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Abstract—This paper proposes a Linear Parameter-Varying loop-
shaping controller for a power-synchronized grid-following inverter
(PSGFLI). This control strategy regulates the inverter output active
and reactive power at the terminal instead of the point of connection
and does not require a phase-locked loop (PLL) for extracting the
voltage phase angle. Hence, the prevalent stability issues exhibited
when GFLIs are connected to weak grids are not present, and the
proposed PSGFLI control strategy can work under both very weak
and strong grid conditions without being prone to instability. In this
approach, the controller parameters are functions of the operating
point and are changed during the real-time operation such that
the closed-loop performance is preserved in all operating points.
Furthermore, since the grid impedance is a factor in the design
process, a robustness analysis against grid impedance estimation error
is conducted, and it is shown that discrepancies in the estimated
and real grid impedances are unlikely to make the system unstable.
The performance of the proposed control design is validated in
MATLAB/PLECS and experiments for both strong and weak grids.

Index Terms—Linear Parameter-Varying, Loop-Shaping, Power
Control, Power Synchronized.

I. INTRODUCTION

IN recent years, inverter-based resources (IBRs) have gained
increasing importance in power systems as a result of their

decreasing cost and increasing concerns regarding CO2 emissions.
Hence, their penetration in power grids is rapidly increasing,
and conventional synchronous generators are being replaced by
them. Despite their advantages, IBRs may face stability and grid
synchronization issues due to the shortcomings of the conventional
control structures used for this purpose [1].

According to their synchronization strategy, IBRs can be classi-
fied into two main groups: 1) grid-following inverters (GFLIs) and
2) grid-forming inverters (GFMIs). Conventional GFLIs employ
Phase-Locked Loops (PLLs) for estimating the grid voltage angle,
by which they can get synchronized with the grid [2]–[4]. In
this type of IBRs, the point of connection (PoC) voltage is used
to extract the grid voltage angle, which is in turn needed in a
vector current controller [5]–[7]. GFMIs, on the other hand, adjust
the phase angle of the PoC voltage by controlling the inverter
output active power [8]. In this type of inverter, the active power-
frequency droop control is used to synchronize the inverter with
the grid [3], [9]–[11]. Additionally, the PoC voltage magnitude is
regulated by the inverter based on the output reactive power, in
contrast to GFLIs. Note that one major difference between GFLIs
and GFMIs is that, contrary to GFLIs, GFMIs can perform in the
islanded mode as they form/regulate the PoC voltage. In light of
the different control strategies used in these two types of inverters,
the stability issues they may have are different.

As the most prevalent IBR control strategy, GFLIs encounter
stability issues while integrated into weak grids [12]. Different
studies show the main instability motivation is particularly due
to the PLL issues in weak grids, which might not have an
equilibrium point or have an unstable one [13]–[19]. On the other

hand, GFMIs face issues when connected to strong grids as it
is challenging to regulate the PoC voltage in such grids [20],
[21]. Since GFMIs can be modeled as a first-order system, their
transient stability improves compared with GFLIs [22]. Despite
that, the droop control loop used for reactive power control
can negatively affect the transient stability [23]. In addition,
GFMIs can induce oscillations while connected to strong or series
compensated grids [21], [24], [25]. Moreover, the output current
limiting during a fault occurrence is challenging for this type of
IBRs [26]. Additionally, [27] shows that the small-signal stability
of virtual synchronous machines (VSMs), as a prevalent GFMI
implementation, depends on either the PoC voltage dq-components
or the employed impedance of the virtual machine model.

To overcome the stability issues corresponding to the GFLIs
and GFMIs, some studies proposed direct power control (DPC) for
the IBRs that control the IBRs output active and reactive power
directly without having an inner control loop [28], [29]. These
methods use a variable switching frequency that causes a wide
range of harmonics, and hence, it is not easy to design a filter
for them. To conquer this, other DPC methods are proposed that
have a constant switching frequency [30]–[34]. Nonetheless, these
methods could not eliminate power oscillations either entirely. In
addition, [35] proposes a universal control strategy that combines
power-synchronization and GFLI schemes to exploit their merits
simultaneously. However, this structure still requires a PLL for
synchronization and the PoC voltage for its operation. A PLL-
less voltage-modulated direct power control (VMDPC) for IBRs
is introduced in [36]–[38]. Given the fact that the PLL is eliminated
from this control structure, the VMDPC does not have the PLL-
related issues that conventional GFLIs suffer from. Nonetheless,
this method faces problems while integrated into weak grids due
to the necessity of PoC voltage sensing [38]. Also, [39] shows that
this approach does not possess any merit compared to conventional
PLL-based GFLIs provided the PLL is tuned properly.

To address the shortcomings of the previous methods for con-
trolling grid-following IBRs, [40] proposes a power-synchronized
GFLI (PSGFLI) control strategy. This method, similar to the
VMDPC, does not use a PLL for grid synchronization. However,
unlike the VMDPC, since this method does not require PoC
voltage measurement, it is not affected in weak grid conditions,
and thus, it can perform in both stiff and weak grids. This method
uses the inverter terminal voltage instead of the PoC voltage to
control the inverter terminal output power. This control structure
is composed of an outer loop that is responsible for controlling the
IBR active and reactive power, and generates the frequency and
inner loop current references. The current controller employed in
this control structure is the conventional vector current controller.
Although this method is effective, and the IBR can work under stiff
and weak grid conditions, the active and reactive power control
design method proposed in [40] is not straightforward since it
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uses optimization techniques for control design. Furthermore, the
performance depends on the operating point of the system, and
the IBR cannot work as a rectifier since the phase margin of the
system becomes negative while working as a rectifier unless the
controller is modified.

