et al. (41) and Tkatchenko and coworkers (42)
(referred to as PBE0-MBD). PBE0-MBD provides an accurate
description of intermolecular interactions, as benchmarked using
experimental and coupled cluster theory with singlets, doublets,
and perturbative triplets [CCSD(T)] lattice energies for various
molecular crystals, including form I of benzene andα-glycine (43,
44). Since direct calculation of Gibbs free energies using ab initio
QTI is prevented by the cost of the required energy and force
evaluations (29), ab initio Gibbs free energies are calculated in a
four-step process, as depicted schematically in Fig. 1 and detailed
further in SI Appendix.

Fig. 1. Schematic representation of the workflow for computing ab initio, quantum anharmonic Gibbs free energies for candidate crystal structures. Upper
section shows the main steps: 1) generating ab initio reference data on which to 2) train a combined MLP, which can then be used to 3) compute MLP Gibbs
free energies, which one can finally 4) promote to ab initio Gibbs free energies. Lower section (shaded in blue) details the key aspects of how each of these
steps is performed in practice.
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First, we use a simple strategy to generate a minimal but
exhaustive set of unit cell “training configurations,” for which
we then perform PBE0-MBD calculations: We perform PI sim-
ulations based on density-function tight binding (DFTB) (45)
theory for unit cells with perturbed cell parameters. This allows
us to gather a large number of configurations, which incorporate
quantum nuclear fluctuations and cell flexibility and from which
we can distill the most distinct ones using a data-driven approach
(46). This strategy leverages the low cost of DFTB and its qual-
itative accuracy for diverse molecular crystals (47) to avoid the
bottleneck that is PBE0-MBD–based configurational sampling.
Due to the versatility of DFTB, it can be used to generate robust
training data for almost any compound of interest.

The subsequent training of the MLPs hinges on identifying the
most important “features” of the configurations, fed to the MLPs
as input. These features are usually abstract functions quanti-
fying the local density of atoms and require the careful tuning
of multiple parameters (46). Here, we render training MLPs
for general compounds accessible to nonexperts by automating
this procedure using a “size-extensive” data-driven approach,
which avoids the manual selection of features based on “prior
experience.” Combining these first two steps with a “tried and
tested” neural network architecture (48–50) greatly simplifies
and speeds up the generation of MLPs, while remaining agnostic
to the system of study.

In a third step, we exploit the orders-of-magnitude lower
cost of the resultant MLPs compared to the ab initio reference
method, to compute Gibbs free energies for much larger sim-
ulation supercells using QTI (29). We account for anisotropic
fluctuations of the simulation cell, which are important for flex-
ible functional materials (51), and directly calculate the free
energy difference between the harmonic reference systems and
the physical, anharmonic system at the PI level, which substan-
tially reduces the complexity and cost compared to the multistep
integration performed in ref. 33. We note that the affordability
of MLP free energies comes at the price of residual errors with
respect to the ab initio reference values due to the imperfect
reproduction of the reference PES. These may arise from the
short-ranged nature of the MLPs (52), from information lost
during the “featurization” of the configurations (53), or from
insufficient training data. The typical errors in MLP predictions
of configurational energies (Table 1) are small but comparable to
the subtle free energy differences between polymorphs. There-
fore, in a fourth and final step, we eliminate the associated errors
to obtain true ab initio Gibbs free energies by computing the
difference between the MLP and PBE0-MBD free energies using
free energy perturbation (FEP) (33). All calculations and simula-
tions are performed using readily available and well-documented
software, and Jupyter notebooks for analysis are provided in
SI Appendix.

