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1 Introduction

The numerical S-matrix bootstrap program was recently revived in [1–3] and received
further attention in [4–15]. This program allows to numerically construct scattering am-
plitudes which obey crossing and unitarity at all energies. In [16] the authors proposed to
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extend the S-matrix bootstrap program to accommodate form factors and spectral densities
of local operators in a general number of dimensions.1 When preparing [16] it became clear
that the systematic treatment of two-point functions, spectral densities and their relation
to central charges in a generic number of dimensions is missing in the literature.

The first goal of this work is to fill this gap. The second goal is to define concrete
bootstrap problems in higher dimensions. In sections 2 and 3 we provide the main defini-
tions and setup the formalism. The main results are given in sections 4, 5 and 6. More
precisely, in section 4 we compute explicitly spectral densities of conserved currents and the
stress-tensor in conformal field theories. In section 5 we show that in generic quantum field
theories in d ≥ 3 the asymptotic behavior of spectral densities of conserved currents and
the stress-tensor is driven by the central charges, in d = 2 instead we obtain the integral
sum-rules for the central charges which lead to the “c-theorems”.2 In section 6 focusing
on quantum field theories with a mass gap we discuss the stress-tensor two-particle form
factor and partial amplitudes. We then derive semi-positive definite constraints coming
from unitarity and discuss applications to bootstrap. Various computations and technical
details supporting the main text are given in appendices A–G.

All our results and conclusions are clearly stated in sections 4, 5 and 6. As a con-
sequence we do not dedicate a separate section to conclusions. In order to somewhat
compensate for this and also to facilitate the reading of the paper we provide however an
extended summary of the paper and its key points.

Summary of the paper. In section 2 we study Euclidean two-point functions. Their
most general form compatible with rotational and translational invariance is given by (2.1)
and (2.23) for conserved currents and the stress-tensor respectively. In the presence of
conformal symmetry, the two-point functions of conserved currents and the stress-tensor
are completely fixed up to the numerical coefficients CJ and CT called the central charges,
see (2.4) and (2.25). In a generic quantum field theory (QFT) we assume that both its UV
and IR fixed points are described by the UV and the IR conformal field theory (CFT).3

This requirement at the level of two-point functions translates into conditions (2.7), (2.8)
and (2.26), (2.27). The most important result of section 2 are the integral expressions for
the difference of the UV and IR central charges given in (2.12) and (2.32). In section 2 we
also show that two-point functions might contain a parity odd part in d = 2 and d = 3
dimensions. In d = 2 it is completely fixed by the global anomaly C ′J for conserved currents
and by the gravitational anomaly C ′T for the stress-tensor.4 In d = 3 the parity odd part
does not contain any information about the UV and IR fixed points.

In section 3 we study Wightman and time-ordered two-point functions in the
Lorentzian signature.5 We define in section 3.1 the spectral densities as Fourier trans-
formed Wightman two-point functions. We define components of the spectral densities
as the coefficients in their decomposition into a basis of tensor structures. This basis is

1In d = 2 this direction is rather well explored in the case of integrable models, see for example [17–24].
2These were first discussed in [25, 26], see also [27].
3Fixed points are scale invariant. In d = 2 scale invariance implies conformal invariance [28, 29]. In

d ≥ 3 there is no general proof, for some recent discussion see [30–32].
4After this paper came out we became aware of the works [33, 34] where the same conclusions were made.
5For the formal definition of Wightman two-point functions see appendix C.
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constructed from the projectors (objects mapping finite irreducible representations of the
Lorentz group into the finite irreducible representations of the Little group), see (3.18)
and (3.40) for their explicit expressions. We then show the non-negativity of the compo-
nents of spectral densities. The explicit spectral decomposition of the two-point function of
conserved currents and the stress-tensor is given in (3.26) and (3.51) respectively. We study
time-ordered two-point functions in section 3.2. Their spectral decomposition, known as
the Källén-Lehmann representation, in the case of conserved currents and the stress-tensor
is given in (3.59) and (3.64) respectively. Under the Wick rotation the time-ordered two-
point functions get mapped precisely to the Euclidean two-point functions. This allows to
define the Källén-Lehmann spectral decomposition of Euclidean two-point functions.

In conformal field theories the Wightman two-point functions are completely fixed by
the conformal symmetry, hence the spectral densities are also completely fixed. In section 4
we explicitly compute the components of the spectral densities in the case of Lorentz spin
one and Lorentz spin two operators, see (4.10) and (4.13).

In section 5 we show that the central charges CJ and CT in d ≥ 3 define the asymptotic
behavior of certain components of the spectral densities, see (5.2) and (5.15). In d = 2
we recover the known integral expressions (5.6) and (5.19). The latter prove immediately
the “c-theorems” in d = 2. In order to show all these statements systematically we employ
the sum-rules (2.12) and (2.32) and perform the Källén-Lehmann decomposition of its
integrands. We provide the technical details of this strategy in appendix F.

In section 6 we discuss bootstrap applications. We start in section 6.1 by studying
the two-particle form factor of the stress-tensor. We discuss its generic form, the rela-
tion to the stress-tensor spectral density and its projections to definite Little group spin,
see (6.8), (6.19) and (6.29). In section 6.2 we derive the unitarity constraints as semi-
positive conditions on the matrices involving partial amplitudes, the stress-tensor form fac-
tor and the stress-tensor spectral density, see (6.30), (6.36) and (6.41). In section 6.3 we de-
fine concrete bootstrap problems which can be studied with modern numerical techniques.

Notation. Let us comment on the notation of the paper. We will use Latin letters to
indicate the Euclidean space

a, b = 0, 1, 2, . . . , d− 1. (1.1)

Instead we will use Greek letters to indicate the Lorentzian space

µ, ν = 0, 1, 2, . . . , d− 1. (1.2)

We attribute the meaning of time to x0 component. It should be clear from the context
if x0 is Euclidean or Lorentzian time. Sometimes we will also indicate it explicitly. In the
Lorentzian signature we will use the mostly plus metric

ηµν = ηµν = {−,+,+, . . .}. (1.3)

Throughout the text we will also use the following (manifestly translation invariant) objects

xaij ≡ xai − xaj , xµij ≡ x
µ
i − x

µ
j . (1.4)

We will also use sometime vector notation for spatial coordinates

~x = {x1, x2, . . . xd−1}. (1.5)
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2 Euclidean two-point functions

We start by studying two-point functions in Euclidean signature. We refer to them as the
Euclidean two-point functions. We attribute a = 0 component of the Euclidean coordinate
xa to Euclidean time. The Euclidean two-point functions are “time-ordered” with respect
to this Euclidean time, see appendix C for details. In what follows we will study Euclidean
two-point functions of conserved currents and the stress-tensor at non coincident points.6

We will derive their most general form fixed by the rotational and translational invariance.7

We will define central charges and derive integral expressions (sum-rules) they satisfy. This
section develops on the ideas presented in [47, 48].

2.1 Conserved currents

Consider the local conserved current Ja(x). Such an operator is generally present in sys-
tems with a U(1) symmetry. The generalization to the case of non-Abelian symmetries is
trivial.8 Due to rotational and translational invariance the Euclidean two-point function
of conserved currents has the following generic form

〈0|Ja(x1)Jb(x2)|0〉E = 1
r2(d−1) ×

(
h1(r)δab + h2(r) x

a
12 x

b
12

r2 +
∑
n

ign(r)Tab
n (x1, x2)

)
,

r ≡ |x12|,
(2.1)

where h1(r), h2(r) and gn(r) are dimensionless functions which contain dynamical infor-
mation of a particular theory and Tab

n are the parity odd tensor structures (structures
containing a single Levi-Civita symbol).9 Since the form of the Levi-Civita symbol de-
pends on the number of dimensions, the parity odd tensor structures should be discussed
separately for each dimension. We postpone this discussion until the end of this section.
Notice, that since r is a dimensionful quantity one needs at least one dimensionful param-
eter in the theory in order for the functions h1, h2 and gn not to be simply constants.
Suppose we have a single dimensionful parameter a in the theory with the mass dimension
[a] = 1. Then the functions in (2.1) would have the following arguments

h1(ar), h2(ar), gn(ar). (2.2)
6Treating coincident points correctly is very difficult due to presence of contact terms, see for example [35]

and section 3.1 of [36] for a discussion of two-point functions in CFTs. Luckily in position space one can
often avoid talking about them. The situation is different in momentum space where one has to integrate
over the whole space including the coincident points. From this perspective working with momentum space
correlators is much more difficult. For works on CFT correlators in momentum space see [35–45].

7For a concrete perturbative computation of time-ordered two-point functions of the stress-tensor in
gauge theories see [46].

8In case the system under consideration is invariant under a non-Abelian group, the corresponding
conserved operator would be JaA(x), where A is the index in the adjoint representation of the non-Abelian
group. The two-point function in (2.1) gets an additional overall tensor structure which depends on the
adjoint indices, namely 〈0|JaA(x1)JbB(x2)|0〉E ∼ tr(tAtB), where tA are the generators of the symmetry in
the adjoint representation. One can always choose a basis of these generators such that tr(tAtB) = δAB .

9The imaginary unit i in the parity odd part of (2.1) is introduced for future convenience.
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Notice also that we exclude the r = 0 point from the discussion in order to remove the
contact terms which do not play any role in our further investigation.

Since the Euclidean two-point functions are time-ordered, the following symmetry
condition must be obeyed

〈0|Ja(x1)Jb(x2)|0〉E = 〈0|Jb(x2)Ja(x1)|0〉E . (2.3)

Clearly, the parity even structures in (2.1) satisfy this condition automatically. In the pres-
ence of conformal symmetry there are further constraints on the two-point function (2.1).
We derive them in appendix A. Here we simply quote the final result

〈0|Ja(x1)Jb(x2)|0〉E, CFT = CJ
r2(d−1) × I

ab(x1, x2) + i C ′J
r2(d−1) × δd,2 E

ab(x1, x2), (2.4)

where we have defined

Iab(xi, xj) ≡ δab − 2
xaijx

b
ij

x2
ij

, Eab(xi, xj) ≡ εab + 2
xaijε

bcxcij
x2
ij

. (2.5)

The constants CJ and C ′J (partly) characterize the dynamics of the conformal field theory.
They are called the central charges of two currents.10 In unitary theories CJ > 0 and
−CJ ≤ C ′J ≤ +CJ , see (A.15) and appendix B for details. The central charge CJ was
introduced in [49], it corresponds to the parity even structure Iab and is a universal quantity
in any number of dimensions. The central charge C ′J corresponds to the parity odd structure
Eab and can only be present in d = 2 dimensions. Notice that the parity odd structure Eab

automatically obeys the symmetry condition (2.3). This is not obvious at first glance, but
can be shown using the following identity

xaεbc + xbεca + xcεab = 0. (2.6)

The two-point function (2.4) is a special case of (2.1) where all the dimensionless functions
h1(r), h2(r) and gn(r) are constants (since there are no dimensionful parameters in the
CFTs) appropriately related to form conformally covariant tensor structures (2.5).

Given that we work with a UV complete QFT at high energies (UV) or equivalently
at small distances we should recover conformal invariance, namely11

lim
x→0

r2(d−1) ×
(
〈0|Ja(x)Jb(0)|0〉E − 〈0|Ja(x)Jb(0)|0〉E, UV CFT

)
= 0. (2.7)

Analogously at low energies (IR) or equivalently at large distances we again recover con-
formal invariance

lim
x→∞

r2(d−1) ×
(
〈0|Ja(x)Jb(0)|0〉E − 〈0|Ja(x)Jb(0)|0〉E, IR CFT

)
= 0. (2.8)

In quantum field theories with a mass gap such as QCD, the IR CFT is simply empty.
10For a generic local operator in a CFT the constant appearing in its two-point function defines the

normalization of this operators. Its value can be set to one by rescaling the normalization of this operator.
For conserved operators this is no longer the case since they obey a particular symmetry algebra which fixes
their normalizations. In the Abelian case we have Q ≡

∫
ddxJ0(x)δ(x0) and [Q,O] = qOO, where qO are

the charges. In the non-Abelian case instead we have QA ≡
∫
ddxJ0

A(x)δ(x0) and [QA, QB ] = ifABCQC ,
where A, B and C are the adjoint indices of some non-Abelian group and f are its structure constants.

11Here we take the limit r → 0 in such a way that r is always positive. It can be infinitely close to zero
but never becomes zero. In other words it does not probe contact terms.
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Parity even part. Let us first focus on the parity even terms in (2.1) and (2.4). We can
rewrite the condition (2.7) and (2.8) as follows

lim
r→0

h1(r) = CUV
J , lim

r→0
h2(r) = −2CUV

J ,

lim
r→∞

h1(r) = CIR
J , lim

r→∞
h2(r) = −2CIR

J .
(2.9)

In other words, the central charges CUV
J and CIR

J determine the asymptotic behavior of
the functions h1(r) and h2(r).

We will now derive an integral expression for the UV and IR central charges in terms of
the two-point function of conserved currents in a generic QFT. Conservation of the currents
implies the following differential equation

∂µJ
µ(x) = 0 ⇒ h′1(r) + h′2(r) = d− 1

r
× (2h1(r) + h2(r)) . (2.10)

Integrating both sides of (2.10) and using the asymptotic conditions (2.9) we get

CUV
J − CIR

J = (d− 1)× lim
rmin→0

lim
rmax→∞

∫ rmax

rmin

dr

r
(2h1(r) + h2(r)) . (2.11)

This can be equivalently rewritten by using (2.1) as12

CUV
J − CIR

J = lim
rmin→0

lim
rmax→∞

∫ rmax

rmin
dr r2d−3

(
δab + (d− 2)x

axb

r2

)
〈0|Ja(x)Jb(0)|0〉E . (2.12)

As shown in appendix B.1 in unitary theories the following constraints hold

∀r : h1(r) ≥ 0, h1(r) + h2(r) ≤ 0 (2.13)

valid for d ≥ 2. As a result the integrand in (2.11) does not have a definite sign and one
cannot derive any inequality for the difference of the UV and IR central charges simply
using (2.13), in other words using (2.13) one cannot prove the “c-theorem” for conserved
currents. The proof of the “c-theorem” for conserved currents exists however and will be
given in section 5.

Parity odd part. Let us now focus on the parity odd terms in (2.1) and (2.4). Since
the number of indices in the Levi-Civita symbol depends on the number of dimensions, we
will address the case of d = 2, d = 3 and d ≥ 4 dimensions separately.

Let us start from d = 2. Using rotational and translational invariance one can write
two parity odd tensor structures in (2.1), namely

∑
n

ign(r)Tab
n (x1, x2) = ig1(r) εab + ig2(r) x

a
12ε

bcxc12
r2 . (2.14)

Requiring (2.3) and using (2.6) one obtains the following constraint on the unknown
functions

g2(r) = 2 g1(r). (2.15)
12As we will see shortly, the parity odd tensor structures obey δabTab = 0 and xaxbTab = 0.

– 6 –



J
H
E
P
0
2
(
2
0
2
2
)
1
8
6

As a result we get the following most general form of the parity odd part of the two-point
function of two currents

〈0|Ja(x1)Jb(x2)|0〉odd
E = ig1(r)

r2(d−1) ×
(
εab + 2 x

a
12ε

bcxc12
r2

)
. (2.16)

Conservation implies that

g′1(r) = 0 ⇒ g1(r) = const. (2.17)

In other words the expression for the parity odd part of the two-point function of conserved
operators (2.16) is identical to the one of conformal field theories in (2.4). The asymptotic
conditions (2.7) and (2.8) imply that

g1(r) = C ′UVJ = C ′ IRJ . (2.18)

This requirement shows that the central charge C ′UVJ is well defined along the flow and
remains unchanged in the IR. It is nothing but the anomaly coefficient of the global U(1)
current.13 Using the standard anomaly matching argument of ’t Hooft one can argue that
the global anomaly must be an invariant quantity along the flow in accordance with (2.18).

In d = 3 one can write only a single parity odd tensor structure

〈0|Ja(x1)Jb(x2)|0〉odd
E = ig1(r)

r2(d−1) ×
εabcxc12
r

. (2.19)

The expression (2.19) automatically complies with the condition (2.3) and satisfies con-
servation. Since there are no allowed parity odd terms in the CFT two-point function in
d = 3 the asymptotic conditions (2.7) and (2.8) require

lim
r→0

g1(r) = lim
r→∞

g1(r) = 0. (2.20)

Moreover in unitary theories due to reflection-positivity the following condition holds

∀r : −h1(r) ≤ g1(r) ≤ +h1(r). (2.21)

This can be shown by plugging (2.19) into (B.10). The parity odd contribution to the two-
point function (2.19) is the Chern-Simons like term.14 It does not contain any information
about the UV or IR fixed points and thus it will not be studied further in this paper.

In the case of d ≥ 4 no parity odd structures can be constructed. This follows from
the simple fact that the Levi-Civita has too many indices and that the contractions of the
form εabcdxcxd trivially vanish.

13For further reading on global anomalies in d = 2 see for example section 19.1 in [50]. See also section
6 in [51].