This paper aims to rectify the aforementioned shortcomings of
the method proposed in [40]. To this end, a Linear Parameter-
Varying (LPV) loop-shaping controller is designed for the pro-
posed IBR control structure, named LPV-PSGFLI. LPV systems
are a class of nonlinear systems that have the structure of a
linear system whose parameters are a function of some scheduling
variables that can be measured in real-time operation [41]. A
nonlinear system linearized around some operating points can be
represented as an LPV system in which the scheduling variables
are the operating point parameters. The LPV systems are linear
time-invariant for fixed scheduling variables. An LPV controller
is designed such that its parameters are adapted automatically in
real-time according to the variation of the operating points. The
main benefits of the proposed control design introduced in this
paper are

• constant bandwidth for different operating points,
• straightforward control design based on the IBR operating

point, and
• inversion and rectification capabilities.
Additionally, this study provides a robustness analysis of the

proposed controller against the grid impedance estimation error. It
is shown that while the order of the system increases, in case the
grid impedance is not accurately estimated, the system instability
is unlikely. Note that this study does not employ a fault-ride
through (FRT) scheme during faults. The reason is highlighting
the capabilities of the proposed controller during and after faults.
However, FRT schemes are used in practice to help inverters
remain synchronized with the grid during faults, and similarly to
other GFLIs, FRT techniques can be implemented on the control
strategy proposed in this article.

The rest of this paper is organized as follows. Section II
discusses the VMDPC and PSGFLI. Section III describes the pro-
posed LPV loop-shaping control design and analyzes the robust-
ness of the system with respect to discrepancies between the grid
estimated and real impedances. The performance of the proposed
method is evaluated in Section IV. Finally, the conclusions are
presented in Section V.

II. POWER-SYNCHRONIZED GRID-FOLLOWING INVERTER
CONTROL

To have a system that can work in all grid strengths, a novel
power-synchronized control strategy for GFLIs is proposed in [40].
The block diagram of this control strategy is shown in Fig. 1. It is
worth mentioning that, as shown in [40], and since the PoC voltage
is not used/regulated in this control strategy, using L or LCL filters
does not impact the controller performance; hence, without loss of
generality, an L filter is employed in this study. If an LCL filter
is used, the internal current controller needs to be designed such
that it damps the resonance created by the LCL filter [7], [42].

The advantage of the control strategy of [40] compared with
conventional GFLIs is that no PLL is used in this method, and
hence, the related stability issue in weak grids is not exhibited. Ad-
ditionally, this control strategy does not rely on sensing/controlling
PoC voltage. Thus, this method does not present the stability
deterioration related to the VMDPC reported in [38], which is

due to the affected PoC voltage. Ref. [40] shows that while this
method can work in very weak grids, the VMDPC fails; unless the
system time constant decreases significantly, making the system
much slower.

Ref. [40] assumes that the rotating reference frame is aligned
with the inverter output current, which makes iq=0 A. Thus, the
inverter output current and voltage can be written as

idq = Id + j0 and vt,dq = Vt cos δ + jVt sin δ. (1)

In (1), δ is the angle between the inverter output voltage and
current, Id is the d-component of the inverter output current, and
Vt is the amplitude of the inverter output phase-to-neutral voltage.
Moreover, the inverter apparent output power is

P + jQ =
3

2

(
VtId cos δ + jVtId sin δ

)
. (2)

Supposing that there are small perturbations in δ and Id, i.e.,
δ=δ0+∆δ and Id=Id,0+∆Id, the small-signal model of the system
can be derived as [40](

∆P
∆Q

)
=

(
3VtId,0 sin δ0

2s H 3Vt cos δ0
2(τs+1) H

− 3VtId,0 cos δ0
2s H 3Vt sin δ0

2(τs+1) H

)
︸ ︷︷ ︸

G

(
∆ω

∆Id,ref

)
, (3)

in which G is the system transfer function matrix, H is the input
low-pass filter and will be neglected from now on, 1

τs+1 represents
the current controller assuming that the grid impedance is known,
P and Q are inverter output active and reactive power, δ0 is the
angle between inverter voltage and current at the operating point,
Id,0 is the inverter output current d-component, ω is the estimated
angular frequency of the grid by the controller, and finally, Id,ref
is the inverter output current d-component reference. Note that
assuming that the zero of the current controller PI and the pole
imposed by the grid impedance to the system cancel each other, the
transfer function of the closed current control loop can be written
as 1

τs+1 [7].
An outer-loop control schematic for regulating the output P and

Q is proposed in [40], which is shown in Fig. 2. In this figure,
K11(s) through K22(s) are Proportional-Integral (PI) compen-
sators. Although the control strategy proposed in [40] is capable of
working in very weak and very strong systems, its control design
method is complex. First, it uses optimization techniques to design
the active and reactive power PI controllers. Additionally, using
the PI controllers proposed in [40], the system cannot work as a
rectifier since the phase margin of the system becomes negative,
making the system unstable. Finally, using the control design
method in [40], the bandwidth of the system depends on the
operating point of the system, i.e., unless the system operating
point is about the operating point the controller is designed for,
the system becomes slower or faster than desired.

Hence, in the following, an alternative controller that addresses
the aforementioned shortcomings of the proposed controller in
[40] is devised, which is easy to design, has a fixed bandwidth in
different operating points, and can work as an inverter and rectifier.