As an exposé of the universal applicability of this scheme, we
predict the relative stabilities of a set of prototypical systems,
whose small number and size belie how representative they are
of general organic molecular crystals: Benzene is the archetypal
rigid, van der Waals bonded molecular crystal, while succinic
acid represents general hydrogen-bonded systems, and glycine
prototypes are flexible zwitter-ionic systems. This small, “irre-
ducible” set of prototypical systems covers not only the three

Table 1. Number of single-point PBE0-MBD calculations underly-
ing each MLP and their respective root-mean-square errors (RMSE)
in predicting energies on a separate test set of configurations from
PI simulations of the experimental unit cells

System Reference data Energy RMSE, kJ/mol

Benzene 1,000 1.2
Glycine 4,000 1.6
Succinic acid 2,000 2.3

different types of bonding, but also the chemical space that
includes pharmaceuticals such as aspirin and paracetamol. More-
over, molecular flexibility and the large-amplitude curvilinear
motion of the amide group in glycine trigger the same pathologies
of approximate free energy methods as more complex systems
exhibiting free rotation of molecular units (24, 29) and serve as a
stringent test for stability predictions.

For each compound we compute the free energy differences
between the stable ambient-pressure polymorph and its closest
experimentally established competitor(s): We consider forms I
and II of benzene (36) and α- and β-succinic acid (37) at 100 K
and α-, β-, and γ-glycine (54) at 300 K to compare with available
calorimetric data (38, 55). The nearly orthorhombic simulation
supercells shown in Fig. 2, which contain equivalent numbers
of molecules for all polymorphs of the same compound, ensure
near cancellation of center-of-mass free energies and suffice to
converge stabilities with respect to finite-size effects to within 0.1
kJ/mol (SI Appendix).

Ab Initio Thermodynamic Stabilities
As shown in Fig. 3A, the final ab initio Gibbs free energies (shown
in red) reproduce the greater stability of form I over form II
of benzene and of β- over α-succinic acid, the metastability of
β-glycine, and the near degeneracy of α- and γ-glycine (55).
Moreover, our Gibbs free energy differences are in agreement
with available calorimetry data (38, 55) to within statistical and
experimental uncertainties.

The QTI approach also yields gradients of Gibbs free ener-
gies, including the molar volume, entropy, and heat capacity,
which provide indication regarding pressure- and temperature-
driven changes in relative stability and thus the monotropic or
enantiotropic nature of compounds. For instance, since molar
volumes are derivatives of the free energy with pressure, we can
predict form II of benzene to become thermodynamically stable
over the ambient pressure form I at 1.4 GPa (at 100 K), which is
in good agreement with the experimentally determined transition
pressure of 1.5 GPa (56). Similarly, we determine the entropy
of β-succinic acid to be smaller than that of α-succinic acid,
making the latter the preferred high-temperature polymorph, in
agreement with the experimental phase behavior (57). While in
the case of glycine we are able only to predict near degeneracy of
α- and γ-glycine at ambient conditions, molar volumes suggest
α-glycine to be the most stable phase at high pressures, which
is in line with experiments showing that it remains stable up to
23 GPa (54).

By comparing rigorous free energies with estimates that ex-
clude nuclear quantum effects (NQEs), anharmonicity, and cell
expansion and flexibility, we are able to understand the extent
to which these effects and their interplay contribute toward the
stability of molecular crystals. Crucially, as shown in Fig. 3B, the
size and sign of these effects depend entirely on the compound
and the polymorphs at hand, highlighting that rigorous QTI is
indispensable for predicting phase stabilities and that molecular
crystals are typically stabilized by a nontrivial interplay of differ-
ent physical effects, whose individual importance is belied by the
subtle resultant free energy differences. For instance, the greater
stability of form I of benzene hinges on an accurate description of
the electronic structure, while NQEs and anharmonicity cancel
out almost perfectly and thermal expansion affects both forms
similarly. In contrast, in succinic acid NQEs and anharmonicity
cooperatively stabilize the α form and thermal expansion differ-
entiates the two polymorphs. In glycine NQEs and thermal ex-
pansion differently affect the stability of theα- andβ-polymorphs
with respect to the γ form, and neglecting any of the three effects
would lead to large errors on the scale of the experimental free
energy differences.

Meanwhile, the MLP-based stability predictions (shown in
blue in Fig. 3A) are only limited by the accuracy, with which the
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Fig. 2. Structures of forms I and II of benzene containing 16 molecules; forms α, β, and γ of glycine containing 24 molecules; and forms α and β of succinic
acid containing 24 molecules. Hydrogen, carbon, nitrogen, and oxygen atoms are shown in white, gray, blue, and red, respectively.

