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Abstract
Years of globalization, outsourcing and cost cutting have increased supply chain vul-
nerability calling for more effective risk mitigation strategies. In our research, we
analyze supply chain disruptions in a production setting. Using a bilevel optimiza-
tion framework, we minimize the total production cost for a manufacturer interested
in finding optimal disruption mitigation strategies. The problem constitutes a convex
network flow program under a chance constraint bounding the manufacturer’s regrets
in disrupted scenarios. Thus, in contrast to standard bilevel optimization schemes
with two decision-makers, a leader and a follower, our model searches for the opti-
mal production plan of a manufacturer in view of a reduction in the sequence of his
own scenario-specific regrets. Defined as the difference in costs of a reactive plan,
which considers the disruption as unknown until it occurs, and a benchmark antici-
pative plan, which predicts the disruption in the beginning of the planning horizon,
the regrets allowmeasurement of the impact of scenario-specific production strategies
on the manufacturer’s total cost. For an efficient solution of the problem, we employ
generalized Benders decomposition and develop customized feasibility cuts. In the
managerial section, we discuss the implications for the risk-adjusted production and
observe that the regrets of long disruptions are reduced in our mitigation strategy at the
cost of shorter disruptions, whose regrets typically stay far below the risk threshold.
This allows a decrease of the production cost under rare but high-impact disruption
scenarios.
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1 Introduction

Supply chains play a vital role in the global economy. This has been demonstrated
in various industry studies, e.g., by Klaus Schwab in the World Economic Forum
(2012, 2013) and by van Opstal (2009). According to Christopher and Lee (2004)
and Christopher and Peck (2004), the vulnerability of supply chains towards external
disturbances is increasing over time.

The results of a survey by The Business Continuity Institute (2012) suggest that
“73% of global supply chains are facing at least one major disruption over a period
of one year.” For instance, the COVID-19 pandemic has imposed a burden of an
unprecedented scale on the supply chain resilience of a variety of industries, including
the pharmaceutical industry, whose functioning is crucial because of the importance
of matching supply and demand for life-saving medicine. Another example is the
Japanese company Hitachi Chemical, whose market share is over 90% for the produc-
tion of a specific resin for microchips. The company is exposed to the risk of natural
disasters such as earthquakes, tsunamis, nuclear incidents and power shortages. A dis-
ruption in the company’s production would affect manufacturing of various IT-related
devices worldwide, as argued in The Economist (2011). Besides these examples, high
commodity price volatility has drawn practitioners’ attention to the cost of vulner-
ability in supply chains. In general, although the primary strategy of profit-oriented
manufacturers remains in scenario-specific production optimization, the models aim-
ing for resilience towards disruptions at a reasonable cost are in great demand. The
decision-makers facing disruption risk are interested in adopting the best possible
mitigation strategy taking uncertainties explicitly into account. This need has only
intensifiedwith the advent of the COVID-19 pandemic, which, as it has been observed,
may cause various different types of disruptions effecting supply chains at multiple
levels and occurring simultaneously (Sodhi and Tang 2020). The models capable of
accounting for this variety are on the forefront of supply chain management under
uncertainty.

The main contribution of our research is in the development of a general model
which provides considerable flexibility in the type of disruptions it incorporates and
which allows to account for the difference in strategies the manufacturer adopts in
view of a disruption. Specifically, we develop a finite time horizon bilevel stochastic
optimization model of a supply chain network with production disruptions that are
uncertain in both time and severity. The finite horizon assumption results in a model
which is adequate in addressing questions arising during limited product life cycles.
It is also straightforward to extend the model to the case with a rolling horizon in
order to account for multiple decisions to be taken over a longer time period. Overall,
we formulate the problem as a convex non-differentiable minimum-cost network flow
program accounting for a wide range of possible cost and disruption structures such
as those arising due to loading and raw material switching effects. To account for
the difference in strategies to deal with disruptions, we minimize the total production
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cost introducing a chance constraint which bounds the surplus in a manufacturer’s
regret following from the non-anticipative strategy of each disruption scenario. The
evaluation of these regrets requires a solution of a sequence of problems depending
on the manufacturer’s optimal network flow.

Modeling uncertainty in production, we build a set of possible disruption scenarios
and characterize the loss the decision-maker observes in each scenario realization by
the means of a regret function. The goal is to find a production schedule such that
the value of this regret function does not exceed some threshold with high probabil-
ity, where the threshold, the exceedance probability and the capacitated cost function
form are assumed by the decision-maker. The regret function is defined as the distance
between optimal values of a reactive and an anticipative optimization problem. The
reactive problem minimizes the production cost naturally, allowing the disruption to
be unknown until it occurs. In turn, the anticipative problem plays the role of an ide-
alistic benchmark strategy of a manufacturer, considering the disruption scenario as
defined with certainty at the beginning of the planning horizon. Thus, our problem
exhibits bilevel structure as some constraints are defined through additional optimiza-
tion problems (Dempe 2002). Specifically, our setup allows us to compare the impact
of deciding to wait for the disruption as opposed to preparing for disruptions ahead of
time.

Bilevel optimization problems are commonly studied in supply chain management
in the context of optimization schemes with two decision-makers, a leader and a
follower, see, e.g., Yue and You (2017), as well as in the context of decentralized
supply chains, see, e.g., Haque et al. (2020) or Hsueh (2015). In contrast, our model
searches for the optimal production plan of amanufacturer in view of a reduction in the
sequence of his own regrets. The problem of optimization of regrets (i.e., lower-level
problem) is embedded within the manufacturer’s cost minimization (i.e., the upper-
level problem) via the use of chance constraints. The use of regret functions is well
established in decision theory (Loomes and Sugden 1982; Bell 1982). However, a
chance constraint formulation dependent on the evaluation of optimal regrets makes
the problem difficult to solve efficiently. Our solutionmethod is adapted to the problem
structure discussed in this article.

In the numerical section,we apply a generalizedBenders decomposition inspired by
the approach outlined in Zheng et al. (2015) and first introduced in Geoffrion (1972).
We customize the procedure by introducing efficient feasibility cuts to the optimiza-
tion problem without chance constraints. For this, we demonstrate that the Benders
feasibility problem corresponds to the convex minimum-cost network flow problem.
For its solution, we compute theoretically optimal dual multipliers corresponding to
flow equilibrium constraints and use them to construct feasibility cuts as described
by Fischetti et al. (2016) and Geoffrion (1972). Our approach allows for efficiency in
high dimensions with a large number of disruption scenarios.

The model we present has a flexible structure for the generation of disruption sce-
narios. It depends on the disruption starting point, its length and severity. Specifically,
a disruption in our model is described by a change in a set of cost functions for some
production period. Due to this, we account both for the disruptions representing the
total shutdown of a production (e.g., due to unprecedented events such as COVID-
19) and the disruptions in which some partial capacity remains available during the
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disrupted period (e.g., due to flood events in a single production site). Therefore, the
model is able to compare mitigation strategies observed in practice: for example, in
case a company facing a disruption risk decides between carrying additional inventory
to diminish losses when the disruption occurs (risk mitigation inventory) and reserving
some capacity from an alternative source unaffected by the disruption at a potentially
higher cost (agility capacity).