III. LPV LOOP-SHAPING CONTROL DESIGN

As seen from (3), the system under study is a MIMO system;
hence, a 2×2 controller must be designed to guarantee stability. To
do so, in this study, an LPV loop-shaping controller is designed
such that it addresses the drawbacks of the controller designed
in [40]. To design the LPV controller, a vector of scheduling
parameters should be chosen, which is selected as µ=[Id,0, δ0]T .
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Fig. 1. Power-synchronized GFLI and its control structure.

Fig. 2. The block diagram of the proposed power controller.

TABLE I
THE PARAMETERS OF THE STUDY SYSTEM OF FIG. 1.

Quantity Value Comment
Lf 95 µH Inverter Filter Inductance
Rf 0.01 Ω Series Resistance of Lf

Sbase 5 MVA Inverter Rated Power
vg 690 V Grid Line-to-Neutral Voltage (rms)
vdc 3000 V DC Bus Voltage
fsw 5 kHz PWM Carrier Frequency
f 50 Hz System Nominal Frequency
ffilt 200 Hz Power Measurement LPF Bandwidth

Hence, the designed controller and the system both are functions
of the vector µ.

Supposing that the desired open-loop transfer function matrix
of the system, LD, is chosen as

LD =

(
kp/s 0

0 kp/s

)
, (4)

and assuming that K(µ) is the designed 2×2 controller, the open-
loop transfer function can be written as

L(µ) = G(µ)×K(µ). (5)

In case the open-loop transfer function is equal to the desired
transfer function introduced in (4),

K(µ) = G−1(µ)× LD. (6)

Note that the chosen LD guarantees stability since the closed-loop
transfer functions on the diagonal entries become Kp

s+Kp
, which is

a stable transfer function. Additionally, LD provides a decoupled
system as its off-diagonal elements are zero. To find the controller
matrix, K(µ), the inverse of G(µ) can be derived as

G−1(µ) =

(
2s sin δ0
3VtId,0

− 2s cos δ0
3VtId,0

2(τs+1) cos δ0
3Vt

2(τs+1) sin δ0
3Vt

)
. (7)

By replacing (7) in (6), the controller matrix becomes

K(µ) =

(
kp

2 sin δ0
3VtId,0

−kp 2 cos δ0
3VtId,0

kp
2(τs+1) cos δ0

3Vts
kp

2(τs+1) sin δ0
3Vts

)
. (8)

Keeping in mind that iq=0 A, the apparent power can be written
as

St =
3

2
VtId. (9)

By replacing (9) in (8), the designed controller can be reformulated
as

K(µ) =

(
kp

sin δ0
St

−kp cos δ0
St

kp
(τs+1)Id,0 cos δ0

s×St
kp

(τs+1)Id,0 sin δ0
s×St

)
, (10)

in which St is the inverter output apparent power and can be written
as St=

√
P 2+Q2, δ0= tan−1 Q

P , and Id,0 is the inverter output
current peak value, which can be updated in the controller shown
in (10) via real-time measurements. It is worth mentioning that by
choosing the desired open-loop transfer function as shown in (4),
the closed-loop transfer function becomes

Gcl =

(
kp
s+kp

0

0
kp
s+kp

)
=

( 1
Ts+1 0

0 1
Ts+1

)
, (11)

in which T= 1
kp

is the system time constant. Hence, the bandwidth
of the system dynamic response can be directly adjusted by setting
kp.

The main advantage of the controller proposed in (10) compared
to the control design method in [40] is that (10) is easy to
design and does not require system identification and/or solving
an optimization-based loop-shaping problem since it provides a
parametric loop-shaping controller. In addition, unlike the method
proposed in [40], (10) schedules its gains based on the system
operating point. Hence, in contrast to [40], the system bandwidth
is not changed by changing the IBR operating point. Finally,
this controller allows the system to perform bidirectionally, i.e.,
in inverter and rectifier modes. The reason is that regardless of
the power direction, the system open-loop transfer function is
LD using the proposed LPV controller, which is a stable system.
However, the controller designed in [40] does not work in rectifier
mode.

As mentioned above, the transfer function in (3) assumes that
the grid impedance is known, and the current controller can be
simplified to a first-order system with a time constant τ . This
transfer function is used to design the controller proposed in
(8). Although there are many approaches for accurate impedance
estimation in the literature [43], [44], errors in the grid impedance
estimation can occur in the system; thus, a robustness analysis
against impedance estimation errors is needed.

A. Robustness Analysis Against Grid Impedance Estimation Error

Supposing that the grid inductance and resistance are known,
the PI controller employed in the current controller can be devised
such that it has a zero at Ls+R, where L is the grid inductance,
and R is the grid resistance; hence, the closed-loop transfer
function of the current controller can be written as Kp,cc

s+Kp,cc
, or

alternatively, 1
τ1s+1 , where 1

Kp,cc
=τ1. If the exact values of the grid

impedance and resistance are not known, the open-loop transfer
function corresponding to the current controller becomes

Go,cc(s) = Kp,cc ×
L̂s+ R̂

s
× 1

Ls+R
, (12)

where L̂ and R̂ are the estimated grid inductance and resistance
and can be written as L̂=a1×L and R̂=a2×R, respectively. To
analytically study the estimation errors impact on the system
stability and for the sake of simplicity, it is assumed that a1=a2=a.
However, in the provided numerical analysis, different errors are
considered, i.e., a1 6=a2.