MLPs reproduce the ab initio PES (Table 1), and consequently
correctly reproduce the greater stability of form I of benzene
compared to form II. At the same time, the incorrect MLP-based
stability predictions for succinic acid and glycine highlight the
critical importance of the final FEP step. Promoting MLP free
energies to the ab initio level by FEP incurs only the cost of a few
tens of ab initio energy and force evaluations for configurations
sampled by the MLPs. We note that the cost of this step is com-
parable to that of common equation-of-state calculations and
thus constitutes a reliable and computationally efficient means
of predicting the relative stability of polymorphs.

Given that errors of 1 kJ/mol are often considered to be within
“chemical accuracy,” it is worth emphasizing that the compounds
considered here are not hand-picked, “pathological” examples,
but expected to be representative of many biomolecular com-
pounds. The small free energy differences between polymorphs,
which are smaller than kBT but can be resolved experimentally
(38, 55) due to the kinetic suppression of interconversion
between polymorphs, constitute a very stringent test of our
framework and its ability to accurately capture phase stability.
By matching the subkilojoule per mole accuracy of calorimetry
experiments, it provides a robust foundation for studying
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Fig. 3. (A) PI Gibbs free energy differences between forms II and I of
benzene (B-II and B-I); α-, β-, and γ-glycine (G-α, G-β, and G-γ); and α-
and β-succinic acid (S-α and S-β) calculated using PBE0-MBD–based MLPs
(blue) with the QTI approach and corrected to the ab initio PBE0-MBD DFT
level using free energy perturbation (red). Experimental data (38, 55) are
shown in green. (B) Contributions of quantum nuclei (olive), anharmonicity
(gray), and cell expansion and flexibility (pink) to the relative stabilities of
the said polymorphs. These have been respectively obtained by comparing
Gibbs free energy differences to estimates from a classical thermodynamic
integration, a harmonic approximation, and a quantum thermodynamic
integration using a fixed 0-K optimized cell.

transition temperatures, pressures, and rates and permits
benchmarking sophisticated electronic structure theories against
experiment.

Comparison with Approximate Approaches
To further highlight the advantages of the approach proposed
here over established approximate methods for ranking stabili-
ties in CSP, we assess the limitations of the most widely used ap-
proximate methods, prefaced by acknowledging their successes
for a wide range of applications (58). We note that the MLPs
reproduce the ab initio PESs with sufficient accuracy to assess
the impact of approximations to nuclear motion and compare
the respective approximate (free) energy differences between
polymorphs to the corresponding exact MLP Gibbs free energies.

The current state of the art is to correct (free) energies on
the basis of a single-point hybrid-functional DFT calculation
for the structure relaxed using semilocal DFT (57). Thermal
and quantum nuclear effects are included within a harmonic
approximation (HA) (59), while thermal expansion is modeled by
relaxing the cell within a quasi-harmonic approximation (QHA)
(58). These corrections are generally computed at the semilocal
DFT level. As shown in Fig. 4, these approaches neither univer-
sally predict the most stable form (as they exhibit errors larger
than 1 kJ/mol) nor systematically converge to the full hybrid-
functional QHA reference. This highlights the need to go beyond
a single-point hybrid-functional DFT correction to semilocal
configurational or (quasi-)harmonic free energies to consistently
deliver correct stability orders and free energy differences with
subkilojoule per mole accuracy. We further note that the above
results benefit substantially from the fortuitous cancellation of
errors (29), but the residual errors cannot be estimated and
apparent physical insights may be misleading.

