N -Terminal Selective C-H Azidation of Proline-Containing Peptides: a Platform for Late-Stage Diversification

Emmanuelle M. D. Allouche, ${ }^{[a]}$ Raphaël Simonet-Davin, ${ }^{[a]}$ and Jerome Waser* ${ }^{*[a]}$

Abstract

A methodology for the $\mathrm{C}-\mathrm{H}$ azidation of N -terminal proline-containing peptides was developed employing only commercially available reagents. Peptides bearing a broad range of functionalities and containing up to 6 amino acids were selectively azidated at the carbamate-protected N terminal residue in presence of the numerous other func-

Abstract

tional groups present on the molecules. Post-functionalizations of the obtained aminal compounds were achieved: cycloaddition reactions or C-C bond formations via a sequence of imine formation/nucleophilic addition were performed, offering an easy access to diversified peptides.

Numerous established pharmaceutical companies are conducting drug development on peptide-based molecules. ${ }^{[1]}$ Methods to fine-tune the structure of peptides are thus of interest to either improve their properties or to study their biological function. ${ }^{[2]} \mathrm{C}-\mathrm{H}$ functionalization is one of the most attractive strategies, as it is atom economic and targets the most prevalent chemical bonds. However, applying this approach to peptides represents a unique challenge, not only because of the range of functional groups present that can deactivate many catalysts, but also because of the low reactivity of $\mathrm{C}-\mathrm{H}$ bonds and the difficulty of achieving selectivity. ${ }^{[3]}$ The introduction of an azide is of particular interest as it is one of the synthetically most useful functional groups and can undergo multiple transformations. ${ }^{[4]}$ However, despite impressive progress in the field of $\mathrm{C}-\mathrm{H}$ azidation, most methods remain limited to less functionalized small organic molecules and terpene derivatives. ${ }^{[5]}$

As hypervalent iodine reagents are highly functional group tolerant and relatively non-toxic, they have been used for the functionalization of amino acids-containing biomolecules. ${ }^{[6]}$ The combination of hypervalent iodine/azide chemistry has demonstrated to be powerful for the azidation of small organic molecules. ${ }^{[7]}$ In 1994, Magnus and co-workers reported the azidation of cyclic amines using a mixture of $(\mathrm{PhIO})_{n} / \mathrm{TMSN}_{3}$ in dichloromethane at low temperature. ${ }^{[8]}$ This methodology was also applied on proline derivatives, generating δ-azido amino acids as mixtures of diastereoisomers (Scheme 1a). ${ }^{[9]}$ A large
[a] Dr. E. M. D. Allouche, R. Simonet-Davin, Prof. Dr. J. Waser
Laboratory of Catalysis and Organic Synthesis
Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne (Switzerland)
E-mail: jerome.waser@epfl.ch
Homepage: http://lcso.epfl.ch/
Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem. 202200368
ก © 2022 The Authors. Chemistry - A European Journal published by Wiley$V C H G m b H$. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a) d-azidation of L-proline methyl esters

b) Visible-light-promoted radical azidation of tertiary aliphatic C-H bonds

c) This work: Selective d-azidation of peptides and post-functionalizations O

- Complete selectivity for the N -terminal residue
- Only commercially available reagents used
- Access to diversified peptides
- Diastereoisomers separable

Scheme 1. a) δ-azidation of L-proline methyl esters. b) Azidation of tertiary C-H bonds in leucine-containing peptides. c) This work: N -terminal selective δ-azidation of L-proline-containing peptides as a platform for the formation of diversified scaffolds. $\mathrm{PG}=$ protecting group.
amount of a mixture of PhIO (2.4 to 5 equivalents) and TMSN_{3} (4.8 to 10 equivalents) was used at $-40^{\circ} \mathrm{C}$ overnight, the in situ generated diazidated intermediate being highly explosive above $-20^{\circ} \mathrm{C}$. ${ }^{[10]}$ In 2016, Chen and co-workers described a visible-light-promoted azidation of tertiary $\mathrm{C}-\mathrm{H}$ bonds and applied the strategy on two examples of leucine-containing dipeptides (Scheme 1b). ${ }^{[1]]}$ The Zhdankin reagent 1-azido-1,2-benziodoxole-3-(1H)-one (ABX, 1$)^{[5 a]}$ was used as HAT as well as
azide transfer reagent. To the best of our knowledge, this is the only example of $\mathrm{C}-\mathrm{H}$ azidation performed on a peptide, despite the high potential of such a strategy for late-stage peptide diversification. ${ }^{[12]}$

Herein, we describe a N-terminal selective azidation of proline-containing peptides using only stable and commercially available reagents (Scheme 1c). By generating the active hypervalent iodine compound in situ, we avoid the hazard associated with isolated reagents. This methodology, applied on up to 6 amino acids long peptides, allows the generation of azidated peptides that can undergo multiple transformations, providing an easy access to modified peptides. Beside classical cycloaddition reactions with alkynes, new C-C bonds were also generated via a sequence of imine formation/nucleophilic addition based on the leaving group ability of the azide. ${ }^{[13,14]}$

Before moving to peptide substrates, we started our investigations by testing azidated cyclic hypervalent iodine reagents on prolines derivatives to develop safer and more convenient conditions for $C-H$ azidation. In fact, $A B X$ (1) is thermally stable up to $120^{\circ} \mathrm{C}$, even if care has to be used when handling highly pure crystalline compound, as it is sensitive to shock and friction. ${ }^{[15]}$ Cbz-Pro-OMe 3 was treated with two equivalents of $A B X$ (1) using dichloromethane as the solvent. While low reactivity was observed at room temperature (Table S1, Entry 1), 4 was obtained in a $45 \%{ }^{1} \mathrm{H}$ NMR yield as a mixture of diastereoisomers after overnight reaction at $45^{\circ} \mathrm{C}$ (Table 1, Entry 2). The desired product 4 was generated in 50% yield when the reaction was performed at $60^{\circ} \mathrm{C}$ in dichloroethane (Table 1, Entry 3). Warming up the mixture at $80^{\circ} \mathrm{C}$ led

$\begin{aligned} & R=M e, 3 \\ & R=H, 5 \end{aligned}$					 ABX (1) ABZ (2) t Yield ${ }^{[a]}$ Remaining $S M^{[a]}$	
Entry	R	Azide source	Additives	Solvent $\mathrm{T}^{\circ} \mathrm{C}$		
1	Me	ABX (1)	-	$\begin{aligned} & \mathrm{DCM} \\ & \mathrm{rt} \end{aligned}$	$<5 \%$	>95\%
2	Me	ABX (1)	-	$\begin{aligned} & \mathrm{DCM} \\ & 40^{\circ} \mathrm{C} \end{aligned}$	45\%	51\%
3	Me	ABX (1)	-	$\begin{aligned} & \text { DCE } \\ & 60^{\circ} \mathrm{C} \end{aligned}$	50\%	50\%
4	Me	ABX (1)	-	$\begin{aligned} & \text { DCE } \\ & 80^{\circ} \mathrm{C} \end{aligned}$	40\%	36\%
5	Me	ABZ (2)	-	$\begin{aligned} & \text { DCE } \\ & 60^{\circ} \mathrm{C} \end{aligned}$	<5\%	> 95%
6	Me	TMSN ${ }_{3}$	2-iodobenzoic acid m CPBA	$\begin{aligned} & \text { DCE } \\ & 60^{\circ} \mathrm{C} \end{aligned}$	50\%	50\%
$7{ }^{\text {b] }}$	H	TMSN ${ }_{3}$	2-iodobenzoic acid m CPBA	$\begin{aligned} & \text { DCE } \\ & 60^{\circ} \mathrm{C} \end{aligned}$	35\%	26\%
8	H	ABX (1)	-	$\begin{aligned} & \text { DCE } \\ & 60^{\circ} \mathrm{C} \end{aligned}$	traces	42\%
9	Me	TMSN ${ }_{3}$	$m C P B A$	$\begin{aligned} & \text { DCE } \\ & 60^{\circ} \mathrm{C} \end{aligned}$	0\%	>95\%

Reactions run on 0.1 mmol scale. 1:1 mixtures of diastereoisomers were obtained. O/N: overnight. [a] Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. [b] Reaction run on 0.4 mmol scale.
to the degradation of both starting material 3 and desired product 4 (Table 1, Entry 4). As we were also concerned about the explosivity of $A B X(1)$ when manipulated as a solid, ${ }^{[15]}$ we tested the more stable azidobenziodazolone ($A B Z, 2$) but less than 5% of 4 were generated (Table 1, Entry 5). We thus envisaged the in situ generation of ABX from stable and commercially available reagents. With the mixture 2-iodobenzoic acid $/ m-C P B A / T M S N_{3}$ (2 equivalents of each), azidated compound 4 was formed in a 50% yield, the same amount of starting material being recovered after the overnight reaction at $60^{\circ} \mathrm{C}$ (Table 1, Entry 6). Interestingly, only two equivalents of TMSN_{3} were needed compared to ten equivalents in Magnus' method to obtain a comparable yield (Scheme 1b). ${ }^{[9]}$ Despite an extensive optimization ${ }^{[16]}$ and similarly to Magnus' work, further increase in conversion for this substrate was not possible. Interestingly, when the reaction was performed on the free acid proline 5, azidated compound 6 was observed in a 35% yield (Table 1, Entry 7) while only traces were generated when ABX (1) was used despite conversion of 5 (Table 1, Entry 8). A control experiment showed that all of the starting material 3 was recovered when the reaction was run without 2-iodobenzoic acid (Table 1, Entry 9), supporting the hypothesis of an in situ formation of the ABX reagent. When a catalytic amount of 2iodobenzoic acid was used however, the reaction was not as efficient. ${ }^{[16,17]}$

We then studied the influence of both acid and amine protecting groups (Scheme 2). The variation of the ester part did not have any effect on the outcome of the reaction: methyl ester 4 and benzyl ester 7 were isolated in 36% and 40% yields, respectively, as mixtures of diastereoisomers. On the other hand, the nature of the carbamate had an important influence on the efficiency of the reaction. ${ }^{[18]}$ As observed by Magnus and co-workers, ${ }^{[9]}$ the best result was obtained with a Boc protecting group, ${ }^{[16]}$ compound 8 being isolated in a 68% yield. The transformation was very clean, and only traces of α - and δ diazidated proline were observed. When the reaction conditions were applied to an α-methylated proline, compound 9 was obtained in a 72% yield as the only observed product. Finally, azidated Boc-Pro-OH 10 was obtained in $50 \%{ }^{1} \mathrm{H}$ NMR yield compared to 35% for Cbz proline (compound 6).

$\begin{aligned} & \mathrm{R}^{2}=\mathrm{Me}, 4 \\ & 36 \%(50 \%)^{[a]}, 1: 1 \mathrm{dr} \\ & \mathrm{R}^{2}=\mathrm{Bn}, 7 \\ & 40 \%(50 \%)^{[\mathrm{a]}}, 1: 1 \mathrm{dr} \end{aligned}$	$\mathbf{8 , 6 8 \%}{ }^{[b]}$ $\mathbf{9}, 72 \%$ $1: 1 \mathrm{dr}$ n.d. dr	$\begin{aligned} & R^{1}=C b z, 6 \\ & (35 \%)^{[a]}, \text { n.d. dr } \\ & R^{1}=\text { Boc, } 10 \\ & (50 \%)^{[a]}, \text { n.d. dr } \end{aligned}$

Scheme 2. Preliminary evaluation of the scope of proline derivatives. Reactions run on 0.4 mmol scale. Isolated yields. [a] ${ }^{1} \mathrm{H}$ NMR yield using mesitylene as internal standard. n.d. dr: dr not determined as complex mixtures of diastereoisomers and rotamers were obtained. [b] Traces of α and δ-diazidated product were observed.

We next examined a first simple dipeptide, Boc-ProGly-OMe (11) (Scheme 3a). In contrast to simple amino acids, dipeptide 11 has several $\mathrm{C}-\mathrm{H}$ bonds activated by a neighboring nitrogen atom. However, peptide 12 with azidation on proline exclusively was isolated as the only product in 57% yield. This result could be in principle rationalized by the electron-withdrawing effect of the ester group, diminishing the electron density of the α $\mathrm{C}-\mathrm{H}$ bond of the glycine residue. To test this hypothesis, the dipeptide Boc-ProPro-OMe (13) bearing two prolines was tested (Scheme 3b). To our surprise, only $\mathrm{C}-\mathrm{H}$ azidation of the N terminal proline bearing the Boc group was obtained to give 14 in 55% yield. Therefore, we speculated that the carbamate group was promoting $\mathrm{C}-\mathrm{H}$ functionalization, ${ }^{[19]}$ and decided to investigate other carbamate protected amino acid derivatives (Scheme 3c). Azidated Boc-Gly-OMe 15 and Boc-Gly-OBn 16 were obtained in 34% and 32% yields, respectively. ${ }^{[20]}$ When a diphenyl urea was used instead of the carbamate, a slight increase of yield to 39% was observed (compound 17). In the case of the dipeptide Boc-GlyPro-OMe, exclusive azidation on the N-terminal glycine was obtained to give 18 in 32% yield despite the lower reactivity of the Gly residue. Finally, when the reaction was applied on α-substituted amino acids, such as alanine, only traces of azidated compounds such as 19 were detected.

The compatibility of the reaction with other amino acids was then studied using N-terminal proline-containing dipeptides (Scheme 4). Ala, Val, Leu, Phe along with protected functionalized amino acids such as Ser, Glu and Lys were tolerated, providing dipeptides 20-26 in 58 to 77% yields. No side reactivity was observed even in presence of tertiary, α to heteroatom or benzylic $\mathrm{C}-\mathrm{H}$ bonds. The case of protected lysine

Scheme 3. Activating effect of the N-carbamate or urea. Reaction conditions: 0.4 mmol scale. Isolated yields. n.d. dr: dr not determined as complex mixtures of diastereoisomers and rotamers were obtained. [a] dr evaluated on the ${ }^{1} \mathrm{H}$ NMR of the isolated mixture as the crude mixture was too complex, the major diastereoisomer is represented. [b] ${ }^{1} \mathrm{H}$ NMR yield using mesitylene as internal standard, detected by HRMS.

Scheme 4. Scope of dipeptides. Reaction conditions: 0.4 mmol scale. Isolated yields. The major diastereoisomer is represented. n.d. dr: dr not determined as complex mixtures of diastereoisomers and rotamers were obtained. [a] Diastereoisomers separable by flash chromatography on silica gel. [b] Evaluation of the diastereomeric ratio according to isolated mass as crude compounds were obtained as complex mixture of diastereoisomers and rotamers. [c] Reaction done on 1.0 mmol scale.

26 is noteworthy, as no azidation was observed next to the primary Cbz protected amine. Interestingly, the presence of specific amino acids had a positive influence on the reaction. The transformation was particularly efficient in presence of Val and protected Ser (compounds 21 and 24). The same trend was in part observed for glycine-containing dipeptides: azidated Boc-GlyVal-OMe (27) and Boc-GlyLeu-Ot-Bu (28) were obtained in 41% and 34% yields, respectively. The reaction was scaled up to 1.0 mmol with no significant change in yield, allowing the isolation of $\mathbf{2 1}$ in 79% yield. All the products were obtained with very low diastereoselectivity. We were however pleased to find that the two stereoisomers were easily separable by flash chromatography on silica gel in most cases (20 to 25), providing diastereomeric pure compounds. Access to different stereoisomers is essential in the context of medicinal chemistry.

Once we had demonstrated the compatibility of the reaction with numerous amino acids, we applied the conditions on longer peptides (Scheme 5). Azidated tetramers 29 and 30 were obtained in 33% and 51% yields respectively, the efficiency of the reaction was improved by the presence of the valine residue at the second position as previously observed on dipeptides. Pentamer 31 was formed in around 45% yield while a decrease of the reaction efficiency to $\pm 25 \%$ yield was observed when hexamers were used as starting materials (compounds 32 and 33). It is worthy to note that similar yields were obtained despite the presence of protected Glu and Ser in

Scheme 5. Scope of larger peptides. dr not determined as complex mixture of diastereoisomers and rotamers were obtained. [a] Isolated yield on 0.4 mmol scale. [b] Reactions done on 0.1 mmol scale, yields determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. [c] Reactions done on 0.1 mmol scale, calibrated yields estimated by HPLC-UV $(210 \mathrm{~nm}))^{[16]}$
compound 33. While 30% non-reacted starting material remained when the reaction was applied on the pentamer, only small amounts ($<5 \%$) of unfunctionalized hexamers were observed. No other major peptidic product could be identified by HPLC ($<2 \%$), highlighting the high selectivity of the azidation. It is worthy to note that compounds $12,14,18$ and 32, bearing several positions that could be azidated in the reaction (Pro or Gly), were functionalized at the N-terminal residue only. We believe that this high selectivity is induced by the higher reactivity of carbamates when compared to amides.

Concerning the mechanism of the reaction and based on literature precedents, ${ }^{[18,21,22]}$ a cationic species is most probably generated after the oxidation of the proline δ-position or glycine α-position. The N-acyliminium formed could then be trapped by the nucleophilic azide to generate the azidated amino acid or peptide.

We next studied the derivatization of the azidated products (Scheme 6). We first performed a copper-catalyzed Huisgen [3+ 2] cycloaddition using diastereomeric pure compounds 21 a and 21 b (Scheme 6a and 6b). Both substrates were converted into triazoles $34 a$ and $34 b$ in $\geq 96 \%$ yield. ${ }^{[23]}$

In addition, we envisaged using these δ-azidated prolinecontaining peptides as masked imines to generate C-C bonds. ${ }^{[13]}$ To do so, the standard azidation conditions were used to synthesize 21 and triethylamine was added to the crude mixture after 24 h . Residual benzoic acid was removed using a filtration over a pad of silica. ${ }^{[16]}$ After evaporation, but no further purification, 21 (as a mixture of the two diastereoisomers) was dissolved in acetonitrile and treated with several nucleophiles in presence of a Lewis acid (Scheme $6 \mathrm{c}-\mathrm{f}$). Enol ethers, TMS-allyl, phenol and $\mathrm{BF}_{3} \mathrm{~K}$ salts were added to generate compounds $35-$ 39 as mixtures of diastereoisomers in good $58-69 \%$ yields over two steps. The presence of TMSOTf or $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ also triggered

b)

Scheme 6. Post-functionalization reactions: a) and b) cycloaddition reactions on single diastereoisomers 21 a and 21 b ; c) to e) nucleophilic substitutions on crude 21. O / N : overnight. n.d. dr: dr not determined as complex mixtures of diastereoisomers and rotamers were obtained. [a] Diastereomeric ratio evaluated by ${ }^{1} \mathrm{H}$ NMR of the purified mixture as the crude was too complex.

Boc deprotection. ${ }^{[24]}$ These two step procedures with a single purification at the end therefore resulted in a formal $\mathrm{C}-\mathrm{H}$ alkylation, allylation, arylation and alkenylation of N -terminal proline in a dipeptide. Two pathways can be envisaged for the addition of the C nucleophile: Boc deprotection could occur either before or after $\mathrm{C}-\mathrm{C}$ bond formation, going either through an imine or an N -acyliminium ion intermediate, respectively. When we attempted such reaction on a Cbz-protected substrate, traces of $\mathrm{C}-\mathrm{C}$ addition products were observed. This result indicated that the second process is possible, but the low yield observed does not allow to exclude cleavage of the carbamate first in the case of the Boc group. ${ }^{[25]}$

In summary, we have developed a new strategy for the $\mathrm{C}-\mathrm{H}$ azidation of proline-containing peptides using commercially available reagents. The reaction is compatible with numerous amino acids and up to 6 amino acids long peptides. Importantly, under the optimized reaction conditions, only the N-terminal residue was functionalized. Diastereomeric pure azidated dipeptides could be obtained by flash chromatography separation of the two stereoisomers. Cycloaddition reactions were performed along with new $\mathrm{C}-\mathrm{C}$ bond formations via an imine formation allowed by the donor property of the neighboring nitrogen and the leaving group ability of the azide. This methodology thus offers an easy access to diversified peptide scaffolds. ${ }^{[26]}$

Acknowledgements

We thank the Swiss National Science Foundation SNF (Sinergia CRSII5_171026) for financial support. E. M. D. A. would like to thank Ming-Ming Wang and Eliott Le Du for fruitful discussions, Elija Grinhagena for proofreading this manuscript and Dr. Stefano Nicolai for proofreading the Supporting Information. Open access funding provided by Ecole Polytechnique Federale de Lausanne.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are openly available in zenodo at 10.5281/zenodo.5975486, reference number 5975486.

Keywords: amino acids • azidation • C-H functionalization peptides • selectivity

[1] a) B. Leader, Q. J. Baca, D. E. Golan, Nat. Rev. Drug Discovery 2008, 7, 2139; b) P. J. Carter, Exp. Cell Res. 2011, 317, 1261-1269; c) A. A. Kaspar, J. M. Reichert, Drug Discovery Today 2013, 18, 807-817; d) K. Fosgerau, T. Hoffman, Drug Discovery Today 2014, 20, 122-128; e) J. R. Kintzing, M. V. Filsinger Interrante, J. R. Cochran, Trends Pharmacol. Sci. 2016, 37,

993-1008; f) N. Qvit, S. J. S. Rubin, T. J. Urban, D. Mochly-Rosen, E. R. Gross, Drug Discovery Today 2017, 22, 454-462; g) I. W. Hamley, Chem. Rev. 2017, 117, 14015-14041; h) H.A.D. Lagassé, A. Alexaki, V.L. Simhadri, N. H. Katagiri, W. Jankoski, F1000Research 2017, 6(F1000 Faculty Rev):113; i) M. Muttenthaler, G. F. King, D. J. Adams, P. F. Alewood, Nat. Rev. Drug Discovery 2021, 20, 309-325.
[2] a) J. N. deGruyter, L. R. Malins, P. S. Baran, Biochemistry 2017, 56, 38633873; b) A. Boto, C. C. Gonzalez, D. Hernandez, I. Romero-Estudillo, C. J. Saavedra, Org. Chem. Front. 2021, 8, 6720-6759.
[3] a) A. F. M. Noisier, M. A. Brimble, Chem. Rev. 2014, 114, 8775-8806; b) W. Wang, M. M. Lorion, J. Shah, A. R. Kapdi, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 14700-14717; Angew. Chem. 2018, 130, 14912-14930; c) S. Shabani, Y. Wu, H. G. Ryan, C. A. Hutton, Chem. Soc. Rev. 2021, 50, 9728-9343.
[4] For recent reviews, see: a) S. Brase, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188-5240; Angew. Chem. 2005, 117, 5320-5374; b) P. Sivaguru, Y. Ning, X. Bi, Chem. Rev. 2021, 121, 42534307.
[5] a) V. V. Zhdankin, A. P. Krasutsky, C. J. Kuehl, A. J. Simonsen, J. K. Woodward, B. Mismash, J. T. Bolz, J. Am. Chem. Soc. 1996, 118, 51925197 ; b) A. Sharma, J. F. Hartwig, Nature 2015, 517, 600-604; c) X. Y. Huang, T. M. Bergsten, J. T. Groves, J. Am. Chem. Soc. 2015, 137, 53005303; Reviews: d) X. Y. Huang, J. T. Groves, ACS Catal. 2016, 6, 751-759; e) M. Goswami, B. de Bruin, Eur. J. Org. Chem. 2017, 2017, 1152-1176.
[6] E. M. D. Allouche, E. Grinhagena, J. Waser, Angew. Chem. Int. Ed. 2022, 61, e202112287. DOI: 10.1002/anie.202112287.
[7] Selected seminal works where the combination hypervalent iodine reagent/azidation is used: a) E. Zbiral, G. Nestler, Tetrahedron 1970, 26, 2945-2951; b) J. Ehrenfreund, E. Zbiral, Tetrahedron 1972, 28, 16971704; c) J. Ehrenfreund, E. Zbiral, Annalen der Chemie-Justus Liebig 1973, 2, 290-300; d) M. Arimoto, H. Yamaguchi, E. Fujita, M. Ochiai, Y. Nagao, Tetrahedron Lett. 1987, 28, 6289-6292; e) R. M. Moriarty, R. K. Vaid, V. T. Ravikumar, B. K. Vaid, T. E. Hopkins, Tetrahedron 1988, 44, 1603-1607; f) P. Magnus, J. Lacour, J. Am. Chem. Soc. 1992, 114, 767-769; g) C. M. Pedersen, L. G. Marinescu, M. Bols, Org. Biomol. Chem. 2005, 3, 816-822.
[8] a) P. Magnus, C. Hulme, W. Weber, J. Am. Chem. Soc. 1994, 116, 45014502. For the azidation of acyclic amines, see:; b) P. Magnus, J. Lacour, W. Weber, J. Am. Chem. Soc. 1993, 115, 9347-9348.
[9] P. Magnus, C. Hulme, Tetrahedron Lett. 1994, 35, 8097-8100.
[10] We had an explosion in our laboratories while we were reproducing these conditions.
[11] Y. Wang, G.-X. Li, G. Yang, G. He, G. Chen, Chem. Sci. 2016, 7, 26792683.
[12] For photoinduced decarboxylative azidation strategies using sulfonyl azides, see: a) D. C. Marcote, R. Street-Jeakings, E. Dauncey, J. J. Douglas, A. Ruffoni, D. Leonori, Org. Biomol. Chem. 2019, 17, 1839-1842; b) E. Nyfeler, P. Renaud, Org. Lett. 2008, 10, 985-988.
[13] M.-M. Wang, T. V. T. Nguyen, J. Waser, J. Am. Chem. Soc. 2021, 143, 11969-11975.
[14] α-Azidated glyine derivatives were previously used as intermediates for the formation of new $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ bonds, see: a) E. Mabrouk, A. Elachqar, A. Alami, A. E. Hallaoui, S. E. Hajji, Orient. J. Chem. 2010, 26, 1249-1255; b) M. E. Houssine, E. Abdelrhani, A. Anouar, E. H. Abdelilah, Molecules 2010, 15, 9354-9363.
[15] S. Alazet, J. Preindl, R. Simonet-Davin, S. Nicolai, A. Nanchen, T. Meyer, J. Waser, J. Org. Chem. 2018, 83, 12334-12356.
[16] See the Supporting Information for details.
[17] a) T. Dohi, Y. Kita, Chem. Commun. 2009, 2073-2085; b) X. Li, P. Chen, G. Liu, Beilstein J. Org. Chem. 2018, 14, 1813-1825.
[18] Such carbamate influence was observed in the context of anodic oxidations, see: T. Shono, H. Hamaguchi, Y. Matsumura, J. Am. Chem. Soc. 1975, 97, 4264-4268.
[19] Such carbamate selectivity was also observed previously by Curci and co-workers during their work on dioxirane oxidation of peptides: C . Annese, L. D'Accolti, M. De Zotti, C. Fusco, C. Toniolo, P. G. Williard, R. Curci, J. Org. Chem. 2010, 75, 4812-4816.
[20] α-Azidated glycines are usually prepared via a 2 step sequence: photocatalyzed C-H bromination and nucleophilic substitution, see Ref. [14].
[21] For selected examples of electrochemical oxidation of proline derivatives, see: a) A. G. M. Barrett, J. Org. Chem. 1991, 56, 2787-2800; b) H. Sun, C. Martin, D. Kesselring, R. Keller, K. D. Moeller, J. Am. Chem. Soc. 2006, 128, 13761-13771; c) L. F. T. Novaes, J. S. K. Ho, K. Mao, K. Liu, M. Tanwar, M. Neurock, E. Villemure, J. A. Terrett, S. Lin, J. Am. Chem. Soc. 2022, 1187-1197.
[22] For selected examples of hypervalent iodine-mediated oxidation of cyclic amines, see: a) R. M. Moriarty, R. K. Vaid, M. P. Duncan, Tetrahedron Lett. 1988, 29, 6913-6916; b) Y. Zhu, L.-D. Shao, Z.-T. Deng, Y. Bao, X. Shi, Q.-S. Zhao, J. Org. Chem. 2018, 83, 10166-10174.
[23] A competitive experiment of 21 a with benzyl azide for the reaction with phenyl acetylene showed a comparable reactivity. See Supporting Information for details.
[24] a) A. J. Zhang, D. H. Russell, J. Zhu, K. Burgess, Tetrahedron Lett. 1998, 39, 7439-7442; b) E. F. Evans, N. J. Lewis, I. Kapfer, G. Macdonald, R. J. K. Taylor, Synth. Commun. 1997, 27, 1819-1825.
[25] a) S. Asada, M. Kato, K. Asai, T. Ineyama, S. Nishi, K. Izawa, T. Shono, J. Chem. Soc. Chem. Commun. 1989, 486-488; b) For a selected review, see: A. M. Jones, C. E. Banks, Beilstein J. Org. Chem. 2014, 10, 3056-3072.
[26] Raw data for NMR, IR, HPLC and MS are available at zenodo.org, https:// doi.org/10.5281/zenodo.5975486.

Manuscript received: February 6, 2022
Accepted manuscript online: February 9, 2022
Version of record online: February 23, 2022

Table of contents

1. General information 2
2. Starting materials preparation 3
2.1 General procedures for amino acids and peptides synthesis 3
2.2 Starting amino acids and peptides characterization data 6
2.3 Calibration curves for peptides 59, 60 and 61 25
2.3 Procedures for the synthesis of $A B X$ (1) and $A B Z$ (2) 27
3. Optimization of the $\mathrm{C}-\mathrm{H}$ azidation reaction 30
4. Scope of the azidation reaction 34
4.1 General procedures 34
4.2 Characterization data 35
4.3 Yields evalutation and characterization data for compounds 31, 32 and 33 55
5. Post-functionalizations 59
5.1 Huisgen [3+2]-cycloadditions 59
5.2 Nucleophilic susbtitutions. 61
6. Competitive Huisgen [3+2]-cycloaddition experiment 66
7. NMR spectra 67

1. General information

All reactions using anhydrous conditions were carried out in oven-dried glassware under an atmosphere of nitrogen using standard techniques for the manipulation of air-sensitive compounds. Anhydrous dichloromethane was taken from a commercial SPS solvent dispenser $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content < 10 ppm , Karl-Fischer titration). Anhydrous 1,2-dichloroethane, dimethylformamide, acetonitrile, tetrahydrofuran and methanol were from chemical suppliers (Acros Organics). All reagent-grade chemicals were obtained from commercial suppliers (Acros, Aldrich, Fluka, VWR, Fluorochem, Combi-Blocks an Merck) and were used as received unless otherwise stated. Chromatographic purifications of products were accomplished using flash chromatography (FC) on SiliaFlash P60 silica gel (230-400 mesh) unless stated otherwise. For thin layer chromatography (TLC) analysis, pre-coated TLC sheets ALUGRAM ${ }^{\circledR}$ Xtra SIL G/UV 254 were employed, using UV light as the visualizing agent and iodine, CAN or basic aqueous potassium permanganate stain solutions, and heat as developing agents.

The NMR spectra were recorded on Brucker DPX-400 and AV NEO-400 spectrometers (400 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$) at the specified temperature in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ or MeOD- d_{4}. All signals are reported in ppm using the residual $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}: \delta 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta 77.16 \mathrm{ppm}\right)$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left({ }^{1} \mathrm{H}: \delta 5.32 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta 53.84 \mathrm{ppm}\right), \mathrm{MeOH}\left({ }^{1} \mathrm{H}: \delta 3.31 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta 49.00 \mathrm{ppm}\right)$ as references. The coupling constants (J) are reported in Hz . The following abbreviations were used to explain the multiplicities: app. = apparent, $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triplet of doublet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of doublet of doublet, $m=$ multiplet. When applicable, high temperatures ${ }^{1} \mathrm{H}$ NMR experiments were performed to determine if mixtures of rotamers or diastereoisomers were obtained. Melting points were measured on a Büchi B-540 melting point apparatus using open glass capillaries and are uncorrected. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as $\mathrm{cm}^{-1}(\mathrm{w}=$ weak, $m=$ medium, $s=$ strong, $b r=b r o a d)$. High-resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on LTQ Orbitrap ELITE ETD (Thermo fisher), Xevo G2-S QTOF (Waters), or LTQ Orbitrap ELITE ETD (Thermo fisher).