Based on the assumption in the analytical study, the open-
loop zero and pole in (12) still cancel each other; however,
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the estimation error is reflected in the open-loop gain, making
it a×Kp,cc. Supposing 1

a×Kp,cc
=τ2, the transfer function of the

closed current control loop can be written as

Gcc(s) =
1

τ2s+ 1
. (13)

Replacing (13) in (3) results in

G(µ) =

(
3VtId,0 sin δ0

2s
3Vt cos δ0
2(τ2s+1)

− 3VtId,0 cos δ0
2s

3Vt sin δ0
2(τ2s+1)

)
. (14)

By replacing (8) and (14) in (5), the open-loop transfer function
of the system with the estimation error can be written as

L(µ) = G(µ)×K(µ)

=

(
3VtId,0 sin δ0

2s
3Vt cos δ0
2(τ2s+1)

− 3VtId,0 cos δ0
2s

3Vt sin δ0
2(τ2s+1)

)(
2s sin δ0
3VtId,0

− 2s cos δ0
3VtId,0

2(τ1s+1) cos δ0
3Vt

2(τ1s+1) sin δ0
3Vt

)

=

(
kp sin δ0

2

s +
kp cos δ0

2

s × τ1s+1
τ2s+1 −kp sin 2δ0

2s +
kp sin 2δ0

2s × τ1s+1
τ2s+1

kp sin 2δ0
2s −kp sin 2δ0

2s × τ1s+1
τ2s+1

kp cos δ0
2

s +
kp sin δ0

2

s × τ1s+1
τ2s+1

)

=

(
k1
s + k2

s ×
τ1s+1
τ2s+1 −k3s + k3

s ×
τ1s+1
τ2s+1

k3
s −

k3
s ×

τ1s+1
τ2s+1

k2
s + k1

s ×
τ1s+1
τ2s+1

)

=

(
k1(τ2s+1)+k2(τ1s+1)

s(τ2s+1)
−k3(τ2s+1)+k3(τ1s+1)

s(τ2s+1)
k3(τ2s+1)−k3(τ1s+1)

s(τ2s+1)
k2(τ2s+1)+k1(τ1s+1)

s(τ2s+1)

)
, (15)

in which

k1 = kp sin2 δ0 ; k2 = kp cos2 δ0 ; k3 = kp
sin 2δ0

2
. (16)

To evaluate the stability of the system, the poles of the closed-loop
transfer function must be found. To do so, the closed-loop transfer
function can be written as

Ĝcl(µ) = L(µ)× (L(µ) + I)−1. (17)

To find the closed-loop system poles, the characteristic equation
of each entry in (17) should be found. Supposing that the system
is minimal (no pole-zero cancellation occurs in the system), it
can be shown that each entry characteristic equation, ∆(s), is the
numerator of det(L(µ) + I). Hence, to have a stable system, the
roots of ∆(s) should be negative. The characteristic equation can
be found as

∆(s) =

A︷ ︸︸ ︷
(k1k2 + k23)(τ2s+ 1)2 +

A︷ ︸︸ ︷
(k1k2 + k23)(τ1s+ 1)2

+

B︷ ︸︸ ︷
(k21 + k22 − 2k23)(τ1s+ 1)(τ2s+ 1)

+

C︷ ︸︸ ︷
(k1 + k2) s(τ2s+ 1)

+

C︷ ︸︸ ︷
(k1 + k2) s(τ1s+ 1)(τ2s+ 1) + s2(τ2s+ 1). (18)

Thus, ∆(s) can be rewritten as

∆(s) = τ22 s
4 + (2τ2 + Cτ1τ2)s3

+ {A(τ22 + τ21 ) + (B + C)(τ1 + τ2) + Cτ2 + 1}s2

+ {2A(τ1 + τ2) +B(τ1 + τ2) + 2C}s+ 2A+B. (19)

To have a stable system, the roots of (19) must be negative. To find
the stability condition, the Routh-Hurwitz criterion is employed.
Based on this criterion, to have a stable system,

1)2A+B > 0,

2)2τ2 + Cτ1τ2 > 0, and

3){(2τ2 + Cτ1τ2)[A(τ21 + τ22 ) + (B + C)(τ1 + τ2) + Cτ2 + 1]

− τ22 [2A(τ1 + τ2) +B(τ1 + τ2) + 2C]}
× {2A(τ1 + τ2) +B(τ1 + τ2) + 2C}
− (2τ2 + Cτ1τ2)2(2A+B) > 0. (20)

The first condition in (20) is always valid since 2A+B=(k1+k2)2.
Additionally, since C=k1+k2>0, and considering that τ1 and τ2
are positive values, the second condition in (20) is always valid.
To evaluate the last condition, it should be noted that the current
controller time constant (τ ) is about a couple of ms; hence, the
terms containing higher order of τs, i.e., their multiplication or
higher power ratings, can be neglected. By doing so, the third
condition can be simplified to 4Cτ2, which is always positive.
Therefore, it can be concluded that if the inductance and resistance
estimation error percentages are the same, the system remains
stable, while some dynamics are added to the system.

In a general case, when the inductance and resistance estima-
tions have random and not necessarily equal errors, the pole and
zero in (12) do not cancel each other, and hence, neglecting the
coupling between the current d and q-components, the transfer
function of the closed current control loop becomes

Gccgeneral(s) = Kp,cc
L̂s+ R̂

Ls2 + (R+Kp,ccL̂)s+Kp,ccR̂
, (21)

and the system transfer function becomes

G(µ) =

(
3VtId,0 sin δ0

2s
3Vt cos δ0

2 Gccgeneral(s)

− 3VtId,0 cos δ0
2s

3Vt sin δ0
2 Gccgeneral(s)

)
. (22)

Since the system order is increased if random errors are as-
sumed for the estimated grid inductance and resistance, making
it challenging to analytically evaluate the robustness, a numerical
robustness analysis of the system introduced in Table I with the
transfer function shown in (22) and the controller shown in (10)
is performed. In this analysis, it is assumed that the resistance
estimation error is 10%, and the inductance estimation error varies
from 5% to 95% with 5% steps. As discussed, the closed-loop
system poles are the characteristic equation roots, ∆(s). Therefore,
to assess the stability, the ∆(s) roots are shown in Fig. 3. The
arrows show the estimation error increase. It is seen that the overall
closed-loop system remains stable despite the different estimation
errors resistance and inductance have.