Since the hybrid-functional–based QHA seems to be com-
petitive with the rigorous PI approach, is further worthwhile to
put the cost of the calculations into perspective. For glycine,
as the most costly example, the 4,000 PBE0-MBD calculations
on unit cells constituting the reference data for the MLP, the
MLP-based PI thermodynamic integration, and the 50 PBE0-
MBD calculations on supercells required for the FEP contribute
roughly equally to the total cost of around 148,000 core hours
per polymorph. For comparison, computing PBE0-MBD HA
free energies for the same simulation supercells using finite
differences and nondiagonal supercells to probe individual
k-points (60), but not leveraging the MLP, would require
about three times the core hours. A PBE0-MBD QHA free
energy calculation would be an order of magnitude higher in
computational cost. Although (Q)HA free energies may also be
computed inexpensively using MLPs, they cannot be promoted
to their first-principles counterparts in a straightforward and
cost-effective manner as exact MLP free energies. Despite a
focus on universal applicability over efficiency, the cost of the
above rigorous Gibbs free energies is thus small compared to
the estimated cost of calculating free energies within the (Q)HA
using hybrid-functional DFT.

Discussion
The ability of our approach to predict free energy differences
with subkilojoule per mole accuracy renders it valuable in identi-
fying “competing” polymorphs with similar lifetimes to the most
stable form. It bridges the gap between theory and experiments
by allowing direct comparison of free energy differences with
calorimetric data—a significant improvement over current ap-
proaches, which require error-prone ad hoc extrapolations to

Fig. 4. MLP (free) energy differences between forms II and I of benzene (B-
II and B-I); α-, β-, and γ-glycine (G-α, G-β, and G-γ); and α- and β-succinic
acid (S-α and S-β) at different tiers of accuracy: fixed-cell optimization using
PBE-TS with a PBE0-MBD single-point energy (green), fixed-cell optimization
and harmonic free energy using PBE-TS with a PBE0-MBD single-point
energy (gray), quasi-harmonic approximation (QHA) free energy using PBE-
TS with a single-point PBE0-MBD correction (pink), full PBE0-MBD–based
QHA (brown), and the exact PI free energy difference (blue). The shaded
region indicates free energy differences within 1 kJ/mol of the respective
exact PI result as a guide to the eye.
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0 K (61). Moreover, 1) rigorous predictions of the entropy, molar
volume, and heat capacity and 2) robust MLPs with ab initio ac-
curacy are complements to our approach. The former are directly
related to “thermodynamic rules of thumb,” which are widely
used by experimentalists to assess stability trends (13), while the
latter enable structure determinations for experimental samples
based on NMR (62) and vibrational spectra (63). Furthermore,
a rigorous account of thermally induced phase transitions can be
obtained without repeating the procedure at every state point.
The combination of QTI with parallel tempering (64) can en-
hance the efficiency of performing single-temperature (or pres-
sure) sweeps, yielding full phase diagrams, while also sampling
“slow” degrees of freedom such as conformational transitions,
inaccessible to approximate methods (29). All these features are
highly sought after by the pharmaceutical industry, as they are
made possible at a manageable computational cost.

Our protocol easily extends to stability predictions for other
complex molecular crystals, as its data-driven nature accelerates
MLP development, irrespective of the material under considera-
tion. As a proof of this, we have developed MLPs for polymorphs
of three complex pharmaceuticals—aspirin, paracetamol, and
XXIII, the most complicated system (58) from the latest blind
test of organic crystal structure prediction methods (22)—and
tested them by performing PI simulations in the constant pres-
sure ensemble, as required for QTI (SI Appendix). Although
these MLPs have been trained on DFTB data as a proof of
concept and consequently lack chemical accuracy, they remain
robust and capture the molecular flexibility of these systems.
Given that dynamic disorder, thermal expansion, conformational
relaxation of the molecular units, and potential (dynamic) in-
stabilities of candidate polymorphs are automatically accounted
for within the QTI approach, we expect stability predictions
to be very robust with respect to the nature of the candidate
polymorphs and thus directly applicable to said pharmaceutical
and blind-test systems.