HPLC-MS measurements for azidated pentameres and hexamers were performed on an Agilent 1290 Infinity HPLC system with a G4226A 1290 Autosampler, a G4220A 1290 Bin Pump and a G4212A 1290 DAD detector, connected to a 6130 Quadrupole LC/MS, coupled with a Waters XBridge C18 column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$). Water:acetonitrile $95: 5+0.1 \%$ formic acid (solvent A), water:acetonitrile 5:95 + 0.1\% formic acid (solvent B) were used as the mobile phase at a flow rate of $0.6 \mathrm{~mL} / \mathrm{min}$. The gradient was programmed as follow: Method 1: 100% A to 50% A in 2.5 min , then 50% A to 25% A in 20 min , then 25% A to 100% B in 2.5 min , then 100% B for 5 minutes; Method 2: 100\% A to 70% A in 2.5 min , then 70% A to 60% A in 50 min , then 60% A to 100% B in 2.5 min, then 100% B for 5 minutes; Method 3: 100% A to 100% B in 20 minutes, then 100% B for 5 minutes.
The column temperature was set to $25^{\circ} \mathrm{C}$. Low resolution mass spectrometric measurements were acquired using the following parameters: positive electrospray ionization (ESI),
temperature of drying gas $=350^{\circ} \mathrm{C}$, flow rate of drying gas $=12 \mathrm{~L} \mathrm{~min}^{-1}$, pressure of nebulizer gas $=60 \mathrm{psi}$, capillary voltage $=2500 \mathrm{~V}$ and fragmentor voltage $=70 \mathrm{~V}$.

When the reaction was performed on pentameres and hexameres, as the products were not isolated, the regioselectivity of the azidation was confirmed using MS/MS analysis. The spectra were obtained by the mass spectrometry service of ISIC at the EPFL using Thermo Orbitrap Elite instrument. The desired ion was selected using mass filters and submitted to fragmentations. The obtained data was analyzed using fragment generation program on eln.epfl.ch. ${ }^{1}$ For the calculations peak threshold for intensity was set to 0.01% for quantity, precision was set to 5 ppm and minimal similarity: 70%. The peaks were compared to theoretical peaks. The theoretical peak width was calculated from the mass of the ion by the formula provided in the script. The zone was set to -0.5 to 2.5 ppm . y and b fragments with and without the azide group were selected and reported.

2. Starting materials preparation

(Benzyloxy)carbonyl)-L-proline 5 and (tert-butoxycarbonyl)-L-proline were obtained from Combi-Blocks and were used as received.

2.1 General procedures for amino acids and peptides synthesis

General procedure A for the methylation of amino acids and peptides

Using a slightly modified literature procedure, ${ }^{2}$ potassium carbonate (2.0 equiv) was added to a stirred solution of the chosen free acid (1.0 equiv) in dry dimethylformamide (0.6 M). To this suspension, a solution of iodomethane (4.2 equiv) in dry dimethylformamide (2.5 M) was added dropwise using a syringe. The reaction was stirred at room temperature overnight under a nitrogen atmosphere. The solvent was then removed under reduced pressure and the crude mixture was dissolved in ethyl acetate, washed with water and brine several times and extracted twice. The combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to afford the desired compound which was used without any further purification.

[^0]
General procedure B for the benzylation of amino acids

Cesium carbonate (0.600 equiv) was added to a stirred solution of the chosen free acid (1.00 equiv) in dry dimethylformamide (0.430 M). The suspension was stirred 15 minutes before the dropwise addition of benzyl bromide (1.05 equiv) via syringe. The reaction was stirred at room temperature overnight under a nitrogen atmosphere. The mixture was then diluted with water and extracted twice with ethyl acetate. The combined organic layers were washed successively with water and brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel.

General procedure C for the Boc protection of amino acids

Using a slightly modified literature procedure, ${ }^{3}$ to a solution of the chosen substrate (1.0 equiv) in dry dichloromethane (0.27 M) cooled down to $0^{\circ} \mathrm{C}$ using an ice bath, were added di-tert-butyldicarbonate (2.2 equiv), triethylamine (2.2 equiv) and 4 -(dimethylamino)pyridine (1.1 equiv). The cooling bath was removed and the reaction was stirred overnight under a nitrogen atmosphere. The reaction mixture was then diluted with dichloromethane, washed consecutively with aqueous 1 N hydrochloric acid and saturated sodium carbonate solutions, dried over magnesium sulfate and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel.

[^1]
General procedure D for the synthesis of dipeptides and tetramers

Using a slightly modified literature procedure, ${ }^{4}$ to a solution of the chosen acide (1.0 equiv) in dry dichloromethane (0.16 M) cooled down to $0{ }^{\circ} \mathrm{C}$ using an ice bath, were added N, N diispopropylethylamine (DIPEA, 3.0 equiv), the chosen amine hydrochloride salt (1.0 equiv), 1-hydroxybenzotriazole (HOBt, 1.1 equiv) and 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (EDC•HCl, 1.0 equiv). The cooling bath was removed and the reaction was stirred overnight under a nitrogen atmosphere. The reaction mixture was then quenched with a saturated sodium carbonate solution and extracted twice with ethyl acetate. The combined organic layers were washed consecutively with $10 \mathrm{wt} \%$ aqueous citric acid solution and brine, dried over magnesium sulfate and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel.

General procedure \mathbf{E} for the synthesis of pentamers and hexamers

Solid-Phase Peptide Synthesis (SPPS): Pentamers and hexamers were synthesized on an Advanced ChemTech $348-\Omega$ parallel peptide synthesizer (AAPPTec) using standard Fmoc SPPS-chemistry and 2-chlorotrityl chloride resin (100-200 mesh, 1% DVB, $1.0-1.6 \mathrm{mmol} \mathrm{Cl} / \mathrm{g}$). Inside each SPPS syringe were manually added 70 mg of resin (c.a. $80 \mu \mathrm{~mol}, 1.0$ equiv), followed by the chosen C-terminal Fmoc-protected monomer ($0.32 \mathrm{mmol}, 4.0$ equiv), N, N diispopropylethylamine ($79 \mu \mathrm{~L}, 0.48 \mathrm{mmol}, 6.0$ equiv) and dichloromethane ($0.04 \mathrm{M}, 2.0 \mathrm{~mL}$). The syringes were shacked for 2 hours and the resin was washed with dimethylformamide (5 $\times 3.0 \mathrm{~mL}$) and dichloromethane ($5 \times 3.0 \mathrm{~mL}$). Capping was performed using a mixture $\mathrm{Ac}_{2} \mathrm{O}: 2,6-$ lutidine:DMF (5:6:89) and the resin was washed with dimethylformamide ($4 \times 3.0 \mathrm{~mL}$). Fmoc protecting group was then removed by shaking the resin with $20 \% \mathrm{v} / \mathrm{v}$ piperidine in dimethylformamide at 400 rpm 5 minutes. After dimethylformamide ($5 \times 3.0 \mathrm{~mL}$) and dichloromethane ($5 \times 3.0 \mathrm{~mL}$) washes, the next coupling was carried out by shaking the resin with the chosen Fmoc-protected monomer ($0.32 \mathrm{mmol}, 4.0$ equiv), 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU, $0.32 \mathrm{mmol}, 4.0$ equiv) and 4 -methylmorpholine (NMM, 0.48 $\mathrm{mmol}, 6.0$ equiv) in dimethylformamide ($6.0 \mathrm{mM}, 1.3 \mathrm{~mL}$) at 400 rpm 30 minutes. The capping, Fmoc removal and coupling steps were repeated 4 or 5 times to obtain pentamers and hexamers, respectively. As only N-terminal Boc-proline-containing peptides were synthesized, the final coupling was performed with Boc-Pro-OH each time.

[^2]Peptide cleavage: Peptides were cleaved from the resin by treatment with a 4:1 dichloromethane:hexafluoroisopropanol mixture (1.0 mL). The resulting suspension was shaken 3 hours at 400 rpm at room temperature. The resin was removed by filtration and peptides were precipitated in cold diethyl ether (20 mL). Peptides were pelleted by centrifugation at 4000 rpm for 5 minutes at $4^{\circ} \mathrm{C}$. Finally, the mother liquors were carefully removed and crude peptides were dried under vacuum. In absence of precipitation in diethyl ether, everything was evaporated and dried under vacuum.

Crude peptides were then directly methylated using general procedure \mathbf{A}.

2.2 Starting amino acids and peptides characterization data

1-Benzyl 2-methyl (S)-pyrrolidine-1,2-dicarboxylate (5)

(Benzyloxy)carbonyl)-L-proline 5 ($1.0 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv) was weighed in an oven-dried 20 mL microwave vial equipped with a magnetic stir bar and dissolved with 8.0 mL of anhydrous methanol. Sulphuric acid ($2.0 \mathrm{~mL}, 37 \mathrm{mmol}, 9.3$ equiv) was added dropwise and the reaction was stirred 19 hours at room temperature under a nitrogen atomosphere. The reaction mixture was then poured onto crushed ice and the mixture was extracted twice with diethylether. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to afford crude 1-benzyl 2-methyl (S)-pyrrolidine-1,2dicarboxylate 3 as a clear oil ($1.1 \mathrm{~g}, 4.0 \mathrm{mmol}, 99 \%$) which was used without further purification.
${ }^{1} \mathrm{H}$ NMR (400 MHz , 298 K , mixture of two rotamers) $\delta 7.39-7.27$ (m, 5H, ArH), 5.23-4.99 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), 4.39 (dd, $J=8.6,3.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 4.33 (dd, $J=8.6,3.8 \mathrm{~Hz}$, $0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.73 ($\mathrm{s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}$), $3.66-3.59$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.57 (s, $1.5 \mathrm{H}, \mathrm{OCH}_{3}$), $3.55-3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $2.31-2.12(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $2.07-1.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 173.4(\mathrm{Cq}), 173.2(\mathrm{Cq}), 155.0(\mathrm{Cq})$, 154.4 (Cq), 136.8 (Cq), 136.7 (Cq), 128.5 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.97 (CH), $127.9(\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}\right), 67.0\left(\mathrm{CH}_{2}\right), 59.3(\mathrm{CH}), 58.9(\mathrm{CH}), 52.3\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 47.0\left(\mathrm{CH}_{2}\right), 46.5$ $\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{5}$

[^3]
Dibenzyl (S)-pyrrolidine-1,2-dicarboxylate (40)

Prepared according to the general procedure B from ((benzyloxy)carbonyl)-L-proline (1.5 g , $6.0 \mathrm{mmol}, 1.0$ equiv), benzyl bromide ($0.75 \mathrm{~mL}, 6.3 \mathrm{mmol}, 1.1$ equiv), cesium carbonate (1.2 $\mathrm{g}, 3.6 \mathrm{mmol}, 0.60$ equiv) in N, N-dimethylformamide (14 mL). The crude mixture was purified by flash chromatography on silica gel using dichloromethane as eluent to afford dibenzyl (S)-pyrrolidine-1,2-dicarboxylate 40 ($1.8 \mathrm{~g}, 5.4 \mathrm{mmol}, 90 \%$) as a yellowish oil.

Rf (dichloromethane): $0.11 .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, mixture of two rotamers) $\delta 7.32$ - 7.11 (m, 10H, ArH), $5.19-4.89\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.37$ (dd, J = 8.6, $3.4 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 4.30 (dd, J = 8.6, 3.8 Hz, $0.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.61-3.49$ (m, 1H, $\mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.49-3.31$ (m, 1H, $\mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.24-2.03(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $2.01-1.71$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 172.8(\mathrm{Cq})$, 172.6 (Cq), 155.0 (Cq), 154.4 (Cq), 136.8 (Cq), 136.7 (Cqj), 135.9 (Cq), 135.7 (Cqj), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.22 (CH), 128.17 (CH), 128.1 (CH), 128.1 $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}\right), 67.08\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 59.4(\mathrm{CH}), 59.1(\mathrm{C})$, $47.1\left(\mathrm{CH}_{2}\right), 46.6\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{6}$

2-Benzyl 1-(tert-butyl) (S)-pyrrolidine-1,2-dicarboxylate (41)

Boc
Prepared according to the general procedure \mathbf{C} from benzyl L-prolinate hydrochloride (0.75 g , $3.0 \mathrm{mmol}, 1.0$ equiv), di-tert-butyldicarbonate ($1.5 \mathrm{~g}, 6.6 \mathrm{mmol}, 2.2$ equiv), triethylamine (0.90 $\mathrm{mL}, 6.6 \mathrm{mmol}, 2.2$ equiv) and 4 -(dimethylamino)pyridine ($0.41 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) in dichloromethane (11 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 9:1 as eluent to afford 2-benzyl 1-(tert-butyl) (S)-pyrrolidine-1,2-dicarboxylate 41 as a yellow liquid ($0.89 \mathrm{~g}, 2.9 \mathrm{mmol}, 98 \%$).

Rf (pentane/ethyl acetate 9:1): $=0.31 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} 298 \mathrm{~K}\right.$, mixture of two rotamers) $\delta 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.32-5.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.38$ (dd, $J=8.7,3.4 \mathrm{~Hz}$, $0.4 \mathrm{H}, \quad \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})_{\text {rotamermin }}$), 4.26 (dd, $J=8.6,3.9 \mathrm{~Hz}, 0.6 \mathrm{H}$,

[^4]$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})_{\text {rotamermaj }}$), $3.64-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $2.27-2.12(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $2.03-1.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right.$), 1.46 (s, 3.6H, CH ${ }_{3 \text { Bocrotamermin }}$), 1.34 ($\mathrm{s}, 5.4 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermaj) }}$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 173.2$ (Cqrotamermaj), 172.9 (Cqrotamermin), 154.5 (Cqrotamermin), 153.9 (Cqrotamermaj), 136.0 (Cqrotamermin), 135.8 (Cqrotamermaj), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 80.0 (Cqrotamermaj), 79.9 (Cqrotamermin), $66.8\left(\mathrm{CH}_{2}\right), 59.3\left(\mathrm{CH}_{\text {rotamermaj }}\right)$, $59.0\left(\mathrm{CH}_{\text {rotamermin }}\right), 46.7\left(\mathrm{CH}_{\text {2rotamermin }}\right), 46.5\left(\mathrm{CH}_{2 \text { rotamermaj }}\right), 31.0$ ($\mathrm{CH}_{2 \text { rotamermaj }}$), 30.0 ($\mathrm{CH}_{2 \text { rotamermin }}$), 28.6 ($\mathrm{CH}_{3 \text { rotamermin }}$), 28.4 ($\mathrm{CH}_{3 \text { rotamermaj }}$), 24.4 ($\mathrm{CH}_{2 \text { rotamermin }}$), 23.7 ($\mathrm{CH}_{2 \text { rotamermal }}$).

NMR spectra are in agreement with the reported data. ${ }^{7}$

1-(tert-Butyl) 2-methyl (S)-2-methylpyrrolidine-1,2-dicarboxylate (42)

Prepared according to the general procedure C from methyl (S)-2-methylpyrrolidine-2carboxylate hydrochloride ($0.54 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), di-tert-butyldicarbonate ($1.5 \mathrm{~g}, 6.6$ mmol, 2.2 equiv), triethylamine $(0.90 \mathrm{~mL}, 6.6 \mathrm{mmol}, 2.2$ equiv) and 4 (dimethylamino) pyridine ($0.41 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) in dichloromethane (11 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from dichloromethane to dichloromethane/methanol 98:2 as eluent to afford 1-(tert-butyl) 2methyl (S)-2-methylpyrrolidine-1,2-dicarboxylate 42 as a yellow liquid ($0.26 \mathrm{~g}, 1.0 \mathrm{mmol}$, 35\%).

Rf (dichloromethane/methanol 98:2): = 0.52. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, mixture of two rotamers) $\delta 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62-3.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{O})\right), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCC}(\mathrm{O})$), $1.96-1.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCC}(\mathrm{O})\right.$), 1.54 (s, $0.9 \mathrm{H}, \mathrm{CH}_{\text {3rotamermin }}$), 1.49 ($\mathrm{s}, 2.1 \mathrm{H}, \mathrm{CH}_{3 \text { rotamermaj }}$), 1.42 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermin }}$), 1.39 ($\mathrm{s}, 6 \mathrm{H}$, $\mathrm{CH}_{3 \text { Bocrotamermaj }}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 175.5$ (Cqrotamermaj), 175.3 (Cqrotamermin), 154.0 (Cqrotamermin), 153.7 (Cqrotamermaj), 80.0 (Cqurotamermaj $)$, 79.6 (Cqrotamermin $), 65.3$ (Cqrotamermin $), 64.9$ (Cqrotamermaj $)$, 52.3 ($\mathrm{CH}_{\text {3rotamermin }}$), 52.2 ($\mathrm{CH}_{\text {3rotamermaj }}$), 48.0 ($\mathrm{CH}_{2 \text { rotamermin }}$), 47.8 ($\left.\mathrm{CH}_{2 \text { rotamermaj }}\right)$, 40.3 ($\left.\mathrm{CH}_{2 \text { rotamermaj }}\right), \quad 39.3\left(\mathrm{CH}_{2 \text { rotamermin }}\right), 28.5$ ($\mathrm{CH}_{\text {3rotamermin }}$), 28.4 ($\mathrm{CH}_{3 \text { rotamermaj }}$), 23.5 ($\left.\mathrm{CH}_{\text {2rotamermin }}\right), 23.3$ ($\left.\mathrm{CH}_{3 \text { rotamermaj }}\right)$, 22.9 ($\mathrm{CH}_{\text {2rotamermaj }}$), 22.4 ($\mathrm{CH}_{\text {3rotamermin }}$). IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$) 2980 (m), 2889 (w), 1743 (s$), 1698$ (s$), 1390$ (s$), 1367$ (s$)$, 1165 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NNaO}_{4}{ }^{+}$266.1363; Found 266.1366.

[^5]

Prepared according to the general procedure A from (tert-butoxycarbonyl)-L-prolylglycine ($0.82 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), iodomethane ($0.75 \mathrm{~mL}, 12 \mathrm{mmol}, 4.0$ equiv), potassium carbonate ($0.83 \mathrm{~g}, 6.0 \mathrm{mmol}, 2.0$ equiv) in N, N-dimethylformamide ($2 \times 4.7 \mathrm{~mL}$). tert-butyl (S)-2-((2-methoxy-2-oxoethyl)carbamoyl)pyrrolidine-1-carboxylate 11 ($0.63 \mathrm{~g}, 2.2 \mathrm{mmol}, 73 \%$) was obtained as a yellow sticky oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 7.29$ (s, 0.5H, NH), 6.53 (s, 0.5H, NH), 4.33-4.26 (br m, 1H, NCH2CH2CH2CH ProC(O)), 4.16-3.86(m,2H, NHCH ${ }_{2 \mathrm{Gly}} \mathrm{C}(\mathrm{O})$), 3.74 (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.55-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{ProCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), 2.41 - 2.05 (br m, 1H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}$ ProCHC(O)), $1.94-1.76$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}_{\text {pro }} \mathrm{CHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{ProCH}_{2} \mathrm{CHC}(\mathrm{O})$), $1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \text { Boc }}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 173.1$ (Cq), 172.5 (Cq), 170.3 (Cq), 156.0 (Cq), 154.8 (Cq), 80.7 (Cq), 61.2 (CH), $60.1(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 47.3\left(\mathrm{CH}_{2}\right), 41.3\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{8}$

tert-Butyl (S)-2-((S)-2-((benzyloxy)carbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1carboxylate (13)

Prepared according to the general procedure \mathbf{D} from (tert-butoxycarbonyl)-L-proline (0.65 g , $3.0 \mathrm{mmol}, 1.0$ equiv), benzyl L-prolinate hydrochloride ($0.73 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine $(1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 1:1 as eluent to afford tert-butyl (S)-2-((S)-2-((benzyloxy)carbonyl)pyrrolidine-1carbonyl) pyrrolidine-1-carboxylate $13(0.93 \mathrm{~g}, 2.3 \mathrm{mmol}, 77 \%)$ as a yellowish sticky oil.

Rf (pentane/ethyl acetate 1:1): 0.26. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.19$ (dd, $J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHPh}), 5.08(\mathrm{dd}, J=$

[^6]12.2, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHHPh}), 4.60-4.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHC}(\mathrm{O})), 3.81-3.57(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right)$, $3.52-3.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 2.32-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 2.10-1.73$ ($\mathrm{m}, 6 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} \mathrm{HCHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 1.45 (s, $4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Boc}$), 1.39 (s, 5H, CH3 3 Boc). ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD-d ${ }_{4}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 173.9$ (Cq), 173.4 (Cq), 173.4 (Cq), $173.2(\mathrm{Cq}), 156.2(\mathrm{Cq}), 155.6(\mathrm{Cq}), 137.2(\mathrm{Cq}), 137.2(\mathrm{Cq}), 129.6$ $(\mathrm{CH}), 129.4(\mathrm{CH}), 129.4(\mathrm{CH}), 81.3(\mathrm{Cq}), 81.2(\mathrm{Cq}), 68.0\left(\mathrm{CH}_{2}\right), 67.9\left(\mathrm{CH}_{2}\right), 60.6(\mathrm{CH}), 59.3(\mathrm{CH})$, $59.1(\mathrm{CH}), 48.2\left(\mathrm{CH}_{2}\right), 48.0\left(\mathrm{CH}_{2}\right), 47.9\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.8$ $\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right) . \operatorname{IR}\left(v_{\max }, \mathrm{cm}^{-1}\right) 2974(\mathrm{w}), 2881$ (w), 1743 (m), 1693 (s), 1658 (s), 1396 (s), 1165 (s), 1122 (m), 741 (m), 698 (m). HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+} 425.2047$; Found 425.2053.

Methyl (tert-butoxycarbonyl)glycinate (43)

Prepared according to the general procedure A from (tert-butoxycarbonyl)glycine (1.0 g, 5.7 $\mathrm{mmol}, 1.0$ equiv), iodomethane ($1.4 \mathrm{~mL}, 23 \mathrm{mmol}, 4.0$ equiv), potassium carbonate ($1.6 \mathrm{~g}, 11$ mmol, 2.0 equiv) in N, N-dimethylformamide ($2 \times 9.0 \mathrm{~mL}$). Methyl (tertbutoxycarbonyl)glycinate 43 ($1.1 \mathrm{~g}, 5.7 \mathrm{mmol}$, quant.) was obtained as a yellowish liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 5.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.92\left(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O})\right.$), 3.75 (s, 3H, OCH 3), 1.45 (s, 9H, CH ${ }_{3 \text { вос }}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 171.0(\mathrm{Cq}), 155.8$ $(\mathrm{Cq}), 80.1(\mathrm{Cq}), 52.3\left(\mathrm{CH}_{3}\right), 42.4\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{9}$

Benzyl (tert-butoxycarbonyl)glycinate (44)

Prepared according to the general procedure \mathbf{B} from (tert-butoxycarbonyl)glycine ($0.53 \mathrm{~g}, 3.0$ $\mathrm{mmol}, 1.0$ equiv), benzyl bromide ($0.38 \mathrm{~mL}, 3.2 \mathrm{mmol}$, 1.1 equiv), cesium carbonate (0.59 g , $1.8 \mathrm{mmol}, 0.60$ equiv) in N, N-dimethylformamide (7.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from dichloromethane to dichloromethane/methanol 98:2 as eluent to afford benzyl (tert-butoxycarbonyl)glycinate 44 ($0.68 \mathrm{~g}, 2.6 \mathrm{mmol}, 85 \%$) as a yellowish solid.

Rf (dichloromethane/methanol 98:2): 0.34. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 7.39-7.31$ (m, $5 \mathrm{H}, \mathrm{ArH}$), 5.18 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), 5.01 (br s, $1 \mathrm{H}, \mathrm{NH}$), 3.96 (d, J = $5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O})$), 1.45

[^7](s, 9H, CH 3вос) ${ }^{13}{ }^{13}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K) $\delta 170.4$ (Cq), 155.8 (Cq), 135.4 (Cq), 128.8 $(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 80.2(\mathrm{Cq}), 67.2\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{10}$

Methyl (diphenylcarbamoyl)glycinate (45)

Glycine methyl ester hydrochloride ($0.32 \mathrm{~g}, 2.6 \mathrm{mmol}, 1.0$ equiv) was weighed in an ovendried 50 mL round-bottomed flask equipped with a magnetic stir bar and dissolved with 14 mL of anhydrous dichloromethane. Triethylamine ($0.85 \mathrm{~mL}, 6.1 \mathrm{mmol}, 2.4$ equiv) was then added followed by diphenylcarbamoyl chloride ($0.71 \mathrm{~g}, 3.1 \mathrm{mmol}, 1.2$ equiv) dissolved in 3.4 mL of anhydrous dichloromethane. The reaction was stirred under a nitrogen atmosphere over weekend. The reaction mixture was then quenched with water and extracted twice with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using a gradient from dichloromethane to dichloromethane/ethyl acetate $9: 1$ as eluent to afford methyl (diphenylcarbamoyl)glycinate 45 as a white solid ($0.66 \mathrm{~g}, 2.3 \mathrm{mmol}, 91 \%$).

Rf (dichloromethane/ethyl acetate 9:1): = 0.36. Mp: 121.4-123.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 7.38-7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $5.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.04\left(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O})\right.$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 298$ K) $\delta 171.4$ (Cq), 156.1 (Cq), 142.6 (Cq), 129.6 (CH), 127.6 (CH), 126.6 (CH), 52.4 $\left(\mathrm{CH}_{3}\right), 42.6\left(\mathrm{CH}_{2}\right) . \mathrm{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3365(\mathrm{~m}), 3063(\mathrm{~m}), 1758(\mathrm{~s}), 1650(\mathrm{~s}), 1508(\mathrm{~s}), 1488(\mathrm{~s}), 1332$ (m), 1204 (s), 1183 (s), 760 (s), 700 (s). HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$ 285.1234; Found 285.1238.

Methyl (tert-butoxycarbonyl)glycyl-L-prolinate (46)

Prepared according to the general procedure A from (tert-butoxycarbonyl)glycyl-L-proline ($0.82 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), iodomethane ($0.75 \mathrm{~mL}, 12 \mathrm{mmol}, 4.0$ equiv), potassium carbonate ($0.83 \mathrm{~g}, 6.0 \mathrm{mmol}, 2.0$ equiv) in N, N-dimethylformamide ($2 \times 4.7 \mathrm{~mL}$). Methyl (tert-

[^8]butoxycarbonyl)glycyl-L-prolinate 46 ($0.70 \mathrm{~g}, 2.4 \mathrm{mmol}, 81 \%$) was obtained as a yellow sticky oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 5.40$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.50 (dd, $\mathrm{J}=$ $8.7,3.5 \mathrm{~Hz}, 0.83 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {rotamermaj }} \mathrm{C}(\mathrm{O})$), 4.37 (dd, J = 8.1, $2.8 \mathrm{~Hz}, 0.17 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {rotamermin }} \mathrm{C}(\mathrm{O})$), $4.02-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O})\right.$), 3.75 ($\mathrm{s}, 0.55 \mathrm{H}, \mathrm{OCH}_{3 \text { rotamermin }}$), 3.72 (s, 2.45H, OCH 3rotamermaj), $3.65-3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $3.48-3.42(\mathrm{~m}, 1 \mathrm{H}$, NCHHCH $\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.32-1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), 1.42 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture two of rotamers, signals not fully resolved) $\delta 172.5$
 $59.0\left(\mathrm{CH}_{\text {rotamermaj }}\right), \quad 58.6$ (CH rotamermin $), 52.9\left(\mathrm{CH}_{3 \text { rotamermin }}\right), \quad 52.5\left(\mathrm{CH}_{3 \text { rotamermaj }}\right), 46.8$ $\left(\mathrm{CH}_{2 \text { rotamermin }}\right), 46.0$ ($\mathrm{CH}_{2 \text { rotamermaj }}$), 43.1 ($\left.\mathrm{CH}_{2 \text { rotamermaj }}\right), 42.9$ ($\mathrm{CH}_{2 \text { rotamermin }}$), 31.5 ($\mathrm{CH}_{\text {2rotamermin }}$), 29.1 ($\mathrm{CH}_{2 \text { rotamermaj }}$), $28.5\left(\mathrm{CH}_{3}\right), 24.8$ ($\left.\mathrm{CH}_{2 \text { rotamermaj }}\right)$, 22.3 ($\left.\mathrm{CH}_{2 \text { rotamermin }}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{11}$

Methyl (tert-butoxycarbonyl)-L-alaninate (47)

Prepared according to the general procedure \mathbf{A} from (tert-butoxycarbonyl)-L-alanine (0.38 g , $2.0 \mathrm{mmol}, 1.0$ equiv), iodomethane ($0.50 \mathrm{~mL}, 8.0 \mathrm{mmol}, 4.0$ equiv), potassium carbonate (0.55 g, $4.0 \mathrm{mmol}, 2.0$ equiv) in N, N-dimethylformamide ($2 \times 3.2 \mathrm{~mL}$). Methyl (tert-butoxycarbonyl)-L-alaninate 47 ($0.36 \mathrm{~g}, 1.8 \mathrm{mmol}, 89 \%$) was obtained as a yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 5.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.40-4.19$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NHCHC}(\mathrm{O})$), 3.74 (s ,
 K) $\delta 174.0(\mathrm{Cq}), 155.2(\mathrm{Cq}), 80.0(\mathrm{Cq}), 52.5\left(\mathrm{CH}_{3}\right), 49.3(\mathrm{CH}), 28.5\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{12}$
tert-Butyl (S)-2-(((S)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (48)

[^9]Prepared according to the general procedure \mathbf{D} from tert-butoxycarbonyl)-L-proline (0.65 g , $3.0 \mathrm{mmol}, 1.0$ equiv), methyl L-alaninate hydrochloride ($0.42 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine ($1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 5:5 as eluent to afford tert-butyl (S)-2-(((S)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate $48(0.80 \mathrm{~g}, 2.7 \mathrm{mmol}, 89 \%)$ as a white solid.

Rf (pentane/ethyl acetate 5:5): $0.22 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 7.31$ (br s, $0.5 \mathrm{H}, \mathrm{NHCHC}(\mathrm{O})$), 6.55 (br s, $0.5 \mathrm{H}, \mathrm{NHCHC}(\mathrm{O})$), 4.54 (app. br s, 1 H , $\mathrm{NHCHC}(\mathrm{O})$), $4.29-4.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})\right.$), $\mathrm{s}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.45-3.33(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})$), 2.21 (app. br m, $1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CHHCH}_{2} \mathrm{CH}(\mathrm{O})$), 1.87 (app. br s, 3 H , $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})+\mathrm{NHCH}_{2} \mathrm{CHHCH}_{2} \mathrm{CH}(\mathrm{O})$), $1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right), 1.42-1.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ala}}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 173.3$ $(\mathrm{Cq}), 172.2(\mathrm{Cq}), 171.9(\mathrm{Cq}), 155.8(\mathrm{Cq}), 154.8(\mathrm{Cq}), 80.8(\mathrm{Cq}), 80.6(\mathrm{Cq}), 61.1(\mathrm{CH}), 60.0(\mathrm{CH})$, $52.5\left(\mathrm{CH}_{3}\right), 48.1(\mathrm{CH}), 47.2\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{3}\right), 18.4$ $\left(\mathrm{CH}_{3}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{13}$

tert-Butyl (S)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1carboxylate (49)

Prepared according to the general procedure \mathbf{D} from tert-butoxycarbonyl)-L-proline (0.65 g , $3.0 \mathrm{mmol}, 1.0$ equiv), methyl L-valinate hydrochloride ($0.50 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine $(1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 7:3 as eluent to afford tert-butyl (S)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2$\mathrm{yl})$ carbamoyl)pyrrolidine-1-carboxylate $49(0.79 \mathrm{~g}, 2.4 \mathrm{mmol}, 80 \%)$ as a yellowish solid.