It should be noted that the presence of errors in the inductance
and resistance estimations adds more poles and zeros to the
closed-loop transfer function, and hence, some new dynamics will
be added to the system; nonetheless, it is not likely that these
estimation errors threat the system stability.

B. Grid Frequency Deviation Impact on the Active and Reactive
Power Steady-State Errors

One of the disturbances that may occur in power systems is the
grid frequency deviation. Hence, the ability of the IBR to remain
synchronized with the grid in the presence of frequency changes
must be evaluated. Since based on Fig. 2, ∆ω=k11eP+k12eQ,
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Fig. 3. The characteristic equation roots when the resistance estimation error is
10% and the inductance estimation error varies from 5% to 95%.

and the estimated frequency by the controller that keeps the IBR
synchronized to the grid is ω=ω0+∆ω, ∆ω is nonzero in the
presence of a grid frequency deviation. In case the desired open-
loop transfer function is chosen as (4), which results in having k11
and k12 as two gains, ep and eQ become nonzero in the steady-
state. In other words, having k11 and k12 as two gains creates a
droop-like relationship between the active and reactive power with
the frequency. To calculate the amount of the steady-state errors,
using (8), one can write

∆ω =
2kp

3VtId,0

(
sin δ0 × eP + cos δ0 × eQ

)
. (23)

Also, since k21 and k22 have an integrator, to have the system
stable, the total error signal given to the integrator must be zero
in the steady-state, i.e.,

0 =
2kp
3Vt

(
cos δ0 × eP + sin δ0 × eQ

)
, (24)

which results in
eP = − tan δ0 × eQ. (25)

By substituting for ep from (25) in (23),

3VtId,0

2kp
∆ω =

D︷ ︸︸ ︷(− sin2 δ0
cos δ0

− sin δ0
)
eQ, (26)

and hence,
3VtId,0

2kpD
∆ω = eQ. (27)

By substituting for eQ from (27) in (25), eP can be calculated.
As expected, it is observed that the injected active and reactive
power have steady-state error in the presence of grid frequency
deviation. In case the steady-state error is not tolerable, an upper-
level controller, such as a governor, can adjust the active and
reactive power references. Alternatively, a higher-order open-loop
transfer function matrix that has at least two integrators can be
used.

IV. PERFORMANCE EVALUATION

To assess the performance of the proposed controller, the system
shown in Fig. 1 is simulated in Matlab/PLECS. Furthermore,
the performance of the designed controller is validated using
an experimental setup based on Imperix B-Box Controller and
Regatron AC Power Supply. In the simulation tests, the con-
troller capability for coping with active and reactive power set-
point changes, bidirectional performance, phase jump, and fault
occurrence is validated under weak and strong grid conditions. In
addition, the experimental setup is employed to validate the ability
of the controller to cope with active and reactive power set-point
changes.

A. Simulation Results

To evaluate the performance of the proposed controller, different
tests are conducted in Matlab/PLECS when the system shown in
Fig. 1 and with the parameters in Table I is subjected to faults,
grid phase jumps, and set-point changes both for strong and weak
grids.

1) Strong grid (SCR=17): In this part, the grid inductance
and resistance are chosen as Lg=51 µH and Rg=5.4 mΩ,
respectively, making SCR=17. Also, the PI controller employed
in the current controller is 2500× 146×10−6s+0.0154

s , making the
current controller a first-order system with τ=0.0004 s. Besides,
kp is chosen equal to 100, causing a 10 ms overall time constant.
Initially, the converter injects 1 MW and 1 MVAR of active and
reactive power, respectively. At t=0.05 s, the active power set-
point is changed to 2 MW. At t=0.15 s, the reactive power
set-point steps up to 4 MVAR, while the active power remains
unchanged. At t=0.25 s, the power factor is changed from 0.44 to
0.9, changing the active and reactive power set-points to 4 MW and
2 MVAR, respectively. Finally, at t=0.35 s, the converter active
power set-point is changed to −2 MW, making the converter to
work as a rectifier. Fig. 4 depicts the simulation results of this
system. Fig. 4(a) shows the three-phase output current, Fig. 4(b)
is the converter filter output line-to-neutral three-phase voltage,
Fig. 4(c) is d and q-components of the converter output current,
Fig. 4(d) is d and q-components of the converter terminal voltage,
Fig. 4(e) depicts the output active and reactive power, and finally,
Fig. 4(f) shows the angular frequency generated by the controller.
It is seen that the controller tracks the reference active and reactive
power with zero steady-state error, the time constant of the system
is about 10 ms, and the converter can perform as an inverter and
rectifier, as expected. Note that the angular frequency shown in
Fig. 4(f) is not the grid frequency. It is an internal variable of the
inverter, which can be different from the frequency of the grid
during transients.

Also, Fig. 5 shows the simulation results of the system upon
a fault occurrence and phase jump. Initially, the converter injects
P=4 MW and Q=2 MVAR into the grid. At t=0.05 s, a 100 ms
three-phase fault making the grid voltage 0.2 pu occurs in the
system. It is seen that the injected power is recovered since, based
on the physical attributes of the system, the reference active power
does not exceed the line power transmission limit. At t=0.15 s, the
fault is cleared, and the grid voltage is recovered. It is seen that the
controller copes with the fault clearance. Additionally, at t=0.25 s,
a 20° phase jump occurs at the grid side voltage. It is seen that
the system can maintain stability and inject the reference active
and reactive power into the grid after the phase jump occurrence.