14See for example chapter 5 of David Tong’s lectures on the Quantum Hall Effect [52].
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2.2 Stress-tensor

Let us now turn our attention to the local stress-tensor T ab(x) totally symmetric in its
indices, namely T ab(x) = T ba(x). In a d-dimensional non-conformal quantum field theory
the stress-tensor transforms in the reducible representation of the rotational group SO(d).
It can be decomposed as a direct sum of the trivial and the symmetric traceless representa-
tions: •⊕ d. The trivial representation corresponds to the trace of the stress-tensor which
we denote by

Θ(x) ≡ T aa(x). (2.22)

Logically the discussion in this section will be identical to the one of conserved cur-
rents with several minor complications. The most general Euclidean two-point function
consistent with the rotational symmetry and the translational invariance has the following
form

〈0|T ab(x1)T cd(x2)|0〉E = 1
r2d

(∑
m

hm(r)Tabcdm (x1, x2) +
∑
n

ign(r)Tabcd
n (x1, x2)

)
. (2.23)

Here Tabcdm and Tabcd
n denote parity even and odd tensor structures respectively. The imag-

inary unit i is introduced in the parity odd part for the later convenience. The functions
hm(r) and gn(r) multiplying these structures are dimensionless. Since the Euclidean cor-
relation functions are time-ordered one has the following symmetry condition

〈0|T ab(x1)T cd(x2)|0〉E = 〈0|T cd(x2)T ab(x1)|0〉E . (2.24)

In the presence of the conformal symmetry the form of the two-point function (2.23)
gets severely restricted and the two-point function becomes

〈0|T ab(x1)T cd(x2)|0〉E

= CT

x2d
12
×
(1

2
(
Iac(x1, x2)Ibd(x1, x2) + Iad(x1, x2)Ibc(x1, x2)

)
− 1
d
δabδcd

)
+ i C ′T

x2d
12
× δd,2

4
(
Iac(x1, x2)Ebd(x1, x2) + Iad(x1, x2)Ebc(x1, x2)

+ Ibc(x1, x2)Ead(x1, x2) + Ibd(x1, x2)Eac(x1, x2)
)
. (2.25)

where the objects Iab and Eab were defined in (2.5). We derive this expression in ap-
pendix A. The coefficient CT is called the stress-tensor central charge. It was first in-
troduced in [49].15 It is a universal quantity in any number of dimensions. In unitary
theories CT > 0. The quantity C ′T is another central charge which is allowed only in d = 2
dimensions. In unitary theories −CT ≤ C ′T ≤ +CT , see (A.18).

15The stress-tensor defines the conformal algebra. For instance the dilatation operator is defined as
D ≡ −

∫
dΩdrd−2xaxbT ab(x), where Ωd is the sphere in d dimensions, for instance Ω3 = 4π and Ω4 = 2π2.

Under dilatations the primary operators transform as [D,O(0)] = −i∆OO(x), where ∆O is the scaling
dimension. Once the scaling dimensions are fixed there is no possibility to rescale the stress-tensor. Thus,
the value of CT cannot be changed in contrast to the coefficients appearing in two-point functions of generic
operators. See also footnote 10 for the similar discussion in the case of conserved currents.
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Given that our quantum field theory is UV complete, namely its UV fixed point is
described by a UV CFT (and by an IR CFT in the IR), we have the following conditions

lim
x→0

r2d ×
(
〈0|T ab(x)T cd(0)|0〉E − 〈0|T ab(x)T cd(0)|0〉E, UV CFT

)
= 0, (2.26)

lim
x→∞

r2d ×
(
〈0|T ab(x)T cd(0)|0〉E − 〈0|T ab(x)T cd(0)|0〉E, IR CFT

)
= 0. (2.27)

Parity even part. Let us now focus on the parity even part of the two-point func-
tion (2.23). In general number of dimensions one can write five linearly independent tensor
structures which read as

Tabcd1 (x1, x2) ≡x
a
12x

b
12x

c
12x

d
12

r4 ,

Tabcd2 (x1, x2) ≡x
a
12x

b
12δ

cd + xc12x
d
12δ

ab

r2 ,

Tabcd3 (x1, x2) ≡x
a
12x

c
12δ

bd + xb12x
c
12δ

ad + xa12x
d
12δ

bc + xb12x
d
12δ

ac

r2 ,

Tabcd4 (x1, x2) ≡δabδcd

Tabcd5 (x1, x2) ≡δacδbd + δbcδad.

(2.28)

In d = 2 only four tensor structures are linearly independent due to the following relation

d = 2 : 2Tabcd2 (x1, x2)− Tabcd3 (x1, x2)− 2Tabcd4 (x1, x2) + Tabcd5 (x1, x2) = 0. (2.29)

Notice that all the structures in (2.28) satisfy automatically the condition (2.24). Using
these structures we can translate the asymptotic conditions (2.26) and (2.27) into the
following conditions on the dimensionless functions hm

lim
r→0

h1(r) = 4CUV
T ,

lim
r→0

h2(r) = 0,

lim
r→0

h3(r) = −CUV
T ,

lim
r→0

h4(r) = −CUV
T /d,

lim
r→0

h5(r) = CUV
T /2,

lim
r→∞

h1(r) = 4CIR
T ,

lim
r→∞

h2(r) = 0,

lim
r→∞

h3(r) = −CIR
T ,

lim
r→∞

h4(r) = −CIR
T /d,

lim
r→∞

h5(r) = CIR
T /2.

(2.30)

Similar to section 2.1 we can derive the integral expression for the stress-tensor central
charge. It reads16

CUV
T − CIR

T = (d+ 1)× lim
rmin→0

lim
rmax→∞

∫ rmax

rmin

dr

r

×
(
r2d

d− 1 〈0|Θ(x)Θ(0)|0〉E + d− 2
2 h2(r)

)
. (2.31)

16For further details see [48] and section 2.6 in [16].
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Using (2.23) one can express h2(r) as some contraction of the stress-tensor two-point func-
tion. As a result (2.31) can be brought to the following equivalent form

CUV
T −CIR

T = 1
2 (d− 1) lim

rmin→0
lim

rmax→∞

∫ rmax

rmin
dr r2d−1Rabcd(x)〈0|T ab(x)T cd(0)|0〉E , (2.32)

where we have defined

Rabcd(x) ≡ (4− d2) x
axbxcxd

r4 + d2 + d− 2
2

xaxbδcd + xcxdδab

r2 (2.33)

− xaxcδbd + xbxcδad + xaxdδbc + xbxdδac

r2 + (d+ 2) δabδcd +
(
δacδbd + δbcδad

)
.

In appendix B.1 using reflection positivity we show that

∀x : 〈0|Θ(x)Θ(0)|0〉E ≥ 0, (2.34)

in particular see (B.9). Because of this in d = 2 the integrand in the right-hand side
of (2.31) is a non-negative function which is integrated over a positive region. As a result
we get a simple inequality

d = 2 : CUV
T − CIR

T ≥ 0 (2.35)

known as the Zamolodchikov’s c-theorem [28, 47]. Using the machinery of appendix B.1 no
positivity statement however can be made about h2(r), thus no statement similar to (2.35)
can be made in d ≥ 3 using these arguments. We will prove the c-theorem one more time
but in a different way in section 5.

Parity odd part. As before we need to consider d = 2, d = 3 and d ≥ 4 dimensions
separately.

We start with d = 2. One can naively write six parity odd tensor structures, however
only four of them will be linearly independent. Moreover, due to the symmetry condi-
tion (2.24) there exist two additional constraints. Taking them into account we are left
only with two structures which reads as

Tabcd
1 (x1, x2) ≡ δacεbd + δadεbc + δbcεad + δbdεac

+ 2 δ
acxbεdexe + δadxbεcexe + δbcxaεdexe + δbdxbεaexe

r2 , (2.36)

Tabcd
2 (x1, x2) ≡ x

axcεbd + xaxdεbc + xbxcεad + xbxdεac

r2 + 4 x
axbxcεdexe + xaxbxdεcexe

r4 .

Notice that the symmetry property required by (2.24) is not manifest here. One needs to
use relations between different tensor structures in order to show that (2.36) obeys (2.24).
Conservation of the stress-tensor implies the following differential equations

g′1(r) = 0, g′1(r) + g′2(r) = 2
r
× (2g1(r) + g2(r)). (2.37)

Solving them and taking into account the asymptotic constraints (2.26) and (2.27) we get

g1(r) = 1
4 C

′ IR
T = 1

4 C
′UV
T , g2(r) = −1

2 C
′ IR
T = −1

2 C
′UV
T . (2.38)
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The central charge C ′UV
T remains well defined and invariant along the flow all the way to

the IR fixed point. One can identify C ′UV
T with the gravitational anomaly in d = 2.17

In d = 3 one can construct two parity odd tensor structures which automatically satisfy
the condition (2.24). They read as

Tabcd
1 (x1, x2) ≡ εadeδbcx

e

r
+ εaceδbd

xe

r
+ εbdeδac

xe

r
+ εbceδad

xe

r
,

Tabcd
2 (x1, x2) ≡ εadex

bxcxe

r3 + εace
xbxdxe

r3 + εbde
xaxcxe

r3 + εbce
xaxdxe

r3 .

(2.39)

Conservation implies
g′1(r) + g′2(r) = 1

r
× (7g1(r) + 4g2(r)), (2.40)

where due to the asymptotic conditions (2.26) and (2.27) one has

lim
r→0

g1(r) = lim
r→0

g2(r) = lim
r→∞

g1(r) = lim
r→∞

g2(r) = 0. (2.41)

We emphasize that even though no parity odd terms in the two-point function of the stress-
tensors are allowed at the fixed points, they can be present along the flow. The parity odd
terms in d = 3 do not contain any information about the UV or IR CFTs and thus will not
be studied further in this paper.

In d ≥ 4 no parity tensor structures can be constructed.

Trace of the stress-tensor. It is useful to make several statements about the trace of
the stress-tensor. From (2.23) and the explicit expressions of tensor structures (2.28), (2.36)
and (2.39) it follows that in any number of dimension one has

〈0|Θ(x1)Θ(x2)|0〉E = 1
r2d ×

(
h1(r) + 2d h2(r) + 4h3(r) + d2 h4(r) + 2d h5(r)

)
. (2.42)

Using the asymptotic conditions (2.30) we get then

lim
r→0

r2d × 〈0|Θ(x)Θ(0)|0〉E = 0, (2.43)

lim
r→∞

r2d × 〈0|Θ(x)Θ(0)|0〉E = 0. (2.44)

We define a particular quantum field theory as a deformation of some UV CFT. In
practice it means that we pick a scalar operator O with the conformal dimension ∆O which
has the following UV CFT two-point function

〈0|O(x)O(0)|0〉E, UV CFT = 1
r2∆O

(2.45)

and introduce a dimensionful parameter with the mass dimension [g] = d − ∆O which
breaks explicitly the scaling invariance and triggers the renormalization group flow. In this
process the trace of the stress-tensor is fixed by the deforming operator O, namely

Θ(x) = gO(x). (2.46)
17See for example [53] for the discussion on gravitational anomalies.
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Notice that [Θ] = d. By plugging (2.46) and (2.45) into (2.43) we obtain the following
consistency condition

∆O < d. (2.47)

This is nothing but the requirement that the deforming operator O must be relevant.
Analogously, at low energies we can write the trace of the stress-tensor in terms of the

local scalar operator deforming the IR conformal field theory. Let us denote this operator
by O′.18 Applying the above logic we conclude that (2.44) is satisfied only if

∆′O > d. (2.48)

In other words O′ must be irrelevant.

3 Lorentzian two-point functions

In this section we discuss two-point functions in the Lorentzian signature. Contrary to
the Euclidean signature where only the time-ordered two-point functions exist, in the
Lorentzian signature we can define Wightman, time-ordered, advanced and retarded two-
point functions. In what follows we will discuss the first two. The Wightman two-point
functions suit best for defining spectral densities. They are automatically well defined at
coincident points and do not have any contact terms. Time-ordered Lorentzian two-point
functions will be employed in section 5 due to the following property: they simply become
the Euclidean two-point functions under the Wick rotation. It will be sufficient to work
with time-ordered correlators at non coincident points. This allows to avoid complications
due to presence of contact terms.

The discussion presented in this section is completely generic for d ≥ 4. In d = 2 and
d = 3 two-point functions are allowed to have a parity odd contribution. Bellow we will
completely ignore this possibility.

3.1 Wightman two-point functions

The scalar Wigthman two-point function in position space is defined as the ordered vacuum
expectation value of two real scalar operators O(x) as

〈0|O1(x)O2(y)|0〉W ≡ lim
ε→0+

〈0|O1(x̂)O2(y)|0〉, (3.1)

where we have defined
x̂µ ≡ {x0 − iε, ~x}, ε > 0. (3.2)

See appendix C for further details. The small imaginary part in the time component is
needed to regularize various integrals of the Wightman correlation function. The ε pre-
scription in (3.1) should be understood as follows: perform all the necessary manipulation
with the finite but small ε and then take the limit. The notation 0+ indicates that we
approach zero from the positive values.

18The operators O and O′ belong to different bases. One basis is more natural for working at hight
energies and the other one is more natural for working at low energies.
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We define the spectral density ρO of the local operator O(x) as the Fourier transform
of its Wightman two-point function as19

(2π)θ(p0)ρO(−p2) ≡
∫
ddx e−ip·x〈0|O(x)O(0)|0〉W ,

〈0|O(x1)O(x2)|0〉W = lim
ε→0+

∫
ddp

(2π)d e
ip·x̂12(2π)θ(p0)ρO(−p2).

(3.3)

The appearance of the Heaviside step function θ(p0) enforces the fact that we work with
non-negative energies p0 ≥ 0 only. For convenience we also define the s Mandelstam
variable

s ≡ −p2 ≥ 0. (3.4)

The reason why s ≥ 0 will be explained shortly. It is standard to rewrite the second entry
in (3.3) by adding a δ-function and integrating over it as

〈0|O(x)O(0)|0〉W =
∫ ∞

0
dsρO(s)∆W (x; s),

∆W (x; s) ≡ lim
ε→0+

∫
ddk

(2π)d e
ik·x̂ (2π)θ(k0)δ(s+ k2).

(3.5)

We refer to the object ∆W (x; s) as the scalar Wightman propagator. Its explicit form can
be found in (E.10).

In unitary poincare invariant QFTs the states transform in the unitary infinite-
dimensional representation constructed by Wigner. They are labeled by −p2 and by the
irreducible representation of the Little group to be defined shortly. There are three distinct
possibilities, namely

−p2 < 0, −p2 = 0, −p2 > 0.

In QFTs one deals only with the last two options. The reason for that is the necessity to
have a unique vacuum state which is defined to be the lowest energy state in the theory.
States with −p2 < 0 would obviously allow for arbitrary small negative energies. In the
case −p2 > 0 using Lorentz transformations one can obtain any d-momentum pµ from a
standard frame which is conventionally chosen to be

p̄µ ≡ {M,~0}, (3.6)

whereM > 0 is some real constant. The group of transformations leaving invariant (3.6) is
called the Little group. Clearly in this case it is SO(d− 1). The most universal irreducible
representation of the Little group which exists in any dimension is the traceless symmetric
representation

. . . (3.7)
19By definition (3.1) the first entry in (3.3) is equivalent to

lim
ε→0+

∫
ddx eip

0x0−i~p·~x〈0|O(x0 − iε, ~x)O(0)|0〉 = lim
ε→0+

∫
ddx eip

0(x0+iε)−i~p·~x〈0|O(x0, ~x)O(0)|0〉.

Here we have simply performed the change of variables. Notice that ε enters the right-hand side of the
above equations as e−ε. It plays the role of a dumping factor.
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We refer to (3.7) with ` boxes simply as the spin ` (Little group) representation. For
further details in the d = 4 case see appendix A in [15]. In any particular QFT model
we can choose a basis of states which we denote schematically by |b〉. As discussed above
these states transform in the unitary representation of the Poincaré group. One chooses
the basis to diagonalize the generators of translations Pµ, namely Pµ|b〉 = pµb |b〉. The
following completeness relation holds

I =
∑
b

|b〉〈b|, (3.8)

where the summation over b is a schematic notation which stands for summing Poincare
and all the additional labels characterizing the state.

In the case −p2 = 0 the standard frame is usually chosen to be p̄µ ≡ {M, 0, . . . , 0,M}
leading to a different Little group which is ISO(d− 2). It is usually assumed that “trans-
lation” generators of this group are realized trivially and the Little group in this case
effectively becomes SO(d−2). This changes the set of labels b needed to describe the state
compared to the −p2 > 0 case. In (3.8) and below we keep b at a schematic level, thus
our discussion applies for both −p2 = 0 and −p2 > 0 cases. In future sections however
when we need the explicit structure of the Little group we will restrict our attention to the
−p2 > 0 case only.

Let us inject (3.8) into (3.1) we get

〈0|O(x)O(0)|0〉W = lim
ε→0+

∑
b

〈0|O(x̂)|b〉〈b|O(0)|0〉

= lim
ε→0+

∑
b

eipb·x̂ 〈0|O(0)|b〉〈b|O(0)|0〉 (3.9)

= lim
ε→0+

∫
ddp

(2π)d e
ip·x̂∑

b

(2π)dδ(d)(p− pb) |〈b|O(0)|0〉|2 .

In the second equality we have used the translation invariance

O(x) = e−iP ·xO(0)e+iP ·x. (3.10)

Comparing (3.3) with (3.9) we get the desired expansion of the spectral density

(2π)θ(p0)ρO(−p2) =
∑
b

(2π)dδ(d)(p− pb) |〈b|O(0)|0〉|2 . (3.11)

Since for each basis state we have p0
b ≥ 0 and −p2

b ≥ 0 we conclude from the expres-
sion (3.11) that p0 ≥ 0 and −p2 ≥ 0 in accordance with (3.4).

The basis states |b〉 at this point are rather abstract. There is a large class of quantum
field theories however for which the basis |b〉 can be defined in a straightforward constructive
way as a tensor product of n free particle states dressed with the Møller operators, see
section 2.1 in [16] for further details. Such basis states are called asymptotic and are
denoted here by |n〉in or |n〉out.20 In other words

|b〉 = |n〉in or |b〉 = |n〉out. (3.12)
20Asymptotic states can usually be defined in the QFTs with a mass gap. In very special situations one

can also define asymptotic states for massless particles such as pions or photons in d = 4.
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Analogously to (3.11) for massive theories we get

(2π)θ(p0)ρO(−p2) =
∑∫
n

(2π)dδ(d)(p− pn) |out〈n|O(0)|0〉|2 , (3.13)

where pµn is the d-momenta of the |n〉in asymptotic state and ∑∫
n stands for summation

over all possible number of particles and integrating over their relative motion. The matrix
element out〈n|O(0)|0〉 is called the form factor. See section 2.4 in [16] for a discussion of
from factors and their properties.