Rf (pentane/ethyl acetate 7:3): 0.25. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of rotamers) $\delta 7.49(\mathrm{~s}, 0.55 \mathrm{H}, \mathrm{NH}), 6.52(\mathrm{~s}, 0.45 \mathrm{H}, \mathrm{NH}), 4.63-4.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCHC}(\mathrm{O})), 4.48-$ $4.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.57-3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right)$,

[^10]$-0.81\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3 \mathrm{VaI}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of rotamers, signals not fully resolved) $\delta 172.7$ (Cq), 172.3 (Cq), $172.0(\mathrm{Cq}), 156.0(\mathrm{Cq}), 154.8(\mathrm{Cq}), 81.0(\mathrm{Cq}), 80.5$ $(\mathrm{Cq}), 61.4(\mathrm{CH}), 59.8(\mathrm{CH}), 57.4(\mathrm{CH}), 56.9(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 47.1\left(\mathrm{CH}_{2}\right), 31.6(\mathrm{CH}), 31.2(\mathrm{CH})$, $28.5\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{14}$

tert-Butyl (S)-2-(((S)-1-(tert-butoxy)-4-methyl-1-oxopentan-2-yl)carbamoyl)pyrrolidine-1carboxylate (50)

Prepared according to the general procedure \mathbf{D} from tert-butoxycarbonyl)-L-proline (0.65 g , $3.0 \mathrm{mmol}, 1.0$ equiv), tert-butyl L-leucinate hydrochloride ($0.67 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine $(1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent to afford tert-butyl (S)-2-(((S)-1-(tert-butoxy)-4-methyl-1-oxopentan-2$\mathrm{yl})$ carbamoyl)pyrrolidine-1-carboxylate $\mathbf{5 0}(0.82 \mathrm{~g}, 2.1 \mathrm{mmol}, 71 \%)$ as a yellowish solid.

Rf (pentane/ethyl acetate 8:2): 0.24. Mp: $90.3-97.5^{\circ}{ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of rotamers) $\delta 4.29$ (dd, $\left.J=8.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.23$ (dd, $J=8.6,3.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.57-3.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $3.45-3.34(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHHCH} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.34-2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right.$), $2.07-1.81(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 1.81-1.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.66-$ $1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3 \text { Boc }}+\mathrm{CH}_{30 \text { tBurotamermaj }}\right), 1.42\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}+\right.$ $\mathrm{CH}_{30 \text { tBurotamermin }}$), 0.97 ($\left.\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Val}}\right), 0.93\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Val}}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of rotamers, signals not fully resolved) $\delta 175.7$ (Cqrotamermaj), 175.2 (Cqrotamermin), 173.4 (Cqrotamermin), 173.3 (Cqrotamermaj), 156.3 (Cqrotamermin), 156.0 (Cqrotamermaj), 82.6 (Cq), 81.4 (Cqrotamermaj), 81.1 (Cqrotamermin), 61.3 (CH $\left._{\text {rotamermaj }}\right), 60.9$ ($\left.\mathrm{CH}_{\text {rotamermin }}\right)$, $53.1\left(\mathrm{CH}_{\text {rotamermin }}\right)$, $52.9\left(\mathrm{CH}_{\text {rotamermaj }}\right)$, $48.2\left(\mathrm{CH}_{2 \text { rotamermin }}\right), 47.9\left(\mathrm{CH}_{2 \text { rotamermaj }}\right)$, 41.5 $\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2 \text { rotamermaj }}\right), 31.3\left(\mathrm{CH}_{2 \text { rotamermin }}\right)$, $28.7\left(\mathrm{CH}_{3 \text { rotamermin }}\right)$, $28.6\left(\mathrm{CH}_{3 \text { rotamermaj }}\right), 28.2$ $\left(\mathrm{CH}_{3}\right), 26.0(\mathrm{CH}), 25.3\left(\mathrm{CH}_{2 \text { rotamermin }}\right)$, $24.5\left(\mathrm{CH}_{2 \text { rotamermaj }}\right)$, $23.3\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3 \text { rotamermin }}\right), 21.9$ ($\mathrm{CH}_{3 \text { rotamermaj }}$). IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 2966 (w), 2873 (w), 1736 (m), 1693 (s$), 1655$ (s$), 1396$ (s), 1161 (s), 1126 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+} 407.2516$; Found 407.2512.

[^11]tert-Butyl (S)-2-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)pyrrolidine-1carboxylate (51)

Prepared according to the general procedure \mathbf{D} from tert-butoxycarbonyl)-L-proline (0.65 g , $3.0 \mathrm{mmol}, 1.0$ equiv), methyl L-phenylalaninate hydrochloride ($0.65 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine ($1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 1:1 as eluent to afford tert-butyl (S)-2-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate $51(0.87 \mathrm{~g}, 2.3 \mathrm{mmol}, 77 \%)$ as a yellow sticky oil.

Rf (pentane/ethyl acetate 1:1): $0.52 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, mixture of two rotamers) $\delta 7.60-7.32$ (m, 3H, ArH), 7.24 (d, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.60 (br s, 1H, NHCHC(O)), 5.01 (app. br s, $1 \mathrm{H}, \mathrm{NHCHC}(\mathrm{O})$), 4.39 (app. br d, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{CHC}(\mathrm{O})$), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.65 - 3.39 (m, 2H, NCH $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.34 (dd, J = 13.9, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$ Phe Ph), 3.16 (dd, J $=13.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}_{\text {pheP }} \mathrm{Ph}$), 2.42 (app. br s, $1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCH}(\mathrm{O})$), 2.15 (app. br d, 1 H , $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCH}(\mathrm{O})$), 1.91 (app br s, $2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{O})$), 1.57 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 172.2$ (Cqrotamermin), 171.8 (Cqrotamermaj), 155.8 (Cq), 154.7 (Cq), 136.3 (Cq), 136.0 (Cq), 129.3 (CH), 128.6 (CH), 127.2 (CH), 80.9 (Cqrotamermaj), 80.5 (Cqrotamermin), 61.2 (CH), 60.1 (CH), 53.4 (CH), $52.8(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 47.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{15}$
tert-Butyl
(S)-2-(((S)-3-((tert-butyldimethylsilyl)oxy)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (52)

tert-butyl (S)-2-(((S)-3-hydroxy-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1carboxylate was prepared according to the general procedure \mathbf{D} from tert-butoxycarbonyl)-Lproline ($0.65 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), methyl L-serinate hydrochloride ($0.47 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$

[^12]equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate $(0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N diisopropylethylamine ($1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from dichloromethane to dichloromethane/methanol 96:4 as eluent to afford tert-butyl (S)-2-(((S)-3-hydroxy-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate ($0.48 \mathrm{~g}, 1.5$ $\mathrm{mmol}, 51 \%$) as a yellowish sticky oil. Rf (dichloromethane/methanol 96:4): 0.4. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of rotamers) $\delta 4.52(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{app} . \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.02$ $-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59-3.46(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 3.47-3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 2.38-2.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2 \text { Pro }}\right)$, $2.10-1.74\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2 \text { Pro }}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right), 1.43\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right)$. The NMR spectrum is in agreement with the reported data. ${ }^{16}$
tert-butyl (S)-2-(((S)-3-hydroxy-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1carboxylate ($0.48 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.0$ equiv) was then dissolved in 1.8 mL of anhydrous dichloromethane. The reaction mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ and tert-butyldimethylsilyl chloride ($0.26 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.1$ equiv), 4-(dimethylamino) pyridine ($16 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.088$ equiv) and triethylamine ($0.25 \mathrm{~mL}, 1.8 \mathrm{mmol}, 1.2$ equiv) were added. The cooling bath was removed and the reaction was stirred at room temperature 19 hours. The reaction mixture was then quenched with saturated sodium hydrogen carbonate and extracted twice with dichloromethane. The combined organic layers were washed with ammonium chloride and brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 8:2 to afford tert-butyl (S)-2-(()S)-3-((tert-butyldimethylsilyl)oxy)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 52 as a clear sticky oil ($0.57 \mathrm{~g}, 1.3 \mathrm{mmol}, 87 \%$). $\mathbf{R f}$ (pentane/ethyl acetate 8:2): $=0.19$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 7.29$ (br s, $0.45 \mathrm{H}, \mathrm{NH}$), 6.81 (br s, $0.55 \mathrm{H}, \mathrm{NH}$), 4.62 (app. br s, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OTBS}$), $4.47-4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $4.10-$ 3.92 (m, 1H, CHCHHOTBS), 3.82 - 3.74 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCHHOTBS}$), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.57-3.25$ (m, 2H, NCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.36-2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $1.98-1.70(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right), 0.83\left(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}_{\text {твs }}\right),-0.00\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{3 \text { твs }}\right),-0.01(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{3 \text { твs }}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 172.6$ (Cqurotamermaj), 172.2 (Cqrotamermin), 170.7 (Cqrotamermin), 170.5 (Cqrotamermaj $), 155.5$ (Cqrotamermin), 154.7 (Cqrotamermaj), 80.7 (Cqrotamermaj), 80.4 (Cqrotamermin), 63.7 (CH_{2}), 61.2 ($\mathrm{CH}_{\text {rotamermaj }}$), 60.3 ($\mathrm{CH}_{\text {rotamermin }}$), $54.5\left(\mathrm{CH}_{\text {rotamermin }}\right), 54.2\left(\mathrm{CH}_{\text {rotamermaj }}\right), 52.4\left(\mathrm{CH}_{3}\right), 47.1\left(\mathrm{CH}_{2}\right)$, $31.2\left(\mathrm{CH}_{2 \text { rotamermaj }}\right), 28.9\left(\mathrm{CH}_{2 \text { rotamermin }}\right), 28.4\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2 \text { rotamermin }}\right), 23.7$ $\left(\mathrm{CH}_{2 \text { rotamermaj }}\right), 18.2(\mathrm{Cq}),-5.5\left(\mathrm{CH}_{3 \text { rotamermaj }}\right),-5.6\left(\mathrm{CH}_{3 \text { rotamermin }}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{16}$

[^13]

Prepared according to the general procedure \mathbf{D} from tert-butoxycarbonyl)-L-proline (0.65 g , $3.0 \mathrm{mmol}, 1.0$ equiv), di-tert-butyl L-glutamate hydrochloride ($0.93 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine ($1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 7:3 as eluent to afford di-tert-butyl (tert-butoxycarbonyl)-L-prolyl-L-glutamate $\mathbf{5 3}$ ($1.2 \mathrm{~g}, 2.5$ mmol, 84%) as a white solid.

Rf (pentane/ethyl acetate 8:2): 0.49. Mp: 88.0-92.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 4.29$ (dd, $J=9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{\text {GIu }}(\mathrm{O})$), 4.22 (dd, $J=8.6,3.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.60-3.45$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{\text {Pro }} \mathrm{HCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.46-3.35$ (m, 1 H , $\mathrm{NCHH}_{\text {Pro }} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 2.43-2.30(m, 2H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}_{\text {pro }} \mathrm{CHC}(\mathrm{O})+\mathrm{NHCHCH}_{2} \mathrm{CHH}_{\text {GIuC }}(\mathrm{O}) \mathrm{Ot}$ Bu), 2.30-2.04 (m, 2H, NHCHCHH $\left.\mathrm{GluCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ot}-\mathrm{Bu}+\mathrm{NHCHCH}_{2} \mathrm{CHH}_{\mathrm{Glu}} \mathrm{C}(\mathrm{O}) \mathrm{Ot}-\mathrm{Bu}\right), 2.04-1.81$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2 \text { Pro }} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NHCHCHH} \mathrm{Glu}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ot}-\mathrm{Bu}+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH} H_{\text {pro }} \mathrm{CHC}(\mathrm{O})$), $1.51-$ 1.38 ($\mathrm{m}, 27 \mathrm{H}, \mathrm{CH}_{30 \mathrm{t}-\mathrm{Bu}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 175.7$ (Cq), 175.3 (Cq), 173.9 (Cq), 173.5 (Cq), 172.3 (Cq), 172.2 (Cq), 156.3 (Cq), $156.0(\mathrm{Cq}), 82.9(\mathrm{Cq}), 81.9(\mathrm{Cq}), 81.7(\mathrm{Cq}), 81.5(\mathrm{Cq}), 81.2(\mathrm{Cq}), 61.4(\mathrm{CH}), 61.1(\mathrm{CH})$, $53.7(\mathrm{CH}), 48.2\left(\mathrm{CH}_{\mathrm{r}}\right), 47.9\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3$ $\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right) . \mathrm{IR}\left(\mathrm{v}_{\mathrm{max}}, \mathrm{cm}^{-1}\right) 3329(\mathrm{w}), 2978(\mathrm{w}), 2935(\mathrm{w}), 1732(\mathrm{~m})$, 1666 (m), 1419 (m), 1149 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{7}{ }^{+}$ 479.2728; Found 479.2732.
tert-Butyl (S)-2-(((S)-6-(((benzyloxy)carbonyl)amino)-1-methoxy-1-oxohexan-2-
yl)carbamoyl)pyrrolidine-1-carboxylate (54)

Boc
Prepared according to the general procedure \mathbf{D} from tert-butoxycarbonyl)-L-proline (0.65 g , $3.0 \mathrm{mmol}, 1.0$ equiv), methyl N -((benzyloxy)carbonyl)-L-lysinate hydrochloride ($0.99 \mathrm{~g}, 3.0$
mmol, 1.0 equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0$ $\mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N diisopropylethylamine ($1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from dichloromethane to dichloromethane/methanol 96:4 as eluent to afford tert-butyl (S)-2-(((S)-6-(((benzyloxy)carbonyl)amino)-1-methoxy-1-oxohexan-2-yl)carbamoyl)pyrrolidine-1carboxylate 54 ($1.5 \mathrm{~g}, 3.0 \mathrm{mmol}, 99 \%$) as a yellow sticky oil.

Rf (dichloromethane/methanol 96:4): 0.53. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 7.41-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.17-4.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.45-4.32(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NHCH}_{\text {Lys }} \mathrm{C}(\mathrm{O})$), 4.28-4.17 (m, 1H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56-3.45(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 3.44-3.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 3.11(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2 \text { Lys }} \mathrm{NHCBz}$), 2.28 - 2.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $2.05-1.78$ (m, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{CHH}_{\text {Lys }} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCBz}$), $1.77-1.68(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHH}_{\text {Lys }} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCBz}$), $1.54-1.41$ (m, 13H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2 \mathrm{Lys}} \mathrm{CH}_{2} \mathrm{NHCBz}+\mathrm{OCH}_{3 \mathrm{Boc}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 175.9$ (Cqrotamermaj), 175.4 (Cqrotamermin), 174.1 (Cqrotamermin), 173.9 (Cqrotamermaj), 158.9 (Cq), 156.3 (Cqrotamermin), 156.0 (Cqrotamermaj), 138.4 (Cq), 129.5 (CH), 129.0 (CH), 128.8 (CH), 81.4 (Cqrotamermaj $)$, 81.2 ($\left.\mathrm{Cq}_{\text {rotamermin }}\right)$, $67.7\left(\mathrm{CH}_{\text {2rotamermin }}\right), 67.3\left(\mathrm{CH}_{2 \text { rotamermaj }}\right), 61.4\left(\mathrm{CH}_{\text {rotamermaj }}\right), 61.0$ ($\mathrm{CH}_{\text {rotamermin }}$), 53.7 ($\mathrm{CH}_{\text {rotamermaj }}$), 53.6 ($\left.\mathrm{CH}_{\text {rotamermin }}\right)$, $52.6\left(\mathrm{CH}_{3}\right), 48.3\left(\mathrm{CH}_{\text {2rotamermin }}\right), 47.9$ $\left(\mathrm{CH}_{2 \text { rotamermaj }}\right)$, $42.1\left(\mathrm{CH}_{2 \text { rotamermin }}\right)$, $41.4\left(\mathrm{CH}_{\text {2rotamermaj }}\right)$, $32.4\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 30.4$ ($\mathrm{CH}_{2 \text { rotamermaj }}$), 30.2 ($\mathrm{CH}_{2 \text { rotamermin }}$), 28.7 ($\mathrm{CH}_{3 \text { rotamermin }}$), 28.7 ($\mathrm{CH}_{3 \text { rotamermaj }}$), 25.3 ($\mathrm{CH}_{2 \text { rotamermin }}$), 24.5 ($\left.\mathrm{CH}_{\text {2rotamermaj }}\right)$, 24.2 ($\left.\mathrm{CH}_{2 \text { rotamermaj }}\right)$, 23.9 ($\mathrm{CH}_{2 \text { rotamermin }}$). IR $\left(\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}\right) 3316(\mathrm{w}), 2951(\mathrm{~m})$, 2888 (m), 2480 (m), 1742 (s), 1680 (s), 1428 (s), 1402 (s$), 1165$ (s$), 735$ (m), 698 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{NaO}_{7}{ }^{+} 514.2524$; Found 514.2526.

Methyl (tert-butoxycarbonyl)glycyl-L-valinate (55)

Prepared according to the general procedure \mathbf{D} from (tert-butoxycarbonyl)glycine ($0.53 \mathrm{~g}, 3.0$ $\mathrm{mmol}, 1.0$ equiv), methyl L-valinate hydrochloride ($0.50 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine $(1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 1:1 as eluent to afford methyl (tert-butoxycarbonyl)glycyl-L-valinate 55 ($0.74 \mathrm{~g}, 2.5 \mathrm{mmol}$, 85%) as a yellowish sticky oil.

Rf (pentane/ethyl acetate 1:1): 0.66. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 6.65$ (br s, $1 \mathrm{H}, \mathrm{NHBoc}$), 5.21 (br s, $1 \mathrm{H}, \mathrm{NHCH} \mathrm{val}^{\mathrm{C}}(\mathrm{O})$), 4.54 (dd, $J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH} \mathrm{valC}(\mathrm{O})$), 3.82 ($\mathrm{qd}, J=16.0,15.2$, $\left.4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{BocNHCH}_{2 \mathrm{GI}} \mathrm{y}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \text { вос }}\right)$, 0.93 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ Val), 0.89 (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { Val }}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K) $\delta 172.4$ (Cq), $169.6(\mathrm{Cq}), 156.2(\mathrm{Cq}), 80.5(\mathrm{Cq}), 57.1(\mathrm{CH}), 52.3\left(\mathrm{CH}_{3}\right), 44.6\left(\mathrm{CH}_{2}\right), 31.4(\mathrm{CH})$, $28.4\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right)$.

NMR spectra are in agreement with the reported data. ${ }^{17}$

tert-Butyl (tert-butoxycarbonyl)glycyl-L-leucinate (56)

Prepared according to the general procedure D from (tert-butoxycarbonyl)glycine ($0.53 \mathrm{~g}, 3.0$ $\mathrm{mmol}, 1.0$ equiv), tert-butyl L-leucinate hydrochloride ($0.67 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.58 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.51 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv) and N, N-diisopropylethylamine $(1.6 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (19.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent to afford tert-butyl (tert-butoxycarbonyl)glycyl-L-leucinate 56 ($0.83 \mathrm{~g}, 2.4 \mathrm{mmol}$, 81\%) as a yellowish sticky oil.

Rf (pentane/ethyl acetate 8:2): 0.21. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}\right) \delta 4.34$ (brt, J=7.5 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{\text {Leu }} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.79-3.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2 \mathrm{Gly}} \mathrm{C}(\mathrm{O})\right)$, $1.69(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NHCHCH}_{2} \mathrm{CH}_{\text {Leu }}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.62-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCHCH}_{2 \mathrm{Leu}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right.$ or $\mathrm{CH}_{3 t}$ ви), 1.45 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3 \text { вос }}$ or $\mathrm{CH}_{3 t-\mathrm{Bu}}$), 0.96 (d, J $\left.=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3} \text { ееи) }\right)_{2}\right), 0.92(\mathrm{~d}, \mathrm{~J}=6.5$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3 \text { Leu }}^{2}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}\right) \delta 173.4$ (Cq), 172.4 (Cq), $158.3(\mathrm{Cq}), 82.8(\mathrm{Cq}), 80.7(\mathrm{Cq}), 52.9(\mathrm{CH}), 44.4\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 26.0$ (CH), $23.3\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right)$. IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) $3329(\mathrm{w}), 2966(\mathrm{w}), 1720(\mathrm{~m}), 1674(\mathrm{~m}), 1516(\mathrm{~m})$, 1369 (m), 1257 (m), 1149 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}$ 367.2203; Found 367.2208.

[^14]tert-Butyl (S)-2-((2-(((S)-1-((2-methoxy-2-oxoethyl)amino)-4-methyl-1-oxopentan-2-yl)amino)-2-oxoethyl)carbamoyl)pyrrolidine-1-carboxylate (57)

Prepared according to the general procedure D from (tert-butoxycarbonyl)-L-prolylglycine $(1.0 \mathrm{~g}, 3.7 \mathrm{mmol}, 1.0$ equiv), methyl L-leucylglycinate hydrochloride ($0.88 \mathrm{~g}, 3.7 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.70 \mathrm{~g}, 3.7 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.63 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.1$ equiv) and N, N diisopropylethylamine ($1.9 \mathrm{~mL}, 11 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (23.0 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from dichloromethane to dichloromethane/methanol 96:4 as eluent to afford tert-butyl (S)-2-((2-(((S)-1-((2-methoxy-2-oxoethyl)amino)-4-methyl-1-oxopentan-2-yl)amino)-2-oxoethyl) carbamoyl)pyrrolidine-1-carboxylate $57(1.1 \mathrm{~g}, 2.5 \mathrm{mmol}, 67 \%)$ as a white solid.

Rf (dichloromethane/methanol 96:4): 0.24. Mp: 55.7-72.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$, 298 K , complex mixture of rotamers) $\delta 4.53-4.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{\text {Leu }} \mathrm{C}(\mathrm{O})\right), 4.19$ (dd, J = 8.5, 4.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $4.02-3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 \mathrm{GI}}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62-3.36(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.27-2.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right.$), $2.09-1.81$ (m, 3H, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHHCHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right)$), $1.78-1.56\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2 \text { Leu }}+\right.$ $\left.\mathrm{NHCHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2 \text { Leu }}\right), 1.48\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{3 \text { вос }}\right), 1.42\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{3 \text { Boc }}\right), 0.97-0.61\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ цеи). ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers, signals not fully resolved) δ 176.4 (Cqrotamermin), 176.3 (Cqrotamermaj), 175.3 (Cqrotamermin), 175.2 (Cqrotamermaj), 171.6 (Cq), 171.5 (Cq), 171.5 (Cq), 171.1 (Cq), 156.7 (Cqrotamermaj $), 156.0$ (Cqrotamermin), 81.5 (Cq), 61.9 (CH), $53.1\left(\mathrm{CH}_{\text {rotamermaj }}\right)$, $52.9\left(\mathrm{CH}_{\text {rotamermin }}\right)$, $52.6\left(\mathrm{CH}_{\text {3rotamermin }}\right)$, $52.6\left(\mathrm{CH}_{\text {3rotamermaj }}\right)$, $47.9\left(\mathrm{CH}_{2}\right), 43.8$ $\left(\mathrm{CH}_{2 \text { rotamermaj }}\right)$, $43.4\left(\mathrm{CH}_{2 \text { rotamermin }}\right)$, $42.0\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2 \text { rotamermin }}\right)$, 31.4 ($\mathrm{CH}_{2 \text { rotamermaj }}$), 28.8 ($\mathrm{CH}_{3 \text { rotamermaj }}$), 28.6 ($\mathrm{CH}_{\text {3rotamermin }}$), 25.8 (CH), 25.5 ($\mathrm{CH}_{2 \text { rotamermaj }}$), 24.6 $\left(\mathrm{CH}_{2 \text { rotamermin }}\right), 23.5\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3 \text { rotamermaj }}\right) . \mathbf{I R}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3294(\mathrm{w}), 3057(\mathrm{w})$, 2955 (w), 1754 (w), 1650 (s$), 1525$ (m), 1393 (m), 1162 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{NaO}_{7}{ }^{+}$479.2476; Found 479.2481.
tert-Buty
(S)-2-(((S)-1-(((S)-1-(((S)-1-methoxy-4-methyl-1-oxopentan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1carboxylate (58)

Prepared according to the general procedure \mathbf{D} from (tert-butoxycarbonyl)-L-prolyl-L-valine ($0.53 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.0$ equiv), methyl L-leucyl-L-leucinate hydrochloride ($0.50 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.0$ equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.33 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.0$ equiv), 1-hydroxybenzotriazole hydrate ($0.29 \mathrm{~g}, 1.9 \mathrm{mmol}, 1.1$ equiv) and N, N diisopropylethylamine ($0.90 \mathrm{~mL}, 5.1 \mathrm{mmol}, 3.0$ equiv) in dichloromethane (11 mL). The crude mixture was purified by flash chromatography on silica gel using a gradient from dichloromethane to dichloromethane/methanol 96:4 as eluent to afford tert-butyl (S)-2-(((S)-1-(((S)-1-(((S)-1-methoxy-4-methyl-1-oxopentan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamoyl) pyrrolidine-1-carboxylate 58 ($0.82 \mathrm{~g}, 1.5$ $\mathrm{mmol}, 88 \%$) as a yellowish solid.

Rf (dichloromethane/methanol 96:4): 0.35 . Mp: $115.5-128.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD$d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 4.50-4.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{\text {Leu }} \mathrm{C}(\mathrm{O}) \times 2\right), 4.29-4.21(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 4.17 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCHval}(\mathrm{O})$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61-3.46$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.46-3.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $2.31-1.81$ (m, 5 H , $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{CHval}^{2}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.77-1.52\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2 \text { Leu }}\right.$
 ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) δ 175.4 (Cq), 175.2 (Cq), 175.1 (Cq), 174.5 (Cq), 174.4 (Cq), 173.2 (Cq), 156.6 (Cq), $156.0(\mathrm{Cq})$, $81.5(\mathrm{Cq}), 81.4(\mathrm{Cq}), 61.5(\mathrm{CH}), 61.4(\mathrm{CH}), 60.2(\mathrm{CH}), 60.0(\mathrm{CH}), 53.0\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 52.8(\mathrm{CH}$ or $\left.\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{3}\right), 47.9\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right)$, $41.4\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 32.3(\mathrm{CH}), 32.1(\mathrm{CH}), 31.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 25.9(\mathrm{CH}), 25.8(\mathrm{CH}), 25.8$ $(\mathrm{CH}), 25.7(\mathrm{CH}), 25.4\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$, $21.7\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{Cm}^{-1}\right) 3278(\mathrm{~m}), 3078(\mathrm{w}), 2957(\mathrm{~m}), 1748$ (m), 1639 (s), 1549 (m), 1391 (m), 1162 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{NaO}_{7}{ }^{+} 577.3572$; Found 577.3572.

Boc-Pro-Val-Leu-Phe-Gly-OMe (59)

Prepared according to the general procedure E using 36 SPPS syringes. After the methylation step, the crude mixture was purified by flash chromatography on a SNAP cartridge KP-SIL 50g column (automatic Biotage system) using a gradient from pentane/ethyl acetate 8:2 to ethyl acetate as eluent to afford Boc-Pro-Val-Leu-Phe-Gly-OMe 59 ($1.2 \mathrm{~g}, 1.9 \mathrm{mmol}, 67 \%$) as a white solid.

Rf (pentane/ethyl acetate 2:8): 0.41. Mp: 226.1-227.7 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right.$, mixture of two rotamers) $\delta 7.28-7.14\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}+\mathrm{NH}_{\mathrm{Gly}}+\mathrm{NH}_{\text {Phe }}\right), 6.49(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NH}_{\text {Leu }}\right), 4.63$ - 4.57 (m, 1H, NHCH ${ }_{\text {Phe }} \mathrm{C}(\mathrm{O})$), $4.20-4.14$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NHCH}_{\text {Leu }} \mathrm{C}(\mathrm{O})$), $4.12-4.05$ (m, $2.3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {proC }} \mathrm{C}(\mathrm{O})+\mathrm{NHCH}_{\mathrm{val}} \mathrm{C}(\mathrm{O})+\mathrm{NHCHH}_{\mathrm{Gly}} \mathrm{C}(\mathrm{O})$), $4.02(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 0.7 \mathrm{H}$, $\mathrm{NHCHH}_{\text {Gly }} \mathrm{C}(\mathrm{O})$), 3.92 (d, J = $\left.6.1 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{NHCHH}_{\text {Gly }} \mathrm{C}(\mathrm{O})\right), 3.88$ (d, J = $6.0 \mathrm{~Hz}, 0.3 \mathrm{H}$, $\mathrm{NHCHH}_{\mathrm{GIy}} \mathrm{C}(\mathrm{O})$), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56-3.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2 \mathrm{ProCH}}^{2} 2 \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), 3.41 (dd, J = 14.3, 3.9 Hz, 1H, CHCHH PhePh), 2.91 (dd, J = 14.3, 11.3 Hz, 1H, CHCHH ${ }_{\text {Phe }}$ Ph), $2.39-2.21$ (m, $\left.2 \mathrm{H}, \mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}_{\text {pro }} \mathrm{CHC}(\mathrm{O})\right), 2.10-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}_{\text {pro }} \mathrm{CHC}(\mathrm{O})\right), 1.97-$ 1.89 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 1.60 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermin }}$), $1.52-1.58(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{\text {Leu }}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50\left(\mathrm{~s}, 7 \mathrm{H}, \mathrm{CH}_{3 B \text { ocrotamermaj }}\right), 1.43-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \text { Leu }} \mathrm{CH}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.00(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { Val }}$), 0.93 (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Val}}$), 0.86 (d, J $=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { leu) }}$, 0.79 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { Leu) }}$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 174.5$ (Cq), 172.7 (Cq), 172.3 (Cq), 172.1 (Cq), 170.5 (Cq), 156.5 (Cq), 138.8 $(\mathrm{Cq}), 129.6(\mathrm{CH}), 128.5(\mathrm{CH}), 126.7(\mathrm{CH}), 81.9(\mathrm{Cq}), 62.2(\mathrm{CH}), 60.8(\mathrm{CH}), 54.8(\mathrm{CH}), 52.3\left(\mathrm{CH}_{3}\right)$, $48.1\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 29.2(\mathrm{CH}), 28.4\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.9$ (CH), $23.2\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3665(\mathrm{w}), 2981(\mathrm{~s}), 2901(\mathrm{~m})$, 1631 (w), 1405 (m), 1250 (w), 1228 (w), 1071 (s$), 1056$ (s$), 767$ (w), 697 (w). HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{NaO}_{8}{ }^{+}$668.3630; Found 668.3634. LRMS (ESI) m/z: [M + H] ${ }^{+}$ Calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{~N}_{5} \mathrm{O}_{8}{ }^{+}$646.37; Found 646.7.

Boc-Pro-Val-Pro-Val-Pro-Val-OMe (60)

Prepared according to the general procedure \mathbf{E} using 18 SPPS syringes. After the methylation step, the crude mixture was purified by flash chromatography on a SNAP cartridge KP-SIL 50g column (automatic Biotage system) using a gradient from dichloromethane/methanol 99:01 to dichloromethane/methanol 9:1 as eluent to afford Boc-Pro-Val-Pro-Val-Pro-Val-OMe 60 ($0.50 \mathrm{~g}, 0.70 \mathrm{mmol}, 48 \%$) as a white solid.