2) Weak grid (SCR=1.2): In this part, the grid inductance
and resistance are chosen as Lg=680 µH and Rg=72 mΩ,
respectively, making SCR=1.2. Also, the PI controller employed
in the current controller is 2500× 770×10−6s+0.082

s , making the
current controller a first-order system with τ=0.0004 s. Similar to
the previous test, kp is chosen equal to 100, causing a 10 ms overall
time constant. Initially, the converter injects 1 MW and 1 MVAR
of active and reactive power, respectively. At t=0.05 s, the active
power set-point is changed to 2 MW. At t=0.15 s, the reactive
power set-point steps up to 4 MVAR, while the active power
remains unchanged. At t=0.25 s, the power factor is changed
from 0.44 to 0.9, changing the active and reactive power set-points
to 4 MW and 2 MVAR, respectively. Finally, at t=0.35 s, the
converter active power set-point is changed to −2 MW, making the
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Fig. 4. The simulation results of the system with SCR=17 upon various active
and reactive power references change: a) the three-phase grid currents (iabc), b)
the converter filter output three-phase line-to-neutral voltage, c) the dq-components
of the grid current (idq), d) the dq-components of the terminal voltage (vt,dq), e)
the injected active and reactive power into the grid, and f) the estimated angular
frequency generated by the controller.

Fig. 5. The simulation results of the system with SCR=17 upon a three-phase fault
and grid voltage phase jump occurrence: a) the three-phase grid currents (iabc),
b) the grid three-phase line-to-neutral voltage, c) the dq-components of the grid
current (idq), d) the dq-components of the terminal voltage (vt,dq), e) the injected
active and reactive power into the grid, and f) the estimated angular frequency
generated by the controller.

converter to work as a rectifier. Fig. 6 depicts the simulation results
of this system. Fig. 6(a) shows the three-phase output current,
Fig. 6(b) depicts the converter filter output line-to-neutral three-
phase voltage, Fig. 6(c), is d- and q-components of the converter
output current, Fig. 6(d), is d- and q-components of the converter
terminal voltage, Fig. 6(e) depicts the output active and reactive
power, and finally, Fig. 6(f) shows the angular frequency generated
by the controller. It is seen that the controller tracks the reference
active and reactive power with zero steady-state error, and the time
constant of the system is about 10 ms, as expected.

Also, Fig. 7 shows the simulation results of the system upon
a fault occurrence and phase jump. Initially, the converter injects
P=4 MW and Q=2 MVAR into the grid. At t=0.05 s, a 100 ms
three-phase fault making the grid voltage 0.2 pu occurs in the
system. However, it is seen that the system output power and
generated angular frequency have a constant steady-state error
during the fault. The reason is in (8), the controllers corresponding
to ∆ω are just proportional controllers. This prevents creating
an accumulative error in the generated frequency, and hence, the
output active power. After the fault clearance (t=0.15 s), the line
power transferred limit is increased again, and the output active
power is recovered. In addition, at t=0.25 s, a 20° phase jump
occurs at the grid side voltage. It is seen that the system can
maintain stability and inject the reference active and reactive power
into the grid after the phase jump occurrence.

3) Comparative Analysis: In this part, the proposed control
strategy is compared with PSGFLI and VMDPC. To compare the
performance of the LPV-PSGFLI and PSGFLI, both systems are
connected to the weak grid with SCR=1.2. Initially, both IBRs

inject 1 MW and 1 MVAR to the grid. At t=0.1 s, the active power
is increased to 2 MW, and after 100 ms, it is increased to 4 MW.
At t=0.3 s, the reactive power is increased to 2 MVAR. Finally,
At t=0.4 s, the active power direction is reversed, changing the
inverter mode to rectification. Fig. 8 shows the simulation results
of this test in which (a) depicts the injected active power and
(b) shows the injected reactive power by the LPV-PSGFLI and
PSGFLI, respectively. It is observed that LPV-PSGFLI has a
constant rise time, while the PSGFLI rise time varies depending
on the operating point. Additionally, the PSGFLI cannot perform
as a rectifier while LPV-GFLI remains stable and tracks its power
references even in the rectification mode. The reason is when the
active power direction is reversed, the current direction will change
and the loop transfer function L of PSGFLI becomes -L, which
adds a phase lag of -180 to the loop transfer function that makes
the system unstable. However, the LPV controller designed for
the PSGFLI varies depending on the operating point and is able
to deal with the IBR mode change.

To compare the performance of the proposed control design
with the VMDPC while connected to a weak grid, similar active
and reactive reference changes are applied to a system that has
the VMDPC control structure. With the VMDPC, the system is
unable to work in a weak grid unless the gain of the system
and subsequently, its speed, decrease drastically. Fig. 9 shows
the simulation results of the VMDPC. Similar to the tests applied
to the proposed controller in this study, initially, the IBR injects
1 MW and 1 MVAR. At t=1 s, the active power set-point is
changed to 2 MW. At t=3.5 s, the reactive power set-point steps
up to 4 MVAR, while the active power remains unchanged. At
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Fig. 6. The simulation results of the system with SCR=1.2 upon various active
and reactive power references change: a) the three-phase grid currents (iabc), b) the
grid three-phase line-to-neutral voltage, c) the dq-components of the grid current
(idq), d) the dq-components of the terminal voltage (vt,dq), e) the injected active
and reactive power into the grid, and f) the estimated angular frequency generated
by the controller.