In applications involving large numbers of polymorphs or poly-
morphs with large unit cells, suitable sets of reference config-
urations can be generated based on configurations of liquid or
amorphous states at different pressures (65). This exploits that
the accuracy of MLPs, which predict energies and forces on the
basis of local contributions, rests on having reference data for
all distinct local atomic environments (65), rather than for all
polymorphs of interest. The computational cost of building the
training set then remains largely independent of number and
unit cell size of the polymorphs of interest. For large numbers
of polymorphs the cost per polymorph thus effectively reduces to
that of the MLP-based thermodynamic integration and of FEP. In
practice, the computational cost of FEP can be reduced by run-
ning only as many ab initio calculations as required to reduce the
statistical error to below the predicted free energy differences be-
tween polymorphs. For instance, fewer than a handful of PBE0-
MBD calculations would have sufficed to conclusively establish
that form I of benzene is more stable than form II. Indeed, subject
to estimates of the uncertainty of the MLP predictions (66, 67), it
may be possible to omit FEP altogether. Recent work on the use
of higher body-order correlations in atomistic representations
(68) and on including long-ranged interactions (52) promises to
enable subkilojoule per mole accuracy, eliminating the need for
FEP even in applications involving subtle free energy differences.

Finally, the empiricism involved in selecting the exchange-
correlation functional and dispersion correction used in the
DFT calculations can be removed by using PESs evaluated
using beyond-DFT electronic structure theory. Crucially, our
scheme extends naturally to predictions of Gibbs free energies
based on quantum-chemical electronic structure methods (61,
69) such as second-order Møller-Plesset perturbation theory,
random-phase approximation, coupled cluster, or quantum
Monte Carlo, some of which are systematically improvable

and can thereby be rendered truly ab initio (70). While these
come at an increased computational cost per calculation,
recent developments in machine learning for materials science
(71) promise to minimize the number of quantum-chemical
calculations required to train accurate MLPs and thus to keep
the overall costs in check. Indeed, recent work demonstrates the
corresponding construction of robust and accurate MLPs for
CCSD(T) reference data (70).

In conclusion, marrying state-of-the-art electronic structure,
free energy, and machine-learning methods in a widely appli-
cable framework enables rigorous, predictive free energy cal-
culations for complex (organic) molecular crystals at general
thermodynamic conditions. The unprecedented accuracy of our
approach sets the stage for future studies of kinetic effects as
well as full p-T phase diagrams in a reliable and computation-
ally efficient manner, paving the way for guiding experimental
synthesis of such materials. The protocol and the scripts pro-
vided in SI Appendix permit its application practically out of the
box. Determining the relative stability of generic polymorphic
compounds is a recurrent problem across different domains of
science and engineering—from nucleation theory to the prac-
tical design of pharmaceuticals—and we hope that the robust
and easy-to-use nature of our end-to-end protocol will facilitate
reliable, accurate free energy calculations beyond those of the
computational chemistry community.

Methods
Machine-Learning Potentials. We have constructed Behler–Parinello-type
neural network potentials (48) for benzene, glycine, and succinic acid using
the n2p2 code (72). In this framework, structures are encoded in terms of
local atom-centered symmetry functions (SFs) (48). Initial sets of SFs were
generated following the recipe of ref. 73. Based on the same reference
structure-property data subsequently used for training, the 128 (benzene
and succinic acid) and 256 (glycine) most informative SFs were extracted via
principal covariates CUR selection (74).

Our data are based on Langevin-thermostated PI NVT simulations at
300 K, performed using the i-Pi force engine (28) coupled to DFTB+ (75)
calculations with the 3ob parameterization (76). For each polymorph multi-
ple cells were simulated, rescaling the experimental cell lengths and angles
by up to 10 and 5%, respectively. The trajectories of PI replicas for all
polymorphs of a given compound were concatenated and farthest-point
sampled (77–79) to extract the most distinct configurations for feature
selection and MLP training. Subsequently, ab initio reference energies and
forces were evaluated for said configurations.

To minimize the computational cost of the reference calculations
the MLPs are composed of a baseline potential trained to reproduce
energies and forces from more affordable PBE-DFT (80) calculations
with a Tkatchenko-Scheffler (TS) dispersion correction (81) (PBE-TS) and
a Δ-learning (82) correction trained (on 10 times fewer training data)
to reproduce the difference between the baseline and more expensive
calculations with the hybrid PBE0 functional (39, 40) and the MBD
dispersion correction (41, 42) (PBE0-MBD). For a separate test set, the
MLPs reproduce PBE0-MBD energies with root-mean-square errors of
1.2 kJ/mol for benzene, 1.6 kJ/mol for glycine, and 2.3 kJ/mol for succinic
acid, respectively.