Rf (dichloromethane/methanol 95:05): 0.43. Mp: 109.4-110.1 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD$d_{4}, 298 \mathrm{~K}$, complex mixture of two rotamers) $\delta 4.55-4.39$ (m, 4H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {pro }} \mathrm{C}(\mathrm{O})+$ $\mathrm{NHCH}_{\mathrm{val}} \mathrm{C}(\mathrm{O})$), $4.30-4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {ProC }}(\mathrm{O})+\mathrm{NHCH}_{\text {val }} \mathrm{C}(\mathrm{O}), 3.89-3.84(\mathrm{~m}, 2 \mathrm{H}\right.$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68-3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $3.54-3.45$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}\left(\mathrm{O}\right.$)), $3.44-3.35$ (m, 1H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.25-2.01$ (m, 8H, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.01-1.82\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46$ (s, 3H, CH ${ }_{3 в о с}$), 1.42 (s, 6H, CH 3 вос), $1.06-0.92\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3 \mathrm{va}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$, 298 K , complex mixture of two rotamers, signals not fully resolved) $\delta 175.6$ (Cq), 174.5 (Cq), 174.1 (Cq), 173.6 (Cq), 172.5 (Cq), 172.4 (Cq), 156.5 (Cq), 156.0 (Cq), 81.5 (Cq), 81.3 (Cq), 61.5 (CH), 61.3 (CH), $61.2(\mathrm{CH}), 59.3(\mathrm{CH}), 57.9(\mathrm{CH}), 57.9(\mathrm{CH}), 57.7(\mathrm{CH}), 57.5(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 47.9$ $\left(\mathrm{CH}_{2}\right), 32.5,31.9(\mathrm{CH}), 31.0,30.4\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2 j}\right), 28.7\left(\mathrm{CH}_{3}\right), 26.01\left(\mathrm{CH}_{2}\right), 25.96\left(\mathrm{CH}_{2}\right), 25.4$ $\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right) ; 2 \mathrm{CH}_{2}$ are under the MeOD- d_{4} peak (see HSQC). IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$) 3670 (w), 2983 (s), 2899 (s), 1673 (w), 1624 (w), 1405 (m), 1252 (m), 1228 (m), 1062 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{NaO}_{9}{ }^{+} 743.4314$; Found 743.4322. LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{O}_{9}{ }^{+}$ 721.44; Found 721.5.

Boc-Pro-Val-(tBu)Glu-Gly-(tBu)Ser-Phe-OMe (61)

Prepared according to the general procedure E using 18 SPPS syringes. After the methylation step, the crude mixture was purified by flash chromatography on a SNAP cartridge KP-SIL 50 g column (automatic Biotage system) using a gradient from pentane/ethyl acetate 75:25 to ethyl acetate as eluent to afford Boc-Pro-Val-Glu-Gly-Ser-Phe-OMe 61 ($0.51 \mathrm{~g}, 0.59 \mathrm{mmol}$, 41%) as a white solid.

Rf (ethyl acetate): 0.41. Mp: 184.5-185.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of rotamers) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$), 7.23-7.18(m,3H, ArH), 4.7-4.67 (m, 1H, NHCH PheC(O)),
 $1 \mathrm{H}, \mathrm{NHCH}_{\mathrm{Glu}} \mathrm{C}(\mathrm{O})$), 4.15 (app. s, $0.54 \mathrm{H}, \mathrm{NHCH}_{\text {val }} \mathrm{C}(\mathrm{O})$), 4.15 (app. s, $0.46 \mathrm{H}, \mathrm{NHCH}_{\text {val }} \mathrm{C}(\mathrm{O})$), 3.96 - 3.81 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NHCH}_{2 \mathrm{GIy}} \mathrm{C}(\mathrm{O})$), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62$ - $3.45\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\right.$ $\mathrm{CHCH}_{2} \mathrm{Ot}-\mathrm{Bu}$), $3.43-3.37$ (m, $1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.14 (dd, J = $13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, CHCHH PhePh), 3.05 (dd, J = 13.8, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHH}_{\text {Phe }} \mathrm{Ph}$), $2.41-2.29(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2 \text { Glu }} \mathrm{C}(\mathrm{O})$), $2.26-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2 \mathrm{Val}}+\mathrm{NCH}_{2} \mathrm{CHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $2.03-1.78(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CHHCH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{CHCH}_{2 \mathrm{Glu}} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})\right), 1.47-1.42\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{30+\mathrm{Bu}}\right)$, 1.15 (s, 9H, CH ${ }_{30 t b u}$), 0.98 (d, J = $\left.6.8 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2 \mathrm{Val}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, complex mixture of rotamers, signals are not fully resolved) $\delta 175.7$ (Cq), 174.1 (Cq), 173.9 (Cq), 173.8 (Cq), 173.7 (Cq), 173.0 (Cq), 172.0 (Cq), 171.1 (Cq), 156.7 (Cq), 156.0 (Cq), 137.9 (Cq), 130.4 (CH), 129.6 (CH), 127.9 (CH), $81.7(\mathrm{Cq}), 81.4(\mathrm{Cq}), 74.9(\mathrm{Cq}), 62.6\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH})$, $60.7(\mathrm{CH}), 60.4(\mathrm{CH}), 55.2(\mathrm{CH}), 54.8(\mathrm{CH}), 54.2(\mathrm{CH}), 52.7\left(\mathrm{CH}_{3}\right), 47.9\left(\mathrm{CH}_{2}\right), 43.6\left(\mathrm{CH}_{2}\right), 38.5$ $\left(\mathrm{CH}_{2}\right)$, $32.6\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 28.0$ $\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{v}_{\text {max }}\right.$, cm^{-1}) IR (cm-1): 3667 (w), 2974 (s$), 2905(\mathrm{~s}), 1630(\mathrm{w}), 1398(\mathrm{~m}), 1249(\mathrm{~m}), 1229(\mathrm{w}), 1081(\mathrm{~s})$, 1063 (s), 747 (w), 696 (w). HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{43} \mathrm{H}_{69} \mathrm{~N}_{6} \mathrm{O}_{12}{ }^{+} 861.4968$; Found 861.4977. LRMS (ESI) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{43} \mathrm{H}_{69} \mathrm{~N}_{6} \mathrm{O}_{12}{ }^{+}$861.50; Found 861.6.

2.3 Calibration curves for peptides 59, 60 and 61

Starting materials 59, $\mathbf{6 0}$ and $\mathbf{6 1}$ were calibrated using RP-HPLC-UV in order to estimate the yields of the subsequent azidation reaction as the azide group is not expected to significantly change the absorbance of the peptides. Samples at different concentrations were prepared and analyzed. Each analysis was performed 3 times for more accuracy.

Calibration of Boc-Pro-Val-Leu-Phe-Gly-OMe 59

The following linear regression was obtained: $y=1233.3 x+208.33$, and $R=0.9929$, where axis X is the concentration in $\mathrm{mmol} / \mathrm{L}$ of 59 and Y the absorbance area of the peak at 210 nm .

Figure S1. Calibration curve of Boc-Pro-Val-Leu-Phe-Gly-OMe 59.

Calibration of Boc-Pro-Val-Pro-Val-Pro-Val-OMe 60

The following linear regression was obtained: $y=1503 x+189.43$, and $R=0.9961$, where axis X is the concentration $\mathrm{mmol} / \mathrm{L}$ of $\mathbf{6 0}$ and Y the absorbance area of the peak at 210 nm .

Figure S2. Calibration curve of Boc-Pro-Val-Pro-Val-Pro-Val-OMe 60.

Calibration of Boc-Pro-Val-Glu-Gly-Ser-Phe-OMe 61

The following linear regression was obtained: $y=1319.1 x+76.097$, and $R=0.9992$, where axis X is the concentration in $\mathrm{mmol} / \mathrm{L}$ of 61 and Y the absorbance area of the peak at 210 nm .

Figure S3. Calibration curve of Boc-Pro-Val-Glu-Gly-Ser-Phe-OMe 61.

2.3 Procedures for the synthesis of $A B X$ (1) and $A B Z$ (2)

Azidobenziodoxolone (ABX, 1) synthesis

Caution: For safety reasons, the reaction was carried out behind an anti-blast shield! Following a reported procedure, ${ }^{18}$ 2-iodobenzoic acid ($10 \mathrm{~g}, 40 \mathrm{mmol}, 1.0$ equiv) and sodium periodate ($8.6 \mathrm{~g}, 40 \mathrm{mmol}, 1.0$ equiv) were suspended in aq. AcOH ($30 \% \mathrm{v} / \mathrm{v}, 81 \mathrm{~mL}$). The mixture was stirred at reflux $\left(120^{\circ} \mathrm{C}\right)$ for 4 hours. Then, ice-cold water $(150 \mathrm{~mL})$ was added under stirring and the mixture was allowed to cool down to room temperature, while protecting it from light with aluminium foil. Finally, the mixture was filtered and the solid was washed twice with ice-cold water (30 mL) and twice with cold acetone (30 mL). Hydroxybenziodoxolone (HOBX) ($10 \mathrm{~g}, 38 \mathrm{mmol}, 94 \%$) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, 298 \mathrm{~K}$) $\delta 8.02$ (dd, J = $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.97 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.85 (dd, $J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$) ppm. The signals are in accordance with the data reported in the literature. ${ }^{18}$

Caution: For safety reasons, the reaction was carried out behind an anti-blast shield! Following a reported procedure, ${ }^{18}$ hydroxybenziodoxolone (HOBX) ($5.0 \mathrm{~g}, 19 \mathrm{mmol}, 1.0$ equiv) was suspended in acetic anhydride (17 mL). The suspension was stirred at reflux $\left(140^{\circ} \mathrm{C}\right)$ until its full solubilization. Heating was then stopped and the solution was allowed to cool down to room temperature over a period of 1.5 hours, resulting in the precipitation of a crystalline solid. Crystallization was continued at $-20^{\circ} \mathrm{C}$ overnight. The solid was collected by filtration and washed with several portions of pentane. Acetatebenziodoxolone (AcOBX) ($5.3 \mathrm{~g}, 17$ $\mathrm{mmol}, 91 \%)$ was obtained as a white crystalline solid. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta=$ 8.25 (dd, J = 7.6, 1.4 Hz, 1 H, ArH), 8.00 (dd, J = 8.3, 0.5 Hz, $1 \mathrm{H}, \mathrm{ArH}$), 7.92 (dt, J = 7.0, 1.7 Hz, $1 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{td}, \mathrm{J}=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) \mathrm{ppm}$. The signals are in accordance with the data reported in the literature. ${ }^{18}$

Caution: For safety reasons, the reaction and workup were carried out behind an anti-blast shield with explosion-proof gloves!
Following a reported procedure, ${ }^{18}$ acetatebenziodoxolone (AcOBX) ($0.31 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in dry dichloromethane (2.0 mL). To the solution cooled down to $0{ }^{\circ} \mathrm{C}$ using an ice bath, azidotrimethylsilane ($0.20 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) was added dropwise followed by one drop of trimethylsilyl trifluoromethanesulfonate (ca. $0.9 \mu \mathrm{~L}, 5.0 \mu \mathrm{~mol}, 5$ mol\%) and the resulting mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Pentane (12 mL) was added and the suspension was vigorously stirred for 10

[^15]minutes. The solid was then filtered, washed with pentane and dried 15 minutes on the frit under air. Azidobenziodoxolone (ABX, 1) ($0.30 \mathrm{~g}, 0.99 \mathrm{mmol}, 99 \%$) was obtained as a paleyellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) 8.19 (dd, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.95 (dd, $J=$ 8.4, 1.3 Hz, $1 \mathrm{H}, \mathrm{ArH}$), 7.91 (ddd, $J=8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.70 (ddd, J = 7.8, $6.8,1.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{ArH}) \mathrm{ppm}$. The signals are in accordance with the data reported in the literature. ${ }^{18}$

Azidobenziodazolone-N-tosyl (ABZ, 2) synthesis

Following a reported procedure, ${ }^{18} p$-tosyl-isocyanate ($6.58 \mathrm{~mL}, 40.3 \mathrm{mmol}, 1.00$ equiv) was added to a solution of 2 -iodobenzoic acid ($10.0 \mathrm{~g}, 40.3 \mathrm{mmol}, 1.00$ equiv) in tetrahydrofuran $(115 \mathrm{~mL})$. The resulting colorless mixture was stirred for 10 minutes. Then, triethylamine ($5.60 \mathrm{~mL}, 40.3 \mathrm{mmol}, 1.00$ equiv) was added dropwise and the stirring was continued for 2 hours. The solution was diluted with EtOAc and washed with 1 M hydrochloride solution and brine, dried over magnesium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography on a SNAP cartridge KP-SIL 120 g column (automatic Biotage system) using dichloromethane as eluent to afford 2-iodo- N-tosylbenzamide (14.3 g , $35.7 \mathrm{mmol}, 89 \%$) as a colorless oil. Rf (dichloromethane): 0.5 . ${ }^{1 \mathbf{H}} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298\right.$ K) $\delta 8.78$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $8.01(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.80 (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.43-$ 7.31 (m, $4 \mathrm{H}, \mathrm{ArH}$), 7.10 (ddd, $J=8.0,7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. The signals are in accordance with the data reported in the literature. ${ }^{18}$

Caution: For safety reasons, the reaction was carried out behind an anti-blast shield! Following a reported procedure, ${ }^{18}$ m-chloroperoxybenzoic acid (77% purity) (8.00 g , $35.7 \mathrm{mmol}, 1.0$ equiv) was added to a solution of 2 -iodo- N -tosylbenzamide (14.3 g , $35.7 \mathrm{mmol}, 1.0$ equiv) followed by $\mathrm{Ac}_{2} \mathrm{O}(143 \mathrm{~mL})$ and $\mathrm{AcOH}(143 \mathrm{~mL})$ and the resulting mixture was heated for 72 hours at $80^{\circ} \mathrm{C}$. The mixture was cooled to room temperature and diethyl ether was added and the reaction flask was cooled down to - $18{ }^{\circ} \mathrm{C}$ for overnight crystallization. The precipitate formed was collected by filtration and washed with diethyl ether. Acetatebenziodazolone- N-tosyl (AcOBZ) ($10.5 \mathrm{~g}, 22.9 \mathrm{mmol}, 64 \%$) was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 298 \mathrm{~K}$) 8.02 - 7.95 (m, $2 \mathrm{H}, \mathrm{ArH}$), $7.95-7.89$ (m, 2 H, ArH), 7.86 (dd, J = 8.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.80-7.71$ (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.44 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ac}}\right) \mathrm{ppm}$. The signals are in accordance with the data reported in the literature. ${ }^{18}$

Caution: For safety reasons, the reaction and workup were carried out behind an anti-blast shield with explosion-proof gloves!

Following a reported procedure, ${ }^{18}$ acetatebenziodazolone- N-tosyl (AcOBZ) ($3.0 \mathrm{~g}, 6.5 \mathrm{mmol}$, 1.0 equiv) was dissolved in dry dichloromethane (13 mL). The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ using an ice bath and azidotrimethylsilane ($1.4 \mathrm{~mL}, 9.8 \mathrm{mmol}, 1.5$ equiv) was added dropwise followed by trimethylsilyl trifluoromethanesulfonate ($5.9 \mu \mathrm{~L}, 33 \mu \mathrm{~mol}, 5$ $\mathrm{mol} \%$) and the resulting mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$. Pentane was added and the suspension was stirred vigorously for 10 more minutes. The solid was then filtered, washed with pentane and dried 15 minutes on the frit under air. Azidobenziodazolone- N -tosyl (ABZ(Ts)) ($2.77 \mathrm{~g}, 6.26 \mathrm{mmol}, 96 \%$) was obtained as a pale-yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 298 \mathrm{~K}\right) 8.17$ (dd, $J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.03-7.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.93-7.87(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.75 (td, J = 7.4, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.46-7.37$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 2.38 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$) ppm. The signals are in accordance with the data reported in the literature. ${ }^{18}$

3. Optimization of the C-H azidation reaction

The reaction was optimized using Cbz-Pro-OMe 3 as substrate (expect for the protecting group screening) on a 0.1 mmol scale.

General method for the optimization of the reaction

An oven dried 5 mL microwave vial equipped with a magnetic stirring bar was charged with Cbz-Pro-OMe 3 ($26 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and the chosen iodoarene or cyclic hypervalent iodine reagent. The flask was flushed with nitrogen during few minutes after which the chosen solvent was added. When applicable, the chosen azide source followed by the chosen oxidant were then added and the flask was sealed and flushed again with nitrogen during few minutes. The reaction mixture was vigorously stirred at the chosen temperature for the chosen time. After this, when applicable, the reaction was cooled down to room temperature and the volatiles were evaporated under reduced pressure. Mesitylene ($20 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$, 1.4 equiv) was added and a ${ }^{1} \mathrm{H}$ NMR was taken.

Table S1. Temperatures screening.

ABX (1)

Entry	Solvent $(0.1 \mathrm{M})$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield of $\mathbf{4}^{\mathrm{a}}$	Remaining 3 $^{\text {a }}$
1	DCM	rt	$<5 \%$	$>95 \%$
2^{b}	DCM	rt	41%	28%
3	DCM	$40^{\circ} \mathrm{C}$	45%	51%
4	DCE	$60^{\circ} \mathrm{C}$	50%	50%
5	DCE	$80^{\circ} \mathrm{C}$	40%	36%

1:1 mixture of diastereoisomers. O/N: overnight. ${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard.
${ }^{\mathrm{b}}$ The reaction mixture was irradiated using Blue LEDS.

Table S2. Iodine and azide sources screening.

3^{b}	TMSN_{3}	PIDA	32%	68%
4^{b}	TMSN_{3}	PIFA	11%	73%
5^{b}	TMSN_{3}	lodobenzene $+m$ CPBA	$<5 \%$	$>95 \%$
6	TMSN_{3}	2-iodobenzoic acid + mCPBA	50%	50%
7^{c}	TMSN_{3}	2-iodobenzoic acid + mCPBA	43%	n.d.
8^{d}	TMSN_{3}	2-iodobenzoic acid + mCPBA	50%	n.d.
9	NaN_{3}	2-iodobenzoic acid + mCPBA	34%	n.d.
10	TBAN_{3}	2-iodobenzoic acid + mCPBA	0%	100%

1:1 mixture of diastereoisomers. O/N: overnight. n.d.: not determined. ${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. ${ }^{\text {b }}$ Reaction run at room temperature. ${ }^{c}$ Using recrystallized mCPBA (93% purity). ${ }^{\mathrm{d}} 2.1$ equiv of magnesium sulfate were added to the reaction mixture.

Table S3. Solvents and concentrations screening.
2-iodobenzoic acid (2.0 equiv)
m CPBA (2.0 equiv)

Entry	Solvent	Concentration (xM M)	Yield of 4 $^{\text {a }}$	Remaining 3 $^{\text {a }}$
1	DCE	0.1 M	50%	50%
2	DCE	0.2 M	50%	n.d.
3	DCE	0.05 M	50%	n.d.
4	DCM_{3}	0.1 M	50%	n.d.
5	CHCl_{3}	0.1 M	32%	69%
6	CCl_{4}	0.1 M	48%	n.d.
7	ACN	0.1 M	$<5 \%$	$>95 \%$
8	THF	0.1 M	0%	100%
9	DMF	0.1 M	0%	100%

1:1 mixture of diastereoisomers. O/N: overnight. n.d.: not determined. ${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. ${ }^{\text {b }}$ Reaction run at room temperature instead of $60^{\circ} \mathrm{C}$.

Table S4. Oxidants screening.
2-iodobenzoic acid (2.0 equiv)
oxidant (2.0 equiv)

3

4

Entry	Oxidant	${\text { Yield of } \mathbf{4}^{\mathrm{a}}}$ Remaining 3 $^{\text {a }}$	
1	$m C P B A$	50%	50%
2	aq. $\mathrm{H}_{2} \mathrm{O}_{2}$	0%	100%

3	$\mathrm{H}_{2} \mathrm{O}_{2}$.urea	0%	100%
4	oxone	0%	100%
5	aq. $t \mathrm{BuOOH}$	0%	100%

1:1 mixture of diastereoisomers. O/N: overnight. n.d.: not determined. Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard.

Table S5. Iodobenzoic acids screening.

Entry	Acid	Yield of 4	Remaining 3 $^{\text {a }}$
1	2-iodobenzoic acid	50%	50%
2	2-iodo-4,5-dimethoxybenzoic acid	44%	40%
3	5-fluoro-2-iodobenzoic acid	46%	42%
4	5-trifluoro-2-iodobenzoic acid	50%	n.d.

1:1 mixture of diastereoisomers. O/N: overnight. n.d.: not determined. ${ }^{\text {a D Determined by }{ }^{1} \mathrm{H} \text { NMR using }}$ mesitylene as internal standard.

Table S6. Reagents ratio study and control reactions.

Entry	x equiv	y equiv	z equiv	Yield of 4 $^{\text {a }}$	Remaining 3 ${ }^{\text {a }}$
1	2	2	2	50%	50%
2	1.1	1.1	1.1	35%	65%
3	4	4	4	22%	$<5 \%$
$4^{\text {b }}$	4	4	4	32%	n.d.
5	0.5	2	2	33%	n.d.
6	0.1	2	2	16%	84%
7	-	2	2	0%	$>95 \%$
8	-	-	2	0%	$>95 \%$
$9^{\text {c }}$	2	2	2	0%	$>95 \%$

1:1 mixture of diastereoisomers. O/N: overnight. n.d.: not determined. a Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. ${ }^{\mathrm{b}}$ Half of the equivalents were added after a night of reaction. ${ }^{\mathrm{c}} 2$-iodobenzoic acid was replaced by benzoic acid.

Table S7. Time range of the reaction.
2-iodobenzoic acid (2.0 equiv) $m C P B A(2.0$ equiv)

3
4

Entry	Time	${\text { Yield of } \mathbf{4}^{\text {a }}}$	Remaining 3
1	5 hours	30%	70%
2	14 hours	50%	50%
$3^{\text {b }}$	24 hours	50%	n.d.
4	48 hours	50%	n.d.

1:1 mixture of diastereoisomers. O / N : overnight. n.d.: not determined. ${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. ${ }^{\text {b }}$ The reaction was performed on 4.0 mmol scale.

For the protecting groups screening, the same procedure was used except that Cbz-Pro-OMe 3 was replaced by the chosen proline substrate.

Table S8. Protecting groups screening.

2-iodobenzoic acid (2.0 equiv) $m C P B A$ (2.0 equiv)				
Entry	PG^{1}	PG ${ }^{2}$	Yield of DP ${ }^{\text {a }}$	Remaining $\mathrm{SM}^{\text {a }}$
$1{ }^{\text {b }}$	CBz	Me	50\% (36\%)	50\%
$2^{\text {b }}$	CBz	Bn	50\% (40\%)	50\%
$3^{\text {b }}$	Boc	Bn	70\% (68\%)	traces
4	COOEt	Me	50\%	n.d.
5	COOnBu	Me	50\%	n.d.
6	Troc	Me	0\%	0\%
7	Ac	Me	0\%	0\%
8	Piv	Me	0\%	35\%
9	Ts	Me	0\%	56\%
10	p-methoxybenzoyl	Me	0\%	57\%
11	N, N-dimethylcarboxamide	Me	0\%	18\%
12	N, N-diphenylcarboxamide	Bn	messy ${ }^{\text {c }}$	traces

1:1 mixture of diastereoisomers. O / N : overnight. n.d.: not determined. Isolated yields are given in parentheses. ${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. ${ }^{\mathrm{b}}$ Reactions run on a 0.4 mmol scale. ${ }^{\text {© }}$ Multi-azidated compounds observed. $\mathrm{PG}=$ protecting group.

4. Scope of the azidation reaction

4.1 General procedures

General procedure F for the azidation reaction done on $0.4 \mathbf{m m o l}$ scale

An oven-dried 20 mL microwave vial equipped with a magnetic stirring bar was charged with the chosen substrate ($0.40 \mathrm{mmol}, 1.0$ equiv) and 2 -iodobenzoic acid ($0.20 \mathrm{~g}, 0.80 \mathrm{mmol}, 2.0$ equiv). The flask was flushed with nitrogen during few minutes after which 1,2dichloroethane ($4.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added followed by trimethylsilyl azide ($0.11 \mathrm{~mL}, 0.80$ mmol, 2.0 equiv). Solid m-chloroperoxybenzoic acid (77% purity) ($0.18 \mathrm{~g}, 0.80 \mathrm{mmol}, 2.0$ equiv) was finally added in one portion and the flask was sealed and flushed again with nitrogen during few minutes. The heterogeneous mixture was vigorously stirred at $60{ }^{\circ} \mathrm{C}$ for 24 hours. After this time, the reaction was cooled down to room temperature, triethylamine ($0.28 \mathrm{~mL}, 2.0 \mathrm{mmol}, 5.0$ equiv) was added and the mixture was stirred a few minutes, filtered over a pad of silica using ethyl acetate to rinse the silica ($\approx 200 \mathrm{~mL}$) and concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica gel.

NB: To ensure no net loss of azidated product on the silica during the triethylamine/filtration work-up, the ${ }^{1} \mathrm{H}$ NMR yields were analyzed before and after the work-up for each compound. All the ${ }^{1} \mathrm{H}$ NMR yields were matching.

General procedure G for the azidation of free acid substrates

An oven-dried 20 mL microwave vial equipped with a magnetic stirring bar was charged with the chosen substrate ($0.40 \mathrm{mmol}, 1.0$ equiv) and 2 -iodobenzoic acid ($0.20 \mathrm{~g}, 0.80 \mathrm{mmol}, 2.0$ equiv). The flask was flushed with nitrogen during few minutes after which 1,2dichloroethane $(4.0 \mathrm{~mL}, 0.1 \mathrm{M})$ was added followed by trimethylsilyl azide ($0.11 \mathrm{~mL}, 0.80$ mmol, 2.0 equiv). Solid m-chloroperoxybenzoic acid (77% purity) ($0.18 \mathrm{~g}, 0.80 \mathrm{mmol}, 2.0$ equiv) was finally added in one portion and the flask was sealed and flushed again with nitrogen during few minutes. The heterogeneous mixture was vigorously stirred at $60^{\circ} \mathrm{C}$ for 24 hours. After this time, the reaction was cooled down to room temperature and the volatiles were evaporated under reduced pressure. Mesitylene ($20 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 0.36$ equiv) was added and a ${ }^{1} \mathrm{H}$ NMR was taken.

General procedure H for the azidation of pentamers and hexamers done on 0.1 mmol scale

An oven dried 5 mL microwave vial equipped with a magnetic stirring bar was charged with the chosen substrate ($0.1 \mathrm{mmol}, 1.0$ equiv) and 2-iodobenzoic acid ($51 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv). The flask was flushed with nitrogen during few minutes after which 1,2-
dichloroethane ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added followed by trimethylsilyl azide ($28 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$, 2.0 equiv). Solid m-chloroperoxybenzoic acid (77% purity) ($45 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) was finally added in one portion, the flask was sealed and flushed again with nitrogen during few minutes. The heterogeneous mixture was vigorously stirred at $60^{\circ} \mathrm{C}$ for 24 hours. After this time, the reaction was cooled down to room temperature, triethylamine ($70 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$, 5.0 equiv) was added and the mixture was stirred few minutes, filtered over a pad of silica using ethyl acetate to rinse the silica ($\approx 150 \mathrm{~mL}$) and concentrated under reduced pressure. The crude residue was diluted with dichloromethane (10 mL) and $1.0 \mu \mathrm{~L}$ of this solution was injected in an analytical HPLC-MS for analysis.

NB: To ensure no net loss of azidated product on the silica during the triethylamine/filtration work-up, the ${ }^{1} \mathrm{H}$ NMR yields were analyzed before and after the work-up for each compound. All the ${ }^{1} \mathrm{H}$ NMR yields were matching.

4.2 Characterization data

1-Benzyl 2-methyl (2S)-5-azidopyrrolidine-1,2-dicarboxylate (4)

Synthesized from 1-benzyl 2-methyl (S)-pyrrolidine-1,2-dicarboxylate 3 ($105 \mathrm{mg}, 0.400 \mathrm{mmol}$, 1.00 equiv) following general procedure \mathbf{F}. 1-benzyl 2-methyl (2S)-5-azidopyrrolidine-1,2dicarboxylate 4 ($43.9 \mathrm{mg}, 0.144 \mathrm{mmol}, 36 \%$) (mixture of diastereoisomers, 1:1 dr determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks at 5.75 and 5.62 ppm) was obtained as a yellowish oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent. [4 was generated in a $50 \%{ }^{1} \mathrm{H}$ NMR yield using mesitylene as internal standard].

Rf (pentane/ethyl acetate $8: 2$): $0.42 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) $\delta 7.44-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}\right.$), 5.75 (d, $\left.\mathrm{J}=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CHN} \mathrm{B}_{3}\right), 5.62(\mathrm{~d}, \mathrm{~J}=5.9$ $\mathrm{Hz}, 0.5 \mathrm{H}, \mathrm{CHN}_{3}$), $5.29-5.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44$ (ddd, $\mathrm{J}=15.8,9.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHC}(\mathrm{O})$), $3.74\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.55\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.47-2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 2.25-2.06$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.02-1.96$ (m, 1H, $\mathrm{NCHCH}_{2} \mathrm{CHHCH}(\mathrm{O})$), 1.91 - 1.79 ($\mathrm{m}, 1 \mathrm{H}$, NCHCHHCH $2 \mathrm{CHC}(\mathrm{O})$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of diastereoisomers, signals not fully resolved) $\delta 172.4$ (Cq), 172.3 (Cq), 154.7 (Cq), 154.1 (Cq), 136.0 (Cq), 135.7 (Cq), 128.69 (CH), 128.67 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 75.6 (CH), 74.8 (CH), $68.3\left(\mathrm{CH}_{2}\right), 67.8\left(\mathrm{CH}_{2}\right), 59.3(\mathrm{CH}), 59.1(\mathrm{CH}), 52.6\left(\mathrm{CH}_{3}\right), 52.4\left(\mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 28.4$ (CH_{2}), $27.3\left(\mathrm{CH}_{2}\right)$. IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 2957 (m), 2111 (s), 1746 (s$), 1714$ (s), 1404 (s$), 1352$ (s), 1200 (s), 1121 (s), 1067 (m), 1002 (m), 911 (s), 733 (s), 699 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{4} 327.1069$; Found 327.1075.

(2S)-5-Azido-1-((benzyloxy)carbonyl)pyrrolidine-2-carboxylic acid (6)

Synthesized from ((benzyloxy)carbonyl)-L-proline 5 ($0.10 \mathrm{~g}, 0.40 \mathrm{mmol}, 1.0$ equiv) following general procedure G. (2S)-5-azido-1-((benzyloxy)carbonyl)pyrrolidine-2-carboxylic acid 6 was observed in a $35 \%{ }^{1} \mathrm{H}$ NMR yield determined using the peaks corresponding to the CHN_{3}. [26\% of remaining ((benzyloxy)carbonyl)-L-proline $\mathbf{5}$ were observed at the end of the reaction]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of diastereomers and rotamers) $\delta 5.77$ (dd, J $=8.2,6.3 \mathrm{~Hz}, 0.52 \mathrm{H}, \mathrm{CHN}_{3}$), 5.63 (app. t, $J=5.4 \mathrm{~Hz}, 0.48 \mathrm{H}, \mathrm{CHN}_{3}$). Only characteristic peaks are listed as the crude ${ }^{1} \mathrm{H}$ NMR was too complex to give the complete ${ }^{1} \mathrm{H}$ NMR listing.

Dibenzyl (2S)-5-azidopyrrolidine-1,2-dicarboxylate (7)

Synthesized from dibenzyl (S)-pyrrolidine-1,2-dicarboxylate 40 ($138 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. Dibenzyl ($2 S$)-5-azidopyrrolidine-1,2-dicarboxylate 7 ($61.0 \mathrm{mg}, 0.160 \mathrm{mmol}, 40 \%$) (mixture of diastereoisomers, 1:1 dr determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks at 5.75 and 5.62 ppm) was obtained as a yellow oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 9:1 as eluent. [$\mathbf{7}$ was generated in a $50 \%{ }^{1} \mathrm{H}$ NMR yield using mesitylene as internal standard].