Fig. 7. The simulation results of the system with SCR=1.2 upon a three-phase fault
and grid voltage phase jump occurrence: a) the three-phase grid currents (iabc),
b) the grid three-phase line-to-neutral voltage, c) the dq-components of the grid
current (idq), d) the dq-components of the terminal voltage (vt,dq), e) the injected
active and reactive power into the grid, and f) the estimated angular frequency
generated by the controller.

Fig. 8. The simulation results of the comparison between the LPV-PSGFLI and
PSGFLI while the IBR is connected to the weak grid with SCR=1.2 upon various
active and reactive power reference changes: a) the injected active power into the
grid and b) the injected reactive power into the grid.

t=6 s, the power factor is changed from 0.44 to 0.9, changing
the active and reactive power set-points to 4 MW and 2 MVAR,
respectively. Finally, at t=8.5 s, the converter active power set-
point is changed to −2 MW, making the converter a rectifier. It
is seen that the rise time of the system is about 1 s, which is 100
times slower than the controller proposed in this study. It should be
noted that, when connected to a weak grid, the VMDPC becomes
unstable if the overall gain of the system increases (to make the
system faster).

Additionally, a 100 ms three-phase grid-side fault that causes the
grid voltage to drop to 0.2 pu followed by a 20° grid voltage phase

Fig. 9. The simulation results (active and reactive power) of the VMDPC [36],
when connected to a very weak grid with SCR=1.2, upon active and reactive
power references change.

Fig. 10. The simulation results (active and reactive power) of the VMDPC [36],
when connected to a very weak grid with SCR=1.2, upon a three-phase grid-side
fault and a 20° grid voltage phase jump.

jump is applied to the same system using the VMDPC connected to
the same weak grid. The simulation result is presented in Fig. 10.
At t=1, the three-phase fault takes place and gets clear after
100 ms. It is seen that although the controller can stabilize the
system, the settling time is about 1.5 s, which is much slower
than the proposed controller performance. Additionally, at t=5 s,
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Fig. 11. The eigenvalues of the system while the SCR varies from 17 to 1.2,
while the controller is designed based on SCR= 5 and X/R=3.

Fig. 12. The simulation results of the system while the SCR varies from 17 to
1.2 with a controller designed based on SCR=5 and X/R=3: a) the injected active
power into the grid, b) the injected reactive power into the grid, and c) the estimated
angular frequency generated by the controller.

TABLE II
THE PARAMETERS OF THE EXPERIMENTAL SETUP.

Quantity Value Comment
Lf 14 mH Inverter Filter Inductance
Rf 0.5 Ω Series Resistance of Lf

Sbase 1 kVA Inverter Rated Power
vg 100 V Grid Line-to-Line Voltage (rms)
vdc 300 V DC Bus Voltage
fsw 20 kHz PWM Carrier Frequency
f 50 Hz System Nominal Frequency
ffilt 200 Hz Power Measurement LPF Bandwidth

a 20° phase jump occurs at the grid voltage. It is seen that, contrary
to the introduced control method in this study, the VMDPC fails
to stabilize the system upon the phase jump.

As conclusion, the LPV controller proposed in this paper has
a major advantage compared to the VMDPC while the system is
connected to a weak grid. First, the proposed controller is quite
faster compared to the VMDPC. Besides, it is seen that in case of
severe disturbance occurrence, such as a phase jump, the VMDPC
cannot stabilize the system while the proposed LPV controller used
for the control structure in [40] rejects the disturbance properly.

4) Robustness Analysis: In this part, the robustness of the
proposed controller against grid impedance estimation errors is
investigated. To this end, the controller is designed based on a grid
with SCR=5 and X/R=3, while the real SCR varies between 17
and 1.2, X/R is kept at 3, and the IBR injects 4 MW and 2 MVAR.
Fig. 11 shows the dominant poles of the system when the SCR
is decreased from 17 to 1.2 with steps of 0.1. It is seen that the

Fig. 13. The experimental setup.

dominant poles are always stable. Besides, similar to the robustness
analysis used in [45], to validate the eigenvalue analysis results,
time-domain simulations are conducted. Fig. 12 shows the time-
domain simulation of the system in the presence of impedance
estimation errors. In this test, the SCR is set to 17, 14, 11, 8,
5, and 1.2, while the controller remains unchanged. Similar to
the previous tests, kp is set to 100. Initially, the converter injects
1 MW and 1 MVAR of active and reactive power, respectively.
At t=0.05 s, the active power set-point is changed to 2 MW. At
t=0.15 s, the reactive power set-point steps up to 4 MVAR, while
the active power remains unchanged. At t=0.25 s, the power factor
is changed from 0.44 to 0.9, changing the active and reactive power
set-points to 4 MW and 2 MVAR, respectively. Finally, at t=0.35 s,
the converter active power set-point is changed to −2 MW, making
the converter work as a rectifier. Fig. 12(a) shows the active power,
Fig. 12(b) is the reactive power, and Fig. 12(c) depicts the angular
frequency. It is seen that the system remains stable, although there
are discrepancies in the estimated grid inductance and resistance,
which is used in the controller.

B. Experimental Results

To experimentally evaluate the performance of the proposed
controller and to validate the simulation results, an experimental
platform based on Imperix B-Box and Regatron AC Power Supply
is designed, which is shown in Fig. 13. The corresponding control
structures are implemented in Matlab/Simulink, and the control
interface is performed via Imperix ACG BB Control software.
Table II shows the system parameters. Additionally, the inner
current controller gain is set to 2500. Additionally, the parameter
kp is set to 25 in all tests, making the time constant of the system
equal to 40 ms. In these tests, the performance of the controller
for active power, reactive power, and power factor changes is
evaluated. Additionally, the IBR behavior upon fault recovery in
the presence of current saturation is evaluated.