We will now define the spectral density of conserved (Abelian) currents and the
stress-tensor.

Conserved currents. The two-point Wightman function of two spin one Lorentz cur-
rents Jµ(x) is defined as

〈0|Jµ(x)Jν(y)|0〉W ≡ lim
ε→0+

〈0|Jµ(x̂)Jν(y)|0〉. (3.14)

As in the scalar case the spectral density ρµνJ (which has two Lorentz indices now) is defined
as the Fourier transform of the Wightman two-point function (3.14) as

(2π)θ(p0)ρµνJ (p) ≡
∫
ddx e−ip·x〈0|Jµ(x)Jν(0)|0〉W ,

〈0|Jµ(x1)Jν(x2)|0〉W = lim
ε→0+

∫
ddp

(2π)d e
ip·x̂12(2π)θ(p0)ρµνJ (p).

(3.15)

In QFTs where the asymptotic states can be defined, the decomposition of the spectral
density into the form factors out〈n|Jµ(0)|0〉 reads as

(2π)θ(p0)ρµνJ (p) =
∑∫
n

(2π)dδ(d)(p− pn)out〈n|Jµ(0)|0〉∗ out〈n|Jν(0)|0〉. (3.16)

Because of the Lorentz invariance the spectral density ρµν can be written in the fol-
lowing most general form

ρµνJ (p) = p2
(
ρ0
J(−p2) Πµν

0 (p)− ρ1
J(−p2) Πµν

1 (p)
)
, (3.17)

where ρ0
J and ρ1

J are the (spin 0 and spin 1)21 components of the spectral density ρµν and
the tensor structures are defined as

Πµν
0 (p) ≡ pµpν

p2 , Πµν
1 (p) ≡ ηµν − pµpν

p2 . (3.18)

The overall factor p2 and the minus sign in the second term in (3.17) were introduced for
the later convenience.

The objects (3.18) have a more profound meaning than being simply the tensor struc-
tures. Let us zoom on this. We are in the situation when −p2 > 0. Consider the Lorentz
spin one operator Jµ(p) in momentum space. It transforms in the irreducible represen-
tation of the Lorentz group, however the states it creates from the vacuum transform in

21These names will be explained shortly.
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irreducible representations of the Little group SO(d−1). It is thus important to know how
to decompose (or project in other words) irreducible representations of the Lorentz group
SO(1, d − 1) into irreducible representations of the Little group SO(d − 1). For Lorentz
spin one representation one has

�SO(1,d−1) = •SO(d−1) ⊕�SO(d−1). (3.19)

It is easy to perform such a decomposition explicitly in the frame (3.6). One has

Jµ(p̄) = Jµ0 (p̄) + Jµ1 (p̄), (3.20)

where we have defined

Jµ0 (p̄) ≡ {J0(p̄), ~0}, Jµ1 (p̄) ≡ {0, ~J(p̄)}. (3.21)

In a generic frame this decomposition is achieved by

Jµ0 (p) = Πµν
0 (p)Jν(p), Jµ1 (p) = Πµν

1 (p)Jν(p). (3.22)

The equivalence of (3.20) and (3.22) is trivial to see in the frame (3.6). Thus, the ob-
jects in (3.18) are the Little group spin 0 and 1 projectors. From their definitions it is
straightforward to check that they satisfy the standard properties of projectors, namely

Πµν
0 (p) + Πµν

1 (p) = ηµν , ηνρΠµν
i (p)Πρσ

j (p) = δijΠµσ
i (p). (3.23)

From (3.16) it is clear that ρµνJ (p) is a d × d hermitian semi-positive definite matrix
for any value of pµ satisfying −p2 > 0. We then can evaluate this matrix in the standard
frame (3.6). The semi-positivity then translates into non-negativity of the spectral density
components

ρ0
J(−p̄2) ≥ 0, ρ1

J(−p̄2) ≥ 0. (3.24)

Since the components of the spectral densities are scalar quantities, they remain invariant
under any Lorentz transformation, thus the inequalities (3.24) hold true in any frame. It is
also useful to deduce the mass dimensions of the components of the spectral density. Since
the Heaviside step function is dimensionless from (3.15) we get

[Jµ(x)] = d− 1 ⇒ [ρµνJ ] = d− 2 ⇒ [ρ0
J ] = [ρ1

J ] = d− 4. (3.25)

Analogously to the scalar case using the definition of the components of the current
spectral density we can bring the second entry in (3.15) to a very convenient form

〈0|Jµ(x)Jν(0)|0〉W =
∫ ∞

0
ds
(
− ρ0

J(s)∆µν
W, 0(x; s) + ρ1

J(s)∆µν
W, 1(x; s)

)
,

∆µν
W, i(x; s) ≡ lim

ε→0+
s

∫
ddp

(2π)d e
ip·x̂ (2π)θ(p0)δ(p2 + s)Πµν

i (p),
(3.26)

where ∆µν
i are the Lorentz spin one Wightman propagators. By using the explicit expres-

sions for the projectors (3.18) and the integration by parts procedure, these two propagators
can be written in terms of the Wightman scalar propagator (3.5) as

∆µν
W, 0(x; s) = ∂µ∂ν ∆W (x; s), ∆µν

W, 1(x; s) = (s ηµν − ∂µ∂ν) ∆W (x; s). (3.27)
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The scalar Wightman propagator ∆W in the limit s → 0 (for space-like separated
points x2 > 0) is given in (E.25) . It remains finite and depends only on x2. Consequently
the Wightman propagators in (3.27) remain finite in the limit s → 0. This is the reason
for introducing the overall factor p2 in (3.17).

Finally, conservation of the current implies

∂µJ
µ(x) = 0 ⇒ pµρ

µν
J (p) = 0, pνρ

µν
J (p) = 0. (3.28)

Using (3.17) and (3.18) these conditions in turn imply

p2ρ0
J(−p2) = 0 ⇒ ρ0

J(−p2) = A× δ(−p2), [A] = d− 2, (3.29)

where A is some dimensionful constant whose mass dimension follows from (3.25).

Stress-tensor. Let us consider an operator transforming in the two-index symmetric
reducible representation Tµν(x) and consider its Wightman two-point function

〈0|Tµν(x)T ρσ(y)|0〉W ≡ lim
ε→0+

〈0|Tµν(x̂)T ρσ(y)|0〉. (3.30)

The spectral density ρµν; ρσ
T of the operators Tµν(x) is the Fourier transform of (3.30),

namely
(2π)θ(p0)ρµν;ρσ

T (p) ≡
∫
ddx e−ip·x〈0|Tµν(x)T ρσ(0)|0〉W ,

〈0|Tµν(x1)T ρσ(x2)|0〉W = lim
ε→0+

∫
ddp

(2π)d e
ip·x̂12(2π)θ(p0)ρµν; ρσ

T (p).
(3.31)

In QFTs which can be described in terms of asymptotic states the spectral density can be
written as a sum of the form factors out〈n|Tµν(0)|0〉 as

(2π)θ(p0)ρµν; ρσ
T (p) ≡

∑∫
n

(2π)dδ(d)(p− pn)out〈n|Tµν(0)|0〉∗ out〈n|T ρσ(0)|0〉. (3.32)

The operator Tµν is in the reducible representation, one can decompose it into two
irreducible representations as

•SO(1,d−1) + SO(1,d−1). (3.33)

The operators transforming in theses two irreducible representations are

Θ(x) ≡ ηµνTµν(x), T̂µν ≡ Tµν(x)− 1
d
ηµνΘ(x). (3.34)

They are the trace and the traceless-symmetric part of Tµν . Now instead
of (3.30) one should consider the following three (generically independent) Wightman
two-point functions

〈0|Θ(x)Θ(0)|0〉W , 〈0|Θ(x)T̂ ρσ(0)|0〉W , 〈0|T̂µν(x)T̂ ρσ(0)|0〉W . (3.35)

In the case when Tµν is the stress-tensor, the conservation condition

∂µT
µν(x) = 0 (3.36)
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however mixes all three correlators in (3.35). Using the splitting (3.35) one can define the
following spectral densities

(2π)θ(p0)ρΘ(−p2) ≡
∫
ddx e−ip·x〈0|Θ(x)Θ(0)|0〉W ,

(2π)θ(p0)ρµνΘT̂ (p) ≡
∫
ddx e−ip·x〈0|Θ(x)T̂µν(0)|0〉W ,

(2π)θ(p0)ρµν; ρσ
T̂

(p) ≡
∫
ddx e−ip·x〈0|T̂µν(x)T̂ ρσ(0)|0〉W .

(3.37)

Analogously to ρµνΘT̂ (p) one can define the spectral density ρµν
T̂Θ(p). One can show however

that the latter is identical to the former. Using these one can write

ρµν; ρσ
T (p) = ρµν; ρσ

T̂
(p) + 1

d

(
ηµνρρσΘT̂ (p) + ηρσρµνΘT̂ (p)

)
+ 1
d2 η

µνηρσρΘ(−p2). (3.38)

The decomposition of the Lorentz spin 2 operator into the irreducible representations
of the Little group SO(d− 1) reads as

SO(1,d−1) = •SO(d−1) + SO(d−1) + SO(d−1). (3.39)

The decomposition (3.39) can be done by using three projectors constructed out of (3.18).
They read

Πµν; ρσ
0 (p) ≡ d

d− 1 Π̃µν
0 (p)Π̃ρσ

0 (p),

Πµν; ρσ
1 (p) ≡ 1

2
(
Πµρ

0 (p)Πνσ
1 (p) + Πµσ

0 (p)Πνρ
1 (p) + Πµρ

1 (p)Πνσ
0 (p) + Πµσ

1 (p)Πνρ
0 (p)

)
,

Πµν; ρσ
2 (p) ≡ − 1

d− 1Πµν
1 (p)Πρσ

1 (p) + 1
2 Πµρ

1 (p)Πνσ
1 (p) + 1

2 Πµσ
1 (p)Πνρ

1 (p),

(3.40)

where we have defined
Π̃µν

0 (p) ≡ pµpν

p2 −
1
d
ηµν . (3.41)

The projectors (3.40) are required to be symmetric and traceless in both pairs of indices
(µν) and (ρσ). They also satisfy the following relations

2∑
i=0

Πµν; ρσ
i (p) = 1

2 (ηµρηνσ + ηνρηµσ)− 1
d
ηµνηρσ,

Πµν; ρσ
i (p)Πjρσ

αβ(p) = δij Πµν;αβ
i (p).

(3.42)

Using the projectors (3.40) we can write the decomposition (3.39) explicitly as

T̂µν(p) = T̂µν0 (p) + T̂µν1 (p) + T̂µν2 (p), (3.43)

where the Little group spin 0, 1 and 2 representations, analogously to (3.22), read as

T̂µν0 (p) ≡ Πµν
0 ρσ(p)T̂ ρσ(p),

T̂µν1 (p) ≡ Πµν
1 ρσ(p)T̂ ρσ(p),

T̂µν2 (p) ≡ Πµν
2 ρσ(p)T̂ ρσ(p).

(3.44)
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Using the Lorentz invariance one can write the decomposition of the spectral densities
into components as

ρµνΘT̂ (p) = ρΘT̂ (−p2)× p2Π̃µν
0 (p), (3.45)

together with

ρµν; ρσ
T̂

(p) = p4 ×
(
ρ0
T̂

(−p2)Πµν; ρσ
0 (p)− ρ1

T̂
(−p2)Πµν; ρσ

1 (p) + ρ2
T̂

(−p2)Πµν; ρσ
2 (p)

)
. (3.46)

It is also useful to deduce the mass dimensions of the components of the spectral density.
It simply reads [ρµνT ] = d.

Conservation condition (3.36) implies

pµρ
µν; ρσ
T (p) = 0, pρρ

µν; ρσ
T (p) = 0. (3.47)

Using (3.38), (3.46) and (3.45) we obtain the following constraints

ρΘ(s) = d(d− 1) s2ρ0
T̂

(s), ρΘT̂ (s) = d sρ0
T̂

(s), ρ1
T̂

(s) = 0. (3.48)

Apart from some singular points at p2 = 0, the condition (3.48) leaves us with two compo-
nents of the stress-tensor spectral density, namely ρΘ and ρ2

T̂
and we can compactly write

ρµν; ρσ
T (p) = 1

(d− 1)2 ρΘ(s)Πµν
1 Πρσ

1 + s2ρ2
T̂

(s)Πµν; ρσ
2 (p). (3.49)

Since the spectral density (3.32) is a hermitian matrix we conclude that

ρΘ(−p2) ≥ 0, ρ2
T̂

(−p2) ≥ 0. (3.50)

Plugging (3.49) into (3.31), analogously to section 3.1, we obtain the spectral repre-
sentation for the conserved stress-tensor. It reads

〈0|Tµν(x)T ρσ(0)|0〉W = 1
(d− 1)2

∫ ∞
0

dsρΘ(s)∆µν;ρσ
W,Θ (x; s) +

∫ ∞
0

dsρ2
T̂

(s)∆µν;ρσ
W, 2 (x; s),

(3.51)
where we have defined

∆µν
W,Θ(x; s) ≡ lim

ε→0+
s2
∫

ddp

(2π)d e
ip·x̂ (2π)θ(p0)δ(p2 + s)Πµν

1 (p)Πρσ
1 (p),

∆µν; ρσ
W, 2 (x; s) ≡ lim

ε→0+
s2
∫

ddp

(2π)d e
ip·x̂ (2π)θ(p0)δ(p2 + s)Πµν; ρσ

2 (p).
(3.52)

Up to an overall constant the expression (3.51) matches precisely the equation (3.1) of [25].
To conclude let us express the Wightman propagators of the stress-tensor in terms

of the scalar Wightman propagator (3.5). Taking (3.52) and expressing the momenta as
derivatives one can write straightforwardly

∆µν; ρσ
W,Θ (x; s) = (s ηµν − ∂µ∂ν)(s ηρσ − ∂ρ∂σ)∆W (x; s),

∆µν; ρσ
W, i (x; s) = s2 Πµν; ρσ

i (pα → i∂α, p2 → −s)∆W (x; s).
(3.53)
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3.2 Time-ordered two-point functions

Time-ordered correlators are widely used because of several reasons. First they can be
straightforwardly computed in perturbation theory. Second, they appear in the LSZ re-
duction formula and third they can be easily mapped to Euclidean correlators using the
Wick rotation. In this section we will discuss two-point time-ordered correlaotrs.

Given two real scalar operators O1(x) and O2(x) the time-ordered two-point function
is defined as

〈0|O1(x1)O2(x2)|0〉T ≡ θ(x0
12)〈0|O1(x1)O2(x2)|0〉W + θ(x0

21)〈0|O2(x2)O1(x1)|0〉W . (3.54)

Plugging the expression for the Wightman two-point functions in terms of the spectral
density (3.5) we get

〈0|O(x)O(0)|0〉T = −i
∫ ∞

0
dsρO(s)∆F (x; s),

−i∆F (x; s) ≡ θ(x0)∆W (x; s) + θ(−x0)∆W (−x; s)

= lim
ε→0+

∫
ddp

(2π)d e
ip·x −i

p2 + s− iε
,

(3.55)

where ∆F is called the Feynman propagator.22 Its explicit expression can be found
in (E.11). The representation of the time-ordered two-point correlation function in terms
of the spectral density (3.55) is called the Källén-Lehmann representation. We also exclude
xµ = 0 point from the discussion to avoid talking about contact terms.

Using (3.55) one can also express the spectral density in terms of the real part of the
time-ordered two-point function. To show that we use the relation

lim
ε→0+

1
p2 + s− iε

= P
1

p2 + s
+ iπδ(p2 + s), (3.56)

inside the Feynman propagator, where P stands for the principal value. Performing the
inverse Fourier transformation we obtain

θ(p0)ρO(−p2) = 1
π

∫
ddxe−ip·xRe〈0|O(x)O(0)|0〉T . (3.57)

In what follows we derive the analogs of (3.55) for conserved currents and the
stress-tensor.

Conserved currents. Analogously to the scalar case the time-ordered two-point func-
tion of two Lorentz spin one operators is defined as

〈0|Jµ(x1)Jν(x2)|0〉T = θ(x0
12)〈0|Jµ(x1)Jν(x2)|0〉W + θ(x0

21)〈0|Jν(x2)Jµ(x1)|0〉W . (3.58)
22In order to rewrite the Feynman propagator defined in the second line of (3.55) in a conventional form

given by the last line of (3.55), one uses the integral representation of the step function

θ(t) = − 1
2πi

∫ +∞

−∞
ds

e−ist

s+ iε

and performs a change of variables. In most textbooks the equivalence of the second and third lines of (3.55)
is shown backwards by integrating the last line of (3.55) in p0 using the residue theorem.
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Plugging here the spectral representation of the current Wightman function (3.26) we get
the Källén-Lehmann representation for the currents. It reads

〈0|Jµ(x)Jν(0)|0〉T = −i
∫ ∞

0
ds
(
−ρ0

J(s)∆µν
F, 0(x; s) + ρ1

J(s)∆µν
F, 1(x; s)

)
, (3.59)

where the Feynman propagators are defined as

− i∆µν
F, i(x; s) = θ(x0)∆µν

W, i(x; s) + θ(−x0)∆νµ
W, i(−x; s). (3.60)

Using (3.27), the derivative of the step function

∂

∂t
θ(t) = δ(t) (3.61)

and the following property of the scalar Wightman propagator23

δ(x0)×
(
∆W (x; s)−∆W (−x; s)

)
= 0, (3.62)

one obtains the following simple expressions for the Feynman propagator

∆µν
F, 0(x; s) = ∂µ∂ν ∆F (x; s), ∆µν

F, 1(x; s) = (s ηµν − ∂µ∂ν) ∆F (x; s). (3.63)

Stress-tensor. The identical discussion holds for the time-ordered two-point correlation
function of the stress-tensors. In what follows we will only state its Källén-Lehmann
representation in terms of the components of the stress-tensor spectral density. It reads

〈0|Tµν(x)T ρσ(0)|0〉T =− i

(d− 1)2

∫ ∞
0

dsρΘ(s)∆µν; ρσ
F,Θ (x; s)

− i
∫ ∞

0
dsρ2

T̂
(s)∆µν; ρσ

F, 2 (x; s),
(3.64)

where the Feynman propagators read as

∆µν;ρσ
F,Θ (x; s) = (s ηµν − ∂µ∂ν)(s ηρσ − ∂ρ∂σ)∆F (x; s),

∆µν; ρσ
F, 2 (x; s) = s2Πµν; ρσ

2 (pα → i∂α, p2 → −s)∆F (x; s)
(3.65)

4 Spectral densities in Lorentzian CFTs

In the previous section we defined spectral densities as the Fourier transform of Wightman
two-point functions. In the presence of conformal symmetry the two-point functions are
purely kinematic objects. In other words their form is completely fixed by the conformal
symmetry. As a consequence we can straightforwardly compute the CFT spectral densities.