In themanagerial part of the article, we perform numerical experiments inwhich the
inventories to be carried are determined under various combinations of input param-
eters. For simplicity, we assume the demand to be deterministic in our article and test
various demand patterns. By this, we suppose that the constant trend corresponds to
the maturity stage of the product life cycle where the demand can be described by a
stationary process, as argued by Lücker and Seifert (2017). Clearly, linearly increas-
ing/decreasing and bell-shape demands correspond to other periods of the product
life cycle. Note that an extension of the model would be applicable for uncertain
demands including non-stationary cases: one could quantize demand scenarios solv-
ing the expectation-minimization problem to account for the uncertainty in demand.
In this article, we do not follow this path and focus instead on the impact of disrup-
tions on a manufacturer’s optimal production and inventory quantities. In particular,
we observe that the mitigation inventory tends to decrease for costly but extremely
rare disruptions, which can be neglected due to the use of chance constraints. We refer
to this behavior as risk clustering and demonstrate it in Sect. 7 of the article.

The article is structured as follows: Sect. 2 provides a literature review. Section 3
describes the model, while Sect. 4 focuses on the numerical method for the solution
of the optimization problem via Benders decomposition. We describe our scenario
generation method in Sect. 5 and perform functional analysis in Sect. 6. Managerial
insights are presented in Sect. 7.

2 Literature review

Practitioners are interested in discovering efficient ways to diminish the amount of risk
that supply chains are exposed to. Nevertheless, doing business requires the acceptance
of some level of risk within organizations (Olson and Wu 2011) and, thus, a supply
chain can never be risk-free (Xie et al. 2011). Numerous articles analyze and classify
potential supply chain risks, which is a difficult task due to the complexity of modern
supply chains (Pfohl et al. 2011). Literature reviews on the topic of supply chain risk
management canbe found inDong andTomlin (2012) orHeckmann et al. (2015). In our
research, we are interested in understanding risk related to supply chain disruptions,
which Barroso et al. (2008) define as foreseeable or unforeseeable events directly
affecting the usual operation and stability of an organization or a supply chain. Such
disruptions can have enormous financial consequences. For instance, Hendricks and
Singhal (2005) analyze a time span from one year prior to two years after a supply
chain disruption and conclude that there is an average decrease in stock returns of
nearly 40% due to the effect of such a disruption.

We contribute to this stream of literature by introducing an approach which models
and measures the impact of production disruptions on supply chains taking strategy-
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specific regrets into account. This allows us to obtain and analyze the optimal risk
mitigation, as well as to focus on plans such as holding risk mitigation inventory or
leveraging agility capacity, whose importance is broadly recognized. For example,
Lücker and Seifert (2017) determine optimal inventory levels under supply chain
disruptions with deterministic demand for a pharmaceutical firm. Via this analysis,
the authors compare the benefits of the aforementioned mitigation strategies. Their
approach is extended to serial multi-echelon supply chains in Lücker et al. (2019).
Furthermore, dual sourcing and mitigation inventory are examined in detail by Tomlin
(2006). Also, additional mitigation strategies are reviewed in Chopra and Sodhi (2004)
and in Snyder et al. (2016), as well as in Tang (2006) as part of amore general overview
of supply chain riskmanagement.Nevertheless, current literature has not yet accounted
for the idealistic desire of manufacturers to prepare for particular disruptions only, as
well as for their regrets in case of scenario-specific loss deviations. In our article, we
address this issue using chance constraints.

Our article also goes in line with the stream of literature analyzing the behavior of
disruptionswithin supply chains. Liberatore et al. (2012) assess disruption propagation
in supply chains, while systemic propagation risks are considered in Scheibe and
Blackhurst (2018). Simchi-Levi et al. (2018) study supply chain robustness according
to multiple network topologies. Ivanov et al. (2017) review the literature on disruption
recovery, and Lim et al. (2013) show that higher expected costs occur when disruption
probabilities are underestimated. Analogous to this result, in our research we observe
that the expected loss of a decision-maker who actively invests in mitigation strategies
is lower than that of a decision-maker who invests less actively.

In our work, we formulate a convex minimum-cost network flow problem in order
to model supply chain disruptions. An introduction to the theory of such problems
can be found in Bertsekas (1998). We define a measure of the loss incurred by a
decision-maker whenever a disruption occurs in the form of a regret function. We
introduce the regret into our model using a chance constraint formulation analogous
to approaches bounding value-at-risk (the possibility of using VaR in multi-period
inventory management problems is explored by Luciano et al. (2003). Stochastic
optimization with chance constraints is successfully applied to solve a wide variety of
problems (e.g., Zheng et al. 2015) and proves to be accurate and efficient for managing
inventory and production in our study. Mathematically, the resulting problem exhibits
bilevel structure, since the decision-maker is permitted to re-plan after a disruption
occurs and as optimal decisions of upper- and lower-level problems influence one
another. The opportunity to re-plan is quite natural when dealing with probability
bounds and can also follow the structure discussed in Outrata (1988) via the use of
combinatorial inequality constraints.

The use of bilevel optimization is also motivated in decentralized supply chains
which often exhibit a nested structure of decision-making problems. This setting typ-
ically lends itself to game-theoretic considerations. Specifically, a commonly used
approach is to model a decentralized supply chain as a Stackelberg-leader-follower
game, which results in a bilevel programming problem in which the follower’s deci-
sion is being searched for in the lower-level optimization problem. A classic method
to solve linear problems of this type uses genetic algorithms and is discussed in Cal-
vete et al. (2008) with many extensions studied since. For example, in Yue and You
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(2017) the lower-level optimization problem contains discrete decisions, necessitating
the development of a novel mixed integer bilevel programming modeling framework
since standardmethods do not apply. Another approach considers each individual non-
cooperative entity in a supply chain as the decision-maker at a lower level, while an
upper-level decision is taken by some independent entity accounting for the solutions
at the lower level. Such a framework is discussed in Haque et al. (2020) or in Hsueh
(2015).

Irrespective of an application area, the common approach to solve bilevel problems
whenever the lower-level exhibits convex structure is to use Karush-Kuhn-Tucker con-
ditions to replace the lower level problem with a particular set of constraints (Bard
2013). However, even under simplifying assumptions such as piece-wise linear convex
costs, the complexity of the resulting problem grows quickly in the number of peri-
ods. This complexity stems primarily from the rapidly growing number of disruption
scenarios which need to be considered. However, if scenarios are independent of each
other the problem is suitable for decomposition approaches. We use generalized Ben-
ders decomposition (Geoffrion 1972) with customized feasibility cuts to obtain the
solution efficiently. We decrease the number of computations using the regret bound-
ing procedure which exploits the structure of the Benders subproblems. Importantly,
our formulation does not require optimality cuts. Benders decomposition has also been
applied in a two-stage context by Adulyasak et al. (2015), who solve a stochastic pro-
duction routing problemwith demand uncertainty. Unlike their problem, our approach
is a direct consequence of the regret formulation able to separate between decisions
before and after a disruption scenario is realized. Differently, Adulyasak et al. (2015)
separate between tactical and operational decisions in routing. Additionally, we ana-
lyze the optimal solution from a managerial perspective to obtain insights into the
structure of the optimal mitigation inventory and the trade-offs between mitigation
strategies.