Rf (pentane/ethyl acetate 9:1): $0.32 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) $\delta 7.44-7.17$ (m, 10H, ArH), 5.75 (d, J $=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{\text {diamaj }} \mathrm{N}_{3}$), 5.62 (d, J $\left.=5.9 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{\text {diamin }} \mathrm{N}_{3}\right), 5.29-4.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}+\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 4.52(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $0.5 \mathrm{H}, \mathrm{NCH}$ diaminC(O)), 4.46 (dd, J = $8.3 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCH}_{\text {diamaj }} \mathrm{C}(\mathrm{O})$), $2.47-2.27(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), 2.22 - 2.05 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.04-1.93$ ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CHHCH}(\mathrm{O})$), $1.89-1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K , mixture of diastereoisomers, signals not fully resolved) $\delta 171.8$ ($\left.\mathrm{Cq}_{\text {diamaj }}\right)$, 171.6 ($\mathrm{Cq}_{\text {diamin }}$), 154.7 (Cqdiamaj), 154.2 (Cq diamin), 135.9 (Cq), 135.7 (Cq), 135.5 (Cq), 135.3 (Cq), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 75.6 (CH diamaj), 74.8 $\left(\mathrm{CH}_{\text {diamin }}\right), 68.3\left(\mathrm{CH}_{2}\right), 67.8\left(\mathrm{CH}_{2}\right), 67.3\left(\mathrm{CH}_{2}\right), 67.2\left(\mathrm{CH}_{2}\right), 59.5\left(\mathrm{CH}_{\text {diamin }}\right), 59.3\left(\mathrm{CH}_{\text {diamaj }}\right), 31.9$ $\left(\mathrm{CH}_{2 \text { diamin }}\right), 30.8\left(\mathrm{CH}_{2 \text { diamaj }}\right), 28.4\left(\mathrm{CH}_{\text {2diamaj }}\right), 27.3\left(\mathrm{CH}_{2 \text { diamin }}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3065(\mathrm{w}), 3034(\mathrm{w})$, 2959 (m), 2110 (s), 1745 (s), 1714 (s), 1405 (s), 1352 (s), 1190 (s), 1174 (s), 914 (m), 735 (s), 698 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{NaO}_{4}{ }^{+}$403.1377; Found 403.1384.

Synthesized from 2-benzyl 1-(tert-butyl) (S)-pyrrolidine-1,2-dicarboxylate 41 ($122 \mathrm{mg}, 0.400$ mmol, 1.00 equiv) following general procedure \mathbf{F}. 1-(tert-butyl) 2-methyl (2S)-5-azidopyrrolidine-1,2-dicarboxylate 8 (54.5 mg (rotamer maj 8a) $+40.1 \mathrm{mg}($ rotamer min $\mathbf{8 b})=$ $94.6 \mathrm{mg}, 0.273 \mathrm{mmol}, 68 \%$) (mixtures of diastereoisomers, 1:1 dr, determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks at 5.69 and 5.58 ppm (rotamer maj) and 5.70 and 5.60 ppm (rotamer min)) was obtained as yellow oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 9:1 as eluent.

8a: rotamer maj: Rf (pentane/ethyl acetate 9:1)rotamermaj: 0.64 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) $87.40-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 5.69 (d, J = $6.0 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{\text {diamin }} \mathrm{N}_{3}$), 5.58 (d, J = $5.9 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{\text {diamaj }} \mathrm{N}_{3}$), $5.34-5.02(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 4.45 (dd, $J=9.3,0.9 \mathrm{~Hz}, 0.50 \mathrm{H}, \mathrm{NCH}_{\text {diamaj }} \mathrm{C}(\mathrm{O})$), 4.36 (dd, $J=9.2,0.9 \mathrm{~Hz}, 0.43 \mathrm{H}$, $\mathrm{NCH}_{\text {diamin }} \mathrm{C}(\mathrm{O})$), 2.44 - 2.24 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), 2.18 - 2.04 ($\mathrm{m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 2.01$ - 1.89 (m, $1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCH}(\mathrm{O})$), 1.86 - 1.77 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), 1.51 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{CH}_{3 B o o d i a m a j}$), 1.35 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Bocdiamin})}$) ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers, signals not full resolved) $\delta 172.2$ ($\mathrm{Cq}_{\text {diamin }}$),
 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 82.2 (Cqdiamaj $), 81.6$ (Cqdiamin $), 75.2$ ($\mathrm{CH}_{\text {diamaj }}$), $75.1\left(\mathrm{CH}_{\text {diamin }}\right), 67.1\left(\mathrm{CH}_{2}\right)$, $59.5\left(\mathrm{CH}_{\text {diamin }}\right)$, $59.2\left(\mathrm{CH}_{\text {diamaj }}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3 \text { diamaj }}\right)$, 28.1 ($\mathrm{CH}_{3 \text { diamin }}$), 27.3 (CH_{2}). IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 2979 (w), 2110 (s), 1747 (s), 1708 (s$), 1379$ (s), 1368 (s), 1255 (m), 1182 (s), 1156 (s). HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NaO}_{4}{ }^{+} 369.1533$; Found 369.1541.

8b: rotamer min: $\mathbf{R f}$ (pentane/ethyl acetate 9:1)rotamermin: 0.37 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) $\delta 7.43-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, $5.70\left(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}\right.$ diamin $\left.\mathrm{N}_{3}\right), 5.60\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{CH}_{\text {diamaj }} \mathrm{N}_{3}\right), 5.34-5.10(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 4.37 (app t, J = 8.5 Hz, $0.5 \mathrm{H}, \mathrm{NCH}_{\text {diamaj }} \mathrm{C}(\mathrm{O})$), 4.27 (dd, J = 9.4, $7.7 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\mathrm{NCH}_{\text {diamaj }} \mathrm{C}(\mathrm{O})$), 2.37 - 2.28 ($\left.\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right)$, $2.20-2.01(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O}), 2.00-1.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCHHCHHCHC}(\mathrm{O})), 1.49\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{3 \text { Bocdiamaj }}\right), 1.34$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3 \text { Bocdiamaj) })}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers, signals not fully resolved) $\delta 172.1$ (Cqdiamaj $)$, 171.8 (Cqdiamin $)$, 153.8 (Cqdiamin), 153.2 (Cqdiamaj), 135.8 (Cq diamaj), 135.6 (Cqdiamin), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.3 (CH), 128.3 (CH), 82.2 (Cqdiamaj), $81.7\left(\mathrm{Cq}_{\text {diamin }}\right), 74.5\left(\mathrm{CH}_{\text {diamin }}\right), 74.3\left(\mathrm{CH}_{\text {diamaj }}\right), 67.1\left(\mathrm{CH}_{2}\right), 59.9\left(\mathrm{CH}_{\text {diamin }}\right), 59.6$ $\left(\mathrm{CH}_{\text {diamaj }}\right), 32.6\left(\mathrm{CH}_{2 \text { diamaj }}\right), 31.9\left(\mathrm{CH}_{2 \text { diamin }}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3 \text { diamaj}}\right), 28.2\left(\mathrm{CH}_{2}\right), 28.1$

1-(tert-Butyl) 2-methyl (2S)-5-azido-2-methylpyrrolidine-1,2-dicarboxylate (9)

Synthesized from 1-(tert-butyl) 2-methyl (S)-2-methylpyrrolidine-1,2-dicarboxylate 42 (97.3 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. 1-(tert-butyl) 2-methyl (2S)-5-azido-2-methylpyrrolidine-1,2-dicarboxylate 9 ($82.2 \mathrm{mg}, 0.289 \mathrm{mmol}, 72 \%$) (complex mixture of diastereoisomers and rotamers, n.d. dr) was obtained as a yellowish oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 9:1 as eluent.

Rf (pentane/ethyl acetate 9:1): 0.37. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) $\delta 5.77$ (d, $J=5.5 \mathrm{~Hz}, 0.33 \mathrm{H}, \mathrm{CHN}_{3}$), 5.66 ($\mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, 0.54 \mathrm{H}$, CHN_{3}), $5.53\left(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 0.13 \mathrm{H}, \mathrm{CHN}_{3}\right), 3.78\left(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70(\mathrm{~s}, 2 \mathrm{H}$, OCH_{3}), 2.46 - 2.29 (m, 0.27H, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{O})$), 2.21 - 1.95 (m, 2.3H, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{O})+$ $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{O})$), $1.95-1.79\left(\mathrm{~m}, 0.65 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{O})\right.$), $1.79-1.67$ ($\mathrm{m}, 1.56 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CC}(\mathrm{O})+\mathrm{NCCH}_{3}$), $1.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCCH}_{3}\right), 1.54\left(\mathrm{~s}, 0.38 \mathrm{H}, \mathrm{NCCH}_{3}\right), 1.50\left(\mathrm{~s}, 4.8 \mathrm{H}, \mathrm{NCCH}_{3}\right.$ $+\mathrm{CH}_{3 \text { Boc }}$), 1.43 (s, 4.7H, $\mathrm{CH}_{3 \text { Boc }}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers, signals not fully resolved) $\delta 174.5$ (Cq), 174.3 (Cq), 174.1 (Cq), 153.8 (Cq), 153.4 (Cq), 153.0 (Cq), 152.4 (Cq), 82.0 (Cq), 81.9 (Cq), 81.7 (Cq), 81.6 (Cq), 76.8 $(\mathrm{CH}), 76.4(\mathrm{CH}), 75.0(\mathrm{CH}), 74.7(\mathrm{CH}), 66.3(\mathrm{Cq}), 66.2(\mathrm{Cq}), 65.9(\mathrm{Cq}), 65.8(\mathrm{Cq}), 52.7\left(\mathrm{CH}_{3}\right), 52.6$ $\left(\mathrm{CH}_{3}\right), 52.5\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.5$ $\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.1$ $\left(\mathrm{CH}_{3}\right)$. IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$) $2978(\mathrm{~m}), 2939(\mathrm{~m}), 2110(\mathrm{~s}), 1743(\mathrm{~s}), 1705(\mathrm{~s}), 1458(\mathrm{w}), 1369(\mathrm{~s}), 1250$ (m), 1207 (m), 1161 (s), 1065 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{NaO}_{4}{ }^{+}$ 307.1377; Found 307.1382.
(2S)-5-Azido-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (10)

Synthesized from (tert-butoxycarbonyl)-L-proline ($88 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv) following general procedure G. (2S)-5-azido-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid $\mathbf{5}$ was observed in a $50 \%{ }^{1} \mathrm{H}$ NMR yield determined using the peaks corresponding to the $\mathrm{CHN}_{3} .{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of diastereomers and rotamers) $\delta 5.76$ - 5.70 $\left(\mathrm{m}, 0.45 \mathrm{H}, \mathrm{CHN}_{3}\right), 5.63-5.55\left(\mathrm{~m}, 0.55 \mathrm{H}, \mathrm{CHN}_{3}\right)$. Only characteristic peaks are listed as the crude ${ }^{1} \mathrm{H}$ NMR was too complex to give the complete ${ }^{1} \mathrm{H}$ NMR listing.
tert-Butyl (5S)-2-azido-5-((2-methoxy-2-oxoethyl)carbamoyl)pyrrolidine-1-carboxylate (12)

Synthesized from tert-butyl (S)-2-((2-methoxy-2-oxoethyl)carbamoyl)pyrrolidine-1carboxylate 11 ($115 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. tert-butyl (5S)-2-azido-5-((2-methoxy-2-oxoethyl)carbamoyl)pyrrolidine-1-carboxylate 12 (74.1 mg , $0.226 \mathrm{mmol}, 57 \%$) (mixture of diastereoisomers, n.d. dr) was obtained as yellow oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 6:4 as eluent.

Rf (pentane/ethyl acetate 6:4): $0.33 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) $\delta 5.68-5.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.31$ (dd, $J=8.8,4.0 \mathrm{~Hz}, 0.45 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 4.23 ($\mathrm{q}, \mathrm{J}=8.6 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.75-3.69(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NHCH}_{2 \mathrm{Gly}} \mathrm{C}(\mathrm{O})$), $3.75-3.68$ (app. m, 3H, OCH ${ }_{3}$), 2.43-1.93 (m, 3H, $\mathrm{CH}_{2 \text { Pro }}$), $1.87-1.78$ (m, 1H, $\mathrm{CH}_{2 \text { Pro }}$), $1.55-1.40$ (m, 9H, CH 3вос)) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers, signals not fully resolved) $\delta 175.43$ (Cq), $175.35(\mathrm{Cq}), 175.2$ (Cq), 175.0 (Cq), 174.8 (Cq), 174.7 (Cq), 171.5 (Cq), 171.5 (Cq), 171.4 (Cq), 155.7 (Cq), 155.5 (Cq), 155.1 (Cq), $155.0(\mathrm{Cq}), 83.2(\mathrm{Cq}), 83.0(\mathrm{Cq}), 82.7(\mathrm{Cq}), 82.6(\mathrm{Cq}), 77.0(\mathrm{CH}), 76.9(\mathrm{CH})$, $76.69(\mathrm{CH}), 76.65(\mathrm{CH}), 62.4(\mathrm{CH}), 62.1(\mathrm{CH}), 61.5(\mathrm{CH}), 61.1(\mathrm{CH}), 52.61\left(\mathrm{CH}_{3}\right), 52.59\left(\mathrm{CH}_{3}\right)$, $52.57\left(\mathrm{CH}_{3}\right), 41.9\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right)$, $31.7\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{v}_{\mathrm{max}}, \mathrm{Cm}^{-1}\right)$ 3339 (m), 2985 (m), 2947 (m), 2111 (s), 1756 (s), 1708 (s), 1676 (s), 1381 (s), 1209 (s), 1161 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 350.1435$; Found 350.1445 .
tert-Butyl (5S)-2-azido-5-((S)-2-((benzyloxy)carbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1carboxylate (14)

Synthesized from tert-butyl (S)-2-((S)-2-((benzyloxy)carbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate 13 ($163 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure F. tert-butyl (5S)-2-azido-5-((S)-2-((benzyloxy)carbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate 14 ($97.1 \mathrm{mg}, 0.219 \mathrm{mmol}, 55 \%$) (mixture of diastereoisomers, 3.3:1 dr determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks at 5.70 and 5.59 ppm) was obtained as yellow sticky oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate $7: 3$ as eluent.

Rf (pentane/ethyl acetate 7:3): 0.26. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) $\delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.70\left(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 0.23 \mathrm{H}, \mathrm{CH}_{\text {diamin }} \mathrm{N}_{3}\right.$), 5.59 (d, J $\left.=5.3 \mathrm{~Hz}, 0.77 \mathrm{H}, \mathrm{CH}_{\text {diamaj }} \mathrm{N}_{3}\right), 5.29-5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHPh}), 5.11-4.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHPh}), 4.76$ - $4.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHC}(\mathrm{O})_{\mathrm{c} \text {-terminalPro }}\right), 4.55-4.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHC}(\mathrm{O})_{\mathrm{N} \text {-terminalPro }}\right), 3.85-3.51(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCH}_{\left.2 \text { C-terminalPro } \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 2.32-1.82\left(\mathrm{~m}, 7.3 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})_{N-t e r m i n a l P r o}+\right.}$
 $6.9 \mathrm{H}, \mathrm{CH}_{3 B \text { oodiamaj }}$), 1.39 (s, 2.1H, $\mathrm{CH}_{3 \text { Bocdiamin }}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers, signals not fully resolved) $\delta 172.2$ (Cqdiamaj), 171.9 (Cqdiamin), 170.4 (Cqdiamin $_{\text {}}$),
 128.7 (CH), 128.5 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 81.9 (Cqdiamaj), 81.0 (Cqdiamin), 75.7 $\left(\mathrm{CH}_{\text {diamin }}\right)$, $75.5\left(\mathrm{CH}_{\text {diamaj }}\right), 67.2\left(\mathrm{CH}_{2 \text { diamin }}\right), 67 .\left(\mathrm{CH}_{2 \text { diamaj }}\right), 59.03\left(\mathrm{CH}_{\text {diamaj }}\right), 58.98\left(\mathrm{CH}_{\text {diamin }}\right), 58.6$ ($\left.\mathrm{CH}_{\text {diamin }}\right), 58.3\left(\mathrm{CH}_{\text {diamaj }}\right), 46.6\left(\mathrm{CH}_{2 \text { diamin }}\right), 46.6\left(\mathrm{CH}_{2 \text { diamaj }}\right), 31.7\left(\mathrm{CH}_{2 \text { diamaj }}\right), 30.7\left(\mathrm{CH}_{2 \text { diamin }}\right), 29.0$ $\left(\mathrm{CH}_{2 \text { diamin }}\right), 28.8\left(\mathrm{CH}_{2 \text { diamaj }}\right), 28.4\left(\mathrm{CH}_{3 \text { diamaj }}\right), 28.2\left(\mathrm{CH}_{3 \text { diamin }}\right), 27.5\left(\mathrm{CH}_{\text {2diamin }}\right), 26.6\left(\mathrm{CH}_{\text {2diamaj }}\right)$, 25.1 ($\mathrm{CH}_{2 \text { diamin }}$), 25.0 ($\mathrm{CH}_{2 \text { diamaj }}$). IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 2978 (m), 2885 (w), 2110 (s), 1743 (m), 1705 (s), 1662 (s), 1385 (s), 1165 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+}$ 466.2061; Found 466.2061.

Methyl 2-azido-2-((tert-butoxycarbonyl)amino)acetate (15)

Synthesized from methyl (tert-butoxycarbonyl)glycinate $\mathbf{4 3}$ ($75.7 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. Methyl 2-azido-2-((tert-butoxycarbonyl)amino)acetate 15 ($31.5 \mathrm{mg}, 0.137 \mathrm{mmol}, 34 \%$) was obtained as a yellow oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 92:8 as eluent.

Rf (pentane/ethyl acetate 92:8): 0.24. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 5.73(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH})$, $5.57\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2(\mathrm{Cq}), 154.4(\mathrm{Cq}), 81.7(\mathrm{Cq}), 66.7(\mathrm{CH}), 53.6\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-}\right.$ ${ }^{1}$) 3348 (m), 2981 (m), 2110 (s), 1755 (s), 1713 (s), 1504 (s), 1346 (s), 1235 (s), 1211 (s), 1151 (s), 1059 (s), 1000 (s). HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}_{4}{ }^{+}$253.0907; Found 253.0907.

Benzyl 2-azido-2-((tert-butoxycarbonyl)amino)acetate (16)

Synthesized from benzyl (tert-butoxycarbonyl)glycinate \mathbf{F} ($106 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure 44. Benzyl 2-azido-2-((tert-butoxycarbonyl)amino)acetate 16 ($39.8 \mathrm{mg}, 0.130 \mathrm{mmol}, 32 \%$) was obtained as a yellowish solid after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 94:6 as eluent.

Rf (pentane/ethyl acetate 94:6): $0.26 . \mathrm{Mp}: 59.0-68.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta$ 7.42 - 7.34 (m, 5H, ArH), 5.72 (br s, 1H, NH), 5.59 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN} \mathrm{N}_{3}$), 5.27 (dd, J = 17.4, $12.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.47 ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6$ (Cq), 154.4 (Cq), 134.5 (Cq), 129.0 (CH), 128.9 (CH), 128.7 (CH), 81.7 (Cq), 68.6 (CH2), 66.8 (CH), 28.3 $\left(\mathrm{CH}_{3}\right)$. IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$) 3352 (w), 2981 (w), 2114 (s$), 1720$ (s$), 1504$ (m), 1331 (s$), 1238$ (s$), 1161$ (s), 1057 (m), 987 (m), 741 (m). HRMS (ESI/QTOF) m/z: [M + Na] Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{4}{ }^{+}$ 329.1226; Found 329.1229.

Methyl 2-azido-2-(3,3-diphenylureido)acetate (17)

Synthesized from methyl (diphenylcarbamoyl)glycinate 45 ($114 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure F. Methyl 2-azido-2-(3,3-diphenylureido)acetate 17 (50.1 mg , $0.154 \mathrm{mmol}, 39 \%$) was obtained as an orange oil after purification by column chromatography on silica using a gradient from dichloromethane to dichloromethane/ethyl acetate 9:1 as eluent.

Rf (dichloromethane/ethyl acetate 9:1): 0.71. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$) $\delta 7.44$ $7.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}\right.$), 7.31 - $7.27(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 5.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}^{-d} 4,298 \mathrm{~K}$) $\delta 169.0$ (Cq), 157.6 (Cq), 143.5 (Cq), 130.6 (CH), 128.7 (CH), 128.1 (CH), 68.2 (CH), $53.7\left(\mathrm{CH}_{3}\right)$. IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 3417 (w), $3064(\mathrm{w}), 3040(\mathrm{w}), 2956(\mathrm{w}), 2111(\mathrm{~s})$,

1751 (m), 1676 (s), 1490 (s$), 1351$ (m), 1210 (s), 759 (m), 701 (s). HRMS (ESI/QTOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{NaO}_{3}{ }^{+}$348.1067; Found 348.1063.

Methyl (2-azido-2-((tert-butoxycarbonyl)amino)acetyl)-L-prolinate (18)

Synthesized from methyl (tert-butoxycarbonyl)glycyl-L-prolinate 46 ($115 \mathrm{mg}, 0.400 \mathrm{mmol}$, 1.00 equiv) following general procedure F. Methyl (2-azido-2-((tert-butoxycarbonyl)amino)acetyl)-L-prolinate 18 ($41.3 \mathrm{mg}, 0.126 \mathrm{mmol}, 32 \%$) (mixture of diastereoisomers, n.d. dr) was obtained as a yellow oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 7:3 as eluent.

Rf (pentane/ethyl acetate 7:3): $0.25 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) $\delta 6.29-6.26(\mathrm{~m}, 0.9 \mathrm{H}, \mathrm{NH}), 6.07$ (br s, $0.1 \mathrm{H}, \mathrm{NH}$), 5.57 (d, $\mathrm{J}=$ $7.8 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{CHN}_{3}$), $5.44\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{CHN}_{3}\right), 5.31-5.28\left(\mathrm{~m}, 0.2 \mathrm{H}, \mathrm{CHN} \mathrm{N}_{3}\right), 4.70$ (dd, J = $7.3,3.2 \mathrm{~Hz}, 0.08 \mathrm{H}, \mathrm{NCH}$ ProC(O)), 4.60 (dd, $J=9.4,3.6 \mathrm{~Hz}, 0.04 \mathrm{H}, \mathrm{NCH}$ ProC(O)), 4.51 (ddd, $J=$ $\left.10.7,6.7,4.0 \mathrm{~Hz}, 0.87 \mathrm{H}, ~, ~ N C H_{\text {pro }} \mathrm{C}(\mathrm{O})\right), 3.93-3.86\left(\mathrm{~m}, 0.43 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {Pro }}\right), 3.77-3.64$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {pro }}+\mathrm{OCH}_{3}$), $3.61-3.52\left(\mathrm{~m}, 0.56, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {pro }}\right.$), $2.31-2.00$ (m , $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {pro }}$), 1.46 (s, $9 \mathrm{H}, \mathrm{CH}_{3 \text { вос) }}$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers, signals not fully resolved) $\delta 172.1$ (Cq), 171.8 (Cq), 171.7 (Cq), 164.2 (Cq), 163.8 (Cq), 163.8 (Cq), 154.7 (Cq), 154.6 (Cq), 154.4 (Cq), 81.3 (Cq), 81.3 (Cq), $81.3(\mathrm{Cq}), 65.4(\mathrm{CH}), 65.2(\mathrm{CH}), 65.1(\mathrm{CH}), 64.9(\mathrm{CH}), 59.3(\mathrm{CH}), 59.2(\mathrm{CH}), 58.9(\mathrm{CH})$, $53.2\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 52.7\left(\mathrm{CH}_{3}\right), 47.0\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right), 46.9\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 22.25\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{2}\right)$. IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 2971 (m), 2108 (s$), 1746$ (s$), 1718$ (s$), 1660(\mathrm{~s}), 1496$ (m), 1436 (s), 1367 (m), 1237 (m), 1155 (s), 1061 (m). HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 350.1435$; Found 350.1429.
tert-Butyl (5S)-2-azido-5-(((S)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1carboxylate (20)

Synthesized from tert-butyl (S)-2-(((S)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1carboxylate 48 ($120 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. Tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 20 (43.8 mg (diastereoisomer $\min \mathbf{2 0 a}$) +48.8 mg (diastereoisomer maj 20b) $=92.6 \mathrm{mg}, 0.271$ $\mathrm{mmol}, 68 \%$) (1.1:1 dr) was obtained as yellow oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 7:3 as eluent.

20a: diastereoisomer min, $\mathbf{R f}$ (pentane/ethyl acetate 9:1) diamin: 0.18 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 278.2 \mathrm{~K}$, complex mixture of two rotamers) $\delta 5.64$ (dd, J=8.9, $\left.5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.44-4.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{\mathrm{Ala}} \mathrm{C}(\mathrm{O})\right), 4.31(\mathrm{dd}, \mathrm{J}=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.70 (app. d, J $=4.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.42-2.22(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), 2.20 - 2.06 (m, 1H, $\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), 2.05 - 1.97 (m, 1H, $\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $1.83-1.73$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), $1.51+1.43\left(2 \mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \text { вос }}\right)$, 1.40 ($\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Ala}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 278.2 \mathrm{~K}$, complex mixture of two rotamers, signals not fully resolved) $\delta 174.6$ (Cq), 174.5 (Cq), 174.4 (Cq), 174.2 (Cq), 155.6 (Cq), $155.0(\mathrm{Cq}), 83.0(\mathrm{Cq}), 82.5(\mathrm{Cq}), 76.9(\mathrm{CH}), 61.2(\mathrm{CH}), 60.8(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 52.7\left(\mathrm{CH}_{3}\right)$, $32.7\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$; one CH is under the MeOD- d_{4} peak (see HSQC). IR $\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3330(\mathrm{~m}), 2982(\mathrm{~m}), 2111(\mathrm{~s}), 1749$ (s), 1708 (s), 1545 (m), 1383 (s), 1208 (s), 1160 (s$).$ HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+}$364.1591; Found 364.1594.

20b: diastereoisomer maj: Rf (pentane/ethyl acetate 7:3) diamaj: 0.13 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of two rotamers) $\delta 5.65$ (dd, $J=11.1$, $4.9 \mathrm{~Hz}, 0.94 \mathrm{H}, \mathrm{CHN}_{3}$), 5.23 (d, J=4.6 Hz, $0.06 \mathrm{H}, C H N_{3}$), 4.42 (app. qd, $J=7.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NHCH}_{\mathrm{Ala}} \mathrm{C}(\mathrm{O})$), $4.21\left(\mathrm{q}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), 3.72 (app. d, $J=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.35 - 2.21 ($\left.\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 2.09-1.91$ (m, 2H, NCHCH $2 \mathrm{CHHCHC}(\mathrm{O})+$ $\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), $1.87-1.74$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), 1.50 ($\mathrm{s}, 4.5 \mathrm{H}, \mathrm{CH}_{3 \text { вос) }}$), 1.43 (s , $\left.4.5 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right), 1.41\left(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{AII}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 278.2 \mathrm{~K}$, complex mixture of two rotamers, signals not fully resolved) $\delta 174.6$ (Cq), 174.4 (Cq), 174.2 (Cq), 173.9 (Cq), 155.6 (Cq), $154.9(\mathrm{Cq}), 83.0(\mathrm{Cq}), 82.9(\mathrm{Cq}), 82.5(\mathrm{Cq}), 82.5(\mathrm{Cq}), 76.9(\mathrm{CH}), 76.3(\mathrm{CH}), 76.3$ $(\mathrm{CH}), 62.0(\mathrm{CH}), 61.7(\mathrm{CH}), 61.2(\mathrm{CH}), 60.8(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 33.3\left(\mathrm{CH}_{2}\right)$, $32.7\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 17.43\left(\mathrm{CH}_{3}\right), 17.35\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$; one CH is under the

MeOD- d_{4} peak (see HSQC). IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 3334 (m), 2981 (m), 2111 (s), 1746 (s$), 1705$ (s$), 1539$ (m), 1379 (s), 1208 (m), 1160 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+}$ 364.1591; Found 364.1590.

20b (dia maj)
tert-Butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (21)

Synthesized from tert-butyl (S)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 49 ($131 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 21 (39.4 mg (diastereoisomer min 21a) +70.4 mg (diastereoisomer maj 21b) $=110 \mathrm{mg}, 0.297 \mathrm{mmol}, 74 \%)(1.8: 1 \mathrm{dr})$ was obtained as yellow oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 7:3 as eluent.

21a: diastereoisomer min: Rf (pentane/ethyl acetate 7:3) diamin: 0.47 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) $\delta 5.61$ (dd, $J=8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}$, CHN_{3}), $4.47-4.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 4.30\left(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NHCH}_{\mathrm{val}} \mathrm{C}(\mathrm{O})\right.$), 4.25 (d, J = $5.9 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NHCH}_{\mathrm{val}} \mathrm{C}(\mathrm{O})$), $3.73-3.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.43-1.90(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})+\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.86-1.74$ (ddd, J $=12.4,6.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), 1.51 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermin) }}$, 1.43 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Bocrotamermaj})}$), $1.01-0.97$ (m, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Val}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 278.2 \mathrm{~K}$, complex mixture of two rotamers, signals not fully resolved) $\delta 175.1$ (Cq), 175.0 (Cq), 174.7 (Cq), 174.6 (Cq), 173.52 (Cq), 173.50 (Cq), 173.48 (Cq), 173.47 (Cq), 155.6 (Cq), $154.9(\mathrm{Cq}), 82.9(\mathrm{Cq}), 82.4(\mathrm{Cq}), 76.9(\mathrm{CH}), 76.9(\mathrm{CH})$, 61.12 (CH), $61.08(\mathrm{CH}), 60.79(\mathrm{CH}), 60.75(\mathrm{CH}), 59.7(\mathrm{CH}), 59.6(\mathrm{CH}), 59.4(\mathrm{CH}), 59.3(\mathrm{CH}), 52.49$ $\left(\mathrm{CH}_{3}\right)$, $52.47\left(\mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{2}\right), 31.80(\mathrm{CH}), 31.77(\mathrm{CH}), 31.7\left(\mathrm{CH}_{2}\right), 31.43(\mathrm{CH}), 31.40(\mathrm{CH}), 29.9$ $\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}\right.$, cm^{-1}) 3348 (m), 2980 (m), 2909 (w), 2109 (s$), 1743$ (s), 1708 (s), 1522 (m), 1381 (s), 1157 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+}$392.1915; Found 392.1912.

21b: diastereoisomer maj: $\mathbf{R f}$ (pentane/ethyl acetate 7:3) diamaj: 0.28 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- $\mathrm{d}_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) $\delta 5.71-5.61(\mathrm{~m}, 0.7 \mathrm{H}$, CHN_{3}), 5.28 (app. br s, $0.3 \mathrm{H}, \mathrm{CHN}_{3}$), $4.48-4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {pro }} \mathrm{C}(\mathrm{O})+\mathrm{NHCHC}(\mathrm{O})\right.$), 3.74 - $3.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.28$ (app. br s, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CHH}_{\text {Pro }} \mathrm{CHC}(\mathrm{O})$), $2.23-2.12(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.12-1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCHH}_{\text {Pro }} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{CHCH}_{2} \mathrm{CHH}_{\text {Pro }} \mathrm{CHC}(\mathrm{O})\right), 1.89-1.77(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCHH}_{\text {ProCH }} \mathrm{CHC}_{2} \mathrm{CH}(\mathrm{O})$), $1.61-1.37$ (app. m, $9 \mathrm{H}, \mathrm{CH}_{3 \text { Boc }}$), $1.02-0.90$ (m, $6 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Val})}$) ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers, signals not fully resolved) δ $176.0(\mathrm{Cq}), 174.9(\mathrm{Cq}), 174.3(\mathrm{Cq}), 173.5(\mathrm{Cq}), 173.4(\mathrm{Cq}), 173.3(\mathrm{Cq}), 173.2(\mathrm{Cq}), 156.0(\mathrm{Cq})$, $155.6(\mathrm{Cq}), 154.9(\mathrm{Cq}), 91.0(\mathrm{CH}), 83.0(\mathrm{Cq}), 82.6(\mathrm{Cq}), 82.4(\mathrm{Cq}), 81.4(\mathrm{Cq}), 81.2(\mathrm{Cq}), 76.8(\mathrm{CH})$, 76.6 (CH), $62.9(\mathrm{CH}), 62.1(\mathrm{CH}), 61.9(\mathrm{CH}), 61.1(\mathrm{CH}), 60.8(\mathrm{CH}), 59.5(\mathrm{CH}), 59.3(\mathrm{CH}), 59.2(\mathrm{CH})$, $59.0(\mathrm{CH}), 56.4(\mathrm{CH}), 52.6\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{3}\right), 52.5\left(\mathrm{CH}_{3}\right), 47.9\left(\mathrm{CH}_{3}\right), 33.3\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.4$ $\left(\mathrm{CH}_{2}\right), 32.20(\mathrm{CH}), 31.8(\mathrm{CH}), 31.6(\mathrm{CH}), 30.1\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 28.44\left(\mathrm{CH}_{3}\right), 28.39$ $\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{Cm}^{-1}\right) 3327$ (m), 2976 (m), 2936 (m), 2111 (s), 1742 (s), 1712 (s), 1525 (m), 1367 (s), 1208 (s$), 1157$ (s). HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 392.1904$; Found 392.1892.