Let us start from the very well known case of a real scalar operator O with the scaling
dimension ∆O. In unitary theories there is a lower bound on this scaling dimension which

23The left-hand side of (3.62) can be potentially non-zero only for x0 = 0. In the latter case however the
scalar propagator (3.5) is symmetric under the exchange ~x↔ −~x.
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reads as ∆O ≥ d−2
2 . As in the previous section we will work in the Lorentzian metric here.

The Wightman two-point function of the operator O reads

〈0|O(x)O(0)|0〉W, CFT = lim
ε→0+

NO
(x̂2)∆O

, (4.1)

where NO is the normalization constant which can be set to one. Plugging (4.1) into the
definition (3.3) one gets

(2π)θ(q0)ρO(−q2) = lim
ε→0+

∫
ddx

e−iq·x̂

(x̂2)∆O
. (4.2)

Performing the integration and taking the limit we arrive at the following expression for
the spectral density24

2πρO(s) = NO κ(d,∆O)θ(s)s∆O−d/2, (4.3)

where the coefficient κ(d,∆) is defined as

κ(d,∆) ≡ πd/2+1

22∆−d−1Γ(∆)Γ(∆− d−2
2 )

. (4.4)

In what follows we will derive the spectral densities of a generic Lorentz spin one and
Lorentz spin two operators. Notice, that we will completely ignore the parity odd part
in d = 2.

Lorentz spin one operator. Consider a generic Lorentz spin one operator Jµ with the
scaling dimension ∆J ≥ d − 1. In the Euclidean signature the two-point function of such
operators was already given in (2.4). Analogously in the Lorentzian signature we have

〈0|Jµ(x̂)Jν(0)|0〉W, CFT = lim
ε→0+

CJ
(x̂2)∆J

×
(
ηµν − 2 x̂

µx̂ν

x̂2

)
. (4.5)

For a generic Lorentz spin one operator CJ is a normalization constant. When Jµ is a
conserved current instead, CJ becomes the central charge and the scaling dimension ∆J

saturates the unitarity bound ∆J = d− 1.
Plugging (4.5) into the first equation in (3.15) we get

(2π)θ(q0)ρµνJ (q) =
∫
ddx e−iq·x

CJ
(x̂2)∆J

×
(
ηµν − 2 x̂

µx̂ν

x̂2

)
= CJ ×

(
ηµν

∫
ddx

e−iq·x̂

(x̂2)∆J
+ 2∂µq ∂νq

∫
ddx

e−iq·x̂

(x̂2)∆J+1

)
. (4.6)

24This result can be found for example in equations (2.22) in [42], see also [39]. Notice that for some
special values of ∆O the integration procedure leads to additional terms in (4.3). These terms are not
present however for all the cases relevant to this section due to unitarity bounds on scaling dimensions.
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The integrals in this expression have already been evaluated in (4.2) and we are only left
with taking derivatives. Using the properties25

f(x)δ′(x) = −δ(x) d
dx
f(x),

xδ(x) = 0,

qµδ(q0)θ(−q2) = qµδ(q0)θ(−~q 2) = 0,

(4.7)

and (4.2) together with (4.3) one can show that

∂µq ∂
ν
q

∫
ddx

e−iq·x

(x2)∆J+1 = − 2a
(
ηµν + 2(a− 1)q

µqν

q2

)
θ(q0)θ(−q2)(−q2)a−1

+ 4aqµqνθ(q0)δ(−q2)(−q2)a−1,

(4.8)

where we have defined the parameter

a ≡ ∆J − d/2 + 1 ≥ d/2. (4.9)

Notice that the last term in (4.8) vanishes unless a = 1. This is possible only in a very
special case of conserved currents (with ∆J = 1) in d = 2 dimensions. Plugging (4.2), (4.3)
and (4.8) into (4.6) and bringing the result into the form (3.17) we can read off the expres-
sions of the components of the Lorentz spin one spectral density

2πρ0
J(s) =CJ ×

∆J − d+ 1
∆J

× κ(d,∆J)θ(s)s∆J−d/2−1

+ CJ ×
2

∆J
× κ(d,∆J)δ(s)s∆J−d/2,

2πρ1
J(s) =CJ ×

∆J − 1
∆J

× κ(d,∆J)θ(s)s∆J−d/2−1.

(4.10)

Let us now focus on the case when Jµ is a conserved current. The expressions (4.10)
then simplify and read

2πρ0
J(s) = 4π2 δd,2CJ × δ(s), (4.11)

2πρ1
J(s) = d− 2

d− 1 κ(d, d− 1)CJ × θ(s)sd/2−2. (4.12)

In d = 2 the spin 1 component vanishes and the spin 0 component is proportional to δ(s).
This is in agreement with (3.29). By comparing (4.11) and (3.29) we can even determine
the coefficient A introduced in (3.29), it reads A = 2π CJ . In d ≥ 3 the spin 1 component
instead is always non-zero whereas the spin 0 component always vanishes. This is again in
agreement with (3.29) since the coefficient A introduced there is a dimensionful quantity
and thus must vanish in CFTs, A = 0.

25To see that the last entry in (4.7) indeed vanishes, notice that because of the δ-function it can be
non-zero only if µ 6= 0 and q0 = 0. This leads however to the step function of a negative argument which
vanishes unless all qi = 0, with i = 1, 2, . . . , d. The latter case also gives zero because of the qµ factor.
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Lorentz spin two operator. Using the identical logic we can derive the components
of spectral densities for the Lorentz spin two operator T̂µν . We keep the hat in order to
indicate explicitly that the operator is trace-less. Skipping all the details we provide only
the final answer which reads

2πρ0
T̂

(s) = CT ×
(∆T − d)(∆T − d+ 1)

∆T (∆T + 1) × κ(d,∆T )θ(s)s∆T−d/2−2

2πρ1
T̂

(s) = CT ×
(∆T − d)(∆T − 1)

∆T (∆T + 1) × κ(d,∆T )θ(s)s∆T−d/2−2 + π2

6 CT δ(s)δd,2δ∆T̂ ,2,

2πρ2
T̂

(s) = CT ×
∆T − 1
∆T + 1 × κ(d,∆T )θ(s)s∆T−d/2−2, (4.13)

where the stress-tensor central charge CT is defined in (2.25).26

5 Spectral densities and central charges

As explained in section 3, in the case of a conserved current Jµ(x) there is a single (Little
group spin one) component of the spectral density denoted by ρ1

J(s). Analogously, in the
case of the stress-tensor Tµν(x) there are two components of the spectral density, namely
the trace part ρΘ(s) and the Little group spin two part ρ2

T̂
(s).27

In what follows we will explain how the information about the UV and IR central
charges (for their precise definition see either section 4 or section 2) are encoded in the
components of spectral densities. We will see that d = 2 and d ≥ 3 are drastically different.
We will consider only the continuous part of the spectral densities excluding the s = 0 point
from the discussion.28

Conserved currents. Taking into account (4.11), the requirement that the quantum
field theory under consideration has the UV and IR fixed points described by the UV and
IR conformal field theories respectively at the level of spectral densities is imposed by the
conditions29

lim
s→0

s2−d/2 ×
(
ρ1
J(s)− ρ1

J(s)
∣∣
IR CFT

)
= 0,

lim
s→∞

s2−d/2 ×
(
ρ1
J(s)− ρ1

J(s)
∣∣
UV CFT

)
= 0.

(5.1)

These are completely equivalent to the position space conditions (2.7) and (2.8). Due
to (4.11) the above requirement can also be written as

lim
s→0

s2−d/2 × ρ1
J(s) = CIR

J × (2π)−1d− 2
d− 1 κ(d, d− 1),

lim
s→∞

s2−d/2 × ρ1
J(s) = CUV

J × (2π)−1d− 2
d− 1 κ(d, d− 1),

(5.2)

26The expression (2.25) is given in the Euclidean signature. Its parity even part in the Lorentzian
signature is obtained straightforwardly by simply replacing the Kronecker delta with the Lorentzian metric.

27Spectral densities give an alternative description of the two-point functions to the position space func-
tions hi(r) introduced in section 2, see (2.1) and (2.23). For instance in the case of conserved currents we
have two functions h1(r) and h2(r) related by a single differential equation. In the case of the stress-tensor
we have five functions hi(r) with three differential constraints.

28We are allowed however to be infinitesimally close to s = 0.
29We remind that s plays the role of energy squared. At very small and very large energies we expect to

restore conformal invariance since we approach the IR and UV fixed points.
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where CIR
J and CUV

J are the usual IR an UV conserved current central charges and the
numerical coefficient κ is given by (4.4). We see that in d ≥ 3 the central charges govern
the asymptotics of ρ1

J(s). In d = 2 instead the right-hand side of (5.2) simply vanishes and
surprisingly the dependence on the UV and IR central charges disappears.

In order to understand what is happening in d = 2 dimensions let us re-derive (5.2) in
a different way. Consider the integral expression for the difference of UV and IR central
charges (2.12) valid in d ≥ 2. It contains the Euclidean two-point function of conserved
currents. We then write its spectral (Källén-Lehmann) decomposition in terms of ρ1

J(s).
This is done by applying the Wick rotation to the Lorentzian spectral decomposition (3.59).
We discuss all the technical details in appendix F and state here only the final answer: in
d ≥ 3 the sum-rule (2.12) reduces to the asymptotic conditions (5.2), instead in d = 2 one
gets the following integral expression

CUV
J − CIR

J = 1
2π lim

smin→0

∫ ∞
smin

ds

s
ρ1
J(s). (5.3)

This result is not well known in the literature, nevertheless it was obtained long before this
paper, see [26].

In d = 2 another central charge C ′J also exists, see (2.4), which is actually the global
anomaly and according to the discussion of section 2.1 remains invariant along the RG
flow. In other words

C ′UVJ = C ′ IRJ . (5.4)

For more details see section 2.1. In order to write (5.3) in a canonical form we define
the holomorphic and the anti-holomorphic parts of the conserved currents. The associated
central charges are denoted by k and k̄ respectively and are related to CJ and C ′J in the
following way

k ≡ (2π)2 × CJ + C ′J
2 , k̄ ≡ (2π)2 × CJ − C ′J

2 . (5.5)

For details see the end of appendix A. In terms of k and k̄ the sum-rule (5.3) due to the
condition (5.4) reads as

kUV − kIR = k̄UV − k̄IR = π lim
smin→0

∫ ∞
smin

ds

s
ρ1
J(s). (5.6)

In section (3.1) we proved that ρ1
J(s) ≥ 0 for all the energies. As a result from (5.3)

we conclude that
CUV
J − CIR

J ≥ 0. (5.7)

Alternatively from (5.6) we conclude that

kUV − kIR ≥ 0, k̄UV − k̄IR ≥ 0. (5.8)

The inequalities (5.7) and (5.8) are referred to as the “c-theorem” for conserved currents
or the “k-theorem”. Notice that the equal sign can appear only if the theory is conformal
where ρ1

J(s) = 0 for all the energies according to (4.12). In d ≥ 3 the situation is very
different. Due to unitarity CUV

J ≥ 0 and CIR
J ≥ 0. However from (5.2) one cannot deduce

further relations between them, in other words both options CUV
J ≥ CIR

J and CUV
J < CIR

J

are perfectly viable.
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Stress-tensor. The identical discussion holds for the stress-tenors. The requirement
that the UV and IR fixed points are governed by the UV and IR conformal field theories
translates into the conditions on the components of the stress-tensor spectral density.

We start with the spectral density of the trace of the stress-tensor ρΘ(s). In a conformal
theory we strictly have Θ(x) = 0. In a quantum field theory instead the trace operator is
given by the relevant scalar operator O deforming the UV CFT, namely

Θ(x) = gO(x). (5.9)

The operator O has the scaling dimension ∆O < d and the coupling constant g has the
mass dimension [g] = d−∆O. As a result ρΘ(s) = g2ρO(s). Using (4.3) we conclude that

lim
s→∞

sd/2−∆O ×
(
ρΘ(s)− g2ρO(s)

∣∣
UV CFT

)
= 0 (5.10)

or equivalently
lim
s→∞

sd/2−∆O × ρΘ(s) = g2(2π)−1NO κ(d,∆O). (5.11)

The coefficient κ is given by (4.4) and NO is the normalization constant of the operator
O, see (4.1). Analogous we can write

Θ(x) = g′O′(x), (5.12)

where O′ is an irrelevant operator describing the deformation of the IR conformal field
theory. We have then

lim
s→0

sd/2−∆′O × ρΘ(s) = g′ 2(2π)−1NO′ κ(d,∆O). (5.13)

The operators O and O′ are related by some change of basis. One basis is more convenient
for working at high energies, the other one is more convenient for working at low energies.
For some extra details on the trace of the stress-tensor see the last paragraph of section 2.2.

Let us address now the Little group spin two component of the spectral density ρ2
T̂

(s).
Its asymptotic behavior due to (4.13) reads as

lim
s→0

s2−d/2 ×
(
ρ2
T̂

(s)− ρ2
T̂

(s)
∣∣
IR CFT

)
= 0,

lim
s→∞

s2−d/2 ×
(
ρ2
T̂

(s)− ρ2
T̂

(s)
∣∣
UV CFT

)
= 0.

(5.14)

These are equivalent to

lim
s→0

s2−d/2 × ρ2
T̂

(s) = CIR
T × (2π)−1d− 1

d+ 1κ(d, d),

lim
s→∞

s2−d/2 × ρ2
T̂

(s) = CUV
T × (2π)−1d− 1

d+ 1κ(d, d).
(5.15)

As we can see, the asymptotic behavior of ρΘ(s) is governed by the properties of the
UV and IR “deforming” operators, instead the asymptotic behavior of ρ2

T̂
(s) is governed

by the central charges. We remind however that ρ2
T̂

(s) exists only in d ≥ 3. In d = 2
the central charge information is encoded instead into ρΘ(s) in a very non-trivial way. To
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understand how, we use (2.32) and plug there the Wick rotated spectral decomposition of
the two-point function of the stress-tensor (3.64). We recover (5.15) in d ≥ 3 and in d = 2
dimensions obtain instead

CUV
T − CIR

T = 6
π

lim
smin→0

∫ ∞
smin

ds

s2 ρΘ(s). (5.16)

For more details see appendix F. The sum-rule (5.16) was derived in [25].
In d = 2 there is also another central charge C ′T , see (2.25), which is actually the

gravitational anomaly and thus remains invariant along the RG flow, in other words

C ′UV
T = C ′ IRT . (5.17)

For more details see section 2.2. In order to write (5.16) in a canonical form we define
the holomorphic and the anti-holomorphic parts of the stress-tensor. The associated cen-
tral charges are denoted by c and c̄ respectively and are related to CT and C ′T in the
following way

c ≡ (2π)2 × CT + C ′T
2 , c̄ ≡ (2π)2 × CT − C ′T

2 . (5.18)

For details see the end of appendix A. Taking into account (5.17), the sum-rule (5.16) can
be written as

cUV − cIR = c̄UV − c̄IR = 12π lim
smin→0

∫ ∞
smin

ds

s2 ρΘ(s). (5.19)

In section (3.1) we proved that ρΘ(s) ≥ 0 for all the energies. As a result from (5.16)
we conclude that

CUV
T − CIR

T ≥ 0. (5.20)

Alternatively from (5.19) we conclude that

cUV − cIR ≥ 0, c̄UV − c̄IR ≥ 0. (5.21)

The inequalities (5.20) and (5.21) were found by A. Zamolodchikov [28], see also [47].
They are referred to as the “c-theorem”. Notice that the equal sign can appear only if the
theory is conformal where ρΘ(s) = 0 for all the energies according to (4.13). In d ≥ 3 the
situation is very different. Due to unitarity CUV

T ≥ 0 and CIR
T ≥ 0. However from (5.15)

one cannot deduce further relations between them, in other words both options CUV
T ≥ CIR

T

and CUV
T < CIR

T are perfectly viable.

6 Applications to bootstrap

In section 3 of [16] it was shown how to use unitarity to construct non-trivial constraints
on partial amplitudes, form factors and spectral densities. This was done in a presence of a
single scalar local operator. Here we extend the analysis of section 3 in [16] to include the
full stress-tensor. We will conclude this section by defining concrete bootstrap problems.