3 Mathematical model

In this section, we firstly present a baseline convex minimum-cost network flow prob-
lem which is used to determine the optimal production schedule over a given time
horizon with deterministic demands. Afterwards, we introduce an extension to this
mathematical model incorporating disruption scenarios via a chance constraint and
we discuss how to solve the resulting problem efficiently. Consider a manufacturer
working under production and inventory capacity constraints. Constrained capacities
occur whenever a real-world business has insufficient production or inventory to meet
the demand. In particular, this can be due to equipment or production line limita-
tions, poor reliability, planning constraints, utilities capacity such as available electric
power, water etc. In this work, we denote production periods by t ∈ {1, . . . , T }
and the deterministic demand in each period by dt . If production in period t is
disrupted, the production capacity drops. In order to minimize the production cost
under capacity constraints and to account for possible disruptions, the manufacturer
decides on the periodic production quantities Pt , ∀t = 1, . . . , T and the inventories
It , ∀t = 1, . . . , T −1. In our setting, the manufacturer assumes zero initial inventory
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Fig. 1 Undisrupted multi-period production scheme

I0 = 0 available in the beginning of period t = 1. A non-zero inventory I0 can be
easily dealt with by reformulating the problem. For example, such an inventory can be
thought of as a zero-cost production prior to period t = 1 with fixed capacity bounds.

To state the optimization problem in the network flow form, we define a directed
graph G = (V , A), where V = {0, 1, . . . , T } is the set of nodes and A is the set of
arcs. We denote the production node by 0 and let Aprod = {

(0, 1), . . . , (0, T )
}
(resp.

Ainv = {
(1, 2), . . . , (T − 1, T )

}
) be the subset of production (resp. inventory) arcs.

Thus, A = Aprod ∪ Ainv and Aprod ∩ Ainv = ∅. The supply outgoing from node 0
is in equilibrium with the demand, i.e., d0 + ∑T

t=1 dt = 0, where d0 is the supply
(or negative demand) at this node (Fig. 1). The cost functions are denoted by Ci j (·)
for each arc (i, j) ∈ A, while yi j and κi j represent the arc flows and the capacity
constraints respectively. The flow in the network is denoted by y = (yi j )(i, j)∈A and
the total cost function of the flow is C(y) = ∑

(i, j)∈A Ci j (yi j ).
Therefore, the convex minimum-cost network flow problem is formulated in the

following form:

v = min
y

∑

(i, j)∈A

Ci j (yi j )

s.t
∑

( j,i)∈A

y ji −
∑

(i, j)∈A

yi j = di ∀ i ∈ V

yi j ≤ κi j , ∀(i, j) ∈ A, yi j ≥ 0, ∀(i, j) ∈ Aprod. (1)

Here, we assume that all the costs are separable and convex, but not necessarily dif-
ferentiable at each point, i.e., we account for non-smooth cost functions often arising
due to loading and raw material switching effects, multiple production machines with
different costs etc. Such functional forms imply high flexibility in terms of cost struc-
tures accounted for by our model. Note that we do not impose lower bounds on the
inventory arcs allowing for backlogging effects. This is in line with the assumption
of convexity of the cost function associated with inventory: in particular, the function
can be monotonically increasing in the positive range but monotonically decreasing
in the negative range which signifies higher costs as inventory becomes negative and
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Fig. 2 Multi-period production scheme disrupted from period t1 to t2

drops further, i.e., in case of high backlog amounts which can only occur if production
capacities are too low in certain periods.

3.1 Regret function

Importantly, problem (1) does not take production vulnerability into account, as
reflected in the model presented in Snyder et al. (2006). Obtaining an optimal flow in
this problem is equivalent to obtaining an optimal production plan in the problemwith-
out disruptions. In order to model production disruptions and to extend the problem
to a stochastic one, we further introduce the regret function.

Denote the set of all disruption scenarios by Ω and assume that ω0 ∈ Ω is the
scenario with no disruption. For every other scenario ω ∈ Ω \ {ω0} assume that some
production arcs are disrupted according to a discrete-time Markov process, where
each scenario has a probability pω with

∑
ω∈Ω pω = 1. Specifically, disruption and

recovery probabilities α and β are given such that in any period there is a chance of a
disruption beginning and consequently concluding in any following period. We only
consider scenarios where once the disruption recovers the facility will not become
disrupted again until the end of the planning horizon. This is due to the fact that the
likelihood of multiple non-consecutive disruptions is small (see Sect. 5). We assume
that a production disruption during some period t changes the convex cost function
in the corresponding arc to some other arbitrary convex cost function. This formula-
tion incorporates many cases of interest, such as drops in production capacity (since
the production capacity constraints can be pushed into the objective function while
preserving convexity) or increases in production costs. Figure 2 demonstrates a pro-
duction which is fully disrupted from period t1 to t2 (i.e., the production capacity drop
to 0). Defining the loss incurred by a decision-maker as some production disruption
occurs, we incorporate it into our model.

Definition 1 Let Aprod(ω) be the subset of disrupted production arcs in scenarioω and
let Afix(ω) contain all the arcs for which the flow is not modified in this scenario (i.e.,
the arcs prior to the disruption). The regret function is the distance between optimal
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values of an anticipative and a reactive cost minimization problem:

R(y, ω) := vreact(y, ω) − vanticipate(ω) ≥ 0, (2)

where

vanticipate(ω) = min
x

∑

(i, j)∈A(ω)

Ci j (xi j )

s.t.
∑

( j,i)∈A

x ji −
∑

(i, j)∈A

xi j = di , ∀ i ∈ V

xi j ≥ 0, ∀ (i, j) ∈ Aprod, xi j = 0, ∀ (i, j) ∈ Aprod(ω).

xi j ≤ κi j , ∀ (i, j) ∈ A, (3)

and

vreact(y, ω) =min
x

∑

(i, j)∈A(ω)

Ci j (xi j )

s.t.
∑

( j,i)∈A
x ji − ∑

(i, j)∈A
xi j = di , ∀ i ∈ V

xi j ≥ 0, ∀ (i, j) ∈ Aprod, xi j = 0, ∀ (i, j) ∈ Aprod(ω)

xi j = yi j , ∀ (i, j) ∈ Afix(ω)

xi j ≤ κi j , ∀ (i, j) ∈ A,

(4)

where the disrupted flow in the network is denoted by x = (xi j )(i, j)∈A. Importantly,
the flow can be negative for inventory arcs if demands are not met, i.e., the flow x
incorporates possible backlogs satisfied once enough goods are produced.

Note that the anticipative plan in Definition 1 represents the best possible strategy
that could have been executed if the realized disruption scenarioω and its ending period
t2 would be known at the beginning of the planning horizon. In contrast, the reactive
plan realistically assumes that the decision-maker learns about the disruption scenario
ω at the moment when the disruption starts. At this point in time, the decision-maker is
allowed to re-plan without modifying past production and inventory decisions. Thus,
the reactive strategy consists of a plan y, which is decided at the beginning of the
planning horizon and is executed until the disruption starts, and an updated plan x ,
developed in period t1. In the reactive setup, the decision-maker is assumed to have
an estimate for the ending period t2 of the disruption ω once the disruption starts at
time t1.