1) Strong grid (SCR=31): In the first test, the grid inductance
and resistance are set to 1 mH and 0.03 Ω, respectively, making the
SCR=31. Initially, the inverter injects no active or reactive power
into the grid. At t=0.1 s, the reactive power reference is changed
to 800 VAR. At t=0.35 s, the active power set-point is changed to
600 W. Finally, at t=0.6 s, the power factor is changed from 0.6
to 0.8, while the apparent power is kept at 1 pu. Fig. 14 shows
the experimental results of this test. Fig. 14(a) is the three-phase
injected currents, Fig. 14(b) is the three-phase grid line-to-neutral
voltages, Fig. 14(c) shows the active and reactive power, Fig. 14(d)
depicts the d and q-components of the injected current, as well
as the generated id reference value by the controller, Fig. 14(e)
depicts the d and q-components of the terminal voltage, and finally,
Fig. 14(f) shows the angular frequency estimated by the controller.
It is seen that the system time constant is about 40 ms, and the
controller regulates the P and Q upon changes in their references.

2) Weak grid (SCR=1.9): In the second test, the grid inductance
and resistance are set to 16 mH and 0.53 Ω, respectively, making
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Fig. 14. The experimental results of the LPV-PSGFLI while connected to a strong
grid with SCR=31 showing the zero-start, as well as active and reactive reference
changes: a) the three-phase grid currents (iabc), b) the grid three-phase line-to-
neutral voltage, c) the injected active and reactive power into the grid, d) the
dq-components of the grid current (idq) and id,ref, e) the dq-components of the
terminal voltage (vt,dq), and f) the estimated angular frequency generated by the
controller.

Fig. 15. The experimental results of the LPV-PSGFLI while connected to a weak
grid with SCR= 1.9 showing the zero-start, as well as active and reactive reference
changes: a) the three-phase grid currents (iabc), b) the grid three-phase line-to-
neutral voltage, c) the injected active and reactive power into the grid, d) the
dq-components of the grid current (idq) and id,ref, e) the dq-components of the
terminal voltage (vt,dq), and f) the estimated angular frequency generated by the
controller.

the SCR=1.9. Initially, the inverter injects no active or reactive
power into the grid. At t=0.1 s, the reactive power reference is
changed to 800 VAR. At t=0.35 s, the active power set-point is
changed to 600 W. Finally, at t=0.6 s, the power factor is changed
from 0.6 to 0.8, while the apparent power is kept at 1 pu. Fig. 15
shows the experimental results of this test. Fig. 15(a) is the three-
phase injected currents, Fig. 15(b) is the three-phase grid line-to-
neutral voltages, Fig. 15(c) shows the active and reactive power,
Fig. 15(d) depicts the d and q-components of the injected current,
as well as the generated id reference value by the controller,
Fig. 14(e) depicts the d and q-components of the terminal voltage,
and finally, Fig. 15(f) shows the angular frequency estimated by
the controller. It is seen that the system time constant is about
40 ms, and the controller regulates the P and Q upon changes in
their references.

3) Fault Occurrence: In the third test, the inverter is connected
to the introduced strong system with SCR =31. Initially, the IBR
injects 800 W and 600 VAR to the grid. At t=0.08 s, a grid-
side three-phase fault causing a 0.5 pu voltage deep occurs for
100 ms. At t=0.18, the fault is cleared. Note that the inverter
output current is limited to 8 A, and an anti-windup mechanism
is employed in the control structure to avoid instability due to
saturation. Fig. 16 shows the experimental results of this test in
which (a) is the three-phase output currents, (b) is the three-phase
grid line-to-neutral voltages, (c) is the active and reactive power,
(d) depicts the injected current d and q-components of the injected
current, and (e) shows the angular frequency estimated by the
controller. It is observed that during the fault, the output current
is saturated to 8 A. After the fault is cleared, the controller is able
to track the references, and the system is recovered.

Based on the results shown in the simulation and experimental
tests, it is seen that the proposed controller rectifies the issues
present in the control design method of [40]. The proposed
controller has a constant bandwidth for different operating points
and can perform as a rectifier with no need to modify the controller.
Besides, contrary to the method in [40], the proposed controller
has a parametric, easy-to-design structure.

V. CONCLUSIONS

This paper proposes an LPV loop-shaping controller for PS-
GFLIs. IBRs enjoying this structure do not have stability issues
while connected to very strong or very weak grids; also, it is
shown that using this controller, the performance of the system
does not rely on the operating point, i.e., it adapts its gains such
that it has a constant rise time while working in different operating
points. Additionally, the designed controller allows the system to
work as a bidirectional converter. Besides, the proposed controller
shapes the system open-loop transfer function such that IBR output
active and reactive power are decoupled, and the rise time of the
system can easily be tuned by changing the system open-loop gain.
Moreover, it is mathematically shown that the system is robust
despite the discrepancies that might occur in grid inductance and
resistance estimation. Finally, the performance of the proposed
control structure is validated via simulation and experimental tests.

As a continuation of this work, the transient and small-signal
stability analyses of a grid-connected LPV-PSGFLI equipped with
the proposed controller will be conducted, and the impact of
asymmetrical faults on the proposed controller will be studied.
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Fig. 16. The experimental results of the system while the IBR is connected to
the strong grid with SCR=31 upon a 100 ms fault occurrence: a) the three-phase
grid currents (iabc), b) the grid three-phase line-to-neutral voltage, c) the injected
active and reactive power into the grid, d) the dq-components of the grid current
(idq), and e) the estimated angular frequency generated by the controller.
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