Ab Initio DFT Calculations. PBE0+MBD calculations were performed using
FHI-aims (83–85) with the standard FHI-aims “intermediate” basis sets and
a Monkhorst–Pack k-point grid (86) with a maximum spacing of 0.06 ×
2π Å−1. The PBE-TS baseline calculations for a Δ -learning approach were
performed using Quantum Espresso v6.3, the same k-point grid, a wave-
function cutoff energy of 100 Rydberg, and the optimized, norm-conserving
Vanderbilt pseudopotentials from ref. 87.

Free Energy Methods. For each polymorph the average cell was determined
using MLP-based PI NST simulations (88) at the desired inverse temperature
β, accounting for anharmonic quantum nuclear motion and anisotropic cell
fluctuations. The difference between the Gibbs and Helmholtz free energies
computed from an MLP-based PI NPT simulation based on its average cell is

GMLP(P
ext, β) − AMLP(V , β) = PextV + β

−1 ln ρ(V|Pext, β), [1]

where ρ(V|Pext, β) is the probability of observing the cell volume V at
external pressure Pext and inverse temperature β. A standard Kirkwood
construction (89) that transforms the Hamiltonian from a harmonic to an
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anharmonic one provides the difference between the anharmonic and the
harmonic quantum Helmholtz free energies:

AMLP(V , β) − Ahar
MLP(V , β) =

ˆ 1

0
dλ

〈
ĤMLP − Ĥhar

MLP

〉
V ,β,Ĥλ

, [2]

where Ĥλ is the Hamiltonian of the MLP alchemical system with the poten-
tial Uλ ≡ λUMLP + (1 − λ)Uhar

MLP, and 〈·〉 is the ensemble average computed
from a PI NVT simulation. The reference absolute harmonic Helmholtz free
energy is obtained from a harmonic approximation using

Ahar
MLP(V , β) = UMLP(V) +

∑
i

[
1

2
�ωi + β

−1 ln
(

1 − e−β�ωi
)]

, [3]

where ωi is the frequency of the ith phonon mode. In a final step, the ab
initio Gibbs free energy is obtained from its MLP counterpart by free energy
perturbation using

G(Pext, β) − GMLP(P
ext, β) = −β

−1 ln
〈

e−β(U−UMLP)
〉

Pext,β,ĤMLP
.

For systems exhibiting large-amplitude curvilinear motion, the harmonic-to-
anharmonic thermodynamic integration can be performed efficiently using
a Padé interpolation formula (24).

Understanding the Role of Different Effects. We disentangle the role of an-
harmonicity directly from Eq. 2 and that of thermal expansion by comparing
the Helmholtz free energies from Eq. 2 for the variable-cell geometry-
optimized and mean PI NST cells. The role of the quantum nature of nuclei
is quantified by comparing the classical and quantum Gibbs free energies.
We calculate the former using the Helmholtz free energy of the classical
harmonic oscillator as a reference and evaluating Eqs. 1 and 2 using classical
molecular dynamics.

Free Energy Gradients. Volume and entropy are related to gradients of the
free energy

V =

(
∂G

∂P

)
N,T

, S = −
(
∂G

∂T

)
N,P

. [4]

Differences between equilibrium (molar) volumes of polymorphs can directly
be observed in PI NPT simulations. Meanwhile entropic differences can be
computed from

S = −
1

T
(G − H), [5]

with G from Eq. 1 and the enthalpy H from the associated PI NPT simula-
tion. Linear extrapolation then permits estimating whether and at which
pressures Pc and temperatures Tc the Gibbs free energy difference between
polymorphs will vanish and a phase transition should be expected:

ΔG = −(Tc − T)ΔS + (Pc − P)ΔV . [6]

Data Availability. Anonymized (structures, scripts, and codes to repro-
duce all the results) data have been deposited in https://github.com/
venkatkapil24/data_molecular_fluctuations. All other study data are in-
cluded in this article and/or SI Appendix.
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