Further note that disruptionsmaycause optimization problems (3) and (4) to become
infeasible if there is no solution inwhich the backlog can be resolved by thefinal period.
We avoid this issue by introducing a dummy node T + 1, a dummy production arc
(0, T +1) and a dummy inventory arc (T , T +1) into the network (see Fig. 3). The cost
function corresponding to the dummy production arc is identical to 0, while the cost
in the dummy inventory arc is a sufficiently large penalty that is paid for any backlog
remaining at the end of the planning horizon. Finally, capacity constraints for these
dummy arcs are chosen to be sufficiently large, such that feasibility is guaranteed for
any possible disruption scenario ω.
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Fig. 3 Extension with dummy node

In our setup, the decision-maker aims for a lower value of R(y, ω), implying that the
production plan should account for possible deviations in the manufacturer’s strategy
from the idealistic but not realizable anticipative strategy to the worst-case reactive
plan. The regret is measured in relation to the benchmark anticipative plan as it eval-
uates how fine the production schedule could be if the disruption would be known at
the start of the planning horizon. Imposing an upper bound on the value of the regret
provides several advantages compared to the straightforward approach in which the
decision-maker simply minimizes the expected cost under all possible disruption sce-
narios. Firstly, it gives the opportunity to account for low probability disruptionswhich
are typically poorly captured by expectation. Moreover, our approach allows to obtain
solutions in which the amount of mitigation is risk-adjusted. This is due to the fact
that extremely unlikely scenarios which require large investments in mitigation and
present high regrets can still be avoided in the chance constraint.

Numerically, imposing additional constraints on the values of R(y, ω) for some
scenarios ω ∈ Ω significantly complicates optimization problem (1) and makes it
bilevel. This is because one needs to solve a sequence of optimization problems (3)
and (4) in order to evaluate the regret R(y, ω) at any value pair (y, ω). On the one hand,
one could approach the solution by imposing upper bounds on the bilevel optimization
problem, as in Timonina-Farkas et al. (2020). On the other hand, the problem can be
solved via decompositionmethods with the aim of finding the optimal resilient plan y∗
that minimizes the total cost and also satisfies these additional constraints. We follow
this path in Sect. 4.

3.2 Chance-constraint formulation

To account for production disruptions in problem (1), we introduce a chance constraint
on the regret function R(y, ω) into themodel. Since our goal is to obtain aminimal cost
strategy y∗ so that production breakdowns are sufficiently mitigated, we incorporate
a chance constraint in the form P(R(y, ω) ≤ γ ) ≥ 1 − θ , requiring that the regret
does not exceed some threshold γ with probability 1 − θ , where the risk budget
θ corresponds to the sum of probabilities of scenarios with regret larger than the
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threshold. Thus, we obtain the following optimization problem:

v̂ = min
y

∑

(i, j)∈A
C̃i j (yi j )

s.t.
∑

( j,i)∈A
y ji − ∑

(i, j)∈A
yi j = di ,∀ i ∈ V

P(R(y, ω) ≤ γ ) ≥ 1 − θ.

(5)

Here, we replace cost functions Ci j (yi j ) from the problem (1) by transformed cost
functions C̃i j (yi j ) into which all upper and lower bound constraints are incorporated.
Specifically, let δ+(z) be an indicator function taking value 0 if z ≥ 0 and +∞
otherwise. Then the transformation C̃i j (yi j ) = Ci j (yi j ) + δ+(κi j − yi j ) retains upper
bounds on yi j while preserving convexity of the objective function. We deal with
lower boundconstraints (includingnon-negativity constraints) using a similar indicator
function δ−(·) which takes value 0 if z ≤ 0 and +∞ otherwise, and preserves the
convexity of the objective function as well.

The optimal solution y∗ of problem (5) is the resilient plan. The difference between
the optimal values v of (1) and v̂ of (5) is the cost to mitigate the disruption scenario
set Ω . Introducing a sufficiently large constant M , we reformulate problem (5) into
its deterministic equivalent:

min
y

∑

(i, j)∈A

C̃i j (yi j ) (6a)

s.t.
∑

( j,i)∈A

y ji −
∑

(i, j)∈A

yi j = di , ∀ i ∈ V (6b)

R(y, ω) ≤ Mzω + γ, ∀ ω ∈ Ω (6c)
∑

ω∈Ω

pωzω ≤ θ (6d)

zω ∈ {0, 1}, ∀ ω ∈ Ω, (6e)

where M is a sufficiently large constant and zω are binary variables determining
whether the regret of scenario ω exceeds the threshold γ . This problem is a mixed-
integer non-linear problem (MINLP) and is solvable via existing tools such as BARON
or BONMIN (Bussieck andVigerske 2010) for small-dimensional cases. Furthermore,
if the cost can be approximated by a piece-wise linear function, the problem can
be reformulated as a mixed-integer linear problem (MILP) solvable using standard
software such as Gurobi or CPLEX. However, it is well known that such reformula-
tions involving a sufficiently large constant M can lead to computational difficulties.
Selecting M as tightly as possible can mitigate these issues and result in an improved
performance. In particular, upper bounds on the regrets of the most disadvantageous
scenarios can be easily computed ahead of time and used to determine values for M .
Nevertheless, as the number of decision variables grows, the cardinality of the sce-
nario set becomes prohibitively large, making the problem complex to address beyond
a planning horizon of T = 15.
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To solve the problem in higher dimensions, we develop an efficient solution algo-
rithm.We use a generalizedBenders procedure to decompose the complexity and solve
a sequence of small-dimensional problems whose solutions converge to the optimum
of the initial problem. For the convergence, we gradually add customized feasibility
cuts to the sequence. The cuts incorporate information about the disruption scenarios
without the introduction of additional variables and enable us to avoid the “curse of
dimensionality” by solving many smaller problems rather than a single complex one.
Although this is a classic idea in optimization, we adapt it to our problem by intro-
ducing customized feasibility cuts and avoiding optimality cuts. In the next section,
we describe the procedure in detail.

4 Solutionmethod

A feasible point (y, z) satisfying constraints (6b), (6d) and (6e) is optimal in the
problem (6a) if y minimizes the objective function and if R(y, ω) ≤ Mzω + γ holds
for every scenario ω. Note that one only needs to check scenarios ω such that zω = 0,
since scenarios ω with zω = 1 obviously satisfy the constraint because M is large.
Next, the value of vanticipate(ω) depends on scenario ω but not on the solution y and,
thus, it can be computed prior to solving the problem (6a). The subproblems (3) and
(4) are independent of each other. In order to evaluate the regret function, we need to
compute the objective value of the problem (4) for each scenario ω such that zω = 0
and to check whether it is smaller than vanticipate(ω) + γ . Inspired by the approach
outlined in Zheng et al. (2015), we apply a generalized Benders decomposition first
introduced in Geoffrion (1972). We customize the procedure by introducing efficient
feasibility cuts to the following relaxed master problem:

min
y

∑

(i, j)∈A
C̃i j (yi j )

s.t.
∑

( j,i)∈A
y ji − ∑

(i, j)∈A
yi j = bi ,∀ i ∈ V .

(7)

At each iteration k, the Benders procedure obtains a solution (yk, zk) of the problem
(7) with additional cuts and checks if the feasibility of R(yk, ω) ≤ γ holds for all ω

such that zkω = 0. For each scenario violating the constraint, we add a feasibility cut
to the optimization by solving the following Benders feasibility problem:

Δk
Feas(y

k, ω) = min
Δω

|Δω|
s.t. R(yk, ω) − γ≤ Δω,

(8)

where the optimal valueΔk
Feas(y

k, ω) is the amount bywhich the constraint is violated.
For all ω such that Δk

Feas(y
k, ω) > 0, problem (8) is equivalent to:

Δk
Feas(y

k, ω) = min
x

∑

(i, j)∈A(ω)

C̃ react
i j (xi j ) − vanticipate(ω) − γ (9a)
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s.t.
∑

( j,i)∈A

x ji −
∑

(i, j)∈A

xi j = di ∀ i ∈ V (9b)

xi j = 0, ∀ (i, j) ∈ Aprod(ω) (9c)

xi j = yki j , ∀ (i, j) ∈ Afix(ω). (9d)

Here, Δk
Feas(y

k, ω) = vreact(yk, ω) − vanticipate(ω) − γ and, thus, C̃ react
i j (xi j ) is the

cost function of optimization problem (4) incorporating its capacity and non-negativity
constraints. Note that the objective function remains convex as the value vanticipate(ω)

is constant for each ω.
The optimization problem (9a) is a convex minimum-cost network flow problem.