We will focus on quantum field theory with a mass gap (or equivalently on the QFTs
with an empty IR fixed point). The spectrum of such theories is described by one-particle
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asymptotic in and out states. We will work here with identical scalar particles for simplicity.
For precise definitions of asymptotic states see section 2.1 in [16]. One can build the two-
particle asymptotic in and out states by taking the symmetrized tensor product of two
one-particle states.30 We denote such two-particle states by

|m, ~p1;m, ~p2〉in, |m, ~p1;m, ~p2〉out. (6.1)

The four-momenta of the one-particle asymptotic states by definition obey

p2
1 = −m2, p2

2 = −m2. (6.2)

We also define

pµ ≡ pµ1 + pµ2 , (p1 + p2)2 = −s, (p1 − p2)2 = s− 4m2, (6.3)

where s is the squared total energy of the two-particle state.

6.1 Stress-tensor form factor

Let us start by recalling the definitions of the form-factor and its properties in the case
of the stress-tensor. (See also sections 2.4 and 2.6 of [16].) The trace of the stress-tensor
two-particle form factor is defined as31

FΘ(s) ≡ out〈m, ~p1;m, ~p2|Θ(0)|0〉. (6.4)

The two-particle form factor of the full stress-tensor is defined as

FµνT (p1, p2) ≡ out〈m, ~p1;m, ~p2|Tµν(0)|0〉. (6.5)

Analogously, one can define the stress-tensor form factors with the in asymptotic states.
They are however related in a simple way to the ones here due to the CPT invariance. One
can decompose it in the basis of tensor structures

pµ1p
ν
1 , pµ1p

ν
2 + pµ2p

ν
1 , pµ2p

ν
2 , (p1 + p2)2 ηµν , (6.6)

which are totally symmetric in µ and ν indices. The conservation of the stress-tensor leads
to the following condition

(p1 + p2)µFµνT (p1, p2) = 0. (6.7)

As a result, the most general form of the stress-tensor form factor in d ≥ 3 reads as

FµνT (p1, p2) =−F(0)(s)×
(
ηµν − (p1 + p2)µ(p1 + p2)ν

(p1 + p2)2

)
+ F(2)(s)×

(p1 − p2)µ(p1 − p2)ν

(p1 − p2)2 ,

(6.8)

30Symmetrization is required for identical particles in order to make the state invariant under the exchange
of two particles.

31Compared to [16], in all the formulas here we drop the subscript 2 for the form factors in order to
simplify the notation. Originally this subscript was introduced to stress that we deal with two-particle form
factors.
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where the functions F(0) and F(2) are the coefficients in the tensor structure decomposi-
tion.32 We notice also that the first tensor structure in (6.8) due to (6.3) is precisely the
Πµν

1 (p) projector defined in (3.18). In d = 2 the two tensor structures in (6.8) are equal
to each other, thus we should keep only one of them in the decomposition. The simplest
way to proceed is to leave the second tensor structure which means that we effectively set
F(0)(s) = 0 in d = 2. Contracting both sides of (6.8) with the metric ηµν and comparing
with (6.4) we conclude that

d = 2 : FΘ(s) = F(2)(s), (6.9)
d ≥ 3 : FΘ(s) = F(2)(s)− (d− 1)F(0)(s). (6.10)

Due to the fact that the stress-tensor enters the definition of the Poincaré generators, one
can derive the following normalization conditions

lim
s→0

s−1F(0)(s) = const, lim
s→0
F(2)(s) = −2m2, lim

s→0
FΘ(s) = −2m2, (6.11)

where const is some undetermined constant. For the detailed derivation see appendix G.
Consider now the Fourier transformed stress-tensor Tµν . Using (3.34), (3.43) and (3.44)

we can split the stress-tensor form factor into three pieces with the Little group spin 0, 1
and 2 as follows

FµνT (p1, p2) =
((

Πµν;ρσ
0 (p) + 1

d
ηµνηρσ

)
+ Πµν;ρσ

1 (p) + Πµν;ρσ
2 (p)

)
FµνT (p1, p2), (6.12)

where pµ was defined in (6.3). We notice immediately that the Little group spin 1 term
vanishes identically leaving us only with the first and the last terms. Let us now introduce
the center of mass (COM) frame for two-particle states

pcom
1 ≡ {

√
s/2,+~k}, pcom

2 ≡ {
√
s/2,−~k}, (6.13)

where due to the conditions (6.2) we have s = 4m2 + ~k 2. Plugging (6.8) into (6.12) and
going to the center of mass frame one gets

FµνT (pcom
1 , pcom

2 ) =
(
F(2)(s)
d− 1 −F(0)(s)

)
× δmn + F(2)(s)×

( 4 kmkn

s− 4m2 −
δmn

d− 1

)
, (6.14)

where the expression in the left-hand side of (6.14) vanishes if µ = 0 or ν = 0 and the
indices m and n are defined as µ = {0,m} and ν = {0, n}. The first term in (6.14)
corresponds to the Little group spin 0. Taking into account (6.10) we see that it is simply
driven by the trace of the stress-tensor form factor. The second term in (6.14) corresponds
to the Little group spin 2.

32Since we work in the Lorentizian signature the two tensor structures introduced in (6.8) have poles
when p1 = ±p2. The appearance of these poles is completely artificial. As a result they must be removed in
the full expression of the stress-tensor form factor by the presence of appropriate zeros in the components
of the stress-tensor form factor F(0)(s) and F(2)(s).
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Relation with the spectral density. The stress-tensor spectral density in terms of its
components ρΘ(s) and ρ2

T̂
(s) is given in (3.49). We reproduce it here again for convenience

ρµν; ρσ
T (p) = 1

(d− 1)2 ρΘ(s)Πµν
1 Πρσ

1 + s2ρ2
T̂

(s)Πµν; ρσ
2 (p). (6.15)

In what follows we compute the components of the spectral density in terms of the compo-
nents FΘ and F(2) of the form factor defined in (6.8) and (6.10). To do this we use (3.32).
Writing explicitly the contribution of two-particle states and denoting by . . . the contribu-
tion of multiparticle states, we can write

2πρµν; ρσ
T (p) = 1

2

∫
dd−1p1
(2π)d−1

1
2p0

1

∫
dd−1p2
(2π)d−1

1
2p0

2

× (2π)dδ(d)(p− p1 − p2)F∗µνT (p1, p2)FρσT (p1, p2) + . . . . (6.16)

The overall 1/2 factor here appears because we deal with identical particles. Going to the
center of mass frame (6.13) and switching to the spherical coordinates according to (A.17)
in [16] one gets

2πρµν; ρσ
T (p) = 1

2Nd

∫
dΩd−1

(2π)d−2F
∗µν
T (pcom

1 , pcom
2 )FρσT (pcom

1 , pcom
2 ) + . . . . (6.17)

Using the properties of the projectors we can write

ρΘ(s) = ηµνηρσρ
µν; ρσ
T (p),

ρ2
T̂

(s) = 2
(d− 2)(d+ 1)Π2µν; ρσρ

µν; ρσ
T (p).

(6.18)

We can now perform the integration in (6.17) and plug the result into (6.18). One then
obtains

2πρΘ(s) = ω2 |FΘ(s)|2 + . . . ,

2πs2ρ2
T̂

(s) = 2ω2

d2 − 1 |F(2)(s)|2 + . . . ,
(6.19)

where the coefficient ω reads as

ω2 = 1
Nd

Ωd−1
2(2π)d−2 . (6.20)

The spherical angle Ωn is defined in (E.7) and the coefficient Nd reads as

Nd ≡ 2d−1√s
(
s− 4m2

)(3−d)/2
. (6.21)

Projection to definite spin. Let us introduce now the two-particle in and out asymp-
totic states in the center of mass frame projected to a definite SO(d− 1) Little group total
spin j,

|ψ1〉j ≡ Πj |m,+~k;m,−~k 〉in, |ψ2〉j ≡ Πj |m,+~k;m,−~k 〉out. (6.22)
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The projector Πj was defined in equation (2.14) of [16], it reads

Πj ≡ γj ×
∫
dΩd−1C

(d−3)/2
j (cos θ1), (6.23)

where Ckj is the Gegenbauer polynomial, θ1 is the angle of the (d− 1)-dimensional vector
~k with respect to the xd−1 spatial axis. The coefficient γj is defined as

γj ≡ ω Γ
(
d− 3

2

)
×
(

2d−4

2πΩd−1Ωd−2

j! (d− 3 + 2j)
Γ(d− 3 + j)

)1/2

. (6.24)

We will also need to introduce the following state

|ψ3〉µν ≡ lim
ε→0

m−d/2
∫
ddxe+ip·xTµν(x̂∗)|0〉, (6.25)

where the coordinate x̂µ has a small imaginary part in the time direction according to (3.2).
The factor m−d/2 is introduced to match the dimensions of the states (6.22).

Let us study now the inner product of the states |ψ2〉 and |ψ3〉µν . One has

〈ψ2|ψ3〉µν = m−d/2 Πj

∫
ddxe+ip·x

out〈m,+~k;m,−~k|Tµν(x)|0〉 (6.26)

= m−d/2(2π)dδd(p− pcom
1 − pcom

2 )×ΠjFµνT (pcom
1 , pcom

2 ). (6.27)

In the second line we used (3.10) and the definition (6.5). Applying (6.23) to (6.14) we
obtain33

ΠjFµνT (pcom
1 , pcom

2 ) = 0, ∀j 6= 0, 2. (6.28)

The only non-zero result appears for j = 0 and j = 2. In the former case only the first term
in (6.14) gives a non-zero contribution. In the latter case only the second term in (6.14)
gives a non-zero contribution. More precisely

Π0FµνT (pcom
1 , pcom

2 ) = FΘ(s)× ω

d− 1 Πµν
1 (pcom),

Π2FµνT (pcom
1 , pcom

2 ) = F(2)(s)×
√

2ω2

(d− 2)(d+ 1) Πµν;11
2 (pcom),

(6.29)

6.2 Unitarity constraints

Having set up all the necessary ingredients, let us finally address unitarity. We start by
taking all possible inner products of the states (6.22). Skipping the detail, which were
explained in section 3 in [16], we arrive at the following matrix(

1 S∗j (s)
Sj(s) 1

)
� 0, ∀j = 0, 2, 4 . . . and ∀s ≥ 4m2 (6.30)

33In practice we performed the integration explicitly using Mathematica for several values of d and then
guessed the general result. For the definition of spherical coordinates see appendix A in [16].
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which must be semi-positive definite in unitary theories according to the discussion of
appendix B. Here Sj(s) is the partial amplitude related to the full scattering amplitude
S(s, t, u) (the amplitude containing the disconnected piece) as

Sj(s) = κj
γjΩd−2

ΠjS(s, t(s, cos θ1), u(s, cos θ1)), (6.31)

where the Mandelstam variables can be explicitly expressed in terms of the scattering angle
θ1 as follows

t = −s− 4m2

2 (1− cos θ1), u = −s− 4m2

2 (1 + cos θ1). (6.32)

The coefficient κj was computed in equation (2.41) in [16]. It reads

κj ≡
j!

(d− 3)Ωd−1NdΓ(d− 3 + j) . (6.33)

In order to proceed we also need to consider the inner product of the state (6.25) with
itself

µν〈ψ3|ψ3〉ρσ = m−d
∫
ddx

∫
ddye−ip

′·xe+ip·y〈0|Tµν(x)T ρσ(y)|0〉W

= (2π)dδd(p′ − p)× 2πρµν; ρσ
T (p).

(6.34)

Here we used (3.10), performed the change of variables and employed (3.31).
Let us now consider the following three states

|ψ1〉j=0, |ψ2〉j=0, ηµν |ψ3〉µν . (6.35)

Taking all possible inner products of these states we obtain a 3x3 hermitian matrix which
components were carefully derived in section 3 of [16]. Using the unitarity requirement, as
explained in appendix B, we obtain the following semi-positive definite constraint 1 S∗0 (s) ωm−d/2F∗Θ(s)

S0(s) 1 ωm−d/2FΘ(s)
ωm−d/2FΘ(s) ωm−d/2F∗Θ(s) 2πm−dρΘ(s)

 � 0. (6.36)

This condition should be satisfied for all the energies s ≥ 4m2. We can also consider the
following three states instead

|ψ1〉j=0, |ψ2〉j=0, XµνΠµν
2 ρσ|ψ3〉ρσ, (6.37)

where we have defined

Xµν ≡

√
d− 1
d− 2

(p1 − p2)µ(p1 − p2)ν

s− 4m2 . (6.38)

Taking all possible inner product of these states, removing the overall δ-function and us-
ing (6.29) we obtain the following semi-positive definite condition

1 S∗2 (s) f(θ1)ωm−d/2F∗(2)(s)
S2(s) 1 f(θ1)ωm−d/2F(2)(s)

f(θ1)ωm−d/2F(2)(s) f(θ1)ωm−d/2F∗(2)(s) 2πm−ds2 ρ2
T̂

(s)

 � 0, (6.39)
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where we have defined

f(θ1) ≡
√

2
d2 − 1 ×

(d− 1) cos(2θ1)− 1
d− 2 . (6.40)

The condition (6.39) should be satisfies for all the energies s ≥ 4m2 and angles θ1 ∈ [0, π].
Notice the appearance of the angle θ1 compared to the trace case. As we will see shortly, the
strongest bounds come from θ1 = 0 configuration. Thus, the semi-positive constraint (6.39)
simply reduces to the following form

1 S∗2 (s) εm−d/2F∗(2)(s)
S2(s) 1 εm−d/2F(2)(s)

εm−d/2F(2)(s) εm−d/2F∗(2)(s) 2πm−ds2 ρ2
T̂

(s)

 � 0, (6.41)

where we have defined

ε ≡ ω
√

2
d2 − 1 . (6.42)

The semi-definite positive conditions (6.36) and (6.41) are the main results of this
section.

Sylvester’s criterion. A semi-positive definite matrix M � 0 has only non-negative
eigenvalues. In order to address semi-positive constraints in practice we use the Sylvester’s
criterion: a matrix M is semi-positive definite if and only if all its principal minors (in-
cluding the determinant) are non-negative.

Let us now analyze the constraints (6.30), (6.36) and (6.39) using the Sylvester’s cri-
terion. First of all one recovers the standard unitary constraint on the partial amplitudes

|Sj(s)|2 ≤ 1, ∀j = 0, 2, 4, . . . (6.43)

Here and below all the inequalities are given in the physical domain of squared energies
s ≥ 4m2. Second we recover the non-negativity of the components of the stress-tensor
spectral densities

ρΘ(s) ≥ 0, ρ2
T̂

(s) ≥ 0 (6.44)

already derived in section 3.1. Third, we derive the inequalities

|FΘ(s)|2 ≤ 2πω−2ρΘ(s), |F(2)(s)|2 ≤ 2πω−2f−2(θ1)s2 ρ2
T̂

(s). (6.45)

We notice that the strongest constraint in (6.45) comes from θ1 = 0 (or equivalently θ1 = π)
configuration since the function f−2(θ1) has its minimum there. These bounds are in a
perfect agreement with (6.19).

Finally the determinants ot the matrices (6.36) and (6.39) lead to the following set of
constraints

2πω−2ρΘ(s)
(
1− |S0(s)|2

)
− 2|FΘ(s)|2 + F∗2Θ (s)S0(s) + F2

Θ(s)S∗0 (s) ≥ 0,

2πω−2f−2(θ1)s2 ρ2
T̂

(s)
(
1− |S2(s)|2

)
− 2|F(2)(s)|2 + F∗2(2)(s)S2(s) + F2

(2)(s)S
∗
2 (s) ≥ 0.

(6.46)
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We notice now that the first term in both equalities is non-negative. Thus, the strongest
bound happens at the minimum of the function f−2(θ1) which is at θ1 = 0, since it becomes
harder to compensate for the negative second term and for the potentially negative third
and fourth terms.

Elastic unitarity. In the special region of energies

s ∈ [4m2, 9m2], (6.47)

called the elastic regime, the inequality (6.43) become saturated,34 namely

|Sj(s)|2 = 1, ∀j = 0, 2, 4, . . . (6.48)

Using this fact we can rewrite the equations (6.46) as

F∗Θ(s)S0(s) = FΘ(s), F∗(2)(s)S2(s) = F(2)(s). (6.49)

These are known as the Watson’s equations. They allow to express the partial amplitudes
in terms of the components of the (two-particle) stress-tensor form factor in the “elastic”
range of energies (6.47).

Asymptotic behavior. Let us now study the inequalities (6.45) in the s → ∞ limit.
Using (5.11) and (5.15) together with (6.20) and (6.21) we obtain

lim
s→∞

|s
d−∆O

2 −1FΘ(s)|2 ≤ 2d(2π)d−2Ω−1
d−1 × g

2NOκ(d,∆O), (6.50)

lim
s→∞

|s−1F(2)(s)|2 ≤ 2d(2π)d−2Ω−1
d−1f

−2(0)× CUV
T

d− 1
d+ 1κ(d, d). (6.51)

We remind that the trace of the stress tensor at high energy is given by the relevant scalar
operator O (with the scaling dimension ∆O and the two-point normalization NO) which
deforms the UV CFT and g is the dimensionful coupling governing the deformation. The
numerical constant κ was defined in (4.4). In 2d the inequality (6.50) was first derived
in [24], see formulas (3.33) and (3.34).

It is interesting to notice that even if one constructs a scattering amplitude such that all
its partial amplitudes obey the unitarity condition (6.43) at all the energies, it is not clear
if one can read off any UV CFT data from it.35 The conditions (6.46) in the limit s→∞
together with (5.11), (5.15) and (6.50), (6.51) could in principle provide this connection.
Under closer investigation it does not seem however that one can draw from them any
generic statements.

6.3 Bootstrap problems

One can use the semi-positive definite constraints (6.30), (6.36) and (6.41) to define several
bootstrap problems.36 There are at least two distinct possibilities.

34In d = 2 this can also happen for s > 9m2 in the case of integrable models.
35Notice however that in d ≥ 3 using holography one can argue that the regime of hard scattering (high

energy and fixed angle) should be directly related to the UV CFT [54].
36Notice that these constraints are already written in the form which is straightforward to implement

into the semi-definite problem solver SDPB [55, 56].
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Let us start with the first one. The constraint (6.30) allows to bound various non-
perturbative S-matrix coupling constants using the numerical procedure of [2, 3], see also
section 1 of [15] for a concise summary. One can now re-run this procedure in the presence
of (6.36) and (6.39) where we inject some known numerical37 data about the stress-tensor
form factors and the spectral density. This provides a more restrictive setup and injects
model specific information in the numerical procedure.

The second possibility in d ≥ 3 is to apply the numerical procedure [2, 3]
to (6.30), (6.36) and (6.41), writing an ansatz for the components of the stress-tensor
form factor and the spectral density, in order to minimize the following quantities

ψm ≡
∫ ∞

4m2
ds s−mρΘ(s) or χn ≡

∫ ∞
4m2

ds s−nρ2
T̂

(s), (6.52)

where m and n are some real parameters. Their allowed range is constrained by the conver-
gence of the integral at large values of s due to the asymptotic behaviour (5.13) and (5.15)
of the components of the stress-tensor spectral density. For example one concludes that
n > d/2−1. The only disadvantage of this procedure is that the quantities in (6.52) do not
have any clear physical meaning. Notice that the non-trivial result of such a minimization
procedure is guaranteed by the presence of the form factor normalization conditions (6.11).

In d = 2 instead of (6.52) we can minimize the UV central charge cUV given by the
integral expression (5.19). This was already employed in [16]. In the presence of global
symmetries one can also minimize the conserved current central charge kUV given by the
integral expression (5.6). This for example can be employed to study further the O(N)
models in d = 2.
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A Correlation functions in Euclidean CFTs

The conformal group in d-dimensional Euclidean space is SO(1, d + 1). We will consider
local operators with spin `, namely the ones transforming in the traceless-symmetric rep-
resentation of the SO(d) subgroup.38 Such operators can be encoded in the following

37One could obtain some numerical data using Hamiltonian truncation methods, see for instance [57–59].
38In d = 3 all the bosonic representations are traceless-symmetric. In d ≥ 4 even bosonic representation

can be non-traceless symmetric.
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index-free objects
O(x, z) ≡ O(x)a1...a`z

a1 . . . za` , (A.1)

where za are real vectors called polarizations. One can invert (A.1) as

O(x)a1...a` = 1
`! (d/2− 1)`

Da1 . . . Da` O(x, z), (A.2)

where x` ≡ x(x + 1) . . . (x + ` − 1) is the Pochhammer symbol and Da is the Todorov
differential operator defined as

Da ≡ (d/2− 1 + z · ∂z) ∂az −
1
2 z

a ∂2
z . (A.3)

The Todorov operator is strictly defined for d ≥ 3. One can still use it in d = 2 by keeping
d generic and taking the limit d→ 2 in the very end of the computation.

The conformal group can be realized linearly in D ≡ d + 2 dimensional embed-
ding space. Using the formalism developed in [60] one can represent the traceless-
symmetric local operator (A.1) as a function of D-dimensional light-cone coordinates
XA ≡ {xa, X+, X−} and polarizations ZA ≡ {za, Z+, Z−}.39 The metric in the
light-cone coordinates is40

ηAB =

δ
ab 0 0
0 0 −2
0 −2 0

 , ηAB =

δab 0 0
0 0 −1

2
0 −1

2 0

 . (A.4)

The map between the embedding space and the original space is given by

O(x, z) = O
(
XA → {xa, 1, x2}, ZA → {za, 0, 2x · z}

)
. (A.5)

It is straightforward to construct n-point functions in the embedding formalism.
They read

〈0|O1(X1, Z1) . . .On(Xn, Zn)|0〉 =
∑
I

gI(u, v, . . .)TI(Xi, Zi), (A.6)

where gI are some undetermined functions of the conformally invariant variables u, v, . . .
also known as the cross-ratios and TI are the tensor structures. For n = 2 and n = 3 there
are no cross-ratios, thus the functions gI can only be constants. Tensor structures are built
as products of the following conformally invariant objects

Xij ≡ −2(Xi ·Xj),
Hij ≡ −2 ((Zi · Zj)(Xi ·Xj)− (Zi ·Xj)(Xi · Zj)) ,
Vk,ij ≡ X−1

ij ((Zk ·Xi)(Xk ·Xj)− (Zk ·Xj)(Xk ·Xi)) .
(A.7)

39In order to work with more general representations other embedding formalisms are required. For
general representations (bosonic and fermionic) in d = 3 see [61]. For general representations in d = 4
see [62–64]. For general bosonic operators in d ≥ 4 see [65].

40The Cartesian coordinates in D-dimensions read as X2 = XaXa − (Xd)2 + (Xd+1)2. The light-cone
coordinates are then defined as X+ ≡ Xd +Xd+1 and X− ≡ Xd −Xd+1.

– 36 –



J
H
E
P
0
2
(
2
0
2
2
)
1
8
6

These are parity even objects. One can also construct various parity odd conformally
invariant objects which contain a single D-dimensional Levi-Civita symbol. The number
and the structure of such objects depend on the number of dimensions. For instance in
d = 2 (D = 4) and for n = 2 one can write a single object

Fij ≡ −2 εABCDXA
i X

B
j Z

C
i Z

D
j , (A.8)

where the Levi-Civita symbol in D = 4 Lorentzian space with one time direction is ε0123 =
−ε0123 = +1. Here the indices A,B = 0, 1, . . . , d + 1 denote the Cartesian and not the
light-cone embedding coordinates as in the footnote 40. The powers of Xij are fixed by
the homogeneity requirement O(λX,Z) = λ−∆OO(X,Z), where ∆O is the usual scaling
dimension of the operator O.

Using the map (A.5) we can write the projection of the invariants to the original
d-dimensional space. One gets

Xij → x2
ij ,

Hij → x2
ij

(
zi · zj − 2(zi · xij)(zj · xij)

x2
ij

)
,

Vk,ij →
x2
kix

2
kj

x2
ij

×
(
zk · xki
x2
ki

− zk · xkj
x2
kj

)
.

(A.9)

Analogously for the parity odd invariant (A.8) we have

Fij → (x2
i − x2

j )(εab zai zbj)− 2 (xi · zi)(εab xaijzbj)− 2 (xj · zj)(εab xajizbi ), (A.10)

where the Levi-Civita symbol in Euclidean d = 2 space is ε01 = ε01 = +1.

Examples. As the first application consider the two-point functions of Abelian conserved
currents

〈0|J(X1, Z1)J(X2, Z2)|0〉 = CJH12 + i δd,2C
′
JF12

Xd
12

, (A.11)

where CJ and C ′J are some constants undetermined by the conformal symmetry. They
are called the current central charges. The imaginary unit i was introduced in the sec-
ond term for the later convenience. Using the projections (A.9), (A.10) and the Todorov
operator (A.3) we get the following indexful expression for the Euclidean two-point function

〈0|Ja(x1)Jb(x2)|0〉E = CJ
(x2

12)d−1 × I
ab(x1, x2) + i C ′J

(x2
12)d−1 × δd,2 E

ab(x1, x2), (A.12)

where we have introduced the auxiliary objects

Iab(xi, xj) ≡ δab − 2
xaijx

b
ij

x2
ij

, Eab(xi, xj) ≡ εab + 2
xaijε

bcxcij
x2
ij

. (A.13)

Notice that both of these objects are translation invariant as they should be. Moreover
they are also invariant under the transformation a↔ b and xi ↔ xj .41 It is straightforward
to check that the two-point functions (A.12) is automatically conserved.

41This is obvious for Iab. In order to show it for Eab one needs to use (2.6).
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As will be discussed in appendix B.1, Euclidean two-point functions in unitary theo-
ries must obey reflection positivity. For Lorentz spin one current this condition is given
in (B.10). Plugging (A.12) into (B.10) and using (B.13) we get(

CJ −i C ′J
i C ′J CJ

)
� 0. (A.14)

The semi-positive condition (A.14) can be satisfied only if the matrix in (A.14) is hermitian.
As a result both CJ and C ′J must be real. Furthermore using the Sylvester’s criterion, the
condition (A.14) leads to the following constraints

CJ ≥ 0, −CJ ≤ C ′J ≤ +CJ . (A.15)

As the second example let us consider the two-point function of the stress-tensor

〈0|T (X1, Z1)T (X2, Z2)|0〉 = CTH
2
12 + i δd,2C

′
TH12F12

Xd+1
12

, (A.16)

where as before CT andc C ′T are some constants undetermined by the conformal symmetry
coefficients referred to as the central charges. Again using the projections (A.9), (A.10)
and the Todorov operator (A.3) we get the following indexful expression for the Euclidean
two-point function

〈0|T ab(x1)T cd(x2)|0〉E

= CT

x2d
12
×
(1

2
(
Iac(x1, x2)Ibd(x1, x2) + Iad(x1, x2)Ibc(x1, x2)

)
− 1
d
δabδcd

)
+ i C ′T

x2d
12
× δd,2

4
(
Iac(x1, x2)Ebd(x1, x2) + Iad(x1, x2)Ebc(x1, x2)

+ Ibc(x1, x2)Ead(x1, x2) + Ibd(x1, x2)Eac(x1, x2)
)
. (A.17)

This expression is automatically conserved. As in the case of conserved currents reflection-
positivity imposes constraints on the central charges CT and C ′T . Plugging (A.17)
into (B.15) and using (B.13) we get that both must be real and obey the following in-
equalities

CT ≥ 0, −CT ≤ C ′T ≤ +CT . (A.18)

Notice the presence of parity odd terms in d = 2 both in (A.12) and (A.17). No such
terms can be constructed in d ≥ 3. In general it can be shown that two-point functions of
local primary operators transforming in the irreducible Lorentz representation have a single
tensor structure, see for example [66]. In d = 2 both Ja and T ab transform however in a
reducible representation of the Lorentz group.42 As we will shortly see they can be split into
irreducible representations which have a single tensor structure in their two-point functions.

42In d = 2 the Lorentz group is SO(2) with U(1) being its double cover. As a result the SO(2) representa-
tions can also be labeled by the U(1) charges. For instance the spin one SO(2) representation is the direct
sum of ±1 U(1) charges. Analogously the spin two representation is the direct sum of ±2 U(1) charges.
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Conventions in d = 2. Let us summarize now the standard d = 2 notation. One defines
the complex coordinates

z ≡ x1 + ix2, z̄ ≡ x1 − ix2. (A.19)

In theses coordinates one can define the following components of the spin one Lorentz
operators

J(z, z̄) ≡ (2π)× Jz(z, z̄) = π ×
(
J1(x)− iJ2(x)

)
,

J(z, z̄) ≡ (2π)× J z̄(z, z̄) = π ×
(
J1(x) + iJ2(x)

)
.

(A.20)

Conservation implies
∂z̄J(z, z̄) + ∂zJ(z, z̄) = 0. (A.21)

Using (A.12) and (A.20) one simply gets

〈0|J(z)J(0)|0〉 = − k

z2 , 〈0|J(z)J(0)|0〉 = 0, 〈0|J(z̄)J(0)|0〉 = − k̄

z̄2 , (A.22)

where the coefficients k and k̄ read as

k ≡ (2π)2 × CJ + C ′J
2 , k̄ ≡ (2π)2 × CJ − C ′J

2 . (A.23)

From (A.15) it follows that k ≥ 0 and k̄ ≥ 0. As an example one can use free theory of a
massless Dirac fermions which has k = k̄. Using (A.23) these values can be read off from
equation (5.6) in [49].43

Analogously for the stress-tensor we can define the following components

T (z, z̄) ≡ (2π)× Tzz(z, z̄) = (2π)× 1
4 (T11(x)− T22(x)− 2i T12(x)) ,

Θ(z, z̄) ≡ 4Tzz̄(z, z̄) = T11(x) + T22(x),

T (z, z̄) ≡ (2π)× Tz̄z̄(z, z̄) = (2π)× 1
4 (T11(x)− T22(x) + 2i T12(x)) .

(A.24)

Conservation implies

∂z̄T (z, z̄) + π

2 ∂zΘ(z, z̄) = ∂zT (z, z̄) + π

2 ∂z̄Θ(z, z̄) = 0. (A.25)

The conformal invariance implies
Θ(z, z̄) = 0. (A.26)

Using (A.17) and (A.24) one simply gets

〈0|T (z)T (0)|0〉 = c/2
z4 , 〈0|T (z)T (0)|0〉 = 0, 〈0|T (z̄)T (0)|0〉 = c̄/2

z̄4 , (A.27)

where the coefficients c and c̄ read as

c ≡ (2π)2 × CT + C ′T
2 , c̄ ≡ (2π)2 × CT − C ′T

2 . (A.28)

From (A.18) we conclude that c > 0 and c̄ > 0. In a free theory of a single real scalar
and also in a free theory of a single Dirac fermion c = c̄ = 1, see equations (5.5) and (5.6)
in [49]. For an alternative derivation see also appendix C of [16].

43Notice that CV in [49] is identical to our CJ . The values of CJ depends on the normalization of the
U(1)symmetry generators.
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B Unitarity

Unitary quantum field theories are defined to have non-negative norms of all its states.
Consider some state |ψ〉. The unitarity then requires

〈ψ|ψ〉 ≥ 0. (B.1)

In a more complicated situation when we have N states |ψ〉I with the label I = 1, . . . N ,
the above condition becomes the semi-positive requirement on the N×N hermitian matrix

I〈ψ|ψ〉J � 0. (B.2)

In what follows we will use (B.1) and (B.2) to derive some concrete constraints on two-point
functions. We will give the discussion in the Euclidean and in the Lorentzian signature
separately.

B.1 Implications in Euclidean signature

We start with the Euclidean signature. As indicated in the main text we pick the first
coordinate and assign to it the role of Euclidean time

tE ≡ x0, ~x ≡ {x1, . . . , xd−1}. (B.3)

The hermitian conjugation of local operators contrary to the Lorentzian signature is very
non-trivial in the Euclidean signature. With the choice of the Euclidean time made above
the hermitian conjugation of a generic real44 operator with spin reads as45

(
Oab...(tE , ~x)

)†
= κaa

′
κbb
′
. . . Oa′b′...(−tE , ~x), (B.4)

where the prefactors κ are defined as

κaa
′ ≡ δaa′ − 2δa0δa

′0. (B.5)

Let us give special names for the following coordinates

xa+ ≡ {tE , ~x}, xa− ≡ {−tE , ~x}. (B.6)

We then choose the following state

|ψ〉I ≡ Oab...(x−)|0〉, (B.7)

where I is a collective index for the indices a, b, . . . Using (B.4), the condition (B.2) becomes
the following property of the two-point function46

κaa
′
κbb
′
. . . 〈0|Oa′b′...(x+)Ocd...(x−)|0〉E � 0, (B.8)

44One defines real and complex operators in the Lorentzian signature and then analytically continues to
the Euclidean signature. See appendix B.2 for some details.

45For the derivation of (B.4) see section 7.1 of [67].
46The choice of the state (B.7) is very particular. More generally one should define a state by smearing

the operator with some “test” function. By changing the test function one changes the state. As a result
one gets an infinite number of smeared constraints (B.8).
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where the semi-poisitivity is imposed on the square matrix (ab . . .) × (cd . . .). The prop-
erty (B.8) is called reflection-positivity of the two-point function.

To be concrete let us consider two simple examples. First, if we deal with a scalar
operator the condition (B.8) simply reads

〈0|O(x+)O(x−)|0〉E ≥ 0. (B.9)

Second, if the operator is a vector, the condition (B.8) reads as(
−〈0|J0(x+)J0(x−)|0〉E −〈0|J0(x+) ~J(x−)|0〉E
+〈0| ~J(x+)J0(x−)|0〉E +〈0| ~J(x+) ~J(x−)|0〉E

)
� 0. (B.10)

As an application consider the parity even part of the two-point function (2.4), We have
then

〈0|Ja(x+)Jb(x−)|0〉E = 1
(2tE)2(d−1) ×

(
h1(r)δab + h2(r)δa0δb0

)
. (B.11)

Plugging this expression into (B.10) and using the Sylvester’s criterion for semi-positive
definiteness of a real matrix we get the following conditions

∀r : h1(r) ≥ 0, h1(r) + h2(r) ≤ 0. (B.12)

When we are concerned with two-point functions in conformal field theories it is convenient
to write explicitly their tensor structures in a “reflection-positive” frame

Iab(x+, x−) = δab − 2δa0δb0, Eab(x+, x−) =
(

0 −1
−1 0

)
. (B.13)

Finally consider the case of the stress-tensor. The reflection-positivity condition (B.8)
becomes a 4 × 4 block matrix spanned by the collective indixed I and J , where I ≡ ab =
{00, 0i, j0, ij} and J ≡ cd = {00, 0k, l0, kl} and i, j, k, l = 1, . . . , d − 1. In order to write a
compact formula we also define

1
r2d ×K

ab; cd ≡ 〈0|T abE (x+)JcdE (x−)|0〉. (B.14)

Then the condition (B.8) in terms of (B.14) reads
+K00; 00 +K00; 0l +K00; k0 +K00; kl

−K0i; 00 −K0i; 0l −K0i; k0 −K0i; kl

−Kj0; 00 −Kj0; 0l −Kj0; k0 −Kj0; kl

+Kij; 00 +Kij; 0l +Kij; k0 +Kij; kl

 � 0. (B.15)

B.2 Implications in Lorentzian signature

Consider the Lorentzian space. We denote the Lorentzian time and the spacial coordinates
in the following way

tL ≡ x0, ~x ≡ {x1, . . . , xd−1}. (B.16)
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Consider now some real local operator with spin. The hermitian conjugation has a very
straightforward action on such an operator in the Lorentzian space. It reads

(Oµ1µ2...(x))† = Oµ1µ2...(x∗). (B.17)

The coordinates xµ are mostly real, however we often include a small imaginary part in
the time component in order to regularize two-point functions, see appendix C. This is the
reason why we kept x∗ in the right-hand side of (B.17).

Consider now the following state47

|ψ〉 ≡ O(x̂∗)|0〉, (B.18)

where O is some real scalar local operator and as in section 3 we have defined

x̂µ ≡ {x0 − iε, ~x}, ε > 0. (B.19)

Unitarity condition (B.1) together with (B.17) then implies the following condition on the
ordered two-point function of the local operator O

〈0|O(x̂)O(x̂∗)|0〉 ≥ 0. (B.20)

Similarly for the Lorentz spin one operator we can construct the following states

|ψ〉µ ≡ Jµ(x̂∗)|0〉. (B.21)

Unitarity condition (B.2) together with (B.17) imply then the following constraint on the
ordered two-point function

〈0|Jµ(x̂)Jν(x̂∗)|0〉 � 0. (B.22)

It is also important to note that the reality condition (B.17) poses further constraints
on ordered two-point functions of real operators. Consider for example the case of conserved
currents. One has

〈0|Jµ(x1)Jν(x2)|0〉∗ = 〈0| (Jµ(x1)Jν(x2))† |0〉 = 〈0|Jν(x∗2)Jµ(x∗1)|0〉. (B.23)

As an example let us consider the ordered two-point function of conserved currents in
Lorentzian conformal field theory. One has

〈0|Jµ(x1)Jν(x2)|0〉 = CJ
(x2

12)d−1 × I
µν(x1, x2)− C ′J

(x2
12)d−1 × δd,2 E

µν(x1, x2), (B.24)

where we have defined

Iµν(xi, xj) ≡ ηµν − 2
xµijx

ν
ij

x2
ij

, Eµν(xi, xj) ≡ εµν + 2
xµijε

νρxρij
x2
ij

. (B.25)

47The same comment as in the footnote 46 applies here.
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The Levi-Civita symbol obeys ε01 = −ε01 = +1. The expression (B.24) can either be
derived from scratch adapting appendix A to Lorentzian signature or can be simply trans-
lated from the Euclidean expression (A.12) using (C.15). Plugging (B.24) in (B.23) and
taking into account the following properties

Iµν(x1, x2) = +Iνµ(x2, x1), Eµν(x1, x2) = +Iνµ(x2, x1), (B.26)

which simply follow from the definitions (B.25), one concludes that CJ and C ′J are purely
real. Plugging (B.24) into (B.22) we obtain the condition(

CJ C
′
J

C ′J CJ

)
� 0, (B.27)

where we have used

Iµν(x̂, x̂∗) = ηµν + 2δµ0 δν0 , Eµν(x̂, x̂∗) =
(

0 −1
−1 0

)
. (B.28)

From (B.27) we get the following conditions

CJ ≥ 0, −CJ ≤ C ′J ≤ +CJ , (B.29)

which are identical to the ones obtained in the Euclidean metric and given in (A.15).

C Euclidean vs. Lorentzian operators

Here we will discuss Euclidean and Lorentzian correlators. We then provide a formal way
to define the latter as various analytic continuations of the former. Part of the discussion
here is based on section 7 and appendix B of [67].

Euclidean correlators. In the Euclidean space two- (and higher-) point correlation
functions are computed using the path integral approach. They are denoted by

〈OE(xE)OE(yE)〉. (C.1)

We introduced the subscript E for both the coordinates and the operators in order to
emphasise that we work in the Euclidean metric. By construction the correlation func-
tion (C.1) is time-ordered with respect to Euclidean time, namely

〈OE(xE)OE(yE)〉 = 〈OE(yE)OE(xE)〉. (C.2)

We can also reinterpret the correlator (C.1) as the vacuum expectation value of local
operators in some Hilbert space.48 This is done as follows. The vacuum expectation value
of two local operators is denote by

〈0|OE(xE)OE(yE)|0〉. (C.3)
48One can think about states and operators as vectors and matrices in the infinite-dimensional space.

The vacuum state is the state with the lowest energy.
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The order of operators in this expression is important. The correlator (C.3) makes sense
only if x0

E > y0
E . This is easy to see by rewriting (C.3) in the following way

〈0|OE(xE)OE(yE)|0〉 = 〈0|OE(0)e−H(x0
E−y

0
E)OE(0)|0〉, (C.4)

where H is the Hamiltonian of the system. Here we simply used the translation invariance

OE(xE) = e+P ·xEOE(0)e−P ·xE , (C.5)

where P a are the generators of translations and H ≡ P 0. The Hamiltonian H is an infinite-
dimensional matrix with non-negative eigenvalues. In other words the eigenvalues of H are
bounded from below. The operator e−H(x0

E−y
0
E) has all finite eigenvalues only if x0

E > y0
E .

It becomes unbounded from above if x0
E < y0

E . In this case (C.4) formally diverges. The
only option to avoid this and to define the two-point correlation function for any values of
xE and yE is as follows

〈0|OE(xE)OE(yE)|0〉E ≡ θ(x0
E − y0

E)〈0|OE(xE)OE(yE)|0〉
+ θ(y0

E − x0
E)〈0|OE(yE)OE(xE)|0〉 (C.6)

By construction this is the time-ordered (with respect to Euclidean time) correlation func-
tion. We refer to it as the Euclidean correlator. The equivalence between the path integral
formulation (C.1) and the operator formulation (C.6) leads to

〈OE(xE)OE(yE)〉 = 〈0|OE(xE)OE(yE)|0〉E . (C.7)

Lorentzian correlators. Let us now consider the vacuum expectation value of the local
operators in the Lorentzian signature

〈0|OL(xL)OL(yL)|0〉. (C.8)

This quantity is not well-defined since it generically contains poles when (xL − yL)2 = 0
at xµL 6= yµL. In order to define the above vacuum expectation value correctly one should
specify how to deal with these poles. In practice we allow for a small imaginary part for the
Lorentzian time and then send it to zero. Several different ways (prescriptions) exist. They
define different types of correlators, namely Wightman, time-ordered (Feynman), advanced
and retarded correlators. For instance the Wightman function is defined as follows

〈0|OL(xL)OL(yL)|0〉W ≡ lim
ε1→0

lim
ε2→0
〈0|OL(x0

L − iε1, ~x)OL(y0
L − iε2, ~x2)|0〉, (C.9)

where ε1 > ε2. This is the simplest possible prescription. One can use now the Wightman
correlator to define all the other types of correlators (instead of going though various
prescriptions). For example the time-ordered (Feynman) correlator is defined as

〈0|OL(xL)OL(yL)|0〉F ≡ θ(x0
L − y0

L)〈0|OL(xL)OL(yL)|0〉W
+ θ(yL − xL)〈0|OL(yL)OL(xL)|0〉W . (C.10)

By definition the Wightman two-point function (C.9) is a distribution. When in-
tegrated with a test-function the iε prescription leads to an unambiguous result. The
time-ordered two-point function (C.10) instead is not a distribution due to the presence of
the step functions.
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Relation between Euclidean and Lorentzian correlators. We can formalise the
discussion of Lorentzian two-point functions by defining them as various analytic continu-
ations of the Euclidean two-point function in time. Let us denote the Euclidean time by
tE ≡ x0

E and the Lorentzian time by tL ≡ x0
L.

Let us start from the following Euclidean correlator

〈0|OE(ε1, ~x)OE(ε2, ~x2)|0〉E , (C.11)

where ε1 and ε2 are real Euclidean times which obey ε1 > ε2. For ε1 > ε2 only the first term
in (C.6) survives and we can thus drop the subscript E. We then analytically continue this
object to complex times and send both ε1 and ε2 to zero. The resulting object formally
defines the Wightman two-point function, namely

〈0|OL(x0
L, ~x)OL(y0

L, ~y)|0〉W ≡ lim
ε1→0

lim
ε2→0
〈0|OE(ε1 + ix0

L, ~x)OE(ε2 + iy0
L, ~x2)|0〉

= lim
ε1→0

lim
ε2→0
〈0|OE

(
i(x0

L − iε1), ~x
)
OE

(
i(y0

L − iε2), ~x2
)
|0〉

= lim
ε1→0

lim
ε2→0
〈0|OL(x0

L − iε1, ~x)OL(y0
L − iε2, ~x2)|0〉. (C.12)

Here we have decided to relate the Euclidean and Lorentzian times as

tE = +itL, tL = −itE (C.13)

The equality between the last two entries in (C.12) lead to the formal relation between the
Euclidean and Lorentian scalar local operators

OE(tE , ~x) = OL(−itE , ~x), OL(tL, ~x) = OE(itL, ~x). (C.14)

For local operators with spin the relation between Euclidean and Lorentzian operators is
more complicated. For instance for the vector operators we have

J0
E(tE , ~x) = −iJ0

L(−itE , ~x), ~JE(tE , ~x) = ~JL(−itE , ~x). (C.15)

The analytic continuation which follows the path

z → z′ ≡ zei(π/2−ε) ≈ z(i+ ε) (C.16)

is known as the Wick rotation. Without loss of generality let us set y = 0 by using
translation invariance. Using the Wick rotation one can define the (Feynman) time-ordered
two-point function as

〈0|OL(x0
L, ~x)OL(0)|0〉F ≡ lim

ε→0
〈0|OE(x0

Le
i(π/2−ε1), ~x) OE(0)|0〉E (C.17)

= lim
ε→0
〈0|OE(x0

L(i+ ε), ~x) OE(0)|0〉E . (C.18)

Using the definition of the Euclidean propagator in the right-hand side of (C.18) the last
equality can be written as

θ(+x0
L)〈0|OE(ix0

L + ε, ~x) OE(0)|0〉E + θ(−x0
L)〈0|OE(ix0

L − ε, ~x) OE(0)|0〉E , (C.19)

where we have used the fact that ε tL ≈ +ε if tL > 0 and ε tL ≈ −ε if tL < 0. Using the
first line of (C.12) one sees the equivalence between the above expression and (C.10).
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D Källén-Lehmann representation in Euclidean signature

The Källén-Lehmann representation of the Lorentzian time-ordered two-point functions
was derived in section 3.2. In this section we would like to translate those result to the
Euclidean signature. For that we apply the following change of variables

x0
L → −ix0

E , p0
L → −ip0

E . (D.1)

Which is in agreement with (C.13).
Let us start with the Källén-Lehmann representation for the scalar operators given

by (3.55). Performing the above change of variables we get

〈0|O(x)O(0)|0〉E =
∫ ∞

0
dsρO(s)∆E(x; s),

∆E(x; s) = lim
ε→0+

∫
ddpE
(2π)d e

ipE ·xE 1
p2
E + s

.

(D.2)

See appendix B of [16] for some additional details. Notice the absence of the iε since there
are no poles for real p2 to be regularized.

The Källén-Lehmann for the conserved currents and the stress-tensor were derived
in (3.59) and (3.64). Analogously to the scalar case one gets

〈0|Ja(x)Jb(0)|0〉T =
∫ ∞

0
dsρ1

J(s)∆ab
E, 1(x; s), (D.3)

〈0|T ab(x)T cd(0)|0〉T =
∫ ∞

0
ds

(
ρΘ(s)

(d− 1)2 ∆ab; cd
E,Θ (x; s) + ρ2

T̂
(s)∆ab; cd

E, 2 (x; s)
)
, (D.4)

where the Euclidean propagators ∆E are obtained from (3.63) and (3.65). The Euclidean
correlator for the conserved current is obtained from (3.63), it reads

∆ab
E, 1(x; s) = (s δab − ∂a∂b)∆E(x; s) (D.5)

and the Euclidean Feynman propagators for the stress-tensor read as

∆ab;cd
E,Θ (x; s) = (s δab − ∂a∂b)(s δcd − ∂c∂d)∆E(x; s),

∆ab; cd
E, 2 (x; s) = s2 Πab; cd

2 (∂; s)∆E(x; s),
(D.6)

where we have defined the Euclidean projectors in the coordinate space

Πab
1 (∂; s) ≡ δab − s−1∂a∂b, (D.7)

Πab; cd
2 (∂; s) ≡ − 1

d− 1Πab
1 (∂; s)Πcd

1 (∂; s) + 1
2 Πac

1 (∂; s)Πbd
1 (∂; s) + 1

2 Πad
1 (∂; s)Πbc

1 (∂; s).

E Scalar propagators

In this appendix we compute the explicit form of the scalar Euclidean, Wightman, Feyn-
man, retarded and advanced propagators. In what follows we completely ignore the case
of coincident points, in other words x 6= 0.
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Euclidean propagator. Let us start with the scalar Euclidean propagator in position
space. It was defined in (D.2). Let us repeat its definition here again for convenience

∆E(x; s) ≡
∫

ddp

(2π)d
eip·x

p2 + s
. (E.1)

We emphasise that in the Euclidean signature x2 > 0 and p2 ≥ 0. Switching to spherical
coordinates we get

∆E(x; s) = Ωd−1
(2π)d

∫ ∞
0

pd−1dp

p2 + s

∫ +1

−1
dξ(1− ξ2)

d−3
2 eiprξ

= 1
(2π)d/2

∫ ∞
0

pd−1dp

p2 + s

J d−2
2

(pr)

(pr)
d−2

2
(E.2)

= 1
(2π)d/2

(√
s

r

) d−2
2 ∫ ∞

0

k
d
2 dk

k2 + 1J d−2
2

(rk
√
s).

In the second line we have defined r ≡
√
x2 and used the result 3.387 2. from [68]. The

symbol Jn(x) stands for the Bessel function of the first kind. The last integral in (E.2) is
given by 6.565 4. in [68]. It converges only for d < 5. Performing it we obtain the final
expression

∆E(x; s) = s
d−2

2

(2π)d/2
×
K d−2

2
(
√
sx2)(√

sx2
) d−2

2
, (E.3)

where Kn(x) denotes the Bessel function of the second kind. The result (E.3) is analytic
in d. Thus, even though the integral in (E.2) does not converge, we can define it via the
analytic continuation of (E.3).

Wightman propagator. The Wightman propagator is defined in (3.5). We remind that
s > 0. Integrating over the δ-function we get

∆W (x; s) = lim
ε→0+

∫
dd−1~k

(2π)d−1
e−ix̂

0
√
s+~k2

ei
~k·~x

2
√
s+ ~k2

, (E.4)

where as usual time x0 has a small imaginary part according to

x̂0 ≡ x0 − iε. (E.5)

To perform the rest of integrals in (E.4) we split the discussion into two distinct situations:
when x2 > 0 (space-like separation) and when x2 < 0 (time-like separation). As indicated
in the beginning of the section we will completely exclude the light-like separation x2 = 0
from the discussion.
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Let us consider first the space-like separation of points. In this situation we can perform
the Lorentz transformation to set x0 = 0. We can then perform the integral (E.4) as follows

∆W (x; s) = Ωd−2
2 (2π)d−1

∫ ∞
0

dk kd−2
√
s+ k2

∫ +1

−1
dη (1− η2)

d−4
2 eikχη

=
√
π

2 (2π)−d/2
∫ ∞

0

dk kd−2
√
s+ k2

J d−3
2

(kχ)

(kχ)
d−3

2

= (2π)−d/2 s
d−2

2
K d−2

2
(χ
√
s)

(χ
√
s)

d−2
2

.

(E.6)

In the first line of (E.6) we have switched to the spherical coordinates in d− 1 dimensions
and defined k ≡ |~k| together with χ ≡ |~x|. We performed the integration over d− 3 angles
to get the spherical angle Ωd−2, where

Ωn ≡
nπn/2

Γ(n/2 + 1) . (E.7)

The variable η reflects the integration over the last remaining angle. For details see formulas
(A.3) - (A.6) in [16]. In the second line of (E.6) we use the result 3.387 2. from [68]. The
function Jn(x) stands for the Bessel function of the first kind. Finally in the third line
of (E.6) we use formula 6.564 1. from [68]. The function Kn is called the Bessel function
of the second kind.

Let us now consider the time-like separation of points, namely when x2 < 0. In this
situation we can perform the Lorentz transformation to set ~x = 0. We can then perform
the integral (E.4) as follows

∆W (x; s) = Ωd−1
2 (2π)d−1 lim

ε→0+

∫ ∞
0

dk kd−2 e
−ix̂0√s+k2

√
s+ k2

,

= Ωd−1 s
d−2

2

2 (2π)d−1 lim
ε→0+

∫ ∞
1

dξ (ξ2 − 1)
d−3

2 e−ix̂
0√s ξ

= iπ

2 (2π)−d/2s
d−2

2 lim
ε→0+

H
(1)
2−d

2
(iε− x0√s)

(iε− x0√s)
d−2

2
.

(E.8)

In the first line of (E.8) we switch to the spherical coordinates in d − 1 dimensions and
defined k ≡ |~k|. In the second line of (E.8) we performed yet another change of variables
where ξ ≡

√
1− s−1k2. Finally in the last line of (E.8) we use formula 3.387 4. from [68].

Notice that it was crucial to have a small imaginary part in order to define the integral
properly. The function H(1)

n is called the Hankel function of the first kind. Notice also that
the time component x0 does not have a definite sign.