Procedure for the 1.0 mmol scale reaction

An oven dried 20 mL microwave vial equipped with a magnetic stir bar was charged with tertbutyl (S)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 49 ($0.33 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0$ equiv) and 2 -iodobenzoic acid ($0.50 \mathrm{~g}, 2.0 \mathrm{mmol}, 2.0$ equiv). The flask was flushed with nitrogen during few minutes after which 1,2-dichloroethane (10 mL , 0.1 M) was added followed by trimethylsilyl azide ($0.28 \mathrm{~mL}, 2.0 \mathrm{mmol}, 2.0$ equiv). Solid m chloroperoxybenzoic acid ($0.45 \mathrm{~g}, 2.0 \mathrm{mmol}, 2.0$ equiv) was finally added in one portion and the vial was sealed and flushed again with nitrogen during few minutes. The heterogeneous mixture was vigorously stirred at $60^{\circ} \mathrm{C}$ for 24 hours. After this time, the reaction was cooled down to room temperature, triethylamine ($0.70 \mathrm{~mL}, 5.0 \mathrm{mmol}, 5.0$ equiv) was added and the mixture was stirred few minutes, filtered over a pad of silica using ethyl acetate to rinse the silica ($\approx 500 \mathrm{~mL}$) and concentrated under reduced pressure. tert-butyl ($5 S$)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 21 (0.11 g (diastereoisomer $\min 21 \mathrm{a})+0.18 \mathrm{~g}$ (diastereoisomer maj 21b) $=0.29 \mathrm{~g}, 0.79 \mathrm{mmol}, 79 \%$) (1.8:1 dr) was obtained as yellow oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 7:3 as eluent.
$\mathbf{R f}$ (pentane/ethyl acetate $7: 3)_{\text {diamin: }}$ 0.47. $\mathbf{R f}$ (pentane/ethyl acetate $\left.7: 3\right)_{\text {diamaj }}$: 0.28 .
tert-Butyl (5S)-2-azido-5-(((S)-1-(tert-butoxy)-4-methyl-1-oxopentan-2-yl)carbamoyl) pyrrolidine-1-carboxylate (22)

Synthesized from tert-butyl (S)-2-(((S)-1-(tert-butoxy)-4-methyl-1-oxopentan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 50 ($154 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. tert-butyl (5S)-2-azido-5-(((S)-1-(tert-butoxy)-4-methyl-1-oxopentan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 22 (56.3 mg (diastereoisomer 1 22a) + 54.7 mg (diastereoisomer $2 \mathbf{2 2 b}$) $=111 \mathrm{mg}, 0.261 \mathrm{mmol}, 65 \%)(1: 1 \mathrm{dr})$ was obtained as yellow sticky oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent.

22a: diastereoisomer 1: $\mathbf{R f}$ (pentane/ethyl acetate 8:2) dia1 $: 0.58$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, complex mixture of rotamers) $\delta 5.61$ (dd, $J=9.4,5.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHN}_{3}$), $4.37-4.31$ (m, 1H, $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 4.31-4.22$ (m, 1H, NHCH $\left.{ }_{\text {Leeu }} \mathrm{C}(\mathrm{O})\right), 2.44$ $1.93\left(\mathrm{~m}, 3 \mathrm{H}, \quad \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.87-1.69(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCHCHHCH} 2 \mathrm{CHC}(\mathrm{O})+\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.63-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{30 t-\mathrm{Bu}}\right)$, 1.44 (m, 15H, CH ${ }_{30 t-\text { Bu }}$), $1.02-0.87$ (m, 6H, CH ${ }_{3 \text { Leu) }}$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, complex mixture of rotamers, signals not fully resolved) $\delta 174.6$ (Cq), 174.2 (Cq), 173.4 (Cq), 173.2 (Cq), 155.7 (Cq), 154.9 (Cq), 91.0 (CH), 83.0 (Cq), 82.8 (Cq), 82.63 (Cq), 82.55 (Cq), 82.4 $(\mathrm{Cq}), 77.0(\mathrm{CH}), 76.9(\mathrm{CH}), 61.3(\mathrm{CH}), 61.2(\mathrm{CH}), 60.9(\mathrm{CH}), 53.1(\mathrm{CH}), 53.0(\mathrm{CH}), 42.4\left(\mathrm{CH}_{2}\right), 41.5$ $\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.5$ $\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 26.0(\mathrm{CH}), 25.9(\mathrm{CH}), 23.33\left(\mathrm{CH}_{3}\right), 23.27\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.8$ $\left(\mathrm{CH}_{3}\right)$. IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$) $3342(\mathrm{~m}), 2979(\mathrm{~m}), 2938(\mathrm{~m}), 2113(\mathrm{~s}), 1732(\mathrm{~s}), 1712(\mathrm{~s}), 1382(\mathrm{~s}), 1368$ (s), 1258 (m), 1158 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 448.2530$; Found 448.2527.

22b: diastereoisomers 2: $\mathbf{R f}$ (pentane/ethyl acetate 7:3) diaz: 0.23 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}, 298 K , complex micture of rotamers) $\delta 5.67-5.60(\mathrm{~m}, 0.77 \mathrm{H}$, CHN_{3}), $5.26-5.23\left(\mathrm{~m}, 0.23 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.40-4.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{\text {LeuC }}(\mathrm{O})\right), 4.28-4.18(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 2.45-2.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 2.12-1.91(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})+\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.91-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}+\right.$ NCHCHHCH $2 \mathrm{CHC}(\mathrm{O})$), $1.65-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2 \mathrm{LeuCH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.55-1.38$ (app. m, $18 \mathrm{H}, \mathrm{CH}_{30 t}$ Bu), $1.01-0.88$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3 \text { Leu) }}$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $\mathrm{d}_{4}, 298 \mathrm{~K}$, complex micture of rotamers, signals not fully resolved) $\delta 175.9$ (Cq), 175.4 (Cq), 174.6 (Cq), 174.0 (Cq), 173.4
(Cq), 173.2 (Cq), $156.0(\mathrm{Cq}), 155.9(\mathrm{Cq}), 155.7(\mathrm{Cq}), 154.9(\mathrm{Cq}), 91.0(\mathrm{CH}), 90.7(\mathrm{CH}), 82.9(\mathrm{Cq})$, $82.8(\mathrm{Cq}), 82.7(\mathrm{Cq}), 82.6(\mathrm{Cq}), 82.5(\mathrm{Cq}), 76.6(\mathrm{CH}), 76.5(\mathrm{CH}), 62.7(\mathrm{CH}), 62.0(\mathrm{CH}), 61.8(\mathrm{CH})$, $61.2(\mathrm{CH}), 53.1(\mathrm{CH}), 53.04(\mathrm{CH}), 52.96(\mathrm{CH}), 52.6(\mathrm{CH}), 42.2\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 41.4$ $\left(\mathrm{CH}_{2}\right)$, $41.3\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 26.0(\mathrm{CH}), 25.8(\mathrm{CH}), 23.4\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right)$, $22.0\left(\mathrm{CH}_{3}\right)$. IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$) 3335 (w), 2983 (m), $2930(\mathrm{~m}), 2109(\mathrm{~m}), 1735(\mathrm{~s}), 1709(\mathrm{~s}), 1522(\mathrm{~m})$, 1388 (s), 1368 (s), 1257 (m), 1157 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 448.2530$; Found 448.2532.

22b
tert-Butyl
(5S)-2-azido-5-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl) pyrrolidine-1-carboxylate (23)

Synthesized from tert-butyl (S)-2-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 51 ($151 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 23 (47.6 mg (diastereoisomer min 23a) +65.9 mg (diastereoisomer maj 23b) $=114 \mathrm{mg}, 0.272 \mathrm{mmol}, 68 \%$) (1.4:1 dr) was obtained as yellow sticky oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent.

23a: diastereoisomer min: $\mathbf{R f}$ (pentane/ethyl acetate 8:2) diamin: 0.21 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$, mixture of two rotamers) $\delta 7.34$ - 7.11 (m, 5H, ArH), 5.58 (d, J $\left.=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.71-4.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{\text {phe }} \mathrm{C}(\mathrm{O})\right), 4.30(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 0.44 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {rotamermin }} \mathrm{C}(\mathrm{O})$), 4.23 (d, $J=9.2 \mathrm{~Hz}, 0.57 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {rotamermaj }} \mathrm{C}(\mathrm{O})$), 3.70 (s , $2 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{\text {rotamermaj }}$), $3.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}_{\text {3rotamermin }}\right), 3.25-2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.35-2.18(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), $2.12-1.92$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $1.91-1.82(\mathrm{~m}, 1 \mathrm{H}$, NCHCHHCH $2 \mathrm{CHC}(\mathrm{O})$), $1.79-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 1.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermin }}\right.$),
$1.27\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermaj }}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 174.9$ (Cqrotamermaj), 174.2 (Cqrotamermin), 173.5 (Cqrotamermaj), 173.3 (Cqrotamermin), 155.6 (Cqrotamermaj), 154.9 (Cqrotamermin), 138.3 (Cqrotamermaj), 138.0 (Cqrotamermin), 130.5 (CH), 130.3 (CH), 130.1 (CH), 129.6 (CH), 129.5 (CH), 128.0 (CH), 127.9 (CH), 83.1 (Cqrotamermin), 82.5 (Cqrotamermaj), 77.0 ($\mathrm{CH}_{\text {rotamermin }}$), 76.9 ($\mathrm{CH}_{\text {rotamermaj }}$), 61.4 ($\mathrm{CH}_{\text {rotamermaj }}$), 61.0 ($\mathrm{CH}_{\text {rotamermin }}$), $55.4\left(\mathrm{CH}_{\text {rotamermaj }}\right)$, $55.3\left(\mathrm{CH}_{\text {rotamermin }}\right)$, $52.7\left(\mathrm{CH}_{3 \text { rotamermaj }}\right)$, $52.6\left(\mathrm{CH}_{3 \text { rotamermin }}\right)$, 38.3 $\left(\mathrm{CH}_{2 \text { rotamermin }}\right), 38.1\left(\mathrm{CH}_{2 \text { rotamermaj }}\right), 32.8\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right)$. IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 3329 (w), 2981 (w), 2110 (s), 1701 (s), 1523 (m), 1373 (s), 1254 (m), 1203 (s), 1161 (s), 741 (m), 702 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 440.1904$; Found 440.1905.

23b: diastereoisomer maj: $\mathbf{R f}$ (pentane/ethyl acetate 8:2) diamaj: 0.09 .
${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD- d_{4}, 298 K mixture of rotamers) $\delta 7.44-7.02$ (m, 5H, ArH), 5.62 (d, $\left.J=5.2 \mathrm{~Hz}, 0.88 \mathrm{H}, C H N_{3}\right), 5.20\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 0.12 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.77-4.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}$ Phe $\mathrm{C}(\mathrm{O}))$, 4.18 (app. br s, 1H, NCHCH $2 \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.81 - 3.60 (app. m, 3H, OCH3), $3.25-2.93$ (m, 2H, $\mathrm{CH}_{2} \mathrm{Ph}$), 2.25 - 2.22 (m, 1H, $\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), 2.01 (app. br s, $1 \mathrm{H}, \mathrm{NCHCHHCH} \mathrm{N}_{2} \mathrm{CHC}(\mathrm{O})$), 1.89 (app. br s, $1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), 1.76 (app. br s, $1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $1.61-1.19$ (app. m, 9H, CH ${ }_{3 \mathrm{Boc}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers, signals not fully resolved) $\delta 174.8$ (Cq), 174.7 (Cq), 174.1 (Cq), 174.0 (Cq), 173.2 (Cq), 173.1 (Cq), 156.0 (Cq), 155.6 (Cq), 154.9 (Cq), 138.3 (Cq), 137.9 (Cq), 137.7 (Cq), 130.5 (CH), 130.3 (CH), 130.1 (CH), 129.7 (CH), 129.6 (CH), 129.5 (CH), 128.1 (CH), 128.0 (CH), 83.0 (Cq), 82.6 (Cq), 81.5 (Cq), $76.8(\mathrm{CH}), 76.7(\mathrm{CH}), 62.2(\mathrm{CH}), 62.0(\mathrm{CH}), 61.5(\mathrm{CH}), 55.5(\mathrm{CH}), 55.4(\mathrm{CH}), 55.2$ (CH), $55.1(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 52.74\left(\mathrm{CH}_{3}\right), 52.67\left(\mathrm{CH}_{3}\right), 38.5\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 32.4$ $\left(\mathrm{CH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{V}_{\text {max }}, \mathrm{cm}^{-1}\right) 3383$ (w), 2981 (w), 2951 (w), 2110 (m), 1747 (m), 1697 (s), 1520 (m), 1377 (s), 1165 (m), 741 (m), 706 (w). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{NaO}_{5}^{+} 440.1904$; Found 440.1896.

tert-Butyl (5S)-2-azido-5-(((S)-3-((tert-butyldimethylsilyl)oxy)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (24)

Synthesized from tert-butyl (S)-2-(((S)-3-((tert-butyldimethylsilyl)oxy)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 52 ($172 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure F. tert-butyl (5S)-2-azido-5-(((S)-3-((tert-butyldimethylsilyl)oxy)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 24 (52.1 mg (diastereoisomer min 24a) +92.7 mg (diastereoisomer maj 24b) $=145 \mathrm{mg}, 0.307 \mathrm{mmol}, 77 \%$) (1.8:1 dr) was obtained as clear oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent.

24a: diastereoisomer min: $\mathbf{R f}$ (pentane/ethyl acetate 8:2) diamin: 0.30 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}, 298 K , mixture of two rotamers) $\delta 5.62$ (dd, $\mathrm{J}=11.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}$, CHN_{3}), $4.60-4.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{\mathrm{ser}} \mathrm{C}(\mathrm{O})\right.$), $4.43\left(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 4.11-$ 4.00 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHHOTBS}$), $3.94-3.81$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHHOTBS}$), $3.75-3.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.45-2.23$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}\left(\mathrm{O}\right.$)), 2.23 - 2.08 (m, 1H, $\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), 2.08 - 1.95 (m, 1H, $\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $1.88-1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermin }}\right.$), 1.44 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermaj }}$), $0.95-0.83\left(\mathrm{~m}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3 \text { твs }}\right), 0.12-0.01$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3 \text { твs }}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, mixture of two rotamers, signals not fully resolved) $\delta 174.8$ (Cq), 174.4 (Cq), 172.1 (Cq), 171.8 (Cq), 155.6 (Cq), 155.0 (Cq), 83.0 (Cq), 82.4 (Cq), 76.9 (CH), 76.9 $(\mathrm{CH}), 64.5\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 61.2(\mathrm{CH}), 60.8(\mathrm{CH}), 56.1(\mathrm{CH}), 56.1(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 52.7\left(\mathrm{CH}_{3}\right)$, $32.8\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 26.28\left(\mathrm{CH}_{3}\right), 26.25\left(\mathrm{CH}_{3}\right)$, $26.2\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{Cq}), 19.1(\mathrm{Cq}),-5.4\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right),-5.6\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{v}_{\text {max }}\right.$, cm^{-1}) 2954 (m), 2931 (m), 2884 (m), 2859 (m), 2110 (s), 1751 (s$), 1712$ (s$), 1380$ (s$), 1259$ (s$)$, 1162 (s). HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{NaO}_{6} \mathrm{Si}^{+}$ 494.2405; Found 494.2402.

24b: diastereoisomer maj: Rf (pentane/ethyl acetate 7:3) diamaj: 0.15 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, complex mixture of rotamers) $\delta 5.68$ (dd, J $=5.8,2.0 \mathrm{~Hz}$, $\left.0.84 \mathrm{H}, \mathrm{CHN}_{3}\right), 5.27\left(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 0.16 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.62-4.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{\mathrm{ser}} \mathrm{C}(\mathrm{O})\right), 4.36-4.21$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O}$)), $4.15-4.01$ (m, 1H, CHHOTBS)), $3.90-3.82$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHHOTBS}$), $3.77-3.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.44-2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 2.17-1.95(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})+\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.94-1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCHHCH} 2 \mathrm{CHC}(\mathrm{O})), 1.59-$ 1.39 (app. m, 9H, $\mathrm{CH}_{3 \text { вос }}$), $0.92-0.87$ (m,9H, $\left.\left(\mathrm{CH}_{3}\right)_{3 \text { твs }}\right), 0.10-0.03$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3 \text { твs }}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, complex mixture of rotamers, signals not fully resolved) $\delta 175.7$ (Cq), 174.7 (Cq), 174.2 (Cq), 172.0 (Cq), 171.8 (Cq), 171.6 (Cq), 156.0 (Cq), 155.5 (Cq), 154.9
$(\mathrm{Cq}), 83.2(\mathrm{Cq}), 82.8(\mathrm{Cq}), 81.6(\mathrm{Cq}), 81.3(\mathrm{Cq}), 77.1(\mathrm{CH}), 77.0(\mathrm{CH}), 64.4\left(\mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 62.6$ $(\mathrm{CH}), 62.3(\mathrm{CH}), 61.5(\mathrm{CH}), 61.1(\mathrm{CH}), 55.91(\mathrm{CH}), 55.89(\mathrm{CH}), 52.89\left(\mathrm{CH}_{3}\right), 52.87\left(\mathrm{CH}_{3}\right), 52.8$ $\left(\mathrm{CH}_{3}\right), 33.3\left(\mathrm{CH}_{2}\right), 32.43\left(\mathrm{CH}_{2}\right), 32.38\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 28.6$ $\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{3}\right), 26.19\left(\mathrm{CH}_{3}\right), 26.17\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 19.13$ $(\mathrm{CH}), 19.07(\mathrm{CH}), 19.0(\mathrm{CH}),-5.39\left(\mathrm{CH}_{3}\right),-5.44\left(\mathrm{CH}_{3}\right),-5.6\left(\mathrm{CH}_{3}\right),-5.6\left(\mathrm{CH}_{3}\right),-5.6\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(v_{\max }\right.$, cm^{-1}) 2955 (s), 2936 (s), 2898 (m), 2859 (m), 2111 (s), 1752 (s), 1705 (s), 1520 (m), 1380 (s), 1255 (s), 1163 (s), 1115 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{NaO}_{6} \mathrm{Si}^{+}$ 494.2405; Found 494.2410.

di-tert-Butyl ((2S)-5-azido-1-(tert-butoxycarbonyl)pyrrolidine-2-carbonyl)-L-glutamate (25)

Synthesized from di-tert-butyl (tert-butoxycarbonyl)-L-prolyl-L-glutamate 53 (183 mg, 0.400 mmol, 1.00 equiv) following general procedure F. Di-tert-butyl ((2S)-5-azido-1-(tert-butoxycarbonyl)pyrrolidine-2-carbonyl)-L-glutamate 25 (64.8 mg (diastereoisomer min 25a) +76.1 mg (diastereoisomer maj 25b) $=141 \mathrm{mg}, 0.280 \mathrm{mmol}, 71 \%$) (1.2:1 dr) was obtained as clear oils after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent.

25a: diastereoisomer min: Rf (pentane/ethyl acetate 8:2) diamin: 0.37 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}^{2} d_{4}, 278.2 \mathrm{~K}$, mixture of rotamers) $\delta 5.64(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN} 3$), 4.32 (dd, $J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{\mathrm{Glu}} \mathrm{C}(\mathrm{O})$), 4.27 (dd, $J=9.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{Pro}} \mathrm{C}(\mathrm{O})$), $2.50-2.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NHCHCH}_{2 \mathrm{GluCH}}^{2} \mathrm{C}(\mathrm{O}) \mathrm{Ot}-\mathrm{Bu}+\mathrm{NHCHCH}_{2} \mathrm{CHH}_{\mathrm{Glu}} \mathrm{C}(\mathrm{O}) \mathrm{Ot}-\mathrm{Bu}\right), 2.22-1.96$ (m, $\left.3 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {pro }} \mathrm{C}(\mathrm{O})+\mathrm{NHCHCH}_{2} \mathrm{CHH}_{\mathrm{Glu}} \mathrm{C}(\mathrm{O}) \mathrm{Ot}-\mathrm{Bu}\right), 1.91-1.76(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {ProC }}(\mathrm{O})$), $1.57-1.41$ (m, 27H, CH ${ }_{30 t-\mathrm{Bu}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 278.2 \mathrm{~K}$, complex mixture of three rotamers, signals not fully resolved) $\delta 174.7(\mathrm{Cq}), 174.4(\mathrm{Cq}), 173.8$ (Cq), 173.3 (Cq), $172.3(\mathrm{Cq}), 172.2(\mathrm{Cq}), 155.6(\mathrm{Cq}), 154.9(\mathrm{Cq}), 83.0(\mathrm{Cq}), 82.9(\mathrm{Cq}), 82.8(\mathrm{Cq})$, $82.5(\mathrm{Cq}), 81.8(\mathrm{Cq}), 81.6(\mathrm{Cq}), 76.91(\mathrm{CH}), 76.88(\mathrm{CH}), 61.2(\mathrm{CH}), 60.9(\mathrm{CH}), 53.70(\mathrm{CH}), 53.67$
(CH), $32.8\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.51\left(\mathrm{CH}_{3}\right), 28.46$ $\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right) . \operatorname{IR}\left(\mathrm{v}_{\max }, \mathrm{cm}^{-1}\right) 3336(\mathrm{w}), 2979(\mathrm{~m}), 2109$ (m), 1731 (m), 1709 (s), 1536 (w), 1368 (s), 1257 (m), 1156 (s). HRMS (nanochip-ESI/LTQOrbitrap) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{NaO}_{7}^{+} 520.2742$; Found 520.2727.

25b: diastereoisomer maj: Rf (pentane/ethyl acetate 7:3)diamaj: 0.17.
${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) $\delta 5.68-5.61(\mathrm{~m}, 1 \mathrm{H}$, CHN_{3}), $4.42-4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{Glu}} \mathrm{C}(\mathrm{O})+\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {Pro }} \mathrm{C}(\mathrm{O})\right.$), $2.46-2.19\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2 \text { Pro }}\right.$ and/or $\mathrm{CH}_{2 \mathrm{GI}}$), 2.16-1.77 (m,5H, $\mathrm{CH}_{2 \text { Pro }}$ and/or $\mathrm{CH}_{2 G \mathrm{Iu}}$), $1.56-1.37$ ($\mathrm{m}, 27 \mathrm{H}, \mathrm{CH}_{30 t-\mathrm{Bu}}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers, signals not fully resolved) δ 174.4 (Cq), 173.2 (Cq), 172.7 (Cq), 172.5 (Cq), $172.0(\mathrm{Cq}), 171.91$ (Cq), 170.88 (Cq), 170.80 (Cq), 170.76 (Cq), 154.6 (Cq), 154.2 (Cq), 153.5 (Cq), 81.6 (Cq), 81.54 (Cq), $81.50(\mathrm{Cq}), 81.4$ (Cq), 81.2 (Cq), 80.4 (Cq), 80.2 (Cq), 80.1 (Cq), 79.8 (Cq), 75.2 (CH), 74.9 (CH), 60.7 (CH), 60.5 (CH), $59.9(\mathrm{CH}), 52.30(\mathrm{CH}), 52.25(\mathrm{CH}), 52.1(\mathrm{CH}), 32.0\left(\mathrm{CH}_{2}\right), 31.14\left(\mathrm{CH}_{2}\right), 31.07\left(\mathrm{CH}_{2}\right), 31.0$ $\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 27.33\left(\mathrm{CH}_{2}\right), 27.26\left(\mathrm{CH}_{2}\right), 27.2$ $\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.81\left(\mathrm{CH}_{3}\right), 26.80\left(\mathrm{CH}_{3}\right), 26.76\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 24.0$ $\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right)$. IR ($\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$) $3323(\mathrm{w}), 2982(\mathrm{~m}), 2924(\mathrm{w}), 2111(\mathrm{~m}), 1733(\mathrm{~s}), 1705(\mathrm{~s})$, 1392 (m), 1368 (s), 1254 (m), 1158 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{NaO}_{7}^{+}$520.2742; Found 520.2745.

tert-Butyl (5S)-2-azido-5-(((S)-6-(((benzyloxy)carbonyl)amino)-1-methoxy-1-oxohexan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (26)

Synthesized from tert-butyl (S)-2-(((S)-6-(((benzyloxy)carbonyl)amino)-1-methoxy-1-oxohexan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 54 ($197 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure F. tert-butyl (5S)-2-azido-5-(((S)-6-(((benzyloxy)carbonyl)amino)-

1-methoxy-1-oxohexan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 26 ($124 \mathrm{mg}, 0.130 \mathrm{mmol}$, 58%) (mixture of diastereoisomers, n.d. dr) was obtained as yellowish solid after purification by column chromatography on silica using a gradient from dichloromethane to dichloromethane/methanol 96:4 as eluent.

Rf (dichloromethane/methanol 96:4): 0.29. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- $d_{4}, 298 \mathrm{~K}$, comlex mixture of diastereoisomers and rotamers) $\delta 7.46-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.67-5.57(\mathrm{~m}, 1 \mathrm{H}$, CHN_{3}), $5.07-5.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.51-4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{\text {Lys }} \mathrm{C}(\mathrm{O})+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), $3.75-3.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.15-3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2 \mathrm{Lys}} \mathrm{NHCBz}\right), 2.49-1.62(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{CH}_{2 \mathrm{Lys}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCBz}\right), 1.60-1.32\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Lys}_{5} \mathrm{CH}_{2} \mathrm{NHCBz}+\right.$ $\mathrm{OCH}_{3 \text { вос }}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}^{2} d_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) $\delta 174.9(\mathrm{Cq}), 174.7(\mathrm{Cq}), 174.5(\mathrm{Cq}), 174.2(\mathrm{Cq}), 174.0(\mathrm{Cq}), 174.0(\mathrm{Cq}), 173.9(\mathrm{Cq})$, 159.8 (Cq) 158.9 (Cq), 158.9 (Cq), 155.6 (Cq), 154.9 (Cq), 138.4 (Cq), 138.4 (Cq), 129.6 (CH), 129.49 (CH), 129.47 (CH), 129.45 (CH), $129.00(\mathrm{CH}), 128.97$ (CH), $128.95(\mathrm{CH}), 128.83$ (CH), 128.80 (CH), 83.0 (Cq), 82.9 (Cq), 82.5 (Cq), 82.4 (Cq), 76.9 (CH), 76.9 (CH), 76.5 (CH), 76.3 $(\mathrm{CH}), 67.3\left(\mathrm{CH}_{2}\right), 67.2\left(\mathrm{CH}_{2}\right), 62.0(\mathrm{CH}), 61.8(\mathrm{CH}), 61.2(\mathrm{CH}), 60.8(\mathrm{CH}), 53.9(\mathrm{CH}), 53.8(\mathrm{CH})$, $53.5(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 52.71\left(\mathrm{CH}_{3}\right), 52.68\left(\mathrm{CH}_{3}\right), 41.5\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 41.3\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right)$, $32.8\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 31.90\left(\mathrm{CH}_{2}\right), 31.85\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right)$, $30.4\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right)$, $24.6\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{2}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3338(\mathrm{~m})$, 2954 (m), 2925 (m), 2111 (s), 1733 (s), 1708 (s), 1455 (m), 1433 (m), 1386 (m), 1368 (m), 1261 (m), 1162 (m), $740(\mathrm{~m}), 697(\mathrm{~m})$. HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{NaO}_{7}{ }^{+}$ 555.2538; Found 555.2546.

Methyl (2-azido-2-((tert-butoxycarbonyl)amino)acetyl)-L-valinate (27)

Synthesized from methyl (tert-butoxycarbonyl)glycyl-L-valinate 55 ($115 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure \mathbf{F}. Methyl (2-azido-2-((tert-butoxycarbonyl)amino)acetyl)-L-valinate 27 ($54.0 \mathrm{mg}, 0.164 \mathrm{mmol}, 41 \%$) (mixture of diastereoisomers, n.d. dr) was obtained as a yellow oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 8:2 as eluent.

Rf (pentane/ethyl acetate 8:2): 0.43. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) $\delta 5.52\left(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{CHN}_{3}\right), 5.50\left(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.37-4.32(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NHCHval}(\mathrm{O})$), $3.74-3.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.28-2.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCHCH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.53(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CH}_{3 \text { вос }}\right), 1.48\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{3 \text { вос }}\right), 0.97-0.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3 \text { val }}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278.2$ K, complex mixture of diastereoisomers and rotamers, signals not fully resolved) $\delta 171.8$ (Cq), 170.9 (Cq), 165.8 (Cq), 165.5 (Cq), 158.3 (Cq), 157.5 (Cq), 155.3 (Cq), 155.2 (Cq), 148.6 (Cq), $83.8(\mathrm{Cq}), 81.52(\mathrm{Cq}), 81.51(\mathrm{Cq}), 81.50(\mathrm{Cq}), 67.4(\mathrm{CH}), 67.2(\mathrm{CH}), 58.1(\mathrm{CH}), 57.7(\mathrm{CH}), 57.6$
$(\mathrm{CH}), 52.71\left(\mathrm{CH}_{3}\right), 52.70\left(\mathrm{CH}_{3}\right), 52.65\left(\mathrm{CH}_{3}\right), 31.5(\mathrm{CH}), 31.5(\mathrm{CH}), 31.4(\mathrm{CH}), 28.2\left(\mathrm{CH}_{3}\right), 28.0$ $\left(\mathrm{CH}_{3}\right), 19.11\left(\mathrm{CH}_{3}\right), 19.08\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right)$ 3329 (m), 2974 (m), 2110 (s), 1732 (s), 1682 (s), 1489 (s), 1369 (m), 1254 (w), 1215 (m), 1149 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 352.1591$; Found 352.1589.

Methyl (2-azido-2-((tert-butoxycarbonyl)amino)acetyl)-L-leucinate (28)

Synthesized from tert-butyl (tert-butoxycarbonyl)glycyl-L-leucinate 56 ($138 \mathrm{mg}, 0.400 \mathrm{mmol}$, 1.00 equiv) following general procedure F. Methyl (2-azido-2-((tert-butoxycarbonyl)amino)acetyl)-L-leucinate 28 ($52.4 \mathrm{mg}, 0.136 \mathrm{mmol}, 34 \%$) (mixture of diastereoisomers, n.d. dr) was obtained as a yellow oil after purification by column chromatography on silica using a gradient from pentane to pentane/ethyl acetate 9:1 as eluent.