Denoting by πi the dual variables corresponding to the flow equilibrium constraints
(9b), we write the complementary slackness conditions (see Bertsekas 1998) as:

∂−C̃ react
i j (xi j ) ≤ πi − π j ≤ ∂+C̃ react

i j (xi j ), ∀(i, j) ∈ A, (10)

where ∂− and ∂+ denote left and right derivatives respectively.
Further, let us denote by x∗ the primal optimal solution of the problem. Due to

the well-known complementary slackness theorem (see Bertsekas 1998), πi and π j

satisfying inequalities (10) for x = x∗ and every arc (i, j) are dual optimal. Moreover,
as long as the problem has at least one primal feasible solution (which our problem
does by construction), the optimal dual point π = (πi , π j ) satisfying the conditions
exists (see Bertsekas 1998).

Next, we compute the optimal dual variables ρ+
i j and ρ−

i j for constraints xi j ≥ yki j
and xi j ≤ yki j corresponding to condition (9d) of the problem.

Theorem 1 The values

ρ+
i j =

{
max(0, ∂−C̃ react

i j (xi j ) − πi + π j ), if (i, j) ∈ A \ Afix(ω)

max(0,−πi + π j ), if (i, j) ∈ Afix(ω)

ρ−
i j =

{
min(0, ∂+C̃ react

i j (xi j ) − πi + π j ), if (i, j) ∈ A \ Afix(ω)

min(0,−πi + π j ), if (i, j) ∈ Afix(ω)

are optimal dual multipliers for constraints xi j ≥ yki j and xi j ≤ yki j , which are jointly
equivalent to the condition (9d).

Proof Consider the following problem, where we state all the constraints:

min
x

∑

(i, j)∈A(ω)

C react
i j (xi j ) − vanticipate(ω) − γ (11a)

s.t.
∑

( j,i)∈A

x ji −
∑

(i, j)∈A

xi j = di ∀ i ∈ V (11b)

xi j ≤ κi j , ∀(i, j) ∈ A (11c)

xi j ≥ 0, ∀(i, j) ∈ Aprod (11d)

xi j = 0, ∀(i, j) ∈ Aprod(ω) (11e)
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xi j ≤ yki j , ∀(i, j) ∈ Afix(ω) (11f)

xi j ≥ yki j , ∀(i, j) ∈ Afix(ω). (11g)

Denote by F̃ the feasible region defined by all constraints except the network flow
equilibrium constraint and the fixing constraints, i.e., F̃ = {x | (11c), (11d), (11e)}.
Dualizing the problemon constraints (11b), (11f) and (11g),we obtain theLagrangian:

L(x, π, ρ+
i j , ρ

−
i j ) =

∑

(i, j)∈A(ω)

C react
i j (xi j ) − vanticipate(ω) − γ

+
∑

i∈N
πi

( ∑

( j,i)∈A

x ji −
∑

(i, j)∈A

xi j − di

)
+

∑

(i, j)∈A

ρ+
i j (xi j − yki j )

+
∑

(i, j)∈A

ρ−
i j (y

k
i j − xi j )

and the resulting dual problem is:

max
π,ρ+

i j ,ρ
−
i j

inf
x∈F̃

L(x, π, ρ+
i j , ρ

−
i j )

s.t. ρ−
i j ≤ 0, ρ+

i j ≥ 0. (12)

Dual variables π satisfying (10) are optimal for (12). Thus, taking the subgradient on
xi j of the Lagrangian leads to the following optimality conditions:

0 ∈ ∂i jC
react
i j (xi j ) − πi + π j + ρ+

i j , ∀(i, j) ∈ A \ Afix (13)

and

0 ∈ −πi + π j + ρ+
i j , ∀(i, j) ∈ Afix(ω). (14)

The variable ρ+
i j acts as a penalty in the dual problem objective: Larger values of ρ+

i j

lead to a lower objective value. Thus, maximization implies a value of ρ+
i j that is as

small as possible. Due to convexity and non-negativity constraints, this value is either
at the boundary of the feasible region (i.e., is equal to 0) or is such that (13) or (14) is
satisfied. The subgradient of the cost function increases monotonically because of the
function’s convexity. At any point xi j , the left derivative takes the smallest possible
value. Thus, we may set:

ρ+
i j =

{
max(0, ∂−C react

i j (xi j ) − πi + π j ), if (i, j) ∈ A \ Afix(ω)

max(0,−πi + π j ), if (i, j) ∈ Afix(ω).

Similarly, we obtain the result for ρ−
i j . ��
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Themultipliers resulting from inequalities (10) and Theorem 1 are used to construct
Benders feasibility cuts (Fischetti et al. 2016; Geoffrion 1972) in the following way:

Mzω ≥ Δk
Feas(y

k, ω) +
∑

(i, j)∈Afix(ω)

(ρ+
i j + ρ−

i j )(yi j − yki j ) (15)

The termMzω controlswhether the cut corresponding to scenarioω is active at iteration
k of theBenders procedure.Note that the sequence of optimal values is non-decreasing,
as we add more constraints at each iteration. The derivation of dual solutions for Ben-
ders feasibility cuts remains true if we consider a disruption scenario ω to represent a
change in a convex cost function Ci j (·) in affected arcs (i, j) ∈ Aprod(ω) in subprob-
lems (3) and (4). This allows us to model the agility capacity (see Tang 2006), where
partial production remains during a disruption, possibly at a higher cost. The resulting
procedure is presented in Algorithm 1.

Algorithm 1 Benders decomposition with customized feasibility cuts.

Set k = 0 and zkω = 0, ∀ω ∈ Ω . Solve the relaxed master problem (7) obtaining solution yk .
while ∃ ω : zkω = 0 and R(yk , ω) > γ do

min
y,z

∑

(i, j)∈A
C̃i j (yi j )

s.t.
∑

( j ,i)∈A
y ji − ∑

(i, j)∈A yi j = bi , ∀ i ∈ V ,

Mzω ≥ Δk
Feas(y

k , ω) + ∑

(i, j)∈Afix(ω)

(ρ+
i j + ρ−

i j )(yi j − yki j ).

∑

ω∈Ω

pωzω ≤ θ zω ∈ {0, 1}, ∀ ω ∈ Ω,

(16)

computing an improved solution (yk+1, zk+1
ω ).

end while
else

(yk , zkω) is the desired optimal solution.
end if

Note that the solution (y0, z0ω) implies a lower bound on the optimal value of the
problem (6a): y0 is the optimal solution of the non-perturbed optimization problem (1)
and z0ω is a feasible point of constraints (6d) and (6e). In Algorithm 1, we compute the
regret R(yk, ω) = vreact(yk, ω) − vanticipate(ω) for each scenario ω such that zkω = 0
via solving lower-level problems (3) and (4) with y = yk .

5 Scenario generation

We employ two scenario generation methods in order to construct the set of scenarios
Ω in Algorithm 1. The first method assumes equally probable disruptions of the
same length throughout the planning horizon [1, . . . , T ], i.e., using φ ∈ [0, 1] to
denote the probability of a disrupted period, we obtain the probability of no disruption
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as (1 − φ)T . Normalizing the values and avoiding non-consecutive disruptions, we
obtain the distribution function. See Torabi et al. (2016), Hatefi and Jolai (2014) and
Hatefi et al. (2015) for similar approaches.

The other method utilizes probabilities of a discrete-time infinite-state Markov
process (see Schmitt et al. 2010, 2015) for modeling production disruptions. In this
approach, which is often used to model disruptions in newly built production sites, we
use states with s ≥ 1 to denote the number of consecutively disrupted time periods, α
to denote the transition probability from a state with no disruption to a disrupted state
for each time period (i.e., the disruption probability) and β to denote the transition
probability from a state with s ≥ 1 disrupted periods to a state with no disruption (i.e.,
the recovery probability). We further assume that these probabilities are independent.
The steady state probabilities are defined by Schmitt et al. (2010) as

ξ0 = β

α + β
, ξs = αβ

α + β
(1 − β)s−1, s ≥ 1,

where ξ0 is the probability of no disruption and ξs is the probability of s ≥ 1 disrupted
periods. Given α and β, the mean and the variance of the duration are

E(s) = 0 · ξ0 +
∞∑

s=1

sξs = α

(α + β)β
, Var(s) = E

2(s)

(
1 + 2

β

α

)
− E(s),

where we use the sum
(

α
(α+β)β

)2
ξ0 + ∑∞

s=1

(
s − α

(α+β)β

)2
ξs to derive the expression

for the variance.
Besides the production with infinite possible states, we can also model finite-state

disruptions happening during finite planning horizons using the probabilities α and
β. In particular, under the assumption that only one disruption may take place during
our finite planning horizon, the following Lemma holds:

Lemma 1 The probability that the site is disrupted at some period t ∈ {1, . . . , T } is
equal to

pt (α, β) = α

α + β

(
β

(1 − α)t − (1 − β)t

(1 − α) − (1 − β)
+ (1 − β)t

)
.

Proof To derive pt (α, β), we sum up probabilities of two separate cases: one under
which a disruption starts at the beginning of the planning horizon and another under
which it begins later. From the first case one obtains the disruption probability
(1 − ξ0)(1 − β)t . Conversely, in the second case we let u ≤ t be the period in
which a disruption starts. Summing over all possible periods we obtain the disruption
probability

ξ0

t∑

u=1

(1 − α)u−1α(1 − β)t−u = ξ0α

(
(1 − α)t − (1 − β)t

(1 − α) − (1 − β)

)
,
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(a) (b)

Fig. 4 Analysis of disruption probabilities

where the right-hand side is obtained using the identity
∑n

j=0 a
jbn− j = an+1−bn+1

a−b .
Note that this identity can be proven by induction for 0 ≤ a, b ≤ 1 and n ∈ N0. ��

Now, given a finite time horizonwith T periods, we simulate production disruptions
and demonstrate estimated probabilities in Fig. 4. Figure 4a shows the probability of
a particular production period to be disrupted for T = 25, while Fig. 4b demonstrates
the neglected probability, based on the fact that non-consecutive disruptions are being
omitted.

In Fig. 4, we observe that early production periods are more likely to be disrupted.
Although disruptions starting in later production periods tend to be less probable,
they lead to higher losses because of our definition of the regret function (2) and too
little time left for recovery. Note that the values of α and β, which are the inputs in
our model, define the expected disruption duration and the expected starting period.
Further, Fig. 4b shows that the total neglected probability of more than one non-
consecutive disruption decreases if α decreases and β increases. Setting appropriate
values for α and β in our model, we focus only on consecutive production disruptions
within our planning horizon, limiting the neglected probability to less than 1%, which
is below the red line in Fig. 4b. In practice, appropriate values of α and β can be
determined via statistical approaches through the use of historical data collected based
onpast events. This is also possible in case of rare events as described byAmrein (2011)
for Markov processes. Additionally, panel data may be used, i.e., expert practitioners
may be polled to determine adequate values.

6 Functional properties

Our goal in this section is to gain an understanding on how the optimal value function
v̂(γ, θ) of (5) and the corresponding optimized regret R(y, ω) behave depending on
our choice of parameters γ and θ , as well as on the scenario set Ω .

Lemma 2 The following monotonicity conditions hold for the optimal value function
v̂(·) of the optimization problem (5) in risk budget parameters:

(i) v̂(γ, θ,Ω) ≥ v̂(γ ′, θ,Ω), if γ ′ ≥ γ

(ii) v̂(γ, θ,Ω) ≥ v̂(γ, θ ′,Ω), if θ ′ ≥ θ .
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(a) (b)

Fig. 5 Sensitivity of the optimal value to parameters

(a) (b)

Fig. 6 Objective values for disruption probability α = 0.05 and recovery probability β = 0.5

Proof Smaller or equal feasible regions for lower values of γ and θ suggest that state-
ments (i) and (ii) for the minimization problem (5) hold (Fig. 5a, b). Thus, Lemma 2
holds due to the fact that any optimal solution in a more restricted problem remains
feasible in a less restricted one. ��

The monotonicity conditions of Lemma 2 are very important as they describe the
behavior of the optimal value function in comparison to the risk threshold and risk
tolerance (i.e., risk budget parameters): in particular, the optimal cost decreases if risk
budget parameters increase. Also, following from the discreteness of the disruption
scenario process, the optimal value function v̂(γ, θ,Ω) of the optimization problem
(5) is a step function in the risk tolerance parameter θ (Fig. 5b).

Analyzing the function v̂(γ, θ,Ω) in more detail, we compare disrupted and undis-
rupted cases and perform extensive numerical tests for piece-wise linear cost functions.
For this, we focus on the following three cases:

1. No production capacity is available during disrupted periods;
2. Agility capacity is available at a regular cost during disrupted periods;
3. Agility capacity is available at a higher cost during disrupted periods (i.e., a five-fold

cost increase in Figs. 6 and 7 ).

Our model formulation supports examination of all three cases, as well as any other
situation in which a disruption may be modeled as a change of a convex cost function
to another convex cost function. In our further analysis, we consider an example in
which the available agility capacity corresponds to one-sixth of regular production
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(a) (b)

Fig. 7 Expected regrets for disruption probability α = 0.05 and recovery probability β = 0.5

capacity and the scenario set is constructed in line with the Markov process outlined
in Sect. 5 with α = 0.05 and β = 0.5.

Figure 6 demonstrates the optimal value of the problem (5) with T = 20, θ = 0.03
and γ = 1500. Note that the cost function v ≤ v̂(γ, θ,Ω) ∀γ, θ,Ω , where v is the
optimal value of the undisrupted problem (1). This relationship follows from the fact
that the total cost decreases as we relax the problem, since less inventory is needed
early in the planning horizon. Also, the agility capacity lessens the amount of the
mitigation inventory needed and further decreases costs. Thus, the optimal cost tends
to v if risk parameters in the chance constraint of problem (5) increase (Fig. 6).