We still need to perform some work to bring the result (E.8) to its final form. To do
that we split (E.8) into two parts: one with x0 > 0 and one with x0 < 0. Using properties
of the Hankel function we get then

lim
ε→0+

H
(1)
2−d

2
(iε− x0√s)

(iε− x0√s)
d−2

2
= −θ(x0)

H
(2)
2−d

2
(x0√s)

(x0√s)
d−2

2
+ θ(−x0)

H
(1)
2−d

2
(−x0√s)

(−x0√s)
d−2

2
. (E.9)
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We can now perform the Lorentz transformation in order to write the expressions (E.6)
and (E.8) in a generic frame. Effectively this is done by replacing χ →

√
x2 and x0 →

±
√
−x2. Taking this and (E.9) into account we arrive at the final expression for the scalar

Wightman propagator

∆W (x; s) = (2π)−d/2 s
d−2

2 (E.10)

×

θ(+x2)
K d−2

2
(
√
sx2)

(
√
sx2)

d−2
2
− iπ

2 θ(−x
2)
θ(+x0)H(2)

2−d
2

(
√
−sx2)− θ(−x0)H(1)

2−d
2

(
√
−sx2)

(
√
−sx2)

d−2
2

 .
Feynman propagator. The scalar Feynman propagator was defined in (3.55). Us-
ing (E.10) we can get its explicit expression which reads as

−i∆F (x; s) ≡ θ(x0)∆W (x; s) + θ(−x0)∆W (−x; s) (E.11)

= (2π)−d/2 s
d−2

2 ×
(
θ(+x2)

K d−2
2

(
√
sx2)

(
√
sx2)

d−2
2
− iπ

2 θ(−x
2)
H

(2)
2−d

2
(
√
−sx2)

(
√
−sx2)

d−2
2

)
.

For completeness let us also introduce the retarded and advanced propagators

−i∆R(x; s) ≡ +θ(+x0)D(x; s),
−i∆A(x; s) ≡ −θ(−x0)D(x; s),

(E.12)

where we have defined

D(x; s) ≡ ∆W (x; s)−∆W (−x; s)

= −(2π)−d/2 s
d−2

2 θ(−x2)× iπ
(
θ(x0)− θ(−x0)

) J 2−d
2

(
√
−sx2)

√
−sx2

d−2
2

.
(E.13)

To obtain this result we have plugged (E.10) into the first line of (E.13) and rewrote the
sum of two Hankel functions as a Bessel function of the first kind.

The results for Feynman, retarded and advance propagators are well known in d = 2
and d = 4 dimensions, see for example [69] for the clean summary. The scalar Feynman
propagator in general dimensions was also computed in [70], see formula (27). Our results
match the ones present in the literature. In order to perform the comparison note the
following properties of the special functions

d ≥ 2 : H
(1)
2−d

2
(z) = (+i)d−2H

(1)
d−2

2
(z), H

(2)
2−d

2
(z) = (−i)d−2H

(2)
d−2

2
(z), (E.14)

together with

d ≥ 2 (even) : J 2−d
2

(z) = id−2J d−2
2

(z), (E.15)

d ≥ 3 (odd) : J 2−d
2

(z) = id−1Y d−2
2

(z), (E.16)

where Yn is the Neumann function and z is real.
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Consistency check. For the space-like separation of points x2 > 0 the Euclidean, the
Wightman and the Feynman propagators are simply related as

x2 > 0 : ∆E(x; s) = ∆W (x; s) = −i∆F (x; s). (E.17)

For the time-like separation of points x2 < 0 one should be able to obtain the expres-
sions (E.10) and (E.11) using the analytic continuation of the Euclidean result. This
re-derivation should be seen as the consistency check of the above computations. For sim-
plicity let us work in the frame where ~x = 0, in other words x2 = −t2L, where tL is the
Lorentzian time.

Let us start from the Wightman propagator. Using the first line of (C.12) we can write

∆W (tL; s) = lim
ε→0

∆E(ε+ itL; s). (E.18)

Using the explicit expression (E.3) we get

∆W (tL; s) = s
d−2

2

(2π)d/2
× lim
ε→0

K d−2
2

(
√
s(ε+ itL)2)(√

s(ε+ itL)2
) d−2

2
. (E.19)

By splitting this expression in two distinct cases of tL < 0 and tL > 0 we can take the limit
explicitly

lim
ε→0

√
s(ε+ itL)2 =


+i
√
s t2L, tL > 0

−i
√
s t2L, tL < 0.

(E.20)

The Bessel functions of the second kind are related to the Hankel functions via the following
relations

Kn(+iz) = − iπ2 (−i)nH(2)
n (z), Kn(−iz) = + iπ

2 (+i)nH(1)
n (z), (E.21)

where z > 0. The equivalence between the expressions (E.19) and (E.10) for x2 < 0
becomes obvious once the relations (E.20) and (E.21) together with (E.14) are used.

Due to (C.17), (E.1) (3.55) the Feynman propagator can be obtained from the Eu-
clidean one by means of the Wick rotation as

− i∆F (tL; s) = lim
ε→0

∆E(tLei(π/2−ε); s). (E.22)

Using the explicit expression (E.3) and (C.16) we get

− i∆F (tL; s) = s
d−2

2

(2π)d/2
× lim
ε→0

K d−2
2

(
√
−st2L + iε)(√

−st2L + iε
) d−2

2
. (E.23)

As before using the fact that limε→0
√
−st2L + iε = +i

√
st2L and the first entry in (E.21)

we conclude that

− i∆F (tL; s) = s
d−2

2

(2π)d/2
×
(
− iπ2

) H(2)
2−d

2
(
√
st2L)(√

st2L

) d−2
2
. (E.24)

Here we have also used the second entry in (E.14). This expression is equivalent to (E.11)
when ~x = 0 or in other words when −x2 = t2L.

– 50 –



J
H
E
P
0
2
(
2
0
2
2
)
1
8
6

Massless limit. Let us study the massless limit s → 0 of the explicit expressions for
the Euclidean, Wightman and Feynman propagators given by (E.3), (E.10) and (E.11)
respectively. We start with the Wightman propagator (E.10). Expanding it at s = 0 to
the leading order in s we get

d = 2 and x2 > 0 : ∆W (x; s) = − log(x2)
4π − 2γ + log(s/4)

4π +O(s),

d ≥ 3 and x2 > 0 : ∆W (x; s) =
Γ(d−2

2 )
4πd/2(x2)

d−2
2

+O(s).
(E.25)

In the first expression γ is the Euler constant. We see that for d ≥ 3 the scalar Wightman
propagator is completely finite at s = 0. In d = 2 it has a divergent part. For the space-like
separation of points x2 > 0 due to the relation (E.17) the identical expression holds for
the Euclidean and Feynman propagators. For the time-like separation of points in d ≥ 3
we get

x2 < 0 : ∆W (x; s) =
(−i)d−2Γ(d−2

2 )
4πd/2(−x2)

d−2
2

(
θ(x0) + (−1)d−2θ(−x0)

)
+O(s),

x2 < 0 : − i∆F (x; s) =
(−i)d−2Γ(d−2

2 )
4πd/2(−x2)

d−2
2

+O(s).
(E.26)

Spinning Wightman propagators are obtained by taking derivatives with respect to
coordinates. Thus, spinning propagators are finite at s = 0 for d ≥ 2. The identical
conclusion holds for the time-like separation.

F Spectral densities and central charges: technical details

In section 2 we have derived the sum rules for the central charges CJ and CT in terms of the
Euclidean two-point functions of the conserved current and the stress-tensor respectively.
They are given in (2.12) and (2.32). In this appendix we will derive their implications for
the spectral densities.

We can plug the expressions (D.3) and (D.4) into the sum rules (2.12) and (2.32),
and obtain the desired relation between the central charges and spectral densities. The
details of this manipulations are subtle. In what follows we carefully derive the result for
conserved currents and then simply state the answer for the stress-tensor.

Conserved currents. Using (D.3) and (D.5) we can rewire (2.12) as

CUV
J − CIR

J = lim
rmin→0

lim
rmax→∞

∫ rmax

rmin
dr

∫ ∞
0

dsρ1
J(s) fd(r; s), (F.1)

where r ≡
√
x2 and we have defined

fd(r; s) = r2d−3 (δab + (d− 2)r−2xaxb)(s δab − ∂a∂b)∆E(x; s). (F.2)
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We can explicitly evaluate this function by using (E.3) and taking its derivatives. Perform-
ing the straightforward algebra we get

fd(r; s) = d− 1
(2π)d/2

× s
3−d

2 (r
√
s)

3(d−2)
2 ×

(
(r
√
s)K d+2

2
(r
√
s)− 2(d− 1)K d

2
(r
√
s)
)
. (F.3)

We can now plug the function (F.3) into (F.1), exchange the order of integrals and make
a change of variables from r to the dimensionless quantity u ≡ r

√
s. We get

CUV
J − CIR

J = d− 1
(2π)d/2

lim
rmin→0

lim
rmax→∞

∫ ∞
0

ds

sd/2−1 ρ
1
J(s)

(
Fd(rmax

√
s)− Fd(rmin

√
s)
)
, (F.4)

where we have defined the function Fd as an indefinite (primitive) integral

Fd(u) ≡
∫
duu

3(d−2)
2

(
uK d+2

2
(u)− 2(d− 1)K d

2
(u)
)
. (F.5)

In order to obtain the final version of the sum rule (F.4) first, we need to know the
limits of the Fd(u) functions. One can find that (up to an irrelevant additive constant)

lim
u→0

F2(u) = −1, lim
u→0

Fd≥3(u) = 0, lim
u→∞

Fd≥2(u) = 0. (F.6)

It is important to stress that we cannot simply permute the limits with the integration
in (F.4). To see it consider for example the limit rmin → ∞. Due to (F.6) the integrand
Fd(Mrmax) in (F.4) vanishes. However, the integral contains the region of small values of
s, where

lim
rmax→∞

lim
s→0

Fd(rmax
√
s) (F.7)

can give a finite contribution. We are thus required to split the integral over s in three
pieces

CUV
J − CIR

J = d− 1
(2π)d/2

lim
Λmin→0

lim
Λmax→∞

lim
rmin→0

lim
rmax→∞(∫ Λmin

0

ds

sd/2−1 ρ
1
J(s)

(
Fd(rmax

√
s)− Fd(rmin

√
s)
)

+
∫ Λmax

Λmin

ds

sd/2−1 ρ
1
J(s)

(
Fd(rmax

√
s)− Fd(rmin

√
s)
)

+
∫ ∞

Λmax

ds

sd/2−1 ρ
1
J(s)

(
Fd(rmax

√
s)− Fd(rmin

√
s)
))
.

(F.8)
Here the cut-off parameters Λmin and Λmax can be chosen arbitrarily since nothing depends
on them explicitly. In the end of the analysis we will take their values to be very small and
very big respectively. This explains the order of limits in (F.8).

We take the limits in rmin and rmax under the integral in (F.8) where it is allowed and
use (F.6). We also replace the spectral density ρ1

J by the CFT ones for small and large

– 52 –



J
H
E
P
0
2
(
2
0
2
2
)
1
8
6

energies. We arrive at the following expression then

CUV
J − CIR

J = d− 1
(2π)d/2

×
(

+ lim
Λmin→0

lim
rmax→∞

∫ Λmin

0

ds

sd/2−1 ρ
1, IR CFT
J (s)

(
Fd(rmax

√
s) + δd,2)

)
+ lim

Λmin→0
lim

Λmax→∞

∫ Λmax

Λmin
ds ρ1

J(s) δd,2

− lim
Λmin→0

lim
rmax→∞

∫ ∞
Λmax

ds

sd/2−1 ρ
1, UV CFT
J (s)Fd(rmin

√
s)
)
. (F.9)

We can now plug the explicit expression of the spectral density (4.12) and obtain the final
result. In d = 2 both UV and IR CFT spectral densities vanish. As a result we are left
only with the second term in (F.9). We thus get the final answer

d = 2 : CUV
J − CIR

J = 1
2π

∫ ∞
0

ds ρ1
J(s). (F.10)

In d ≥ 3 the second term in (F.9) vanishes instead and we are left only with the first and the
third ones. The relation (F.9) then gives us the constraint on the IR and UV CFT spectral
densities ρ1, IR CFT

J (s) and ρ1, UV CFT
J (s). The latter have already been computed in (4.12).

We can check the consistency of our manipulations here by plugging (4.12) into (F.9) and
switching to the u variable. As a result we get

CUV
J − CIR

J = 2(d− 2)κ(d, d− 1)
(2π)d/2+1 ×

(
CIR
J lim

Λmin→0
lim

rmax→∞

∫ Λminrmax

0

du

u
Fd(u)

− CUV
J lim

Λmax→∞
lim

rmin→0

∫ ∞
Λmaxrmin

du

u
Fd(u)

)
.

(F.11)

Taking the limits49 we arrive at the following non-obvious equality

CUV
J − CIR

J = (CIR
J − CUV

J )× 2(d− 2)κ(d, d− 1)
(2π)d/2+1

∫ ∞
0

du

u
Fd(u). (F.12)

We have checked numerically that the following relation indeed holds true

2(d− 2)κ(d, d− 1)
(2π)d/2+1

∫ ∞
0

du

u
Fd(u) = −1. (F.13)

Stress-tensor. Analogously for the stress-tensor let us plug the spectral decomposi-
tion (D.4) into the sum rule (2.32). One gets

CUV
T − CIR

T = lim
rmin→0

lim
rmax→∞

∫ rmax

rmin
dr r2d−1

∫ ∞
0

ds
(
ρΘ(s)hd(r; s) + ρ2

T̂
(s)ld(r; s)

)
, (F.14)

49Notice, that after taking the limits rmin and rmax nothing depends on Λmin and Λmax.
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where we have defined

hd(r; s) = 1
2 (d− 1)3 R

abcd(x)(δab − s−1∂a∂b)(δcd − s−1∂c∂d)∆E(x; s),

ld(r; s) = 1
2 (d− 1) R

abcd(x)Πab; cd
2 (∂; s)∆E(x; s).

(F.15)

We also remind that the object Rabcd(x) was defined in (2.33).
Applying the logic identical to the case of conserved currents in d = 2 we simply get

CUV
T − CIR

T = 6
π

∫ ∞
0

ds

s2 ρΘ(s). (F.16)

In d ≥ 3 instead we have a condition on the asymptotic behavior of the ρ2
T (s) component

of the spectral density at large and small values of s. This condition is compatible with
the result (5.15).

G Form factor normalization

The stress-tensor defines the generators of translations as

Pµ ≡
∫
dd−1xT 0µ(x). (G.1)

Let us now evaluate the matrix element of Pµ with one-particle states. By convention the
one-particle states obey the following normalization

〈m1, ~p1|m2, ~p2〉 = 2p0
1δm1m2 × (2π)d−1δ(d−1)(~p1 − ~p2). (G.2)

Since the one-particle states are the eigenstates of translations, for identical particles
one gets

〈m, ~p1|Pµ|m, ~p2〉 = 2p0
1p
µ
1 × (2π)d−1δ(d−1)(~p1 − ~p2), (G.3)

where from the definition of one-particle states one has

p2
1 = p2

2 = −m2. (G.4)

On the other hand using (G.1) and (3.10) one can write

〈m, ~p1|Pµ|m, ~p2〉 = 〈m, ~p1|T 0µ(0)|m, ~p2〉 ×
∫ +∞

−∞
dd−1x ei(p2−p1)·x

= 〈m, ~p1|T 0µ(0)|m, ~p2〉 × (2π)d−1δ(d−1)(~p1 − ~p2). (G.5)

Combining together (G.3) and (G.5) we get(
〈m, ~p1|T 0µ(0)|m, ~p2〉 − 2p0

1p
µ
1

)
× (2π)d−1δ(d−1)(~p1 − ~p2) = 0. (G.6)

Let us now recall the definition of the stress-tensor form factor (6.5). Using crossing
symmetry we conclude that50

〈m, ~p1|Tµν(0)|m, ~p2〉 = FµνT (p1,−p2). (G.7)
50The crossing equations for the form factors in 2d are discussed for example in [17] and [71]. In general

dimensions they can be derived in the QFT framework using the LSZ procedure. For the derivation of
crossing equations in the case of scalar form factors in 4d see chapter 7.2 in [72].
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Plugging (G.7) into (G.6) we obtain(
F0µ
T (p1,−p2)− 2p0

1p
µ
1

)
× (2π)d−1δ(d−1)(~p1 − ~p2) = 0. (G.8)

Using (G.4) we can rewrite this as the following normalization condition of the stress-tensor
form factor

lim
p2→−p1

F0µ
T (p1, p2) = 2p0

1p
µ
1 . (G.9)

The remaining task is to find the consequence of the condition (G.9) on the components
of the stress-tensor form factors. In order to do that we recall the decomposition of the
stress-tensor form factor into tensor structure given by (6.8). It reads

FµνT (p1, p2) =−F ′(0)(s)×
(
(p1 + p2)2ηµν − (p1 + p2)µ(p1 + p2)ν

)
+ F ′(2)(s)× (p1 − p2)µ(p1 − p2)ν .

(G.10)

Here compared to (6.8) we have slightly redefined the tensor structures in order to remove
the kinematic singularities. The relation between the components of the form factor in (6.8)
and (G.10) is given by

F ′(0)(s) ≡
F(0)(s)

(p1 + p2)2 , F ′(2)(s) ≡
F(2)(s)

(p1 − p2)2 . (G.11)

Plugging (G.10) into (G.9) we obtain

lim
s→0
F ′(0)(s) = −const, lim

s→0
F ′(2)(s) = 1

2 , (G.12)

where const is an undetermined constant not fixed by the normalization condition (G.9).
The minus is introduced for convenience.

We can now translate the result (G.12) to the original components of the form fac-
tor (6.8). We simply have

lim
s→0

s−1F(0)(s) = const, lim
s→0
F(2)(s) = −2m2, (G.13)

Furthermore using the expression of the trace of the stress-tensor form factor in terms of
the F(0)(s) and F(2)(s) components given by (6.10) and using the normalization condi-
tions (G.13) we obtain the following normalization of the trace of the stress-tensor form
factor

lim
s→0
FΘ(s) = −2m2. (G.14)

For works on the stress-tensor form factor normalization in the presence of particles
of non-zero spin see for example [73, 74] and references therein.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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