Rf (pentane/ethyl acetate 9:1): 0.31. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of diastereoisomers and rotamers) $\delta 5.44\left(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{N}_{3}\right), 4.43-4.20(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NHCH}_{\text {Leu }} \mathrm{C}(\mathrm{O})$), $1.77-1.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50-1.45(\mathrm{~m}$, $18 \mathrm{H}, \mathrm{CH}_{30+\mathrm{Bu}}$), 0.97 (dd, $\left.J=6.5,2.7 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2 \text { Leu }}\right), 0.92$ (dd, $\left.J=6.4,0.9 \mathrm{~Hz}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2 L e u}\right)$. ${ }^{13}$ C NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of diastereoisomers and rotamers, signals not fully resolved) $\delta 173.22(\mathrm{Cq}), 173.15(\mathrm{Cq}), 173.0(\mathrm{Cq}), 172.9(\mathrm{Cq}), 172.4(\mathrm{Cq}), 170.2(\mathrm{Cq}), 167.9$ (Cq), 160.4 (Cq), 157.8 (Cq), 151.3 (Cq), 84.2 (Cq), 83.2 (Cq), 83.2 (Cq), 83.02 (Cq), 82.98 (Cq), $82.95(\mathrm{Cq}), 82.4(\mathrm{CH}), 82.3(\mathrm{CH}), 81.7(\mathrm{CH}) 81.1(\mathrm{CH}), 68.5(\mathrm{CH}), 53.4(\mathrm{CH}), 53.3(\mathrm{CH}), 53.2(\mathrm{CH})$, $53.0(\mathrm{CH}), 52.9(\mathrm{CH}), 41.6\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 41.3\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.2$ $\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 23.2(\mathrm{CH}), 23.2(\mathrm{CH})$, $22.0\left(\mathrm{CH}_{3}\right), 21.92\left(\mathrm{CH}_{3}\right), 21.85\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{v}_{\max }, \mathrm{cm}^{-1}\right) 3312(\mathrm{~m}), 2985(\mathrm{~m}), 2116(\mathrm{~s}), 1736(\mathrm{~s}), 1679$ (s), 1485 (s), 1370 (s), 1251 (m), 1155 (s). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+}$408.2217; Found 408.2215.
tert-Butyl (5S)-2-azido-5-((2-(((S)-1-((2-methoxy-2-oxoethyl)amino)-4-methyl-1-oxopentan-2-yl)amino)-2-oxoethyl)carbamoyl)pyrrolidine-1-carboxylate (29)

Synthesized from tert-butyl $\quad(S)-2-((2-((S)-1-((2-m e t h o x y-2-o x o e t h y l) a m i n o)-4-m e t h y l-1-$ oxopentan-2-yl)amino)-2-oxoethyl)carbamoyl)pyrrolidine-1-carboxylate 57 ($183 \mathrm{mg}, 0.400$
mmol, 1.00 equiv) following general procedure \mathbf{F}. tert-butyl (5S)-2-azido-5-((2-(((S)-1-((2-methoxy-2-oxoethyl)amino)-4-methyl-1-oxopentan-2-yl)amino)-2-oxoethyl)carbamoyl) pyrrolidine-1-carboxylate 29 ($64.9 \mathrm{mg}, 0.130 \mathrm{mmol}, 33 \%$) (mixture of diastereoisomers, n.d. dr) was obtained as yellowish solid after purification by column chromatography on silica using a gradient from dichloromethane to dichloromethane/methanol 96:4 as eluent.

Rf (dichloromethane/methanol 96:4): 0.24. ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}, 278.2 K , complex mixture of diastereoisomers and rotamers) $\delta 5.74-5.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}_{3}\right), 4.54-4.36(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NHCH}_{\text {Leu }} \mathrm{C}(\mathrm{O})$), $4.37-4.26\left(\mathrm{~m}, 0.46 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {proC }} \mathrm{C}(\mathrm{O})\right.$), $4.24-4.12(\mathrm{~m}, 0.53 \mathrm{H}$, $\mathrm{NHCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {ProC }}(\mathrm{O})$), $4.07-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 \mathrm{GI}} \mathrm{y}\right.$), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH} 3$), $2.43-2.12(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NHCHCHH}_{\text {proCH }}^{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NHCHCH}_{2} \mathrm{CHH}_{\text {pro }} \mathrm{CHC}(\mathrm{O})\right)$, $2.10-1.92(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NHCHCHH}_{\mathrm{Pro}} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NHCHCH}_{2} \mathrm{CHH}_{\text {pro }} \mathrm{CHC}(\mathrm{O})\right), 1.92-1.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NHCHCH}_{2 \mathrm{Leu}} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.+\mathrm{NHCHCH}_{2} \mathrm{CH}_{\text {Leu }}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.56-1.40\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3 \text { вос }}\right), 1.02-0.81$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3 \text { Leu). }}{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{MeOD}-d_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers, signals not fully resolved) $\delta 175.1$ (Cq), 175.0 (Cq), 174.03(Cq), 173.98 (Cq), 173.9 (Cq), 173.84 (Cq), 173.82 (Cq), 173.75 (Cq), 173.5 (Cq), $170.3(\mathrm{Cq}), 170.11(\mathrm{Cq}), 170.05(\mathrm{Cq}), 170.04(\mathrm{Cq}), 170.01(\mathrm{Cq})$, 169.74 (Cq), 169.70 (Cq), 169.65 (Cq), 155.2 (Cq), 154.1 (Cq), 153.9 (Cq), 153.8 (Cq), 82.0 (Cq), 81.9 (Cq), 81.17 (Cq), 80.15 (Cq), 80.1 (Cq), 75.7 (CH), 75.5 (CH), 75.20 (CH), 75.16 (CH), 61.2 $(\mathrm{CH}), 61.0(\mathrm{CH}), 60.5(\mathrm{CH}), 60.4(\mathrm{CH}), 60.1(\mathrm{CH}), 59.8(\mathrm{CH}), 51.67(\mathrm{CH}), 51.65(\mathrm{CH}), 51.6(\mathrm{CH})$, $51.5(\mathrm{CH}), 51.3(\mathrm{CH}), 51.2(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 40.6\left(\mathrm{CH}_{2}\right), 40.44\left(\mathrm{CH}_{2}\right), 40.39$ $\left(\mathrm{CH}_{2}\right), 40.37\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 30.1$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 27.17\left(\mathrm{CH}_{2}\right), 27.15\left(\mathrm{CH}_{3}\right), 27.0$ $\left(\mathrm{CH}_{3}\right), 24.4(\mathrm{CH}), 24.30(\mathrm{CH}), 24.29(\mathrm{CH}), 24.1(\mathrm{CH}), 23.3(\mathrm{CH}), 22.1\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 22.04$ $\left(\mathrm{CH}_{3}\right), 21.99\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3290(\mathrm{w}), 2954$ (w), 2110 (m), 1755 (w), 1651 (s), 1527 (m), 1381 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{NaO}_{7}^{+} 520.2490$; Found 520.2508.
tert-Butyl (5S)-2-azido-5-(((S)-1-(((S)-1-(((S)-1-methoxy-4-methyl-1-oxopentan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1carboxylate (30)

Synthesized from tert-butyl $(S)-2-(((S)-1-(((S)-1-(((S)-1-m e t h o x y-4-m e t h y l-1-o x o p e n t a n-2-$ yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamoyl) pyrrolidine-1-carboxylate 58 ($222 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv) following general procedure F. tert-butyl (5S)-2-azido-5-(((S)-1-(((S)-1-(((S)-1-methoxy-4-methyl-1-oxopentan-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1carboxylate 30 was observed in a $51 \%{ }^{1} \mathrm{H}$ NMR yield using mesitylene ($40.0 \mu \mathrm{~L}, 0.287,0.719$
equiv) as internal standard. The yield was determined using the peaks corresponding to the $\mathrm{CHN}_{3} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, complex mixture of diastereomers and rotamers) $\delta 5.67$ (dd, J = 5.7, $2.1 \mathrm{~Hz}, 0.40 \mathrm{H}, \mathrm{CHN}_{3}$), 5.62 (dd, J = 11.0, $5.6 \mathrm{~Hz}, 0.60 \mathrm{H}, \mathrm{CHN}_{3}$). Only characteristic peaks are listed as the crude ${ }^{1} \mathrm{H}$ NMR was too complex to give the complete ${ }^{1} \mathrm{H}$ NMR listing.

4.3 Yields evalutation and characterization data for compounds 31, 32 and 33

The yields of compounds 31, 32 and 33 were estimated using the RP-HPLC UV calibration done on starting materials $\mathbf{5 9}, 60$ and 61 , respectively (see section 2.3).

Boc-(\mathbf{N}_{3})Pro-Val-Leu-Phe-GLy-OMe (31)

Synthesized from Boc-Pro-Val-Leu-Phe-GLy-OMe 59 ($64.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) following general procedure H. HPLC was done with Method 1.

Figure S4. HPLC trace of crude Boc-(N_{3})Pro-Val-Leu-Phe-Gly-OMe 31.
30% remaining starting material (peak at 12.7 min (LRMS: 646.7)). Desired product peaks at 14.5 and 14.7 min: $18 \%+15 \%$ (2 diastereoisomers) (LRMS: 687.6). A peak corresponding to the product $-\mathrm{HN}_{3}$ was also observed: LRMS (644.6) at 14.0 min : 8%. As such elimination product has only been observed after HPLC analysis, it seems that the formic acid of the mobile phase triggered such transformation. Thus, to estimate the yield of the azidation reaction, we took into consideration the peaks of the desired product (both dia) and the one of the elimination product.
Overall estimated yield by HPLC-MS: 41\%.

This result was confirmed by a ${ }^{1} \mathrm{H}$ NMR estimation of the yield using mesitylene as internal standard: 45\%.

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{8}{ }^{+}$687.3824; Found 687.3796.

MS/MS characterization
\qquad
Cter

Nter $=\mathbf{C 5 H 8 O 2}$

Sequence	Type	MF	MF Mass	m / z	ppm	Intensity	Similarity	Qty
PVL	b4	C21H35N6O5(+1)	451.2669	451.2663	-3.68677	16.17835	0.776736	0.025031
LFG	y3	C18H28N3O4(+1)	350.208	350.2074	-3.15722	6.068054	0.806669	0.009066
LF	b5y3	C15H21N2O2(+1)	261.1603	261.1598	-2.5072	0.792967	0.839733	0.001218
LF	a5y3	C14H21N2O(+1)	233.1654	233.1648	-1.90335	0.542679	0.850492	0.000794
FG	y2	C12H17N2O3(+1)	237.1239	237.1234	-2.06492	0.50054	0.865449	0.000765
PV	b3	C15H24N5O4(+1)	338.1828	338.1823	-2.99399	0.324931	0.827015	0.000458
PVLFG	y5	C28H44N5O6(+1)	546.3292	546.3286	-3.78924	0.236863	0.866849	0.00059
PVL	a4	C2OH35N6O4(+1)	423.272	423.2714	-3.28063	0.051661	0.78094	$7.63 \mathrm{E}-05$
PVLF	a5	C29H44N7O5(+1)	570.3404	570.3398	-4.21743	0.038756	0.876989	$8.12 \mathrm{E}-05$

In bold: fragments containing the azide group.

Boc-(N_{3} Pro-Val-Pro-Val-Pro-Val-OMe (32)

Synthesized from Boc-Pro-Val-Pro-Val-Pro-Val-OMe 60 ($72.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) following general procedure H. HPLC was done with Method 2.

Figure S5. HPLC trace of crude Boc-(N_{3})Pro-Val-Pro-Val-Pro-Val-OMe 32.

2\% remaining starting material (peak at 21.4 min (LRMS: 721.5)). Desired product peak at 38.5 min: 15\% (LRMS: 762.7). A peak corresponding to the product - HN_{3} was also observed: LRMS (719.6) at 37.5 min : 11\%. As such elimination product has only been observed after HPLC analysis, it seems that the formic acid of the mobile phase triggered such transformation. Thus, to estimate the yield of the azidation reaction, we took into consideration the peak of the desired product and the one of the elimination product.
Overall estimated yield: 26\%.

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]+ Calcd for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{~N}_{9} \mathrm{O}_{9}{ }^{+} 762.4509$; Found 762.4498.

MS/MS characterization

$$
\text { Nter } \mathbf{P} \quad \mathbf{V} \boldsymbol{P}^{\mathrm{y} 4 / z} \mathbf{P} \quad \mathbf{V} \boldsymbol{Y}^{\mathbf{y} \mathbf{2}_{z z}}{\underset{\mathrm{~b} 5}{7 *}}^{\mathbf{V}} \quad \text { Cter }
$$

Nter $=\mathbf{C 5 H 8 O 2}$

Sequence	Type	MF	MF Mass	m / z	ppm	Intensity	Similarity	Qty
PV	y2	C11H21N2O3(+1)	229.1552	229.1547	-1.96693	2.351122	0.918643	0.004675
PVPV	y4	C21H37N4O5(+1)	425.2764	425.2758	-3.91177	0.360397	0.776608	0.000557
PVPV	b5	C25H4ON7O6(+1)	534.304	534.3035	-4.46695	1.008002	0.735547	0.001548

In bold: fragments containing the azide group.

Boc-(\mathbf{N}_{3})Pro-Val-(tBu)Glu-Gly-(tBu)Ser-Phe-OMe (33)

Synthesized from Boc-Pro-Val-(tBu)Glu-Gly-(tBu)Ser-Phe-OMe 61 ($86.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) following general procedure H. HPLC was done with Method 3 as mobile phase.

Figure S6. HPLC trace of crude Boc-(N_{3})Pro-Val-(tBu)Glu-Gly-(tBu)Ser-Phe-OMe 33.
5% remaining starting material (peak at 18.3 min (LRMS: 861.5)). Desired product peaks at 19.0, 19.1 and $19.6 \mathrm{~min}: 6 \%+12 \%+2 \%$ (2 diastereoisomers) (LRMS: 902.7). A peak corresponding to the product $-\mathrm{HN}_{3}$ was also observed: LRMS (859.6) at 18.7 min : 3\%. As such elimination product has only been observed after HPLC analysis, it seems that the formic acid of the mobile phase triggered such transformation. Thus, to estimate the yield of the azidation reaction, we took into consideration the peaks of the desired product (both dia) and the one of the elimination product.
Overall estimated yield: 23\%.

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{43} \mathrm{H}_{68} \mathrm{~N}_{9} \mathrm{O}_{12}{ }^{+} 902.4982$; Found 902.4960.

MS/MS characterization

Sequence	Type	MF	MF Mass	m / z	ppm	Intensity	Similarity	Qty
PVEGSF	y6	C38H61N6O10(+1)	761.4449	761.4444	-2.74301	1.616357	0.773637	0.006577
EGSF	y4	C28H45N4O8(+1)	565.3237	565.3232	-3.45243	0.603292	0.717626	0.000978
PVEGS	b5	C26H42N7O8(+1)	580.3095	580.3089	-3.01946	0.248761	0.771826	0.000418

In bold: fragments containing the azide group.

5. Post-functionalizations

5.1 Huisgen [3+2]-cycloadditions

General procedure H

21a or 21b

Following a modified literature procedure, ${ }^{19}$ in an oven-dried 5 mL glass microwave vial equipped with a magnetic stirring bar was weighed 21 (dia min 21a or dia maj 21b) (50.0 mg , $0.135 \mathrm{mmol}, 1.00$ equiv). The flask was then flushed with nitrogen after which a mixture 4:1 tert-butanol/water (1.40 mL) was added followed by phenylacetylene ($45.0 \mu \mathrm{~L}, 0.410 \mathrm{mmol}$, 3.00 equiv), copper(II)sulfate pentahydrate ($1.40 \mathrm{mg}, 0.00500 \mathrm{mmol}, 4.00 \mathrm{~mol} \%$), sodium ascorbate ($2.30 \mathrm{mg}, 0.110 \mathrm{mmol}, 8.40 \mathrm{~mol} \%$) and tris(benzyltriazolylmethyl) amine (0.220 mg , $0.000400 \mathrm{mmol}, 0.30 \mathrm{~mol} \%$), and the reaction was stirred 16 hours at room temperature under a nitrogen atmosphere. The reaction mixture was then quenched with water and extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was then purified by flash chromatography on silica gel.
tert-Butyl (2S,5R)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)-5-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine-1-carboxylate (34a)

Synthesized from tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate dia $\min 21 \mathrm{a}$ ($50.0 \mathrm{mg}, 0.135 \mathrm{mmol}, 1.0$ equiv) following general procedure H. tert-butyl (2S,5R)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)-5-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine-1-carboxylate 34a (61.8 mg,

[^16]$0.131 \mathrm{mmol}, 97 \%$) was obtained as a yellow solid paste after purification by column chromatography on silica using a gradient from dichloromethane to dichloromethane/methanol 98:2 as eluent.

Rf (dichloromethane/methanol 98:2): 0.23. Mp: 54.3-65.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$, 278.2 K , mixture of rotamers) $\delta 8.47\left(\mathrm{~s}, 0.44 \mathrm{H}, \mathrm{CH}_{\text {triazolerotamermin }}\right.$), $8.44(\mathrm{~s}, 0.58 \mathrm{H}$, $C H_{\text {triazolerotamermaj }}$), $7.83-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.51-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.41-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 6.50 (d, J = $7.2 \mathrm{~Hz}, 0.57 \mathrm{H}, \mathrm{NCH}$ rotamermaj $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 6.45 (d, J = $6.9 \mathrm{~Hz}, 0.43 \mathrm{H}$, NCH rotamermin $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 4.76 (d, $J=8.9 \mathrm{~Hz}, 0.43 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {rotamermin }} \mathrm{C}(\mathrm{O})$), 4.70 (d, J $\left.=9.1 \mathrm{~Hz}, 0.54 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {rotamermaj }} \mathrm{C}(\mathrm{O})\right), 4.37(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 0.42 \mathrm{H}, \mathrm{NCH}$ valrotamermin $\mathrm{C}(\mathrm{O})$), $4.31(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 0.48 \mathrm{H}, \mathrm{NCH}$ varotamermin $\mathrm{C}(\mathrm{O})), 2.94-3.74\left(\mathrm{~s}, 1.4 \mathrm{H}, \mathrm{OCH}_{\text {3rotamermin }}\right), 3.74(\mathrm{~s}$, $\left.1.6 \mathrm{H}, \mathrm{OCH}_{3 \text { rotamermaj }}\right) 2.92-2.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right.$), $2.69-2.48(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 2.33-2.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{val}}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})+\right.$ $\mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), $1.40\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermaj }}\right)$, 1.29 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermin }}$), $1.07-0.97$ (m , $\left.6 \mathrm{H}, \mathrm{CH}_{3 \text { Val }}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}, 278.2 \mathrm{~K}$, mixture of rotamers) $\delta 175.2$ (Cqurotamermaj), 174.8 (Cqrotamermin), 173.5 (Cqrotamermin), 173.5 Cqrotamermaj), 155.1 (Cqrotamermaj), 154.4 (Cqrotamermin), 148.2 (Cqrotamermin), 148.1 (Cqrotamermaj), 131.6 (Cqrotamermaj), 131.6 (Cqrotamermin), 130.1 (CH $_{\text {rotamermin }}$), 130.0 (CH $_{\text {rotamermaj }}$), 129.5 ($\mathrm{CH}_{\text {rotamermin }}$), 129.4 ($\mathrm{CH}_{\text {rotamermaj }}$), 126.7 ($\mathrm{CH}_{\text {rotamermaj }}$), 126.6 ($\mathrm{CH}_{\text {rotamermin }}$), 122.0 ($\mathrm{CH}_{\text {rotamermaj }}$), 121.4 ($\mathrm{CH}_{\text {rotamermin }}$), 82.8 (Cqrotamermaj), 82.8 (Cqrotamermin), $74.9(\mathrm{CH}), 62.0\left(\mathrm{CH}_{\text {rotamermaj }}\right)$, 61.7 ($\mathrm{CH}_{\text {rotamermin }}$), 59.7 ($\mathrm{CH}_{\text {rotamermaj }}$), 59.4 ($\mathrm{CH}_{\text {rotamermin }}$), $52.54\left(\mathrm{CH}_{3 \text { rotamermaj }}\right)$, $52.52\left(\mathrm{CH}_{3 \text { rotamermin }}\right), 33.7\left(\mathrm{CH}_{\text {2rotamermin }}\right), 32.2\left(\mathrm{CH}_{2 \text { rotamermaj }}\right)$, 31.8 (CH rotamermin), 31.4 (CH ${ }_{\text {rotamermaj }}$), 30.3 ($\left.\mathrm{CH}_{2 \text { rotamermaj }}\right), \quad 28.8$ ($\left.\mathrm{CH}_{2 \text { rotamermin }}\right), \quad 28.4$ ($\mathrm{CH}_{\text {3rotamermaj }}$), 28.3 ($\mathrm{CH}_{3 \text { rotamermin }}$), $19.8\left(\mathrm{CH}_{\text {3rotamermaj }}\right)$, 19.5 ($\left.\mathrm{CH}_{\text {3rotamermin }}\right), 18.7\left(\mathrm{CH}_{\text {3rotamermaj }}\right)$, 18.5 ($\mathrm{CH}_{\text {3rotamermin }}$). IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) $3350(\mathrm{w}), 2973(\mathrm{~m}), 2934(\mathrm{w}), 1741(\mathrm{~s}), 1705(\mathrm{~s}), 1367(\mathrm{~s})$, $1160(\mathrm{~s}), 767$ (m), $696(\mathrm{~m})$. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+}$ 494.2374; Found 494.2376.

tert-Butyl (2S,5S)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)-5-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine-1-carboxylate (34b)

Synthesized from tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate dia maj 21b ($50.0 \mathrm{mg}, 0.135 \mathrm{mmol}, 1.0$ equiv) following general procedure \mathbf{H}. tert-butyl ($2 S, 5 S$)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)-5-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine-1-carboxylate 34 b (61.3 mg , $0.130 \mathrm{mmol}, 96 \%$) was obtained as a yellow paste paste after purification by column chromatography on silica using a gradient from dichloromethane to dichloromethane/methanol 96:4 as eluent.

Rf (dichloromethane/methanol 96:4): 0.43. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}\right.$, complex mixture of rotamers) $\delta 8.93\left(\mathrm{~s}, 0.44 \mathrm{H}, \mathrm{CH}_{\text {tetrazolerotamermin }}\right), 8.78\left(\mathrm{~s}, 0.58 \mathrm{H}, \mathrm{CH}_{\text {tetrazolerotamermaj }}\right)$, $7.96-7.72$ (m, 2H, ArH), 7.44 (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.39-7.26$ (m, 1H, ArH), 6.48 (app. br s, $1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $4.56-4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCHC}(\mathrm{O})\right), 3.74-3.72(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.71-2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$ or/and $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$ and/or $\left.\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.29-2.11$ (m, 2H, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$ or/and $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$ and/or $\left.\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.09-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$ or/and $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$ and/or $\left.\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermaj }}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { Bocrotamermin }}\right) 1.05-0.92$ (m, 6H, $\mathrm{CH}_{3 \text { Val }}$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD- $d_{4}, 278.2 \mathrm{~K}$, mixture of rotamers, signals not fully resolved) $\delta 175.2$ (Cq), 174.8 (Cq), 173.3 (Cq), 173.2 (Cq), 154.9 (Cq), 154.3 (Cq), 148.6 (Cq), 131.69 (Cqrotamermaj), 131.67 (Cqrotamermin), 130.1 (CH), 130.0 (CH), 129.5 (CH), 129.4 (CH), 126.7 (CH rotamermaj), 126.6 (CH rotamermin), 121.3 (CH rotamermaj), 120.8 (CH rotamermin), 83.4 (Cqrotamermaj), 82.9 (Cqrotamermin), 75.7 ($\mathrm{CH}_{\text {rotamermaj }}$), 75.6 (CH rotamermin $), 63.4$ (CH), 62.5 (CH), 59.5 (CH rotamermaj), 59.3 ($\mathrm{CH}_{\text {rotamermin }}$), 52.64 ($\mathrm{CH}_{3 \text { rotamermin }}$), 52.56 ($\left.\mathrm{CH}_{3 \text { rotamermaj }}\right), 34.6$ ($\left.\mathrm{CH}_{2 \text { rotamermin }}\right), 33.8$ $\left(\mathrm{CH}_{\text {2rotamermin }}\right)$, 32.2 ($\mathrm{CH}_{\text {rotamermin }}$), 32.0 ($\mathrm{CH}_{\text {rotamermaj }}$), 30.3 ($\left.\mathrm{CH}_{2 \text { rotamermaj }}\right)$, $29.1\left(\mathrm{CH}_{\text {2rotamermin }}\right)$, $28.3\left(\mathrm{CH}_{\text {3rotamermaj }}\right), 28.3\left(\mathrm{CH}_{3 \text { rotamermin }}\right), \quad 19.7\left(\mathrm{CH}_{\text {3rotamermaj }}\right), 19.6\left(\mathrm{CH}_{3 \text { rotamermin }}\right), 18.8$ ($\mathrm{CH}_{3 \text { rotamermaj }}$), 18.5 ($\mathrm{CH}_{3 \text { rotamermin }}$). IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 2960 (m), 2891 (w), 1742 (s), 1710 (s), 1677 (s), 1366 (s), 1156 (s), 768 (s), 696 (m). HRMS (ESI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{NaO}_{5}{ }^{+} 494.2374$; Found 494.2378.

5.2 Nucleophilic susbtitutions

Methyl ((2S)-5-(2-methoxy-2-oxoethyl)pyrrolidine-2-carbonyl)-L-valinate (35)

In a 25 mL round-bottom flask equipped with a magnetic stirring bar, crude tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 21 ($0.40 \mathrm{mmol}, 1.0$ equiv) was dissolved in 4.0 mL of anhydrous acetonitrile. 1-(tert-butyldimethylsilyloxy)-1-methoxyethene ($0.26 \mathrm{~mL}, 1.2 \mathrm{mmol}, 3.0$ equiv) and trimethylsilyl trifluoromethanesulfonate ($0.22 \mathrm{~mL}, 1.2 \mathrm{mmol}, 3.0$ equiv) were added and the reaction was stirred at room temperature overnight under a nitrogen atmosphere. The reaction mixture was then quenched with water and extracted twice with ethyl acetate. The combined organic layers were drier over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using a gradient dichloromethane to dichloromethane/methanol 96:4 as eluent to afford methyl ((2S)-5-(2-methoxy-2-oxoethyl)pyrrolidine-2-carbonyl)-L-valinate 35 as an orange oil (0.71 g , $0.24 \mathrm{mmol}, 59 \%$) (mixture of diastereoisomers, n.d. dr).

Rf (dichloromethane/methanol 96:4): 0.30. ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD- d_{4}, mixture of two diastereoisomers)) $\delta 4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCHval}(\mathrm{O})$), 3.86 (dd, J $=8.6,6.7 \mathrm{~Hz}, 0.6 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {proC }} \mathrm{C}(\mathrm{O})$), 3.78 (dd, $J=9.2,4.5 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{N} \mathrm{NCHCH} 2 \mathrm{CH}_{2} \mathrm{CH}_{\text {proC }} \mathrm{C}(\mathrm{O})$), $3.73-3.73$ (m, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$ Val $), 3.70-3.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.64\left(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{NCH}_{\text {pro }} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right.$), 3.57 ($\mathrm{m}, 0.6 \mathrm{H}, \mathrm{NCH}_{\text {proCH }}^{2} \mathrm{CH}_{2} \mathrm{CHC}\left(\mathrm{O}\right.$)), $2.63-2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 2.31 (dtd, $\mathrm{J}=12.8,8.4,4.4$ $\left.\mathrm{Hz}, 0.6 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CHH}_{\text {pro }} \mathrm{CHC}(\mathrm{O})\right), 2.26-2.12\left(\mathrm{~m}, 1.4 \mathrm{H}, \mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NCHCH}_{2} \mathrm{CH} H_{\text {pro }} \mathrm{CHC}(\mathrm{O})\right)$, 2.08 - 1.88 ($\mathrm{m}, 1.4 \mathrm{H}, \mathrm{NCHCH} \mathrm{ProHCH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NCHCH}_{2} \mathrm{CH}_{\text {pro }} \mathrm{HCHC}(\mathrm{O})$), 1.81 (m, 0.6 H , $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{\text {Pro }} \mathrm{HCHC}(\mathrm{O})\right), 1.48$ (m, 1H, NCHCHH $\mathrm{ProCH}_{2} \mathrm{CHC}(\mathrm{O})$), 0.95 (dd, J = $6.8,4.6 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3 \mathrm{VaI}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$, mixture of two diastereoisomers) $\delta 177.7$ ($\mathrm{Cq}_{\text {diamin }}$),
 $\left(\mathrm{CH}_{\text {diamin }}\right), 61.1\left(\mathrm{CH}_{\text {diamaj }}\right), 58.8\left(\mathrm{CH}_{\text {diamaj }}\right)$, $58.5\left(\mathrm{CH}_{\text {diamin }}\right), 57.2\left(\mathrm{CH}_{\text {diamaj }}\right), 57.1\left(\mathrm{CH}_{\text {diamin }}\right), 52.6$ $\left(\mathrm{CH}_{3 \text { diamin }}\right)$, $52.6\left(\mathrm{CH}_{3 \text { diamaj }}\right), 52.2\left(\mathrm{CH}_{3 \text { diamaj }}\right), 52.1\left(\mathrm{CH}_{3 \text { diamin }}\right), 42.0\left(\mathrm{CH}_{2 \text { diamin }}\right), 40.0\left(\mathrm{CH}_{2 \text { diamaj }}\right)$, 33.0 ($\mathrm{CH}_{2 \text { diamaj }}$), 32.2 ($\left.\mathrm{CH}_{\text {diamin }}\right), 32.00\left(\mathrm{CH}_{\text {2diamin }}\right), 31.95$ ($\left.\mathrm{CH}_{\text {diamaj }}\right), 31.6$ ($\left.\mathrm{CH}_{2 \text { diamin }}\right), 31.4$ $\left(\mathrm{CH}_{2 \text { diamaj }}\right)$, $19.52\left(\mathrm{CH}_{3 \text { diamin }}\right), 19.48\left(\mathrm{CH}_{\text {3diamaj }}\right), 18.2\left(\mathrm{CH}_{\text {3diamaj }}\right), 18.1\left(\mathrm{CH}_{\text {3diamin }}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right)$ 3316 (w), 2961 (m), 1737 (s), 1660 (s), 1514 (m), 1437 (m), 1272 (m), 1205 (m), 1151 (m). HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$301.1758; Found 301.1762.

Methyl ((2S)-5-(2-oxo-2-phenylethyl)pyrrolidine-2-carbonyl)-L-valinate (36)

In a 25 mL round-bottom flask equipped with a magnetic stir bar, crude tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 21 ($0.40 \mathrm{mmol}, 1.0$ equiv) was dissolved in 4.0 mL of anhydrous acetonitrile. 1-phenyl-1trimethylsiloxyethylene $(0.25 \mathrm{~mL}, ~ 1.2 \mathrm{mmol}, 3.0$ equiv) and trimethylsilyl trifluoromethanesulfonate ($0.22 \mathrm{~mL}, 1.2 \mathrm{mmol}, 3.0$ equiv) were added and the reaction was stirred at room temperature overnight under a nitrogen atmosphere. The reaction mixture was then quenched with water and extracted twice with ethyl acetate. The combined organic layers were drier over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using a gradient dichloromethane to dichloromethane/methanol 96:4 as eluent to afford methyl ((2S)-5-(2-oxo-2-phenylethyl)pyrrolidine-2-carbonyl)-L-valinate 36 as an orange paste (0.96 g , $0.28 \mathrm{mmol}, 69 \%$) (mixture of diastereoisomers, n.d. dr).