Nevertheless, the optimal value alone cannot provide complete information about
the quality of a solution. Therefore, we study the resilient plan, analyzing the behavior
of the optimized regret and comparing it to the casewith nomitigation. Specifically, we
consider the expected regret E(R(y,Ω)) = ∑

ω∈Ω pωR(y, ω) and its corresponding
variance. Since disruptions are presumed to be rare and the probability of no disrup-
tions pω0 is typically very high, one would expect a significant fraction of the value
of the expected regret to result from R(y, ω0) (regret of no mitigation plan). How-
ever, the disrupted scenarios contribute to the value of E(R(y,Ω)) to such an extent
that one would be better off if one had invested in mitigation. In Fig. 7, we compare
the expected regret under mitigation and no mitigation plans. We compute the expec-
tation by considering scenario-specific regrets and the corresponding probabilities.
Compared to the case with no mitigation, the expected regret tends to decrease in
the presence of agility capacity under the optimized mitigation plan. Moreover, the
under-performance of the mitigation plan becomes less likely when the disruption
probability gets higher.

Following this example, we account for risk tolerance levels θ ∈ {0, 0.1, 0.2} in
Fig. 8. Here, the highest expected regrets are observed for low-probability long-lasting
disruptions. For θ = 0 (i.e., for the case with no risk tolerance), Fig. 8a shows a sharp
increase in expected regrets of low-probability disruptions. This is due to the fact that
every scenario must be mitigated irrespective of its likelihood and cost if θ = 0. Thus,
a large amount of resources is invested into mitigation and, therefore, high regrets can
be observed in low-probability cases. Conversely, once θ > 0 as in Fig. 8b, c, some
low-probability scenarios may become tolerated in line with our model. By this, the
total amount invested in the mitigation drops. Although we still observe high expected
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(a) (b) (c)

Fig. 8 Expected regret for risk tolerances θ ∈ {0, 0.1, 0.2}

(a) (b)

Fig. 9 Variance of regrets for disruption probability α = 0.05 and recovery probability β = 0.5

Fig. 10 Objective values with
threshold γ = 1500 and risk
budget θ = 0.01

regrets for low-probability persistent disruptions, these values are lower than in the
case with θ = 0 (Fig. 8).

Once the expected regret is computed, the variance of the regret is evaluated and
turns out to be lower in the mitigation plan y than in the plan assuming no mitigation
(Fig. 9). This is because any mitigation plan reduces regrets incurred by highly dis-
rupted scenarios. Also, in addition to the variance, one may consider a mean-variance
risk measure Z(y) = E( f (y)) − kVar( f (y)) with a factor k ≥ 0 used to control
the risk-bearing ability of the decision-maker and a function f representing either the
objective function or the regret (see Markovitz 1952). If the decrease in variance is
large enough with respect to no mitigation plan y0, it follows that Z(y) < Z(y0) even
for small values of the parameter k with k = 0 representing the risk-neutral case.

Further, we examine the behavior of the optimal objective value of the problem (5)
dependent on probabilities α and β, testing the same values as Schmitt et al. (2015).
Figure 10 demonstrates the optimal value dependent onα andβ given the risk threshold
γ = 1500 and risk budget θ = 0.01.
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If the recovery probability β is high, all disruptions tend to be short and, therefore,
not particularly costly. If their cost does not exceed the given threshold γ = 1500, no
mitigation is required. Thus, the resilient plan coincides with the no mitigation plan
and takes the same objective value of 2400. Similarly, if the disruption probability
α is high, imminent disruptions tend to have lower regrets and do not require much
mitigation. This is because (1) we assume only one disruption within the planning
horizon, (2) the probability of a disruption starting in period t is (1 − α)t−1α and,
thus, higher α implies an earlier start of the disruption, on average, and (3) the regret
function measures the unattained cost reduction of preparing for a disruption. As a
consequence, the optimal objective value decreases as the disruption probability α

increases (Fig. 10). Nevertheless, higher regrets and stronger mitigation plans can be
expected if both the disruption and the recovery probabilities are not very high. We
consider the influence of the start and the length of a disruption on the mitigation plan
in detail in the next section.

7 Managerial insights

In this section, we present managerial insights related to the structure of the resilient
plan under various conditions. We consider multiple types of disruption scenarios and
their effect on the resilient plan y obtained by solving our optimization problem (5).
We characterize scenario ω ∈ Ω by its starting period t startω and its ending period tendω .
The probabilities of scenarios pω ∀ω ∈ Ω are a consequence of the Markov model
presented in Sect. 5. The value of the regret is implicitly dependent on the probability
pω. Clearly, scenarios with higher regret govern the structure of the resilient plan:
They either enter the risk budget (i.e., zω = 0) or are strongly mitigated. The scenario
types are:

(i) Early/long disruptions (scenarios in which the disruption starts early and per-
sists, α = 0.5 and β = 0.2): Inventory amounts obtained via problems (3) and
(4) are close to each other, as the time to prepare for early disruptions is short.
Furthermore, the backlogging cost is high, as the disruptions are long. Thus, the
regret tends to be high. Also, the cumulative probability of such scenarios is
high due to the large number of them. As a result, mitigation for such scenarios
creates an early peak in inventory level. Figure 11 shows this via comparing
anticipative and reactive mitigation plans. The inventory helps to reduce the loss
at time T and the overall backlog. In the best case achieved via our simulation,
the anticipative solution results in a 46% cost reduction computed by comparing
optimal values for anticipative and reactive problems.

(ii) Middle start/long disruptions (scenarios with persisting disruptions starting
near the middle of the horizon, α = 0.1 and β = 0.2): Although such scenarios
have the highest regrets, they are likely not to be mitigated. On the one hand,
much time is available to prepare for the disruptions and, thus, the difference
between anticipative and reactive plans is large. On the other hand, there is likely
a penalty for any remaining backlog at the end of the planning horizon due to the
persistence of the disruptions. However, the cumulative probability of middle
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(a) (b)

Fig. 11 Anticipative vs. reactive mitigation for early/long disruptions

(b)(a)

Fig. 12 Anticipative vs. reactive mitigation for middle start/long disruptions

start/long disruptions is low. Thus, they are likely to be selected as scenarios to
be covered by the risk budget (zω = 1).
Figure 12 compares anticipative and reactivemitigation plans formiddle start but
lasting disruptions, demonstrating high losses for both anticipative and reactive
plans at time T . The anticipative mitigation plan in Fig. 12a results in a 31% cost
reduction compared to the reactive plan in Fig. 12b.

(iii) Late disruptions (scenarios in which the disruption starts (and ends) late,
α = 0.05 and β = 0.2): Both factors from the previous case also apply here,
making these scenarios rather costly. Furthermore, they typically have higher
probability than middle start/long disruptions. Thus, they are less likely to enter
the risk budget and the decision-maker mitigates them by creating a late peak in
mitigation inventory (Fig. 13a). Due to the late start of such disruptions, Fig. 13
demonstrates a 100% decrease in losses at time T in the anticipative plan: This is
achieved by an increase in safety stock and inventory level before the disruption.

The anticipativemitigation plan shown inFig. 13a reduces the total cost by half
in comparison to the reactive plan in Fig. 13b. This is computed by comparing
the optimal values of the corresponding solutions.

As described above, the occurrence of scenarios (i)–(iii) in our model depends on the
choice of the disruption probability α in the Markov process. Furthermore, changing
the recovery probability β one could influence the disruption length. Clearly, the
optimal resilient plan y depends both on the disruption scenarios and on the risk
parameters θ and γ .
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(b)(a)

Fig. 13 Anticipative vs. reactive mitigation for disruptions starting late in time

(a) (b)

Fig. 14 Example of risk clustering behavior for θ = 0.01

For example, Figure 14a demonstrates the resilient plan given the risk tolerance
parameter θ = 0.01. The optimal solution requires higher levels of inventory in
early and later production periods. Figure 14b displays the corresponding production
capacity utilization. Clearly, high capabilities are required while mitigation inventory
is being built up, allowing production to decline sharply prior to the drop in inventory.
We refer to the behavior shown in Fig. 14 as to risk clustering, due to the fact that
some types of scenarios are being tolerated with respect to other ones. In particular,
the vast majority of scenarios of type (ii) are being selected into the risk budget and,
therefore, tolerated in the example of Fig. 14. Thus, we observe higher inventories for
early and late disruptions. Overall, particularly costly and rare disruptions are likely
to be selected into the risk budget with lower or no mitigation being optimal for them.
We observe this effect in the middle of the planning horizon in Fig. 14.

In practice, one may desire the variability of the optimal solution y observed in
Fig. 14 in cases with production shutdowns in a particular time of the year (e.g.,
summer). Vice versa, somemanufacturers may want to avoid such a variability aiming
for a stable production and inventory plan with a constant machine workload. Thus,
note that the solution would be less volatile if the inventory were more costly. It would
also be the case if the convex cost functions would have a higher curvature or if the
capacities would be lower, which would reduce the distance between optimal values
vreact(y∗, ω) and vanticipate(ω) decreasing the regret values and the overall mitigation.
Also, one could impose different regret thresholds depending on the starting period of
a disruption.
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(b)(a)

Fig. 15 Change in regret between unmitigated and resilient plans

We observe mitigation patterns in Figs. 8 and 14 for both scenario generation
methods outlined in Sect. 5. Similar to the Markov model, regret in scenarios with a
late disruption start remains high for the uniform case. However, if we only incorporate
the costs generated by cumulative regrets after the disruption starts, risk clustering
behavior is not observed in the case of linear cost functions and uniform probabilities.
Instead, the resilient plan stabilizes at some inventory level, making this less of a
concern for many practical applications. A full analysis of risk clustering behavior is
a subject for future research.

Importantly, the optimal solution y produced by our methodology provides lower
regrets even for scenarios in the risk budget (ω : zω = 0): This is one of the key
differences with other approaches based on the value-at-risk. The result is intuitive,
since any mitigation is better than no mitigation in the case of a significant disruption.
Conversely, mitigation increases the regret for short disruption scenarios, whose regret
under nomitigation is typically far below the threshold γ and, thus, its increase is opti-
mal for the solution. Figure 15 demonstrates this behavior, outlining the dependence
between (1) the average change in regret compared with no mitigation solution and
(2) disruption lengths (in number of periods).

In Fig. 15b, the changes in regret aremultiplied by the corresponding scenario prob-
abilities. We observe that the mitigation is likely to reduce the regrets corresponding
to the disruptions of middle length. This happens at a cost of shorter disruptions (i.e.,
which are typically low-cost). This is in line with the rationale for the mitigation,
which suggests spending more in good times in order not to be affected should a
significant disruption occur. Lastly, Fig. 16 shows the reduction in scenario-specific
regrets following multiple iterations of Algorithm 1.

A natural extension to our work would be a model with stochastic demand,
which would require an additional chance constraint or an expectation minimiza-
tion. Although accounting for this type of uncertainty is beyond the scope of this
article, we test different shapes of demand patterns, including constant, increasing,
decreasing and a product life cycle curve (bell shape). In Fig. 17, we observe that
the optimal production drops below the demand curve for every pattern, while the
decision-maker mitigates disruptions by creating a peak in mitigation inventory. The
most pronounced (least pronounced) peak in mitigation inventory is observed when
there is an increasing (decreasing) demand pattern. Similar to Fig. 14 for increasing
loss threshold γ , Fig. 17c demonstrates the risk clustering effect for increasing risk
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Fig. 16 Regrets at different iterations of Benders decomposition procedure (Algorithm 1)

(a) (b)

(d)(c)

Fig. 17 Optimal mitigation strategies for different demand paths with α = 0.05, β = 0.5, θ = 0.01,
γ = 2500

tolerance θ , suggesting inventory aggregation in some regions of the horizon as more
disruption scenarios can be selected into the risk budget.

8 Conclusion and outlook

The risk of supply chain disruptions prompts decision-makers to construct risk mit-
igation strategies to prepare for unforeseen events. In this article, we developed an
optimization model to minimize total production costs for a supply chain subject to
uncertain disruptions. We formulated a convex network flow problem under a chance
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constraint bounding “regrets” in disrupted scenarios. The loss after a disruption was
measured as a distance between two optimization problems (reactive and anticipative),
whose solution depends on the risk mitigation strategy.

We took a relatively general approach by assuming convex but not necessarily
differentiable cost functions: This gives decision-makers more flexibility in modeling
the cost structure and allows them to account for production switching effects, multiple
production facilities or the use of contract manufacturers with different costs. We can
model both full production disruptions and disruptions that imply a change from
one convex cost function to another. Moreover, although our model assumes a finite
time horizon, it can be applied in the context of a rolling horizon planning. That is, a
decision-maker would only implement the firstm periods of a suggested resilient plan,
wherem is determined by thewillingness of the decision-maker to pay for re-planning.
An additional benefit of such an approach is that it can sidestep undesired or erratic
behavior induced by leftover inventory or backlog at the end of the planning horizon.
Note however that in order for the two-stage structure of the model resulting from the
introduction of our concept of regret to make sense re-planning needs to be an action
a decision-maker does not want to undertake often, limiting the types of products
for which our model is applicable. Specifically, our model is a better fit for products
subject to a limited life cycle. Such life cycles often decompose into three demand
phases: An initial phase of increasing demand, a second phase during which demand
is stationary, and a final phase in which demand decreases. Although the numerical
results we presented assumed stationary demand, this is not a modeling necessity, and
therefore our model can be used to study all three phases.

Much of our numerical analysis focused on understanding how the resilient plan
behaves depending on the properties of disruption scenarios. Specifically, we deter-
mined which disruption scenarios are likely to enter the risk budget and which tend to
be explicitly mitigated against. Our model is applicable for a wide range of disruptions
and allows decision-makers to optimize their risk mitigation strategy by evaluating
trade-offs between holding inventory or leveraging agility capacity under different
demand patterns. Under no mitigation, the most costly disruption scenarios would
be those starting in the middle of the planning horizon and persisting until the end.
Implementation of a risk reduction strategy helps decision-makers to decrease these
costs, increasing the inventory levels available beforehand. The largest increase in
mitigation inventory is necessary when disruptions occur early and are not resolved
quickly or when disruptions occur late but do not allow for reaction time. Importantly,
in our optimal resilient plan, the regrets decrease for all types of disruptions except
very short ones, including those that are very unlikely and are thus selected into the
risk budget. Furthermore, the availability of agility capacity, i.e., of partial production
during a disruption, reduces the expected regret even if its cost is higher than the
production cost during undisrupted periods. Finally, we observed and characterize a
risk clustering behavior which, to our knowledge, has not been previously addressed
in the literature and will require future research.

Another natural extension of our research includes amodel with stochastic demand.
This generalization requires additional chance constraints or an expectationminimiza-
tion. For this, itwould be necessary to account for the structure ofBenders subproblems
to speed up the algorithm and to efficiently determine the optimal solution. Future
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research might also focus on analyzing multi-stage models accounting for multiple
disruptions within a given planning horizon.
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