Rf (dichloromethane/methanol 96:4): 0.38. ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}, complex mixture of diastereoisomers and rotamers) $\delta 8.04$ ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.70-7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}$), 7.53 (t, J = 7.6 Hz, 2H, ArH), 4.37 (dd, J = 15.2, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{\mathrm{val}} \mathrm{C}(\mathrm{O})$), 4.27 (m, 1H, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{\text {ProC }} \mathrm{C}(\mathrm{O})$), $4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{\text {ProCH }}^{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 3.74-3.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.65$

- $3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Ph}\right), 2.53(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{NCHCHHCH} 2 \mathrm{CHC}(\mathrm{O})), 2.46-2.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{val}}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.+\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{ProCHC}(\mathrm{O})\right), 2.03\left(\mathrm{~m}, 0.6 \mathrm{H}, \mathrm{NCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.78(\mathrm{~m}, 1 \mathrm{H}$, NCHCHHCH2CHC(O)), $0.99-0.94$ (m, 6H, CH Vval 2). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers, signals not fully resolved) $\delta 199.6$ (Cq), 199.3 (Cq), 173.2 (Cq), 173.2 (Cq), 172.7 (Cq), 171.8 (Cq), 137.6 (Cq), 137.5 (Cq), 134.9 (CH), 134.8 (CH), 129.89 (CH), 129.85 (CH), 129.3 (CH), 123.4 (CH), 120.2 (CH), 61.4 (CH), 60.9 (CH), $59.5(\mathrm{CH}), 59.4(\mathrm{CH}), 57.9(\mathrm{CH}), 57.8(\mathrm{CH}), 52.6\left(\mathrm{CH}_{3}\right), 43.1\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 31.6$ (CH), $31.0\left(\mathrm{CH}_{2}\right), 30.73\left(\mathrm{CH}_{2}\right), 30.68\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 19.43\left(\mathrm{CH}_{3}\right), 19.42\left(\mathrm{CH}_{3}\right), 18.5$ $\left(\mathrm{CH}_{3}\right), 18.34\left(\mathrm{CH}_{3}\right), 18.28\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3335(\mathrm{w}), 2962(\mathrm{w}), 1741(\mathrm{~m}), 1681(\mathrm{~m}), 1276$ (m), 1248 (s), 1223 (s), 1156 (m). HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$ 347.1965; Found 347.1966.

Methyl ((2S)-5-allylpyrrolidine-2-carbonyl)-L-valinate (37)

In a 25 mL round-bottom flask equipped with a magnetic stir bar, crude tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 21 ($0.40 \mathrm{mmol}, 1.0$ equiv) was dissolved in 4.0 mL of anhydrous acetonitrile. Allyltrimethylsilane ($0.20 \mathrm{~mL}, 1.2 \mathrm{mmol}, 3.0$ equiv) and trimethylsilyl trifluoromethanesulfonate ($0.22 \mathrm{~mL}, 1.2$ $\mathrm{mmol}, 3.0$ equiv) were added and the reaction was stirred at room temperature overnight under a nitrogen atmosphere. The reaction mixture was then quenched with water and extracted twice with ethyl acetate. The combined organic layers were drier over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using a gradient dichloromethane to dichloromethane/methanol 96:4 as eluent to afford methyl ((2S)-5-allylpyrrolidine-2-carbonyl)-L-valinate 37 as a brown oil ($0.71 \mathrm{~g}, 0.26 \mathrm{mmol}, 66 \%$) (mixture of diastereoisomers, 2:1 dr determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks at 3.95 and 3.81 ppm).

Rf (dichloromethane/methanol 96:4): = 0.40. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$, 298 K , mixture of two diastereoisomers) $\delta 5.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}_{\text {ally }}\right), 5.29-4.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ ally $), 4.32(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NHCH}_{\mathrm{val}} \mathrm{C}(\mathrm{O})$), 3.95 (dd, $J=8.5,6.9 \mathrm{~Hz}, 0.33 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.81 ($\mathrm{dd}, J=9.7,4.4 \mathrm{~Hz}$, $0.66 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.73 ($2 \times \mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 2.41 2.12 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{ally}}, \mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NHCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})$), $2.05-1.79(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NHCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})+\mathrm{NHCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 1.54\left(\mathrm{~m}, 0.33 \mathrm{H}, \mathrm{NHCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.40$ ($\mathrm{m}, 0.66 \mathrm{H}, \mathrm{NHCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})$), $0.96-0.93$ (m, 6H, CH $\mathrm{H}_{3 \mathrm{Val}}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$, 298 K , mixture of two diastereoisomers, signals not fully resolved) $\delta 176.9$ ($\mathrm{Cq}_{\text {diamaj }}$), 175.5 (Cqdiamin), $173.3(\mathrm{Cq}), 136.6\left(\mathrm{CH}_{\text {diamaj }}\right), 136.01\left(\mathrm{CH}_{\text {diarmin }}\right), 117.9\left(\mathrm{CH}_{2 \text { diamin }}\right), 117.5\left(\mathrm{CH}_{2 \text { diamaj }}\right), 61.3$
$\left(\mathrm{CH}_{\text {diamaj }}\right)$, $61.1\left(\mathrm{CH}_{\text {diamin }}\right), 60.8\left(\mathrm{CH}_{\text {diamin }}\right), 60.5\left(\mathrm{CH}_{\text {diamaj }}\right)$, $58.9\left(\mathrm{CH}_{\text {diamin }}\right), 58.7\left(\mathrm{CH}_{\text {diamaj }}\right), 52.60$ $\left(\mathrm{CH}_{3 \text { diamaj }}\right), 52.57\left(\mathrm{CH}_{3 \text { diamin }}\right), 41.3\left(\mathrm{CH}_{2 \text { diamaj }}\right), 39.9\left(\mathrm{CH}_{2 \text { diamin }}\right), 32.4\left(\mathrm{CH}_{2 \text { diamin }}\right), 32.1\left(\mathrm{CH}_{\text {diamaj }}\right)$, $31.9\left(\mathrm{CH}_{\text {diamin }}\right), 31.7\left(\mathrm{CH}_{\text {diamaj }}\right), 31.6\left(\mathrm{CH}_{\text {diamaj }}\right), 31.3\left(\mathrm{CH}_{2 \text { diamin }}\right), 19.51\left(\mathrm{CH}_{3 \text { diamaj }}\right), 19.47$ $\left(\mathrm{CH}_{3 \text { diamin }}\right), 18.2\left(\mathrm{CH}_{3 \text { diamin }}\right), 18.1\left(\mathrm{CH}_{3 \text { diamaj }}\right) . \operatorname{IR}\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 2960(\mathrm{~m}), 1740(\mathrm{~s}), 1655(\mathrm{~s}), 1510(\mathrm{~s})$, 1209 (m), 1151 (s), 1031 (s), 997 (m), 912 (m). HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$269.1860; Found 269.1859.

Methyl ((2S)-5-(2-hydroxynaphthalen-1-yl)pyrrolidine-2-carbonyl)-L-valinate (38)

In a 25 mL round-bottom flask equipped with a magnetic stirring bar, crude tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate 21 ($0.40 \mathrm{mmol}, 1.0$ equiv) was dissolved in 4.0 mL of anhydrous acetonitrile. 2-naphtol (0.87 g , $0.6 \mathrm{mmol}, 1.5$ equiv) and boron trifluoride diethyl etherate ($0.12 \mathrm{~mL}, 0.44 \mathrm{mmol}, 1.1$ equiv) were added and the reaction was stirred at room temperature overnight under a nitrogen atmosphere. The reaction mixture was then quenched with water and extracted twice with ethyl acetate. The combined organic layers were drier over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on deactivated silica gel using a gradient dichloromethane to dichloromethane/methanol 96:4 as eluent to afford methyl ((2S)-5-(2-hydroxynaphthalen-1-yl)pyrrolidine-2-carbonyl)-L-valinate 38 as a brown solid ($0.86 \mathrm{~g}, 0.23 \mathrm{mmol}, 58 \%$) (mixture of diastereoisomers, 1.2:1 dr, determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks at 5.35 and 5.24 ppm).

Rf (dichloromethane/methanol 96:4): = 0.28, 0.24 (2 dia). ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD-d ${ }_{4} 298$ K, mixture of two diastereoisomers) $\delta 7.83$ (dd, $J=19.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.75-7.66(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.61 (dd, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.40 (ddt, $J=8.5,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.24 (ddt, $J=$ $7.9,6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.97 (dd, $J=10.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 5.35 (dd, J = 9.8, $6.5 \mathrm{~Hz}, 0.55 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 5.24\left(\mathrm{~m}, 0.45 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 4.40$ (dd, J=8.9, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NHCH}_{\mathrm{VaI}} \mathrm{C}(\mathrm{O})\right), 4.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})\right), 3.75\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.58$ $-2.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})+\mathrm{NHCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 2.24-1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {Val }}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.+\mathrm{NHCHCH}_{2} \mathrm{CHHCHC}(\mathrm{O})\right), 1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCHCHHCH}_{2} \mathrm{CHC}(\mathrm{O})\right), 1.01-0.99\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Val}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of two diastereoisomers, signals not fully resolved)
 $\left(\mathrm{Cq}_{\text {diamin }}\right), 133.9$ ($\left.\mathrm{Cq}_{\text {diamin }}\right), 133.7$ ($\left.\mathrm{Cq}_{\text {diamaj }}\right), 129.9(\mathrm{Cq}), 129.83\left(\mathrm{CH}_{\text {diamin }}\right), 129.80\left(\mathrm{Cq}_{\text {diamaj }}\right)$, $129.66\left(\mathrm{CH}_{\text {diamin }}\right), 129.65\left(\mathrm{CH}_{\text {diamaj }}\right), 127.37\left(\mathrm{CH}_{\text {diamaj }}\right), 127.35\left(\mathrm{CH}_{\text {diamin }}\right), 123.36\left(\mathrm{CH}_{\text {diamaj }}\right), 123.3$ $\left(\mathrm{CH}_{\text {diamin }}\right), 122.5\left(\mathrm{CH}_{\text {diamaj }}\right), 122.3\left(\mathrm{CH}_{\text {diamin }}\right), 120.8\left(\mathrm{CH}_{\text {diamaj }}\right), 120.7\left(\mathrm{CH}_{\text {diamin }}\right), 116.7\left(\mathrm{Cq}_{\text {diamin }}\right)$, $116.6\left(\mathrm{Cq}_{\text {diamaj }}\right), 60.7\left(\mathrm{CH}_{\text {diamaj }}\right), 60.5\left(\mathrm{CH}_{\text {diamin }}\right), 60.4\left(\mathrm{CH}_{\text {diamaj }}\right), 60.1\left(\mathrm{CH}_{\text {diamin }}\right), 59.6\left(\mathrm{CH}_{\text {diamaj }}\right)$
59.3 ($\left.\mathrm{CH}_{\text {diamin }}\right)$, $52.5\left(\mathrm{CH}_{3}\right), 34.6\left(\mathrm{CH}_{2 \text { diamaj }}\right), 32.8\left(\mathrm{CH}_{2 \text { diamin }}\right), 32.4\left(\mathrm{CH}_{\text {diamaj }}\right), 31.8\left(\mathrm{CH}_{\text {diamaj }}\right)$, $31.6\left(\mathrm{CH}_{\text {diamin }}\right), 31.1\left(\mathrm{CH}_{2 \text { diamin }}\right), 19.52\left(\mathrm{CH}_{\text {3diamin }}\right), 19.47\left(\mathrm{CH}_{\text {3diamaj }}\right), 18.6\left(\mathrm{CH}_{\text {3diamaj }}\right), 18.5$ ($\mathrm{CH}_{\text {3diamin }}$). IR ($\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$) 3315 (m), 2970 (s), 1744 (s), 1675 (s), 1661 (s), 1623 (s), 1521 (s), 1471 (s), 1372 (m), 1271 (s), 816 (s). HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+} 371.1965$; Found 371.1962.

Methyl ((2S)-5-((E)-styryl)pyrrolidine-2-carbonyl)-L-valinate (39)

In a 25 mL round-bottom flask equipped with a magnetic stirring bar under a nitrogen atmosphere, crude tert-butyl (5S)-2-azido-5-(((S)-1-methoxy-3-methyl-1-oxobutan-2yl)carbamoyl)pyrrolidine-1-carboxylate 21 ($0.40 \mathrm{mmol}, 1.0$ equiv) was dissolved in 4.0 mL of anhydrous acetonitrile. Potassium trans-styryltrifluoroborate ($0.17 \mathrm{~g}, 0.80 \mathrm{mmol}, 2.0$ equiv) and boron trifluoride diethyl etherate ($0.44 \mathrm{~mL}, 1.6 \mathrm{mmol}, 4.0$ equiv) were added and the reaction was stirred at room temperature overnight under a nitrogen atmosphere. The reaction mixture was then quenched with water and extracted twice with ethyl acetate. The combined organic layers were drier over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on deactivated silica gel using a gradient dichloromethane to dichloromethane/methanol 96:4 as eluent to afford methyl ((2S)-5-((E)-styryl)pyrrolidine-2-carbonyl)-L-valinate 39 as an orange oil ($0.84 \mathrm{~g}, 0.25 \mathrm{mmol}, 63 \%$) (mixture of diastereoisomers, 6.7:1 dr determined by integration of the ${ }^{1} \mathrm{H}$ NMR peaks at 6.66 and 6.55 ppm).

Rf (dichloromethane/methanol 96:4): $=0.31 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$, 298 K , mixture of two diastereoisomers) $\delta 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.25-7.16(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}$), 6.66 (d, $J=15.8 \mathrm{~Hz}, 0.13 \mathrm{H}, \mathrm{PhCH}$ diamin $=\mathrm{CH}$), $6.55\left(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 0.87 \mathrm{H}, \mathrm{PhCH} \mathrm{d}_{\text {diamaj }}=\mathrm{CH}\right.$), $6.25+6.28(\mathrm{dd}, J=15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 4.39(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 0.14 \mathrm{H}, \mathrm{NHCH}$ valdiaminC(O)), 4.36 (d, J = $5.6 \mathrm{~Hz}, 0.86 \mathrm{H}, \mathrm{NHCH}$ valdiamaj $\mathrm{C}(\mathrm{O})$), $3.91-3.86$ ($\mathrm{m}, 1.85 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$ + $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), 3.81 (dd, J = $9.5,3.5 \mathrm{~Hz}, 0.15 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$ and/or $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CHC}(\mathrm{O})$), $3.74-3.72$ (app. m, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.35 (m, 1H, CHH pro), 2.19 ($\mathrm{m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\text {val }}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{\text {pro }}\right), 1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{\text {Pro }}\right), 1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}_{\text {Pro }}\right), 1.00-0.88(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3 \text { val }}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two diastereoisomers) $\delta 178.0$
 $133.5\left(\mathrm{CH}_{\text {diamin }}\right), 132.2\left(\mathrm{CH}_{\text {diamaj }}\right), 131.6\left(\mathrm{CH}_{\text {diamaj }}\right), 130.9\left(\mathrm{CH}_{\text {diamin }}\right), 129.6(\mathrm{CH}), 128.5\left(\mathrm{CH}_{\text {diamaj }}\right)$, 128.4 ($\left.\mathrm{CH}_{\text {diamin }}\right)$, 127.4 ($\left.\mathrm{CH}_{\text {diamaj }}\right)$, 127.3 ($\left.\mathrm{CH}_{\text {diamin }}\right)$, $62.8\left(\mathrm{CH}_{\text {diamaj }}\right)$, $62 .\left(\mathrm{CH}_{\text {diamin }}\right), 61.5\left(\mathrm{CH}_{\text {diamin }}\right)$, 61.3 ($\left.\mathrm{CH}_{\text {diamaj }}\right)$, $58.6\left(\mathrm{CH}_{\text {diamaj }}\right), 58.5\left(\mathrm{CH}_{\text {diamin }}\right), 52.7\left(\mathrm{CH}_{3 \text { diamaj }}\right), 52.6\left(\mathrm{CH}_{\text {diiamin }}\right), 34.1\left(\mathrm{CH}_{2 \text { diamaj }}\right)$, $33.2\left(\mathrm{CH}_{2 \text { diamin }}\right), 32.2\left(\mathrm{CH}_{\text {diamin }}\right), 32.14\left(\mathrm{CH}_{2 \text { diamin }}\right), 32.1\left(\mathrm{CH}_{\text {diamaj }}\right), 31.7\left(\mathrm{CH}_{2 \text { diamin }}\right), 19.5\left(\mathrm{CH}_{2 \text { diamaj }}\right)$,
$18.3\left(\mathrm{CH}_{2 \text { diamaj }}\right), 18.2\left(\mathrm{CH}_{2 \text { diamin }}\right), 18.05\left(\mathrm{CH}_{2 \text { diamin }}\right)$. IR $\left(\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}\right) 3332(\mathrm{~m}), 2964(\mathrm{~m}), 2862(\mathrm{w})$, 1739 (s), 1665 (s), 1505 (s), 1435 (m), 1206 (s), 750 (s), 694 (s). HRMS (ESI/QTOF) m/z: [M + H^{+}Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$331.2016; Found 331.2021.

6. Competitive Huisgen [3+2]-cycloaddition experiment

Following a modified literature procedure, ${ }^{19}$ in an oven-dried 5 mL glass microwave vial equipped with a magnetic stirring bar was weighed 21a ($21 \mathrm{mg}, 0.056 \mathrm{mmol}, 0.50$ equiv). The flask was flushed with nitrogen after which a mixture 4:1 tert-butanol/water (1.3 mL) was added followed by benzyl azide (62) ($7.5 \mu \mathrm{~L}, 0.056 \mathrm{mmol}, 0.50$ equiv), phenylacetylene (12 $\mu \mathrm{L}, 0.11 \mathrm{mmol}, 1.0$ equiv), copper(II)sulfate pentahydrate ($1.1 \mathrm{mg}, 0.0045 \mathrm{mmol}, 4.0 \mathrm{~mol} \%$), sodium ascorbate ($1.9 \mathrm{mg}, 0.0094 \mathrm{mmol}, 8.4 \mathrm{~mol} \%$) and tris(benzyltriazolylmethyl)amine ($0.18 \mathrm{mg}, 0.00034 \mathrm{mmol}, 0.30 \mathrm{~mol} \%$), and the reaction was stirred 16 hours at room temperature under a nitrogen atmosphere. The reaction mixture was then quenched with water and extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. Mesitylene ($20 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.3$ equiv) was added and a ${ }^{1} \mathrm{H}$ NMR was taken. tertButyl (2S,5R)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)-5-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine-1-carboxylate 34a was observed in a 28% yield determined using the peaks corresponding to the triazole ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of rotamers) $\delta 8.47$ ($\mathrm{s}, 0.12 \mathrm{H}, \mathrm{CH}_{\text {triazolerotamerminj }}$), 8.44 ($\mathrm{s}, 0.16 \mathrm{H}, \mathrm{CH}_{\text {triazolerotamermaj }}$). 1-Benzyl-4-phenyl-1 H -1,2,3-triazole 63 was observed in a 49% yield determined using the peaks corresponding to the triazole ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}, 298 \mathrm{~K}$) $8.35\left(\mathrm{~s}, 0.49 \mathrm{H}, \mathrm{CH}_{\text {triazole }}\right) .{ }^{20}$ Only characteristic peaks are listed as the crude ${ }^{1} \mathrm{H}$ NMR was too complex to give the complete ${ }^{1} \mathrm{H}$ NMR listing.

[^17]
7. NMR spectra

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) of compound 42

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) of compound 42

DEPT (101 MHz, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two rotamers) of compounds 42

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 13

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 13

DEPT-135 (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of tw orotamers) of compound 13

13

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of compound 45

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of compound 45

DEPT-135 (101 MHz, CDCl 3 , 298 K) of compound 45

${ }^{1} \mathbf{H}$ NMR (400 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) of compound $\mathbf{5 0}$

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound $\mathbf{5 0}$

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 50

${ }^{1} \mathbf{H}$ NMR (400 MHz , MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) of compound 53

${ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD- $\mathrm{d}_{4}, 298 \mathrm{~K}$, mixture of two rotamers) of compound 53

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 53

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) of compound 54

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) of compound 54

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 54

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$) of compound $\mathbf{5 6}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$) of compound 56

DEPT-135 (101 MHz, MeOD-d4, 298 K) of compound 56

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}, 298 \mathrm{~K}$, complex mixture of rotamers) of compound 57

57

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 57

DEPT-135 (101 MHz, MeOD-d4, 298 K, complex mixture of rotamers) of compound 57

${ }^{1}$ H NMR (400 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of rotamers) of compound 58

58

${ }^{13}$ C NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of rotamers) of compound 58

DEPT-135 (101 MHz, MeOD-d ${ }_{4}$, 298 K , mixture of rotamers) of compound 58

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$, mixture of rotamers) of compound 59

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$, mixture of rotamers) of compound $\mathbf{5 9}$

DEPT-135 (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$, mixture of rotamers) of compound 59

59

${ }^{1}$ H NMR（ 400 MHz, MeOD－$d_{4}, 298 \mathrm{~K}$ ，mixture of rotamers）of compound 60

60

																$\begin{array}{ll} 1 \\ \\ \end{array}$			$\begin{aligned} & \text { ず } \\ & \underset{\sim}{\infty} \end{aligned}$			
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5			4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	－0．5

${ }^{13} \mathrm{C}$ NMR（ 101 MHz, MeOD－d_{4} ， 298 K ，complex mixture of rotamers）of compound 60

[^18]HSQC (MeOD- $d_{4}, 298 \mathrm{~K}$, complex mixture of rotamers) of compound 60

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound $\mathbf{6 0}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{MeOD}^{2} d_{4}, 298 \mathrm{~K}$, complex mixture of rotamers) of compound 61

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound $\mathbf{6 1}$

61

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 4

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 4

DEPT-135 (101 MHz, CDCl $3,298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 4

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound $\mathbf{7}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 7

DEPT ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 7

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K , mixture of two diastereoisomers) of compound 8a

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K , mixture of diastereoisomers) of compound 8a

NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound $\mathbf{8 b}$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, mixture of two diastereoisomers) of compound $\mathbf{8 b}$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound $\mathbf{8 b}$

DEPT-135 (101 MHz, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound $\mathbf{8 b}$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of 9

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complexe mixture of diastereoisomers and rotamers) of 9

DEPT-135 (101 MHz, CDCl 3 , 298 K , complexe mixture of diastereoisomers and rotamers) of 9

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of $\mathbf{1 2}$

12

${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of $\mathbf{1 2}$

HSQC (MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of $\mathbf{1 2}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K , mixture of two diastereoisomers) of compound $\mathbf{1 4}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 14

DEPT-135(101 MHz, CDCl $3,298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 14

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 14

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of compound 15

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of compound 15

DEPT-135 (101 MHz, CDCl 3 , 298 K) of compound 15

15

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of compound 16

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of compound 16

DEPT-135 (101 MHz, CDCl 3 , 298 K) of compound 16

${ }^{1}$ H NMR (400 MHz , MeOD- d_{4}, 298 K) of compound 17

${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$) of compound 17

DEPT-135 (101 MHz, MeOD-d4, 298 K) of compound 17
 17

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of $\mathbf{1 8}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of 18

DEPT-135 (101 MHz, $\mathrm{CDCl}_{3}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of 18

${ }^{1}$ H NMR (400 MHz , MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 20a

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 20a

HSQC (MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 20a

DEPT-135 (101 MHz, MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 20a

20a (dia min)

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $\mathrm{fy}(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- |

${ }^{1} \mathbf{H}$ NMR (400 MHz , MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 20b

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 20b

HSQC (MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound $\mathbf{2 0 b}$

DEPT-135 (101 MHz, MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound $\mathbf{2 0 b}$

20b (dia maj)

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $\mathrm{fy}(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOESY (400 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 20b

20b (dia maj)

\qquad

${ }^{1} \mathbf{H}$ NMR (400 MHz, MeOD-d $4,298 \mathrm{~K}$, complex mixture of rotamers) of compound 21a

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 21a

DEPT-135 (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 21a

${ }^{1} \mathbf{H}$ NMR (400 MHz , MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 21b

21b (dia maj)

\qquad

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 21b

DEPT-135 (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 21b

21b (dia maj)

NOESY (400 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 21b

${ }^{1}$ H NMR (400 MHz , MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 22a

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 22a

DEPT-135 (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, complex mixture of rotamers) of compound 22a

22a

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, complex mixture of rotamers) of compound 22b

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 22b

DEPT-135 (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 22b

NOESY (400 MHz, MeOD-d 4 , 298 K , complex mixture of rotamers) of compound 22b

${ }^{1}$ H NMR (400 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two rotamers) of compound 23a

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 23a

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 23a

23a (dia min)

${ }^{1} \mathbf{H}$ NMR (400 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 23b

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 23b

DEPT-135 (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 23b

NOESY (400 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 23b

${ }^{1}$ H NMR (400 MHz , MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 24a

24a (dia min)

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , mixture of two rotamers) of compound 24a

HSQC (MeOD- $d_{4}, 278.2 \mathrm{~K}$, mixture of two rotamers) of compound 24a

DEPT-135 (101 MHz, MeOD- d_{4}, 278.2 K , mixture of two rotamers) of compound 24a

${ }^{1} \mathbf{H}$ NMR (400 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 24b

24b (dia maj)

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound 24b

HSQC (MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound $\mathbf{2 4 b}$

DEPT-135 (101 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 24b

24b (dia maj)

NOESY (400 MHz, MeOD- d_{4}, 298 K , complex mixture of rotamers) of compound 24b

${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}, 278.2 K , mixture of two rotamers) of compound 25a

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 278.2 K , mixture of two rotamers) of compound 25a

HSQC (MeOD- d_{4}, 278.2 K, mixture of two rotamers) of compound $\mathbf{2 5 a}$

${ }^{1} \mathbf{H}$ NMR (400 MHz , MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound 25b

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , complex mixture of rotamers) of compound $\mathbf{2 5 b}$

HSQC (MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of rotamers) of compound $\mathbf{2 5 b}$

NOESY (400 MHz, MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture rotamers) of compound 25b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}^{2}{ }_{4}$, 298 K , complex mixture of diastereoisomers and rotamers) of 26

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 278.2 K , complex mixture of diastereoisomers and rotamers) of 26

DEPT-135 (101 MHz, MeOD- d_{4}, 278.2 K , complex mixture of diastereoisomers and rotamers) of $\mathbf{2 6}$

${ }^{1}$ H NMR (400 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of $\mathbf{2 7}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of $\mathbf{2 7}$

[^19]DEPT-135 (101 MHz, CDCl 3 , 298 K , complex mixture of diastereoisomers and rotamers) of $\mathbf{2 7}$

27

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}^{2}{ }_{4}$, 298 K , complex mixture of diastereoisomers and rotamers) of $\mathbf{2 8}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of $\mathbf{2 8}$

DEPT-135 (101 MHz, CDCl 3 , 298 K , complex mixture of diastereoisomers and rotamers) of $\mathbf{2 8}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- $\mathrm{d}_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of compound $\mathbf{2 9}$

									$\begin{aligned} & \text { H} \\ & \underset{-}{6} \end{aligned}$	
0.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	

${ }^{13}$ C NMR (101 MHz , MeOD- $d_{4}, 278.2 \mathrm{~K}$, complex mixture of diastereoisomers and rotamers) of compound $\mathbf{2 9}$

DEPT-135 (101 MHz, MeOD- d_{4}, 278.2 K, complex mixture of diastereoisomers and rotamers) of compound 29

29

${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}, 278.2 K , mixture of two rotamers) of compound 34a

${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD-d ${ }_{4}$, 278.2 K , mixture of two rotamers) of compound 34a

DEPT (101 MHz , MeOD- d_{4}, 278.2 K , mixture of two rotamers) of compound 34a

${ }^{1} \mathbf{H}$ NMR (400 MHz , MeOD- d_{4}, 298 K , mixture of two rotamers) of compound 34b

${ }^{13}$ C NMR (101 MHz , MeOD- d_{4}, 278.2 K , mixture of two rotamers) of compound 34b

HSQC (MeOD- $d_{4}, 278.2 \mathrm{~K}$, mixture of two rotamers) of compound 34b

${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD- d_{4}, 298 K , mixture of two diastereoisomers) of compound $\mathbf{3 5}$

35
\qquad

${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two diastereoisomers) of compound 35

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K, mixture of two diastereoisomers) of compound 35

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of 36

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two diastereoisomers) of 36

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K, mixture of two diastereoisomers) of 36

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound $\mathbf{3 7}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two diastereoisomers) of compound 37

DEPT-135 (101 MHz, MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of compound 37

${ }^{1} \mathbf{H}$ NMR (400 MHz , MeOD- d_{4}, 298 K , mixture of two diastereoisomers) of 38

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two diastereoisomers) of 38

HSQC (MeOD- $d_{4}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of 38

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}^{2} \mathrm{~d}_{4}, 298 \mathrm{~K}$, mixture of two diastereoisomers) of 39

${ }^{13}$ C NMR (101 MHz, MeOD- d_{4}, 298 K , mixture of two diastereoisomers) of 39

DEPT-135 (101 MHz, MeOD- d_{4}, 298 K, mixture of two diastereoisomers) of 39

[^0]: ${ }^{1}$ a) J. S. Desport, G. Frache, L. Patiny Ref Rapid Commun Mass Spectrom. 2020, e8652; b) D. Ortiz, N. Gasilova, F. Sepulveda, L. Patiny, P. J. Dyson, L. Menin, Ref Rapid Commun Mass Spectrom. 2020.
 ${ }^{2}$ C.-C. Chen, S.-F. Wang, Y.-Y. Su, Y. A. Lin, P-C. Lin, Chem. Asian. J. 2017, 12, 1326-1337.

[^1]: ${ }^{3}$ K. Jones, K.-C. Woo, Tetrahedron 1991, 47, 7179-7184.

[^2]: ${ }^{4}$ P. Guo, K. Wang, W.-J. Jin, H. Xie, L. Qi, X.-Y. Liu, X.-Z. Shu, J. Am. Chem. Soc. 2021, 143, 513-523.

[^3]: ${ }^{5}$ W. A. Loughlin, S. S. Schweiker, I. D. Jenkins, L. C. Henderson, Tetrahedron 2013, 69, 1576-1582.

[^4]: ${ }^{6}$ K. Hattori, H. Sajiki, K. Hirota, Tetrahedron Lett. 2000, 56, 8433-8441.

[^5]: ${ }^{7}$ Y. Wang, X. Wen, X. Cui, X. P. Zhang, J. Am. Chem. Soc. 2018, 140, 4792-4796.

[^6]: ${ }^{8}$ M. Inman, H. L. Dexter, C. J. Moody, Org. Lett. 2017, 19, 3454-3457.

[^7]: ${ }^{9}$ K. K. H. Vong, S. Maeda, K. Tanaka, Chem. Eur. J. 2016, 22, 18865-18872.

[^8]: ${ }^{10}$ K. C. Nadimpally, K. Thalluri, N. B. Palakurthy, A. Saha, B. Mandal, Tetrahedron Lett. 2011, 52, 2579-2582.

[^9]: ${ }^{11}$ E. Morisset, A. Chardon, J. Rouden, J. Blanchet, Eur. J. Org. Chem. 2020, 388-392.
 ${ }^{12}$ M. Nappi, C. He, W. G. Whitehurst, B. G. N. Chappell, M. J. Gaunt, Angew. Chem., Int. Ed. 2018, 57, 3178-3182.

[^10]: ${ }^{13}$ R. M. de Figueiredo, J.-S. Suppo, C. Midrier, J.-M. Campagne, Adv. Synth. Catal. 2007, 359, 1963-1968.

[^11]: ${ }^{14}$ W. Wu, Z. Zhang, L. S. Liebeskind, J. Am. Chem. Soc. 2011, 133, 14256-14259.

[^12]: ${ }^{15}$ G. K. Min, D. Hernández, A. T. Lindhardt, T. Skrydstrup, Org. Lett. 2010, 12, 4716-4719.

[^13]: ${ }^{16}$ Z. Chen, T. Ye, New J. Chem. 2006, 30, 518-520.

[^14]: ${ }^{17}$ M. Sayes, A. B. Charette, Green Chem. 2017, 9, 5060-5064.

[^15]: ${ }^{18}$ S. Alazet, J. Preindl, R. Simonet-Davin, S. Nicolai, A. Nanchen, T. Meyer, J. Waser J. Org. Chem. 2018, 83, 12334-12356.

[^16]: ${ }^{19}$ H. Erhardt, F. Mohr, S. F. Kirsch, Chem. Commun. 2016, 52, 545-548.

[^17]: ${ }^{20}$ H.-B. Chen, N. Abeyrathna, Y. Liao, Tetrahedron Lett. 2014, 55, 6575-6576.

[^18]: NनN゚

 60

[^19]:

